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Preface

Introduction

This text is written for an introductory course in fluid mechan-

ics. Our approach to the subject emphasizes the physical

concepts of fluid mechanics and methods of analysis that

begin from basic principles. One primary objective of this text

is to help users develop an orderly approach to problem sol-

ving. Thus, we always start from governing equations, state

assumptions clearly, and try to relate mathematical results

to corresponding physical behavior. We emphasize the use

of control volumes to maintain a practical problem-solving

approach that is also theoretically inclusive.

Proven Problem-Solving Methodology

The Fox-McDonald solution methodology used in this text is

illustrated in numerous examples in each chapter, with each

one picked to illustrate an important aspect. Solutions presented

in the examples have been prepared to illustrate good solution

technique and to explain difficult points of theory. Examples are

set apart in format from the text so that they are easy to identify

and follow. Additional important information about the text and

our procedures is given in “Note to Students” in Section 1.1.We

urge you to study this section carefully and to integrate the

suggested procedures into your problem-solving and results-

presentation approaches.

SI and English Units

SI units are used in about 70 percent of both example and end-of-

chapter problems. English Engineering units are retained in the

remaining problems to provide experience with this traditional

system and to highlight conversions among unit systems.

Goals and Advantages of Using This Text

Complete explanations presented in the text, together with

numerous detailed examples, make this book understandable

for students, freeing the instructor to depart from conventional

lecture teaching methods. Classroom time can be used to

bring in outside material, expand on special topics (such as

non-Newtonian flow, boundary-layer flow, lift and drag, or

experimental methods), solve example problems, or explain

difficult points of assigned homework problems. Thus, each

class period can be used in the manner most appropriate to

meet student needs.

When students finish the fluid mechanics course, we

expect them to be able to apply the governing equations to

a variety of problems, including those they have not encoun-

tered previously.We particularly emphasize physical concepts

throughout to help students model the variety of phenomena

that occur in real fluid flow situations. Although we collect

useful equations at the end of each chapter, we stress that

our philosophy is to minimize the use of so-called “magic

formulas” and emphasize the systematic and fundamental

approach to problem-solving. By following this format, we

believe students develop confidence in their ability to apply

the material and to find that they can reason out solutions to

rather challenging problems.

The book is well suited for independent study by students

or practicing engineers. Its readability and clear examples help

build confidence. Answers to selected problems are included,

so students may check their own work.

Topical Coverage

The material has been selected carefully to include a broad

range of topics suitable for a one- or two-semester course at

the junior or senior level. We assume a background in rigid-

body dynamics, mathematics through differential equations,

and thermodynamics.

The text material is organized into broad topic areas:

• Introductory concepts, scope of fluid mechanics, and fluid

statics (Chapters 1, 2, and 3)

• Development and application of control volume forms of

basic equations (Chapter 4)

• Development and application of differential forms of basic

equations (Chapters 5 and 6)

• Dimensional analysis and correlation of experimental data

(Chapter 7)

• Applications for internal viscous incompressible flows

(Chapter 8)

• Applications for external viscous incompressible flows

(Chapter 9)

• Analysis of fluid machinery and system applications

(Chapter 10)
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• Analysis and applicationsof open-channel flows (Chapter 11)

• Analysis and applications of one-dimensional compressible

flows (Chapter 12)

Chapter 4 deals with analysis using both finite and differ-

ential control volumes. The Bernoulli equation is derived as

an example application of the basic equations to a differential

control volume. Being able to use the Bernoulli equation in

Chapter 4 allows us to include more challenging problems deal-

ing with the momentum equation for finite control volumes.

Another derivation of the Bernoulli equation is presented

in Chapter 6, where it is obtained by integrating Euler’s

equation along a streamline. If an instructor chooses to delay

introducing the Bernoulli equation, the challenging problems

from Chapter 4 may be assigned during study of Chapter 6.

Text Features

This edition incorporates a number of features that enhance

learning:

• Learning Objectives: A set of specific Learning Objec-

tives has been developed for the material in each chapter.

These are a set of testable specific skills and knowledge that

a student should be able to achieve after completing the

material in the chapter. Representative questions designed

to test whether the student has, in fact, achieved those skills

and knowledge is on the Instructor Companion website.

• Chapter Summary and Useful Equations: At the end

of each chapter, we summarize the major contributions

the material has made to meeting the Learning Objectives.

Also, as indicated previously, we provide a list of equations

that are most commonly used in problem solving.

• End-of-Chapter Problems: Problems in each chapter are

arranged by topic and grouped according to the chapter sec-

tion headings. Within each topic they generally increase in

complexity or difficulty. This makes it easy for the instruc-

tor to assign homework problems at the appropriate diffi-

culty level for each section of the book.

• Fluid Mechanics Concept Inventory: The Fluid Mechan-

ics Concept Inventory (FMCI) was developed under an

NSF grant to the Foundation Coalition by faculty at the

University of Wisconsin (J. Martin and J. Mitchell) and

the University of Illinois (A. Jacobi and T. Newell). The

inventory is used to a) evaluate whether students understand

fluids concepts as opposed to be able to do calculations,

and b) improve the teaching of fluids to correct student

misconceptions.

• Design and Open-ended Problems: Where appropriate,

we have provided open-ended design problems. Students

could be assigned to work in teams to solve these problems.

These problems encourage students to spend more time

exploring applications of fluid mechanics principles to

the design of devices and systems. These design problems

are available on the Instructor Companion website for many

chapters.

New to This Edition

This edition has been edited significantly and incorporates a

number of changes to previous editions:

• End of Chapter Problems: Approximately 5 new pro-

blems have been authored for each chapter and roughly

50% of the problems have been revised or updated. The

number of problems at the end of each chapter has been sig-

nificantly reduced and selected to illustrate the important

aspects of the material. The end-of-chapter problems that

have been removed from the previous edition are available

on the Instructor Companion website.

• Instructor-only Problems: Approximately 25 % of the

problems have been set aside as Instructor-only problems

that can be assigned at the discretion of the instructor. These

are mostly new problems developed for this edition.

• Show/Hide Solutions: Approximately 15 % of the pro-

blems in the enhanced ebook feature solutions behind

show/hide buttons. This feature will allow students to check

the intermediate steps of their work.

• Case Study: Each chapter is introduced with a Case Study

that illustrates the application of the material in the chapter.

Most of the case studies in the previous edition have been

updated and replaced with more recent applications.

• Videos: For many of the chapter subjects, short videos are

available that illustrate a specific phenomenon. These

videos, which are available in the enhanced ebook, are indi-

cated by an icon in the margin of the text. We also include

references to much more extensive collections of videos on

a wide range of fluid mechanics topics.

• References: The end-of-chapter references have been

updated and edited to give the current references most rel-

evant to the material.

• Computational Fluid Dynamics (CFD): The material on

CFD has been updated to reflect the current state of the art

and moved to an appendix with current references.

Additional Resources in the Enhanced Ebook:

The following resources are available for students enrolled in

classes that use the enhanced ebook.

• Excel Files: The Excel files used to solve examples in the

text are available on the Student Companion Website.

These files can be used to explore the solution further or

as a guide to the development of new solutions using Excel.

• A Brief Review of Microsoft Excel: This is an online tuto-

rial prepared by Philip Pritchard that will aid students in

using Excel to solve the end-of-chapter problems.
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• Supplemental Chapter 12 Content: This is advanced

material relevant to Chapter 12 Introduction to Compress-

ible Fluid Flow.

Resources for Instructors

In addition to the materials available to students, the following

resources are available to instructors who adopt this text on

the Instructor Companion Website at www.wiley.com/go/

mitchell/foxfluidmechanics10e

• Solutions Manual: The solutions manual contains a

detailed solution for all homework problems. The expected

solution difficulty is indicated, and each solution is pre-

pared in the same systematic way as the example solutions

in the printed text. Each solution begins from governing

equations, clearly states assumptions, reduces governing

equations to computing equations, obtains an algebraic

result, and finally substitutes numerical values to obtain a

quantitative answer. Solutions may be reproduced for class-

room or library use, eliminating the labor of problem-sol-

ving for the instructor.

• Learning Objective Assessment Questions: These are

questions designed to directly assess whether students have

achieved the Learning Objectives of the chapter. These can

be used in in-class discussions and assigned homework.

• ProblemKey:The key provides the correspondence between

the problems in this tenth edition and those that were renum-

bered from the ninth edition.

• PowerPoint Lecture Slides: Lecture slides outline the

concepts in the book and include appropriate illustrations

and equations.

• Image Gallery: Illustrations are taken from the text in a

format appropriate to include in lecture presentations.

• Sample Syllabi: Syllabi appropriate for use in teaching a

one-semester course in fluid mechanics are provided.

First-time instructors will find these a helpful guide to creat-

ing an appropriate emphasis on the different topics.

• Instructor-only Problems: These are usually new pro-

blems that are available to the instructor only and that

can be assigned as new challenges to the students.

• Design Problems: A set of open-ended design problems

have been developed for appropriate chapters. They are

designed to integrate material in the chapter and would

be expected to take one to two weeks of homework time

for students working in small teams.

• Supplemental Chapter 12 Content: This is the material on

Fanno flow, Rayleigh flow, and two-dimensional compress-

ible flow that had been developed for previous editions.
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Chapter 1 Problems
Student solution available in interactive e-text.

Definition of a Fluid: Basic Equations
1.1 Describe the conditions for which the following substances can

be considered liquids.

Tar Honey Wax Propane
Carbon dioxide Sea water Sand Tothpaste

1.2 Give a word statement of each of the five basic conservation

laws stated in Section 1.2 as they apply to a system.

Methods of Analysis
1.3 The barrel of a bicycle tire pump becomes quite warm during use.

Explain the mechanisms responsible for the temperature increase.

1.4 In a pollution control experiment, minute solid particles (typical

mass 1 × 10−13 slug) are dropped in air. The terminal speed of the

particles is measured to be 0 2 ft s. The drag of these particles is

given by FD = kV , where V is the instantaneous particle speed. Find

the value of the constant k. Find the time required to reach 99 percent

of terminal speed.

1.5 A rocket payload with a weight on earth of 2000 lbf is sent to the

moon. The acceleration due to gravity in the moon is 1/6th that of

the earth. Determine the mass of the payload on the earth and on

the moon and the weight of the payload on the moon in SI, BG,

EE units.

1.6 The English perfected the longbow as a weapon after

the Medieval period. In the hands of a skilled archer, the longbow

was reputed to be accurate at ranges to 100 m or more. If the

maximum altitude of an arrow is less than h=10m while traveling

to a target 100 m away from the archer, and neglecting air resistance,

estimate the speed and angle at which the arrow must leave the bow.

Plot the required release speed and angle as a function of height h.

1.7 Air at standard atmospheric conditions enters the 6 in. diameter

inlet of an air compressor at a velocity of 20 ft/s. The air is com-

pressed and leaves the compressor through a 6 in. diameter outlet

at 80 psia and 150 F. Determine the mass flow rate of the air and

the exit velocity.

1.8 A water flow of 4.5 slug/s at 60 F enters the condenser of steam

turbine and leaves at 140 F. Determine the heat transfer rate (Btu/hr).

1.9 Determine the weight (N) and specific volume of a cubic meter

of air at 101 kPa and 15 C. Determine the specific volume if the air is

cooled to −10 C at constant pressure.

1.10 Determine the specific weight, specific volume, and density of

air at 40 F and 50 psia in BG units. Determine the specific weight,

specific volume, and density when the air is then compressed isen-

tropically to 100 psia.

Dimensions and Units
1.11 For each quantity listed, indicate dimensions using mass as a

primary dimension, and give typical SI and English units:

(a) Power

(b) Pressure

(c) Modulus of elasticity

(d) Angular velocity

(e) Energy

(f) Moment of a force

(g) Momentum

(h) Shear stress

(i) Strain

(j) Angular momentum

1.12 For each quantity listed, indicate dimensions using force as a

primary dimension, and give typical SI and English units:

(a) Power

(b) Pressure

(c) Modulus of elasticity

(d) Angular velocity

(e) Energy

(f) Momentum

(g) Shear stress

(h) Specific heat

(i) Thermal expansion coefficient

(j) Angular momentum

1.13 The maximum theoretical flow rate (slug/s) for air flow through

a supersonic nozzle is given as

mmax =2 38
Atp0

T0
,

where At is the nozzle throat area (ft
2), p0 is the supply tank pressure

(psia), and T0 is the air temperature in the tank (oR). Determine the

dimensions and units of the constant 2.38. Determine the equivalent

equation in SI units.

1.14 The mean free path λ of a molecule of gas is the average dis-

tance it travels before collision with another molecule. It is given by

λ=C
m

ρd2

where m and d are the molecule’s mass and diameter, respectively,

and ρ is the gas density. Determine the dimensions of constant C

for a dimensionally consistent equation.

1.15 The density of a sample of sea water is 1.99 slug/ft3. Determine

the value of density in SI and EE units, and the value of specific

weight in SI, BG and EE units.

1.16 A fluid occupying 3 2 m3 has a mass of 4 mg. Calculate its

density and specific volume in SI, EE, and BG units.

1.17 Derive the following conversion factors:

(a) Convert a presssure of 1 psi to kPa.

(b) Convert a volume of 1 liter to gallons.

(c) Convert a viscosity of 1 lbf s/ft2 to N s/m2.

1.18 Express the following in SI units:

(a) 100 cfm ft3 min

(b) 5 gal

(c) 65 mph

(d) 5.4 acres
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1.19 Express the following in BG units:

(a) 50 m2

(b) 250 cc

(c) 100 kW

(d) 5 kg m2

1.20 Derive the conversion factors for the following quantities

for volume flow rate

(a) Converting in3/min to mm3/s.

(b) Converting gallons per minute (gpm) to m3/s.

(c) Converting gpm to liters/min.

(d) Converting cubic feet per minute (cfm) to m3/s.

Analysis of Experimental Error
1.21 Calculate the density of standard air in a laboratory from the

ideal gas equation of state. Estimate the experimental uncertainty

in the air density calculated for standard conditions (29.9 in. of

mercury and 59 F) if the uncertainty in measuring the barometer

height is 0 1 in. of mercury and the uncertainty in measuring

temperature is 0 5 F. (Note that 29.9 in. of mercury corresponds

to 14.7 psia.)

1.22A parameter that is often used in describing pump performance

is the specific speed, NScu , given by

NScu =
N rpm Q gpm

1 2

H ft
3 4

Determine the units of specific speed. For a pump with a specific

speed of 200, determine the specific speed in SI units with angular

velocity in rad/S.

1.23 The mass flow rate in a water flow system determined by col-

lecting the discharge over a timed interval is 0 2 kg s. The scales

used can be read to the nearest 0 05 kg and the stopwatch is accurate

to 0.2 s. Estimate the precision with which the flow rate can be cal-

culated for time intervals of (a) 10 s and (b) 1 min.

1.24 From Appendix A, the viscosity μ N s m2 of water at tem-

perature T K can be computed from μ=A10B T−C , where

A=2 414× 10−5 N s m2, B=247 8 K, and C=140 K. Determine

the viscosity of water at 30 C, and estimate its uncertainty if the

uncertainty in temperature measurement is 0 5 C.

1.25 The height of a building may be estimated by measuring

the horizontal distance to a point on the ground and the angle

from this point to the top of the building. Assuming that these

measurements are L=100 0 5 ft and θ=30 0 2 , estimate the

height H of the building and the uncertainty in the estimate. For

the same building height and measurement uncertainties, use

Excel’s Solver to determine the angle (and the corresponding dis-

tance from the building) at which measurements should be made

to minimize the uncertainty in estimated height. Evaluate and plot

the optimum measurement angle as a function of building height

for 50≤H ≤ 1000 ft.

1.26AnAmerican golf ball has a mass of 1 62± 0 01 oz and a nom-

inal diameter of 1.68 in. Determine the precision that the diameter

of the ball must be measured so that the uncertainty of the density

of the ball is ±1 percent.
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C H A P T E R 1

Introduction
1.1 Introduction to Fluid Mechanics

1.2 Basic Equations

1.3 Methods of Analysis

1.4 Dimensions and Units

1.5 Analysis of Experimental Error

1.6 Summary

Case Study

Wind generated electricity is increasingly becoming a major
factor in meeting U.S. energy needs. In 2017, wind energy pro-
vided 254 x 109 kWh of electricity, or about 6.3 percent of the
total electrical use (EIA, www.eia.gov/). In several states, over
10 percent of the electricity generated came from wind. The
total production has increased by 30 percent over that of 2015,
showing the rapid growth of wind power.

Electricity from the wind is produced in wind turbine farms, as
shown in the figure. The individual turbines are large, with the
height of the hub reaching to 70 m (220 ft) and the blades up
to 35 m (120 ft) in diameter. The total weight of the blades,
nacelle, and tower is about 165 tons. The nacelle contains the
gearbox and the generator, with the transmission lines to the grid
in the tower. A turbine this size is rated at 1.5 MW, which is
enough electricity to supply about 250 U.S. homes.

The kinetic energy of the wind is the source of power for a
wind turbine. Using the conservation of mass relation, the max-
imum efficiency of a wind turbine has been established at
59.3 percent. This maximum is known as Betz’s law after the
German physicist Albert Betz who derived the relation in 1919.
Practical utility-scale wind turbines achieve 75–80 percent of
the maximum, thus extracting about 45 percent of the available
energy of the wind.

The design of turbine blades has evolved from the flat surfaces
used on windmills to the propeller shapes seen on modern tur-
bines. The pitch of the blade, which is the angle between the
blade and the oncoming wind, is increased as the wind speed

increases. This is done to provide a match between the wind
and the blade surface so that the wind flows smoothly over the
blade. Because the velocity of the blade increases from the hub
to the tip, the blade shape twists accordingly to maintain a con-
stant pitch along the blade. Such designs allow the high efficiency
attained in wind turbines. The basic fluid mechanics that we will
study in this text provides the basis for the aerodynamic design of
devices such as wind turbines.
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Learning Objectives
After completing this chapter, you should be able to

• Explain the definition of a fluid in physical terms.

• State and explain the basic laws of fluid mechanics.

• Define “system” and “control volume” and explain the difference.

• Describe the dimensions and units of the systems used in fluid mechanics.

• Estimate the uncertainty in a physical measurement.

1.1 Introduction to Fluid Mechanics
We decided to title this textbook “Introduction to …” for the following reason: After studying the

text, you will not be able to design the streamlining of a new car or an airplane, or design a new heart

valve, or select the correct air extractors and ducting for a $100 million building; however, you will

have developed a good understanding of the concepts behind all of these, and many other applica-

tions, and have made significant progress toward being ready to work on such state-of-the-art fluid

mechanics projects.

To start toward this goal, in this chapter we cover some very basic topics: a case study, what fluid

mechanics encompasses, the standard engineering definition of a fluid, and the basic equations and

methods of analysis. Finally, we discuss some common engineering student pitfalls in areas such as unit

systems and experimental analysis.

Note to Students

This is a student-oriented book: We believe it is quite comprehensive for an introductory text, and a

student can successfully self-teach from it. However, most students will use the text in conjunction with

one or two undergraduate courses. In either case, we recommend a thorough reading of the relevant

chapters. In fact, a good approach is to read a chapter quickly once, then reread more carefully a second

and even a third time, so that concepts develop a context and meaning. While students often find fluid

mechanics quite challenging, we believe this approach, supplemented by your instructor’s lectures that

will hopefully amplify and expand upon the text material, will show fluid mechanics to be a fascinating

and varied field of study.

There are some prerequisites for this text. We assume you have already studied introductory ther-

modynamics, as well as statics, dynamics, and calculus; however, as needed, we will review some of this

material.

It is our strong belief that one learns best by doing. This is true whether the subject under study is

fluid mechanics, or soccer. The fundamentals in any of these are few, and mastery of them comes

through practice. Thus it is extremely important that you solve problems. The numerous problems

included at the end of each chapter provide the opportunity to practice applying fundamentals to the

solution of problems. Even though we provide for your convenience a summary of useful equations

at the end of each chapter, you should avoid the temptation to adopt a so-called plug-and-chug approach

to solving problems. Most of the problems are such that this approach simply will not work. In solving

problems, we strongly recommend that you proceed using the following logical steps:

1 State briefly and concisely in your own words the information given.

2 State the information to be found.

3 Draw a schematic of the system or control volume to be used in the analysis. Be sure to label the

boundaries of the system or control volume and label appropriate coordinate directions.

4 Give the appropriate mathematical formulation of the basic laws that you consider necessary to solve

the problem.

5 List the simplifying assumptions that you feel are appropriate in the problem.
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6 Complete the analysis algebraically before substituting numerical values. This is especially important

if you are using software to solve the problem.

7 Substitute numerical values to obtain a numerical answer.

(a) Reference the source of values for any physical properties.

(b) Be sure the significant figures in the answer are consistent with the given data.

(c) Check the units of each term to be certain they are consistent.

8 Check the answer and review the assumptions made in the solution to make sure they are reasonable.

9 Label the answer.

In your initial work this problem format may seem unnecessary and even long-winded. However, it is

our experience that this approach to problem solving is ultimately the most efficient. It will also prepare

you to be a successful professional, for which a major prerequisite is to be able to communicate infor-

mation and the results of an analysis clearly and precisely. This format is used in all examples presented

in this text; answers to examples are rounded to three significant figures.

The problems at the end of each chapter range in degree of difficulty. For many, pencil and paper

together with a calculator will suffice. This is especially true for those problems we have designed to

illustrate a single principle or concept. However, there are many more complex problems, and we have

found that using software tools is a more appropriate and satisfactory approach to obtaining a solution.

We have provided an Excel tutorial and solutions for many of the book’s examples on the website that

can be used to help you get started with this tool. Additionally, there are a large number of other equation

solvers that students have found very useful, including EES, MATLAB, andMathematica. We encourage

you to learn to use one of these tools as virtually all problems you will encounter in practice are

complicated.

Scope of Fluid Mechanics

As the name implies, fluid mechanics is the study of fluids at rest or in motion. The subject has applica-

tions to a wide range of traditional subjects such as the design of dam systems, water delivery systems,

pumps and compressors, and the aerodynamics of automobiles and airplanes. Fluid mechanics has facili-

tated the development of new technology in the environmental and energy area such as large-scale wind

turbines and oil spill cleanups. Medical advances in the understanding and treatment of flow problems in

the circulatory and respiratory system have been aided by fluid mechanics applications. The modeling

of atmospheric circulation and ocean currents that aids understanding of climate change is based on

fluid mechanics principles. Possibly the greatest advance in fluid mechanics in recent years is the ability

to model extremely complex flows using software. The technique known as computational fluid

dynamics (CFD) has at its heart the basic relations of fluid mechanics.

These are just a small sampling of the newer areas of fluid mechanics, but they illustrate how the

discipline is still highly relevant, and increasingly diverse, even though it may be thousands of years old.

Definition of a Fluid

We are certain that you have a common-sense idea of what a fluid is, as opposed to a solid. Fluids tend to

flow when we interact with them whereas solids tend to deform or bend. Engineers need a more formal

and precise definition of a fluid: A fluid is a substance that deforms continuously under the application of

a shear (tangential) stress no matter how small the shear stress may be. Because the fluid motion con-

tinues under the application of a shear stress, we can also define a fluid as any substance that cannot

sustain a shear stress when at rest.

Hence liquids and gases (or vapors) are the forms, or phases, that fluids can take. We wish to dis-

tinguish these phases from the solid phase of matter. We can see the difference between solid and fluid

behavior in Fig. 1.1. If we place a specimen of either substance between two plates (Fig. 1.1a) and then

apply a shearing force F, each will initially deform (Fig. 1.1b); however, whereas a solid will then be

at rest (assuming the force is not large enough to go beyond its elastic limit), a fluid will continue to

deform (Fig. 1.1c, d, etc.) as long as the force is applied. Note that a fluid in contact with a solid surface
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does not slip. It has the same velocity as that surface because of the no-slip condition, which is a very

important an experimental fact.

The amount of deformation of the solid depends on the solid’s modulus of rigidity. In Chapter 2 we

will learn that the rate of deformation of the fluid depends on the fluid’s viscosity μ. We refer to solids as

being elastic and fluids as being viscous. More informally, we say that solids exhibit “springiness.” For

example, when you drive over a pothole, the car bounces up and down due to the metal coil springs

compressing and expanding. On the other hand, fluids exhibit friction effects so that the shock absorbers,

which contain a fluid that is forced through a small opening, dissipate energy due to the fluid friction

and stop the bouncing after a few oscillations.

The idea that substances can be categorized as being either a solid or a liquid holds for most sub-

stances, but a number of substances exhibit both springiness and friction. They are termed viscoelastic.

Many biological tissues are viscoelastic. For example, the synovial fluid in human knee joints lubricates

those joints but also absorbs some of the shock occurring during walking or running. Other examples of

viscoelastic materials are some polymers, metals at very high temperatures, and bitumen material such as

asphalt.

1.2 Basic Equations
Analysis of any problem in fluid mechanics necessarily includes statement of the basic laws governing

the fluid motion. The basic laws, which are applicable to any fluid, are:

1 The conservation of mass

2 Newton’s second law of motion (also termed the principle of linear momentum)

3 The principle of angular momentum

4 The first law of thermodynamics

5 The second law of thermodynamics

All basic laws are usually not required to solve any one problem. On the other hand, in many problems it

is necessary to bring into the analysis additional relations that describe the behavior of physical proper-

ties of fluids under given conditions. For example, the ideal gas equation of state

p= ρRT 1 1

is a model that relates density to pressure and temperature for many gases under normal conditions. In

Eq. 1.1, R is the gas constant. Values of R are given in Appendix A for several common gases; p and T

in Eq. 1.1 are the absolute pressure and absolute temperature, respectively and ρ is density (mass per unit

volume). Example 1.1 illustrates use of the ideal gas equation of state.

It is obvious that the basic laws with which we shall deal are the same as those used in mechanics and

thermodynamics. Our task will be to formulate these laws in suitable forms to solve fluid flow problems

and to apply them to a wide variety of situations.

FFF

Time

(a) Solid or fluid (b) Solid or fluid (c) Fluid only (d) Fluid only

Fig. 1.1 Difference in behavior of a solid and a fluid due to a shear force.
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1.3 Methods of Analysis
The first step in solving a problem is to define the system that you are attempting to analyze. In basic

mechanics, wemade extensive use of the free-body diagram. In fluid mechanics, we will use a system or

a control volume, depending on the problem being studied. These concepts are identical to the ones you

used in thermodynamics (also termed closed system and open system, respectively). We can use either

one to get mathematical expressions for each of the basic laws. In thermodynamics we applied the con-

servation of mass and the first and second laws of thermodynamics in most problems. In our study of

fluid mechanics, we will usually apply conservation of mass and Newton’s second law of motion. In

thermodynamics our focus was energy; in fluid mechanics it will mainly be forces and motion.Wemust

always be aware of whether we are using a system or a control volume approach because each leads to

Example 1.1 FIRST LAW APPLICATION TO CLOSED SYSTEM

A piston-cylinder device contains 0 95 kg of oxygen initially at a temperature of 27 C and a pressure due to the weight of

150 kPa abs . Heat is added to the gas until it reaches a temperature of 627 C. Determine the amount of heat added during

the process.

Given: Piston-cylinder containing O2, m=0 95 kg.

T1 =27 C T2 =627 C

Find: Q1 2.

Solution: p= constant = 150 kPa abs

We are dealing with a system, m=0 95 kg.

Governing equation: First law for the system, Q12−W12 =E2−E1

Assumptions: 1 E=U, since the system is stationary.

2 Ideal gas with constant specific heats.

Under the above assumptions,

E2−E1 =U2−U1 =m u2−u1 =mcv T2−T1

The work done during the process is moving boundary work

W12 =
V--2

V--1
pdV--- = p V---2−V---1

For an ideal gas, pV--- =mRT . Hence W12 =mR T2−T1 . Then from the first law equation,

Q12 =E2−E1 +W12 =mcv T2−T1 +mR T2−T1
Q12 =m T2−T1 cv +R

Q12 =mcp T2−T1 R= cp−cv

From Table A.6 in Appendix A, for O2, cp =909 4J kg K . Solving forQ12,

we obtain

Q12 =0 95 kg× 909
J

kg K
×600 K=518 kJ

Q12

This problem:
• Was solved using the nine logical steps
discussed earlier.

• Reviewed the use of the ideal gas equa-
tion and the first law of thermodynamics
for a system.

Q

W

51.3 Methods of Analysis

www.konkur.in

Telegram: @uni_k



different mathematical expressions of these laws. At this point we review the definitions of systems

and control volumes.

System and Control Volume

A system is defined as a fixed, identifiable quantity of mass with the system boundaries separating the

system from the surroundings. The boundaries of the systemmay be fixed or movable; however, no mass

crosses the system boundaries.

In the familiar piston-cylinder assembly from thermodynamics, Fig. 1.2, the gas in the cylinder is

the system. If the gas is heated, the piston will lift the weight; the boundary of the system thus moves.

Heat and work may cross the boundaries of the system, but the quantity of matter within the system

boundaries remains fixed. No mass crosses the system boundaries.

In solid body mechanics courses you used the free-body diagram (system approach) extensively.

This was logical because you were dealing with an easily identifiable rigid body. However, in fluid

mechanics we normally are concerned with the flow of fluids through devices such as compressors,

turbines, pipelines, and nozzles. In these cases it is difficult to focus attention on a fixed identifiable

quantity of mass. It is much more convenient, to focus attention on a volume in space through which

the fluid flows. Consequently, we use the control volume approach.

A control volume is an arbitrary volume in space through which fluid flows. The geometric boundary

of the control volume is called the control surface. The control surface may be real or imaginary; it may be

at rest or in motion. Figure 1.3 shows flow through a pipe junction, with a control surface drawn on it.

Note that some regions of the surface correspond to physical boundaries (the walls of the pipe) and others

(at locations ⃝1 , ⃝2 , and ⃝3 ) are parts of the surface that are imaginary. For the control volume defined by

this surface, we could write equations for the basic laws and obtain results such as the flow rate at outlet ⃝3
given the flow rates at inlet ⃝1 and outlet ⃝2 or the force required to hold the junction in place. Example 1.2

illustrates how we use a control volume to determine the mass flow rate in a section of a pipe. It is

always important to take care in selecting a control volume, as the choice has a big effect on the mathe-

matical form of the basic laws.

Gas

Weight

Piston

CylinderSystem
boundary

Fig. 1.2 Piston-cylinder assembly.

Control volume

Control surface

1

2

3

Fig. 1.3 Fluid flow through a pipe junction.
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Differential versus Integral Approach

The basic laws that we apply in our study of fluid mechanics can be formulated in terms of systems

or control volumes. As you might suspect, the equations will look different in the two cases. Both

approaches are important in the study of fluid mechanics and both will be developed in the course of

our work.

In the case of infinitesimal systems the resulting equations are differential equations. Solution of the

differential equations of motion provides a means of determining the detailed behavior of the flow. An

example might be the pressure distribution on a wing surface.

Frequently the information sought does not require a detailed knowledge of the flow. We often

are interested in the gross behavior of a device; in such cases it is more appropriate to use integral

formulations of the basic laws. An example might be the overall lift a wing produces. Integral formula-

tions, using finite systems or control volumes, usually are easier to treat analytically. The basic laws of

mechanics and thermodynamics, formulated in terms of finite systems, are the basis for deriving the

control volume equations in Chapter 4.

Methods of Description

We use a method of description that follows the particle when we want to keep track of it. This sometime

is referred to as the Lagrangian method of description. Consider, for example, the application of

Example 1.2 MASS CONSERVATION APPLIED TO CONTROL VOLUME

A reducing water pipe section has an inlet diameter of 50 mm and exit diameter of 30 mm. If the steady inlet speed (averaged

across the inlet area) is 2 5 m s, find the exit speed.

Given: Pipe, inlet Di =50mm, exit De =30 mm.

Inlet speed, Vi =2 5 m s.

Find: Exit speed, Ve.

Solution:

Assumption: Water is incompressible (density ρ= constant).

The physical law we use here is the conservation of mass, which you learned in thermodynamics when studying turbines, boilers,

and so on. You may have seen mass flow at an inlet or outlet expressed as either m=VA v or m= ρVA where V , A, υ and ρ, are

the speed, area, specific volume, and density, respectively. We will use the density form of the equation.

Hence the mass flow is:

m= ρVA

Applying mass conservation,

ρViAi = ρVeAe

Note: ρi = ρe = ρ by our first assumption.

Solving for Ve,

Ve =Vi

Ai

Ae

=Vi

πD2
i 4

πD2
e 4

=Vi

Di

De

2

Ve =2 7
m

s

50

30

2

=7 5
m

s

Ve

Inlet Exit

Control volume

This problem:
• Was solved using the nine logical steps.
• Demonstrated the use of a control
volume and the mass conservation law.
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Newton’s second law to a particle of fixed mass. Mathematically, we can write Newton’s second law for

a system of mass m as

ΣF =ma =m
dV

dt
=m

d2r

dt2
1 2

In Eq. 1.2, ΣF is the sum of all external forces acting on the system, a is the acceleration of the center

of mass of the system, V is the velocity of the center of mass of the system, and r is the position vector of

the center of mass of the system relative to a fixed coordinate system. In Example 1.3, we show how

Newton’s second law is applied to a falling object to determine its speed.

Example 1.3 FREE FALL OF BALL IN AIR

The air resistance (drag force) on a 200 g ball in free flight is given by FD =2× 10−4V2, where FD is in newtons and V is in meters

per second. If the ball is dropped from rest 500 m above the ground, determine the speed at which it hits the ground. What per-

centage of the terminal speed is the result? (The terminal speed is the steady speed a falling body eventually attains.)

Given: Ball, m=0 2 kg, released from rest at y0 =500 m.

Air resistance, FD = kV2, where k=2×10−4 N s2 m2.

Units: FD N , V m s .

Find:

(a) Speed at which the ball hits the ground.

(b) Ratio of speed to terminal speed.

Solution:

Governing equation: ΣF =ma

Assumption: Neglect buoyancy force.

The motion of the ball is governed by the equation

ΣFy =may =m
dV

dt

Since V =V y , we write ΣFy =m
dV

dy

dy

dt
=mV

dV

dy
. Then,

ΣFy =FD−mg= kV2
−mg=mV

dV

dy

Separating variables and integrating,

y

y0

dy=
V

0

mVdV

kV2−mg

y−y0 =
m

2k
ln kV2

−mg
V

0
=

m

2k
ln
kV2−mg

−mg

Taking antilogarithms, we obtain

kV2
−mg= −mg e 2k m y−y0

Solving for V gives

V =
mg

k
1−e 2k m y−y0

1 2

FD

x

y

y0

mg
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We could use this Lagrangian approach to analyze a fluid flow by assuming the fluid to be com-

posed of a very large number of particles whose motion must be described. However, keeping track of

the motion of each fluid particle would become a horrendous bookkeeping problem. Consequently, a

particle description becomes unmanageable. Often we find it convenient to use a different type of

description. Particularly with control volume analyses, it is convenient to use the field, or Eulerian,

method of description, which focuses attention on the properties of a flow at a given point in space

as a function of time. In the Eulerian method of description, the properties of a flow field are described

as functions of space coordinates and time. We shall see in Chapter 2 that this method of description is a

logical outgrowth of the assumption that fluids may be treated as continuous media.

1.4 Dimensions and Units
Engineering problems are solved to answer specific questions. It goes without saying that the answer

must include units, and it is very important to know what the units of a problem are. In 1999, NASA’s

Mars Climate Observer crashed because the JPL engineers assumed that a measurement was in meters,

but the supplying company’s engineers had actually made the measurement in feet. Consequently, it is

appropriate to present a brief review of dimensions and units.

We refer to physical quantities such as length, time, mass, and temperature as dimensions. In terms

of a particular system of dimensions, all measurable quantities are subdivided into the two groups of

primary and secondary quantities. We refer to a small group of dimensions from which all others

can be formed as primary quantities, and for which we set up arbitrary scales of measure. Secondary

quantities are those quantities whose dimensions are expressible in terms of the dimensions of the pri-

mary quantities.

Units are the arbitrary names (and magnitudes) assigned to the primary dimensions adopted as

standards for measurement. For example, the primary dimension of length may be measured in units

of meters, feet, yards, or miles. These units of length are related to each other through unit conversion

factors such as 1 mile = 5280 feet = 1609 meters.

Systems of Dimensions

Any valid equation that relates physical quantities must be dimensionally homogeneous; each term in the

equation must have the same dimensions. We recognize that Newton’s second law relates the four

Substituting numerical values with y=0 yields

V = 0 2 kg× 9 81
m

s2
×

m2

2× 10−4N s2
×

N s2

kg m
1−e 2 × 2× 10−4 0 2 −500

V =78 7 m s V

At terminal speed, ay =0 and ΣFy =0= kV2
t −mg.

Then, Vt =
mg

k

1 2

= 0 2 kg× 9 81
m

s2
×

m2

2× 10−4N s2
×

N s2

kg m

1 2

=99 0 m s

The ratio of actual speed to terminal speed is

V

Vt

=
78 7

99 0
= 0 795, or 79 5

V

Vt

This problem:
• Reviewed the methods used in particle
mechanics.

• Introduced a variable aerodynamic
drag force.
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dimensions, F,M, L, and t. Thus force and mass cannot both be selected as primary dimensions without

introducing a constant of proportionality that has dimensions (and units).

Length and time are primary dimensions in all dimensional systems in common use. In some

systems, mass is taken as a primary dimension. In others, force is selected as a primary dimension,

whereas a third system chooses both force and mass as primary dimensions. Thus, we have

three basic systems of dimensions, corresponding to the different ways of specifying the primary

dimensions:

(a) Mass M , length L , time t , temperature T

(b) Force F , length L , time t , temperature T

(c) Force F , mass M , length L , time t , temperature T

In system a, force F is a secondary dimension and the constant of proportionality in Newton’s second

law is dimensionless. In system b, mass M is a secondary dimension, and again the constant of pro-

portionality in Newton’s second law is dimensionless. In system c, both force F and mass M have

been selected as primary dimensions. In this case the constant of proportionality is gc and is not dimen-

sionless.Thedimensionsofgcmust in factbe ML Ft2 for the equation tobedimensionally homogeneous.

The numerical value of the constant of proportionality depends on the units of measure chosen for each

of the primary quantities.

Systems of Units

There is more than one way to select the unit of measure for each primary dimension. We shall present

only the more common engineering systems of units for each of the basic systems of dimensions.

Table 1.1 shows the basic units assigned to the primary dimensions for these systems. The units in par-

entheses are those assigned to that unit system’s secondary dimension. Following the table is a brief

description of each of them.

a. MLtT dimensional system
SI, which is the official abbreviation in all languages for the Système International d’Unités [1] is an

extension and refinement of the traditional metric system. More than 30 countries have declared it to

be the only legally accepted system.

In the SI system of units, the unit of mass is the kilogram kg , the unit of length is the meter (m), the

unit of time is the second s , and the unit of temperature is the kelvin K . Force is a secondary dimen-

sion, and its unit, the newton N , is defined from Newton’s second law as the force required to

accelerate a 1 kg mass at 1 m/s2

1 N≡ 1 kg m s2

In the Absolute Metric system of units [2], the unit of mass is the gram, the unit of length is the

centimeter, the unit of time is the second, and the unit of temperature is the kelvin. Since force is a

secondary dimension, the unit of force, the dyne, is defined in terms of Newton’s second law as

1 dyne≡ 1 g cm s2

Table 1.1
Common Unit Systems

System of

Dimensions

Unit System Force

F

Mass

M

Length

L

Time

t

Temperature

T

a. MLtT Système International

d’Unités (SI)

(N) kg m s K

b. FLtT British Gravitational (BG) lbf (slug) ft s R

c. FMLtT English Engineering (EE) lbf lbm ft s R
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b. FLtT dimensional system
In the British Gravitational system of units [3], the unit of force is the pound lbf , the unit of length is the

foot ft , the unit of time is the second, and the unit of temperature is the degree Rankine R . Since

mass is a secondary dimension, the unit of mass, the slug, is defined in terms of Newton’s second law as

the mass that is accelerated 1 ft/s2 by a force of 1 lbf.

1 slug≡ 1 lbf s2 ft

c. FMLtT dimensional system
In the English Engineering system of units [4], the unit of force is the pound force lbf , the unit of mass

is the pound mass lbm , the unit of length is the foot, the unit of time is the second, and the unit of

temperature is the degree Rankine. Since both force and mass are chosen as primary dimensions,

Newton’s second law is written as

F =
ma

gc

A force of one pound 1 lbf is the force that gives a pound mass 1 lbm an acceleration equal to the

standard acceleration of gravity on Earth, 32 2 ft s2. From Newton’s second law we see that

1 lbf ≡
1 lbm×32 2 ft s2

gc

or

gc ≡ 32 2 ft lbm lbf s2

The constant of proportionality, gc, has both dimensions and units. The dimensions arose because

we selected both force and mass as primary dimensions; the units and the numerical value are a

consequence of our choices for the standards of measurement.

Since a force of 1 lbf accelerates 1 lbm at 32 2 ft s2, it would accelerate 32 2 lbm at 1 ft s2. A slug

also is accelerated at 1 ft s2 by a force of 1 lbf. Therefore,

1 slug≡ 32 2 lbm

In this text, we distinguish the two uses of “pound” by using lbf for force and lbm for mass. In the

English Engineering system then, the weight of an object is given by

W =m
g

gc

Preferred Systems of Units

In this text we shall use both the SI and the British Gravitational systems of units. In either case, the

constant of proportionality in Newton’s second law is dimensionless and has a value of unity. Conse-

quently, Newton’s second law is written as F =ma. In these systems, it follows that the weight of an

object of mass m is given by W =mg.

SI units and prefixes, together with other defined units and useful conversion factors, are on the

inside cover of the book. In Example 1.4, we show how we convert between mass and weight in the

different unit systems that we use.

Dimensional Consistency and “Engineering” Equations

In engineering, we strive to make equations and formulas have consistent dimensions. That is, each term

in an equation, should be reducible to the same dimensions. For example, a very important equation we

will derive later on is the Bernoulli equation

p1
ρ
+
V2
1

2
+ gz1 =

p2
ρ
+
V2
2

2
+ gz2
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which relates the pressure p, velocity V , and elevation z between points 1 and 2 along a streamline for a

steady, frictionless incompressible flow. This equation is dimensionally consistent because each term in

the equation can be reduced to dimensions of L2 t2. The pressure term dimensions are FL M, but from

Newton’s law we find F =M Lt2, so FL M =ML2 Mt2 = L2 t2.

Almost all equations you are likely to encounter will be dimensionally consistent. However, you

should be alert to some still commonly used equations that are not. These are often “engineering”

Example 1.4 USE OF UNITS

The label on a jar of peanut butter states its net weight is 510 g. Express its mass and weight in SI, BG, and EE units.

Given: Peanut butter “weight,” m=510 g.

Find: Mass and weight in SI, BG, and EE units.

Solution: This problem involves unit conversions and use of the equation relating weight and mass:

W =mg

The given “weight” is actually the mass because it is expressed in units of mass:

mSI =0 510 kg
mSI

Using the conversions given inside the book cover,

mEE =mSI

1 lbm

0 454 kg
= 0 510 kg

1 lbm

0 454 kg
= 1 12 lbm

mEE

Using the fact that 1 slug = 32 2 lbm,

mBG =mEE

1 slug

32 2 lbm
=1 12 lbm

1 slug

32 2 lbm

=0 0349 slug
mBG

To find the weight, we use

W =mg

In SI units, and using the definition of a newton,

WSI =0 510 kg× 9 81
m

s2
=5 00

kg m

s2
N

kg m s2

=5 00 N
WSI

In BG units, and using the definition of a slug,

WBG =0 0349 slug × 32 2
ft

s2
=1 12

slug ft

s2

=1 12
slug ft

s2
s2 lbf ft

slug
= 1 12 lbf

WBG

In EE units, we use the form W =mg gc, and using the definition of gc,

WEE =1 12 lbm× 32 2
ft

s2
×

1

gc
=
36 1

gc

lbm ft

s2

=36 1
lbm ft

s2
lbf s2

32 2 ft lbm
=1 12 lbf

WEE

This problem illustrates:
• Conversions from SI to BG and EE
systems.

• Use of gc in the EE system.
Notes:
The student may feel this example involves
a lot of unnecessary calculation details (e.g.,
a factor of 32.2 appears, then disappears),
but it cannot be stressed enough that such
steps should always be explicitly written out
to minimize errors—if you do not write all
steps and units down, it is just too easy, for
example, to multiply by a conversion factor
when you should be dividing by it. For the
weights in SI, BG, and EE units, we could
alternatively have looked up the conversion
from newton to lbf.
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equations derived many years ago, or are empirical (based on experiment rather than theory), or are pro-

prietary equations used in a particular industry or company. For example, civil engineers often use the

semi-empirical Manning equation

V =
R
2 3
h S

1 2
0

n

which gives the flow speed V in an open channel as a function of the hydraulic radius Rh (which is a

measure of the flow cross-section and contact surface area), the channel slope S0, and the Manning

resistance coefficient n. The value of this constant depends on the surface condition of the channel. This

equation is dimensionally inconsistent. For the right side of the equation, Rh has dimensions L, and S0 is

dimensionless, so with a dimensionless constant n, we end up with dimensions of L2 3. For the left side

of the equation the dimensions must be L t. A user of the equation needs to know that the values of n

provided in most references will give correct results only if we ignore the dimensional inconsistency,

always use Rh in meters, and interpret V to be in m/s. Because the equation is dimensionally inconsistent,

using the same value for n with Rh in ft does not give the correct value for V in ft/s.

A second type of problem is one in which the dimensions of an equation are consistent but use of

units is not. The commonly used EER of an air conditioner is

EER=
cooling rate

electrical input

which indicates how efficiently the AC works. The equation is dimensionally consistent, with the

EER being dimensionless as the cooling rate and electrical input are both measured in energy/time.

However, the units traditionally used in it are not consistent. For example, an EER of 10 means you

receive 10 Btu/hr of cooling for each 1W of electrical power. Manufacturers, retailers, and customers

all use the EER, in a sense, incorrectly in that they quote an EER of, say, 10, rather than the correct way,

of 10 Btu/hr/W. (The EER, as used, is an everyday, inconsistent unit version of the coefficient of

performance, COP, studied in thermodynamics.) EER has these units because the cooling effect is

commonly expressed in terms of Btu/hr and the power input to the motor in kW.

The two examples above illustrate the dangers in using certain equations. Almost all the equations

encountered in this text will be dimensionally consistent, but you should be aware of the occasional

troublesome equation you will encounter in your engineering studies.

As a final note on units, we stated earlier that we will use SI and BG units in this text. You will

become very familiar with their use through using this text but should be aware that many of the units

used, although they are scientifically and engineering-wise correct, are nevertheless not units you will

use in everyday activities.

1.5 Analysis of Experimental Error
Most consumers are unaware of it but, as with most foodstuffs, soft drink containers are filled to plus or

minus a certain amount, as allowed by law. The allowable variation is typically 1 or 2.5 percent of the

stated value. Because it is difficult to precisely measure the filling of a container in a rapid production

process, a 12-fl-oz container may actually contain 12.1, or 12.3, fl oz. Similarly, the supplier of com-

ponents for the interior of a car must satisfy minimum and maximum dimensions (tolerances) so that the

final appearance of the interior is visually appealing. Engineers performing experiments must measure

not just data but also the uncertainties in their measurements. They must also somehow determine how

these uncertainties affect the uncertainty in the final result.

These examples illustrate the importance of experimental uncertainty, that is, the study of uncer-

tainties in measurements and their effect on overall results. There is always a trade-off in experimental

work or in manufacturing. We can reduce the uncertainties to a desired level, but the smaller the uncer-

tainty (the more precise the measurement or experiment), the more expensive the procedure will be. Fur-

thermore, in a complex manufacture or experiment, it is not always easy to see which measurement

uncertainty has the biggest influence on the final outcome.

Anyone involved in experimental work should understand experimental uncertainties. Appendix E

has details on this topic; there is a selection of problems on this topic at the end of this chapter.
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1.6 Summary
In this chapter we introduced or reviewed a number of basic concepts and definitions, including:

✓ How fluids are defined, and the no-slip condition
✓ System/control volume concepts
✓ Lagrangian and Eulerian descriptions
✓ Units and dimensions (including SI, British Gravitational, and English Engineering systems)
✓ Experimental uncertainty
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Chapter 2 Problems

Velocity Field
2.1 Briefly state why the following flows are classified as either

one-, two-, or three-dimensional, and as either steady or unsteady.

The quantities a and b are constants.

1 V = ax+ t eby i

2 V = ax−by i

3 V = axi+ ebx j

4 V = axi+ bx2j+ axk

5 V = axi+ ebt j

6 V = axi+ bx2j+ ayk

7 V = axi+ ebt j+ ayk

8 V = axi+ eby j+ azk

2.2 A fluid is contained between two parallel plates spaced a dis-

tance h apart. The lower plate moves at a constant velocity U and

the upper plate is stationary. Determine which of the following veloc-

ity fields meets the appropriate boundary conditions, where x is the

coordinate along the plates and y is the coordinate perpendicular to

the plates with y = 0 at the lower plate.

(a) u = U

(b) u=U
y

h

(c) u=U
h−y

h

(d) u=U
y

h
−1

(e) u=U
y

h

2

2.3 A fluid fills the space between two parallel disks. The lower

one is stationary and the upper one rotates at a constant speed.

The velocity field is given as V = eθrωz h, where the origin of the

coordinate system is at the center of the stationary disks and h is

the height of the rotating disk. Determine the dimensions of the

velocity field. State the appropriate boundary conditions on the lower

and upper disks and show that the velocity field meets these

conditions.

2.4 For the velocity field V =Ax2yi+Bxy2j, where A=2m−2s−1

and B=1m−2s−1, and the coordinates are measured in meters,

obtain an equation for the flow streamlines. Plot the streamlines that

pass through the points (1,1), (1,2), and (2,2).

2.5When an incompressible, nonviscous fluid flows against a plate in

a plane (two-dimensional) flow, an exact solution for the equations of

motion for this flow is u=Ax, υ= −Ay,with A>0 for the sketch

shown. The coordinate origin is located at the stagnation point 0,

where the flow divides and the local velocity is zero. Plot the stream-

lines in the flow that pass through the points (1,1), (1,2), and (2,2).

2.6 For the free vortex flow the velocities are υt =5 r and υr =0.

Assume that lengths are in feet or meters and times are in seconds.

Plot the streamlines of this flow that pass through the points (0,1),

(0,2), and (0,3). Plot the velocity as a function of radius and deter-

mine the velocity at the origin (0,0).

2.7 For the forced vortex flow the velocities are υt =ωr and υr =0.

Plot the streamlines of this flow that pass through the points (0,1),

(0,2), and (0,3). Plot the velocity as a function of radius and deter-

mine the velocity at the origin (0,0).

2.8Avelocity field isgivenbyV = ax3i+ bxy3j, where a=1m−2s−1

and b=1m−3s−1. Find the equation of the streamlines. Plot the

streamlines that pass through the points (2, 0.25), (2, 0.5) and (2,1).

2.9A velocity field is given by V = a 1+ bt yi+ cxj , where x and y

are in m and a = 0.5 s−1, b = 1 s−1, and c = 4 s−1. Determine an equa-

tion for the streamlines. Plot the streamlines that pass through the

point (0,2) at t = 0 s and t = 1 s from x = 0 to x = 1 m.

2.10 Consider the velocity field V = axi+ by 1+ ct j, where

a= b=2 s−1 and c=0 4 s−1. Coordinates are measured in meters.

For the particle that passes through the point x,y = 1,1 at the

instant t=0, plot the pathline during the interval from t=0 to

1.5 s. Compare this pathline with the streamlines plotted through

the same point at the instants t=0, 1, and 1.5 s.

2.11 Consider the flow field given in Eulerian description by the

expression V = axi+ bytj, where a=0 2 s−1, b=0 04 s−2, and the

coordinates are measured in meters. Derive the Lagrangian position

functions for the fluid particle that was located at the point

x,y = 1,1 at the instant t=0. Obtain an algebraic expression

for the pathline followed by this particle. Plot the pathline and com-

pare with the streamlines plotted through the same point at the

instants t=0, 10, and 20 s.

P-3
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2.12 Consider the flow field V = axti+ bj, where a=1 4 s−2 and

b=1 3 m s. Coordinates are measured in meters. For the particle

that passes through the point x,y = 1,2 at the instant t=0,

plot the pathline during the time interval from t=0 to 3 s. Compare

this pathline with the streakline through the same point at the

instant t=3 s.

2.13 A flow is described by velocity field V = ai+ bxj, where

a=2m s and b=1 s−1. Coordinates are measured in meters.

Obtain the equation for the streamline passing through point

(2, 5). At t=2 s, determine the coordinates of the particle that

passed through point (0, 4) at t=0. At t=3 s, determine the coordi-

nates of the particle that passed throughpoint (1, 4.25) 2 s earlier.Draw

some conclusions about the pathline, streamline, and streakline for

this flow.

2.14 In a two-dimensional flow, a force of 20 lbf acts on a small

square plate as shown below. Determine the normal stress σxx and

the shear stress τyx.

20 lbf

60°

0.8 ft

P2.14

2.15 For each of the situations shown below, enter into the table

whether the stresses on opposite sides are equal, unequal, or zero

Problem Stress Equal,

unequal,

or zero

a) σxx
σyy
τyx
τxy

b) σxx
σyy
τyx
τxy

c) σxx
σyy
τyx
τxy

a) A sheet of water flowing down an inclined plane.

Ambient air

Water

y

x

b) Water flowing between two vertical plates.

Water

y

x

c) Air flowing between two horizontal plates.

y

x

2.16 A cubic element with sides 1 mm in length in a two-

dimensional flow is shown below. The stresses on each of the faces

are given on the diagram. Determine the net force on the element and

the direction of the force.

y

x

σyy = 3Pa, τyx = 15Pa

σyy = –5Pa, τyx = 10Pa

P2.16

Viscosity
2.17 The variation with temperature of the viscosity of air is

represented well by the empirical Sutherland correlation

μ=
bT1 2

1+ S T

Best-fit values of b and S are given in Appendix A. Develop an equa-

tion in SI units for kinematic viscosity versus temperature for air at

atmospheric pressure. Assume ideal gas behavior. Check by using

the equation to compute the kinematic viscosity of air at 0 C and

at 100 C and comparing to the data in Appendix A (Table A.10); plot

the kinematic viscosity for a temperature range of 0 C to 100 C,

using the equation and the data in Table A.10.

2.18 The velocity distribution for laminar flow between parallel

plates is given by
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u

umax

=1−
2y

h

2

where h is the distance separating the plates and the origin is placed

midway between the plates. Consider a flow of water at 15 C, with

umax =0 10 m s and h=0 1 mm. Calculate the shear stress on the

upper plate and give its direction. Sketch the variation of shear stress

across the channel.

2.19 Calculate velocity gradients and shear stress for y=0, 0.2,

0.4, and 0.6 m, if the velocity profile is a quarter-circle having

its center 0.6 m from the boundary. The fluid viscosity is

7 5 × 10−4 Ns m2.

The velocity profile is given by
u

10
m

s

2

+
y

0 6m
−1 =1

10 m/s

0.6 m

P2.19

2.20A very large thin plate is centered in a gap of width 0.06mwith

different oils of unknown viscosities above and below; one viscosity

is twice the other. When the plate is pulled at a velocity of 0 3 m s,

the resulting force on one square meter of plate due to the viscous

shear on both sides is 29 N. Assuming viscous flow and neglecting

all end effects, calculate the viscosities of the oils.

2.21 A vertical gap 25 mm wide of infinite extent contains oil

of specific gravity 0.95 and viscosity 2 4 Pa s. A metal plate

1 5 m×1 5 m×1 6 mm weighing 45 N is to be lifted through the

gap at a constant speed of 0 06 m s. Estimate the force required.

2.22 A cylinder 8 in. in diameter and 3 ft long is concentric with a

pipe of 8.25 in. i.d. Between the cylinder and pipe there is an oil film.

Find the force required to move the cylinder along the pipe at a

constant velocity of 3 fps. The kinematic viscosity of the oil is

0 006 ft2 s; the specific gravity is 0.92.

2.23 Crude oil at 20 C fills the space between two concentric cylin-

ders 250 mm high and with diameters of 150 mm and 156 mm. Find

the torque is required to rotate the inner cylinder at 12 r min, the

outer cylinder rernaining stationary.

2.24A block 0.1 m square, with 5 kg mass, slides down a smooth

incline, 30 below the horizontal, on a film of SAE 30 oil at 20 C

that is 0.20 mm thick. If the block is released from rest at t=0, deter-

mine its initial acceleration. Derive an expression for the speed of the

block as a function of time. Plot the curve for V t . Find the speed

after 0.1 s. If we want the mass to instead reach a speed of

0 3 m s at this time, find the viscosity μ of the oil we would have

to use.

2.25 The fluid drive shown transmits a torque T for steady-

state conditions (ω1 and ω2 constant). Derive an expression for

the slip ω1−ω2 in terms of T , μ, d, and h. For values d=6 in ,

h=0 2 in , SAE 30 oil at 75 F, a shaft rotation of 120 rpm, and a

torque of 0.003 ft-lbf, determine the slip.

Fluid μ

DrivenDriver

Disks
d

h

ω
1 ω

2

P2.25

2.26 A piston-cylinder combination is shown in the figure. The

piston velocity is 6 m/s and the oil has a kinematic viscosity of

2.8 × 10−5m2/s and a specific gravity of 0.92. Determine the power

dissipated by the viscous friction.

150.2 mm d
150 mm d

300 mm

Lubricant

P2.26

2.27 Fluids of viscosities μ1 =0 1 N s m2 and μ2 =0 15 N s m2

are contained between two plates (each plate is 1 m2 in area). The

thicknesses are h1 =0 5 mm and h2 =0 3 mm, respectively. And

the upper plate moves at a velocity of 1.5 m/s. Determine the force

required to move the upper plate and the fluid velocity at the interface

between the two fluids.

F, V

h2μ2

μ1

h1

P2.27

2.28 A concentric cylinder viscometer may be formed by rotating

the inner member of a pair of closely fitting cylinders. The annular

gap is small so that a linear velocity profile will exist in the liquid

sample. Consider a viscometer with an inner cylinder of 4 in. diam-

eter and 8 in. height, and a clearance gap width of 0.001 in., filled

with castor oil at 90 F. Determine the torque required to turn the

inner cylinder at 400 rpm.

Vm

Pulley
Cordr

a

ω

H R

M

P2.28
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2.29 The cone and plate viscometer shown is an instrument used

frequently to characterize non-Newtonian fluids. It consists of a flat

plate and a rotating cone with a very obtuse angle (typically θ is less

than 0.5 degrees). The apex of the cone just touches the plate surface

and the liquid to be tested fills the narrow gap formed by the cone and

plate. The viscometer is used to measure the apparent viscosity of a

fluid. The data below are obtained. Determine the kind of non-

Newtonian fluid it is. Find the values of k and n used in Eqs. 2.16

and 2.17 in defining the apparent viscosity of a fluid. (Assume θ

is 0.5 degrees.) Predict the viscosity at 90 and 100 rpm.

Speed (rpm) 10 20 30 40 50 60 70 80

μ(N s/m2) 0 121 0 139 0 153 0 159 0 172 0 172 0 183 0 185

ω

θ

R

Sample

P2.29

2.30 A viscometer is used to measure the viscosity of a patient’s

blood. The deformation rate (shear rate)–shear stress data is shown

below. Plot the apparent viscosity versus deformation rate. Find

the value of k and n in Eq. 2.17

duldy (s−1) 5 10 25 50 100 200 300 400

τ (Pa) 0 0457 0 119 0 241 0 375 0 634 1 06 1 46 1 78

Surface Tension
2.31 Small gas bubbles form in soda when a bottle or can is opened.

The average bubble diameter is about 0.1 mm. Estimate the pressure

difference between the inside and outside of such a bubble.

2.32 Calculate the maximum capillary rise of water (20 C) to be

expected between two vertical, clean glass plates spaced 1 mm apart.

2.33 Calculate the maximum capillary depression of mercury to be

expected in a vertical glass tube 1 mm in diameter at 15.5 C.

Description and Classification of Fluid Motions
2.34 A supersonic aircraft travels at 2800 km/hr at an altitude of 27

km. Determine the Mach number for the airplane. The wing width

(chord) is 7 m. Assume that the wing can be treated as a flat plate

and determine the Reynolds number at the trailing edge and the posi-

tion at which transition from a laminar to turbulent boundary layer

occurs.

2.35 SAE 30 oil at 100 C flows through a 12-mm-diameter stain-

less-steel tube. Determine the specific gravity and specific weight

of the oil. The oil discharged from the tube fills a 100-mL graduated

cylinder in 9 seconds. Determine whether the flow is laminar or

turbulent.

2.36 A seaplane flies at 80 mph in air at 45 F. The pontoons are

17 feet long. Assume that the flow over the underside of the pontoons

can be treated as a flat plate and determine the Reynolds number for

the air flow at the end of the pontoon. Determine the Reynolds num-

ber when the seaplane lands on water at 45 F.

2.37 The cruising speed of a military airplane is 700 km/hr.

Determine the Mach number of the plane as it flies at this speed from

an altitude of 1 km to 15 km and plot the Mach number as a function

of altitude.
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C H A P T E R 2

Fundamental Concepts
2.1 Fluid as a Continuum

2.2 Velocity Field

2.3 Stress Field

2.4 Viscosity

2.5 Surface Tension

2.6 Description and Classification of Fluid Motions

2.7 Summary and Useful Equations

Learning Objectives
After completing this chapter, you should be able to

• Explain in physical terms what is meant by “we treat fluid as a continuum.”

• Explain the difference between streamlines, streaklines, pathlines, and timelines.

• Explain the difference between a normal stress and a shear stress and give examples of each.

• Apply Newton’s law of viscosity in a flow problem.

• Describe the effects of the force produced by surface tension.

• Define the following terms used to classify fluid flow: inviscid, viscous, laminar, turbulent, incom-

pressible, compressible, internal, and external.

Case Study

Airplane wings have constantly changed over the years as we
have learned more about the flow of air over surfaces. Recent
advances include the winglet, which is the tilted airfoil surface
at the end of the wing as seen in the figure. The emphasis on fuel
savings has motivated the design and development of winglets.

All winglets work the same way, but there are many different
shapes to accomplish the same thing. When an airplane flies, the
higher pressure air on the lower side of the wing flows upward at
the wing tip to the region of lower pressure on top. This creases a
wingtip vortex, and is a source of lift-induced drag that the engine
needs to overcome. A winglet reduces this drag by recovering
some of the energy in the wingtip vortex. It also changes the
aspect ratio (ratio of the wing span squared divided by the wing
area), which also reduces the drag.

In addition to reducing drag, winglets also generate lift at the
tip, which is beneficial. Because they are at an angle, they also
increase the bending moment at the wing root, which requires
the airframe to be strengthened, which adds someweight. Newer
winglets also have actively controlled surfaces added to the trail-
ing edges to introduce aerodynamic instabilities into the eddies
shed by the wing. Although this might seem undesirable, the
instabilities help dissipate the vortices in the wake of an airplane

that prevent other airplanes from following too closely. Winglets
are a good example of the application of the understanding of
complex fluid behavior to making improvements.
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Winglet at the end of an airline wing.
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In Chapter 1 we discussed in general terms what fluid mechanics is about, and described some of the

approaches we will use in analyzing fluid mechanics problems. In this chapter we will be more specific

in defining some important properties of fluids and ways in which flows can be described and

characterized.

2.1 Fluid as a Continuum
We are all familiar with fluids, such as air and water, and we experience them as being “smooth,” i.e., as

being a continuous medium. Unless we use specialized equipment, we are not aware of the underlying

molecular nature of fluids. This molecular structure is one in which the mass is not continuously dis-

tributed in space, but is concentrated in molecules that are separated by relatively large regions of empty

space. The sketch in Fig. 2.1a shows a schematic representation of this. A region of space “filled” by a

stationary fluid (e.g., air, treated as a single gas) looks like a continuous medium, but if we zoom in on a

very small cube of it, we can see that we mostly have empty space, with gas molecules scattered around,

moving at high speed. Note that the size of the gas molecules is greatly exaggerated and that we have

placed velocity vectors only on a small sample. We wish to determine the minimum volume, δV--- , that a

“point” C must be so that we can talk about continuous fluid properties such as the density at a point. In

other words, under what circumstances can a fluid be treated as a continuum, for which, by definition,

properties vary smoothly from point to point? This is an important question because the concept of a

continuum is the basis of classical fluid mechanics.

Consider how we determine the density at a point. Density is defined as mass per unit vol-

ume; in Fig. 2.1a the mass δm will be given by the instantaneous number of molecules in δV--- and the

mass of each molecule, so the average density in volume δV--- is given by ρ= δm δV---. We say “average”

because the number of molecules in δV---, and hence the density, fluctuates. For example, if the gas in

Fig. 2.1awas air at standard temperature and pressure (STP) and the volume δV--- was a sphere of diameter

0 01μm, there might be 15 molecules in δV---, but an instant later there might be 17 (three might enter

while one leaves). Hence the density at “point” C randomly fluctuates in time, as shown in

Fig. 2.1b. In this figure, each vertical dashed line represents a specific chosen volume, δV---, and each

data point represents the measured density at an instant. For very small volumes, the density varies

greatly, but above a certain volume, δV--- , the density becomes stable as the volume now encloses a huge

number of molecules. For example, if δV--- = 0 001 mm3 (about the size of a grain of sand), there will on

average be 2 5× 1013 molecules present. Hence we can conclude that air at STP (and other gases and

liquids) can be treated as a continuous medium as long as we consider a “point” to be no smaller than

about this size; this is sufficiently precise for most engineering applications.

The concept of a continuum is the basis of classical fluid mechanics. The continuum assump-

tion is valid in treating the behavior of fluids under normal conditions. It only breaks down when

the mean free path of the molecules becomes the same order of magnitude as the smallest significant

(a) (b)

C
x

y

“Point” C at x,y,z
Volume δV

of mass δm

δm/δV

δVδV'

Fig. 2.1 Definition of density at a point.
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characteristic dimension of the problem. This occurs in such specialized problems as rarefied gas

flow such, as encountered in flights into the upper reaches of the atmosphere. For these specialized

cases we must abandon the concept of a continuum in favor of the microscopic and statistical points

of view.

As a consequence of the continuum assumption, each fluid property is assumed to have a definite

value at every point in space. Thus fluid properties such as density, temperature, velocity, and so on are

considered to be continuous functions of position and time. For example, we now have a workable def-

inition of density at a point,

ρ≡ lim
δV-- δV--

δm

δV---
2 1

Since point C was arbitrary, the density at any other point in the fluid could be determined in the same

manner. If density was measured simultaneously at an infinite number of points in the fluid, we would

obtain an expression for the density distribution as a function of the space coordinates, ρ= ρ x,y,z , at

the given instant.

The density at a point may also vary with time. Thus the complete representation of density (the

field representation) is given by

ρ= ρ x,y,z, t 2 2

Since density is a scalar quantity, requiring only the specification of a magnitude for a complete descrip-

tion, the field represented by Eq. 2.2 is a scalar field.

An alternative way of expressing the density of a substance is to compare it to an accepted
reference value, typically the maximum density of water, ρH2O

(1000 kg m3 at 4 C or 1 94 slug ft3

at 39 F). Thus, the specific gravity, SG, of a substance is expressed as

SG=
ρ

ρH2O

2 3

For example, the SG of mercury is typically 13.6; mercury is 13.6 times as dense as water.

Appendix 1 contains specific gravity data for selected engineering materials. The specific gravity

of liquids is a function of temperature; for most liquids specific gravity decreases with increasing

temperature.

The specific weight, γ, of a substance is another useful material property. It is defined as the weight

of a substance per unit volume and given as

γ =
mg

V---
γ = ρg 2 4

For example, the specific weight of water is approximately 9 81 kN m3 62 4 lbf ft3 .

2.2 Velocity Field
In the previous section we saw that the continuum assumption led directly to the notion of the density

field. Other fluid properties also may be described by fields.

A very important property defined by a field is the velocity field, given by

V = V x,y,z, t 2 5

Velocity is a vector quantity, requiring a magnitude and direction for a complete description, so the

velocity field (Eq. 2.5) is a vector field.
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The velocity vector, V , also can be written in terms of its three scalar components. Denoting the

components in the x, y, and z directions by u, υ, and w, then

V = ui+ υj+wk 2 6

In general, each component, u, v, and w, will be a function of x, y, z, and t.
We need to be clear on what V x,y,z, t measures. It indicates the velocity of a fluid particle

that is passing through the point x, y, z at time instant t, in the Eulerian sense. We conclude that

V x,y,z, t should be thought of as the velocity field of all particles, not just the velocity of an individual

particle.

If properties at every point in a flow field do not change with time, the flow is termed steady. Stated

mathematically, the definition of steady flow is

∂η

∂t
=0

where η represents any fluid property. Hence, for steady flow,

∂ρ

∂t
=0 or ρ= ρ x,y,z

and

∂V

∂t
=0 or V = V x,y,z

In steady flow, any property may vary from point to point in the field, but all properties remain constant

with time at every point.

One-, Two-, and Three-Dimensional Flows

A flow is classified as one-, two-, or three-dimensional depending on the number of space coordinates

required to specify the velocity field. Equation 2.5 indicates that the velocity field may be a function

of three space coordinates and time. Such a flow field is termed three-dimensional because the

velocity at any point in the flow field depends on the three coordinates required to locate the point

in space.

Although most flow fields are inherently three-dimensional, analysis based on fewer dimensions is

frequently appropriate. Consider, for example, the steady flow through a long straight pipe that has

a divergent section, as shown in Fig. 2.2. In this example, we are using cylindrical coordinates

r,θ,x . We will learn in Chapter 8 that under certain circumstances the velocity distribution may be

described by

u= umax 1−
r

R

2

2 7

This is shown on the left of Fig. 2.2. The velocity u r is a function of only one coordinate, and so the

flow is one-dimensional. On the other hand, in the diverging section, the velocity decreases in the x

direction, and the flow becomes two-dimensional: u= u r,x .

As you might suspect, the complexity of analysis increases considerably with the number of dimen-

sions of the flow field. For many problems encountered in engineering, a one-dimensional analysis is

adequate to provide approximate solutions of engineering accuracy.

Since all fluids satisfying the continuum assumption must have zero relative velocity at a solid sur-

face (to satisfy the no-slip condition), most flows are inherently two- or three-dimensional. To simplify

the analysis it is often convenient to use the notion of uniform flow at a given cross section. In a flow that
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is uniform at a given cross section, the velocity is constant across any section normal to the flow. Under

this assumption, the two-dimensional flow of Fig. 2.2 is modeled as the flow shown in Fig. 2.3. In the

flow of Fig. 2.3, the velocity field is a function of x alone, and thus the flow model is one-dimensional.

The term uniform flow field (as opposed to uniform flow at a cross section) is used to describe a flow in

which the velocity is constant throughout the entire flow field.

Timelines, Pathlines, Streaklines, and Streamlines

Airplane and auto companies and college engineering laboratories, among others, frequently use wind

tunnels to visualize flow fields [2]. Computational Fluid Dynamic software is becoming more exten-

sively used also in flow visualization. For example, Fig. 2.4 shows a flow pattern for flow around a

car mounted in a wind tunnel, generated by releasing smoke into the flow at five fixed upstream points.

Flow patterns can be visualized using timelines, pathlines, streaklines, or streamlines.

If a number of adjacent fluid particles in a flow field are marked at a given instant, they form a line

in the fluid at that instant called a timeline. Subsequent observations of the line may provide informa-

tion about the flow field. For example, in discussing the behavior of a fluid under the action of

a constant shear force, timelines were introduced to demonstrate the deformation of a fluid at succes-

sive instants.

A pathline is the path or trajectory traced out by a moving fluid particle. To make a pathline vis-

ible, we might identify a fluid particle at a given instant, e.g., by the use of dye or smoke, and then take

a long exposure photograph of its subsequent motion. The line traced out by the particle is a pathline.

This approach might be used to study, for example, the trajectory of a contaminant leaving a

smokestack.

On the other hand, we might choose to focus our attention on a fixed location in space and identify,

again by the use of dye or smoke, all fluid particles passing through this point. After a short period of

time we would have a number of identifiable fluid particles in the flow, all of which had, at some time,

passed through one fixed location in space. The line joining these fluid particles is defined as a

streakline.

Streamlines are lines drawn in the flow field so that at a given instant they are tangent to the direction

of flow at every point in the flow field. Since the streamlines are tangent to the velocity vector at every

point in the flow field, there can be no flow across a streamline. Streamlines are the most commonly

u(r)

r

x

R
r

θ

u(r,x)

umax

Fig. 2.2 Examples of one- and two-dimensional flows.

x

Fig. 2.3 Example of uniform flow at a section.
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used visualization technique. The procedure used to obtain the equation for a streamline in two-

dimensional flow is illustrated in Example 2.1.

Figure 2.4 shows a photograph of the visualization of the flow over an automobile in a wind tunnel

using smoke. In a steady flow such as in this photograph, the velocity at each point in the flow field

remains constant with time and, consequently, the streamline shapes do not vary from one instant to the

next. This implies that a particle located on a given streamline will always move along the same stream-

line. Furthermore, consecutive particles passing through a fixed point in space will be on the same stream-

line and, subsequently, will remain on this streamline. Thus in a steady flow, pathlines, streaklines, and

streamlines are identical lines in the flow field.

For unsteady flow, streaklines, streamlines, and pathlines will in general have differing shapes. For

example, consider holding a garden hose and swinging it side to side as water exits at high speed, as

shown in Fig. 2.5. We obtain a continuous sheet of water. If we consider individual water particles,

we see that each particle, once ejected, follows a straight-line path and so the pathlines are straight lines,

as shown. On the other hand, if we start injecting dye into the water as it exits the hose, we will generate a

streakline, and this takes the shape of an expanding sine wave, as shown. Clearly, pathlines and streak-

lines do not coincide for this unsteady flow.

We can use the velocity field to derive the shapes of streaklines, pathlines, and streamlines. Because

the streamlines are parallel to the velocity vector, for a two-dimensional flow field we can write

dy

dx streamline

=
υ x,y

u x,y
2 8

Note that streamlines are obtained at an instant in time. If the flow is unsteady, time t is held constant in

Eq. 2.8. Solution of this equation gives the equation y= y x , with an undetermined integration constant,

the value of which determines the particular streamline.

For pathlines, we let x= xp t and y= yp t , where xp t and yp t are the instantaneous coordinates

of a specific particle. We then get

dx

dt particle

= u x,y, t
dy

dt
particle

= υ x,y, t 2 9
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Fig. 2.4 Streaklines over an automobile in a wind tunnel.
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Example 2.1 STREAMLINES AND PATHLINES IN TWO-DIMENSIONAL FLOW

A velocity field is given by V =Axi−Ayj; the units of velocity are m/s; x and y are given in meters; A=0 3 s−1.

(a) Obtain an equation for the streamlines in the xy plane.

(b) Plot the streamline passing through the point x0,y0 = (2, 8).

(c) Determine the velocity of a particle at the point (2, 8).

(d) If the particle passing through the point x0,y0 is marked at time t=0, determine the location of the particle at time t=6 s.

(e) What is the velocity of this particle at time t=6 s?

(f) Show that the equation of the particle path (the pathline) is the same as the equation of the streamline.

Given: Velocity field, V =Axi−Ayj; x and y in meters; A=0 3 s−1.

Find: (a) Equation of the streamlines in the xy plane.

(b) Streamline plot through point (2, 8).
(c) Velocity of particle at point (2, 8).
(d) Position at t=6 s of particle located at (2, 8) at t=0.
(e) Velocity of particle at position found in (d).
(f) Equation of pathline of particle located at (2, 8) at t=0.

Solution:

(a) Streamlines are lines drawn in the flow field such that, at a given instant, they are tangent to the direction of flow at every

point. Consequently,

dy

dx streamline

=
υ

u
=

−Ay

Ax
=

−y

x

Separating variables and integrating, we obtain

dy

y
= −

dx

x

or

ln y= − lnx+ c1

This can be written as xy= c

(b) For the streamline passing through the point x0,y0 = 2,8 the constant,

c, has a value of 16 and the equation of the streamline through the point

(2, 8) is

xy= x0y0 =16 m2

The plot is as sketched above.

(c) The velocity field is V =Axi−Ayj. At the point (2, 8) the velocity is

V =A xi−yj =0 3s−1 2i−8j m=0 6i−2 4jm s

(d) A particle moving in the flow field will have velocity given by

V =Axi−Ayj

Thus

up =
dx

dt
=Ax and υp =

dy

dt
= −Ay

16

12

8

4

0
0 4 8 12 16

xy = 16 m2

x (m)

y 
(m

)

2,8 = 0.6i – 2.4 j m/s
^^
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The simultaneous solution of these equations gives the path of a particle in parametric form

xp t , yp t .

The computation of streaklines is somewhat tricky. The first step is to compute the pathline of a

particle (using Eqs. 2.9) that was released from the streak source point at x0, y0 at time t0, in the form

xparticle t = x t,x0,y0, t0 yparticle t = y t,x0,y0, t0

Separating variables and integrating (in each equation) gives

x

x0

dx

x
=

t

0

A dt and
y

y0

dy

y
=

t

0

−A dt

Then

ln
x

x0
=At and ln

y

y0
= −At

or

x= x0e
At and y= y0e

−At

At t=6 s,

x=2m e 0 3 6 =12 1 m and y=8m e− 0 3 6 =1 32 m

At t=6 s, particle is at (12.1, 1.32) m

(e) At the point (12.1, 1.32) m,

V =A xi−yj =0 3 s−1 12 1i−1 32j m

=3 63i−0 396jm s

(f) To determine the equation of the pathline, we use the parametric equations

x= x0e
At and y= y0e

−At

and eliminate t. Solving for eAt from both equations

eAt =
y0

y
=

x

x0

Therefore xy= x0y0 =16m2

Notes:
• This problem illustrates the method for
computing streamlines and pathlines.

• Because this is a steady flow, the
streamlines and pathlines have the same
shape—in an unsteady flow this would
not be true.

• When we follow a particle (the Lagran-
gian approach), its position x,y and
velocity (up =dx dt and υp =dx dt) are

functions of time, even though the flow is
steady.

Pathlines of
individual

fluid particles

Streakline at
some instant

Streakline at a
later instant

Fig. 2.5 Pathlines and streaklines for flow from the exit of an oscillating garden hose.
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Then, instead of interpreting this as the position of a particle over time, we rewrite these equa-

tions as

xstreakline t0 = x t,x0,y0, t0 ystreakline t0 = y t,x0,y0, t0 2 10

Equations 2.10 give the line generated (by time t) from a streak source at point x0,y0 . In these equa-

tions, t0 (the release times of particles) is varied from 0 to t to show the instantaneous positions of all

particles released up to time t!

2.3 Stress Field
In our study of fluid mechanics, we will need to understand what kinds of forces act on fluid particles.

Each fluid particle can experience: surface forces (pressure, friction) that are generated by contact with

other particles or a solid surface; and body forces (such as gravity and electromagnetic) that are expe-

rienced throughout the particle.

The gravitational body force acting on an element of volume, dV---, is given by ρgdV---, where ρ is the

density and g is the local gravitational acceleration. Thus the gravitational body force per unit volume is

ρg and the gravitational body force per unit mass is g.

Surface forces on a fluid particle lead to stresses. The concept of stress is useful for describing how

forces acting on the boundaries of a medium (fluid or solid) are transmitted throughout the medium. You

have probably seen stresses discussed in solid mechanics. For example, when you stand on a diving

board, stresses are generated within the board. On the other hand, when a body moves through a fluid,

stresses are developed within the fluid. The difference between a fluid and a solid is, as we’ve seen, that

stresses in a fluid are mostly generated by motion rather than by deflection.

Imagine the surface of a fluid particle in contact with other fluid particles, and consider the contact

force being generated between the particles. Consider a portion, δA, of the surface at some point C. The

orientation of δA is given by the unit vector, n, shown in Fig. 2.6. The vector n is the outwardly drawn

unit normal with respect to the particle.

The force, δF, acting on δA may be resolved into two components, one normal to and the other

tangent to the area. A normal stress σn and a shear stress τn are then defined as

σn = lim
δAn 0

δFn

δAn

2 11

and

τn = lim
δAn 0

δFt

δAn

2 12

Subscript n on the stress is included as a reminder that the stresses are associated with the surface δA

through C, having an outward normal in the n direction. The fluid is actually a continuum, so we could

have imagined breaking it up any number of different ways into fluid particles around point C, and there-

fore obtained any number of different stresses at point C.

δ

δ

A

δFn

Ft

C
C

n^

δA

δF

δF

Fig. 2.6 The concept of stress in a continuum.
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In dealing with vector quantities such as force, we usually consider components in an orthogonal

coordinate system. In rectangular coordinates we might consider the stresses acting on planes whose

outwardly drawn normals with respect to the material acted upon are in the x, y, or z directions. In

Fig. 2.7 we consider the stress on the element δAx, whose outwardly drawn normal is in the x direction.

The force, δF, has been resolved into components along each of the coordinate directions. Dividing the

magnitude of each force component by the area, δAx, and taking the limit as δAx approaches zero, we

define the three stress components shown in Fig. 2.7b:

σxx = lim
δAx 0

δFx

δAx

τxy = lim
δAx 0

δFy

δAx

τxz = lim
δAx 0

δFz

δAx

2 13

We have used a double subscript notation to label the stresses. The first subscript (in this case, x) indi-

cates the plane on which the stress acts (in this case, a surface perpendicular to the x axis). The second

subscript indicates the direction in which the stress acts.

Consideration of area element δAy would lead to the definitions of the stresses, σyy, τyx, and τyz; use

of area element δAz would similarly lead to the definitions of σzz, τzx, τzy.

Although we just looked at three orthogonal planes, an infinite number of planes can be passed

through point C, resulting in an infinite number of stresses associated with planes through that point.

Fortunately, the state of stress at a point can be described completely by specifying the stresses acting

on any three mutually perpendicular planes through the point. The stress at a point is specified by the

nine components

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

where σ has been used to denote a normal stress, and τ to denote a shear stress. The notation for des-

ignating stress is shown in Fig. 2.8.

Referring to the infinitesimal element shown in Fig. 2.8, we see that there are six planes (two

x planes, two y planes, and two z planes) on which stresses may act. In order to designate the plane

of interest, we could use terms like front and back, top and bottom, or left and right. However, it is more

logical to name the planes in terms of the coordinate axes. The planes are named and denoted as positive

or negative according to the direction of the outwardly drawn normal to the plane. Thus the top plane, for

example, is a positive y plane and the back plane is a negative z plane.

It also is necessary to adopt a sign convention for stress. A stress component is positive when the

direction of the stress component and the plane on which it acts are both positive or both negative. Thus

τyx =5 lbf in 2 represents a shear stress on a positive y plane in the positive x direction or a shear stress

on a negative y plane in the negative x direction. In Fig. 2.8 all stresses have been drawn as positive

C

x

z

y

C

x

z

y

δFz

δFx

δFy

(a) Force components (b) Stress components

τxz

σxx

τxy

Fig. 2.7 Force and stress components on the element of area δAx.
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stresses. Stress components are negative when the direction of the stress component and the plane on

which it acts are of opposite sign.

2.4 Viscosity
Where do stresses come from? For a solid, stresses develop when the material is elastically deformed

or strained; for a fluid, shear stresses arise due to viscous flow. Hence we say solids are elastic, and

fluids are viscous. For a fluid at rest, there will be no shear stresses. We will see that each fluid can be

categorized by examining the relation between the applied shear stresses and the flow of the fluid.

Consider the behavior of a fluid element between the two infinite plates shown in Fig. 2.9a. The

rectangular fluid element is initially at rest at time t. Let us now suppose a constant rightward force

δFx is applied to the upper plate so that it is dragged across the fluid at constant velocity δu. The relative

shearing action of the infinite plates produces a shear stress, τyx, which acts on the fluid element and is

given by

τyx = lim
δAy 0

δFx

δAy

=
dFx

dAy

σyy

τyx

τyz

τzy

τzx

σzz

τxy

σxx
τxz

σyy

τyx

τyz

x

z

y

τzy

τzx

σzz

τxy

σxx 

τxz

Fig. 2.8 Notation for stress.

(a) (b) (c)
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δl2
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Fig. 2.9 (a) Fluid element at time t, (b) deformation of fluid element at time t+ δt, and (c) deformation of fluid element
at time t+2δt.
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where δAy is the area of contact of the fluid element with the plate and δFx is the force exerted by the plate

on that element. Snapshots of the fluid element, shown in Figs. 2.9a–c, illustrate the deformation of the

fluid element from positionMNOP at time t, toM NOP at time t+2δt, toM NOP at time t+2δt, due to

the imposed shear stress. It is the fact that a fluid continually deforms in response to an applied shear

stress that sets it apart from solids.

Focusing on the time interval δt (Fig. 2.9b), the deformation of the fluid is given by

deformation rate = lim
δt 0

δα

δt
=
dα

dt

We want to express dα dt in terms of readily measurable quantities. The distance, δl, between the

points M and M is given by

δl= δuδt

Alternatively, for small angles,

δl= δyδα

Equating these two expressions for δl gives

δα

δt
=
δu

δy

Taking the limits of both sides of the equality, we obtain

dα

dt
=
du

dy

Thus, the fluid element of Fig. 2.9, when subjected to shear stress τyx, experiences a rate of defor-

mation (shear rate) given by du dy. We have established that any fluid that experiences a shear stress

will flow and thus have a shear rate. What is the relation between shear stress and shear rate? Fluids

in which shear stress is directly proportional to rate of deformation are termed Newtonian fluids. The

term non-Newtonian is used to classify all fluids in which shear stress is not directly proportional to

shear rate.

Newtonian Fluid

Most common fluids such as water, air, and gasoline are Newtonian under normal conditions. If the fluid

of Fig. 2.9 is Newtonian, then

τyx
du

dy
2 14

We are familiar with the fact that some fluids resist motion more than others. For example, a container of

SAE 30W oil is much harder to stir than one of water. Hence SAE 30W oil is much more viscous; it has a

higher viscosity. The constant of proportionality in Eq. 2.14 is the absolute (or dynamic) viscosity, μ.

Thus in terms of the coordinates of Fig. 2.9, Newton’s law of viscosity is given for one-dimensional

flow by

τyx = μ
du

dy
2 15

Note that, since the dimensions of τ are F L2 and the dimensions of du dy are 1 t , μ has dimensions

Ft L2 . Since the dimensions of force, F, mass, M, length, L, and time, t, are related by Newton’s
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second law of motion, the dimensions of μ can also be expressed as M Lt . In the British Gravitational

system, the units of viscosity are lbf s ft2 or slug ft s . In the Absolute Metric system, the basic unit of

viscosity is called a poise 1 poise ≡ 1 g cm s . In the SI system the units of viscosity are kg/(m s)

or Pa s 1 Pa s = 1 N s m2 . The calculation of viscous shear stress is illustrated in Example 2.2.

In fluid mechanics the ratio of absolute viscosity, μ, to density, ρ, often arises. This ratio is given the

name kinematic viscosity and is represented by the symbol ν. Since density has dimensions M L3 ,

the dimensions of ν are L2 t . In the Absolute Metric system of units, the unit for ν is a

stoke 1 stoke ≡ 1 cm2 s .

Viscosity data for a number of common Newtonian fluids are given in Appendix 1. For gases,

viscosity increases with temperature, whereas for liquids, viscosity decreases with increasing

temperature.

Example 2.2 VISCOSITY AND SHEAR STRESS IN NEWTONIAN FLUID

An infinite plate is moved over a second plate on a layer of liquid as shown. For small gap width, d, we assume a linear velocity

distribution in the liquid. The liquid viscosity is 0.65 centipoise and its specific

gravity is 0.88. Determine:

(a) The absolute viscosity of the liquid, in lbf s ft2.

(b) The kinematic viscosity of the liquid, in m2 s.

(c) The shear stress on the upper plate, in lbf ft2.

(d) The shear stress on the lower plate, in Pa.

(e) The direction of each shear stress calculated in parts (c) and (d).

Given: Linear velocity profile in the liquid between infinite parallel plates as shown.

μ=0 65 cp

SG=0 88

Find: (a) μ in units of lbf s ft2.

(b) ν in units of m2 s.
(c) τ on upper plate in units of lbf ft2.
(d) τ on lower plate in units of Pa.
(e) Direction of stresses in parts (c) and (d).

Solution:

Governing equation: τyx = μ
du

dy
Definition: ν=

μ

ρ

Assumptions:

1 Linear velocity distribution (given)

2 Steady flow

3 μ= constant

(a) μ=0 65 cp×
poise

100 cp
×

g

cm s poise
×

lbm

454 g
×

slug

32 2 lbm
×30 5

cm

ft
×

lbf s2

slug ft

μ=1 36× 10−5 lbf s ft2
μ

(b) ν=
μ

ρ
=

μ

SG ρH2O

=1 36× 10−5 lbf s

ft2
×

ft3

0 88 1 94 slug
×
slug ft

lbf s2
× 0 305

2m
2

ft2

ν=7 41× 10−7 m2 s ν

x

y

U = 0.3 m/s

d = 0.3 mm

x

y

U = 0.3 m/s

d = 0.3 mm
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Non-Newtonian Fluids

Fluids in which shear stress is not directly proportional to deformation rate are non-Newtonian. Although

we will not discuss these much in this text, many common fluids exhibit non-Newtonian behavior. Two

familiar examples are toothpaste and paint. The latter is very “thick”when in the can, but becomes “thin”

when sheared by brushing. Toothpaste behaves as a “fluid” when squeezed from the tube. However, it

does not run out by itself when the cap is removed. There is a threshold or yield stress below which

toothpaste behaves as a solid. Strictly speaking, our definition of a fluid is valid only for materials that

have zero yield stress. Non-Newtonian fluids commonly are classified as having time-independent or

time-dependent behavior. Examples of time-independent behavior are shown in the rheological diagram

of Fig. 2.10.

Numerous empirical equations have been proposed [3, 4] to model the observed relations between

τyx and du dy for time-independent fluids. They may be adequately represented for many engineering

applications by the power law model, which for one-dimensional flow becomes

τyx = k
du

dy

n

2 16

where the exponent, n, is called the flow behavior index and the coefficient, k, the consistency index.

This equation reduces to Newton’s law of viscosity for n=1 with k= μ.

(c)
τupper = τyx,upper = μ

du

dy y= d

Since u varies linearly with y,

du

dy
=
Δu

Δy
=
U−0

d−0
=
U

d

=0 3
m

s
×

1

0 3 mm
×1000

mm

m
=1000 s−1

τupper = μ
U

d
=1 36× 10−5 lbf s

ft2
×
1000

s
= 0 0136 lbf ft2

τupper

(d) τlower = μ
U

d
=0 0136

lbf

ft2
×4 45

N

lbf
×

ft2

0 305
2
m2

×
Pa m2

N

=0 651 Pa
τlower

(e) Directions of shear stresses on upper and lower plates.

The upper plate is a negative y surface; so

positive τyx acts in the negative x direction

The lower plate is a positive y surface; so

positive τyx acts in the positive x direction

e

Part (c) shows that the shear stress is:
• Constant across the gap for a linear
velocity profile.

• Directly proportional to the speed of the
upper plate (because of the linearity of
Newtonian fluids).

• Inversely proportional to the gap
between the plates.

Note that multiplying the shear stress by
the plate area in such problems computes
the force required to maintain the motion.

x

y

τupper

τ lower
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To ensure that τyx has the same sign as du dy, Eq. 2.16 is rewritten in the form

τyx = k
du

dy

n−1
du

dy
= η

du

dy
2 17

The term η= k du dy
n−1

is referred to as the apparent viscosity. The idea behind Eq. 2.17 is that we end

up with a viscosity η that is used in a formula that is the same form as Eq. 2.15, in which the Newtonian

viscosity μ is used. The big difference is that while μ is constant (except for temperature effects),

η depends on the shear rate. Most non-Newtonian fluids have apparent viscosities that are relatively high

compared with the viscosity of water.

Fluids in which the apparent viscosity decreases with increasing deformation rate n<1 are called

pseudoplastic (or shear thinning) fluids. Most non-Newtonian fluids fall into this group; examples

include polymer solutions, colloidal suspensions, and paper pulp in water. If the apparent viscosity

increases with increasing deformation rate n>1 the fluid is termed dilatant (or shear thickening). Sus-

pensions of starch and of sand are examples of dilatant fluids.

A “fluid” that behaves as a solid until a minimum yield stress, τy, is exceeded and subsequently

exhibits a linear relation between stress and rate of deformation is referred to as an ideal or Bingham

plastic. The corresponding shear stress model is

τyx = τy + μp
du

dy
2 18

Clay suspensions, drilling muds, and toothpaste are examples of substances exhibiting this behavior.

The study of non-Newtonian fluids is further complicated by the fact that the apparent viscosity may

be time-dependent. Thixotropic fluids show a decrease in η with time under a constant applied shear

stress; many paints are thixotropic. Rheopectic fluids show an increase in ηwith time. After deformation

some fluids partially return to their original shape when the applied stress is released; such fluids are

called viscoelastic. Many biological fluids exhibit this behavior.

2.5 Surface Tension
You have probably noticed that rain drops on a rain coat often remain as little drops, but flatten out on

other surfaces. These two cases of a liquid on a surface are shown in Fig. 2.11. We define a liquid as

“wetting” a surface when the contact angle θ<90 . The behavior is due to surface tension. Whenever a

liquid is in contact with other liquids or gases, or in this case a gas/solid surface, an interface develops

Bingham
plastic

Pseudoplastic

Pseudoplastic

Dilatant Dilatant

Newtonian Newtonian

Deformation rate, du___
dy

Deformation rate, du___
dy

(a) (b)

S
h
e
a
r 

st
re

ss
, 

τ

A
p
p
a
re

n
t 

vi
sc

o
si

ty
, 

η

Fig. 2.10 (a) Shear stress, τ, and (b) apparent viscosity, η, as a function of deformation rate for one-dimensional flow of
various non-Newtonian fluids.
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that acts like a stretched elastic membrane, creating surface tension. There are two features to this mem-

brane: the contact angle, θ, and the magnitude of the surface tension, σ N m or lbf ft . Both of these

depend on the type of liquid and the type of solid surface with which it shares an interface. Factors that

affect the contact angle include the cleanliness of the surface and the purity of the liquid.

Appendix A contains data for surface tension and contact angle for common liquids in the presence

of air and of water.

A force balance on a segment of interface shows that there is a pressure jump across the imagined

elastic membrane whenever the interface is curved. For a water droplet in air, pressure in the water is

higher than ambient; the same is true for a gas bubble in liquid. For a soap bubble in air, surface tension

acts on both inside and outside interfaces between the soap film and air along the curved bubble surface.

Surface tension also leads to the phenomena of capillary waves on a liquid surface [5], and capillary rise

or depression, discussed below in Example 2.3.

In engineering, an important effect of surface tension is the creation of a curved meniscus

that appears in manometers or barometers, leading to a capillary rise or depression, as shown in

Fig. 2.12. This rise may be pronounced if the liquid is in a small-diameter tube or narrow gap, as shown

in Example 2.3. The simple analysis of Example 2.3 gives reasonable results only for tube diameters

less than 0.1 in. (2.54 mm) [6]. Over a diameter range 0 1<D<1 1 in , experimental data for the

capillary rise with a water-air interface are correlated by the empirical expression Δh=0 400 e4 37D.

Manometer and barometer readings should be made at the level of the middle of the meniscus to

minimize the effects of surface tension.

Impurities in the liquid, dirt on the surface, or surface inclination can cause an indistinct meniscus.

Surfactant compounds reduce surface tension significantly when added to water [7] and have wide

commercial application. Most detergents contain surfactants to help water penetrate and lift soil from

surfaces. Automobile windows are often treated with surfactants so rain drops run off without using

the wipers.

2.6 Description and Classification of Fluid Motions
Fluid mechanics is a huge discipline and covers everything from the aerodynamics of a supersonic

airplane to the lubrication of human joints by sinovial fluid. We need to break fluid mechanics down

into manageable proportions. The two most difficult aspects of a fluid mechanics analysis to deal with

(a) A “wetted” surface

θ < 90°

(b) A nonwetted surface

Water
droplet

θ > 90°

Fig. 2.11 Surface tension effects on water droplets.

Tube Tube

h

h

(a) Capillary rise (θ < 90°) (b) Capillary depression (θ > 90°)

Δ

Δ

θ

θ

Fig. 2.12 Capillary rise and capillary depression inside and outside a circular tube.
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Example 2.3 ANALYSIS OF CAPILLARY EFFECT IN A TUBE

Create a graph showing the capillary rise or fall of a column of water or mercury, respectively, as a function of tube diameter D.

Find the minimum diameter of each column required so that the height magnitude will be less than 1 mm.

Given: Tube dipped in liquid as in Fig. 2.12

Find: A general expression for Δh as a function of D.

Solution: Apply free-body diagram analysis, and sum vertical forces.

Governing equation:

Fz =0

Assumptions:

1 Measure to middle of meniscus

2 Neglect volume in meniscus region

Summing forces in the z direction:

Fz = σπD cos θ−ρgΔV--- = 0 1

If we neglect the volume in the meniscus region:

ΔV---≈
πD2

4
Δh

Substituting in Eq. 1 and solving for Δh gives

Δh=
4σ cos θ

ρgD

Δh

For water, σ =72 8 mN m and θ≈0 , and for mercury, σ =484 mN m and θ=140 (Table A.4). Plotting,

Using the above equation to compute Dmin for Δh=1mm, we find for

mercury and water

DMmin
=11 2 mm and DWmin

=30 mm

Capillary effect in small tubes

Diameter, D (mm)

Water

Mercury

30

25

20

15

10

5

0

5 10 15 20 250
–5

–10

C
a
p
il
la

ry
 h

e
ig

h
t,

 Δ
h
 (

m
m

)

σπ

θ

D

z
hΔ

ρg VΔ

Notes:
• This problem reviewed use of the free-
body diagram approach.

• It turns out that neglecting the volume in
themeniscus region is only valid whenΔh
is large comparedwithD. However, in this
problem we have the result that Δh is
about 1 mm when D is 11.2 mm (or
30 mm); hence the results can only be
very approximate.
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are: (1) the fluid’s viscous nature and (2) its compressibility. Fluid mechanics theory first became highly

developed about 250 years ago and dealt with a frictionless, incompressible fluid. This theory, while

extremely elegant, led to the famous result called d’Alembert’s paradox. All bodies experience no drag

as they move through such a fluid, which is not consistent with real behavior. The first significant

efforts to deal with the viscous nature of fluids occurred in the early 1900s and led to the classification

of fluids based on whether viscous effects and compressibility effects are present, as shown in Fig. 2.13.

Also shown are classifications in terms of whether a flow is laminar or turbulent and internal or external.

We will now discuss each of these.

Viscous and Inviscid Flows

An object moving through a fluid experiences gravity and, in addition, an aerodynamic drag force. The

force is due in part to viscous friction and in part to pressure differences built up as the fluid is forced out

of the way of the object. We can estimate whether or not viscous forces, as opposed to pressure forces,

are negligible by simply computing the Reynolds number

Re= ρ
VL

μ

where ρ and μ are the fluid density and viscosity, respectively, and V and L are the typical or “charac-

teristic” velocity and size scale of the flow, respectively. If the Reynolds number is “large,” viscous

effects will be small in most of the flow; if the Reynolds number is small, viscous effects will be dom-

inant. Finally, if the Reynolds number is neither large nor small, both are important.

To illustrate this very powerful idea, consider two simple examples. First, consider a soccer ball

diameter = 8 75 in kicked so it moves at 60 mph. The Reynolds number is about 400,000, which

is large, and so the drag on the soccer ball is almost entirely due to the pressure build-up in front of

it. For our second example, consider a dust particle falling under gravity at a terminal velocity of

1 cm s. In this case Re≈0 7, which is quite small, and the drag is mostly due to the friction of the

air. Of course, in both of these examples, if we wish to determine the drag force, we would have to

do substantially more analysis.

These examples illustrate an important point. A flow is considered to be friction dominated based

not just on the fluid viscosity, but on the complete flow system. In these examples, the airflow was low

friction for the soccer ball, but was high friction for the dust particle.

Let’s return for a moment to the idealized notion of frictionless flow, called inviscid flow. This is

the branch shown on the left in Fig. 2.13. This branch encompasses most aerodynamics, and among

other things explains, for example, why sub- and supersonic aircraft have differing shapes and how a

Continuum

fluid mechanics

Laminar Turbulent

ExternalInternalIncompressibleCompressible

Inviscid

   = 0μ
Viscous

Fig. 2.13 Possible classification of continuum fluid mechanics.
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wing generates lift. If this theory is applied to the ball flying through the air, it predicts streamlines as

shown in Fig. 2.14a.

The streamlines are symmetric front-to-back. Because the mass flow between any two streamlines is

constant, wherever streamlines open up, the velocity must decrease, and vice versa. Hence we can see

that the velocity in the vicinity of points A and C must be relatively low and at point B it will be high. In

fact, the air comes to rest at points A and C and are termed stagnation points. The pressure in this flow is

high wherever the velocity is low, and vice versa. Hence, points A and C have relatively large pressures

and point B will be a point of low pressure. In fact, the pressure distribution on the sphere is symmetric

front-to-back, and there is no net drag force due to pressure. Because we’re assuming inviscid flow, there

can be no drag due to friction either. This is the d’Alembert’s paradox of 1752: the ball experiences

no drag.

This is obviously unrealistic. It took about 150 years after the paradox first appeared for the

answer, obtained by Prandtl in 1904. The no-slip condition requires that the velocity everywhere

on the surface of the sphere be zero, but inviscid theory states that it’s high at point B. Prandtl

suggested that even though friction is negligible in general for high-Reynolds number flows, there will

always be a thin boundary layer, in which friction is significant and across the width of which the

velocity increases rapidly from zero at the surface to the value inviscid flow theory predicts on the outer

edge of the boundary layer. This is shown in Fig. 2.14b from point A to point B, and in more detail in

Fig. 2.15.

This boundary layer immediately allows us to reconcile theory and experiment. Once we have fric-

tion in a boundary layer we will have drag. However, this boundary layer has another important con-

sequence. It often leads to bodies having awake, as shown in Fig. 2.14b from pointD onwards. PointD is

a separation point, where fluid particles are pushed off the object and cause a wake to develop. Consider

once again the original inviscid flow (Fig. 2.14a): As a particle moves along the surface from point B to

C, it moves from low to high pressure. This adverse pressure gradient (a pressure change opposing fluid

motion) causes the particles to slow down as they move along the rear of the sphere. If we now add to this

the fact that the particles are moving in a boundary layer with friction that also slows down the fluid, the

particles will eventually be brought to rest and then pushed off the sphere by the following particles,

forming the wake. It turns out that the wake will always be relatively low pressure, but the front of

the sphere will still have relatively high pressure. Hence, the sphere will now have a quite large pressure

or form drag.

We can also now begin to see how streamlining of a body works. The drag force in most aerody-

namics is due to the low-pressure wake. If we can reduce or eliminate the wake, drag will be greatly

reduced. If we consider once again why the separation occurred, we recall two features. Boundary layer

friction slowed down the particles, but so did the adverse pressure gradient. The pressure increased very

rapidly across the back half of the sphere in Fig. 2.14a because the streamlines opened up so rapidly.

If we make the sphere teardrop shaped, as in Fig. 2.16, the streamlines open up gradually, and hence

the pressure will increase slowly, to such an extent that fluid particles are not forced to separate from

the object until they almost reach the end of the object, as shown. The wake is much smaller leading to

much less pressure drag. The only negative aspect of this streamlining is that the total surface area on

which friction occurs is larger, so drag due to friction will increase a little. This discussion illustrates

the very significant difference between inviscid flow μ=0 and flows in which viscosity is negligible

but not zero μ 0 .

A

B

C
y

x

(a) Inviscid flow

B D

A
y

x

(b) Viscous flow

Point of
separation

Wake

Fig. 2.14 Qualitative picture of incompressible flow over a sphere.
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Laminar and Turbulent Flows

If you turn on a faucet at a very low flow rate the water will flow out very smoothly. If you increase the

flow rate, the water will exit in a churned-up, chaotic manner. These are examples of how a viscous flow

can be laminar or turbulent, respectively. A laminar flow is one in which the fluid particles move in

smooth layers, or laminas; a turbulent flow is one in which the fluid particles rapidly mix as they move

along due to random three-dimensional velocity fluctuations. Typical examples of pathlines of each of

these are illustrated in Fig. 2.17, which shows a one-dimensional flow. In most fluid mechanics

problems, as for example, flow of water in a pipe, turbulence is an unwanted but often unavoidable phe-

nomenon because it generates more resistance to flow. In other problems as for example, the flow of

blood through blood vessels, it is desirable because the random mixing allows all of the blood cells

to contact the walls of the blood vessels to exchange oxygen and other nutrients.

The velocity of the laminar flow is simply u. The velocity of the turbulent flow is given by the mean

velocity u plus the three components of randomly fluctuating velocity u , υ , and w . Although many

turbulent flows of interest are steady in the mean the presence of the random, high-frequency velocity

fluctuations makes the analysis of turbulent flows extremely difficult. In a one-dimensional laminar

flow, the shear stress is related to the velocity gradient by the simple relation

τyx = μ
du

dy
2 15

For a turbulent flow in which the mean velocity field is one-dimensional, no such simple relation is valid.

Random, three-dimensional velocity fluctuations (u , υ , and w ) transport momentum across the mean

flow streamlines, increasing the effective shear stress. Consequently, in turbulent flow there is no uni-

versal relationship between the stress field and the mean-velocity field. Thus in turbulent flows we must

rely heavily on semi-empirical theories and on experimental data.

Compressible and Incompressible Flows

Flows in which variations in density are negligible are termed incompressible and those in which

density variations are not negligible are called compressible. The most common example of compressible

flow concerns the flow of gases, while the flow of liquids may frequently be treated as incompressible.

For many liquids, density is only a weak function of temperature. At modest pressures, liquids may

be considered incompressible. However, at high pressures, compressibility effects in liquids can be

Boundary layer

Point of

separation

Wake

Fig. 2.16 Flow over a streamlined object.

Inviscid
flow

Viscous
boundary
layer

Fig. 2.15 Schematic of a boundary layer.
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Fig. 2.17 Particle pathlines in one-dimensional laminar and turbulent flows.
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important. Pressure and density changes in liquids are related by the bulk compressibility modulus, or

modulus of elasticity,

Ev≡
dp

dρ ρ
2 19

If the bulk modulus is independent of temperature, then density is only a function of pressure (the fluid is

barotropic). Bulk modulus data for some common liquids are given in Appendix A.

Water hammer and cavitation are examples of the importance of compressibility effects in liquid

flows. Water hammer is caused by acoustic waves propagating and reflecting in a confined liquid,

for example, when a valve is closed abruptly. The resulting noise can be similar to “hammering” on

the pipes, hence the term.

Cavitation occurs when vapor pockets form in a liquid flow because of local reductions in pressure

(for example at the tip of a boat’s propeller blades). Depending on the number and distribution of par-

ticles in the liquid to which very small pockets of undissolved gas or air may attach, the local pressure at

the onset of cavitation may be at or below the vapor pressure of the liquid. These particles act as

nucleation sites to initiate vaporization.

Vapor pressure of a liquid is the partial pressure of the vapor in contact with the saturated liquid at a

given temperature. When pressure in a liquid is reduced to less than the vapor pressure, the liquid may

change phase suddenly and “flash” to vapor. The vapor pockets in a liquid flow may alter the geometry

of the flow field substantially. When adjacent to a surface, the growth and collapse of vapor bubbles can

cause serious damage by eroding the surface material. Very pure liquids can sustain large negative

pressures, as much as −60 atmospheres for distilled water, before the liquid “ruptures” and vaporization

occurs. Undissolved air is invariably present near the free surface of water or seawater, so cavitation

occurs where the local total pressure is quite close to the vapor pressure.

Gas flows with negligible heat transfer also may be considered incompressible provided that the

flow speeds are small relative to the speed of sound. The ratio of the flow speed, V , to the local speed

of sound, c, in the gas is defined as the Mach number,

M ≡
V

c

For M <0 3, the maximum density variation is less than 5 percent. Thus gas flows with M <0 3 can be

treated as incompressible; a value of M =0 3 in air at standard conditions corresponds to a speed of

approximately 100 m s. For example, when you drive your car at 65 mph the air flowing around it

has negligible change in density. As we shall see in Chapter 12, the speed of sound in an ideal gas

is given by c= kRT , where k is the ratio of specific heats, R is the gas constant, and T is the absolute

temperature.

Compressible flows occur frequently in engineering applications. Common examples include

compressed air systems used to power shop tools and dental drills, transmission of gases in pipelines

at high pressure, and pneumatic or fluidic control and sensing systems. Compressibility effects are

very important in the design of modern high-speed aircraft and missiles, power plants, fans, and

compressors.

Internal and External Flows

Flows completely bounded by solid surfaces are called internal or pipe or duct flows. Flows over

bodies immersed in an unbounded fluid are termed external flows. Both internal and external flows

may be laminar or turbulent, compressible or incompressible.

The flow of water in a pipe is an example of internal flow. The Reynolds number for pipe flows is

defined as Re= ρVD μ, where V is the average flow velocity and D is the pipe diameter. This Reynolds

number indicates whether a pipe flow will be laminar or turbulent. Flow will generally be laminar for

Re≤ 2300 and turbulent for larger values: Flow in a pipe of constant diameter will be entirely laminar or

entirely turbulent, depending on the value of the velocity V . We will explore internal flows in detail in

Chapter 8.

We already saw some examples of external flows when we discussed the flow over a sphere

(Fig. 2.14b) and a streamlined object (Fig. 2.16). These flows could be laminar or turbulent and in

addition, the boundary layers can be laminar or turbulent. When we discuss external flow in Chapter 9,

352.6 Description and Classification of Fluid Motions

www.konkur.in

Telegram: @uni_k



we’ll learn that there is an overall Reynolds number for a plate ReL = ρU∞L μ that indicates the

relative significance of viscous forces. In addition, we’ll find that the boundary layer will be laminar

for Rex = ρU∞x μ≤ 5× 105 and turbulent for larger values: A boundary layer will start out laminar,

and if the plate is long enough, the boundary layer will transition to become turbulent.

It is clear by now that computing a Reynolds number is often very informative for both internal and

external flows. We will discuss this and other important dimensionless groups in Chapter 7.

The internal flow through fluid machines is considered in Chapter 10 and we will apply the principle

of angular momentum to develop performance relations. Pumps, fans, blowers, compressors, and

propellers that add energy to fluid streams are considered, as are turbines and windmills that extract

energy. The chapter features detailed discussion of operation of fluid systems.

The internal flow of liquids in which there is a free surface exposed to the atmosphere termed

open-channel flow. Common examples of open-channel flow include flow in rivers, irrigation ditches,

and aqueducts. Open-channel flow will be treated in Chapter 11.

Both internal and external flows can be compressible or incompressible. Compressible flows can

be divided into subsonic and supersonic regimes. We will study compressible flows in Chapter 12 and

see among other things that supersonic flows M >1 will behave very differently than subsonic flows

M <1 . We will find that, for example, the shape of a nozzle for supersonic flow is different from that

for subsonic flow. We will learn that there is a maximum flow rate for air flowing through a nozzle.

Supersonic flows also have shock waves that affect the flow patterns significantly.

2.7 Summary and Useful Equations
In this chapter we have completed our review of some of the fundamental concepts we will utilize
in our study of fluid mechanics. Some of these are:

✓ How to describe flows (timelines, pathlines, streamlines, streaklines).
✓ Forces (surface, body) and stresses (shear, normal).
✓ Types of fluids (Newtonian, non-Newtonian—dilatant, pseudoplastic, thixotropic, rheopectic,

Bingham plastic) and viscosity (kinematic, dynamic, apparent).
✓ Types of flow (viscous/inviscid, laminar/turbulent, compressible/incompressible, internal/

external).

We also briefly discussed some interesting phenomena, such as surface tension, boundary layers,
wakes, and streamlining. Finally, we introduced two very useful dimensionless groups—the Rey-
nolds number and the Mach number.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to

refer to their page numbers for details!

Useful Equations
Definition of

specific gravity:
SG=

ρ

ρH2O

(2.3) Page 17

Definition of

specific weight:
γ =

mg

V---
γ = ρg (2.4) Page 17

Definition of

streamlines 2D :
dy

dx streamline

=
υ x,y

u x,y

(2.8) Page 20

Definition of

pathlines 2D :
dx

dt particle

= u x,y, t
dy

dt particle

= υ x,y, t
(2.9) Page 20

Definition of

streaklines 2D :

xstreakline t0 = x t,x0,y0, t0 ystreakline t0 = y t,x0,y0, t0 (2.10) Page 23

Newton’s law of

viscosity (1D flow):
τyx = μ

du

dy

(2.15) Page 26

Shear stress for a

non-Newtonian

fluid (1D flow):

τyx = k
du

dy

n−1
du

dy
= η

du

dy

(2.17) Page 29
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Chapter 3 Problems

Standard Atmosphere
3.1At standard atmospheric conditions, a gage measures the pressure

in a tank as−2.1 psi. Determine the absolute pressure in psia and kPa.

3.2 Atmospheric pressure decreases with altitude, which affects the

boiling point of water and, consequently, the cooking times for

some foods. Determine and plot the boiling temperature of water

over the range of sea level to 4000 m assuming standard atmospheric

conditions.

3.3 Ear “popping” occurs as air leaves the inner ear rapidly to accom-

modate a sudden change in the outside pressure. Determine the

change in pressure if your ears “pop” when you are in a car and

descend from 1000 m to 600 m. Determine the altitude change for

the same pressure drop if the car descends from 3000 m.

3.4 For a car parked at an altitude of 7000 ft, the tire is at atmospheric

temperature and the tire pressure is indicated as 31 psi. Determine the

absolute and gage pressures for the tire when the car is driven to sea

level and the tire has warmed to 85 F.

Pressure Variation in a Static Fluid
3.5 A piston is placed on a tank filled with mercury at 20 C as

shown below. A force is applied to the piston and the height of

the mercury column rises. Determine the weight of the piston and

the applied force.

Diameter, D = 50 mm

h = 25 mm

d = 10 mm

H = 200 mm

F

P3.5

3.6 A 125-mL cube of solid oak is held submerged by a tether as

shown. Calculate the force of the water on the bottom surface of

the cube and the tension in the tether.

SG = 0.8

Oil

Water

patm

0.3 m

0.5 m

P3.6

3.7 Calculate the absolute and gage pressure in an open tank of crude

oil 2.4 m below the liquid surface. If the tank is closed and pressurized

to 130 kPa, what are the absolute and gage pressures at this location?

3.8An open tank contains water to a depth of 6 ft and a layer of oil on

top of the water that is 3 ft deep. Determine the pressure at the bottom

of the tank.

3.9 The compressibility of sea water has a significant effect on the

variation of density and pressure with depth. The density at sea level

is 1020 kg/m3 and the pressure is atmospheric. Determine the density

and pressure at a depth of 10,000 m assuming (a) a constant density

and (b) a compressibility of E=2 07× 109Pa.

3.10 A water tank filled to a depth of 16 ft has a 1 in. × 1 in. inspec-

tion cover at the base. The cover is held in place by a plastic bracket

that can withstand a load of 9 lbf. Determine whether the bracket is

strong enough under these conditions and the water depth that would

cause the bracket to break.

3.11Consider the two-fluid manometer shown. Calculate the applied

pressure difference.

l =
10.2 mm

Water

Carbon
tetrachloride

p1 p2

++

P3.11

3.12 The manometer shown contains water and kerosene. With both

tubes open to the atmosphere, the free-surface elevations differ by

H0 =20 0 mm. Determine the elevation difference when a pressure

of 98.0 Pa gage is applied to the right tube.

Kerosene

Water

H0 =
20 mm

P3.12

3.13 Determine the gage pressure in kPa at point a, if liquid A has

SG=1 20 and liquid B has SG=0 75. The liquid surrounding point

a is water, and the tank on the left is open to the atmosphere.

Liquid B

Liquid A

0.25 m

0.4 m
0.125 m

0.9 m

Water
a

P3.13

P-7

www.konkur.in

Telegram: @uni_k



3.14 Determine the pressure px in the bulb for the manometer

readings shown.

Oil
(SG 0.85)

30 in.

60 in.Mercury

px

P3.14

3.15 Calculate px−py for this inverted U-tube manometer.

20 in.

10 in.

Oil(SG 0.90)

60 in.

Water

py

px

P3.15

3.16 A rectangular tank that is open to the atmosphere is filled to

a depth of 2.5 m. A U-tube manometer filled with Meriam blue

manometer fluid (SG = 1.75) is connected to the tank 0.7 m above

the tank bottom. Before the manometer is connected to the tank,

the zero level is 0.2 m below the connection. Determine the deflec-

tion ℓ after the manometer is connected.

l

0.2 m

Zero
level

0.7 m

2.5 m
3 m

P3.16

3.17 The figure shows a sectional view through a submarine.

Calculate the depth of submergence, y. Assume the specific weight

of seawater is 10 0 kN m3.

Atmos. pressure 74 mm Hg

60ʺ

200 mm

Conventional
barometer

200 mm

840 mm

Hg
Hg

P3.17

3.18 The inclined-tube manometer shown has D=96 mm and

d =8mm. Determine the angle q that will give a deflection of 15

cm for a gage pressure in the tank of 25 mm water. Compare to

the deflection for a vertical tube manometer.

D L

d

Δp

θ

P3.18

3.19 Water flows downward along a pipe that is inclined at 30

below the horizontal, as shown. Pressure difference pA−pB is due

partly to gravity and partly to friction. Derive an algebraic expression

for the pressure difference. Evaluate the pressure difference if L=5 ft

and h=6 in.

Mercury h__
2

h__
2

z g

A

B

L

Water

a

30°

P3.19

3.20 The elevation of Tucson, AZ, is about 500m, andMt. Lemmon

is about 2000 m higher. Assuming standard atmospheric conditions

in Tucson, determine the pressure at the top of Mt. Lemmon assum-

ing (a) an incompressible atmosphere and (b) an atmosphere for

which the temperature varies linearly with altitude. Compare your

result to the value for a standard atmosphere.

3.21 Compare the height due to capillary action of water exposed

to air in a circular tube of diameter D=0 5 mm with that between

two infinite vertical parallel plates of gap a=0 5 mm.

3.22 A rectangular gate (width w=2m) is hinged as shown, with a

stop on the lower edge. Determine the depth H that will tip the gate.

Hinge

Stop

Water

0.55 m

0.45 m

H

P3.22

3.23 A plane gate of uniform thickness holds back a depth of

water as shown. Find the minimum weight needed to keep the gate

closed.
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θ
L = 3 m

= 30°

Water

w = 2 m

P3.23

3.24 A vertical rectangular gate 2.4 m wide and 2.7 m high is sub-

jected to water pressure on one side, the water surface being at the

top of the gate. The gate is hinged at the bottom and is held by a hor-

izontal chain at the top. Determine the tension in the chain.

3.25 Gates in the Poe Lock at Sault Ste. Marie, Michigan, close a

channel W = 34 m wide, L= 360 m long, and D= 10 m deep. The

geometry of one pair of gates is shown; each gate is hinged at the

channel wall. When closed, the gate edges are forced together at

the center of the channel by water pressure. Evaluate the force

exerted by the water on gate A. Determine the magnitude and direc-

tion of the force components exerted by the gate on the hinge.

Neglect the weight of the gate.

x

yPlan view:
Hinge

Gate A

W = 34 m

15°

Water

P3.25

3.26 For the situation shown, find the air pressure in the tank in psi.

Calculate the force exerted on the gate at the support B if the gate is

10 ft wide. Show a free body diagram of the gate with all the forces

drawn in and their points of application located.

3
 f
t

2 ft

6 ftWater

Hinge

Rectangular
gate

Air at pα
A

B

P3.26

Hydrostatic Force on Submerged Surfaces
3.27 Semicircular plane gate AB is hinged along B and held by hor-

izontal force FA applied at A. The liquid to the left of the gate is water.

Calculate the force FA required for equilibrium.

FAA

B

R = 10 ft

H = 25 ft

Gate:
side view

P3.27

3.28 Determine the pressure at A. Draw a free body diagram of the

10-ft wide gate showing all forces and the locations of their lines of

action. Calculate the minimum force P necessary to keep the gate

closed.

6 ft

4 ft

8 ft
Air

Air

Hinge

A

P

0il (SG = 0.90)

P3.28

3.29Calculate magnitude and location of the resultant force of water

on this annular gate.

Hub3 m d 1.5 m d

1m

Gate

Water

P3.29

3.30 A large open tank contains water and is connected to a 6-ft-

diameter conduit as shown. A circular plug is used to seal the conduit.

Determine the magnitude, direction, and location of the force of the

water on the plug.

D = 6 ft

9 ft

Plug

Water

P3.30

3.31 The gate AOC shown is 6 ft wide and is hinged along O.

Neglecting the weight of the gate, determine the force in bar AB.

The gate is sealed at C.
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6 ft
O

8 ft

12 ft

3 ft

Water

A
B

C

P3.31

3.32 The gate shown is hinged at H. The gate is 3 m wide normal to

the plane of the diagram. Calculate the force required at A to hold the

gate closed.

F

A

30°

3 m
Water

1.5 m
H

P3.32

3.33 A tank of water 4 m wide with a hinged gate is shown in the

figure. Determine the magnitude and direction of the force at location

A needed to hold the gate in the position shown and the moment

around the hinge O. Determine what the moment would be if the

hinge were at location A.

Water

60°

3 m

O

A

2 m

P3.33

3.34 Determine the vertical force on the dam shown.

Top

Front Side

Water

3 ft

3 ft

3 ft

3 ft

3 ft 3 ft 3 ft6 ft 3 ft 3 ft 3 ft

3 ft

3 ft

3 ft

3 ft

P3.34

3.35An open tank is filled with water to the depth indicated. Atmos-

pheric pressure acts on all outer surfaces of the tank. Determine the

magnitude and line of action of the vertical component of the force of

the water on the curved part of the tank bottom.

10 ft

12 ft

10 ft

4 ft

Water

P3.35

3.36 Calculate the magnitude, direction and line of action of the

resultant force exerted by the water on the cylindrical gate 30 ft long.

10 ft

P3.36

3.37 A hemispherical shell 1.2 m in diameter is connected to

the vertical wall of a tank containing water. If the center of the

shell is 1.8 m below the water surface, determine the vertical

and horizontal force components on the shell as a whole and on

the top half of the shell.

3.38 A gate, in the shape of a quarter-cylinder, hinged at A and

sealed at B, is 3 m wide. The bottom of the gate is 4.5 m below

the water surface. Determine the force on the stop at B if the gate

is made of concrete; R=3m.

R
B

A 

D

Water

P3.38

3.39 The barge show in the figure weighs 40 tons and carries a

cargo of 30 tons. Determine the draft (distance from the water level

to the bottom of the barge) in freshwater. Determine the draft when

the barge is towed into a salt water sea.

50 ft

8 ft

40 ft

20 ft

20 ft

P3.39
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Buoyancy and Stability
3.40 A hydrometer is a specific gravity indicator, the value being

indicated by the level at which the free surface intersects the stem

when floating in a liquid. The 1.0 mark is the level when in distilled

water. For the unit shown, the immersed volume in distilled water is

15 cm3. The stem is 6 mm in diameter. Find the distance, h, from the

1.0 mark to the surface when the hydrometer is placed in a nitric acid

solution of specific gravity 1.5.

h

1.0

Nitric

acid

P3.40

3.41 A cylindrical can 75 mm in diameter and 150 mm high is filled

with water to a depth of 80 mm. The can weighs 1.1 N. Determine the

depth the can will sink when placed in water.

3.42 The timber weighs 40 lb ft3 and is held in a horizontal position

by the concrete 150 lb ft3 anchor. Calculate the minimum total

weight which the anchor may have.

6 in. × 6 in. × 20 ft

Timber Water

Anchor

P3.42

3.43 Determine the specific weight of the cube when one-half is

submerged as shown in the figure. Determine the position of the

center of the cube relative to the water level when the weight is

removed.

10 kg

Water

0.3 m

P3.43

3.44 The opening in the bottom of the tank is square and slightly less

than 2 ft on each side. The opening is to be plugged with a wooden

cube 2 ft on a side.

(a) Determine the weight W that will insure successful plugging of

the hole The wood weighs 40 lb ft3.

(b) Determine the upward force that must be exerted on the block to

lift it and allow water to drain from the tank.

W

Water
5 ft

2 ft

2 ft

P3.44

3.45A balloon has a weight of 2.2 kN, not including gas, and a gas-

bag capacity of 566 m3. At the ground, it is partially inflated with

445 N of helium. Determine how high the balloon will rise. Assume

a Standard Atmosphere and that helium is always at the pressure

and temperature of the atmosphere.

3.46 A sphere of 1-in.-radius made from material of specific

gravity of SG=0 95, is submerged in a tank of water. The sphere

is placed over a hole of 0.075-in.-radius in the tank bottom. When

the sphere is released, determine whether it stay on the bottom of

the tank or float to the surface.

a = 0.075 in.

H = 2.5 ft R = 1 in.

P3.46

3.47 A rectangular container of water undergoes constant accelera-

tion down an incline as shown. Determine the slope of the free sur-

face using the coordinate system shown.

y

x

= 30°θ

ax = 3 m/s2

g

P3.47

3.48 Cast iron or steel molds are used in a horizontal-spindle machine

to make tubular castings such as liners and tubes. A charge of molten

metal is poured into the spinning mold. The radial acceleration permits

nearly uniformly thick wall sections to form. A steel liner, of length

L=6 ft, outer radius ro =6 in , and inner radius ri =4 in , is to be

formed by this process. To attain nearly uniform thickness, the angu-

lar velocity should be at least 300 rpm. Determine (a) the resulting

radial acceleration on the inside surface of the liner and (b) the max-

imum and minimum pressures on the surface of the mold.
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C H A P T E R 3

Fluid Statics
3.1 The Basic Equation of Fluid Statics

3.2 The Standard Atmosphere

3.3 Pressure Variation in a Static Fluid

3.4 Hydrostatic Force on Submerged Surfaces

3.5 Buoyancy and Stability

3.6 Fluids in Rigid-Body Motion

3.7 Summary and Useful Equations

Learning Objectives
After completing this chapter, you should be able to

• Calculate the absolute and gage pressures in a fluid at rest.

• Explain the variation of pressure with elevation for the Standard Atmosphere.

• Calculate pressure in a fluid as indicated by a manometer.

• Calculate the hydrostatic force on a submerged plane or curved object.

• Calculate the buoyancy force on an object immersed in a fluid.

Case Study

Flood control is essential in the Netherlands as about two-thirds
of the country could be flooded by the ocean or one of the three
major European rivers that run through it. Over the centuries, a
system of canals, dikes, and dams have been successful in pre-
venting serious flooding, but the recent rises in sea level made
it more imperative to develop methods to protect the land.

The Delta Works is a recent comprehensive approach that
incorporates a storm surge barrier into the systemof dikes, dams,
and sluice gates. The Eastern Scheldt Storm Surge Barrier shown
in the photograph is an important component in this barrier. It is
8 km in length and composed of 62 enormous sliding gates that
are open during normal conditions to allow tidal flows in and out.
This preserves the saltwater marine life behind the dam so that
the traditional fishing and oyster catching can take place. How-
ever, under storm surge conditions, the gates can be closed in 75
min to keep high seas from encroaching and inundating the land
inside the barrier.

The dam is controlled by human operators, but if they fail there
is an electronic security system that takes over. By Dutch law, the
level of the seamust be at least 3m above normal before the gates
can be completely shut. The dam has been closed twenty-seven

times since it was completed in 1986 due to water levels exceed-
ing or being predicted to exceed the 3m. The dam construction
cost 2.5 billion Euros and the operating expenses are 17 million
Euros per year. However, the dam is expected to protect the
mainland of Holland for the next 200 years.
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Storm Surge Gates in Holland Dam.
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In Chapter 1, we defined a fluid as any substance that continuously deforms when it experiences

a shear stress. For a static fluid (or one undergoing “rigid-body” motion) only the normal stress due

to pressure is present. We will study the topic of fluid statics in this chapter.

Although fluid statics problems are the simplest kind of fluid mechanics problems, this is not the

only reason we will study them. The pressure generated within a static fluid is an important phenomenon

in many practical situations. Using the principles of hydrostatics, we can compute forces on submerged

objects, develop instruments for measuring pressures, and deduce properties of the atmosphere and

oceans. The principles of hydrostatics also may be used to determine the forces developed by hydraulic

systems in applications such as industrial presses or automobile brakes.

In a static, homogeneous fluid, or in a fluid undergoing rigid-body motion, a fluid particle retains its

identity for all time, and fluid elements do not deform. We may apply Newton’s second law of motion to

evaluate the forces acting on the particle.

3.1 The Basic Equation of Fluid Statics
The first objective of this chapter is to obtain an equation for computing the pressure field in a static

fluid. We will deduce what we already know from everyday experience, that the pressure increases with

depth. To do this, we apply Newton’s second law to a differential fluid element of mass dm= ρ dV---, with

sides dx, dy, and dz, as shown in Fig. 3.1. The fluid element is stationary relative to the stationary

rectangular coordinate system shown.

From our previous discussion, recall that two general types of forces may be applied to a fluid: body

forces and surface forces. The only body force that must be considered in most engineering problems is

due to gravity. We will not consider body forces caused by electric or magnetic fields.

For a differential fluid element, the body force is

dFB = gdm= g ρ dV---

where g is the local gravity vector, ρ is the density, and dV--- is the volume of the element. In Cartesian

coordinates dV--- = dx dy dz , so

dFB = ρg dx dy dz

In a static fluid there are no shear stresses, so the only surface force is the pressure force. Pressure is

a scalar field, p= p x,y,z and in general we expect the pressure to vary with position within the fluid.

The net pressure force that results from this variation can be found by summing the forces that act on

the six faces of the fluid element.

Let the pressure be p at the center, O, of the element. To determine the pressure at each of the six

faces of the element, we use a Taylor series expansion of the pressure about point O. The pressure at

the left face of the differential element is

O

Pressure, p

y

dx

dz

dy

z

p
𝜕p dy

(dx dz) ( j )
2

+–
𝜕y

p
𝜕p dy

(dx dz) (–j)
2𝜕y

x

^ ^

Fig. 3.1 Differential fluid element and pressure forces in the y direction.
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pL = p+
∂p

∂y
yL−y = p+

∂p

∂y
−
dy

2
= p−

∂p

∂y

dy

2

Terms of higher order are omitted because they will vanish in the subsequent limiting process. The

pressure on the right face of the differential element is

pR = p+
∂p

∂y
yR−y = p+

∂p

∂y

dy

2

The pressure forces acting on the two y surfaces of the differential element are shown in Fig. 3.1.

Each pressure force is a product of three factors. The first is the magnitude of the pressure. This mag-

nitude is multiplied by the area of the face to give the magnitude of the pressure force, and a unit vector is

introduced to indicate direction. Note also in Fig. 3.1 that the pressure force on each face acts against the

face. A positive pressure corresponds to a compressive normal stress.

Pressure forces on the other faces of the element are obtained in the same way. Combining all such

forces gives the net surface force acting on the element. Thus

dFS = p−
∂p

∂x

dx

2
dy dz i + p+

∂p

∂x

dx

2
dy dz − i

+ p−
∂p

∂y

dy

2
dx dz j + p+

∂p

∂y

dy

2
dx dz − j

+ p−
∂p

∂z

dz

2
dx dy k + p+

∂p

∂z

dz

2
dx dy −k

Collecting and canceling terms, we obtain

dFS = −
∂p

∂x
i+

∂p

∂y
j+

∂p

∂z
k dx dy dz 3 1a

The term in parentheses is called the gradient of the pressure or simply the pressure gradient and may be

written grad p or ∇p. In rectangular coordinates

grad p≡∇p≡ i
∂p

∂x
+ j

∂p

∂y
+ k

∂p

∂z
≡ i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z
p

The gradient can be viewed as a vector operator; taking the gradient of a scalar field gives a vector field.

Using the gradient designation, Eq. 3.1a can be written as

dFS = −grad p dx dy dz = −∇p dx dy dz 3 1b

Physically the gradient of pressure is the negative of the surface force per unit volume due to pressure.

Note that the pressure magnitude itself is not relevant in computing the net pressure force; instead what

counts is the rate of change of pressure with distance, the pressure gradient. We shall encounter this term

throughout our study of fluid mechanics.

We combine the formulations for surface and body forces that we have developed to obtain the total

force acting on a fluid element. Thus

dF = dFS + dFB = −∇p+ ρg dx dy dz= −∇p+ ρg dV---

or on a per unit volume basis

dF

dV---
= −∇p+ ρg 3 2

For a fluid particle, Newton’s second law gives F = a dm= a ρdV---. For a static fluid, a =0. Thus

dF

dV---
= ρa =0

Substituting for dF dV--- from Eq. 3.2, we obtain

−∇p+ ρg =0 3 3
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Let us review this equation briefly. The physical significance of each term is

−∇p + ρg =0

net pressure force

per unit volume

at a point

+

body force per

unit volume

at a point

= 0

This is a vector equation, which means that it is equivalent to three component equations that must be

satisfied individually. The component equations are

−
∂p

∂x
+ ρgx =0 x direction

−
∂p

∂y
+ ρgy =0 y direction

−
∂p

∂z
+ ρgz =0 z direction

3 4

Equations 3.4 describe the pressure variation in each of the three coordinate directions in a static

fluid. It is convenient to choose a coordinate system such that the gravity vector is aligned with one

of the coordinate axes. If the coordinate system is chosen with the z axis directed vertically upward,

as in Fig. 3.1, then gx =0, gy =0, and gz = −g. Under these conditions, the component equations become

∂p

∂x
=0

∂p

∂y
=0

∂p

∂z
= −ρg 3 5

Equations 3.5 indicate that, under the assumptions made, the pressure is independent of coordinates x

and y and it depends on z alone. Thus since p is a function of a single variable, a total derivative may be

used instead of a partial derivative. With these simplifications, Eq. 3.5 finally reduces to

dp

dz
= −ρg≡ −γ 3 6

Restrictions:

1 Static fluid.

2 Gravity is the only body force.

3 The z axis is vertical and upward.

Equation 3.6 is the basic pressure-height relation of fluid statics. It is subject to the restrictions noted.

Therefore it must be applied only where these restrictions are reasonable for the physical situation.

To determine the pressure distribution in a static fluid, Eq. 3.6 may be integrated and appropriate

boundary conditions applied.

Before considering specific applications of this equation, it is important to remember that pressure

values must be stated with respect to a reference level. If the reference level is a vacuum, pressures are

termed absolute, as shown in Fig. 3.2.

pabsolute

pgage

Pressure level

Atmospheric pressure:
101.3 kPa (14.696 psia)

at standard sea level
conditions

Vacuum
Fig. 3.2 Absolute and gage pressures, showing
reference levels.
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Most pressure gages indicate a pressure difference such as the difference between the measured

pressure and the ambient level (usually atmospheric pressure). Pressure levels measured with respect

to atmospheric pressure are termed gage pressures. Thus

pgage = pabsolute−patmosphere

For example, a tire gage might indicate 30 psi, and absolute pressure would be about 44.7 psi.

Absolute pressures must be used in all calculations with the ideal gas equation or other equations

of state.

3.2 The Standard Atmosphere
Scientists and engineers sometimes need a numerical or analytical model of the Earth’s atmosphere in

order to simulate climate variations to study, for example, effects of global warming. Although there is

no single standard model, in the United States the U.S. Standard Atmosphere [3] is the usual reference.

In addition, there is an International Standard Atmosphere (ISA) [4] in use in many countries.

The temperature profile of the U.S. Standard Atmosphere is shown in Fig. 3.3. Additional property

values are tabulated as functions of elevation in Appendix A. Sea level conditions of the U.S. Standard

Atmosphere are summarized in Table 3.1.
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Fig. 3.3 Temperature variation with altitude in the U.S. Standard Atmosphere.

Table 3.1
Sea Level Conditions of the U.S. Standard Atmosphere

Property Symbol SI English

Temperature T 15 C 59 F

Pressure p 101 3 kPa abs 14 696 psia

Density ρ 1 225 kg m3 0 002377 slug ft3

Specific weight γ — 0 07651 lbf ft3

Viscosity μ 1 789× 10−5 kg m s Pa s 3 737× 10−7 lbf s ft2
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3.3 Pressure Variation in a Static Fluid
We proved that pressure variation in any static fluid is described by the basic pressure-height relation

dp

dz
= −ρg 3 6

Although ρg may be defined as the specific weight, γ, it has been written as ρg in Eq. 3.6 to emphasize

that both ρ and g must be considered variables. In order to integrate Eq. 3.6 to find the pressure distri-

bution, we need information about variations in both ρ and g.

For most practical engineering situations, the variation in g with elevation is negligible. Only for a

purpose such as computing very precisely the pressure change over a large elevation difference would

the variation in g need to be included. Unless we state otherwise, we shall assume g to be constant with

elevation at any given location.

Incompressible Liquids: Manometers

For an incompressible fluid, ρ= constant. Then for constant gravity,

dp

dz
= −ρg= constant

To determine the pressure variation, we must integrate and apply appropriate boundary conditions. If the

pressure at the reference level, z0, is designated as p0, then the pressure, p, at level z is found by

integration:

p

p0

dp= −

z

z0

ρg dz

or

p−p0 = −ρg z−z0 = ρg z0−z

For liquids, it is often convenient to take the origin of the coordinate system at the free surface (reference

level) and to measure distances as positive downward from the free surface as in Fig. 3.4.

With the depth h measured positive downward, we have

z0−z= h

and obtain

p−p0 =Δp= ρgh 3 7

Equation 3.7 indicates that the pressure difference between two points in a static incompressible fluid can

be determined by measuring the elevation difference between the two points. Devices used for this

purpose are called manometers. Use of Eq. 3.7 for a manometer is illustrated in Example 3.1.

Manometers are simple and inexpensive devices used frequently for pressure measurements.

Because the liquid level change is small at low pressure differential, a U-tube manometer may be

0
Reference
level and
pressure

Location and
pressure of
interest

z

z0

z < z0

p0

p > p0h

Fig. 3.4 Use of z and h coordinates.
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difficult to read accurately. The sensitivity of a manometer is a measure of how sensitive it is compared

to a simple water-filled U-tube manometer. Specifically, it is the ratio of the deflection of the manometer

to that of a water-filled U-tube manometer due to the same applied pressure difference Δp. Sensitivity

can be increased by changing the manometer design or by using two immiscible liquids of slightly

different density. Analysis of an inclined manometer is illustrated in Example 3.2.

Students sometimes have trouble analyzing multiple-liquid manometer situations. The following

rules of thumb are useful:

1 Any two points at the same elevation in a continuous region of the same liquid are at the same

pressure.

2 Pressure increases as one goes down a liquid column.

Example 3.1 SYSTOLIC AND DIASTOLIC PRESSURE

Normal blood pressure for a human is 120 80 mmHg. Bymodeling a sphygmomanometer pressure gage as a U-tube manometer,

convert these pressures to psig.

Given: Gage pressures of 120 and 80 mmHg.

Find: The corresponding pressures in psig.

Solution: Apply hydrostatic equation to points A, A , and B.

Governing equation:
p−p0 =Δp= ρgh 3 1

Assumptions:

1 Static fluid.

2 Incompressible fluids.

3 Neglect air density Hg density .

Applying the governing equation between points A and B (and pB is atmospheric and therefore zero gage):

pA = pB + ρHggh= SGHgρH2O
gh

In addition, the pressure increases as we go downward from point A to the bottom of the manometer, and decreases by

an equal amount as we return up the left branch to point A. This means points A and A have the same pressure, so we end

up with

pA = pA = SGHgρH2O
gh

Substituting SGHG =13 6 and ρH2O
=1 94 slug ft3 from Appendix A.1 yields for the systolic pressure h=120 mmHg

psystolic = pA =13 6× 1 94
slug

ft3
×32 2

ft

s2
×120 mm×

in

25 4 mm

×
ft

12 in
×

lbf s2

slug ft

psystolic =334 lbf ft2 =2 32 psi
psystolic

By a similar process, the diastolic pressure h=80 mmHg is

pdiastolic =1 55 psi
pdiastolic

Blood
pressure

Air

Hg

h

B

A'A

Notes:

• Two points at the same level in a
continuous single fluid have the same
pressure.

• In manometer problems we neglect
change in pressure with depth for a
gas: ρgas ρliquid.

• This problem shows the conversion from
mmHg to psi, using Eq. 3.7: 120mmHg is
equivalent to about 2.32 psi. More
generally, 1 atm=14 7 psi= 101 kPa=
760mmHg.
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Example 3.2 ANALYSIS OF INCLINED-TUBE MANOMETER

An inclined-tube reservoir manometer is constructed as shown. Derive a general expression for the liquid deflection, L, in the

inclined tube, due to the applied pressure difference, Δp. Also obtain an expression for the manometer sensitivity, and discuss the

effect on sensitivity of D, d, θ, and SG.

Given: Inclined-tube reservoir manometer.

Find: Expression for L in terms of Δp.

General expression for manometer sensitivity.

Effect of parameter values on sensitivity.

Solution: Use the equilibrium liquid level as a reference.

Governing equations:

p−p0 =Δp= ρgh SG=
ρ

ρH2O

Assumptions:

1 Static fluid.

2 Incompressible fluid.

Applying the governing equation between points 1 and 2

p1−p2 =Δp= ρlg h1 + h2 1

To eliminate h1, we recognize that the volume of manometer liquid remains constant; the volume displaced from the reservoir

must equal the volume that rises in the tube, so

πD2

4
h1 =

πd2

4
L or h1 = L

d

D

2

In addition, from the geometry of the manometer, h2 = L sin θ. Substituting into Eq. 1 gives

Δp= ρlg L sin θ+ L
d

D

2

= ρlgL sin θ+
d

D

2

Thus

L=
Δp

ρlg sin θ+
d

D

2

L

To find the sensitivity of the manometer, we need to compare this to the deflection h a simple U-tube manometer, using water

(density ρ), would experience,

h=
Δp

ρg

The sensitivity s is then

s=
L

h
=

1

SGl sin θ+
d

D

2

S

where we have used SGl = ρl ρ. This result shows that to increase sensitivity, SGl, sin θ, and d D each should be made as small as

possible. Thus the designer must choose a gage liquid and two geometric parameters to complete a design, as discussed below.

D L

d

Gage liquid, ρl

1

h2

h1

Equilibrium
liquid level

2

Δp

θ

D L

d

Δp

θ
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To find the pressure difference Δp between two points separated by a series of fluids, we can use the

following modification of Eq. 3.1:

Δp= g
i

ρihi 3 8

where ρi and hi represent the densities and depths of the various fluids, respectively. Use care in applying

signs to the depths hi; they will be positive downwards, and negative upwards. Example 3.3 illustrates

the use of a multiple-liquid manometer for measuring a pressure difference.

Gage Liquid

The gage liquid should have the smallest possible specific gravity to increase sensitivity. In addition, the gage liquid must be safe

(without toxic fumes or flammability), be immiscible with the fluid being gaged, suffer minimal loss from evaporation, and

develop a satisfactory meniscus. Thus the gage liquid should have relatively low surface tension and should accept dye to

improve its visibility.

Tables A.1, A.2, and A.4 show that hydrocarbon liquids satisfy many of these criteria. The lowest specific gravity is about 0.8,

which increases manometer sensitivity by 25 percent compared to water.

Diameter Ratio

The plot shows the effect of diameter ratio on sensitivity for a vertical reservoir manometer with gage liquid of unity specific

gravity. Note that d D=1 corresponds to an ordinary U-tube manometer. Its sensitivity is 0.5 because for this case the total

deflection will be h, and for each side it will be h 2, so L= h 2. Sensitivity doubles to 1.0 as d D approaches zero because

most of the level change occurs in the measuring tube.

The minimum tube diameter d must be larger than about 6 mm to avoid excessive capillary effect. The maximum reservoir

diameterD is limited by the size of the manometer. IfD is set at 60 mm, so that d D is 0.1, then d D
2
=0 01, and the sensitivity

increases to 0.99, very close to the maximum attainable value of 1.0.

Inclination Angle

The final plot shows the effect of inclination angle on sensitivity for d D =0. Sensitivity increases sharply as inclination angle

is reduced below 30 degrees. A practical limit is reached at about 10 degrees: The meniscus becomes indistinct and the level hard

to read for smaller angles.

Summary

Combining the best values (SG=0 8, d D=0 1, and θ=10 degrees) gives a manometer sensitivity of 6.81. Physically this is the

ratio of observed gage liquid deflection to equivalent water column height. Thus the deflection in the inclined tube is amplified

6.81 times compared to a vertical water column. With improved sensitivity, a small pressure difference can be read more accu-

rately than with a water manometer, or a smaller pressure difference can be read with the same accuracy.

θ = 90°

SG = 1
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Example 3.3 MULTIPLE-LIQUID MANOMETER

Water flows through pipes A and B. Lubricating oil is in the upper portion of the inverted U. Mercury is in the bottom of the

manometer bends. Determine the pressure difference, pA−pB, in units of lbf in 2

Given: Multiple-liquid manometer as shown.

Find: Pressure difference, pA−pB, in lbf in 2

Solution:

Governing equations:

Δp= g
i

ρihi SG=
ρ

ρH2O

Assumptions:

1 Static fluid.

2 Incompressible fluid.

Applying the governing equation, working from point

B to A

pA−pB =Δp= g ρH2O
d5 + ρHgd4−ρoild3

+ ρHgd2−ρH2O
d1

1

This equation can also be derived by repeatedly using

Eq. 3.1 in the following form:

p2−p1 = ρg h2−h1

Beginning at point A and applying the equation

between successive points along the manometer gives

pC−pA = + ρH2O
gd1

pD−pC = −ρHggd2

pE−pD = + ρoilgd3

pF−pE = −ρHggd4

pB−pF = −ρH2O
gd5

Multiplying each equation by minus one and adding, we obtain Eq. 1

pA−pB = pA−pC + pC−pD + pD−pE + pE−pF + pF−pB

= −ρH2O
gd1 + ρHggd2−ρoilgd3 + ρHggd4 + ρH2O

gd5

Substituting ρ= SGρH2O
with SGρHg =13 6 and SGoil =0 88 (Table A.2), yields

pA−pB = g −ρH2O
d1 +13 6ρH2O

d2−0 88ρH2O
d3 +13 6ρH2O

d4 + ρH2O
d5

= gρH2O
−d1 +13 6d2−0 88d3 +13 6d4 + d5

pA−pB = gρH2O
−10+ 40 8−3 52+ 68+ 8 in

pA−pB = gρH2O
×103 3 in

= 32 2
ft

s2
×1 94

slug

ft3
×103 3 in ×

ft

12 in
×

ft2

144 in 2
×

lbf s2

slug ft

pA−pB =3 73 lbf in 2 pA−pB

A

10" 4"

4"
5"

8"

3"

H2O

Oil

Hg

H2O

B

A

d1 = 10" 4"

d3 = 4"
d4 = 5"

d5 = 8"

d2 = 3"

H2O

Oil

Hg

H2O

B

D

C

E

F

h

z

z = h = 0

This problem shows use of both Eq. 3.1 and
Eq. 3.8. Use of either equation is a matter
of personal preference.
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Atmospheric pressure may be obtained from a barometer in which the height of a mercury column

is measured. The measured height may be converted to pressure using Eq. 3.1 and the data for specific

gravity of mercury given in Appendix A. Although the vapor pressure of mercury may be neglected, for

precise work, temperature and altitude corrections must be applied to the measured level and the effects

of surface tension must be considered. The capillary effect in a tube caused by surface tension was illus-

trated in Example 2.3.

Gases

In many practical engineering problems density will vary appreciably with large changes in altitude, and

accurate results will require that this variation be accounted for. Pressure variation in a compressible

fluid can be evaluated by integrating Eq. 3.6 if the density can be expressed as a function of p or z.

Property information or an equation of state may be used to obtain the required relation for density.

Several types of property variation may be analyzed as shown in Example 3.4.

The density of gases depends on pressure and temperature. The ideal gas equation of state,

p= ρRT 1 1

where R is the gas constant (see Appendix A) and T the absolute temperature, accurately models

the behavior of most gases under engineering conditions. However, the use of Eq. 1.1 introduces the

gas temperature as an additional variable. Therefore, an additional assumption must be made about tem-

perature variation before Eq. 3.6 can be integrated.

In the U.S. Standard Atmosphere the temperature decreases linearly with altitude up to an

elevation of 11.0 km. For a linear temperature variation with altitude given by T = T0−mz, we obtain,

from Eq. 3.6,

dp= −ρg dz= −
pg

RT
dz= −

pg

R T0−mz
dz

Separating variables and integrating from z=0 where p= p0 to elevation z where the pressure is p gives

p

p0

dp

p
= −

z

0

gdz

R T0−mz

Then

ln
p

p0
=

g

mR
ln

T0−mz

T0
=

g

mR
ln 1−

mz

T0

and the pressure variation, in a gas whose temperature varies linearly with elevation, is given by

p= p0 1−
mz

T0

g mR

= p0
T

T0

g mR

3 9

Example 3.4 PRESSURE AND DENSITY VARIATION IN THE ATMOSPHERE

The maximum power output capability of a gasoline or diesel engine decreases with altitude because the air density and hence the

mass flow rate of air decreases. A truck leaves Denver (elevation 5280 ft) on a day when the local temperature and barometric

pressure are 80 F and 24.8 in. of mercury, respectively. It travels through Vail Pass (elevation 10,600 ft), where the temperature is

62 F. Determine the local barometric pressure at Vail Pass and the percent change in density.

Given: Truck travels from Denver to Vail Pass.

Denver: z=5280 ft Vail Pass: z=10,600 ft

p=24 8 in Hg T =62 F

T =80 F
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Find: Atmospheric pressure at Vail Pass.

Percent change in air density between Denver and Vail.

Solution:

Governing equations:
dp

dz
= −ρg p= ρRT

Assumptions:

1 Static fluid.

2 Air behaves as an ideal gas.

We shall consider four assumptions for property variations with altitude.

(a) If we assume temperature varies linearly with altitude, Eq. 3.9 gives

p

p0
=

T

T0

g mR

Evaluating the constant m gives

m=
T0−T

z−z0
=

80−62 F

10 6− 5 28 103 ft
= 3 38× 10−3 F ft

and

g

mR
=32 2

ft

s2
×

ft

3 38 × 10−3 F
×

lbm R

53 3 ft lbf
×

slug

32 2 lbm
×

lbf s2

slug ft
= 5 55

Thus

p

p0
=

T

T0

g mR

=
460+ 62

460+ 80

5 55

= 0 967
5 55

=0 830

and

p=0 830 p0 = 0 830 24 8 in Hg= 20 6 in Hg
p

Note that temperature must be expressed as an absolute temperature in the ideal gas equation of state.

The percent change in density is given by

ρ−ρ0

ρ0
=

ρ

ρ0
−1=

p

p0

T0

T
−1=

0 830

0 967
−1= −0 142 or −14 2

Δρ

ρ0

(b) For ρ assumed constant = ρ0 ,

p= p0−ρ0g z−z0 = p0−
p0g z−z0

RT0
= p0 1−

g z−z0

RT0

p=20 2 in Hg and
Δρ

ρ0
=0

p,
Δρ

ρ0

(c) If we assume the temperature is constant, then

dp= −ρg dz= −
p

RT
g dz
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3.4 Hydrostatic Force on Submerged Surfaces
Now that we have determined how the pressure varies in a static fluid, we can examine the force on a

surface submerged in a liquid.

In order to determine completely the resultant force acting on a submerged surface, we must specify:

1 The magnitude of the force.

2 The direction of the force.

3 The line of action of the force.

We shall consider both plane and curved submerged surfaces.

Hydrostatic Force on a Plane Submerged Surface

A plane submerged surface, on whose upper face we wish to determine the resultant hydrostatic force, is

shown in Fig. 3.5. The coordinates are important and have been chosen so that the surface lies in the xy

plane, and the origin O is located at the intersection of the plane surface (or its extension) and the free

surface. As well as the magnitude of the force FR, we wish to locate the point (with coordinates x ,y )

through which it acts on the surface.

Since there are no shear stresses in a static fluid, the hydrostatic force on any element of the surface

acts normal to the surface. The pressure force acting on an element dA= dx dy of the upper surface is

given by

dF = p dA

The resultant force acting on the surface is found by summing the contributions of the infinitesimal

forces over the entire area.

and

p

p0

dp

p
= −

z

z0

g

RT
dz

p= p0 exp
−g z−z0

RT

For T = constant =T0,

p=20 6 in Hg and
Δρ

ρ0
= −16 9

p,
Δρ

ρ0

(d) For an adiabatic atmosphere p ρk = constant,

p= p0
T

T0

k k−1

=22 0 in Hg and
Δρ

ρ0
= −8 2

p,
Δρ

ρ0

We note that over the modest change in elevation the predicted pressure is not

strongly dependent on the assumed property variation; values calculated under

four different assumptions vary by a maximum of approximately 9 percent. There

is considerably greater variation in the predicted percent change in density. The

assumption of a linear temperature variation with altitude is the most reasonable

assumption.

This problem shows use of the ideal gas
equation with the basic pressure-height
relation to obtain the change in pressure
with height in the atmosphere under
various atmospheric assumptions.
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Usually when we sum forces we must do so in a vectorial sense. However, in this case all of the

infinitesimal forces are perpendicular to the plane, and hence so is the resultant force. Its magnitude is

given by

FR =
A

p dA 3 10a

In order to evaluate the integral in Eq. 3.10a, both the pressure, p, and the element of area, dA, must be

expressed in terms of the same variables.

We can use Eq. 3.7 to express the pressure p at depth h in the liquid as

p= p0 + ρgh

In this expression p0 is the pressure at the free surface h=0 .

In addition, we have, from the system geometry, h= y sin θ. Using this expression and the above

expression for pressure in Eq. 3.10a,

FR =
A

p dA=
A

p0 + ρgh dA=
A

p0 + ρgy sin θ dA

FR = p0
A

dA+ ρg sin θ
A

y dA= p0A+ ρg sin θ
A

y dA

The integral is the first moment of the surface area about the x axis, which may be written

A

y dA= ycA

where yc is the y coordinate of the centroid of the area, A. Thus,

FR = p0A+ ρg sin θ ycA= p0 + ρghc A

or

FR = pcA 3 10b

where pc is the absolute pressure in the liquid at the location of the centroid of area A. Equation 3.10b

computes the resultant force due to the liquid, including the effect of the ambient pressure p0, on one

h

O

Liquid surface

dF

FR

Liquid,
density = ρ

Edge view

y

y

z

x

dx

y'dAx'

dy

xy xy plane viewed from above

Point of application of FR

(center of pressure)

Ambient pressure, p0

θ

Fig. 3.5 Plane submerged surface.
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side of a submerged plane surface. It does not take into account whatever pressure or force distribution

may be on the other side of the surface. However, if we have the same pressure, p0, on this side as we

do at the free surface of the liquid, as shown in Fig. 3.6, its effect on FR cancels out, and if we wish to

obtain the net force on the surface we can use Eq. 3.10bwith pc expressed as a gage rather than absolute

pressure.

In computing FR we can use either the integral of Eq. 3.10a or the resulting Eq. 3.10b. It is important

to note that even though the force can be computed using the pressure at the center of the plate, this is not

the point through which the force acts.

Our next task is to determine x ,y , the location of the resultant force. Let’s first obtain y by recog-

nizing that the moment of the resultant force about the x axis must be equal to the moment due to the

distributed pressure force. Taking the sum (i.e., integral) of the moments of the infinitesimal forces

dF about the x axis we obtain

y FR =
A

yp dA 3 11a

We can integrate by expressing p as a function of y as before:

y FR =
A

yp dA=
A

y p0 + ρgh dA=
A

p0y+ ρgy2 sin θ dA

= p0
A

y dA+ ρg sin θ
A

y2dA

The first integral is our familiar ycA. The second integral, A
y2dA, is the secondmoment of area about the

x axis, Ixx. We can use the parallel axis theorem, Ixx = Ixx +Ay2c , to replace Ixx with the standard second

moment of area, about the centroidal x axis. Using all of these, we find

y FR = p0ycA+ ρg sin θ Ixx +Ay2c = yc p0 + ρgyc sin θ A+ ρg sin θ Ixx

= yc p0 + ρghc A+ ρg sin θIxx = ycFR + ρg sin θIxx

Finally, we obtain for y :

y = yc +
ρg sin θ Ixx

FR

3 11b

Equation 3.11b is convenient for computing the location y of the force on the submerged side of the

surface when we include the ambient pressure p0. If we have the same ambient pressure acting on

the other side of the surface we can use Eq. 3.10b with p0 neglected to compute the net force,

FR = pcgage A= ρghc A= ρgyc sin θ A

and Eq. 3.11b becomes for this case

h

O

Liquid surface

Liquid,
density = ρ

Edge view

y

z

Ambient pressure, p0

FR

θ

Fig. 3.6 Pressure distribution on plane submerged surface.
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y = yc +
Ixx

Ayc
3 11c

Equation 3.11a is the integral equation for computing the location y of the resultant force, Eq. 3.11b is a

useful algebraic form for computing y when we are interested in the resultant force on the submerged

side of the surface, and Eq. 3.11c is for computing y when we are interested in the net force for the case

when the same p0 acts at the free surface and on the other side of the submerged surface. For problems

that have a pressure on the other side that is not p0, we can either analyze each side of the surface

separately or reduce the two pressure distributions to one net pressure distribution, in effect creating

a system to be solved using Eq. 3.10b with pc expressed as a gage pressure.

Note that in any event, y > yc; the location of the force is always below the level of the plate cen-

troid. This makes sense because, as Fig. 3.6 shows, the pressures will always be larger on the lower

regions, moving the resultant force down the plate.

A similar analysis can be done to compute x , the x location of the force on the plate. Taking the sum

of the moments of the infinitesimal forces dF about the y axis we obtain

x FR =
A

x p dA 3 12a

We can express p as a function of y as before:

x FR =
A

xp dA=
A

x p0 + ρgh dA=
A

p0x+ ρgxy sin θ dA

= p0
A

x dA+ ρg sin θ
A

xy dA

The first integral is xcA, where xc is the distance of the centroid from y axis. The second integral is

A
xy dA= Ixy. Using the parallel axis theorem, Ixy = Ixy +Axc yc, we find

x FR = p0xcA+ ρg sin θ Ixy +Axcyc = xc p0 + ρgyc sin θ A+ ρg sin θ Ixy

= xc p0 + ρghc A+ ρg sin θ Ixy = xcFR + ρg sin θ Ixy

Finally, we obtain for x :

x = xc +
ρ g sin θ Ixy

FR

3 12b

Equation 3.12b is convenient for computing x when we include the ambient pressure p0. If we have

ambient pressure also acting on the other side of the surface we can again use Eq. 3.10b with p0 neglected

to compute the net force and Eq. 3.12b becomes for this case

x = xc +
Ixy

Ayc
3 12c

Equation 3.12a is the integral equation for computing the location x of the resultant force. Equation 3.12b

can be used for computations when we are interested in the force on the submerged side only and

Eq. 3.12c is useful when we have p0 on the other side of the surface and we are interested in the net force.

In summary, Eqs. 3.10a through 3.12a constitute a complete set of equations for computing the mag-

nitude and location of the force due to hydrostatic pressure on any submerged plane surface. The direc-

tion of the force will always be perpendicular to the plane.

We can now consider several examples using these equations. In Example 3.5 we use both the inte-

gral and algebraic sets of equations, and in Example 3.6 we use only the algebraic set.
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Example 3.5 RESULTANT FORCE ON INCLINED PLANE SUBMERGED SURFACE

The inclined surface shown, hinged along edge A, is 5 m wide. Determine the resultant force, FR, of the water and the air on the

inclined surface.

Given: Rectangular gate, hinged along A, w=5m.

Find: Resultant force, FR, of the water and the air on the gate.

Solution: In order to completely determine FR, we need to find (a) the magnitude and

(b) the line of action of the force (the direction of the force is perpendicular to the surface).

We will solve this problem by using (i) direct integration and (ii) the algebraic equations.

Direct Integration

Governing equations:

p= p0 + ρgh FR =
A

p dA η FR =
A

ηp dA x FR =
A

xp dA

Because atmospheric pressure p0 acts on both

sides of the plate its effect cancels, and we

can work in gage pressures p= ρgh . In

addition, while we could integrate using the

y variable, it will be more convenient here

to define a variable η, as shown in the figure.

Using η to obtain expressions for h and

dA, then

h=D+ η sin 30 and d A=w dη

Applying these to the governing equation for

the resultant force,

FR =
A

pdA=
L

0

ρg D+ η sin 30 w dη

= ρgw D η+
η2

2
sin 30

L

0

= ρgw DL+
L2

2
sin 30

= 999
kg

m3
×9 81

m

s2
×5m 2m×4m+

16 m2

2
×
1

2

N s2

kg m

FR =588 kN
FR

For the location of the force we compute η (the distance from the top edge of the plate),

η FR =
A

ηp dA

Then

η =
1

FR A

ηpdA=
1

FR

L

0

ηpw dη=
ρgw

FR

L

0

η D+ η sin 30 dη

=
ρgw

FR

Dη2

2
+
η3

3
sin 30

L

0

=
ρgw

FR

DL2

2
+
L3

3
sin 30

= 999
kg

m3
×9 8

m

s2
×

5 m

5 88× 105 N

2m×16 m2

2
+
64 m3

3
×
1

2

N s2

kg m

η = 2 22 m and y =
D

sin 30
+ η =

2m

sin 30
+ 2 22 m=6 22 m

y

D = 2 m

A

L = 4 m30°

h

z

y

Net hydrostatic pressure distribution on gate.

η

D = 2 m

A

L = 4 m30°
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Also, from consideration of moments about the y axis through edge A,

x =
1

FR A

xp dA

In calculating the moment of the distributed force (right side), recall, from your earlier courses in statics, that the centroid of the

area element must be used for x. Since the area element is of constant width, then x=w 2, and

x =
1

FR A

w

2
p dA=

w

2FR A

p dA=
w

2
= 2 5 m x

Algebraic Equations

In using the algebraic equations we need to take care in selecting the appropriate set. In this problem we have p0 = patm on both

sides of the plate, so Eq. 3.10b with pc as a gage pressure is used for the net force:

FR = pcA= ρghiA= ρg D+
L

2
sin 30 Lw

FR = ρgw DL+
L2

2
sin 30

This is the same expression as was obtained by direct integration.

The y coordinate of the center of pressure is given by Eq. 3.11c:

y = yc +
Ixx

Ayc
3 11c

For the inclined rectangular gate

yc =
D

sin30
+
L

2
=

2 m

sin 30
+
4 m

2
=6m

A= Lw=4m×5m=20 m2

Ixx =
1

12
wL3 =

1

12
× 5 m× 4 m

3
=26 7 m2

y = yc +
Ixx

Ayc
=6m+26 7m4 ×

1

20m2
×

1

6m2
=6 22 m

y

The x coordinate of the center of pressure is given by Eq. 3.12c:

x = xc +
Ixy

Ayc
3 12c

For the rectangular gate Ixy =0 and x = xc =2 5 m x

This problem shows:
• Use of integral and algebraic equations.
• Use of the algebraic equations for
computing the net force.

Example 3.6 FORCE ON VERTICAL PLANE SUBMERGED SURFACE WITH
NONZERO GAGE PRESSURE AT FREE SURFACE

The door shown in the side of the tank is hinged along its bottom edge. A pressure of 100 psfg is applied to the liquid free surface.

Find the force, Ft, required to keep the door closed.

Given: Door as shown in the figure.

Find: Force required to keep door shut.
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Solution: This problem requires a free-body diagram (FBD) of the door. The pressure distributions

on the inside and outside of the door will lead to a net force and its location that will be included in the

FBD. We need to be careful in choosing the equations for computing the resultant force and its loca-

tion. We can either use absolute pressures (as on the left FBD) and compute two forces (one on each

side) or gage pressures and compute one force (as on the right FBD). For simplicity we will use gage

pressures. The right-hand FBD makes clear we should use Eqs. 3.2 and 3.11b, which were derived for

problems in which we wish to include thc effects of an ambient pressure p0 , or in other words, for

problems when we have a nonzero gage pressure at the free surface. The components of force due to

the hinge are Ay and Az. The force Ft can be found by taking moments about A (the hinge).

Governing equations:

FR = pcA y = yc +
ρg sin θ Ixx

FR

MA =0

The resultant force and its location are

FR = p0 + ρghc A= p0 + γ
L

2
bL 1

and

y = yc +
ρg sin 90 Ixx

FR

=
L

2
+

γbL3 12

p0 + γ
L

2
bL

=
L

2
+

γL2 12

p0 + γ
L

2

2

Taking moments about point A

MA =FtL−FR L−y =0 or Ft =FR 1−
y

L

Using Eqs. 1 and 2 in this equation we find

Ft = p0 + γ
L

2
bL 1−

1

2
−

γ L2 12

p0 + γ
L

2

Ft = p0 + γ
L

2

bL

2
+ γ

bL2

12
=
p0bL

2
+
γbL2

6

= 100
lbf

ft2
×2 ft × 3 ft ×

1

2
+100

lbf

ft3
×2 ft × 9 ft2 ×

1

6

Ft =600 lbf
Ft

3

Hinge

2'

3'

Ftp = 100 lbf/ft2 (gage)

Liquid,   = 100 lbf/ft3γ

Hinge

h
y

z

x Ft

p0 + patm patm

p0 + patm +   gLr

Ft

Az

Ay

A
L = 3'

2'

p0 (gage)

p0 (gage) +   gL

Ft

Az

Ay

A

Free-body diagrams of door

p0 = 100 lb/ft2 (gage)

ρ

Ft

FR

Az

Ay

y'

L

A

Force free-body diagram
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Hydrostatic Force on a Curved Submerged Surface

For curved surfaces, we will once again derive expressions for the resultant force by integrating the pres-

sure distribution over the surface. However, unlike for the plane surface, we have a more complicated

problem. The pressure force is normal to the surface at each point, but now the infinitesimal area ele-

ments point in varying directions because of the surface curvature. This means that instead of integrating

over an element dA we need to integrate over vector element d A. This will initially lead to a more com-

plicated analysis, but we will see that a simple solution technique will be developed.

Consider the curved surface shown in Fig. 3.7. The pressure force acting on the element of area, d A,

is given by

dF = −p dA

where the minus sign indicates that the force acts on the area, in the direction opposite to the area normal.

The resultant force is given by

FR = −
A

pdA 3 13

We can write

FR = iFRx
+ jFRy

+ kFRz

where FRx, FRy, and FRz are the components of FR in the positive x, y, and z directions, respectively.

To evaluate the component of the force in a given direction, we take the dot product of the force with

the unit vector in the given direction. For example, taking the dot product of each side of Eq. 3.13 with

unit vector i gives

FRx
=FR i= dF i= −

A

p dA i= −
Ax

p dAx

where dAx is the projection of dA on a plane perpendicular to the x axis (see Fig. 3.7), and the minus sign

indicates that the x component of the resultant force is in the negative x direction.

z

x

y

dA

dAx

dAz

dAy

z = z0

Fig. 3.7 Curved submerged surface.

We could have solved this problem by considering the two separate pressure distributions on each side of the door, leading to

two resultant forces and their locations. Summing moments about point A with these forces would also have yielded the same

value for Ft. Note also that Eq. 3 could have been obtained directly without sep-

arately finding FR and y by using a direct integration approach:

MA =FtL−
A

y p dA=0

This problem shows:
• Use of algebraic equations for nonzero
gage pressure at the liquid free surface.

• Use of themoment equation from statics
for computing the required applied
force.
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Since, in any problem, the direction of the force component can be determined by inspection, the use

of vectors is not necessary. In general, the magnitude of the component of the resultant force in the l

direction is given by

FRl
=

Al

p dAl 3 14

where dA1 is the projection of the area element dA on a plane perpendicular to the l direction. The line of

action of each component of the resultant force is found by recognizing that the moment of the resultant

force component about a given axis must be equal to the moment of the corresponding distributed force

component about the same axis.

Equation 3.14 can be used for the horizontal forces FRx
and FRy

. We have the interesting result that

the horizontal force and its location are the same as for an imaginary vertical plane surface of the same

projected area. This is illustrated in Fig. 3.8, where we have called the horizontal force FH .

Figure 3.8 also illustrates how we can compute the vertical component of force. With atmospheric

pressure at the free surface and on the other side of the curved surface the net vertical force will be equal

to the weight of fluid directly above the surface. This can be seen by applying Eq. 3.14 to determine the

magnitude of the vertical component of the resultant force, obtaining

FRz
=FV = p d Az

Since p= ρgh,

FV = ρgh dAz = ρg dV---

where ρgh dAz = ρg dV--- is the weight of a differential cylinder of liquid above the element of surface area,

dAz, extending a distance h from the curved surface to the free surface. The vertical component of the

resultant force is obtained by integrating over the entire submerged surface. Thus

FV =
Az

ρgh dAz =
V---
ρg dV--- = ρgV---

In summary, for a curved surface we can use two simple formulas for computing the horizontal and

vertical force components due to the fluid only

FH = pcA and FV = ρgV--- 3 15

where pc and A are the pressure at the center and the area, respectively, of a vertical plane surface of the

same projected area, and V--- is the volume of fluid above the curved surface.

We have shown that the resultant hydrostatic force on a curved submerged surface is specified in

terms of its components. We recall from our study of statics that the resultant of any force system can be

represented by a force-couple system, i.e., the resultant force applied at a point and a couple about that

point. If the force and the couple vectors are orthogonal, as is the case for a two-dimensional curved

surface, the resultant can be represented as a pure force with a unique line of action.

Curved surface

+
FH

FV

FV =   gV

FH = pcA

Liquid volume

ρ

Fig. 3.8 Forces on curved submerged surface.
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Example 3.7 FORCE COMPONENTS ON A CURVED SUBMERGED SURFACE

The gate shown is hinged atO and has constant width, w=5m. The equation of the surface is x= y2 a, where a=4m. The depth

of water to the right of the gate isD=4m. Find the magnitude of the force, Fa, applied as shown, required to maintain the gate in

equilibrium if the weight of the gate is neglected.

Given: Gate of constant width, w=5m.

Equation of surface in xy plane is x= y2 a, where a=4m.

Water stands at depth D=4m to the right of the gate.

Force Fa is applied as shown, and weight of gate is to be neglected. (Note that for

simplicity we do not show the reactions at O.)

Find: Force Fa required to maintain the gate in equilibrium.

Solution: We will take moments about point O after finding the magnitudes and locations of the horizontal and vertical forces

due to the water. The free body diagram (FBD) of the system is shown above in part (a). In order to compute FV , the vertical

component of the fluid force, we imagine having a system with water on both sides of the gate (with null effect), minus a

system with water directly above the gate (which generates fluid forces). This logic is demonstrated above: the system

FBD a = the null FBD b − the fluid forces FBD c . Thus the vertical and horizontal fluid forces on the system, FBD(a), are

equal and opposite to those on FBD(c). In summary, the magnitude and location of the vertical fluid force FV are given by

the weight and location of the centroid of the fluid “above” the gate; the magnitude and location of the horizontal fluid force

FH are given by the magnitude and location of the force on an equivalent vertical flat plate.

Governing equations:

FH = pcA y = yc +
Ixx

Ayc
FV = ρgV--- x =water center of gravity

For FH , the centroid, area, and second moment of the equivalent vertical flat plate are, respectively, yc = hc =D 2,A=Dw,

and Ixx =wD3 12.

FH = pcA= ρghcA

= ρg
D

2
Dw= ρg

D2

2
w=999

kg

m3
×9 81

m

s2
×

4 m2

2
× 5 m×

N s2

kg m

FH =392 kN

1

and

y = yc +
Ixx

Ayc

=
D

2
+
wD3 12

wDD 2
=
D

2
+
D

6

y =
2

3
D=

2

3
× 4 m=2 67 m 2

(a) System FBD

x

y

Fa

FH
FV

(b) Null fluid forces (c) Fluid forces

x

y
Fa

l = 5 m

xx'

y

y'

FHFV

–
O

D = 4 m

Fa

y

x

x =
y2
___
a

l = 5 m

O
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3.5 Buoyancy and Stability
If an object is immersed in a liquid, or floating on its surface, the net vertical force acting on it due to

liquid pressure is termed buoyancy. Consider an object totally immersed in static liquid, as shown

in Fig. 3.9.

The vertical force on the body due to hydrostatic pressure may be found most easily by considering

cylindrical volume elements similar to the one shown in Fig. 3.9.

For FV , we need to compute the weight of water “above” the gate. To do this we define a differential column of volume

D−y w dx and integrate

FV = ρgV--- = ρg
D2 a

0

D−y w dx= ρgw
D2 a

0

D− ax1 2 dx

= ρgw Dx−
2

3
ax3 2

D3 a

0

= ρgw
D3

a
−
2

3
a
D3

a3 2
=
ρgwD3

3a

FV =999
kg

m3
×9 81

m

s2
× 5m×

4
3
m3

3
×

1

4 m
×

N s2

kg m
=261 kN 3

The location x of this force is given by the location of the center of gravity of the water “above” the gate. We recall from statics

that this can be obtained by using the notion that the moment of FV and the moment of the sum of the differential weights about

the y axis must be equal, so

x FV = ρg
D2 a

0

x D−y w dx= ρgw
D2 a

0

D− ax3 2 dx

x FV = ρgw
D

2
x2−

2

5
ax5 2

D2 a

0

= ρgw
D5

2a2
−
2

5
a
D5

a5 2
=
ρgwD5

10a2

x =
ρgwD5

10a2FV

=
3D2

10a
=

3

10
×

4
2
m2

4 m
=1 2 m 4

Now that we have determined the fluid forces, we can finally take moments about O (taking care to use the appropriate signs),

using the results of Eqs. 1 through 4

MO = − lFa + x FV + D−y FH =0

Fa =
1

l
x FV + D−y FH

=
1

5 m
1 2 m×261 kN+ 4−2 67 m×392 kN

Fa =167 kN
Fa

This problem shows:
• Use of vertical flat plate equations for the
horizontal force, and fluid weight equa-
tions for the vertical force, on a curved
surface.

• The use of “thought experiments” to
convert a problem with fluid below a
curved surface into an equivalent
problem with fluid above.

z

h
h1

h2

p0

Liquid,
density = ρd

dA

V

Fig. 3.9 Immersed body in static liquid.
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We recall that we can use Eq. 3.7 for computing the pressure p at depth h in a liquid,

p= p0 + ρgh

The net vertical pressure force on the element is then

dFz = p0 + ρgh2 dA− p0 + ρgh1 dA= ρg h2−h1 dA

But h2−h1 dA= dV---, the volume of the element. Thus

Fz = dFz =
V---
ρgdV--- = ρgV---

where V--- is the volume of the object. Hence we conclude that for a submerged body the buoyancy force

of the fluid is equal to the weight of displaced fluid,

Fbuoyancy = ρgV--- 3 16

This relation reportedly was used by Archimedes in 220 B.C. to determine the gold content in the

crown of King Hiero II. Consequently, it is often called “Archimedes’ Principle.” In more current tech-

nical applications, Eq. 3.16 is used to design displacement vessels, flotation gear, and submersibles [1].

The submerged object need not be solid. Hydrogen bubbles, used to visualize streaklines and time-

lines in water, are positively buoyant. They rise slowly as they are swept along by the flow. Conversely,

water droplets in oil are negatively buoyant and tend to sink.

Airships and balloons are termed “lighter-than-air” craft. The density of an ideal gas is proportional to

molecular weight, so hydrogen and helium are less dense than air at the same temperature and pressure.

Hydrogen Mm =2 is less dense than helium Mm =4 , but extremely flammable, whereas helium is

inert. Hydrogen has not been used commercially since the disastrous explosion of the German passenger

airshipHindenburg in 1937. The use of buoyancy force to generate lift is illustrated in Example 3.8.

Example 3.8 BUOYANCY FORCE IN A HOT AIR BALLOON

A hot air balloon (approximated as a sphere of diameter 50 ft) is to lift a basket load of 600 lbf. To what temperature must the air

be heated in order to achieve liftoff?

Given: Atmosphere at STP, diameter of balloon d=50 ft, and load Wload =600 lbf.

Find: The hot air temperature to attain liftoff.

Solution: Apply the buoyancy equation to determine the lift generated by atmosphere, and apply

the vertical force equilibrium equation to obtain the hot air density. Then use the ideal gas equation

to obtain the hot air temperature.

Governing equations:

Fbuoyancy = ρgV--- Fy =0 p= ρRT

Assumptions:

1 Ideal gas.

2 Atmospheric pressure throughout.

Summing vertical forces

Fy Fbuoyancy−Whot air−Wload ρatmgV---−ρhot airgV---−Wload 0

Rearranging and solving for ρhot air (using data from Appendix A),

Air at STP

Basket

Hot air
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Equation 3.16 predicts the net vertical pressure force on a body that is totally submerged in a single

liquid. In cases of partial immersion, a floating body displaces its own weight of the liquid in which

it floats.

The line of action of the buoyancy force, which may be found using the methods of Section 3.4, acts

through the centroid of the displaced volume. Since floating bodies are in equilibriumunder body and buoy-

ancyforces, the locationof the lineofactionof thebuoyancyforcedetermines stability, as shown inFig.3.10.

The weight of an object acts through its center of gravity, CG. In Fig. 3.10a, the lines of action of the

buoyancy and the weight are offset in such a way as to produce a couple that tends to right the craft. In

Fig. 3.10b, the couple tends to capsize the craft.

Ballast may be needed to achieve roll stability. Wooden warships carried stone ballast low in the hull

to offset the weight of the heavy cannon on upper gun decks. Modern ships can have stability problems

as well: overloaded ferry boats have capsized when passengers all gathered on one side of the upper

deck, shifting the CG laterally. In stacking containers high on the deck of a container ship, care is needed

to avoid raising the center of gravity to a level that may result in the unstable condition depicted in

Fig. 3.10b.

For a vessel with a relatively flat bottom, as shown in Fig. 3.10a, the restoring moment increases as

roll angle becomes larger. At some angle, typically that at which the edge of the deck goes below water

level, the restoring moment peaks and starts to decrease. The moment may become zero at some large

roll angle, known as the angle of vanishing stability. The vessel may capsize if the roll exceeds this angle.

The actual shape of the restoring moment curve depends on hull shape. A broad beam gives a large

lateral shift in the line of action of the buoyancy force and thus a high restoring moment. High freeboard

above the water line increases the angle at which the moment curve peaks, but may make the moment

drop rapidly above this angle.

ρhot air = ρatm−
Wload

gV---
= ρatm−

6Wload

πd3g

=0 00238
slug

ft3
−6×

600 lbf

π 50
3
ft3

×
s2

32 2 ft
×
slug ft

s2 lbf

ρhot air = 0 00238−0 000285
slug

ft3
=0 00209

slug

ft3

Finally, to obtain the temperature of this hot air, we can use the ideal gas equation

in the following form

phot air

ρhot airRThot air
=

patm

ρatmRTatm

and with phot air = patm

Thot air = Tatm
ρatm

ρhot air
= 460+ 59 R×

0 00238

0 00209
= 591 R

Thot air =131 F
Thot air

Notes:
• Absolute pressures and temperatures are
always used in the ideal gas equation.

• This problem demonstrates that for
lighter-than-air vehicles the buoyancy
force exceeds the vehicle weight—that is,
the weight of fluid (air) displaced exceeds
the vehicle weight.

buoyancy

buoyancygravity

gravity

(a) Stable (b) Unstable

CG

CG

Fig. 3.10 Stability of floating bodies.
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Sailing vessels are subjected to large lateral forces as wind engages the sails and in brisk winds

typically operate at a considerable roll angle. The lateral wind force must be counteracted by a heavily

weighted keel extended below the hull bottom. In small sailboats, crew members may lean far over the

side to add additional restoring moment to prevent capsizing [2].

Within broad limits, the buoyancy of a surface vessel is adjusted automatically as the vessel rides

higher or lower in the water. However, craft that operate fully submerged must actively adjust buoyancy

and gravity forces to remain neutrally buoyant. For submarines this is accomplished using tanks which

are flooded to reduce excess buoyancy or blown out with compressed air to increase buoyancy [1]. Air-

ships may vent gas to descend or drop ballast to rise. Buoyancy of a hot-air balloon is controlled by

varying the air temperature within the balloon envelope.

For deep ocean dives, use of compressed air becomes impractical because of the high pressures and

a liquid such as gasoline, which is buoyant in seawater, may be used to provide buoyancy. However,

because gasoline is more compressible than water, its buoyancy decreases as the dive gets deeper.

Therefore it is necessary to carry and drop ballast to achieve positive buoyancy for the return trip

to the surface.

The most structurally efficient hull shape for airships and submarines has a circular cross-section.

The buoyancy force passes through the center of the circle. Therefore, for roll stability the CG must be

located below the hull centerline.

3.6 Fluids in Rigid-Body Motion
There is one category of fluid motion that can be studied using fluid statics ideas: rigid-body motion.

This is motion in which the entire fluid moves as if it were a rigid body, individual fluid particles,

although they may be in motion, are not deforming. This means that, as in the case of a static fluid, there

are no shear stresses. We will consider only constant acceleration (Example 3.9) and constant rotation

(Example 3.10) in this section. As in the case of the static fluid, we may apply Newton’s second law

of motion to determine the pressure field that results from a specified rigid-body motion.

In Section 3.1 we derived an expression for the forces due to pressure and gravity acting on a fluid

particle of volume dV---. We obtained

dF = −∇p+ ρg dV---

or

dF

dV---
= −∇p+ ρg 3 2

Newton’s second law was written

dF = a dm= a ρ dV--- or
dF

V---
= ρ a

Substituting from Eq. 3.2, we obtain

−∇p+ ρg = ρa 3 17

If the acceleration a is constant, we can combine it with g and obtain an effective “acceleration of

gravity,” geff = g − a, so that Eq. 3.17 has the same form as our basic equation for pressure distribution

in a static fluid, Eq. 3.3:

−∇p+ ρgeff =0 Compare to −∇p+ ρg =0 3 3

This means that we can use the results of previous sections of this chapter as long as we use geff in place

of g. For example, for a liquid undergoing constant acceleration the pressure increases with depth in
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the direction of geff , and the rate of increase of pressure will be given by ρgeff , where geff is the magnitude

of geff . Lines of constant pressure will be perpendicular to the direction of geff . The physical significance

of each term in Eq. 3.17 is as follows:

−∇p + ρg = ρa

net pressure force

per unit volume

at a point

+

body force per

unit volume

at a point

=

mass per

unit

volume

×

acceleration

of fluid

particle

This vector equation consists of three component equations that must be satisfied individually. In rec-

tangular coordinates the component equations are

−
∂p

∂x
+ ρgx = ρax x direction

−
∂p

∂y
+ ρgy = ρay y direction

−
∂p

∂z
+ ρgz = ρaz z direction

3 18

Component equations for other coordinate systems can be written using the appropriate expression for

∇p. In cylindrical coordinates the vector operator, ∇, is given by

∇= er
∂

∂r
+ eθ

1

r

∂

∂θ
+ k

∂

∂z
3 19

where er and eθ are unit vectors in the r and θ directions, respectively. Thus

∇p= er
∂p

∂r
+ eθ

1

r

∂p

∂θ
+ k

∂p

∂z
3 20

Example 3.9 LIQUID IN RIGID-BODY MOTION WITH LINEAR ACCELERATION

As a result of a promotion, you are transferred from your present location. You must transport a fish tank in the back of your

minivan. The tank is 12 in × 24 in × 12 in. How much water can you leave in the tank and still be reasonably sure that it will not

spill over during the trip?

Given: Fish tank 12 in × 24 in × 12 in partially filled with water to be transported in an automobile.

Find: Allowable depth of water for reasonable assurance that it will not spill during the trip.

Solution: The first step in the solution is to formulate the problem by translating the general problem into a more spe-

cific one.

We recognize that there will be motion of the water surface as a result of the car’s traveling over bumps in the road, going

around corners, etc. However, we shall assume that the main effect on the water surface is due to linear accelerations (and decel-

erations) of the car; we shall neglect sloshing.

Thus we have reduced the problem to one of determining the effect of a linear acceleration on the free surface. We have not yet

decided on the orientation of the tank relative to the direction of motion. Choosing the x coordinate in the direction of motion,

should we align the tank with the long side parallel, or perpendicular, to the direction of motion?

If there will be no relative motion in the water, we must assume we are dealing with a constant acceleration, ax. What is the

shape of the free surface under these conditions?
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Let us restate the problem to answer the original questions by idealizing the physical situation to obtain an approximate

solution.

Given: Tank partially filled with water (to depth d) subject to constant linear acceleration, ax. Tank height is 12 in.; length

parallel to direction of motion is b. Width perpendicular to direction of motion is c.

Find: (a) Shape of free surface under constant ax.

(b) Allowable water depth, d, to avoid spilling as a function of ax and tank orientation.

(c) Optimum tank orientation and recommended water depth.

Solution:

Governing equation: −∇p+ ρg = ρa

− i
∂p

∂x
+ j

∂p

∂y
+ k

∂p

∂z
+ ρ igx + jgy + kgz = ρ iax + jay + kaz

Since p is not a function of z, ∂p ∂z=0. Also, gx =0, gy = −g, gz =0, and ay = az =0.

∴ − i
∂p

∂x
− j

∂p

∂y
− jρg= iρax

The component equations are:

∂p

∂x
= −ρax

∂p

∂y
= −ρg

Recall that a partial

derivative means that

all other independent

variables are held constant

in the differentiation

The problem now is to find an expression for p= p x,y . This would enable us to find the equation of the free surface. But

perhaps we do not have to do that.

Since the pressure is p= p x,y , the difference in pressure between two points x,y and x+ dx,y+ dy is

dp=
∂p

∂x
+ dx+

∂p

∂y
dy

Since the free surface is a line of constant pressure, p= constant along the free surface, so dp=0 and

0=
∂p

∂x
dx+

∂p

∂y
dy= −ρax dx−ρg dy

Therefore,

dy

dx free surface

= −
ax

g

The free surface is a plane

Note that we could have derived this result more directly by converting Eq. 3.17 into an equivalent “acceleration of gravity”

problem,

−∇p+ ρgeff =0

where geff = g − iax = − iax− jg. Lines of constant pressure (including the free surface) will then be perpendicular to the direction

of geff , so that the slope of these lines will be −1 g ax = −ax g.

g

y

b

O x

ax

d
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d=original depth

e=height above original depth

b= tank length parallel to direction of motion

e=
b

2
tan θ=

b

2
−
dy

dx free surface

=
b

2

ax

g

Only valid when the free surface intersects

the front wall at or above the floor

Since we want e to be smallest for a given ax, the tank should be aligned so that b is as small as

possible. We should align the tank with the long side perpendicular to the direction of motion.

That is, we should choose b=12 in b

With b=12 in ,

e=6
ax

g
in

The maximum allowable value of e=12−d in Thus

12−d=6
ax

g
and dmax =12−6

ax

g

If the maximum ax is assumed to be 2
3 g, then allowable d equals 8 in.

To allow a margin of safety, perhaps we should select d=6 in d

Recall that a steady acceleration was assumed in this problem. The car would

have to be driven very carefully and smoothly.

b

ax

d

θ
12 in.

e

This problem shows that:

• Not all engineering problems are clearly
defined, nor do they have unique
answers.

• For constant linear acceleration, we
effectively have a hydrostatics problem,
with “gravity” redefined as the vector
result of the acceleration and the actual
gravity.

Example 3.10 LIQUID IN RIGID-BODY MOTION WITH CONSTANT ANGULAR SPEED

A cylindrical container, partially filled with liquid, is rotated at a constant angular speed, ω, about its axis as shown in the

diagram. After a short time there is no relative motion; the liquid rotates with the cylinder as if the system were a rigid body.

Determine the shape of the free surface.

Given: A cylinder of liquid in rigid-body rotation with angular speed ω about its axis.

Find: Shape of the free surface.

Solution:

Governing equation:

−∇p+ ρg = ρa

It is convenient to use a cylindrical coordinate system, r, θ, z. Since gr = gθ =0 and gz = −g, then

− er
∂p

∂r
+ eθ

1

r

∂p

∂θ
+ k

∂p

∂z
−kρg= ρ erar + eθaθ + kaz

Also, aθ = az =0 and ar = −ω2r.

∴− er
∂p

∂r
+ eθ

1

r

∂p

∂θ
+ k

∂p

∂z
= −erρω

2r+ kρg

The component equations are:

∂p

∂r
= ρω2r

∂p

∂θ
=0

∂p

∂z
= −ρg

From the component equations we see that the pressure is not a function of θ; it is a function of r and z only.

g

R

ω

g

R

r

z

ω

h1
h0
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Since p= p r,z , the differential change, dp, in pressure between two points with coordinates r,θ,z and r+ dr,θ,z+ dz is

given by

dp=
∂p

∂r z

dr+
∂p

∂z r

dz

Then

dp= ρω2rdr−ρgdz

To obtain the pressure difference between a reference point r1,z1 , where the pressure is p1, and the arbitrary point r,z ,

where the pressure is p, we must integrate

p

p1

dp=
r

r1

ρω2r dr−
z

z1

ρg dz

p−p1 =
ρω2

2
r2−r21 −ρg z−z1

Taking the reference point on the cylinder axis at the free surface gives

p1 = patm r1 =0 z1 = h1

Then

p−patm =
ρω2r2

2
−ρg z−h1

Since the free surface is a surface of constant pressure p= patm , the equation of the free surface is given by

0=
ρω2r2

2
−ρg z−h1

or

z= h1 +
ωr

2

2g

The equation of the free surface is a parabaloid of revolution with vertex on the axis at z= h1.

We can solve for the height h1 under conditions of rotation in terms of the original surface height, h0, in the absence of rotation.

To do this, we use the fact that the volume of liquid must remain constant. With no rotation

V--- = πR2h0

With rotation

V--- =
R

0

z

0

2πr dz dr=
R

0

2πzr dr=
R

0

2π h1 +
ω2r2

2g
r dr

V--- = 2π h1
r2

2
+
ω2r4

8g

R

0

= π h1R
2 +

ω2R4

4g

Then

πR2h0 = π h1R
2 +

ω2R4

4g
and h1 = h0−

ωR
2

4g

Finally,

z= h0−
ωR

2

4g
+

ωr
2

2g
= h0−

ωR
2

2g

1

2
−

r

R

2

z r

Note that the expression for z is valid only for h1 >0. Hence the maximum

value of ω is given by ωmax =2 gh0 R.

This problem shows that:
• The effect of centripetal acceleration on
the shape of constant pressure lines
(isobars).

• Because the hydrostatic pressure varia-
tion and variation due to rotation each
depend on fluid density, the final free
surface shape is independent of fluid
density.
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3.7 Summary and Useful Equations
In this chapter we have reviewed the basic concepts of fluid statics. This included:

✓ Deriving the basic equation of fluid statics in vector form.
✓ Applying this equation to compute the pressure variation in a static fluid:

• Incompressible liquids: pressure increases uniformly with depth.
• Gases: pressure decreases nonuniformly with elevation (dependent on other thermody-

namic properties).
✓ Study of:

• Gage and absolute pressure.
• Use of manometers and barometers.

✓ Analysis of the fluid force magnitude and location on submerged:
• Plane surfaces.
• Curved surfaces.

✓ Derivation and use of Archimedes’ Principle of Buoyancy.
✓ Analysis of rigid-body fluid motion.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure

to refer to their page numbers for details!

Useful Equations
Hydrostatic pressure variation: dp

dz
= −ρg≡−γ

(3.6) Page 41

Hydrostatic pressure variation (incompressible

fluid):

p−p0 =Δp= ρgh (3.7) Page 43

Hydrostatic pressure variation (several

incompressible fluids):

Δp= g i ρihi (3.8) Page 46

Hydrostatic force on submerged plane (integral

form):
FR =

A

p dA
(3.10a) Page 51

Hydrostatic force on submerged plane: FR = pcA (3.10b) Page 51

Location y of hydrostatic force on submerged

plane (integral):
y FR =

A

yp dA
(3.11a) Page 52

Location y of hydrostatic force on submerged

plane (algebraic):
y = yc +

ρg sin θ Ixx

FR

(3.11b) Page 52

Location y of hydrostatic force on submerged

plane (p0 neglected):
y = yc +

Ixx

Ayc

(3.11c) Page 53

Location x of hydrostatic force on submerged

plane (integral):
x FR =

A

x p dA
(3.12a) Page 53

Location x of hydrostatic force on submerged

plane (algebraic):
x = xc +

ρg sin θ Ixy

FR

(3.12b) Page 53

Location x of hydrostatic force on submerged

plane (p0 neglected):
x = xc +

I xy

A yc

(3.12c) Page 53

Horizontal and vertical hydrostatic forces on

curved submerged surface:

FH = pcA

and FV = ρgV---
(3.15) Page 58

Buoyancy force on submerged object: Fbuoyancy = ρgV--- (3.16) Page 61

We have now concluded our introduction to the fundamental concepts of fluid mechanics, and the

basic concepts of fluid statics. In the next chapter we will begin our study of fluids in motion.

68 Chapter 3 Fluid Statics

www.konkur.in

Telegram: @uni_k



R E F E R E N C E S

1. Burcher, R., and L. Rydill, Concepts in Submarine Design.
Cambridge, UK: Cambridge University Press, 1994.

2. Marchaj, C. A., Aero-Hydrodynamics of Sailing, rev. ed.
Camden, ME: International Marine Publishing, 1988.

3. The U.S. Standard Atmosphere, Washington, DC: U.S. Gov-
ernment Printing Office, 1976.

4. International Organization for Standardization, Standard
Atmosphere, ISO 2533:1975, 1975.

69References

www.konkur.in

Telegram: @uni_k



Chapter 4 Problems

Basic Laws for a System

4.1 A hot air balloon with an initial volume of 2600 m3 rises from

sea level to 1000 m elevation. The temperature of the air inside the

balloon is 100 C at the start and drops to 90 C at 1000 m. Determine

the heat and work transferred between the balloon and the atmos-

phere. The atmospheric pressure varies linearly with altitude and

the average pressure can be used to evaluate the work term.

4.2 A fully loaded Boeing 777-200 jet transport aircraft has a mass

of 325,000 kg. The pilot brings the 2 engines to full takeoff thrust

of 450 kN each before releasing the brakes. Neglecting aerodynamic

and rolling resistance, estimate the minimum runway length and

time needed to reach a takeoff speed of 225 km/hr. Assume that

engine thrust remains constant during ground roll.

4.3 A block of copper of mass 5 kg is heated to 90 C and then

plunged into an insulated container containing 4 L of water at

10 C. Find the final temperature of the system. For copper, the

specific heat is 385 J kg K, and for water the specific heat

is 4186 J kg K.

Conservation of Mass
4.4 The velocity field in the region shown is given by V = aj+ byk

where a=10m s and b=5 s−1. For the 1 m×1m triangular control

volume (depth w=1m perpendicular to the diagram), an element

of area 1 may be represented by dA1 =wdzj − wdyk and an element

of area 2 by dA2 = −wdyk.

y

z

Control

volume 1

2

P4.4

(a) Find an expression for V dA1.

(b) Evaluate
A1
V dA1.

(c) Find an expression for V dA2.

(d) Find an expression for V V dA2 .

(e) Evaluate
A2
V V dA2 .

4.5A0.3m by 0.5m rectangular air duct carries a flow of 0 45 m3 s at

a density of 2 kg m3. Calculate the mean velocity in the duct. If the

duct tapers to 0.15 m by 0.5 m size, determine the mean velocity in

this section if the density is 1 5 kg m3 in this section.

4.6 Across a shock wave in a gas flow there is a change in gas

density ρ. If a shock wave occurs in a duct such that V =660 m s

and ρ=1 0 kg m3 before the shock and V =250 m s after the shock,

determine the density after the shock.

4.7 Calculate the mean velocities for these two-dimensional

velocity profiles if υc =3m s.

ParabolaParabola

EqualEqual

Circle

(a)

υc υc υc υc υc

(b) (c) (d) (e)

P4.7

4.8 Fluid passes through this set of thin closely spaced blades.

Determine flow rate q is required for the velocity V to be 10 ft s.

Radial line

30°

V

2 ft

P4.8

4.9 A pipeline 0.3 m in diameter divides at a Y into two branches

200 mm and 150 mm in diameter. If the flow rate in the main line

is 0 3 m3 s and the mean velocity in the 200-mm pipe is 2 5 m s,

determine the flow rate in the 150-mm pipe.

4.10 Find V for this mushroom cap on a pipeline.

V

V

3 m3/s

45°

2 m r18 m r

1 m d

P4.10

4.11 You are trying to pump stormwater out of your basement

during a storm. The basement is 20 ft × 30 ft and the pump extracts

27.5 gpm. The water level in the basement is dropping 4 in./hr.

Determine the flow rate (gpm) from the storm into the basement.

4.12 A cylindrical tank, of diameter D=50 mm, drains through

an opening, d=5mm., in the bottom of the tank. The speed of the

liquid leaving the tank is approximately V = 2gy where y is the

height from the tank bottom to the free surface. If the tank is initially

P-12
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filled with water to y0 =0 4 m, determine the water depths at

t=60 sec, t=120 sec, and t=180 sec. Plot y (m) versus t for the

first 180 sec.

4.13 A 100-mm nozzle is bolted with 6 bolts to the flange of a

300-mm-diameter horizontal pipeline and discharges water into the

atmosphere. Calculate the tension load on each bolt when the gage

pressure in the pipe is 600 kPa. Neglect vertical forces.

4.14 The water flow rate through the vertical bend shown in the

figure is 2.83 m3/s. Calculate the magnitude, direction, and location

of the resultant force of the water on the pipe bend.

34.5 kPa

1.05 m

0.9 m d

0.9 m d

P4.14

4.15 Water flows through a tee in a horizontal pipe system as

shown in the figure. The incoming velocity is 15 ft/s, the pressure

is 20 psi, and the pipe diameter is 12 in. Each branch of the tee is

6 in. in diameter and the velocities in the branches are the same.

Determine the magnitude and direction of the force of the water

on the tee.

D = 6 in

D = 12 in.

P4.15

4.16Water flows steadily through a fire hose and nozzle. The hose is

75-mm-ID, and the nozzle tip is 35-mm-ID; water gage pressure in

the hose is 510 kPa, and the stream leaving the nozzle is uniform. The

exit speed and pressure are 32 m s and atmospheric, respectively.

Find the force transmitted by the coupling between the nozzle and

hose. Indicate whether the coupling is in tension or compression.

4.17Water is flowing steadily through the 180 elbow shown. At the

inlet to the elbow, the gage pressure is 103 psi. The water discharges

to atmospheric pressure. Assume that properties are uniform over the

inlet and outlet areas: A1 =2500 mm2, A2 =650 mm2, and

V1 =3m s. Find the horizontal component of force required to hold

the elbow in place.

1

2

V1

P4.17

4.18 Water flows steadily through the nozzle shown, discharging

to atmosphere. Calculate the horizontal component of force in the

flanged joint. Indicate whether the joint is in tension or compression.

= 30°

d = 15 cm

p = 15 kPa (gage)

D = 30 cm

V1 = 1.5 m/s
θ

P4.18

4.19 Calculate the magnitude and direction of the vertical and hor-

izontal components and the total force exerted on this stationary

blade by a 50 mm jet of water moving at 15 m s.

45°

30°

50 mm d

P4.19

4.20 The lower tank weighs 224 N, and the water in it weighs

897 N. If this tank is on a platform scale, determine the weight that

will register on the scale beam.

75 mm d
Q

Q

Q

1.8 m

1.8 m

6.0 m

P4.20
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4.21 A fluid with a density of 1040 kg/m3 density flows steadily

through the rectangular box shown in the figure. The areas are

A1= 0:046 m2, A2= 0:009 m2, and A3= 0:056 m2, and the velocities

are V1 =3im sandV2 =6jm s. Determine the net rate of momen-

tum flux out of the control volume.

60°
A1

A3

A2
x

y

P4.21

4.22 An incompressible fluid flows steadily through the two-

dimensional reducing bend shown in the figure. The width of the

bend is 1 m. The velocity profile is linear at section 1 and uniform

at sections 2 and 3. Determine the net momentum flux through

the bend.

V1,max 

V2 = 1 m/s

h2 = 0.2 m

h1 = 0.5 m

V3 = 5 m/s

h3 = 0.15 m

3

2

1
30°

P4.22

4.23 An incompressible fluid with a density of 850 kg/m3 flows

steadily in the entrance region of a circular tube of radius R = 75

mm. The flow rate is Q= 0.1 m3/s. The velocity profile entering

the tube is uniform and that leaving is given by

u

umax

=1−
r

R

2

Find the average velocity, which is also U1, and the maximum veloc-

ity at the exit. Determine the pressure drop due to the change in

momentum of the flow.

1 2

r

z

U1

= 850 kg/m3

R

u

ρ

P4.23

4.24 A water flow from a nozzle impinges on a moving vane as

shown in the figure. The water leaves the nozzle at 30 m/s, and

the exit area of the nozzle is 0.004 m2. The vane moves away from

the nozzle with a constant speed, U =10 m/s. The angle θ is 60 .

Determine the resisting force on the vane.

U

F

V

A

θ
ρ

P4.24

4.25 A inboard jet boat takes in water through side vents and

ejects it through a nozzle at the stern. The drag on the boat is given

by Fdrag = k V2, where V is the boat speed and k is a constant that is a

function of boat size and shape. For a boat with a nozzle diameter of

75 mm, a jet speed of 15 m/s, and a boat speed of 10 m/s, determine

the constant k. Determine the boat speed when the jet speed is

increased to 20 m/s.

4.26 The cart in the figure below is accelerated along a level track

by a jet of water that strikes the curved vane. Determine the time it

takes to accelerate the cart from rest to U 10 m/s.

D = 25.0 mm

V = 30.0 m/s

= 30°

M = 15.0 kg

U = 10.0 m/s

θ

P4.26

4.27 A pressurized tank of water is mounted on a cart as shown.

A jet issues from a nozzle in the tank at a constant speed and propels

the cart along a horizontal track. The initial mass of the cart and tank

is 100 kg, and the nozzle area is 0.005 m2. Determine the jet speed

required to accelerate the cart to 1.5 m/s in 30 s.

U

V
A

Initial mass, M0

ρ

P4.27

4.28 A sled used to test rockets is slowed lowering a scoop into a

water trough. The scoop is 0.3 m wide and deflects water through

150 . The mass of the sled is 8000 kg. At the initial speed, it experi-

ences an aerodynamic drag force of 90 kN. The aerodynamic force is

proportional to the square of the sled speed. It is desired to slow the

sled to 100 m/s. Determine the depth the scoop must be lowered into

the water to slow the sled down from an initial speed of 300 m/s to

100m/s in 800m. (Note that using the chain rule the derivative can be

expressed as
dU

dt
=
dU

dx

dx

dt
=
dU

dx
U)

D

Rail

Water trough

30°

P4.28
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Momentum Equation for Control Volume with
Arbitrary Acceleration
4.29 A solid-fuel rocket motor is fired on a test stand. The com-

bustion chamber is circular, with 100 mm diameter. Fuel, of density

1660 kg/ = m3, burns uniformly at the rate of 12.7 mm/s. Measure-

ments show that the exhaust gases leave the rocket at ambient pres-

sure, at a speed of 2750 m/s. The absolute pressure and temperature

in the combustion chamber are 7.0 MPa and 3610 K, respectively.

Treat the combustion products as an ideal gas with molecular mass

of 25.8. Determine the rate of change of mass and of linear momen-

tum within the rocket motor. Determine the motor thrust and the

percentage of the motor thrust that is due to the rate of change of

linear momentum within the motor.

The Angular-Momentum Principle
4.30 Crude oil SG=0 95 from a tanker dock flows through a pipe

of 0.25 m diameter in the configuration shown. The flow rate is

0 58 m3 s, and the gage pressures are shown in the diagram. Deter-

mine the force and torque that are exerted by the pipe assembly on its

supports.

Q = 0.58 m3/s

p = 345 kPa

p = 332 kPa

D = 0.25 m

L = 20 m

P4.30

4.31 Calculate the torque about the pipe’s centerline in the plane of

the bolted flange that is caused by the flow through the nozzle. The

nozzle centerline is 0.3 m above the flange centerline. Neglect the

effects of the weights of the pipe and the fluid in the pipe.

50 mm d

150 mm d

150 mm d
56.5 I/s

P4.31

4.32A fire truck is equipped with a 66 ft long extension ladder which

is attached at a pivot and raised to an angle of 45 . A 4-in.-diameter

fire hose is laid up the ladder and a 2-in.-diameter nozzle is attached

to the top of the ladder so that the nozzle directs the stream horizon-

tally into the window of a burning building. If the flow rate is 1 ft3 s,

compute the torque exerted about the ladder pivot point. The ladder,

hose, and the water in the hose weigh 10 lb ft.

4.33 The lawn sprinkler shown in the figure rotates in the

horizontal plane. A water flow of 15 L/min of water enters the center

vertically and discharges in the horizontal plane from the two jets.

Determine (a) the torque needed to keep the sprinkler from rotating

and (b) the rotating speed of the sprinkler when the torque is

removed.

d = 5 mm

R = 225 mm

P4.33

4.34 A water flow rate of 4 L/min enters the lawn sprinkler shown

in the figure in a vertical direction. The velocity of the jets leaving

the nozzles is 17 m/s relative to the sprinkler arm and inclined 30o

above the horizontal. Friction in the bearing causes a torque of

0:18 N-m opposing rotation. Determine (a) the torque required to

hold the sprinkler stationary, (b) the rotational speed if the torque

is removed, and (c) the rotational speed if there is no torque due to

the bearings.

Vrel

R = 200 mm

30°

ω

P4.34

4.35 The impeller of a radial water pump has an outer diameter of

10 in. and rotates at 1600 rpm. A water flow of 1200 gpm enters the

impeller axially and leaves at an absolute velocity of 90 ft/s and

an angle of 30 relative to the impeller as shown in the figure.

Determine the torque and power needed to drive the impeller.

30°
90 ft/s

1600 rpm

D = 10 in.

P4.35
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The Angular-Momentum Principle Equation
for Rotating Control Volume
4.36 The simplified lawn sprinkler shown rotates in the horizontal

plane. At the center pivot, Q=15 L min of water enters vertically.

Water discharges in the horizontal plane from each jet. If the pivot

is frictionless, calculate the torque needed to keep the sprinkler from

rotating. Neglecting the inertia of the sprinkler itself, calculate the

angular acceleration that results when the torque is removed.

d = 5 mm

R = 225 mm

P4.36

4.37Water flows at the rate of 0 15 m3 s through a nozzle assembly

that rotates steadily at 30 rpm. The arm and nozzle masses are neg-

ligible compared with the water inside. Determine the torque required

to drive the device and the reaction torques at the flange.

ω

θ = 30°

d = 0.05 m

L = 0.5 m

D = 0.1 m

Q = 0.15 m3/s

P4.37

The First Law of Thermodynamics
4.38 A turbine is supplied with 0 6 m3 s of water from a 0.3 m

diameter pipe; the discharge pipe has a 0.4 m diameter. Determine

the pressure drop across the turbine if it delivers 60 kW.

4.39 Air is drawn from the atmosphere into a turbomachine. At

the exit, conditions are 500 kPa gage and 130 C. The exit speed is

100 m s and the mass flow rate is 0 8 kg s. Flow is steady and there

is no heat transfer. Compute the shaft work interaction with the

surroundings.

4.40 Transverse thrusters are used to make large ships fully maneu-

verable at low speeds without tugboat assistance. A transverse

thruster consists of a propeller mounted in a duct; the unit is then

mounted below the waterline in the bow or stern of the ship. The duct

runs completely across the ship. Calculate the thrust developed by a

1865 kW unit (supplied to the propeller) if the duct is 2.8 m in diam-

eter and the ship is stationary.

4.41 All major harbors are equipped with fire boats for extinguish-

ing ship fires. A 75-mm-diameter hose is attached to the discharge of

a 11 kW pump on such a boat. The nozzle attached to the end of the

hose has a diameter of 25 mm. If the nozzle discharge is held 3 m

above the surface of the water, determine the volume flow rate

through the nozzle, the maximum height to which the water will rise,

and the force on the boat if the water jet is directed horizontally over

the stern.

4.42 A pump draws water from a reservoir through a 150-mm-

diameter suction pipe and delivers it to a 75-mm-diameter discharge

pipe. The end of the suction pipe is 2 m below the free surface of

the reservoir. The pressure gage on the discharge pipe, which is

2 m above the reservoir surface, reads 170 kPa. The average speed

in the discharge pipe is 3 m s. If the pump efficiency is 75 percent,

determine the power required to drive it.
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C H A P T E R 4

Basic Equations in Integral Form
for a Control Volume
4.1 Basic Laws for a System

4.2 Relation of System Derivatives to the

Control Volume Formulation

4.3 Conservation of Mass

4.4 Momentum Equation for Inertial Control Volume

4.5 Momentum Equation for Control Volume

with Rectilinear Acceleration

4.6 Momentum Equation for Control Volume

with Arbitrary Acceleration

4.7 The Angular-Momentum Principle

4.8 The First and Second Laws of Thermodynamics

4.9 Summary and Useful Equations

Case Study

Long-distance trucking fuel use accounts for about 15 percent of
all of the energy used in the United States. Traditional tractor-
trailer combinations have not been streamlined and have a large
aerodynamic resistance. The drag coefficient, which you will
study in Chapter 9, is a relative measure of the aerodynamic
resistance. For a typical tractor-trailer combination without
any drag-reducing features, the drag coefficient is on the order
of 0.8 to 1.0. Streamlining that incorporates deflectors on the
top of the cab, skirts along the side of the trailer, and wake-
reducing panels at the end of the trailer reduces the drag coeffi-
cient to the 0.4 to 0.5 range. At highway speeds, aerodynamic
drag accounts for about 85 percent of the fuel use.

The all-electric Tesla truck shown in the figure has been
intensively studied in an attempt to remove or modify all of
the drag-producing components. The result is a drag coefficient
of 0.36, or about one-third of that of an unmodified truck. This
represents a significant fuel energy savings and a significant cost
savings for the owner. The result is a 2 kWh/mile fuel cost for the
all-electric truck. This converts to the equivalent of 18 miles/
gallon (mpg) for the Tesla truck at highway speeds and compares
to the current truck fleet average of about 6 mpg. The estimated
annual fuel savings are stated to be $200,000.

The electric truck has four independent motors on the rear
axle, a range of 300 to 500miles, and a speedof 60mphon5per-
cent grades. It comes equippedwith a detection system that helps
avoid collisions. The driver sits in the center of the cab which
gives maximum visibility and control. The truck has a low center
of gravity that provides rollover protection. All of these features,
combined with the aerodynamic streamlining, give this style
of truck the potential to change the long-distance trucking
industry.
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Streamlined highway tractor and trailer.
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Learning Objectives
After completing this chapter, you should be able to

• Solve a problem involving a system using the basic laws.

• Explain the physical meaning of each of the terms in the Reynolds Transport Equation

• Solve a flow problem using the control volume formulation of the conservation of mass

principle.

• Solve a flow problem using the control volume formulation of the momentum principle

• Solve a flow problem using the control volume formulation of the angular momentum principle.

• Solve a flow problem using the control volume formulation of the conservation of energy

principle.

We are now ready to study fluids in motion, so we have to decide how we are to examine a flowing fluid.

There are two options available to us, discussed in Chapter 1:

1 We can study the motion of an individual fluid particle or group of particles as they move through

space. This is the system approach, which has the advantage that the physical laws such as Newton’s

second law apply to matter and hence directly to the system. One disadvantage is that in practice the

math associated with this approach can become somewhat complicated, usually leading to a set of

partial differential equations.Wewill look at this approach in detail in Chapter 5. The system approach

is needed if we are interested in studying the trajectory of particles over time.

2 We can study a region of space as fluid flows through it, which is the control volume approach. This is

very often the method of choice, because it has widespread practical application; for example, in aero-

dynamics we are usually interested in the lift and drag on a wing rather than what happens to individual

fluid particles. The disadvantage of this approach is that the physical laws apply to matter and not

directly to regions of space, so we have to perform some math to convert physical laws from their

system formulation to a control volume formulation.

We will examine the control volume approach in this chapter. This chapter has the word integral in

its title, and Chapter 5 has the word differential. This is an important distinction as it indicates that

we will study a finite region in this chapter and then study the motion of a particle in Chapter 5. The

agenda for this chapter is to review the physical laws as they apply to a system (Section 4.1); develop

some math to convert from a system to a control volume (Section 4.2) description; and obtain for-

mulas for the physical laws for control volume analysis by combining the results of Sections 4.1

and 4.2.

4.1 Basic Laws for a System
The basic laws we will apply are conservation of mass, Newton’s second law, the angular-momentum

principle, and the first and second laws of thermodynamics. For converting these system equations to

equivalent control volume formulas, it turns out we want to express each of the laws in terms of the

property of the system (e.g. mass) in terms of the rates of flow in and out (a rate). These equations

are termed rate equations.

Conservation of Mass

For a system (by definition a specified amount of matter,M, we have chosen) we have the simple result

that M = constant. To express this law as a rate equation, we write

dM

dt system

=0 4 1a
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where

Msystem =
M system

dm=
V-- system

ρ dV--- 4 1b

Newton’s Second Law

For a systemmoving relative to an inertial reference frame, Newton’s second law states that the sum of all

external forces acting on the system is equal to the time rate of change of linear momentum of the system,

F =
dP

dt
system

4 2a

where the linear momentum of the system is given by

Psystem =
M system

V dm=
V-- system

V ρ dV--- 4 2b

The Angular-Momentum Principle

The angular-momentum principle for a system states that the rate of change of angular momentum is

equal to the sum of all torques acting on the system,

T =
dH

dt
system

4 3a

where the angular momentum of the system is given by

Hsystem =
M system

r × V dm=
V-- system

r × V ρ dV--- 4 3b

Torque can be produced by surface and body forces (here gravity) and also by shafts that cross the system

boundary,

T = r ×Fs +
M system

r × g dm+ T shaft 4 3c

The First Law of Thermodynamics

The first law of thermodynamics is a statement of conservation of energy for a system,

δQ−δW = dE

The equation can be written in rate form as

Q−W =
dE

dt system

4 4a

where the total energy of the system is given by

Esystem =
M system

e dm=
V-- system

e ρ dV--- 4 4b
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and

e= u+
V2

2
+ gz 4 4c

In Eq. 4.4a, Q (the rate of heat transfer) is positive when heat is added to the system from the surround-

ings;W (the rate of work) is positive when work is done by the system on its surroundings. In Eq. 4.4c, u

is the specific internal energy, V the speed, and z the height relative to a convenient datum of a particle of

substance having mass dm.

The Second Law of Thermodynamics

If an amount of heat, δQ, is transferred to a system at temperature T , the second law of thermodynamics

states that the change in entropy, dS, of the system satisfies

dS≥
δQ

T

On a rate basis we can write

dS

dt system

≥
1

T
Q 4 5a

where the total entropy of the system is given by

Ssystem =
M system

s dm=
V-- system

s ρ dV--- 4 5b

4.2 Relation of System Derivatives to the
Control Volume Formulation
We now have the five basic laws expressed as system rate equations. Our task in this section is to

develop a general expression for converting a system rate equation into an equivalent control vol-

ume equation. Instead of converting the equations for rates of change of M, P, H, E, and S

(Eqs. 4.1a, 4.2a, 4.3a, 4.4a, and 4.5a) one by one, we let all of them be represented by the symbol

N. Hence N represents the amount of mass, or momentum, or angular momentum, or energy, or entropy

of the system. Corresponding to this extensive property, we will also need the intensive (i.e., per unit

mass) property η. Thus

Nsystem =
M system

η dm=
V-- system

η ρ dV--- 4 6

Comparing Eq. 4.6 with Eqs. 4.1b, 4.2b, 4.3b, 4.4b, and 4.5b, we see that if:

N =M, then η=1

N =P, then η=V

N =H, then η= r ×V

N =E, then η= e

N = S, then η= s

We will first explain how we derive a control volume description from a system description of a

fluid flow in general terms. We imagine selecting an arbitrary piece of the flowing fluid at some time

734.2 Relation of System Derivatives to the Control Volume Formulation
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t0, as shown in Fig. 4.1a, we could imagine dyeing this piece of fluid, say, blue. This initial shape of the

fluid system is chosen as our control volume, which is fixed in space relative to coordinates xyz. After an

infinitesimal time Δt the system will have moved to a new location, as shown in Fig. 4.1b, and possibly

changed shape. The laws we discussed above apply to this piece of fluid; for example, its mass will be

constant (Eq. 4.1a). By examining the geometry of the system/control volume pair at t= t0 and at

t= t0 +Δt, we will be able to obtain control volume formulations of the basic laws.

Derivation

From Fig. 4.1 we see that the system, which was entirely within the control volume at time t0, is partially

out of the control volume at time t0 +Δt. In fact, three regions can be identified. These are: regions I and

II, which together make up the control volume, and region III, which, with region II, is the location of the

system at time t0 +Δt.

Recall that our objective is to relate the rate of change of any arbitrary extensive property, N, of the

system to quantities associated with the control volume. From the definition of a derivative, the rate of

change of Nsystem is given by

dN

dt system

≡ lim
Δt 0

Ns t0 +Δt−Ns t0

Δt
4 7

For convenience, subscript s has been used to denote the system in the definition of a derivative

in Eq. 4.7.

From the geometry of Fig. 4.1,

Ns t0 +Δt = NII +NIII t0 +Δt = NCV−NI +NIII t0 +Δt

and

Ns t0
= NCV t0

Substituting into the definition of the system derivative, Eq. 4.7, we obtain

dN

dt s

= lim
Δt 0

NCV−NI +NIII t0 +Δt−NCV t0

Δt

y

x
z

y

x
z

Streamlines
at time, t0 Subregion (1)

of region I

Subregion (3)
of region III

I

II
III

System

Control volume

(b) Time, t0 + ∆t(a) Time, t0

Fig. 4.1 System and control volume configuration.
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Since the limit of a sum is equal to the sum of the limits, we can write

dN

dt s

= lim
Δt 0

NCV t0 +Δt−NCV t0

Δt

1

+ lim
Δt 0

NIII t0 +Δt

Δt

2

− lim
Δt 0

NI t0 +Δt

Δt

3

4 8

We now evaluate each of the three terms in Eq. 4.8.

Term 1 in Eq. 4.8 simplifies to

lim
Δt 0

NCV t0 +Δt−NCV t0

Δt
=
∂NCV

∂t
=

∂

∂t CV

η ρ dV--- 4 9a

To evaluate term 2 we first develop an expression for NIII t0 +Δt by looking at the enlarged view of a

typical subregion (subregion (3)) of region III shown in Fig. 4.2. The vector area element d A of the

control surface has magnitude dA, and its direction is the outward normal of the area element. In general,

the velocity vector V will be at some angle α with respect to dA.

For this subregion we have

dNIII t0 +Δt = η ρ dV--- t0 +Δt

We need to obtain an expression for the volume dV--- of this cylindrical element. The vector length of the

cylinder is given by Δl=VΔt. The volume of a prismatic cylinder, whose area d A is at an angle α to its

length Δ l, is given by dV--- =Δl dA cos α=Δl dA=V dAΔt. Hence, for subregion (3) we can write

dNIII t0 +Δt = η ρV dAΔt

Then, for the entire region III we can integrate and for term 2 in Eq. 4.8 obtain

lim
Δt 0

NIII t0 +Δt

Δt
= lim

Δt 0

CSIII
dNIII t0 +Δt

Δt
= lim

Δt 0

CSIII
η ρV dAΔt

Δt
=

CSIII

η ρV dA 4 9b

We can perform a similar analysis for subregion (1) of region I, and obtain for term in Eq. 4.8

lim
Δt 0

NI t0 +Δt

Δt
= −

CS1

η ρV dA 4 9c

For subregion (1), the velocity vector acts into the control volume, but the area normal always (by con-

vention) points outward (angle α> π 2), so the scalar product in Eq. 4.9c is negative. Hence the minus

sign in Eq. 4.9c is needed to cancel the negative result of the scalar product to make sure we obtain a

positive result for the amount of matter that was in region I (we can’t have negative matter).

This concept of the sign of the scalar product is illustrated in Fig. 4.3 for (a) the general case of an

inlet or exit, (b) an exit velocity parallel to the surface normal, and (c) an inlet velocity parallel to the

surface normal. Cases (b) and (c) are obviously convenient special cases of (a); the value of the cosine in

case (a) automatically generates the correct sign of either an inlet or an exit.

Control surface III

System boundary
at time t0 + ∆t

∆l = V∆t

V
dA

α

Fig. 4.2 Enlarged view of subregion (3) from Fig. 4.1.
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We can finally use Eqs. 4.9a, 4.9b, and 4.9c in Eq. 4.8 to obtain

dN

dt system

=
∂

∂t CV

η ρ dV--- +
CS1

η ρV dA+
CSIII

η ρV dA

and the two last integrals can be combined because CSI and CSIII constitute the entire control surface,

dN

dt system

=
∂

∂t CV

η ρ dV--- +
CS

η ρV dA 4 10

Equation 4.10 is the fundamental relation between the rate of change of any arbitrary extensive property,

N, of a system and the variations of this property associated with a control volume. Some authors refer to

Eq. 4.10 as the Reynolds Transport Theorem.

Physical Interpretation

We now have a formula (Eq. 4.10) that we can use to convert the rate of change of any extensive property

N of a system to an equivalent formulation for use with a control volume.We can now use Eq. 4.10 in the

various basic physical law equations (Eqs. 4.1a, 4.2a, 4.3a, 4.4a, and 4.5a) one by one, with N replaced

with each of the properties M, P, H, E, and S (with corresponding symbols for η), to replace system

derivatives with control volume expressions. Because we consider the equation itself to be “basic” we

repeat it to emphasize its importance:

dN

dt system

=
∂

∂t CV

η ρ dV--- +
CS

η ρV dA 4 10

We need to be clear here: The system is the matter that happens to be passing through the chosen control

volume, at the instant we chose. For example, if we chose as a control volume the region contained by an

airplane wing and an imaginary rectangular boundary around it, the system would be the mass of the air

that is instantaneously contained between the rectangle and the airfoil. Before applying Eq. 4.10 to the

physical laws, let’s discuss the meaning of each term of the equation:

dN

dt system

is the rate of change of the system extensive property N. For example, if N =P, we

obtain the rate of change of momentum.
∂

∂t CV

η ρ dV--- is the rate of change of the amount of property N in the control volume. The term

CV
η ρ dV--- computes the instantaneous value of N in the control volume where

CV
ρ dV--- is the instantaneousmass in the control volume. For example, ifN =P, then

η=V and
CV

V ρdV--- computes the instantaneous amount of momentum in the

control volume.

CS

η ρV dA is the rate at which property N is exiting the surface of the control volume. The term

ρV dA computes the rate of mass transfer leaving across control surface area

element dA. Multiplying by η computes the rate of flux of property N across the

element and integrating therefore computes the net flux of N out of the control

volume. For example, ifN =P, then η=V and
CS
VρV dA computes the net flux of

momentum out of the control volume.

V · dA = VdA cos

V

dA

CS

(a) General inlet/exit

V · dA = +VdA

V

CS

(b) Normal exit

V · dA = –VdA

V

CS

(c) Normal inlet

dA dA

α

α

Fig. 4.3 Evaluating the scalar product.
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We make two comments about velocity V in Eq. 4.10. First, we reiterate the discussion for Fig. 4.3

that care should be taken in evaluating the dot product. Because A is always directed outwards, the dot

product will be positive when V is outward and negative when V is inward. Second, V is measured with

respect to the control volume. When the control volume coordinates xyz are stationary or moving with a

constant linear velocity, the control volume will constitute an inertial frame and the physical laws we

have described will apply.

With these comments we are ready to combine the physical laws (Eqs. 4.1a, 4.2a, 4.3a, 4.4a, and

4.5a) with Eq. 4.10 to obtain some useful control volume equations.

4.3 Conservation of Mass
The first physical principle to which we apply this conversion from a system to a control volume descrip-

tion is the mass conservation principle: The mass of the system remains constant,

dM

dt system

=0 4 1a

where

Msystem =
M system

dm=
V-- system

ρ dV--- 4 1b

The system and control volume formulations are related by Eq. 4.10,

dN

dt system

=
∂

∂t CV

η ρ dV--- +
CS

η ρV dA 4 10

where

Nsystem =
M system

η dm=
V-- system

η ρ dV--- 4 6

To derive the control volume formulation of conservation of mass, we set

N =M and η=1

With this substitution, we obtain

dM

dt system

=
∂

∂t CV

ρ dV--- +
CS

ρV dA 4 11

Comparing Eqs. 4.1a and 4.11, we arrive after rearranging at the control volume formulation of the con-

servation of mass:

∂

∂t CV

ρ dV--- +
CS

ρV dA=0 4 12

In Eq. 4.12 the first term represents the rate of change of mass within the control volume and the second

term represents the net rate of mass flux out through the control surface. Equation 4.12 indicates that the

rate of change of mass in the control volume plus the net outflow is zero. The mass conservation equation

is also called the continuity equation. In common-sense terms, the rate of increase of mass in the control

volume is due to the net inflow of mass:

Rate of increase

of mass in CV
=

Net influx of

mass
∂

∂t CV

ρdV--- = −
CS

ρV dA

774.3 Conservation of Mass
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Once again, we note that in using Eq. 4.12, care should be taken in evaluating the scalar product

V dA=VdA cos α: It could be positive (outflow, α< π 2), negative (inflow, α> π 2), or even zero

α= π 2 . Recall that Fig. 4.3 illustrates the general case as well as the convenient cases α=0 and α= π.

Special Cases

In special cases it is possible to simplify Eq. 4.12. Consider first the case of an incompressible fluid.

When ρ is constant, it is not a function of space or time. Consequently, for incompressible fluids,

Eq. 4.12 may be written as

ρ
∂

∂t CV

dV--- + ρ
CS

V dA=0

The integral of dV--- over the control volume is simply the volume of the control volume. Thus, on divid-

ing through by ρ, we write
∂V---

∂t
+

CS

V dA=0

For a nondeformable control volume of fixed size and shape, V--- = constant. The conservation of mass for

incompressible flow through a fixed control volume becomes

CS

V dA=0 4 13a

A useful special case is when we have uniform velocity at each inlet and exit. In this case Eq. 4.13a

simplifies to

CS
V A=0 4 13b

Note that we have not assumed the flow to be steady in reducing Eq. 4.12 to the forms 4.13a and 4.13b.

We have only imposed the restriction of incompressible fluid. Thus Eqs. 4.13a and 4.13b are statements

of conservation of mass for flow of an incompressible fluid that may be steady or unsteady.

The dimensions of the integrand in Eq. 4.13a are L3 t. The integral of V dA over a section of the

control surface is commonly called the volume flow rate or volume rate of flow. Thus, for incompressible

flow, the volume flow rate into a fixed control volume must be equal to the volume flow rate out of the

control volume. The volume flow rate Q, through a section of a control surface of area A, is given by

Q=
A

V dA 4 14a

The average velocity magnitude, V , at a section is defined as

V =
Q

A
=
1

A A

V dA 4 14b

Consider now the general case of steady, compressible flow through a fixed control volume. Since

the flow is steady, this means that at most ρ= ρ x,y,z . By definition, no fluid property varies with time

in a steady flow. Consequently, the first term of Eq. 4.12 must be zero and, hence, for steady flow, the

statement of conservation of mass reduces to

CS

ρV dA=0 4 15a

A useful special case is when we have uniform velocity at each inlet and exit. In this case, Eq. 4.15a

simplifies to

CS
ρV A=0 4 15b
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Thus, for steady flow, the mass flow rate into a control volume must be equal to the mass flow rate out of

the control volume.

We will now look at three examples to illustrate some features of the various forms of the conser-

vation of mass equation for a control volume. Example 4.1 involves a problem in which we have uniform

flow at each section, Example 4.2 involves a problem in which we do not have uniform flow at a location,

and Example 4.3 involves a problem in which we have unsteady flow.

Example 4.1 MASS FLOW AT A PIPE JUNCTION

Consider the steady flow in a water pipe joint shown in the diagram. The areas are: A1 =0 2 m2, A2 =0 2 m2, and A3 =0 15 m2. In

addition, fluid is lost out of a hole at , estimated at a rate of 0 1 m3 s. The average speeds at sections and are V1 =5m s

and V3 =12 m s, respectively. Find the velocity at section .

Given: Steady flow of water through the device.

A1 =0 2 m2 A2 =0 2 m2 A3 =0 15 m2

V1 =5m s V3 =12 m s ρ=999 kg m3

Volume flow rate at = 0 1 m3 s

Find: Velocity at section .

Solution: Choose a fixed control volume as shown. Make an assumption

that the flow at section is outwards, and label the diagram accordingly.

If this assumption is incorrect our final result will tell us.

Governing equation: The general control volume equation is Eq. 4.12, but

we can go immediately to Eq. 4.13b because of assumptions (2) and (3) below,

CS
V A =0

Assumptions:

1 Steady flow (given).

2 Incompressible flow.

3 Uniform properties at each section.

Hence

V1 A1 +V2 A2 +V3 A3 +Q4 =0 1

where Q4 is the flow rate out of the leak.

Let us examine the first three terms in Eq. 1 in light of the discussion of

Fig. 4.3 and the directions of the velocity vectors:

V1 A1 = −V1A1 V1

A1

1
Sign of V1 A1 is

negative at surface

V2 A2 = +V2A2

V2

A2

2

Sign of V2 A2 is

positive at surface

= 30°

1
4

3

2

1
4

3

2

CV
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V3 A3 = +V3A3 V3

A3

3

Sign of V3 A3 is

positive at surface

Using these results in Eq. 1,

−V1A1 +V2A2 +V3A3 +Q4 =0

or

V2 =
V1A1−V3A3−Q4

A2

=
5
m

s
× 0 2 m2−12

m

s
× 0 15 m2−

0 1 m3

s
0 2 m2

= −4 5 m s
V2

Recall that V2 represents the magnitude of the velocity, which we assumed was

outwards from the control volume. The fact that V2 is negative means that in fact

we have an inflow at location —our initial assumption was invalid.

This problem demonstrates use of the sign
convention for evaluating AV dA or
ΣCSV A. In particular, the area normal is
always drawn outwards from the control
surface.

Example 4.2 MASS FLOW RATE IN BOUNDARY LAYER

The fluid in direct contact with a stationary solid boundary has zero velocity; there is no slip at the boundary. Thus the flow over a

flat plate adheres to the plate surface and forms a boundary

layer, as depicted below. The flow ahead of the plate is uniform

with velocity V =Ui; U =30m s. The velocity distribution

within the boundary layer 0≤ y≤ δ along cd is approximated

as u U = 2 y δ − y δ
2
.

The boundary-layer thickness at location d is δ=5mm. The

fluid is air with density ρ=1 24 kg m3. Assuming the plate

width perpendicular to the paper to be w=0 6 m, calculate

the mass flow rate across surface bc of control volume abcd.

Given: Steady, incompressible flow over a flat plate, ρ=1 24 kg m3. Width of plate, w=0 6 m

Velocity ahead of plate is uniform: V =Ui, U =30 m s.

At x= xd

δ=5mm

u

U
=2

y

δ
−

y

δ

2

Find: Mass flow rate across surface bc.

Solution: The fixed control volume is shown by the dashed lines.

Governing equation: The general control volume equation is

Eq. 4.12, but we can go immediately to Eq. 4.15a because of

assumption (1) below,

CS

ρV dA =0

CV

Edge of
boundary

layer

a d

b c

U U

x

y

CV

a d

b c

U U

x

y

δ = 5 mm
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Assumptions:

1 Steady flow (given).

2 Incompressible flow (given).

3 Two-dimensional flow, given properties are independent of z.

Assuming that there is no flow in the z direction, then

no flow
across dA

Aab

ρV dA
Abc

ρV dA
Acd

ρV dA
Ada

ρV dA 0

∴mbc
Abc

ρV dA −
Aab

ρV dA−
Acd

ρV dA

1

We need to evaluate the integrals on the right side of the equation.

For depth w in the z direction, we obtain

Aab

ρV dA= −
Aab

ρu dA= −

yb

ya

ρuw dy

= −

δ

0

ρuw dy= −

δ

0

ρUw dy

Aab

ρV dA= − ρUwy
δ
0 = −ρUwδ

Acd

ρV dA=
Acd

ρu dA=
yc

yd

ρuw dy

=
δ

0

ρuw dy=
δ

0

ρwU 2
y

δ
−

y

δ

2

dy

Acd

ρV dA= ρwU
y2

δ
−

y3

3δ2

δ

0

= ρwUδ 1−
1

3
=
2ρUwδ

3

dA

V

b

a

V dA is negative

dA=wdy
u=U over area ab

dA

V

c

d

V dA is positive

dA=wdy

Substituting into Eq. 1, we obtain

∴mbc = ρUwδ−
2ρUwδ

3
=
ρUwδ

3

=
1

3
× 1 24

kg

m3
×30

m

s
× 0 6 m×5mm×

m

1000 mm

mbc =0 0372 kg s
Positive sign indicates flow

out across surface bc mb

This problem demonstrates use of the
conservation of mass equation when we
have nonuniform flow at a section.

Example 4.3 DENSITY CHANGE IN VENTING TANK

A tank of 0 05 m3 volume contains air at 800 kPa (absolute) and 15 C. At t=0, air begins escaping from the tank through a valve

with a flow area of 65 mm2. The air passing through the valve has a speed of 300 m s and a density of 6 kg m3. Determine the

instantaneous rate of change of density in the tank at t=0.

Given: Tank of volume V--- = 0 05 m3 contains air at p=800 kPa absolute , T =15 C. At t=0, air escapes through a valve. Air

leaves with speed V =300 m s and density ρ=6 kg m3 through area A=65 mm2.
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4.4 Momentum Equation for Inertial Control Volume
We now obtain a control volume form of Newton’s second law.We use the same procedure we just used

for mass conservation, with one note of caution: the control volume coordinates (with respect to which

we measure all velocities) are inertial; that is, the control volume coordinates xyz are either at rest or

moving at constant speed with respect to an “absolute” set of coordinates XYZ. We begin with the

mathematical formulation for a system and then use Eq. 4.10 to go from the system to the control volume

formulation.

Find: Rate of change of air density in the tank at t=0.

Solution: Choose a fixed control volume as shown by the dashed line.

Governing equation:
∂

∂t CV

ρ dV--- +
CS

ρV dA=0

Assumptions:

1 Properties in the tank are uniform, but time-dependent.

2 Uniform flow at section .

Since properties are assumed uniform in the tank at any instant, we can take ρ out from within the volume integral of the

first term,

∂

∂t
ρCV

CV

dV--- +
CS

ρV dA=0

Now,
CV

dV--- =V---, and hence

∂

∂t
ρV--- CV +

CS

ρV dA=0

The only place where mass crosses the boundary of the control volume is at surface . Hence

CS

ρV dA=
A1

ρV dA and
∂

∂t
ρV--- +

A1

ρV dA=0

At surface the sign of ρV dA is positive, so

∂

∂t
ρV--- +

A1

ρV dA=0

Since flow is assumed uniform over surface , then

∂

∂t
ρV--- + ρ1V1A1 =0 or

∂

∂t
ρV--- = −ρ1V1A1

Since the volume, V---, of the tank is not a function of time,

V---
∂ρ

∂t
= −ρ1V1A1

and

∂ρ

∂t
= −

ρ1V1A1

V---

At t=0,

∂ρ

∂t
= −6

kg

m3
×300

m

s
× 65 mm3 ×

1

0 05 m3
×

m2

106 mm2

∂ρ

∂t
= −2 34 kg m3 s

The density is decreasing
∂ρ

∂t

A1

V1

CV

y

x

1

This problem demonstrates use of the
conservation ofmass equation for unsteady
flow problems.
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Recall that Newton’s second law for a system moving relative to an inertial coordinate system was

given by Eq. 4.2a as

F =
dP

dt
system

4 2a

where the linear momentum of the system is given by

Psystem =
M system

V dm=
V-- system

V ρ dV--- 4 2b

and the resultant force, F, includes all surface and body forces acting on the system,

F =FS +FB

The system and control volume formulations are related using Eq. 4.10,

dN

dt system

=
∂

∂t CV

η ρ dV--- +
CS

η ρV dA 4 10

To derive the control volume formulation of Newton’s second law, we set

N =P and η=V

From Eq. 4.10, with this substitution, we obtain

dP

dt
system

=
∂

∂t CV

V ρ dV--- +
CS

VρV dA 4 16

From Eq. 4.2a

dP

dt
system

=F on system 4 2a

Since, in deriving Eq. 4.10, the system and the control volume coincided at t0, then

F on system =F on control volume

In light of this, Eqs. 4.2a and 4.16 may be combined to yield the control volume formulation of Newton’s

second law for a nonaccelerating control volume

F =FS +FB =
∂

∂t CV

V ρdV--- +
CS

V ρV dA 4 17a

For cases when we have uniform flow at each inlet and exit, we can use

F =FS +FB =
∂

∂t CV

V ρdV--- +
CS

V ρV A 4 17b

Equations 4.17a and 4.17b are our nonaccelerating control volume forms of Newton’s second law. It

states that the total force due to surface and body forces acting on the control volume leads to a rate

of change of momentum within the control volume (the volume integral) and/or a net rate at which

momentum is leaving the control volume through the control surface.

We must be a little careful in applying Eqs. 4.17a. The first step will always be to carefully choose a

control volume and its control surface so that we can evaluate the volume integral and the surface

integral. In fluid mechanics the body force is usually gravity, so

FB =
CV

ρg dV--- =WCV =Mg
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where g is the acceleration of gravity andWCV is the instantaneous weight of the entire control volume.

In many applications the surface force is due to pressure,

FS =
A

−pdA

Note that the minus sign is to ensure that we always compute pressure forces acting onto the control

surface (recall dA was chosen to be a vector pointing out of the control volume). It is worth stressing

that even at points on the surface that have an outflow, the pressure force acts onto the control volume.

In Eqs. 4.17 we must also be careful in evaluating
CS
VρV dA or ΣCSVρV A. This may be easier to

do if we write them with the implied parentheses,
CS

Vρ V dA or ΣCS Vρ V A . The velocity V must

be measured with respect to the control volume coordinates xyz, with the appropriate signs for its vector

components u, υ, and w. Recall also that the scalar product will be positive for outflow and negative for

inflow (refer to Fig. 4.3).

The momentum equation (Eqs. 4.17) is a vector equation. We will usually write the three scalar

components, as measured in the xyz coordinates of the control volume,

Fx =FSx +FBx
=

∂

∂t CV

u ρ dV--- +
CS

u ρV dA 4 18a

Fy =FSy +FBy
=

∂

∂t CV

υ ρ dV--- +
CS

υ ρV dA 4 18b

Fz =FSz +FBz
=

∂

∂t CV

w ρ dV--- +
CS

w ρV dA 4 18c

or, for uniform flow at each inlet and exit,

Fx =FSx +FBx
=

∂

∂t CV

u ρ dV--- +
CS

u ρV A 4 18d

Fy =FSy +FBy
=

∂

∂t CV

υ ρ dV--- +
CS

υ ρV A 4 18e

Fz =FSz +FBz
=

∂

∂t CV

w ρ dV--- +
CS

w ρV A 4 18f

Note that, as we found for the mass conservation equation (Eq. 4.12), for steady flow the first term on the

right in Eqs. 4.17 and 4.18 is zero.

We will now look at five examples to illustrate some features of the various forms of the momentum

equation for a control volume. Example 4.4 demonstrates how intelligent choice of the control volume

can simplify analysis of a problem, Example 4.5 involves a problem in which we have significant body

forces, Example 4.6 explains how to simplify surface force evaluations by working in gage pressures,

Example 4.7 involves nonuniform surface forces, and Example 4.8 involves a problem in which we have

unsteady flow.

Example 4.4 CHOICE OF CONTROL VOLUME FOR MOMENTUM ANALYSIS

Water from a stationary nozzle strikes a flat plate as shown. The water leaves the nozzle at 15 m s; the nozzle area is 0 01 m2.

Assuming the water is directed normal to the plate, and flows along the plate, determine the horizontal force you need to resist to

hold it in place.

Given: Water from a stationary nozzle is directed normal to the plate; subsequent flow is

parallel to plate.

Jet velocity, V =15im s

Nozzle area, An =0 01 m2
Nozzle

Plate
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Find: Horizontal force on your hand.

Solution: We chose a coordinate system in defining the problem above. We must now

choose a suitable control volume. Two possible choices are shown by the dashed lines below.

In both cases, water from the nozzle crosses the control surface through area A1 (assumed

equal to the nozzle area) and is assumed to leave the control volume tangent to the plate surface

in the + y or −y direction. Before trying to decide which is the “best” control volume to use, let

us write the governing equations.

F =FS +FB =
∂

∂t CV

VρdV--- +
CS

VρV dA and
∂

∂t CV

ρ dV--- +
CS

ρV dA=0

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Uniform flow at each section where fluid crosses the CV boundaries.

Regardless of our choice of control volume, assumptions (1), (2), and (3) lead to

F =FS +FB =
CS
VρV A and

CS
ρV A=0

Evaluating the momentum flux term will lead to the same result for both control volumes. We

should choose the control volume that allows the most straightforward evaluation of the forces.

Remember in applying the momentum equation that the force, F, represents all forces acting on

the control volume.

Let us solve the problem using each of the control volumes.

CVI

Thecontrol volumehasbeen selected so that the area of the left surface is equal to the area of the right

surface. Denote this area by A.

The control volume cuts through your hand. We denote the components of the reaction force of

your hand on the control volume as Rx and Ry and assume both to be positive. (The force of the

control volume on your hand is equal and opposite to Rx and Ry.)

Atmospheric pressure acts on all surfaces of the control volume. Note that the pressure in a free

jet is ambient, i.e., in this case atmospheric. The distributed force due to atmospheric pressure has

been shown on the vertical faces only.

The body force on the control volume is denoted as W .

Since we are looking for the horizontal force, we write the x component of the steady flow momentum equation

FSx +FBx
=

CS
u ρV A

There are no body forces in the x direction, so FBx
=0, and

FSx = CS
u ρV A

To evaluate FSx , we must include all surface forces acting on the control volume

FSx = patmA
force due to atmospheric

pressure acts to right

positive direction

on left surface

− patmA
force due to atmospheric

pressure acts to left

negative direction

on right surface

+ Rx

force of your hand on

control volume

assumed positive

y

x

Ry
Rx

W

patmpatm

V

y

x

A

y

x

CVI

1

y

x

CVII

1 Ap
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Consequently, FSx =Rx, and

Rx =
CS
u ρV A= u ρV A 1 For top and bottom surfaces, u=0

Rx = −u1 ρV1A1

At , ρV1 A1 = ρ −V1A1 since

V1 and A1 are 180 apart

Note that u1 =V1

Rx = −15
m

s
× 999

kg

m3
×15

m

s
× 0 01 m2 ×

N s2

kg m
u1 =15 m s

Rx = −2 25 kN Rx acts opposite to positive direction assumed

The horizontal force on your hand is

Kx = −Rx =2 25 kN
force on your hand acts to the right Kx

CVII with Horizontal Forces Shown

The control volume has been selected so the areas of the left surface and of the right surface are equal

to the area of the plate. Denote this area by Ap.

The control volume is in contact with the plate over the entire plate surface. We denote the horizontal

reaction force from the plate on the control volume as Bx and assume it to be positive.

Atmospheric pressure acts on the left surface of the control volume and on the two horizontal

surfaces.

The body force on this control volume has no component in the x direction.

Then the x component of the momentum equation,

FSx = CS
uρV A

yields

FSx = patm Ap +Bx = u ρV A 1 = −u1V1A1 = −2 25 kN

Then

Bx = −patm Ap−2 25 kN

To determine the net force on the plate, we need a free-body diagram of the plate:

Fx =0= −Bx−patmAp +Rx

Rx = patmAp +Bx

Rx = patmAp + −patmAp−2 25 kN = −2 25 kN

Then the horizontal force on your hand is Kx = −Rx =2 25 kN.

Note that the choice of CVII meant we needed an additional free-body dia-

gram. In general it is best to select the control volume so that the force sought

acts explicitly on the control volume.

patm

Bx

Ry

Rx

patm

Bx

Notes:
• This problem demonstrates how
thoughtful choice of the control volume
can simplify use of the momentum
equation.

• The analysis would have been greatly
simplified if we had worked in gage
pressures (see Example 4.6).

• For this problem the force generated was
entirely due to the plate absorbing the
jet’s horizontal momentum.
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Example 4.5 TANK ON SCALE: BODY FORCE

Ametal container 0.61m high, with an inside cross-sectional area of 0 09 m2, weighs 22.2 Nwhen empty. The container is placed

on a scale and water flows in through an opening in the top and out through the two equal-area openings in the sides, as shown in

the diagram. Under steady flow conditions, the height of the water in the tank

is 0 58 m.

A1 =0 009 m2

V1 = −3jm s

A2 =A3 =0 009 m2

Your boss claims that the scale will read the weight of the volume of water in the

tank plus the tank weight, i.e., that we can treat this as a simple statics problem.

You disagree, claiming that a fluid flow analysis is required. Who is right, and

what does the scale indicate?

Given: Metal container, of height 0.61 m and cross-sectional area A=0 09 m2, weighs 22.2 lbf when empty. Container rests on

scale. Under steady flow conditions water depth is h=0 58 m. Water enters vertically at section and leaves horizontally

through sections and

A1 =0 009 m2

V1 = −3jm s

A2 =A3 =0 009 m2

Find: Scale reading.

Solution: Choose a control volume as shown; Ry is the force of the scale on the

control volume (exerted on the control volume through the supports) and is assumed

positive.

The weight of the tank is designated Wtank; the weight of the water in the tank is WH2O.

Atmospheric pressure acts uniformly on the entire control surface, and therefore has no net effect on the control volume.

Because of this null effect we have not shown the pressure distribution in the diagram.

Governing equations: The general control volume momentum and mass conservation equations are Eqs. 4.17 and 4.12,

respectively,

0 1

FS FB

∂

∂t CV

Vρ dV
CS
VρV dA

0 1

∂

∂t CV

ρ dV
CS
ρV dA 0

Note that we usually start with the simplest forms based on the problem assumptions, (e.g., steady flow) of the mass conservation

and momentum equations. However, in this problem, for illustration purposes, we start with the most general forms of the

equations.

Assumptions:

1 Steady flow (given).

2 Incompressible flow.

3 Uniform flow at each section where fluid crosses the CV boundaries.

We are only interested in the y component of the momentum equation

3

1

2

V3

h

y

x

Wtank

WH
2
O

Ry

CV

V2

V1

3

1

2

V1

h

y

x

Scale

V3 V2
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FSy +FBy
=

CS

υρV dA
1

FSy =Ry There is no net force due to atmosphere pressure

FBy
= −Wtank−WH2O Both body forces act in negative y direction

WH2O = ρgV--- = γAh

CS

υ ρV dA =
A1

υ ρV dA=
A1

υ −ρV1dA1
V dA is negative at

υ=0 at sections and

= υ1 −ρV1A1

We are assuming uniform

properties at

Using these results in Eq. 1 gives

Ry−Wtank−γAh= υ1 −ρV1A1

Note that υ1 is the y component of the velocity, so that υ1 = −V1, where we recall that V1 =3m s is the magnitude of velocity V1.

Hence, solving for Ry,

Ry =Wtank + γAh+ ρV2
1A1

=22 2 N+9800
N

m3
×0 09 m2 ×0 58 m+1000

kg

m3
×9

m2

s2
×0 009 m2 ×

N s2

kg m

=22 2 N+511 6 N+81 N

Ry =614 8 N
Ry

Note that this is the force of the scale on the control volume and is also the reading

on the scale. We can see that the scale reading is due to: the tank weight (22.2 N),

the weight of water instantaneously in the tank (511.6 N), and the force involved

in absorbing the downward momentum of the fluid at section (81 N).

Hence neglecting the momentum results in an error of almost 13 percent.
This problem illustrates use of the
momentum equation including significant
body forces.

Example 4.6 FLOW THROUGH ELBOW: USE OF GAGE PRESSURES

Water flows steadily through the 90 reducing elbow shown in the diagram. At the inlet to the elbow, the absolute pressure is

220 kPa and the cross-sectional area is 0 01 m2. At the outlet, the cross-sectional area is 0 0025 m2 and the velocity is 16 m s. The

elbow discharges to the atmosphere. Determine the force required to hold the elbow in place.

Given: Steady flow of water through 90 reducing elbow.

p1 =220 kPa abs A1 =0 01 m2 V2 = −16 jm s A2 =0 0025 m2

Find: Force required to hold elbow in place.

Solution: Choose a fixed control volume as shown. Note that we have several surface force

computations: p1 on area A1 and patm everywhere else. The exit at section is to a free jet, and so

at ambient (i.e., atmospheric) pressure. We can use a simplification here. If we subtract patm from

the entire surface (a null effect as far as forces are concerned) we can work in gage pressures,

as shown.

Note that since the elbow is anchored to the supply line, in addition to the reaction forces Rx and Ry (shown), there would also

be a reaction moment (not shown).

2

1

y

x
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Governing equations:

0 4

F FS FB

∂

∂t CV

Vρ dV
CS
VρV dA

0 4

∂

∂t CV

ρ dV
CS
ρV dA 0

Assumptions:

1 Uniform flow at each section.

2 Atmospheric pressure, patm =101 kPa abs .

3 Incompressible flow.

4 Steady flow (given).

5 Neglect weight of elbow and water in elbow.

Once again we started with the most general form of the governing equations. Writing the x component of the momentum equa-

tion results in

FSx =
CS

uρV dA=
A1

uρV dA FBx
=0 and u2 =0

p1gA1 +Rx =
A1

u ρV dA

so

Rx = −p1gA1 +
A1

u ρV dA

= −p1gA1 + u1 −ρV1A1

Rx = −p1gA1−ρV2
1A1

Note that u1 is the x component of the velocity, so that u1 =V1. To find V1, use the mass conservation equation:

CS

ρV dA=
A1

ρV dA+
A2

ρV dA=0

∴ −ρV1A1 + ρV2A2 =0

and

V1 =V2

A2

A1

=16
m

s
×
0 0025

0 01
= 4 m s

We can now compute Rx

Rx = −p1gA1−ρV2
1A1

= −1 19× 105
N

m2
×0 01 m2

−999
kg

m3
×16

m2

s2
×0 01 m2 ×

N s2

kg m

Rx = −1 35 kN
Rx

V2CV

p1 p1g

patm

patm

patm– =
W

Ry

Rx

Ry

Rx W

1

2

V1

894.4 Momentum Equation for Inertial Control Volume

www.konkur.in

Telegram: @uni_k



Writing the y component of the momentum equation gives

FSy +FBy
=Ry +FBy

=

CS

υ ρV dA=

A2

υ ρV dA υ1 =0

or

Ry = −FBy
+

A2

υ ρV dA

= −FBy
+ υ2 ρV2A2

Ry = −FBy
−ρV2

2A2

Note that υ2 is the y component of the velocity, so that υ2 = −V2, where V2 is the magnitude of the exit velocity.

Substituting known values

Ry = −FBy
+ −ρV2

2A2

= −FBy
−999

kg

m3
× 16

2m
2

s2
×0 0025 m2 ×

N s2

kg m

= −FBy
−639 N

Ry

Neglecting FBy
gives

Ry = −639 N
Ry

This problem illustrates how using gage
pressures simplifies evaluation of the sur-
face forces in the momentum equation.

Example 4.7 FLOW UNDER A SLUICE GATE: HYDROSTATIC PRESSURE FORCE

Water in an open channel is held in by a sluice gate. Compare the horizontal force of the water on the gate (a) when the gate is

closed and (b) when it is open and the flow is steady. Assume the flow at sections and is incompressible and uniform, and

that, because the streamlines are straight there, the pressure distributions are hydrostatic.

Given: Flow under sluice gate. Width =w.

Find: Horizontal force (per unit width) on the closed and open gate.

Solution: Choose a control volume as shown for the open gate. Note

that it is much simpler to work in gage pressures, as we learned in

Example 4.6.

The forces acting on the control volume include:

• Force of gravity W .

• Friction force Ff .

• Components Rx and Ry of reaction force from gate.

• Hydrostatic pressure distribution on vertical surfaces, assump-

tion (6).

• Pressure distribution pb x along bottom surface (not shown).

Apply the x component of the momentum equation.

Governing equation:

0 2 0 3

FSx FBx

∂

∂t CV

u ρdV
CS

u ρV dA

21

Water

D1 = 3 m

V1 = 1 m/s

D2 = 0.429 m
V2 = 7 m/s
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Assumptions:

1 Ff negligible (neglect friction on channel bottom).

2 FBx
=0.

3 Steady flow.

4 Incompressible flow (given).

5 Uniform flow at each section (given).

6 Hydrostatic pressure distributions at and (given).

Then

FSx =FR1
+FR2

+Rx = u1 −ρV1wD1 + u2 ρV2wD2

The surface forces acting on the CV are due to the pressure distributions and the unknown force Rx. From assumption (6), we can

integrate the gage pressure distributions on each side to compute the hydrostatic forces FR1
and FR2

,

FR1
=

D1

0

p1 dA=w

D1

0

ρgy dy= ρgw
y2

2

D1

0

=
1

2
ρgwD2

1

where y is measured downward from the free surface of location , and

FR2
=

D2

0

p2 dA=w

D2

0

ρgy dy= ρgw
y2

2

D2

0

=
1

2
ρgwD2

2

where y is measured downward from the free surface of location . (Note that we could have used the hydrostatic force equation,

Eq. 3.10b, directly to obtain these forces.)

Evaluating FSx gives

FSx =Rx +
ρgw

2
D2

1−D2
2

Substituting into the momentum equation, with u1 =V1 and u2 =V2, gives

Rx +
ρgw

2
D2

1−D2
2 = −ρV2

1wD1 + ρV2
2wD2

or

Rx = ρw V2
2D2−V2

1D1 −
ρgw

2
D2

1−D2
2

The second term on the right is the net hydrostatic force on the gate; the first term “corrects” this for the case when the gate is

open. What is the nature of this “correction”? The pressure in the fluid far away from the gate in either direction is hydro-

static, but because we have significant velocity variations close to the gate, the pressure distributions deviate significantly

from hydrostatic. For example, as the fluid accelerates under the gate there will be a significant pressure drop on the lower

left side of the gate. Deriving this pressure field would be a difficult task, but by careful choice of our CV we have avoided

having to do so.

1

Water

D1 = 3 m

V1 = 1 m/s
D2 = 0.429 m
V2 = 7 m/s

W
Rx

p2(y)

p1(y)

Ff

Ry
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We can now compute the horizontal force per unit width,

Rx

w
= ρ V2

2D2−V2
1D1 −

ρg

2
D2

1−D2
2

=999
kg

m3
× 7

2
0 429 − 1

2
3

m2

s2
m×

N s2

kg m

−
1

2
× 999

kg

m3
×9 81

m

s2
× 3

2
− 0 429

2
m2 ×

N s2

kg m
Rx

w
=18 0 kN m−43 2 kN m

Rx

w
= −25 2 kN m

Rx is the external force acting on the control volume, applied to the CV by the gate. Therefore, the force of the water on the gate is

Kx, where Kx = −Rx. Thus,

Kx

w
= −

Rx

w
=25 2 kN m

Kx

w

This force can be compared to the force on the closed gate of 44.1 kN (obtained

from the second term on the right in the equation above, evaluated with D2 set to

zero because for the closed gate there is no fluid on the right of the gate)—the

force on the open gate is significantly less as the water accelerates out under

the gate.

This problem illustrates the application
of the momentum equation to a control
volume for which the pressure is not
uniform on the control surface.

Example 4.8 CONVEYOR BELT FILLING: RATE OF CHANGE OF MOMENTUM IN CONTROL VOLUME

A horizontal conveyor belt moving at 0 9 m s receives sand from a hopper. The sand falls vertically from the hopper to the belt at

a speed of 1 5 m s and a flow rate of 225 kg s (the density of sand is approximately 1580 kg m3). The conveyor belt is initially

empty but begins to fill with sand. If friction in the drive system and rollers is negligible, find the tension required to pull the belt

while the conveyor is filling.

Given: Conveyor and hopper shown in sketch.

Find: Tbelt at the instant shown.

Solution: Use the control volume and coordinates shown.

Apply the x component of the momentum equation.

Governing equations:

0 2

FSx FBx

∂

∂t CV

u ρdV
CS

u ρV dA
∂

∂t CV

ρdV
CS

ρV dA 0

Assumptions:

1 FSx = Tbelt = T .

2 FBx
=0.

3 Uniform flow at section .

4 All sand on belt moves with Vbelt =Vb.

Hopper

Sand

1

2

Vbelt = 0.9 m/s

Vsand = 1.5 m/s

CV

Tbelt

y

x

92 Chapter 4 Basic Equations in Integral Form for a Control Volume

www.konkur.in

Telegram: @uni_k



Differential Control Volume Analysis

The control volume approach, as we have seen in the previous examples, provides useful results when

applied to a finite region.

If we apply the approach to a differential control volume, we can obtain differential equations

describing a flow field. In this section, we will apply the conservation of mass and momentum equations

to such a control volume to obtain a simple differential equation describing flow in a steady, incompress-

ible, frictionless flow, and integrate it along a streamline to obtain the famous Bernoulli equation.

Let us apply the continuity and momentum equations to a steady incompressible flow without fric-

tion, as shown in Fig. 4.4. The control volume chosen is fixed in space and bounded by flow streamlines,

and is thus an element of a stream tube. The length of the control volume is ds.

Because the control volume is boundedby streamlines, flowacross the bounding surfaces occurs only

at the end sections. These are located at coordinates s and s+ ds, measured along the central streamline.

Properties at the inlet section are assigned arbitrary symbolic values. Properties at the outlet

section are assumed to increase by differential amounts. Thus at s+ ds, the flow speed is assumed to

be Vs + dVs, and so on. The differential changes, dp, dVs, and dA, all are assumed to be positive in setting

up the problem. As in a free-body analysis in statics or dynamics, the actual algebraic sign of each dif-

ferential change will be determined from the results of the analysis.

Then

T =
∂

∂t CV

uρ dV--- + u1 −ρV1A1 + u2 ρV2A2

Since u1 =0, and there is no flow at section ,

T =
∂

∂t CV

uρ dV---

From assumption (4), inside the CV, u=Vb = constant, and hence

T =Vb

∂

∂t CV

ρ dV--- =Vb

∂Ms

∂t

where Ms is the mass of sand on the belt and inside the control volume. This result is perhaps not surprising—the tension in the

belt is the force required to increase the momentum inside the CV. The tension is increasing because even though the velocity

of the mass in the CV is constant, the mass is not. From the continuity equation,

∂

∂t CV

ρ dV--- =
∂

∂t
Ms = −

CS

ρV dA=ms =225 kg s

Then

T =Vbms =0 9
m

s
× 225

kg

s
×

N s2

kg m

T =203 4 N T

Differential control volume

Streamlines

p + dp

p

Vs + dVs

Vs

A + dA

FSb

ds

A

x

y

z

g

Fig. 4.4 Differential control volume for momentum analysis of flow through a stream tube.

This problem illustrates application of the
momentum equation to a control volume in
which the momentum is changing.
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Now let us apply the continuity equation and the s component of the momentum equation to the

control volume of Fig. 4.4.

a. Continuity Equation

0 1

Basic equation :
∂

∂t CV

ρ dV
CS

ρV dA 0 4 12

Assumptions:

1 Steady flow.

2 No flow across bounding streamlines.

3 Incompressible flow, ρ= constant.

Then

−ρVsA + ρ Vs + dVs A+ dA =0

so

ρ Vs + dVs A+ dA = ρVsA 4 19a

On expanding the left side and simplifying, we obtain

Vs dA+A dVs + dA dVs =0

But dA dVs is a product of differentials, which may be neglected compared with VsdA or A dVs. Thus

Vs dA+A dVs =0 4 19b

b. Streamwise Component of the Momentum Equation

0 1

Basic equation : FSS FBS

∂

∂t CV

us ρ dV
CS

us ρV dA
4 20

Assumption: (4) No friction, so FSb is due to pressure forces only.

The surface force (due only to pressure) will have three terms:

FSs = pA− p+ dp A+ dA + p+
dp

2
dA 4 21a

The first and second terms in Eq. 4.21a are the pressure forces on the end faces of the control surface.

The third term is Fsb , the pressure force acting in the s direction on the bounding stream surface of the

control volume. Its magnitude is the product of the average pressure acting on the stream surface,

p+ 1
2
dp, times the area component of the stream surface in the s direction, dA. Equation 4.21a

simplifies to

FSs = −A dp−
1

2
dp dA 4 21b

The body force component in the s direction is

FBs
= ρgs dV--- = ρ −g sin θ A+

dA

2
ds

But sin θ ds= dz, so that

FBs
= −ρg A+

dA

2
dz 4 21c

The momentum flux will be

CS

us ρV dA=Vs −ρVsA + Vs + dVs ρ Vs + dVs A+ dA
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since there is no mass flux across the bounding stream surfaces. The mass flux factors in parentheses and

braces are equal from continuity, Eq. 4.19a, so

CS

us ρV dA=Vs −ρVsA + Vs + dVs ρVsA = ρVsA dVs 4 22

Substituting Eqs. 4.21b, 4.21c, and 4.22 into Eq. 4.20 (the momentum equation) gives

−A dp−
1

2
dp dA−ρgA dz−

1

2
ρg dA dz= ρVsA dVs

Dividing by ρA and noting that products of differentials are negligible compared with the remaining

terms, we obtain

−
dp

ρ
−g dz=Vs dVs = d

V2
s

2

or

dp

ρ
+ d

V2
s

2
+ g dz=0 4 23

Because the flow is incompressible, this equation may be integrated to obtain

p

ρ
+
V2
s

2
+ gz= constant 4 24

or, dropping subscript s,

p

ρ
+
V2
s

2
+ gz= constant 4 24

This equation is subject to the restrictions:

1 Steady flow.

2 No friction.

3 Flow along a streamline.

4 Incompressible flow.

We have derived one form of perhaps the most famous (and misused) equation in fluid mechanics—

the Bernoulli equation. It can be used onlywhen the four restrictions listed above apply. Although no real

flow satisfies all these restrictions (especially the second), we can approximate the behavior of many

flows with Eq. 4.24.

For example, the equation is widely used in aerodynamics to relate the pressure and velocity in a

flow (e.g., it explains the lift of a subsonic wing). It could also be used to find the pressure at the inlet of

the reducing elbow analyzed in Example 4.6 or to determine the velocity of water leaving the sluice gate

of Example 4.7 (both of these flows approximately satisfy the four restrictions). On the other hand,

Eq. 4.24 does not correctly describe the variation of water pressure in pipe flow. According to it, for

a horizontal pipe of constant diameter, the pressure will be constant, but in fact the pressure drops sig-

nificantly along the pipe.

The Bernoulli equation and the limits on its use, are so important we will derive it again and discuss

its limitations in detail in Chapter 6. In Example 4.9 we will show the use of the Bernoulli equation for a

situation in which all of the limitations apply.

Example 4.9 NOZZLE FLOW: APPLICATION OF BERNOULLI EQUATION

Water flows steadily through a horizontal nozzle, discharging to the atmosphere. At the nozzle inlet the diameter is D1; at the

nozzle outlet the diameter is D2. Derive an expression for the minimum gage pressure required at the nozzle inlet to produce a

given volume flow rate, Q. Evaluate the inlet gage pressure if D1 =75 mm, D2 =25 mm, and the desired flow rate is 0 02 m3 s.
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Given: Steady flow of water through a horizontal nozzle, discharging to the atmosphere.

D1 =75 mm D2 =25 mm p2 = patm

Find: (a) p1g as a function of volume flow rate, Q.

(b) p1g for Q=0 7 ft3 s.

Solution:

Governing equations:

p1

ρ
+
V2
1

2
+ gz1 =

p2

ρ
+
V2
2

2
+ gz2

0 1

∂

∂t CV

ρ dV CS ρ V dA 0

Assumptions:

1 Steady flow (given).

2 Incompressible flow.

3 Frictionless flow.

4 Flow along a streamline.

5 z1 = z2.

6 Uniform flow at sections and .

Apply the Bernoulli equation along a streamline between points and to evaluate p1. Then

p1g = p1−patm = p1−p2 =
ρ

2
V2
2 −V2

1 =
ρ

2
V2
1

V2

V1

2

−1

Apply the continuity equation

−ρV1A1 + ρV2A2 =0 or V1A1 =V2A2 =Q

so that

V2

V1

=
A1

A2

and V1 =
Q

A1

Then

p1g =
ρQ2

2A2
1

A1

A2

2

−1

Since A= πD2 4, then

p1g =
8ρQ2

π2 D4
1

D1

D2

4

−1
p1g

Note that for a given nozzle the pressure required is proportional to the square of the flow rate, which is consistent with Eq. 4.24,

which shows that p V2 Q2. With D1 =75 mm, D2 =25 mm, and ρ=1000 kg m3,

p1g =
8

π2
×1000

kg

m3
×

1

0 075
4
m4

×Q2 3 0
4
−1

N s2

kg m
×
Pa m2

N2

p1g =2049 44× 106Q2N s2

m8
×
Pa m2

N

With Q=0 02 m3 s then

p1 =819 776 kPa
p1g

D1

D2

CV

Streamline

This problem illustrates application of the
Bernoulli equation to a flow where the
restrictions of steady, incompressible,
frictionless flow along a streamline are
reasonable.
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Control Volume Moving with Constant Velocity

In the preceding problems, which illustrate applications of the momentum equation to inertial control

volumes, we have considered only stationary control volumes. Suppose we have a control volume mov-

ing at constant speed. We can set up two coordinate systems: XYZ, “absolute,” or stationary (inertial),

coordinates, and the xyz coordinates attached to the control volume.

Equation 4.10, which expresses system derivatives in terms of control volume variables, is valid for

any motion of the control volume coordinate system xyz, provided that all velocities are measured rel-

ative to the control volume. To emphasize this point, we rewrite Eq. 4.10 as

dN

dt system

=
∂

∂t CV

η ρ dV--- +
CS

η ρ V xyz dA 4 25

Since all velocities must be measured relative to the control volume, in using this equation to obtain the

momentum equation for an inertial control volume from the system formulation, we must set

N =Pxyz and η=V xyz

The control volume equation is then written as

F =FS +FB =
∂

∂t CV

V xyz ρ dV--- +
CS

V xyz ρ V xyz dA 4 26

Equation 4.26 is the formulation of Newton’s second law applied to any inertial control volume (sta-

tionary or moving with a constant velocity). It is identical to Eq. 4.17a except that we have included

subscript xyz to emphasize that velocities must be measured relative to the control volume. These are

the velocities that would be seen by an observer moving with the control volume. Example 4.10

illustrates the use of Eq. 4.26 for a control volume moving at constant velocity.

Example 4.10 VANE MOVING WITH CONSTANT VELOCITY

The sketch shows a vane with a turning angle of 60 . The vane moves at constant speed, U =10m s, and receives a jet of water

that leaves a stationary nozzle with speed V =30 m s. The nozzle has an exit area of 0 003 m2. Determine the force components

that act on the vane.

Given: Vane, with turning angle θ=60 , moves with constant velocity, U =10im s. Water from a constant area nozzle,

A=0 003 m2, with velocity V =30im s, flows over the vane as shown.

Find: Force components acting on the vane.

Solution: Select a control volume moving with the vane at constant velocity, U, as

shown by the dashed lines. Rx and Ry are the components of force required to maintain

the velocity of the control volume at 10im s.

The control volume is inertial since it is not accelerating U = constant .

Remember that all velocities must be measured relative to the control volume

in applying the basic equations.

Governing equations:

FS +FB =
∂

∂t CV

V xyzρ dV--- +
CS

V xyz ρ V xyz d A

∂

∂t CV

ρ dV--- +
CS

ρV xyz dA =0

U
V

= 60°

Rx

Ry

X

Y

1

2x

y

CV

U
V

= 60°
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Assumptions:

1 Flow is steady relative to the vane.

2 Magnitude of relative velocity along the vane is constant: V1 = V2 =V−U.

3 Properties are uniform at sections and .

4 FBx
=0.

5 Incompressible flow.

The x component of the momentum equation is

0 4 0 1

FSx FBx
∂

∂t CV

uxyz ρ dV
CS

uxyz ρ V xyz dA

There is no net pressure force, since patm acts on all sides of the CV. Thus

Rx =
A1

u −ρVdA +
A2

u ρVdA = + u1 −ρV1A1 + u2 ρV2A2

From the continuity equation

A1

−ρVdA +
A2

ρVdA = −ρV1A1 + ρV2A2 =0

or

ρV1A1 = ρV2A2

Therefore,

Rx = u2−u1 ρV1A1

All velocities must be measured relative to the CV, so we note that

V1 =V−U V2 =V−U

u1 =V−U u2 = V−U cos θ

Substituting yields

Rx = V−U cos θ− V−U ρ V−U A1 = V−U cos θ−1 ρ V−U A1

= 30−10
m

s
× 0 50−1 × 999

kg

m3
30−10

m

s
× 0 003 m2 ×

N s2

kg m

Rx = −599N to the left

Writing the y component of the momentum equation, we obtain

0 1

FSy FBy

∂

∂t CV

υxyzρ dV
CS

υxyzρ V xyz dA

Denoting the mass of the CV as M gives

Ry−Mg=
CS

υρV dA=
A2

υρV dA υ1 =0

=
A2

υ ρVdA = υ2 ρV2A2 = υ2 ρV1A1

= V−U sin θ ρ V−U A1

= 30−10
m

s
× 0 866 × 999

kg

n3
30−10

m

s
× 0 003m2 ×

N s2

kg m

All velocities are

measured relative to

xyz

Recall ρV2A2 = ρV1A1
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4.5 Momentum Equation for Control Volume
with Rectilinear Acceleration
For an inertial control volume, the appropriate formulation of Newton’s second law is given by

Eq. 4.26,

F =FS +FB =
∂

∂t CV

V xyz ρ dV--- +
CS

V xyz ρV xyz dA 4 26

Not all control volumes are inertial; for example, a rocket must accelerate if it is to get off the

ground. Since we are interested in analyzing control volumes that may accelerate relative to inertial coor-

dinates, we can determine whether Eq. 4.26 can be used for an accelerating control volume. To answer

this let us briefly review the two major elements used in developing Eq. 4.26.

First, in relating the system derivatives to the control volume formulation (Eq. 4.25 or 4.10), the

flow field, V x,y,z, t , was specified relative to the control volume’s coordinates x, y, and z. No restric-

tion was placed on the motion of the xyz reference frame. Consequently, Eq. 4.25 (or Eq. 4.10) is valid at

any instant for any arbitrary motion of the coordinates x, y, and z provided that all velocities in the equa-

tion are measured relative to the control volume.

Second, the system equation

F =
dP

dt
system

4 2a

where the linear momentum of the system is given by

Psystem =
M system

Vdm=
V-- system

V ρ dV--- 4 2b

is valid only for velocities measured relative to an inertial reference frame. Thus, if we denote the inertial

reference frame by XYZ, then Newton’s second law states that

F =
dPXYZ

dt
system

4 27

Since the time derivatives of PXYZ and Pxyz are not equal when the control volume reference frame

xyz is accelerating relative to the inertial reference frame, Eq. 4.26 is not valid for an accelerating control

volume.

To develop the momentum equation for a linearly accelerating control volume, it is necessary to

relate PXYZ of the system to Pxyz of the system. The system derivative dPxyz dt can then be related to

control volume variables through Eq. 4.25. We begin by writing Newton’s second law for a system,

remembering that the acceleration must be measured relative to an inertial reference frame that we have

designated XYZ. We write

F =
dPXYZ

dt
system

=
d

dt M system

VXYZdm=
M system

dVXYZ

dt
dm 4 28

Ry−Mg=1 04 kN upward

Thus the vertical force is

Ry =1 04 kN+Mg upward

Then the net force on the vane, neglecting the weight of the vane and water within

the CV, is

R = −0 599i+1 04j kN R

This problem illustrates how to apply the
momentum equation for a control
volume in constant velocity motion by
evaluating all velocities relative to
the control volume.
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The velocities with respect to the inertial XYZ and the control volume coordinates xyz are related

by the relative-motion equation

VXYZ =V xyz +V rf 4 29

where V rf is the velocity of the control volume coordinates xyz with respect to the “absolute” stationary

coordinates XYZ.

Since we are assuming the motion of xyz is pure translation, without rotation, relative to inertial

reference frame XYZ, then

dVXYZ

dt
= aXYZ =

dV xyz

dt
+
dV rf

dt
= axyz + arf 4 30

where

aXYZ is the rectilinear acceleration of the system relative to inertial reference frame XYZ,

axyz is the rectilinear acceleration of the system relative to noninertial reference frame xyz

(i.e., relative to the control volume), and

arf is the rectilinear acceleration of noninertial reference frame xyz (i.e., of the control volume)

relative to inertial frame XYZ.

Substituting from Eq. 4.30 into Eq. 4.28 gives

F =
M system

arf dm+
M system

dV xyz

dt
dm

or

F−
M system

arf dm=
dPxyz

dt
system

4 31a

where the linear momentum of the system is given by

Pxyz system =
M system

V xyzdm=
V-- system

V xyzρ dV--- 4 31b

and the force, F, includes all surface and body forces acting on the system.

To derive the control volume formulation of Newton’s second law, we set

N =Pxyz and η=V xyz

From Eq. 4.25, with this substitution, we obtain

dPxyz

dt
system

=
∂

∂t CV

V xyzρ dV--- +
CS

V xyzρV xyz dA 4 32

Combining Eq. 4.31a (the linear momentum equation for the system) and Eq. 4.32 (the system–

control volume conversion), and recognizing that at time t0 the system and control volume coincide,

Newton’s second law for a control volume accelerating, without rotation, relative to an inertial reference

frame is

F−
CV

arf ρ dV--- =
∂

∂t CV

Vxyz ρ dV--- +
CS

V xyz ρV xyz dA

Since F =FS +FB, this equation becomes

FS +FB−
CV

arf ρ dV--- =
∂

∂t CV

V xyz ρ dV--- +
CS

V xyz ρV xyz dA 4 33

Comparing this momentum equation for a control volume with rectilinear acceleration to that for a non-

accelerating control volume, Eq. 4.26, we see that the only difference is the presence of one additional

term in Eq. 4.33. When the control volume is not accelerating relative to inertial reference frame XYZ,

then arf =0, and Eq. 4.33 reduces to Eq. 4.26.
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The precautions concerning the use of Eq. 4.26 also apply to the use of Eq. 4.33. Before attempting

to apply either equation, one must draw the boundaries of the control volume and label appropriate coor-

dinate directions. For an accelerating control volume, one must label two coordinate systems: one xyz

on the control volume and the other XYZ an inertial reference frame.

In Eq. 4.33, FS represents all surface forces acting on the control volume. Since the mass within the

control volume may vary with time, both the remaining terms on the left side of the equation may be

functions of time. Furthermore, the acceleration, arf , of the reference frame xyz relative to an inertial

frame will in general be a function of time.

All velocities in Eq. 4.33 are measured relative to the control volume. The momentum flux,

V xyzρV xyz dA, through an element of the control surface area, dA, is a vector. As we saw for the non-

accelerating control volume, the sign of the scalar product, ρV xyz dA, depends on the direction of the

velocity vector, V xyz, relative to the area vector, dA.

Themomentum equation is a vector equation. As with all vector equations, it may be written as three

scalar component equations. The scalar components of Eq. 4.33 are

FSx +FBx
−

CV

arfx ρdV--- =
∂

∂t CV

uxyz ρdV--- +
CS

uxyz ρV xyz d A 4 34a

FSy +FBy
−

CV

arfy ρdV--- =
∂

∂t CV

υxyz ρdV--- +
CS

υxyz ρV xyz d A 4 34b

FSz +FBz
−

CV

arfz ρdV--- =
∂

∂t CV

wxyz ρdV--- +
CS

wxyz ρV xyz d A 4 34c

We will consider two applications of the linearly accelerating control volume. Example 4.11 will ana-

lyze an accelerating control volume in which the mass contained in the control volume is constant and

Example 4.12 will analyze an accelerating control volume in which the mass contained varies with time.

Example 4.11 VANE MOVING WITH RECTILINEAR ACCELERATION

A vane, with turning angle θ=60 , is attached to a cart. The cart and vane, of massM =75 kg, roll on a level track. Friction and

air resistance may be neglected. The vane receives a jet of water, which leaves a stationary nozzle horizontally at V =35 m s. The

nozzle exit area is A=0 003 m2. Determine the velocity of the cart as a function of time and plot the results.

Given: Vane and cart as sketched, with M =75 kg.

Find: U t and plot results.

Solution: Choose the control volume and coordinate

systems shown for the analysis. Note that XY is a fixed

frame, while frame xy moves with the cart. Apply the x

component of the momentum equation.

Governing equations:
0 1 0 2 0 4

FSx FBx
−

CV

arfx ρ dV
∂

∂t CV

uxyzρ dV
CS

uxyzρV xyz dA

Assumptions:

1 FSx =0, since no resistance is present.

2 FBx
=0.

3 Neglect the mass of water in contact with the vane compared to the cart mass.

4 Neglect rate of change of momentum of liquid inside the CV.

∂

∂t CV

uxyz ρ dV--- 0

θ = 60°2

1
y

x
CV

U
M

= 999 kg/m3ρ

V = 35 m/s

A = 0.003 m2

X

Y
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5 Uniform flow at sections and .

6 Speed of water stream is not slowed by friction on the vane, so V xyz1 = V xyz2 .

7 A2 =A1 =A.

Then, dropping subscripts rf and xyz for clarity but remembering that all velocities are measured relative to the moving coordi-

nates of the control volume,

−
CV

ax ρ dV--- = u1 −ρV1A1 + u2 ρV2A2

= V−U −ρ V−U A + V−U cos θ ρ V−U A

= −ρ V−U
2
A+ ρ V−U

2
Acos θ

For the left side of this equation we have

−
CV

ax ρ dV--- = −axMCV = −axM = −
dU

dt
M

so that

−M
dU

dt
= −ρ V−U

2
A+ ρ V−U

2
Acos θ

or

M
dU

dt
= 1−cos θ ρ V−U

2
A

Separating variables, we obtain

dU

V−U
2
=

1−cos θ ρA

M
dt= bdt where b=

1−cosθ ρA

M

Note that since V = constant, dU = −d V−U . Integrating between limits U =0 at t=0, and U =U at t= t,

U

0

dU

V−U
2
=

U

0

−d V−U

V−U
2

=
1

V−U

U

0

=
t

0

bdt= bt

or
1

V−U
−
1

V
=

U

V V−U
= bt

Solving for U, we obtain
U

V
=

Vbt

1+Vbt

Evaluating Vb gives

Vb=V
1−cos θ ρA

M

Vb=35
m

s
×

1−0 5

75 kg
× 999

kg

m3
×0 003 m2 =0 699 s−1

Thus
U

V
=

0 699t

1+ 0 699t

t in seconds U t

Plot:

0
0

0.5

1.0

5 10

Time, t (s)

15 20

U___
V

102 Chapter 4 Basic Equations in Integral Form for a Control Volume

www.konkur.in

Telegram: @uni_k



Example 4.12 ROCKET DIRECTED VERTICALLY

A small rocket, with an initial mass of 400 kg, is to be launched vertically. Upon ignition the rocket consumes fuel at the rate of

5 kg s and ejects gas at atmospheric pressure with a speed of 3500 m s relative to the rocket. Determine the initial acceleration of

the rocket and the rocket speed after 10 s, if air resistance is neglected.

Given: Small rocket accelerates vertically from rest.

Initial mass, M0 =400 kg.

Air resistance may be neglected.

Rate of fuel consumption, me =5 kg s.

Exhaust velocity, Ve =3500 m s, relative to rocket, leaving at atmospheric pressure.

Find: (a) Initial acceleration of the rocket.

(b) Rocket velocity after 10 s.

Solution: Choose a control volume as shown by dashed lines. Because the control volume is accel-

erating, define inertial coordinate system XY and coordinate system xy attached to the CV. Apply the y

component of the momentum equation.

Governing equation:

FSy +FBy
−

CV

arfy ρ dV--- =
∂

∂t CV

υxyz ρ dV--- +
CV

υxyz ρV xyz d A

Assumptions:

1 Atmospheric pressure acts on all surfaces of the CV; since air resistance is neglected, FSy =0.

2 Gravity is the only body force; g is constant.

3 Flow leaving the rocket is uniform, and Ve is constant.

Under these assumptions the momentum equation reduces to

FBy
−

CV

arfy ρ dV--- =
∂

∂t CV

υxyz ρ dV--- +
CS

υxyz ρV xyz dA
1

Let us look at the equation term by term:

FBy
= −

CV

g ρ dV--- = −g
CV

ρ dV--- = −gMCV since g is constant

The mass of the CV will be a function of time because mass is leaving the CV at rateme. To determineMCV as a function of time,

we use the conservation of mass equation

∂

∂t CV

ρ dV--- +
CS

ρV dA=0

Then

∂

∂t CV

ρ dV--- = −
CS

ρV dA= −
CS

ρVxyzdA = −me

The minus sign indicates that the mass of the CV is decreasing with time. Since the mass of the CV is only a function of time,

we can write

dMCV

dt
= −me

To find the mass of the CV at any time, t, we integrate

M

M0

dMCV =
t

0

me dt where at t=0, MCV =M0, and at t= t ,MCV =M

X

Y

CV

y

x

Ve

1034.5 Momentum Equation for Control Volume with Rectilinear Acceleration

www.konkur.in

Telegram: @uni_k



Then, M−M0 = −met, or M =M0−met.

Substituting the expression for M into term , we obtain

FBy
= −

CV

g ρ dV--- = −gMCV = −g M0−met

−
CV

arfy ρ dV---

The acceleration, arfy , of the CV is that seen by an observer in the XY coordinate system. Thus arfy is not a function of the coor-

dinates xyz, and

−
CV

arfy ρ dV--- = −arfy
CV

ρ dV--- = −arfy MCV = −arfy M0−met

∂

∂t CV

υxyz ρ dV---

This is the time rate of change of the y momentum of the fluid in the control volume measured relative to the control volume.

Even though the y momentum of the fluid inside the CV, measured relative to the CV, is a large number, it does not change

appreciably with time. To see this, we must recognize that:

1 The unburned fuel and the rocket structure have zero momentum relative to the rocket.

2 The velocity of the gas at the nozzle exit remains constant with time as does the velocity at various points in the nozzle.

Consequently, it is reasonable to assume that

∂

∂t CV

υxyz ρ dV---≈0

CS

υxyz ρV xyz dA=
CS

υxyz ρVxyz dA = −Ve
CS

ρVxyz dA

The velocity υxyz (relative to the control volume) is −Ve (it is in the negative y direction), and is a constant, so was taken outside

the integral. The remaining integral is simply the mass flow rate at the exit (positive because flow is out of the control volume),

CS

ρVxyzdA =me

and so

CS

υxyz ρV xyz dA= −Veme

Substituting terms through into Eq. 1, we obtain

−g M0−met −arfy M0−met = −Veme

or

arfy =
Veme

M0−met
−g 2

At time t=0,

arfy t=0 =
Veme

M0

−g=3500
m

s
× 5

kg

s
×

1

400 kg
−9 81

m

s2

arfy t=0 =33 9 m s2
arfy t=0

The acceleration of the CV is by definition

arfy =
dVCV

dt

104 Chapter 4 Basic Equations in Integral Form for a Control Volume

www.konkur.in

Telegram: @uni_k



4.6 Momentum Equation for Control Volume
with Arbitrary Acceleration
In Section 4.5 we obtained a momentum equation for a control volume with rectilinear acceleration. The

purpose of this section is to extend this for completeness to include rotation and angular acceleration of

the control volume.

First, we develop an expression for Newton’s second law in an arbitrary, noninertial coordinate sys-

tem. Then we use Eq. 4.25 to complete the formulation for a control volume. Newton’s second law for a

system moving relative to an inertial coordinate system is given by

F =
dPXYZ

dt
system

4 27

where, as in the Section 4.5, XYZ denotes the inertial (e.g., stationary) reference frame. Since

PXYZ system =
M system

VXYZ dm

and M system is constant,

F =
d

dt M system

VXYZ dm=
M system

dVXYZ

dt
dm

or

F =
M system

aXYZ dm 4 35

The basic problem is to relate aXYZ to the acceleration axyz, measured relative to a noninertial coordinate

system. For this purpose, consider the noninertial reference frame, xyz, shown in Fig. 4.5.

The noninertial frame, xyz, itself is located by position vector R relative to the fixed frame XYZ.

The noninertial frame is assumed to rotate with angular velocity ω. A particle is instantaneously

located relative to the moving frame by position vector r= ix+ jy+ kz. Relative to inertial reference

frame XYZ, the position of the particle is denoted by position vector X. From the geometry of the figure,

X =R+ r.

The velocity of the particle relative to an observer in the XYZ system is

VXYZ =
dX

dt
=
dR

dt
+
dr

dt
=V rf +

dr

dt
4 36

where, as in the previous section, V rf is the instantaneous velocity of the control volume frame itself

relative to the inertial XYZ reference frame.

Substituting from Eq. 2,

dVCV

dt
=

Veme

M0−met
−g

Separating variables and integrating gives

VCV =
VCV

0

dVCV =
t

0

Vemedt

M0−met
−

t

0

gdt= −Ve ln
M0−met

M0

−gt

At t=10 s,

VCV = −3500
m

s
× ln

350 kg

400 kg
−9 81

m

s2
×10 s

VCV =369 m s
VCV t=10s
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We must be careful in evaluating dr dt because both the magnitude, r , and the orientation of the

unit vectors, i, j, and k, are functions of time. Thus

dr

dt
=

d

dt
xi+ yj+ zk = i

dx

dt
+ x

di

dt
+ j

dy

dt
+ y

dj

dt
+ k

dz

dt
+ z

dk

dt
4 37a

The terms dx dt, dy dt, and dz dt are the velocity components of the particle relative to xyz. Thus

Vxyz = i
dx

dt
+ j

dy

dt
+ k

dz

dt
4 37b

You may recall from dynamics that for a rotating coordinate system

ω× r= x
di

dt
+ y

dj

dt
+ z

dk

dt
4 37c

Combining Eqs. 4.37a, 4.37b, and 4.37c, we obtain

dr

dt
=V xyz +ω× r 4 37d

Substituting into Eq. 4.36 gives

VXYZ =V rf +V xyz +ω× r 4 38

The acceleration of the particle relative to an observer in the inertial XYZ system is then

aXYZ =
dVXYZ

dt
=
dV rf

dt
+
dV xyz

dt
XYZ

+
d

dt
ω × r

or

aXYZ = arf +
dV xyz

dt
XYZ

+
d

dt
ω× r 4 39

Both V xyz and r are measured relative to xyz, so the same caution observed in developing Eq. 4.37d

applies. Thus

dV xyz

dt
XYZ

= i
du

dt
+ j

dυ

dt
+ k

dw

dt
+ ω ×V xyz = axyz + ω ×V xyz 4 40a

and

d

dt
ω× r =

dω

dt
× r+ω×

dr

dt

=ω× r+ω× V xyz +ω× r

X

rω

R

y

z

x

Y

X

Z

Particle

Fig. 4.5 Location of a particle in inertial XYZ and noninertial xyz

reference frames.
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or

d

dt
ω× r =ω× r+ω×V xyz +ω× ω× r 4 40b

Substituting Eqs. 4.40a and 4.40b into Eq. 4.39, we obtain

aXYZ = arf + axyz +2ω ×V xyz +ω× ω× r +ω× r 4 41

Equation 4.41 relates the acceleration of a fluid particle as measured in the two frames (the inertial frame

XYZ and the noninertial frame xyz). The terms in the equations are

aXYZ : Absolute rectilinear acceleration of a particle relative to fixed reference frame XYZ.

arf : Absolute rectilinear acceleration of origin of moving reference frame xyz relative to

fixed frame XYZ.

axyz : Rectilinear acceleration of a particle relative to moving reference frame xyz

(this acceleration would be that “seen” by an observer on moving frame

xyz; axyz = dV xyz dt xyz).

2ω ×V xyz : Coriolis acceleration due to motion of the particle within moving frame xyz.

ω × ω × r : Centripetal acceleration due to rotation of moving frame xyz.

ω × r : Tangential acceleration due to angular acceleration of moving reference frame xyz.

Substituting aXYZ , as given by Eq. 4.41, into Eq. 4.35, we obtain

Fsystem =
M system

arf + axyz +2ω ×V xyz + ω × ω × r +ω× r dm

or

F−
M system

arf +2ω ×V xyz + ω × ω × r +ω× r dm=
M system

axyzdm 4 42a

But

M system

axyz dm=
M system

dV xyz

dt
xyz

dm=
d

dt M system

V xyz dm

xyz

=
dPxyz

dt
system

4 42b

Combining Eqs. 4.42a and 4.42b, we obtain

F −
M system

arf +2ω ×V xyz + ω × ω × r +ω× r dm=
dPxyz

dt
system

or

FS +FB−
V system

arf +2ω ×V xyz + ω × ω × r +ω× r ρdV--- =
dPxyz

dt
system

4 43

Equation 4.43 is a statement of Newton’s second law for a system. The system derivative,

dPxyz dt, represents the rate of change of momentum, Pxyz, of the system measured relative to xyz,

as seen by an observer in xyz. This system derivative can be related to control volume variables

through Eq. 4.25,

dN

dt system

=
∂

∂t CV

η ρ dV--- +
CS

η ρ V xyz dA 4 25
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To obtain the control volume formulation, we set N =Pxyz, and η=V xyz. Then Eqs. 4.25 and 4.43 may be

combined to give

FS +FB−
CV

arf +2ω×Vxyz +ω× ω× r +ω× r ρ dV---

=
∂

∂t CV

V xyz ρ dV--- +
CS

V xyzρ Vxyz d A

4 44

Equation 4.44 is the most general control volume form of Newton’s second law. Comparing the

momentum equation for a control volumemoving with arbitrary acceleration, Eq. 4.44, with that for a con-

trol volumemovingwith rectilinear acceleration, Eq. 4.33, we see that the only difference is the presence of

three additional terms on the left side of Eq. 4.44. These terms result from the angular motion of noninertial

reference frame xyz. In dynamics these terms are often referred to as “fictitious” forces that arise due to

inertia effects present when we use a noninertial xyz coordinate system. These are the Coriolis force due

to particle motion within the xyz coordinates and centripetal and tangential forces due to the xyz coor-

dinate system’s rotational motion, respectively. As we should expect, the general form, Eq. 4.44, reduces

to the rectilinear acceleration form, Eq. 4.33, when the angular terms are zero, and to the inertial control

volume form, Eq. 4.26, when all of the terms for the control volume motion (arf , ω, and ω) are zero.

The precautions concerning the use of Eqs. 4.26 and 4.33 also apply to the use of Eq. 4.44. Before

attempting to apply this equation, one must draw the boundaries of the control volume and label appro-

priate coordinate directions. For a control volume moving with arbitrary acceleration, one must label a

coordinate system xyz on the control volume and an inertial reference frame XYZ. Example 4.13 shows

how the absolute velocity of a particle is determined with respect to a moving reference frame.

Example 4.13 VELOCITY IN FIXED AND NONINERTIAL REFERENCE FRAMES

A reference frame, xyz, moves arbitrarily with respect to a fixed frame, XYZ. A particle moves with velocity V xyz = dx dt i+

dy dt j+ dz dt k, relative to frame xyz. Show that the absolute velocity of the particle is given by

VXYZ =V rf +V xyz +ω× r

Given: Fixed and noninertial frames as shown.

Find: VXYZ in terms of V xyz, ω, r, and V rf .

Solution: From the geometry of the sketch, X =R+ r, so

VXYZ =
dX

dt
=
dR

dt
+
dr

dt
=V rf +

dr

dt

Since

r= xi+ yj+ xk

we have

dr

dt
=
dx

dt
i+

dy

dt
j+

dz

dt
k+ x

di

dt
+ y

dj

dt
+ z

dk

dt

or

dr

dt
=V xyz + x

di

dt
+ y

dj

dt
+ z

dk

dt

The problem now is to evaluate di dt, dj dt, and dk dt that result from the angular motion of frame xyz. To evaluate these

derivatives, we must consider the rotation of each unit vector caused by the three components of the angular velocity, ω,

of frame xyz.

X

r

ω

X

R

z

y

x

Particle
Y

Z

108 Chapter 4 Basic Equations in Integral Form for a Control Volume

www.konkur.in

Telegram: @uni_k



Consider the unit vector i. It will rotate in the xy plane because of ωz, as follows:

Now from the diagram

i t+Δt − i t = 1 sinΔθj+ 1 1−cosΔθ − i

But for small angles cos Δθ≈1− Δθ
2
2 and sin Δθ≈Δθ, so

i t+Δt − i t = 1 Δθj+ 1
Δθ

2

2
− i = 1 Δθ j−

Δθ

2
i

In the limit as Δt 0, since Δθ=ωz Δt,

di

dt due toωz

lim
Δt 0

=0
i t+Δt − i t

Δt
= lim

Δt 0

1 ωzΔt j−
ωzΔt

2
i

Δt

di

dt due toωz

= jωz

Similarly, i will rotate in the xz plane because of ωy.

Then from the diagram

i t+Δt − i t = 1 sin Δθ −k + 1 1−cosΔθ − i

For small angles

i t+Δt − i t = 1 Δθ −k + 1
Δθ

2

2
− i = 1 Δθ −k−

Δθ

2
i

In the limit as Δt 0, since Δθ=ωy Δt,

di

dt due toωy

= lim
Δt 0

i t+Δt − i t

Δt
= lim

Δt 0

1 ωy −k−
ωyΔt

2
i

Δt

di

dt due toωy

= −kωy

y(t + ∆t)

i(t + ∆t)

x(t + ∆t)
ωz

y(t)

x(t)
i (t)

^

i(t + ∆t)
^

i(t + ∆t) – i(t)
^

^
i(t)

^

∆θ
^

x(t)

z(t)

x(t + Δt) 

z(t + Δt)

Δθ

ωy

Enlarged sketch

i (t + Δt )
^

i (t + t)
^

i (t + tΔ

Δ

) –
^

i (t)
^

i (t)
^

i (t)
^
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4.7 The Angular-Momentum Principle
We will now derive a control volume form of the angular-momentum principle. There are two obvious

approaches we can use to express the angular-momentum principle: We can use an inertial (fixed) XYZ

control volume; we can also use a rotating xyz control volume. For each approach we will start with the

principle in its system form (Eq. 4.3a), then write the system angular momentum in terms of XYZ or xyz

coordinates, and finally use Eq. 4.10 (or its slightly different form, Eq. 4.25) to convert from a system to a

control volume formulation. To verify that these two approaches are equivalent, we will use each

approach to solve the same problem, in Examples 4.14 and 4.15.

There are two reasons for the material of this section. We wish to develop a control volume equation

for each of the basic physical laws of Section 4.2 and we will need the results for use in Chapter 10,

where we discuss rotating machinery.

Equation for Fixed Control Volume

The angular-momentum principle for a system in an inertial frame is

T =
dH

dt
system

4 3a

where

T = total torque exerted on the system by its surroundings, and

H =angular momentum of the system.

H =
M system

r ×V dm=
V-- system

r ×V ρ dV--- 4 3b

All quantities in the system equation must be formulated with respect to an inertial reference frame.

Reference frames at rest, or translating with constant linear velocity, are inertial, and Eq. 4.12 can be used

directly to develop the control volume form of the angular-momentum principle.

The position vector, r, locates each mass or volume element of the system with respect to the coor-

dinate system. The torque, T , applied to a system may be written

T = r ×Fs +
M system

r × g dm+ T shaft 4 3c

Rotation in the yz plane because of ωx does not affect i. Combining terms,

di

dt
=ωzj−ωyk

By similar reasoning,
dj

dt
=ωxk−ωzi and

dk

dt
=ωyi−ωxj

Thus

x
di

dt
+ y

dj

dt
+ z

dk

dt
= zωy−yωz i+ xωz−zωx j+ yωx−xωy k

But

ω × r =
i j k

ωx ωy ωz

x y z

= zωy−yωz i+ xωz−zωx j+ yωx−xωy k

Combining these results, we obtain

VXYZ =V rf +V xyz + ω × r
VXYZ
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where Fs is the surface force exerted on the system.

The relation between the system and fixed control volume formulations is

dN

dt system

=
∂

∂t CV

η ρ dV--- +
CS

η ρV dA 4 10

where

Nsystem =
M system

η dm

If we set N =H, then η= r ×V , and

dH

dt
system

=
∂

∂t CV

r ×V ρ dV--- +
CS

r ×V ρV dA 4 45

Combining Eqs. 4.3a, 4.20, and 4.45, we obtain

r ×Fs +
M system

r × g dm+ T shaft =
∂

∂t CV

r ×V ρ dV--- +
CS

r ×V ρV dA

Since the system and control volume coincide at time t0,

T =TCV

and

r ×Fs +
CV

r × g ρ dV--- + T shaft =
∂

∂t CV

r ×V ρ dV--- +
CS

r ×V ρV dA 4 46

Equation 4.46 is a general formulation of the angular-momentum principle for an inertial control vol-

ume. The left side of the equation is an expression for all the torques that act on the control volume.

Terms on the right express the rate of change of angular momentum within the control volume and

the net rate of flux of angular momentum from the control volume. All velocities in Eq. 4.46 are meas-

ured relative to the fixed control volume.

For analysis of rotating machinery, Eq. 4.46 is often used in scalar form by considering only the

component directed along the axis of rotation. This equation is applied to turbomachinery in

Chapter 10.

The application of Eq. 4.46 to the analysis of a simple lawn sprinkler is illustrated in Example 4.14.

This same problem is considered in Example 4.15 using a rotating control volume.

Example 4.14 LAWN SPRINKLER: ANALYSIS USING FIXED CONTROL VOLUME

A small lawn sprinkler is shown in the sketch at right. At an inlet gage pressure of 20 kPa, the total volume flow rate of water

through the sprinkler is 7.5 liters per minute and it rotates at 30 rpm. The diameter of each jet is 4 mm. Calculate the jet speed

relative to each sprinkler nozzle. Evaluate the friction torque at the sprinkler pivot.

Given: Small lawn sprinkler as shown.

Find: (a) Jet speed relative to each nozzle.

(b) Friction torque at pivot.

Solution: Apply continuity and angular momentum equations using

fixed control volume enclosing sprinkler arms.

Vrel
Vrel

ω

R = 150 mm

Q = 7.5 L/min
= 30 rpmω

α = 30°

psupply = 20 kPa (gage)
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Governing equations:

0 1
∂

∂t CV

ρdV
CS

ρV dA 0

r ×Fs +
CV

r × gρdV--- + Tshaft =
∂

∂t CV

r ×VρdV--- +

CS

r ×VρV dA

1

where all velocities are measured relative to the inertial coordinates XYZ.

Assumptions:

1 Incompressible flow.

2 Uniform flow at each section.

3 ω = constant

From continuity, the jet speed relative to the nozzle is given by

Vrel =
Q

2Ajet

=
Q

2

4

πD2
jet

=
1

2
× 7 5

L

min
×
4

π

1

4
2
mm2

×
m3

1000 L
× 106

mm2

m2
×
min

60 s

Vrel =4 97 m s
Vrel

Consider terms in the angular momentum equation separately. Since atmospheric pressure acts on the entire control surface, and

the pressure force at the inlet causes no moment about O, r ×Fs =0. The moments of the body (i.e., gravity) forces in the two

arms are equal and opposite and hence the second term on the left side of the equation is zero. The only external torque acting on

the CV is friction in the pivot. It opposes the motion, so

T shaft = −TfK 2

Our next task is to determine the two angular momentum terms on the right side of Eq. 1. Consider the unsteady term.

This is the rate of change of angular momentum in the control volume. It is clear that although the position r and velocity

V of fluid particles are functions of time in XYZ coordinates, because the sprinkler rotates at constant speed the control volume

angular momentum is constant in XYZ coordinates this term is zero. However as an exercise in manipulating vector quantities, let

us derive this result. Before we can evaluate the control volume integral, we need to develop expressions for the instantaneous

position vector, r, and velocity vector, V (measured relative to the fixed coordinate system XYZ) of each element of fluid in the

control volume. OA lies in the XY plane; AB is inclined at angle α to the XY plane; point B is the projection of point B on the

XY plane.

We assume that the length, L, of the tip AB is small compared with the length, R, of the horizontal arm OA. Consequently we

neglect the angular momentum of the fluid in the tips compared with the angular momentum in the horizontal arms.

A

B

B'

Isometric view Plan view

X

Y

Z

O

O

A

X
B'

Y

α

ω

θ

θ

θ

VrelVrel

R = 150 mm

α = 30°

psupply = 20 kPa (gage)

CV

(Control volume
is fixed

wrt XYZ )

Q = 7.5 L/min
= 30 rpm

Z

Y

X

Tf

ω

ω

O

O
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Consider flow in the horizontal tube OA of length R. Denote the radial distance from O by r.

At any point in the tube the fluid velocity relative to fixed coordinates XYZ is the sum of the

velocity relative to the tube V t and the tangential velocity ω × r. Thus

V = I Vt cos θ−rω sin θ + J Vt sin θ+ rω cos θ

The angle θ is a function of time. The position vector is

r = Ir cos θ+ Jr sin θ

and

r × V =K r2ω cos2θ+ r2ω sin2 θ =Kr2ω

Then

V--OA
r × V ρ dV--- =

R

O

Kr2ωρA dr=K
R3ω

3
ρA

and

∂

∂t V--OA
r × V ρ dV--- =

∂

∂t
K
R3ω

3
ρA =0 3

where A is the cross-sectional area of the horizontal tube. Identical results are obtained for the other horizontal tube in the control

volume. We have confirmed our insight that the angular momentum within the control volume does not change with time.

Now we need to evaluate the second term on the right, the flux of momentum across the control surface. There are three

surfaces through which we have mass and therefore momentum flux: the supply line (for which r × V =0) because r =0

and the two nozzles. Consider the nozzle at the end of branch OAB. For L R, we have

rjet = rB ≈ r r=R = Ir cos θ+ Jr sin θ r=R = IR cos θ+ JR sin θ

and for the instantaneous jet velocity V j we have

V j =V rel +V tip = IVrel cos α sin θ−JVrel cos α cos θ+KVrel sin α− IωR sin θ+ JωR cos θ

V j = I Vrel cos α−ωR sin θ−J Vrel cos α−ωR cos θ+KVrel sin α

rB ×V j = IRVrel sin α sin θ−JRVrel sin α cos θ−KR Vrel cos α−ωR sin2 θ+ cos2 θ

rB ×V j = IRVrel sin α sin θ−JRVrel sin α cos θ−KR Vrel cos α−ωR

The flux integral evaluated for flow crossing the control surface at location B is then

CS

r ×V j ρV dA= IRVrel sin α sin θ−JRVrel sin α cos θ−KR Vrel cos α−ωR ρ
Q

2

The velocity and radius vectors for flow in the left arm must be described in terms of the same unit vectors used for the right

arm. In the left arm the I and J components of the cross product are of opposite sign since sin θ+ π = −sin θ and

cos θ−π = −cos θ . Thus for the complete CV,

CS

r ×V j ρV dA= −KR Vrel cos α−ωR ρQ 4

Substituting terms (2), (3), and (4) into Eq. 1, we obtain

−TfK = −KR Vrel cos α−ωR ρQ

r

r

Y

A

Vt

X
O

Plan view

ω

θ

θ
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Equation for Rotating Control Volume

In problems involving rotating components, such as the rotating sprinkler of Example 4.14, it is

often convenient to express all fluid velocities relative to the rotating component. The most con-

venient control volume is a noninertial one that rotates with the component. In this section we

develop a form of the angular-momentum principle for a noninertial control volume rotating about

an axis fixed in space.

Inertial and noninertial reference frames were related in Section 4.6. Figure 4.5 showed the notation

used. For a system in an inertial frame,

T system =
dH

dt
system

4 3a

The angular momentum of a system in general motion must be specified relative to an inertial reference

frame. Using the notation of Fig. 4.5,

Hsystem =
M system

R+ r ×VXYZ dm=
V-- system

R+ r ×VXYZ ρdV---

With R=0 the xyz frame is restricted to rotation within XYZ, and the equation becomes

Hsystem =
M system

r ×VXYZ dm=
V-- system

r ×VXYZ ρdV---

so that

T system =
d

dt M system

r ×VXYZ dm

Since the mass of a system is constant,

T system =
M system

d

dt
r ×VXYZ dm

or

Tf =R Vrel cos α−ωR ρQ

This expression indicates that when the sprinkler runs at constant speed the friction torque at the sprinkler pivot just balances the

torque generated by the angular momentum of the two jets.

From the data given,

ωR=30
rev

min
× 150 mm×2π

rad

rev
×
min

60 s
×

m

1000 mm
=0 471 m s

Substituting gives

Tf =150 mm× 4 97
m

s
× cos 30 −0 471

m

s
999

kg

m3
×7 5

L

min

×
m3

1000 L
×
min

60 s
×

N s3

kg m
×

m

1000 mm

Tf =0 0718 N m
Tf

This problem illustrates use of the angular-
momentum principle for an inertial control
volume. Note that in this example the
fluid particle position vector r and velocity
vector V are time-dependent (through θ)
in XYZ coordinates. This problem is also
solved using a noninertial (rotating) xyz
coordinate system in Example 4.15.
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or

T system =
M system

dr

dt
×VXYZ + r ×

dVXYZ

dt
dm 4 47

From the analysis of Section 4.6,

VXYZ =V rf +
dr

dt
4 36

With xyz restricted to pure rotation, V rf =0. The first term under the integral on the right side of

Eq. 4.47 is then

dr

dt
×
dr

dt
=0

Thus Eq. 4.47 reduces to

T system =
M system

r ×
dVXYZ

dt
dm=

M system

r × aXYZ dm 4 48

From Eq. 4.41 with arf =0 (since xyz does not translate),

aXYZ = axyz +2ω×V xyz +ω× ω× r +ω× r

Substituting into Eq. 4.48, we obtain

T system =
M system

r × axyz +2ω ×V xyz + ω × ω × r +ω× r dm

or

T system−
M system

r × 2ω×V xyz +ω× ω× r +ω× r dm

=
M system

r × axyz dm=
M system

r ×
dV xyz

dt
xyz

dm

4 49

We can write the last term as

M system

r ×
dV xyz

dt
xyz

dm=
d

dt M system

r ×V xyz dm xyz=
dHxyz

dt
system

4 50

The torque on the system is given by

T system = r ×Fs +
M system

r × g dm+ T shaft 4 3c

The relation between the system and control volume formulations is

dN

dt system

=
∂

∂t CV

η ρ dV--- +
CS

η ρV xyz dA 4 25

where

Nsystem =
M system

η dm
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Setting N equal to Hxyz system and η= r ×V xyz yields

dHxyz

dt
system

=
∂

∂t CV

r ×V xyz ρ dV--- +
CS

r ×V xyz ρV xyz dA 4 51

Combining Eqs. 4.49, 4.50, 4.51, and 4.3c, we obtain

r ×Fs +
M system

r × g dm+ T shaft

−
M system

r × 2ω×V xyz +ω× ω× r +ω× r dm

=
∂

∂t CV

r ×V xyzρdV--- +
CS

r ×V xyzρV xyz dA

Since the system and control volume coincided at t0,

r ×Fs +
CV

r × g ρ dV--- + T shaft

−
CV

r × 2ω×V xyz +ω× ω× r +ω× r ρ dV---

=
∂

∂t CV

r ×V xyzρdV--- +
CS

r ×V xyzρV xyz dA

4 52

Equation 4.52 is the formulation of the angular-momentum principle for a noninertial control volume

rotating about an axis fixed in space.All fluid velocities in Eq. 4.52 are evaluated relative to the control

volume. Comparing Eq. 4.52 with Eq. 4.46 (for inertial XYZ cooordinates) we see that the noninertial,

rotating xyz coordinates have an extra “moment” term on the left side that includes three components.

As we discussed following Eq. 4.44, these components arise because of “fictitious” forces: the Coriolis

force because of fluid particle motion within the xyz coordinates, and centripetal and tangential forces

because of the xyz coordinates’ rotational motion, respectively. Equation 4.52 reduces to Eq. 4.46 when

the control volume is not in motion (when ω and ω are zero). Even though we have the extra term to

evaluate, Eq. 4.52 is sometimes simpler to use than Eq. 4.44 because a problem that is unsteady in XYZ

coordinates becomes steady state in xyz coordinates, as we will see in Example 4.15.

Example 4.15 LAWN SPRINKLER: ANALYSIS USING ROTATING CONTROL VOLUME

A small lawn sprinkler is shown in the sketch at right. At an inlet gage pres-

sure of 20 kPa, the total volume flow rate of water through the sprinkler is 7.5

liters per minute and it rotates at 30 rpm. The diameter of each jet is 4 mm.

Calculate the jet speed relative to each sprinkler nozzle. Evaluate the friction

torque at the sprinkler pivot.

Given: Small lawn sprinkler as shown.

Find: (a) Jet speed relative to each nozzle.

(b) Friction torque at pivot.

Solution: Apply continuity and angular momentum equations using rotating A control volume enclosing sprinkler arms.

Vrel
Vrel

ω

R = 150 mm

Q = 7.5 L/min
= 30 rpmω

α = 30°

psupply = 20 kPa (gage)
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Governing equations:

0 1

∂

∂t CV

ρ dV
CS

ρV xyz dA 0

r ×FS CV
r × gρ dV T shaft−

CV

r ×
0 3

2ω×V xyz ω× ω× r ω× r
ρ dV 4 52

0 1
∂

∂t CV

r ×V xyzρdV
CV

r ×V xyzρV xyz dA

Assumptions:

1 Steady flow relative to the rotating CV.

2 Uniform flow at each section.

3 ω= constant.

From continuity

Vrel =
Q

2Ajet

=
Q

2

4

πD2
jet

=
1

2
× 7 5

L

min
×
4

π

1

4
2
mm2

×
m3

1000 L
× 106

mm2

m2
×
min

60 s

Vrel =4 97 m s
Vrel

Consider terms in the angular-momentum equation separately. As in Example 4.13, the only external torque acting on the CV is

friction in the pivot. It opposes the motion, so

T shaft = −Tf k 1

The second integral on the left of Eq. 4.52 is evaluated for flow within the CV. Let the velocity and area within the sprinkler tubes

be VCV and ACV, respectively. Then, for one side, the first term (a Coriolis effect) is

CV

r × 2ω×V xyz ρ dV--- =
R

0

rer × 2ωk ×VCVer ρACV dr

=
R

0

rer ×2ωVCVeθρACV dr

=
R

0

2ωVCV ρACVr drk=ωR2ρVCVACVk one side

The flow in the bent portion of the tube has no radial component of velocity, so it does not contribute to the integral.

From continuity, Q=2 VCV ACV, so for both sides the integral becomes

CV

r × 2ω×V xyz ρ dV--- =ωR2ρQk 2

The second term in the integral (a moment generated by centripetal acceleration) is evaluated as

CV

r × ω× ω× r ρdV--- =
CV

rer × ωk × ωk × rer ρdV---

=
CV

rer × ωk ×ωreθ ρdV--- =
CV

rer ×ω2r −er ρdV--- = 0

so it contributes no torque. The force generated by centripetal acceleration is radial, so it generates no moment.

VrelVrel

ω

R = 150 mm

α = 30°

psupply = 20 kPa (gage)

CV

(Control volume
rotates with

sprinkler arm)

Q = 7.5 L/min
ω = 30 rpm z r

Tf
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4.8 The First and Second Laws of Thermodynamics
The first law of thermodynamics is a statement of conservation of energy. Recall that the system for-

mulation of the first law was

Q−W =
dE

dt system

4 4a

where the total energy of the system is given by

Esystem =
M system

e dm=
V-- system

e ρ dV--- 4 4b

and

e= u+
V2

2
+ gz

In Eq. 4.4a, the rate of heat transfer, Q, is positive when heat is added to the system from the surround-

ings; the rate of work, W , is positive when work is done by the system on its surroundings. (Note that

some texts use the opposite notation for work.)

The integral on the right side of Eq. 4.52 is evaluated for flow crossing the control surface. For the right arm of the sprinkler,

CS

r ×V xyzρV xyz dA=Rer ×Vrel cos α −eθ + sin αk + ρVrelAjet

=RVrel cos α −k + sin α −eθ ρ
Q

2

The velocity and radius vectors for flow in the left arm must be described in terms of the same unit vectors used for the right arm.

In the left sprinkler arm, the θ component has the same magnitude but opposite sign, so it cancels. For the complete CV,

CV

r ×Vxyz ρ V xyz dA= −RVrel cos α ρQk 3

Combining terms (1), (2), and (3), we obtain

−Tf k−ωR2ρQk= −RVrel cos α ρQk

or

Tf =R Vrel cos α−ωR ρQ

From the data given,

ωR=30
rev

min
× 150 mm×2π

rad

rev
×
min

60 s
×

m

1000 mm
=0 471 m s

Substituting gives

Tf =150 mm 4 97
m

s
× cos 30 −0 471

m

s
999

kg

m3
×7 5

L

min

×
m3

1000 L
×
min

60 s
×

N s2

kg m
×

m

1000 mm

Tf =0 0718 N m
Tf

This problem illustrates use of the angular-
momentum principle for a noninertial
(rotating) control volume. Note that in this
approach, unlike the inertial control vol-
ume of Example 4.14, the fluid particle
position vector r and velocity vector V are
not time-dependent. As we should expect,
the results agree using either an inertial or
noninertial control volume.
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To derive the control volume formulation of the first law of thermodynamics, we set

N =E and η= e

in Eq. 4.10 and obtain

dE

dt system

=
∂

∂t CV

e ρ dV--- +
CS

e ρV dA 4 53

Since the system and the control volume coincide at t0,

Q−W system = Q−W control volume

In light of this, Eqs. 4.4a and 4.53 yield the control volume form of the first law of thermodynamics,

Q−W =
∂

∂t CV

e ρ dV--- +
CS

e ρV dA 4 54

where

e= u+
V2

2
+ gz

Note that for steady flow the first term on the right side of Eq. 4.54 is zero.

Eq.4.54 isnot quite the sameformused inapplying the first law tocontrol volumeproblems.Toobtaina

formulation suitable and convenient for problem solutions, let us take a closer look at the work term,W .

Rate of Work Done by a Control Volume

The termW in Eq. 4.54 has a positive numerical value when work is done by the control volume on the

surroundings. The rate of work done on the control volume is of opposite sign to the work done by the

control volume.

The rate of work done by the control volume is conveniently subdivided into four classifications,

W =W s +Wnormal +Wshear +Wother

Let us consider these separately:

1. Shaft Work
We shall designate shaft workWs and hence the rate of work transferred out through the control surface

by shaft work is designated W s. Examples of shaft work are the work produced by the steam turbine

(positive shaft work) of a power plant, and the work input required to run the compressor of a refrigerator

(negative shaft work).

2. Work Done by Normal Stresses at the Control Surface
Recall that work requires a force to act through a distance. Thus, when a force, F, acts through an infin-

itesimal displacement, ds, the work done is given by

δW =F ds

To obtain the rate at which work is done by the force, divide by the time increment, Δt, and take the limit

as Δt 0. Thus the rate of work done by the force, F, is

W = lim
Δt 0

δW

Δt
= lim

Δt 0

F ds

Δt
or W =F V
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We can use this to compute the rate of work done by the normal and shear stresses. Consider the segment

of control surface shown in Fig. 4.6. For an element of area dAwe can write an expression for the normal

stress force dFnormal: It will be given by the normal stress σnn multiplied by the vector area element dA

(normal to the control surface).

Hence the rate of work done on the area element is

dFnormal V = σnn dA V

Since the work out across the boundaries of the control volume is the negative of the work done on the

control volume, the total rate of work out of the control volume due to normal stresses is

Wnormal = −
CS

σnn dA V = −
CS

σnnV dA

3. Work Done by Shear Stresses at the Control Surface
Just as work is done by the normal stresses at the boundaries of the control volume, so may work be done

by the shear stresses.

As shown in Fig. 4.6, the shear force acting on an element of area of the control surface is given by

dFshear = τ dA

where the shear stress vector, τ, is the shear stress acting in some direction in the plane of dA.

The rate of work done on the entire control surface by shear stresses is given by

CS

τ dA V =
CS

τ VdA

Since the work out across the boundaries of the control volume is the negative of the work done on the

control volume, the rate of work out of the control volume due to shear stresses is given by

W shear = −
CS

τ V dA

This integral is better expressed as three terms

W shear = −
CS

τ V dA

= −
A shafts

τ V dA−
A solid surface

τ V dA−
A ports

τ V dA

We have already accounted for the first term, since we includedW s previously. At solid surfaces, V =0,

so the second term is zero (for a fixed control volume). Thus,

W shear = −
A ports

τ V dA

dFshear =   dA
dA

τ

dFnormal =   nndA

Control surfaceNormal stress force

Shear stress force

σ

Fig. 4.6 Normal and shear stress forces.
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This last term can be made zero by proper choice of control surfaces. If we choose a control surface

that cuts across each port perpendicular to the flow, then dA is parallel to V . Since τ is in the

plane of dA, τ is perpendicular to V . Thus, for a control surface perpendicular to V ,

τ V =0 and W shear =0

4. Other Work
Electrical energy could be added to the control volume and electromagnetic energy could be absorbed. In

most problems, such contributions will be absent, but we should note them in our general formulation.

With all of the terms in W evaluated, we obtain

W =Ws−
CS

σnnV dA+W shear +Wother 4 55

Control Volume Equation

Substituting the expression for W from Eq. 4.55 into Eq. 4.54 gives

Q−W s +
CS

σnnV dA−Wshear−Wother =
∂

∂t CV

e ρ dV--- +
CS

e ρV dA

Rearranging this equation, we obtain

Q−W s−W shear−Wother =
∂

∂t CV

e ρ dV--- +
CS

e ρV dA−
CS

σnnV dA

Since ρ=1 υ, where υ is specific volume, then

CS

σnnV dA=
CS

σnn υ ρV dA

Hence

Q−Ws−Wshear−Wother =
∂

∂t CV

e ρ dV--- +
CS

e−σnnυ ρV dA

Viscous effects can make the normal stress, σnn, different from the negative of the thermodynamic pres-

sure, −p. However, for most flows of common engineering interest, σnn −p. Then

Q−W s−Wshear−Wother =
∂

∂t CV

e ρ dV--- +
CS

e+ pυ ρV dA

Finally, substituting e= u+V2 2+ gz into the last term, we obtain the familiar form of the first law for a

control volume,

Q−W s−W shear−Wother =
∂

∂t CV

e ρ dV--- +
CS

u+ pυ+
V2

2
+ gz ρV dA 4 56

Each work term in Eq. 4.56 represents the rate of work done by the control volume on the surroundings.

Note that in thermodynamics, for convenience, the combination u+ pυ (the fluid internal energy plus

what is often called the “flow work”) is usually replaced with enthalpy, h≡ u+ pυ. Example 4.16 illus-

trates the application of the first law to a steady flow system, and Example 4.17 shows how to apply the

first law to a system in which the flow is unsteady.
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Example 4.16 COMPRESSOR: FIRST LAW ANALYSIS

Air at 101 kPa, 21 C, enters a compressor with negligible velocity and

is discharged at 344 kPa, 38 C through a pipe with 0 09 m2 area. The

flow rate is 9 kg s. The power input to the compressor is 447 kW.

Determine the rate of heat transfer.

Given: Air enters a compressor at and leaves at with conditions

as shown. The air flow rate is 9 kg s and the power input to the com-

pressor is 447 kW.

Find: Rate of heat transfer.

Solution:

Governing equations:

0 1

∂

∂t CV

ρ dV
CS

ρV dA 0

0 4 0 1

Q−Ws−Wshear

∂

∂t CV

e ρ dV
CS

u+ pυ+
V2

2
+ gz ρV dA

Assumptions:

1 Steady flow.

2 Properties uniform over inlet and outlet sections.

3 Treat air as an ideal gas, p= ρRT .

4 Area of CV at and perpendicular to velocity, thus W shear =0.

5 z1 = z2.

6 Inlet kinetic energy is negligible.

Under the assumptions listed, the first law becomes

Q−W s =
CV

u+ pυ+
V2

2
+ gz ρV dA

Q−W s =
CS

h+
V2

2
+ gz ρV dA

or

Q=W s +
CS

h+
V2

2
+ gz ρV dA

For uniform properties, assumption (2), we can write

≈0 6

Q Ws h1
V2
1

2
gz1 −ρ1V1A1 h2

V2
2

2
gz2 ρ2V2A2

For steady flow, from conservation of mass,

CS

ρV dA=0

1
2

p1 = 101 kPa

T1 = 21°C

V1= 0

p2 = 344 kPa

T2 = 38°C

A2 = 0.09m2

CV
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Therefore, − ρ1V1A1 + ρ2V2A2 =0, or ρ1V1A1 = ρ2V2A2 =m. Hence we can write

0 5

Q W s m h2−h1
V2
2

2
g z2−z1

Assume that air behaves as an ideal gas with constant cp. Then h2−h1 = cp T2−T1 , and

Q=Ws +m cp T2−T1 +
V2
2

2

From continuity V2 =m ρ2A2. Since p2 = ρ2RT2,

V2 =
m

A2

RT2

p2
=
9 kg

s
×

1

0 09 m2
×287

j

kg K
× 38 273 K×

1

344,000 Pa
×
Pa m2

N
×
N m

j

V2 =25 9 m s

Note that power input is to the CV, so W s = −447 kW, and

Q=W s +mcp T2−T1 +m
V2
2

2

Q= −447 000W×9
kg

s
× 1005

j

kg K
× 273+ 38 − 273+ 21 K×

W s

j

+ 9
kg

s
×

25 9
2

2

m2

s2
×

N s2

kg m
×
W s2

N m

Q= −290 2 kW
heat rejection Q

This problem illustrates use of the first law
of thermodynamics for a control volume.
It is also an example of the care that must
be taken with unit conversions for mass,
energy, and power.

Example 4.17 TANK FILLING: FIRST LAW ANALYSIS

A tank of 0 1 m3 volume is connected to a high-pressure air line; both line and tank are initially at a uniform temperature of 20 C.

The initial tank gage pressure is 100 kPa. The absolute line pressure is 2.0MPa; the line is large enough so that its temperature and

pressure may be assumed constant. The tank temperature is monitored by a fast-response thermocouple. At the instant after the

valve is opened, the tank temperature rises at the rate of 0.05 C/s. Determine the instantaneous flow rate of air into the tank if heat

transfer is neglected.

Given: Air supply pipe and tank as shown. At t=0+ , ∂T ∂t=0 05 C s.

Find: m at t=0+ .

Solution: Choose CV shown, apply energy equation.

Governing equations:

0 1 0 2 0 3 0 4

Q −W s −Wshear−Wother

∂

∂t CV

e ρ dV
CS

e pυ ρV dA

0 5 0 6

e u
V2

2
gz

Tank    = 0.1 m3

Initial conditions: T = 20°C
                          p = 100 kPa (gage)

V

Valve

High-pressure line

T = 20°C
p = 20 MPa

      (absolute)

CV

1234.8 The First and Second Laws of Thermodynamics

www.konkur.in

Telegram: @uni_k



Assumptions:

1 Q=0 (given).

2 Ws =0.

3 Wshear =0.

4 Wother =0.

5 Velocities in line and tank are small.

6 Neglect potential energy.

7 Uniform flow at tank inlet.

8 Properties uniform in tank.

9 Ideal gas, p= ρRT ,du= cυdT .

Then

∂

∂t CV

utankρ dV--- + u+ pυ line −ρVA =0

This expresses the fact that the gain in energy in the tank is due to influx of fluid energy (in the form of enthalpy h= u+ pυ) from

the line. We are interested in the initial instant, when T is uniform at 20 C, so utank = uline = u, the internal energy at T; also,

pυline =RTline =RT , and

∂

∂t CV

u ρ dV--- + u+RT −ρVA =0

Since tank properties are uniform, ∂ ∂t may be replaced by d dt, and

d

dt
uM = u+RT m

where M is the instantaneous mass in the tank and m= ρVA is the mass flow rate, or

u
dM

dt
+M

du

dt
= um+RTm 1

The term dM dt may be evaluated from continuity:

Governing equation:

∂

∂t CV

ρdV--- +
CS

ρV dA=0

dM

dt
+ −ρVA =0 or

dM

dt
=m

Substituting in Eq. 1 gives

um+Mcυ
dT

dt
= um+RTm

or

m=
Mcυ dT dt

RT
=
ρV---cυ dT dt

RT
2

But at t=0, ptank =100 kPa (gage), and

ρ = ρtank =
ptank

RT
= 1 00+ 1 01 105

N

m2
×

kg K

287 N m
×

1

293 K

=2 39 kg m3
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The second law of thermodynamics applies to all fluid systems. Recall that the system formulation

of the second law is

dS

dt system

≥
1

T
Q 4 5a

where the total entropy of the system is given by

Ssystem =
M system

s dm=
V-- system

s ρ dV--- 4 5b

To derive the control volume formulation of the second law of thermodynamics, we set

N = S and η= s

in Eq. 4.10 and obtain

dS

dt system

=
∂

∂t CV

s ρ dV--- +
CS

s ρV dA 4 57

The system and the control volume coincide at t0; thus in Eq. 4.5a,

1

T
Q system =

1

T
Q CV =

CS

1

T

Q

A
dA

In light of this, Eqs. 4.5a and 4.57 yield the control volume formulation of the second law of

thermodynamics

∂

∂t CV

s ρ dV--- +
CS

s ρV dA≥
CS

1

T

Q

A
dA 4 58

In Eq. 4.58, the factor Q A represents the heat flux per unit area into the control volume through

the area element dA. To evaluate the term

CS

1

T

Q

A
dA

both the local heat flux, Q A , and local temperature, T , must be known for each area element of the

control surface.

4.9 Summary and Useful Equations
In this chapter we wrote the basic laws for a system: mass conservation (or continuity), Newton’s
second law, the angular-momentum equation, the first law of thermodynamics, and the second
law of thermodynamics. We then developed an equation (sometimes called the Reynolds

Substituting into Eq. 2, we obtain

m=2 39
kg

m3
×0 1 m3 ×717

N m

kg K
×0 05

K

s

×
kg K

287 N m
×

1

293 K
×1000

g

kg

m=0 102 g s m

This problem illustrates use of the first law
of thermodynamics for a control volume.
It is also an example of the care that must
be taken with unit conversions for mass,
energy, and power.
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Transport Theorem) for relating system formulations to control volume formulations. Using this
we derived control volume forms of:

✓ The mass conservation equation (sometimes called the continuity equation).
✓ Newton’s second law (in other words, a momentum equation) for:

• An inertial control volume.
• A control volume with rectilinear acceleration.
• A control volume with arbitrary acceleration.

✓ The angular-momentum equation for:
• A fixed control volume.
• A rotating control volume.

✓ The first law of thermodynamics (or energy equation).
✓ The second law of thermodynamics.

We discussed the physical meaning of each term appearing in these control volume
equations, and used the equations for the solution of a variety of flow problems. In particular,
we used a differential control volume to derive a famous equation in fluid mechanics—the
Bernoulli equation—and while doing so learned about the restrictions on its use in solving
problems.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to

refer to their page numbers for details!

Useful Equations
Continuity (mass

conservation), incompressible

fluid:
CS

V dA=0
(4.13a) Page 78

Continuity (mass

conservation), incompressible

fluid, uniform flow:

CS
V A=0

(4.13b) Page 78

Continuity (mass

conservation), steady flow:
CS

ρV dA=0
(4.15a) Page 78

Continuity (mass

conservation), steady flow,

uniform flow:

CS
ρV A=0

(4.15b) Page 78

Momentum (Newton’s

second law):
F =FS +FB =

∂

∂t CV

V ρ dV--- +
CS

V ρV dA
(4.17a) Page 83

Momentum (Newton’s

second law), uniform flow:
F =FS +FB =

∂

∂t CV

V ρ dV--- +
CS
VρV A

(4.17b) Page 83

Momentum (Newton’s

second law), scalar

components:

Fx =FSx +FBx
=

∂

∂t CV

u ρ dV--- +
CS

u ρV dA

Fy =FSy +FBy
=

∂

∂t CV

υ ρ dV--- +
CS

υ ρV dA

Fz =FSz +FBz
=

∂

∂t CV

w ρ dV--- +
CS

w ρV dA

(4.18a)

(4.18b)

(4.18c)

Page 84

Momentum (Newton’s second

law), uniform flow, scalar

components:

Fx =FSx +FBx
=

∂

∂t CV

u ρ dV--- +
CS

u ρV A

Fy =FSy +FBy
=

∂

∂t CV

υρ dV--- +
CS

υ ρV A

Fz =FSz +FBz
=

∂

∂t CV

w ρ dV--- +
CS

w ρV A

(4.18d)

(4.18e)

(4.18f)

Page 84
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Table (Continued)

Bernoulli equation (steady,

incompressible, frictionless,

flow along a streamline):

p

ρ
+
V2

2
+ gz= constant

(4.24) Page 95

Momentum (Newton’s second

law), inertial control volume

(stationary or constant speed):

F =FS +FB =
∂

∂t CV

V xyz ρ dV--- +
CS

V xyz ρ V xyz dA
(4.26) Page 97

Momentum (Newton’s second

law), rectilinear acceleration of

control volume:

FS +FB −
CV

arf ρ dV--- =
∂

∂t CV

V xyz ρ dV---
CS

V xyz ρV xyz dA
(4.33) Page 100

Angular-momentum principle:
r ×Fs +

CV

r × g ρ dV--- + T shaft =
∂

∂t CV

r ×V ρ dV--- +
CS

r ×V ρV dA
(4.46) Page 111

First law of thermodynamics: Q−Ws−Wshear−Wother

=
∂

∂t CV

e ρ dV--- +
CS

u+ pυ+
V2

2
+ gz ρV dA

(4.56) Page 121

Second law of

thermodynamics:
∂

∂t CV

s ρ dV--- +
CS

s ρV dA≥
CS

1

T
QA dA

(4.58) Page 125
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Chapter 5 Problems

Conservation of Mass
5.1 Determine which of the following velocity distributions are

possible three-dimensional incompressible flows.

(a) u=2y2 +2xz; υ= −2xy+6x2yz; w=3x2z2 + x3y4

(b) u= xyzt; υ= −xyzt2;w= z2 xt2−yt

(c) u= x2 +2y+ z2; υ= x−2y+ z; w= −2xz+ y2 +2z

5.2 Determine which of the following flow fields represent a possi-

ble incompressible flow.

(a) Vr =U cos θ; Vθ = −U sin θ

(b) Vr = −q 2πr; Vθ =K 2πr

(c) Vr =U cos θ 1− a r
2
; Vθ = −U sin θ 1+ a r

2

5.3 The x component of velocity in a steady, incompressible flow

field in the xy plane is u=A x, where A=2m2 s, and x is measured

in meters. Find the simplest y component of velocity for this

flow field.

5.4 The velocity components for an incompressible steady flow

field are u=A x2 + z2 and v=B xy+ yz . Determine the z com-

ponent of velocity for steady and for unsteady flow.

5.5 For the laminar boundary layer flow of an incompressible fluid,

the x component of velocity can be approximated as a linear variation

from u= 0 at the surface to the u=U at the boundary-layer edge, δ,

where U is the freestream velocity. The equation for the profile is

then u=U
y

δ
where δ= cx1 2 and c is a constant. Show that v is given

by v=
Uy

4x
. At a location where x= 0.5 m and d= 5mm, evaluate the

ratio
v

U
at the wall, at δ/2, and at δ.

5.6 The x component of velocity for a flow field is given as u=Ax2y2

where A = 0.3 m−3 s−1 and x and y are in meters. Determine the y

component of velocity for a steady incompressible flow. Determine

the equation of the streamline and plot the streamline that goes

through the point (x,y) = (1,4).

5.7 A viscous liquid is sheared between two parallel disks of radius

R, one of which rotates while the other is fixed. The velocity field

is purely tangential, and the velocity varies linearly with z from

Vθ =0 at z=0 (the fixed disk) to the velocity of the rotating disk

at its surface z= h . Derive an expression for the velocity field

between the disks.

Stream Function for Two-Dimensional
Incompressible Flow
5.8Determine the stream functionψ that will yield the velocity field

V =2y 2x+1 i+ x x+1 −2y2 j V

5.9 The stream function for a certain incompressible flow field

is given by the expression ψ = −Ur sin θ+ qθ 2π. Obtain an expres-

sion for the velocity field. Find the stagnation point(s) where V =0,

and show that ψ =0 there.

5.10 An incompressible frictionless flow field is specified by the

stream function ψ =5Ax−2Ay where A = 2m/s, and x and y are in

meters. Determine the velocity field. Plot the streamlines passing

between the points (x,y) = (2, 2) and (4, 1) and determine the flow

rate between the two streamlines.

5.11 Determine the stream function for the flow field specified by

u = 4y; υ=−4x, where x and y are in meters and u and v are in

m/s. Plot the streamlines passing between the points (x,y) = (0,0)

and (1,1) and determine the flow rate between the two streamlines.

5.12 The velocity in a parallel one-dimensional flow in the positive x

direction varies linearly from zero at y= 0 to 30 m/s at y= 1.5 m.

Determine the stream function. Calculate the volume flow rate and

the value of y at one-half of the total flow.

Motion of a Fluid Particle (Kinematics)
5.13 A flow field given by V = xy2 i− 1

3
y3j+ xyk Determine

(a) whether this is a one-, two-, or three-dimensional flow and

(b) whether it is a possible incompressible flow. Determine the

acceleration of a fluid particle at the location (x, y, z) = (1, 2, 3).

5.14 The velocity field within a laminar boundary layer is repre-

sented by the expression V =AU
y

x1 2
i+

AU

4

y2

x3 2
j, where A = 141

m-1/2 and the free stream velocity is U = 0.240 m/s. Demonstrate that

this is a possible incompressible velocity field. Determine the accel-

eration of a fluid particle at the point (x, y) = (5 m, 0.5 mm,)

5.15 A 4 m diameter tank is filled with water and then rotated at a

rate ofω=2π 1−e− t rad s. At the tank walls, viscosity prevents rel-

ative motion between the fluid and the wall. Determine the speed and

acceleration of the fluid particles next to the tank walls as a function

of time.

5.16 A fluid flows parallel to the x axis with a constant shear rate

given by
du

dy
=A where A = 0.1 s−1. Determine an expression for

the velocity field V . Determine the rate of rotation and the stream

function for this flow field.

5.17 The velocity field given by V =Axi−Ayj represents flow in a

rectangular corner. Evaluate the circulation around the unit square

with corners at (x,y) = (1,1), (1,2), (2,2) and (2,1) for the value of

A = 0.3 s−1.

5.18 Fluid passes through the set of thin, closely spaced blades at a

velocity of 3 m s. Determine the circulation for the flow.

V

30°

D = 0.6 m

P5.18
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5.19 A velocity field is given by V =2i−4x jm s. Determine an

equation for the streamline. Calculate the vorticity of the flow.

5.20 The flow between stationary parallel plates separated by

distance 2b is driven by a pressure gradient. The velocity field is

given by u=U 1−
y

b

2

, where U is the centerline velocity and

y is measured from the centerline. Evaluate the rates of linear and

angular deformation. Obtain an expression for the vorticity vector,

ζ, and find the location where the vorticity is a maximum.

5.21As a weather reconnaissance airplane flies through a cold front,
the outside air temperature instrument measures a rate of change

of – 0.7 F/min. The air speed is 400mph and the airplane is climbing

at a rate of 2500 ft/min. Assume that the front is stationary and

vertically uniform. Determine the rate of change of temperature with

respect to horizontal distance through the cold front.

5.22 Consider a steady, laminar, fully developed incompressible

flow between two infinite parallel plates as shown. The flow is

due to a pressure gradient applied in the x direction. Given that

V V z , w=0 and that gravity points in the negative y direction,

prove that υ=0 and that the pressure gradients in the x and y direc-

tions are constant.

x

U

z

y

P5.22

5.23 There is a fully developed laminar flow of an incompressible

fluid between two infinite parallel plates separated by a distance 2 h

as shown in the figure. The top plate moves with a velocity V0 and

there is a negative pressure gradient
dp

dx
(pressure decreases in the

x-direction). Derive an expression for the velocity profile. Determine

the pressure gradient and the rate of rotation for which the flow rate

is zero.

x

V0

2h

y

P5.23

Momentum Equation
5.24 There is a fully developed laminar flow of an incompressible

between two vertical infinite parallel plates due to a negative

pressure gradient in the y direction. Show that the velocity is a func-

tion of y only (u = 0) and that the pressure gradient in the y direction

is constant.

V0

x

z

y

P5.24

5.25 A liquid film flows on a horizontal surface due to a constant

shear stress on the top surface. The liquid film is thin, the flow is

fully developed, and the thickness is constant in the flow direction.

Determine the velocity profile u(x) and the pressure gradient
dp

dx
.

5.26 The flow in a laminar incompressible boundary layer can be

modeled as a linear profile u=U
y

δ
where δ is the boundary thickness

and varies with x as δ= cx1 2. Determine the rotation of a fluid

particle and the location of the maximum rate of rotation. Determine

the rates of angular and linear deformation and the positions of the

maximum values.

5.27 A cylinder of radius ri rotates at a speed ω coaxially inside a

fixed cylinder of radius ro. A viscous fluid fills the space between the

two cylinders. Determine the velocity profile in the space between

the cylinders and the shear stress on the surface of each cylinder.

Explain why the shear stresses are not equal.

ri

ro

ω

P5.27

5.28 The velocity profile for fully developed laminar flow in a

circular tube is u= umax 1− r R
2 . Obtain an expression for the

shear force per unit volume in the x direction for this flow. Evaluate

its maximum value for a pipe radius of 75 mm and a maximum

velocity of 3 m s for water.
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C H A P T E R 5

Introduction to Differential Analysis
of Fluid Motion
5.1 Conservation of Mass

5.2 Stream Function for Two-Dimensional

Incompressible Flow

5.3 Motion of a Fluid Particle (Kinematics)

5.4 Momentum Equation

5.5 Summary and Useful Equations

Learning Objectives
After completing this chapter, you should be able to

• Solve a flow problem using the differential continuity equation (conservation of mass).

• Determine the stream function and flow rate for a flow problem.

• Determine the motion of a fluid particle in a flow problem.

• Solve a flow problem using the differential momentum equation (Navier–Stokes equation).

Case Study

Computational fluid dynamics (CFD) represents one of the most
important advances in the area of fluid mechanics in the last few
decades. In CFD, the equations that govern the flow of fluids are
formulated numerically and programmed into software. CFD
techniques then allow the solution of many problems that were
either too difficult to solve analytically or too expensive to inves-
tigate experimentally. CFD software essentially produces a
video-camera-like tool that provides detailed pictures for fluid
flowing over an object, as in the case of the pickup truck shown
in the figure. CFD has had extensive use in a wide range of engi-
neering studies ranging from the pressure drop for water flow
through a pipe valve to the lift produced by air flowing over a
wing. Basic scientific studies such as the dispersal of particulates
in an airstream have also been studied using CFD.

The basic approach to formulating a CFD program is to divide
the fluid up intomany small cells; a typical problemmight have a
million cells. The basic equations, which we will study in this
chapter, are then put in numerical form and programmed. The
equations are difficult/impossible to solve analytically, and even
the numerical formulation of them is difficult. It is only through
the advances in computational power of the last several years has
it been possible to solve these equations.

As with any computer program, it is essential to validate the
results against reality. For this case of airflow over a pickup truck,
tests on a scale model could be performed in a wind tunnel and
the results compared to this picture. If there is good agreement,
the maker of the pickup can then modify the software to study a
variety of alternatives such as whether a deflector on top of the
cab or opening the tailgate while driving would make the airflow
more smooth and increase fuel economy.
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CFD solution for the airflow over a pickup truck.

128

www.konkur.in

Telegram: @uni_k



In Chapter 4, we developed the basic equations in integral form for a control volume. Integral equa-

tions are useful when we are interested in the gross behavior of a flow field and its effect on various

devices. However, the integral approach does not enable us to obtain detailed point-by-point knowl-

edge of the flow field. For example, the integral approach could provide information on the lift gen-

erated by a wing; it could not be used to determine the pressure distribution that produced the lift on

the wing.

To see what is happening in a flow in detail, we need differential forms of the equations of motion.

In this chapter we shall develop differential equations for the conservation of mass and Newton’s second

law of motion. Since we are interested in developing differential equations, we will need to analyze infin-

itesimal systems and control volumes. References 1 and 2 also provide details on the development of the

differential equations.

5.1 Conservation of Mass
In Chapter 2, we developed the field representation of fluid properties. The property fields are defined

by continuous functions of the space coordinates and time. The density and velocity fields were

related through conservation of mass in integral form in Chapter 4 (Eq. 4.12). In this chapter, we

shall derive the differential equation for conservation of mass in rectangular and in cylindrical coor-

dinates. In both cases the derivation is carried out by applying conservation of mass to a differential

control volume.

Rectangular Coordinate System

In rectangular coordinates, the control volume chosen is an infinitesimal cube with sides of length

dx,dy,dz as shown in Fig. 5.1. The density at the center, O, of the control volume is assumed to be

ρ and the velocity there is assumed to be V = iu+ jυ+ kw.

To evaluate the properties at each of the six faces of the control surface, we use a Taylor series

expansion about point O. For example, at the right face,

ρ x+ dx 2 = ρ+
∂ρ

∂x

dx

2
+

∂
2ρ

∂x2
1

2

dx

2

2

+

Neglecting higher-order terms, we can write

ρ x+ dx 2 = ρ+
∂ρ

∂x

dx

2

dy

dz

dx

Control volume

x

y

z

Ow

υ

u

Fig. 5.1 Differential control volume in rectangular coordinates.
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and

u x+ dx 2 = u+
∂u

∂x

dx

2

where ρ,u,∂ρ ∂x, and ∂u ∂x are all evaluated at point O. The corresponding terms at the left face are

ρ x−dx 2 = ρ+
∂ρ

∂x
−
dx

2
= ρ−

∂ρ

∂x

dx

2

u x−dx 2 = u+
∂u

∂x
−
dx

2
= u−

∂u

∂x

dx

2

We can write similar expressions involving ρ and υ for the front and back faces and ρ and w for the top

and bottom faces of the infinitesimal cube dx dy dz. These can then be used to evaluate the surface inte-

gral in Eq. 4.12 (recall that
CS
ρV dA is the net flux of mass out of the control volume):

∂

∂t CV

ρdV--- +
CS

ρV dA=0 4 12

Table 5.1 shows the details of this evaluation. Note: We assume that the velocity components u, υ, and w

are positive in the x, y, and z directions, respectively; the area normal is by convention positive out of the

cube; and higher-order terms [e.g., dx
2
] are neglected in the limit as dx, dy, and dz 0.

The result of all this work is

∂ρu

∂x
+
∂ρυ

∂x
+
∂ρw

∂x
dx dy dz

This expression is the surface integral evaluation for our differential cube. To complete Eq. 4.12, we

need to evaluate the volume integral (recall that ∂ ∂t
CV

ρdV--- is the rate of change of mass in the control

volume):

∂

∂t CV

ρdV---
∂

∂t
ρdx dy dz =

∂ρ

∂t
dx dy dz

Table 5.1
Mass Flux Through the Control Surface of a Rectangular Differential Control Volume

Surface Evaluation of ρV dA

Left
−x

= − ρ−
∂ρ

∂x

dx

2
u−

∂u

∂x

dx

2
dy dz= −ρu dy dz+

1

2
u

∂ρ

∂x
+ ρ

∂u

∂x
dx dy dz

Right
+ x

= ρ+
∂ρ

∂x

dx

2
u+

∂u

∂x

dx

2
dy dz= ρu dy dz+

1

2
u

∂ρ

∂x
+ ρ

∂u

∂x
dx dy dz

Bottom
−y

= − ρ−
∂ρ

∂y

dy

2
υ−

∂υ

∂y

dy

2
dx dz= −ρυ dx dz+

1

2
υ

∂ρ

∂y
+ ρ

∂υ

∂y
dx dy dz

Top
+ y

= ρ+
∂ρ

∂y

dy

2
υ+

∂υ

∂y

dy

2
dx dz= ρυ dx dz+

1

2
υ

∂ρ

∂y
+ ρ

∂υ

∂y
dx dy dz

Back
−z

= − ρ−
∂ρ

∂z

dz

2
w−

∂w

∂z

dz

2
dx dy= −ρw dx dy+

1

2
w

∂ρ

∂z
+ ρ

∂w

∂z
dx dy dz

Front
+ z

= ρ+
∂ρ

∂z

dz

2
w+

∂w

∂z

dz

2
dx dy= ρw dx dy+

1

2
w

∂ρ

∂z
+ ρ

∂w

∂z
dx dy dz

Adding the results for all six faces,

CS

ρV dA= u
∂ρ

∂x
+ ρ

∂u

∂x
+ υ

∂ρ

∂y
+ ρ

∂υ

∂y
+ w

∂ρ

∂z
+ ρ

∂w

∂z
dx dy dz

or

CS

ρV dA=
∂ρu

∂x
+
∂ρυ

∂y
+
∂ρw

∂z
dx dy dz
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Hence, we obtain (after canceling dx dy dz) from Eq. 4.12 a differential form of the mass conserva-

tion law

∂ρu

∂x
+
∂ρυ

∂y
+
∂ρw

∂z
+
∂ρ

∂t
=0 5 1a

Equation 5.1a is frequently called the continuity equation.

Since the vector operator, ∇, in rectangular coordinates, is given by

∇= i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

then

∂ρu

∂x
+
∂ρυ

∂y
+
∂ρw

∂z
=∇ ρV

Note that the del operator ∇ acts on ρ and V . Think of it as ∇ ρV . The conservation of mass may be

written as

∇ ρV +
∂ρ

∂t
=0 5 1b

Two flow cases for which the differential continuity equation may be simplified are worthy of note.

For an incompressible fluid, ρ= constant; density is neither a function of space coordinates nor a

function of time. For an incompressible fluid, the continuity equation simplifies to

∂u

∂x
+
∂υ

∂y
+
∂w

∂z
=∇ V =0 5 1c

Thus the velocity field, V x,y,z, t , for incompressible flow must satisfy ∇ V =0.

For steady flow, all fluid properties are, by definition, independent of time. Thus ∂ρ ∂t=0 and at

most ρ= ρ x,y,z . For steady flow, the continuity equation can be written as

∂ρu

∂x
+
∂ρυ

∂y
+
∂ρw

∂z
=∇ ρV =0 5 1d

where the del operator∇ acts on ρ and V . Example 5.1 show the integration of the continuity equation for

an incompressible flow, and Example 5.2 shows its application to a compressible unsteady flow.

Example 5.1 INTEGRATION OF TWO-DIMENSIONAL DIFFERENTIAL CONTINUITY EQUATION

For a two-dimensional flow in the xy plane, the x component of velocity is given by u=Ax. Determine a possible y component for

incompressible flow. How many y components are possible?

Given: Two-dimensional flow in the xy plane for which u=Ax.

Find: (a) Possible y component for incompressible flow.

(b) Number of possible y components.

Solution:

Governing equation: ∇ ρV +
∂ρ

∂t
=0

For incompressible flow this simplifies to ∇ V =0. In rectangular coordinates

∂u

∂x
+
∂υ

∂y
+
∂w

∂z
=0
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For two-dimensional flow in the xy plane, V =V x,y . Then partial derivatives with respect to z are zero, and

∂u

∂x
+
∂υ

∂y
=0

Then

∂υ

∂y
= −

∂u

∂x
= −A

which gives an expression for the rate of change of υ holding x constant. This equation can be integrated to obtain an expression

for υ. The result is

υ=
∂υ

∂y
dy+ f x, t = −Ay+ f x, t υ

The function of x and t appears because we had a partial derivative of υ with

respect to y.

Any function f x, t is allowable, since ∂ ∂y f x, t =0. Thus any number of

expressions for υ could satisfy the differential continuity equation under the given

conditions. The simplest expression for υwould be obtained by setting f x, t =0.

Then υ= −Ay, and

V =Axi−Ayj V

This problem:
• Shows use of the differential continuity
equation for obtaining information on a
flow field.

• Demonstrates integration of a partial
derivative.

• Proves that the flow originally discussed
in Example 2.1 is indeed incompressible.

Example 5.2 UNSTEADY DIFFERENTIAL CONTINUITY EQUATION

A gas-filled pneumatic strut in an automobile suspension system behaves like a piston-cylinder apparatus. At one instant when

the piston is L=0 15 m away from the closed end of the cylinder, the gas density is uniform at ρ=18 kg m3 and the piston begins

to move away from the closed end at V =12 m s. Assume as a simple model that the gas velocity is one-dimensional and pro-

portional to distance from the closed end; it varies linearly from zero at the end to u=V at the piston. Find the rate of change of gas

density at this instant. Obtain an expression for the average density as a function of time.

Given: Piston-cylinder as shown.

Find: (a) Rate of change of density.

(b) ρ t .

Solution:

Governing equation: ∇ ρV +
∂ρ

∂t
=0

In rectangular coordinates,
∂ρu

∂x
+
∂ρυ

∂y
+
∂ρw

∂z
+
∂ρ

∂t
=0

Since u= u x , partial derivatives with respect to y and z are zero, and

∂ρu

∂x
+
∂ρ

∂t
=0

Then

∂ρ

∂t
= −

∂ρu

∂x
= −ρ

∂u

∂x
−u

∂ρ

∂x

L = 0.15 m

x

u = V x__
L

= 18 kg/m3
V = 12 m/s
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Cylindrical Coordinate System

A suitable differential control volume for cylindrical coordinates is shown in Fig. 5.2. The density at

the center, O, of the control volume is assumed to be ρ and the velocity there is assumed to be

V = erVr + eθVθ + kVz, where er, eθ, and k are unit vectors in the r, θ, and z directions, respectively,

and Vr,Vθ, and Vz are the velocity components in the r, θ, and z directions, respectively. To evaluate

CS
ρV dA, we must consider the mass flux through each of the six faces of the control surface. The

properties at each of the six faces of the control surface are obtained from a Taylor series expansion about

pointO. The details of the mass flux evaluation are shown in Table 5.2. Velocity components Vr,Vθ, and

Vz are all assumed to be in the positive coordinate directions and we have again used the convention that

the area normal is positive outwards on each face, and higher-order terms have been neglected.

We see that the net rate of mass flux out through the control surface (the term
CS

ρV dA in

Eq. 4.12) is given by

ρVr + r
∂ρVr

∂r
+
∂ρVθ

∂θ
+ r

∂ρVz

∂z
dr dθ dz

The mass inside the control volume at any instant is the product of the mass per unit volume, ρ, and the

volume, rd θ dr dz. Thus the rate of change of mass inside the control volume (the term ∂ ∂t
CV

ρdV--- in

Eq. 4.12) is given by

∂ρ

∂t
r dθ dr dz

Since ρ is assumed uniform in the volume,
∂ρ

∂x
=0, and

∂ρ

∂t
=
dρ

dt
= −ρ

∂u

∂x
.

Since u=V
x

L
,
∂u

∂x
=
V

L
, then

dρ

dt
= −ρ

V

L
. However, note that L= L0 +Vt.

Separate variables and integrate,

ρ

ρ0

dρ

ρ
= −

t

0

V

L
dt= −

t

0

V dt

L0 +Vt

ln
ρ

ρ0
= ln

L0

L0 +Vt
and ρ t = ρ0

1

1+Vt L0
ρ t

At t=0,

∂ρ

∂t
= −ρ0

V

L
= −18

kg

m3
×12

m

s
×

1

0 15 m
= −1440 kg m3 s

∂ρ

∂t
This problem demonstrates use of the
differential continuity equation for
obtaining the density variation with time
for an unsteady flow.

θ
r

z

Vθ

Vz

Vr

O

θd dr

r

(a) Isometric view (b) Projection on r   planeθ

θ

Fig. 5.2 Differential control volume in cylindrical coordinates.
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In cylindrical coordinates the differential equation for conservation of mass is then

ρVr + r
∂ρVr

∂r
+
∂ρVθ

∂θ
+ r

∂ρVz

∂z
+ r

∂ρ

∂t
=0

or

∂ rρVr

∂r
+
∂ρVθ

∂θ
+ r

∂ρVz

∂z
+ r

∂ρ

∂t
=0

Dividing by r gives

1

r

∂ rρVr

∂r
+
1

r

∂ ρVθ

∂θ
+
∂ ρVz

∂z
+
∂ρ

∂t
=0 5 2a

In cylindrical coordinates the vector operator ∇ is given by

∇= er
∂

∂r
+ eθ

1

r

∂

∂θ
+ k

∂

∂z
3 19

where

∂er

∂θ
= eθ and

∂eθ

∂θ
= −er

Equation 5.2a also may be written in vector notation as

∇ ρV +
∂ρ

∂t
=0 5 1b

Table 5.2
Mass Flux Through the Control Surface of a Cylindrical Differential Control Volume

Surface Evaluation of ρV dA

Inside
−r

= − ρ−
∂ρ

∂r

dr

2
Vr−

∂Vr

∂r

dr

2
r−

dr

2
dθ dz = −ρVr rdθ dz+ ρVr

dr

2
dθ dz+ ρ

∂Vr

∂r
r
dr

2
dθ dz+Vr

∂ρ

∂r
r
dr

2
dθ dz

Outside
+ r

= ρ+
∂ρ

∂r

dr

2
Vr +

∂Vr

∂r

dr

2
r+

dr

2
dθ dz= ρVr rdθdz+ ρVr

dr

2
dθ dz+ ρ

∂Vr

∂r
r
dr

2
dθ dz+Vr

∂ρ

∂r
r
dr

2
dθ dz

Front
−θ

= − ρ−
∂ρ

∂θ

dθ

2
Vθ−

∂Vθ

∂θ

dθ

2
dr dz = −ρVθ dr dz+ ρ

∂Vθ

∂θ

dθ

2
dr dz+Vθ

∂ρ

∂θ

dθ

2
dr dz

Back
+ θ

= ρ+
∂ρ

∂θ

dθ

2
Vθ +

∂Vθ

∂θ

dθ

2
dr dz = ρVθ dr dz+ ρ

∂Vθ

∂θ

dθ

2
dr dz+Vθ

∂ρ

∂θ

dθ

2
dr dz

Bottom
−z

= − ρ−
∂ρ

∂z

dz

2
Vz−

∂Vz

∂z

dz

2
rdθ dr = −ρVzrdθ dr+ ρ

∂Vz

∂z

dz

2
rdθ dr+Vz

∂ρ

∂z

dz

2
rdθ dr

Top
+ z

= ρ+
∂ρ

∂z

dz

2
Vz +

∂Vz

∂z

dz

2
rdθ dr = ρVzr dθ dr+ ρ

∂Vz

∂z

dz

2
rdθ dr+Vz

∂ρ

∂z

dz

2
rdθ dr

Adding the results for all six faces,

CS

ρV dA= ρVr + r ρ
∂Vr

∂r
+Vr

∂ρ

∂r
+ ρ

∂Vθ

∂θ
+Vθ

∂ρ

∂θ
+ r ρ

∂Vz

∂z
+Vz

∂ρ

∂z
dr dθ dz

or

CS

ρV dA= ρVr + r
∂ρVr

∂r
+
∂ρVθ

∂θ
+ r

∂ρVz

∂z
dr dθ dz

134 Chapter 5 Introduction to Differential Analysis of Fluid Motion

www.konkur.in

Telegram: @uni_k



For an incompressible fluid, ρ= constant, and Eq. 5.2a reduces to

1

r

∂ rVr

∂r
+
1

r

∂Vθ

∂θ
+
∂Vz

∂z
=∇ V =0 5 2b

Thus the velocity field, V x,y,z, t , for incompressible flow must satisfy ∇ V =0. For steady flow,

Eq. 5.2a reduces to

1

r

∂ rρVr

∂r
+
1

r

∂ ρVθ

∂θ
+
∂ ρVz

∂z
=∇ ρV =0 5 2c

When written in vector form, the differential continuity equation (the mathematical statement of

conservation of mass), Eq. 5.1b, may be applied in any coordinate system. We simply substitute the

appropriate expression for the vector operator ∇. In retrospect, this result is not surprising since mass

must be conserved regardless of our choice of coordinate system. Example 5.3 illustrates the application

of the continuity equation in cylindrical coordinates.

5.2 Stream Function for Two-Dimensional Incompressible Flow
We discussed streamlines in Chapter 2, where we stated that they were lines tangent to the velocity

vectors in a flow at an instant
dy

dx streamline
=
υ

u
2 8

Example 5.3 DIFFERENTIAL CONTINUITY EQUATION IN CYLINDRICAL COORDINATES

Consider a one-dimensional radial flow in the rθ plane, given by Vr = f r and Vθ =0. Determine the conditions on f r required

for the flow to be incompressible.

Given: One-dimensional radial flow in the rθ plane: Vr = f r and Vθ =0.

Find: Requirements on f r for incompressible flow.

Solution:

Governing equation: ∇ ρV +
∂ρ

∂t
=0

For incompressible flow in cylindrical coordinates this reduces to Eq. 5.2b,

1

r

∂

∂r
rVr +

1

r

∂

∂θ
Vθ +

∂Vz

∂z
=0

For the given velocity field, V =V r Vθ =0 and partial derivatives with respect to z are zero, so

1

r

∂

∂r
rVr =0

Integrating with respect to r gives

rVr = constant

Thus the continuity equation shows that the radial velocity must be Vr = f r =C r for one-dimensional radial flow of an incom-

pressible fluid. This is not a surprising result: As the fluid moves outwards from the center, the volume flow rate (per unit depth in

the z direction) Q=2πrV at any radius r is constant.
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We can now develop a more formal definition of streamlines by introducing the stream function, ψ .

This will allow us to represent two entities—the velocity components u x,y, t and υ x,y, t of a two-

dimensional incompressible flow—with a single function ψ x,y, t .

There are various ways to define the stream function. We start with the two-dimensional version of

the continuity equation for incompressible flow (Eq. 5.1c):

∂u

∂x
+
∂υ

∂y
=0 5 3

We use what looks at first like a purely mathematical exercise (we will see a physical basis for it later)

and define the stream function by

u≡
∂ψ

∂y
and υ≡ −

∂ψ

∂x
5 4

so that Eq. 5.3 is automatically satisfied for any ψ x,y, t . To see this, use Eq. 5.4 in Eq. 5.3:

∂u

∂x
+
∂υ

∂y
=

∂
2ψ

∂x∂y
−

∂
2ψ

∂y∂x
=0

Using Eq. 2.8, we can obtain an equation valid only along a streamline

udy−υdx=0

or, using the definition of our stream function,

∂ψ

∂x
dx+

∂ψ

∂y
dy=0 5 5

On the other hand, from a strictly mathematical point of view, at any instant in time t the variation in a

function ψ x,y, t in space x,y is given by

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy 5 6

Comparing Eqs. 5.5 and 5.6, we see that along an instantaneous streamline, dψ =0; in other words, ψ is a

constant along a streamline. Hence we can specify individual streamlines by their stream function

values: ψ =0,1,2, etc. The significance of the ψ values is that they can be used to obtain the volume

flow rate between any two streamlines. Consider the streamlines shown in Fig. 5.3. We can compute

the volume flow rate between streamlines ψ1 and ψ2 by using line AB,BC,DE, or EF (recall that there

is no flow across a streamline).

Let us compute the flow rate by using line AB, and also by using line BC—they should be the same!

For a unit depth (dimension perpendicular to the xy plane), the flow rate across AB is

Q=
y2

y1

u dy=
y2

y1

∂ψ

∂y
dy

y

x
A (x1, y1)

C (x2, y2)B (x1, y2)

D

E
F

V

u

3

2

1

υ

Fig. 5.3 Instantaneous streamlines in a two-dimensional flow.
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But along AB, x= constant, and (from Eq. 5.6) dψ = ∂ψ ∂y dy. Therefore,

Q=
y2

y1

∂ψ

∂y
dy=

ψ2

ψ1

dψ =ψ2−ψ1

For a unit depth, the flow rate across BC, is

Q=
x2

x1

υdx= −

x2

x1

∂ψ

∂x
dx

Along BC, y= constant, and (from Eq. 5.6) dψ = ∂ψ ∂y dx. Therefore,

Q= −

x2

x1

∂ψ

∂x
dx= −

ψ1

ψ2

dψ =ψ2−ψ1

Hence, whether we use line AB or line BC (or for that matter lines DE or DF), we find that the volume

flow rate (per unit depth) between two streamlines is given by the difference between the two stream

function values.

For two-dimensional steady compressible flow in the xy plane, the stream function, ψ , can be

defined such that

ρu≡
∂ψ

∂y
and ρυ≡ −

∂ψ

∂x

The difference between the constant values of ψ defining two streamlines is then the mass flow rate per

unit depth between the two streamlines.

If the streamline through the origin is designated ψ =0, then the ψ value for any other streamline

represents the flow between the origin and that streamline. We are free to select any streamline as

the zero streamline because the stream function is defined as a differential (Eq. 5.3); also, the flow rate

will always be given by a difference of ψ values. Note that because the volume flow between any two

streamlines is constant, the velocity will be relatively high wherever the streamlines are close together,

and relatively low wherever the streamlines are far apart.

For a two-dimensional, incompressible flow in the rθ plane, conservation of mass, Eq. 5.2b, can be

written as

∂ rVr

∂r
+
∂Vθ

∂θ
=0 5 7

Using a logic similar to that used for Eq. 5.4, the stream function, ψ r,θ, t , then is defined such that

Vr ≡
1

r

∂ψ

∂θ
and Vθ ≡ −

∂ψ

∂r
5 8

With ψ defined according to Eq. 5.8, the continuity equation, Eq. 5.7, is satisfied exactly.

5.3 Motion of a Fluid Particle (Kinematics)
Figure 5.4 shows a typical finite fluid element, within which we have selected an infinitesimal particle of

mass dm and initial volume dx dy dz, at time t, and as it may appear after a time interval dt. The finite

element has moved and changed its shape and orientation. Note that while the finite element has quite

severe distortion, the infinitesimal particle has changes in shape limited to stretching/shrinking and

rotation of the element’s sides. This is because we are considering both an infinitesimal time step

and particle, so that the sides remain straight. We will examine the infinitesimal particle so that we will

eventually obtain results applicable to a point. We can decompose this particle’s motion into four com-

ponents: translation, in which the particle moves from one point to another; rotation of the particle,

which can occur about any or all of the x, y or z axes; linear deformation, in which the particle’s sides

stretch or contract; and angular deformation, in which the angles that were initially 90 for our particle

between the sides change.
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It may seem difficult by looking at Fig. 5.4 to distinguish between rotation and angular deformation

of the infinitesimal fluid particle. It is important to do so, because pure rotation involves no deformation

but angular deformation does and, as we learned in Chapter 5, fluid deformation generates shear stresses.

Figure 5.5 shows a typical xy plane motion decomposed into the four components described above, and

as we examine each of these four components in turn we will see that we can distinguish between rota-

tion and angular deformation.

Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field

The translation of a fluid particle is obviously connected with the velocity field V =V x,y,z, t that we

previously discussed in Section 2.2. We will need the acceleration of a fluid particle for use in Newton’s

second law. It might seem that we could simply compute this as a= ∂V ∂t. This is incorrect, because V is

a field, i.e., it describes the whole flow and not just the motion of an individual particle. We will see that

this way of computing is incorrect by examining Example 5.4, in which particles are clearly accelerating

and decelerating so a 0, but ∂V ∂t=0.

Finite element and infinitesimal
particle at time t

Finite element and
infinitesimal particle

at time t + dt

dz

dx

z

x

y

dy

Fig. 5.4 Finite fluid element and infinitesimal particle at times t and t+dt.

y

x

y

x

Translation

y

x
Angular deformation

y

x
Rotation

y

x
Linear deformation

Fig. 5.5 Pictorial representation of the components of fluid motion.
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Example 5.4 STREAM FUNCTION FOR FLOW IN A CORNER

Given the velocity field for steady, incompressible flow in a corner (Example 2.1), V =Axi−Ayj, with A=0 3 s−1, determine the

stream function that will yield this velocity field. Plot and interpret the streamline pattern in the first and second quadrants of the

xy plane.

Given: Velocity field, V =Axi−Ayj, with A=0 3 s−1.

Find: Stream function ψ and plot in first and second quadrants; interpret the results.

Solution: The flow is incompressible, so the stream function satisfies Eq. 5.4.

From Eq. 5.4, u=
∂ψ

∂y
and υ= −

∂ψ

∂y
. From the given velocity field,

u=Ax=
∂ψ

∂y

Integrating with respect to y gives

ψ =
∂ψ

∂y
dy+ f x =Axy+ f x 1

where f x is arbitrary. The function f x may be evaluated using the equation for υ. Thus, from Eq. 1,

υ= −
∂ψ

∂x
= −Ay−

df

dx
2

From the given velocity field, υ= −Ay. Comparing this with Eq. 2 shows that
df

dx
=0, or f x = constant. Therefore, Eq. 1

becomes

ψ =Axy+ c
ψ

Lines of constant ψ represent streamlines in the flow field. The constant c may be chosen as any convenient value for plotting

purposes. The constant is chosen as zero in order that the streamline through the origin be designated as ψ =ψ1 =0. Then the

value for any other streamline represents the flow between the origin and that streamline. With c=0 and A=0 3 s−1, then

ψ =0 3xy m3 s m

This equation of a streamline is identical to the result xy= constant , obtained in Example 2.1.

Separate plots of the streamlines in the first and second quadrants are presented below. Note that in quadrant 1, u>0, so ψ

values are positive. In quadrant 2, u<0, so ψ values are negative.

9 = –1.2 m3/s/m
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5

1 = 0

4

3
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The problem, then, is to retain the field description for fluid properties and obtain an expression for

the acceleration of a fluid particle as it moves in a flow field.

Consider a particle moving in a velocity field. At time t, the particle is at the position x, y, z and has a

velocity corresponding to the velocity at that point in space at time t,

Vp
t
=V x,y,z, t

At t+ dt, the particle has moved to a new position, with coordinates x+ dx,y+ dy,z+ dz, and has a veloc-

ity given by

Vp
t+ dt

=V x+ dx,y+ dy,z+ dz, t+ dt

This is shown pictorially in Fig. 5.6.

The particle velocity at time t (position r) is given by Vp =V x,y,z, t . Then dVp, the change in the

velocity of the particle, in moving from location r to r+ dr, in time dt, is given by the chain rule,

dVp =
∂V

∂x
dxp +

∂V

∂y
dyp +

∂V

∂z
dzp +

∂V

∂t
dt

The total acceleration of the particle is given by

ap =
dVp

dt
=
∂V

∂x

dxp

dt
+
∂V

∂y

dyp

dt
+
∂V

∂z

dzp

dt
+
∂V

∂t

Since

dxp

dt
= u,

dyp

dt
= υ, and

dzp

dt
=w,

we have

ap =
dVp

dt
= u

∂V

∂x
+ υ

∂V

∂y
+w

∂V

∂z
+
∂V

∂t

In the first quadrant, since u>0 and υ<0, the flow is from left to right and

down. The volume flow rate between the streamline ψ =ψ1 through the origin

and the streamline ψ =ψ2 is

Q12 =ψ2−ψ1 =0 3 m3 s m

In the second quadrant, since u<0 and υ<0, the flow is from right to left and

down. The volume flow rate between streamlines ψ7 and ψ9 is

Q79 =ψ9−ψ7 = −1 2− −0 6 m3 s m= −0 6 m3 s m

The negative sign is consistent with flow having u<0.

As both the streamline spacing in the
graphs and the equation for V indicate,
the velocity is smallest near the origin
(a “corner”).

Particle at
time, t

Particle at
time, t + dt

Particle path

r + dr
r

y

x

z

Fig. 5.6 Motion of a particle in a flow field.
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To remind us that calculation of the acceleration of a fluid particle in a velocity field requires a special

derivative, it is given the symbol DV Dt. Thus

DV

Dt
≡ ap = u

∂V

∂x
+ υ

∂V

∂y
+w

∂V

∂z
+
∂V

∂t
5 9

The derivative, D Dt, defined by Eq. 5.9, is commonly called the substantial derivative to remind us

that it is computed for a particle of “substance.” It also is called the material derivative or particle

derivative.

The physical significance of the terms in Eq. 5.9 is

ap =
DV

Dt

total

acceleration

of a particle

= u
∂V

∂x
+ υ

∂V

∂y
+w

∂V

∂z

convective

acceleration

+
∂V

∂ t

local

acceleration

From Eq. 5.9 we recognize that a fluid particle moving in a flow field may undergo acceleration for

either of two reasons. As an illustration, refer to Example 5.4. This is a steady flow in which particles are

convected toward the low-velocity region (near the “corner”), and then away to a high-velocity region. If

a flow field is unsteady a fluid particle will undergo an additional local acceleration, because the velocity

field is a function of time.

The convective acceleration may be written as a single vector expression using the gradient operator

∇. Thus

u
∂V

∂x
+ υ

∂V

∂y
+w

∂V

∂z
= V ∇ V

Thus Eq. 5.9 may be written as

DV

Dt
≡ ap = V ∇ V +

∂V

∂t
5 10

For a two-dimensional flow, say V =V x,y, t , Eq. 5.9 reduces to

DV

Dt
= u

∂V

∂x
+ υ

∂V

∂y
+
∂V

∂t

For a one-dimensional flow, say V =V x, t , Eq. 5.9 becomes

DV

Dt
= u

∂V

∂x
+
∂V

∂t

Finally, for a steady flow in three dimensions, Eq. 5.9 becomes

DV

Dt
= u

∂V

∂x
+ υ

∂V

∂y
+w

∂V

∂z

which, as we have seen, is not necessarily zero even though the flow is steady. Thus a fluid particle may

undergo a convective acceleration due to its motion, even in a steady velocity field.

Equation 5.9 is a vector equation. As with all vector equations, it may be written in scalar component

equations. Relative to an xyz coordinate system, the scalar components of Eq. 5.9 are written

axp =
Du

Dt
= u

∂u

∂x
+ υ

∂u

∂y
+w

∂u

∂z
+
∂u

∂t
5 11a

ayp =
Dυ

Dt
= u

∂υ

∂x
+ υ

∂υ

∂y
+w

∂υ

∂z
+
∂υ

∂t
5 11b

azp =
Dw

Dt
= u

∂w

∂x
+ υ

∂w

∂y
+w

∂w

∂z
+
∂w

∂t
5 11c
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The components of acceleration in cylindrical coordinates may be obtained from Eq. 5.10

by expressing the velocity, V , in cylindrical coordinates (Section 5.1) and utilizing the appropriate

expression (Eq. 3.19, on the web) for the vector operator ∇. Thus,

arp =Vr

∂Vr

∂r
+
Vθ

r

∂Vr

∂θ
−
V2
θ

r
+Vz

∂Vr

∂z
+
∂Vr

∂t
5 12a

aθp =Vr

∂Vθ

∂r
+
Vθ

r

∂Vθ

∂θ
+
VrVθ

r
+Vz

∂Vθ

∂z
+
∂Vθ

∂t
5 12b

azp =Vr

∂Vz

∂r
+
Vθ

r

∂Vz

∂θ
+Vz

∂Vz

∂z
+
∂Vz

∂t
5 12c

Equations 5.9, 5.11, and 5.12 are useful for computing the acceleration of a fluid particle anywhere

in a flow from the velocity field (a function of x, y, z, and t); this is the Eulerianmethod of description, the

most-used approach in fluid mechanics.

As an alternative if we wish to track an individual particle’s motion we sometimes use the Lagran-

gian description of particle motion, in which the acceleration, position, and velocity of a particle are

specified as a function of time only. Both descriptions are illustrated in Example 5.5.

Example 5.5 PARTICLE ACCELERATION IN EULERIAN AND LAGRANGIAN DESCRIPTIONS

Consider two-dimensional, steady, incompressible flow through the plane converging channel shown. The velocity on the hor-

izontal centerline (x axis) is given by V =V1 1+ x L i. Find an expression for the acceleration of a particle moving along the

centerline using (a) the Eulerian approach and (b) the Lagrangian approach. Evaluate the acceleration when the particle is at the

beginning and at the end of the channel.

Given: Steady, two-dimensional, incompressible flow through the converging channel shown.

V =V1 1+
x

L
i on x axis

Find: (a) The acceleration of a particle moving along the centerline using the Eulerian approach.

(b) The acceleration of a particle moving along the centerline using the Lagrangian approach.

(c) Evaluate the acceleration when the particle is at the beginning and at the end of the

channel.

Solution:

(a) The Eulerian approach

The governing equation for acceleration of a fluid particle is Eq. 5.9:

ap x,y,z, t =
DV

Dt
= u

∂V

∂x
+ υ

∂V

∂y
+w

∂V

∂z
+
∂V

∂t

In this case we are interested in the x component of acceleration (Eq. 5.11a):

axp x,y,z, t =
Du

Dt
= u

∂u

∂x
+ υ

∂u

∂y
+w

∂u

∂z
+
∂u

∂t
5 11a

y

x
V

x1 = 0
x2 = L
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On the x axis, υ=w=0 and u=V1 1+
x

L
, so for steady flow we obtain

axp x =
Du

Dt
= u

∂u

∂x
=V1 1+

x

L

V1

L

or

axp x =
V2
1

L
1+

x

L

axp x

This expression gives the acceleration of any particle that is at point x at an instant.

(b) The Lagrangian approach

In this approach we need to obtain the motion of a fluid particle as we would in particle mechanics; that is, we need the

position xp t , and then we can obtain the velocity Vp t = dxp dt and acceleration ap t = dVp dt. Actually, we are

considering motion along the x axis, so we want xp t , up t = dxp dt, and axp t = dup dt. We are not given xp t , but

we do have

up =
dxp

dt
=V1 1+

xp

L

Separating variables, and using limits xp t=0 =0 and xp t= t = xp,

xp

0

dxp

1+
xp

L

=
1

0

V1dt and L ln 1 +
xp

L
=V1t 1

We can then solve for xp t

xp t = L eV1t L
−1

The velocity and acceleration are then

up t =
dxp

dt
=V1e

V1t L

and

axp t =
dup

dt
=
V2
1

L
eV1t L 2 axp t

This expression gives the acceleration at any time t of the particle that was initially at x=0.

(c) We wish to evaluate the acceleration when the particle is at x=0 and x= L. For the Eulerian approach this is straightforward:

azp x=0 =
V2
1

L
, axp x= L =2

V2
1

L

axp

For the Lagrangian approach, we need to find the times at which x=0 and x= L. Using Eq. 1, these are

t xp =0 =
L

V1

t xp = L =
L

V1

ln 2

Then, from Eq. 5.1,

azp t=0 =
V2
1

L
, and

axp t=
L

V1

ln 2 =
V2
1

L
eln 2 =2

V2
1

L

axp

Note that both approaches yield the same results for particle acceleration, as

they should.
This problem illustrates use of the
Eulerian and Lagrangian descriptions of
the motion of a fluid particle.
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Fluid Rotation

A fluid particle moving in a general three-dimensional flow field may rotate about all three coordinate

axes. Thus particle rotation is a vector quantity and, in general,

ω= iωx + jωy + kωz

whereωx is the rotation about the x axis,ωy is the rotation about the y axis, andωz is the rotation about the

z axis. The positive sense of rotation is given by the right-hand rule.

We now see howwe can extract the rotation component of the particle motion. Consider the xy plane

view of the particle at time t. The left and lower sides of the particle are given by the two perpendicular

line segments oa and ob of lengths Δx and Δy, respectively, shown in Fig. 5.7a. In general, after an inter-

val Δt the particle will have translated to some new position, and also have rotated and deformed.

A possible instantaneous orientation of the lines at time t+Δt is shown in Fig. 5.7b.

We need to be careful here with our signs for angles. Following the right-hand rule, counter-

clockwise rotation is positive, and we have shown side oa rotating counterclockwise through angle

Δα, but be aware that we have shown edge ob rotating at a clockwise angle Δβ. Both angles are obviously

arbitrary, but it will help visualize the discussion if we assign values to these angles, e.g., let Δα=6

and Δβ=4 .

How do we extract from Δα and Δβ a measure of the particle’s rotation? The answer is that we take

an average of the rotations Δα and Δβ, so that the particle’s rigid body counterclockwise rotation is
1
2
Δα−Δβ , as shown in Fig. 5.7c. The minus sign is needed because the counterclockwise rotation

of ob is −Δβ. Using the assigned values, the rotation of the particle is then 1
2
6 −4 = 1 .

Now we can determine from Δα and Δβ a measure of the particle’s angular deformation, as shown

in Fig. 5.7d. To obtain the deformation of side oa in Fig. 5.7d, we use Fig. 5.7b and c: If we subtract the

particle rotation 1
2
Δα−Δβ , in Fig. 5.7c, from the actual rotation of oa, Δα, in Fig. 5.7b, what remains

must be pure deformation [Δα− 1
2
Δα−Δβ = 1

2
Δα+Δβ , in Fig. 5.7d]. Using the assigned values, the

deformation of side oa is 6 − 1
2
6 −4 =5 . By a similar process, for side ob we end with Δβ− 1

2

Δα−Δβ = 1
2
Δα+Δβ , or a clockwise deformation 1

2
Δα+Δβ , as shown in Fig. 5.7d. The total

deformation of the particle is the sum of the deformations of the sides, or Δα+Δβ (with our example

values, 10 ). We verify that this leaves us with the correct value for the particle’s deformation:

Recall that in Section 2.4 we saw that deformation is measured by the change in a 90 angle. In

Fig. 5.7a we see this is angle aob, and in Fig. 5.7d we see the total change of this angle is indeed
1
2
Δα+Δβ + 1

2
Δα+Δβ = Δα+Δβ .

We need to convert these angular measures to quantities obtainable from the flow field. To do this,

we recognize that (for small angles)Δα=Δη Δx, andΔβ=Δξ Δy. ButΔξ arises because, if in interval

Δt point o moves horizontally distance uΔt, then point b will have moved distance u+ ∂u ∂y Δy Δt

(using a Taylor series expansion). Likewise, Δη arises because, if in interval Δt point omoves vertically

distance υΔt, then point a will have moved distance υ+ ∂υ ∂x Δx Δt. Hence,

Δξ= u+
∂u

∂y
Δy Δt−uΔt=

∂u

∂y
ΔyΔt

b

o a

Δy

Δx

Δα Δη

Δβ

Δξ

1/2(Δα – Δβ)

1/2(Δα – Δβ)

1/2(Δα + Δβ)

1/2(Δα + Δβ)

(a) Original particle (b) Particle after time Δt (c) Rotational component (d) Angular deformation component

Fig. 5.7 Rotation and angular deformation of perpendicular line segments in a two-dimensional flow.
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and

Δη= υ+
∂υ

∂x
Δx Δt−υΔt=

∂υ

∂x
ΔxΔt

We can now compute the angular velocity of the particle about the z axis, ωz, by combining all these

results:

ωz = lim
Δt 0

1

2
Δα−Δβ

Δt
= lim

Δt 0

1

2

Δη

Δx
−
Δξ

Δy

Δt
= lim

Δt 0

1

2

∂υ

∂x

Δx

Δx
Δt−

∂u

∂y

Δy

Δy
Δt

Δt

ωz =
1

2

∂υ

∂x
−
∂u

∂y

By considering the rotation of pairs of perpendicular line segments in the yz and xy planes, one can

show similarly that

ωx =
1

2

∂w

∂y
−
∂υ

∂z
and ωy =

1

2

∂u

∂z
−
∂w

∂x

Then ω= iωx + jωy + kωz becomes

ω=
1

2
i

∂w

∂y
−
∂υ

∂z
+ j

∂u

∂z
−
∂w

∂x
+ k

∂υ

∂x
−
∂u

∂y
5 13

We recognize the term in the square brackets as

curl V =∇×V

Then, in vector notation, we can write

ω=
1

2
∇×V 5 14

It is worth noting here that we should not confuse rotation of a fluid particle with flow consisting of

circular streamlines, or vortex flow. As we will see in Example 5.6, in such a flow the particles could

rotate as they move in a circular motion, but they do not have to.

Example 5.6 FREE AND FORCED VORTEX FLOWS

Consider flow fields with purely tangential motion (circular streamlines): Vr =0 and Vθ = f r . Evaluate the rotation, vorticity,

and circulation for rigid-body rotation, a forced vortex. Show that it is possible to choose f r so that flow is irrotational, i.e., to

produce a free vortex.

Given: Flow fields with tangential motion, Vr =0 and Vθ = f r .

Find: (a) Rotation, vorticity, and circulation for rigid-body motion (a forced vortex).

(b) Vθ = f r for irrotational motion (a free vortex).

Solution:

Governing equation: ζ =2ω =∇× V 5 15

For motion in the rθ plane, the only components of rotation and vorticity are in the z direction,

ζz =2ωz =
1

r

∂rVθ

∂r
−
1

r

∂Vr

∂θ

Because Vr =0 everywhere in these fields, this reduces to ζz =2ωz =
1

r

∂rVθ

∂r
.
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When might we expect to have a flow in which the particles rotate as they move ω 0 ? One pos-

sibility is that we start out with a flow in which (for whatever reason) the particles already have rotation.

On the other hand, if we assumed the particles are not initially rotating, particles will only begin to rotate

if they experience a torque caused by surface shear stresses; the particle body forces and normal (pres-

sure) forces may accelerate and deform the particle, but cannot generate a torque. We can conclude that

rotation of fluid particles will always occur for flows in which we have shear stresses. We have already

learned in Chapter 2 that shear stresses are present whenever we have a viscous fluid that is experiencing

angular deformation (shearing). Hence we conclude that rotation of fluid particles only occurs in viscous

flows unless the particles are initially rotating, as in Example 3.10.

Flows for which no particle rotation occurs are called irrotational flows. Although no real flow is

truly irrotational because all fluids have viscosity, it turns out that many flows can be successfully stud-

ied by assuming they are inviscid and irrotational, because viscous effects are often negligible. As we

discussed in Chapter 1, and will again in Chapter 6, much of aerodynamics theory assumes inviscid flow.

We just need to be aware that in any flow there will always be regions (e.g., the boundary layer for flow

over a wing) in which viscous effects cannot be ignored.

The factor of 1
2
can be eliminated from Eq. 5.14 by defining the vorticity, ζ, to be twice the rotation,

ζ ≡ 2ω=∇×V 5 15

(a) For rigid-body rotation, Vθ =ωr

Then ωz =
1

2

1

r

∂rVθ

∂r
=
1

2

1

r

∂

∂r
ωr2 =

1

2r
2ωr =ω and ζz =2ω

The circulation is

Γ=
c

V ds=
A

2ωzdA 18

Since ωz =ω= constant, the circulation about any closed contour is given by Γ=2ωA, where A is the area enclosed by the

contour. Thus for rigid-body motion (a forced vortex), the rotation and vorticity are constants; the circulation depends on the

area enclosed by the contour.

(b) For irrotational flow, ωz =
1

r

∂

∂r
rVθ =0. Integrating, we find

rVθ = constant or Vθ = f r =
C

r

For this flow, the origin is a singular point where Vθ ∞ . The circulation for any contour enclosing the origin is

Γ=
c

V ds=
2π

0

C

r
r dθ=2πC

It turns out that the circulation around any contour not enclosing the singular point at the origin is zero. Streamlines for the two

vortex flows are shown below, along with the location and orientation at different instants of a cross marked in the fluid that was

initially at the 12 o’clock position. For the rigid-body motion, the cross

rotates as it moves in a circular motion; also, the streamlines are closer

together as we move away from the origin. For the irrotational motion

the cross does not rotate as it moves in a circular motion; also, the stream-

lines are farther apart as we move away from the origin.

Rigid-body motion Irrotational motion
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The vorticity is a measure of the rotation of a fluid element as it moves in the flow field. In cylindrical

coordinates the vorticity is

∇×V = er
1

r

∂Vz

∂θ
−
∂Vθ

∂z
+ eθ

∂Vr

∂z
−
∂Vz

∂r
+ k

1

r

∂rVθ

∂r
−
1

r

∂Vr

∂θ
5 16

The circulation, Γ (which we will revisit in Example 6.12), is defined as the line integral of the

tangential velocity component about any closed curve fixed in the flow,

Γ=
c

V ds 5 17

where ds is an elemental vector tangent to the curve and having length ds of the element of arc; a positive

sense corresponds to a counterclockwise path of integration around the curve. We can develop a rela-

tionship between circulation and vorticity by considering the rectangular circuit shown in Fig. 5.8, where

the velocity components at o are assumed to be u,υ , and the velocities along segments bc and ac can be

derived using Taylor series approximations.

For the closed curve oacb,

ΔΓ= uΔx+ υ+
∂υ

∂x
Δx Δy− u+

∂u

∂y
Δy Δx−υΔy

ΔΓ=
∂υ

∂x
−
∂u

∂y
ΔxΔy

ΔΓ=2ωzΔxΔy

Then,

Γ=
c

V ds=
A

2ωz dA=
A

∇×V z dA 5 18

Equation 5.18 is a statement of the Stokes Theorem in two dimensions. Thus the circulation around a

closed contour is equal to the total vorticity enclosed within it.

Fluid Deformation

a. Angular Deformation
As we discussed earlier (and as shown in Fig. 5.7d), the angular deformation of a particle is given by the

sum of the two angular deformations, or in other words by Δα+Δβ .

We also recall that Δα=Δη Δx,Δβ=Δξ Δy, and Δξ and Δη are given by

Δξ= u+
∂u

∂y
Δy Δt−uΔt=

∂u

∂y
ΔyΔt

u +     Δyu___
y

υ +     Δx
υ___
x

b c

a
x

y

Δx

u

o

Δy

υ

Fig. 5.8 Velocity components on the boundaries of a fluid element.
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and

Δη= υ+
∂υ

∂x
Δx Δt−υΔt=

∂υ

∂x
ΔxΔt

We can now compute the rate of angular deformation of the particle in the xy plane by combining these

results,

Rate of angular

deformation

in xy plane

= lim
Δt 0

Δα+Δβ

Δt
= lim

Δt 0

Δη

Δx
+
Δξ

Δy

Δt

Rate of angular

deformation

in xy plane

= lim
Δt 0

∂υ

∂x

Δx

Δx
Δt+

∂u

∂y

Δy

Δy
Δt

Δt
=

∂υ

∂x
+
∂u

∂y
5 19a

Similar expressions can be written for the rate of angular deformation of the particle in the yz and zx

planes,

Rate of angular deformation in yz plane =
∂w

∂y
+
∂υ

∂z
5 19b

Rate of angular deformation in zx plane =
∂w

∂x
+
∂u

∂z
5 19c

We saw in Chapter 2 that for one-dimensional laminar Newtonian flow the shear stress is given by the

rate of deformation du dy of the fluid particle,

τyx = μ
du

dy
2 15

We will see shortly that we can generalize Eq. 2.15 to the case of three-dimensional laminar flow; this

will lead to expressions for three-dimensional shear stresses involving the three rates of angular defor-

mation given above. (Eq. 2.15 is a special case of Eq. 5.19a.)

Calculation of angular deformation is illustrated for a simple flow field in Example 5.7.

Example 5.7 ROTATION IN VISCOMETRIC FLOW

A viscometric flow in the narrow gap between large parallel plates is

shown. The velocity field in the narrow gap is given by V =U y h i,

where U =4mm s and h=4mm. At t=0 line segments ac and bd are

marked in the fluid to form a cross as shown. Evaluate the positions of

the marked points at t=1 5 s and sketch for comparison. Calculate the

rate of angular deformation and the rate of rotation of a fluid particle

in this velocity field. Comment on your results.

Given: Velocity field, V =U y h i;U =4mm s, and h=4mm. Fluid particles marked at t=0 to form cross as shown.

Find: (a) Positions of points a , b , c , and d at t=1 5 s; plot.

(b) Rate of angular deformation.

(c) Rate of rotation of a fluid particle.

(d) Significance of these results.

Solution: For the given flow field υ=0, so there is no vertical motion. The velocity of each point stays constant, so Δx= uΔt

for each point. At point b, u=3mm s, so

Δxb =3
mm

s
× 1 5 s= 4 5 mm

h

u = U   i
^y_

h

3

2

1

0

0 1 2 3 4

a (1,2)

d (2,1)

b (2,3)

c (3,2)
Lines marked

in fluid
at t = 0

U

x

y
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b. Linear Deformation
During linear deformation, the shape of the fluid element, described by the angles at its vertices, remains

unchanged, since all right angles continue to be right angles (see Fig. 5.5). The element will change

length in the x direction only if ∂u ∂x is other than zero. Similarly, a change in the y dimension requires

a nonzero value of ∂υ ∂y and a change in the z dimension requires a nonzero value of ∂w ∂z. These

quantities represent the components of longitudinal rates of strain in the x, y, and z directions,

respectively.

Changes in length of the sides may produce changes in volume of the element. The rate of local

instantaneous volume dilation is given by

Volume dilation rate =
∂u

∂x
+
∂υ

∂y
+
∂w

∂z
=∇ V 5 20

For incompressible flow, the rate of volume dilation is zero (Eq. 5.1c).

We have shown in this section that the velocity field can be used to find the acceleration, rotation,

angular deformation, and linear deformation of a fluid particle in a flow field. Evaluation of the rate of

deformation for flow near a corner is illustrated in Example 5.8.

Similarly, points a and c each move 3 mm, and point d moves 1.5 mm. Hence the plot at t=1 5 s is

The rate of angular deformation is

∂u

∂y
+
∂υ

∂x
=U

1

h
+0=

U

h
=4

mm

s
×

1

4 mm
=1 s−1

The rate of rotation is

ωz =
1

2

∂υ

∂x
−
∂u

∂y
=
1

2
0−

U

h
= −

1

2
× 4

mm

s
×

1

4 mm
= −0 5 s−1 ωz In this problem we have a viscous flow,

and hence should have expected both
angular deformation and particle
rotation.

U

3

2

1

0

0 1 2 3 4 5 6 7

a a'

d'

b'

c'

b

c

d

x

y

Lines at t = 1.5 s

Example 5.8 DEFORMATION RATES FOR FLOW IN A CORNER

The velocity fieldV =Axi−Ayj represents flow in a “corner,” as shown in Example 5.4, where A=0 3 s−1 and the coordinates are

measured in meters. A square is marked in the fluid as shown at t=0. Evaluate the new positions of the four corner points when

point a has moved to x= 3
2
m after τ seconds. Evaluate the rates of linear deformation in the x and y directions. Compare area

a b c d at t= τ with area abcd at t=0. Comment on the significance of this result.

Given: V =Axi−Ayj; A=0 3 s−1, x and y in meters.

Find: (a) Position of square at t= τ when a is at a at x= 3
2
m.

(b) Rates of linear deformation.

(c) Area a b c d compared with area abcd.

(d) Significance of the results.
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Solution: First we must find τ, so we must follow a fluid particle using a Lagrangian

description. Thus

u=
dxp

dt
=Axp,

dx

x
=A dt, so

x

x0

dx

x
=

τ

0

A dt and ln
x

x0
=Aτ

τ=
ln x x0

A
=

ln
3

2

0 3 s−1
=1 35 s

In the y direction

υ=
dyp

dt
= −Ayp

dy

y
= −A dt

y

y0
= e−Aτ

The point coordinates at τ are:

Point t= 0 t= τ

a 1,1
3

2
,
2

3

b 1,2
3

2
,
4

3

c 2,2 3,
4

3

d 2,1 3,
2

3

The plot is:

The rates of linear deformation are:

∂u

∂x
=

∂

∂x
Ax=A=0 3 s−1 in the x direction

∂υ

∂y
=

∂

∂y
−Ay = −A= −0 3 s−1 in the y direction

The rate of volume dilation is

∇ V =
∂u

∂x
+
∂υ

∂y
=A− A=0

Area abcd=1m2 and area a b c d = 3−
3

2

4

3
−
2

3
= 1 m2.

Notes:
• Parallel planes remain parallel; there is
linear deformation but no angular
deformation.

• The flow is irrotational ∂υ ∂x−∂u ∂y=0 .
• Volume is conserved because the two
rates of linear deformation are equal and
opposite.

• The NCFMF video Flow Visualization (see
http://web.mit.edu/fluids/www/Shapiro/
ncfmf.html for free online viewing of this
film) uses hydrogen bubble time-streak
markers to demonstrate experimentally
that the area of a marked fluid square is
conserved in two-dimensional incom-
pressible flow.

0
0

1

2

1 2

y

b (1,2) c (2,2)

a (1,1) d (2,1)

x

Square marked
at t = 0

0
0

1

2

1 2 3

y

x

b c

c'

a' d'

b'

a d

t = 0

t = τ
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5.4 Momentum Equation
A dynamic equation describing fluid motion may be obtained by applying Newton’s second law to a

particle. To derive the differential form of the momentum equation, we shall apply Newton’s second

law to an infinitesimal fluid particle of mass dm.

Recall that Newton’s second law for a finite system is given by

F =
dP

dt
system

4 2a

where the linear momentum, P, of the system is given by

Psystem =
mass system

V dm 4 2b

Then, for an infinitesimal system of mass dm, Newton’s second law can be written

dF = dm
dV

dt
system

5 21

Having obtained an expression for the acceleration of a fluid element of mass dm, moving in a velocity

field (Eq. 5.9), we can write Newton’s second law as the vector equation

dF = dm
DV

Dt
= dm u

∂V

∂x
+ υ

∂V

∂y
+w

∂V

∂z
+
∂V

∂t
5 22

We now need to obtain a suitable formulation for the force, dF, or its components, dFx, dFy, and dFz,

acting on the element.

Forces Acting on a Fluid Particle

Recall that the forces acting on a fluid element may be classified as body forces and surface forces; sur-

face forces include both normal forces and tangential (shear) forces.

We shall consider the x component of the force acting on a differential element of mass dm and

volume dV--- = dx dy dz. Only those stresses that act in the x direction will give rise to surface forces

in the x direction. If the stresses at the center of the differential element are taken to be σxx,τyx, and

τzx, then the stresses acting in the x direction on all faces of the element (obtained by a Taylor series

expansion about the center of the element) are as shown in Fig. 5.9.

y

x

z

zx +τ
дτ

д
     zx____
   z 

dz__
2

yx –
дτ

д
     yx____
   y 

dy__
2

τ

yx +
дτ

д
     yx____
   y 

dy__
2

τ

zx –
дτ

д
     zx____
   z 

dz__
2

τ

xx +
д

д
  σ xx____
   x 

dx__
2

σ

xx –
дσ

д
     xx____
   x 

dx__
2

σ

Fig. 5.9 Stresses in the x direction on an element of fluid.
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To obtain the net surface force in the x direction, dFSx , we must sum the forces in the x direc-

tion. Thus,

dFSx = σxx +
∂σxx

∂x

dx

2
dy dz− σxx−

∂σxx

∂x

dx

2
dy dz

+ τyx +
∂τyx

∂y

dy

2
dx dz− τyx−

∂τyx

∂y

dy

2
dx dz

+ τzx +
∂τzx

∂z

dz

2
dx dy− τzx−

∂τzx

∂z

dz

2
dx dy

On simplifying, we obtain

dFSx =
∂σxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
dx dy dz

When the force of gravity is the only body force acting, then the body force per unit mass is g. The net

force in the x direction, dFx, is given by

dFx = dFBx
+ dFSx = ρgx +

∂σxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
dx dy dz 5 23a

We can derive similar expressions for the force components in the y and z directions:

dFy = dFBy
+ dFSy = ρgy +

∂τxy

∂x
+
∂σyy

∂y
+
∂τzy

∂z
dx dy dz 5 23b

dFz = dFBz
+ dFSz = ρgz +

∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z
dx dy dz 5 23c

Differential Momentum Equation

We have now formulated expressions for the components, dFx, dFy, and dFz, of the force, dF, acting on

the element of mass dm. If we substitute these expressions (Eqs. 5.23) for the force components into the

x, y, and z components of Eq. 5.22, we obtain the differential equations of motion,

ρgx +
∂σxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
= ρ

∂u

∂t
+ u

∂u

∂x
+ υ

∂u

∂y
+w

∂u

∂z
5 24a

ρgy +
∂τxy

∂x
+
∂σyy

∂y
+
∂τzy

∂z
= ρ

∂υ

∂t
+ u

∂υ

∂x
+ υ

∂υ

∂y
+w

∂υ

∂z
5 24b

ρgz +
∂τxz

∂x
+
∂τyz

∂y
+
∂σzz

∂z
= ρ

∂w

∂t
+ u

∂w

∂x
+ υ

∂w

∂y
+w

∂w

∂z
5 24c

Equations 5.24 are the differential equations of motion for any fluid satisfying the continuum

assumption. Before the equations can be used to solve for u,υ, andw, suitable expressions for the stresses

must be obtained in terms of the velocity and pressure fields.

Newtonian Fluid: Navier–Stokes Equations

For a Newtonian fluid the viscous stress is directly proportional to the rate of shearing strain (angular

deformation rate). We saw in Chapter 2 that for one-dimensional laminar Newtonian flow the shear

stress is proportional to the rate of angular deformation: τyx = du dy (Eq. 2.15). For a three-dimensional

flow the situation is a bit more complicated as we need to use the more complicated expressions for rate

of angular deformation, Eq. 5.19. The stresses may be expressed in terms of velocity gradients and fluid

properties in rectangular coordinates as follows:

τxy = τyx = μ
∂υ

∂x
+
∂u

∂y
5 25a
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τyz = τzy = μ
∂w

∂y
+
∂υ

∂z
5 25b

τzx = τxz = μ
∂u

∂z
+
∂w

∂x
5 25c

σxx = −p−
2

3
μ∇ V +2μ

∂u

∂x
5 25d

σyy = −p−
2

3
μ∇ V +2μ

∂υ

∂y
5 25e

σzz = −p−
2

3
μ∇ V +2μ

∂w

∂z
5 25f

where p is the local thermodynamic pressure. Thermodynamic pressure is related to the density and tem-

perature by the thermodynamic relation usually called the equation of state.

If these expressions for the stresses are introduced into the differential equations of motion

(Eq. 5.24), we obtain

ρ
Du

Dt
= ρgx−

∂p

∂x
+

∂

∂x
μ 2

∂u

∂x
−
2

3
∇ V +

∂

∂y
μ

∂u

∂y
+
∂υ

∂x

+
∂

∂z
μ

∂w

∂x
+
∂u

∂z

5 26a

ρ
Dυ

Dt
= ρgy−

∂p

∂y
+

∂

∂x
μ

∂u

∂y
+
∂υ

∂x
+

∂

∂y
μ 2

∂υ

∂y
−
2

3
∇ V

+
∂

∂z
μ

∂υ

∂z
+
∂w

∂y

5 26b

ρ
Dw

Dt
= ρgz−

∂p

∂z
+

∂

∂x
μ

∂w

∂x
+
∂u

∂z
+

∂

∂y
μ

∂w

∂z
+
∂w

∂y

+
∂

∂z
μ 2

∂w

∂z
−
2

3
∇ V

5 26c

These equations of motion are called the Navier–Stokes equations. The equations are greatly simplified

when applied to incompressible flow with constant viscosity. Under these conditions the equations

reduce to

ρ
∂u

∂t
+ u

∂u

∂x
+ υ

∂u

∂y
+w

∂u

∂z
= ρgx−

∂p

∂x
+ μ

∂
2u

∂x2
+
∂
2u

∂y2
+
∂
2u

∂z2
5 27a

ρ
∂υ

∂t
+ u

∂υ

∂x
+ υ

∂υ

∂y
+w

∂υ

∂z
= ρgy−

∂p

∂y
+ μ

∂
2υ

∂x2
+
∂
2υ

∂y2
+
∂
2υ

∂z2
5 27b

ρ
∂w

∂t
+ u

∂w

∂x
+ υ

∂w

∂y
+w

∂w

∂z
= ρgz−

∂p

∂z
+ μ

∂
2w

∂x2
+
∂
2w

∂y2
+
∂
2w

∂z2
5 27c

This form of the Navier–Stokes equations is one of the most famous set of equations in fluid mechanics,

and has been widely studied. These equations, with the continuity equation (Eq. 5.1c), form a set of four

coupled nonlinear partial differential equations for u, υ, w, and p. In principle, these four equations

describe many common flows. The only restrictions are that the fluid be Newtonian (with a constant

viscosity) and incompressible. For example, lubrication theory, pipe flows, and even the motion of your

coffee as you stir it are explained by these equations. Unfortunately, they are impossible to solve ana-

lytically, except for the most basic cases [1] in which we have simple boundaries and initial or boundary

conditions. We will solve the equations for such a simple problem in Example 5.9.
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Example 5.9 ANALYSIS OF FULLY DEVELOPED LAMINAR FLOW DOWN AN INCLINED PLANE SURFACE

A liquid flows down an inclined plane surface in a steady, fully developed laminar film of thickness h. Simplify the continuity and

Navier–Stokes equations to model this flow field. Obtain expressions for the liquid velocity profile, the shear stress distribution,

the volume flow rate, and the average velocity. Relate the liquid film thickness to the volume flow rate per unit depth of surface

normal to the flow. Calculate the volume flow rate in a film of water h=1mm thick, flowing on a surface b=1m wide, inclined

at θ=15 to the horizontal.

Given: Liquid flow down an inclined plane surface in a steady, fully developed laminar film of thickness h.

Find: (a) Continuity and Navier–Stokes equations simplified to model this flow field.

(b) Velocity profile.

(c) Shear stress distribution.

(d) Volume flow rate per unit depth of surface

normal to diagram.

(e) Average flow velocity.

(f) Film thickness in terms of volume flow rate per

unit depth of surface normal to diagram.

(g) Volume flow rate in a film of water 1 mm thick

on a surface 1 m wide, inclined at 15 to the

horizontal.

Solution: The geometry and coordinate system used to

model the flow field are shown. It is convenient to align

one coordinate with the flow down the plane surface.

The governing equations written for incompressible flow with constant viscosity are

∂u

∂x

4

∂υ

∂y

∂w

∂z

3

0 5 1c

ρ
∂u

∂t

1

u
∂u

∂x

4

υ
∂u

∂y

5

w
∂u

∂z

3

ρgx−
∂p

∂x

4

μ
∂
2u

∂x2

4

∂
2u

∂y2
∂
2u

∂z2

3

5 27a

ρ
∂υ

∂t

1

u
∂υ

∂x

4

υ
∂υ

∂y

5

w
∂υ

∂z

3

ρgy−
∂p

∂y
μ

∂
2υ

∂x2

4

∂
2υ

∂y2

5

∂
2υ

∂z2

3

5 27b

ρ
∂w

∂t

1

u
∂w

∂x

3

υ
∂w

∂y

3

w
∂w

∂z

3

ρgz

3

−
∂p

∂z
μ

∂
2w

∂x2

3

∂
2w

∂y2

3

∂
2w

∂z2

3

5 27c

The terms canceled to simplify the basic equations are keyed by number to the assumptions listed below. The assumptions are

discussed in the order in which they are applied to simplify the equations.

Assumptions:

1 Steady flow (given).

2 Incompressible flow; ρ= constant.

3 No flow or variation of properties in the z direction; w=0 and ∂ ∂z=0.

4 Fully developed flow, so no properties vary in the x direction; ∂ ∂x=0.

Assumption 1 eliminates time variations in any fluid property.

Assumption 2 eliminates space variations in density.

Assumption 3 states that there is no z component of velocity and no property variations in the z direction. All terms in the z

component of the Navier–Stokes equation cancel.

y

x u

g

Width b = 1 m

h = 1 mm

= 15°θ
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After assumption 4 is applied, the continuity equation reduces to ∂υ ∂y=0. Assumptions 3 and 4 also indicate that ∂υ ∂z=0

and ∂υ ∂x=0. Therefore, υ must be constant. Since υ is zero at the solid surface, then υ must be zero everywhere.

The fact that υ=0 reduces the Navier–Stokes equations further, as indicated by (5) in Eqs. 5.27a and 5.27b. The final

simplified equations are

0= ρgx + μ
∂
2u

∂y2
1

0= ρgy−
∂p

∂y
2

Since ∂u ∂z=0 (assumption 3) and ∂u ∂x=0 (assumption 4), then u is at most a function of y, and ∂2u ∂y2 = d2u dy2, and from

Eq. 1, then

d2u

dy2
= −

ρgx

μ
= −ρg

sin θ

μ

Integrating,
du

dy
= −ρg

sin θ

μ
y+ c1 3

and integrating again,

u= −ρg
sin θ

μ

y2

2
+ c1y+ c2 4

The boundary conditions needed to evaluate the constants are the no-slip condition at the solid surface (u=0 at y=0) and the

zero-shear-stress condition at the liquid free surface (du dy=0 at y= h).

Evaluating Eq. 4 at y=0 gives c2 =0. From Eq. 3 at y= h,

0 = −ρg
sin θ

μ
h+ c1

or

c1 = ρg
sin θ

μ
h

Substituting into Eq. 4 we obtain the velocity profile

u= −ρg
sin θ

μ

y2

2
+ ρg

sin θ

μ
hy

or

u= ρg
sin θ

μ
hy−

y2

2

u y

The shear stress distribution is (from Eq. 5.25a after setting ∂υ ∂x to zero, or alternatively, for one-dimensional flow,

from Eq. 2.15)

τyx = μ
du

dy
= ρg sin θ h−y

τyx y

The shear stress in the fluid reaches its maximum value at the wall y=0 ; as we expect, it is zero at the free surface y= h . At the

wall the shear stress τyx is positive but the surface normal for the fluid is in the negative y direction; hence the shear force acts in

the negative x direction, and just balances the x component of the body force acting on the fluid. The volume flow rate is

Q=
A

u dA=
h

0

u bdy
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The Navier–Stokes equations for constant density and viscosity are given in cylindrical coordinates

in Example 5.10. They have also been derived for spherical coordinates [1, 2]. We will apply the cylin-

drical coordinate form in solving Example 5.10.

where b is the surface width in the z direction. Substituting,

Q=
h

0

ρg sin θ

μ
hy−

y2

2
b dy= ρg

sin θ b

μ

hy2

2
−
y3

6

h

0

Q=
ρg sin θ b

μ

h3

3

Q
5

The average flow velocity is V =Q A=Q bh. Thus

V =
Q

bh
=
ρg sin θ

μ

h2

3

V

Solving for film thickness gives

h=
3μQ

ρg sin θ b

1 3

h

6

A film of water h=1mm thick on a plane b=1m wide, inclined at θ=15 ,

would carry

Q =999
kg

m3
×9 81

m

s2
× sin 15 × 1 m×

m s

1 00× 10−3 kg

×
0 001

3
m3

3
× 1000

L

m3

Q =0 846 L s
Q

Notes:
• This problem illustrates how the full
Navier–Stokes equations (Eqs. 5.27a–
5.27c) can sometimes be reduced to a set
of solvable equations (Eqs. 1 and 2 in this
problem).

• After integration of the simplified equa-
tions, boundary (or initial) conditions are
used to complete the solution.

• Once the velocity field is obtained, other
useful quantities (e.g., shear stress, vol-
ume flow rate) can be found.

• Equations 5 and 6 show that even for
fairly simple problems the results can be
quite complicated: The depth of the flow
depends in a nonlinear way on flow
rate h Q1 3 .

Example 5.10 ANALYSIS OF LAMINAR VISCOMETRIC FLOW BETWEEN COAXIAL CYLINDERS

A viscous liquid fills the annular gap between vertical concentric cylinders. The inner cylinder is stationary, and the outer cylinder

rotates at constant speed. The flow is laminar. Simplify the continuity, Navier–Stokes, and tangential shear stress equations to

model this flow field. Obtain expressions for the liquid velocity profile and the shear stress distribution. Compare the shear stress

at the surface of the inner cylinder with that computed from a planar approximation obtained by “unwrapping” the annulus into a

plane and assuming a linear velocity profile across the gap. Determine the ratio of cylinder radii for which the planar approx-

imation predicts the correct shear stress at the surface of the inner cylinder within 1 percent.

Given: Laminar viscometric flow of liquid in annular gap between vertical concentric cylinders. The inner cylinder is station-

ary, and the outer cylinder rotates at constant speed.
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Find: (a) Continuity and Navier–Stokes equations simplified to model this flow field.

(b) Velocity profile in the annular gap.

(c) Shear stress distribution in the annular gap.

(d) Shear stress at the surface of the inner cylinder.

(e) Comparison with “planar” approximation for constant shear stress in the narrow

gap between cylinders.

(f) Ratio of cylinder radii for which the planar approximation predicts shear stress

within 1 percent of the correct value.

Solution: The geometry and coordinate system used to model the flow field are shown.

The z coordinate is directed vertically upward; as a consequence, gr = gθ =0 and gz = −g.

The continuity, Navier–Stokes, and tangential shear stress equations written in cylindrical

coordinates for incompressible flow with constant viscosity are

1

r

∂

∂r
rυr

1

r

∂

∂θ

4

υθ
∂

∂z
υz

3

0 1

r component:

ρ
∂υr

∂t

1

υr
∂υr

∂r

5

υθ

r

∂υr

∂θ

4

−
υ2θ
r

υz
∂υr

∂z

3

ρgr

0

−
∂p

∂r
μ

∂

∂r

1

r

∂

∂r
r υr

5

1

r2
∂
2υr

∂θ2

4

−
2

r2
∂υθ

∂θ

4

∂
2υr

∂z2

3

θ component:

ρ
∂υθ

∂t

1

υr

5

∂υθ

∂r

υθ

r

∂υθ

∂θ

4

υrυθ

r

5

υz
∂υθ

∂z

3

ρgθ

0

−
1

r

∂p

∂θ

4

μ
∂

∂r

1

r

∂

∂r
rυθ

1

r2
∂
2υθ

∂θ2

4

2

r2
∂υθ

∂θ

4

∂
2υθ

∂z2

3

z component:

ρ
∂υz

∂t

1

υr

5

∂υz

∂r

υθ

r

∂υz

∂θ

4

υz
∂υz

∂z

3

ρgz−
∂p

∂z
μ

1

r

∂

∂r
r
∂υz

∂r

3

1

r2
∂
2υz

∂θ2

3

∂
2υz

∂z2

3

τrθ μ r
∂

∂r

υθ

r

1

r

∂υr

∂θ

4

The terms canceled to simplify the basic equations are keyed by number to the assumptions listed below. The assumptions are

discussed in the order in which they are applied to simplify the equations.

Assumptions:

1 Steady flow; angular speed of outer cylinder is constant.

2 Incompressible flow; ρ= constant.

3 No flow or variation of properties in the z direction; υz =0 and ∂ ∂z=0.

4 Circumferentially symmetric flow, so properties do not vary with θ, so ∂ ∂θ=0.

Assumption 1 eliminates time variations in fluid properties.

Assumption 2 eliminates space variations in density.

Assumption 3 causes all terms in the z component of the Navier–Stokes equation to cancel, except for the hydrostatic pressure

distribution.

r

z

R1

R2
ω

θ
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After assumptions 3 and 4 are applied, the continuity equation reduces to

1

r

∂

∂r
rυr =0

Because ∂ ∂θ=0 and ∂ ∂z=0 by assumptions 3 and 4, then
∂

∂r

d

dr
, so integrating gives

rυr = constant

Since υr is zero at the solid surface of each cylinder, then υr must be zero everywhere.

The fact that υr =0 reduces the Navier–Stokes equations further. The r- and θ-component equations reduce to

−ρ
υ2θ
r
= −

∂p

∂r

0= μ
∂

∂r

1

r

∂

∂r
rυθ

But since ∂ ∂θ=0 and ∂ ∂z=0 by assumptions 3 and 4, then υθ is a function of radius only, and

d

dr

1

r

d

dr
rυθ =0

Integrating once,

1

r

d

dr
rυθ = c1

or
d

dr
rυθ = c1r

Integrating again,

rυθ = c1
r2

2
+ c2 or υθ = c1

r

2
+ c2

1

r

Two boundary conditions are needed to evaluate constants c1 and c2. The boundary conditions are

υθ =ωR2 at r=R2 and

υθ =0 at r=R1

Substituting

ωR2 = c1
R2

2
+ c2

1

R2

0= c1
R1

2
+ c2

1

R1

After considerable algebra

c1 =
2ω

1−
R1

R2

2
and c2 =

−ωR2
1

1−
R1

R2

2

Substituting into the expression for υθ,

υθ =
ωr

1−
R1

R2

2
−

ωR2
1 r

1−
R1

R2

2
=

ωR1

1−
R1

R2

2

r

R1

−
R1

r
υθ r
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The shear stress distribution, using assumption 4, is:

τrθ = μr
d

dr

υθ

r
= μr

d

dr

ωR1

1−
R1

R2

2

1

R1

−
R1

r2
= μr

ωR1

1−
R1

R2

2
−2 −

R1

r3

τrθ = μ
2ωR2

1

1−
R1

R2

2

1

r2
τrθ

At the surface of the inner cylinder, r=R1, so

τsurface = μ
2ω

1−
R1

R2

2

τsurface

For a “planar” gap

τplanar = μ
Δυ

Δy
= μ

ω R2

R2−R1

or

τplanar = μ
ω

1−
R1

R2

τplanar

Factoring the denominator of the exact expression for shear stress at the surface gives

τsurface = μ
2ω

1−
R1

R2

1+
R1

R2

= μ
ω

1−
R1

R2

2

1+
R1

R2

Thus

τsurface

τplanar
=

2

1+
R1

R2

For 1 percent accuracy,

1 01=
2

1+
R1

R2

or

R1

R2

=
1

1 01
2−1 01 = 0 980

R1

R2

The accuracy criterion is met when the gap width is less than 2 percent of the

cylinder radius.

x

y

R1R2

R2ω

Notes:
• This problem illustrates how the full
Navier–Stokes equations in cylindrical
coordinates (Eqs. 1–5) can sometimes be
reduced to a set of solvable equations.

• As in Example 5.9, after integration of
the simplified equations, boundary (or
initial) conditions are used to complete
the solution.

• Once the velocity field is obtained, other
useful quantities (in this problem, shear
stress) can be found.
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5.5 Summary and Useful Equations
In this chapter we have:

✓ Derived the differential form of the conservation of mass (continuity) equation in vector form
as well as in rectangular and cylindrical coordinates.

✓ *Defined the stream function ψ for a two-dimensional incompressible flow and learned how to
derive the velocity components from it, as well as to find ψ from the velocity field.

✓ Learned how to obtain the total, local, and convective accelerations of a fluid particle from the
velocity field.

✓ Presented examples of fluid particle translation and rotation, and both linear and angular
deformation.

✓ Defined vorticity and circulation of a flow.
✓ Derived, and solved for simple cases, the Navier–Stokes equations, and discussed the physical

meaning of each term.

We have also explored such ideas as how to determine whether a flow is incompressible by
using the velocity field and, given one velocity component of a two-dimensional incompressible
flow field, how to derive the other velocity component.

In this chapter we studied the effects of viscous stresses on fluid particle deformation and
rotation; in the next chapter we examine flows for which viscous effects are negligible.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to

refer to their page numbers for details!

Useful Equations
Continuity equation

(general, rectangular

coordinates):

∂ρu

∂x
+
∂ρυ

∂y
+
∂ρw

∂z
+
∂ρ

∂t
=0

∇ ρV +
∂ρ

∂t
=0

(5.1a)

(5.1b)

Page 131

Continuity equation

(incompressible,

rectangular coordinates):

∂u

∂x
+
∂υ

∂y
+
∂w

∂z
=∇ V =0 (5.1c)

Page 131

Continuity equation

(steady, rectangular

coordinates):

∂ρu

∂x
+
∂ρυ

∂y
+
∂ρw

∂z
=∇ ρV =0 (5.1d)

Page 131

Continuity equation

(general, cylindrical

coordinates):

1

r

∂ rρVr

∂r
+
1

r

∂ ρVθ

∂θ
+
∂ ρVz

∂z
+
∂ρ

∂t
=0

∇ ρV +
∂ρ

∂t
=0

(5.2a)

(5.1b)

Page 134

Continuity equation

(incompressible,

cylindrical coordinates):

1

r

∂ rVr

∂r
+
1

r

∂Vθ

∂θ
+
∂Vz

∂z
=∇ V =0 (5.2b)

Page 135

Continuity equation

(steady, cylindrical

coordinates):

1

r

∂ rρVr

∂r
+
1

r

∂ ρVθ

∂θ
+
∂ ρVz

∂z
=∇ ρV =0 (5.2c)

Page 135

Continuity equation

(2D, incompressible,

rectangular coordinates):

∂u

∂x
+
∂υ

∂y
=0 (5.3)

Page 136

Stream function

(2D, incompressible,

rectangular coordinates):

u≡
∂ψ

∂y
and υ≡ −

∂ψ

∂x
(5.4)

Page 136

Continuity equation

(2D, incompressible,

cylindrical coordinates):

∂ rVr

∂r
+
∂Vθ

∂θ
=0 (5.7)

Page 137
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Table (Continued)

Stream function

(2D, incompressible,

cylindrical coordinates):

Vr ≡
1

r

∂ψ

∂θ
and Vθ ≡ −

∂ψ

∂r
(5.8)

Page 137

Particle acceleration

(rectangular

coordinates):

DV

Dt
≡ ap = u

∂V

∂x
+ υ

∂V

∂y
+w

∂V

∂z
+
∂V

∂t
(5.9)

Page 141

Particle acceleration

components in

rectangular coordinates:

axp =
Du

Dt
= u

∂u

∂x
+ υ

∂u

∂y
+w

∂u

∂z
+
∂u

∂t

ayp =
Dυ

Dt
= u

∂υ

∂x
+ υ

∂υ

∂y
+w

∂υ

∂z
+
∂υ

∂t

azp =
Dw

Dt
= u

∂w

∂x
+ υ

∂w

∂y
+w

∂w

∂z
+
∂w

∂t

(5.11a)

(5.11b)

(5.11c)

Page 141

Particle acceleration

components in

cylindrical coordinates:

arp =Vr

∂Vr

∂r
+
Vθ

r

∂Vr

∂θ
−
V2
θ

r
+Vz

∂Vr

∂z
+
∂Vr

∂t

aθp =Vr

∂Vθ

∂r
+
Vθ

r

∂Vθ

∂θ
+
VrVθ

r
+Vz

∂Vθ

∂z
+
∂Vθ

∂t

azp =Vr

∂Vz

∂r
+
Vθ

r

∂Vz

∂θ
+Vz

∂Vz

∂z
+
∂Vz

∂t

(5.12a)

(5.12b)

(5.12c)

Page 142

Navier–Stokes equations

(incompressible,

constant viscosity):

ρ
∂u

∂t
+ u

∂u

∂x
+ υ

∂u

∂y
+w

∂u

∂z

= ρgx−
∂p

∂x
+ μ

∂
2u

∂x2
+
∂
2u

∂y2
+
∂
2u

∂z2

ρ
∂υ

∂t
+ u

∂υ

∂x
+ υ

∂υ

∂y
+w

∂υ

∂z

= ρgy−
∂p

∂y
+ μ

∂
2υ

∂x2
+
∂
2υ

∂y2
+
∂
2υ

∂z2

ρ
∂w

∂t
+ u

∂w

∂x
+ υ

∂w

∂y
+w

∂w

∂z

= ρgz−
∂p

∂z
+ μ

∂
2w

∂x2
+
∂
2w

∂y2
+
∂
2w

∂z2

(5.27a)

(5.27b)

(5.27c)

Page 153
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Chapter 6 Problems

Euler’s Equation
6.1 An incompressible frictionless flow field is given by

V = Ax+By i+ Bx−Ay j where A = 2 s−1 and B = 2 s−1 and x

and y are in meters. The fluid is water and g = gj . Determine the

magnitude and acceleration of a fluid particle and the pressure

gradient at (x,y) = (2,2).

6.2 The velocity field for a two-dimensional downward flow

of water against a plate is given by V =Axi−Ayj. Plot the pressure

gradient along the centerline and determine the pressure gradient at

(x,y) = (0,2), (0,0) and (2,0).

6.3 For a water flow in a pipe, determine the pressure gradient

required to accelerate the water at 20 ft/s2 for (a) a horizontal pipe,

(b) a vertical pipe with the water flowing upward, and (c) a vertical

pipe with the water flowing downward. Explain why the pressure

gradient differs in sign between case (b) and case (c).

6.4Water flows in a circular channel as shown in the figure. The

velocity is 12 m/s and uniform across the channel. The pressure

is 120 kPa at the centerline (point 1). Determine the pressures

at points 2 and 3 for the case of (a) flow in the horizontal plane

and (b) flow in the vertical plane with gravity acting in the direc-

tion of 2 to 3.

6 m
7.5 m

2

1

3

P6.4

6.5 A tornado moves in a circular pattern with a vertical axis. The

wind speed is 200 mph, and the diameter of the tornado is 200 ft.

Determine the radial pressure gradient. If it is desired to model the

tornado using water in a 6 in. diameter tube, determine the speed

needed to give the same radial pressure gradient.

6.6 The y component of velocity in a two-dimensional incom-

pressible flow field is given by v = −Axy, where v is in m/s, the

coordinates are measured in meters, and A = 1/m s. There is no

velocity component or variation in the z direction. Calculate the

acceleration of a fluid particle at point (x,y) = (1,2). Estimate the

radius of curvature of the streamline passing through this point.

Plot the streamline and show both the velocity vector and the

acceleration vector on the plot. (Assume the simplest form of the

x component of velocity.)

x

L

b

u

y
V

Liquid

P6.6

6.7 Air flows in a two-dimensional bend of width w in a duct as

shown in the figure. The velocity profile is similar to a free vortex

(irrotational) profile given by Vθ = cr, where c is a constant. Follow-

ing Example 6.1, show that the flow rate is given by Q= k Δp

where k is a constant and given by k=wln
r2

r1

2r21r
2
2

ρ r22−r21

r1

V

r2

θ

θ

P6.7

6.8 Determine the dynamic and stagnation pressure of water

flowing at a speed of 25 ft/s. Express your answer in psi, kPa, and

inches of mercury.

6.9 In a pipe 0.3 m in diameter, 0 3 m3 s of water are pumped up a

hill. On the hilltop (elevation 48), the line reduces to 0.2 m diameter.

If the pumpmaintains a pressure of 690 kPa at elevation 21, calculate

the pressure in the pipe on the hilltop.

6.10 The flow section of a laboratory wind tunnel is shown in the

figure. A total head tube pointed upstream indicates that the stagna-

tion pressure on the test section centerline is 10 mm of water below

atmospheric. The laboratory is maintained at atmospheric pressure

and a temperature of −5 C. Determine the dynamic and static

pressures at the wind tunnel test section.

50m/s

Total head tube

P6.10

P-19
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6.11 An open-circuit wind tunnel draws in air from the atmosphere

through a well-contoured nozzle. In the test section, where the flow is

straight and nearly uniform, a static pressure tap is drilled into the

tunnel wall. A manometer connected to the tap shows that static

pressure within the tunnel is 45 mm of water below atmospheric.

Assume that the air is incompressible, and at 25 C, 100 kPa absolute.

Calculate the air speed in the wind-tunnel test section.

6.12 Determine the height H (m) and the pressure p (kPa) for the

water flow in the system shown in the figure.

125 mm d

75 mm d

100 mm d
175 mm

Hg (13.57)

p

H

P6.12

The Bernoulli Equation
6.13Water flows in a pipeline. At a point in the line where the diam-

eter is 7 in., the velocity is 12 fps and the pressure is 50 psi. At a point

40 ft away the diameter reduces to 3 in. Calculate the pressure here

when the pipe is (a) horizontal, (b) vertical with flow downward, and

(c) vertical with the flow upward. Explain why there is a difference in

the pressure for the different situations.

6.14Determine the relation between A1 and A2 so that for a flow rate

of 0:28 m3/s the static pressure will be the same at sections 1 and 2.

Determine the manometer reading for this condition and state which

leg has the higher mercury column.’

Gasoline

(0.85)

Hg (13.57)

A1

A2

1. 5 m

1

2

P6.14

6.15 Water flows steadily through the vertical 1-in.-diameter pipe

and out the 0.5 in. in diameter nozzle to the atmosphere. Determine

the minimum gage pressure required at section 1 to produce a veloc-

ity at the nozzle exit of 30 ft/s. Determine the required minimum

pressure at section 1 that maintains the same exit velocity when

the system is inverted.

2

1

F
lo

w

10 ft

V2

P6.15

6.16 The water flow rate through the siphon is 5 L s, its temperature

is 20 C, and the pipe diameter is 25 mm. Compute the maximum

allowable height, h, so that the pressure at point A is above the vapor

pressure of the water. Assume the flow is frictionless.

A

h

D = 25 mm

Flow

P6.16

6.17 Water flows from a very large tank through a 5 cm diameter

tube. The dark liquid in the manometer is mercury. Estimate the

velocity in the pipe and the rate of discharge from the tank.

Assume the flow is frictionless.

75 cm
4 m

15 cm

5 cm

Flow

Mercury

P6.17

6.18 Consider frictionless, incompressible flow of air over the wing

of an airplane flying at 200 km hr. The air approaching the wing is at

65 kPa and −10 C. At a certain point in the flow, the pressure is

60 kPa. Calculate the speed of the air relative to the wing at this point

and the absolute air speed.

6.19 The water jet is directed upward through a 3-in.-diameter noz-

zle under a head of 10 ft as shown in the figure. Determine the height

h of the liquid in the pitot tube. Determine the cross-sectional area of

the jet at section B.
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Water

Nozzle is 3 in. in diameter

(A = 0.049 1 ft2)

B
10 ft

5 ft

h

P6.19

6.20 Determine the flow rate through the pipeline shown in the fig-

ure and the pressures at A, B, C, and D.

Water

20 ft 6 in. d

2 in. d

5'

B

D

A

C

8'

12'

P6.20

6.21A smoothly contoured nozzle, with outlet diameter d=20mm,

is coupled to a straight pipe by means of flanges. Water flows in

the pipe, of diameter D=50 mm, and the nozzle discharges to the

atmosphere. For steady flow and neglecting the effects of viscos-

ity, find the volume flow rate in the pipe corresponding to a cal-

culated axial force of 45.5 N needed to keep the nozzle attached

to the pipe.

6.22Water flows steadily through a 3.25-in.-diameter pipe and dis-

charges through a 1.25-in.-diameter nozzle to atmospheric pressure.

The flow rate is 24.5 gpm. Calculate the minimum static pressure

required in the pipe to produce this flow rate. Evaluate the axial force

of the nozzle assembly on the pipe flange.

6.23 Two water reservoirs at a 30 m elevation each have discharge

pipes that are connected at a “tee” junction. One pipe has a 200-mm

diameter and the other a 150-mm diameter. The outlet pipe from the

“tee” is 300-mm in diameter and discharges to the atmosphere at an

elevation of 20 m. Determine the total flow rate and the flow rate in

each pipe.

6.24 A horizontal jet of air with 0.4-in.-diameter and a speed of

speed 225 ft/s strikes a 7.5 in. diameter stationary vertical disk. A

manometer is connected to a hole at the center of the disk. Determine

the height of the manometer liquid, which has a specific gravity of

1:75. Determine the force exerted by the jet on the disk.

6.25 An air-supported structure is used to enclose a set of tennis

courts. It is a semi-cylinder structure with a diameter of 50 ft and a

length of 50 ft. The blowers used to inflate the structure can maintain

the air pressure inside the structure at 0.75 in. of water above ambient

pressure. At design conditions, the wind blows at 35 mph perpendic-

ular to the axis of the semi-cylindrical shape. The resulting pressure

distribution is expressed as

p−p∞

1

2
ρV2

∞

=1−4sin2θ

Where the angle θ is measured from the ground on the upwind side

of the structure, p is the pressure at the surface, p∞ the atmospheric

pressure, and V∞ the wind speed. Determine the net vertical force

exerted on the structure.

6.26 Water flows at low speed through a circular tube with inside

diameter of 2 in. A smoothly contoured body of 1.5 in. diameter is

held in the end of the tube where the water discharges to atmosphere.

Neglect frictional effects and assume uniform velocity profiles at

each section. Determine the pressure measured by the gauge and

the force required to hold the body.

F

V2

V2

V1 = 20 ft/s

P6.26

Energy Grade Line and Hydraulic Grade Line
6.27 Sketch the energy (EGL) and hydraulic (HGL) grade lines for

the system shown in the figure below.

Water

20 ft 6 in. d

2 in. d

5'

B

D

A

C

8'

12'

P6.27

6.28 The turbine extracts power from the water flowing from

the reservoir. Find the horsepower extracted if the flow through

the system is 1000 cfs. Draw the energy line and the hydraulic

grade line.
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El.1000 ft

–El.500 ft

El.475 ft

d =
 12 ft

T

P6.28

6.29 Sketch the energy grade lines (EGL) and hydraulic grade lines

(HGL) for the two systems shown in the figure below.

Turbine Pump

P6.29

Irrotational Flow
6.30 Compressed air is used to accelerate water from a tube.

Neglect the velocity in the reservoir and assume the flow in the

tube is uniform at any section. At a particular instant, it is

known that V =6 ft s and dV dt =7 5 ft s2. The cross-sectional

area of the tube is A=32 in 2. Determine the pressure in the tank

at this instant.

L = 35 ftWaterh = 4.5 ft

p

P6.30

6.31 The velocity field for a two-dimensional flow is

V = Ax−By ti− Bx+Ay tj where A = 1 s−2 B = 2 s−2, t is in sec-

onds, and the coordinates are measured in meters. Determine whether

this is a possible incompressible flow and whether it is steady. Show

that the flow is irrotational and derive an expression for the velocity

potential.

6.32 A flow field is characterized by the stream function ψ =Axy,

where A=2 s−1 and the coordinates are measured in feet. Verify that

the flow is irrotational and determine the velocity potential ϕ. Plot

the streamlines and potential lines and visually verify that they are

orthogonal.

6.33 The stream function of a flow field is ψ=Ax3−Bxy2 where

A = 1m−1 s−1 and B = 3m−1 s−1, and the coordinates are measured

in meters. Find expressions for the velocity field, the velocity poten-

tial, and the pressure gradient.

6.34 A flow field is represented by the stream function ψ = x5−

15x4y2 +15x2y4−y6. Find the corresponding velocity field. Show

that this flow field is irrotational and obtain the potential function.

6.35 Consider the flow field represented by the velocity potential

ϕ=Ax+Bx2−By2, where A=1m s−1, B=1m−1 s−1, and the

coordinates are measured in meters. Obtain expressions for the veloc-

ity field and the stream function. Calculate the pressure difference

between the origin and point x,y = 1,2 .

6.36 Consider an air flow over a flat wall with an upstream velocity

of 6 m s. There is a narrow slit through which air is drawn in at a flow

rate of 0 2 m3 s per meter of width. Represent the flow as a combi-

nation of a uniform flow and a sink. Determine the location of the

stagnation point. Sketch the dividing line between the air that enters

the slit and the air that continues downstream.

Stagnation point

6 m/s

0.2 m3/s

P6.36

6.37 A source with a strength of q=3π m2 s and a sink with a

strength of q= π m2 s are located on the x axis at x =−1 m and

x = 1m, respectively. Determine the stream function and velocity

potential for the combined flow and sketch the streamlines.

6.38 The flow in a corner with an angle α can be described in radial

coordinates by the stream function as ψ =Ar
π
αsin

πθ

α
. Determine the

velocity potential for the flow and plot streamlines for flow

for α=60 .

6.39 A flow field is formed by combining a uniform flow in the

positive x direction with U = 10m/s, and a counterclockwise

vortex with strength K = 16π m2/s located at the origin. Determine

the stream function, velocity potential, and velocity field for the

combined flow.
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C H A P T E R 6

Incompressible Inviscid Flow
6.1 Momentum Equation for Frictionless Flow: Euler’s

Equation

6.2 Bernoulli Equation: Integration of Euler’s Equation

Along a Streamline for Steady Flow

6.3 The Bernoulli Equation Interpreted as an Energy

Equation

6.4 Energy Grade Line and Hydraulic Grade Line

6.5 Unsteady Bernoulli Equation: Integration of Euler’s

Equation Along a Streamline

6.6 Irrotational Flow

6.7 Summary and Useful Equations

Case Study

The Fountains at the Bellagio in Las Vegas

The water fountains at the Bellagio in Las Vegas are spectacular.
They are choreographed to vary the strength and direction of the
water jets in time with the music. The production of this system
of plumbing and control is also a spectacular fluid mechanics
achievement. The WET Design Company was responsible for
the design and construction of the system that produces the
extraordinary visual display.

WETdevelopedmany innovations tomake the fountains. Tra-
ditional fountains use pumps and pipes, which must be matched
for optimum flow. Many of WET’s designs use compressed air
instead of water pumps, which allows energy to be continuously
generated and accumulated, ready for instant output. This inno-
vative use of compressed air allowed the fountains to become a
reality—with the traditional systems of pipes or pumps, a foun-
tain such as the Bellagio’s would be impractical and expensive.
For example, it would be difficult to obtain the 240-foot heights
the fountains achieve without expensive, large, and noisy water
pumps. The “Shooter” thatWET developedworks on the principle
of introducing a large bubble of compressed air into the piping,
which forces trapped water through a nozzle at high pressure.
The ones installed at the Bellagio are able to shoot about 75 gal-
lons per second of water over 240 feet in the air. In addition to
providing a spectacular effect, they require only about 1/10th
the energy of traditional water pumps to produce the same effect.
Other airpowered devices produce pulsing water jets, achieving a
maximum height of 125 feet. In addition to their power, these
innovations lead to a saving of 80 percent ormore in energy costs
and have project construction costs that are about 50 percent less
than traditional pipe-pump fountains.

Fountains such as the one at the Bellagio are designed using
the relations for the flow of water with friction in pipes. The
tradeoffs among pumping power, the cost of equipment, and
the desired fountain effects bring in the techniques presented
in this chapter.
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The fountains at the Bellagio in Las Vegas.
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Learning Objectives
After completing this chapter, you should be able to

• Solve an incompressible, inviscid flow problem using Euler’s equation.

• Solve a steady incompressible frictionless flow problem using the Bernoulli equation.

• Explain the conditions under which the energy equation reduces to the Bernoulli equation.

• Determine the energy and hydraulic grade lines for a flow problem.

• Determine the stream function, potential function, and circulation for a flow problem.

In Chapter 5 we derived the differential equations (Eqs. 5.24) that describe the behavior of any fluid

satisfying the continuum assumption. We also saw how these equations reduced to various particular

forms—the most well known being the Navier–Stokes equations for an incompressible, constant viscos-

ity fluid (Eqs. 5.27). Although Eqs. 5.27 describe the behavior of common fluids (e.g., water, air, lubri-

cating oil) for a wide range of problems, as we discussed in Chapter 5, they are unsolvable analytically

except for the simplest of geometries and flows. For example, even using the equations to predict the

motion of your coffee as you slowly stir it would require the use of an advanced computational fluid

dynamics computer application, and the prediction would take a lot. In this chapter, instead of the

Navier–Stokes equations, we will study Euler’s equation, which applies to an inviscid fluid. Although

truly inviscid fluids do not exist, many flow problems, especially in aerodynamics, can be successfully

analyzed with the approximation that μ=0.

6.1 Momentum Equation for Frictionless Flow: Euler’s Equation
Euler’s equation obtained from Eqs. 5.27 after neglecting the viscous terms is

ρ
DV

Dt
= ρg−∇p 6 1

This equation states that for an inviscid fluid the change in momentum of a fluid particle is caused by the

body force (assumed to be gravity only) and the net pressure force. For convenience we recall that the

particle acceleration is

DV

Dt
=
∂V

∂t
+ V ∇ V 5 10

In this chapter we will apply Eq. 6.1 to the solution of incompressible, inviscid flow problems. In addi-

tion to Eq. 6.1 we have the incompressible form of the mass conservation equation,

∇ V =0 5 1c

Equation 6.1 expressed in rectangular coordinates is

ρ
∂u

∂t
+ u

∂u

∂x
+ υ

∂u

∂y
+w

∂u

∂z
= ρgx−

∂p

∂x
6 2a

ρ
∂υ

∂t
+ u

∂υ

∂x
+ υ

∂υ

∂y
+w

∂υ

∂z
= ρgy−

∂p

∂y
6 2b

ρ
∂w

∂t
+ u

∂w

∂x
+ υ

∂w

∂y
+w

∂w

∂z
= ρgz−

∂p

∂z
6 2c

If the z axis is assumed vertical, then gx =0, gy =0, and gz = −g, so g= −gk.

In cylindrical coordinates, the equations in component form, with gravity the only body force, are

ρar = ρ
∂Vr

∂t
+Vr

∂Vr

∂r
+
Vθ

r

∂Vr

∂θ
+Vz

∂Vr

∂z
−
V2
θ

r
= ρgr−

∂p

∂r
6 3a
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ρaθ = ρ
∂Vθ

∂t
+Vr

∂Vθ

∂r
+
Vθ

r

∂Vθ

∂θ
+Vz

∂Vθ

∂z
+
VrVθ

r
= ρgθ−

1

r

∂p

∂θ
6 3b

ρaz = ρ
∂Vz

∂t
+Vr

∂Vz

∂r
+
Vθ

r

∂Vz

∂θ
+Vz

∂Vz

∂z
= ρgz−

∂p

∂z
6 3c

If the z axis is directed vertically upward, then gr = gθ =0 and gz = −g.

Equations 6.1, 6.2, and 6.3 apply to problems in which there are no viscous stresses. Before

continuing with the main topic of this chapter, which is inviscid flow, let’s consider for a moment when

we have no viscous stresses, other than when μ=0.We recall from previous discussions that, in general,

viscous stresses are present when we have fluid deformation. When we have no fluid deformation, i.e.,

when we have rigid-bodymotion, no viscous stresses will be present, even if μ 0. Hence Euler’s equa-

tions apply to rigid-body motions as well as to inviscid flows. We discussed rigid-body motion in detail

in the online Section 3.6 as a special case of fluid statics.

In Chapters 2 and 5 we pointed out that streamlines, drawn tangent to the velocity vectors at every

point in the flow field, provide a convenient graphical representation. In steady flow a fluid particle will

move along a streamline because, for steady flow, pathlines and streamlines coincide. Thus, in describ-

ing the motion of a fluid particle in a steady flow, in addition to using orthogonal coordinates x, y, z, the

distance along a streamline is a logical coordinate to use in writing the equations of motion. “Streamline

coordinates” also may be used to describe unsteady flow. Streamlines in unsteady flow give a graphical

representation of the instantaneous velocity field.

For simplicity, consider the flow in the yz plane shown in Fig. 6.1. We wish to write the equations of

motion in terms of the coordinate s, distance along a streamline, and the coordinate n, distance normal to

the streamline. The pressure at the center of the fluid element is p. If we apply Newton’s second law in

the direction s of the streamline, to the fluid element of volume ds dn dx, then neglecting viscous forces

we obtain

p−
∂p

∂s

ds

2
dn dx− p+

∂p

∂s

ds

2
dn dx−ρg sin β ds dn dx= ρas ds dn dx

where β is the angle between the tangent to the streamline and the horizontal, and as is the acceleration of

the fluid particle along the streamline. Simplifying the equation, we obtain

−
∂p

∂s
−ρg sin β= ρas

Since sin β= ∂z ∂s, we can write

−
1

ρ

∂p

∂s
−g

∂z

∂s
= as

Along any streamline V =V s, t , and the material or total acceleration of a fluid particle in the

streamwise direction is given by

as =
DV

Dt
=
∂V

∂t
+V

∂V

∂s

Euler’s equation in the streamwise direction with the z axis directed vertically upward is then

−
1

ρ

∂p

∂s
−g

∂z

∂s
=
∂V

∂t
+V

∂V

∂s
6 4a

For steady flow Euler’s equation in the streamwise direction reduces to

1

ρ

∂p

∂s
= −g

∂z

∂s
−V

∂V

∂s
6 4b

Equation 6.4b indicates that the pressure along a streamline is influenced by both the gravitational field

and the velocity. The first effect is the hydrostatic effect that we studied in Chapter 3, which shows that in

the absence of velocity, the pressure increases directly with the change in elevation. If we were to apply

the Euler’s equation to flow in the xy plane, in which there is no influence of gravity, Eq. 6.4b would

become

164 Chapter 6 Incompressible Inviscid Flow

www.konkur.in

Telegram: @uni_k



1

ρ

∂p

∂s
= −V

∂V

∂s
6 4c

which indicates that for an incompressible, inviscid flow a decrease in velocity is accompanied by an

increase in pressure and conversely. This makes sense: the only force experienced by the particle is the

net pressure force, so the particle accelerates toward low-pressure regions and decelerates when

approaching high-pressure regions.

To obtain Euler’s equation in a direction normal to the streamlines, we apply Newton’s second law

in the n direction to the fluid element. Again, neglecting viscous forces, we obtain

p−
∂p

∂n

dn

2
ds dx− p+

∂p

∂n

dn

2
ds dx−ρg cos β dn dx ds= ρandn dx ds

where β is the angle between the n direction and the vertical, and an is the acceleration of the fluid particle

in the n direction. Simplifying the equation, we obtain

−
∂p

∂n
−ρg cos β= ρan

Since cos β= ∂z ∂n, we write

−
1

ρ

∂p

∂n
−g

∂z

∂n
= an

The normal acceleration of the fluid element is toward the center of curvature of the streamline, in the

minus n direction; thus in the coordinate system of Fig. 6.1, the familiar centripetal acceleration is written

an = −
V2

R

for steady flow, where R is the radius of curvature of the streamline at the point chosen. Then, Euler’s

equation normal to the streamline is written for steady flow as

1

ρ

∂p

∂n
+ g

∂z

∂n
=
V2

R
6 5a

For steady flow in a horizontal plane, Euler’s equation normal to a streamline becomes

1

ρ

∂p

∂n
=
V2

R
6 5b

Equation 6.5 indicates that pressure increases in the direction outward from the center of curvature of

the streamlines. This also makes sense. Because the only force experienced by the particle is the net

pressure force, the pressure field creates the centripetal acceleration. In regions where the streamlines

are straight, the radius of curvature, R, is infinite so there is no pressure variation normal to straight

streamlines. Example 6.1 shows how Eq. 6.5b can be used to compute the velocity from the

pressure gradient in the normal direction.

β

β

g

n s

z

y

R

dn

[ [p – ds dx

ds

д

д

p___
n

dn___
2

[ [p – dn dx
д

д

p___
s

ds___
2

[ [p + ds dx
д

д

p___
n

dn___
2

[ [p + dn dx
д

д

p___
s

ds___
2

Fig. 6.1 Fluid particle moving along a streamline.
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Example 6.1 FLOW IN A BEND

The flow rate of air at standard conditions in a flat duct is to be determined by installing pressure taps across a bend. The duct is

0.3 m deep and 0.1 m wide. The inner radius of the bend is 0.25 m. If the measured pressure difference between the taps is 40 mm

of water, compute the approximate flow rate.

Given: Flow through duct bend as shown.

p2−p1 = ρH2O
gΔh

where Δh=40 mm H2O. Air is at STP.

Find: Volume flow rate, Q.

Solution: Apply Euler’s n component equation across flow streamlines.

Governing equation:
∂p

∂r
=
ρV2

r
Assumptions:

1 Frictionless flow.

2 Incompressible flow.

3 Uniform flow at measurement section.

For this flow, p= p r , so

∂p

∂r
=
dp

dr
=
ρV2

r

or

dp= ρV2dr

r

Integrating gives

p2−p1 = ρV2 ln r
r2
r1
= ρV2 ln

r2

r1

and hence

V =
p2−p1

ρ ln r2 r1

1 2

But Δp= p2−p1 = ρH2O
gΔh, so V =

ρH2O
gΔh

ρ ln r2 r1

1 2

Substituting numerical values,

V = 999
kg

m3
×9 81

m

s2
×0 04 m×

m3

1 23 kg
×

1

ln 0 35 m 0 25 m

1 2

=30 8 m s

For uniform flow

Q=VA=30 8
m

s
× 0 1 m×0 3 m

Q=0 924 m3 s
Q

r2

r1
V

r

Plan view of bend

0.1 m

0.3 mR = 0.25 m

1

2

Bend

Duct

Flow

In this problem we assumed that the
velocity is uniform across the section.
In fact, the velocity in the bend approxi-
mates a free vortex (irrotational) profile
in which V 1 r (where r is the radius)
instead of V =const. Hence, this flow-
measurement device could only be
used to obtain approximate values of
the flow rate (see Problem 6.7).
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6.2 Bernoulli Equation: Integration of Euler’s Equation
Along a Streamline for Steady Flow
Compared to the viscous-flow equivalents, the momentum or Euler’s equation for incompressible, invis-

cid flow, Eq. 6.1, is simpler mathematically, but its solution in conjunction with the mass conservation

equation, Eq. 5.1c, still presents formidable difficulties in all but the most basic flow problems. One

convenient approach for a steady flow is to integrate Euler’s equation along a streamline. We will do

this below using two different mathematical approaches, and each will result in the Bernoulli equation.

Recall that in Section 4.4 we derived the Bernoulli equation by starting with a differential control

volume. These two additional derivations will give us more insight into the restrictions inherent in

use of the Bernoulli equation.

Derivation Using Streamline Coordinates

Euler’s equation for steady flow along a streamline from Eq. 6.4a is

−
1

ρ

∂p

∂s
−g

∂z

∂s
=V

∂V

∂s
6 6

If a fluid particle moves a distance, ds, along a streamline, then

∂p

∂s
ds= dp the change in pressure along s

∂z

∂s
ds= dz the change in elevation along s

∂V

∂s
ds= dV the change in speed along s

Thus, after multiplying Eq. 6.6 by ds, we can write

−
dp

ρ
−g dz=V dV or

dp

ρ
+V dV + g dz=0 along s

Integration of this equation gives

dp

ρ
+
V2

2
+ gz= constant along s 6 7

Before Eq. 6.7 can be applied, we must specify the relation between pressure and density. For the special

case of incompressible flow, ρ= constant, and Eq. 6.7 becomes the Bernoulli equation,

p

ρ
+
V2

2
+ gz= constant 6 8

Restrictions:

1 Steady flow.

2 Incompressible flow.

3 Frictionless flow.

4 Flow along a streamline.

The Bernoulli equation is probably the most famous, and abused, equation in all of fluid mechanics.

It is always tempting to use because it is a simple algebraic equation for relating the pressure, velocity,

and elevation in a fluid. For example, it is used to explain the lift of a wing. In aerodynamics the gravity

term is usually negligible, so Eq. 6.8 indicates that wherever the velocity is relatively high (e.g., on the

upper surface of a wing), the pressure must be relatively low, and wherever the velocity is relatively low

(e.g., on the lower surface of a wing), the pressure must be relatively high, generating substantial lift.

Equation 6.8 indicates that, in general if a particle increases its elevation z or moves into a higher

pressure region p , it will tend to decelerate V . This makes sense from a momentum point of view.

These comments only apply if the four restrictions listed are reasonable. For example, Eq. 6.8 cannot be
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used to explain the pressure drop in a horizontal constant diameter pipe flow: according to it, for

z= constant and V = constant, p= constant. We cannot stress enough that you should keep the restric-

tions firmly in mind whenever you consider using the Bernoulli equation!

Derivation Using Rectangular Coordinates

The vector form of Euler’s equation, Eq. 6.1, also can be integrated along a streamline. We shall restrict

the derivation to steady flow; thus, the end result of our effort should be Eq. 6.7.

For steady flow, Euler’s equation in rectangular coordinates can be expressed as

DV

Dt
= u

∂V

∂x
+ υ

∂V

∂y
+w

∂V

∂z
= V ∇ V = −

1

ρ
∇p−gk 6 9

For steady flow the velocity field is given by V =V x,y,z . The streamlines are lines drawn in the

flow field tangent to the velocity vector at every point. Recall again that for steady flow, streamlines,

pathlines, and streaklines coincide. The motion of a particle along a streamline is governed by Eq. 6.9.

During time interval dt the particle has vector displacement ds along the streamline.

If we take the dot product of the terms in Eq. 6.9 with displacement ds along the streamline,

we obtain a scalar equation relating pressure, speed, and elevation along the streamline. Taking the

dot product of ds with Eq. 6.9 gives

V ∇ V ds= −
1

ρ
∇p ds−gk ds 6 10

where

ds= dxi+ dyj+ dzk along s

Now we evaluate each of the three terms in Eq. 6.10, starting on the right,

−
1

ρ
∇p ds = −

1

ρ
i
∂p

∂x
+ j

∂p

∂y
+ k

∂p

∂z
dxi+ dyj+ dzk

= −
1

ρ

∂p

∂x
dx+

∂p

∂y
dy+

∂p

∂z
dz along s

−
1

ρ
∇p ds = −

1

ρ
dp along s

and

−gk ds = −gk dxi+ dyj+ dzk

= −g dz along s

Using a vector identity, we can write the third term as

V ∇ V ds =
1

2
∇ V V −V × ∇×V ds

=
1

2
∇ V V ds− V × ∇×V ds

The last term on the right side of this equation is zero, since V is parallel to ds [recall from vector math

that V × ∇×V ds= − ∇×V ×V ds= − ∇×V V × ds ]. Consequently,

V ∇ V ds=
1

2
∇ V V ds =

1

2
∇ V2 ds along s

=
1

2
i
∂V2

∂x
+ j

∂V2

∂y
+ k

∂V2

∂z
dxi+ dyj+ dzk

=
1

2

∂V2

∂x
dx+

∂V2

∂y
dy+

∂V2

∂z
dz

V ∇ V ds=
1

2
d V2 along s
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Substituting these three terms into Eq. 6.10 yields

dp

ρ
+
1

2
d V2 + g dz=0 along s

Integrating this equation, we obtain

dp

ρ
+
V2

2
+ gz= constant along s

If the density is constant, we obtain the Bernoulli equation

p

ρ
+
V2

2
+ gz= constant

As expected, we see that the last two equations are identical to Eqs. 6.7 and 6.8 derived previously

using streamline coordinates. The Bernoulli equation, derived using rectangular coordinates, is still

subject to the restrictions: (1) steady flow, (2) incompressible flow, (3) frictionless flow, and (4) flowalong

a streamline.

Static, Stagnation, and Dynamic Pressures

The pressure, p, which we have used in deriving the Bernoulli equation, Eq. 6.8, is the thermodynamic

pressure and is commonly called the static pressure. The static pressure is the pressure measured by an

observer riding along with the fluid. We also have the stagnation and dynamic pressures, which we will

define shortly. How do we measure the pressure in a fluid in motion?

In Section 6.1 we showed that there is no pressure variation normal to straight streamlines. This fact

makes it possible to measure the static pressure in a flowing fluid using a wall pressure “tap,” placed in a

region where the flow streamlines are straight, as shown in Fig. 6.2a. The pressure tap is a small hole,

drilled carefully in the wall, with its axis perpendicular to the surface. If the hole is perpendicular to the

duct wall and free from burrs, accurate measurements of static pressure can be made by connecting the

tap to a suitable pressure-measuring instrument [1].

In a fluid stream far from a wall, or where streamlines are curved, accurate static pressure measure-

ments can be made by careful use of a static pressure probe, shown in Fig. 6.2b. Such probes must be

designed so that the measuring holes are placed correctly with respect to the probe tip and stem to avoid

erroneous results [2]. In use, the measuring section must be aligned with the local flow direction. Static

pressure probes, such as that shown in Fig 6.2b, and in a variety of other forms, are available commer-

cially in sizes as small as 1.5 mm ( 1
16
in.) in diameter [3].

The stagnation pressure is obtained when a flowing fluid is decelerated to zero speed by a friction-

less process. For incompressible flow, the Bernoulli equation can be used to relate changes in speed and

pressure along a streamline for such a process. Neglecting elevation differences, Eq. 6.8 becomes

p

ρ
+
V2

2
= constant

If the static pressure is p at a point in the flow where the speed is V , then the stagnation pressure, p0,

where the stagnation speed, V0, is zero, may be computed from

=0
P0

ρ
+
V2
0

2
=
P

ρ
+
V2

2

or

p0 = p+
1

2
ρV2 6 11

Equation 6.11 is a mathematical statement of the definition of stagnation pressure, valid for incom-

pressible flow. The term 1
2
ρV2 generally is called the dynamic pressure. Equation 6.11 states that the

stagnation (or total) pressure equals the static pressure plus the dynamic pressure. One way to picture

the three pressures is to imagine you are standing in a steady wind holding up your hand. The static

pressure will be atmospheric pressure; the larger pressure you feel at the center of your hand will be
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the stagnation pressure; and the buildup of pressure (the difference between the stagnation and static

pressures) will be the dynamic pressure. Solving Eq. 6.11 for the speed,

V =
2 p0−p

ρ
6 12

Thus, if the stagnation pressure and the static pressure could be measured at a point, Eq. 6.12 would give

the local flow speed.

Stagnation pressure is measured in the laboratory using a probe with a hole that faces directly

upstream as shown in Fig. 6.3. Such a probe is called a stagnation pressure probe, or pitot tube. Again,

the measuring section must be aligned with the local flow direction.

We have seen that static pressure at a point can be measured with a static pressure tap or probe

(Fig. 6.2). If we knew the stagnation pressure at the same point, then the flow speed could be computed

from Eq. 6.12. Two possible experimental setups are shown in Fig. 6.4.

In Fig. 6.4a, the static pressure corresponding to point A is read from the wall static pressure tap. The

stagnation pressure is measured directly at A by the total head tube, as shown. The stem of the total head

tube is placed downstream from the measurement location to minimize disturbance of the local flow.

The use of a total head tube and a wall static pressure tap to determine the flow velocity is shown in

Example 6.2.

Pressure
tap

Flow
streamlines

(a) Wall pressure tap (b) Static pressure probe

Flow

Small holes

Stem

To manometer or
pressure gauge

Fig. 6.2 Measurement of static pressure.

Flow

To manometer or
pressure gauge

Small hole

Fig. 6.3 Measurement of stagnation pressure.

Flow Flow
Total
head
tube

A

p p0

B

C

Static
pressure

holes

p0

p

(b) Pitot-static tube(a) Total head tube used
  with wall static tap

Fig. 6.4 Simultaneous measurement of stagnation and static pressures.
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Two probes often are combined, as in the pitot-static tube shown in Fig. 6.4b. The inner tube is used

to measure the stagnation pressure at point B, while the static pressure atC is sensed using the small holes

in the outer tube. In flow fields where the static pressure variation in the streamwise direction is small, the

pitot-static tube may be used to infer the speed at point B in the flow by assuming pB = pC and using

Eq. 6.12. (Note that when pB pC, this procedure will give erroneous results.)

Remember that the Bernoulli equation applies only for incompressible flow (Mach number

M ≤ 0 3). The definition and calculation of the stagnation pressure for compressible flow will be dis-

cussed in Section 12.3.

Applications

The Bernoulli equation can be applied between any two points on a streamline provided that the other

three restrictions are satisfied. The result is

p1

ρ
+
V2
1

2
+ gz1 =

p2

ρ
+
V2
2

2
+ gz2 6 13

Example 6.2 PITOT TUBE

A pitot tube is inserted in an air flow (at STP) to measure the flow speed. The tube is inserted so that it points upstream into the

flow and the pressure sensed by the tube is the stagnation pressure. The static pressure is measured at the same location in the

flow, using a wall pressure tap. If the pressure difference is 30 mm of mercury, determine the flow speed.

Given: A pitot tube inserted in a flow as shown. The flowing fluid is air and the manometer liquid is mercury.

Find: The flow speed.

Solution:

Governing equation:
p

ρ
+
V2

2
+ gz= constant

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Flow along a streamline.

4 Frictionless deceleration along stagnation streamline.

Writing Bernoulli’s equation along the stagnation streamline (with Δz=0) yields Eq. 6.11

p0

ρ
=
p

ρ
+
V2

2

p0 is the stagnation pressure at the tube opening where the speed has been reduced, without friction, to zero. Solving for V gives

V =
2 p0−p

ρair

From the diagram,

p0−p= ρHggh= ρH2O
ghSGHg

and

V =
2ρH2O

ghSGHg

ρair

= 2× 1000
kg

m3
×9 81

m

s2
×30 mm×13 6×

m3

1 23 kg
×

1 m

1000 mm

V =80 8 m s V

At T =20 C, the speed of sound in air is 343 m s. Hence, M =0 236 and the

assumption of incompressible flow is valid.

Air flow

Mercury

30 mm

This problem illustrates use of a pitot tube
to determine flow speed. Pitot (or pitot-
static) tubes are often placed on the exte-
rior of aircraft to indicate air speed relative
to the aircraft, and hence aircraft speed
relative to the air.
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where subscripts 1 and 2 represent any two points on a streamline. Applications of Eqs. 6.8 and 6.13 to

typical flow problems are illustrated in Examples 6.3 through 6.5. In some situations, the flow appears

unsteady from one reference frame, but steady from another, which translates with the flow. Since the

Bernoulli equation was derived by integrating Newton’s second law for a fluid particle, it can be applied

in any inertial reference frame. The procedure is illustrated in Example 6.6.

Example 6.3 NOZZLE FLOW

Air flows steadily at low speed through a horizontal nozzle (by definition a device for accelerating a flow), discharging to atmos-

phere. The area at the nozzle inlet is 0 1 m2. At the nozzle exit, the area is 0 02 m2. Determine the gage pressure required at the

nozzle inlet to produce an outlet speed of 50 m s.

Given: Flow through a nozzle, as shown.

Find: p1−patm.

Solution:

Governing equations:

p1

ρ
+
V2
1

2
+ gz1 =

p2

ρ
+
V2
2

2
+ gz2 6 13

Continuity for incompressible and uniform flow:

CS
V A=0 4 13b

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Frictionless flow.

4 Flow along a streamline.

5 z1 = z2.

6 Uniform flow at sections and .

The maximum speed of 50 m s is well below 100 m s, which corresponds to Mach number M≈0 3 in standard air. Hence, the

flow may be treated as incompressible.

Apply the Bernoulli equation along a streamline between points and to evaluate p1. Then

p1−patm = p1−p2 =
ρ

2
V2
2 −V2

1

Apply the continuity equation to determine V1,

−ρV1A1 + ρV2A2 =0 or V1A1 =V2A2

so that

V1 =V2

A2

A1

=50
m

s
×
0 02 m2

0 1 m2
=10 m s

For air at standard conditions, ρ=1 23 kg m3. Then

p1−patm =
ρ

2
V2
2 −V2

1

=
1

2
× 1 23

kg

m3
50

2 m
2

s2
− 10

2 m
2

s2
N s2

kg m

p1−patm =1 48 kPa
p1−patm

1

2

CV

Streamline

p2 = patm

V2 = 50 m/s

A2 = 0.02 m2

A1 = 0.1 m2

Notes:
• This problem illustrates a typical

application of the Bernoulli equation.
• The streamlines must be straight at

the inlet and exit in order to have
uniform pressures at those locations.
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Example 6.4 FLOW THROUGH A SIPHON

A U-tube acts as a water siphon. The bend in the tube is 1 m above the water surface; the tube outlet is 7 m below the water

surface. The water issues from the bottom of the siphon as a free jet at atmospheric pressure. Determine the speed of the free

jet and the minimum absolute pressure of the water in the bend.

Given: Water flowing through a siphon as shown.

Find: (a) Speed of water leaving as a free jet.

(b) Pressure at point (the minimum pressure point) in the flow.

Solution:

Governing equation:
p

ρ
+
V2

2
+ gz= constant

Assumptions:

1 Neglect friction.

2 Steady flow.

3 Incompressible flow.

4 Flow along a streamline.

5 Reservoir is large compared with pipe.

Apply the Bernoulli equation between points and .

p1

ρ
+
V2
1

2
+ gz1 =

p2

ρ
+
V2
2

2
+ gz2

Since areareservoir areapipe, then V1≈0. Also p1 = p2 = patm, so

gz1 =
V2
2

2
+ gz2 and V2

2 =2g z1−z2

V2 = 2g z1−z2 = 2× 9 81
m

s2
×7m

=11 7 m s
V2

To determine the pressure at location , we write the Bernoulli equation

between and .

p1

ρ
+
V2
1

2
+ gz1 =

pA

ρ
+
V2
A

2
+ gzA

Again V1≈0 and from conservation of mass VA =V2. Hence

pA

ρ
=
p1

ρ
+ gz1−

V2
2

2
−gzA =

p1

ρ
+ g z1−zA −

V2
2

2

pA = p1 + ρg z1−zA −ρ
V2
2

2

= 1 01× 105
N

m2
+999

kg

m3
×9 81

m

s2
× −1 m

N s2

kg m

−
1

2
× 999

kg

m3
× 11 7

2m
2

s2
×

N s2

kg m

pA =22 8 kPa abs or −78 5 kPa gage
pA

1

2

A

8 m

z = 0

1 m
z

Notes:
• This problem illustrates an application of

the Bernoulli equation that includes
elevation changes.

• It is interesting to note that when the
Bernoulli equation applies between a
reservoir and a free jet that it feeds at a
location h below the reservoir surface,
the jet speed will be V = 2 gh; this is the
same velocity a droplet (or stone) falling
without friction from the reservoir level
would attain if it fell a distance h.

• Always take care when neglecting friction
in any internal flow. In this problem,
neglecting friction is reasonable if the
pipe is smooth-surfaced and is relatively
short. In Chapter 8 we will study fric-
tional effects in internal flows.
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Example 6.5 FLOW UNDER A SLUICE GATE

Water flows under a sluice gate on a horizontal bed at the inlet to a flume. Upstream from the gate, the water depth is 1.5 ft and the

speed is negligible. At the vena contracta downstream from the gate, the flow streamlines are straight and the depth is 2 in. Deter-

mine the flow speed downstream from the gate and the discharge in cubic feet per second per foot of width.

Given: Flow of water under a sluice gate.

Find: (a) V2.

(b) Q in ft3 s ft of width.

Solution: Under the assumptions listed below, the flow satisfies all

conditions necessary to apply the Bernoulli equation. The question is,

what streamline do we use?

Governing equation:
p1

ρ
+
V2
1

2
+ gz1 =

p2

ρ
+
V2
2

2
+ gz2

Assumption:

1 Steady flow.

2 Incompressible flow.

3 Frictionless flow.

4 Flow along a streamline.

5 Uniform flow at each section.

6 Hydrostatic pressure distribution (at each location, pressure increases linearly with depth).

If we consider the streamline that runs along the bottom of the channel z=0 , because of assumption 6 the pressures at and

are

p1 = patm + ρgD1 and p2 = patm + ρgD2

so that the Bernoulli equation for this streamline is

patm + ρgD1

ρ
+
V2
1

2
=

patm + ρgD2

ρ
+
V2
2

2

or

V2
1

2
+ gD1 =

V2
2

2
+ gD2 1

On the other hand, consider the streamline that runs along the free surface on both sides and down the inner surface of the gate.

For this streamline

patm

ρ
+
V2
1

2
+ gD1 =

patm

ρ
+
V2
2

2
+ gD2

or

V2
1

2
+ gD1 =

V2
2

2
+ gD2 1

We have arrived at the same equation (Eq. 1) for the streamline at the bottom and the streamline at the free surface, implying the

Bernoulli constant is the same for both streamlines. We will see in Section 6.5 that this flow is one of a family of flows for which

this is the case. Solving for V2 yields

V2 = 2g D1−D2 +V2
1

But V2
1 ≈0, so

V2 = 2g D1−D2 = 2× 32 2
ft

s2
× 1 5 ft−2 in ×

ft

12 in

V2 =9 27 ft s
V2

21

z D1 = 1.5 ft

Sluice gate

Vena contracta

V2
D2 = 2 in.

g

V1 – 0~
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For uniform flow, Q=VA=VDw, or

Q

w
=VD=V2D2 =9 27

ft

s
+ 2 in ×

ft

12 in
= 1 55 ft2 s

Q

w
=1 55 ft3 s foot of width

Q

w

Example 6.6 BERNOULLI EQUATION IN TRANSLATING REFERENCE FRAME

A light plane flies at 150 km hr in standard air at an altitude of 1000 m. Determine the stagnation pressure at the leading edge of

the wing. At a certain point close to the wing, the air speed relative to the wing is 60 m s. Compute the pressure at this point.

Given: Aircraft in flight at 150 km hr at 1000 m altitude in standard air.

Find: Stagnation pressure, p0A , at point A and static pressure, pB,

at point B.

Solution: Flow is unsteady when observed from a fixed frame,

that is, by an observer on the ground. However, an observer on the

wing sees the following steady flow:

At z=1000 m in standard air, the temperature is 281 K and the speed of sound is 336 m s. Hence at point B,MB =VB C =0 178.

This is less than 0.3, so the flow may be treated as incompressible. Thus the Bernoulli equation can be applied along a streamline

in the moving observer’s inertial reference frame.

Governing equation:

pair

ρ
+
V2
air

2
+ gzair =

pA

ρ
+
V2
A

2
+ gzA =

pB

ρ
+
V2
B

2
+ gzB

Assumptions:

1 Steady flow.

2 Incompressible flow V <100 m s .

3 Frictionless flow.

4 Flow along a streamline.

5 Neglect Δz.

Values for pressure and density may be found from Table A.3. Thus, at 1000 m, p pSL =0 8870 and ρ ρSL =0 9075.

Consequently,

p=0 8870pSL =0 8870 × 1 01× 105
N

m2
=8 96× 104 N m2

and

ρ=0 9075ρSL =0 9075 × 1 23
kg

m3
=1 12 kg m3

Vair = Vw = 150 km/hr

pair @ 1000 m
A

B VB = 60 m/s

Observer

Vair = 0
pair @ 1000 m

Vw = 150 km/hr
A

B

VB = 60 m/s
(relative to wing)

Observer
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Cautions on Use of the Bernoulli Equation

In Examples 6.3 through 6.7, we have seen several situations where the Bernoulli equation may be

applied because the restrictions on its use led to a reasonable flow model. However, in some situations

you might be tempted to apply the Bernoulli equation where the restrictions are not satisfied. Some

subtle cases that violate the restrictions are discussed briefly in this section.

Example 6.3 examined flow in a nozzle. In a subsonic nozzle (a converging section) the pressure

drops, accelerating a flow. Because the pressure drops and the walls of the nozzle converge, there is

no flow separation from the walls and the boundary layer remains thin. In addition, a nozzle is usually

relatively short so frictional effects are not significant. All of this leads to the conclusion that the

Bernoulli equation is suitable for use for subsonic nozzles.

Sometimes we need to decelerate a flow. This can be accomplished using a subsonic diffuser

(e.g., a diverging section), or by using a sudden expansion (e.g., from a pipe into a reservoir). In these

devices the flow decelerates because of an adverse pressure gradient. As we discussed in Section 2.6, an

adverse pressure gradient tends to lead to rapid growth of the boundary layer and its separation. Hence,

we should be careful in applying the Bernoulli equation in such devices—at best, it will be an approx-

imation. Because of area blockage caused by boundary-layer growth, pressure rise in actual diffusers

always is less than that predicted for inviscid one-dimensional flow.

The Bernoulli equation was a reasonable model for the siphon of Example 6.4 because the entrance

was well rounded, the bends were gentle, and the overall length was short. Flow separation, which can

occur at inlets with sharp corners and in abrupt bends, causes the flow to depart from that predicted by a

one-dimensional model and the Bernoulli equation. Frictional effects would not be negligible if the tube

were long.

Example 6.5 presented an open-channel flow analogous to that in a nozzle, for which the Bernoulli

equation is a good flow model. The hydraulic jump is an example of an open-channel flow with adverse

pressure gradient. Flow through a hydraulic jump is mixed violently, making it impossible to identify

streamlines. Thus the Bernoulli equation cannot be used to model flow through a hydraulic jump. We

will see a more detailed presentation of open channel flows in Chapter 11.

The Bernoulli equation cannot be applied through a machine such as a propeller, pump, turbine, or

windmill. The equation was derived by integrating along a stream tube (Section 4.4) or a streamline

(Section 6.2) in the absence of moving surfaces such as blades or vanes. It is impossible to have locally

steady flow or to identify streamlines during flow through a machine. Hence, while the Bernoulli equa-

tion may be applied between points before a machine, or between points after a machine (assuming its

Since the speed is VA =0 at the stagnation point,

p0A= pair +
1

2
ρV2

air

=8 96× 104
N

m2
+
1

2
× 1 12

kg

m3
150

km

hr
× 1000

m

km
×

hr

3600 s

2

×
N s2

kg m

p0A=90 6 kPa abs
p0A

Solving for the static pressure at B, we obtain

pB= pair +
1

2
ρ V2

air−V2
B

pB=8 96× 104
N

m2
+
1

2
× 1 12

kg

m3
150

km

hr
× 1000

m

km
×

hr

3600 s

2

− 60
2m

2

s2
×

N s2

kg m

pB=88 6 kPa abs
pB

This problem gives a hint as to how a wing
generates lift. The incoming air has a
velocity Vair =150 km hr=41 7m s and
accelerates to 60m s on the upper surface.
This leads, through the Bernoulli equation,
to a pressure dropof 1 kPa (from89.6 kPa to
88.6 kPa). It turns out that the flow
decelerates on the lower surface, leading to
a pressure rise of about 1 kPa. Hence, the
wing experiences a net upward pressure
difference of about 2 kPa, a significant
effect.
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restrictions are satisfied), it cannot be applied through the machine. In effect, a machine will change the

value of the Bernoulli constant.

Finally, compressibility must be considered for flow of gases. Density changes caused by dynamic

compression due to motion may be neglected for engineering purposes if the local Mach number remains

below about M≈0 3, as noted in Examples 6.4 and 6.7. Temperature changes can cause significant

changes in density of a gas, even for low-speed flow. Thus the Bernoulli equation could not be applied

to air flow through a heating element (e.g., of a hand-held hair dryer) where temperature changes are

significant.

6.3 The Bernoulli Equation Interpreted as an Energy Equation
The Bernoulli equation, Eq. 6.8, was obtained by integrating Euler’s equation along a streamline for

steady, incompressible, frictionless flow. Thus Eq. 6.8 was derived from the momentum equation for

a fluid particle.

An equation identical in form to Eq. 6.8, although requiring very different restrictions, may be

obtained from the first law of thermodynamics. Our objective in this section is to reduce the energy equa-

tion to the form of the Bernoulli equation given by Eq. 6.8. Having arrived at this form, we then compare

the restrictions on the two equations to help us understand more clearly the restrictions on the use

of Eq. 6.8.

Consider steady flow in the absence of shear forces. We choose a control volume bounded by

streamlines along its periphery. Such a boundary, shown in Fig. 6.5, often is called a stream tube.

Basic equation:

= 0 1 = 0 2 = 0 3 = 0 4

Q−Ws−Wshear−Wother =
∂

∂t CV

e ρ dV--- +
CS

e+ pυ ρV dA
4 56

e= u+
V2

2
+ gz

Restrictions

1 Ws =0.

2 Wshear =0.

3 Wother =0.

4 Steady flow.

5 Uniform flow and properties at each section.

Under these restrictions, Eq. 4.56 becomes

u1 + p1υ1 +
V2
1

2
+ gz1 −ρ1V1A1 + u2 + p2υ2 +

V2
2

2
+ gz2 ρ2V2A2 −Q=0

From continuity, with restrictions (4) and (5):

CS
ρV A=0 4 15b

1

2

CV

Streamlines

Flow

Fig. 6.5 Flow through a stream tube.
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or

−ρ1V1A1 + ρ2V2A2 =0

That is,

m= ρ1V1A1 = ρ2V2A2

Also

Q=
δQ

dt
=
δQ

dm

dm

dt
=
δQ

dm
m

Thus, from the energy equation, after rearranging

p2υ2 +
V2
2

2
+ gz2 − p1υ1 +

V2
1

2
+ gz1 m+ u2−u1−

δQ

dm
m=0

or

p1υ1 +
V2
1

2
+ gz1 = p2υ2 +

V2
2

2
+ gz2 + u2−u1−

δQ

dm

Under the additional assumption (6) of incompressible flow, υ1 = υ2 =1 ρ and hence

p1

ρ
+
V2
1

2
+ gz1 =

p2

ρ
+
V2
2

2
+ gz2 + u2−u1−

δQ

dm
6 14

Equation 6.14 would reduce to the Bernoulli equation if the term in parentheses were zero. Thus, under

the further restriction,

7 u2−u1−
δQ

dm
=0

the energy equation reduces to

p1

ρ
+
V2
1

2
+ gz1 =

p2

ρ
+
V2
2

2
+ gz2

or

p

ρ
+
V2

2
+ gz= constant 6 15

Equation 6.15 is identical in form to the Bernoulli equation, Eq. 6.8. The Bernoulli equation was

derived from momentum considerations (Newton’s second law), and is valid for steady, incompressible,

frictionless flow along a streamline. Equation 6.15 was obtained by applying the first law of thermody-

namics to a stream tube control volume, subject to restrictions 1 through 7 above. Thus theBernoulli equa-

tion (Eq. 6.8) and the identical form of the energy equation (Eq. 6.15) were developed from entirely

different models, coming from entirely different basic concepts, and involving different restrictions.

It may appear that we needed restriction (7), the relation between the heat transfer and internal ther-

mal energy change, to finally transform the energy equation into the Bernoulli equation. It really isn’t a

restriction because for an incompressible and frictionless flow without shear forces, heat transfer results

only in a temperature change and does not affect pressure or velocity.

For the steady, frictionless, and incompressible flow, it is true that the first law of thermodynamics

reduces to the Bernoulli equation. Each term in Eq. 6.15 has dimensions of energy per unit mass and we

sometimes refer to the three terms in the equation as the “pressure” energy, kinetic energy, and potential

energy per unit mass of the fluid. It is not surprising that Eq. 6.15 contains energy terms because we used

the first law of thermodynamics in deriving it. We ended up with the same energy-like terms in the Ber-

noulli equation, which we derived from the momentum equation because we integrated the momentum

equation (which involves force terms) along a streamline (which involves distance), and by doing so

ended up with work or energy terms (work being defined as force times distance). The work of gravity

and pressure forces leads to a kinetic energy change (which came from integrating momentum over
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distance). In this context, we can think of the Bernoulli equation as a mechanical energy balance—the

mechanical energy (“pressure” plus potential plus kinetic) will be constant.Wemust always bear in mind

that for the Bernoulli equation to be valid along a streamline requires an incompressible inviscid steady

flow. The two properties of the flow, compressibility and friction, are what “link” thermodynamic and

mechanical energies. If a fluid is compressible, any flow-induced pressure changes will compress or

expand the fluid, thereby doing work and changing the particle thermal energy. Friction as we know

from everyday experience, always converts mechanical to thermal energy. Their absence, therefore,

breaks the link between the mechanical and thermal energies, and they are independent.

In summary, when the conditions are satisfied for the Bernoulli equation to be valid, we can consider

separately the mechanical energy and the internal thermal energy of a fluid particle as illustrated

in Example 6.8 and when they are not satisfied, there will be an interaction between these energies,

the Bernoulli equation becomes invalid, and we must use the full first law of thermodynamics.

Example 6.7 INTERNAL ENERGY AND HEAT TRANSFER IN FRICTIONLESS INCOMPRESSIBLE FLOW

Consider frictionless, incompressible flow with heat transfer. Show that

u2−u1 =
δQ

dm

Given: Frictionless, incompressible flow with heat transfer.

Show: u2−u1 =
δQ

dm
.

Solution: In general, internal energy can be expressed as u= u T ,υ . For incompressible flow, υ= constant, and u= u T .

Thus the thermodynamic state of the fluid is determined by the single thermodynamic property, T . For any process, the internal

energy change, u2−u1, depends only on the temperatures at the end states.

From the Gibbs equation, Tds= du+ ρ dυ, valid for a pure substance undergoing any process, we obtain

Tds= du

for incompressible flow, since dυ=0. Since the internal energy change, du, between specified end states, is independent of the

process, we take a reversible process, for which Tds= d δQ dm = du. Therefore,

u2−u1 =
δQ

dm

Example 6.8 FRICTIONLESS FLOW WITH HEAT TRANSFER

Water flows steadily from a large open reservoir through a short length of pipe and a nozzle with cross-sectional area

A=0 864 in 2 A well-insulated 10 kW heater surrounds the pipe. Find the temperature rise of the water.

Given: Water flows from a large reservoir through the system shown and discharges to atmospheric pressure. The heater is

10 kW; A4 =0 864 in 2

Find: The temperature rise of the water between points and .

Solution:

Governing equations: p

ρ
+
V2

2
+ gz= constant 6 8

1

3

2

4
10 ft

Heater
CV

This example shows that for an incompressible fluid,
heat transfer only changes the temperature and
entropy, and not any other properties.
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CS
V A =0 4 13b

= 0 4 = 0 4 = 0 1

Q−Ws−Wshear =
∂

∂t CV

e ρ dV--- +
CS

u+ pυ+
V2

2
+ gz ρV dA

4 56

Assumptions:

1 Steady flow.

2 Frictionless flow.

3 Incompressible flow.

4 No shaft work, no shear work.

5 Flow along a streamline.

6 Uniform flow at each section [a consequence of assumption (2)].

Under the assumptions listed, the first law of thermodynamics for the CV shown becomes

Q=
CS

u+ pυ+
V2

2
+ gz ρV dA

=
A1

u+ pυ+
V2

2
+ gz ρV dA+

A2

u+ pυ+
V2

2
+ gz ρV dA

For uniform properties at and

Q= − ρV1A1 u1 + p1υ+
V2
1

2
+ gz1 + ρV2A2 u2 + p2υ+

V2
2

2
+ gz2

From conservation of mass, ρV1A1 = ρV2A2 =m, so

Q=m u2−u1 +
p2

ρ
+
V2
2

2
+ gz2 −

p1

ρ
+
V2
1

2
+ gz1

For frictionless, incompressible, steady flow, along a streamline,

p

ρ
+
V2

2
+ gz= constant

Therefore,

Q=m u2−u1

Since, for an incompressible fluid, u2−u1 = c T2−T1 , then

T2−T1 =
Q

mc

From continuity,

m= ρV4A4

To find V4, write the Bernoulli equation between the free surface at and point .

p3

ρ
+
V2
3

2
+ gz3 =

p4

ρ
+
V2
4

2
+ gz4

Since p3 = p4 and V3≈0, then

V4 = 2g z3−z4 = 2× 32 2
ft

s2
×10 ft = 25 4 ft s
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6.4 Energy Grade Line and Hydraulic Grade Line
We have learned that for a steady, incompressible, frictionless flow, we may use the Bernoulli equation,

Eq. 6.8, derived from the momentum equation, and also Eq. 6.15, derived from the energy equation:

p

ρ
+
V2

2
+ gz= constant 6 15

We also interpreted the three terms comprised of “pressure,” kinetic, and potential energies to make up

the total mechanical energy, per unit mass, of the fluid. If we divide Eq. 6.15 by g, we obtain

another form,

p

ρg
+
V2

2g
+ z=H 6 16a

Here H is the total head of the flow and measures the total mechanical energy in units of meters or feet.

We will learn in Chapter 8 that in a fluid flow with friction this head will not be constant but will con-

tinuously decrease in value as mechanical energy is converted to thermal. We can go one step further

here and get a very useful graphical approach if we also define this to be the energy grade line (EGL),

EGL=
p

ρg
+
V2

2g
+ z 6 16b

This can be measured using the pitot (total head) tube shown in Fig. 6.3. Placing such a tube in a

flow measures the total pressure, p0 = p+ 1
2
ρV2, so this will cause the height of a column of the same

fluid to rise to a height h= p0 ρg= p ρg+V2 2g. If the vertical location of the pitot tube is measured

from some datum (e.g., the ground), the height of column of fluid measured from the datum will then be

h+ z= p ρg+V2 2g+ z=EGL=H. In summary, the height of the column, measured from the datum,

attached to a pitot tube directly indicates the EGL.

We can also define the hydraulic grade line (HGL),

HGL=
p

ρg
+ z 6 16c

This can be measured using the static pressure tap shown in Fig. 6.2a. Placing such a tube in a flow

measures the static pressure, p, so this will cause the height of a column of the same fluid to rise to a

height h= p ρg. If the vertical location of the tap is also at z, measured from some datum, the height

and

m= ρV4A4 =1 94
slug

ft3
×25 4

ft

s
× 0 864 in 2 ×

ft2

144 in 2
=0 296 slug s

Assuming no heat loss to the surroundings, we obtain

T2−T1 =
Q

mc
=10 kW×3413

Btu

kW hr
×

hr

3600 s

×
s

0 296 slug
×

slug

32 2 lbm
×
lbm R

1 Btu

T2−T1 =0 995 R
T2−T1

This problem illustrates that:
• In general, the first law of thermo-

dynamics and the Bernoulli equation
are independent equations.

• For an incompressible, inviscid flow the
internal thermal energy is only changed
by a heat transfer process, and is inde-
pendent of the fluid mechanics.
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of column of fluid measured from the datum will then be h+ z= p ρg+ z=HGL. The height of the col-

umn attached to a static pressure tap thus directly indicates the HGL.

From Eqs. 6.16b and 6.16c we obtain

EGL−HGL=
V2

2g
6 16d

which shows that the difference between the EGL and HGL is always the dynamic pressure term.

To see a graphical interpretation of the EGL and HGL, refer to Fig. 6.6, which shows frictionless

flow from a reservoir, through a pipe reducer. At all locations the EGL is the same because there is no

loss of mechanical energy. Station 1 is at the reservoir, and here the EGL and HGL coincide with the

free surface: in Eqs. 6.16b and 6.16c p=0 gage , V =0, and z= z1, so EGL1 =HGL1 =H = z1; all of the

mechanical energy is potential.

At station 2 we have a pitot (total head) tube and a static head tap. The pitot tube’s column indicates

the correct value of the EGL EGL1 =EGL2 =H , but something changed between the two stations: The

fluid now has significant kinetic energy and has lost some potential energy. From Eq. 6.16d, we can see

that the HGL is lower than the EGL by V2
2 2g; the HGL at station 2 shows this.

From station 2 to station 3 there is a reduction in diameter, so continuity requires that V3 >V2;

hence the gap between the EGL and HGL increases further, as shown.

Station 4 is at the exit to the atmosphere. Here the pressure is zero gage, so the EGL consists

entirely of kinetic and potential energy terms, and HGL4 =HGL3. We can summarize two important

ideas when sketching EGL and HGL curves:

1 The EGL is constant for incompressible, inviscid flow in the absence of work devices. We will see in

Chapter 8 that work devices may increase or decrease the EGL, and friction will always lead to a fall in

the EGL.

3

4

2

1

z1

z2

z3

z4

Hydraulic
grade

line (HGL)

Energy grade line (EGL)Free surface

V2
___
2g

2

V2
___
2g

4

Datum (z = 0)

V2

V4

Fig. 6.6 Energy and hydraulic grade lines for frictionless flow.
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2 The HGL is always lower than the EGL by distance V2 2g. Note that the value of velocity V depends

on the overall system (e.g., reservoir height, pipe diameter, etc.), but changes in velocity only occur

when the diameter changes.

6.5 Unsteady Bernoulli Equation: Integration of Euler’s
Equation Along a Streamline
It is not necessary to restrict the development of the Bernoulli equation to steady flow. The purpose

of this section is to develop the corresponding equation for unsteady flow along a streamline and to

illustrate its use.

The momentum equation for frictionless flow (Eq. 6.1) can be written (with g in the negative z

direction) as
DV

Dt
= −

1

ρ
∇p−gk 6 17

Equation 6.17 is a vector equation. It can be converted to a scalar equation by taking the dot product with

ds, where ds is an element of distance along a streamline. Thus

DV

Dt
ds=

DV

Dt
ds=V

∂V

∂s
ds+

∂V

∂t
ds= −

1

ρ
∇p ds−gk ds 6 18

Examining the terms in Eq. 6.18, we note that

∂V

∂s
ds= dV the change in V along s

∇p ds= dp the change in pressure along s

j ds= dz the change in z along s

Substituting into Eq. 6.18, we obtain

V dV +
∂V

∂t
ds= −

dp

ρ
−g dz 6 19

Integrating along a streamline from point 1 to point 2 yields

2

1

dp

ρ
+
V2
2 −V2

1

2
+ g z2−z1 +

2

1

∂V

∂t
ds=0 6 20

For incompressible flow, the density is constant. For this special case, Eq. 6.20 becomes

p1

ρ
+
V2
1

2
+ gz1 =

p2

ρ
+
V2
2

2
+ gz2 +

2

1

∂V

∂t
ds 6 21

Restrictions:

1 Incompressible flow.

2 Frictionless flow.

3 Flow along a streamline.

This is a form of the Bernoulli equation for unsteady flows. It differs from the Bernoulli equation

Eq. 6.8 by the factor
2

1
∂V ∂t ds. We can interpret this factor as the work involved in the rate of increase

of momentum of the fluid on the streamline over time, as opposed to the change in momentum over

distance, represented by the change in velocity from V1 to V2. Example 6.9 will demonstrate this idea.

Equation 6.21 may be applied to any flow in which the restrictions are compatible with the physical

situation.
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Example 6.9 UNSTEADY BERNOULLI EQUATION

A long pipe is connected to a large reservoir that initially is filled with water to a depth of 3 m. The pipe is 150 mm in diameter and

6 m long. Determine the flow velocity leaving the pipe as a function of time after a cap is removed from its free end.

Given: Pipe and large reservoir as shown.

Find: V2 t .

Solution: Apply the Bernoulli equation to the unsteady flow

along a streamline from point to point .

Governing equation:

0 5 = 0 6

p1

ρ
+
V2
1

2
+ gz1 =

p2

ρ
+
V2
2

2
+gz2+

2

1

∂V

∂t
ds

Assumptions:

1 Incompressible flow.

2 Frictionless flow.

3 Flow along a streamline from to .

4 p1 = p2 = patm.

5 V2
1 0.

6 z2 =0.

7 z1 = h= constant

8 Neglect velocity in reservoir, except for small region near the inlet to the tube.

Then

gz1 = gh=
V2
2

2
+

2

1

∂V

∂t
ds

In view of assumption (8), the integral becomes

2

1

∂V

∂t
ds≈

L

0

∂V

∂t
ds

In the tube, V =V2 everywhere, so that

L

0

∂V

∂t
ds=

L

0

dV2

dt
ds= L

dV2

dt

This is the rate of change over time of the momentum (per unit mass) within the pipe; in the long term it will approach zero.

Substituting gives

gh=
V2
2

2
+ L

dV2

dt
Separating variables, we obtain

dV2

2gh−V2
2

=
dt

2L

Integrating between limits V =0 at t=0 and V =V2 at t= t,

V2

0

dV

2gh−V2
=

1

2gh
tanh−1 V

2gh

V2

0

=
t

2L

1

2

D = 150 mm
h = 3 m

L = 6 m

V2

z

Flow
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6.6 Irrotational Flow
We have already discussed irrotational flows in Section 5.3. These are flows in which the fluid particles

do not rotate ω=0 .We recall that the only stresses that can generate particle rotation are shear stresses;

hence, inviscid flows (i.e., those with zero shear stresses) will be irrotational unless the particles were

initially rotating. Using Eq. 5.14, we obtain the irrotationality condition

∇×V =0 6 22

leading to

∂w

∂y
−
∂υ

∂z
=
∂u

∂z
−
∂w

∂x
=
∂υ

∂x
−
∂u

∂y
=0 6 23

In cylindrical coordinates, from Eq. 5.16, the irrotationality condition requires that

1

r

∂Vz

∂θ
−
∂Vθ

∂z
=
∂Vr

∂z
−
∂Vz

∂r
=
1

r

∂rVθ

∂r
−
1

r

∂Vr

∂θ
=0 6 24

Bernoulli Equation Applied to Irrotational Flow

In Section 6.2, we integrated Euler’s equation along a streamline for steady, incompressible, inviscid

flow to obtain the Bernoulli equation

p

ρ
+
V2

2
+ gz= constant 6 8

Equation 6.8 can be applied between any two points on the same streamline. In general, the value of

the constant will vary from streamline to streamline.

If, in addition to being inviscid, steady, and incompressible, the flow field is also irrotational (i.e.,

the particles had no initial rotation), so that ∇×V =0 (Eq. 6.22), we can show that Bernoulli’s equation

can be applied between any and all points in the flow. Then the value of the constant in Eq. 6.8 is the

same for all streamlines. To illustrate this, we start with Euler’s equation in vector form,

Since tanh−1 0 = 0, we obtain

1

2gh
tanh−1 V2

2gh
=

t

2L
or

V2

2gh
= tanh

1

2L
2gh

V2 t

For the given conditions,

2gh= 2× 9 81
m

s2
×3 m=7 67 m s

and

t

2L
2gh=

t

2
×

1

6 m
×7 67

m

s
= 0 639t

The result is then V2 =7 67 tanh 0 639t m s, as shown:

Notes:
• This problem illustrates use of the

unsteady Bernoulli equation.
• Initially the head available at state is

used to accelerate the fluid in the pipe;
eventually the head at state equals the
head at state.

• In reality, frictionwould be important and
reduce the velocity significantly.

10

8

6

4

2

0
1 2 3 4 5

t (s)

V
2
 (

m
/s

)

V2 = 7.67 tanh (0.639 t)
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V ∇ V = −
1

ρ
∇p−gk 6 9

Using the vector identity

V ∇ V =
1

2
∇ V V −V × ∇×V

we see for irrotational flow, where ∇×V =0, that

V ∇ V =
1

2
∇ V V

and Euler’s equation for irrotational flow can be written as

1

2
∇ V V =

1

2
∇ V2 = −

1

ρ
∇p−gk 6 25

Consider a displacement in the flow field from position r to position r+ dr; the displacement dr is an

arbitrary infinitesimal displacement in any direction, not necessarily along a streamline. Taking the dot

product of dr= dxi+ dyj+ dzk with each of the terms in Eq. 6.25, we have

1

2
∇ V2 dr= −

1

ρ
∇p dr−gk dr

and hence

1

2
d V2 = −

dp

ρ
−gdz

or

dp

ρ
+
1

2
d V2 + gdz=0

Integrating this equation for incompressible flow gives

p

ρ
+
V2

2
+ gz= constant 6 26

Since dr was an arbitrary displacement, Eq. 6.26 is valid between any two points (i.e., not just along a

streamline) in a steady, incompressible, inviscid flow that is also irrotational (see Example 6.5).

Velocity Potential

Section 5.2 provides the necessary background for the development of the stream function ψ for a two-

dimensional incompressible flow. For irrotational flow we can introduce a companion function, the

potential function ϕ, defined by

V = −∇ϕ 6 27

This definition guarantees that any continuous scalar function ϕ x,y,z, t automatically satisfies the

irrotationality condition (Eq. 6.22) because of a fundamental identity:

∇×V = −∇×∇ϕ= −curl grad ϕ ≡ 0 6 28

The minus sign is inserted simply so that ϕ decreases in the flow direction. Thus,

u= −
∂ϕ

∂x
, υ= −

∂ϕ

∂y
, and w= −

∂ϕ

∂z
6 29

The irrotationality condition, Eq. 6.22, is satisfied identically.

In cylindrical coordinates,

∇= er
∂

∂r
+ eθ

1

r

∂

∂θ
+ k

∂

∂z
3 19
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From Eq. 6.27, then, in cylindrical coordinates

Vr = −
∂ϕ

∂r
Vθ = −

1

r

∂ϕ

∂θ
Vz = −

∂ϕ

∂z
6 30

Because ∇×∇ϕ≡ 0 for all ϕ, the velocity potential exists only for irrotational flow.

Irrotationality may be a valid assumption for those regions of a flow in which viscous forces are

negligible. The theory for irrotational flow is developed in terms of an imaginary ideal fluid whose vis-

cosity is identically zero. Since, in an irrotational flow, the velocity field may be defined by the potential

function ϕ, the theory is often referred to as potential flow theory.

All real fluids possess viscosity, but there are many situations in which the assumption of inviscid

flow considerably simplifies the analysis and, at the same time, gives meaningful results. Because of its

relative simplicity and mathematical beauty, potential flow has been studied extensively [4], [5], and [6].

Stream Function and Velocity Potential for Two-Dimensional,
Irrotational, Incompressible Flow: Laplace’s Equation

For a two-dimensional, incompressible, irrotational flow we have expressions for the velocity compo-

nents, u and υ, in terms of both the stream function ψ , and the velocity potential ϕ,

u=
∂ψ

∂y
υ= −

∂ψ

∂x
5 4

u= −
∂ϕ

∂x
υ= −

∂ϕ

∂y
6 29

Substituting for u and υ from Eq. 5.4 into the irrotationality condition,

∂υ

∂x
−
∂u

∂y
=0 6 23

we obtain

∂
2ψ

∂x2
+
∂
2ψ

∂y2
=∇

2ψ =0 6 31

Substituting for u and υ from Eq. 6.29 into the continuity equation,

∂u

∂x
+
∂υ

∂y
=0 5 3

we obtain

∂
2ϕ

∂x2
+
∂
2ϕ

∂y2
=∇

2ϕ=0 6 32

Equations 6.31 and 6.32 are forms of Laplace’s equation, which is an equation that arises in many areas

of the physical sciences and engineering. Any function ψ orϕ that satisfies Laplace’s equation represents

a possible two-dimensional, incompressible, irrotational flow field.

Table 6.1 summarizes the results of our discussion of the stream function and velocity potential for

two-dimensional flows.

The same rules for when incompressibility and irrotationality apply are valid for the stream function

and velocity potential when expressed in cylindrical coordinates,

Vr =
1

r

∂ψ

∂θ
and Vθ = −

∂ψ

∂r
5 8

and

Vr = −
∂ϕ

∂r
and Vθ = −

1

r

∂ϕ

∂θ
6 33
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In Section 5.2 we showed that the stream function ψ is constant along any streamline. For

ψ = constant, dψ =0 and

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy=0

The slope of a streamline, which is a line of constant ψ , is given by

dy

dx ψ

= −
∂ψ dx

∂x ∂y
= −

−υ

u
=
υ

u
6 34

Along a line of constant ϕ, dϕ=0 and

dϕ=
∂ϕ

∂x
dx+

∂ϕ

∂y
dy=0

Consequently, the slope of a potential line, which is a line of constant ϕ, is given by

dy

dx ϕ

= −
∂ϕ ∂x

∂ϕ ∂y
= −

u

υ
6 35

The last equality of Eq. 6.35 follows from use of Eq. 6.29.

Comparing Eqs. 6.34 and 6.35, we see that the slope of a constant ψ line at any point is the negative

reciprocal of the slope of the constant ϕ line at that point; this means that lines of constant ψ and constant

ϕ are orthogonal. This property of potential lines and streamlines is useful in graphical analyses of flow

fields. Example 6.10 shows how the velocity potential is computed from the stream function.

Table 6.1
Definitions of ψ and ϕ, and Conditions Necessary for Satisfying Laplace’s Equation

Definition Always satisfies … Satisfies Laplace equation …
∂
2

∂x2
+
∂
2

∂y2
=∇

2 =0

Stream function ψ

u=
∂ψ

∂y
υ= −

∂ψ

∂x

… incompressibility:

∂u

∂x
+
∂υ

∂y
=

∂
2ψ

∂x∂y
−

∂
2ψ

∂y∂x
≡ 0

… only if irrotational:

∂υ

∂x
−
∂u

∂y
= −

∂
2ψ

∂x∂x
−

∂
2ψ

∂y∂y
=0

Velocity potential ϕ

u= −
∂ϕ

∂x
υ= −

∂ϕ

∂y

… irrotationality:

∂υ

∂x
−
∂u

∂y
= −

∂
2ϕ

∂x∂y
−

∂
2ϕ

∂y∂x
≡ 0

… only if incompressible:

∂u

∂x
+
∂υ

∂y
= −

∂
2ϕ

∂x∂x
−

∂
2ϕ

∂y∂y
=0

Example 6.10 VELOCITY POTENTIAL

Consider the flow field given by ψ = ax2−ay2, where a=3 s−1. Show that the flow is irrotational. Determine the velocity poten-

tial for this flow.

Given: Incompressible flow field with ψ = ax2−ay2, where a=3 s−1.

Find: (a) Whether or not the flow is irrotational.

(b) The velocity potential for this flow.

Solution: If the flow is irrotational, ∇2ψ =0. Checking for the given flow,

∇
2ψ =

∂
2

∂x2
ax2−ay2 +

∂
2

∂y2
ax2−ay2 =2a−2a=0
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Elementary Plane Flows

The ψ and ϕ functions for the five elementary two-dimensional flows of a uniform flow, a source, a

sink, a vortex, and a doublet are summarized in Table 6.2. The ψ and ϕ functions can be obtained from

the velocity field for each elementary flow.

A uniform flow of constant velocity parallel to the x axis satisfies the continuity equation and the

irrotationality condition identically. In Table 6.2 we have shown the ψ and ϕ functions for a uniform

flow in the positive x direction.

For a uniform flow of constant magnitude V , inclined at angle α to the x axis,

ψ = V cos α y− V sin α x

ϕ= − V sin α y− V cos α x

A simple source is a flow pattern in the xy plane in which flow is radially outward from the z axis and

symmetrical in all directions. The strength, q, of the source is the volume flow rate per unit depth. At any

radius, r, from a source, the tangential velocity, Vθ, is zero; the radial velocity, Vr, is the volume flow rate

per unit depth, q, divided by the flow area per unit depth, 2πr. Thus Vr = q 2πr for a source. Knowing Vr

and Vθ, obtaining ψ and ϕ from Eqs. 5.8 and 6.33, respectively, is straightforward.

so that the flow is irrotational. As an alternative proof, we can compute the fluid particle rotation (in the xy plane, the only com-

ponent of rotation is ωz):

2ωz =
∂υ

∂x
−
∂u

∂y
and u=

∂ψ

∂y
υ= −

∂ψ

∂x

then

u=
∂

∂y
ax2−ay2 = −2ay and υ= −

∂

∂x
ax2−ay2 = −2ax

so

2ωz =
∂υ

∂x
−
∂u

∂y
=

∂

∂x
−2ax −

∂

∂y
−2ay = −2a+2a=0

2ωz

Once again, we conclude that the flow is irrotational. Because it is irrotational, ϕ must exist, and

u= −
∂ϕ

∂x
and υ= −

∂ϕ

∂y

Consequently, u= −
∂ϕ

∂x
= −2ay and

∂ϕ

∂x
=2ay. Integrating with respect to x gives ϕ=2axy+ f y , where f y is an arbitrary

function of y. Then

υ= −2ax= −
∂ϕ

∂y
= −

∂

∂x
2axy+ f y

Therefore, −2ax= −2ax−
∂f y

∂y
= −2ax−

df

dy
, so

df

dy
=0 and f = constant. Thus

ϕ=2axy+ constant
ϕ

We also can show that lines of constant ψ and constant ϕ are orthogonal.

ψ = ax2−ay2 and ϕ=2axy

For ψ = constant, dψ =0=2axdx−2aydy; hence
dy

dx ψ = c

=
x

y

For ϕ= constant, dϕ=0=2aydx+2axdy; hence
dy

dx ϕ= c

= −
y

x

The slopes of lines of constant ϕ and constant ψ are negative reciprocals.

Therefore lines of constant ϕ are orthogonal to lines of constant ψ .

This problem illustrates the relations
among the stream function, velocity
potential, and velocity field.
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Table 6.2
Elementary Plane Flows

U U

x

y

Uniform Flow (positive x

direction)

u=U ψ =Uy

υ=0 ϕ= −Ux

Γ=0 around any closed curve
y

x

ϕ

= c3

= –c3

= c2

= –c2

= c1

= –c1

= 0

=
 k

2

ϕ
=
 –

k 2

ϕ
=
 k

1

ϕ
=
 –

k 1

ϕ
=
 0

x

y r
θ

Source Flow (from origin)

Vr =
q

2πr
ψ =

q

2π
θ

Vθ =0 ϕ= −
q

2π
ln r

Origin is singular point

q is volume flow rate per

unit depth

Γ=0 around any closed curve

y

x

= –k1

ϕ

ϕ

= –k2

= c1

= c2

= c3

= c4

= c5

= c6

= c7

= 0

y

x
r θ

Sink Flow (toward origin)

Vr = −
q

2πr
ψ = −

q

2π
θ

Vθ =0 ϕ=
q

2π
ln r

Origin is singular point

q is volume flow rate per

unit depth

Γ=0 around any closed curve

y

x

= k1

ϕ

ϕ

= k2

= –c1

= –c2

= –c3

= –c4

= –c5

= –c6

= –c7

= 0

y

x

r
θ

Irrotational Vortex

(counterclockwise, center at

origin)

Vr =0 ψ = −
K

2π
ln r

Vθ =
K

2πr
ϕ= −

K

2π
θ

Origin is singular point

K is strength of the vortex

Γ=K around any closed curve

enclosing origin

Γ=0 around any closed curve not

enclosing origin

y

x

= –c1

= –c3

= –c4

ϕ = –k3

ϕ = –k4
ϕ = 0

ϕ = –k5

ϕ = –k6

ϕ = –k7

ϕ = –k1

ϕ = –k2

= –c2
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In a simple sink, flow is radially inward; a sink is a negative source. The ψ and ϕ functions for a sink

shown in Table 6.2 are the negatives of the corresponding functions for a source flow.

The origin of either a sink or a source is a singular point, since the radial velocity approaches infinity

as the radius approaches zero. Thus, while an actual flow may resemble a source or a sink for some

values of r, sources and sinks have no exact physical counterparts. The primary value of the concept

of sources and sinks is that, when combined with other elementary flows, they produce flow patterns

that adequately represent realistic flows.

A flow pattern in which the streamlines are concentric circles is a vortex. In a free (irrotational)

vortex, fluid particles do not rotate as they translate in circular paths around the vortex center. There

are a number of ways of obtaining the velocity field, for example, by combining the equation of motion

(Euler’s equation) and the Bernoulli equation to eliminate the pressure. Here, though, for circular stream-

lines, we have Vr =0 and Vθ = f θ only. We also have previously introduced the condition of irrota-

tionality in cylindrical coordinates,

1

r

∂rVθ

∂r
−
1

r

∂Vr

∂θ
=0 6 24

Hence, using the known forms of Vr and Vθ, we obtain

1

r

d rVθ

dr
=0

Integrating this equation gives

Vθr= constant

The strength, K, of the vortex is defined as K =2πrVθ; the dimensions of K are L2 t (volume flow rate

per unit depth). Once again, knowing Vr and Vθ, obtaining ψ and ϕ from Eqs. 5.8 and 6.33, respectively,

is straightforward. The irrotational vortex is a reasonable approximation to the flow field in a tornado

except in the region of the origin, which is a singular point.

The final “elementary” flow listed in Table 6.2 is the doublet of strength Λ. This flow is produced

mathematically by allowing a source and a sink of numerically equal strengths to merge. In the limit, as

the distance, δs, between them approaches zero, their strengths increase so the product qδs 2π tends to a

finite value, Λ, which is termed the strength of the doublet.

Superposition of Elementary Plane Flows

We saw earlier that both ϕ and ψ satisfy Laplace’s equation for flow that is both incompressible and

irrotational. Since Laplace’s equation is a linear, homogeneous partial differential equation, solutions

may be superposed (added together) to develop more complex and interesting patterns of flow. Thus

if ψ1 and ψ2 satisfy Laplace’s equation, then so does ψ3 =ψ1 +ψ2. The elementary plane flows are

the building blocks in this superposition process. There is one note of caution: while Laplace’s equation

for the stream function, and the stream function-velocity field equations (Eq. 5.3) are linear, theBernoulli

y

x

r

θ

Doublet (center at origin)

Vr = −
Λ

r2
cos θ ψ = −

Λ sin θ

r

Vθ = −
Λ

r2
sin θ ϕ= −

Λ cos θ

r

Origin is singular point

Λ is strength of the doublet

Γ=around any closed curve

= –c2

= –c3

= 0

= c3

= c2

= –c1

= c1

ϕ = –k1ϕ = k1

ϕ = k2 ϕ = –k2

x

y
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equation is not. Hence, in the superposition process we will have ψ3 =ψ1 +ψ2, u3 = u1 + u2, and

υ3 = υ1 + υ2, but p3 p1 + p2. We must use the Bernoulli equation, which is nonlinear in V , to find p3.

We can add together elementary flows to try and generate recognizable flow patterns. The simplest

superposition approach is called the directmethod, in which we try different combinations of elementary

flows and see what kinds of flow patterns are produced. For example, look at some of the classic exam-

ples listed in Table 6.3. The source and uniform flow combination makes sense as we would intuitively

expect a source to partially push its way upstream, and to divert the flow around it. The source, sink, and

uniform flow (generating what is called a Rankine body) is also not surprising. The entire flow out of the

source makes its way into the sink, leading to a closed streamline. Any streamline can be interpreted as a

solid surface because there is no flow across it;we can therefore pretend that this closed streamline repre-

sents a solid. We could easily generalize this source-sink approach to any number of sources and sinks

distributed along the x axis, and as long as the sum of the source and sink strengths added up to zero, we

would generate a closed streamline body shape.

The doublet-uniform flow (with or without a vortex) generates a very interesting result: flow over a

cylinder (with or without circulation). We first saw the flow without circulation in Fig. 2.12a. The flow

with a clockwise vortex produces a top-to-bottom asymmetry. This is because in the region above the

cylinder the velocities due to the uniform flow and vortex are in the same overall direction and lead to a

high velocity; below the cylinder they are in opposite directions and therefore lead to a low velocity. As

we have learned, whenever velocities are high, streamlines will be close together, and vice versa. More

importantly, from the Bernoulli equation we know that whenever the velocity is high the pressure will be

low, and vice versa. Hence, we can anticipate that the cylinder with circulation will experience a net

upward force (lift) due to pressure. This approach, of looking at streamline patterns to see where we have

regions of high or low velocity and hence low or high pressure, is very useful. We will examine these last

two flows in Examples 6.11 and 6.12.

The last example in Table 6.3, the vortex pair, hints at a way to create flows that simulate the pres-

ence of a wall or walls: for the y axis to be a streamline (and thus a wall), simply make sure that any

objects (e.g., a source, a vortex) in the positive x quadrants have mirror-image objects in the negative

x quadrants; the y axis will thus be a line of symmetry. For a flow pattern in a 90 corner, we need to place

objects so that we have symmetry with respect to both the x and y axes. For flow in a corner whose

angle is a fraction of 90 (e.g., 30 ), we need to place objects in a radially symmetric fashion.

Table 6.3
Superposition of Elementary Plane Flows

Source and Uniform Flow (flow past a half-body)

y

x

r

P

V1

V2

V

θ

ψ =ψ so +ψuf =ψ1 +ψ2 =
q

2π
θ+Uy

ψ =
q

2π
θ+Ur sin θ

ϕ=ϕso +ϕuf =ϕ1 +ϕ2 = −
q

2π
ln r−Ux

ϕ= −
q

2π
ln r−Ur cos θ

P

Source and Sink (equal strength, separation distance on x axis= 2a)

y

x

V2

V1

r2

r1

r V

P

θ1
θ2

(a,0)(–a,0)

ψ =ψ so +ψ si =ψ1 +ψ2 =
q

2π
θ1−

q

2π
θ2

ψ =
q

2π
θ1−θ2

ϕ=ϕso +ϕsi =ϕ1 +ϕ2 = −
q

2π
ln r1 +

q

2π
ln r2

ϕ=
q

2π
ln

r2

r1

P
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Source, Sink, and Uniform Flow (flow past a Rankine body)

y

x

V2

V3

V1

r2

r1

r

V
P

θ θ1
θ2

ψ =ψ so +ψ si +ψuf =ψ1 +ψ2 +ψ3

=
q

2π
θ1−

q

2π
θ2 + Uy

ψ =
q

2π
θ1−θ2 + Ur sin θ

ϕ=ϕso +ϕsi +ϕuf =ϕ1 +ϕ2 +ϕ3

= −
q

2π
ln r1 +

q

2π
ln r2−Ux

ϕ=
q

2π
ln

r2

r1

−Ur cos θ

P

Vortex (clockwise) and Uniform Flow

y

x

V1

V2P
r V

θ

ψ =ψυ +ψuf =ψ1 +ψ2 =
K

2π
ln r + Uy

ψ =
K

2π
ln r + Ur sin θ

ϕ =ϕυ +ϕuf =ϕ1 +ϕ2 =
K

2π
θ−Ux

ϕ =
K

2π
θ−Ur cos θ

P

Doublet and Uniform Flow (flow past a cylinder)

y

x

V1

V2P

r V

θ

ψ =ψd +ψuf =ψ1 +ψ2 = −
Λ sin θ

r
+ Uy

= −
Λ sin θ

r
+ Ur sin θ

ψ = U r−
Λ

Ur
sin θ

ψ = Ur 1−
a2

r2
sin θ a =

Λ

U

ϕ=ϕd +ϕuf =ϕ1 +ϕ2 = −
Λ cos θ

r
−Ux

= −
Λ cos θ

r
−Ur cos θ

ϕ= −U r +
Λ

Ur
cos θ= −Ur 1 +

a2

r2
cos θ

P

Doublet, Vortex (clockwise), and Uniform Flow (flow past a cylinder with circulation)

y

x

V1 V2

V3P

r
V

θ

ψ =ψd +ψυ +ψuf =ψ1 +ψ2 +ψ3

= −
Λ sin θ

r
+

K

2π
ln r + Uy

ψ = −
Λ sin θ

r
+

K

2π
ln r + Ur sin θ

ψ = Ur 1−
a2

r2
sin θ+

K

2π
ln r

ϕ=ϕd +ϕυ +ϕuf =ϕ1 +ϕ2 +ϕ3

= −
Λ cos θ

r
+

K

2π
θ−Ux

P

a =
Λ

U
; K < 4πaU ϕ= −

Λ cos θ

r
+

K

2π
θ−Ur cos θ

ϕ= −Ur 1 +
a2

r2
cos θ +

K

2π
θ

(Continued)
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Example 6.11 FLOW OVER A CYLINDER: SUPERPOSITION OF DOUBLET AND UNIFORM FLOW

For two-dimensional, incompressible, irrotational flow, the superposition of a doublet and a uniform flow represents flow around

a circular cylinder. Obtain the stream function and velocity potential for this flow pattern. Find the velocity field, locate the stag-

nation points and the cylinder surface, and obtain the surface pressure distribution. Integrate the pressure distribution to obtain the

drag and lift forces on the circular cylinder.

Given: Two-dimensional, incompressible, irrotational flow formed from superposition of a doublet and a uniform flow.

Find: (a) Stream function and velocity potential.

(b) Velocity field.

(c) Stagnation points.

(d) Cylinder surface.

(e) Surface pressure distribution.

(f) Drag force on the circular cylinder.

(g) Lift force on the circular cylinder.

Table 6.3
Superposition of Elementary Plane Flows (Continued)

Source and Vortex (spiral vortex)

y

x

r

V

P

V1V2

θ

ψ =ψ so +ψυ =ψ1 +ψ2 =
q

2π
θ−

K

2π
ln r

ϕ=ϕso +ϕυ =ϕ1 +ϕ2 = −
q

2π
ln r−

K

2π
θ

P

Sink and Vortex

y

x

r

V P

V1

V2

θ

ψ =ψ si +ψυ =ψ1 +ψ2 = −
q

2π
θ−

K

2π
ln r

ϕ=ϕsi +ϕυ =ϕ1 +ϕ2 =
q

2π
ln r−

K

2π
θ

P

Vortex Pair (equal strength, opposite rotation, separation distance on x axis = 2a)

y

x

r2

r1

1

V1

V2

PV

2

(a,0)(–a,0)

θθ

ψ =ψυ1 +ψυ2 =ψ1 +ψ2 = −
K

2π
ln r1 +

K

2π
ln r2

ψ =
K

2π
ln
r2

r1

ϕ=ϕυ1 +ϕυ2 =ϕ1 +ϕ2 = −
K

2π
θ1 +

K

2π
θ2

ϕ=
K

2π
θ2−θ1

P
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Solution: Stream functions may be added because the flow field is incompressible and irrotational. Thus from Table 6.2,

the stream function for the combination is

ψ =ψd +ψuf = −
Λ sin θ

r
+Ur sin θ

ψ

The velocity potential is

ϕ=ϕd +ϕuf = −
Λ cos θ

r
−Ur cos θ

ϕ

The corresponding velocity components are obtained using Eqs. 6.30 as

Vr = −
∂ϕ

∂r
= −

Λ cos θ

r2
+U cos θ

Vθ = −
1

r

∂ϕ

∂θ
= −

Λ sin θ

r2
−U sin θ

The velocity field is

V =Vrer +Vθeθ = −
Λ cos θ

r2
+U cos θ er + −

Λ sin θ

r2
−U sin θ eθ

V

Stagnation points are where V =Vrer +Vθeθ =0

Vr = −
Λ cos θ

r2
+U cos θ= cos θ U−

Λ

r2

Thus Vr =0 when r=
Λ

U
= a. Also,

Vθ = −
Λ sin θ

r2
−U sin θ= −sin θ U +

Λ

r2

Thus Vθ =0 when θ=0,π.

Stagnation points are r,θ = a,0 , a,π
Stagnation points

Note that Vr =0 along r= a, so this represents flow around a circular cylinder, as shown in Table 6.3. Flow is irrotational, so the

Bernoulli equation may be applied between any two points. Applying the equation between a point far upstream and a point on

the surface of the cylinder (neglecting elevation differences), we obtain

p∞

ρ
+
U2

2
=
p

ρ
+
V2

2

Thus,

p−p∞ =
1

2
ρ U2

−V2

Along the surface, r= a, and

V2 =V2
θ = −

Λ

a2
−U

2

sin2θ=4U2 sin2θ

since Λ=Ua2. Substituting yields

p−p∞ =
1

2
ρ U2

−4U2 sin2θ =
1

2
ρU2 1−4 sin2θ

or

p−p∞

1

2
ρU2

=1−4 sin2 θ

Pressure

distribution
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Drag is the force component parallel to the freestream flow direction. The drag force

is given by

FD =
A

−p dA cos θ=
2π

0

−pa dθ b cos θ

since dA= a dθ b, where b is the length of the cylinder normal to the diagram.

Substituting p= p∞ + 1
2
ρU2 1−4 sin2 θ ,

FD =
2π

0

−p∞ab cos θ dθ+
2π

0

−
1

2
ρU2 1−4 sin2 θ ab cos θ dθ

= −p∞ ab sin θ
2π

0
−
1

2
ρU2ab sin θ

2π

0
+
1

2
pU2ab

4

3
sin3 θ

2π

0

FD =0
FD

Lift is the force component normal to the freestream flow direction. (By convention, positive lift is an upward force.)

The lift force is given by

FL =
A

p dA −sin θ = −

2π

0

pa dθ b sin θ

Substituting for p gives

FL = −

2π

0

p∞ab sin θ dθ−
2π

0

1

2
ρU2 1−4 sin2 θ ab sin θ dθ

= p∞a b cos θ
2π

0
+
1

2
ρU2ab cos θ

2π

0
+
1

2
ρU2ab

4 cos3 θ

3
−4 cos θ

2π

0

FL =0 FL

This problem illustrates:
• How elementary plane flows can be

combined to generate interesting and
useful flow patterns.

• d’Alembert’s paradox, that potential
flows over a body do not generate drag.

a

p dA

U

p

θ

Example 6.12 FLOW OVER A CYLINDER WITH CIRCULATION: SUPERPOSITION OF DOUBLET,
UNIFORM FLOW, AND CLOCKWISE FREE VORTEX

For two-dimensional, incompressible, irrotational flow, the superposition of a doublet, a uniform flow, and a free vortex repre-

sents the flow around a circular cylinder with circulation. Obtain the stream function and velocity potential for this flow pattern,

using a clockwise free vortex. Find the velocity field, locate the stagnation points and the cylinder surface, and obtain the surface

pressure distribution. Integrate the pressure distribution to obtain the drag and lift forces on the circular cylinder. Relate the lift

force on the cylinder to the circulation of the free vortex.

Given: Two-dimensional, incompressible, irrotational flow formed from superposition of a doublet, a uniform flow, and a

clockwise free vortex.

Find: (a) Stream function and velocity potential.

(b) Velocity field.

(c) Stagnation points.

(d) Cylinder surface.

(e) Surface pressure distribution.

(f) Drag force on the circular cylinder.

(g) Lift force on the circular cylinder.

(h) Lift force in terms of circulation of the free vortex.
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Solution: Stream functions may be added because the flow field is incompressible and irrotational. From Table 6.2, the stream

function and velocity potential for a clockwise free vortex are

ψ f υ =
K

2π
lnr ϕf υ =

K

2π
θ

Using the results of Example 6.11, the stream function for the combination is

ψ =ψd +ψuf +ψ f υ

ψ = −
Λ sin θ

r
+Ur sin θ+

K

2π
ln r

ψ

The velocity potential for the combination is

ϕ=ϕd +ϕuf +ϕf υ

ϕ= −
Λ cos θ

r
−Ur cos θ+

K

2π
θ

ϕ

The corresponding velocity components are obtained using Eqs. 6.30 as

Vr = −
∂ϕ

∂r
= −

Λ cos θ

r2
+U cos θ 1

Vθ = −
1

r

∂ϕ

∂θ
= −

Λ sin θ

r2
−U sin θ−

K

2πr
2

The velocity field is

V =Vr er +Vθ eθ

V = −
Λ cos θ

r2
+U cos θ er + −

Λ sin θ

r
−U sin θ−

K

2πr
eθ

V

Stagnation points are located where V =Vr er +Vθ eθ =0. From Eq. 1,

Vr = −
Λ cos θ

r2
+U cos θ= cos θ U−

Λ

r2

Thus Vr =0 when r= Λ U = a
Cylinder surface

The stagnation points are located on r= a. Substituting into Eq. 2 with r= a,

Vθ = −
Λ sin θ

a2
−U sin θ−

K

2πa

= −
Λ sin θ

Λ U
−U sin θ−

K

2πa

Vθ = −2U sin θ−
K

2πa

Thus Vθ =0 along r= a when

sin θ= −
K

4πUa
or θ= sin−1 −K

4πUa

Stagnation points: r= a θ= sin−1 −K

4πUa

Stagnation points

As in Example 6.11, Vr =0 along r= a, so this flow field once again represents flow around a circular cylinder, as shown in

Table 6.3. For K =0 the solution is identical to that of Example 6.11.

The presence of the free vortex K >0 moves the stagnation points below the center of the cylinder. Thus the free vortex alters

the vertical symmetry of the flow field. The flow field has two stagnation points for a range of vortex strengths between K =0

and K =4πUa.

A single stagnation point is located at θ= −π 2 when K =4πUa.
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Even with the free vortex present, the flow field is irrotational, so the Bernoulli equation may be

applied between any two points. Applying the equation between a point far upstream and a point on the

surface of the cylinder we obtain

p∞

ρ
+
U2

2
+ g z=

p

ρ
+
V2

2
+ gz

Thus, neglecting elevation differences,

p−p∞ =
1

2
ρ U2

−V2 =
1

2
ρU2 1−

U

V

2

Along the surface r= a and Vr =0, so

V2 =V2
θ = −2U sin θ−

K

2πa

2

and

V

U

2

=4 sin2 θ+
2K

πUa
sin θ+

K2

4π2U2a2

Thus

p= p∞ +
1

2
ρU2 1−4 sin2θ−

2K

πUa
sinθ−

K2

4π2U2a2
p θ

Drag is the force component parallel to the freestream flow direction. As in Example 6.11, the drag force is given by

FD =
A

−p dA cos θ=
2π

0

−pa dθb cos θ

since dA= a dθ b, where b is the length of the cylinder normal to the diagram.

Comparing pressure distributions, the free vortex contributes only to the terms containing the factor K. The contribution of

these terms to the drag force is

FDf υ

1
2
ρU2

=
2π

0

2K

πUa
sin θ+

K2

4π2U2a2
ab cos θ dθ 3

FDf υ

1

2
ρU2

=
2K

πUa
ab

sin2 θ

2

2π

0

+
K2

4π2U2a2
ab sin θ

2π

0

=0 FD

Lift is the force component normal to the freestream flow direction. (Upward force is defined as positive lift.) The lift force is

given by

FL =
A

−p dA sin θ=
2π

0

−pa dθ b sin θ

Comparing pressure distributions, the free vortex contributes only to the terms containing the factor K. The contribution of these

terms to the lift force is

FLf υ

1

2
ρU2

=
2π

0

2K

πUa
sin θ+

K2

4π2U2a2
ab sin θ dθ

=
2K

πUa

2π

0

ab sin2θdθ+
K2

4π2U2a2

2π

0

ab sin θ dθ

=
2Kb

πU

θ

2
−
sin2 θ

4

2π

0

−
K2b

4π2U2a
cos θ

2π

0

FLf υ

1

2
ρU2

=
2Kb

πU

2π

2
=
2Kb

U

p

V

a

p

U
θ
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Because Laplace’s equation appears in many engineering and physics applications, it has been

extensively studied. For analytic solutions, one approach is to use conformal mapping with complex

notation. It turns out that any continuous complex function f z (where z= x+ iy, and i= −1) is a

solution of Laplace’s equation, and can therefore represent both ϕ and ψ . With this approach many

elegant mathematical results have been derived [4–7]. We mention only two: the circle theorem,

which enables any given flow [e.g., from a source at some point a,b ] to be easily transformed

to allow for the presence of a cylinder at the origin, and the Schwarz-Christoffel theorem, which

enables a given flow to be transformed to allow for the presence of virtually unlimited stepwise lin-

ear boundaries (e.g., the presence on the x axis of the silhouette of a building).

Much of this analytical work was done centuries ago, when it was called “hydrodynamics”

instead of potential theory. A list of famous contributors includes Bernoulli, Lagrange, d’Alem-

bert, Cauchy, Rankine, and Euler [8]. As we discussed in Section 2.6, the theory immediately ran

into difficulties: in an ideal fluid flow no body experiences drag, termed the d’Alembert paradox of

1752. Prandtl, in 1904, resolved this discrepancy by describing how real flows may be essentially

inviscid almost everywhere, but there is always a “boundary layer” adjacent to the body. In

this layer significant viscous effects occur, and the no-slip condition is satisfied. In potential flow

theory the no-slip condition is not satisfied. We will study boundary layers in detail in Chapter 9,

where we will see that their existence leads to drag on bodies, and also affects the lift of bodies.

An alternative superposition approach is the inverse method in which distributions of objects

such as sources, sinks, and vortices are used to model a body [9]. It is called inverse because the

body shape is deduced based on a desired pressure distribution. Both the direct and inverse methods,

including three-dimensional space, are today mostly analyzed using Computational Fluid Dynamics

software.

Then FLfυ
= ρUKb

FL

The circulation is defined by Eq. 5.18 as

Γ≡ V d s

On the cylinder surface, r= a, and V =Vθ eθ, so

Γ=
2π

0

−2U sin θ−
K

2πa
eθ a dθ eθ

= −

2π

0

2Ua sin θ dθ−
2π

0

K

2π
dθ

Γ= −K Circulation

Substituting into the expression for lift,

FL = ρUKb= ρU −Γ b= −ρU Γb

or the lift force per unit length of cylinder is

FL

b
= −ρUΓ

FL

b

This problem illustrates:
• Once again d’Alembert’s paradox, that

potential flows do not generate drag on
a body.

• That the lift per unit length is −ρUΓ. It
turns out that this expression for lift is
the same for all bodies in an ideal fluid
flow, regardless of shape!

1996.6 Irrotational Flow

www.konkur.in

Telegram: @uni_k



6.7 Summary and Useful Equations
In this chapter we have:

✓ Derived Euler’s equations in vector form and in rectangular, cylindrical, and streamline
coordinates.

✓ Obtained Bernoulli’s equation by integrating Euler’s equation along a steady-flow streamline,
and discussed its restrictions. We have also seen how for a steady, incompressible flow through
a stream tube the first law of thermodynamics reduces to the Bernoulli equation if certain
restrictions apply.

✓ Defined the static, dynamic, and stagnation (or total) pressures.
✓ Defined the energy and hydraulic grade lines.
✓ Derived an unsteady flow Bernoulli equation, and discussed its restrictions.
✓ Observed that for an irrotational flow that is steady and incompressible, the Bernoulli equation

applies between any two points in the flow.
✓ Defined the velocity potential ϕ and discussed its restrictions.

We have also explored in detail two-dimensional, incompressible, and irrotational flows, and
learned that for these flows: the stream function ψ and the velocity potential ϕ satisfy Laplace’s
equation; ψ and ϕ can be derived from the velocity components, and vice versa, and the iso-lines
of the stream function ψ and the velocity potential ϕ are orthogonal. We explored for such flows
how to combine potential flows to generate various flow patterns, and how to determine the
pressure distribution and lift and drag on, for example, a cylindrical shape.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to

refer to their page numbers for details!

Useful Equations
The Euler equation for

incompressible, inviscid flow: ρ
DV

Dt
= ρg−∇p

(6.1) Page 163

The Euler equation (rectangular

coordinates): ρ
∂u

∂t
+ u

∂u

∂x
+ υ

∂u

∂y
+w

∂u

∂z
= ρgx−

∂p

∂x

ρ
∂υ

∂t
+ u

∂υ

∂x
+ υ

∂υ

∂y
+w

∂υ

∂z
= ρgy−

∂p

∂y

ρ
∂w

∂t
+ u

∂w

∂x
+ υ

∂w

∂y
+w

∂w

∂z
= ρgz−

∂p

∂z

(6.2a)

(6.2b)

(6.2c)

Page 163

The Euler equation (cylindrical

coordinates): ρar = ρ
∂Vr

∂t
+Vr

∂Vr

∂r
+
Vθ

r

∂Vr

∂θ
+Vz

∂Vr

∂z
−
V2
θ

r
= ρgr−

∂p

∂r

ρaθ = ρ
∂Vθ

∂t
+Vr

∂Vθ

∂r
+
Vθ

r

∂Vθ

∂θ
+Vz

∂Vθ

∂z
+
VrVθ

r
= ρgθ−

1

r

∂p

∂θ

ρaz = ρ
∂Vz

∂t
+Vr

∂Vz

∂r
+
Vθ

r

∂Vz

∂θ
+Vz

∂Vz

∂z
= ρgz−

∂p

∂z

(6.3a)

(6.3b)

(6.3c)

Page 163

Page 164

Page 164

The Bernoulli equation (steady,

incompressible, inviscid, along

a streamline):

p

ρ
+
V2

2
+ gz= constant

(6.8) Page 167

Definition of total head of a flow: p

ρg
+
V2

2g
+ z=H

(6.16a) Page 181
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Table (Continued)

Definition of energy grade

line (EGL): EGL=
p

ρg
+
V2

2g
+ z

(6.16b) Page 181

Definition of hydraulic grade line

(HGL):
HGL=

p

ρg
+ z (6.16c) Page 181

Relation between EGL,

HGL, and dynamic

pressure:

EGL−HGL=
V2

2g

(6.16d) Page 182

Definition of stream

function (2D,

incompressible flow):

u=
∂ψ

∂y
υ= −

∂ψ

∂x

(5.4) Page 187

Definition of velocity potential

(2D irrotational flow):
u= −

∂ϕ

∂x
υ= −

∂ϕ

∂y

(6.29) Page 187

Definition of stream function

(2D, incompressible flow,

cylindrical coordinates):

Vr =
1

r

∂ψ

∂θ
and Vθ = −

∂ψ

∂r

(5.8) Page 187

Definition of velocity potential

(2D irrotational flow, cylindrical

coordinates):

Vr = −
∂ϕ

∂r
and Vθ = −

1

r

∂ϕ

∂θ

(6.33) Page 187
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Chapter 7 Problems

Nondimensionalizing the Basic Differential
Equations
7.1 The slope of the height h of a surface wave moving in a

shallow pool of liquid is related to the speed of the wave u and

gravity g by the equation

∂h

∂x
= −

u

g

∂u

∂x

Use a length scale L and a velocity scale V0 to put the equation in

nondimensional terms and obtain the dimensionless groups that

characterize the situation.

7.2 One-dimensional unsteady flow in a thin liquid layer is

described by the equation

∂u

∂t
+ u

∂u

∂x
= −g

∂h

∂x

Use a length scale, L, and a velocity scale, V0, to nondimensionalize

this equation. Obtain the dimensionless groups that characterize

this flow.

7.3 Fluid fills the space between two parallel plates. The differential

equation that describes the instantaneous fluid velocity for unsteady

flow with the fluid moving parallel to the walls is

ρ
∂u

∂t
= μ

∂2u

∂y2

The lower plate is stationary and the upper plate oscillates in the

x-direction with a frequency ω and an amplitude in the plate velocity

of U. Use the characteristic dimensions to normalize the differential

equation and obtain the dimensionless groups that characterize

the flow.

U cos ωt

H

x

y

P7.3

7.4 Consider a disk of radius R rotating in an incompressible

fluid at a speed ω. The equations that describe the boundary layer

on the disk are:

1

r

∂ rvr

∂r
+
∂vz

∂z
=0

ρ vr
∂vr

∂r
−
v2θ
r
+ vz

∂vr

∂z
= μ

∂2vr

∂z2

Use the characteristic dimensions to normalize the differential

equation and obtain the dimensionless groups that characterize

the flow.

ω

R

z

r

P7.4

7.5 The transient temperature change T in a plane wall of thickness L

is given by the differential equation

∂2T

∂x2
=
1

α

∂T

∂t

Where α is the thermal diffusivity with units of L2t−1. Determine the

nondimensional groups that characterize the situation for a plane wall

with a fixed temperature at TL at x = L and a periodic surface temper-

ature variation at x= 0 given by (T− TL) = (T0− TL) cosωtwhere ω is

the frequency of the oscillation and T0 is a temperature higher than TL.

Nondimensional temperature parameters use a temperature difference

rather than temperature alone. The reference value of time comes from

nondimensionalizing the boundary condition.

Buckingham Pi Theorem
7.6 Experiments on flow through an orifice plate of diameter d

mounted in a length of pipe of diameter D show that the pressure

drop is a function of the orifice diameter, pipe diameter, fluid

velocity, and fluid density and viscosity. Determine the dimension-

less parameters that represent this situation.

7.7 The speed, V , of a free-surface wave in shallow liquid is a

function of depth, D, density, ρ, gravity, g, and surface tension, σ.

Use dimensional analysis to find the functional dependence of V

on the other variables. Express V in the simplest form possible.

7.8 The speed, V, of a free-surface gravity wave in deep water is a

function of wavelength, λ, depth, D, density, ρ, and acceleration of

gravity, g. Use dimensional analysis to find the functional depend-

ence of V on the other variables. Express V in the simplest form

possible.

7.9 Experiments have shown that axial thrust exerted by a propel-

ler depends on the forward speed of the ship, angular speed and size

of the propeller, and viscosity and density of the fluid. Determine

the dimensionless representation of the situation. Determine how

the expression would change if gravity were also a relevant

variable.

7.10 A weir is a submerged gate extending across the width of a

channel in which water is flowing. The depth of the water upstream

of the weir can be used to determine the flow rate. Assume that the

volume flow depends on the upstream depth, channel width, and

gravity to find the nondimensional parameters for this situation

and determine the dependency of flow rate on the other variables.

P-23

www.konkur.in

Telegram: @uni_k



7.11 A circular disk of diameter d and of negligible thickness is

rotated at a constant angular speed, ω, in a cylindrical casing filled

with a liquid of viscosity μ and density ρ. The casing has an internal

diameter D, and there is a clearance y between the surfaces of disk

and casing. Derive an expression for the torque required to maintain

this speed if it depends only on the foregoing variables.

7.12 Derive relation for the dependency of the frictional torque

exerted on a journal of a bearing. The torque depends on the dia-

meters of the journal and bearing, the length of the bearing, the angu-

lar speed of the journal, the transverse load (force), and the viscosity

of the lubricant.

7.13 The power, �, required to drive a fan is believed to depend

on fluid density, ρ, volume flow rate, Q, impeller diameter, D, and

angular velocity, ω. Use dimensional analysis to determine the

dependence of � on the other variables.

7.14 A ball is suspended in an air jet in a stable position as shown in

the figure. Experiments show that the equilibrium height of the ball is

found to depend on the ball diameter and weight, jet diameter and

velocity, and the air density and viscosity. Determine the dimension-

less parameters that characterize this experiment.

Ball D

d

Vh

P7.14

7.15 A large tank of liquid under pressure is drained through a

smoothly contoured nozzle of area A. The mass flow rate is thought

to depend on nozzle area, A, liquid density, ρ, difference in height

between the liquid surface and nozzle, h, tank gage pressure, Δp,

and gravitational acceleration, g. Determine how many independent

Π parameters can be formed for this problem. Find the dimensionless

parameters. State the functional relationship for the mass flow rate in

terms of the dimensionless parameters.

7.16 Spin plays an important role in the flight trajectory of golf,

ping-pong, and tennis balls. Therefore, it is important to know the

rate at which spin decreases for a ball in flight. The aerodynamic tor-

que, T , acting on a ball in flight, is thought to depend on flight speed,

V , air density, ρ, air viscosity, μ, ball diameter, D, spin rate (angular

speed), ω, and diameter of the dimples on the ball, d. Determine the

dimensionless parameters that result.

7.17 The rate
dT

dt
at which the temperature T at the center of a rice

kernel falls during cooking is critical, as too high a value leads to

cracking of the kernel and too low a value makes the process slow

and costly. The cooling rate depends on the rice specific heat, c, ther-

mal conductivity, k, and size, L, the cooling air flow specific heat, cp,

density, ρ, viscosity, μ, and speed, V. Determine the dimensionless

parameters for this problem.

7.18 There are various applications such as the freezing of food,

combustion of small particles, or some chemical reactions in which

a fluid flows through a matrix of particles, called a fluidized bed. The

fluid pressure drop is a function of the diameter of the particles d, the

flow length of the bed L, the fluid velocity V, fluid density r, and fluid

viscosity m. Use dimensional analysis to find the functional depend-

ence of pressure drop on the other variables.

7.19 The summer water flow rate in the Wisconsin River is 6,000

cfs. At the Highway 23 bridge, the river is 150 ft wide and an average

of 8 ft deep. The relevant dimensionless groups are the Reynolds

number (based on river depth), Froude number, and Weber number.

Compute these parameters for the river.

7.20 The pressure drop in air-conditioning ducts is an important

factor in performance. For a circular 4 ft diameter duct carrying

1,000 cfm of air at 55 F, the design pressure drop is 0.1 in. of water

per 100 ft of length. Compute the value of the relevant dimensionless

parameters [pressure coefficient and Reynolds number] for a duct.

Flow Similarity and Model Studies
7.21 A drone is designed to operate at 20 m/s in air at standard con-

ditions. A model is constructed to 1:20 scale and tested in a variable-

pressure wind tunnel at the same air temperature to determine the

drag on the drone. Determine the groups necessary to obtain dynamic

similarity. Determine the wind tunnel pressure necessary for model

tests at 75 m/s. Determine drag of the prototype if the measured

model drag force is 250 N.

7.22 A flat plate 1.5 m long and 0.3 m wide is towed at 3 m/s in a

towing basin containing water at 20 C. The measured drag force

is 14 N. Calculate the dimensions of a similar plate that will

yield dynamically similar conditions in an airstream at a velocity

of 18 m/s, 101.4 kPa, and 15 C. Determine the expected drag force

plate in the air stream.

7.23 A 1:3 scale model of a torpedo is tested in a wind tunnel to

determine the drag force. The prototype operates in water at 28m/s.

It has a diameter of 533mm and is 6.7 m long. The maximum wind

tunnel speed is 110m/s but the air pressure can be varied. The air

temperature is constant at 20 C. Determine the air pressure in the

wind tunnel necessary to achieve a dynamically similar test. At

these conditions, the drag force on the model is measured as 618 N.

Determine the drag force expected on the full-scale torpedo.

7.24 A flow rate of 0:18 m3/s of water at 20 C discharges from a

0.3 m pipe through a 0.15 m nozzle into the atmosphere. The axial

force component exerted by water on the nozzle is 3 kN. Determine

the corresponding force exerted on a 4:1 prototype of nozzle and

pipe discharging 1:13 m3/s of air at 101.4 kPa and 15 C to the

atmosphere.

7.25An airplane wing, with chord length of 1.5 m and span of 9 m is

designed to move through standard air at a speed of 7.5 m/s. A 1:10

scale model of this wing is to be tested in a water tunnel. Determine

the speed necessary in the water tunnel to achieve dynamic similarity.

Determine the ratio of forces measured in the model flow to those on

the prototype wing.

7.26Amodel hydrofoil is to be tested at 1:20 scale. The test speed is

chosen to duplicate the Froude number corresponding to the 60-knot

prototype speed in 45 F water. To model cavitation correctly, the

cavitation number also must be duplicated. Determine the ambient

pressure at which the tests must be run. The water in the model test

basin can be heated to 130 F.

7.27 In some speed ranges, vortices are shed from the rear of bluff

cylinders placed across a flow. The vortices alternately leave the top

and bottom of the cylinder, as shown, causing an alternating force

normal to the freestream velocity. The vortex shedding frequency,

f , is thought to depend on ρ, d, V , and μ. Use dimensional analysis

to develop a functional relationship for f . Vortex shedding occurs in
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standard air on two cylinders with a diameter ratio of 2. Determine

the velocity ratio for dynamic similarity, and the ratio of vortex

shedding frequencies.

VorticesV

d

P7.27

7.28 A 0.25 mm diameter sphere with a specific gravity of 5.54 is

dropped in water at 25 C and attains a constant velocity of 0:07 m/s.

Determine the specific gravity a 2.5 mm diameter sphere dropped in

crude oil at 25 C must have so that the two flows will be dynamically

similar at terminal velocity.

7.29 A 150 mm artillery projectile that travels at 600 m/s through

still air at 30 C and air pressure of 101.4 kPa is to be modeled in

a high-speed wind tunnel with a 1:6 scale model. The wind tunnel

air has a temperature of−18 C and a pressure of 68.9 kPa. Determine

the velocity required for dynamic similarity. Determine the drag

force on the prototype for a drag force on the model of 35 N.

7.30 A 1:50-scale model of a submarine is to be tested in a towing

tank under two conditions: motion at the free surface and motion

far below the surface. The tests are performed in freshwater. On

the surface, the submarine cruises at 24 knots. Determine the speed

the model should be towed to ensure dynamic similarity. The sub

cruises at 0.35 knot below the surface. Determine the speed should

the model should be towed to ensure dynamic similarity under the

surfcee. Determine the factor the drag of the model needs to be

multiplied by under each condition to give the drag of the full scale

submarine.

7.31 The power, �, required to drive a fan is depends on fluid den-

sity ρ, volume flow rate Q, impeller diameter D, and angular speedω.

A fan with a diameter of 8 in. rotating at 2500 rpm delivers 15 ft3/s of

air. Determine the diameter of a geometrically and dynamically sim-

ilar fan rotating at 1800 rpm that delivers 88 ft3/s of air.

7.32Over a certain range of air speeds, V , the lift, FL, produced by a

model of a complete aircraft in a wind tunnel depends on the air

speed, air density, ρ, and a characteristic length (the wing base chord

length, c=150 mm). The following experimental data is obtained for

air at standard atmospheric conditions:

V m s 10 15 20 25 30 35 40 45 50

FL N 2.2 4.8 8.7 13.3 19.6 26.5 34.5 43.8 54

Plot the lift as a function of the air speed. Determine the lift coefficient

defined as CL =
FL

1

2
ρV2c2

and plot the lift coefficient as a function of

air speed. The prototype has a wing base chord length of 5 m.

Determine the lift produced by the prototype over a speed range of

75 m/s to 250 m/s.

7.33An axial-flow pump is required to deliver 0 75 m3 s of water at

a head of 15 J kg. The diameter of the rotor is 0.25 m, and it is to be

driven at 500 rpm. The prototype is to be modeled on a small test

apparatus having a 2.25 kW, 1000 rpm power supply. For similar per-

formance between the prototype and the model, calculate the head,

volume flow rate, and diameter of the model.

7.34 A model propeller 1 m in diameter is tested in a wind tunnel.

Air approaches the propeller at 50 m s when it rotates at 1800 rpm.

The thrust and torque measured under these conditions are 100 N and

10 N m, respectively. A prototype eight times as large as the model is

to be built. At a dynamically similar operating point, the approach air

speed is to be 130 m s. Calculate the speed, thrust, and torque of the

prototype propeller under these conditions, neglecting the effect of

viscosity but including density.

7.35A 1:16 model of a bus is tested in a wind tunnel in standard air.

The model is 152 mm wide, 200 mm high, and 762 mm long.

The measured drag force at 26 5 m s wind speed is 6.09 N. The

longitudinal pressure gradient in the wind tunnel test section is

−11 8 N m2 m. Estimate the correction that should be made to

the measured drag force to correct for horizontal buoyancy caused

by the pressure gradient in the test section. Calculate the drag

coefficient for the model. Evaluate the aerodynamic drag force on

the prototype at 100 km hr on a calm day.

7.36 Tests on the established flow of six different liquids in smooth

pipes of various sizes yield the following data:

Diameter

mm

Velocity

m/s

Viscosity

mPa s

Density

kg/m3
Wall

Shear Pa

300 2.26 862.0 1247 51.2

250 2.47 431.0 1031 33.5

150 1.22 84.3 907 5.41

100 1.39 44.0 938 9.67

50 0.20 1.5 861 0.162

25 0.36 1.0 1000 0.517

Make a dimensional analysis of this problem and a plot of the result-

ing dimensionless numbers as ordinate and abscissa. Describe the

plot and draw some conclusions.
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C H A P T E R 7

Dimensional Analysis
and Similitude
7.1 Nondimensionalizing the Basic Differential Equations

7.2 Buckingham Pi Theorem

7.3 Significant Dimensionless Groups in Fluid Mechanics

7.4 Flow Similarity and Model Studies

7.5 Summary and Useful Equations

Learning Objectives
After completing this chapter, you should be able to

• Determine the dimensionless groups for a differential equation.

• Determine the dimensionless groups for a problem using the Buckingham Pi Theorem.

• Explain the meaning of the important dimensionless groups used in fluid mechanics.

• Use dimensional analysis to scale results from one flow situation to another.

Case Study

Performance in a bicycle race such as the Tour de France depends
on both the bicycle and the rider. The rider needs to overcome the
aerodynamic force of the wind and the friction forces of the tires
and bearings, and at race speeds, the force to move against the
surrounding air predominates. A great deal of attention has been
paid to improving the aerodynamics of the bicycle. As shown in the
picture, the bicycle and rider are very streamlined in an effort to
reduce the aerodynamic drag as much as possible.

Oneway to evaluate the effect on drag ofmodifying a bicycle is
to test the full-scale bicycle and rider in a wind tunnel. This
requires a facility large enough to accommodate both without
aerodynamic interference from the walls. As we will learn in this
chapter, it is feasible to perform testing on a model of the bicycle
and then scale the results up to the full-size system. The approach
of dimensional analysis allows models to be tested and the results
scaled to accurately predict the effect of changes on the full-size
bicycle.

A large number of improvements have been made to bicycles
that reduce drag and make riding faster with less effort. Some
of these are sweeping the handle bars forward, eliminating the
crossbar, tapering the seat post and all other tubing, and making
the spokes bladelike instead of round. Replacing the spoked rear
wheel with a solid disk has a significant effect, but the disk wheel

is a disadvantage in crosswinds. Also, as shown in the photograph,
the helmet can be streamlined to reduce the wake and turbulence
behind the rider. In a time trial, the rider races alone and does not
receive any benefit from surrounding riders. Currently, the time
trial record in the Tour de France is 58.9 km/hr (36.6 mph) for a
7.6 km (4.7 mi) course.
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Streamlined bicycle and rider.
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Most phenomena in fluid mechanics depend in a complex way on geometric and flow parameters.

For example, consider the drag force on a stationary smooth sphere immersed in a uniform stream.

What experiments must be conducted to determine the drag force on the sphere? To answer this

question, we must specify what we believe are the parameters that are important in determining

the drag force. Clearly, we would expect the drag force to depend on the size of the sphere (char-

acterized by the diameter, D), the fluid speed, V , and the fluid viscosity, μ. In addition, the density

of the fluid, ρ, also might be important. Representing the drag force by F, we can write the symbolic

equation

F = f D,V ,ρ,μ

Although we may have neglected parameters on which the drag force depends, such as surface rough-

ness, we have set up the problem of determining the drag force for a stationary sphere in terms of quan-

tities that are both controllable and measurable in the laboratory.

We could set up an experimental procedure for finding the dependence of F on V ,D, ρ, and μ. To

see how the drag, F, is affected by fluid speed, V , we could place a sphere in a wind tunnel andmeasure F

for a range of V values. We could then run more tests in which we explore the effect on F of sphere

diameter, D, by using different diameter spheres. We are already generating a lot of data. If we ran

the wind tunnel at, say, 10 different speeds, for 10 different sphere sizes, we’d have 100 data points.

We could plot 10 curves of F vs. V , one for each sphere size, but acquiring the data would be time

consuming. In principle, we would next have to search out a way to use other fluids to be able to do

experiments for a range of ρ and μ values. Then we would have to try and make sense of the data:

How do we plot, say, curves of F vs. V , with D, ρ, and μ all being parameters? This is a daunting task,

even for such a seemingly simple phenomenon as the drag on a sphere!

Fortunately we do not have to do all this work. As we will see in Example 7.1, using dimensional

analysis, all the data for drag on a smooth sphere can be plotted as a single relationship between two

nondimensional parameters in the form

F

ρV2D2
= f

ρVD

μ

The form of the function f still must be determined experimentally, but the point is that all spheres, in all

fluids, for most velocities will fall on the same curve. Rather than needing to conduct 104 experiments,

we could establish the nature of the function as accurately with only about 10 tests. The time saved in

performing only 10 rather than 104 tests is obvious. Even more important is the greater experimental

convenience. No longer must we find fluids with 10 different values of density and viscosity. Nor must

we make 10 spheres of different diameters. Instead, only the parameter ρVD μmust be varied. This can

be accomplished simply by using one sphere (e.g., 1 in. diameter), in one fluid (e.g., air), and only chan-

ging the speed, for example.

Figure 7.1 shows some classic data for flow over a sphere. The factors 1
2
and π 4 have been added to

the denominator of the parameter on the left to make it take the form of a commonly used nondimen-

sional group, the drag coefficient, CD, that we will discuss in detail in Chapter 9. If we performed the

experiments as outlined above, our results would fall on the same curve, within experimental error.

The data points represent results obtained by various workers for several different fluids and spheres.

Note that we end up with a curve that can be used to obtain the drag force on a very wide range of

sphere/fluid combinations. For example, it could be used to obtain the drag on a hot-air balloon due

to a crosswind, or on a red blood cell as it moves through the aorta. In either case, given the fluid (ρ

and μ), the flow speed V , and the sphere diameter D, we could compute a value for ρVD μ, then read

the corresponding value for CD, and finally compute the drag force F.

In Section 7.1, we examine the governing differential equation to see what we can learn about

dimensionless groups. These equations contain the physics of the situation and so are an important

source of information. Next, in Section 7.2 we introduce the Buckingham Pi theorem, a formalized

procedure for deducing the dimensionless groups appropriate for a given fluid mechanics or other engi-

neering problem.We suggest you read it once, then study Examples 7.1, 7.2, and 7.3 to see how practical

and useful the method in fact is, before returning to reread the section. The Buckingham Pi theorem is a

203Learning Objectives

www.konkur.in

Telegram: @uni_k



statement of the relation between a function expressed in terms of dimensional parameters and a related

function expressed in terms of nondimensional parameters. The Buckingham Pi theorem allows us to

develop the important nondimensional parameters quickly and easily.

7.1 Nondimensionalizing the Basic Differential Equations
Before developing a general approach to dimensional analysis let us see what we can learn from our

previous analytical descriptions of fluid flow. Consider, for example, a steady incompressible two-

dimensional flow of a Newtonian fluid with constant viscosity. The mass conservation equation

(Eq. 5.1c) becomes

∂u

∂x
+
∂υ

∂y
=0 7 1

and the Navier–Stokes equations (Eqs. 5.27) reduce to

ρ u
∂u

∂x
+ υ

∂u

∂y
= −

∂p

∂x
+ μ

∂2u

∂x2
+
∂2u

∂y2
7 2

and

ρ u
∂υ

∂x
+ υ

∂υ

∂y
= −ρg−

∂p

∂y
+ μ

∂2υ

∂x2
+
∂2υ

∂y2
7 3

As we discussed in Section 5.4, these equations form a set of coupled nonlinear partial differential

equations for u,υ, and p, and are difficult to solve for most flows. Equation 7.1 has dimensions of 1/time,

and Eqs. 7.2 and 7.3 have dimensions of force/volume. Let us see what happens when we convert them

into dimensionless equations.

To nondimensionalize these equations, divide all lengths by a reference length, L, and all velocities

by a reference speed, V∞ , which usually is taken as the freestream velocity. Make the pressure nondi-

mensional by dividing by ρV2
∞

(twice the freestream dynamic pressure). Denoting nondimensional

quantities with asterisks, we obtain

x =
x

L
, y =

y

L
, u =

u

V∞

, υ =
υ

V∞

, and p =
p

ρV2
∞

7 4
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Fig. 7.1 Experimentally derived relation between the nondimensional parameters [3, 15, 16].
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so that x= x L, y= y L, u= u V∞ , and so on. We can then substitute into Eqs. 7.1 through 7.3; here we

show two representative substitutions:

u
∂u

∂x
= u V∞

∂ u V∞

∂ x L
=
V2
∞

L
u
∂u

∂x

and

∂
2u

∂x2
=
∂ u V∞

∂ x L
2
=
V∞

L2
∂
2u

∂x 2

Using this procedure, the equations become

V∞

L

∂u

∂x
+
V∞

L

∂υ

∂y
=0 7 5

ρV2
∞

L
u

∂u

∂x
+ υ

∂u

∂y
= −

ρV2
∞

L

∂p

∂x
+
μV∞

L2
∂
2u

∂x 2
+
∂
2u

∂y 2
7 6

ρV2
∞

L
u
∂υ

∂x
+ υ

∂υ

∂y
= −ρg−

ρV2
∞

L

∂p

∂y
+
μV∞

L2
∂
2υ

∂x 2
+
∂
2υ

∂y 2
7 7

Dividing Eq. 7.5 by V∞ L and Eqs. 7.6 and 7.7 by ρV2
∞

L gives

∂u

∂x
+
∂υ

∂y
=0 7 8

u
∂u

∂x
+ υ

∂u

∂y
= −

∂p

∂x
+

μ

ρV∞L

∂
2u

∂x 2
+
∂
2u

∂y 2
7 9

u
∂υ

∂x
+ υ

∂υ

∂y
= −

gL

V2
∞

−
∂p

∂y
+

μ

ρV∞L

∂
2υ

∂x 2
+
∂
2υ

∂y 2
7 10

Equations 7.8, 7.9, and 7.10 are the nondimensional forms of our original equations (Eqs. 7.1, 7.2,

7.3). As such, we can think about their solution (with appropriate boundary conditions) as an exercise in

applied mathematics. Equation 7.9 contains a dimensionless coefficient μ ρV∞L (which we recognize

as the inverse of the Reynolds number) in front of the second-order (viscous) terms; Eq. 7.10 contains

this and another dimensionless coefficient, gL V2
∞

the gravity force term. We recall from the theory of

differential equations that the mathematical form of the solution of such equations is very sensitive to

the values of the coefficients in the equations.

These equations tell us that the solution, and hence the actual flow pattern they describe, depends on

the values of the two coefficients. For example, if μ ρV∞L is very small (i.e., we have a high Reynolds

number), the second-order differentials, representing viscous forces, can be neglected, at least in most of

the flow, and we end up with a form of Euler’s equations (Eqs. 6.2). We say “in most of the flow”

because we have already learned that in reality for this case we will have a boundary layer in which

there is significant effect of viscosity. In addition, from a mathematical point of view, it is always dan-

gerous to neglect higher-order derivatives, even if their coefficients are small, because reduction to a

lower-order equation means we lose a boundary condition (specifically the no-slip condition). We

can predict that if μ ρV∞L is large or small, then viscous forces will be significant or not, respectively;

if gLV2
∞

is large or small, we can predict that gravity forces will be significant or not, respectively. We

can thus gain insight even before attempting a solution to the differential equations. Note that for com-

pleteness, we would have to apply the same nondimensionalizing approach to the boundary conditions

of the problem, which often introduce further dimensionless coefficients.

Writing nondimensional forms of the governing equations, then, can yield insight into the under-

lying physical phenomena, and indicate which forces are dominant. If we had two geometrically similar
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but different scale flows satisfying Eqs. 7.8, 7.9, and 7.10 (e.g., a model and a prototype), the

equations would only yield the same mathematical results if the two flows had the same values for

the two coefficients (i.e., had the same relative importance of gravity, viscous, and inertia forces). This

nondimensional form of the equations is also the starting point in numerical methods, which is very

often the only way of obtaining their solution. Additional derivations and examples of establishing

similitude from the governing equations of a problem are presented in Kline [1] and Hansen [2].

We will now see how the method of dimensional analysis can be used instead of the above proce-

dure to find appropriate dimensionless groupings of physical parameters. As we have mentioned, using

dimensionless groupings is very useful for experimental measurements, and we will see in the next two

sections that we can obtain them even when we do not have the governing equations such as Eqs. 7.1,

7.2, and 7.3 to work from.

7.2 Buckingham Pi Theorem
In the Introduction we discussed how the drag F on a sphere depends on the sphere diameter D, fluid

density ρ and viscosity μ, and fluid speed V , or

F =F D,ρ,μ,V

with theory or experiment being needed to determine the nature of function f . More formally, we write

g F,D,ρ,μ,V =0

where g is an unspecified function, different from f . The Buckingham Pi theorem [4] states that we can

transform a relationship between n parameters of the form

g q1,q2,…,qn =0

into a corresponding relationship between n−m independent dimensionless Π parameters in the form

G Π1,Π2,…,Πn−m =0

or

Π1 =G1 Π2,…,Πn−m

where m is usually the minimum number, r, of independent dimensions (e.g., mass, length, time)

required to define the dimensions of all the parameters q1,q2,…,qn. For example, for the sphere

problem, we will see in Example 7.1 that

g F,D,ρ,μ,V =0 or F =F D,ρ,μ,V

leads to

G
F

ρV2D2
,

μ

ρVD
=0 or

F

ρV2D2
=G1

μ

ρVD

The theorem does not predict the functional form of G or G1. The functional relation among the

independent dimensionless Π parameters must be determined experimentally.

The n−m dimensionlessΠ parameters obtained from the procedure are independent. AΠ parameter

is not independent if it can be formed from any combination of one or more of the other Π parameters.

For example, if

Π5 =
2Π1

Π2Π3

or Π6 =
Π

3 4
1

Π
2
3

then neither Π5 nor Π6 is independent of the other dimensionless parameters.

Several methods for determining the dimensionless parameters are available. A detailed procedure

is presented in the rest of this section.

Regardless of the method to be used to determine the dimensionless parameters, one begins by

listing all dimensional parameters that are believed to affect the given flow phenomenon. Some
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experience admittedly is helpful in compiling the list. Students, who do not have this experience, often

are troubled by the need to apply engineering judgment in an apparent massive dose. However, it is

difficult to go wrong if a generous selection of parameters is made.

If you suspect that a phenomenon depends on a given parameter, include it. If your suspicion

is correct, experiments will show that the parameter must be included to get consistent results.

If the parameter is extraneous, an extra Π parameter may result, but experiments will later show

that it may be eliminated. Therefore, do not be afraid to include all the parameters that you feel are

important.

The six steps listed below outline a recommended procedure for determining the Π parameters:

Step 1. List all the dimensional parameters involved. Let n be the number of parameters. If all of the pertinent para-

meters are not included, a relation may be obtained, but it will not give the complete story. If parameters that

actually have no effect on the physical phenomenon are included, either the process of dimensional analysis

will show that these do not enter the relation sought, or one or more dimensionless groups will be obtained

that experiments will show to be extraneous.

Step 2. Select a set of fundamental (primary) dimensions, e.g., MLt or FLt. For a heat transfer problems you may

also need T for temperature, and in electrical systems, q for charge.

Step 3. List the dimensions of all parameters in terms of primary dimensions. Let r be the number of primary

dimensions. Either force or mass may be selected as a primary dimension.

Step 4. Select a set of r dimensional parameters that includes all the primary dimensions. These parameters will

all be combined with each of the remaining parameters, one of those at a time, and so will be called repeat-

ing parameters. No repeating parameter should have dimensions that are a power of the dimensions

of another repeating parameter; for example, do not include both an area L2 and a second moment

of area L4 as repeating parameters. The repeating parameters chosen may appear in all the dimension-

less groups obtained; consequently, do not include the dependent parameter among those selected in

this step.

Step 5. Set up dimensional equations, combining the parameters selected in Step 4 with each of the other

parameters in turn, to form dimensionless groups. There will be n –m equations. Solve the dimensional

equations to obtain the n−m dimensionless groups.

Step 6. Check to see that each group obtained is dimensionless. If mass was initially selected as a primary dimen-

sion, it is wise to check the groups using force as a primary dimension, or vice versa.

The functional relationship among the Π parameters must be determined experimentally.

The detailed procedure for determining the dimensionless Π parameters is illustrated in Examples

7.1 and 7.2.

Example 7.1 DRAG FORCE ON A SMOOTH SPHERE

As noted in Section 7.2, the drag force, F, on a smooth sphere depends on the relative speed, V , the sphere diameter, D, the fluid

density, ρ, and the fluid viscosity, μ. Obtain a set of dimensionless groups that can be used to correlate experimental data.

Given: F = f ρ,V ,D,μ for a smooth sphere.

Find: An appropriate set of dimensionless groups.

Solution: (Circled numbers refer to steps in the procedure for determining dimensionless Π parameters.)

F V D ρ μ n=5 dimensional parameters

Select primary dimensions M,L, and t.

F V D ρ μ

ML

t2
L

t
L

M

L3
M

Lt
r=3 primary dimensions
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Select repeating parameters ρ,V ,D m= r=3 repeating parameters

Then n−m=2 dimensionless groups will result. Setting up dimensional equations, we obtain

Π1 = ρaV bDcF and
M

L3

a
L

t

b

L
c ML

t2
=M0L0t0

Equating the exponents of M,L, and t results in

M

L

t

a+1=0

−3a+ b+ c+1=0

−b−2= 0

a= −1

c= −2

b= −2

Therefore, Π1 =
F

ρV2D2

Similarly,

Π2 = ρdV eDf μ and
M

L3

d
L

t

e

L
f M

Lt
=M0L0t0

M

L

t

d+1=0

−3d+ e+ f −1=0

−e−1= 0

d= −1

f = −1

e= −1

Therefore, Π2 =
μ

ρVD

Check using F, L, t dimensions

Π1 =
F

ρV2D2
and F

L4

Ft2
t

L

2 1

L2
=1

where [ ] means “has dimensions of,” and

Π2 =
μ

ρVD
and

Ft

L2
L4

Ft2
t

L

1

L
=1

The functional relationship is Π1 = f Π2 , or

F

ρV2D2
= f

μ

ρVD

as noted before. The form of the function, f , must be determined experi-

mentally (see Fig. 7.1).

Example 7.2 PRESSURE DROP IN PIPE FLOW

The pressure drop, Δρ, for steady, incompressible viscous flow through a straight horizontal pipe depends on the pipe length, l,

the average velocity, V , the fluid viscosity, μ, the pipe diameter, D, the fluid density, ρ, and the average “roughness” height, e.

Determine a set of dimensionless groups that can be used to correlate data.

Given: Δp= f ρ,V ,D, l,μ,e for flow in a circular pipe.

Find: A suitable set of dimensionless groups.

Note:
This example illustrates the use of the
Pi theorem to develop the dimensionless
groups for a problem.
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The procedure outlined above, where m is taken equal to r (the fewest independent dimensions

required to specify the dimensions of all parameters involved), almost always produces the correct num-

ber of dimensionless Π parameters. In a few cases, trouble arises because the number of primary dimen-

sions differs when variables are expressed in terms of different systems of dimensions (e.g.,MLt or FLt).

The value of m can be established with certainty by determining the rank of the dimensional matrix; that

rank is m. Although not needed in most applications, for completeness, this procedure is illustrated in

Example 7.3.

Solution: (Circled numbers refer to steps in the procedure for determining dimensionless Π parameters.)

Δp ρ μ V l D e n=7 dimensional parameters

Choose primary dimensions M,L, and t.

Δp ρ μ V l D e

M

Lt2
M

L3
M

Lt

L

t
L L L r=3 primary dimensions

Select repeating parameters ρ,V ,D. m= r=3 repeating parameters

Then n−m=4 dimensionless groups will result. Setting up dimensional equations we have:

Π1 = ρaV
b
Dc

Δp and

M

L3

a
L

t

b

L
c M

Lt2
=M0L0t0

M

L

t

0= a+1

0= −3a+ b+ c−1

0= −b−2

a= −1

b= −2

c=0

Therefore, Π1 = ρ−1V
−2
D0

Δp=
Δp

ρV
2

Π3 = ρgV
h
Dil and

M

L3

g
L

t

h

L
i
L=M0L0t0

M

L

t

0= g

0= −3g+ h+ i+1

0= −h

g=0

h=0

i= −1

Therefore, Π3 =
l
D

Π2 = ρdV
e
Df μ and

M

L3

d
L

t

e

L
f M

Lt
=M0L0t0

M

L

t

0= d+1

0= −3d+ e+ f −1

0= −e−1

d= −1

e= −1

f = −1

Therefore,Π2 =
μ

ρVD

Π4 = ρjV
k
Dle and

M

L3

j
L

t

k

L
l
L=M0L0t0

M

L

t

0= j

0= −3j+ k+ l+1

0= −k

j=0

k=0

l= −1

Therefore, Π4 =
e

D

Check, using F, L, t dimensions

Π1 =
Δp

ρV
2

and
F

L2
L4

Ft2
t2

L2
=1 Π3 =

l

D
and

L

L
=1

Π2 =
μ

ρVD
and

Ft

L2
L4

Ft2
t

L

1

L
=1 Π4 =

e

D
and

L

L
=1

Finally, the functional relationship is

Π1 = f Π2, Π3, Π4

or

Δp

ρV
2
= f

μ

ρVD
,
l

D
,
e

D

Notes:
• As we shall see when we study pipe flow
in detail in Chapter 8, this relationship
correlates the data well.

• Each Π group is unique (e.g., there is only
one possible dimensionless grouping of
μ,ρ,V , and D).

• We can often deduce Π groups by
inspection, e.g., l D is the obvious unique
grouping of l with, ρ,V , and D.
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Example 7.3 CAPILLARY EFFECT: USE OF DIMENSIONAL MATRIX

When a small tube is dipped into a pool of liquid, surface tension causes a meniscus to form at the free surface, which is elevated

or depressed depending on the contact angle at the liquid–solid–gas interface. Experiments indicate that the magnitude of this

capillary effect, Δh, is a function of the tube diameter, D, liquid specific weight, γ, and surface tension, σ. Determine the number

of independent Π parameters that can be formed and obtain a set.

Given: Δh= f D,γ,σ

Find: (a) Number of independent Π parameters.

(b) One set of Π parameters.

Solution: Circled numbers refer to steps in the procedure for determining dimensionlessΠ

parameters.

Δh D γ σ n=4 dimensional parameters

Choose primary dimensions (use both M,L, t and F,L, t dimensions to illustrate the

problem in determining m).

(a) M, L, t

Δh D γ σ

L L
M

L2t2
M

t2

r=3 primary dimensions

(b) F, L, t

Δh D γ σ

L L
F

L3
F

L

r=2 primary dimensions

Thus for each set of primary dimensions we ask, “Is m equal to r?” Let us check each dimensional matrix to find out. The
dimensional matrices are

Δh D γ σ

M 0 0 1 1
L 1 1 −2 0
t 0 0 −2 −2

Δh D γ σ

F 0 0 1 1
L 1 1 −3 −1

The rank of a matrix is equal to the order of its largest nonzero determinant.

0 1 1

1 −2 0

0 −2 −2

= 0− 1 −2 + 1 −2 =0

1 1

−3 −1
= −1+ 3= 2 0

−2 0

−2 −2
= 4 0

∴m=2

m r

∴ m=2

m= r

m=2. Choose D,γ as repeating parameters. m=2. Choose D, γ as repeating parameters.

n−m=2 dimensionless groups will result. n−m=2 dimensionless groups will result.

Π1 =DaγbΔh and Π1 =Deγ fΔh and

L
a M

L2t2

b

L =M0L0t0 L
e F

L3

f

L=F0L0t0

Δh

D

Tube

Liquid
(Specific weight =   
Surface tension =   )σ
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The n−m dimensionless groups obtained from the procedure are independent but not unique. If a

different set of repeating parameters is chosen, different groups result. The repeating parameters are so

named because they may appear in all the dimensionless groups obtained. Based on experience, viscos-

ity should appear in only one dimensionless parameter. Therefore μ should not be chosen as a repeating

parameter.

When we have a choice, it usually works out best to choose density ρ (dimensionsM L3 in theMLt

system), speed V (dimensions L t), and characteristic length L (dimension L) as repeating parameters

because experience shows this generally leads to a set of dimensionless parameters that are suitable for

correlating a wide range of experimental data; in addition, ρ,V , and L are usually fairly easy to measure

or otherwise obtain. The values of the dimensionless parameters obtained using these repeating para-

meters almost always have a very tangible meaning, telling you the relative strength of various fluid

forces (e.g., viscous) to inertia forces—we will discuss several “classic” ones shortly.

It’s also worth stressing that, given the parameters you’re combining, we can often determine the

unique dimensional parameters by inspection. For example, if we had repeating parameters ρ,V , and L

M

L

t

b+0=0

a−2b+1=0

−2b+0=0

b=0

a= −1

F f =0

L e−3f +1=0
e= −1

Therefore, Π1 =
Δh

D
Therefore, Π1 =

Δh

D

Π2 =Dcγdσ and Π2 =Dgγhσ and

L
c M

L2t2

d
M

t2
=M0L0t0 L

g F

L3

h
F

L
=F0L0t0

M d+1=0

L c−2d=0

t −2d−2= 0

d= −1

c= −2
F h+1=0

L g−3h−1= 0

h= −1

g= −2

Therefore, Π2 =
σ

D2γ
Therefore, Π2 =

σ

D2λ

Check, using F, L, t dimensions

Π1 =
Δh

D
and

L

L
=1

Π2 =
σ

D2γ
and

F

L

1

L2
L3

F
=1

Check, using M,L, t dimensions

Π1 =
Δh

D
and

L

L
=1

Π2 =
σ

D2γ
and

M

t2
1

L2
L2t2

M
=1

Therefore, both systems of dimensions yield the same dimensionless Π para-

meters. The predicted functional relationship is

Π1 = f Π2 or
Δh

D
= f

σ

D2γ

Notes:
• This result is reasonable on physical
grounds. The fluid is static; we would not
expect time to be an important
dimension.

• We analyzed this problem in Example 2.3,
where we found that Δh=4σcos θ ρgD
(θ is the contact angle). Hence Δh D is
directly proportional to σ D2γ.

• The purpose of this problem is to illus-
trate use of the dimensional matrix to
determine the required number of
repeating parameters.
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and were combining them with a parameter Af , representing the frontal area of an object, it’s fairly obvi-

ous that only the combination Af L2 is dimensionless. Experienced fluid mechanicians also know that

ρV2 produces dimensions of stress, so any time a stress or force parameter arises, dividing by ρV2 or

ρV2L2 will produce a dimensionless quantity.

We will find useful a measure of the magnitude of fluid inertia forces, obtained from Newton’s sec-

ond law, F =ma; the dimensions of inertia force are thus MLt−2. Using ρ,V , and L to build the dimen-

sions of ma leads to the unique combination ρV2L2.

If n−m=1, then a single dimensionless Π parameter is obtained. In this case, the Buckingham Pi

theorem indicates that the single Π parameter must be a constant.

7.3 Significant Dimensionless Groups in Fluid Mechanics
Over the years, several hundred different dimensionless groups that are important in engineering have

been identified. Following tradition, each such group has been given the name of a prominent scientist or

engineer, usually the one who pioneered its use. Several are so fundamental and occur so frequently in

fluid mechanics that we should take time to learn their definitions. Understanding their physical signif-

icance also gives insight into the phenomena we study.

Forces encountered in flowing fluids include those due to inertia, viscosity, pressure, gravity, sur-

face tension, and compressibility. The ratio of any two forces will be dimensionless. We have previously

shown that the inertia force is proportional to ρV2L2.

We can now compare the relative magnitudes of various fluid forces to the inertia force, using the

following scheme:

Viscous force τA= μ
du

dy
A μ

V

L
L2 = μVL so viscous

inertia

μVL

ρV2L2
=

μ

ρVL

Pressure force ΔpA ΔpL2 so
pressure

inertia

ΔpL2

ρV2L2
=

Δp

ρV2

Gravity force mg gρL3 so
gravity

inertia

gρL3

ρV2L2
=
gL

V2

Surface tension σL so
surface tension

inertia

σL

ρV2L2
=

σ

ρV2L

Compressibility force EυA EυL
2 so compressibility force

inertia

EυL
2

ρV2L2
=

Eυ

ρV2

All of the dimensionless parameters listed above occur so frequently, and are so powerful in predicting

the relative strengths of various fluid forces, that they have been given identifying names.

The first parameter, μ ρVL, is by tradition inverted to the form ρVL μ, and was actually explored

independently of dimensional analysis in the 1880s by Osborne Reynolds, the British engineer, who

studied the transition between laminar and turbulent flow regimes in a tube. He discovered that the

parameter

Re=
ρVD

μ
=
VD

ν

is a criterion by which the flow regime may be determined. Later experiments have shown that the

Reynolds number is a key parameter for other flow cases as well. Thus, in general,

Re=
ρVL

μ
=
VL

ν
7 11

where L is a characteristic length descriptive of the flow field geometry. The Reynolds number is the

ratio of inertia forces to viscous forces. Flows with “large” Reynolds number generally are turbulent.

Flows in which the inertia forces are “small” compared with the viscous forces are characteristically

laminar flows.
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In aerodynamic and other model testing, it is convenient to modify the second parameter, Δp ρV2,

by inserting a factor 1
2
to make the denominator represent the dynamic pressure. The ratio

Eu=
Δp

1

2
ρV2

7 12a

is formed, whereΔp is the local pressure minus the freestream pressure, and ρ and V are properties of the

freestream flow. This ratio has been named after Leonhard Euler, the Swiss mathematician who did

much early analytical work in fluid mechanics. Euler is credited with being the first to recognize the

role of pressure in fluid motion; the Euler equations of Chapter 6 demonstrate this role. The Euler num-

ber is the ratio of pressure forces to inertia forces. The Euler number is often called the pressure coef-

ficient, Cp.

The drag and lift coefficients that we will run into in Chapters 8 and 9 are similar to the Euler

coefficient. Instead of pressure, they are formed using the drag force and the lift force. The drag coef-

ficient is defined as

CD =
FD

1

2
ρV2L2

7 12b

And the lift coefficient is defined as

CL =
FL

1

2
ρV2L2

7 12c

In the study of cavitation phenomena, the pressure difference,Δp, is taken asΔp= p−pυ, where p is

the pressure in the liquid stream, and pυ is the liquid vapor pressure at the test temperature. Combining

these with ρ and V in the stream yields the dimensionless parameter called the cavitation number,

Ca=
p−pυ
1

2
ρV2

7 13

The smaller the cavitation number, the more likely cavitation is to occur. This is usually an unwanted

phenomenon.

William Froude was a British naval architect. Together with his son, Robert Edmund Froude, he

discovered that the parameter

Fr=
V

gL
7 14

was significant for flows with free surface effects. Squaring the Froude number gives

Fr2 =
V2

gL

which may be interpreted as the ratio of inertia forces to gravity forces (it is the inverse of the third force

ratio, V2 gL, that we discussed above). The length, L, is a characteristic length descriptive of the flow

field. In the case of open-channel flow, the characteristic length is the water depth; Froude numbers less

than unity indicate subcritical flow and values greater than unity indicate supercritical flow. We will

have much more to say on this in Chapter 11.

By convention, the inverse of the fourth force ratio, σ ρV2L, discussed above, is called the Weber

number; it indicates the ratio of inertia to surface tension forces

We=
ρV2L

σ
7 15
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The value of the Weber number is indicative of the existence of, and frequency of, capillary waves at a

free surface.

In the 1870s, the Austrian physicist Ernst Mach introduced the parameter

M =
V

c
7 16

where V is the flow speed and c is the local sonic speed. Analysis and experiments have shown that the

Mach number is a key parameter that characterizes compressibility effects in a flow. The Mach number

may be written

M =
V

c
=

V

dp

dρ

=
V

Eυ

ρ

or M2 =
ρV2L2

EυL2
=
ρV2

Eυ

which is the inverse of the final force ratio, Eυ ρV2, discussed above, and can be interpreted as a ratio of

inertia forces to forces due to compressibility. For truly incompressible flow, c= ∞ so that M =0.

Equations 7.11 through 7.16 are some of the most commonly used dimensionless groupings in fluid

mechanics because for any flow pattern they immediately indicate the relative importance of inertia,

viscosity, pressure, gravity, surface tension, and compressibility.

7.4 Flow Similarity and Model Studies
To be useful, a model test must yield data that can be scaled to obtain the forces, moments, and dynamic

loads that would exist on the full-scale prototype.What conditions must be met to ensure the similarity of

model and prototype flows?

Perhaps the most obvious requirement is that the model and prototype must be geometrically similar.

Geometric similarity requires that the model and prototype be the same shape, and that all linear dimen-

sions of the model be related to corresponding dimensions of the prototype by a constant scale factor.

A second requirement is that the model and prototype flows must be kinematically similar. Two

flows are kinematically similar when the velocities at corresponding points are in the same direction

and differ only by a constant scale factor. Thus two flows that are kinematically similar also have stream-

line patterns related by a constant scale factor. Since the boundaries form the bounding streamlines,

flows that are kinematically similar must be geometrically similar.

In principle, in order to model the performance in an infinite flow field correctly, kinematic similarity

would require that a wind tunnel of infinite cross section be used to obtain data for drag on an object. In

practice, this restriction may be relaxed considerably, permitting use of equipment of reasonable size.

Kinematic similarity requires that the regimes of flow be the same for model and prototype. If com-

pressibility or cavitation effects, which may change even the qualitative patterns of flow, are not present

in the prototype flow, they must be avoided in the model flow.

When two flows have force distributions such that identical types of forces are parallel and are

related in magnitude by a constant scale factor at all corresponding points, the flows are dynamically

similar.

The requirements for dynamic similarity are the most restrictive. Kinematic similarity requires

geometric similarity; kinematic similarity is a necessary, but not sufficient, requirement for dynamic

similarity.

To establish the conditions required for complete dynamic similarity, all forces that are important

in the flow situation must be considered. Thus the effects of viscous forces, of pressure forces, of sur-

face tension forces, and so on, must be considered. Test conditions must be established such that all

important forces are related by the same scale factor between model and prototype flows. When

dynamic similarity exists, data measured in a model flow may be related quantitatively to conditions

in the prototype flow. What, then, are the conditions that ensure dynamic similarity between model

and prototype flows?

The Buckingham Pi theorem may be used to obtain the governing dimensionless groups for a flow

phenomenon; to achieve dynamic similarity between geometrically similar flows, we must make sure
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that each independent dimensionless group has the same value in the model and in the prototype. Then

not only will the forces have the same relative importance, but also the dependent dimensionless group

will have the same value in the model and prototype.

For example, in considering the drag force on a sphere in Example 7.1, we began with

F = f D,V ,ρ,μ

The Buckingham Pi theorem predicted the functional relation

F

ρV2D2
= f1

ρVD

μ

In Section 7.3 we showed that the dimensionless parameters can be viewed as ratios of forces. Thus, in

considering a model flow and a prototype flow about a sphere the flows are geometrically similar. The

flows also will be dynamically similar if the value of the independent parameter, ρVD μ, is duplicated

between model and prototype, i.e., if

ρVD

μ model

=
ρVD

μ prototype

Furthermore, if

Remodel =Reprototype

then the value of the dependent parameter, F ρV2D2, in the functional relationship, will be duplicated

between model and prototype, i.e.,

F

ρV2D2
model

=
F

ρV2D2
prototype

and the results determined from themodel study can be used to predict the drag on the full-scale prototype.

The actual force on the object caused by the fluid is not the same for the model and prototype, but the

value of its dimensionless group is. The two tests can be run using different fluids, if desired, as long as

the Reynolds numbers are matched. For experimental convenience, test data can be measured in a wind

tunnel in air and the results used to predict drag in water, as illustrated in Example 7.4.

Example 7.4 SIMILARITY: DRAG OF A SONAR TRANSDUCER

The drag of a sonar transducer is to be predicted, based on wind tunnel test data. The prototype, a 1-ft diameter sphere, is to be

towed at 5 knots (nautical miles per hour) in seawater at 40 F. The model is 6 in. in diameter. Determine the required test speed in

air. If the drag of the model at these test conditions is 0.60 lbf, estimate the drag of the prototype.

Given: Sonar transducer to be tested in a wind tunnel.

Find: (a) Vm.

(b) Fp.

Solution: Since the prototype operates in water

and the model test is to be performed in air, useful

results can be expected only if cavitation effects

are absent in the prototype flow and compressibility

effects are absent from the model test. Under these

conditions,

F

ρV2D2
= f

ρVD

μ

Vp = 5 knots

Dp = 1 ft

Fp

Water at 40°F

Vm

Dm = 6 in.

Fm = 0.60 lbf

Air
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Incomplete Similarity

We have shown that to achieve complete dynamic similarity between geometrically similar flows, it is

necessary to duplicate the values of the independent dimensionless groups; by so doing the value of the

dependent parameter is then duplicated.

In the simplified situation of Example 7.4, duplicating the Reynolds number value between model

and prototype ensured dynamically similar flows. Testing in air allowed the Reynolds number to be

duplicated exactly. The drag force on a sphere actually depends on the nature of the boundary-layer flow.

Therefore, geometric similarity requires that the relative surface roughness of the model and prototype be

the same. This means that relative roughness also is a parameter that must be duplicated between model

and prototype situations. If we assume that the model was constructed carefully, measured values of drag

from model tests could be scaled to predict drag for the operating conditions of the prototype.

In many model studies, to achieve dynamic similarity requires duplication of several dimensionless

groups. In some cases, complete dynamic similarity between model and prototype may not be attainable.

Determining the drag force (resistance) of a surface ship is an example of such a situation. Resistance on

a surface ship arises from skin friction on the hull (viscous forces) and surface wave resistance (gravity

forces). Complete dynamic similarity requires that both Reynolds and Froude numbers be duplicated

between model and prototype.

and the test should be run at
Remodel =Reprototype

to ensure dynamic similarity. For seawater at 40 F, ρ=1 99 slug ft3 and ν≈1 69× 10−5 ft2 s. At prototype conditions,

Vp =5
nmi

hr
× 6080

ft

nmi
×

hr

3600 s
= 8 44 ft s

Rep =
VpDp

νp
=8 44

ft

s
× 1 ft ×

s

1 69× 10−5 ft2
=4 99× 105

The model test conditions must duplicate this Reynolds number. Thus

Rem =
VmDm

νm
=4 99× 105

For air at STP, ρ=0 00238 slug ft3 and ν=1 57× 10−4 ft2 s. The wind tunnel must be operated at

Vm =Rem
νm

Dm

=4 99× 105 ×1 57× 10−4 ft
2

s
×

1

0 5 ft

Vm =157 ft s
Vm

This speed is low enough to neglect compressibility effects.

At these test conditions, the model and prototype flows are dynamically similar. Hence

F

ρV2D2
m

=
F

ρV2D2
p

and

Fp =Fm

ρp

ρm

V2
p

V2
m

D2
p

D2
m

=0 60 lbf ×
1 99

0 00238
×

8 44
2

157
2
×

1

0 5
2

Fp =5 8 lbf
Fp

If cavitation were expected—if the sonar probe were operated at high speed

near the free surface of the seawater—then useful results could not be obtained

from a model test in air.

This problem:
• Demonstrates the calculation of proto-
type values from model test data.

• “Reinvented the wheel”: the results for
drag on a smooth sphere are very well
known, so we did not need to do a model
experiment but instead could have sim-
ply read from the graph of Fig. 7.1 the
value of CD= Fp 1

2ρV
2
p

π

4D
2
p ≈0 1, corre-

sponding to a Reynolds number of
4 99×105. Then Fp≈5 6 lbf can easily be
computed. We will have more to say on
drag coefficients in Chapter 9.
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In general it is not possible to predict wave resistance analytically, so it must be modeled. This

requires that

Frm =
Vm

gLm
1 2

=Frp =
Vp

gLp
1 2

To match Froude numbers between model and prototype therefore requires a velocity ratio of

Vm

Vp

=
Lm

Lp

1 2

to ensure dynamically similar surface wave patterns.

Hence for any model length scale, matching the Froude numbers determines the velocity ratio. Only

the kinematic viscosity can then be varied to match Reynolds numbers. Thus

Rem =
VmLm

νm
=Rep =

VpLp

νp

leads to the condition that
νm

νp
=
Vm

Vp

Lm

LP

If we use the velocity ratio obtained from matching the Froude numbers, equality of Reynolds numbers

leads to a kinematic viscosity ratio requirement of

νm

νp
=

Lm

Lp

1 2
Lm

Lp
=

Lm

Lp

3 2

If Lm Lp =
1

100
, which a typical length scale for ship model tests, then νm νp must be 1

1000
. Figure A.3

shows that mercury is the only liquid with kinematic viscosity less than that of water. However, it is only

about an order of magnitude less, so the kinematic viscosity ratio required to duplicate Reynolds num-

bers cannot be attained.

We conclude that we have a problem in which it is impossible in practice for this model/prototype

scale of 1
100

to satisfy both the Reynolds number and Froude number criteria. At best we will be able to

satisfy only one of them. In addition, water is the only practical fluid for most model tests of free-surface

flows. To obtain complete dynamic similarity then would require a full-scale test. However, model stud-

ies do provide useful information even though complete similarity cannot be obtained. As an example,

Fig. 7.2 shows data from a test of a 1:80 scale model of a ship conducted at the U.S. Naval Academy
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Fig. 7.2 Data from test of 1:80 scale model of U.S. Navy guided missile frigate Oliver Hazard Perry (FFG-7). (Data from U.S.
Navel Academy Hydromechanics Laboratory, courtesy of Professor Bruce Johnson.)
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Hydromechanics Laboratory. The plot displays “resistance coefficient” data versus Froude number. The

square points are calculated from values of total resistance measured in the test. We would like to obtain

the corresponding total resistance curve for the full-scale ship.

If you think about it, we can onlymeasure the total drag (the square data points). The total drag is due

to both wave resistance (dependent on the Froude number) and friction resistance (dependent on the

Reynolds number), and it’s not possible to determine experimentally how much each contributes.

We cannot use the total drag curve of Fig. 7.2 for the full-scale ship because, as we have discussed above,

we can never set up the model conditions so that its Reynolds number and Froude number match those of

the full-scale ship. Nevertheless, we would like to extract from Fig. 7.2 the corresponding total drag

curve for the full-scale ship. In many experimental situations we need to use a creative “trick” to come

up with a solution. In this case, the experimenters used boundary-layer theory (which we discuss in

Chapter 9) to predict the viscous resistance component of the model (shown as diamonds in

Fig. 7.2); then they estimated the wave resistance (not obtainable from theory) by simply subtracting

this theoretical viscous resistance from the experimental total resistance, point by point (shown as circles

in Fig. 7.2).

Using this idea, Fig. 7.2 therefore gives the wave resistance of the model as a function of Froude

number. It is also valid for the full-scale ship, because wave resistance depends only on the Froude num-

ber! We can now build a graph similar to Fig. 7.2 valid for the full-scale ship: Simply compute from

boundary-layer theory the viscous resistance of the full-scale ship and add this to the wave resistance

values, point by point. The result is shown in Fig. 7.3. The wave resistance points are identical to

those in Fig. 7.2; the viscous resistance points are computed from theory and the predicted total

resistance curve for the full-scale ship is finally obtained.

In this example, incomplete modeling was overcome by using analytical computations. The model

experiments modeled the Froude number, but not the Reynolds number.

Because the Reynolds number cannot be matched for model tests of surface ships, the boundary-

layer behavior is not the same for model and prototype. The model Reynolds number is only Lm Lp
3 2

as large as the prototype value, so the extent of laminar flow in the boundary layer on the model is too

large by a corresponding factor. The method just described assumes that boundary-layer behavior can be

scaled. To make this possible, the model boundary layer is “tripped” or “stimulated” to become turbulent

0.008

0.006

0.004

0.002

0.000

–0.002
0 0.1 0.2 0.3

Froude number

0.4

Wave resistance

Viscous resistance

Total resistance

0.5 0.6

R
e
si

st
a
n
c
e
 c

o
e
ffi

c
ie

n
t

Fig. 7.3 Resistance of full-scale ship predicted from model test results. (Data from U.S. Navel Academy Hydromechanics
Laboratory, courtesy of Professor Bruce Johnson.)
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at a location that corresponds to the behavior on the full-scale vessel. “Studs” were used to stimulate the

boundary layer for the model test results shown in Fig. 7.2.

A correction sometimes is added to the full-scale coefficients calculated from model test data. This

correction accounts for roughness, waviness, and unevenness that inevitably are more pronounced on the

full-scale ship than on the model. Comparisons between predictions from model tests and measurements

made in full-scale trials suggest an overall accuracy within 5 percent [5].

As we will see in Chapter 11, the Froude number is an important parameter in the modeling of rivers

and harbors. In these situations it is not practical to obtain complete similarity. Use of a reasonable model

scale would lead to extremely small water depths, so that viscous forces and surface tension forces would

have much larger relative effects in the model flow than in the prototype. Consequently, different length

scales are used for the vertical and horizontal directions. Viscous forces in the deeper model flow are

increased using artificial roughness elements.

Emphasis on fuel economy has made reduction of aerodynamic drag important for automobiles,

trucks, and buses. Most work on development of low-drag configurations is done using model tests.

Traditionally, automobile models have been built to 3
8
scale, at which a model of a full-size automobile

has a frontal area of about 0 3 m2. Thus testing can be done in a wind tunnel with test section area of 6 m2

or larger. At 3
8
scale, a wind speed of about 150 mph is needed to model a prototype automobile traveling

at the legal speed limit. Thus there is no problem with compressibility effects, but the scale models are

expensive and time-consuming to build.

A large wind tunnel with test section dimensions are 5.4 m high, 10.4 mwide, and 21.3 m long and a

maximum air speed of 250 km hr is used by General Motors to test full-scale automobiles at highway

speeds. The large test section allows use of production autos or of full-scale clay mockups of proposed

auto body styles. Many other vehicle manufacturers are using comparable facilities; Fig. 7.4 shows a

full-size sedan under test in the Volvo wind tunnel. The relatively low speed permits flow visualization

using tufts or “smoke” streams. Using full-size “models,” stylists and engineers can work together to

achieve optimum results.

It is harder to achieve dynamic similarity in tests of trucks and buses; models must be made to smal-

ler scale than those for automobiles. A large scale for truck and bus testing is 1:8. To achieve complete

dynamic similarity by matching Reynolds numbers at this scale would require a test speed of 440 mph.
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Fig. 7.4 Full-scale automobile under test in Volvo wind tunnel, using smoke streaklines for flow visualization.
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This would introduce unwanted compressibility effects, and model and prototype flows would not be

kinematically similar. Fortunately, trucks and buses are “bluff” objects. Experiments show that above

a certain Reynolds number, their nondimensional drag becomes independent of Reynolds number [6].

Figure 7.1 shows that for a sphere, the dimensionless drag is approximately constant for

2000<Re<2×105.) Although similarity is not complete, measured test data can be scaled to predict

prototype drag forces. The procedure is illustrated in Example 7.5.

Example 7.5 INCOMPLETE SIMILARITY: AERODYNAMIC DRAG ON A BUS

The following wind tunnel test data from a 1:16 scale model of a bus are available:

Air speed (m/s) 18.0 21.8 26.0 30.1 35.0 38.5 40.9 44.1 46.7

Drag force (N) 3.10 4.41 6.09 7.97 10.7 12.9 14.7 16.9 18.9

Using the properties of standard air, calculate and plot the dimensionless aerodynamic drag coefficient,

CD =
FD

1

2
ρV2A

versus Reynolds number Re= ρVw μ, where w is model width. Find the minimum test speed above which CD remains constant.

Estimate the aerodynamic drag force and power requirement for the prototype vehicle at 100 km hr. (The width and frontal area

of the prototype are 8 ft and 84 ft2, respectively.)

Given: Data from a wind tunnel test of a model bus. Prototype dimensions are width of 8 ft and frontal area of 84 ft2. Model

scale is 1:16. Standard air is the test fluid.

Find: (a) Aerodynamic drag coefficient, CD =FD
1
2
ρV2A, versus Reynolds number, Re= ρVw μ; plot.

(b) Speed above which CD is constant.

(c) Estimated aerodynamic drag force and power required for the full-scale vehicle at 100 km hr.

Solution: The model width is

wm =
1

16
wp =

1

16
× 8 ft × 0 3048

m

ft
= 0 152 m

The model area is

Am =
1

16

2

Ap =
1

16

2

×84 ft2 × 0 305
2m

2

ft2
=0 0305 m2

The aerodynamic drag coefficient may be calculated as

CD =
FD

1

2
ρV2A

=2×FD N ×
m3

1 23 kg
×

s2

V
2
m2

×
1

0 0305 m2
×
kg m

N s2

CD =
53 3 FD N

V m s
2

The Reynolds number may be calculated as

Re=
ρVw

μ
=
Vw

ν
=V

m

s
× 0 152 m×

s

1 46× 10−5 m2

Re=1 04× 104 V m s
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For additional details on techniques and applications of dimensional analysis consult [7–10].

Scaling with Multiple Dependent Parameters

In some situations of practical importance there may be more than one dependent parameter. In such

cases, dimensionless groups must be formed separately for each dependent parameter.

As an example, consider a typical centrifugal pump. The detailed flow pattern within a pump

changes with volume flow rate and speed and these changes affect the pump’s performance. Perfor-

mance parameters of interest include the pressure rise (or head) developed, the power input required,

and the machine efficiency measured under specific operating conditions. Performance curves are gen-

erated by varying an independent parameter such as the volume flow rate. Thus the independent vari-

ables are volume flow rate, angular speed, impeller diameter, and fluid properties. Dependent variables

are the several performance quantities of interest.

Finding dimensionless parameters begins from the symbolic equations for the dependence of head,

h (energy per unit mass, L2 t2), and power, �, on the independent parameters, given by

h= g1 Q, ρ, ω, D, μ

The calculated values are plotted in the following figure:

CDm
versus Rem

The plot shows that the model drag coefficient becomes constant atCDm ≈ 0 46 above Rem =4× 105, which corresponds to an air

speed of approximately 40 m s. Since the drag coefficient is independent of Reynolds number above Re ≈ 4× 105, then for the

prototype vehicle Re ≈ 4 5× 106 , CD ≈ 0 46. The drag force on the full-scale vehicle is

FDp
=CD

1

2
ρV2

pAp

=
0 46

2
× 1 23

kg

m3
100

km

hr
× 1000

m

km
×

hr

3600 s

2

×84 ft2 × 0 305
2m

2

ft2
×

N s2

kg m

FDp
=1 71 kN

FDp

The corresponding power required to overcome aerodynamic drag is

�p =FDp
Vp

=1 71× 103 N×100
km

hr
× 1000

m

km

×
hr

3600 s
×
W s

N m

�p =47 5 kW
�p

0.6

0.5

0.4
0 1 2

Model Reynolds number, Rem (  10 5)

3 4 5

M
o
d
e
l 
d
ra

g
c
o
e
ffi

c
ie

n
t,

 C
D

m

This problem illustrates a common
phenomenon in aerodynamics: Above a
certain minimum Reynolds number the
drag coefficient of an object usually
approaches a constant—that is, becomes
independent of the Reynolds number.
Hence, in these situationswe do not have to
match the Reynolds numbers of the model
and prototype in order for them to have
the same drag coefficient—a considerable
advantage. However, the SAERecommended
Practices [6] suggests Re≥2× 106 for truck
and bus testing.
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and

�= g2 Q, ρ, ω, D, μ

Straightforward use of the Pi theorem gives the dimensionless head coefficient and power coefficient as

h

ω2D2
= f1

Q

ωD3
,
ρωD2

μ
7 17

and

�

ρω3D5
= f2

Q

ωD3
,
ρωD2

μ
7 18

The dimensionless parameterQ ωD3 in these equations is called the flow coefficient. The dimensionless

parameter ρωD2 μ ρVD μ is a form of Reynolds number.

Head and power in a pump are developed by inertia forces. Both the flow pattern within a pump and

the pump performance change with volume flow rate and speed of rotation. Performance is difficult to

predict analytically except at the design point of the pump, so it is measured experimentally. Typical

characteristic curves plotted from experimental data for a centrifugal pump tested at constant speed

are shown in Fig. 7.5 as functions of volume flow rate. The head, power, and efficiency curves in

Fig. 7.5 are smoothed through points calculated from measured data. Maximum efficiency usually

occurs at the design point.

Complete similarity in pump performance tests would require identical flow coefficients and Rey-

nolds numbers. In practice, it has been found that viscous effects are relatively unimportant when two

geometrically similar machines operate under “similar” flow conditions. Thus, from Eqs. 7.17 and

7.18, when

Q1

ω1D
3
1

=
Q2

ω2D
3
2

7 19

it follows that

h1

ω2
1D

2
1

=
h2

ω2
2D

2
2

7 20

and

�1

ρ1ω
3
1D

5
1

=
�2

ρ2ω
3
2D

5
2

7 21
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Fig. 7.5 Typical characteristic curves for centrifugal pump tested at constant speed.
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The empirical observation that viscous effects are unimportant under similar flow conditions allows

use of Eqs. 7.19 through 7.21 to scale the performance characteristics of machines to different operating

conditions, as either the speed or diameter is changed. These useful scaling relationships are known as

pump or fan “laws.” If operating conditions for one machine are known, operating conditions for any

geometrically similar machine can be found by changing D and ω according to Eqs. 7.19 through 7.21.

More details on dimensional analysis, design, and performance curves for fluid machinery are presented

in Chapter 10.

Another useful pump parameter can be obtained by eliminating the machine diameter from

Eqs. 7.19 and 7.20. If we designate Π1 =Q ωD3 and Π2 = h ω2D2, then the ratio Π
1 2
1 Π

3 4
2 is another

dimensionless parameter; this parameter is the specific speed, Ns,

Ns =
ωQ1 2

h3 4
7 22a

The specific speed, as defined in Eq. 7.22a, is a dimensionless parameter provided that the head, h, is

expressed as energy per unit mass. You may think of specific speed as the speed required for a machine

to produce unit head at unit volume flow rate. A constant specific speed describes all operating condi-

tions of geometrically similar machines with similar flow conditions.

Although specific speed is a dimensionless parameter, it is common practice to use a convenient but

inconsistent set of units in specifying the variables ω and Q, and to use the energy per unit weight H in

place of energy per unit mass h in Eq. 7.22a. When this is done the specific speed,

Nscu =
ωQ1 2

H3 4
7 22b

is not a unitless parameter and its magnitude depends on the units used to calculate it. Customary units

used in U.S. engineering practice for pumps are rpm for ω, gpm for Q, and feet (energy per unit weight)

for H. In these customary U.S. units, “low” specific speed means 500<Nscu <4000 and “high” means

10,000<Nscu <15,000. Example 7.6 illustrates use of the pump scaling laws and specific speed param-

eter. More details of specific speed calculations and additional examples of applications to fluid machin-

ery are presented in Chapter 10.

Example 7.6 PUMP “LAWS”

A centrifugal pump has an efficiency of 80 percent at its design-point specific speed of 2000 (units of rpm, gpm, and feet). The

impeller diameter is 8 in. At design-point flow conditions, the volume flow rate is 300 gpm of water at 1170 rpm. To obtain a

higher flow rate, the pump is to be fitted with a 1750 rpm motor. Use the pump “laws” to find the design-point performance

characteristics of the pump at the higher speed. Show that the specific speed remains constant for the higher operating speed.

Determine the motor size required.

Given: Centrifugal pump with design specific speed of 2000 (in rpm, gpm, and feet units). Impeller diameter isD=8 in. At the

pump’s design-point flow conditions, ω=1170 rpm and Q=300 gpm, with water.

Find: (a) Performance characteristics,

(b) specific speed, and

(c) motor size required, for similar flow conditions at 1750 rpm.

Solution: From pump “laws,” Q ωD3 = constant, so

Q2 =Q1

ω2

ω1

D2

D1

3

=300 gpm
1750

1170
1

3
=449 gpm

Q2
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Comments on Model Testing

While outlining the procedures involved in model testing, we have tried not to imply that testing is a

simple task that automatically gives results that are easily interpreted, accurate, and complete. As in

all experimental work, careful planning and execution are needed to obtain valid results. Models must

be constructed carefully and accurately, and they must include sufficient detail in areas critical to the

phenomenon being measured. Aerodynamic balances or other force measuring systems must be aligned

carefully and calibrated correctly. Mounting methods must be devised that offer adequate rigidity and

model motion, yet do not interfere with the phenomenon being measured. References [11–13] are con-

sidered the standard sources for details of wind tunnel test techniques. More specialized techniques for

water impact testing are described in Waugh and Stubstad [14].

Experimental facilities must be designed and constructed carefully. The quality of flow in a wind

tunnel must be documented. Flow in the test section should be as nearly uniform as possible (unless the

desire is to simulate a special profile such as an atmospheric boundary layer), free from angularity, and

with little swirl. If they interfere with measurements, boundary layers on tunnel walls must be removed

The pump head is not specified at ω1 =1170 rpm, but it can be calculated from the specific speed, Nscu =2000. Using the given

units and the definition of Nscu ,

Nscu =
ωQ1 2

H3 4
so H1 =

ω1Q
1 2
1

Nscu

4 3

=21 9 ft

Then H ω2D2 = constant, so

H2 =H1

ω2

ω1

2
D2

D1

2

=21 9 ft
1750

1170

2

1
2
=49 0 ft

H2

The pump output power is �1 = ρgQ1H1, so at ω1 =1170 rpm,

�1 =1 94
slug

ft3
×32 2

ft

s2
×300

gal

min
× 21 9 ft ×

ft3

7 48 gal
×
min

60 s
×

lbf s2

slug ft
×

hp s

550 ft lbf

�1 =1 66 hp

But � ρω3D5 = constant, so

�2 =�1

ρ2

ρ1

ω2

ω1

3
D2

D1

5

=1 66 hp 1
1750

1170

3

1
5
=5 55 hp

�2

The required input power may be calculated as

�in =
�2

η
=
5 55 hp

0 80
=6 94 hp

�in

Thus a 7.5-hp motor (the next larger standard size) probably would be specified.

The specific speed at ω2 =1750 rpm is

Nscu =
ωQ1 2

H3 4
=
1750 449

1 2

49 0
3 4

=2000
Nscu

This problem illustrates application of
the pump “laws” and specific speed to
scaling of performance data. Pump and
fan “laws” are used widely in industry to
scale performance curves for families of
machines from a single performance curve,
and to specify drive speed and power in
machine applications.

224 Chapter 7 Dimensional Analysis and Similitude

www.konkur.in

Telegram: @uni_k



by suction or energized by blowing. Pressure gradients in a wind tunnel test section may cause erroneous

drag-force readings due to pressure variations in the flow direction.

7.5 Summary and Useful Equations
In this chapter we have:

✓ Obtained dimensionless coefficients by nondimensionalizing the governing differential equa-
tions of a problem.

✓ Stated the Buckingham Pi theorem and used it to determine the independent and dependent
dimensionless parameters from the physical parameters of a problem.

✓ Defined a number of important dimensionless groups: the Reynolds number, Euler number,
cavitation number, Froude number, Weber number, and Mach number, and discussed their
physical significance.

We have also explored some ideas behind modeling: geometric, kinematic, and dynamic similar-
ity, incomplete modeling, and predicting prototype results from model tests.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to

refer to their page numbers for details!

Useful Equations
Reynolds number (inertia to viscous):

Re=
ρVL

μ
=
VL

ν

(7.11) Page 212

Euler number (pressure to inertia):
Eu=

Δp
1
2
ρV2

(7.12a) Page 213

Drag coefficient
CD =

FD

1
2
ρV2L2

(7.12b) Page 213

Lift coefficient
CL =

FL

1
2
ρV2L2

(7.12c) Page 213

Cavitation number: Ca=
p−pυ
1
2
ρV2

(7.13) Page 213

Froude number (inertia to gravity):
Fr=

V

gL

(7.14) Page 213

Weber number (inertia to surface tension):
We=

ρV2L

σ

(7.15) Page 213

Mach number (inertia to compressibility):
M =

V

c

(7.16) Page 214

Centrifugal pump specific speed (in terms of head h):
Ns =

ωQ1 2

h3 4

(7.22a) Page 223

Centrifugal pump specific speed (in terms of head H):
Nscu =

ωQ1 2

H3 4

(7.22b) Page 223
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Chapter 8 Problems

Laminar versus Turbulent Flow
8.1 For incompressible flow in a circular tube, derive expressions for

Reynolds number in terms of (a) volume flow rate and tube diameter

and (b) mass flow rate and tube diameter.

8.2Determine the maximum flow rate of air at laminar conditions in

a 4-in.-diameter pipe at an absolute pressure of 30 psia and 100 F?

Determine the maximum flow rate when (a) the pressure is raised to

60 psia, and (b) the temperature is raised to 200 F. Describe the rea-

son for the differences in flow rates in terms of the physical mechan-

isms involved.

Laminar Flow between Parallel Plates
8.3 An incompressible fluid flows between two infinite stationary

parallel plates. The velocity profile is given by u= umax Ay2 +

By+C , where A, B, and C are constants and y is measured upward

from the lower plate. The total gap width is h. Use appropriate

boundary conditions to express the constants in terms of h. Develop

an expression for volume flow rate per unit depth and evaluate the

ratio V umax.

8.4 A hydraulic jack supports a load of 9000 kg. The following data

are given:

Diameter of piston 100 mm

Radial clearance between piston and cylinder 0.05 mm

Length of piston 120 mm

Estimate the rate of leakage of hydraulic fluid past the piston, assum-

ing the fluid is SAE 30 oil at 30 C.

8.5 A horizontal laminar flow occurs between two infinite parallel

plates that are 0.3 m apart. The velocity at the centerline is 2.7 m/s.

Determine the flow rate through a section 0.9 m wide, the velocity

gradient at the surface of the plate, the wall shearing stress, and

the pressure drop for a 30 length. The fluid viscosity is 1.44 N s/m2.

8.6 A fully developed and laminar flow of oil occurs between par-

allel plates. The pressure gradient creating the flow is 1.25 kPa/m

of length and the channel half-width is 1.5 mm. Calculate the

magnitude and direction of the wall shear stress at the upper plate

surface. Find the volume flow rate through the channel. The viscosity

is 0.50 N s/m2.

8.7 A sealed journal bearing is formed from concentric cylinders.

The inner and outer radii are 25 and 26 mm, the journal length is

100 mm, and it turns at 2800 rpm. The gap is filled with oil in laminar

motion. The velocity profile is linear across the gap. The torque

needed to turn the journal is 0.2 N m. Calculate the viscosity of

the oil. Explain why the torque will increase, decrease, or stay the

same with time.

8.8 Two immiscible fluids are of equal thickness are contained

between infinite parallel plates separated by a distance 2 h. The lower

plate is stationary and the upper plate moves at constant speed of

20 ft/s. The dynamic viscosity of the upper fluid is three times that

of the lower fluid. The flow is laminar and the pressure gradient in

the direction of flow is zero.

8.9 An incompressible viscous liquid flows steadily down an

incline due to gravity. The flow is laminar and the velocity profile,

derived in Example 5.9, is u=
gsinθ

ν
hy−

y2

2
, where θ is the slope

of the incline and h is the thickness of the film. The fluid kinematic

viscosity is 1 × 104m2/s, the slope is 30 , and the film thickness

is 0.8 mm. Determine the maximum velocity and the flow rate per

meter of width.

8.10 There is a fully developed laminar flow of air between parallel

plates. The upper plate moves at 5 ft/s and the spacing between the

plates is a= 0.1 in. (a) Assume that the air is incompressible and

determine the flow rate per unit depth for the case of zero pressure

gradient and the shear stress distribution across the channel.

(b) Determine the magnitude and direction of the pressure gradient

that will give zero shear stress at y= 0.25a and determine the mag-

nitude and direction of the shear stress at both surfaces.

8.11A continuous belt, passing upward through a chemical bath at

speed U0, picks upa liquid filmof thicknessh, density ρ, and viscosity

μ. Gravity tends to make the liquid drain down, but the movement

of the belt keeps the liquid from running off completely. Assume

that the flow is fully developed and laminar with zero pressure

gradient, and that the atmosphere produces no shear stress at the

outer surface of the film. State clearly the boundary conditions to

be satisfied by the velocity at y=0 and y= h. Obtain an expression

for the velocity profile.

g

p = patm

h

dx

dy

U0

x

y
Bath

Belt

P8.11

Laminar Flow in a Pipe
8.12Water at 20 C flows in a 1.3 cm diameter pipe that is 30 m long

and discharges to the atmosphere. The pressure at the entrance to the

pipe is 0.82 kPa gage. Determine the mass flow rate and Reynolds

number.

8.13 Determine the maximum flow rate (kg/s) and corresponding

pressure gradient (Pa/m) for which laminar flow would occur for

water, SAE 10W oil, and glycerin. The fluids are at 20 C. Draw

some conclusion from your analysis.

8.14Carbon dioxide flows in a 50-mm-diameter pipe at a velocity of

1 5 m s, temperature 66 C, and absolute pressure 50 kPa. Determine

whether the flow is laminar or turbulent. If the temperature is lowered

to 30 C, determine the flow regime. If the pressure is reduced to

20 kPa, determine the flow regime. Explain the differences in

answers in terms of the physical mechanisms involved.

8.15Oil with a viscosity 1.2 Pa-s and a density of 820 kg/m3 flows in

a 0.3 m diameter pipe. The flow is fully established and the velocity at

P-26

www.konkur.in

Telegram: @uni_k



the center of is 4.5 m/s. Verify that the flow is laminar and calculate

the shear stress at the pipe wall, at a radius of 150 mm, and at the

centerline.

8.16 Determine the largest diameter of pipeline that may be

used to carry 100 gpm of jet fuel (JP-4) at 59 F if the flow is to

be laminar.

8.17 A fluid of specific gravity 0.90 flows at a Reynolds number of

1500 in a 0.3-m-diameter pipeline. The velocity 50 mm from the wall

is 3 m s. Calculate the flow rate and the velocity gradient at the wall.

8.18 Consider fully developed laminar flow in the annulus between

two concentric pipes. The outer pipe is stationary, and the inner pipe

moves in the x direction with speed V . Assume that the axial pressure

gradient is zero dp dx=0 . Obtain a general expression for the

shear stress, τ, as a function of the radius, r, in terms of a constant,

C1. Obtain a general expression for the velocity profile, u r , in terms

of two constants, C1 and C2. Obtain expressions for C1 and C2.

r

x

ri

ro

V

P8.18

Turbulent Velocity Profiles in Fully
Developed Pipe Flow
8.19 A fully developed turbulent flow of a fluid in a 3 in. diameter

horizontal pipe has a static pressure differencemeasured between two

sections 15 ft apart of 750 psi. Calculate the wall shear stress for

the flow.

8.20 For a turbulent flow of a fluid in 0.6 m diameter pipe, the

velocity 0.15 m from the wall is 2.7 m/s. Estimate the wall shear

stress using the 1/7th expression for the velocity profile.

8.21 The following table gives data for the mean velocity in fully

developed turbulent pipe flow at Re = 50,000 [5]:

u U 0 996 0 981 0 963 0 937 0 907 0 866 0 831

y r 0 898 0 794 0 691 0 588 0 486 0 383 0 280

u U 0 792 0 742 0 700 0 650 0 619 0 551

y R 0 216 0 154 0 093 0 062 0 041 0 024

Fit the “power-law” profile for turbulent flow, Eq. 8.22, to the data

and obtain a value of n. Plot the data and the correlation on the same

graph and verify that Eq. 8.22 is a valid approximation.

8.22 Determine the kinetic energy coefficient α for fully developed

laminar flow in a circular tube.

8.23 Using Eqs. 8.24 and 8.27, evaluate the kinetic energy coeffi-

cient α for turbulent power law velocity profiles with n= 1/7 and

1/10.

Calculation of Head Loss
8.24 A pipe runs for an elevation of 45 m to an elevation of 115 m.

The inlet pressure is 8.5 MPa and the head loss is 6.9 kJ/kg. Calculate

the outlet pressure for (a) the inlet at the 45 m elevation and (b) the

inlet at the 115 m elevation.

8.25Water flows in a horizontal 75 mm diameter pipe at an average

speed of 5 m/s. The pressure at the pipe inlet is 275 kPa gage and the

outlet is at atmospheric pressure. (a) Determine the head loss in the

pipe. Determine the inlet pressure needed to maintain the same

flow rate when the pipe is aligned so that (b) the outlet is 15 m above

the inlet and (c) the outlet is 15 m below the inlet. (d) Determine

how much lower the outlet must be to maintain the same flow rate

is maintained if the pressures at both ends of the pipe are atmospheric

(i.e., gravity feed).

8.26 A smooth copper tube 50 ft long and 2 1/2 in.-diameter carries

a water flow at 60 F of 120 gpm. Determine the pressure drop and

head loss for a 50 ft length of tube.

8.27 A reservoir at 300 ft elevation has a 6-in.-diameter discharge

pipe located 50 ft below the surface. The pipe is 600 ft long and drops

in elevation to 150 ft where the flow discharges to the atmosphere.

The pipe is made of riveted steel with a roughness height of

0.005 ft. Determine (a) the flow rate without a head loss and (b)

the flow rate with the pipe friction head loss. Since the velocity is

not known for part b and the Reynolds number and friction factor

depend on velocity, you will need to iterate to find the solution. A

good first guess is the velocity from part (a).

8.28 Water flows in a smooth 0.2 m diameter pipeline that is 65 m

long. The Reynolds number is 106. Determine the flow rate and pres-

sure drop. After many years of use, minerals deposited on the pipe

cause the same pressure drop to produce only one-half the original

flow rate. Estimate the size of the relative roughness elements for

the pipe.

8.29 Two reservoirs are connected by three clean cast-iron pipes in

series, L1= 600 m, D1= 0.3 m, L2= 900 m, D2= 0.4 m, L3= 1500

m, and D3= 0.45 m. The flow rate is 0.11 m3/s of water at 15 C.

Determine the difference in elevation between the reservoirs.

8.30 A 150-mm-diameter horizontal pipe discharges a 0.05 m3/s

flow of water to the atmosphere through a smooth nozzle with a

tip diameter of 75 mm diameter. The nozzle loss coefficient is 0.3.

Determine the pressure upstream of the nozzle and the head loss

assuming (a) the kinetic energy coefficients α are unity and (b) the

upstream value of the kinetic energy coefficient is 1.05 and the

kinetic energy coefficient of the water in the jet is 1.01. Comment

on whether the assumption that the kinetic energy coefficients are

unity for turbulent flow is reasonable.

8.31 Water flows through a 2-in.-diameter tube that suddenly con-

tracts to 1 in. diameter. The pressure drop across the contraction is

0.5 psi. Determine the volume flow rate.

8.32Air at standard conditions flows through a 75 mm diameter cir-

cular duct that has a sudden expansion to 225 mm diameter. The pres-

sure downstream is 5 mm of water higher than that upstream.

Determine the average speed of the air upstream of the expansion

and the volume flow rate.

8.33 Water flows from a larger pipe, diameter D1 =100 mm, into a

smaller one, diameterD2 =50mm, byway of a reentrant device. Find

the head loss between points and .

D1 D2

Q = 0.01 m3/s

1

2

P8.33
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Solution of Pipe Flow Problems
8.34 The exhaust duct for a clean room test chamber is 150-mm in

diameter and 7 m long. The duct originally had a square-edge

entrance, but it was replaced by a well-rounded entrance. The pres-

sure in the chamber is maintained 2.5 mm of water above ambient.

Neglect the friction losses in the short duct and determine the

volume flow rate for the original square-edge entrance and the

well-rounded one.

8.35A 5-cm-diameter potable water line is to be run through a main-

tenance room in a commercial building. Three possible layouts for

the galvanized iron water line are proposed as shown in the figure.

The bends are conventional threaded fittings. Select the option that

minimizes losses and determine the pressure drop for a flow of

350 L/min.

5.25 m

2.5 m

(a) Two 45° bends (b) A standard elbow (c) Three standard elbows

P8.35

8.36 A fire hose and nozzle assembly is being designed to deliver

0.75 ft3/s of water. The hose is 3 in. in diameter with a relative

roughness of 0.004. The fire hose is made up of four 60 ft sections

joined by couplings. The hose connection to the hydrant is square-

edged. The nozzle is a gradual contraction with a 90 included

angle and an exit diameter of 1 in. Determine the supply pressure

required. Under operating conditions two more sections might be

coupled to the hose. Determine the flow rate with this situation

for the design supply pressure assuming the friction factor is the

same as for design conditions.

8.37 Determine the flow rate (gpm) of 0 C water that will be pro-

duced in a 75-mm-diameter pipe that is 200 m long for a pressure

drop of 425 kPa. The pipe roughness element size is 2.5 mm.

8.38 Water flows steadily in a 125-mm-diameter cast-iron pipe

150 m long. The pressure drop between sections and is

150 kPa, and section is located 15 m above section . Find

the volume flow rate.

8.39Hydraulic mining is to be done using water from a lake located

300 m above the mine site. A 900 m long fire hose with an inside

diameter of 75 mm and a relative roughness of 0.01 will be used.

Couplings are located every 10 m along the hose. The

nozzle outlet diameter is 25 mm and its loss coefficient is 0.04

based on the upstream velocity. Estimate the maximum outlet veloc-

ity from the hose and the maximum force exerted on a rock face by

the water jet.

8.40 Two water tanks are connected by a horizontal pipeline. The

first tank has a square-edged outlet 3 m below the surface that is

connected to a 50-mm-diameter PVC pipe. At 15 m from the tank

the pipe is connected to a 100-mm-diameter pipe which runs 30 m

to the outlet that is 0.6 m below the surface of the second tank.

The water temperature is 20 C. Determine the flow rate through

the pipe line.

8.41 Determine the diameter of a smooth steel pipe that will carry

50 cfs of water between a reservoir with a surface at an elevation

of 250 ft and one at 100 ft that are located 2 miles apart.

8.42 A 4-ft-diameter cast iron pipeline 4 miles long connects two

reservoirs with surface elevations of 500 and 300 ft. It is proposed

to increase the flow rate through the line by installing a smooth liner

that is just thick enough to cover the roughness elements, reducing

the pipe diameter somewhat. Determine the current flow rate and

the increase in flow rate using the liner. The water is at 68 F and pipe

friction is the dominant loss.

8.43 An industrial plant requires a water flow rate of 5.7 m3/min.

The gage pressure in the water main, located in the street 50 m from

the plant, is 800 kPa and the gage pressure required in the plant is 500

kPa. The supply line will require installation of 4 elbows in a total

length of 65 m. Determine the smallest size of galvanized iron line

that should be installed.

8.44 In the system shown in the figure, the water velocity in the

12 in. diameter pipe is 8 ft/s. Determine the gage reading.

Elevation = 200 ft

Elevation = 170 ft

8 ft, 6-in.-diameter,

f = 0.020

150 ft, 1
2-in.-diameter,

f = 0.020

P8.44

8.45 Determine the minimum size smooth rectangular duct with

an aspect ratio of 3 that will pass 1 m3 s of 10 C air with a head loss

of 25 mm of water per 100 m of duct.

8.46 Determine the diameter of a 175 m long pipe with a roughness

of 2.5 mm that will provide a flow of 0.075 m3 s with a 500 kPa

pressure drop.

8.47 Cooling water is pumped from a reservoir to rock drills on a

construction job using the pipe system shown. The flow rate must

be 600 gpm and water must leave the spray nozzle at 120 ft s. Cal-

culate the minimum pressure needed at the pump outlet. Estimate the

required power input if the pump efficiency is 70 percent.

Gate valve, open

Pump

Pipe, D = 4 in.
(aluminum)

Total length: L = 700 ft
Joints: 15, each with

Kjoint = 1

Vj = 120 ft/s

400 ft

8.48 A new pump is required for the water supply system of a high-

rise office building. The system requires 0.06 m3/s of water pumped

to a reservoir at the top of the tower 340 m above the street. City water

pressure at the street-level pump inlet is 400 kPa gage. The piping is

to be commercial steel, the overall length is 20 percent greater than

the tower height, and there are fittings every 10 m with loss coeffi-

cients of 0.2. Determine the minimum diameter required to keep

the average water velocity below 3.5 m/s in the pipe. Calculate the
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pressure rise required across the pump and estimate the minimum

power needed to drive the pump.

8.49 A swimming pool has a partial-flow filtration system. Water at

75 F is pumped from the pool through the system shown. The pump

delivers 30 gpm. The pipe is nominal 3/4-in. PVC ID=0 824 in .

The pressure loss through the filter is approximated as Δp=0 6Q2,

whereΔp is in psi andQ is in gpm. Determine the pump pressure and

the flow rate through each branch of the system.

Filter
patm

Total length:
40 ft

Total length:
20 ft

10 ft
From

pool

8.50 An air conditioning system delivers 850 cfm of air at 55 F to

two zones as shown in the figure below. The ducts are galvanized

steel sheet metal. There are diffusers at the end of the ducts with loss

coefficients of 0.8. Estimate the flow rate in each duct, the pressure at

the fan exit, and the fan power required. The loss coefficients for the

tee, based on the downstream velocity, are 0.13 for the straight-

through flow and 1.2 for the turning flow.

12” dia, 40ft 8” dia, 25ft

6” dia, 15 ft

8.51A 75-mm-diameter orifice with D and D/2 taps is used to meas-

ure the flow rate of 65 C water in a 150-mm-ID pipe. Determine the

pressure difference for a flow rate of 20 L/s.

8.52A 12 in. × 6 in. Venturi meter is installed in a horizontal water-

line. The pressure gages read 30 and 20 psi. Calculate the flow rate

for a water temperature of 68 F and the head loss between the base

and throat of the meter. Calculate the flow rate if the pipe is vertical

with the throat of the meter 2 ft below the base and the pressure gages

read the same values.

8.53An 8 in. diameter water pipe has a 5.2 in. diameter ASME long-

radius nozzle installed for flow metering. The mercury-water

manometer used to measure the pressure difference reads 3.2 in.

mercury. Determine the mass and volume flow rate for water tem-

peratures of 40 F and 180 F. Because the nozzle coefficient depends

on Reynolds number and the flow rate is unknown, you will need to

iterate to find the flow rate.

8.54 An air flow of 3.65 m3/s at atmospheric pressure flows in a

0.5 m diameter duct. A 0.35 m diameter ASME long radius nozzle

and a water manometer is used to measure the flow rate. Determine

the pressure drop across the nozzle in cm of water for air temperatures

of 10 C and 40 C.

8.55 A laminar flow meter for measuring air flow is constructed of

small diameter (0.2 cm) tubes that are 20 cm long. For an upper limit

on the Reynolds number needed to maintain laminar flow of 1800,

determine the number of tubes needed for an air flow rate of 0.04

m3/s. Determine the overall pressure drop accounting for the entrance

and exit losses of the tubes. Show that the pressure drop is essentially

linear with flow rate.
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C H A P T E R 8

Internal Incompressible
Viscous Flow

8.1 Internal Flow Characteristics

Part A Fully Developed Laminar Flow

8.2 Fully Developed Laminar Flow Between Infinite

Parallel Plates

8.3 Fully Developed Laminar Flow in a Pipe

Part B Flow in Pipes and Ducts

8.4 Shear Stress Distribution in Fully Developed

Pipe Flow

8.5 Turbulent Velocity Profiles in Fully

Developed Pipe Flow

8.6 Energy Considerations in Pipe Flow

8.7 Calculation of Head Loss

8.8 Solution of Pipe Flow Problems

Part C Flow Measurement

8.9 Restriction Flow Meters for Internal Flows

8.10 Summary and Useful Equations

Case Study

“Lab-on-a-Chip”

The power generatedbyagasoline or diesel enginedependsdirectly
on themass of air that enters the cylinder chamber.An intakeman-
ifold, such as shown in the photograph for a 4-cylinder automobile,
is used to transport the air from the ambient to each cylinder and is
a critical part of the engine system. Its geometry is important. A
short flow length, large diameter, smooth surfaces, and gradual
turns all reduce the friction losses and allow the pressure, and thus
density, of the air to be close to that of the ambient.

There is a second indirect effect of the geometry on the pres-
sure of the air entering the chamber. Air is sucked into a cylinder

when the intake valve is open. This flow has momentum, and
when the intake valve closes the flow stops. The sudden change
in momentum results in a pressure rise at the intake valve, which
forms a pressure wave that travels back along the manifold to the
inlet, where it is then reflected back toward the intake valve. If the
inlet valve is opened just when the pressure wave returns, the air
pressure is higher and more air enters the chamber, increasing
the power.

Unfortunately, such a tuned intake manifold is effective only for
a narrow band of engine speed. Outside that band, the pressure
wave won’t arrive in time to increase the pressure at the valve
inlet. Depending on the frequency of the pressurewave and engine
revolutions, a lowpressurewavemay arrive at the intake valve and
actually reduce the air pressure entering the engine, reducing the
power over that with no tuning.

Several modifications have been made to the intake manifold
to enhance the effects of these pressure waves. A manifold with
short intake pipe lengths allows the pressure wave to travel
back-and-forth several times between openings of the inlet
valve, increasing the overall speed range. Variable intake manifolds
with two or more flow lengths can change the pressure wave tim-
ing for different engine speeds. Valves are used to direct the flow
into passages of different lengths. A further modification is to
continuously vary the flow length in time with engine speed.
The inlet passages are arranged in a circular shape with a rotor
on the inside. The air inlet is on the rotor, which is then turned
in synchrony with engine speed to change the flow length. These
improvements have resulted in increased power from a given dis-
placement engine over time.
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A modern automotive intake manifold.
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Learning Objectives
After completing this chapter, you should be able to

• Describe how laminar and turbulent flows affect the flow in the entrance region.

• Solve a problem with laminar flow through parallel plates and circular tubes using the momentum

equation.

• Describe the differences between the laminar and turbulent shear stress distributions.

• Describe the effects of Reynolds number on the fully developed velocity profile for turbulent

pipe flow.

• Explain the kinetic energy coefficient and its use.

• Calculate the head loss and pressure drop for single and multiple pipe flow problems.

• Calculate the flow rate using the measurements from a restriction meter.

Flows completely bounded by solid surfaces are called internal flows. Thus internal flows include many

important and practical flows such as those through pipes, ducts, nozzles, diffusers, sudden contractions

and expansions, valves, and fittings.

Internal flows may be laminar or turbulent. Some laminar flow cases may be solved analytically. In

the case of turbulent flow, analytical solutions are generally not possible, and we must rely heavily on

semi-empirical theories and on experimental data. The nature of laminar and turbulent flows was dis-

cussed in Section 2.6. For internal flows, the flow regime (laminar or turbulent) is primarily a function of

the Reynolds number.

In this chapter we will only consider incompressible flows; hence we will study the flow of liquids

as well as gases that have negligible heat transfer and for which the Mach number M <0 3. A value of

M =0 3 in air corresponds to a speed of approximately 100 m s. Following a brief introduction, this

chapter is divided into the following parts:

Part A Part A discusses fully developed laminar flow of a Newtonian fluid between parallel plates and in a pipe.

These two cases can be studied analytically.

Part B Part B is about laminar and turbulent flows in pipes and ducts. The laminar flow analysis follows

from Part A; the turbulent flow (which is the most common) is too complex to be analyzed completely

so experimental data will be used to develop solution techniques.

Part C Part C is a discussion of methods of flow measurement.

8.1 Internal Flow Characteristics
Laminar versus Turbulent Flow

As discussed previously in Section 2.6, the pipe flow regime (laminar or turbulent) is determined by the

Reynolds number, Re= ρVD μ. One can demonstrate by the classic Reynolds experiment the quali-

tative difference between laminar and turbulent flows. In this experiment water flows from a large res-

ervoir through a clear tube. A thin filament of dye injected at the entrance to the tube allows visual

observation of the flow. At low flow rates (low Reynolds numbers) the dye injected into the flow remains

in a single filament along the tube; there is little dispersion of dye because the flow is laminar. A laminar

flow is one in which the fluid flows in laminae, or layers and there is no macroscopic mixing of

adjacent fluid layers.

As the flow rate through the tube is increased, the dye filament eventually becomes unstable and

breaks up into a random motion throughout the tube; the line of dye is stretched and twisted into myriad

entangled threads, and it quickly disperses throughout the entire flow field. This behavior of turbulent

flow is caused by small, high-frequency velocity fluctuations superimposed on the mean motion of a

turbulent flow, as illustrated earlier in Fig. 2.17; the mixing of fluid particles from adjacent layers of

fluid results in rapid dispersion of the dye. We mentioned in Chapter 2 an everyday example of the dif-

ference between laminar and turbulent flow—when you gently turn on the kitchen faucet. For very low

flow rates, the water exits smoothly indicating laminar flow in the pipe; for higher flow rates, the flow is

churned up indicating turbulent flow.
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Under normal conditions, transition to turbulence occurs at Re≈2300 for flow in pipes. For water

flow in a 1-in. diameter pipe, this corresponds to an average speed of 0 3 ft s. With great care to maintain

the flow free from disturbances, and with smooth surfaces, experiments have been able to maintain lam-

inar flow in a pipe to a Reynolds number of about 100,000. However, most engineering flow situations

are not so carefully controlled, so we will take Re≈2300 as our benchmark for transition to turbulence.

Transition Reynolds numbers for some other flow situations are given in the examples. Turbulence

occurs when the viscous forces in the fluid are unable to damp out random fluctuations in the fluid

motion (generated, for example, by roughness of a pipe wall), and the flow becomes chaotic. For exam-

ple, a high-viscosity fluid such as motor oil is able to damp out fluctuations more effectively than a low

viscosity fluid such as water and therefore remains laminar even at relatively high flow rates. On the

other hand, a high-density fluid will generate significant inertia forces due to the random fluctuations

in the motion, and this fluid will transition to turbulence at a relatively low flow rate.

The Entrance Region

Figure 8.1 illustrates laminar flow in the entrance region of a circular pipe. The flow has uniform velocity

U0 at the pipe entrance. Because of the no-slip condition at the wall, we know that the velocity at the wall

must be zero along the entire length of the pipe. A boundary layer (introduced in Section 2.6) develops

along the walls of the channel. The solid surface exerts a retarding shear force on the flow; thus the speed

of the fluid in the neighborhood of the surface is reduced. At successive sections along the pipe in this

entry region, the effect of the solid surface is felt farther out into the flow.

For incompressible flow, mass conservation requires that as the speed close to the wall is reduced

the speed in the central frictionless region of the pipe must increase to compensate.

Sufficiently far from the pipe entrance, the boundary layer developing on the pipe wall reaches the

pipe centerline and the flow becomes entirely viscous. The velocity profile shape changes until the

inviscid core disappears. When the profile shape no longer changes with increasing distance x, the flow

is called fully developed. The distance downstream from the entrance to the location at which fully

developed flow begins is called the entrance length. The actual shape of the fully developed velocity

profile depends on whether the flow is laminar or turbulent. In Fig. 8.1 the profile is shown qualitatively

for a laminar flow.

For laminar flow the entrance length, L, is a function of Reynolds number,

L

D
0 06

ρVD

μ
8 1

where V ≡Q A is the average velocity. Laminar flow in a pipe may be expected only for Reynolds num-

bers less than about 2300. Thus the entrance length for laminar pipe flow may be as long as

L 0 06 ReD≤ 0 06 2300 D=138D

or nearly 140 pipe diameters. If the flow is turbulent, enhanced mixing among fluid layers causes more

rapid growth of the boundary layer. Experiments show that the mean velocity profile becomes fully

developed within 25 to 40 pipe diameters from the entrance. However, the details of the turbulent motion

may not be fully developed for 80 or more pipe diameters. We are now ready to study laminar internal

flows (Part A), as well as laminar and turbulent flows in pipes and ducts (Part B). For these we will be

focusing on what happens after the entrance region, i.e., fully developed flows.

Entrance length Fully developed
velocity profile

D
u

x

r

U0

Fig. 8.1 Flow in the entrance region of a pipe.
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Part A FULLY DEVELOPED LAMINAR FLOW

In this section we consider a few classic examples of fully developed laminar flows. Our intent is to

obtain detailed information about the velocity field because knowledge of the velocity field permits cal-

culation of shear stress, pressure drop, and flow rate.

8.2 Fully Developed Laminar Flow Between Infinite Parallel Plates
The flow between parallel plates is the simplest possible, but the question is whywould there be a flow

at all? The answer is that flow could be generated by applying a pressure gradient parallel to the plates,

or by moving one plate parallel with respect to the other, or by having a body force (e.g., gravity)

parallel to the plates, or by a combination of these driving mechanisms. We will consider all of these

possibilities.

Both Plates Stationary

Fluid in high-pressure hydraulic systems, such as the brake system of an automobile, often leaks through

the annular gap between a piston and cylinder. For very small gaps (typically 0.005mm or less), this flow

field may be modeled as flow between infinite parallel plates, as indicated in the sketch of Fig. 8.2. To

calculate the leakage flow rate, we must first determine the velocity field.

Let us consider the fully developed laminar flow between horizontal infinite parallel plates. The

plates are separated by distance a, as shown in Fig. 8.3. The plates are considered infinite in the z direc-

tion, with no variation of any fluid property in this direction. The flow is also assumed to be steady and

incompressible. Before starting our analysis, what do we know about the flow field? For one thing we

know that the x component of velocity must be zero at both the upper and lower plates as a result of the

no-slip condition at the wall. The boundary conditions are then

at y=0 u=0

at y= a u=0

Since the flow is fully developed, the velocity cannot vary with x and, hence, depends on y only, so that

u= u y . Furthermore, there is no component of velocity in either the y or z direction υ=w=0 . In fact,

for fully developed flow only the pressure can and will change in the x direction.

In this section we will use a differential control volume to bring out some important features of the

fluid mechanics.

Cylinder

Piston

Fluid in gap

Fig. 8.2 Piston-cylinder approximated as parallel plates.
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For our analysis we select a differential control volume of size dV--- = dx dy dz, and apply the x com-

ponent of the momentum equation.

Basic equation:

= 0 3 = 0 1

FSx + FBx
=

∂

∂t CV

u ρ dV +
CS

u ρV dA 4 18a

Assumptions:

1 Steady flow (given)

2 Fully developed flow (given)

3 FBx
=0 (given)

The very nature of fully developed flow is that the velocity profile is the same at all locations along the

flow; hence there is no change in momentum. Equation 4.18a then reduces to the simple result that the

sum of the surface forces on the control volume is zero,

Fsx =0 8 2

The next step is to sum the forces acting on the control volume in the x direction. We recognize that

normal forces (pressure forces) act on the left and right faces and tangential forces (shear forces) act

on the top and bottom faces.

If the pressure at the center of the element is p, then the pressure force on the left face is

dFL = p−
dp

dx

dx

2
dy dz

and the pressure force on the right face is

dFR = − p+
dp

dx

dx

2
dy dz

We use the total derivative of pressure with respect to x rather than the partial derivative because we

recognize that pressure varies only with x. If the pressure did vary with y then there would be flow

in the y-direction. But v = 0 everywhere in the fully developed region.

If the shear stress at the center of the element is τyx, then the shear force on the bottom face is

dFB = − τyx−
dτyx

dy

dy

2
dx dz

Differential
control
volumedx

dy
y

x

x'

y'
a_
2

a

(a) Geometry of CV (b) Forces acting on CV

p +      (–    ) dy dz
p___
x

dx___
2

τyx +       (–     ) dx dz
τyx____
y 

τyx____
y 

dy___
2

dy___
2

τyx +       (     ) dx dz

p +      (    ) dy dz
p___
x

dx___
2

p

τyx

Fig. 8.3 Control volume for analysis of laminar flow between stationary infinite parallel plates.
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and the shear force on the top face is

dFT = τyx +
dτyx

dy

dy

2
dx dz

Note that in expanding the shear stress, τyx, in a Taylor series about the center of the element, we have

used the total derivative rather than a partial derivative. We did this because we recognized that τyx is

only a function of y, since u= u y .

Using the four surface forces dFL, dFR, dFB, and dFT in Eq. 8.2, this equation simplifies to

dp

dx
=
dτyx

dy
8 3

This equation states that because there is no change in momentum, the net pressure force (which is actu-

ally −dp dx) balances the net friction force (which is actually −dτyx dy). Equation 8.3 has an interest-

ing feature: The left side is at most a function of x only. This follows immediately from writing the

y component of the momentum equation; the right side is at most a function of y only. The flow is fully

developed, so it does not change with x. Hence, the only way the equation can be valid for all x and y is

for each side to in fact be constant:

dτyx

dy
=
dp

dx
= constant

Integrating this equation, we obtain

τyx =
dp

dx
y+ c1

which indicates that the shear stress varies linearly with y. We wish to find the velocity distribution. To

do so, we need to relate the shear stress to the velocity field. For a Newtonian fluid we can use Eq. 2.15

because we have a one-dimensional flow

τyx = μ
du

dy
2 15

so we get

μ
du

dy
=

dp

dx
y+ c1

Integrating again

u=
1

2μ

dp

dx
y2 +

c1

μ
y+ c2 8 4

It is interesting to note that if we had started with the Navier–Stokes equations (Eqs. 5.27) instead of

using a differential control volume, after only a few steps (i.e., simplifying and integrating twice) we

would have obtained Eq. 8.4. To evaluate the constants, c1 and c2, we must apply the boundary condi-

tions. At y=0, u=0. Consequently, c2 =0. At y= a, u=0. Hence

0=
1

2μ

dp

dx
a2 +

c1

μ
a

This gives

c1 = −
1

2

dp

dx
a
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and hence,

u=
1

2μ

dp

dx
y2−

1

2μ

dp

dx
ay=

a2

2μ

dp

dx

y

a

2

−
y

a
8 5

At this point we have the velocity profile. This is key to finding other flow properties, as we next

discuss.

Shear Stress Distribution
The shear stress distribution is given by

τyx =
dp

dx
y+ c1 =

dp

dx
y−

1

2

dp

dx
a= a

dp

dx

y

a
−
1

2
8 6a

Volume Flow Rate
The volume flow rate is given by

Q=
A

V dA

For a depth l in the z direction,

Q=
a

0

ul dy or
Q

l
=

a

0

1

2μ

dp

dx
y2−ay dy

Thus the volume flow rate per unit depth is given by

Q

l
= −

1

12μ

dp

dx
a3 8 6b

Flow Rate as a Function of Pressure Drop
Since dp dx is constant, the pressure varies linearly with x and

dp

dx
=
p2−p1

L
=

−Δp

L

Substituting into the expression for volume flow rate gives

Q

l
= −

1

12μ

−Δp

L
a3 =

a3Δp

12μL
8 6c

Average Velocity
The average velocity magnitude, V , is given by

V =
Q

A
= −

1

12μ

dp

dx

a3l

la
= −

1

12μ

dp

dx
a2 8 6d
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Point of Maximum Velocity
To find the point of maximum velocity, we set du dy equal to zero and solve for the corresponding y.

From Eq. 8.5

du

dy
=

a2

2μ

dp

dx

2y

a2
−
1

a

Thus,

du

dy
=0 at y=

a

2

At

y=
a

2
, u= umax = −

1

8μ

dp

dx
a2 =

3

2
V 8 6c

Transformation of Coordinates
In deriving the above relations, the origin of coordinates, y=0, was taken at the bottom plate. We could

just as easily have taken the origin at the centerline of the channel. If we denote the coordinates with

origin at the channel centerline as x, y , the boundary conditions are u=0 at y = a 2.

To obtain the velocity profile in terms of x, y , we substitute y= y + a 2 into Eq. 8.5. The result is

u=
a2

2μ

dp

dx

y

a

2

−
1

4
8 7

Equation 8.7 shows that the velocity profile for laminar flow between stationary parallel plates is par-

abolic, as shown in Fig. 8.4.

Since all stresses were related to velocity gradients through Newton’s law of viscosity, and the addi-

tional stresses that arise as a result of turbulent fluctuations have not been accounted for, all of the results

in this section are valid for laminar flow only. Experiments show that laminar flow between stationary

parallel plates becomes turbulent for Reynolds numbers (defined as Re= ρVa μ) greater than approx-

imately 1400. Consequently, the Reynolds number should be checked after using Eqs. 8.6a–d to ensure

a valid solution. The calculation of the leakage past a cylinder in an hydraulic system using Eq. 8.6c is

shown in Example 8.1.

1_
2

1_
2

–

0

0 1

y'___
a

u____
umax

u_______=
a2
__
8μ

dp__
dx

– (   )

x

y'

y
a

u

Fig. 8.4 Dimensionless velocity profile for fully developed laminar flow between infinite parallel plates.
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Example 8.1 LEAKAGE FLOW PAST A PISTON

A hydraulic system operates at a gage pressure of 20MPa and 55 C. The hydraulic fluid is SAE 10W oil. A control valve consists

of a piston 25 mm in diameter, fitted to a cylinder with a mean radial clearance of 0.005 mm. Determine the leakage flow rate if

the gage pressure on the low-pressure side of the piston is 1.0 MPa. The piston is 15 mm long.

Given: Flow of hydraulic oil between piston and cylinder, as shown. Fluid is SAE 10W oil at 55 C.

Find: Leakage flow rate, Q.

Solution: The gap width is very small, so the flowmay bemodeled as flow between parallel

plates. Equation 8.6c may be applied.

Governing equations:

Q

l
=

a3Δp

12μ L
8 6c

Assumptions:

1 Laminar flow.

2 Steady flow.

3 Incompressible flow.

4 Fully developed flow. (Note L a=15 0 005= 3000!)

The plate width, l, is approximated as l= πD. Thus

Q=
πDa3Δp

12μL

For SAE 10W oil at 55 C, μ=0 018 kg m s , from Fig. A.2, Appendix A. Thus

Q=
π

12
× 25 mm× 0 005

3
mm3 × 20−1 106

N

m2
×

m s

0 018 kg
×

1

15 mm
×
kg m

N s2

Q=57 6 mm3 s
Q

To ensure that flow is laminar, we also should check the Reynolds number.

V =
Q

A
=

Q

πDa
=57 6

mm3

s
×
1

π
×

1

25 mm
×

1

0 005 mm
×

m

103 mm
=0 147 m s

and

Re=
ρVa

μ
=
SGρH2O

Va

μ

For SAE 10W oil, SG=0 92, from Table A.2, Appendix A. Thus

Re=0 92× 1000
kg

m3
×0 147

m

s
× 0 005 mm×

m s

0 018 kg
×

m

103 mm
=0 0375

Thus flow is surely laminar, since Re≪1400.

a = 0.005 mm

D = 25 mm

p1 = 20 MPa (gage)

p2 = 1.0 MPa (gage)

L = 15 mm
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Upper Plate Moving with Constant Speed, U

The second basic way to generate flow between infinite parallel plates is to have one plate move parallel

to the other, either with or without an applied pressure gradient. Wewill next analyze this problem for the

case of laminar flow.

Such a flow commonly occurs, for example, in a journal bearing (e.g., the main crankshaft bearings

in the engine of an automobile). In such a bearing, an inner cylinder, the journal, rotates inside a sta-

tionary member. At light loads, the centers of the two members essentially coincide, and the small clear-

ance gap is symmetric. Since the gap is small, it is reasonable to “unfold” the bearing and to model the

flow field as flow between infinite parallel plates, as indicated in the sketch of Fig. 8.5.

Let us now consider a case where the upper plate is moving to the right with constant speed, U. All

we have done in going from a stationary upper plate to a moving upper plate is to change one of the

boundary conditions. The boundary conditions for the moving plate case are

u=0 at y=0

u=U at y= a

Since only the boundary conditions have changed, there is no need to repeat the entire analysis of the

previous section. The analysis leading to Eq. 8.4 is equally valid for the moving plate case. Thus the

velocity distribution is given by

u=
1

2μ

dp

dx
y2 +

c1

μ
y+ c2 8 4

and our only task is to evaluate constants c1 and c2 by using the appropriate boundary conditions.

At y=0, u=0 Consequently, c2 =0

At y= a, u=U Consequently,

U =
1

2μ

dp

dx
a2 +

c1

μ
a and thus c1 =

Uμ

a
−
1

2

dp

dx
a

Hence,

u=
1

2μ

dp

dx
y2 +

Uy

a
−

1

2μ

dp

dx
ay=

Uy

a
+

1

2μ

dp

dx
y2−ay

u=
Uy

a
+

a2

2μ

dp

dx

y

a

2

−
y

a
8 8

Fluid
in gap

Bearing

Bearing

Journal

Fig. 8.5 Journal bearing approximated as parallel plates.
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It is reassuring to note that Eq. 8.8 reduces to Eq. 8.5 for a stationary upper plate (set U =0). From

Eq. 8.8, for zero pressure gradient (for dp dx=0) the velocity varies linearly with y. This was the case

treated earlier in Chapter 2; this linear profile is called a Couette flow, after a 19th-century physicist.

We can obtain additional information about the flow from the velocity distribution of Eq. 8.8.

Shear Stress Distribution
The shear stress distribution is given by τyx = μ du dy ,

τyx = μ
U

a
+
a2

2

dp

dx

2y

a2
−
1

a
= μ

U

a
+ a

dp

dx

y

a
−
1

2
8 9a

Volume Flow Rate
The volume flow rate is given by Q=

A
V dA. For depth l in the z direction

Q=
a

0

ul dy or
Q

l
=

a

0

Uy

a
+

1

2μ

dp

dx
y2−ay dy

Thus the volume flow rate per unit depth is given by

Q

l
=
Ua

2
−

1

12μ

dp

dx
a3 8 9b

Average Velocity
The average velocity magnitude, V , is given by

V =
Q

A
= l

Ua

2
−

1

12μ

dp

dx
a3 la=

U

2
−

1

12μ

dp

dx
a2 8 9c

Point of Maximum Velocity
To find the point of maximum velocity, we set du dy equal to zero and solve for the corresponding y.

From Eq. 8.8

du

dy
=
U

a
+

a2

2μ

dp

dx

2y

a2
−
1

a
=
U

a
+

a

2μ

dp

dx
2

y

a
−1

Thus,

du

dy
=0 at y=

a

2
−

U a

1 μ dp dx

There is no simple relation between the maximum velocity, umax, and the mean velocity, V , for this

flow case.

Equation 8.8 suggests that the velocity profile may be treated as a combination of a linear and a

parabolic velocity profile; the last term in Eq. 8.8 is identical to that in Eq. 8.5. The result is a family

of velocity profiles, depending onU and 1 μ dp dx ; three profiles are sketched in Fig. 8.6. As shown

in Fig. 8.6, some reverse flow—flow in the negative x direction—can occur when dp dx>0.

Again, all of the results developed in this section are valid for laminar flow only. Experiments show

that this flow becomes turbulent for zero pressure gradient at a Reynolds number of approximately 1500,
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where Re= ρUa μ for this flow case. Not much information is available for the case where the pressure

gradient is not zero. In Example 8.2, the torque and power characteristics of a a journal bearing are

determined using the parallel plate model.

Example 8.2 TORQUE AND POWER IN A JOURNAL BEARING

A crankshaft journal bearing in an automobile engine is lubricated by SAE 30 oil at 210 F. The bearing diameter is 3 in., the

diametral clearance is 0.0025 in., and the shaft rotates at 3600 rpm; it is 1.25 in. long. The bearing is under no load, so the clear-

ance is symmetric. Determine the torque required to turn the journal and the power dissipated.

Given: Journal bearing, as shown. Note that the gap width, a, is half the diametral clearance. Lubricant is SAE 30 oil at 210 F.

Speed is 3600 rpm.

Find: (a) Torque, T .

(b) Power dissipated.

Solution: Torque on the journal is caused by viscous shear in the oil film. The gap

width is small, so the flow may be modeled as flow between infinite parallel plates:

Governing equations:

=0 6

τyx = μ
U

a
+ a

dp

dx

y

a
−
1

2

8 9a

Assumptions:

1 Laminar flow.

2 Steady flow.

3 Incompressible flow.

4 Fully developed flow.

5 Infinite width (L a=1 25 0 00125= 1000, so this is a reasonable assumption).

6 dp dx=0 (flow is symmetric in the actual bearing at no load).

a u

U

y

x

D = 3 in.L = 1.25 in. a =          in.0.0025______
2

ω

> 0

= 0

dp___
dx

dp___
dx

dp___
dx

< 0

1.0

0

y_
a

u__
U

3.02.01.00

u a

U

x

y

Fig. 8.6 Dimensionless velocity profile for fully developed laminar flow between infinite parallel plates: upper platemoving
with constant speed, U.
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We have seen how steady, one-dimensional laminar flows between two plates can be generated by

applying a pressure gradient, by moving one plate with respect to the other, or by having both driving

mechanisms present. To finish our discussion of this type of flow, Example 8.3 examines a gravity-

driven steady, one-dimensional laminar flow down a vertical wall. Once again, the direct approach

would be to start with the two-dimensional rectangular coordinate form of the Navier–Stokes equations

(Eqs. 5.27); instead we will use a differential control volume.

Then

τyx = μ
U

a
= μ

ωR

a
= μ

ωD

2a

For SAE 30 oil at 210 F 99 C , μ=9 6× 10−3N s m2 2 01× 10−4 lbf s ft2 , from Fig. A.2, Appendix A. Thus,

τyx =2 01× 10−4 lbf s

ft2
×3600

rev

min
× 2π

rad

rev
×
min

60 s
× 3 in ×

1

2
×

1

0 00125 in

τyx =90 9 lbf ft2

The total shear force is given by the shear stress times the area. It is applied to the journal surface. Therefore, for the torque

T =FR= τyxπDLR=
π

2
τyxD

2L

=
π

2
× 90 9

lbf

ft2
× 3

2
in 2 ×

ft2

144 in 2
×1 25 in

T =11 2 in lbf T

The power dissipated in the bearing is

W =FU =FRω= Tω

=11 2 in lbf × 3600
rev

min
×
min

60 s
× 2π

rad

rev
×

ft

12 in
×

hp s

550 ft lbf

W =0 640 hp W

To ensure laminar flow, check the Reynolds number.

Re=
ρUa

μ
=
SGρH2O

Ua

μ
=
SGρH2O

ωRa

μ

Assume, as an approximation, the specific gravity of SAE 30 oil is the same as

that of SAE 10W oil. From Table A.2, Appendix A, SG=0 92. Thus

Re=0 92× 1 94
slug

ft3
×

3600 2π

60

rad

s
× 1 5 in × 0 00125 in

×
ft2

2 01× 10−4 lbf s
×

ft2

144 in 2
×

lbf s2

slug ft

Re=43 6

Therefore, the flow is laminar, since Re≪1500.

Example 8.3 LAMINAR FILM ON A VERTICAL WALL

Aviscous, incompressible,Newtonian liquid flows in steady, laminar flowdown a verticalwall. The thickness, δ, of the liquid film

is constant. Since the liquid free surface is exposed to atmospheric pressure, there is no pressure gradient. For this gravity-driven

flow, apply the momentum equation to differential control volume dx dy dz to derive the velocity distribution in the liquid film.

In this problem we approximated the
circular-streamline flow in a small annular
gap as a linear flow between infinite par-
allel plates. As we saw in Example 5.10,
for the small value of the gap width a to
radius R ratio a R (in this problem <1%),
the error in shear stress is about 1

2 of this
ratio. Hence, the error introduced is
insignificant—much less than the uncer-
tainty associated with obtaining a viscosity
for the oil.
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Given: Fully developed laminar flow of incompressible, Newtonian liquid down a vertical wall; thickness, δ, of the liquid film

is constant and dp dx=0.

Find: Expression for the velocity distribution in the film.

Solution: The x component of the momentum equation for a control

volume is

FSx +FBx
=

∂

∂t CV

u ρ dV--- +
CS

u ρV dA 4 18a

Under the conditions given we are dealing with a steady, incompressible,

fully developed laminar flow.

For steady flow,
∂

∂t CV

u ρ dV--- = 0

For fully developed flow,
CS

u ρV dA=0

Thus the momentum equation for the present case reduces to

FSx +FBx
=0

The body force, FBx
, is given by FBx

= ρg dV--- = ρg dx dy dz. The only surface forces acting on the differential control volume are

shear forces on the vertical surfaces. (Since we have a free-surface flow, with straight streamlines, the pressure is atmospheric

throughout; no net pressure forces act on the control volume.)

If the shear stress at the center of the differential control volume is τyx, then,

shear stress on left face is τyxL = τyx−
dτyx

dy

dy

2

and

shear stress on right face is τyxR = τyx +
dτyx

dy

dy

2

The direction of the shear stress vectors is taken consistent with the sign convention of Section 2.3. Thus on the left face, a minus y

surface, τyxL acts upward, and on the right face, a plus y surface, τyxR acts downward.

The surface forces are obtained by multiplying each shear stress by the area over which it acts. Substituting into FSx +FBx
=0,

we obtain

−τyxL dx dz+ τyxR dx dz+ ρg dx dy dz=0

or

− τyx−
dτyx

dy

dy

2
dx dz+ τyx +

dτyx

dy

dy

2
dx dz+ ρg dx dy dz=0

Simplifying gives

dτyx

dy
+ ρg=0 or

dτyx

dy
= −ρg

Since

τyx = μ
du

dy
then μ

d2u

dy2
= −ρg and

d2u

dy2
= −

ρg

μ

Integrating with respect to y gives

du

dy
= −

ρg

μ
y+ c1

Differential
control
volume

y

x

dx

dy

δ

g

τyxL
dx dz τyxR

τyx
dx dz

  g dx dy dzρ
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8.3 Fully Developed Laminar Flow in a Pipe
As a final example of fully developed laminar flow, let us consider fully developed laminar flow in a

pipe. Here the flow is axisymmetric. Consequently it is most convenient to work in cylindrical coordi-

nates. This is yet another case where we could use the Navier–Stokes equations, this time in cylindrical

coordinates (see Example 5.10). Instead we will again take the longer route—using a differential control

volume—to bring out some important features of the fluid mechanics. The development will be very

similar to that for parallel plates in the previous section. Since the flow is axisymmetric, the control vol-

ume will be a differential annulus, as shown in Fig. 8.7. The control volume length is dx and its thickness

is dr.

For a fully developed steady flow, the x component of the momentum equation (Eq. 4.18a), when

applied to the differential control volume, once again reduces to

FSx =0

Integrating again, we obtain

u= −
ρg

μ

y2

2
+ c1y+ c2

To evaluate constants c1 and c2, we apply appropriate boundary conditions:

(i) y=0, u=0 no-slip

(ii) y= δ,
du

dy
=0 (neglect air resistance, i.e., assume zero shear stress at free surface)

From boundary condition (i), c2 =0

From boundary condition (ii), 0 = −
ρg

μ
δ+ c1 or c1 =

ρg

μ
δ

Hence,

u= −
ρg

μ

y2

2
+
ρg

μ
δy or u=

ρg

μ
δ2

y

δ
−
1

2

y

δ

2 u y

Using the velocity profile it can be shown that:

the volume flow rate isQ l=
ρg

3μ
δ3

the maximum velocity isUmax =
ρg

2μ
δ2

the average velocity is V =
ρg

3μ
δ2

Flow in the liquid film is laminar for Re=V δ ν≤ 1000 1 .

Notes:
• This problem is a special case θ=90 of
the inclined plate flow analyzed in
Example 5.9 that we solved using the
Navier–Stokes equations.

• This problem and Example 5.9 demon-
strate that use of the differential control
volume approach or the Navier–Stokes
equations leads to the same result.

dr

R

r

Annular differential
control
volume

Annular differential
control
volume

(a) End view of CV (b) Side view of CV (c) Forces on CV

dx

dr

x

r

τrx +

τrx 2  rdx

2   (r + dr) dx
dτrx____
dr 

dr π

π

dxπ πp 2  rdr 2  rdr

CV

p +      ( ) dp___
dx

Fig. 8.7 Differential control volume for analysis of fully developed laminar flow in a pipe.
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The next step is to sum the forces acting on the control volume in the x direction. We know that normal

forces (pressure forces) act on the left and right ends of the control volume, and that tangential forces

(shear forces) act on the inner and outer cylindrical surfaces.

If the pressure at the left face of the control volume is p, then the pressure force on the left end is

dFL = p2πr dr

The pressure force on the right end is

dFR = − p+
dp

dx
dx 2πr dr

If the shear stress at the inner surface of the annular control volume is τrx, then the shear force on the

inner cylindrical surface is

dFI = −τrx2πr dx

The shear force on the outer cylindrical surface is

dFO = τrx +
dτrx

dr
dr 2π r+ dr dx

The sum of the x components of force, dFL, dFR, dFI , and dFO, acting on the control volumemust be

zero. This leads to the condition that

−
dp

dx
2πr dr dx+ τrx2π dr dx+

dτrx

dr
2πr dr dx=0

Dividing this equation by 2πr dr dx and solving for ∂p ∂x gives

dp

dx
=
τrx

r
+
dτrx

dr
=
1

r

d rτrx

dr

Comparing this to the corresponding equation for parallel plates (Eq. 8.3) shows the mathematical com-

plexity introduced because we have cylindrical coordinates. The left side of the equation is at most a

function of x only because the pressure is uniform at each section; the right side is at most a function

of r only because the flow is fully developed. Hence, the only way the equation can be valid for all x and r

is for both sides to in fact be constant:

1

r

d rτrx

dr
=
dp

dx
= constant or

d rτrx

dr
= r

dp

dx

We are not quite finished, but already we have an important result: In a constant diameter pipe, the

pressure drops uniformly along the pipe length (except for the entrance region).

Integrating this equation, we obtain

rτrx =
r2

2

dp

dx
+ c1

or

τrx =
r

2

dp

dx
+
c1

r
8 10

Since τrx = μdu dr, we have

μ
du

dr
=
r

2

dp

dx
+
c1

r

and

u=
r2

4μ

dp

dx
+
c1

μ
ln r+ c2 8 11

242 Chapter 8 Internal Incompressible Viscous Flow

www.konkur.in

Telegram: @uni_k



We need to evaluate constants c1 and c2. We have the one boundary condition that u=0 at r=R.

We also know from physical considerations that the velocity must be finite at r=0. The only way that

this can be true is for c1 to be zero. Thus,

u=
r2

4μ

dp

dx
+ c2

The constant, c2, is evaluated by using the available boundary condition at the pipe wall: at r=R, u=0.

Consequently,

0 =
R2

4μ

dp

dx
+ c2

This gives

c2 = −
R2

4μ

dp

dx

and hence

u=
r2

4μ

dp

dx
−
R2

4μ

dp

dx
=

1

4μ

dp

dx
r2−R2

or

u= −
R2

4μ

dp

dx
1−

r

R

2

8 12

Since we have the velocity profile, we can obtain a number of additional features of the flow.

Shear Stress Distribution
The shear stress is

τrx = μ
du

dr
=
r

2

dp

dx
8 13a

The shear stress varies linearly across the flow, with a maximum value at the wall and a value of zero at

the centerline.

Volume Flow Rate
The volume flow rate is

Q=
A

V dA=
R

0

u2πr dr=
R

0

1

4μ

dp

dx
r2−R2 2πr dr

Q= −
π R4

8μ

dp

dx

8 13b

Flow Rate as a Function of Pressure Drop
We have shown that in fully developed flow the pressure gradient, dp dx, is constant. Therefore,

dp dx= p2−p1 L= −Δp L. Substituting into Eq. 8.13b for the volume flow rate gives

Q= −
π R4

8μ

−Δp

L
=
πΔpR4

8μL
=
πΔpD4

128μL
8 13c
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for laminar flow in a horizontal pipe. Note that Q is a sensitive function of D; Q D4, so, for example,

doubling the diameter D increases the flow rate Q by a factor of 16.

Average Velocity
The average velocity magnitude, V , is given by

V =
Q

A
=

Q

πR2
= −

R2

8μ

dp

dx
8 13d

Point of Maximum Velocity
To find the point of maximum velocity, we set du dr equal to zero and solve for the corresponding r.

From Eq. 8.12

du

dr
=

1

2μ

dp

dx
r

Thus,

du

dr
=0 at r=0

At r=0,

u= umax =U = −
R2

4μ

dp

dx
=2V 8 13e

The velocity profile (Eq. 8.12) may be written in terms of the maximum (centerline) velocity as

u

U
=1−

r

R

2

8 14

The parabolic velocity profile, given by Eq. 8.14 for fully developed laminar pipe flow, was

sketched in Fig. 8.1. These laminar flow results are applied to the design of a viscometer in Example 8.4.

Example 8.4 CAPILLARY VISCOMETER

A simple and accurate viscometer can be made from a length of capillary tubing. If the flow rate and pressure drop are measured,

and the tube geometry is known, the viscosity of a Newtonian liquid can be computed from Eq. 8.13c. A test of a certain liquid in a

capillary viscometer gave the following data:

Flow rate: 880 mm3 s Tube length: 1 m

Tube diameter: 0 50 mm Pressure drop: 1 0MPa

Determine the viscosity of the liquid.

Given: Flow in a capillary viscometer.

The flow rate is Q=880 mm3 s.

Find: The fluid viscosity.

Solution: Equation 8.13c may be applied.

Governing equation:

Q=
πΔpD4

128μL
8 13c

Flow
CV

L = 1 m

D = 0.5 mm

1 2

Δp = p1 – p2 = 1.0 MPa
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Part B FLOW IN PIPES AND DUCTS

In this section we will be interested in determining the factors that affect the pressure in an incompress-

ible fluid as it flows in a pipe or duct. If we ignore friction for a moment and assume steady flow and

consider a streamline in the flow, the Bernoulli equation from Chapter 6 applies,

p

ρ
+
V2

2
+ gz= constant 6 8

From this equation we can see what tends to lead to a pressure decrease along the streamline in this

frictionless flow: a reduction of area at some point in the pipe causing an increase in the velocity V ,

or the pipe having a positive incline so z increases. Conversely, the pressure will tend to increase if

the flow area is increased or the pipe slopes downward. We say “tends to” because one factor may coun-

teract another; for example, we may have a downward sloping pipe tending to increase pressure with a

reduction in diameter tending to decrease pressure.

In reality, flows in pipes and ducts experience significant friction and are often turbulent, so the

Bernoulli equation does not apply. It doesn’t even make sense to use V ; instead we will use V , to rep-

resent the average velocity at a section along the pipe. We will learn that, in effect, friction effects lead to

a continual reduction in the value of the Bernoulli constant of Eq. 6.8, representing a “loss” of mechan-

ical energy. We have already seen that, in contrast to the Bernoulli equation, for laminar flow there is a

pressure drop even for a horizontal, constant diameter pipe; in this section we will see that turbulent

flows experience an even larger pressure drop. We will need to replace the Bernoulli equation with

an energy equation that incorporates the effects of friction.

Assumptions:

1 Laminar flow.

2 Steady flow.

3 Incompressible flow.

4 Fully developed flow.

5 Horizontal tube.

Then

μ=
πΔpD4

128 LQ
=

π

128
× 1 0× 106

N

m2
× 0 50

4
mm4 ×

s

880 mm3
×

1

1 m
×

m

103 mm

μ=1 74× 10−3 N s m2 μ

Check the Reynolds number. Assume the fluid density is similar to that of water, 999 kg m3. Then

V =
Q

A
=

4Q

πD2
=
4

π
×880

mm3

s
×

1

0 50
2
mm2

×
m

103 mm
=4 48 m s

and

Re=
ρVD

μ
=999

kg

m3
×4 48

m

s
× 0 50 mm

×
m2

1 74× 10−3 N s
×

m

103 mm
×

N s2

kg m

Re=1290

Consequently, since Re<2300, the flow is laminar.

This problem is a little oversimplified. To
design a capillary viscometer the entrance
length, liquid temperature, and kinetic
energy of the flowing liquid would all need
to be considered.
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In summary, we can state that three factors tend to reduce the pressure in a pipe flow: a decrease in

pipe area, an upward slope, and friction. For nowwewill focus on pressure loss due to friction and so will

analyze pipes that are of constant area and that are horizontal.

We have already seen in the previous section that for laminar flow we can deduce the pressure drop.

Rearranging Eq. 8.13c to solve for the pressure drop Δp,

Δp=
128μLQ

πD4

Wewould like to develop a similar expression that applies for turbulent flows, but we will see that this is

not possible analytically; instead, we will develop expressions based on a combination of theoretical and

experimental approaches.

Since circular pipes are most common in engineering applications, the basic analysis will be

performed for circular geometries. The results can be extended to other geometries by introducing

the hydraulic diameter, which is treated in Section 8.7.

It is conventional to break losses due to friction into two categories:major losses, which are losses

due to friction in the constant-area sections of the pipe; and minor losses (sometimes larger than

“major” losses), which are losses due to valves, elbows, and so on. We will consider the friction losses

first.

8.4 Shear Stress Distribution in Fully Developed Pipe Flow
We consider again fully developed flow in a horizontal circular pipe, except nowwemay have laminar or

turbulent flow. In Section 8.3 we showed that a force balance between friction and pressure forces leads

to Eq. 8.10:

τrx =
r

2

dp

dx
+
c1

r
8 10

Because we cannot have infinite stress at the centerline, the constant of integration c1 must be zero, so

τrx =
r

2

dp

dx
8 15

Equation 8.15 indicates that for both laminar and turbulent fully developed flows the shear stress varies

linearly across the pipe, from zero at the centerline to a maximum at the pipe wall. The stress on the wall,

τw, equal and opposite to the stress in the fluid at the wall, is given by

τw = − τrx r=R = −
R

2

dp

dx
8 16

For laminar flow we used our familiar stress equation τrw = μ du dr in Eq. 8.15 to eventually obtain the

laminar velocity distribution. This led to a set of usable equations, Eq. 8.13a, for obtaining various flow

characteristics; e.g., Eq. 8.13c gave a relationship for the flow rate Q, a result first obtained experimen-

tally by Jean Louis Poiseuille, a French physician, and independently by Gotthilf H. L. Hagen, a German

engineer, in the 1850s [2].

The stress relations for turbulent flow are more complex than those for laminar flow and are heavily

based on experiments.

As we discussed in Section 2.6, and illustrated in Fig. 2.17, turbulent flow is represented at each

point by the time-mean velocity u plus randomly fluctuating velocity components u and υ in the x

and y directions. These components continuously transfer momentum between adjacent fluid layers,

tending to reduce any velocity gradient present. This effect shows up as an apparent stress, first intro-

duced by Osborne Reynolds, and called the Reynolds stress. This stress is given by −ρu υ , where the

overbar indicates a time average. In terms of the distance from the wall, the total stress in turbulent flow

can be written as

τ= τlam + τturb = μ
du

dy
−ρu υ 8 17
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The fluctuations u and υ are negatively correlated, so that τturb = −ρu υ is positive. In Fig. 8.8, exper-

imental measurements of the Reynolds stress for fully developed turbulent pipe flow at two Reynolds

numbers based on the centerline velocity are presented; The turbulent shear stress has been nondimen-

sionalized with the wall shear stress. In Fig. 8.8, we see that the Reynolds stress away from the wall

decreases linearly with distance, and that the friction is almost all due to Reynolds stress. Near the wall

the Reynolds stress drops to zero. In the region very close to the wall, called the wall layer, viscous shear

is dominant. In the region between the wall layer and the central portion of the pipe both viscous and

turbulent shear are important and in the region far from the wall turbulent friction dominates.

8.5 Turbulent Velocity Profiles in Fully Developed Pipe Flow
Turbulence and turbulent velocity profiles have been extensively studied [4], and the accepted relations

developed for internal flows are semi-empirical. We will introduce some simple formulations for turbu-

lent flow that have proved useful. We start with the relation for the total stress in turbulent flow, Eq. 8.17,

and divide by the density to yield a more convenient form

τ

ρ
= ν

du

dy
−u v 8 18

Prandtl [25] proposed a model for the turbulent viscosity based on mixing in the flow. He hypothe-

sized that the turbulent fluctuations in the mean velocity ū are a result of a small element of fluid moving

upward a small distance ℓ into a region of higher velocity. The fluctuating velocity u is then negative

and given by

u = −ℓ
du

dy

The quantity ℓ is called the mixing length. He reasoned that the fluctuation upward of the small

element of fluid is caused by a vertical fluctuation in the v-component of velocity, and thus

v =ℓ
dv

dx

In homogeneous turbulence, the fluctuations u and v are equal and thus the v-component of the

fluctuation v is the same as the u-component, or

v = u =ℓ
du

dy

The turbulent shear stress is then approximated as

τturb

ρ
=ℓ

2 du

dy

2

ReU

500,000

50,000

1.00.80.60.4

Dimensionless distance from wall,    

0.20
0

0.2

0.4

0.6

0.8

1.0

____

–   u'υ'_____
τw  

ρ

y___
R

Fig. 8.8 Turbulent shear stress (Reynolds stress) for fully developed turbulent flow in a pipe. (Data from Laufer [3].)
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Further, Prandtl hypothesized that the mixing length ℓ increases in proportion to the distance from

the wall.

ℓ= ky

Although this is all very approximate and intended mainly to provide some insight into the mechan-

isms that transfer momentum in a turbulent flow, it has proved very useful in understanding and mod-

eling turbulent flows.

The total shear stress is the sum of the laminar and turbulent shear stresses. Very near the wall the

laminar contribution dominates. Further, very near the wall, the shear stress is essentially equal to the

value at the wall. In this wall layer, the shear stress is then given by

τ

ρ
≈
τw

ρ
= ν

du

dy

It is convenient to introduce the friction velocity, u
∗
, which is the square root of the wall shear stress

divided by the density, and defined as

u∗ =
τw

ρ

Further, it is convenient to work with wall coordinates u+ and y
+ defined as

u+=
u

u∗
and y+=

yu∗

ν

The relation for shear stress near the wall can then be written as

1=
du+

dy+

This is readily integrated to yield a linear velocity profile

u+= y+ 8 19

In the flow farther from the wall, but still near enough the wall that the total shear stress equals the

wall value, the laminar stress is much smaller than the turbulent stress. Neglecting the laminar contri-

bution gives the relation

τ

ρ
≈
τw

ρ
= k2y2

du

dy

2

In wall coordinates u+ and y
+, and taking the square root of both sides, the relation becomes

1= ky+
du+

dy+

This relation is integrated to yield

u+=
1

k
lny++C

Using experimental data, the constant k, which is called Karman’s constant, has been evaluated as

0.4 and the constant C as 5.0. In this region the velocity profile is given as

u+=
u

u∗
=2 5 ln

yu∗

ν
+5 0 8 20

The velocity profile data for turbulent pipe flow from a large number of investigators is plotted in

Fig. 8.9 on semi-logarithmic coordinates. In the region very close to the wall where viscous shear is

dominant, called the viscous sublayer, the mean velocity profile follows the linear relation given by

Eq. 8.19 up to about y+=5. This region is called the viscous sublayer and the turbulent friction is neg-

ligible compared to the viscous friction. In the region where the viscous effects are negligible, Eq. 8.20 is

valid from about y+=30 out to the region where the shear stress is no longer constant with distance from
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the wall. This region is called the logarithmic layer.Between y+=5 and y+=30 is the buffer layerwhere

both viscosity and turbulence contribute to the shear stress. Surprisingly, the model proposed by Prandtl

nearly 100 years ago has proved valuable in understanding and analyzing turbulent flows.

If Eq. 8.20 is evaluated at the centerline (y=R and u=U) and the general expression of Eq. 8.20 is

subtracted from the equation evaluated at the centerline, we obtain

U−u

u
=2 5 ln

R

y
8 21

where U is the centerline velocity. Equation 8.21, referred to as the defect law, shows that the velocity

defect is a function of the distance ratio only and does not depend on the viscosity of the fluid.

The velocity profile for turbulent flow through a smooth pipe may also be approximated by the

empirical power-law equation

u

U
=

y

R

1 n

= 1−
r

R

1 n

8 22

where the exponent, n, varies with the Reynolds number. In Fig. 8.10 the data of Laufer [3] are shown on

a plot of ln y R versus ln u U. If the power-law profile were an accurate representation of the data, all

data points would fall on a straight line of slope n. Clearly the data for ReU =5× 104 deviate from the

best-fit straight line in the neighborhood of the wall.

Hence the power-law profile is not applicable close to the wall y R<0 04 . Since the velocity is

low in this region, the error in calculating integral quantities such as mass, momentum, and energy fluxes

at a section is relatively small. The power-law profile gives an infinite velocity gradient at the wall and

hence cannot be used in calculations of wall shear stress. Although the profile fits the data close to the

centerline, it fails to give zero slope there. Despite these shortcomings, the power-law profile is found to

give adequate results in many calculations.

Data fromHinze [5] suggest that the variation of power-law exponent nwith Reynolds number (based

on pipe diameter, D, and centerline velocity, U) for fully developed flow in smooth pipes is given by

n= −1 7+ 1 8 log ReU 8 23

for ReU >2× 104.

Since the average velocity is V =Q A, and

Q=
A

V dA

u+=2.5 ln y + + 5.0

u+= y +

u
+

y +

Re=105

Re=5×105

30

25

20

15

10

5

0
1 10 100 1000 10000 100000

Fig. 8.9 Mean velocity profiles for fully developed turbulent flow in a pipe. Adapted from [24, 25].
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the ratio of the average velocity to the centerline velocity may be calculated for the power-law profiles of

Eq. 8.22 assuming the profiles to be valid from wall to centerline. The result is

V

U
=

2n2

n+1 2n+1
8 24

From Eq. 8.24, we see that as n increases with increasing Reynolds number the ratio of the average

velocity to the centerline velocity increases; with increasing Reynolds number the velocity profile

becomes more blunt or “fuller” (for n=6,V U =0 79 and for n=10,V U =0 87). As a representative

value, 7 often is used for the exponent; this gives rise to the term “a one-seventh power profile” for fully

developed turbulent flow:

u

U
=

y

R

1 7

= 1−
r

R

1 7

Velocity profiles for n=6 and n=10 are shown in Fig. 8.11. The parabolic profile for fully developed

laminar flow is included for comparison. It is clear that the turbulent profile has a much steeper slope near

ReU = 5 104

ReU = 5 105

1.00

0.50

0.20

0.10

0.05

0.02

0.01

0.005

0.002
0.10 0.20 0.50 1.00 0.50 0.70 1.00

y___
R

U
u

Fig. 8.10 Power-law velocity profiles for fully developed turbulent flow in a smooth pipe. (Data from Laufer [3].)
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Fig. 8.11 Velocity profiles for fully developed pipe flow.
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the wall. This is consistent with our discussion leading to Eq. 8.17—the fluctuating velocity components

u and υ continuously transfer momentum between adjacent fluid layers, tending to reduce the velocity

gradient.

8.6 Energy Considerations in Pipe Flow
We have so far used the momentum and conservation of mass equations, in control volume form, to

discuss viscous flow. It is obvious that viscous effects will have an important effect on energy consid-

erations. In Section 6.4 we discussed the Energy Grade Line (EGL),

EGL=
p

ρg
+
V2

2g
+ z 6 16b

and saw that this is a measure of the total mechanical energy (“pressure,” kinetic and potential, per unit

mass) in a flow. We can expect that instead of being constant, which it was for inviscid flow, the EGL

will continuously decrease in the direction of flow as friction “eats” the mechanical energy. We can now

consider the energy equation to obtain information on the effects of friction.

Consider, for example, steady flow through the piping system, including a reducing elbow, shown

in Fig. 8.12. The control volume boundaries are shown as dashed lines. They are normal to the flow at

sections and and coincide with the inside surface of the pipe wall elsewhere.

Basic equation:

= 0 1 = 0 2 = 0 1 = 0 3

Q −W s − Wshear−Wother =
∂

∂t CV

e ρ dV--- +
CS

e+ pυ ρ V dA
4 56

e= u+
V2

2
+ gz

Assumptions:

1 Ws =0,Wother =0.

2 Wshear =0 (although shear stresses are present at the walls of the elbow, the velocities are zero there, so

there is no possibility of work).

3 Steady flow.

4 Incompressible flow.

5 Internal energy and pressure uniform across sections and .

Under these assumptions the energy equation reduces to

Q=m u2−u1 +m
p2

ρ
−
p1

ρ
+mg z2−z1

+
A2

V2
2

2
ρV2 dA2−

A1

V2
1

2
ρV1 dA1

8 25

CV
g

z

y

x

2

1

Flow

Fig. 8.12 Control volume and coordinates for energy
analysis of flow through a 90 reducing elbow.
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Note that we have not assumed the velocity to be uniform at sections and , since we know that for

viscous flows the velocity at a cross-section cannot be uniform. However, it is convenient to introduce

the average velocity into Eq. 8.25 so that we can eliminate the integrals. To do this, we define a kinetic

energy coefficient to account for the effect of the variation in velocity on the kinetic energy of the flow.

Kinetic Energy Coefficient

The kinetic energy coefficient, α, is defined such that the product of the coefficient and the kinetic energy

based on the average velocity equals the actual kinetic energy.

A

V2

2
ρV dA= α

A

V
2

2
ρVdA= αm

V
2

2
8 26a

or

α= A

ρV3dA

mV
2

8 26b

We can think of α as a correction factor that allows us to use the average velocity V in the energy equa-

tion to compute the kinetic energy at a cross section.

For laminar flow in a pipe (velocity profile given by Eq. 8.12), α=2 0.

In turbulent pipe flow, the velocity profile is quite flat, as shown in Fig. 8.11. We can use Eq. 8.26b

together with Eqs. 8.22 and 8.24 to determine α. Substituting the power-law velocity profile of Eq. 8.22

into Eq. 8.26b, we obtain

α=
U

V

3
2n2

3+ n 3+ 2n
8 27

Equation 8.24 gives V U as a function of the power-law exponent n; combining this with Eq. 8.27 leads

to a fairly complicated expression in n. The overall result is that in the realistic range of n, from n=6 to

n=10 for high Reynolds numbers, α varies from 1.08 to 1.03; for the one-seventh power profile n=7 ,

α=1 06. Because α is reasonably close to unity for high Reynolds numbers, and because the change in

kinetic energy is usually small compared with the dominant terms in the energy equation,we shall almost

always use the approximation α=1 in our pipe flow calculations.

Head Loss

Using the definition of α, the energy equation (Eq. 8.25) can be written

Q =m u2−u1 +m
p2

ρ
−
p1

ρ
+mg z2−z1 + m

α2V
2

2

2
−
α1V

2

1

2

Dividing by the mass flow rate gives

δQ

dm
= u2−u1 +

p2

ρ
−
p1

ρ
+ gz2−gz1 +

α2V
2

2

2
−
α1V

2

1

2

Rearranging this equation, we write

p1

ρ
+ α1

V
2

1

2
+ gz1 −

p2

ρ
+ α2

V
2

2

2
+ gz2 = u2−u1 −

δQ

dm
8 28

In Eq. 8.28, the term

p

ρ
+ α

V
2

2
+ gz
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represents the mechanical energy per unit mass at a cross section. Compare it to the EGL expression,

Eq. 6.16b, for computing “mechanical” energy, which we discussed at the beginning of this section. The

differences are that in the EGL we divide by g to obtain the EGL in units of feet or meters, and here αV
2

allows for the fact that in a pipe flow we have a velocity profile, not a uniform flow.

The term u2−u1−δQ dm is equal to the difference in mechanical energy per unit mass between

sections and . It represents the (irreversible) conversion of mechanical energy at section to

unwanted thermal energy u2−u1 and loss of energy via heat transfer −δQ dm . We identify this

group of terms as the total energy loss per unit mass and designate it by the symbol hlT . The dimensions

of energy per unit mass FL M are equivalent to dimensions of L2 t2. Then

p1

ρ
+ α1

V
2

1

2
+ gz1 −

p2

ρ
+ α2

V
2

2

2
+ gz2 = hlT 8 29

Equation 8.29 is one of the most important and useful equations in fluid mechanics. It enables us to

compute the loss of mechanical energy caused by friction between two sections of a pipe. Now,

with friction, Eq. 8.29 indicates that the pressure will change even for a constant-area horizontal

pipe—mechanical energy will be continuously changed into thermal energy.

As the empirical science of hydraulics developed during the 19th century, it was common practice

to express the energy balance in terms of energy per unit weight of flowing liquid (e.g., water) rather

than energy per unit mass, as in Eq. 8.29. When Eq. 8.29 is divided by the acceleration of gravity,

g, we obtain

p1

ρg
+ α1

V
2

1

2g
+ z1 −

p2

ρg
+ α2

V
2

2

2g
+ z2 =

hlT
g

=HlT 8 30

Each term in Eq. 8.30 has dimensions of energy per unit weight of flowing fluid. Then the net dimensions

ofHlT = hlT g are L2 t2 t2 L = L, or feet of flowing liquid. Since the term head loss is in common use,

we shall use it when referring to either HlT (with dimensions of energy per unit weight or length) or

hlT = gHlT (with dimensions of energy per unit mass).

Equation 8.29 (or Eq. 8.30) can be used to calculate the pressure difference between any two points

in a piping system, provided the head loss, hlT (orHlT ), can be determined. We shall consider calculation

of head loss in the next section.

8.7 Calculation of Head Loss
Total head loss, hlT , is regarded as the sum of major losses, hl, due to frictional effects in fully developed

flow in constant-area tubes, and minor losses, hlm , resulting from entrances, fittings, area changes, and

so on. Consequently, we consider the major and minor losses separately.

Major Losses: Friction Factor

The energy balance, expressed by Eq. 8.29, can be used to evaluate the major head loss. For fully devel-

oped flow through a constant-area pipe, Eq. 8.29 reduces to

p1−p2

ρ
= g z2−z1 + hl 8 31

If the pipe is horizontal, then z2 = z1 and

p1−p2

ρ
=
Δp

ρ
= hl 8 32
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Thus the major head loss can be expressed as the pressure loss for fully developed flow through a hor-

izontal pipe of constant area.

a. Laminar Flow
In laminar flow, we saw in Section 8.3 that the pressure drop may be computed analytically for fully

developed flow in a horizontal pipe. Thus, from Eq. 8.13c,

Δp=
128μLQ

πD4
=
128μLV πD2 4

πD4
=32

L

D

μV

D

Substituting in Eq. 8.32 gives

hl =32
L

D

μV

ρD
=

L

D

V
2

2
64

μ

ρVD
=

64

Re

L

D

V
2

2
8 33

We shall see the reason for writing hl in this form shortly.

b. Turbulent Flow
In turbulent flow we cannot evaluate the pressure drop analytically; we must resort to experimental

results and use dimensional analysis to correlate the experimental data. In fully developed turbulent flow,

the pressure drop, Δp, caused by friction in a horizontal constant-area pipe is known to depend on pipe

diameter, D, pipe length, L, pipe roughness, e, average flow velocity, V , fluid density, ρ, and fluid vis-

cosity, μ. In functional form

Δp=Δp D, L, e, V , ρ, μ

Weapplied dimensional analysis to this problem inExample 7.2. The resultswere a correlation of the form

Δp

ρV
2
= f

μ

ρVD
,
L

D
,
e

D

We recognize that μ ρVD=1 Re, so we can write

Δp

ρV
2
=ϕ Re,

L

D
,
e

D

Substituting from Eq. 8.32, we see that

hl

V
2
=ϕ Re,

L

D
,
e

D

Although dimensional analysis predicts the functional relationship, we must obtain actual values

experimentally. Experiments show that the nondimensional head loss is directly proportional to L D.

Hence we can write

hl

V
2
=

L

D
ϕ1 Re,

e

D

By convention the number 1
2
is introduced into the denominator so that the left side of the equation is the

ratio of the head loss to the kinetic energy per unit mass of flow. Then

hl
1
2
V

2
=

L

D
ϕ2 Re,

e

D

The unknown function, ϕ2 Re, e D , is defined as the friction factor, f ,

f ≡ϕ2 Re,
e

D
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Using the friction factor

hl = f
L

D

V
2

2
8 34

or

Hl = f
L

D

V
2

2g
8 35

The relation between the friction factor and Reynolds number is shown in Fig. 8.13. Figure 8.13 is

known as the Moody diagram after L. F. Moody who first presented the data in this fashion [8].

The friction factor taken from Fig. 8.13 is generally considered to be accurate to about 10%. The friction

factor defined by Eq. 8.34 is the Darcy friction factor. The Fanning friction factor, less frequently used,

is defined in terms of the wall shear stress. The Darcy friction factor is four times the Fanning friction

factor.

To determine head loss for fully developed flow with known conditions, the Reynolds number is

evaluated first. Roughness, e, is obtained from data such as in Table 8.1. Then the friction factor, f , can

be read from the appropriate curve in Fig. 8.13, at the known values of Re and e D. Finally, head loss can

be found using Eq. 8.34 or Eq. 8.35.
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Fig. 8.13 Friction factor for fully developed flow in circular pipes. (Data from Moody [6].)
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All of the e values given in Table 8.1 are for new pipes in relatively good condition. Over

long periods of service, corrosion takes place and, particularly in hard water areas, lime deposits and

rust scale form on pipe walls. Deposit formation increases wall roughness appreciably, and also

decreases the effective diameter. These factors combine to cause e D to increase by factors of 5 to

10 for old pipes. An example is shown in Fig. 8.14.

Several features of Fig. 8.13 require discussion. The friction factor for laminar flow may be

obtained by comparing Eqs. 8.33 and 8.34:

hl =
64

Re

L

D

V
2

2
= f

L

D

V
2

2

Consequently, for laminar flow

flaminar =
64

Re
8 36

Thus, in laminar flow, the friction factor is a function of Reynolds number only; it is independent of

roughness. Although we took no notice of roughness in deriving Eq. 8.33, experimental results verify

that the friction factor is a function only of Reynolds number in laminar flow.

As the Reynolds number is increased above the transition value, the velocity profile continues to

become fuller, as noted in Section 8.5. For values of relative roughness e D≤ 0 001, the friction factor at

first tends to follow the smooth pipe curve, along which friction factor is a function of Reynolds number

only. However, as the Reynolds number increases, the velocity profile becomes still fuller. The size of

the thin viscous sublayer near the tube wall decreases. As roughness elements begin to poke through this

layer, the effect of roughness becomes important, and the friction factor becomes a function of both the

Reynolds number and the relative roughness.

At very large Reynolds number, most of the roughness elements on the tube wall protrude through

the viscous sublayer. The drag and, hence, the pressure loss, depend only on the size of the roughness

elements. This is termed the “fully rough” flow regime; the friction factor depends only on e D in this

regime.

To summarize the preceding discussion, we see that as Reynolds number is increased, the friction

factor decreases as long as the flow remains laminar. At transition, f increases sharply. In the turbulent

Table 8.1
Roughness for Pipes of Common Engineering Materials

Pipe
Roughness, e

Feet Millimeters

Riveted steel 0.003–0.03 0.9–9

Concrete 0.001–0.01 0.3–3

Wood stave 0.0006–0.003 0.2–0.9

Cast iron 0.00085 0.26

Galvanized iron or steel 0.0005 0.15

Asphalted or internally coated cast iron 0.0004 0.12

Galvanized steel ductwork 0.00015–0.00035 0.05–0.10

Aluminum ductwork 0.00015–0.0002 0.04–0.06

Commercial steel or wrought iron 0.00015 0.046

Commercially smooth brass, copper, or

plastic pipe

0.000005 0.0015

Source: Data from Moody [6].
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flow regime, the friction factor decreases gradually as Reynolds number increases and levels out at a

constant value depending on the relative roughness.

Empirical correlations have been fit to the data. The most widely used formula for friction factor is

from Colebrook [7]

1

f
= −2 0 log

e D

3 7
+

2 51

Re f
8 37a

Equation 8.37a is implicit in f , and usually requires either iteration of an equation solver to find f.

Haaland [27] developed the following equation,

1

f
= −1 8 log

e D

3 7

1 11

+
6 9

Re
8 37b

as an approximation to the Colebrook equation. For Re>3000, it gives results within about 2 percent of

the Colebrook equation, without the need to iterate.

For turbulent flow in smooth pipes, the Blasius correlation, valid for Re≤ 105, is

f =
0 316

Re0 25
8 38

For Re> 105, the following relation for smooth pipes is found to be accurate (modified from [26])

f =
0 184

Re0 2
8 39
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Fig. 8.14 Pipe section removed after 40 years of service as a water line showing formation of scale.
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Minor Losses

A piping system typically has a variety of fittings, bends, or abrupt changes in area. Additional head

losses are encountered, primarily as a result of flow separation. Energy eventually is dissipated by vio-

lent mixing in the separated zones. These are termed minor losses even though they may be larger than

the pipe friction loss, especially for short pipes. Minor losses are computed as

hlm =K
V

2

2
8 40

where the loss coefficient, K, is determined usually experimentally or sometimes with CFD software for

each situation. For flow through pipe bends and fittings, the loss coefficient,K, is found to vary with pipe

size (diameter) in much the same manner as the friction factor, f , for flow through a straight pipe. The

ASHRAE Handbook—Fundamentals [9] and websites such as The Engineering Toolbox [22] provide a

wealth of data on fitting loss coefficients. The data presented here should be considered as representative

for some commonly encountered situations.

a. Inlets and Exits
A poorly designed inlet to a pipe can cause appreciable head loss. If the inlet has sharp corners, flow

separation occurs at the corners, and a vena contracta is formed. The fluid must accelerate locally to

pass through the reduced flow area at the vena contracta. Losses in mechanical energy result from

the unconfined mixing as the flow stream decelerates again to fill the pipe. Three basic inlet geometries

are shown in Table 8.2. From the table it is clear that the loss coefficient is reduced significantly when the

inlet is rounded even slightly. For a well-rounded inlet r D≥ 0 15 the entrance loss coefficient is

almost negligible. Example 8.9 illustrates a procedure for experimentally determining the loss coeffi-

cient for a pipe inlet.

Thekinetic energyper unitmass is completely dissipatedbymixingwhen flowdischarges fromaduct

into a large reservoir or plenum chamber. The situation corresponds to flow through an abrupt expansion

with AR=0 (Fig. 8.15). The minor loss coefficient thus equals 1 for turbulent flow. However, the

addition of a diffuser can reduce hlm considerably (see Example 8.10).

b. Enlargements and Contractions
Minor loss coefficients for sudden expansions and contractions in circular ducts are given in Fig. 8.15.

Note that both loss coefficients are based on the larger value of velocity. Thus losses for a sudden

expansion are based on V
2

1 2, and those for a contraction are based on V
2

2 2.

Losses caused by area change can be reduced by installing a gradual expansion or contraction

between the two sections of straight pipe. Data for contractions are given in Table 8.3. Note that the

final column for the included angle θ=180∘ agrees with the data of Fig. 8.15.

Losses in diffusers depend on a number of geometric and flow variables. Diffuser data most com-

monly are presented in terms of a pressure recovery coefficient, Cp, defined as the ratio of static pressure

rise to inlet dynamic pressure,

Cp≡
p2−p1
1
2
ρV

2

1

8 41

This shows what fraction of the inlet kinetic energy shows up as a pressure rise. The ideal

(frictionless) pressure recovery coefficient is given by

Cpi =1−
1

AR2
8 42
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where AR is the area ratio. Hence, the ideal pressure recovery coefficient is a function only of the area

ratio. In reality a diffuser typically has turbulent flow, and the static pressure rise in the direction of flow

may cause flow separation from the walls if the diffuser is poorly designed; flow pulsations can even

occur. For these reasons the actual Cp will be somewhat less than indicated by Eq. 8.42. Data for conical

diffusers with fully developed turbulent pipe flow at the inlet are presented in Fig. 8.16 as a function of

geometry. Note that more tapered diffusers (small divergence angle ϕ or large dimensionless length

N R1) are more likely to approach the ideal constant value for Cp. We can relate the actual Cp to the

head loss. If gravity is neglected, and α1 = α2 =1 0, the head loss equation, Eq. 8.29, reduces to

Table 8.2
Minor Loss Coefficients for Pipe Entrances

Entrance Type Minor Loss Coefficient, K a

r
D

Reentrant

Square-edged

Rounded

0 5 – 1 0

(depending on length of pipe entrance)

0 5

r D 0 02 0 06 ≥ 0 15

K 0 3 0 2 0 04

aBased on hlm =K V
2
2 , where V is the mean velocity in the pipe.

Source: Data from Reference [9].
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Fig. 8.15 Loss coefficients for flow through sudden area changes. (Data from Streeter [1].)

Table 8.3
Loss Coefficients K for Gradual Contractions: Round and Rectangular Ducts

Included Angle, θ, Degrees

A2 A1 10 15 – 40 50 – 60 90 120 150 180

0 50 0 05 0 05 0 06 0 12 0 18 0 24 0 26

0 25 0 05 0 04 0 07 0 17 0 27 0 35 0 41

0 10 0 05 0 05 0 08 0 19 0 29 0 37 0 43

Note: Coefficients are based on hlm =K V
2

2 2 .

Source: Data from ASHRAE [9].
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p1

ρ
+
V

2

1

2
−

p2

ρ
+
V

2

2

2
= hlT = hlm

Thus,

hlm =
V

2

1

2
−
V

2

2

2
−
p2−p1

ρ

hlm =
V

2

1

2
1−

V
2

2

V
2

1

−
p2−p1
1

2
ρV

2

1

=
V

2

1

2
1−

V
2

2

V
2

1

−Cp

From continuity, A1V 1 =A2V 2, so

hlm =
V

2

1

2
1−

A1

A2

2

−Cp

or

hlm =
V

2

1

2
1−

1

AR
2

−Cp 8 43

The frictionless result (Eq. 8.42) is obtained from Eq. 8.43 if hlm =0.We can combine Eqs. 8.42 and 8.43

to obtain an expression for the head loss in terms of the actual and ideal Cp values:

hlm = Cpi −Cp

V
2

1

2
8 44

Flow

R1

N
p1 p2

AR = (1 +      tan ϕ)2N___
R1
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Fig. 8.16 Pressure recovery for conical diffusers with fully developed turbulent pipe flow at inlet. (Data from Cockrell and
Bradley [10].)
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Diffuser pressure recovery is essentially independent of Reynolds number for inlet Reynolds num-

bers greater than 7 5× 104 [11]. Diffuser pressure recovery with uniform inlet flow is somewhat better

than that for fully developed inlet flow. Performance maps for plane wall, conical, and annular diffusers

for a variety of inlet flow conditions are presented in [12], [14], and [15].

Since static pressure rises in the direction of flow in a diffuser, flowmay separate from the walls. For

some geometries, the outlet flow is distorted. For wide angle diffusers, vanes or splitters can be used to

suppress stall and improve pressure recovery [13].

c. Pipe Bends
The head loss of a bend is larger than for fully developed flow through a straight section of equal length.

The additional loss is primarily the result of secondary flow. The loss coefficients for bends of different

construction, geometry, and angle are given in Table 8.4. Because they are simple and inexpensive to

construct in the field, miter bends often are used in large pipe systems. Miter bends often have turning

vanes installed inside them, and, as shown in Table 8.4, the loss is reduced significantly. Bends and

fittings in a piping system may have threaded, flanged, or welded connections. For small diameters,

threaded joints are most common; large pipe systems frequently have flanged or welded joints.

d. Valves and Fittings
Losses for flow through valves and fittings are also expressed in terms of a loss coefficient. Some rep-

resentative values are given in Table 8.4.

The resistance for fully open valves is low, but losses increase markedly when valves are partially

open. Valve design varies significantly among manufacturers. Whenever possible, loss coefficients

furnished by the valve supplier should be used if accurate results are needed.

The values in Table 8.4 are typical, but the loss coefficient for a given pipe fitting depends on the

pipe size. In general, the loss coefficient for larger pipe diameters is smaller than that for smaller pipes,

and the difference can be as large as a factor of two. The velocity of the fluid has a minor effect, but

in general, the loss coefficients are higher for higher velocities than for lower velocities. Further, loss

coefficients for fittings and valves may be considerably different from the tabulated values depending

on the care used in fabricating and assembling a system. In sizing a pump or fan to meet a given head

loss for a piping or duct system, it is common to oversize slightly to account for the uncertainty and

variation in the actual value of the pipe and fitting loss coefficients. Reference [12] provides loss

coefficients for a wide range of fittings.

Table 8.4
Representative Loss Coefficients for Fittings and Valves

Fitting Geometry K Fitting Geometry K

90 elbow Flanged regular 0.3 Globe valve Open 10

Flanged long radius 0.2 Angle valve Open 5

Threaded regular 1.5 Gate valve Open 0.20

Threaded long radius 0.7 75% open 1.10

Miter 1.30 50% open 3.6

Miter with vanes 0.20 25% open 28.8

45 Elbow Threaded regular 0.4 Ball valve Open 0.5

Flanged long radius 0.2 1/3 closed 5.5

Tee, Straight through flow Threaded 0.9 2/3 closed 200

Flanged 0.2 Water meter 7

Tee, branching Threaded 2.0 Coupling 0.08

flow Flanged 1.0

Source: Data from References [9] and [21]
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Pumps, Fans, and Blowers in Fluid Systems

In many practical flow situations (e.g., the cooling system of an automobile engine, the HVAC system of

a building), the driving force for maintaining the flow against friction is a pump for liquids or a fan or

blower for gases. Here we will consider pumps, although all the results apply equally to fans and

blowers. We generally neglect heat transfer and internal energy changes of the fluid and incorporate

them later into the definition of the pump efficiency, so the first law of thermodynamics applied across

the pump is

Wpump =m
p

ρ
+
V

2

2
+ gz

discharge

−
p

ρ
+
V

2

2
+ gz

suction

We can also compute the head Δhpump (energy/mass) produced by the pump,

Δhpump =
Wpump

m
=

p

ρ
+
V

2

2
+ gz

discharge

−
p

ρ
+
V

2

2
+ gz

suction

8 45

In many cases the inlet and outlet diameters (and therefore velocities) and elevations are the same or

negligibly different, so Eq. 8.45 simplifies to

Δhpump =
Δppump

ρ
8 46

The idea is that in a pump-pipe system the head produced by the pump (Eq. 8.45 or 8.46) is needed

to overcome the head loss for the pipe system. Hence, the flow rate in such a system depends on the pump

characteristics and the major and minor losses of the pipe system. We will learn in Chapter 10 that the

head produced by a given pump is not constant, but varies with flow rate through the pump, leading to

the notion of “matching” a pump to a given system to achieve the desired flow rate.

A useful relation is obtained from Eq. 8.46 if we multiply by m= ρQ, where Q is the volume flow

rate, and recall that mΔhpump is the power supplied to the fluid,

Wpump =QΔppump 8 47

We can also define the pump efficiency:

η=
Wpump

W in

8 48

whereWpump is the power reaching the fluid, andW in is the power input (usually electrical) to the pump.

When applying the energy equation (Eq. 8.29) to a pipe system, we may include the pump in the

system. For these cases we can simply include the head of the pump as a “negative loss”: since it a

positive energy gain for the flow.

p1

ρ
+ α1

V
2

1

2
+ gz1 −

p2

ρ
+ α2

V
2

2

2
+ gz2 = hlT −Δhpump 8 49

Noncircular Ducts

The empirical correlations for turbulent pipe flow also may be used for losses involving noncir-

cular ducts, by introducing the hydraulic diameter, provided their cross sections are not too

exaggerated.
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The hydraulic diameter is defined as

Dh≡
4A

P
8 50

whereDh is used in place of the diameter,D. In Eq. 8.50, A is cross-sectional area, and P is wetted perim-

eter, the length of wall in contact with the flowing fluid at any cross section. The factor 4 is introduced so

that the hydraulic diameter will equal the duct diameter for a circular cross section. For a circular duct,

A= πD2 4 and P= πD, so that

Dh =
4A

P
=
4

π

4
D2

πD
=D

For a rectangular duct of width b and height h, A= bh and P=2 b+ h , so

Dh =
4bh

2 b+ h

If the aspect ratio, ar, is defined as ar= h b, then

Dh =
2h

1+ ar

for rectangular ducts. For a square duct, ar=1 and Dh = h.

The hydraulic diameter concept can be applied in the approximate range 1
4
< ar <4. Under

these conditions, the turbulent correlations for pipe flow give acceptably accurate results for rectangu-

lar ducts. Since such ducts are easy and cheap to fabricate from sheet metal, they are commonly used

in air conditioning, heating, and ventilating applications. Extensive data on losses for air flow are

available (e.g., see [9, 14]).

Losses caused by secondary flows increase rapidly for more extreme geometries, so the correlations

are not applicable to wide, flat ducts, or to ducts of triangular or other irregular shapes. Experimental data

must be used when precise design information is required for specific situations.

8.8 Solution of Pipe Flow Problems
Section 8.7 provides us with a complete scheme for solving many different pipe flow problems. For

convenience we collect together the relevant computing equations.

The energy equation, relating the conditions at any two points 1 and 2 for a single-path pipe

system, is

p1

ρ
+ α1

V
2

1

2
+ gz1 −

p2

ρ
+α2

V
2

2

2
+ gz2 = hlT = hl + hlm 8 29

This equation expresses the fact that there will be a loss of mechanical energy (“pressure,” kinetic and/or

potential) in the pipe. Recall that for turbulent flows α≈1. Note that by judicious choice of points 1 and 2

we can analyze not only the entire pipe system, but also just a certain section of it that we may be inter-

ested in. The total head loss is given by the sum of the major and minor losses. (Remember that we can

also include “negative losses” for any pumps present between points 1 and 2. The relevant form of the

energy equation is then Eq. 8.49.)
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Each major loss is given by

hl = f
L

D

V
2

2
8 34

where the friction factor is obtained from

f =
64

Re
for laminar flow Re<2300 8 36

or

1

f
= −2 0 log

e D

3 7
+

2 51

Re f
for turbulent flow Re≥ 2300 8 37

and Eqs. 8.36 and 8.37 are presented graphically in the Moody chart (Fig. 8.13).

Each minor loss is given by

hlm =K
V

2

2
8 40

We also note that the flow rate Q is related to the average velocity V at each pipe cross section by

Q= π
D2

4
V

We will apply these equations first to single-path systems.

Single-Path Systems

In single-path pipe problems we generally know the system configuration (type of pipe material and

hence pipe roughness, the number and type of elbows, valves, and other fittings, and changes of

elevation), as well as the fluid (ρ and μ) we will be working with. Although not the only possibilities,

usually the goal is to determine one of the following values:

(a) The pressure drop Δp, for a given pipe (L and D), and flow rate Q.

(b) The pipe length L, for a given pressure drop Δp, pipe diameter D, and flow rate Q.

(c) The flow rate Q, for a given pipe (L and D), and pressure drop Δp.

(d) The pipe diameter D, for a given pipe length L, pressure drop Δp, and flow rate Q.

Each of these cases often arises in real-world situations. For example, case (a) is a necessary step in

selecting the correct size pump to maintain the desired flow rate in a system—the pump must be able

to produce the system Δp at the specified flow rate Q. Cases (a) and (b) are computationally straight-

forward but cases (c) and (d) are more complicated. We will discuss each case, and present an example

for each.

The examples present solutions as you might do them using a calculator, but there is also an Excel

workbook for each. The course website has an Excel add-in that once installed will automatically

compute f from Re and e D The advantage of using a computer application such as an equation solver

or a spreadsheet is that the friction factors can be directly obtained and iteration can be efficiently per-

formed. Finally, we can ask “what-if” questions such as if we double the head produced by a pump, how

much will the flow rate in a given system increase?
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a. Find Δp for a Given L, D, and Q
These types of problems are quite straightforward—the energy equation (Eq. 8.29) can be solved directly

forΔp= p1−p2 in terms of known or computable quantities. The flow rate leads to the Reynolds num-

ber and hence the friction factor for the flow; tabulated data can be used for minor loss coefficients. The

energy equation can then be used to directly obtain the pressure drop. Example 8.5 illustrates this type of

problem.

b. Find L for a Given Δp, D, and Q
These types of problems are also straightforward—the energy equation (Eq. 8.29) can be solved directly

for L in terms of known or computable quantities. The flow rate again leads to the Reynolds number and

hence the friction factor for the flow. Tabulated data can be used for minor loss coefficients. The energy

equation can then be rearranged and solved directly for the pipe length. Example 8.6 illustrates this type

of problem.

c. Find Q for a Given Δp, L, and D
These types of problems require either manual iteration or use of a computer application. The unknown

flow rate or velocity is needed before the Reynolds number and hence the friction factor can be found. To

manually iterate we first solve the energy equation directly for V in terms of known quantities and the

unknown friction factor f . To start the iterative process we make a reasonable guess for f . Then we can

compute a Reynolds number and hence obtain a new value for f . We repeat the iteration process

f V Re f until convergence (usually only two or three iterations are necessary). Example 8.7

illustrates this type of problem.

d. Find D for a Given Δp, L, and Q
These types of problems arise, for example, when we have designed a pump-pipe system and wish to

choose the best pipe diameter—the best being the minimum diameter (for minimum pipe cost) that will

deliver the design flow rate. As with case c, we need to manually iterate or use a computer application.

The unknown diameter is needed before the Reynolds number and relative roughness, and hence the

friction factor, can be found. To manually find a solution we make successive guesses for D until

the corresponding pressure drop Δp computed from the energy equation matches the design Δp.

Example 8.8 illustrates this type of problem.

In choosing a pipe size, it is logical to work with diameters that are available commercially. Pipe is

manufactured in a limited number of standard sizes. Some data for standard pipe sizes are given in

Table 8.5. For data on extra strong or double extra strong pipes, consult a handbook, e.g., [8] and

[22]. Pipe larger than 12 in. nominal diameter is produced in multiples of 2 in. up to a nominal diameter

of 36 in. and in multiples of 6 in. for still larger sizes.

Table 8.5
Standard Sizes for Carbon Steel, Alloy Steel, and Stainless Steel Pipe

Nominal Pipe Size (in.) Inside Diameter (in.) Nominal Pipe Size (in.) Inside Diameter (in.)

1
8

0 269 21
2

2 469
1
4

0 364 3 3 068
3
8

0 493 4 4 026
1
2

0 622 5 5 047
3
4

0 824 6 6 065

1 1 049 8 7 981

11
2

1 610 10 10 020

2 2 067 12 12 000

a
Source: Data from References [8] and [22].
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We have solved Examples 8.7 and 8.8 by iteration. Several specialized forms of friction factor

versus Reynolds number diagrams are available to solve problems of this type without the

need for iteration. For examples of these specialized diagrams, see Daily and Harleman [15] and

White [16].

Examples 8.9 and 8.10 illustrate the evaluation of minor loss coefficients and the application of a

diffuser to reduce exit kinetic energy from a flow system.

Example 8.5 PIPE FLOW INTO A RESERVOIR: PRESSURE DROP UNKNOWN (CASE A)

A 100-m length of smooth horizontal pipe is attached to a large reservoir. A pump is attached to the end of the pipe to pump water

into the reservoir at a volume flow rate of 0 01 m3 s. What pressure must the pump produce at the pipe to generate this flow rate?

The inside diameter of the smooth pipe is 75 mm.

Given: Water is pumped at 0 01 m3 s through a 75-mm-diameter smooth pipe, with L=100 m, into a constant-level reservoir

of depth d=10 m.

Find: Pump pressure, p1, required to maintain the flow.

Solution:

Governing equations:

p1

ρ
+ α1

V
2

1

2
+ gz1 −

p2

ρ
+ α2

V
2

2

2
+ gz2 = hlT = hl + hlm

8 29

where

hl = f
L

D

V
2

2
8 34 and hlm =K

V
2

2
8 40a

For the given problem, p1 = ppump and p2 =0 gage , so Δp= p1−p2 = ppump, V 1 =V , V 2≈0, K exit loss = 1 0, and α1≈1 0.

If we set z1 =0, then z2 = d. Simplifying Eq. 8.29 gives

Δp

ρ
+
V

2

2
−gd= f

L

D

V
2

2
+
V

2

2
1

The left side of the equation is the loss of mechanical energy between points and ; the right side is the major and minor

losses that contributed to the loss. Solving for the pressure drop, Δp= ppump,

ppump =Δp= ρ gd+ f
L

D

V
2

2

Everything on the right side of the equation is known or can be readily computed. The flow rate Q leads to V ,

V =
Q

A
=

4Q

πD2
=
4

π
×0 01

m3

s
×

1

0 075
2
m2

=2 26 m s

d = 10 m

z

L = 100 m

Pump

D = 75 mm

CV

2

1
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This in turn [assuming water at 20 C, ρ=999 kg m3, and μ=1 0× 10−3 kg m s ] leads to the Reynolds number

Re=
ρVD

μ
=999

kg

m3
×2 26

m

s
× 0 075 m×

m s

1 0× 10−3kg
= 1 70× 105

For turbulent flow in a smooth pipe e=0 , from Eq. 8.37, f =0 0162. Then

ppump =Δp= ρ gd+ f
L

D

V
2

2

= 999
kg

m3
9 81

m

s2
×10 m+ 0 0162 ×

100 m

0 075 m
×

2 26
2
m2

2 s2
×

N s2

kg m

ppump =1 53× 105 N m2 gage

Hence,

ppump =153 kPa gage
ppump

This problem illustrates the method for
manually calculating pressure drop.

The Excelworkbook for this problem
automatically computes Re and f

from the given data. It then solves Eq. 1
directly for pressure ppump without having
to explicitly solve for it first.

Example 8.6 FLOW IN A PIPELINE: LENGTH UNKNOWN (CASE B)

Crude oil flows through a level section of the Alaskan pipeline at a rate of 1.6 million barrels per day 1 barrel = 42 gal . The pipe

inside diameter is 48 in.; its roughness is equivalent to galvanized iron. The maximum allowable pressure is 1200 psi; the min-

imum pressure required to keep dissolved gases in solution in the crude oil is 50 psi. The crude oil has SG=0 93; its viscosity

at the pumping temperature of 140 F is μ=3 5× 10−4 lbf s ft2. For these conditions, determine the maximum possible

spacing between pumping stations. If the pump efficiency is 85 percent, determine the power that must be supplied at each

pumping station.

Given: Flow of crude oil through horizontal section of Alaskan pipeline.

D=48 in (roughness of galvanized iron),

SG=0 93, μ=3 5× 10−4 lbf s ft2

Find: (a) Maximum spacing, L.

(b) Power needed at each pump station.

Solution: As shown in the figure, we assume

that the Alaskan pipeline is made up of repeating

pump-pipe sections. We can draw two control

volumes: CV1, for the pipe flow (state to state ); CV2, for the pump (state to state ).

First we apply the energy equation for steady, incompressible pipe flow to CV1.

Governing equations:

p2

ρ
+ α2

V
2

2

2
+ gz2 −

p1

ρ
+ α1

V
2

1

2
+ gz1 = hlT = hl + hlm 8 29

where

hl = f
L

D

V
2

2
8 34 and hlm =K

V
2

2
8 40a

1
2 1

CV1

L

p1 50 psigp2 1200 psig

Q = 1.6 Mbpd
CV2

p = 0.85η
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Assumptions:

1 α1V
2
1 = α2V

2
2.

2 Horizontal pipe, z1 = z2.

3 Neglect minor losses.

4 Constant viscosity.

Then, using CV1

Δp= p2−p1 = f
L

D
ρ
V

2

2
1

or

L=
2D

f

Δp

ρV
2
where f = f Re,e D

Q=1 6× 106
bbl

day
× 42

gal

bbl
×

ft3

7 48 gal
×

day

24 hr
×

hr

3600 s
= 104 ft3 s

so

V =
Q

A
=104

ft3

s
×

4

π 4
2
ft2

=8 27 ft s

Re=
ρVD

μ
= 0 93 1 94

slug

ft3
×8 27

ft

s
× 4 ft ×

ft2

3 5× 10−4 lbf s
×

lbf s2

slug ft

Re=1 71× 105

From Table 8.1, e=0 0005 ft and hence e D=0 00012. Then from Eq. 8.37, f =0 017 and thus

L=
2

0 017
× 4 ft × 1200−50

lbf

in 2
×

ft3

0 93 1 94 slug
×

s2

8 27
2
ft2

×144
in 2

ft2
×
slug ft

lbf s2
=6 32× 105ft

L=632 000 ft 120 mi
L

To find the pumping power we can apply the first law of thermodynamics to CV2. This control volume consists only of the

pump, and we saw in Section 8.7 that this law simplifies to

Wpump =QΔppump 8 47

and the pump efficiency is

η=
Wpump

W in

8 48

We recall thatWpump is the power reaching the fluid, andW in is the power input. Because we have a repeating system the pressure

rise through the pump (i.e., from state to state ) equals the pressure drop in the pipe (i.e., from state to state ),

Δppump =Δp
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so that

Wpump =QΔppump =104
ft3

s
×

1200−50 lbf

in 2
×
144 in 2

ft2

×
hp s

550 ft lbf
≈31 300 hp

and the required power input is

W in =
Wpump

η
=
31300 hp

0 85
= 36 800 hp

Wneeded

This problem illustrates the method for
manually calculating pipe length L.

The Excelworkbook for this problem
automatically computes Re and f

from the given data. It then solves Eq. 1
directly for L without having to explicitly
solve for it first.

Example 8.7 FLOW FROM A WATER TOWER: FLOW RATE UNKNOWN (CASE C.)

A fire protection system is supplied from a water tower and standpipe 80 ft tall. The longest pipe in the system is 600 ft and is

made of cast iron about 20 years old. The pipe contains one gate valve; other minor losses may be neglected. The pipe diameter is

4 in. Determine the maximum rate of flow (gpm) through this pipe.

Given: Fire protection system, as shown.

Find: Q, gpm.

Solution:

Governing equations:

≈0 2

p1

ρ
+ α1

V
2

1

2
+ gz1 −

p2

ρ
+ α2

V
2

2

2
+ gz2 = hlT = hl + hlm 8 29

where

hl = f
L

D

V
2

2
8 34 and hlm = f

Le

D

V
2

2
8 40b

Assumptions:

1 p1 =p2 =patm

2 V 1 =0, and α2 1 0.

Then Eq. 8.29 can be written as

g z1−z2 −
V

2

2

2
= hlT = f

L

D
+
Le

D

V
2

2

2
1

For a fully open gate valve, from Table 8.4, Le D=8. Thus

g z1−z2 =
V

2

2

2
f

L

D
+8 +1

1

2

CV Gate valve

Q

z

D = 4 in.
h = 80 ft

Lpipe = 600 ft
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To manually iterate, we solve for V 2 and obtain

V 2 =
2g z1−z2

f L D+8 +1

1 2

2

To be conservative, assume the standpipe is the same diameter as the horizontal pipe. Then

L

D
=
600 ft + 80 ft

4 in
×
12 in

ft
= 2040

Also

z1−z2 = h=80 ft

To solve Eq. 2 manually we need to iterate. To start, we make an estimate for f by assuming the flow is fully turbulent (where f is

constant). This value can be obtained from solving Eq. 8.37 using a calculator or from Fig. 8.13. For a large value of Re (e.g., 108),

and a roughness ratio e D≈0 005 (e=0 00085 ft for cast iron is obtained from Table 8.1, and doubled to allow for the fact that

the pipe is old), we find that f ≈0 03. Thus a first iteration for V 2 from Eq. 2 is

V 2 = 2×32 2
ft

s2
×80 ft ×

1

0 03 2040+ 8 + 1

1 2

=9 08 ft s

Now obtain a new value for f :

Re=
ρVD

μ
=
VD

ν
=9 08

ft

s
×
ft

3
×

s

1 21× 10−5 ft2
=2 50× 105

For e D=0 005, f =0 0308 from Eq. 8.37. Thus we obtain

V 2 = 2× 32 2
ft

s2
×80 ft ×

1

0 0308 2040+ 8 + 1

1 2

=8 97 ft s

The values we have obtained for V 2 (9 08 and 8 97 ft s) differ by less than

2%—an acceptable level of accuracy. If this accuracy had not been achieved

we would continue iterating until this, or any other accuracy we desired, was

achieved (usually only one or two more iterations at most are necessary for

reasonable accuracy). Note that instead of starting with a fully rough value

for f , we could have started with a guess value for V 2 of, say, 1 or 10 ft s.

The volume flow rate is

Q=V 2A=V 2

πD2

4
= 8 97

ft

s
×
π

4

1

3

2

ft2 ×7 48
gal

ft3
×60

s

min

Q=351 gpm
Q

This problem illustrates the method for
manually iterating to calculate flow rate.

The Excelworkbook for this problem
automatically iterates to solve for

the flow rate Q. It solves Eq. 1 without
having to solve the explicit equation
(Eq. 2) for V 2 (or Q) first.

Example 8.8 FLOW IN AN IRRIGATION SYSTEM: DIAMETER UNKNOWN (CASE C)

Spray heads in an agricultural spraying system are to be supplied with water through 500 ft of drawn aluminum tubing from an

engine-driven pump. In its most efficient operating range, the pump output is 1500 gpm at a discharge pressure not exceeding

65 psig. For satisfactory operation, the sprinklers must operate at 30 psig or higher pressure. Minor losses and elevation changes

may be neglected. Determine the smallest standard pipe size that can be used.

Given: Water supply system, as shown.

Find: Smallest standard D.
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Solution: Δp, L, and Q are known. D is unknown, so itera-

tion is needed to determine the minimum standard diameter

that satisfies the pressure drop constraint at the given flow rate.

The maximum allowable pressure drop over the length, L, is

Δpmax = p1max
−p2min

= 65−30 psi = 35 psi

Governing equations:

p1

ρ
+ α1

V
2

1

2
+ gz1 −

p2

ρ
+ α2

V
2

2

2
+ gz2 = hlT

=0 3

hlT = hl + hlm = f
L

D

V
2

2

2

8 29

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 hlT = hl, i e , hlm =0.

4 z1 = z2.

5 V 1 =V 2 =V ; α1 α2.

Then

Δp= p1−p2 = f
L

D

ρV
2

2
1

Equation 1 is difficult to solve for D because both V and f depend on D The best approach is to use a computer application such

as Excel to automatically solve for D. For completeness here we show the manual iteration procedure. The first step is to express

Eq. 1 and the Reynolds number in terms of Q instead of V (Q is constant but V varies with D). We have V =Q A=4Q πD2

so that

Δp= f
L

D

ρ

2

4Q

πD2

2

=
8 fLρQ2

π2D5
2

The Reynolds number in terms of Q is

Re=
ρVD

μ
=
VD

ν
=

4Q

πD2

D

ν
=

4Q

πνD

Finally, Q must be converted to cubic feet per second.

Q=1500
gal

min
×
min

60 s
×

ft3

7 48 gal
= 3 34 ft3 s

For an initial guess, take nominal 4 in. (4.026 in. i.d.) pipe:

Re=
4Q

πνD
=
4

π
×3 34

ft3

s
×

s

1 21× 10−5 ft2
×

1

4 026 in
× 12

in

ft
= 1 06× 106

For drawn tubing, e=5× 10−6 ft (Table 8.1) and hence e D=1 5× 10−5, so f 0 012 (Eq. 8.37), and

Δp=
8fLρQ2

π2D5
=

8

π2
×0 012× 500 ft × 1 94

slug

ft3
× 3 34

2 ft
6

s2
×

1

4 026
5
in 5

×1728
in 3

ft3
×

lbf s2

slug ft

Δp=172 lbf in 2 >Δpmax

Since this pressure drop is too large, try D=6 in. (actually 6.065 in. i.d.):

Re=
4

π
×3 34

ft3

s
×

s

1 21× 10−5 ft2
×

1

6 065 in
× 12

in

ft
= 6 95× 105

1 2

D

Q = 1500 gpm

p2 30 psigp1 65 psig

CV

L = 500 ft
Pump
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For drawn tubing with D=6 in , e D=1 0× 10−5, so f 0 013 (Eq. 8.37), and

Δp=
8

π2
×0 013 × 500 ft × 1 94

slug

ft3
× 3 34

2 ft
6

s2

×
1

6 065
5
in 5

× 12
3 in

3

ft3
×

lbf s2

slug ft

Δp=24 0 lbf in 2 <Δpmax

Since this is less than the allowable pressure drop, we should check a 5 in. nom-

inal pipe with an actual i.d. of 5.047 in.,

Re=
4

π
×3 34

ft3

s
×

s

1 21× 10−5 ft2
×

1

5 047 in
× 12

in

ft
= 8 36× 105

For drawn tubing withD=5 in , e D=1 2× 10−5, so f 0 0122 (Eq. 8.37), and

Δp=
8

π2
×0 0122 × 500 ft × 1 94

slug

ft3
× 3 34

2 ft
6

s2

×
1

5 047
5
in 5

× 12
3 in

3

ft3
×

lbf s2

slug ft

Δp=56 4 lbf in 2 >Δpmax

Thus the criterion for pressure drop is satisfied for a minimum nominal diameter

of 6 in. pipe. D

This problem illustrates the method for
manually iterating to calculate pipe
diameter.

The Excelworkbook for this problem
automatically iterates to solve for

the exact pipe diameter D that satisfies
Eq. 1, without having to solve the explicit
equation (Eq. 2) for D first. Then the
smallest standard pipe size that is equal to
or greater than this value needs to be
selected. For the given data, D=5 58 in ,
so the appropriate pipe size is 6 in.

Example 8.9 CALCULATION OF ENTRANCE LOSS COEFFICIENT

Hamilton [22] reports results of measurements made to determine entrance losses for flow from a reservoir to a pipe with various

degrees of entrance rounding. A copper pipe 10 ft long, with 1.5 in. i.d., was used for the tests. The pipe discharged to atmosphere.

For a square-edged entrance, a discharge of 0 566 ft3 s was measured when the reservoir level was 85.1 ft above the pipe cen-

terline. From these data, evaluate the loss coefficient for a square-edged entrance.

Given: Pipe with square-edged entrance discharging from reservoir as shown.

Find: Kentrance.

Solution: Apply the energy equation for steady, incompressible pipe flow.

Governing equations:

≈0 2 = 0

p1

ρ
+ α1

V
2

1

2
+ gz1 =

p2

ρ
+ α2

V
2

2

2
+ gz2 + hlT

hlT = f
L

D

V
2

2

2
+Kentrance

V
2

2

2

Assumptions:

1 p1 = p2 = patm.

2 V 1≈0.

Substituting for hlT and dividing by g gives z1 = h= α2
V

2

2

2g
+ f

L

D

V
2

2

2g
+Kentrance

V
2

2

2g

or

Kentrance =
2gh

V
2

2

− f
L

D
−α2 1

Entrance

D = 1.5 in.

Q = 0.566 ft3/s

L = 10 ft

1

2

CV

h = 85.1 ft

z
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The average velocity is

V 2 =
Q

A
=

4Q

πD2

V 2 =
4

π
×0 566

ft3

s
×

1

1 5
2
in 2

×1 44
in 2

ft2
=46 1 ft s

Assume T =70 F, so ν=1 05× 10−5 ft2 s (Table A.7). Then

Re=
VD

ν
=46 1

ft

s
× 1 5 in ×

s

1 05× 10−5 ft2
×

ft

12 in
= 5 49× 105

For drawn tubing, e=5× 10−6 ft (Table 8.1), so e D=0 000,04 and f =0 0135 (Eq. 8.37).

In this problem we need to be careful in evaluating the kinetic energy correction factor α2, as it is a significant factor in com-

puting Kentrance from Eq. 1. We recall from Section 8.6 and previous examples that we have usually assumed α≈1, but here we

will compute a value from Eq. 8.27:

α=
U

V

3
2n2

3+ n 3+ 2n
8 27

To use this equation we need values for the turbulent power-law coefficient n and the ratio of centerline to mean velocity U V .

For n, from Section 8.5

n= −1 7+ 1 8 log ReU ≈8 63 8 23

where we have used the approximation ReU≈ReV . For V U, we have

V

U
=

2n2

n+1 2n+1
=0 847 8 24

Using these results in Eq. 8.27 we find α=1 04. Substituting into Eq. 1, we obtain

Kentrance =2× 32 2
ft

s2
×85 1ft ×

s2

46 1
2
ft2

− 0 0135
10 ft

1 5 in
× 12

in

ft
−1 04

Kentrance =0 459
Kentrance

This coefficient compares favorably with that shown in Table 8.2. The hydraulic and energy grade lines are shown below. The

large head loss in a square-edged entrance is due primarily to separation at the sharp inlet corner and formation of a vena contracta

immediately downstream from the corner. The effective flow area reaches a minimum at the vena contracta, so the flow velocity

is a maximum there. The flow expands again following the vena contracta to fill the pipe. The uncontrolled expansion following

the vena contracta is responsible for most of the head loss (see Example 8.12).

Rounding the inlet corner reduces the extent of separation significantly. This

reduces the velocity increase through the vena contracta and consequently

reduces the head loss caused by the entrance. A “well-rounded” inlet almost elim-

inates flow separation; the flow pattern approaches that shown in Fig. 8.1. The

added head loss in a well-rounded inlet compared with fully developed flow is

the result of higher wall shear stresses in the entrance length.

This problem:

• Illustrates a method for obtaining the
value of a minor loss coefficient from
experimental data.

• Shows how the EGL and HGL lines first
introduced in Section 6.4 for inviscid flow
aremodified by the presence ofmajor and
minor losses. The EGL line continuously
drops as mechanical energy is
consumed—quite sharply when, for
example, we have a square-edged
entrance loss; the HGL at each location is
lower than the EGL by an amount equal to
the local dynamic head V

2
2g—at the

vena contracta, for example, the HGL
experiences a large drop, then recovers.

Entrance
Local velocity reaches a maximum

at the vena contracta.

z1

Hydraulic grade line

Exit

Energy grade line

0.459

V 2___
2g

2
_

V 2___
2g

2
_

V 2___
2g

2
_

f L__
D

100

50

0E
le

va
ti

o
n
, 

ft
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Example 8.10 USE OF DIFFUSER TO INCREASE FLOW RATE

Water rights granted to each citizen by the Emperor of Rome gave permission to attach to the public water main a calibrated,

circular, tubular bronze nozzle [17]. Some citizens were clever enough to take unfair advantage of a law that regulated flow rate

by such an indirect method. They installed diffusers on the outlets of the nozzles to increase their discharge. Assume the static

head available from the main is z0 =1 5 m and the nozzle exit diameter isD=25mm. (The discharge is to atmospheric pressure.)

Determine the increase in flow rate when a diffuser with N R1 =3 0 and AR=2 0 is attached to the end of the nozzle.

Given: Nozzle attached to water main as shown.

Find: Increase in discharge when diffuser with N R1 =3 0 and AR=2 0 is installed.

Solution: Apply the energy equation for steady, incompressible pipe flow.

Governing equation:

p0

ρ
+ α0

V
2

0

2
+ gz0 =

p1

ρ
+ α1

V
2

1

2
+ gz1 + hlT 8 29

Assumptions:

1 V 0≈0.

2 α1≈1.

For the nozzle alone,

≈0 1 ≈1 2 = 0

p0

ρ
+ α0

V
2

0

2
+ gz0 =

p1

ρ
+ α1

V
2

1

2
+ gz1 + hlT

hlT =Kentrance

V
2

1

2
Thus

gz0 =
V

2

1

2
+Kentrance

V
2

1

2
= 1+Kentrance

V
2

1

2
1

Solving for the velocity and substituting the value of Kentrance≈0 04 (from Table 8.2),

V 1 =
2gz0

1 04
=

2

1 04
× 9 81

m

s2
×1 5 m=5 32 m s

Q=V 1A1 =V 1

πD2
1

4
= 5 32

m

s
×
π

4
× 0 025

2
m2 =0 00261 m3 s

Q

For the nozzle with diffuser attached,

≈0 1 ≈1 2 = 0

p0

ρ
+ α0

V
2

0

2
+ gz0 =

p2

ρ
+ α2

V
2

2

2
+ gz2 + hlT

hlT =Kentrance

V
2

1

2
+Kdiffuser

V
2

1

2

or

gz0 =
V

2

2

2
+ Kentrance +Kdiffuser

V
2

1

2
2

0

1 2

V2

z0 = 1.5 m

CV

z

_

1.5 m
25 mm

0

z0 = 1.5 m

CV

z

1

V1

_
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From continuity V 1A1 =V 2A2, so

V 2 =V 1

A1

A2

=V 1

1

AR

and Eq. 2 becomes

gz0 =
1

AR
2
+Kentrance +Kdiffuser

V
2

1

2
3

Figure 8.16 gives data for Cp =
p2−p1
1
2
ρV

2

1

for diffusers.

To obtain Kdiffuser, apply the energy equation from to .

p1

ρ
+ α1

V
2

1

2
+ gz1 =

p2

ρ
+ α2

V
2

2

2
+ gz2 +Kdiffuser

V
2

1

2

Solving, with α2≈1, we obtain

Kdiffuser =1−−
V

2

2

V
2

1

−
p2−p1
1
2
ρV

2

1

=1−
A1

A2

2

−Cp =1−
1

AR
2
−Cp

From Fig. 8.16, Cp =0 45, so

Kdiffuser =1−
1

2 0
2
−0 45= 0 75−0 45= 0 3

Solving Eq. 3 for the velocity and substituting the values of Kentrance and Kdiffuser, we obtain

V
2

1 =
2gz0

0 25+ 0 04+ 0 3

so

V 1 =
2gz0

0 59
=

2

0 59
× 9 81

m

s2
×1 5 m=7 06 m s

and

Qd =V 1A1 =V 1

πD2
1

4
= 7 06

m

s
×
π

4
× 0 025

2
m2 =0 00347 m3 s

Qd

The flow rate increase that results from adding the diffuser is

ΔQ

Q
=
Qd−Q

Q
=
Qd

Q
−1=

0 00347

0 00261
−1= 0 330 or 33 percent

ΔQ

Q

Addition of the diffuser significantly increases the flow rate! There are two ways to explain this.

First, we can sketch the EGL and HGL curves—approximately to scale—as shown below. We can see that, as required, the

HGL at the exit is zero for both flows (recall that the HGL is the sum of static pressure and potential heads). However, the pressure

rises through the diffuser, so the pressure at the diffuser inlet will be, as shown, quite low (below atmospheric). Hence, with the

diffuser, the Δp driving force for the nozzle is much larger than that for the bare nozzle, leading to a much greater velocity, and

flow rate, at the nozzle exit plane—it is as if the diffuser acted as a suction device on the nozzle.

Second, we can examine the energy equations for the two flows (for the bare nozzle Eq. 1, and for the nozzle with diffuser

Eq. 3). These equations can be rearranged to yield equations for the velocity at the nozzle exit,
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Multiple-Path Systems

Many real-world pipe systems (e.g., the pipe network that supplies water to the apartments in a large

building) consist of a network of pipes of various diameters assembled in a complicated configuration

that may contain parallel and series connections. As an example, consider part of a system as shown in

Fig. 8.17. Water is supplied at some pressure from a manifold at point 1, and flows through the com-

ponents shown to the drain at point 5. Some water flows through pipes A, B, C, and D, constituting a

series of pipes; some flows through A, E, F orG,H,C, andD and the two main branches F andG, which

are in parallel. We analyze this type of problem in a similar way to how we analyze DC resistor circuits

in electrical theory. We apply the conservation of mass principle and the head loss equations.

The simple rules for analyzing piping networks can be expressed in various ways. We will express

them as follows:

1 The net mass flow out of any node (junction) is zero.

2 Each node has a unique pressure head (HGL).

V 1 =
2gz0

1+Kentrance

bare nozzle V 1 =
2gz0

1

AR
2
+Kdiffuser +Kentrance

nozzle + diffuser

Comparing these two expressions, we see that the diffuser introduces an extra term (its loss coefficient Kdiffuser =0 3) to

the denominator, tending to reduce the nozzle velocity, but on the other hand we replace the term 1, representing loss of the bare

nozzle exit plane kinetic energy, with 1 AR
2
=0 25, representing a smaller loss, of the diffuser exit plane kinetic energy. The

net effect is that we replace 1 in the denominator with 0 25+ 0 3= 0 55, leading to a net increase in the nozzle velocity. The

resistance to flow introduced by adding the diffuser is more than made up by the fact that we “throw away” much less kinetic

energy at the exit of the device (the exit velocity for the bare nozzle is 5 32 m s, whereas for the diffuser it is 1 77 m s).

Water Commissioner Frontinus standardized conditions for all Romans in 97 A.D. He required that the tube attached to the nozzle

of each customer’s pipe be the same diameter for at least 50 lineal feet from the public water main (see Example 8.10).

0

1

V2

z0

z
V1

2

0

1

V1

z0

z

Hydraulic
grade line

Hydraulic
grade line

Energy grade line

Energy
grade line

z0

1.5

1.0

0.5

0

E
le

va
ti

o
n
, 
m

z0

1.5

1.0

0.5

0

–0.5

–1.0

E
le

va
ti

o
n
, 
m

0.04
V 1___
2g

2

0.04

V 1___
2g

2

V 1___
2g

2

V 1___
2g

2

2V 2___
2g

_

_

_

_
_

_

__
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For example, in Fig. 8.17 rule 1 means that the flow into node 2 from pipe Amust equal the sum of

outflows to pipes B and E. Rule 2 means that the pressure head at node 7 must be equal to the head at

node 6 less the losses through pipe F or pipe G, as well as equal to the head at node 3 plus the loss in

pipe H.

The problems that arise with pipe networks can be as varied as those we discussed when studying

single-path systems, but the most common involve finding the flow delivered to each pipe, given an

applied pressure difference. We examine this case in Example 8.11. Obviously, pipe networks are much

more difficult and time-consuming to analyze than single-path problems, almost always requiring iter-

ative solution methods, and in practice are usually only solved using software. Many engineering con-

sulting companies use proprietary software applications for such analysis.

Example 8.11 FLOW RATES IN A PIPE NETWORK

In the section of a cast-iron water pipe network shown in Fig. 8.17, the static pressure head (gage) available at point 1 is 100 ft of

water, and point 5 is a drain (atmospheric pressure). Find the flow rates (gpm) in each pipe.

Given: Pressure head h1−5 of 100 ft across pipe network.

Find: The flow rate in each pipe.

Solution:

Governing equations:
For each pipe section, we have the relation between flow rate,

velocity, and flow area as

Q=VA

The area is related to the diameter as

A=
π

4
D2

1

2

3

5

4

7

6

A

C

D

E

A:
B:
C:
D:
E:
F:
G:
H:

GFB

H

L = 10 ft, D = 1.5 in.
L = 20 ft, D = 1.5 in.
L = 10 ft, D = 2 in.
L = 10 ft, D = 1.5 in.
L = 5 ft,   D = 1.5 in.
L = 10 ft, D = 1 in.
L = 10 ft, D = 1.5 in.
L = 5 ft,   D = 2 in.

1

2

3

5

4

7

6

A

C

D

E

A:
B:
C:
D:
E:
F:
G:
H:

GFB

H

L = 10 ft, D = 1.5 in.
L = 20 ft, D = 1.5 in.
L = 10 ft, D = 2 in.
L = 10 ft, D = 1.5 in.
L = 5 ft,   D = 1.5 in.
L = 10 ft, D = 1 in.
L = 10 ft, D = 1.5 in.
L = 5 ft,   D = 2 in.

Fig. 8.17 Schematic of part of a pipe network.
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In addition, we have the energy relation for head loss

= 0 1 = 0 1 = 0 2

p1

ρ
+ α1

V
2

1

2
+ gz1 −

p2

ρ
+ α2

V
2

2

2
+ gz2 = hlT = hl +Σ hlm

8 29

where

hl = f
L

D

V
2

2
8 34

and f is obtained from either Eq. 8.36 (laminar) or Eq. 8.37 (turbulent). For the cast-iron pipe, Table 8.1 gives a roughness for cast

iron of e=0 00085 ft.

Assumptions:

1 Ignore gravity effects.

2 Ignore minor losses.

Assumption 2 is applied to make the analysis clearer as minor losses can be incorporated easily later.

In addition we have mathematical expressions for the basic rules:

1 The net flow out of any node (junction) is zero.

2 Each node has a unique pressure head (HGL).

We can apply basic rule 1 to nodes 2 and 6:

Node 2 QA =QB +QE 1

Node 6 QE =QF +QG 2

and we also have the obvious constraints
QA =QC 3

QA =QD 4

QE =QH 5

We can apply basic rule 2 to obtain the following pressure drop constraints:

h1−5 h= hA + hB + hC + hD 6

h2−3 hB = hE + hF + hH 7

h6−7 hF = hG 8

This set of eight equations, together with the continuity relation and Eqs. 8.29 and 8.34 for each pipe section, must be solved

iteratively. If we were to manually iterate, we would use Eqs. 3, 4, and 5 to immediately reduce the number of unknowns and

equations to five QA,QB,QE,QF,QG . If we were performing the iteration manually, an approach would be to:

1 Make a guess for QA, QB, and QF.

2 Eqs. 1 and 2 then lead to values for QE and QG.

3 Eqs. 6, 7, and 8 are finally used as a check to see if rule 2 (for unique pressure heads at the nodes) is satisfied.

4 If any of Eqs. 6, 7, or 8 are not satisfied, use knowledge of pipe flow to adjust the values of QA, QB, or QF.

5 Repeat steps 2 through 5 until convergence occurs.

Equation solving software can be used to efficiently solve the coupled set of equations. Each of the equations is entered and the

software does the necessary iterations. This particular solution was obtained using Excel, but other software would be appropriate

as well. The flowrates obtained are:
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Part C FLOW MEASUREMENT

Throughout this text we have referred to the flow rate Q or average velocity V in a pipe. The question

arises: How does one measure these quantities? We will address this question by discussing the various

types of flow meters available.

The choice of a flow meter is influenced by the accuracy required, range, cost, complication, ease of

reading or data reduction, and service life. The simplest and cheapest device that gives the desired accu-

racy should be chosen.

The most obvious way to measure flow rate in a pipe is the direct method—simply measure the

amount of fluid that accumulates in a container over a fixed time period. Tanks can be used to determine

flow rate for steady liquid flows by measuring the volume or mass of liquid collected during a known

time interval. If the time interval is long enough to be measured accurately, flow rates may be determined

precisely in this way.

Compressibility must be considered in volume measurements for gas flows. The densities of gases

generally are too small to permit accurate direct measurement of mass flow rate. However, a volume

sample often can be collected by displacing a “bell,” or inverted jar over water (if the pressure is held

constant by counterweights). If volume or mass measurements are set up carefully, no calibration is

required; this is a great advantage of direct methods.

In specialized applications, particularly for remote or recording uses, positive displacement flow

meters may be specified, in which the fluid moves a component such as a reciprocating piston or oscillat-

ing disk as it passes through the device. Common examples include household water and natural gas

meters, which are calibrated to read directly in units of product, or gasoline metering pumps, which meas-

ure total flow and automatically compute the cost. Many positive-displacement meters are available com-

mercially. Consult manufacturers’ literature or References (e.g., [18]) for design and installation details.

8.9 Restriction Flow Meters for Internal Flows
Most restriction flow meters for internal flow are based on acceleration of a fluid stream through some

form of nozzle, as shown schematically in Fig. 8.18. The idea is that the change in velocity leads to a

change in pressure. This Δp can be measured using a pressure gage (electronic or mechanical) or a

manometer, and the flow rate inferred using either a theoretical analysis or an experimental correlation

for the device.

The most commonly used restriction devices are the orifice, nozzle, and venturi tube. All have

similar flow patterns and the flow through a nozzle will be used to illustrate the behavior of the device.

Flow separation at the sharp edge of the nozzle throat causes a recirculation zone to form, as shown by

D2D1 Dt V2V1

21

CV

Flow

Fig. 8.18 Internal flow through a generalized nozzle showing control volume used for analysis.

The flow rates are:

QA =QC =QD =167 gpm

QB gpm =72 gpm

QE gpm =QH gpm =95 gpm

QF gpm =24 gpm

QG gpm =71 gpm
This problem illustrates the
network approach to solving a complex
piping network problem.
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the dashed lines downstream from the nozzle. The mainstream flow continues to accelerate from

the nozzle throat to form a vena contracta at section and then decelerates again to fill the duct.

At the vena contracta, the flow area is a minimum, the flow streamlines are essentially straight, and

the pressure is uniform across the channel section.

The theoretical flow rate may be related to the pressure differential between sections and by

applying the continuity and Bernoulli equations. Then empirical correction factors may be applied to

obtain the actual flow rate. The assumptions made are:

1 Steady flow.

2 Incompressible flow.

3 Flow along a streamline.

4 No friction.

5 Uniform velocity at sections and .

6 No streamline curvature at sections or , so pressure is uniform across those sections.

7 z1 = z2.

For a fluid with a constant density, the conservation of mass equation is

CS
V A=0 4 13b

and the Bernoulli equation, assuming that the viscous friction is negligible, is

p1

ρ
+ α1

V2
1

2
+ gz1 =

p2

ρ
+α2

V2
2

2
+ gz2 6 8

Assumptions:

Then, from the Bernoulli equation,

p1−p2 =
ρ

2
V2
2 −V2

1 =
ρV2

2

2
1−

V1

V2

2

and from continuity

−ρV1A1 + ρV2A2 =0

or

V1A1 =V2A2 so
V1

V2

2

=
A2

A1

2

Substituting gives

p1−p2 =
ρV2

2

2
1−

A2

A1

2

Solving for the theoretical velocity, V2,

V2 =
2 p1−p2

ρ 1− A2 A1
2

8 51

The theoretical mass flow rate is then given by

mtheoretical = ρV2A2

= ρ
2 p1−p2

ρ 1− A2 A1
2
A2

or

mtheoretical =
A2

1− A2 A1
2

2ρ p1−p2 8 52
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Equation 8.52 shows that, under our set of assumptions, for a given fluid ρ and flow meter geometry

(A1 and A2), the flow rate is directly proportional to the square root of the pressure drop across the

meter taps,

mtheoretical Δp

which is the basic idea of these devices. This relationship limits the flow rates that can be measured

accurately to approximately a 4:1 range.

Several factors limit the utility of Eq. 8.52 for calculating the actual mass flow rate through a meter.

The actual flow area at section is unknown when the vena contracta is pronounced (e.g., for orifice

plates when Dt is a small fraction of D1). The velocity profiles approach uniform flow only at large

Reynolds numbers. Additionally, the location of pressure taps influences the differential pressure

reading.

The theoretical equation is adjusted for Reynolds number and diameter ratio Dt D1 by defining an

empirical discharge coefficient C such that, replacing Eq. 8.52, we have

mactual =
CAt

1− At A1
2

2 ρ p1−p2 8 53

Letting β=Dt D1, then At A1
2
= Dt D1

4
= β4, the general form of the metering equation is

mactual =CAt

2ρ p1−p2

1−β4
8 54

The value of C depends on the type of meter (orifice, nozzle, or venturi) and the Reynolds number.

In Eq. 8.54, 1 1−β4 is the velocity-of-approach factor. The discharge coefficient and velocity-

of-approach factor are sometimes combined into a single flow coefficient,

K≡
C

1−β4
8 55

In terms of this flow coefficient, the actual mass flow rate is expressed as

mactual =KAt 2ρ p1−p2 8 56

As we have noted, selection of a flow meter depends on factors such as cost, accuracy, need for

calibration, and ease of installation and maintenance. Some of these factors are compared for orifice

plate, flow nozzle, and venturi meters in Table 8.6. Note that a high head loss means that the running

cost of the device is high as it will consume a lot of the fluid energy.

Table 8.6
Characteristics of Orifice, Flow Nozzle, and Venturi Flow Meters

Flow Meter Type Diagram Head Loss Initial Cost

Orifice

D1
Dt

D2

D2

Flow

D1

D1

Flow

Flow

High Low

Flow Nozzle Intermediate Intermediate

Venturi Low High
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Flowmeter coefficients reported in the literature have been measured with fully developed turbulent

velocity distributions at the meter inlet (Section ). If a flow meter is to be installed downstream from a

valve, elbow, or other disturbance, a straight section of pipe must be placed in front of the meter. Approx-

imately 10 diameters of straight pipe are required for venturi meters, and up to 40 diameters for orifice

plate or flow nozzle meters. When a meter has been properly installed, the flow rate may be computed

from Eq. 8.54 or 8.56, with an appropriate value for the empirical discharge coefficient, C, or flow

coefficient, K, defined in Eqs. 8.53 and 8.55, respectively.

The Orifice Plate

The orifice plate (Fig. 8.19) is a thin plate that may be clamped between pipe flanges. Since its geometry

is simple, it is low in cost and easy to install or replace. The sharp edge of the orifice will not foul with

scale or suspended matter. However, suspended matter can build up at the inlet side of a concentric ori-

fice in a horizontal pipe; an eccentric orifice may be placed flush with the bottom of the pipe to avoid this

difficulty. The primary disadvantages of the orifice are its limited capacity and the high permanent head

loss caused by the uncontrolled expansion downstream from the metering element.

Pressure taps for orifices may be placed in several locations, as shown in Fig. 8.19. The standard

locations are in the corners of the orifice plate, 1 in. on either side of the orifice plate or one diameter

upstream and one-half a diameter downstream of the orifice plate. The value of the discharge coefficient

C depends strongly on the location of the taps.

The flow through an orifice is then calculated from the metering equation using the orifice

coefficient Co as

m=CoAt

2ρ p1−p2

1−β4
8 57

The correlating equation recommended for a concentric orifice with one tap located one diameter

upstream of the orifice and the second located one-half the diameter downstream (D and 1/2 D taps)

[23] is

Co =0 5959+0 0321β2 1−0 184β8 +
91 71β2 5

ReD1
×10−6 0 75

+0 0900
L1

D

β4

1−β4
−0 0337

L2

D
β3

8 58

Equation 8.58 predicts orifice discharge coefficients within 0 6 percent for 0 2< β<0 75 and for

104 <ReD1
<107. The orifice coefficient is plotted in Fig. 8.20. A similar correlating equation is avail-

able for orifice plates with corner taps. Flange taps require a different correlation for every line size.

Example 8.12 illustrates the application of flow coefficient data to orifice sizing.

Corner taps

D
D__
2

D and     taps

Flow

1 in. 1 in.

Flange taps

D
2

Fig. 8.19 Orifice geometry and pressure tap locations.
(Based on [18].)
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Fig. 8.20 Flow coefficient for concentric orifices with D and D/2 taps.

Example 8.12 FLOW THROUGH AN ORIFICE METER

An air flow rate of up to 1 m3/s at standard conditions is expected in a 0.25-m diameter duct. An orifice meter is used to measure

the rate of flow. The manometer available to make the measurement has a maximum range of 300 mm of water. Determine

the diameter of the orifice plate that should be used with D and D/2 pressure taps. Determine the head loss if the flow area

at the vena contracta is 0.65 of the orifice diameter.

Given: Flow through duct and orifice as shown.

Find: (a) Orifice diameter for an airflow of 1 m3/s at a pressure difference of 300 mm water.

(b) Head loss for the orifice meter.

Assumptions:

1 The air flow is steady.

2 The air can be treated as an incompressible fluid.

Solution: The orifice is given by Eq. 8.57 with the orifice coefficient taken from Fig. 8.20.

Governing equation:

m=Co At

2ρ p1−p2

1−β4

In this equation, the maximummass flow rate is known. The pressure difference will be taken as the maximum (300 mmwater) at

the maximum flow rate. The unknowns are the orifice coefficient, throat area, and the diameter ratio β. The orifice coefficient Co

depends on the Reynolds number and the diameter ratio. An iterative procedure will be used in which a diameter is selected and

the pressure difference determined. If the pressure difference is larger than the criterion of 300 mm water, a larger diameter ratio

will be selected.
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The pressure difference from Eq. 8.57 is

p1−p2 =
1−β4

2ρ

m

CoAt

2

=
ρ 1−β4

2

Q

CoAt

2

The air density at standard conditions is 1.23 kg/m3, and the air viscosity at standard conditions is 1.46 10−5 Pa-s.

The Reynolds number is given by

ReD1
=
ρVD1

μ
=
ρ

μ

Q

A1

D1 =
ρ

μ

4Q

πD1

=
1 23

kg

m3

1 46× 10−5 Pa−s

4 1
m3

s
π 0 25m

=3 50 105

Our first guess with be for a value of Dt of 0.175 m, which yields a value of β of 0.7. The orifice coefficient from Fig. 8.20

is about 0.625. The pressure difference is then

p1−p2 =
ρ 1−β4

2

Q

CoAt

2

=
1 23 kg

m3 1−0 74

2

1m3

s

0 625 π
4
0 1752m2

2

=2070Pa

The corresponding height of the water column in the manometer is

h=
p2−p1

gρwater
=

2070Pa

9 81m
s2

998 kg
m3

=0 211m=211mm A

This is lower than the maximum pressure djfference and a second guess will be made using a smaller orifice diameter of 0.15

m, which corresponds to a β of 0.6. The orifice coefficient at this diameter ratio is 0.615. The same calculations as above are

carried out and the resulting pressure difference and manometer height is

p1−p2 =4530Pa and h=463mm

The diameter is too small, but the appropriate diameter is between 0.15 m and 0.175 m. Another guess for the diameter is made

and the process repeated. The orifice coefficient at the guess diameter is obtained from linear interpolation between the values for

0.15 m and 0.175 m. Eventually a diameter of 0.165 m is found to yield a pressure of 2830 Pa and a manometer height of 289 mm

water, which is close enough to the target value of 300 mm.

The final design is

Dt = 0 165m and β = 0 66

To evaluate the permanent head loss, apply Eq. 8.29 between sections and .

Governing equation:

p1

ρ
+ α1

V
2

1

2
+ gz1 −

p3

ρ
+ α3

V
2

3

2
+ gz3 = hlT 8 29

Assumptions:

3 α1V
2

1 = α3V
2

3.

4 Neglect Δz.

Then

hlT =
p1−p3

ρ
=
p1−p2− p3−p2

ρ
2

Equation 2 indicates our approach: We will find p1−p3 by using p1−p2 =289 mmH2O, and obtain a value for p3−p2 by apply-

ing the x component of the momentum equation to a control volume between sections and .
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Governing equation:

=0 5 = 0 1

FSx + FBx
=

∂

∂t CV

uρdV +
CV

uρV dA
4 18a

Assumptions:

5 FBx
=0

6 Uniform flow at sections and .

7 Pressure uniform across duct at sections and .

8 Neglect friction force on CV.

Then, simplifying and rearranging,

p2−p3 A1 = u2 −ρV 2A2 + u3 ρV 3A3 = u3−u2 ρQ= V 3−V 2 ρQ

or

p3−p2 = V 2−V 3

ρQ

A1

Now V 3 =Q A1, and

V 2 =
Q

A2

=
Q

0 65 At

=
Q

0 65β2 A1

Thus,

p3−p2 =
ρQ2

A2
1

1

0 65 β2
−1

p3−p2 =1 23
kg

m3
× 1

2m
6

s2
×
42

π2
1

0 25
4
m4

1

0 65 0 66
2
−1

N s2

kg m

p3−p2 =1290 N m2

Substituting into Eq. 2 gives

hlT =
p1−p3

ρ
=
p1−p2− p3−p2

ρ

hlT = 2830−1290
N

m2
×

m3

1 23 kg
=1250 N m kg

hlT

The permanent pressure loss as a fraction of the meter differential

p1−p3

p1−p2
=
1250N m2

2830 N m2
=0 44

The head loss is about 44 percent of the pressure drop through the orifice. There

is then some recovery of the kinetic energy of the fluid in the vena contracta.

2 3

A2 = Avena contracta

FlowA1x

y

CV

This problem illustrates flow meter calcu-
lations and shows use of the momentum
equation to compute the pressure rise in a
sudden expansion.
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The Flow Nozzle

Flow nozzles are also commonly used as metering elements. Figure 8.21 shows a schematic of nozzle

installation in a duct and in a plenums or ducts.

There are well-established standards for the nozzle shape, pressure tap location, and placement as

given in [23]. The nozzle coefficients for the ASME long-radius nozzle are shown in Fig. 8.22. Similar to

the orifice, the coefficient is a function of Reynolds number and contraction ratio. However, the losses

for a nozzle are less than those of an orifice and the coefficients are correspondingly higher.

The flow rate through a nozzle is given by

m=CnAt

2ρ p1−p2

1−β4
8 59

The correlating equation recommended for an ASME long-radius flow nozzle [18] is

Cn =0 9975−
6 53β0 5

Re0 5
D1

8 60

Equation 8.60 is the form for the discharge coefficient C for the flow nozzle; it predicts discharge coeffi-

cients for flow nozzles within 2 0 percent for 0 25< β<0 75 for 104 <ReD1
<107. Some flow coeffi-

cients calculated from Eqs. 8.60 and 8.55 are presented in Fig. 8.22.

The Venturi

Venturi meters, as sketched in Table 8.6, are generally made from castings and machined to close tol-

erances to duplicate the performance of the standard design. As a result, venturi meters are heavy, bulky,

and expensive. The conical diffuser section downstream from the throat gives excellent pressure recov-

ery; therefore, overall head loss is low. Venturi meters are also self-cleaning because of their smooth

internal contours.

Experimental data show that discharge coefficients for venturi meters range from 0.980 to 0.995 at

high Reynolds numbers ReD1
>2× 105 . Thus C=0 99 can be used to measure mass flow rate within

about 1 percent at high Reynolds number [18]. Consult manufacturers’ literature for specific informa-

tion at Reynolds numbers below 105.

p1

p2

V1 – 0

Nozzle

Flow
D2

Plenum chamber

(b) In plenum

~

Flow
D2D1

p1 p2

V1

(a) In duct

Flow nozzle

_

Fig. 8.21 Typical installations of nozzle flow meters.
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The Laminar Flow Element

The laminar flow element is designed to produce a pressure differential directly proportional to flow rate.

The laminar flow element contains a metering section in which the flow passes through a large number of

very small tubes or passages. Each passage is narrow enough so that the flow through each of them is

laminar, regardless of the flow conditions in the main pipe. A picture of the internal element in a laminar

flow meter is shown in Fig. 8.23. For each passage in the laminar flow element the results of Section 8.3

apply. The flow rate for each tube is given by Eq. 8.13c. The total flow rate is sum of the flow through

each passage and also is linearly proportional to the pressure drop. For each laminar flow tube the results

of Section 8.3 apply. The flow rate for each tube is then given by Eq. 8.13c, and the total flow rate is then

of this form.

Qtube =
πD4

tube

128μLtube
Δp Δp 8 13c

The relationship between pressure drop and flow rate for laminar flow also depends on viscosity, which

is a strong function of temperature. Therefore, the fluid temperature must be known to obtain accurate

metering with a laminar flow meter.

Fig. 8.23 Laminar flow meter element.
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Fig. 8.22 Nozzle coefficients.
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Linear Flow Meters

Several flow meter types produce outputs that are directly proportional to flow rate. These meters pro-

duce signals without the need to measure differential pressure. The most common linear flow meters are

discussed briefly in the following paragraphs.

Float metersmay be used to indicate flow rate directly for liquids or gases. An example is shown in

Fig. 8.24. In operation, the ball or float is carried upward in the tapered clear tube by the flowing fluid

until the drag force and float weight are in equilibrium. Such meters (often called rotameters) are avail-

able with factory calibration for a number of common fluids and flow rate ranges.

A free-running vaned impeller may be mounted in a cylindrical section of tube (Fig. 8.25) to make

a turbine flow meter. With proper design, the rate of rotation of the impeller may be made closely

proportional to volume flow rate over a wide range.

Rotational speed of the turbine element can be sensed using a magnetic or modulated carrier pickup

external to the meter. This sensing method therefore requires no penetrations or seals in the duct. Thus

turbine flow meters can be used safely to measure flow rates in corrosive or toxic fluids. The electrical

signal can be displayed, recorded, or integrated to provide total flow information.

The vortex flow meter takes advantage of the fact that a uniform flow will generate a vortex street

when it encounters a bluff body such as a cylinder perpendicular to the flow. A vortex street is a series of

alternating vortices shed from the rear of the body; the alternation generates an oscillating sideways force

on, and therefore oscillation of, the cylinder. The dimensionless group characterizing this phenomenon

is the Strouhal number, St= fL V ( f is the vortex shedding frequency, L is the cylinder diameter, and V

is the freestream velocity), and it is approximately constant St≈0 21 . The velocity is then directly

proportional to vortex shedding frequency. Measurement of f thus directly indicates the velocity V .

The cylinder used in a flow meter is usually quite short in length—10 mm or less—and placed perpen-

dicular to the flow. The oscillation can be measured using a strain gage or other sensor. Vortex flow

meters can be used over a 20:1 range of flow rates.

The electromagnetic flow meter uses the principle of magnetic induction. A magnetic field is cre-

ated across a pipe. When a conductive fluid passes through the field, a voltage is generated at right

angles to the field and velocity vectors. Electrodes placed on a pipe diameter are used to detect the

resulting signal voltage. The signal voltage is proportional to the average axial velocity when the pro-

file is axisymmetric.

Magnetic flow metersmay be used with liquids that have electrical conductivities above 100 micro-

siemens per meter 1 siemen=1 ampere per volt . The minimum flow speed should be above about

0 3 m s, but there are no restrictions on Reynolds number. The flow rate range normally quoted is 10:1.

Ultrasonic flow meters also respond to average velocity at a pipe cross section. Two principal types

of ultrasonic meters are common: Propagation time is measured for clean liquids, and reflection fre-

quency shift (Doppler effect) is measured for flows carrying particulates. The speed of an acoustic wave

increases in the flow direction and decreases when transmitted against the flow. For clean liquids, an

acoustic path inclined to the pipe axis is used to infer flow velocity. Multiple paths are used to estimate

the volume flow rate accurately.

Doppler effect ultrasonic flow meters depend on reflection of sonic waves (in the MHz range) from

scattering particles in the fluid. When the particles move at flow speed, the frequency shift is propor-

tional to flow speed; for a suitably chosen path, output is proportional to volume flow rate. One or

two transducers may be used; the meter may be clamped to the outside of the pipe. Ultrasonic meters

may require calibration in place. Flow rate range is 10:1.

40

30

20

10

0

Flow

gph

Fig. 8.24 Float-type
variable-area flowmeter.

Fig. 8.25 Turbine flow meter.
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Traversing Methods

In situations such as in air handling or refrigeration equipment, it may be impractical or impossible to

install fixed flow meters. In such cases it may be possible to obtain flow rate data using traversing

techniques.

To make a flow rate measurement by traverse, the duct cross section is conceptually subdivided into

segments of equal area. The velocity is measured at the center of each area segment using a pitot tube, a

total head tube, or a suitable anemometer. The volume flow rate for each segment is approximated by the

product of the measured velocity and the segment area. The flow rate through the entire duct is the sum of

these segmental flow rates. Details of recommended procedures for flow rate measurements by the trav-

erse method are given in [19].

Use of pitot or pitot-static tubes for traverse measurements requires direct access to the flow field.

Pitot tubes give uncertain results when pressure gradients or streamline curvature are present, and their

response times are slow. Two types of anemometers—thermal anemometers and laser Doppler anem-

ometers (LDAs)—overcome these difficulties partially, although they introduce new complications.

Thermal anemometers use tiny elements (either hot-wire or hot-film elements) that are heated elec-

trically. Sophisticated electronic feedback circuits are used to maintain the temperature of the element

constant and to sense the input heating rate needed to do this. The heating rate is related to the local flow

velocity by calibration (a higher velocity leads to more heat transfer). The primary advantage of thermal

anemometers is the small size of the sensing element. Sensors as small as 0.002 mm in diameter and

0.1 mm long are available commercially. Because the thermal mass of such tiny elements is extremely

small, their response to fluctuations in flow velocity is rapid. Thus thermal anemometers are ideal for

measuring turbulence quantities. Insulating coatings may be applied to permit their use in conductive or

corrosive gases or liquids.

Because of their fast response and small size, thermal anemometers are used extensively for

research. Numerous schemes have been published for treating the resulting data [20]. Digital processing

techniques, including fast Fourier transforms, can be applied to the signals to obtain mean values and

moments, and to analyze frequency content and correlations.

Laser Doppler anemometers are becoming widely used for specialized applications where direct

physical access to the flow field is difficult or impossible. One or more laser beams are focused to a

small volume in the flow at the location of interest (as shown in Fig. 8.26). Laser light is scattered from

particles that are present in the flow (dust or particulates) or introduced for this purpose. A frequency

shift is caused by the local flow speed (Doppler effect). Scattered light and a reference beam are collected

by receiving optics. The frequency shift is proportional to the flow speed; this relationship may be cal-

culated, so there is no need for calibration. Since velocity is measured directly, the signal is unaffected by

changes in temperature, density, or composition in the flow field. The primary disadvantages of LDAs
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Fig. 8.26 A two-component laser doppler anemometer probe volume.
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are that the optical equipment is expensive and fragile, and that extremely careful alignment is needed (as

the authors can attest).

8.10 Summary and Useful Equations
In this chapter we have:

✓ Defined many terms used in the study of internal incompressible viscous flow, such as: the
entrance length, fully developed flow, the friction velocity, Reynolds stress, the kinetic energy
coefficient, the friction factor, major and minor head losses, and hydraulic diameter.

✓ Analyzed laminar flow between parallel plates and in pipes and observed that we can obtain
the velocity distribution analytically, and from this derive: the average velocity, the maximum
velocity and its location, the flow rate, the wall shear stress, and the shear stress distribution.

✓ Studied turbulent flow in pipes and ducts and learned that semi-empirical approaches are
needed, e.g., the power-law velocity profile.

✓ Written the energy equation in a form useful for analyzing pipe flows.
✓ Discussed how to incorporate pumps, fans, and blowers into a pipe flow analysis.
✓ Described various flow measurement devices: direct measurement, restriction devices (orifice

plate, nozzle, and venturi), linear flowmeters (rotameters, various electromagnetic or acoustic
devices, and the vortex flow meter), and traversing devices (pitot tubes and laser-Doppler
anemometers).

We have learned that pipe and duct flow problems often need iterative solution—the flow rateQ is
not a linear function of the driving force (usually Δp), except for laminar flows. We have also seen
that pipe networks can be analyzed using the same techniques as a single-pipe system, with the
addition of a few basic rules, and that in practice a computer application such as Excel is needed
to solve all but the simplest networks.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to

refer to their page numbers for details!

Useful Equations
Velocity profile for pressure-

driven laminar flow between

stationary parallel plates:
u=

a2

2μ

∂p

∂x

y

a

2

−
y

a

(8.5) Page 233

Flow rate for pressure-driven

laminar flow between

stationary parallel plates:

Q

l
= −

1

12μ

−Δp

L
a3 =

a3 Δp

12μ L

(8.6c) Page 233

Velocity profile for pressure-

driven laminar flow between

stationary parallel plates

(centered coordinates):

u=
a2

2μ

∂p

∂x

y

a

2

−
1

4

(8.7) Page 234

Velocity profile for pressure-

driven laminar flow between

parallel plates (upper plate

moving):

u=
Uy

a
+

a2

2μ

∂p

∂x

y

a

2

−
y

a

(8.8) Page 236

Flow rate for pressure-driven

laminar flow between parallel

plates (upper plate moving):

Q

l
=
Ua

2
−

1

12μ

∂p

∂x
a3

(8.9b) Page 237

Velocity profile for laminar

flow in a pipe: u= −
R2

4μ

∂p

∂x
1−

r

R

2
(8.12) Page 243
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Table (Continued)

Flow rate for laminar flow in

a pipe: Q= −
πR4

8μ

−Δp

L
=
πΔpR4

8μL
=
πΔpD4

128μL

(8.13c) Page 243

Velocity profile for laminar

flow in a pipe (normalized

form):

u

U
=1−

r

R

2 (8.14) Page 244

Velocity profile for turbulent

flow in a smooth pipe (power-

law equation):

u

U
=

y

R

1 n

= 1−
r

R

1 n
(8.22) Page 249

Head loss equation:
p1

ρ
+ α1

V
2

1

2
+ gz1 −

p2

ρ
+ α2

V
2

2

2
+ gz2 = hlT

(8.29) Page 253

Major head loss equation:

hl = f
L

D

V
2

2

(8.34) Page 255

Friction factor (laminar flow):

flaminar =
64

Re

(8.36) Page 256

Friction factor (turbulent

flow—Colebrook equation):
1

f
= −2 0 log

e D

3 7
+

2 51

Re f

(8.37a) Page 257

Minor loss

hlm =K
V

2

2

(8.40) Page 258

Diffuser pressure recovery

coefficient: Cp≡
p2−p1
1
2
ρV

2

1

(8.41) Page 258

Ideal diffuser pressure

recovery coefficient: Cpi =1−
1

AR2

(8.42) Page 258

Head loss in diffuser in terms

of pressure recovery

coefficients:
hlm = Cpi −Cp

V
2

1

2

(8.44) Page 260

Pump work:
Wpump =QΔppump

(8.47) Page 262

Pump efficiency:

η=
Wpump

W in

(8.48) Page 262

Hydraulic diameter:

Dh≡
4A

P

(8.50) Page 263

Mass flow rate equation for a

flow meter (in terms of

discharge coefficient C):

mactual =
CAt

1−β4
2ρ p1−p2

(8.54) Page 281

Mass flow rate equation for a

flow meter (in terms of flow

coefficient K):

mactual =KAt 2ρ p1−p2
(8.56) Page 281

(Continued)
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Table (Continued)

Discharge coefficient (as a

function of Re): C=C∞ +
b

RenD1

(8.57) Page 282

Flow coefficient (as a

function of Re): K =K∞ +
1

1−β4

b

RenD1

(8.58) Page 282
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Chapter 9 Problems

The Boundary-Layer Concept
9.1 A model of a river towboat is to be tested at 1:18 scale. The boat

is designed to travel at 3.5 m/s in fresh water at 10 C. Estimate the

distance from the bow where transition from a laminar to a turbulent

boundary layer occurs. Determine the speed for the model boat so

that transition occurs at the same relative position.

9.2 For a flow at 9.0 m/s over a smooth flat plate, estimate the max-

imum length of the laminar boundary layer for air and for water as

the fluid.

9.3 The velocity profile for a turbulent boundary layer can be

approximated by the power law expression
u

U
=

y

δ

1 7

. Evaluate

the displacement thickness
δ∗

δ
and momentum thickness

θ

δ
for the

profile. Determine the boundary conditions that are satisfied and

not satisfied by this expression.

9.4A fluid, with density ρ=1 5 slug ft3, flows atU =10 ft s over a

flat plate 10 ft long and 3 ft wide. At the trailing edge, the boundary-

layer thickness is δ=1 in. Assume that the velocity profile is linear,

as shown, and that the flow is two-dimensional (flow conditions are

independent of z). Using control volume abcd, shown by the dashed

lines, compute the mass flow rate across surface ab. Determine

the drag force on the upper surface of the plate. Explain how this

viscous drag can be computed from the given data even though

we do not know the fluid viscosity.

U U

u

a b

d c

= 1 in.δ
CV

x

y

P9.4

9.5 Air flows in the entrance region of a square duct, as shown.

The velocity is uniform, U0 =100 ft s, and the duct is 3 in. square.

At a section 1 ft downstream from the entrance, the displacement

thickness, δ , on each wall measures 0.035 in. Determine the pressure

change between sections and .

3 in.

3 in.
2 = 0.035 in.δ*

21

U0

P9.5

Laminar Flat-Plate Boundary Layer:
Exact Solution
9.6 Plot the Blasius solution for the laminar boundary-layer velocity

profile on a flat plate, with
y

δ
as the ordinate and

u

U
as the abscissa.

Plot the approximate parabolic velocity profile
u

U
=2

y

δ
−

y

δ

2

on the same plot and compare the two profiles in terms of shape

and boundary conditions.

9.7 For the flow of air over a flat plate, plot on the same graph the

laminar boundary-layer thickness as a function of distance along

the plate, up to the point of transition, for freestream speeds of

1 m/s, 3 m/s, and 5 m/s. Draw some conclusions from your plot.

9.8 Air at 5 m/s, atmospheric pressure, and 20 C flows over both

sides of a flat plate that is 0.8 m long and 0.3 m wide. Determine

the total drag force on the plate. Determine the total drag force when

the single plate is replaced by two plates each 0.4 m long and 0.3 m

wide. Explain why there is a difference in the total drag even though

the total surface area is the same.

9.9Water at a speed of 0.8 m/s and 10 C flows over a flat plate that

is 0.35 m long and 1 m wide. The boundary layer on each side of the

plate is laminar. Assume that the velocity profile may be approxi-

mated as linear and use the momentum integral equation to determine

the total drag force on the plate. Compare the drag to that predicted

using the results of the Blasius solution.

9.10 Air at standard conditions and 20 m/s flows over one side of a

horizontal smooth flat plate that is 1:5 m long and 0:8 m wide. A trip

wire is used at the leading edge to ensure that the boundary layer is

turbulent. Assume that the velocity profile is represented by a 1/7th

power law and evaluate the boundary-layer thickness at the trailing

edge of the plate. Determine the wall shear stress at the trailing edge

of the plate and the total drag force on the plate.

Pressure Gradients in Boundary-Layer Flow
9.11 Boundary-layer separation occurs when the shear stress at

the surface becomes zero. Assume that a polynomial representation

for the laminar boundary layer of the form, u U = a+ bλ+ cλ2 + dλ3,

where λ= y δ. Specify boundary conditions on the velocity profile at

separation. Find appropriate constants, a, b, c, and d, for the separa-

tion profile. Calculate the shape factor H at separation. Plot the pro-

file and compare with the parabolic approximate profile.

Drag
9.12 A towboat for river barges is tested in a towing tank. The tow-

boat model is built at a scale ratio of 1:13.5. Dimensions of the model

are overall length 3.5 m, beam 1 m, and draft 0.2 m. The model dis-

placement in fresh water is 5500 N. Estimate the average length of

wetted surface on the hull. Calculate the skin friction drag force of

the prototype at a speed of 7 knots relative to the water.

9.13 A nuclear submarine cruises fully submerged at 27 knots. The

hull can be approximated as a circular cylinder with a diameter of

11 m and length of 107 m. Estimate the percentage of the hull length

for which the boundary layer is laminar. Determine the skin friction

drag on the hull and the power consumed.

9.14 The pilings for a bridge across a river that is 6 ft deep and flows

at a maximum speed of 6 mph are made of wood poles 8 in. in diam-

eter buried in the river bed. Estimate the bending moment at the river

bed for a piling and discuss the accuracy of the calculation.

9.15 A steel sphere of 0.25 in. diameter has a velocity of 200 ft s at

an altitude of 30,000 ft in the U.S. Standard Atmosphere. Calculate

the drag force on this sphere.

9.16 Small oil droplets with a specific gravity of 85 rise in a 30 C

water bath. Determine the terminal speed of a droplet as a function of

droplet diameter assuming the drag coefficient is given by the
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relation for Stokes flow. Determine the maximum droplet diameter

for which Stokes flow is a reasonable assumption.

9.17Atmospheric air is drawn into a low-speed wind tunnel where a

30 cm diameter sphere is mounted on a force balance to measure

drag. The oil-filled manometer used to measure the static pressure

inside the tunnel reads −40 mm of oil and the oil has a specific grav-

ity of 0.85. Determine the air speed in the tunnel and the drag force on

the sphere. Determine the drag force when the air speed is reduced to

a manometer reading of −20 mm of oil.

9.18 A water tower consists of a 12-m-diameter sphere on top

of a vertical tower 30 m tall and 2 m in diameter. Estimate the bend-

ing moment exerted on the base of the tower due to the aerodynamic

force imposed by a 100 km hr wind on a standard day. Neglect

interference at the joint between the sphere and tower.

9.19 A 0.5-m-diameter hollow plastic sphere containing pollution

test equipment is being dragged through the Hudson River in New

York by a diver riding an underwater jet device. The sphere with

an effective specific gravity of SG=0 30 is fully submerged, and

it is tethered to the diver by a thin 1.5-m-long wire. What is the angle

the wire makes with the horizontal if the velocity of the diver and

sphere relative to the water is 5 m s? The water is at 10 C.

9.20 A 0.3 m diameter circular disk is placed normal to a flow

stream that has a speed of 5 m/s. Calculate the force and power if

the fluid is (a) air and (b) water. If the disk is replaced with a hem-

isphere with the open end facing downstream, determine the power

for the two fluids. Explain why there is a difference for the two

geometries even though the frontal area is the same.

9.21A rotary mixer is constructed from two circular disks as shown.

The mixer is rotated at 60 rpm in a large vessel containing a brine

solution SG=1 1 . Neglect the drag on the rods and the motion

induced in the liquid. Estimate the minimum torque and power

required to drive the mixer.

+ +

0.6 m 0.6 m

100 mm dia.

= 60 rpmω

P9.21

9.22 A projectile reduces its speed from 250 m/s to 210 m/s over a

horizontal distance of 150 m. The diameter and mass of the projectile

are 11 mm and 16 g, respectively. Determine the average drag coef-

ficient for the bullet

9.23 A typical fully-loaded highway transport truck has a weight of

350 kN, a frontal area of 11.5 m2, and a drag coefficient of 0.8. Using

drag reduction devices such as a cab top deflector, chassis side skirts,

and vortex generators to reduce the wake lowers the drag coefficient

to 0.65. Estimate the power requirements for a truck driving 100 km/

hr with and without drag reduction devices. The coefficient of rolling

friction for the tires is 0.01.

9.24 A fighter airplane is slowed after landing by dual parachutes

deployed from the rear. Each parachute is 12 ft in diameter. The plane

weighs 32,000 lbf and lands at 160 knots. Estimate the time and dis-

tance required to decelerate the aircraft to 100 knots, assuming that

the brakes are not used and the drag of the aircraft is negligible.

9.25 A tractor-trailer rig has frontal area A=102 ft2 and drag coef-

ficient CD =0 9. Rolling resistance is 6 lbf per 1000 lbf of vehicle

weight. The specific fuel consumption of the diesel engine is 0.34

lbm of fuel per horsepower hour, and drivetrain efficiency is 92 per-

cent. The density of diesel fuel is 6 9 lbm gal. Estimate the fuel econ-

omy of the rig at 55 mph if its gross weight is 72,000 lbf. An air

fairing system reduces aerodynamic drag 15 percent. The truck tra-

vels 120,000 miles per year. Calculate the fuel saved per year by the

roof fairing.

9.26 The pressure difference as a function of angle for air flow

around a circular cylinder at a Reynolds number of 80,000 is shown

in the figure. Numerically integrate the pressure force and estimate

the drag coefficient. Compare it to that tabulated in Fig. 9.13. Explain

reasons for any difference.
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9.27 A rectangular airfoil of 40 ft span and 6 ft chord has lift and

drag coefficients of 0.5 and 0.04, respectively, at an angle of attack

of 6 . Determine the lift, drag, and horsepower needed to fly this air-

foil at 50, 100, and 150 mph horizontally at this angle of attack

through still air at 40 F and 13.5 psia.

9.28 The lift and drag coefficients for a rectangular wing with a

10 m chord at takeoff are 1.0 and 0.05, respectively. Determine

the span needed to lift 3560 kN at a take-off speed of 282 km/h.

Determine the wing drag at this condition.

9.29 A model of wing has a 5 in. chord and 2.5 ft span and is tested

at an angle of attack in a wind tunnel at 60 mph with air at 14.5 psia

and 70oF. The lift and drag are measured at 6.0 lbf and 0.4 lbf, respec-

tively. Determine the lift and drag coefficients for the wing.

9.30 The mean velocity over the top of a wing with a 1.8 m chord

moving through air at 33.5 m/s is 40 m/s, and that over the bottom of

the wing is 31 m/s. Determine the lift per meter of span and the lift

coefficient.

9.31A human-powered aircraft has a gross weight of 240 lbf includ-

ing the pilot. Its wing has a lift coefficient of 1.5 and a lift-to-drag

ratio of 70. Estimate the wing area needed and the pilot power that

must be provided for this craft to cruise at 15 mph. Assume that

the wing profile drag is about 40 percent of the total drag and the pro-

peller efficiency is 80 percent.

9.32Amodel airfoil of chord 6 in. and span 30 in. is placed in a wind

tunnel with an air flow of 100 ft s at 70 F. It is mounted on a cylin-

drical support rod 1 in. in diameter and 10 in. tall. Instruments at the

base of the rod indicate a vertical force of 10 lbf and a horizontal force

of 1.5 lbf. Calculate the lift and drag coefficients of the airfoil.
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9.33 An airplane with an effective lift area of 25 m2 is fitted with

airfoils of NACA 23012 section (Fig. 9.23). The maximum flap set-

ting that can be used at takeoff corresponds to configuration in

Fig. 9.23. Determine the maximum gross mass possible for the air-

plane if its takeoff speed is 150 km hr at sea level. Find the minimum

takeoff speed required for this gross mass if the airplane is instead

taking off from Denver (elevation 1.6 km).

9.34 The F-16 fighter aircraft weighs 26,000 lbf fully loaded, has a

wing planform area of 300 ft2, and a maximum lift coefficient of

1.6. The limit on acceleration during turns in level flight is 5 g.

Determine the minimum speed at sea level for which the pilot

can produce a 5 g total acceleration. Determine the corresponding

flight radius.

9.35 A light airplane has 35-ft effective wingspan and 5.5-ft chord.

It was originally designed to use a conventional (NACA 23015)

airfoil section. With this airfoil, its cruising speed on a standard

day near sea level is 150 mph. A redesign is proposed in which

the current conventional airfoil section is replaced with another

conventional airfoil section of the same area, but with aspect ratio

AR=8. Determine the cruising speed that could be achieved with this

new airfoil for the same power.

9.36 Rotating cylinders have been proposed as a means of ship

propulsion as early as 1924. An original design used two rotors, each

10 ft in diameter and 50 ft high, rotating at up to 800 rpm. Calculate

the maximum lift and drag forces that act on each rotor in a 30-mph

wind. Estimate the power needed to spin the rotors and propel the

ship at 800 rpm.

9.37A baseball pitcher throws a ball 60 ft from the pitcher’s mound

over home plate at 80 mph. A baseball has a mass of 5 oz and a

circumference of 9 in. Determine the spin that should be placed on

the ball for maximum horizontal deviation from a straight path and

determine the deviation from a straight line.
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C H A P T E R 9

External Incompressible
Viscous Flow
Part A Boundary Layers

9.1 The Boundary Layer Concept

9.2 Laminar Flat Plate Boundary Layer: Exact Solution

9.3 Momentum Integral Equation

9.4 Use of the Momentum Integral Equation for Flow

with Zero Pressure Gradient

9.5 Pressure Gradients in Boundary Layer Flow

Part B Fluid Flow About Immersed Bodies

9.6 Drag

9.7 Lift

9.8 Summary and Useful Equations

Case Study

The all-electric Tesla Model S depicted in the figure represents a
revolutionary advance in automotive design. The 2017 Model S
energy consumption has been rated by the EPA as a combined
fuel economy of 0.26 kWh/mi, which is equivalent to 104 mpg.
The range on a single battery charge is 215 mi. The aerodynamic
performance of the vehicle is crucial to achieving fuel consump-
tion and range of the automobile.

Aerodynamic drag on vehicles has been traditionally
determined using full-scale prototypes or models tested in wind
tunnels. For the Tesla, an in-house computational fluid dynam-
ics (CFD) programwas used to determine the effect of modifica-
tions in the shape of the body on reducing drag. The drag
coefficient, which is a measure of the drag force relative to the
kinetic energy of the air flowing over the vehicle, is 0.32 for
the current Model S. Further modifications planned by Tesla
are expected to reduce the value to 0.21. At speeds above about
30 mph, the aerodynamic drag is the major contributor to fuel
use, so aerodynamics are important to the success of the car.

Among the many improvements over conventional car design
are the wheels with turbine-style blading that direct the airflow
under the car to reduce drag. The underside is flat and smooth
with a rear diffuser to reduce the wake. The front end uses a grill
shape with rounded edges to control the airflow over the top and
sides of the car. Air curtains in the lower fender provide a drag-
reducing airstream. Even the door handles are recessed to make
for smooth airflow over the sides.

An independent CFD simulation of a model of the Tesla
focused on the different components that contribute to the
drag. The major contributions came from the front bumper,
underside, wheels and housings, and the rear window and trunk.
The drag on the front license plate, which is mandatory in
many states, was significant. Low pressures on the front hood,
windshield, and roof actually reduced the drag somewhat. The
low-drag features of the Tesla illustrate the design possibilities
using CFD.
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A streamlined all-electric automobile.
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Learning Objectives
After completing this chapter, you should be able to

• Describe a boundary layer and the parameters that characterize it.

• Provide a physical explanation for the terms in the momentum integral equation.

• Compute the boundary layer parameters using the momentum integral equation.

• Explain the effects of pressure gradients on a boundary layer.

• Determine the drag force for flow over different shaped objects.

• Determine the lift force for flow over objects.

External flows are flows over bodies immersed in an unbounded fluid. The flow over a sphere

(Fig. 2.14b) and the flow over a streamlined body (Fig. 2.16) are examples of external flows, which were

discussed qualitatively in Chapter 2.More interesting examples are the flow fields around such objects as

airfoils (Fig. 9.1), automobiles, and airplanes. Our objective in this chapter is to quantify the behavior of

viscous, incompressible fluids in external flow.

A number of phenomena that occur in external flow over a body are illustrated in the sketch of

viscous flow at high Reynolds number over an airfoil (Fig. 9.1). The freestream flow divides at the

stagnation point and flows around the body. Fluid at the surface takes on the velocity of the body as a

result of the no-slip condition. Boundary layers form on both the upper and lower surfaces of the

body. The boundary-layer thickness on both surfaces in Fig. 9.1 is exaggerated greatly for clarity.

The flow in the boundary layers initially is laminar. Transition to turbulent flow occurs at some dis-

tance from the stagnation point, depending on freestream conditions, surface roughness, and pressure

gradient. The transition points are indicated by “T” in the figure. The turbulent boundary layer fol-

lowing transition grows more rapidly than the laminar layer. A slight displacement of the streamlines

of the external flow is caused by the thickening boundary layers on the surface. In a region of

increasing pressure (an adverse pressure gradient—so called because it opposes the fluid motion,

tending to decelerate the fluid particles) flow separation may occur. Separation points are indicated

by “S” in the figure. Fluid that was in the boundary layers on the body surface forms the viscous

wake behind the separation points.

This chapter has two parts. Part A is a review of boundary-layer flows. Here we discuss in a little

more detail the ideas introduced in Chapter 2, and then apply the fluid mechanics concepts we have

learned to analyze the boundary layer for flow along a flat plate—the simplest possible boundary layer,

because the pressure field is constant. We will be interested in seeing how the boundary-layer thickness

grows, what the surface friction will be, and so on. We will explore a classic analytical solution for a

laminar boundary layer, and see that we need to resort to approximate methods when the boundary layer

is turbulent. We will conclude our introduction to boundary layers by briefly discussing the effect of

pressure gradients on boundary-layer behavior.

LBL

LBL
TBL

TBL
T

T

S

S
Viscous wake

Streamlines

Stagnation point

U–Uniform velocity field upstream

LBL– Laminar boundary layer
TBL– Turbulent boundary layer

T– Transition
S– Separation point

Airfoil

Fig. 9.1 Details of viscous flow around an airfoil.
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In Part B we will discuss the force on a submerged body, such as the airfoil of Fig. 9.1. We will

see that this force results from both shear and pressure forces acting on the body surface, and that both

of these are profoundly affected by the fact that we have a boundary layer, especially when this causes

flow separation and a wake. Traditionally the force a body experiences is decomposed into the compo-

nent parallel to the flow, the drag, and the component perpendicular to the flow, the lift. Because

most bodies do have a point of separation and a wake, it is difficult to use analysis to determine the

force components, so we will present approximate analyses and experimental data for various interesting

body shapes.

Part A BOUNDARY LAYERS

9.1 The Boundary Layer Concept
The concept of a boundary layer was first introduced by Ludwig Prandtl [1], a German aerodynamicist,

in 1904. Prior to Prandtl’s historic breakthrough, the science of fluid mechanics had been developing in

two rather different directions. Theoretical hydrodynamics evolved from Euler’s equation of motion for

a nonviscous fluid. Since the results of hydrodynamics predicted no drag and contradicted many exper-

imental observations practicing engineers developed their own empirical art of hydraulics. This was

based on experimental data and differed significantly from the purely mathematical approach of theo-

retical hydrodynamics.

Although the complete equations describing the motion of a viscous fluid, the Navier–Stokes equa-

tions, Eqs. 5.26, were known prior to Prandtl, the mathematical difficulties in solving these equations

except for a few simple cases prohibited a theoretical treatment of viscous flows. Prandtl showed [1] that

many viscous flows can be analyzed by dividing the flow into two regions, one close to solid boundaries,

the other covering the rest of the flow. Only in the thin region adjacent to a solid boundary, termed the

boundary layer, is the effect of viscosity important. In the region outside of the boundary layer, the effect

of viscosity is negligible and the fluid may be treated as inviscid.

The boundary-layer concept provided the link that had been missing between theory and practice.

Furthermore, the boundary-layer concept permitted the solution of viscous flow problems that would

have been impossible through application of the Navier–Stokes equations to the complete flow field.

Thus the introduction of the boundary-layer concept marked the beginning of the modern era of fluid

mechanics.

The development of a boundary layer on a solid surface was discussed in Section 2.6. In the bound-

ary layer both viscous and inertia forces are important. Consequently, it is not surprising that the Rey-

nolds number is significant in characterizing boundary-layer flows. The characteristic length used in the

Reynolds number is either the length in the flow direction over which the boundary layer has developed

or some measure of the boundary-layer thickness.

As is true for flow in a duct, flow in a boundary layer may be laminar or turbulent. There is no unique

value of Reynolds number at which transition from laminar to turbulent flow occurs in a boundary layer.

Among the factors that affect boundary-layer transition are pressure gradient, surface roughness, heat

transfer, body forces, and freestream disturbances.

In many real flow situations, a boundary layer develops over a long, essentially flat surface. Exam-

ples include flow over ship and submarine hulls, aircraft wings, and atmospheric motions over flat ter-

rain. Since the basic features of all these flows are illustrated in the simpler case of flow over a flat plate,

we consider this first. The simplicity of the flow over an infinite flat plate is that the velocity U outside

the boundary layer is constant, and therefore, because this region is steady, inviscid, and incompressible,

the pressure will also be constant. This constant pressure is the pressure felt by the boundary layer—

obviously the simplest pressure field possible. This is a zero pressure gradient flow.

A qualitative picture of the boundary-layer growth over a flat plate is shown in Fig. 9.2. The bound-

ary layer is laminar for a short distance downstream from the leading edge; transition occurs over a

region of the plate rather than at a single line across the plate. The transition region extends downstream

to the location where the boundary-layer flow becomes completely turbulent.

For incompressible flow over a smooth flat plate with zero pressure gradient, in the absence of heat

transfer, transition from laminar to turbulent flow in the boundary layer can be delayed to a Reynolds
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number, Rex = ρUx μ, greater than one million if external disturbances are minimized. For calculation

purposes, under typical flow conditions, transition usually is considered to occur at a length Reynolds

number of 500,000. For air at standard conditions, with freestream velocityU =30 m s, this corresponds

to x ≈ 0 24 m. In the qualitative picture of Fig. 9.2, we have shown the turbulent boundary layer growing

faster than the laminar layer. In later sections of this chapter we shall show that this is indeed true.

The boundary layer is the region adjacent to a solid surface in which viscous stresses are present, as

opposed to the free stream where viscous stresses are negligible. These stresses are present because we

have shearing of the fluid layers, i.e., a velocity gradient, in the boundary layer. As indicated in Fig. 9.2,

both laminar and turbulent layers have such gradients, but the difficulty is that the gradients only asymp-

totically approach zero as we reach the edge of the boundary layer. Hence, the location of the edge, i.e.,

of the boundary-layer thickness, is not very obvious and we cannot simply define it as where the bound-

ary-layer velocity u equals the freestream velocityU. Because of this, several boundary-layer definitions

have been developed: the boundary layer thickness δ, the displacement thickness δ , and the momentum

thickness θ.

The most straightforward definition is the boundary layer thickness, δ. This is usually defined as the

distance from the surface at which the velocity is within 1 percent of the free stream, u≈ 0 99U, as

shown in Fig. 9.3b. The other two definitions are based on the notion that the boundary layer retards

the fluid, so that the mass flux and momentum flux are both less than they would be in the absence

of the boundary layer. We imagine that the flow remains at uniform velocity U, but the surface of

the plate is moved upwards to reduce either the mass or momentum flux by the same amount that

the boundary layer actually does. The displacement thickness, δ , is the distance the plate would be

moved so that the loss of mass flux due to reduction in uniform flow area is equivalent to the loss

the boundary layer causes. The mass flux if we had no boundary layer would be
∞

0
ρUdy w, where

w is the width of the plate perpendicular to the flow. The actual flow mass flux is
∞

0
ρu dy w. Hence,

the loss due to the boundary layer is
∞

0
ρ U−u dy w. If we imagine keeping the velocity at a constant

U, and instead move the plate up a distance δ (as shown in Fig. 9.3a), the loss of mass flux would be

ρUδ w. Setting these losses equal to one another gives

ρUδ w=
∞

0

ρ U−u dy w

For incompressible flow, ρ= constant, and

δ =
∞

0

1−
u

U
dy≈

δ

0

1−
u

U
dy 9 1

Since u≈U at y= δ, the integrand is essentially zero for y≥ δ. Application of the displacement-thickness

concept is illustrated in Example 9.1.

The momentum thickness, θ, is the distance the plate would be moved so that the loss of momentum

flux is equivalent to the loss the boundary layer actually causes. The momentum flux if we had the same

flow as with the boundary layer but with the momentum of the free stream would be
∞

0
ρu U dy w; the

actual mass flux with the boundary layer is
∞

0
ρu dy w, and the momentum per unit mass flux of the

uniform flow is U itself . The actual momentum flux of the boundary layer is
∞

0
ρu2 dy w. Hence, the

U

U

U

Laminar
Transition

Turbulent

Fig. 9.2 Boundary layer on a flat plate (vertical thickness exaggerated greatly).
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loss of momentum in the boundary layer is
∞

0
ρu U−u dy w. If we imagine keeping the velocity at a

constantU, and insteadmove the plate up a distance θ (as shown in Fig. 9.3c), the loss of momentum flux

would be
θ

0
ρUU dy w= ρU2θw. Setting these losses equal to one another gives

ρU2θ=
∞

0

ρu U−u dy

and

θ=
∞

0

u

U
1−

u

U
dy≈

δ

0

u

U
1−

u

U
dy 9 2

Again, the integrand is essentially zero for y≥ δ.

The displacement and momentum thicknesses, δ and θ, are easier to evaluate accurately from

experimental data than the boundary-layer thickness, δ. This fact, coupled with their physical signifi-

cance, accounts for their common use in specifying boundary-layer thickness.

We have seen that the velocity profile in the boundary layer merges into the local freestream velocity

asymptotically. Little error is introduced if the slight difference between velocities at the edge of the

boundary layer is ignored for an approximate analysis. Simplifying assumptions usually made for engi-

neering analyses of boundary-layer development are:

1 u U at y= δ

2 ∂u ∂y 0 at y= δ

3 υ≪U within the boundary layer

Results of the analyses developed in the next two sections show that the boundary layer is very thin

compared with its development length along the surface. Therefore it is also reasonable to assume:

4 Pressure variation across the thin boundary layer is negligible. The freestream pressure distribution is

impressed on the boundary layer.

Example 9.1 illustrates the use of these boundary parameters in a physical situation.

(in mass flux)

U

U

U U

U

U

u

0.99 U

δ*

δ

δ

θ

θ

(in
momentum

flux)

(a) Displacement thickness, δ* (b) Disturbance thickness, (c) Momentum thickness, 

Fig. 9.3 Boundary-layer thickness definitions.

Example 9.1 BOUNDARY LAYER IN CHANNEL FLOW

A laboratory wind tunnel has a test section that is 305 mm square. Boundary-layer velocity profiles are measured at two cross-

sections and displacement thicknesses are evaluated from the measured profiles. At section , where the freestream speed is

U1 =26m s, the displacement thickness is δ∗1 =1 5 mm. At section , located downstream from section , δ∗2 =2 1 mm. Cal-

culate the change in static pressure between sections and . Express the result as a fraction of the freestream dynamic pressure

at section . Assume standard atmosphere conditions.
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Given: Flow of standard air in laboratory

wind tunnel. Test section is L=305 mm

square. Displacement thicknesses are δ∗1 =

1 5 mm and δ∗2 =2 1 mm. Freestream speed

is U1 =26m s.

Find: Change in static pressure between

sections and . (Express as a fraction of

freestream dynamic pressure at section .)

Solution: The idea here is that at each

location the boundary-layer displacement

thickness effectively reduces the area of uniform flow, as indicated in the following figures: Location has a smaller effective

flow area than location (because δ∗2 > δ∗1). Hence, from mass conservation the uniform velocity at location will be higher.

Finally, from the Bernoulli equation the pressure at location will be lower than that at location .

Apply the continuity and Bernoulli equations to freestream flow outside the boundary-layer displacement thickness, where

viscous effects are negligible.

Governing equations:

=0 1

∂

∂t CV

ρ dV +
CS

ρ V dA=0
4 12

p1

ρ
+
V2
1

2
+ g z1 =

p2

ρ
+
V2
2

2
+ g z2 4 24

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Flow uniform at each section outside δ∗.

4 Flow along a streamline between sections and .

5 No frictional effects in freestream.

6 Negligible elevation changes.

From the Bernoulli equation we obtain

p1−p2 =
1

2
ρ V2

2 −V2
1 =

1

2
ρ U2

2 −U2
1 =

1

2
ρU2

1

U2

U1

2

−1

or
p1−p2
1
2
ρU2

1

=
U2

U1

2

−1

From continuity, V1A1 =U1A1 =V2A2 =U2A2, so U2 U1 =A1A2, where

A= L−2δ∗
2
is the effective flow area. Substituting gives

p1−p2
1
2
ρU2

1

=
A1

A2

2

−1=
L−2δ∗1

2

L−2δ∗2
2

2

−1

p1−p2
1
2
ρU2

1

=
305−2 1 5

305−2 2 1

4

−1=0 0161 or

p1−p2
1
2
ρU2

1

=1 61 percent

p1−p2
1
2
ρU2

1

U U

δ *

δ *

(a) Actual velocity profile (b) Hypothetical velocity profile (c) Cross section of
wind tunnel

L – 2

δ*L – 2

Notes:
• This problem illustrates a basic applica-
tion of the displacement-thickness con-
cept. It is somewhat unusual in that,
because the flow is confined, the reduc-
tion in flow area caused by the boundary
layer leads to the result that the pressure
in the inviscid flow region drops (if only
slightly). In most applications the pres-
sure distribution is determined from the
inviscid flow and then applied to the
boundary layer.

• We saw a similar phenomenon in
Section 8.1, where we discovered that the
centerline velocity at the entrance of a
pipe increases due to the boundary layer
“squeezing” the effective flow area.
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9.2 Laminar Flat Plate Boundary Layer: Exact Solution
The solution for the laminar boundary layer on a horizontal flat plate was obtained by Prandtl’s student

H. Blasius [2] in 1908. For two-dimensional, steady, incompressible flow with zero pressure gradient,

the governing equations of motion (Eqs. 5.27) reduce to [3]

∂u

∂x
+
∂υ

∂y
=0 9 3

u
∂u

∂x
+ υ

∂u

∂y
= ν

∂2u

∂y2
9 4

with boundary conditions

at y=0, u=0, υ=0

at y= ∞ , u=U,
∂u

∂y
=0

9 5

Equations 9.3 and 9.4, with boundary conditions Eq. 9.5 are a set of nonlinear, coupled, partial differ-

ential equations for the unknown velocity field u and υ. To solve them, Blasius reasoned that the velocity

profile, u U, should be similar for all values of x when plotted versus a nondimensional distance from

the wall; the boundary-layer thickness, δ, was a natural choice for nondimensionalizing the distance from

the wall. Thus the solution is of the form

u

U
= g η where η

y

δ
9 6

Based on the solution of Stokes [4], Blasius reasoned that δ νx U and set

η= y
U

νx
9 7

The variable “eta” combines the two variables x and y into one variable. We now introduce the stream

function, ψ , where

u=
∂ψ

∂y
and υ= −

∂ψ

∂x
5 4

This substitution satisfies the continuity equation (Eq. 9.3) identically. Substituting for u and υ into

Eq. 9.4 reduces the momentum equation to one in which ψ is the single dependent variable. Defining

a dimensionless stream function as

f η =
ψ

νxU
9 8

makes f η the dependent variable and η the independent variable in Eq. 9.4. With ψ defined by Eq. 9.8

and η defined by Eq. 9.7, we can evaluate each of the terms in Eq. 9.4.

The velocity components are given by

u=
∂ψ

∂y
=
∂ψ

∂η

∂η

∂y
= νxU

df

dη

U

νx
=U

df

dη
9 9

and

υ= −
∂ψ

∂x
= − νxU

∂f

∂x
+
1

2

νU

x
f = − νxU

df

dη
−
1

2
η
1

x
+
1

2

νU

x
f

or

υ=
1

2

νU

x
η
df

dη
− f 9 10
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By differentiating the velocity components, it also can be shown that

∂u

∂x
= −

U

2x
η
d2f

dη2

∂u

∂y
=U U νx

d2f

dη2

and
∂2u

∂y2
=
U2

νx

d3f

dη3

Substituting these expressions into Eq. 9.4, we obtain

2
d3f

dη3
+ f

d2f

dη2
=0 9 11

with boundary conditions:

at η=0, f =
df

dη
=0

at η= ∞ ,
df

dη
=1

9 12

The second-order partial differential equations governing the laminar boundary layer on a flat plate

(Eqs. 9.3 and 9.4) have been transformed to a nonlinear, third-order ordinary differential equation

(Eq. 9.11) with boundary conditions given by Eq. 9.12. It is not possible to solve Eq. 9.11 in closed

form; Blasius solved it using a power series expansion and it has been solved more recently using

numerical methods [5]. The solution in terms of “eta” is given in Table 9.1.

The velocity profile is sketched in Fig. 9.3b. Velocity profiles measured experimentally are in excel-

lent agreement with the analytical solution. Profiles from all locations on a flat plate collapse to a single

profile when plotted in nondimensional coordinates.

From Table 9.1, we see that at η=5 0, u U =0 992. With the boundary-layer thickness, δ, defined

as the value of y for which u U =0 99, Eq. 9.7 gives

δ≈
5 0

U νx
=

5 0x

Rex
9 13

Table 9.1
The Function f η for the Laminar Boundary Layer along a Flat Plate at Zero Incidence

η= y
U

νx

f f =
u

U
f

0 0 0 0 3321

0 5 0 0415 0 1659 0 3309

1 0 0 1656 0 3298 0 3230

1 5 0 3701 0 4868 0 3026

2 0 0 6500 0 6298 0 2668

2 5 0 9963 0 7513 0 2174

3 0 1 3968 0 8460 0 1614

3 5 1 8377 0 9130 0 1078

4 0 2 3057 0 9555 0 0642

4 5 2 7901 0 9795 0 0340

5 0 3 2833 0 9915 0 0159

5 5 3 7806 0 9969 0 0066

6 0 4 2796 0 9990 0 0024

6 5 4 7793 0 9997 0 0008

7 0 5 2792 0 9999 0 0002

7 5 5 7792 1 0000 0 0001

8 0 6 2792 1 0000 0 0000
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The wall shear stress may be expressed as

τw = μ
∂u

∂y y=0

= μU U νx
d2f

dη2 η=0

Then

τw =0 332U ρμU x=
0 332ρU2

Rex
9 14

and the wall shear stress coefficient, Cf , is given by

Cf =
τw

1
2
ρU2

=
0 664

Rex
9 15

Each of the results for boundary-layer thickness, δ, wall shear stress, τw, and skin friction coefficient, Cf ,

Eqs. 9.13 through 9.15, depends on the length Reynolds number, Rex, to the one-half power. The

boundary-layer thickness increases as x1 2, and the wall shear stress and skin friction coefficient

vary as 1 x1 2. These results characterize the behavior of the laminar boundary layer on a flat plate.

In Example 9.2, we evaluate some boundary layer properties using the exact solution.

Example 9.2 LAMINAR BOUNDARY LAYER ON A FLAT PLATE: EXACT SOLUTION

Use the numerical results presented in Table 9.1 to evaluate the following quantities for laminar boundary-layer flow on a

flat plate:

(a) δ δ (for η=5 and as η ∞ ).

(b) υ U at the boundary-layer edge.

Given: Numerical solution for laminar flat plate boundary layer, Table 9.1.

Find: (a) The displacement thickness δ δ (for η=5 and as η ∞ ).

(b) The vertical component of velocity υ U at the boundary-layer edge.

(c) The ratio of the slope of a streamline at the boundary-layer edge to the slope of δ versus x.

Solution: The displacement thickness is defined by Eq. 9.1 as

δ =
∞

0

1−
u

U
dy≈

δ

0

1−
u

U
dy

In order to use the Blasius exact solution to evaluate this integral, we need to convert it from one involving u and y to one invol-

ving f = u U and η variables. From Eq. 9.7, η= y U νx, so y= η νx U and dy= dη νx U

Thus,

δ =
ηmax

0

1− f
νx

U
dη=

νx

U

ηmax

0

1− f dη 1

Note: Corresponding to the upper limit on y in Eq. 9.1, ηmax = ∞ , or ηmax≈5.

From Eq. 9.13,

δ≈
5

U νx

so if we divide each side of Eq. 1 by each side of Eq. 9.13, we obtain (with f = df dη)

δ

δ
=
1

5

ηmax

0

1−
df

dη
dη
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9.3 Momentum Integral Equation
The exact solution for the laminar boundary layer on a flat plate obtained in Section 9.2 is complex math-

ematically. It is restricted to a constant free stream velocity with a zero pressure gradient. We will

develop a method for analyzing more general cases that include both laminar and turbulent boundary

layers in which the freestream velocity and pressure vary along the surface, as for example the curved

surface of an airfoil. Our approach will be to apply the basic equations to a control volume.

We will consider the general situation of a incompressible, steady, two-dimensional flow over a

solid surface. The boundary-layer thickness, δ, grows with increasing distance, x. For our analysis

we choose a differential control volume, of length dx, width w, and height δ x , as shown in

Fig. 9.4. The freestream velocity is U x .

We wish to determine the boundary-layer thickness and shear stress as functions of x. There will be

mass flow across surfaces ab and cd of differential control volume abcd. What about surface bc? Surface

bc is not a streamline but is the imaginary boundary that separates the viscous boundary layer and the

inviscid freestream flow. Thus there will be mass flow across surface bc. Since control surface ad is

Integrating gives

δ

δ
=
1

5
η− f η

ηmax

0

Evaluating at ηmax =5, we obtain

δ

δ
=
1

5
5 0−32833 = 0 343

δ

δ
η=5

The quantity η− f η becomes constant for η>7. Evaluating at ηmax =8 gives

δ

δ
=
1

5
8 0−62792 = 0 344

δ

δ
η ∞

Thus, δη−∞
is essentially equal to δη−5

From Eq. 9.10, the vertical component of velocity is

υ=
1

2

νU

x
η
df

dη
− f , so

υ

U
=
1

2

ν

Ux
η
df

dη
− f =

1

2 Rex
η
df

dη
− f

Evaluating at the boundary-layer edge η=5 , we obtain

υ

U
=

1

2 Rex
5 0 9915 −3 2833 =

0 837

Rex
≈

0 84

Rex

υ

U
η=5

Thus υ is only 0.84 percent ofU at Rex =104, and only about 0.12 percent ofU

at Rex =5×105.

This problem illustrates use of numerical
data from the Blasius solution to obtain
other information on a flat plate laminar
boundary layer.

y

x

CV

a

b

c

d

(x)δ

U(x)

dx
Fig. 9.4 Differential control volume in a
boundary layer.
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adjacent to a solid boundary, there will not be flow across ad. Before considering the forces acting on the

control volume and the momentum fluxes through the control surface, let us apply the continuity equation

to determine the mass flux through each portion of the control surface.

a. Continuity Equation
Basic equation:

= 0 1

∂

∂t CV

ρ dV +
CS

ρ V dA=0
4 12

Assumptions:

1 Steady flow.

2 Two-dimensional flow.

Then

CS

ρV dA=0

Hence

mab +mbc +mcd =0

or

mbc = −mab−mcd

Now let us evaluate these terms for the differential control volume of width w:

Surface Mass Flux

ab Surface ab is located at x. Since the flow is two-dimensional (no variation with z), the mass flux through

ab is

mab = −

δ

0

ρu dy w

cd Surface cd is located at x+ dx. Expanding the m in a Taylor series about location x, we obtain

mx+ dx =mx +
∂m

∂x x

dx

and hence

mcd =
δ

0

ρu dy+
∂

∂x

δ

0

ρu dy dx w

bc Thus for surface bc we obtain, from the continuity equation and the above results,

mbc = −
∂

∂x

δ

0

ρu dy dx w

Now let us consider the momentum fluxes and forces associated with control volume abcd. These

are related by the momentum equation.

b. Momentum Equation
Apply the x component of the momentum equation to control volume abcd:

Basic equation:

= 0 3 = 0 1

FSx +FBx
=

∂

∂t CV

u ρ dV +
CS

u ρ V dA
4 18a
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Assumptions:

3 FBx
=0

Then

FSx =mfab +mfbc +mfcd

where mf represents the x component of momentum flux.

To apply this equation to differential control volume abcd, we must obtain expressions for the

x momentum flux through the control surface and also the surface forces acting on the control volume

in the x direction. Let us consider the momentum flux first and again consider each segment of the

control surface.

Surface Momentum Flux (mf )

ab Surface ab is located at x. Since the flow is two-dimensional, the x momentum flux through ab is

mfab = −

δ

0

u ρu dy w

cd Surface cd is located at x+ dx. Expanding the xmomentum flux (mf ) in a Taylor series about location

x, we obtain

mfx+ dx =mfx +
∂mf

∂x x

dx

or

mfcd =
δ

0

u ρu dy+
∂

∂x

δ

0

u ρu dy dx w

bc Since the mass crossing surface bc has velocity component U in the x direction, the x momentum flux

across bc is given by

mfbc =Umbc

mfbc = −U
∂

∂x

δ

0

ρu dy dx w

From the above we can evaluate the net x momentum flux through the control surface as

CS

u ρV dA= −

δ

0

u ρu dy w+
δ

0

u ρu dy w

+
∂

∂x

δ

0

u ρu dy dx w−U
∂

∂x

δ

0

ρu dy dx w

Collecting terms, we find that

CS

u ρV dA=
∂

∂x

δ

0

u ρu dy dx−U
∂

∂x

δ

0

ρu dy dx w

Now that we have a suitable expression for the x momentum flux through the control surface, let us

consider the surface forces acting on the control volume in the x direction. For convenience the differ-

ential control volume has been redrawn in Fig. 9.5. Note that surfaces ab, bc, and cd all experience nor-

mal forces (i.e., pressure) that generate force in the x direction. In addition, a shear force acts on surface

ad. Since, by definition of the boundary layer, the velocity gradient goes to zero at the edge of the bound-

ary layer, the shear force acting along surface bc is negligible.

dδ

δ

c

b

da

dx

Fig. 9.5 Differential
control volume.
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Surface Force

ab If the pressure at x is p, then the force acting on surface ab is given by

Fab = pwδ

The boundary layer is very thin; its thickness has been greatly exaggerated in all the sketches we have

made. Because it is thin, pressure variations in the y direction may be neglected, and we assume that

within the boundary layer, p= p x only.

cd Expanding in a Taylor series, the pressure at x+ dx is given by

px+ dx = p+
dp

dx x

dx

The force on surface cd is then given by

Fcd = − p+
dp

dx x

dx w δ+ dδ

bc The average pressure acting over surface bc is

p+
1

2

dp

dx x

dx

Then the x component of the normal force acting over bc is given by

Fbc = p+
1

2

dp

dx x

dx w dδ

ad The average shear force acting on ad is given by

Fad = − τw +
1

2
dτw w dx

Summing these x components, we obtain the total force acting in the x direction on the control

volume,

0 0

FSx = −
dp

dx
δ dx−

1

2

dp

dx
dx dδ−τwdx−

1

2
dτwdx w

where we note that dx dδ≪ δdx and dτw ≪ τw, and so neglect the second and fourth terms.

Substituting the expressions, for
CS
u ρV dA and FSx into the xmomentum equation (Eq. 4.18a), we

obtain

−
dp

dx
δ dx−τwdx w=

∂

∂x

δ

0

u ρu dy dx−U
∂

∂x

δ

0

ρu dy dx w

Dividing this equation by w dx gives

−δ
dp

dx
−τw =

∂

∂x

δ

0

u ρu dy−U
∂

∂x

δ

0

ρu dy 9 16

Equation 9.16 is a “momentum integral” equation that gives a relation between the x components of the

forces acting in a boundary layer and the x momentum flux.

The pressure gradient, dp dx , can be determined by applying the Bernoulli equation to the inviscid

flow outside the boundary layer: dp dx = −ρU dU dx. If we recognize that δ=
δ

0
dy, then Eq. 9.16 can

be written as

τw = −
∂

∂x

δ

0

u ρu dy+U
∂

∂x

δ

0

ρu dy+
dU

dx

δ

0

ρU dy
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Since

U
∂

∂x

δ

0

ρu dy=
∂

∂x

δ

0

ρu U dy−
dU

dx

δ

0

ρu dy

we have

τw =
∂

∂x

δ

0

ρu U−u dy+
dU

dx

δ

0

ρ U−u dy

and

τw =
∂

∂x
U2

δ

0

ρ
u

U
1−

u

U
dy+U

dU

dx

δ

0

ρ 1−
u

U
dy

Using the definitions of displacement thickness, δ (Eq. 9.1), and momentum thickness, θ (Eq. 9.2), we

obtain

τw

ρ
=

d

dx
U2θ + δ U

dU

dx
9 17

Equation 9.17 is the momentum integral equation and is restricted to a steady incompressible two-

dimensional flow. This equation will yield an ordinary differential equation for boundary-layer thickness

δ as a function of x. To apply the equation we need to provide a suitable expression for the velocity

profile u U and relate the wall stress τw to other variables. Once the boundary-layer thickness is deter-

mined, expressions for the momentum thickness, displacement thickness, and wall shear stress can then

be obtained. As we have not made any specific assumption relating the wall shear stress, τw, to the veloc-

ity, Eq. 9.17 is valid for either a laminar or turbulent boundary-layer flow. In order to use this equation to

estimate the boundary-layer thickness as a function of x, we must first:

1 Obtain a first approximation to the freestream velocity distribution, U x . This is determined from

inviscid flow theory (the velocity that would exist in the absence of a boundary layer) and depends

on body shape.

2 Assume a reasonable velocity-profile shape inside the boundary layer.

3 Derive an expression for τw using the results obtained from item 2.

To illustrate the application of Eq. 9.17 to boundary-layer flows, we consider first the case of flow

with zero pressure gradient over a flat plate. The results can then be compared to the exact Blasius results.

The effects of pressure gradients in boundary-layer flow are then discussed in Section 9.5.

9.4 Use of the Momentum Integral Equation for Flow
with Zero Pressure Gradient
For the special case of a flat plate (zero pressure gradient) the freestream pressure p and velocity U are

both constant.

The momentum integral equation then reduces to

τw = ρU2 dθ

dx
= ρU2 d

dx

δ

0

u

U
1−

u

U
dy 9 18

The velocity distribution, u U, in the boundary layer is assumed to be similar for all values of x and

normally is specified as a function of y δ. Consequently, it is convenient to change the variable of inte-

gration from y to y δ. Defining

η=
y

δ
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we get

dy= δ dη

and the momentum integral equation for zero pressure gradient is written

τw = ρU2 dθ

dx
= ρU2 dδ

dx

1

0

u

U
1−

u

U
dη 9 19

To solve this equation for the boundary-layer thickness as a function of x, we first assume a velocity

distribution in the boundary layer, which is of the form

u

U
= f

y

δ

The assumed velocity distribution should satisfy the following approximate physical boundary

conditions:

at y=0, u=0

at y= δ, u=U

at y= δ,
∂u

∂y
=0

Note that once we have assumed a velocity distribution, from the definition of the momentum thickness

(Eq. 9.2), the numerical value of the integral in Eq. 9.19 is simply

1

0

u

U
1−

u

U
dη=

θ

δ
= constant = β

and the momentum integral equation becomes

τw = ρU2 dδ

dx
β

We then an expression for τw in terms of δ. This will then permit us to solve for δ x , as illustrated below.

Laminar Flow

For laminar flow over a flat plate, a reasonable assumption for the velocity profile is a polynomial in y:

u= a+ by+ cy2

The physical boundary conditions are:

at y=0, u=0

at y= δ, u=U

at y= δ,
∂u

∂y
=0

Evaluating constants a, b, and c gives

u

U
=2

y

δ
−

y

δ

2

=2η−η2 9 20

The wall shear stress is given by

τw = μ
∂u

∂y y=0

Substituting the assumed velocity profile, Eq. 9.20, into this expression for τw gives

τw = μ
∂u

∂y y=0

= μ
U∂ u U

δ∂ y δ y δ=0

=
μU

δ

d u U

dη η=0
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or

τw =
μU

δ

d

dη
2η−η2

η=0

=
μU

δ
2−2η

η=0

=
2μU

δ

Note that this shows that the wall stress τw is a function of x, since the boundary-layer thickness δ= δ x .

Substituting for τw and u U into the momentum integral equation 9.19, we obtain

2μU

δ
= ρU2dδ

dx

1

0

2η−η2 1−2η+ η2 dη

or

2μU

δρU2
=
dδ

dx

1

0

2η−5η2 +4η3−η4 dη

Integrating and substituting limits yields

2μ

δρU
=

2

15

dδ

dx
or δ dδ=

15μ

ρU
dx

which is a differential equation for δ. Integrating again gives

δ2

2
=
15μ

ρU
x+ c

We assume that δ=0 at x=0 and then c=0, and thus

δ=
30μx

ρU

Note that this shows that the laminar boundary-layer thickness δ grows as x; it has a parabolic shape.

Traditionally this is expressed in dimensionless form:

δ

x
=

30μ

ρUx
=

5 48

Rex
9 21

Equation 9.21 shows that the ratio of laminar boundary-layer thickness to distance along a flat plate

varies inversely with the square root of length Reynolds number. It has the same form as the exact solu-

tion and is too large by only by about 10 percent. Table 9.2 summarizes corresponding results calculated

using other approximate velocity profiles and lists results obtained from the exact solution. The only

thing that changes in the analysis when we choose a different velocity profile is the value of β.

The wall shear stress, or “skin friction,” coefficient is defined as

Cf ≡
τw

1
2
ρU2

9 22

Substituting from the velocity profile and Eq. 9.21 gives

Cf =
τw

1
2
ρU2

=
2μ U δ
1
2
ρU2

=
4μ

ρUδ
=4

μ

ρUx

x

δ
=4

1

Rex

Rex

5 48
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Finally,

Cf =
0 730

Rex
9 23

Once the variation of τw is known, the viscous drag on the surface can be evaluated by integrating over

the area of the flat plate, as illustrated in Example 9.3.

Equation 9.21 can be used to calculate the thickness of the laminar boundary layer at transition. At

Rex =5×105, with U =30 m s, for example, x=0 24 m for air at standard conditions. Thus

δ

x
=

5 48

Rex
=

5 48

5× 105
=0 00775

and the boundary-layer thickness is

δ=0 00775x=0 00775 0 24 m =1 86 mm

The boundary-layer thickness at transition is less than 1 percent of the development length, x. These

calculations confirm that viscous effects are confined to a very thin layer near the surface of a body.

The results in Table 9.2 indicate that reasonable results may be obtained with a variety of approx-

imate velocity profiles.

Example 9.3 LAMINAR BOUNDARY LAYER ON A FLAT PLATE: APPROXIMATE SOLUTION USING
SINUSOIDAL VELOCITY PROFILE

Consider two-dimensional laminar boundary-layer flow along a flat plate. Assume the velocity profile in the boundary layer is

sinusoidal,

u

U
= sin

π

2

y

δ

Find expressions for:

(a) The rate of growth of δ as a function of x.

(b) The displacement thickness, δ , as a function of x.

(c) The total friction force on a plate of length L and width b.

Table 9.2
Results of the Calculation of Laminar Boundary-Layer Flow over a Flat Plate at Zero Incidence Based on Approximate
Velocity Profiles

Velocity Distribution
u

U
= f

y

δ
= f η

β ≡
θ

δ

δ

δ
H ≡

δ

θ

Constant a in
δ

x
=

a

Rex
Constant b in Cf =

b

Rex

f η = η 1

6

1

2

3 00 3 46 0 577

f η =2η−η2 2

15

1

3

2 50 5 48 0 730

f η =
3

2
η−

1

2
η3

39

280

3

8

2 69 4 64 0 647

f η =2η−2η3 + η4 37

315

3

10

2 55 5 84 0 685

f η = sin
π

2
η

4−π

2π

π−2

π

2 66 4 80 0 654

Exact 0 133 0 344 2 59 5 00 0 664
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Given: Two-dimensional, laminar boundary-layer flow along a flat plate. The boundary-layer

velocity profile is

u

U
= sin

π

2

y

δ
for 0≤ y≤ δ

and
u

U
=1 for y> δ

Find: (a) δ x .

(b) δ .

(c) Total friction force on a plate of length L and width b.

Solution: For flat plate flow, U = constant, dp dx=0, and

τw = ρU2dθ

dx
= ρU2 dδ

dx

1

0

u

U
1−

u

U
dη 9 19

Assumptions:

1 Steady flow.

2 Incompressible flow.

Substituting
u

U
= sin

π

2
η into Eq. 9.19, we obtain

τw = ρU2 dδ

dx

1

0

sin
π

2
η 1−sin

π

2
η dη= ρU2 dδ

dx

1

0

sin
π

2
η−sin2

π

2
η dη

= ρU2 dδ

dx

2

π
−cos

π

2
η−

1

2

π

2
η+

1

4
sinπη

1

0

= ρU2 dδ

dx

2

π
0+ 1−

π

4
+ 0+ 0−0

τw = 0 137ρU2 dδ

dx
= βρU2 dδ

dx
; β=0 137

Now

τw = μ
∂u

∂y y=0

= μ
U

δ

∂ u U

∂ y δ y=0

= μ
U

δ

π

2
cos

π

2
η

η=0
=
πμU

2δ

Therefore,

τw =
πμU

2δ
=0 137ρU2 dδ

dx

Separating variables gives

δdδ=11 5
μ

ρU
dx

Integrating, we obtain

δ2

2
= 11 5

μ

ρU
x+ c

But c=0, since δ=0 at x=0, so

δ= 23 0
xμ

ρU

or

δ

x
=4 80

μ

ρUx
=

4 80

Rex

δ x

y

x
(x)δ
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Turbulent Flow

For the flat plate, we still have that U = constant. As for the laminar boundary layer, we need to find an

approximation for the turbulent velocity profile and an expression for τw in order to solve Eq. 9.19.

Details of the turbulent velocity profile for boundary layers at zero pressure gradient are very similar

to those for turbulent flow in pipes and channels. Data for turbulent boundary layers plot on the universal

velocity profile using coordinates of u u versus yu ν, as shown in Fig. 8.9. However, this profile is

rather complex mathematically for easy use with the momentum integral equation. The momentum inte-

gral equation is approximate; hence, an acceptable velocity profile for turbulent boundary layers on

smooth flat plates is the empirical power-law profile. An exponent of 1
7
is typically used to model the

turbulent velocity profile. Thus

u

U
=

y

δ

1 7

= η1 7 9 24

The displacement thickness, δ , is given by

δ = δ
1

0

1−
u

U
dη

= δ
1

0

1−sin
π

2
η dη= δ η+

2

π
cos

π

2
η

1

0

δ = δ 1−0+ 0−
2

π
= δ 1−

2

π

Since, from part (a),

δ

x
=

4 80

Rex

then

δ

x
= 1−

2

π

4 80

Rex
=

1 74

Rex

δ x

The total friction force on one side of the plate is given by

F =
AP

τwdA

Since dA= b dx and 0≤ x≤ L, then

F =
L

0

τwbdx=
L

0

ρU2dθ

dx
bdx= ρU2b

θL

0

dθ= ρU2bθL

θL =
δL

0

u

U
1−

u

U
dy= δL

1

0

u

U
1−

u

U
dη= βδL

From part (a), β=0 137 and δL =
4 80L

ReL
, so

F =
0 658ρU2bL

ReL

F This problem illustrates application of
the momentum integral equation to the
laminar boundary layer on a flat plate.
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However, this profile does not hold in the immediate vicinity of the wall, since at the wall it predicts

du dy= ∞ . Consequently, we cannot use this profile in the definition of τw to obtain an expression

for τw in terms of δ as we did for laminar boundary-layer flow. For turbulent boundary-layer flow

we adapt the expression developed for pipe flow,

τw =0 0332ρV
2 ν

RV

0 25

8 39

For a 1
7
-power profile in a pipe, Eq. 8.24 gives V U =0 817. Substituting V =0 817U and R= δ into

Eq. 8.39, we obtain

τw =0 0233ρU2 ν

Uδ

1 4

9 25

Substituting for τw and u U into Eq. 9.19 and integrating, we obtain

0 0233
ν

Uδ

1 4

=
dδ

dx

1

0

η1 7 1−η1 7 dη=
7

72

dδ

dx

Thus we obtain a differential equation for δ:

δ1 4dδ=0 240
ν

U

1 4

dx

Integrating gives

4

5
δ5 4 =0 240

ν

U

1 4

x+ c

If we assume that δ 0 at x=0, which is equivalent to assuming turbulent flow from the leading edge,

then c=0 and

δ=0 382
ν

U

1 5

x4 5

Note that this shows that the turbulent boundary-layer thickness δ grows as x4 5. Expressing the growth

in dimensionless form:

δ

x
=0 382

ν

Ux

1 5

=
0 382

Re
1 5
x

9 26

Using Eq. 9.25, we obtain the skin friction coefficient in terms of δ:

Cf =
τw

1
2
ρU2

=0 0466
ν

Uδ

1 4

Substituting for δ, we obtain

Cf =
τw

1
2
ρU2

=
0 0594

Re
1 5
x

9 27

Experiments show that Eq. 9.27 predicts turbulent skin friction on a flat plate very well for

5 × 105 <Rex <107. This agreement is remarkable in view of the approximate nature of our analysis.

Application of the momentum integral equation for turbulent boundary-layer flow is illustrated in

Example 9.4.
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Example 9.4 TURBULENT BOUNDARY LAYER ON A FLAT PLATE: APPROXIMATE SOLUTION USING
1
7-POWER VELOCITY PROFILE

Water flows atU =1m s past a flat plate with L=1m in the flow direction. The boundary layer is tripped so it becomes turbulent

at the leading edge. Evaluate the disturbance thickness, δ, displacement thickness, δ , and wall shear stress, τw, at x= L. Compare

with laminar flow maintained to the same position. Assume a 1
7
-power turbulent velocity profile.

Given: Flat plate boundary-layer flow; turbulent flow from the leading edge. Assume
1
7
-power velocity profile.

Find: (a) Disturbance thickness, δL.

(b) Displacement thickness, δL.

(c) Wall shear stress, τw L .

(d) Comparison with results for laminar flow from the leading edge.

Solution: Apply results from the momentum integral equation.

Governing equations:

δ

x
=
0 382

Re
1 5
x

9 26

δ =
∞

0

1−
u

U
dy 9 1

Cf =
τw

1
2
ρU2

=
0 0594

Re
1 5
x

9 27

At x= L, with ν=1 00× 10−6m2 s for water T =20∘C ,

ReL =
UL

ν
=1

m

s
× 1 m×

s

10−6m2
=106

From Eq. 9.26,

δL =
0 382

Re
1 5
L

L=
0 382

106
1 5

×1 m=0 0241 m or δL =24 1 mm
δL

Using Eq. 9.1, with u U = y δ
1 7

= η1 7, we obtain

δL =
∞

0

1−
u

U
dy= δL

1

0

u

U
d

y

δ
= δL

1

0

1−η1 7 dη= δL η−
7

8
η8 7

1

0

δL =
δL

8
=
24 1mm

8
=3 01 mm

δL

From Eq. 9.27,

Cf =
0 0594

106
1 5

=0 00375

τw =Cf

1

2
ρU2 =0 00375×

1

2
× 999

kg

m3
× 1

2m
2

s2
×

N s2

kg m

τw =1 87 N m2
τw L

For laminar flow, use Blasius solution values. From Eq. 9.13

δL =
5 0

ReL
L=

5 0

106
1 2

×1 m=0 005 m or 5 00 mm

From Example 9.1, δ δ=0 344, so

δ =0 344 δ=0 344× 5 0 mm=1 72 mm

U = 1 m/s

L = 1 m

x

δ
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Use of the momentum integral equation is an approximate technique to predict boundary-layer devel-

opment; the equation predicts trends correctly. Parameters of the laminar boundary layer vary as Re−1 2
x ;

those for the turbulent boundary layer vary as Re−1 5
x . Thus the turbulent boundary layer develops more

rapidly than the laminar boundary layer.

Laminar and turbulent boundary layers were compared in Example 9.3. Wall shear stress is much

higher in the turbulent boundary layer than in the laminar layer. This is the primary reason for the more

rapid development of turbulent boundary layers.

The agreement we have obtained with experimental results shows that use of the momentum inte-

gral equation is an effective approximate method that gives us considerable insight into the general

behavior of boundary layers.

9.5 Pressure Gradients in Boundary Layer Flow
The boundary layer with a uniform flow along an infinite flat plate is the easiest one to study because the

pressure gradient is zero—the fluid particles in the boundary layer are slowed only by shear stresses,

leading to boundary-layer growth. We now consider the effects caused by a pressure gradient, which

will be present for all bodies except, as we have seen, a flat plate.

A favorable pressure gradient is one in which the pressure decreases in the flow direction

(i.e., ∂p ∂x<0); it is called favorable because it tends to overcome the slowing of fluid particles caused

by friction in the boundary layer. This pressure gradient arises when the freestream velocityU is increas-

ing with x, for example, in the converging flow field in a nozzle. On the other hand, an adverse pressure

gradient is one in which pressure increases in the flow direction (i.e., ∂p ∂x>0); it is called adverse

because it will cause fluid particles in the boundary-layer to slow down at a greater rate than that due to

boundary-layer friction alone. If the adverse pressure gradient is severe enough, the fluid particles in

the boundary layer will actually be brought to rest.When this occurs, the particles will be forced away from

the body surface (a phenomenon called flow separation) as they make room for following particles, ulti-

mately leading to awake inwhich flow is turbulent. Examples of this arewhen thewalls of a diffuser diverge

too rapidly and when an airfoil has too large an angle of attack.

This description of the adverse pressure gradient and friction in the boundary layer together forcing

flow separation certainly makes intuitive sense. The fluid velocity is zero at the surface. Separation

would occur when the fluid velocity is zero in the fluid, but this can occur only when ∂u ∂y y=0 =0.

Further, the wall shear stress for laminar and turbulent boundary layers is always positive. We conclude

that for uniform flow over a flat plate the flow never separates, and we never develop a wake region,

whether the boundary layer is laminar or turbulent, regardless of plate length.

Clearly, for flows in which ∂p ∂x<0 (whenever the freestream velocity is increasing), we can be

sure that there will be no flow separation. For flows in which ∂p ∂x>0 (i.e., adverse pressure gradients)

we could have flow separation. We should not conclude that an adverse pressure gradient always leads to

flow separation and a wake but have only concluded that it is a necessary condition for flow separation

to occur.

Region 3Region 2Region 1

 p___
x

д

д

 u__
y

д

д

< 0  p___
x

д

д
= 0

 p___
x

д

д
> 0

y

x

(x)δ Backflow

Separation point:
y=0

= 0

Fig. 9.6 Boundary-layer flow with pressure gradient (boundary-layer thickness exaggerated for clarity).
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To illustrate these results consider the variable cross-sectional flow shown in Fig. 9.6. Outside the

boundary layer the velocity field is one in which the flow accelerates (Region 1), has a constant velocity

region (Region 2), and then a deceleration region (Region 3). Corresponding to these, the pressure gra-

dient is favorable, zero, and adverse, respectively, as shown. From our discussions above, we conclude

that separation cannot occur in Region 1 or 2, but can occur in Region 3. Could we avoid flow separation

in a device like this? Intuitively, we can see that if we make the divergent section less severe, we may be

able to eliminate flow separation. In other words, we may eliminate flow separation if we make the

adverse pressure gradient ∂p ∂x small enough. We conclude that flow separation is possible, but not

guaranteed, when we have an adverse pressure gradient.

The nondimensional velocity profiles for laminar and turbulent boundary-layer flow over a flat plate

are shown in Fig. 9.7a. The turbulent profile is much fuller (more blunt) than the laminar profile. At the

same freestream speed, the momentum flux within the turbulent boundary layer is greater than within

the laminar layer (Fig. 9.7b). Separation occurs when the momentum of fluid layers near the surface is

reduced to zero by the combined action of pressure and viscous forces. As shown in Fig. 9.7b, the

momentum of the fluid near the surface is significantly greater for the turbulent profile. Consequently,

the turbulent layer is better able to resist separation in an adverse pressure gradient. We shall discuss

some consequences of this behavior in Section 9.6.

Adverse pressure gradients cause significant changes in velocity profiles for both laminar and

turbulent boundary-layer flows. Approximate solutions for nonzero pressure gradient flow may be

obtained from the momentum integral equation

τw

ρ
=

d

dx
U2θ + δ U

dU

dx
9 17

Expanding the first term, we can write

τw

ρ
=U2dθ

dx
+ δ +2θ U

dU

dx

or

τw

ρU2
=
Cf

2
=
dθ

dx
+ H +2

θ

U

dU

dx
9 28

where H = δ θ is a velocity-profile “shape factor.” The shape factor increases in an adverse pres-

sure gradient. For turbulent boundary-layer flow, H increases from 1.3 for a zero pressure gradient to

approximately 2.5 at separation. For laminar flow with zero pressure gradient, H =2 6; at separa-

tion H =3 5.

1.0

0

1.0

Laminar
Laminar

Turbulent Turbulent

u__
U

y__

(a) Velocity profiles

δ

y__
δ

1.0

0

1.0

(b) Momentum-flux profiles

(  )
2u__

U

Fig. 9.7 Nondimensional profiles for flat plate boundary-layer flow.
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The freestream velocity distribution, U x , must be known before Eq. 9.28 can be applied. Since

dp dx= −ρUdU dx, specifying U x is equivalent to specifying the pressure gradient. We can obtain

a first approximation for U x from ideal flow theory for an inviscid flow under the same conditions.

The analytical approach using the momentum equation is limited to fairly simple geometries, and

numerical techniques may need to be used to solve the resulting ordinary differential equations.

Currently, numerical techniques of CFD are often used to determine the free stream velocity distribution

along a surface ([13] and [14]).

Part B FLUID FLOW ABOUT IMMERSED BODIES

Whenever there is relative motion between a solid body and the viscous fluid surrounding it, the body

will experience a net force F. The magnitude of this force depends on many factors—certainly the rel-

ative velocity V , but also the body shape and size, and the fluid properties (ρ, μ, etc.). As the fluid flows

around the body, it will generate surface stresses on each element of the surface, and it is these that lead to

the net force. The surface stresses are composed of tangential stresses due to viscous action and normal

stresses due to the local pressure. We might be tempted to think that we can analytically derive the net

force by integrating these over the body surface. The first step might be: Given the shape of the body (and

assuming that the Reynolds number is high enough that we can use inviscid flow theory), compute the

pressure distribution. Then integrate the pressure over the body surface to obtain the contribution of

pressure forces to the net force F. As we discussed in Chapter 6, this step was developed very early

in the history of fluid mechanics; it led to the result that no bodies experience drag. The second step

might be: Use this pressure distribution to find the surface viscous stress τw (at least in principle, using,

for example, Eq. 9.17). Then integrate the viscous stress over the body surface to obtain its contribution

to the net force F. This procedure sounds conceptually straightforward, but in practice is quite difficult

except for the simplest body shapes. In addition, even if possible, it leads to erroneous results in most

cases because it takes no account of a very important consequence of the existence of boundary layers—

flow separation. This causes a wake, which not only creates a low-pressure region usually leading to

large drag on the body, but also radically changes the overall flow field and hence the inviscid flow

region and pressure distribution on the body.

For these reasons we must usually resort to experimental or CFDmethods to determine the net force

for most body shapes. Traditionally the net force F is resolved into the drag force, FD, defined as the

component of the force parallel to the direction of motion, and the lift force, FL defined as the component

of the force perpendicular to the direction of motion. In Sections 9.6 and 9.7 we will examine these forces

for a number of different body shapes.

9.6 Drag
Drag is the component of force on a body acting parallel to the direction of relative motion. In Chapter 7,

we considered the problem of determining the drag force, FD, on a smooth sphere of diameter d, moving

through a viscous, incompressible fluid with speed V . The fluid density and viscosity were ρ and μ,

respectively. The drag force, FD, was written in the functional form

FD = f1 d,V, μ, ρ

Application of the Buckingham Pi theorem resulted in two dimensionlessΠ parameters that were written

in functional form as

FD

ρV2d2
= f2

ρVd

μ

Note that d2 is proportional to the cross-sectional area A= πd2 4 and therefore we could write

FD

ρV2A
= f3

ρVd

μ
= f3 Re 9 29
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Although Eq. 9.29 was obtained for a sphere, the form of the equation is valid for incompressible

flow over any body; the characteristic length used in the Reynolds number depends on the body shape.

The drag coefficient, CD, is defined as

CD ≡
FD

1
2
ρV2A

9 30

The number 1
2
has been inserted to form the familiar dynamic pressure. Then Eq. 9.29 can be written as

CD = f Re 9 31

We have not considered compressibility or free-surface effects in this discussion of the drag force.

Had these been included, we would have obtained the functional form

CD = f Re,Fr,M

We now consider the drag force and drag coefficient for a number of bodies, starting with the sim-

plest: a flat plate parallel to the flow (which has only friction drag); a flat plate normal to the flow (which

has only pressure drag); and cylinders and spheres (the simplest 2D and 3D bodies, which have both

friction and pressure drag). We will also briefly discuss streamlining.

Pure Friction Drag: Flow over a Flat Plate Parallel to the Flow

This flow situation was considered in detail in Section 9.4. Since the pressure gradient is zero and pres-

sure forces are perpendicular to the plate and do not contribute to drag, the total drag is equal to the

friction drag. Thus

FD =
plate surface

τwdA

and

CD =
FD

1
2
ρV2A

= PS

τwdA

1

2
ρV2A

9 32

where A is the total surface area in contact with the fluid (i.e., the wetted area). The drag coefficient for a

flat plate parallel to the flow depends on the shear stress distribution along the plate.

For laminar flow over a flat plate, the shear stress coefficient was given by

Cf =
τw

1
2
ρU2

=
0 664

Rex
9 15

The drag coefficient for flow with freestream velocity V , over a flat plate of length L and width b, is

obtained by substituting for τw from Eq. 9.15 into Eq. 9.32. Thus

CD =
1

A A

0 664 Re−0 5
x dA=

1

bL

L

0

0 664
V

ν

−0 5

x−0 5bdx

=
0 664

L

ν

V

0 5 x0 5

0 5

L

0

=1 33
ν

VL

0 5

CD =
1 33

ReL
9 33
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Assuming the boundary layer is turbulent from the leading edge, the shear stress coefficient, based

on the approximate analysis of Section 9.4, is given by

Cf =
τw

1
2
ρU2

=
0 0594

Re
1 5
x

9 27

Substituting for τw from Eq. 9.27 into Eq. 9.32, we obtain

CD =
1

A A

0 0594 Re−0 2
x dA=

1

bL

L

0

0 0594
V

ν

−0 2

x−0 2b dx

=
0 0594

L

ν

V

0 2 x0 8

0 8

L

0

=0 0742
ν

VL

0 2

CD =
0 0742

Re
1 5
L

9 34

Equation 9.34 is valid for 5 × 105 <ReL <107.

For ReL <109 the empirical equation given by Schlichting [3]

CD =
0 455

log ReL
2 58

9 35

fits experimental data very well.

For a boundary layer that is initially laminar and undergoes transition at some location on the plate,

the turbulent drag coefficient must be adjusted to account for the laminar flow over the initial length. The

adjustment is made by subtracting the quantity B ReL from the CD determined for completely turbulent

flow. The value of B depends on the Reynolds number at transition; B is given by

B=Retr CDturbulent
−CDlaminar

9 36

For a transition Reynolds number of 5 × 105, the drag coefficient may be calculated by making the

adjustment to Eq. 9.34, in which case

CD =
0 0742

Re
1 5
L

−
1740

ReL
5× 105 <ReL <107 9 37a

or to Eq. 9.35, in which case

CD =
0 455

log ReL
2 58

−
1610

ReL
5× 105 <ReL <109 9 37b

The variation in drag coefficient for a flat plate parallel to the flow is shown in Fig. 9.8.

In the plot of Fig. 9.8, transition was assumed to occur at Rex =5× 105 for flows in which the bound-

ary layer was initially laminar. The actual Reynolds number at which transition occurs depends on a

combination of factors, such as surface roughness and freestream disturbances. Transition tends to

occur at lower Reynolds number as surface roughness or freestream turbulence is increased. For tran-

sition at other than Rex =5× 105, the constant in the second term of Eqs. 9.37 is modified using Eq. 9.36.

Figure 9.8 shows that the drag coefficient is less for a given length of plate when laminar flow is main-

tained over the longest possible distance. At large ReL >107 the contribution of the laminar drag is

negligible. Example 9.5 illustrates how the skin friction force due to a turbulent boundary layer is

calculated.
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Example 9.5 SKIN FRICTION DRAG ON A SUPERTANKER

A supertanker is 360 m long and has a beam width of 70 m and a draft of 25 m. Estimate the force and power required to

overcome skin friction drag at a cruising speed of 13 kt in seawater at 10 C.

Given: Supertanker cruising at U =13 kt.

Find: (a) Force.

(b) Power required to overcome skin friction drag.

Solution: Model the tanker hull as a flat plate, of length L and width

b=B+2D, in contact with water. Estimate skin friction drag from the

drag coefficient.

Governing equations:

CD =
FD

1
2
ρU2A

9 32

CD =
0 455

log ReL
2 58

−
1610

ReL
9 37b

The ship speed is 13 kt (nautical miles per hour), so

U =13
nm

hr
× 6076

ft

nm
× 0 305

m

ft
×

hr

3600 s
=6 69 m s

From Appendix A, at 10 C, ν=1 37× 10−6 m2 s for seawater. Then

ReL =
UL

ν
=6 69

m

s
× 360 m×

s

1 37× 10−6m2
=1 76× 109

Assuming Eq. 9.37b is valid,

CD =
0 455

log1 76× 109
2 58

−
1610

1 76× 109
=0 00147

B = 70 m Water line

L = 360 m

D = 25 m

U

Transition at
Rex = 5 105

(Eq. 9.37b)

Turbulent
boundary layer

(Eq. 9.34)

Turbulent
boundary layer

(Eq. 9.35)

Laminar
boundary layer

(Eq. 9.33)
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Fig. 9.8 Variation of drag coefficient with Reynolds number for a smooth flat plate parallel to the flow.
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Pure Pressure Drag: Flow over a Flat Plate Normal to the Flow

In flow over a flat plate normal to the flow (Fig. 9.9), the wall shear stress is perpendicular to the flow

direction and therefore does not contribute to the drag force. The drag is given by

FD =
surface

pdA

For this geometry the flow separates from the edges of the plate; there is back-flow in the low energy

wake of the plate. Although the pressure over the rear surface of the plate is essentially constant, its

magnitude cannot be determined analytically. Consequently, we must resort to experiments to determine

the drag force.

The drag coefficient for flow over an immersed object usually is based on the frontal area (or pro-

jected area) of the object. The drag coefficient for a finite plate normal to the flow depends on the ratio of

plate width to height and on the Reynolds number. For Re (based on height) greater than about 1000, the

drag coefficient is essentially independent of Reynolds number. The variation of CD with the ratio of

plate width to height b h is shown in Fig. 9.10. The ratio b h is defined as the aspect ratio of the plate.

For b h=1 0, the drag coefficient is a minimum at CD =1 18 this is just slightly higher than for a cir-

cular disk CD =1 17 at large Reynolds number.

The drag coefficient for all objects with sharp edges is essentially independent of Reynolds number

(for Re≳1000) because the separation points and therefore the size of the wake are fixed by the geometry

of the object. Drag coefficients for selected objects are given in Table 9.3.

Friction and Pressure Drag: Flow over a Sphere and Cylinder

We have looked at two special flow cases in which either friction or pressure drag was the sole form of

drag present. In the former case, the drag coefficient was a strong function of Reynolds number, while in

the latter case, CD was essentially independent of Reynolds number for Re≳1000.

and from Eq. 9.32,

FD =CDA
1

2
ρU2

=0 00147× 360 m 70+ 50 m×
1

2
× 1020

kg

m3
× 6 69

2m
2

s2
×

N s2

kg m

FD =1 45MN
FD

The corresponding power is

�=FDU =1 45× 106N×6 69
m

s
×
W s

N m

�=9 70MW
�

This problem illustrates application of drag
coefficient equations for a flat plate parallel
to the flow.
• The power required (about 13,000 hp) is
very large because although the friction
stress is small, it acts over a substan-
tial area.

• The boundary layer is turbulent for
almost the entire length of the ship
(transition occurs at x≈0 1m).

Wake

Fig. 9.9 Flow over a flat plate normal to the flow.
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In the case of flow over a sphere, both friction drag and pressure drag contribute to total drag. The

drag coefficient for flow over a smooth sphere is shown in Fig. 9.11 as a function of Reynolds number.

At very low Reynolds number, Re≤ 1, there is no flow separation from a sphere; the wake is laminar

and the drag is predominantly friction drag. For very low Reynolds number flows where inertia forces

may be neglected, the drag force on a sphere of diameter d, moving at speed V , through a fluid of vis-

cosity μ, is given by

FD =3πμVd

The drag coefficient, CD, defined by Eq. 9.30, is then

CD =
24

Re

2.0

1.5

1.0

CD

0.5
0 2 4 6 8 10

Aspect ratio, b/h

12 14 16 18 20

b

h

Fig. 9.10 Variation of drag coefficient with aspect ratio for a flat plate of finite width normal to the flowwith Reh > 1000 [5].

Table 9.3
Drag Coefficient Data for Selected Objects Re≳103 a

aData from Hoerner [5].
bBased on ring area.
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As shown in Fig. 9.11, this expression agrees with experimental values at low Reynolds number but

begins to deviate significantly from the experimental data for Re>1 0.

As the Reynolds number is further increased, the drag coefficient drops continuously up to a

Reynolds number of about 1000. A turbulent wake develops and grows at the rear of the sphere as

the separation point moves from the rear of the sphere toward the front; this wake is at a relatively

low pressure, leading to a large pressure drag. By the time Re ≈ 1000, about 95 percent of total drag

is due to pressure. For 103 <Re<3× 105 the drag coefficient is approximately constant. In this range

the entire rear of the sphere has a low-pressure turbulent wake, as indicated in Fig. 9.12, and most of the

Theory due
to Stokes
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10–1 2 4 6 8100 2 4 6 8101 2 4 6 8102 2 4 6 8103 2 4 6 8104 2 4 6 8105 1062 4 6 8

Re =
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VD__

v

Fig. 9.11 Drag coefficient of a smooth sphere as a function of Reynolds number. (Data from References [3], [16], and [17].)
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Fig. 9.12 Pressure distribution around a smooth sphere for laminar and turbulent boundary-layer flow, compared with
inviscid flow [6].

322 Chapter 9 External Incompressible Viscous Flow

www.konkur.in

Telegram: @uni_k



drag is caused by the front-rear pressure asymmetry. Note that CD 1 Re corresponds to FD V , and

that CD const. corresponds to FD V2, indicating a quite rapid increase in drag.

For Reynolds numbers larger than about 3 × 105, transition occurs and the boundary layer on the

forward portion of the sphere becomes turbulent. The point of separation then moves downstream from

the sphere midsection, and the size of the wake decreases. The net pressure force on the sphere is reduced

(Fig. 9.12), and the drag coefficient decreases abruptly.

A turbulent boundary layer, since it has more momentum flux than a laminar boundary layer,

can better resist an adverse pressure gradient, as discussed in Section 9.5. Consequently, turbulent

boundary-layer flow is desirable on a blunt body because it delays separation and thus reduces the

pressure drag.

Transition in the boundary layer is affected by roughness of the sphere surface and turbulence in

the flow stream. Therefore, the reduction in drag associated with a turbulent boundary layer does not

occur at a unique value of Reynolds number. Experiments with smooth spheres in a flow with low

turbulence level show that transition may be delayed to a critical Reynolds number, ReD, of about

4 × 105. For rough surfaces and/or highly turbulent freestream flow, transition can occur at a critical

Reynolds number as low as 50,000.

The drag coefficient of a sphere with turbulent boundary-layer flow is about one-fifth that

for laminar flow near the critical Reynolds number. The corresponding reduction in drag force

can affect the range of a sphere (e.g., a golf ball) appreciably. The “dimples” on a golf ball are

designed to “trip” the boundary layer and, thus, to guarantee turbulent boundary-layer flow and

minimum drag.

Adding roughness elements to a sphere also can suppress local oscillations in location of the tran-

sition between laminar and turbulent flow in the boundary layer. These oscillations can lead to variations

in drag and to random fluctuations in lift (see Section 9.7). In baseball, the “knuckle ball” pitch is

intended to behave erratically to confuse the batter. By throwing the ball with almost no spin, the pitcher

relies on the seams to cause transition in an unpredictable fashion as the ball moves on its way to the

batter. This causes the desired variation in the flight path of the ball.

Figure 9.13 shows the drag coefficient for flow over a smooth cylinder. The variation of CD with

Reynolds number shows the same characteristics as observed in the flow over a smooth sphere, but the

values of CD are about twice as high. The use of Fig. 9.13 to determine the drag force on a chimney

is shown in Example 9.6, and the use of the drag coefficient data in Table 9.3 to find the drag of a

parachute is given in Example 9.7.

Flow about a smooth circular cylinder may develop a regular pattern of alternating vortices down-

stream. The vortex trail, sometimes called a vortex street, causes an oscillatory lift force on the cylinder

perpendicular to the stream motion. Vortex shedding excites oscillations that cause telegraph wires to

10–1 2 4 68100 2 4 68101 2 4 68102 2 4 68103 2 4 68104 2 4 68105 1062 4 68

Re =
VD___
v

CD

0.1

1

10

100

Fig. 9.13 Drag coefficient for a smooth circular cylinder as a function of Reynolds number. (Data from References [3], [16],
and [17].)
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“sing” and ropes on flag poles to “slap” annoyingly. Sometimes structural oscillations can reach dan-

gerous magnitudes and cause high stresses; they can be reduced or eliminated by applying roughness

elements or fins, either axial or helical, that destroy the symmetry of the cylinder and stabilize

the flow.

Experimental data show that regular vortex shedding occurs most strongly in the range of Reynolds

number from about 60 to 5000. For Re>1000 the dimensionless frequency of vortex shedding,

expressed as a Strouhal number, St= f D V , is approximately equal to 0.21 [3].

Roughness affects drag of cylinders and spheres similarly: the critical Reynolds number is reduced

by the rough surface, and transition from laminar to turbulent flow in the boundary layers occurs earlier.

The drag coefficient is reduced by a factor of about 4 when the boundary layer on the cylinder becomes

turbulent.

Example 9.6 AERODYNAMIC DRAG AND MOMENT ON A CHIMNEY

A cylindrical chimney 1 m in diameter and 25 m tall is exposed to a uniform 50 km hr wind at standard atmospheric conditions.

End effects and gusts may be neglected. Estimate the bending moment at the base of the chimney due to wind forces.

Given: Cylindrical chimney, D=1m, L=25m, in uniform flow with

V =50 km hr p=101 kPa abs T =15 C

Neglect end effects.

Find: Bending moment at bottom of chimney.

Solution: The drag coefficient is given by CD =FD
1
2
ρV2 A, and thus FD =CDA

1
2
ρV2. Since the

force per unit length is uniform over the entire length, the resultant force, FD, will act at the midpoint

of the chimney. Hence the moment about the chimney base is

M0 =FD

L

2
=CDA

1

2
ρV2L

2
=CDA

L

4
ρV2

V =50
km

hr
× 103

m

km
×

hr

3600s
=13 9 m s

For air at standard conditions, ρ=1 23 kg m3, and μ=1 79× 10−5kg m s . Thus

Re=
ρVD

μ
=1 23

kg

m3
×13 9

m

s
× 1 m×

m s

1 79× 10−5kg
= 9 55× 105

From Fig. 9.13, CD ≈ 0 35. For a cylinder, A=DL, so

M0 =CDA
L

4
ρV2 =CDDL

L

4
ρV2 =CDD

L2

4
ρV2

=
1

4
× 0 35× 1 m× 25

2
m2 ×1 23

kg

m3
× 13 9

2m
2

s2
×

N s2

kg m

M0 =13 0 kN m
M0

FD

L/2

L = 25 m

d = 1 m

0

This problem illustrates application of
drag-coefficient data to calculate the force
and moment on a structure. We modeled
the wind as a uniform flow; more realisti-
cally, the lower atmosphere is often
modeled as a huge turbulent boundary
layer, with a power-law velocity profile,
u y1 n, where y is the elevation.

324 Chapter 9 External Incompressible Viscous Flow

www.konkur.in

Telegram: @uni_k



Example 9.7 DECELERATION OF AN AUTOMOBILE BY A DRAG PARACHUTE

A dragster weighing 1600 lbf attains a speed of 270 mph in the quarter mile. Immediately after passing through the timing lights,

the driver opens the drag chute of area A=25ft2. Air and rolling resistance of the car may be neglected. Find the time required for

the machine to decelerate to 100 mph in standard air.

Given: Dragster weighing 1600 lbf, moving with initial speed V0 =270 mph, is slowed by the drag force on a chute of area

A=25 ft2. Neglect air and rolling resistance of the car. Assume standard air.

Find: Time required for the machine to decelerate to 100 mph.

Solution: Taking the car as a system and writing Newton’s second law in the direction of motion gives

V0 =270 mph

Vf =100 mph

ρ=0 00238 slug ft3

Since CD =
FD

1
2
ρV2A

, then FD = 1
2
CD ρV2A.

Substituting into Newton’s second law gives

−
1

2
CD ρV2A=m

dV

dt
Separating variables and integrating, we obtain

−
1

2
CD ρ

A

m

t

0

dt=
Vf

V0

dV

V2

−
1

2
CD ρ

A

m
t= −

1

V

Vf

V0

= −
1

Vf

+
1

V0

= −
V0−Vf

VfV0

Finally,

t=
V0−Vf

VfV0

2 m

CD ρA
=

V0−Vf

VfV0

2W

CD ρAg

Model the drag chute as a hemisphere (with open end facing flow). From Table 9.3, CD =1 42 (assuming Re>103). Then, sub-

stituting numerical values,

t= 270−100 mph× 2× 1600 lbf ×
1

100 mph
×

hr

270 mi
×

1

1 2
×

ft3

0 00238 slug

×
1

25 ft2
×

s2

32 2 ft
×
slug ft

lbf s2
×

mi

5280 ft
× 3600

s

hr

t=5 05 s t

Check the assumption on Re:

Re=
DV

ν
=

4A

π

1 2
V

ν

=
4

π
×25ft2

1 2

×100
mi

hr
×

hr

3600s
× 5280

ft

mi
×

s

1 57× 10−4ft2

Re=5 27× 106

Hence the assumption is valid.

FD V

x

– FD = ma = m dV____
dt

This problem illustrates application of
drag-coefficient data to calculate the drag
on a vehicle parachute.
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All experimental data presented in this section are for single objects immersed in an unbounded

fluid stream. The objective of wind tunnel tests is to simulate the conditions of an unbounded flow. Lim-

itations on equipment size make this goal unreachable in practice. Frequently it is necessary to apply

corrections to measured data to obtain results applicable to unbounded flow conditions.

In numerous realistic flow situations, interactions occur with nearby objects or surfaces. Drag can be

reduced significantly when two or more objects, moving in tandem, interact. This phenomenon is well

known to bicycle riders and automobile racing, where “drafting” is a common practice. Drag reductions

of 80 percent may be achieved with optimum spacing [8]. Drag also can be increased significantly when

spacing is not optimum.

Drag can be affected by neighbors alongside as well. Small particles falling under gravity travel

more slowly when they have neighbors than when they are isolated. This phenomenon has important

applications to mixing and sedimentation processes.

Experimental data for drag coefficients on objects must be selected and applied carefully. Due

regard must be given to the differences between the actual conditions and the more controlled conditions

under which measurements were made.

In addition to the values presented here, the Engineer’s Toolbox [18] has drag coefficients for a

wide variety of objects. Additionally, many drag coefficients are now determined using CFD software

such as Fluent [19].

Streamlining

The extent of the separated flow region behind many of the objects discussed in the previous section can

be reduced or eliminated by streamlining, or fairing, the body shape. We have seen that due to the con-

vergent body shape at the rear of any object the streamlines will diverge, so that the velocity will

decrease, and therefore the pressure will increase. Hence, we initially have an adverse pressure gradient

at the rear of the body, leading to boundary-layer separation and ultimately to a low-pressure wake lead-

ing to large pressure drag. We can reduce the drag on a body by making the rear of the body more

tapered, which will reduce the adverse pressure gradient and hence make the turbulent wake smaller.

However, we may increase the skin friction drag simply because we have increased the surface area.

In practice, there is an optimum amount of fairing or tapering at which the total drag (the sum of pressure

and skin friction drag) is minimized.

The pressure gradient around a “teardrop” shape is less severe than that around a cylinder of circular

section. The trade-off between pressure and friction drag for this case is shown schematically in

Fig. 9.14. The pressure drag increases as the thickness is increased, while the friction drag due to the

boundary layer decreases. The total drag is the sum of the two contributions and is a minimum at some

value of thickness. This minimum drag is considerably less than that of a cylinder with a diameter equal

to this value of thickness. As a result, streamlining of the structural members on aircraft and automobiles

leads to significant savings.

Total drag

Skin friction

drag

Pressure

drag

D
ra

g
 f

o
rc

e

Thickness

Thickness

Fig. 9.14 Drag coefficient on a streamlined airfoil as a function of thickness showing contributions of skin friction and
pressure to total drag. (Adapted from [7].)
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The effect of the airfoil shape on the pressure distribution and drag coefficient is shown in

Figure 9.15 for two symmetric airfoils of infinite span and 15 percent thickness at zero angle of attack.

Transition on the conventional (NACA 0015) airfoil takes place where the pressure gradient becomes

adverse, at x c=0 13, near the point of maximum thickness. Thus most of the airfoil surface is covered

with a turbulent boundary layer; the drag coefficient is CD ≈ 0 0061. The point of maximum thickness

has been moved aft on the airfoil (NACA 662−015) designed for laminar flow. The boundary layer is

maintained in the laminar regime by the favorable pressure gradient to x c=0 63. Thus the bulk of the

flow is laminar; CD ≈ 0 0035 for this section, based on planform area. The drag coefficient based on

frontal area is CDf
=CD 0 15= 0 0233, or about 40 percent of the optimum for the shapes shown in

Fig. 9.14.

Current airfoil shapes are designed to produce a pressure distribution that prevents separation while

maintaining the turbulent boundary layer in a condition that produces negligible skin friction, such as

illustrated in Fig. 9.16.

The emphasis on fuel economy and emissions for automobiles and trucks has led to improved aero-

dynamic designs. Using CFD software to quantify the drag reduction techniques have led to major

design innovations such as contouring the exterior to prevent separation, streamlining mirrors and door

handles, installing smooth panels covering the underbody, directing air around the wheels, and designing
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Fig. 9.15 Theoretical pressure distributions at zero angle of attack for two symmetric airfoil sections of 15 percent thickness
ratio. (Data from Abbott and von Doenhoff [9].)

Fig. 9.16 Nearly optimum shape for low-drag strut [11].
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the rear to minimize the wake region. The net effect is that drag coefficients for modern automobiles

are in the range of 0.25 to 0.3. This represents up to a 50 percent reduction in the drag coefficient

over the last two decades.

The trucking industry has also concentrated on changes that improve the fuel economy of vehicles.

Long-distance trucks now commonly have a number of drag reduction devices installed, such as a

deflector on top of the cab, tractor and trailer side skirts, and boat-tail panels at the rear. These devices

reduce the drag coefficient by 15 to 20 percent from the typical value of 0.8 to 1.0.

9.7 Lift
For most objects in relative motion in a fluid, the most significant fluid force is the drag. However, there

are some objects, such as airfoils, for which the lift is significant. Lift is defined as the component of fluid

force perpendicular to the fluid motion. For an airfoil, the lift coefficient, CL, is defined as

CL ≡
FL

1

2
ρV2Ap

9 38

The lift and drag coefficients are defined as the ratio of an actual force (lift or drag) divided by the prod-

uct of dynamic pressure and area. This denominator can be viewed as the force that would be generated if

the fluid was brought to rest directly on the area. This gives us a “feel” for the meaning of the

coefficients.

The lift and drag coefficients for an airfoil are functions of both Reynolds number and angle of

attack. The angle of attack, α, is the angle between the airfoil chord and the freestream velocity vector.

The chord of an airfoil is the straight line joining the leading edge and the trailing edge. The wing

section shape is obtained by combining a mean line and a thickness distribution [9]. When the airfoil

has a symmetric section, the mean line and the chord line both are straight lines, and they coincide.

An airfoil with a curved mean line is said to be cambered.

The area at right angles to the flow changes with angle of attack. Consequently, the planform

area, Ap (the maximum projected area of the wing), is used to define lift and drag coefficients for an

airfoil.

The phenomenon of aerodynamic lift is explained by the velocity increase causing pressure to

decrease over the top surface of the airfoil and the velocity decrease causing pressure to increase

along the bottom surface of the airfoil. Because of the pressure differences relative to atmosphere,

the upper surface of the airfoil may be called the suction surface and the lower surface the pressure

surface.

Lift and drag characteristics of modern air craft are usually generated with CFD software and are

proprietary. As a result, the airfoil data obtained through wind tunnel testing obtained by NACA, the

predecessor to NASA, will be used to illustrate airfoil characteristics [12].

Airfoil stall results when flow separation occurs over a major portion of the upper surface of the

airfoil. As the angle of attack is increased, the stagnation point moves back along the lower surface of

the airfoil, as shown schematically for the symmetric laminar-flow section in Fig. 9.18a. Flow on the

upper surface then must accelerate sharply to round the nose of the airfoil. The effect of angle of attack

on the theoretical upper-surface pressure distribution is shown in Fig. 9.18b. The minimum pressure

becomes lower, and its location moves forward on the upper surface. A severe adverse pressure gra-

dient appears following the point of minimum pressure; finally, the adverse pressure gradient causes

the flow to separate completely from the upper surface and the airfoil stalls. Stall is indicated in

Fig. 9.17(a) as the angle of attack for which the lift coefficient decreases sharply.

Movement of the minimum pressure point and accentuation of the adverse pressure gradient

are responsible for the sudden increase in CD for the laminar-flow section, which is apparent in

Fig. 9.17. The sudden rise in CD is caused by early transition from laminar to turbulent boundary-layer

flow on the upper surface. Aircraft with laminar-flow sections are designed to cruise in the low-drag

region.
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Because laminar-flow sections have very sharp leading edges, all of the effects we have described

are exaggerated, and they stall at lower angles of attack than conventional sections, as shown in

Fig. 9.17. The maximum possible lift coefficient, CLmax
, also is less for laminar-flow sections.

Plots of CL versus CD (called lift-drag polars) often are used to present airfoil data in compact form.

A polar plot is given in Fig. 9.19 for the two sections we have discussed. The lift/drag ratio, CL CD, is

shown at the design lift coefficient for both sections. This ratio is very important in the design of aircraft.

The lift coefficient determines the lift of the wing and hence the load that can be carried, and the drag

coefficient indicates a large part of the drag the airplane engines have to work against in order to

generate the needed lift; hence, in general, a high CL CD is the goal, at which the laminar airfoil

clearly excels.

Modern modeling and computational capabilities have made it possible to design airfoil sections

that develop high lift while maintaining very low drag [10, 11]. Boundary-layer calculation codes

are used to develop pressure distributions and the resulting body shapes that postpone transition to

the most rearward location possible. The turbulent boundary layer following transition is maintained

V

α

α

Conventional section
(NACA 23015)

201612

Angle of attack,    (deg)

840
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CL

CD

CLmax
 = 1.72

V

α

α

Laminar-flow section
(NACA 662–215)

201612

Angle of attack,    (deg)

(a) Lift coefficient vs. angle of attack

840
0

α

201612

Angle of attack,    (deg)

840
0

0.004

0.008

0.012

0.016

0.020

CD

0.004

0.008

0.012

0.016

0.020

α

201612

Angle of attack,    (deg)

(b) Drag coefficient vs. angle of attack 

840
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

CL

CLmax
 = 1.50

Laminar-flow section
(NACA 662–215)

Conventional section
(NACA 23015)

Fig. 9.17 Lift and drag coefficients versus angle of attack for two airfoil sections of 15 percent thickness ratio at
Rec =9×106. (Data from Abbott and von Doenhoff [9].)
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in a state of incipient separation with nearly zero skin friction by appropriate shaping of the pressure

distribution.

All real airfoils are of finite span and have less lift and more drag than their airfoil section data would

indicate. There are several ways to explain this. If we consider the pressure distribution near the end of

the wing, the low pressure on the upper and high pressure on the lower surface cause flow to occur

around the wing tip, leading to trailing vortices (as shown in Fig. 9.20), and the pressure difference

is reduced, leading to less lift. These trailing vortices can also be explained in terms of circulation.

As shown in Section 6.5 circulation around a wing section is present whenever there is lift. Circulation

cannot end in the fluid but extends beyond the wing in the form of trailing vortices. Trailing vortices can

be very strong and dissipate slowly.

Trailing vortices reduce lift and increase drag because of the loss of pressure difference, called

induced drag. The “downwash” velocities induced by the vortices mean that the effective angle of attack

is reduced and the wing “sees” a flow at approximately the mean of the upstream and downstream
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Fig. 9.18 Effect of angle of attack on flowpattern and theoretical pressure distribution for a symmetric laminar-flow airfoil
of 15 percent thickness ratio. (Data from Abbott and von Doenhoff [9].)
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directions. This also causes the lift force which is perpendicular to the effective angle of attack to “lean

backwards” a little, resulting in some of the lift appearing as drag.

Loss of lift and increase in drag caused by finite-span effects are concentrated near the tip of the

wing; hence, it is clear that a short, stubby wing will experience these effects more severely than a very

long wing. We should therefore expect the effects to correlate with the wing aspect ratio, defined as

AR ≡
b2

Ap

9 39

where Ap is planform area and b is wingspan. For a rectangular planform of wingspan b and chord

length c,

AR=
b2

Ap

=
b2

bc
=
b

c

The maximum lift/drag ratio for a modern low-drag section may be as high as 400 for infinite aspect

ratio. A high-performance sailplane (glider) with AR=40might have L D=40, and a typical light plane

AR ≈ 12 might have L D ≈ 20 or so. Variations in aspect ratio are seen in nature. Soaring birds, such

as the albatross or California condor, have thin wings of long span. Birds that must maneuver quickly to
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Fig. 9.19 Lift-drag polars for two airfoil sections of 15 percent thickness ratio. (Data from Abbott and von Doenhoff [9].)
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catch their prey, such as hawks, have wings of relatively short span, but large area, which gives lowwing

loading (ratio of weight to planform area) and thus high maneuverability.

When the angle of attack of a finite wing is increased, the trailing vortices and therefore the down-

wash increase, leading to loss of lift and to induced drag. The effects of the finite aspect ratio can be

characterized as a reduction Δα in the effective angle of attack. Theory and experiment indicate that

Δα ≈
CL

πAR
9 40

Compared with an airfoil section AR= ∞ , the geometric angle of attack of a wing (finite AR) must be

increased by this amount to get the same lift, as shown in Fig. 9.21. It also means that instead of being

perpendicular to the motion, the lift force leans angleΔα backwards from the perpendicular. The induced

drag component of the drag coefficient is

ΔCD ≈ CLΔα ≈
C2
L

πAR
9 41

This also is shown in Fig. 9.21.

When written in terms of aspect ratio, the drag of a wing of finite span becomes [9]

CD =CD,∞ +CD, i =CD,∞ +
C2
L

πAR
9 42

where CD,∞ is the section drag coefficient at CL, CD, i is the induced drag coefficient at CL, and AR is the

aspect ratio of the finite-span wing.

Drag on airfoils arises from viscous and pressure forces. Viscous drag changes with Reynolds num-

ber but only slightly with angle of attack. These relationships and some commonly used terminology are

illustrated in Fig. 9.22.
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A useful approximation to the drag polar for a complete aircraft may be obtained by adding the

induced drag to the drag at zero lift. The drag at any lift coefficient is obtained from

CD =CD,0 +CD, i =CD,0 +
C2
L

πAR
9 43

whereCD,0 is the drag coefficient at zero lift and AR is the aspect ratio. The optimum cruising speed of an

aircraft brings in these lift and drag relations, as shown in Example 9.8.

Example 9.8 OPTIMUM CRUISE PERFORMANCE OF A JET TRANSPORT

Jet engines burn fuel at a rate proportional to thrust delivered. The optimum cruise condition for a jet aircraft is at maximum speed

for a given thrust. In steady level flight, thrust and drag are equal. Hence, optimum cruise occurs at the speed when the ratio of

drag force to air speed is minimized.

A Boeing 727-200 jet transport has wing planform area Ap =1600 ft2, and aspect ratio AR=6 5. Stall speed at sea level for

this aircraft with flaps up and a gross weight of 150,000 lbf is 175 mph. Below M =0 6, drag due to compressibility effects

is negligible, so Eq. 9.43 may be used to estimate total drag on the aircraft. CD,0 for the aircraft is constant at 0.0182. Assume

sonic speed at sea level is c=759 mph.

Evaluate the performance envelope for this aircraft at sea level by plotting drag force versus speed, between stall andM =0 6.

Use this graph to estimate optimum cruise speed for the aircraft at sea-level conditions. Comment on stall speed and optimum

cruise speed for the aircraft at 30,000 ft altitude on a standard day.

Given: Boeing 727-200 jet transport at sea-level conditions.

W =150,000 lbf, A=1600 ft2, AR=6 5, and CD,0 =0 182

Stall speed is Vstall =175mph, and compressibility effects on drag are negligible for M ≤ 0 6 (sonic speed at sea level

is c=759 mph).

Find: (a) Drag force as a function of speed from Vstall to M =0 6; plot results.

(b) Estimate of optimum cruise speed at sea level.

(c) Stall speed and optimum cruise speed at 30,000 ft altitude.

Solution: For steady, level flight, weight equals lift and thrust equals drag.

Governing equations:

FL =CLA
1

2
ρV2 =W CD =CD,0 +

C2
L

πAR

FD =CDA
1

2
ρV2 = T M =

V

c

At sea level, ρ=0 00238 slug ft3, and c=759 mph.

Since FL =W for level flight at any speed, then

CL =
W

1
2
ρV2A

=
2W

ρV2A

At stall speed, V =175 mph, so

CL =2× 150,000 lbf ×
ft3

0 00238 slug

hr

V mi
×

mi

5280 ft
× 3600

s

hr

2
1

1600 ft2
×
slug ft

lbf s2

CL =
3 65× 104

V mph
2
=
3 65× 104

175
2

=1 196, and

CD =CD,0 +
C2
L

πAR
=0 0182+

1 196
2

π 6 5
= 0 0882
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It is possible to increase the effective aspect ratio for a wing of given geometric ratio by adding

a winglet to the wing tip. Winglets are short, aerodynamically contoured wings set perpendicular to

the wing at the tip. The winglet blocks the flow from the higher pressure region below the wing tip

to the lower pressure region above the wing tip. This reduces the strength of the trailing vortex system

and the induced drag. The winglet also produces a small component of force in the flight direction, which

Then

FD =W
CD

CL

=150,000 lbf
0 0882

1 19
= 11,100 lbf

At M =0 6,V =Mc= 0 6 759 mph= 455 mph, so CL =0 177 and

CD =0 0182+
0 177

2

π 6 5
= 0 0197

so

FD =150,000 lbf
0 0197

0 177
= 16,700 lbf

Similar calculations lead to the following table (computed using Excel):

V mph 175 200 300 400 455

CL 1 196 0 916 0 407 0 229 0 177

CD 0 0882 0 0593 0 0263 0 0208 0 0197

FD lbf 11 100 9 710 9 700 13 600 16 700

These data may be plotted as:

From the plot, the optimum cruise speed at sea level is estimated as 320 mph (and using Excel we obtain 323 mph).

At 30,000 ft (9140 m) altitude, the density is only about 0.375 times sea level density, from Table A.3. The speeds for cor-

responding forces are calculated from

FL =CLA
1

2
ρV2 or V =

2FL

CLρA
or

V30

VSL

=
ρSL

ρ30
=

1

0 375
= 1 63

Thus, speeds increase 63 percent at 30,000 ft altitude:

Vstall≈285 mph

Vcruise≈522 mph

This problem illustrates that high-altitude
flight increases the optimum cruising
speed—in general this speed depends
on aircraft configuration, gross weight,
segment length, and winds aloft.
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has the effect of further reducing the overall drag of the aircraft. The contour and angle of attack of the

winglet are adjusted based on wind tunnel tests to provide optimum results.

As we have seen, aircraft can be fitted with low-drag airfoils to give excellent performance at cruise

conditions. However, since the maximum lift coefficient is low for thin airfoils, additional effort must be

expended to obtain acceptably low landing speeds. In steady-state flight conditions, lift must equal air-

craft weight. Thus,

W =FL =CL

1

2
ρV2A

Minimum flight speed is therefore obtained when CL =CLmax
. Solving for Vmin,

Vmin =
2W

ρCLmax
A

9 44

According to Eq. 9.44, the minimum landing speed can be reduced by increasing either CLmax
or wing

area. Two basic techniques are available to control these variables: variable-geometry wing sections such

as flaps or boundary-layer control techniques.

Flaps are movable portions of a wing trailing edge that may be extended during landing and takeoff

to increase effective wing area. The effects on lift and drag of two typical flap configurations are shown

in Fig. 9.23, as applied to the NACA 23012 airfoil section. The maximum lift coefficient for this

section is increased from 1.52 in the “clean” condition to 3.48 with double-slotted flaps. From

Eq. 9.44, the corresponding reduction in landing speed would be 34 percent.

Figure 9.23 shows that section drag is increased substantially by high-lift devices. From Fig. 9.23b,

section drag at CLmax
CD≈0 28 with double-slotted flaps is about 5 times as high as section drag at

CLmax
CD≈0 055 for the clean airfoil. Induced drag due to lift must be added to section drag to obtain

total drag. Because induced drag is proportional to C2
L (Eq. 9.41), total drag rises sharply at low aircraft

speeds. At speeds near stall, drag may increase enough to exceed the thrust available from the engines.

To avoid this dangerous region of unstable operation, the Federal Aviation Administration (FAA) limits

operation of commercial aircraft to speeds above 1.2 times stall speed.

The basic purpose of all boundary-layer control techniques is to delay separation or reduce

drag by adding momentum to the boundary layer through blowing or by removing low-momentum

boundary-layer fluid by suction. Many examples of practical boundary-layer control systems may be

seen on commercial transport aircraft. Two typical systems are shown in Fig. 9.24.

Aerodynamic lift is an important consideration in the design of automobiles. A road vehicle gen-

erates lift by virtue of its shape [12]. A representative centerline pressure distribution measured in the
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Fig. 9.23 Effect of flaps on aerodynamic characteristics of NACA 23012 airfoil section. (Data from Abbott and von
Doenhoff [9].)
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Fig. 9.24 (a) Application of high-lift boundary-layer control devices to reduce landing speed of a jet transport aircraft. The
wing of the Boeing 777 is highly mechanized. In the landing configuration, large slotted trailing-edge flaps roll out from
under the wing and deflect downward to increase wing area and camber, thus increasing the lift coefficient. Slats at the
leading edge of the wing move forward and down, to increase the effective radius of the leading edge and prevent flow
separation, and to open a slot that helps keep air flow attached to the wing’s upper surface. After touchdown, spoilers
(not shown in use) are raised in front of each flap to decrease lift and ensure that the plane remains on the ground, despite use
of the lift-augmenting devices. (This photograph was taken during a flight test. Flow cones are attached to the flaps and
ailerons to identify regions of separated flow on these surfaces.)
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Fig.9.24 (b) Application of high-lift boundary-layer control devices to reduce takeoff speed of a jet transport aircraft.
This is another view of the Boeing 777 wing. In the takeoff configuration, large slotted trailing-edge flaps deflect to increase
the lift coefficient. The low-speed aileron near the wingtip also deflects to improve span loading during takeoff. This view
also shows the single-slotted outboard flap, the high-speed aileron, and nearest the fuselage, the double-slotted
inboard flap.
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wind tunnel for an automobile is shown in Fig. 9.25. The regions of positive and negative pressure

coefficient are labeled with + and −, respectively, and indicate the levels of pressure on the automobile

surfaces.

The pressure is low around the nose because of streamline curvature as the flow rounds the

nose. The pressure reaches a maximum at the base of the windshield, again as a result of streamline

curvature. Low-pressure regions also occur at the windshield header and over the top of the automobile.

The air speed across the top is approximately 30 percent higher than the freestream air speed. The same

effect occurs around the “A-pillars” at the windshield edges. The drag increase caused by an added

object, such as an antenna, spotlight, or mirror at that location, thus would be 1 3
2
≈1 7 times the drag

the object would experience in an undisturbed flow field. Thus the parasite drag of an added component

can be much higher than would be predicted from its drag calculated for free flow.

At high speeds, aerodynamic lift forces can unload tires, causing serious reductions in steering con-

trol and reducing stability to a dangerous extent. Liebeck airfoils [10] are used frequently for high-speed

automobiles. Their high lift coefficients and relatively low drag allow downforce equal to or greater than

the car weight to be developed at racing speeds. “Ground effect” cars use venturi-shaped ducts under the

car and side skirts to seal leakage flows. The net result of these aerodynamic effects is that the downward

force generates excellent traction without adding significant weight to the vehicle, allowing faster speeds

through curves and leading to lower lap times.

Another method of boundary-layer control is use of moving surfaces to reduce skin friction effects

on the boundary layer [14]. Tennis and soccer players use spin to control the trajectory and bounce of a

shot. In golf, a drive can leave the tee at 275 ft s or more, with backspin of 9000 rpm. Spin provides

significant aerodynamic lift that substantially increases the carry of a drive. Spin is also largely respon-

sible for hooking and slicing when shots are not hit squarely. Baseball pitchers use spin to throw a

curve ball.

Flow about a spinning sphere is shown in Fig. 9.26a. Spin alters the pressure distribution and also

affects the location of boundary-layer separation. Separation is delayed on the upper surface of the

sphere in Fig. 9.26a, and it occurs earlier on the lower surface. Thus pressure is reduced on the upper

surface and increased on the lower surface; the wake is deflected downward as shown. Pressure forces

cause a lift in the direction shown; spin in the opposite direction would produce negative lift—a down-

ward force. The force is directed perpendicular to both V and the spin axis.

Lift and drag data for spinning smooth spheres are presented in Fig. 9.26b. The most important

parameter is the spin ratio, ωD 2V , the ratio of surface speed to freestream flow speed; Reynolds num-

ber plays a secondary role. At low spin ratio, lift is negative in terms of the directions shown in

Fig. 9.26a. Only above ωD 2V≈0 5 does lift become positive and continue to increase as spin ratio

increases. Lift coefficient levels out at about 0.35. Spin has little effect on sphere drag coefficient, which

varies from about 0.5 to about 0.65 over the range of spin ratio shown.

Experimental data for lift and drag coefficients for spinning golf balls are presented in Fig. 9.27 for

subcritical Reynolds numbers between 126,000 and 238,000. The lift coefficient on a golf ball with

hexagonal dimples is significantly (up to 15 %) higher than on a ball with round dimples. The advantage

–
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+
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ρ

Fig. 9.25 Pressure distribution along the centerline of an automobile. (Based on data from Reference [13].)
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for hexagonal dimples continues to the largest spin ratios that were measured. The drag coefficient for a

ball with hexagonal dimples is consistently 5 to 7 percent lower than the drag coefficient for a ball with

round dimples at low spin ratios, but the difference becomes less pronounced as spin ratio increases.

Hex

Hex

Conventional

Conventional

Spin ratio,
2V

ωD

CD

CL

C
L
 a

n
d
 C

D

0.01 0.1

0.1

0.2

0.3

0.3

Fig. 9.27 Comparison of conventional and hex-dimpled
golf balls. (Based on data from Reference [7].)

Example 9.9 LIFT OF A SPINNING BALL

A smooth tennis ball, with 57 g mass and 64 mm diameter, is hit at 25 m s with topspin of 7500 rpm. Calculate the aerodynamic

lift acting on the ball. Evaluate the radius of curvature of its path at maximum elevation in a vertical plane. Compare with the

radius for no spin.

Given: Tennis ball in flight, with m=57 g and D=64mm, hit with V =25m s and topspin of 7500 rpm.

Find: (a) Aerodynamic lift acting on ball.

(b) Radius of curvature of path in vertical plane.

(c) Comparison with radius for no spin.

ω

Wake

V

Lift force, FL

(a) Flow pattern (b) Lift and drag coefficients

0.2

0 1 2 3 4 5

0.4

0.6 CD

CL

C
L
 a

n
d
 C

D

Spin ratio ωD

2V

Fig. 9.26 Flow pattern, lift, and drag coefficients for a smooth spinning sphere in uniform flow. (Data from
Reference [7].)
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Cross flow about a rotating circular cylinder is qualitatively similar to flow about the spinning

sphere shown schematically in Fig. 9.26a. If the velocity of the upper surface of a cylinder is in the same

direction as the freestream velocity, separation is delayed on the upper surface; it occurs earlier on the

lower surface. Thus the wake is deflected and the pressure distribution on the cylinder surface is altered

when rotation is present. Pressure is reduced on the upper surface and increased on the lower surface,

causing a net lift force acting upward. Spin in the opposite direction reverses these effects and causes a

downward lift force.

Lift and drag coefficients for the rotating cylinder are based on projected area, LD. Experimentally

measured lift and drag coefficients for subcritical Reynolds numbers between 40,000 and 660,000 are

shown as functions of spin ratio in Fig. 9.28. When surface speed exceeds flow speed, the lift coefficient

increases to surprisingly high values, while in two-dimensional flow, drag is affected only moderately.

Induced drag, which must be considered for finite cylinders, can be reduced by using end disks larger in

diameter than the body of the cylinder.

The power required to rotate a cylinder may be estimated from the skin friction drag of the cylinder

surface using the tangential surface speed and surface area [15]. The power required to spin the cylinder,

when expressed as an equivalent drag coefficient, may represent 20 percent or more of the aerodynamic

CD of a stationary cylinder [7].

Solution: Assume ball is smooth.

Use data from Fig. 9.26 to find lift:

CL = f
ωD

2V
, ReD

From given data (for standard air, ν=1 46× 10−5m2 s),

ωD

2V
=
1

2
× 7500

rev

min
× 0 064 m×

s

25m
×2π

rad

rev
×
min

60s
= 1 01

ReD =
VD

ν
=25

m

s
× 0 064 m×

s

1 46× 10−5m2
=1 10× 105

From Fig. 9.26, CL≈0 3, so

FL =CLA
1

2
ρV2

=CL

πD2

4

1

2
ρV2 =

π

8
CLD

2ρV2

FL =
π

8
× 0 3× 0 064

2
m2 ×1 23

kg

m3
× 25

2m
2

s2
×

N s2

kg m
=0 371 N

FL

Because the ball is hit with topspin, this force acts downward.

Use Newton’s second law to evaluate the curvature of the path. In the vertical plane,

Fz = −FL−mg=maz = −m
V2

R
or R=

V2

g+FL m

R= 25
2m

2

s2
1

9 81
m

s2
+0 371 N×

1

0 057 kg
×
kg m

N s2

R=38 3 m with spin R

R= 25
2m

2

s2
×

s2

9 81 m
=63 7 m without spin R

Thus topspin has a significant effect on trajectory of the shot!
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9.8 Summary and Useful Equations
In this chapter we have:

✓ Defined and discussed various terms commonly used in aerodynamics, such as: boundary-
layer disturbance, displacement and momentum thicknesses; flow separation; streamlining;
skin friction and pressure drag and drag coefficient; lift and lift coefficient; wing chord, span
and aspect ratio; and induced drag.

✓ Derived expressions for the boundary-layer thickness on a flat plate (zero pressure gradient)
using exact and approximate methods (using the momentum integral equation).

✓ Learned how to estimate the lift and drag from published data for a variety of objects.

While investigating the above phenomena, we developed insight into some of the basic con-
cepts of aerodynamic design, such as how to minimize drag, how to determine the optimum
cruising speed of an airplane, and how to determine the lift required for flight.

Note:Most of the equations in the table below have a number of constraints or limitations— be sure to

refer to their page numbers for details!

Useful Equations
Definition of displacement

thickness: δ =
∞

0

1−
u

U
dy≈

δ

0

1−
u

U
dy

(9.1) Page 296

Definition of momentum

thickness: θ=
∞

0

u

U
1−

u

U
dy≈

δ

0

u

U
1−

u

U
dy

(9.2) Page 297

Boundary-layer thickness

(laminar, exact—Blasius):
δ≈

5 0

U νx
=

5 0x

Rex

(9.13) Table 9.2,

Page 300

Wall stress (laminar, exact—

Blasius): τw =0 332U ρμU x=
0 332ρU2

Rex

(9.14) Page 301

V

FL

ω

ω

CL

CL

CD

Data band

6543

Spin ratio,   D/2V

210
–2

0

2

4

6

8

10

12

C
L
 a

n
d
 C

D

Fig. 9.28 Lift and drag of a rotating cylinder as a function
of relative rotational speed; Magnus force. (Data from
Reference [15].)
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Table (Continued)

Skin friction coefficient (laminar,

exact—Blasius):
Cf =

τw
1
2
ρU2

=
0 664

Rex

(9.15) Table 9.2,

Page 301

Momentum integral equation: τw

ρ
=

d

dx
U2θ + δ U

dU

dx

(9.17) Page 306

Boundary-layer thickness for flat

plate (laminar, approximate—

polynomial velocity profile):

δ

x
=

30μ

ρUx
=

5 48

Rex

(9.21) Page 308

Definition of skin friction

coefficient:
Cf≡

τw
1
2
ρU2

(9.22) Page 308

Skin friction coefficient for flat

plate (laminar, approximate—

polynomial velocity profile):

Cf =
0 730

Rex

(9.23) Page 309

Boundary-layer thickness for flat

plate (turbulent, approximate—
1
7
-power-law velocity profile):

δ

x
=0 382

ν

Ux

1 5

=
0 382

Re
1 5
x

(9.26) Page 312

Skin friction coefficient for flat

plate (turbulent, approximate—
1
7
-power-law velocity profile):

Cf =
τw

1
2
ρU2

=
0 0594

Re
1 5
x

(9.27) Page 312

Definition of drag coefficient:
CD ≡

FD

1
2
ρV2 A

(9.30) Page 317

Drag coefficient for flat plate

(entirely laminar, based on

Blasius solution):

CD =
1 33

ReL

(9.33) Page 317

Drag coefficient for flat plate

(entirely turbulent, based on
1
7
-power-law velocity profile):

CD =
0 0742

Re
1 5
L

(9.34) Page 318

Drag coefficient for flat plate

(empirical, ReL <109):
CD =

0 455

logReL
2 58

(9.35) Page 318

Drag coefficient for flat plate

(based on 1
7
th power-law velocity

profile, 5 × 105 ≤ReL ≤ 107):

CD =
0 0742

Re
1 5
L

−
1740

ReL

(9.37a) Page 318

Drag coefficient for flat plate

(empirical, 5 × 105 ≤ReL ≤ 109):
CD =

0 455

log ReL
2 58

−
1610

ReL

(9.37b) Page 318

Definition of lift coefficient:
CL ≡

FL

1
2
ρV2 Ap

(9.38) Page 328

Definition of aspect ratio:
AR ≡

b2

Ap

(9.39) Page 331

Drag coefficient of a wing (finite

span airfoil, using CD,∞ ): CD =CD,∞ +CD, i =CD,∞ +
C2
L

πAR

(9.42) Page 332

Drag coefficient of a wing (finite

span airfoil, using CD,0):
CD =CD,0 +CD, i =CD,0 +

C2
L

πAR

(9.43) Page 333

3419.8 Summary and Useful Equations

www.konkur.in

Telegram: @uni_k



R E F E R E N C E S
1. Prandtl, L., “Fluid Motion with Very Small Friction (in
German),” Proceedings of the Third International Congress on
Mathematics, Heidelberg, 1904; English translation available as
NACA TM 452, March 1928.

2. Blasius, H., “The Boundary Layers in Fluids with Little Fric-
tion (in German),” Zeitschrift für Mathematik und Physik, 56, 1,
1908, pp. 1–37; English translation available as NACA TM
1256, February 1950.

3. Schlichting, H. and K. Gersten, Boundary Layer Theory, 9th
ed. Berlin: Springer-Verlag, 2017.

4. Stokes, G. G., “On the Effect of the Internal Friction of Fluids
on theMotion of Pendulums,”Cambridge Philosophical Transac-
tions, IX, 8, 1851.

5. Hoerner, S. F., Fluid-Dynamic Drag, 2nd ed. Midland Park,
NJ: Published by the author, 1965.

6. Fage, A., “Experiments on a Sphere at Critical Reynolds
Numbers,”Great Britain, Aeronautical Research Council, Reports
and Memoranda, No. 1766, 1937.

7. Goldstein, S., ed., Modern Developments in Fluid Dynamics,
Vols. I and II. Oxford: Clarendon Press, 1938. (Reprinted in
paperback by Dover, New York, 1967.)

8. Morel, T., and M. Bohn, “Flow over Two Circular Disks
in Tandem,” Transactions of the ASME, Journal of Fluids
Engineering, 102, 1, March1980, pp. 104–111.

9. Abbott, I. H., and A. E. von Doenhoff, Theory of Wing
Sections, Including a Summary of Airfoil Data. New York:
Dover, 1959 (paperback).

10. Liebeck, R. H., “Design of Subsonic Airfoils for High
Lift,” AIAA Journal of Aircraft, 15, 9, September 1978,
pp. 547–561.

11. Smith, A. M. O., “Aerodynamics of High-Lift Airfoil
Systems,” in Fluid Dynamics of Aircraft Stalling, AGARD
CP-102, 1973, pp. 10–1 through10–26.

12. Carr, G. W., “The Aerodynamics of Basic Shapes for Road
Vehicles. Part 3: StreamlinedBodies,”TheMotor IndustryResearch
Association, Warwickshire, England, Report No. 107/4, 1969.

13. Goetz, H., “The Influence of Wind Tunnel Tests on Body
Design, Ventilation, and Surface Deposits of Sedans and Sports
Cars,” SAE Paper No. 710212, 1971.

14. Moktarian, F., and V. J. Modi, “Fluid Dynamics of Airfoils
with Moving Surface Boundary-Layer Control,” AIAA Journal
of Aircraft, 25, 2, February1988, pp. 163–169.

15. Hoerner, S. F., and H. V. Borst, Fluid-Dynamic Lift. Brick-
town, NJ: Hoerner Fluid Dynamics, 1975.

16. L. Prandtl, Ergebnisse der aerodynamischen, Veersuchsan-

stalt su Gottingen. Vol II, 1923.

17. H. Brauer, D. Sucker, “Umstromung von Platten, Zylindern
und Kugeln,” Chemie Ingenieur Technik, 48. Jahrgang, No. 8,
1976, p 665–671. Copyright Wiley-VCH Verlag GmbH & Co.
KGaA. Reproduced with permission.

18. The Engineering Toolbox, http://www.EngineeringTool-
Box.com.

19. ANSYS Fluent, https://www.ansys.com/, 2019.

342 Chapter 9 External Incompressible Viscous Flow

www.konkur.in

Telegram: @uni_k



Chapter 10 Problems

Introduction and Classification of Fluid
Machines; Turbomachinery Analysis

10.1 The geometry of a centrifugal water pump is r1 =10 cm,

r2 =20 cm, b1 = b2 =4 cm, β1 =30 , β2 =15 , and it runs at speed

1600 rpm. Estimate the discharge required for axial entry, the power

generated in the water in watts, and the head produced.

10.2 The relevant variables for a turbomachine are, D, ω, Q, h, T,

and ρ. Find the resultingΠ-groups whenD,ω, and ρ are the repeating

variables. Discuss the meaning of each Π obtained.

10.3 For the centrifugal pump impeller described in Example 10.1,

draw the outlet velocity diagram for a blade angle of 60 . Determine

the ideal head rise and mechanical power input and compare

to that determined in Example 10.1. Explain the reason for the

difference.

10.4 Dimensions of a centrifugal pump impeller are

Parameter Inlet, Section Outlet, Section

Radius, r (in.) 3 9.75

Blade width, b (in.) 1.5 1.125

Blade angle, β (deg) 60 70

The pump is driven at 1250 rpm while pumping water. Calculate the

theoretical head and mechanical power input if the flow rate is

1500 gpm.

10.5 Determine the force exerted by the jet on the single blade of a

series of blades. Determine the power produced by the blade.

30 m/s

50 mm d water jet

45 m/s

P10.5

10.6 The absolute velocity of the water decreases from 41.5 m/s to

22:5 m/s as it passes through this blade system shown in the figure.

The flow rate is 57 L/s. Determine the blade velocity U, the force on

the blade, and the power produced by the blade system.

45°

Tangents

to blade

45°

u

P10.6

10.7 A centrifugal water pump designed to operate at 1200 rpm has

dimensions

Parameter Inlet Outlet

Radius, r (mm) 90 150

Blade width, b (mm) 10 7.5

Blade angle, β (deg) 25 45

Determine the flow rate at which the entering velocity has no tangen-

tial component. Draw the outlet velocity diagram, and determine the

outlet absolute flow angle measured relative to the normal direction

at this flow rate. Evaluate the hydraulic power delivered by the pump

if its efficiency is 70 percent. Determine the head developed by

the pump.

Pumps, Fans, and Blowers
10.8 Data from tests of a water suction pump operated at 2000 rpm

with a 12-in.-diameter impeller are

Flow rate, Q (cfm) 36 50 74 88 125

Total head, H (ft) 190 195 176 162 120

Power input,� (hp) 25 30 35 40 46

Plot the performance curves for this pump; include a curve of effi-

ciency versus volume flow rate. Locate the best efficiency point

and specify the pump rating at this point.

10.9 Data measured during tests of a centrifugal pump driven at

3000 rpm are

Parameter Inlet,

Section

Outlet,

Section

Gage pressure, p psi 12 5

Elevation above datum, z ft 6 5 32 5

Average speed of flow, V ft s 6 5 15

The flow rate is 65 gpm and the torque applied to the pump shaft is

4.75 lbf ft. The pump efficiency is 75 percent, and the electric motor

efficiency is 85 percent. Find (a) the electric power required and

(b) the gage pressure at the pump outlet.

10.10 At its best efficiency point η=0 87 , a mixed-flow pump,

with D=16 in , delivers Q=2500 cfm of water at H =140 ft when

operating atN =1350 rpm. Calculate the specific speed of this pump.

Estimate the required power input. Determine the curve-fit para-

meters of the pump performance curve based on the shutoff point

and the best efficiency point. Scale the performance curve to estimate

the flow, head, efficiency, and power input required to run the same

pump at 820 rpm.

10.11Using the performance curves in Appendix C, select the smal-

lest diameter Peerless 8AE20G pump operating at 1770 rpm that will

deliver a flow of at least 2000 gpm for the pipeline shown. Determine

the actual flow rate and the pump electrical power requirement.
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El. 500 ft

20,000 ft

D = 2 ft

f = 0.020

El. 200 ft

P10.11

10.12 A pump (Peerless 8AE20G, Appendix C) with the 20-in

impeller operates at 1775 rpm at maximum efficiency. It supplies

the pipe-line shown in the figure. Determine the pipeline loss coef-

ficient K in the equation hL =KQ
2, with Q in gpm. Determine the

flow rate between the two reservoirs if two of these pumps operate

in parallel, assuming the pipeline K value remains unchanged.

El. 400 ft

El. 100 ft

P10.12

10.13 Data from tests of a pump with a 12.3-in.-diameter impeller

operated at 1450 rpm are

Flow rate,

Q (cfm)

20 40 60 80 100 120 140

Net positive

suction head

required,

NPSHR (ft)

7.1 8.0 8.9 10.3 11.8 12.3 16.9

Develop and plot a curve-fit equation for NPSHR versus volume

flow rate in the form NPSHR= a+ bQ2, where a and b are constants.

If the NPSHA=20 ft, estimate the maximum allowable flow rate of

this pump.

10.14A four-stage boiler feed pump has suction and discharge lines

of 10 cm and 7.5 cm inside diameter. At 3500 rpm, the pump is rated

at 0 025 m3 s against a head of 125mwhile handling water at 115 C.

The inlet pressure gage, located 50 cm below the impeller centerline,

reads 150 kPa. The pump is to be factory certified by tests at the same

flow rate, head rise, and speed, but using water at 27 C. Calculate the

NPSHA at the pump inlet in the field installation. Evaluate the suction

head that must be used in the factory test to duplicate field suction

conditions.

10.15 A centrifugal pump operating at N =2265 rpm lifts water

between two reservoirs connected by 300 ft of 6-in.-diameter and

100 ft of 3-in.-diameter cast-iron pipe in series. The gravity lift is

25 ft. Estimate the head requirement, power needed, and hourly cost

of electrical energy to pump water at 200 gpm to the higher reservoir.

Assume that electricity costs 12¢ kW hr and that the electric motor

efficiency is 85 percent.

10.16 Part of the water supply for the South Rim of Grand Canyon

National Park is taken from the Colorado River [54]. A flow rate of

600 gpm taken from the river at elevation 3734 ft is pumped to a stor-

age tank atop the South Rim at 7022 ft elevation. Part of the pipeline

is above ground and part is in a hole directionally drilled at angles up

to 70 from thevertical; the total pipe length is approximately13,200 ft.

Under steady-flow operating conditions, the frictional head loss is

290 ft of water in addition to the static lift. Estimate the diameter of

the commercial steel pipe in the system. Compute the pumping power

requirement if the pump efficiency is 61 percent.

10.17 Performance data for a pump are

H (ft) 179 176 165 145 119 84 43

Q (gpm) 0 500 1000 1500 2000 2500 3000

Estimate the delivery when the pump is used to move water between

two open reservoirs through 1200 ft of 12-in.-diameter commercial

steel pipe containing two 90 elbows and an open gate valve with

an elevation increase of 50 ft. Determine the gate valve loss coeffi-

cient needed to reduce the volume flow rate by half.

10.18 A fire nozzle is supplied through 300 ft of 3-in.-diameter canvas

hosewithe=0 001 ft.Water from a hydrant is supplied at 50 psig to a

booster pump on board the pumper truck. At design operating con-

ditions, the pressure at the nozzle inlet is 100 psig and the pressure

drop along the hose is 33 psig per 100 ft of length. Calculate the

design flow rate and the maximum nozzle exit speed. Select a pump

appropriate for this application, determine its efficiency at this oper-

ating condition, and calculate the power required to drive the pump.

10.19 A blower has a rotor with 12-in. outside diameter and 10-in.

inside diameter with 1.5-in high rotor blades. The flow rate through

the blower is 500 ft3 min at a rotor speed of 1800 rpm. The air at

blade inlet is in the radial direction and the discharge angle is 30

from the tangential direction. Determine the power required by the

blower motor.

30º

12 in

10 in

1.5 in

P10.19
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10.20 Performance data for a centrifugal fan of 3-ft diameter tested

at 750 rpm are

Volume flow

rate, Q (ft3/s)

106 141 176 211 246 282

Static pressure

rise, Δp (psi)

0.075 0.073 0.064 0.050 0.033 0.016

Power output,

� (hp)

2.75 3.18 3.50 3.51 3.50 3.22

Plot the performance data versus volume flow rate. Calculate static

efficiency, and show the curve on the plot. Find the best efficiency

point, and specify the fan rating at this point.

10.21 Performance characteristics of a Howden Buffalo axial flow

fan are presented below. The fan is used to power a wind tunnel with

1-ft-square test section. The tunnel consists of a smooth inlet contrac-

tion, two screens each with loss coefficient K =0 12, the test section,

and a diffuser where the cross section is expanded to 24-in.-diameter

at the fan inlet. Flow from the fan is discharged back to the room.

Calculate and plot the system characteristic curve of pressure loss

versus volume flow rate. Estimate the maximum air flow speed avail-

able in this wind tunnel test section.

Static pressure rise

Horsepower

N = 1835 rpm

11
0
1

2

3

4

5

6

97531 1086

Volume flow rate, Q (1000 cfm)

420
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2

3

4

5

6

P
o
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e
r,
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h
p
)

S
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c
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u
re
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H

2
O
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P10.21

10.22 Experimental test data for an aircraft engine fuel pump are

presented below. This gear pump is required to supply jet fuel at

450 pounds per hour and 150 psig to the engine fuel controller. Tests

were conducted at 10, 96, and 100 percent of the rated pump speed of

4536 rpm. At each constant speed, the back pressure on the pumpwas

set, and the flow rate was measured. On one graph, plot curves of

pressure versus delivery at the three constant speeds. Estimate the

pump displacement volume per revolution. Calculate the volumetric

efficiency at each test point and sketch contours of constant ηυ. Eval-

uate the energy loss caused by valve throttling at 100 percent speed

and full delivery to the engine.

Pump

Speed

(rpm)

Back

Pressure

(psig)

Fuel

Flow

(pph*)

Pump

Speed

(rpm)

Back

Pressure

(psig)

Fuel

Flow

(pph)

Pump

Speed

(rpm)

Back

Pressure

(psig)

Fuel

Flow

(pph)

200 1810 200 1730 200 89

4536 300 1810 4355 300 1750 453 250 73

(100%) 400 1810 (96%) 400 1735 (10%) 300 58.5

500 1790 500 1720 350 45

900 1720 900 1635 400 30

* Fuel flow rate measured in pounds per hour (pph).

Hydraulic Turbines
10.23 Conditions at the inlet to the nozzle of a Pelton wheel are

p=700 psig and V =15 mph. The jet diameter is d=7 5 in and

the nozzle loss coefficient is Knozle =0 04. The wheel diameter is

D=8 ft. At this operating condition, η=0 86. Calculate (a) the

power output, (b) the normal operating speed, (c) the approximate

runaway speed, (d) the torque at normal operating speed, and

(e) the approximate torque at zero speed.

10.24 The runners on the Francis turbines installed at the Grand

Coulee Dam on the Columbia River have diameters of 32.6 ft in

diameter. At the rated conditions, each turbine develops 820,000

hp at 72 rpm under 285 ft of head at an efficiency of 95 percent. Cal-

culate the specific speed at this condition and estimate the water flow

rate through each turbine.

10.25 For a flow rate of 12 L s and turbine speed of 65 rpm, esti-

mate the power transferred from the jet to the turbine wheel.

50 mm Pipe

Water

1.2 m d
3 m

P10.25

10.26 The velocity of the water jet driving this impulse turbine is

45 m s. The jet has a 75-mm diameter. After leaving the buckets

the absolute velocity of the water is observed to be 15 m s in a direc-

tion 60 to that of the original jet. Calculate the mean tangential

force exerted by the jet on the turbine wheel and the speed (rpm)

of the wheel.

75 mm d

0.9 m d

P10.26

10.27 The absolute velocities and directions of the jets entering

and leaving the blade system are as shown. Calculate the power

transferred from the jet to the blade system and the blade angles

required.
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25 mm d water jet

30°

45°

21 m
/s

30 m
/s

u

P10.27

Propellers and Wind Turbines
10.28A fanboat in the Florida Everglades is powered by a propeller

with D=1 5 m driven at maximum speed, N =1800 rpm, by a

125 kW engine. Estimate the maximum thrust produced by the pro-

peller at (a) standstill and (b) at boat speed of V =12 5 m s.

10.29 The propeller for the Gossamer Condor human-powered

aircraft has D=12 ft and rotates at N =107 rpm. The wing loading

is 0 4 lbf ft2 of wing area, the drag is approximately 6 lbf at

12 mph, the total weight is 200 lbf, and the effective aspect ratio

is 17. Estimate the dimensionless performance characteristics and

efficiency of this propeller at cruise conditions. Assume the pilot

expends 70 percent of maximum power at cruise conditions of

10.7 mph.

10.30 A typical American multiblade farm windmill has D=7 ft

and is designed to produce maximum power in winds with

V =15mph. Estimate the rate of water delivery as a function of

the height to which the water is pumped. Determine the delivery

(gpm) for a height of 25 ft.

10.31 An airplane flies at 200 km h through still air of specific

weight 12 N m3. The propeller is 2.4 m in diameter and its slipstream

has a velocity of 290 km h relative to the fuselage. Calculate (a) the

propeller efficiency, (b) the velocity through the plane of the propel-

ler, (c) the power input, (d) the power output, (e) the thrust of the

propeller, and (f ) the pressure difference across the propeller disk.

10.32 This ducted propeller unit drives a ship through still water at a

speed of 4 5 m s. Within the duct the mean velocity of the water rel-

ative to the unit is 15 m s. Calculate the propulsive force produced

by the unit. Calculate the force exerted on the fluid by the propeller.

Account for the difference between these forces.

1 m d

P10.32

10.33 Demonstrate that the ducted propeller system shown in the

figure has an efficiency of
2V1

V4 +V1

when the forward speed is V1.

For a specific design and operation, the ratios of velocity are
V2

V1

=
9

4
and

V4

V2

=
5

4
. Determine the fractions of the propulsive force

that will be contributed by the propeller and by the duct.

10.34 Determine the maximum power that a wind turbine with

a diameter of 130 m can produce in a winds of 35 km/hr and

70 km/hr. If the wind blows at 35 km/hr for 1500 hours and

70 km/hr for 500 hours per year and the turbine efficiency is 0.92,

estimate the energy output (kWh) and the number of households

consuming 8000 kWh per year it could supply.

10.35 An air compressor with a compression ratio of 7 is designed

to take 8.9 kg/s air at 1 atmosphere and 20 C. The design point

speed, power requirement, and efficiency are 600 rpm, 5.6 MW,

and 80 percent, respectively. A 1:5-scale model of the prototype is

built to determine operability for the prototype. Determine the mass

flow and power requirement for operation of the model at 80 percent

efficiency for air at the same conditions.

10.36 A compressor has been designed for entrance conditions of

14.7 psia and 70 F with a rotating speed of 3200 rpm. The mass flow

rate is 125 lbm/s. The compressor is tested on a day when the ambient

temperature is 58 F and the inlet pressure is throttled to 8.0 psia.

Determine the mass flow rate for the test.
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C H A P T E R 1 0

Fluid Machinery
10.1 Introduction and Classification of Fluid Machines

10.2 Turbomachinery Analysis

10.3 Pumps, Fans, and Blowers

10.4 Positive Displacement Pumps

10.5 Hydraulic Turbines

10.6 Propellers and Wind Turbines

10.7 Compressible Flow Turbomachines

10.8 Summary and Useful Equations

Learning Objectives
After completing this chapter, you should be able to

• Describe the different types of turbomachines used for power production and moving fluids.

• Determine the performance of a turbomachine using the angular momentum principle.

• Use the performance characteristics of a pump, fan, or blower to determine the operating conditions.

Case Study

Turbochargers have long been used on internal combustion
engines as a way to increase the power for racing. Now, the tech-
nology is experiencing a revival. Adding a turbocharger such as the
one shown in the photograph to an engine offers improved fuel
economy, reduced CO2 emissions, and better performance over a
non-turbocharged engine. Turbocharging allows automobile
manufacturers to reduce engine size and weight and still provide
the power and performance demanded by customers.

A turbocharger consists of a turbine driven by the exhaust
streamcoupled to a compressor that takes in ambient air and dis-
charges it into the cylinder at a high pressure. Normally, exhaust
gases exit an engine at a high temperature and atmospheric
pressure. By increasing the discharge pressure, the energy in
the exhaust can be used to power a turbine that is coupled
to a compressor. The compressor pumps intake air into the
cylinders of the engine at a high pressure, and correspondingly
density, which allows for more fuel to be injected. The power of
the engine is then increased. Because the engine compression
ratio determines the exhaust pressure, the exhaust pressure is
then increased naturally without a loss of efficiency and the
exhaust energy is utilized in the turbocharger.

Turbocharging provides more power under high loads so the
engine is acting as a larger engine. For example, a two-liter
turbo-charged four-cylinder engine can match the output of a
three-liter naturally aspirated engine. Under light loads, the
turbocharger does not have enough exhaust energy to provide
a significant boost, an issue that can be addressed using an
electric motor to supplement the turbine at low loads. Adding

the electric motor also reduces the lag, which is the time it takes
for the exhaust flow to increase and drive the turbine when the
car accelerates.

Emissions are reduced and fuel economy increased because
more of the exhaust energy is used to produce work. A smaller,
turbocharged engine can increase mileage and lower emissions
by 2–6 percent. Turbochargers are becoming more common on
truck, car, train, aircraft, and construction equipment engines.
As the technology develops further, the performance can be
expected to continue to improve.
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An automotive turbocharger.
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• Determine the operating conditions using the performance characteristics of a positive displace-

ment pump.

• Determine the operating conditions for a hydraulic turbine using the angular momentum principle.

• Determine the performance of a propeller or wind turbine.

• Use the dimensionless parameters to scale compressor performance between operating conditions.

Humans have sought to harness the forces of nature to offset human labor nature since antiquity. The first

fluid machines developed were bucket wheels and screw pumps to lift water. The Romans introduced

paddle wheels around 70 B.C.E. to obtain energy from streams [1]. Later, windmills were developed to

harness wind power, but the low power density of the wind limited output to a few hundred horsepower.

Development of waterwheels made it possible to extract thousands of horsepower at a single site.

Todaywe takemany fluidmachines for granted.On a typical daywe drawwater pressurized by pumps

from the tap, drive a car in which fluid pumps operate the lubrication, cooling, and power steering systems,

andwork inacomfortableenvironmentprovided lights andcoolingsystemspoweredbyelectricityproduced

by steam or gas turbines. The list could be extended indefinitely.

A fluid machine is a device that either performs work on or extracts work from a fluid. This is a very

large field of study, so we will limit ourselves mostly to incompressible flows. First the terminology of

the field is introduced andmachines are classified by operating principle and physical characteristics.We

will focus on machines in which energy transfer to or from the fluid is through a rotating element. Basic

equations are reviewed and then simplified to forms useful for analysis of fluid machines. Performance

characteristics of typical machines are considered. We will use as examples pump and turbine applica-

tions in typical systems and then discuss propellers and wind turbines. A discussion of compressible flow

machines concludes the chapter.

10.1 Introduction and Classification of Fluid Machines
Fluid machines may be broadly classified as either positive displacement or dynamic. Dynamic fluid-

handling devices that direct the flow with blades or vanes attached to a rotating member are termed

turbomachines. These devices are very widely used in industry for power generation (e.g., water and

steam turbines) and in numerous other applications (e.g., the turbocharger of a high-performance

car). In positive-displacement machines, energy transfer is accomplished by volume changes that

occur due to movement of the boundary in which the fluid is confined. This includes piston-cylinder

arrangements, gear pumps and lobe pumps. We will not analyze these devices but review them briefly.

The emphasis in this chapter is on dynamic machines.

A further distinction among types of turbomachines is based on the geometry of the flow path. In

radial-flow machines, the flow path is essentially radial, with significant changes in radius from inlet to

outlet. Such machines sometimes are called centrifugalmachines. In axial-flowmachines, the flow path

is nearly parallel to the machine centerline, and the radius of the flow path does not vary significantly. In

mixed-flow machines the flow-path radius changes only moderately.

All work interactions in a turbomachine result from dynamic effects of the rotor on the fluid stream;

that is, the transfer of work between the fluid and the rotating machine either increases or decreases the

speed of the flow. However, in conjunction with this kinetic energy transfer, machines that include exter-

nal housings also involve either the conversion of pressure energy to kinetic energy, or vice versa. This

acceleration or deceleration of the flow allows for maximum pressure rise in pumps and compressors and

for maximum power output from turbines.

Machines for Doing Work on a Fluid

Machines that add energy to a fluid by performing work on it are called pumpswhen the flow is liquid or

slurry, and fans, blowers, or compressors for gas- or vapor-handling units, depending on pressure rise.

Fans usually have small pressure rise (less than 1 inch of water) and blowers have moderate pressure rise

(perhaps 1 inch of mercury); pumps and compressors may have very high pressure rises. Current indus-

trial systems operate at pressures up to 150,000 psi (104 atmospheres).

Pumps and compressors consist of a rotating wheel (called an impeller or rotor, depending on the

type of machine) driven by an external power source (e.g., a motor or another fluid machine) to increase
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the flow kinetic energy, followed by an element to decelerate the flow, thereby increasing its pressure.

This combination is known as a stage. These elements are contained within a housing or casing. A single

pump or compressor might consist of several stages within a single housing, depending on the amount of

pressure rise required of the machine. The shaft must penetrate the housing in order to receive mechan-

ical work from the external power source. Bearings and seals are needed to minimize frictional (mechan-

ical) losses and prevent leakage of the working fluid.

Three typical centrifugal machines are shown schematically in Fig. 10.1. The rotating element of a

centrifugal pump or compressor is frequently called the impeller. Flow enters each machine nearly axi-

ally at small radius through the eye of the impeller, diagram a , at radius r1. Flow is turned and leaves

through the impeller discharge at radius r2, where the width is b2. As it leaves the impeller the fluid is

collected in the scroll or volute. The increase in flow area reduces the fluid velocity and increases the

pressure, as shown in diagram b . The impeller usually has vanes; it may be shrouded (enclosed) as

shown in diagram a , or open as shown in diagram c . The impeller vanes may be relatively straight,

or they may be curved. Diagram c shows that the diffuser may have vanes to direct the flow between

the impeller discharge and the volute; vanes allow for more efficient diffusion. Centrifugal machines are

capable of higher pressure ratios than axial machines.

Typical axial- and mixed-flow turbomachines are shown schematically in Fig. 10.2. Figure 10.2a

shows a typical axial-flow compressor stage. In these machines the rotating element is referred to as the

rotor, and flow diffusion is achieved in the stator. Flow enters nearly parallel to the rotor axis and main-

tains nearly the same radius through the stage. The mixed-flow pump in diagram b shows the flow

being turned outward and moving to larger radius as it passes through the stage. Axial flow machines

have higher efficiencies and less frontal area than centrifugal machines, but they cannot achieve as high

pressure ratios. As a result, axial flow machines are more likely to consist of multiple stages, making

Stage Stage

Rotor blades

Stator blades

Rotor axisHub

Flow

(a) Axial-flow compressor stage (b) Mixed-flow pump stage

Impeller

Stator vanes

Rotor axis

Fig. 10.2 Schematic diagrams of typical axial- and mixed-flow turbomachines, based on reference [2].

Casing

Rotor

Outlet

(b) Centrifugal blower (c) Centrifugal compressor(a) Centrifugal pump

b2 r2

r1

Eye

Impeller
vane

Volute

Diffuser
vane

Fig. 10.1 Schematic diagrams of typical centrifugal-flow turbomachines, based on Reference [2].
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them more complex than centrifugal machines. Figure 10.3 shows a multiple-stage axial flow compres-

sor. In this photograph, the outer housing (to which the stator vanes are attached) has been removed,

clearly showing the rows of rotor vanes.

The pressure rise that can be achieved efficiently in a single stage is limited, depending on the type

of machine. The reason for this limitation can be understood based on the pressure gradients in these

machines. In a pump or compressor, the boundary layer subjected to an adverse pressure gradient is

not stable so flow is more likely to encounter boundary-layer separation in a compressor or pump.

Boundary-layer separation increases the drag on the impeller, resulting in a decrease in efficiency

and an increase in work needed.

Propellers are essentially axial-flow devices that operate without an outer housing. Propellers may

be designed to operate in gases or liquids. Marine propellers tend to have wide blades compared with

their radii, giving high solidity. Aircraft propellers tend to have long, thin blades with relatively low

solidity. These machines will be discussed in detail in Section 10.6.

Machines for Extracting Work (Power) from a Fluid

Machines that extract energy from a fluid in the form of work are called turbines. In hydraulic turbines,

the working fluid is water, so the flow is incompressible. In gas turbines and steam turbines, the density

of the working fluid may change significantly. In a turbine, a stage normally consists of an element to

accelerate the flow, converting some of its pressure energy to kinetic energy, followed by a rotor, wheel,

or runner that extracts the kinetic energy from the flow via a set of vanes, blades, or bucketsmounted on

the wheel.

The two most general classifications of turbines are impulse and reaction turbines. Impulse turbines

are driven by one or more high-speed free jets. The classic example of an impulse turbine is the water-

wheel. In a waterwheel, the jets of water are driven by gravity. The kinetic energy of the water is trans-

ferred to the wheel, resulting in work. In more modern forms of impulse turbines, the jet is accelerated in

a nozzle external to the turbine wheel. If friction and gravity are neglected, neither the fluid pressure nor

speed relative to the runner changes as the fluid passes over the turbine buckets. Thus for an impulse

turbine, the fluid acceleration and accompanying pressure drop take place in nozzles external to the

blades, and work is extracted as a result of the large momentum change of the fluid.

In reaction turbines, part of the pressure change takes place externally and part takes place within

the moving blades. The flow is turned to enter the runner in the proper direction as it passes through
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Fig. 10.3 Photograph of a multiple-stage axial-flow compressor rotor for a gas turbine.
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nozzles or stationary blades, called guide vanes or wicket gates. Additional fluid acceleration relative to

the rotor occurs within the moving blades, so both the relative velocity and the pressure of the stream

change across the runner. Because reaction turbines flow full of fluid, they generally can produce more

power for a given overall size than impulse turbines.

Figure 10.4 shows turbines used for different applications. Figure 10.4a shows a Pelton wheel, a

type of impulse turbine wheel used in hydroelectric power plants. Figure 10.4b is a photograph of an

axial steam turbine rotor, an example of a reaction turbine. Figure 10.4c is a wind turbine farm.

A wind turbine is another example of a reaction turbine, but, like a propeller, also operates without

an outer housing.

Several typical hydraulic turbines are shown schematically in Fig. 10.5. Figure 10.5a shows an

impulse turbine driven by a single jet, which lies in the plane of the turbine runner. Water from the

jet strikes each bucket in succession, is turned, and leaves the bucket with relative velocity nearly oppo-

site to that with which it entered the bucket. Spent water falls into the tailrace (not shown).

A reaction turbine of the Francis type is shown in Fig. 10.5b. Incoming water flows circumferen-

tially through the turbine casing. It enters the periphery of the stationary guide vanes and flows toward

the runner. Water enters the runner nearly radially and is turned downward to leave nearly axially; the

flow pattern may be thought of as a centrifugal pump in reverse. Water leaving the runner flows through

a diffuser known as a draft tube before entering the tailrace. Figure 10.5c shows a propeller turbine of the

Kaplan type. The water entry is similar to that in the Francis turbine, but it is turned to flow nearly axially

before encountering the turbine runner. Flow leaving the runner may pass through a draft tube.

Thus turbines range from simple windmills to complex gas and steam turbines with many stages of

carefully designed blading. These devices also can be analyzed in idealized form by applying the angu-

lar-momentum principle.

The allowable amount of pressure drop in a turbine stage is usually greater than the amount of pres-

sure rise allowable in a compressor stage. The difference is due to the favorable pressure gradient that

makes boundary-layer separation much less likely than in the case of the compressor.

Water nozzle

Vane

(a) Impulse turbine
(Pelton wheel)

(b) Reaction turbine
(Francis type)

(c) Propeller turbine
(Kaplan type)

Tail race

Draft tube

Casing
Rotor vanes

Stationary
guide vanes

Guide vanes

Casing

Rotor vanes

Fig. 10.5 Schematic diagrams of typical hydraulic turbines, based on Reference [2].

(a) Pelton wheel (b) Steam turbine rotor (c) Wind turbine farm
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Fig. 10.4 Photograph of turbines used in different applications.
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Dimensionless parameters, such as specific speed, flow coefficient, torque coefficient, power coef-

ficient, and pressure ratio, are frequently used to characterize the performance of turbomachines.

These are discussed at the end of the appropriate section.

Scope of Coverage

The turbomachinery industry is significant and thus the proper design, construction, selection, and appli-

cation of pumps and compressors are economically important. Design of actual machines involves

diverse technical knowledge, including fluid mechanics, materials, bearings, seals, and vibrations.

Our objective here is to present only enough detail to illustrate the analytical basis of fluid flow design

and to discuss briefly the limitations on results obtained from simple analytical models. The inherent

complexity of the topic means that, on many occasions, we need to resort to empirical results and

correlations.

10.2 Turbomachinery Analysis
We will analyze turbomachines using the conservation of mass, momentum, and energy principles

applied to a control volume. The analysis that follows applies to machines both for doing work on

and extracting work from a fluid flow.

The Angular-Momentum Principle: The Euler Turbomachine Equation

The angular-momentum principle was applied to finite control volumes in Chapter 4. The result

was Eq. 4.46.

r ×Fs +

CV

r × gρdV--- + Tshaft =
∂

∂t

CV

r ×VρdV--- +

CV

r × V ρV dA 4 46

Equation 4.46 states that the moment of surface forces and body forces, plus the applied torque, lead to a

change in the angular momentum of the flow. The surface forces are due to friction and pressure, the

body force is due to gravity, the applied torque could be positive or negative (depending on whether

we are doing work on or extracting work from the fluid, respectively), and the angular-momentum

change can arise as a change in angular momentum within the control volume or a flux of angular

momentum across the control surface.

We will simplify Eq. 4.46 for analysis of turbomachinery. First, it is convenient to choose a fixed

control volume enclosing the rotor to evaluate shaft torque. Because we are looking at control volumes

for which we expect large shaft torques, as a first approximation torques due to surface forces may be

ignored. This means we are neglecting friction and torque generated by pressure changes. The body force

may be neglected by symmetry. Then, for steady flow, Eq. 4.46 becomes

T shaft =

CV

r ×VρV dA 10 1a

Equation 10.1a states that for a turbomachine with work input, the torque required causes a change in

the fluid angular momentum. For a turbomachine with work output, the torque produced is due to the

change in fluid angular momentum.

As shown in Fig. 10.6, we select a fixed control volume enclosing a generalized turbomachine rotor.

The fixed coordinate system is chosen with the z-axis aligned with the axis of rotation of the machine.

The idealized velocity components are shown in the figure. The fluid enters the rotor at radial location,

r1, with uniform absolute velocity, V1; the fluid leaves the rotor at radial location, r2, with uniform abso-

lute velocity V2. For uniform flow into the rotor at Section 10.1, and out of the rotor at Section 10.2,

Eq. 10.1a becomes

Tshaftk= r2Vt2 −r1Vt1 mk 10 1b
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For the product r ×V the position vector r is purely radial and only the tangential velocity component

Vt counts. In scalar form,

Tshaft = r2Vt2 −r1Vt1 m 10 1c

The assumptions we made in deriving this equation are steady, frictionless flow, uniform flow at inlet and

exit, and negligible pressure effects. Equation 10.1c is the basic relationship between torque and angular

momentum for all turbomachines and is often called the Euler turbomachine equation.

Each velocity that appears in Eq. 10.1c is the tangential component of the absolute velocity of the

fluid crossing the control surface. The tangential velocities are chosen positive when in the same direc-

tion as the blade speed, U. This sign convention gives Tshaft >0 for pumps, fans, blowers, and compres-

sors and Tshaft <0 for turbines.

The rate of work Wm done on a turbomachine rotor is given by the dot product of rotor angular

velocity, ω, and applied torque, T shaft. Using Eq. 10.1b, we obtain

Wm =ω T shaft =ωk Tshaftk=ωk r2Vt2 −r1Vt1 mk

or

Wm =ωTshaft =ω r2Vt2 −r1Vt1 m 10 2a

According to Eq. 10.2a, the angular momentum of the fluid is increased by the addition of shaft work.

For a pump,Wm >0 and the angular momentum of the fluid must increase. For a turbine,Wm <0 and the

angular momentum of the fluid must decrease.

Equation 10.2a may be written in two other useful forms. Introducing U = rω, where U is the tan-

gential speed of the rotor at radius r, we have

Wm = U2Vt2 −U1Vt1 m 10 2b

Dividing Eq. 10.2b by mg, we obtain a quantity with the dimensions of length, which may be viewed as

the theoretical head, or energy per unit weight, added to the flow.

H =
Wm

mg
=
1

g
U2Vt2 −U1Vt1 10 2c

Equations 10.1 and 10.2 are simplified forms of the angular-momentum equation for a control vol-

ume. They all are written for a fixed control volume under the assumptions of steady, uniform flow at

each section. The equations show that only the difference in the product rVt or UVt, between the outlet

and inlet sections, is important in determining the torque applied to the rotor or the mechanical power.

X

Y

1

2
Vn1

Vn2

Vt1

Vt2

V2

ω
ω

ωU1 = r1

ωU2 = r2 r2

r1

V1

Fig. 10.6 Finite control volume and absolute velocity
components for analysis of angular momentum.
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Although r2 > r1 in Fig. 10.6, no restriction has been made on geometry; the fluid may enter and leave at

the same or different radii. Therefore, these equations may be used for axial, radial, or mixed-flow

machines.

Velocity Diagrams

The equations that we have derived also suggest the importance of clearly defining the velocity com-

ponents of the fluid and rotor at the inlet and outlet sections. For this purpose, it is useful to develop

velocity diagrams for the inlet and outlet flows. Figure 10.7 shows the velocity diagrams and introduces

the notation for blade and flow angles. The important notation to remember is that the variable V is typ-

ically used to indicate absolute velocity, while the variableW is used to indicate flow velocity relative to

the rotating blade.

Machines are designed such that at design condition the fluid moves smoothly through the blades. In

the idealized situation at the design speed, sometimes called shockless entry, flow relative to the rotor is

assumed to enter and leave tangent to the blade profile at each section. At speeds other than design speed

the fluid may impact the blades at inlet, exit at an angle relative to the blade, or may have significant flow

separation, leading to machine inefficiency. Figure 10.7 is representative of a typical radial flow

machine. We assume the fluid is moving without major flow disturbances through the machine, as

shown in Fig. 10.7a, with blade inlet and exit angles β1 and β2, respectively, relative to the circumfer-

ential direction. Note that although angles β1 and β2 are both less than 90 in Fig. 10.7, in general they

can be less than, equal to, or greater than 90 , and the analysis that follows applies to all of these

possibilities.

The runner speed at inlet is U1 = r1ω, and therefore it is specified by the impeller geometry and the

machine operating speed. The absolute fluid velocity is the vector sum of the impeller velocity and

the flow velocity relative to the blade. The absolute inlet velocity may be determined graphically, as

shown in Fig. 10.7b. The angle of the absolute fluid velocity, α1, is measured from the direction nor-

mal to the flow area, as shown. Note that for a given machine, angles α1 and α2 will vary with flow rate,

Q, (through V1 and V2) and rotor speed, ω (through U1 and U2). The tangential component of the

absolute velocity, Vt1 , and the component normal to the flow area, Vn1 , are also shown in Fig. 10.7b.

At each section the normal component of the absolute velocity, Vn, and the normal component of

the velocity relative to the blade, Wn, are equal because the blade has no normal velocity. The absolute

velocity at the machine entrance depends on whether swirl exists at the entrance. Swirl is the presence

of a circumferential velocity component. When the inlet flow is swirl free, the absolute inlet velocity

will be purely radial.

The velocity diagram is constructed similarly at the outlet section. The runner speed at the

outlet is U2 = r2ω, which again is known from the geometry and operating speed of the turbomachine.

The relative flow is assumed to leave the impeller tangent to the blades, as shown in Fig. 10.7c. This

idealizing assumption of perfect guidance fixes the direction of the relative outlet flow at design

conditions.

r2

r1

1β

2β
2β

2α

V2

U2 = r2ω

U1 = r1ω

U2

W
2

Vn2
Vt2

(a) Absolute velocity as sum
of velocity relative to blade

and rotor velocity

(c) Velocity components
at outlet

(b) Velocity components
at inlet

1β 1α

V1

U1

Vn1

Vt1

V2

V1

W
1

W
1

W
2

Fig. 10.7 Geometry and notation used to develop velocity diagrams for typical radial-flow machines.
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For a centrifugal pump or reaction turbine, the velocity relative to the blade generally changes in

magnitude from inlet to outlet. The continuity equation must be applied to determine the normal

component of velocity at each section. The normal component together with the outlet blade angle is

sufficient to establish the velocity relative to the blade at the impeller outlet for a radial-flow machine.

The velocity diagram is completed by the vector addition of the velocity relative to the blade and the

wheel velocity, as shown in Fig. 10.7c.

The inlet and outlet velocity diagrams provide all the information needed to calculate the ideal tor-

que or power, absorbed or delivered by the impeller, using Eqs. 10.1 or 10.2. The results represent the

performance of a turbomachine under idealized conditions at the design operating point, since we have

assumed:

• Negligible torque due to surface forces (viscous and pressure).

• Inlet and exit flow tangent to blades.

• Uniform flow at inlet and exit.

An actual turbomachine is not likely to conform to all of these assumptions, so the results of our analysis

represent the upper limit of the performance of actual machines. In Example 10.1 we will use the Euler

turbomachine equation to analyze an idealized centrifugal pump.

Example 10.1 IDEALIZED CENTRIFUGAL PUMP

A centrifugal pump is used to pump 150 gpm of water. The water enters the impeller axially through a 1.25-in.-diameter inlet. The

inlet velocity is axial and uniform. The impeller outlet diameter is 4 in. Flow leaves the impeller at 10 ft s relative to the blades,

which are radial at the exit. The impeller speed is 3450 rpm. Determine the impeller exit width, b2, the torque input, and the power

predicted by the Euler turbine equation.

Given: Flow as shown in the figure:

Vr2 =10 ft s, Q=150 gpm.

Find: (a) b2.

(b) Tshaft.

(c) Wm.

Solution: Apply the Euler turbomachine equation to a

fixed control volume.

Governing equations:

Tshaft = r2Vt2 −r1Vt1 m 10 1c

= 0 2
∂

∂t CV

ρdV
CS

ρV dA 0
4 12

Assumptions:

1 Neglect torques due to body and surface forces.

2 Steady flow.

3 Uniform flow at inlet and outlet sections.

4 Incompressible flow.

Then, from continuity,

−ρV1πR
2
1 + ρVr22πR2b2 =0

V2

R2ω

Vr2

R1 = 0.625 in.

ω = 3450 rpm

r

z

Fixed CV

R2 = 2 in.

b2

35110.2 Turbomachinery Analysis

www.konkur.in

Telegram: @uni_k



Performance—Hydraulic Power

The torque and power predicted by applying the angular-momentum equation to a turbomachine

rotor (Eqs. 10.1c and 10.2a) are idealized values. In practice, rotor power and the rate of change of fluid

energy are not equal. Losses are caused by viscous effects, non-uniform flow, mis-matched flow direc-

tion and blade angle, and inefficiencies in the diffuser. Energy dissipation occurs in seals and bearings

and in fluid friction between the rotor and housing of the machine (“windage” losses). Because of these

losses, in a pump the actual power delivered to the fluid is less than predicted by the angular-momentum

equation. In the case of a turbine, the actual power delivered to the shaft is less than the power given up

by the fluid stream.

We can define the power, head, and efficiency of a turbomachine based on whether the machine

does work on the fluid or extracts work from the fluid. For a pump, the hydraulic power is given by

the rate of mechanical energy input to the fluid,

Wh = ρQgHp 10 3a

where

Hp =
p

ρg
+
V

2

2g
+ z

discharge

−
p

ρg
+
V

2

2g
+ z

suction

10 3b

or

m= ρQ= ρVr22πR2b2

so that

b2 =
Q

2πR2Vr2

=
1

2π
×150

gal

min
×

1

2 in
×

s

10 ft
×

ft3

7 48 gal
×
min

60 s
× 12

in

ft

b2 =0 0319 ft or 0 383 in
b2

For an axial inlet the tangential velocity Vt1 =0, and for radial exit blades Vt2 =R2ω, so Eq. 10.1c reduces to

Tshaft =R2
2ωm=ωR2

2ρQ

where we have used continuity m= ρQ .

Thus,

Tshaft =ωR2
2ρQ=3450

rev

min
× 2

2
in 2 ×1 94

slug

ft3
×150

gal

min

× 2π
rad

rev
×

min2

3600 s2
×

ft3

7 48 gal
×

ft2

144 in 2
×

lbf s2

slug ft

Tshaft =6 51 ft lbf
Tshaft

and

Wm =ωTshaft =3450
rev

min
× 6 51 ft lbf × 2π

rad

rev
×
min

60 s
×

hp s

550 ft lbf

Wm =4 28 hp
Wm

This problem illustrates the application
of the Euler turbomachine equation for a
fixed control volume to a centrifugal flow
machine.
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The mechanical input power needed to drive the pump is greater than that to produce the head rise due to

inefficiencies. We define the pump efficiency as

ηp =
Wh

Wm

=
ρQgHp

ωT
10 3c

For a hydraulic turbine, the hydraulic power is defined as the rate of mechanical energy removal

from the flowing fluid stream,

Wh = ρQgHt 10 4a

where

Ht =
p

ρg
+
V

2

2g
+ z

inlet

−
p

ρg
+
V

2

2g
+ z

outlet

10 4b

For a hydraulic turbine, the power output obtained from the rotor is less than the rate of energy

transfer from the fluid to the rotor, because the rotor must overcome friction and windage losses.

The mechanical power output obtained from the turbine is related to the hydraulic power by defining

turbine efficiency as

ηt =
Wm

Wh

=
ωT

ρQgHt

10 4c

Equations 10.4a and 10.4b show that to obtain maximum power output from a hydraulic turbine, it is

important to minimize the mechanical energy in the flow leaving the turbine. This is accomplished by

making the outlet pressure, flow speed, and elevation as small as practical.

Dimensional Analysis and Specific Speed

Dimensional analysis for turbomachines was introduced in Chapter 7, where dimensionless flow, head,

and power coefficients were derived in generalized form. The independent parameters were the flow

coefficient and a form of Reynolds number. The dependent parameters were the head and power

coefficients.

Our objective here is to develop the forms of dimensionless coefficients in common use and to give

examples illustrating their use in selecting a machine type, designing model tests, and scaling results.

Since we developed an idealized theory for turbomachines, we can gain additional physical insight by

developing dimensionless coefficients directly from the resulting computing equations. We will then

apply these expressions to scaling of turbomachines through similarity rules in Section 10.3.

The dimensionless flow coefficient,Φ, is defined by normalizing the volume flow rate using the exit

area and the wheel speed at the outlet. Thus

Φ=
Q

A2U2

=
Vn2

U2

10 5

where Vn2 is the velocity component perpendicular to the exit area. This component is also referred to as

the meridional velocity at the wheel exit plane. It appears in true projection in the meridional plane,

which is any radial cross-section through the centerline of a machine.
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A dimensionless head coefficient,Ψ, may be obtained by normalizing the head,H (Eq. 10.2c), with

U2
2 g. Thus

Ψ=
gH

U2
2

10 6

A dimensionless torque coefficient, τ, may be obtained by normalizing the torque, T (Eq. 10.1c),

with ρA2U
2
2R2. Thus

τ=
T

ρA2U
2
2R2

10 7

Finally, the dimensionless power coefficient, Π, is obtained by normalizing the power, W

(Eq. 10.2b), with mU2
2 = ρQU2

2 . Thus

Π=
W

ρQU2
2

=
W

ρω2QR2
2

10 8

For pumps, mechanical input power exceeds hydraulic power, and the efficiency is defined as

ηp =Wh Wm (Eq. 10.3c). Hence

Wm = Tω=
1

ηp
Wh =

ρQgHp

ηp
10 9

Introducing dimensionless coefficientsΦ (Eq. 10.5),Ψ (Eq. 10.6), and τ (Eq. 10.7) into Eq. 10.9, we

obtain an analogous relation among the dimensionless coefficients as

τ=
ΨΦ

ηp
10 10

For turbines, mechanical output power is less than hydraulic power, and the efficiency is defined as

ηt =Wm Wh (Eq. 10.4c). Hence

Wm = Tω= ηtWh = ηtρQgHp 10 11

Introducing dimensionless coefficients Φ, Ψ, and τ into Eq. 10.11, we obtain an analogous relation

among the dimensionless coefficients as

τ=ΨΦηt 10 12

The dimensionless coefficients form the basis for designing model tests and scaling the results. The

flow coefficient, Φ, is the independent parameter, and the head, torque, and power coefficients are

dependent parameters. Under these assumptions, dynamic similarity is achieved when the flow coeffi-

cient is matched between model and prototype machines.

A useful parameter called specific speed can be obtained by combining the flow and head coeffi-

cients and eliminating the machine size. The result is,

NS =
ωQ1 2

h3 4
7 22a

When head is expressed as energy per unit mass (i.e., with dimensions equivalent to L2 t2, or g times

head in height of liquid), and ω is expressed in radians per second, the specific speed defined by

Eq. 7.22a is dimensionless.
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Although specific speed is a dimensionless parameter, it is common practice to use an “engineering”

equation form of Eq. 7.22a in whichω andQ are specified in convenient units, and energy per unit mass,

h, is replaced with energy per unit weight of fluid, H. When this is done, the specific speed is not a

unitless parameter and the magnitude of the specific speed depends on the units used to calculate it.

Customary units used in U.S. engineering practice for pumps are rpm for ω, gpm for Q, and feet

for H. In practice, the symbol N is used to represent rate of rotation ω in rpm. Thus, the dimensional

specific speed for pumps, expressed in U.S. customary units, as an “engineering” equation, becomes

NScu =
N rpm Q gpm

1 2

H ft
3 4

7 22b

For hydraulic turbines, we use the fact that power output is proportional to flow rate and head,

� ρQh in consistent units. Substituting � ρh for Q in Eq. 7.22a gives

NS =
ω

h3 4

�

ρh

1 2

=
ωP1 2

ρ1 2h5 4
10 13a

as the nondimensional form of the specific speed.

In U.S. engineering practice it is customary to drop the factor ρ1 2 because water is invariably the

working fluid in the turbines to which the specific speed is applied and to use head H in place of energy

per unit mass h. Customary units used in U.S. engineering practice for hydraulic turbines are rpm for ω,

horsepower for �, and feet for H. In practice, the symbol N is used to represent rate of rotation ω in

rpm. Thus the dimensional specific speed for a hydraulic turbine, expressed in U.S. customary units, as

an “engineering” equation, becomes

NScu =
N rpm � hp

1 2

H ft
5 4

10 13b

Specific speed may be thought of as the operating speed at which a pump produces unit head at unit

volume flow rate (or, for a hydraulic turbine, unit power at unit head). To see this, solve for N in

Eqs. 7.22b and 10.13b, respectively. For pumps

N rpm =NScu

H ft
3 4

Q gpm
1 2

and for hydraulic turbines

N rpm =NScu

H ft
5 4

� hp
1 2

Holding specific speed constant describes all operating conditions of geometrically similar machines

with similar flow conditions.

It is customary to characterize a machine by its specific speed at the design point. Low specific

speeds correspond to efficient operation of radial-flow machines. High specific speeds correspond to

efficient operation of axial-flow machines. For a specified head and flow rate, one can choose either

a low specific speed machine (which operates at low speed) or a high specific speed machine (which

operates at higher speed).

Typical proportions for commercial pump designs and their variation with dimensionless specific

speed are shown in Fig. 10.8. In this figure, the size of each machine has been adjusted to give the same

head and flow rate for rotation at a speed corresponding to the specific speed. Thus it can be seen that if

the machine’s size and weight are critical, one should choose a higher specific speed. Figure 10.8 shows
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the trend from radial (purely centrifugal pumps), through mixed-flow, to axial-flow geometries as

specific speed increases.

The corresponding efficiency trends for typical pumps are shown in Fig. 10.9, which shows that

pump capacity generally increases as specific speed increases. The figure also shows that at any given

specific speed, efficiency is higher for large pumps than for small ones. Physically this scale effect means

that viscous losses become less important as the pump size is increased.

Characteristic proportions of hydraulic turbines are also correlated by specific speed, as shown in

Fig. 10.10. As in Fig. 10.8, the machine size has been scaled in this illustration to deliver approximately

the same power at unit head when rotating at a speed equal to the specific speed. The corresponding

efficiency trends for typical turbine types are shown in Fig. 10.11. The most commonly used forms

of specific speed for pumps are defined and compared in Example 10.2.

0.2 1 4

Dimensionless specific speed, NS

Radial flow Mixed flow Axial flow

Fig. 10.8 Typical geometric proportions of commercial pumps as a function of dimensionless specific speed, adapted from
Reference [3].
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Fig. 10.9 Average efficiencies of commercial pumps as they vary with specific speed and pump size [4].

0.2 0.5 4

Dimensionless specific speed, NS

Impulse Mixed flow Axial flow

Fig. 10.10 Typical geometric proportions of commercial hydraulic turbines as they vary with dimensionless specific speed,
adapted from Reference [3].
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Fig. 10.11 Average efficiencies of commercial hydraulic turbines as they vary with specific speed [4].

Example 10.2 COMPARISON OF SPECIFIC SPEED DEFINITIONS

At the best efficiency point, a centrifugal pump, with impeller diameter D = 8 in., produces H = 21 9 ft at Q = 300 gpm with

N = 1170 rpm. Compute the corresponding specific speeds using: (a) U.S. customary units, (b) SI units rad s,m3 s,m2 s2 ,

and (c) European units rev s,m3 s,m2 s2 . Develop conversion factors to relate the specific speeds.

Given: Centrifugal pump at best efficiency point (BEP). Assume the pump characteristics are H = 21 9 ft,Q = 300 gpm,

and N = 1170 rpm.

Find: (a) The specific speed in U.S. customary units.

(b) The specific speed in SI units.

(c) The specific speed in European units.

(d) Appropriate conversion factors to relate the specific speeds.

Solution:

Governing equations: Ns =
ωQ1 2

h3 4
and NScu =

NQ1 2

H3 4

From the given information, the specific speed in U.S. customary units is

NScu = 1170 rpm × 300
1 2

gpm1 2 ×
1

21 9
3 4

ft3 4
= 2000

NScu

Convert information to SI units:

ω= 1170
rev

min
× 2π

rad

rev
×

min

60 s
= 123 rad s

Q = 300
gal

min
×

ft3

7 48 gal
×

min

60 s
× 0 305

3 m3

ft3
= 0 0190 m3 s

H = 21 9 ft × 0 305
m

ft
= 6 68 m

The energy per unit mass is

h = gH = 9 81
m

s2
× 6 68 m = 65 5 m2 s2

The dimensionless specific speed is

Ns = 123
rad

s
× 0 0190

1 2 m3 2

s1 2
×

s2 3 4

65 5
3 4

m2 3 4
= 0 736

Ns SI
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10.3 Pumps, Fans, and Blowers
We will now look at the various types of fluid machines in greater detail. We will begin our discussion

with rotating machines that perform work on an incompressible fluid, namely pumps, fans and blowers.

Application of Euler Turbomachine Equation to Centrifugal Pumps

As demonstrated in Example 10.1, the treatment from Section 10.2 may be applied directly to the anal-

ysis of centrifugal machines. Figure 10.7 represents the flow through a simple centrifugal pump impeller.

If the fluid enters the impeller with a purely radial absolute velocity, then the fluid entering the impeller

has no angular momentum and Vt1 is identically zero.

With Vt1 =0, the increase in head (from Eq. 10.2c) is given by

H =
U2Vt2

g
10 14

From the exit velocity diagram of Fig. 10.7c,

Vt2 =U2−W2 cos β2 =U2−
Vn2

sinβ2
cos β2 =U2−Vn2 cot β2 10 15

Then

H =
U2

2−U2Vn2 cot β2
g

10 16

For an impeller of width w, the volume flow rate is

Q= πD2wVn2 10 17

To express the increase in head in terms of volume flow rate, we substitute for Vn2 in terms of Q from

Eq. 10.17. Thus

H =
U2

2

g
−
U2 cot β2
πD2wg

Q 10 18a

Equation 10.18a is of the form

H =C1−C2Q 10 18b

where constants C1 and C2 are functions of machine geometry and speed,

Convert the operating speed to hertz:

ω=1170
rev

min
×
min

60 s
×
Hz s

rev
= 19 5 Hz

Finally, the specific speed in European units is

Ns Eur = 19 5 Hz× 0 0190
1 2m

3 2

s1 2
×

s2
3 4

65 5
3 4

m2 3 4
=0 117

Ns Eur

To relate the specific speeds, form ratios:

Nscu

Ns Eur
=

2000

0 117
= 17,100

Nscu

Ns SI
=

2000

0 736
= 2720

This problem demonstrates the use of
“engineering” equations to calculate
specific speed for pumps from each of three
commonly used sets of units and to com-
pare the results.
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C1 =
U2

2

g
and C2 =

U2 cot β2
πD2wg

Thus Eq. 10.18a predicts a linear variation of head, H, with volume flow rate, Q. Constant C1 =U2
2 g

represents the ideal head developed by the pump for zero flow rate and is called the shutoff head. The

linear relation is an idealized model and actual devices may only approximate linear variation. Theymay

be better modeled with a curve-fitting method based on measured data.

For radial outlet vanes, β2 =90 andC2 =0. The tangential component of the absolute velocity at the

outlet is equal to the wheel speed and is independent of flow rate. From Eq. 10.18a, the ideal head is

independent of flow rate. This characteristic H−Q curve is plotted in Fig. 10.12.

The characteristics of a radial-flow machine can be altered by changing the outlet vane angle. If the

vanes are backward curved as shown in Fig. 10.7a, β2 <90 and C2 >0. Then the tangential component

of the absolute outlet velocity is less than the wheel speed and it decreases in proportion to the flow rate.

From Eq. 10.18a, the ideal head decreases linearly with increasing flow rate. The corresponding H−Q

curve is plotted in Fig. 10.12.

If the vanes are forward curved, then β2 >90 and C2 <0. The tangential component of the absolute

fluid velocity at the outlet is greater than the wheel speed, and it increases as the flow rate increases. From

Eq. 10.7a, the ideal head increases linearly with increasing flow rate. The corresponding H−Q curve is

plotted in Fig. 10.12. Forward-curved vanes are almost never used in practice because they tend to have

an unstable operating point.

Application of the Euler Equation to Axial Flow Pumps and Fans

The Euler turbomachine equation developed in Section 10.2 can be used for axial-flow machines with

additional assumptions. The most important assumption is that the flow properties at the mean radius

(the midpoint of the rotor blades) fully represent the flow at all radii. This is a good assumption provided

the ratio of blade height to mean radius is approximately 0.2 or less [5]. At larger ratios a three-

dimensional analysis will be necessary. A second assumption is that there is no radial component to

the flow velocity. This is a reasonable assumption, since many axial machines incorporate stators or

sets of vanes which guide the flow into the machine, removing unwanted radial velocity components.

The third assumption is that the flow only varies in the axial direction. This means that the amount of

swirl in the flow is constant and does not vary between the blades of the machine [5]. The primary

consequence of this model applied to axial-flow machines is that the radius used in Equations (10.1)

is constant, i.e.,

r1 = r2 =Rm 10 19a

Cross section
Meridional

section

Volume flow rate, Q

H
e
a
d
, 

H

R2

2
β

ω

ω

ω

U2 =R2

W2 (rel) V
2
 (abs)

H = –––––
R2

22

g

Backward-curved,

 β2 < 90°

Forward-curved,

 β2 > 90°

Radial, β2 = 90°

Fig. 10.12 Idealized relationship between head and volume flow rate for centrifugal pumpwith forward-curved, radial, and
backward-curved impeller blades.
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Since the angular velocity ω of the rotor is also constant, it follows that

U1 =U2 =U 10 19b

Therefore, Eqs. 10.1 and 10.2 reduce to:

Tshaft =Rm Vt2 −Vt1 m 10 20

Wm =U Vt2 −Vt1 m 10 21

H =
Wm

mg
=
U

g
Vt2 −Vt1 10 22

In Example 10.3 these special versions of the Euler turbomachine equation and velocity diagrams

are utilized in the analysis of flow through an axial-flow fan.

Example 10.3 IDEALIZED AXIAL-FLOW FAN

An axial-flow fan operates at 1200 rpm. The blade tip diameter is 1.1 m and the hub diameter is 0.8 m. The inlet and exit angles at

the mean blade radius are 30 and 60 , respectively. Inlet guide vanes give the absolute flow entering the first stage an angle of

30 . The fluid is air at standard conditions and the flowmay be considered incompressible. There is no change in axial component

of velocity across the rotor. Assume the relative flow enters and leaves the rotor at the geometric blade angles and use properties at

the mean blade radius for calculations. For these idealized conditions, draw the inlet velocity diagram, determine the volume flow

rate of the fan, and sketch the rotor blade shapes. Using the data so obtained, draw the outlet velocity diagram and calculate the

minimum torque and power needed to drive the fan.

Given: Flow through rotor of axial-flow fan.

Tip diameter: 1.1 m

Hub diameter: 0.8 m

Operating speed: 1200 rpm

Absolute inlet angle: 30

Blade inlet angle: 30

Blade outlet angle: 60

Fluid is air at standard conditions. Use properties at mean diameter of blades.

Find: (a) Inlet velocity diagram.

(b) Volume flow rate.

(c) Rotor blade shape.

(d) Outlet velocity diagram.

(e) Rotor torque.

(f) Power required.

Solution: Apply the Euler turbomachine equation to a fixed control volume.

Governing equations:

Tshaft =Rm Vt2 −Vt1 m=Rm Vt2 −Vt1 ρQ 10 20

Assumptions:

1 Neglect torques due to body or surface forces.

2 Steady flow.

3 Uniform flow at inlet and outlet sections.

4 Incompressible flow.

5 No change in axial flow area.

6 Use mean radius of rotor blades, Rm.

1

2

Stationary CV
is flow channel

z

ω
Flow

Rm
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The blade shapes are

The inlet velocity diagram is

From continuity

−ρVn1A1 + ρVn2A2 =0

or

Q=Vn1A1 =Vn2A2

Since A1 =A2, then Vn1 =Vn2 , and the outlet velocity diagram is as shown in the following figure:

At the mean blade radius,

U =Rmω=
Dm

2
ω

U =

1

2
1 1+ 0 8 m

2
× 1200

rev

min
× 2π

rad

rev
×
min

60 s
= 59 7 m s

From the geometry of the inlet velocity diagram,

U =Vn1 tan α1 +cot β1

so that

Vn1 =
U

tan α1 + cot β1
=59 7

m

s
×

1

tan 30 + cot 30
= 25 9 m s

Vn2

W2

Vt2

2 = 60°β

2α

U = Rmω

V2

Blade
motion

β1 = 30°

β2 = 60°

W1

W2

z

Vn1

W1

Vt1

1 = 30°β

1 = 30°α

U = Rmω

V1
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Performance Characteristics

To specify fluid machines for flow systems, the designer must know the pressure rise (or head), torque,

power requirement, and efficiency of a machine. For a given machine, each of these characteristics is

a function of flow rate and for similar machines depend on size and operating speed. Here we define

performance characteristics for pumps and turbines and review experimentally measured trends for

Consequently,

V1 =
Vn1

cos α1
=25 9

m

s
×

1

cos 30
= 29 9 m s

Vt1 =V1sin α1 =29 9
m

s
× sin 30 = 15 0 m s

and

W1 =
Vn1

sin β1
=25 9

m

s
×

1

sin 30
= 51 8 m s

The volume flow rate is

Q=Vn1A1 =
π

4
Vn1 D2

t −D2
h =

π

4
× 25 9

m

s
1 1

2
− 0 8

2
m2

Q=11 6 m3 s
Q

From the geometry of the outlet velocity diagram,

tan α2 =
Vt2

Vn2

=
U−Vn2cot β2

Vn2

=
U−Vn1cot β2

Vn1

or

α2 = tan−1
59 7

m

s
−25 9

m

s
× cot 60

25 9
m

s

= 59 9

and

V2 =
Vn2

cos α2
=

Vn1

cos α2
=25 9

m

s
×

1

cos 59 9
= 51 6 m s

Finally,

Vt2 =V2sin α2 =51 6
m

s
× sin 59 9 = 44 6 m s

Applying Eq. 10.20

Tshaft = ρQRm Vt2 −Vt1

=1 23
kg

m3
×11 6

m3

s
×
0 95

2
m× 44 6−15 0

m

s
×

N s2

kg m

Tshaft =201 N m
Tshaft

Thus the torque on the CV is in the same sense as ω. The power required is

Wm =ω T =ωTshaft =1200
rev

min
× 2π

rad

rev
×
min

60 s
× 201 N m×

W s

N m

Wm =25 3 kW
Wm

This problem illustrates construction of
velocity diagrams and application of the
Euler turbomachine equation for a fixed
control volume to an axial-flow machine
under idealized conditions.
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typical machines. Measurements are made as flow rate is varied from shutoff (zero flow) to maximum

delivery by varying the load from maximum to minimum. Power input to the machine is measured and

efficiency is computed as illustrated in Example 10.4. Example 10.5 illustrates curve-fitting for perfor-

mance results.

Example 10.4 CALCULATION OF PUMP CHARACTERISTICS FROM TEST DATA

The flow system used to test a centrifugal pump at a nominal speed of 1750 rpm is shown. The liquid is water at 80 F, and the

suction and discharge pipe diameters are 6 in. Data measured during the test are given in the table. The electric motor is supplied

at 460 V, 3-phase, and has a power factor of 0.875 and a constant efficiency of 90 percent.

Rate of

Flow (gpm)

Suction

Pressure (psig)

Discharge

Pressure (psig)

Motor

Current (amp)

0 0.65 53.3 18.0

500 0.25 48.3 26.2

800 −0.35 42.3 31.0

1000 −0.92 36.9 33.9

1100 −1.24 33.0 35.2

1200 −1.62 27.8 36.3

1400 −2.42 15.3 38.0

1500 −2.89 7.3 39.0

Calculate the net head delivered and the pump efficiency at a volume flow rate of 1000 gpm. Plot the pump head, power input,

and efficiency as functions of volume flow rate.

Given: Pump test flow system and data shown.

Find: (a) Pump head and efficiency at Q=1000 gpm.

(b) Pump head, power input, and efficiency as a function of volume flow rate. Plot the results.

Solution:

Governing equations:

Wh = ρQgHp ηp =
Wh

Wm

=
ρQgHp

ωT

Hp =
p

ρg
+
V

2

2g
+ z

d

−
p

ρg
+
V

2

2g
+ z

s

Assumptions:

1 Steady flow.

2 Uniform flow at each section.

3 V 2 =V 1.

4 Correct all heads to the same elevation.

Since V 1 =V 2, the pump head is

Hp =
1

g

p

ρ
+ gz

d

−
p

ρ
+ gz

s

=
p2−p1

ρg

zs = 1 ft

zd = 3 ft

pd

ps
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where the discharge and suction pressures, corrected to the same elevation, are designated p2 and p1, respectively.

Correct measured static pressures to the pump centerline:

p1 = ps + ρgzs

p1 = −0 92
lbf

in 2
+1 94

slug

ft3
×32 2

ft

s2
×1 0 ft ×

lbf s2

slug ft
×

ft2

144 in 2
= −0 49 psig

and

p2 = pd + ρgzd

p2 =36 9
lbf

in 2
+1 94

slug

ft3
×32 2

ft

s2
×3 0 ft ×

lbf s2

slug ft
×

ft2

144 in 2
=38 2 psig

Calculate the pump head:

Hp = p2−p1 ρg

Hp = 38 2− −0 49
lbf

in 2
×

ft3

1 94 slug
×

s2

32 2 ft
× 144

in 2

ft2
×
slug ft

lbf s2
=89 2 ft

Hp

Compute the hydraulic power delivered to the fluid:

Wh = ρQgHp =Q p2−p1

=1000
gal

min
× 38 2− −0 49

lbf

in 2
×

ft3

7 48 gal
×
min

60 s
× 144

in 2

ft2
×

hp s

550 ft lbf

Wh =22 6 hp

Calculate the motor power output (the mechanical power input to the pump) from electrical information:

�in = η 3 PF EI

�in =0 90× 3× 0 875× 460 V× 33 9A×
W

VA
×

hp

746W
=28 5 hp

The corresponding pump efficiency is

ηp =
Wh

Wm

=
22 6 hp

28 5 hp
= 0 792 or 79 2 percent

ηp

Results from similar calculations at the other volume flow rates are plot-

ted below:

This problem illustrates the data reduction
procedure used to obtain the performance
curves for a pump from experimental data.
The results calculated and plotted in this
problem are typical for a centrifugal pump
driven at constant speed:
• The pressure rise is highest at shutoff (zero
flow rate).

• Pressure rise decreases steadily as flow rate
is increased; compare this typical experi-
mental curve to the linear behavior pre-
dicted by Eq. 10.18b, and shown in
Fig. 10.12, for idealized backward-curved
impeller blades used in most centrifu-
gal pumps.

• Required power input increases with flow
rate; the increase is generally nonlinear.

• Efficiency is zero at shutoff, rises to a peak
as flow rate is increased, then drops off at
larger flow rates; it stays near its maximum
over a range of flow rates from about
800 to 1100 gpm.

This problemassumes that the electricmotor
efficiency is constant. In practice, motor
efficiency varies with load.
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Power Input (hp)

Pump Head (ft)
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Example 10.5 CURVE-FIT TO PUMP PERFORMANCE DATA

Pump test data and performance were given in Example 10.4. Fit a parabolic curve, H =H0−AQ2, to these calculated pump

performance results and compare the fitted curve with the measured data.

Given: Pump test data and performance calculated in Example 10.4.

Find: (a) Parabolic curve, H =H0−AQ2, fitted to the pump performance data.

(b) Comparison of the curve-fit with the calculated performance.

Solution: The curve-fit may be obtained by fitting a linear curve to H versus Q2. Tabulating,

From calculated performance: From the curve fit:

Q (gpm) Q
2 (gpm2) H (ft) H (ft) Error (%)

0 0 123 127 2.8

500 25 × 104 113 116 3.1

800 64 × 104 100 99.8 −0.5

1000 100 × 104 89.2 84.6 −5.2

1100 121 × 104 80.9 75.7 −6.5

1200 144 × 104 69.8 65.9 −5.6

1400 196 × 104 42.8 43.9 2.5

1500 225 × 104 25.5 31.7 24.2

Intercept = 127

Slope = −4.23 × 10−5

r
2 = 0.984

Using the method of least squares, the equation for the fitted curve is obtained as

H ft = 127−4 23× 10−5 Q gpm
2

with coefficient of determination r2 =0 984. (The closer r2 is to unity, its maximum possible value, the better the fit.)

Always compare the results of a curve-fit with the data used to develop the fit. The figure shows the curve-fit (the solid line)

and the experimental values (the points).

Head rise (ft)

Curve-fit head (ft)

15001000

Volume flow rate, Q (gpm)

5000
0

20

40

60

80

100

120

140

H
e
a
d
 r

is
e
, 

H
 (

ft
)

This problem illustrates that the pump test
data for Example 10.4 can be fitted quite
well to a parabolic curve. As with fitting a
curve to any experimental data, our justifi-
cations for choosing a parabolic function
in this case are:
• Experimental observation—the experi-
mental data looks parabolic.

• Theory or concept—we will see later in this
section that similarity rules suggest such a
relation between head and flow rate.
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Typical characteristic curves for a centrifugal pump tested at constant speed were shown qualita-

tively in Fig. 7.5. The head versus capacity curve is compared in Fig. 10.13 with characteristics predi-

cted by the idealized analysis. Figure 10.13 shows that the head at any flow rate in the real machine

may be significantly lower than is predicted by the idealized analysis. Some of the causes are that at

very low flow rate, some fluid recirculates in the impeller, friction loss and leakage loss both increase

with flow rate, and “shock loss” results from a mismatch between the direction of the relative velocity

and the tangent to the impeller blade at the inlet.

Curves such as those in Figs. 7.5 and 10.13 are measured at constant (design) speed with a single

impeller diameter. It is common practice to vary pump capacity by changing the impeller size in a given

casing. To present information compactly, data from tests of several impeller diameters may be plotted

on a single graph, as shown in Fig. 10.14. Efficiency contours are plotted by joining points having the

same constant efficiency. Power-requirement contours are also plotted. Finally, the NPSH requirements

(discussed later in this section) are shown for the extreme diameters.

The data of Fig. 10.14 are often tabulated for quick access by design software and therefore data

are not always presented in the manner shown in this figure. The data of Fig. 10.14 are simplified

Loss due to recirculation

Ideal head-flow curve (Fig. 10.12)

Loss due to
flow friction

Actual
head-flow

curve

Approximate
best efficiency point

"Shock" loss

Volume flow rate, Q

H
e
a
d
, 

H

Fig. 10.13 Comparison of ideal and actual head-flow curves for a centrifugal pump with backward-curved impeller
blades [10].

Impeller diameter

10 in.

8 in.

6 in.

Efficiency, %

60
70 80

80
70

60

Best efficiency point

Total
head

Input
horsepower

10 in.6 in.

Net positive suction head

Volume flow rate, Q

H
e
a
d
, 

H

Fig. 10.14 Typical pump performance curves from tests with three impeller diameters at constant speed [6].
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by reporting an average efficiency as a function of the flow rate only, as shown in Fig. 10.15, rather

than as a function of flow rate and head. The figures in Appendix C display pump performance in

this format.

For this typical machine, head is a maximum at shutoff and decreases continuously as flow rate

increases. Input power is minimum at shutoff and increases as delivery is increased. Consequently,

to minimize the starting load, it may be advisable to start the pump with the outlet valve closed. Pump

efficiency increases with capacity until the best efficiency point (BEP) is reached, then decreases as flow

rate is increased further. For minimum energy consumption, it is desirable to operate as close to BEP as

possible.

Centrifugal pumps may be combined in parallel to deliver greater flow or in series to deliver

greater head. A number of manufacturers build multistage pumps, which are essentially several pumps

arranged in series within a single casing. Common practice is to drive machines with electric motors at

nearly constant speed, but in some system applications energy savings can result from variable-speed

operation.

Similarity Rules

The dimensionless parameters developed in Chapter 7 form the basis for predicting changes in perfor-

mance that result from changes in pump size, operating speed, or impeller diameter. Dynamic similarity

requires geometric and kinematic similarity. Assuming similar pumps and flow fields and neglecting

viscous effects, we obtain dynamic similarity when the dimensionless flow coefficient is held constant

so that two flow conditions satisfy the relation

Q1

ω1D
3
1

=
Q2

ω2D
3
2

10 23a

The dimensionless head and power coefficients depend only on the flow coefficient, i.e.,

h

ω2D2
= f1

Q

ωD3
and

�

ρω3D5
= f2

Q

ωD3

We have dynamic similarity when pump characteristics at two conditions satisfy the relation

h1

ω2
1D

2
1

=
h2

ω2
2D

2
2

10 23b

Impeller diameter

10 in.

8 in.

6 in.

Efficiency

Best efficiency point

Total
head

Volume flow rate, Q

H
e
a
d
, 

H

E
ffi

c
ie

n
c
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Fig. 10.15 Typical pump performance curves from tests with three impeller diameters at constant speed, showing
efficiency as a function of flow rate only [8].
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and

�1

ρω3
1D

5
1

=
�2

ρω3
2D

5
2

10 23c

These scaling relationships may be used to predict the effects of changes in pump operating speed, pump

size, or impeller diameter within a given housing.

The simplest situation occurs when the speed of a pump is changed. Geometric similarity is assured,

and the flows are dynamically similar when the flow coefficients are equal. For this case of speed change

with fixed diameter, Eqs. 10.23 become
Q2

Q1

=
ω2

ω1

10 24a

h2

h1
=
H2

H1

=
ω2

ω1

2

10 24b

�2

�1

=
ω2

ω1

3

10 24c

In Example 10.5, we showed that a pump performance curve may be modeled within engineering

accuracy by the parabolic relationship,

H =H0−AQ2 10 25a

The pump curve for the new operating condition could be derived by scaling any two points from the

performance curve measured at the original operating condition. Usually, the shutoff condition and the

best efficiency point, represented by points B and C in Fig. 10.16, are chosen for scaling.

As shown by Eq. 10.24a, the flow rate increases by the ratio of operating speeds, so

QB =
ω2

ω1

QB =0 and QC =
ω2

ω1

QC

Thus, point B is located directly above point B, and point C moves to the right of point C (in this exam-

ple ω2 >ω1).

The head increases by the square of the speed ratio, so

HB =HB

ω1

ω2

2

and HC =HC

ω2

ω1

2

Points C and C , where dynamically similar flow conditions are present, are termed homologous points

for the pump.

We can relate the old operating condition (e.g., running at speed N1 =1170 rpm, as shown in

Fig. 10.16) to the new, primed one (e.g., running at speed N2 =1750 rpm in Fig. 10.16) using the par-

abolic relation and Eqs. 10.24a and 10.24b,

B'

B

1750 rpm

1170 rpm
C

C'

500400300200

Volume flow rate, Q (gpm)

1000
0

20

40

60

H
e
a
d
, 

H
 (
ft

)

Fig. 10.16 Schematic of a pump performance curve,
illustrating the effect of a change in pump
operating speed.
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H =H
ω1

ω2

2

=H0−AQ2 =H0

ω1

ω2

2

−AQ 2 ω1

ω2

2

or

H =H0−AQ 2 10 25b

so that for a given pump the factor A remains unchanged as we change pump speed, as we will verify in

Example 10.6.

Example 10.6 SCALING PUMP PERFORMANCE CURVES

When operated at N =1170 rpm, a centrifugal pump, with impeller diameter D=8 in , has shutoff headH0 =25 0 ft of water. At

the same operating speed, best efficiency occurs at Q=300 gpm, where the head is H =21 9 ft of water. Fit these data at

1170 rpm with a parabola. Scale the results to a new operating speed of 1750 rpm. Plot and compare the results.

Given: Centrifugal pump (with D=8 in impeller) operated at N =1170 rpm.

Q (gpm) 0 300

H (ft of water) 25.0 21.9

Find: (a) The equation of a parabola through the pump characteristics at 1170 rpm.

(b) The corresponding equation for a new operating speed of 1750 rpm.

(c) Comparison (plot) of the results.

Solution: Assume a parabolic variation in pump head of the form, H =H0−AQ2. Solving for A gives

A1 =
H0−H

Q2
= 25 0−21 9 ft ×

1

300
2
gpm

2
=3 44× 10−5ft gpm

2

The desired equation is

H ft = 25 0−3 44× 10−5 Q gpm
2

The pump remains the same, so the two flow conditions are geometrically similar. Assuming no cavitation occurs, the two flows

also will be kinematically similar. Then dynamic similarity will be obtained when the two flow coefficients are matched. Denot-

ing the 1170 rpm condition by subscript 1 and the 1750 rpm condition by subscript 2, we have

Q2

ω2D
3
2

=
Q1

ω1D
3
1

or
Q2

Q1

=
ω2

ω1

=
N2

N1

since D2 =D1. For the shutoff condition,

Q2 =
N2

N1

Q1 =
1750 rpm

1170 rpm
×0 gpm=0 gpm

From the best efficiency point, the new flow rate is

Q2 =
N2

N1

Q1 =
1750 rpm

1170 rpm
× 300 gpm=449 gpm

The pump heads are related by

h2

h1
=
H2

H1

=
N2
2D

2
2

N2
1D

2
1

or
H2

H1

=
N2
2

N2
1

=
N2

N1

2
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Efficiency remains relatively constant between dynamically similar operating points when only the

pump operating speed is changed. Application of these ideas is illustrated in Example 10.6.

In principle, geometric similarity would be maintained when pumps of the same geometry, differing

in size only by a scale ratio, were tested at the same operating speed. The flow, head, and power would be

predicted to vary with pump size as

Q2 =Q1

D2

D1

3

, H2 =H1

D2

D1

2

, and �2 =�1

D2

D1

5

10 26

It is impractical to manufacture and test a series of pump models that differ in size by only a scale ratio.

Instead it is common practice to test a given pump casing at a fixed speed with several impellers of dif-

ferent diameter [9]. Because pump casing width is the same for each test, impeller width also must be the

same; only impeller diameter D is changed. As a result, volume flow rate scales in proportion to D2, not

to D3. Pump input power at fixed speed scales as the product of flow rate and head, so it becomes pro-

portional to D4. Using this modified scaling method frequently gives results of acceptable accuracy, as

demonstrated in several end-of-chapter problems where the method is checked against measured per-

formance data from Appendix C.

since D2 =D1. For the shutoff condition,

H2 =
N2

N1

2

H1 =
1750 rpm

1170 rpm

2

25 0 ft = 55 9 ft

At the best efficiency point,

H2 =
N2

N1

2

H1 =
1750 rpm

1170 rpm

2

21 9 ft = 49 0 ft

The curve parameter at 1750 rpm may now be found. Solving for A, we find

A2 =
H02−H2

Q2
2

= 55 9−49 0 ft ×
1

449
2
gpm

2
=3 44× 10−5ft gpm

2

Note that A2 at 1750 rpm is the same as A1 at 1170 rpm. Thus we have demonstrated that the coefficient A in the parabolic

equation does not change when the pump speed is changed. The “engineering” equations for the two curves are

H1 =25 0−3 44× 10−5 Q gpm
2
at 1170 rpm

and

H2 =55 9−3 44× 10−5 Q gpm
2
at 1750 rpm

The pump curves are compared in the following plot:

B'

B

1750 rpm

1170 rpm C

C'

500400300200

Volume flow rate, Q (gpm)

1000
0

20

40

60

H
e
a
d
, 

H
 (
ft

)

This problem illustrates the procedures for:
• Obtaining the parabolic “engineering”
equation from shutoff head H0 and best
efficiency data on Q and H.

• Scaling pump curves from one speed to
another.
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It is not possible to compare the efficiencies at the two operating conditions directly. However,

viscous effects should become relatively less important as the pump size increases. Thus efficiency

should improve slightly as diameter is increased. Moody [10] suggested an empirical equation that

may be used to estimate the maximum efficiency of a prototype pump based on test data from a geo-

metrically similar model of the prototype pump. His equation is written

1−ηp

1−ηm
=

Dm

Dp

1 5

10 27

To develop Eq. 10.27, Moody assumed that only the surface resistance changes with model scale so that

losses in passages of the same roughness vary as 1 D5. Unfortunately, it is difficult to maintain the same

relative roughness between model and prototype pumps. Further, the Moody model does not account for

any difference in mechanical losses betweenmodel and prototype, nor does it allow determination of off-

peak efficiencies. Nevertheless, scaling of the maximum-efficiency point is useful to obtain a general

estimate of the efficiency curve for the prototype pump.

Cavitation and Net Positive Suction Head

Cavitation can occur in any machine handling liquid whenever the local static pressure falls below the

vapor pressure of the liquid. When this occurs, the liquid can locally flash to vapor, forming a vapor

cavity and significantly changing the flow pattern from the noncavitating condition. The vapor cavity

changes the effective shape of the flow passage, thus altering the local pressure field. Since the size and

shape of the vapor cavity are influenced by the local pressure field, the flow may become unsteady. The

unsteadiness may cause the entire flow to oscillate and the machine to vibrate.

As cavitation commences, it reduces the performance of a pump or turbine rapidly. Thus cavitation

must be avoided to maintain stable and efficient operation. In addition, local surface pressures may

become high when the vapor cavity implodes or collapses, causing erosion damage or surface pitting.

The damage may be severe enough to destroy a machine made from a brittle, low-strength material.

Obviously cavitation also must be avoided to assure long machine life.

In a pump, cavitation tends to begin at the section where the flow is accelerated into the impeller.

Cavitation in a turbine begins where pressure is lowest. The tendency to cavitate increases as local flow

speeds increase; this occurs whenever flow rate or machine operating speed is increased.

Cavitation can be avoided if the pressure everywhere in the machine is kept above the vapor pres-

sure of the operating liquid. At constant speed, this requires that a pressure somewhat greater than the

vapor pressure of the liquid be maintained at a pump inlet (the suction). Because of pressure losses in the

inlet piping, the suction pressure may be subatmospheric. Therefore it is important to carefully limit

the pressure drop in the inlet piping system.

Net positive suction head (NPSH) is defined as the difference between the absolute stagnation

pressure in the flow at the pump suction and the liquid vapor pressure, expressed as head of flowing

liquid [11]. Hence the NPSH is a measure of the difference between the maximum possible pressure

in the given flow and the pressure at which the liquid will start flashing over to a vapor; the larger

the NPSH, the less likely cavitation is to occur. The net positive suction head required (NPSHR) by

a specific pump to suppress cavitation varies with the liquid pumped, and with the liquid temperature

and pump condition. Typical pump characteristic curves for three impellers tested in the same housing

were shown in Fig. 10.14. Experimentally determined NPSHR curves for the largest and smallest impel-

ler diameters are plotted near the bottom of the figure.

The net positive suction head available (NPSHA) at the pump inlet must be greater than the NPSHR

to suppress cavitation. Pressure drop in the inlet piping and pump entrance increases as volume flow rate

increases. Thus for any system, the NPSHA decreases as flow rate is raised. The NPSHR of the pump

increases as the flow rate is raised. Therefore, as the system flow rate is increased, the curves for NPSHA
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and NPSHR versus flow rate ultimately cross. Hence, for any inlet system, there is a flow rate that cannot

be exceeded if flow through the pump is to remain free from cavitation. Example 10.7 shows the relation-

ships between the NPSH, the NPSHA, and the NPSHR.

Example 10.7 CALCULATION OF NET POSITIVE SUCTION HEAD (NPSH)

A Peerless Type 4AE11 centrifugal pump (Fig. C.3, Appendix C) is tested at 1750 rpm using a flow system with the layout of

Example 10.4. The water level in the inlet reservoir is 3.5 ft above the pump centerline; the inlet line consists of 6 ft of 5 in.

diameter straight cast-iron pipe, a standard elbow, and a fully open gate valve. Calculate the net positive suction head available

(NPSHA) at the pump inlet at a volume flow rate of 1000 gpm of water at 80 F. Compare with the net positive suction head

required (NPSHR) by the pump at this flow rate. Plot NPSHA and NPSHR for water at 80 F and 180 F versus volume flow rate.

Given: A Peerless Type 4AE11 centrifugal pump (Fig. C.3, Appendix C) is

tested at 1750 rpm using a flow system with the layout of Example 10.4. The

water level in the inlet reservoir is 3.5 ft above the pump centerline; the inlet

line has 6 ft of 5 in. diameter straight cast-iron pipe, a standard elbow, and a

fully open gate valve.

Find: (a) NPSHA at Q=1000 gpm of water at 80 F.

(b) Comparison with NPSHR for this pump at Q=1000 gpm.

(c) Plot of NPSHA and NPSHR for water at 80 F and 180 F versus

volume flow rate.

Solution: Net positive suction head (NPSH) is defined as the difference

between the absolute stagnation pressure in the flow at the pump suction

and the liquid vapor pressure, expressed as head of flowing liquid. Therefore

it is necessary to calculate the head at the pump suction.

Apply the energy equation for steady, incompressible pipe flow to compute the pressure at the pump inlet and thus theNPSHA.

Denote the reservoir level as and the pump suction as , as shown above.

Governing equation:

≈0

p1
1

2
ρV

2

1 ρgz1 ps
1

2
ρV

2

s ρgs ρhℓT

Assumption: V 1 is negligible. Thus

ps = p1 + ρg z1−zs −
1

2
ρV

2

s −ρhℓT
1

The total head loss is

hℓT
= K + f

Le

D
+ f

L

D

1

2
ρV

2

s 2

Substituting Eq. 2 into Eq. 1 and dividing by ρg,

Hs =H1 + z1−zs− K + f
Le

D
+ f

L

D
+1

V
2

s

2g
3

s

1

D = 5 in.

zs = 1 ft

zd = 3 ft

pd

ps
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Evaluating the friction factor and head loss,

f = f Re,e D ; Re=
ρVD

μ
=
VD

ν
; V =

Q

A
; A=

πD2

4

For 5 in. (nominal) pipe, D=5 047 in.

D=5 047 in ×
ft

12 in
= 0 421 ft, A=

πD2

4
= 0 139 ft2

V =1000
gal

min
×

ft3

7 48 gal
×

1

0 139 ft2
×
min

60 s
= 16 0 ft s

From Table A.7, for water at T =80 F, ν=0 927× 10−5 ft2 s.

The Reynolds number is

Re=
VD

ν
=16 0

ft

s
× 0 421 ft ×

s

0 927× 10−5ft2
=7 27× 105

From Table 8.1, e=0 00085 ft, so e D=0 00202. From Eq. 8.37, f =0 0237. The minor loss coefficients are

Entrance K =0 5

Standard elbow
Le

D
=30

Open gate value
Le

D
=8

Substituting,

K + f
Le

D
+ f

L

D
+1

=0 5+0 0237 30+8 + 0 0237
6

0 421
+ 1= 2 74

The heads are

H1 =
patm

ρg
=14 7

lbf

in 2
×144

in 2

ft2
×

ft3

1 93 slug
×

s2

32 2 ft
×
slug ft

lbf s2

=34 1 ft abs

V s

2g
=
1

2
× 16 0

2 ft
2

s2
×

s2

32 2 ft
= 3 98 ft

Thus,

Hs =34 1 ft + 3 5 ft− 2 74 3 98 ft = 26 7 ft abs

To obtain NPHSA, add velocity head and subtract vapor head. Thus

NPHSA=Hs +
V

2

s

2g
−Hυ

The vapor pressure for water at 80 F is pυ =0 507 psia. The corresponding

head is Hυ =1 17 ft of water. Thus,

NPSHA=26 7+ 3 98−1 17= 29 5 ft
NPSHA

This problem illustrates the procedures used
for checking whether a given pump is in
danger of experiencing cavitation:
• Equation 3 and the plots show that the
NPSHA decreases as flow rate Q or V s

increases; on the other hand, the NPSHR
increases with Q, so if the flow rate is high
enough, a pump will likely experience
cavitation (when NPSHA<NPSHR).

• The NPSHR for any pump increases with
flow rate Q because local fluid velocities
within the pump increase, causing locally
reduced pressures and tending to promote
cavitation.

• For this pump, at 80 F, the pump appears
to have NPSHA>NPSHR at all flow rates, so
it would never experience cavitation; at
180 F, cavitation would occur around
1100 gpm, but from Fig. C.3, the pump best
efficiency is around 900 gpm, so it would
probably not be run at 1100 gpm—the
pump would probably not cavitate even
with the hotter water.
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Pump Selection: Applications to Fluid Systems

We define a fluid system as the combination of a fluid machine and a network of pipes or channels that

convey fluid. The engineering application of fluid machines in an actual system requires matching the

machine and system characteristics, while satisfying constraints of energy efficiency, capital economy,

and durability.

As we saw in Example 10.4, a typical pump produces a smaller head at higher pressure as the flow

rate is increased. In contrast, the head required to maintain flow in a pipe system increases with the flow

rate due to increased losses. Therefore, as shown graphically in Fig. 10.17, a pump system will operate at

the flow rate at which the pump head rise and required system head match. This is termed the operating

point. Figure 10.17 also shows a pump efficiency curve, indicating that, for optimum pump selection, a

pump should be chosen that has maximum efficiency near the operating point flow rate.

The required head for a system with no static lift starts at zero flow and head and increases with

flow, as shown in Fig. 10.18a. For this system the total head required is the sum of major and minor

losses,

hlt = hl + hm = f
L

D

V
2

2
+ K

V
2

2

For turbulent flow the friction factors are nearly constant with flow and the minor loss coefficients K are

also constant. Hence hlT V
2

Q2 so that the system curve is approximately parabolic. This means the

system curve with pure friction becomes steeper as flow rate increases. Pressure change due to elevation

difference is independent of flow rate and this component to the head-flow curve is a horizontal straight

line. The system head-flow curve is plotted in Fig. 10.18b.

The pump curve (Fig. C.3, Appendix C) shows that at 1000 gpm the pump requires

NPSHR=12 0 ft
NPSHR

Results of similar computations for water at 80 F are plotted in the figure on the left below. (NPSHR values are obtained from the

pump curves in Fig. C.3, Appendix C.)

Results of computation for water at 180 F are plotted in the figure on the right above. The vapor pressure for water at 180 F is

pυ =7 51 psia. The corresponding head is Hυ =17 3 ft of water. This high vapor pressure reduces the NPSHA, as shown in

the plot.
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Whether the resulting system curve is steep or flat depends on the relative importance of friction

and gravity. Friction drop may be relatively unimportant in the water supply to a high-rise building

and gravity lift may be negligible in an air-handling system for a one-story building.

In Section 8.7 we obtained a form of the energy equation for a control volume consisting of a pump-

pipe system,

p1

ρ
+α1

V
2

1

2
+ gz1 −

p2

ρ
+ α2

V
2

2

2
+ gz2 = hlT −Δhpump 8 49

Replacing Δhpump with ha, representing the head added by any machine that does work on the fluid, and

rearranging Eq. 8.4, we obtain a more general expression

p1

ρ
+ α1

V
2

1

2
+ gz1 + ha =

p2

ρ
+ α2

V
2

2

2
+ gz2 + hlT 10 28a

Dividing by g gives

p1

ρg
+ α1

V
2

1

2g
+ z1 +Ha =

p2

ρg
+ α2

V
2

2

2g
+ z2 +

hlT
g

10 28b

whereHa is the energy per unit weight added by the machine. The procedure used to determine the match

point for a pumping system is illustrated in Example 10.8.

Pump efficiency curve

Operating point

Volume flow rate

System curve

Pump head-capacity curve
H

e
a
d

Fig. 10.17 Superimposed system head-flow and pump
head-capacity curves.
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Fig. 10.18 Schematic diagrams illustrating basic types of system head-flow curves (based on Reference [6]).
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Example 10.8 FINDING THE OPERATING POINT FOR A PUMPING SYSTEM

The pump of Example 10.6, operating at 1750 rpm, is used to pump water through the pipe system of Fig. 10.18a. Develop an

algebraic expression for the general shape of the system resistance curve. Calculate and plot the system resistance curve. Solve

graphically and analytically for the system operating point.

Given: Pump of Example 10.6, operating at 1750 rpm, with H =H0−AQ2, where H0 =55 9 ft and A=3 44× 10−5ft gpm
2
.

System of Fig. 10.18a, where L1 =2 ft ofD1 =10 in. pipe and L2 =3000 ft ofD2 =8 in. pipe, conveying water between two large

reservoirs whose surfaces are at the same level.

Find: (a) A general algebraic expression for the system head curve.

(b) The system head curve by direct calculation.

(c) The system operating point using a graphical solution.

(d) An approximate analytical expression for the system head curve.

(e) The system operating point using the analytical expression of part (d).

Solution: Apply the energy equation to the flow system of Fig. 10.18a.

Governing equation:

p0

ρg
+ α0

V
2

0

2g
+ z0 +Ha =

p3

ρg
+ α3

V
2

3

2g
+ z3 +

hlT
g

10 24b

where z0 and z3 are the surface elevations of the supply and discharge reservoirs, respectively.

Assumptions:

1 p0 = p3 = patm.

2 V 0 =V 3 =0.

3 z0 = z3 given .

Simplifying, we obtain

Ha =
hlT
g

=
hlT01
g

+
hlT23
g

=HlT 1

where sections and are located just upstream and downstream from the pump, respectively.

The total head losses are the sum of the major and minor losses, so

hlT01 =Kent

V
2

1

2
+ f1

L1

D1

V
2

1

2
= Kent + f1

L1

D1

V
2

1

2

hlT23 = f2
L2

D2

V
2

2

2
+Kexit

V
2

2

2
= f2

L2

D2

+Kexit

V
2

2

2
From continuity,

V 1A1 =V 2A2, so V 1 =V 2

A2

A1

=V 2

D2

D1

2

Hence

HlT =
hlT
g

= Kent + f1
L1

D1

V
2

2

2g

D2

D1

4

+ f2
L2

D2

+Kexit

V
2

2

2g
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or, upon simplifying,

HlT = Kent + f1
L1

D1

D2

D1

4

+ f2
L2

D2

+Kexit

V
2

2

2g
HlT

This is the head loss equation for the system. At the operating point, as indicated in Eq. 1, the head loss is equal to the head

produced by the pump, given by

Ha =H0−AQ2 2

where H0 =55 9 ft and A=3 44× 10−5 ft gpm
2
.

The head loss in the system and head produced by the pump can be computed for a range of flow rates:

Q gpm V 1 ft s Re1 1000 f1 − V 2 ft s Re2 1000 f2 − HlT ft Ha ft

0 0 00 0 – 0 00 0 – 0 0 55 9

100 0 41 32 0 026 0 64 40 0 025 0 7 55 6

200 0 82 63 0 023 1 28 79 0 023 2 7 54 5

300 1 23 95 0 022 1 91 119 0 023 5 9 52 8

400 1 63 127 0 022 2 55 158 0 022 10 3 50 4

500 2 04 158 0 021 3 19 198 0 022 15 8 47 3

600 2 45 190 0 021 3 83 237 0 022 22 6 43 5

700 2 86 222 0 021 4 47 277 0 022 30 6 39 0

800 3 27 253 0 021 5 11 317 0 022 39 7 33 9

900 3 68 285 0 021 5 74 356 0 021 50 1 28 0

1000 4 09 317 0 021 6 38 396 0 021 61 7 21 5

1100 4 49 348 0 020 7 02 435 0 021 74 4

1200 4 90 380 0 020 7 66 475 0 021 88 4

1300 5 31 412 0 020 8 30 515 0 021 103

1400 5 72 443 0 020 8 94 554 0 021 120

1500 6 13 475 0 020 9 57 594 0 021 137

The pump curve and the system resistance curve are plotted below:

The graphical solution is shown on the plot. At the operating point, H≈36 ft and Q≈750 gpm.

We can obtain more accuracy from the graphical solution using the following approach: Because the Reynolds number cor-

responds to the fully turbulent regime, f ≈const , we can simplify the equation for the head loss and write it in the form

HlT ≈CQ2 3

whereC=8 π2D4
2g times the term in square brackets in the expression forHlT . We can obtain a value forC directly from Eq. 3 by

using values for HlT and Q from the table at a point close to the anticipated operating point. For example, from the Q=700 gpm

data point,

Pump

36 ft

System
750 gpm

1000800600

Volume flow rate, Q (gpm)

4002000
0

20

40

60

H
e
a
d
, 

H
 (

ft
 o

f 
w

a
te

r)
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There are a number of practical issues associated with matching the system and pump characteristic

curves. Pump wear reduces delivery and lowers efficiency. For systems with a flat curve, the pump char-

acteristic can intersect the curve at two conditions. This may cause unsteady operation and the pumpmay

“hunt” or oscillate periodically. When a hot liquid with entrained vapor is being pumped, the entrained

gas can drastically reduce performance. Fluid viscosity may reduce or increase the performance of a

centrifugal pump.

In some systems, such as chilled-water circulation in a building, there may be a wide range in

demand with a relatively constant system resistance. Operating constant-speed pumps in series or par-

allel to supply the system requirements may be the most efficient option. The units are staged with pumps

added as demand increases.

For pumps in series, the combined performance curve is derived by adding the head rises at each

flow rate, as shown in Fig. 10.19. The increase in flow rate gained by operating pumps in series depends

on the resistance of the system being supplied. In an actual system, it is not appropriate simply to connect

two pumps in series. At a low head requirement when only one pump is sufficient, the flow through

the second, unpowered pump would cause additional losses, raising the system resistance. A system

of bypasses, valves, and check valves is necessary in an actual installation [9, 12].

Pumps also may be combined in parallel. The resulting performance curve, shown in Fig. 10.20 is

obtained by adding the pump capacities at each head. The schematic in Fig. 10.20 shows that the parallel

combination may be used most effectively to increase system capacity when the system curve is rela-

tively flat. An actual system installation with parallel pumps also requires control to prevent backflow

through the pump that is not powered.

Many other piping arrangements and pump combinations are possible. Pumps of different sizes,

heads, and capacities may be combined in series, parallel, or series-parallel arrangements. In many appli-

cations the complexity is due to a requirement that the system handle a variety of flow rates. Throttling

valves are usually necessary because constant-speed motors drive most pumps, so simply using a

C=
HlT

Q2
=

30 6 ft

7002 gpm
2
=6 24× 10−5 ft gpm

2

Hence, the approximate analytical expression for the system head curve is

HlT =6 24× 10−5ft gpm
2
Q gpm

2 HlT

Using Eqs. 2 and 3 in Eq. 1, we obtain

H0−AQ2 =CQ2

Solving for Q, the volume flow rate at the operating point, gives

Q=
H0

A+C

1 2

For this case,

Q= 55 9 ft ×
gpm

2

3 44× 10−5 +6 24× 10−5 ft

1 2

=760 gpm
Q

The volume flow rate may be substituted into either expression for head to

calculate the head at the operating point as

H =CQ2 =6 24× 10−5 ft

gpm
2
× 760

2
gpm

2
=36 0 ft H

There is a negligible difference between the two operating points. Both

are within the accuracy of the data.

This problem illustrates the procedures used
to find the operating point of a pump and
flow system.
• Equation 3, for the head loss in the system,
must be replaced with an equation of the
form H=Zo +CQ2 when the head H required
by the system has a component Zo due to
gravity as well as a component due to head
losses.
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network of pumps without throttling valves allows the flow rate to be varied only in discrete steps. The

disadvantage of throttling valves is that they can be a major loss of energy so that a given flow rate will

require a larger power supply than would otherwise be the case.

Use of variable-speed operation allows infinitely variable control of system flow rate with high

energy efficiency and without extra plumbing complexity. A further advantage is that a variable-speed

drive system offers much simplified control of system flow rate. The cost savings for variable-speed

drive systems can offset the added costs.

The energy and cost savings depend on the specific duty cycle on which the machine operates.

Fig. 10.21 is a plot showing the percentage of the time an industrial pump operates at a given flow rate

[18]. The plot is typical on many systems and shows that although the system must be designed and

installed to deliver full rated capacity, this condition seldom occurs. Instead, more than half the time,

the system operates at 70 percent capacity or below.

Head curve

Efficiency curve

QA

HA

(a) Single-pump operation

QA

HA

HA

(b) Two pumps in series

Fig. 10.19 Operation of two centrifugal pumps in series.

One pump
Two pumps
in parallel

System curve

Volume flow rate

H
e
a
d

Fig. 10.20 Operation of two centrifugal pumps in parallel.

0 50 100

Percent Rated Flow

30

20

10

0

P
e
rc

e
n
t 

o
f 

to
ta

l 
o
p
e
ra

ti
n
g
 t

im
e

Fig. 10.21 Mean duty cycle for centrifugal pumps in the chemical and petroleum industries, based on Reference [13].
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Blowers and Fans

Fans are designed to handle air or vapor and range from that of the cooling fan in a notebook computer

moving a cubic meter of air per hour at a fewwatts of power to that of the ventilation fans for the Channel

Tunnel that move thousands of cubic meters of air per minute and require hundreds of kilowatts of

power. Fans are produced in several varieties such as radial-flow (centrifugal) and axial-flow devices.

As with pumps, the performance curves for fans depend on the fan type. Some typical curves for cen-

trifugal fans are presented in Appendix C.

A schematic of a centrifugal fan is shown in Fig. 10.22 along with commonly used terminology. The

pressure rise produced by fans is several orders of magnitude less than that for pumps and the volume

flow rate, since the fluid is a gas, is usually much higher. The machine efficiency may be based on either

the static-to-static pressure rise or the static-to-total pressure rise [14] and is frequently plotted on the

same characteristic graph as shown in Fig. 10.23. The difference between the total and static pressures

is the dynamic pressure, so the vertical distance between these two curves is proportional to the square of

the volume flow rate.

There are three general types of centrifugal fans as shown in Fig. 10.24a–c, with backward-curved,

radial-tipped, and forward curved blades. All the fans have blades that are curved at their inlet edges to

approximate shockless flow between the blade and the inlet flow direction. The forward-curved design

illustrated in the figure has very closely spaced blades; it is frequently called a squirrel-cage fan because

of its resemblance to the exercise wheels found in animal cages. As fans become larger in size and power

demand, efficiency becomes more important. The streamlined airfoil blades shown in Fig. 10.24d are

much less sensitive to inlet flow direction and improve efficiency markedly compared with the thin

blades shown in diagrams a through c.

Outlet

Blades

Hub

Impeller
Scroll

Inlet

Fig. 10.22 Schematic of a typical centrifugal fan.
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Fig. 10.23 Typical characteristic curves for fan with
backward-curved blades.
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As is true for pumps, the total pressure rise across a fan is approximately proportional to the absolute

velocity of the fluid at the exit from the wheel. The characteristic curves produced by the basic blade

shapes tend to differ from each other. The typical curve shapes are as shown in Fig. 10.25, where both

pressure rise and power requirements are sketched. Fans with backward-curved blade tips typically have

a power curve that reaches a maximum and then decreases as flow rate increases. The power curves for

fans with radial and forward-curved blades rise as flow rate increases. Fans with backward-curved blades

are best for installations with large power demand and continuous operation. The forward-curved blade

fan is preferred where low first cost and small size are important and where service is intermittent.

Forward curved blades require lower tip speed to produce a specified head and lower blade tip speed

means reduced noise. Thus forward-curved blades may be specified for heating and air conditioning

applications to minimize noise.

Characteristic curves for axial-flow (propeller) fans differ markedly from those for centrifugal

fans. The simple propeller fan is often used for ventilation and it may be free-standing or mounted

in an opening, as a window fan, with no inlet or outlet duct work. Modern designs, with airfoil blades,

mounted in ducts and often fitted with guide vanes, can deliver large volumes against high resistances

with high efficiency [23]. The primary deficiencies are that in certain ranges of flow rate the fan may

pulsate and because of the high rotational speeds they can be noisy.

Selection and installation of a fan requires compromise. To minimize energy consumption, it is

desirable to operate a fan at its highest efficiency point. To reduce the fan size for a given capacity,

it is desirable to operate at higher flow rate than that at maximum efficiency. This tradeoff must be made

considering such factors as available space, initial cost, and annual hours of operation. Further, the duct

system at both the inlet and the outlet of the fan affect performance.

Fans may be scaled up or down in size or speed using the basic laws developed for fluid machines

in Chapter 7. It is possible for two fans to operate with fluids of significantly different density, so

(a) Backward-curved (b) Radial-tipped

(d) Airfoil blades

(c) Forward-curved

Fig. 10.24 Typical types of blading used for centrifugal fan wheels.

Head
Head Head

Power
Power Power

Q

(a) Backward-curved blades

Q

(b) Radial-tipped blades

Q

(c) Forward-curved blades

Fig. 10.25 General features of performance curves for centrifugal fans with backward-, radial-, and forward-curved
blades.
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pressure is used instead of head as a dependent parameter. The dimensionless groups appropriate for fan

scaling are

Π1 =
Q

ωD3
, Π2 =

p

ρω2D2
, and Π3 =

�

ρω3D5
10 29

Once again, dynamic similarity is assured when the flow coefficients are matched. Thus when

Q =Q
ω

ω

D

D

3

10 30a

then

p = p
ρ

ρ

ω

ω

2
D

D

2

10 30b

and

� =�
ρ

ρ

ω

ω

3
D

D

5

10 30c

As a first approximation, the efficiency of the scaled fan is assumed to remain constant, so

η = η 10 30d

When head is replaced by pressure, and density is included, the expression defining the specific speed

of a fan becomes

NS =
ωQ1 2ρ3 4

p3 4
10 31

A fan scale-up with density variation is the subject of Example 10.9.

Example 10.9 SCALING OF FAN PERFORMANCE

Performance curves [14] are given below for a centrifugal fan withD=36 in and N =600 rpm, as measured on a test stand using

cool air ρ=0 075 lbm ft3 . Scale the data to predict the performance of a similar fan with D =42 in , N =1150 rpm,

and ρ =0 045 lbm ft3. Estimate the delivery and power of the larger fan when it operates at a system pressure equivalent to

7.4 in. of H2O. Check the specific speed of the fan at the new operating point.
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Given: Performance data as shown for centrifugal fan with D=36 in , N =600 rpm, and ρ=0 075 lbm ft3.

Find: (a) The predicted performance of a geometrically similar fan withD =42 in , at N =1150 rpm, with ρ =0 045 lbm ft3.

(b) An estimate of the delivery and input power requirement if the larger fan operates against a system resistance of

7.4 in. H2O.

(c) The specific speed of the larger fan at this operating point.

Solution: Develop the performance curves at the new operating condition by scaling the test data point-by-point. Using

Eqs. 10.30 and the data from the curves at Q=30 000 cfm, the new volume flow rate is

Q =Q
N

N

D

D

3

=30 000 cfm
1150

600

42

36

3

=91 300 cfm

The fan pressure rise is

p = p
ρ

ρ

N

N

2
D

D

2

=2 96 in H2O
0 045

0 075

1150

600

2
42

36

2

=8 88 in H2O

and the new power input is

� =�
ρ

ρ

N

N

3
D

D

5

=21 4 hp
0 045

0 075

1150

600

3
42

36

5

=195 hp

We assume the efficiency remains constant between the two scaled points, so

η = η=0 64

Similar calculations at other operating points give the results tabulated below:

Q (cfm) p (in. H2O) � (hp) η (%) Q (cfm) p (in. H2O) � (hp)

0 3.68 11.1 0 0 11.0 101

10,000 3.75 15.1 37 30,400 11.3 138

20,000 3.50 18.6 59 60,900 10.5 170

30,000 2.96 21.4 65 91,300 8.88 195

40,000 2.12 23.1 57 122,000 6.36 211

50,000 1.02 23.1 34 152,000 3.06 211

60,000 0 21.0 0 183,000 0 192

To allow interpolation among the calculated points, it is convenient to plot the results:
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Three methods are available to control fan delivery: motor speed control, inlet dampers, and outlet

throttling. The same benefits of reduced energy usage and noise using speed control that are found with

pumps are obtained with fans. Inlet and outlet dampers are effective in controlling flow but they decrease

efficiency and increase energy use.

Fans also may be combined in series, parallel, or more complex arrangements to match varying

system resistance and flow needs. These combinations may be analyzed using the methods described

for pumps [25] and [26].

10.4 Positive Displacement Pumps
Pressure is developed in positive-displacement pumps through volume reductions caused by movement

of the boundary in which the fluid is confined. In contrast to turbomachines, positive displacement

pumps can develop high pressures at relatively low speeds because the pumping effect depends on vol-

ume change instead of dynamic action.

Positive-displacement pumps frequently are used in hydraulic systems at pressures ranging up to

40 MPa (6000 psi). A principal advantage of hydraulic power is the high power density (power per unit

weight or unit size) that can be achieved. For a given power output, a hydraulic system can be lighter

and smaller than a typical electric-drive system. Numerous types of positive-displacement pumps

have been developed. Examples include piston pumps, vane pumps, and gear pumps, and may be fixed-

or variable-displacement.

The performance characteristics of most positive-displacement pumps are similar. Figure 10.26 is a

schematic diagram of a typical gear pump. Oil enters the space between the gears at the bottom of the

pump cavity, is carried outward and upward by the teeth of the rotating gears and exits through the outlet

port at the top of the cavity. Pressure is generated as the oil is forced toward the pump outlet with leakage

and backflow prevented by the closely fitting gear teeth at the center of the pump.

Figure 10.27 is a photo showing the robust housing and bearings needed to withstand the large pres-

sure forces developed within the pump. It also shows pressure-loaded side plates designed to “float” and

allow thermal expansion while maintaining the smallest possible side clearance between gears and

housing.

From the head-capacity curve, the larger fan should deliver 110,000 cfm at 7.5 in. H2O system head, with an efficiency of

about 58 percent.

This operating point is only slightly to the right of peak efficiency for this fan, so it is a reasonable point at which to operate

the fan. The specific speed of the fan at this operating point (in U.S. customary units) is given by direct substitution into

Eq. 10.31:

Nscu =
ωQ1 2 ρ3 4

p3 4
=

1150 rpm 110 000 cfm
1 2

0 045 lbm ft3
3 4

7 5 in H2O
3 4

=8223
Nscu

In nondimensional (SI) units,

Ns =
120 rad s 3110 m3 s

1 2
0 721 kg m3 3 4

1 86× 103 N m2 3 4
=18 5

Ns SI

This problem illustrates the procedure for
scaling performance of fans operating on
gases with two different densities.
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Schematic performance curves of pressure versus delivery for a medium-duty gear pump are shown

in Fig. 10.28. The pump size is specified by its displacement per revolution and the working fluid is

characterized by its viscosity and temperature. Curves for three constant speeds are presented in the dia-

gram. At each speed, delivery decreases slightly as pressure is raised. The pump displaces the same vol-

ume, but as pressure is raised, both leakage and backflow increase; so delivery decreases slightly.

Overall efficiency, defined as power delivered to the fluid divided by power input, tends to rise and

reach a maximum at intermediate pressure as pump speed increases. Volumetric efficiency is defined as

actual volumetric delivery divided by pump displacement and decreases as pressure is raised or pump

speed is reduced.

There are system losses with a fixed-displacement pump compared with losses for variable-

displacement and variable-pressure pumps. A fixed-displacement pump will deliver fluid at a fixed

flow rate. If the load requires a lower flow the remaining flow must be bypassed back to the reservoir.

Variable-displacement pumps modulate delivery to meet the load at lower pressure, reducing loss and

increasing efficiency. The best pump choice depends on the operating duty cycle. The performance of

constant and variable displacement pumps are compared in Example 10.10.

DischargeInlet

Fig. 10.26 Schematic
of typical gear pump.

S
a
u
e
r-

D
a
n
fo

ss
 I
n
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Fig. 10.27 Cutaway photograph
of gear pump.

P
re

ss
u
re

Volume flow rate

Efficiency

Increasing pump speed

Fig. 10.28 Performance characteristics of typical
gear pump.
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Example 10.10 PERFORMANCE OF A POSITIVE-DISPLACEMENT PUMP

A hydraulic pumpwith performance characteristics represented in Fig. 10.28 delivers a flow rate of 48.5 gpm at zero pressure and

46.5 gpm at 1500 psig at a rotating speed of 2000 rpm. The displacement volume is 5 9 in3 revolution. It requires Q=20 gpm at

p=1500 psig at one operating condition. Determine the volumetric efficiency at zero pressure. Compute the required pump

power input, the power delivered to the load, and the power dissipated by throttling at this condition. Compare with the power

dissipated by using (i) a variable-displacement pump at 3000 psig and (ii) a pump with load sensing that operates at 100 psi above

the load requirement.

Given: Hydraulic pump, with performance characteristics of Fig. 10.28 operating at 2000 rpm. System requires Q=20 gpm

at p=1500 psig.

Find: (a) The volumetric efficiency at zero pressure.

(b) The required pump power input.

(c) The power delivered to the load.

(d) The power dissipated by throttling at this condition.

(e) The power dissipated using:

(i) a variable-displacement pump at 3000 psig,

(ii) a pump with load sensing that operates at 100 psi above the load pressure requirement.

Solution: The volumetric efficiency at zero pressure is determined using the flow rate of 48.5 gpm. The volume of fluid

pumped per revolution is

V--- =
Q

N
=48 5

gal

min
×

min

2000 rev
× 231

in 3

gal
= 5 60 in 3 rev

V---

The volumetric efficiency of the pump at maximum flow is

ηV =
V---calc

V---pump

=
5 60

5 9
= 0 949

At 1500 psig, the pump delivers 46.5 gpm. The power delivered to the fluid is

�fluid = ρQgHp =QΔpp

=46 5
gal

min
× 1500

lbf

in 2
×

ft3

7 48 gal
×
min

60 s
×144

in 2

ft2
×

hp s

550 ft lbf
�fluid =40 7 hp

The pump efficiency at this operating condition is given as η=0 84. Therefore the required input power is

�input =
�fluid

η
=
40 7 hp

0 84
= 48 hp

�input

The power delivered to the load is

�load =QloadΔpload

=20 0
gal

min
× 1500

lbf

in 2
×

ft3

7 48 gal
×
min

60 s
×144

in 2

ft2
×

hp s

550 ft lbf

�load =17 5 hp
�load

The power dissipated by throttling is

�dissipated =�fluid−�load =40 7−17 5= 23 2 hp
�dissipated
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10.5 Hydraulic Turbines
Hydraulic Turbine Theory

The theory for machines extracting work from a fluid is similar to that for pumps with the difference

being that torque, work, and power will be negative instead of positive. Example 10.11 illustrates

the application of the Euler turbomachine equation to a reaction turbine.

The dissipation with the variable-displacement pump is

�var-disp =Qload poper−pload

=20 0
gal

min
× 3000−1500

lbf

in 2
×

ft3

7 48 gal
×
min

60 s
×144

in 2

ft2
×

hp s

550 ft lbf

�var-disp =17 5 hp
�var-disp

The dissipation with the variable-displacement pump is therefore less than the 23.2 hp dissipated with the constant-displacement

pump and throttle. The saving is approximately 6 hp.

The final computation is for the load-sensing pump. If the pump pressure

is 100 psi above that required by the load, the excess energy dissipation is

�var-disp =Qload poper−pload

=20 0
gal

min
× 100

lbf

in 2
×

ft3

7 48 gal
×
min

60 s
× 144

in 2

ft2
×

hp s

550 ft lbf

�var-disp =1 17 hp
�load-sense

This problem contrasts the performance of
a system with a pump of constant displace-
ment to that of a system with variable-
displacement and load-sensing pumps.
The specific savings depend on the system
operating point and on the duty cycle of the
system.

Example 10.11 IDEAL ANALYSIS OF A REACTION TURBINE

In a vertical-shaft Francis turbine the available head at the inlet flange of

the turbine is 500 ft and the vertical distance between the runner and the

tailrace is 6.5 ft. The runner tip speed is 115 ft s, the velocity of the

water entering the runner is 130 ft s, and the velocity of the water exit-

ing the runner is constant and equal to 35 ft s. The flow velocity at the

exit of the draft tube is 11 5 ft s. The hydraulic energy losses estimated

from the turbine are equal to 20 ft at the volute, 3.5 ft at the draft tube,

and 33.0 ft at the runner. Determine the pressure head (with respect to

the tailrace) at the inlet and exit of the runner, the flow angle at the run-

ner inlet, and the efficiency of the turbine.

Given: Flow through a vertical shaft Francis turbine

Head at entrance: 500 ft

Distance between runner and tailrace: 6.5 ft

Runner tip speed: 115 ft s

Velocity at runner entrance: 130 ft s

Velocity at runner exit: 35 ft s

Flow velocity at draft tube exit: 11 5 ft s

Losses: 20 ft at volute, 3.5 ft at draft tube, 33 ft at runner

Find: (a) Pressure head at inlet and exit of runner.

(b) Flow angle at runner inlet.

(c) Turbine efficiency.

HE

B

Turbine

2

1

3

4
Draft tube
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Solution: Apply the energy and Euler turbomachine equations to the control volume.

Governing equations:

H =
Wm

mg
=
1

g
U2Vt2 −U1Vt1 10 2c

ηt =
Wm

Wh

=
ωT

ρQgHt

10 4c

p1

ρg
+ α1

V
2

1

2g
+ z1 +Ha =

p2

ρg
+ α2

V
2

2

2g
+ z2 +

hlT
g

10 28b

Assumptions:

1 Steady flow

2 Uniform flow at each station

3 Turbulent flow; α=1

4 Reservoir and tailrace are at atmospheric pressure

5 Reservoir is at stagnation condition; V 1 =0

(a) If we apply the energy equation between the runner exit and the tailrace:

H3 =
p3−patm

ρg
=
V

2

4−V
2

3

2g
+ΔHDT + z4

H3 =
1

2
× 11 5

ft

s

2

− 35
ft

s

2

×
1

32 2

s2

ft
+ 3 5 ft−6 5 ft = −19 97 ft

H3

(negative sign indicates suction)

Next we apply the energy equation between the runner entrance and the tailrace:

H2 =
p2−patm

ρg
=HE−ΔHR−

V
2

2

2g

H2 =500 ft−33 0 ft−
1

2
× 130

ft

s

2

×
1

32 2

s2

ft
= 205 ft

H2

(b) Applying the energy equation across the entire system provides the work extraction through the turbine:

p1

ρg
+ α1

V
2

1

2g
+ z1 +Ha =

p4

ρg
+ α4

V
2

4

2g
+ z4 +

hlT
g

If we simplify the expression based on assumptions and solve for the head extracted at the turbine:

Ha =
V

2

4

2g
−z1 + z4 + ΔH =

V
2

4

2g
− HE + z + ΔHV +ΔHR +ΔHDT

Since station 1 is higher than station 4, we will take the negative of Ha and call that HT , the head extracted at the turbine:

HT = −
V

2

4

2g
+ He + z − ΔHV +ΔHR +ΔHDT

= −
1

2
× 11 5

ft

s

2

×
1

32 2

s2

ft
+ 500 ft + 6 5 ft − 20 ft + 33 ft + 3 5 ft = 448 ft

Applying the Euler turbomachine equation to this system:

−HT =
U3Vt3 −U2Vt2

g

Solving for the tangential velocity at 2:

Vt2 =
gHT

U2

=32 2
ft

s2
×448 ft ×

1

115

s

ft
= 125 4

ft

s
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Performance Characteristics for Hydraulic Turbines

The impulse turbine is a relatively simple turbomachine and used to illustrate typical test results. Most

impulse turbines used today are improved versions of the Pelton wheel developed in the 1880s by Amer-

ican mining engineer Lester Pelton. An impulse turbine is supplied with water under high head through a

long conduit called a penstock. The water is accelerated through a nozzle and discharges as a high-speed

free jet at atmospheric pressure. The jet strikes deflecting buckets attached to the rim of a rotating wheel,

reducing the jet kinetic energy. Turbine output is controlled by changing the flow rate of water striking

the buckets. Water discharged from the wheel at relatively low speed falls into the tailrace.

Figure 10.29 illustrates an impulse-turbine installation. The gross head available is the difference

between the levels in the supply reservoir and the tailrace. The effective or net head, H, used to calculate

efficiency, is the total head at the entrance to the nozzle measured at the nozzle centerline [7]. Not

all of the net head is converted into work at the turbine as some is lost to turbine inefficiency, some

in the nozzle itself, and some as residual kinetic energy in the exit flow. The penstock usually is sized

so that the net head is 85–95 percent of the gross head. Figure 10.30 shows typical results from tests

performed at constant head.

Setting up the velocity triangle:

β2 = tan−1Vt2 −U2

Vn2

= tan−1125 4−115

35
= 16 58

β2

α2 = tan−1 Vt2

Vn2

= tan−1125 4

10 5
= 85 2

α2

(c) To calculate the efficiency:

ηt =
Wm

Wh

=
gHT

gHE

=
448

500
= 89 6

η

This problem demonstrates the analysis of
a hydraulic turbine with head losses and
quantifies those effects in terms of a turbine
efficiency. In addition, since the head at the
turbine exit is below atmospheric, care must
be taken to ensure that cavitation does
not occur.

Reservoir level
Energy grade line

Hydraulic grade line

Net
head
on

wheel

VB/2g2

hL

Gross
head

at plant

z
B

Fig. 10.29 Schematic of impulse-turbine installation, showing definitions of gross and net heads.
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Fig. 10.30 Ideal and actual variable-speed performance for an impulse turbine [4].
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The peak efficiency of the impulse turbine corresponds to the peak power, as shown in

Example 10.12. For the ideal turbine this occurs when the wheel speed is half the jet speed. At this wheel

speed the fluid exits the turbine at the lowest absolute velocity possible, minimizing the loss of kinetic

energy at the exit. For large units, overall efficiency may be as high as 88 percent [15].

Example 10.12 OPTIMUM SPEED FOR IMPULSE TURBINE

Consider the Pelton wheel and single-jet arrangement shown, in which the jet stream strikes the bucket tangentially and is turned

through angle θ. Obtain an expression for the torque exerted by the water stream on the wheel and the corresponding power

output. Show that the power is a maximum when the bucket speed, U =Rω, is half the jet speed, V .

Given: Pelton wheel and single jet shown.

Find: (a) Expression for torque exerted on the wheel.

(b) Expression for power output.

(c) Ratio of wheel speed U to jet speed V for maximum power.

Solution: As an illustration of its use, we start with the angular-momentum equation,

Eq. 4.52, for a rotating CV as shown, rather than the inertial CV form, Eq. 4.46, that we used

in deriving the Euler turbomachine equation in Section 10.2.

Governing equation:

0 1 0 2 ≈0 3

r × FS
CV

r × gρdV T shaft−

CV

r × 2ω×V xyz ω× ω× r ω × r ρdV

0 4

∂

∂t CV

r ×V xyz ρdV
CS

r ×V xyz ρV xyz dA

4 52

Assumptions:

1 Neglect torque due to surface forces.

2 Neglect torque due to body forces.

3 Neglect mass of water on wheel.

4 Steady flow with respect to wheel.

5 All water that issues from the nozzle acts upon the buckets.

6 Bucket height is small compared with R, hence r1≈r2≈R.

7 Uniform flow at each section.

8 No change in jet speed relative to bucket.

Then, since all water from the jet crosses the buckets,

T shaft = r1 ×V1 −ρVA + r2 ×V2 + ρVA

r1 =Rer r2 =Rer

V1 = V−U eθ V2 = V−U cos θ eθ + V−U sin θ er

Tshaft k=R V−U k −ρVA +R V−U cos θ k ρVA

so that finally

Tshaftk= −R 1−cos θ ρVA V−U k

VJet

R = mean radius

ω

θ

2

1

V – U

V – U
U = R

V

A

ρ

θ

ω

ω

Rr

CV rotates
with wheel
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Hydraulic turbines usually are run at a constant speed, and output is varied by changing the opening

area of the jet nozzle. Nozzle loss increases slightly and mechanical losses become a larger fraction of

output as the valve is closed, so efficiency drops sharply at low load, as shown in Fig. 10.31. For this

Pelton wheel, efficiency remains above 85 percent from 40 to 113 percent of full load.

For applications in which the head is relatively low, reaction turbines provide better efficiency than

impulse turbines. In a reaction turbine, the fluid enters at the periphery and discharges at the inner radial

section. Reaction turbines are high-flow, low-head machines. A typical reaction turbine installation is

shown schematically in Fig. 10.32.

This is the external torque of the shaft on the control volume, i.e., on the wheel. The torque exerted by the water on the wheel is

equal and opposite,

Tout = −T shaft =R 1−cos θ ρVA V−U k

Tout = ρQR V−U × 1−cos θ k
Tout

The corresponding power output is

Wout =ω Tout =Rω 1−cosθ ρVA V−U

Wout = ρQU V−U × 1−cosθ
Wout

To find the condition for maximum power, differentiate the expression for power with respect to wheel speedU and set the result

equal to zero. Thus

dW

dU
= ρQ V−U 1−cosθ + ρQU −1 1−cosθ =0

∴ V−U −U=V−2U=0

Thus for maximum power, U V =
1

2
U =V 2

U V

Note: Turning the flow through θ=180 would give maximum power with

U =V 2. Under these conditions, theoretically the absolute velocity

of the fluid at the exit (computed in the direction of U) would be

U− V−U =V 2− V−V 2 = 0, so that the fluid would exit with

zero kinetic energy, maximizing the power output. In practice, it is

only possible to deflect the jet stream through angles up to 165 . With

θ=165 ,1−cos θ≈1 97, or about 1.5 percent below the value for

maximum power.

This problem illustrates the use of the
angular-momentum equation for a rotating
control volume, Eq. 4.52 (on the web), to
analyze flow through an ideal impulse
turbine.
• The peak power occurs when the wheel
speed is half the jet speed, which is a useful
design criterion when selecting a turbine
for a given available head.

• This problem also could be analyzed
starting with an inertial control volume,
i.e., using the Euler turbomachine
equation.
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Pelton impulse turbine

Fig. 10.31 Relation between efficiency and output for a typical Pelton water turbine, based on Reference [15].
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Reaction turbines use a diffuser or draft tube to regain a fraction of the kinetic energy that remains in

water leaving the rotor. As shown in Fig. 10.32 the gross head available is the difference between the

supply reservoir head and the tailrace head. The effective head or net head, H, used to calculate effi-

ciency, is the difference between the elevation of the energy grade line just upstream of the turbine

and that of the draft tube discharge (section C).

A number of other turbine types are sometimes used depending on the application. The Francis

turbine (Fig. 10.5b) is usually chosen when 15 m≤H ≤ 300 m, and the Kaplan turbine (Fig. 10.5c)

is usually chosen for heads of 15 m or less.

Sizing a turbine for a given application requires a determination of the water flow and head avail-

able. The penstock length and diameter are important and need to be designed to accommodate the flow

with minimum losses. Example 10.13 illustrates the design process.

Hydraulic grade line

Energy grade line
hL

H
Gen.

pB___
  gρ

zB

Gross head

VC___
2g

2

VB___
2g

2

B

Turbine

Draft tube
C

Fig. 10.32 Schematic of typical reaction turbine
installation, showing definitions of head terminology.

Example 10.13 PERFORMANCE AND OPTIMIZATION OF AN IMPULSE TURBINE

Consider the hypothetical impulse turbine installation shown. Analyze flow in the penstock to develop an expression for the

optimum turbine output power as a function of jet diameter, Dj. Obtain an expression for the ratio of jet diameter, Dj, to penstock

diameter, D, at which output power is maximized. Under conditions of maximum power output, show that the head loss in the

penstock is one-third of the available head. Develop a parametric equation for the minimum penstock diameter needed to produce

a specified power output, using gross head and penstock length as parameters.

Given: Impulse turbine installation shown.

Find: (a) Expression for optimum turbine output power as a function of jet diameter.

(b) Expression for the ratio of jet diameter, Dj, to penstock diameter, D, at which output power is maximized.

Reservoir surface

Penstock

H

D

L
Turbine wheel

Vj
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(c) Ratio of head loss in penstock to available head for condition of maximum power.

(d) Parametric equation for the minimum penstock diameter needed to produce a specified output power, using gross

head and penstock length as parameters.

Solution: According to the results of Example 10.12, the output power of an idealized impulse turbine is given by

�out = ρQU V−U 1−cosθ . For optimum power output, U =V 2=Vj 2, and

�out = ρQ
V

2
V−

V

2
1−cos θ = ρAjVj

Vj

2

Vj

2
1−cos θ

�out = ρAj

V3
j

1
1−cosθ

Thus output power is proportional to AjV
3
j .

Apply the energy equation for steady incompressible pipe flow through the penstock to analyze V2
j at the nozzle outlet.

Designate the free surface of the reservoir as section there V 1≈0.

Governing equation:

p1

ρ
α
V

2

1

2
gz1

≈0

−
pj

ρ
αj
V

2

j

2
gzj hlT Kent f

L

D

V
2

p

2
Knozzle

V
2

j

2

Assumptions:

1 Steady flow.

2 Incompressible flow.

3 Fully developed flow.

4 Atmospheric pressure at jet exit.

5 αj =1, so V j =Vj.

6 Uniform flow in penstock, so V p =V .

7 Kent ≪ f
L

D
.

8 Knozle =1.

Then

g z1−zj = gH = f
L

D

V2

2
+
V2
j

2
or V2

j =2gH− f
L

D
V2 1

Hence the available head is partly consumed in friction in the supply penstock, and the rest is available as kinetic energy at the

jet exit—in other words, the jet kinetic energy is reduced by the loss in the penstock. However, this loss itself is a function of

jet speed, as we see from continuity:

VA=Vj Aj, so V =Vj

Aj

A
=Vj

Dj

D

2

and V2
j =2gH− f

L

D
V2
j

Dj

D

4

Solving for Vj, we obtain

Vj =
2gH

1+ f
L

D

Dj

D

4

1 2

2

The turbine power can be written as
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�= ρAj

V3
j

4
1−cos θ = ρ

π

16
D2

j

2gH

1+ f
Lj

D

Dj

D

4

3 2

1−cosθ

�=C1D
2
j 1+ f

L

D

Dj

D

4 −3 2

�

where C1 = ρπ 2gH
3 2

1−cosθ 16= constant.

To find the condition for maximum power output, at fixed penstock diameter, D, differentiate with respect to Dj and set equal

to zero,

d�

dDj

=2C1 Dj 1+ f
L

D

Dj

D

4 −3 2

−
3

2
C1D

2
j 1+ f

L

D

Dj

D

4 −5 2

4 f
L

D

D3
j

D4
=0

Thus,

1+ f
L

D

Dj

D

4

=3f
L

D

Dj

D

4

Solving for Dj D, we obtain

Dj

D
=

1

2f
L

D

1 4

Dj

D

At this optimum value of Dj D, the jet speed is given by Eq. 2 as

Vj =
2gH

1+ f
L

D

Dj

D

4

1 2

=
4

3
gH

The head loss at maximum power is then obtained from Eq. 1 after rearranging

hl = f
L

D

V2

2
= gH−

V2
j

2
= gH−

2

3
gH =

1

3
gH

and

hl

gH
=
1

3

hl

gH

Under the conditions of maximum power

�max = ρV3
j

Aj

4
1−cosθ = ρ

4

3
gH

3 2
π

16

D5

2fL

1 2

1−cosθ

Finally, to solve for minimum penstock diameter for fixed output power, the

equation may be written in the form

D
L

H

1 5
�

H

2 5

D

This problem illustrates the optimization of
an idealized impulse turbine. The analysis
determines the minimum penstock diameter
needed to obtain a specified power output. In
practice, larger diameters than this are used,
reducing the frictional head loss below that
computed here.
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10.6 Propellers and Wind Turbines
Propellers

Propellers and wind turbines such as windmills and wind turbines may be considered axial-flow

machines without housings [4]. A propeller produces thrust by imparting linear momentum to a fluid.

Thrust production always leaves the streamwith some kinetic energy and angular momentum that are not

recoverable, so the process is never 100 percent efficient.

The one-dimensional flow model shown schematically in Fig. 10.33 is drawn in absolute

coordinates on the left and as seen by an observer moving with the propeller, at speed V , on the right.

The wake is modeled as a uniform steady flow as shown. Relative to the propeller, the upstream flow is at

speed V and ambient pressure. The axial speed at the propeller is V +ΔV 2, with a corresponding reduc-

tion in pressure. Downstream, the speed is V +ΔV and the pressure returns to ambient. The contraction

of the slipstream area to satisfy continuity and the pressure rise across the propeller disk are shown in

the figure.

To determine the power produced by a propeller, the x-component of linear momentum is applied to

the control volume shown in Fig. 10.40. The fluid is assumed to be incompressible with the flow steady,

frictionless, and in the horizontal direction. The Bernoulli equation applied to the control volume from

section 1 to 2 is

patm

ρ
+
V2
1

2
=
p2

ρ
+
V2
2

2

In terms of gage pressure, the pressure p2 is

p2 = ρ
V2
2

2
−
V2
1

2

The Bernoulli equation applied to the control volume from section 3 to 4 is

p3

ρ
+
V2
3

2
=
patm

ρ
+
V2
4

2

The pressure p3 is then

p3 = ρ
V2
4

2
−
V2
3

2

Using the x-component of the linear momentum equation, and with V2= V3, the thrust on the

propeller

FT = p3−p2 A=
1

2
ρ V2

4 −V2
1

Ambient
air (at rest)

Propeller
motion,
speed V

Propeller
wake

After change in
coordinates, and
idealizing wake

Δp

Pressure
distribution

V +
V + ΔV

V

ΔV____
2

D

Control
volume

Propeller

Slipstream
boundary

1

V

2 3
4

Fig. 10.33 One-dimensional flow model and control volume used to analyze an idealized propeller, based on Reference [4].
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The velocity of the fluid at the propeller is V. The continuity equation gives the mass flow through

the propeller as

m= ρAV

Applying the x-component of the momentum equation from section 1 to 4 yields

FT =V1 −m +V4 +m = ρAV V4−V1 = ρAVΔV 10 32

The power required to increase the kinetic energy of the wind is

�input =m
V +ΔV

2

2
−
V2

2
=m

2VΔV + ΔV
2

2
=mVΔV 1+

ΔV

2V
10 33

The useful power produced is the product of thrust and speed of advance, V , of the propeller. Using

Eq. 10.32, this may be written as

�useful =FTV =mVΔV 10 34

Combining Eqs. 10.34 and 10.35, and simplifying, gives the propulsive efficiency as

η=
�useful

�input

=
1

1+
ΔV

2V

10 35

Equations 10.32–10.35 are applicable to any device that creates thrust by increasing the speed of a

fluid stream. Thus they apply equally well to propeller-driven or jet-propelled aircraft, boats, or ships.

The lift and drag on a propeller blade can be evaluated. A schematic diagram of an element of a

rotating propeller blade is shown in Fig. 10.34. The blade is set at angle θ to the plane of the propeller

disk and has a thickness of dr. Lift and drag forces are exerted on the blade perpendicular and parallel to

the relative velocity vector Vr, respectively. The angle that Vr makes with the plane of the propeller disk

is the effective pitch angle,ϕ, and therefore the lift and drag forces are inclined at an angle to the propeller

rotation axis and the plane of the propeller disk, respectively. The relative speed of flow, Vr, passing over

the blade element depends on both the blade peripheral speed, rω, and the speed of advance, V .

Consequently, for a given blade setting, the angle of attack, α, depends on both V and rω.

For the free-body diagram of the airfoil element of width dr in Fig. 10.34, we find the magnitude of

the resultant force dFr parallel to the velocity vector V :

dFT = dL cos ϕ−dD sin ϕ= qrcdr CL cos ϕ−CD sin ϕ 10 36a

In this equation qr is the dynamic pressure based on the relative velocity Vr,

qr =
1

2
ρV2

r 10 38

c is the local chord length, and CL and CD are lift and drag coefficients, respectively, for the airfoil. In

general, due to twist and taper in the propeller blades, and the radial variation of the blade peripheral

speed, CL,CD,Vr,c,ϕ, and qr will all be functions of the radial coordinate r. The torque that must be

applied to the propeller is:

dT = r dL sin ϕ+ dD cos ϕ = qrrcdr CL sin ϕ+CD cos ϕ 10 36b

Plane of propeller disk

θ

rω

V

Vr

Angle of

attack, α

Lift

Drag

Chord line
of section

Fig. 10.34 Diagram of blade element and relative
flow velocity vector.
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These two expressions may be integrated to find the total propulsive thrust and torque, assuming N inde-

pendent blades mounted on the rotor:

FT =N
r=R

r=Rhub

dFT = qN
R

Rhub

CL cos ϕ−CD sin ϕ

sin2 ϕ
cdr 10 37a

T =N
r=R

r=Rhub

dT = qN
R

Rhub

CL sin ϕ−CD cos ϕ

sin2 ϕ
cdr 10 37b

In these equations, qr is replaced by q sin2ϕ based on the relationship between V and Vr. We will use the

equations above to analyze the startup characteristics of a propeller in Example 10.14.

Example 10.14 PROPELLER STARTUP THRUST AND TORQUE

Use blade element theory to estimate the start-up thrust and torque for a propeller consisting of N independent blades with con-

stant chord length, c, and at a constant angle, θ, with respect to the actuator disk plane.

Given:

Propeller with N independent blades

Chord length c is constant

Angle with respect to actuator disk θ is constant

Find: Expressions for startup thrust and torque

Solution: Apply the equations presented above to the propeller:

Governing equations:

dFT = dL cos ϕ−dD sin ϕ= qrcdr CL cos ϕ−CD sin ϕ 10 36a

dT = r dL sin ϕ+ dD cos ϕ = qrrcdr CL sin ϕ+CD cos ϕ 10 36b

FT = qN
R

Rhub

CL cos ϕ−CD sin ϕ

sin2ϕ
cdr 10 37a

T = qN
R

Rhub

CL sin ϕ+CD cos ϕ

sin2 ϕ
rcdr 10 37b

Assumptions:

Local wind velocity V is negligible.

Angular velocity ω is constant.

If at start-up we neglect the local wind velocity V , we find that the integrals in Eqs. 10.37 will be indeterminate since q=0 and

ϕ=0. Therefore, we will use the differential thrust and torque expressions given in Eqs. 10.36 and integrate them. At start-up,

the relative velocity Vr is simply equal to the local blade element velocity rω. Therefore, the relative dynamic pressure qr is

equal to:

qr =
1

2
ρr2ω2

When ϕ=0, the differential thrust and torque expressions become

dFT =
1

2
ρr2ω2cdr CL cos 0−CD sin 0 =

1

2
ρω2cCLr

2dr

dT =
1

2
ρr2ω2rcdr CL sin 0+CD cos 0 =

1

2
ρω2cCDr

3dr
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While these expressions may be relatively simple to derive, they are difficult to evaluate. Even if the

geometry of the propeller is adjusted to give constant geometric pitch, the flow field in which it operates

may not be uniform. Thus, the angle of attack across the blade elements may vary from the ideal, and it

can be calculated only with the aid of a comprehensive computer code that can predict local flow direc-

tions and speeds. As a result, Eqs. 10.37 are not normally used, and propeller performance characteristics

usually are measured experimentally. Figure 10.35 shows typical characteristics for a marine propeller

[4] and for an aircraft propeller [17]. The variables used to plot the characteristics are almost dimension-

less: by convention, rotational speed, n, is expressed in revolutions per second rather than asω, in radians

per second. The independent variable is the speed of advance coefficient, J,

J ≡
V

nD
10 39

Dependent variables are the thrust coefficient, CF , the torque coefficient, CT , the power coefficient,

CP, and the propeller efficiency, η, defined as

CF =
FT

ρn2D4
, CT =

T

ρn2D5
, CP =

�

ρn3D5
, and η=

FTV

�input
10 40

The performance curves for both propellers show similar trends. Both thrust and torque coefficients

are highest, and efficiency is zero, at zero speed of advance. This corresponds to the largest angle of

attack for each blade element α= αmax = θ . Efficiency is zero because no useful work is being done

by the stationary propeller. As advance speed increases, thrust and torque decrease smoothly. Efficiency

increases to a maximum at an optimum advance speed and then decreases to zero as thrust tends to zero.

In order to improve performance, some propellers are designed with variable pitch. The performance

of a variable-pitch propeller is shown in Fig. 10.36. This figure shows efficiency curves (solid curves) for a

propeller set to different pitch angles. As we saw in Fig. 10.35, the propeller exhibits a maximum η at a

certain value of J. However, the value of J needed for maximum η varies with θ. If we trace out all of the

maxima, the result is the dashed curve in Fig. 10.36. Therefore, if we allow for the variation of θ, we may

achieve improved efficiency over a wider range of J than with a fixed-pitch propeller.

Cavitation can be a problem in a liquid and it becomes more prevalent along the blades as the

cavitation number,

Ca=
p−pυ
1
2
ρV2

10 41

We can then integrate the thrust and torque over the entire actuator disk:

FT =N dFT =
1

2
ρω2cCL

R

Rhub

r2dr=
1

2
ρω2cCL ×

1

3
R3

−R3
hub

T =N dT =
1

2
ρω2cCD

R

Rhub

r3dr=
1

2
ρω2cCD ×

1

4
R4

−R4
hub

When we collect terms and simplify we get the following expressions:

FTstartup =
ρω2cCL

6
R3

−R3
hub

FTstartup

Tstartup =
ρω2cCD

8
R4

−R4
hub

Tstartup

This problem demonstrates the analysis of a
propeller using blade element theory. While
the expressions here seem relatively simple,
it is important to note that the lift and drag
coefficients, CL and CD, are functions of the
airfoil section being used, as well as the local
angle of attack, α, which for V =o is equal to
the blade inclination angle θ. In addition, it
should also be noted that when airfoil lift and
drag coefficients are presented, such as in
Figs. 9.17 or 9.19, they are typically given at
high Reynolds numbers, where the flow is
fully turbulent and the lift and drag are
insensitive to changes in speed. Care needs to
be taken to make sure that the lift and drag
coefficients used are appropriate for the
Reynolds number at startup.
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is reduced. Eq. 10.41 shows that Ca decreases when pressure is reduced by operating near the free sur-

face or by increasing V .

Compressibility affects aircraft propellers when tip speeds approach the critical Mach number, at

which the local Mach number approaches M =1 at some point on the blade. Under these conditions,

torque increases because of increased drag, thrust drops because of reduced section lift, and efficiency

drops drastically.

η

CT

T
o
rq

u
e
 c

o
e
ffi

c
ie

n
t,

 C
T

T
h
ru

st
 c

o
e
ffi

c
ie

n
t,

 C
F

  
a
n
d
 P

o
w

e
r 

c
o
e
ffi

c
ie

n
t,

 C
P

E
ffi

c
ie

n
c
y,

  
 

CF

CF

CP

T
h
ru

st
 c

o
e
ffi

c
ie

n
t,

 C
F
 a

n
d
 E

ffi
c
ie

n
c
y,

1.2
0

0
1.00.80.60.40.20

0

0.2

0.4

0.6

0.8

1.0

0.04

0.08

0.12

0.16

0.20

0.02

0.04

0.06

0.08

0.10

1.00.80.6

Speed of advance coefficient, J

(a) Marine propeller, data from Reference [4]
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Fig. 10.35 Typical characteristics of two propellers.
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Fig. 10.36 Propeller efficiency for a variable-pitch
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Wind Turbines

Wind turbines have been used for centuries to harness the power of natural winds. Dutch windmills

(Fig. 10.37a) turned slowly so that the power could be used to turn stone wheels for milling grain; hence

the name “windmill.” American multi-blade windmills (Fig. 10.37b) were installed on many American

farms from about 1850 and many are still in use today.

The emphasis on renewable resources has revived interest in windmill design and optimization.

In 2016, wind turbines generated 82 gigiwatts of electricity, representing 8 percent of the total elec-

tric energy consumption for that year [27]. Wind power accounts for one-third of all new generating

capacity.

Schematics of wind turbine configurations are shown in Fig. 10.38. In general, wind turbines are

classified in two ways. The first classification is the orientation of the turbine axis: horizontal-axis wind

turbines (HAWT) and vertical-axis wind turbines (VAWT). Most HAWT designs feature two- or three-

bladed propellers mounted on a tower along with its electric generator. The large modern HAWT,

shown in Fig. 10.39a, is capable of producing power in any wind above a light breeze and is the type

most commonly used in the electrical generation industry. The wind turbine shown in Fig. 10.39b is a

VAWT. This device uses a modern symmetric airfoil section for the rotor. Earlier designs of the VAWT,

such as theDarrieus troposkien shape, suffered from high bending stresses and pulsatory torques. More

Savonius Split savonius Cup anemometer

Darrieus

Propeller

Horizontal axis

lift type

(wind into page)

Vertical axis

lift type

(wind left-right)

Vertical axis

drag type

(wind left-right)

Giromill Helical

U.S. farm multibladed

Fig. 10.38 Wind turbine configurations differentiated by axis orientation (horizontal versus vertical) and by nature of force
exerted on the active element (lift versus drag).

(a) Traditional Dutch Mill (b) American farm windmill
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Fig. 10.37 Examples of well-known windmills [18].

400 Chapter 10 Fluid Machinery

www.konkur.in

Telegram: @uni_k



recent designs, such as the one shown in this figure, feature helical airfoils, which distribute the torques

more evenly about the central axis. VAWTs feature a ground-mounted electric generator.

The second classification is how the wind energy is harnessed. The first group of turbines collects

wind energy through drag forces; these wind turbines are typically of the vertical axis configuration only.

The second group collects energy through lift forces. Lift-based wind turbines employ horizontal- or

vertical-axis configurations. It is important to note that most of these designs are self-starting. The

lift-type VAWT is not capable of starting from rest; it can produce usable power only above a certain

minimum angular speed. It is typically combined with a self-starting turbine, such as a Savonius rotor, to

provide starting torque [16, 22].

A horizontal-axis wind turbine may be analyzed as a propeller operated in reverse. The Rankine

model of one-dimensional flow incorporating an idealized actuator disk is shown in Fig. 10.41. The

simplified notation of the figure is frequently used for analysis of wind turbines.

The wind speed far upstream is V . The stream is decelerated to V 1−a at the turbine disk and to

V 1−2a in the wake of the turbine (a is called the interference factor). Thus the stream tube of air

captured by the wind turbine is small upstream and its diameter increases as it moves downstream.

Straightforward application of linear momentum to a CV, as shown in Example 10.15, predicts the

axial thrust on a turbine of radius R to be

FT =2πR2ρV2a 1−a 10 42

Application of the energy equation assuming no losses gives the power taken from the fluid stream as

�=2πR2ρV3a 1−a
2

10 43

The efficiency of a wind turbine is most conveniently defined with reference to the kinetic energy

flux contained within a stream tube the size of the actuator disk. This kinetic energy flux is

KEF =
1

2
ρV3πR2 10 44

Combining Eqs. 10.43 and 10.44 gives the efficiency (or alternatively, the power coefficient [23]) as

η=
�

KEF
=4a 1−a

2
10 45

Betz [27] was the first to derive this result and to show that the theoretical efficiency is maximized when

a=1 3. The maximum theoretical efficiency is η=0 593.

(a) Horizontal-axis wind turbine (b) Vertical-axis wind turbine
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Fig. 10.39 Examples of modern wind turbine designs.
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If the wind turbine is lightly loaded (a is small), it will affect a large mass of air per unit time, but the

energy extracted per unit mass will be small and the efficiency low. Most of the kinetic energy in the

initial air streamwill be left in the wake and wasted. If the wind turbine is heavily loaded a≈1 2 , it will

affect a much smaller mass of air per unit time. The energy removed per unit mass will be large, but the

power produced will be small compared with the kinetic energy flux through the undisturbed area of the

actuator disk. Thus a peak efficiency occurs at intermediate disk loadings.

Example 10.15 PERFORMANCE OF AN IDEALIZED WIND TURBINE

Develop general expressions for thrust, power output, and efficiency of an idealized windmill, as shown in Fig. 10.41. Calculate

the thrust, ideal efficiency, and actual efficiency for the Dutch windmill tested by Calvert (D=26m, N =20 rpm, V =36 km hr,

and �output =41 kW).

Given: Idealized windmill, as shown in Fig. 10.40, and Dutch windmill tested by Calvert:

D=26 m N =20 rpm V =36 km hr �output =41 kW

Find: (a) General expressions for the ideal thrust, power output, and efficiency.

(b) The thrust, power output, and ideal and actual efficiencies for the Dutch windmill tested by Calvert.

Solution: Apply the continuity, momentum (x-component), and energy equations, using the CV and coordinates shown.

Governing equations:

∂

∂t CV

ρdV
CS

ρV dA 0

0 3

FSx FBx

∂

∂t CS

uρdV
CS

uρV dA

0 2 0 3

Q −W s

∂

∂t CV

eρdV
CS

e
p

ρ
ρV dA

0 7 0 3

Assumptions:

1 Atmospheric pressure acts on CV; FSx =Rx.

2 FBx
=0.

3 Steady flow.

4 Uniform flow at each section.

5 Incompressible flow of standard air.

6 V1−V2 =V2−V3 =
1
2
V1−V3 , as shown by Rankine.

7 Q=0.

8 No change in internal energy for frictionless incompressible flow.

In terms of the interference factor, a,V1 =V ,V2 = 1−a V , and V3 = 1−2a V .

Streamline

Rx

V2 V3V1 D

D3

y

x

Windmill disk

CV
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From continuity, for uniform flow at each cross section, V1A1 =V2A2 =V3A3.

From momentum,

Rx = u1 −ρV1A1 + u3 + ρV3A3 = V3−V1 ρV2A2 u1 =V1,u3 =V3

Rx is the external force acting on the control volume. The thrust force exerted by the CV on the surroundings is

Kx = −Rx = V1−V3 ρV2A2

In terms of the interference factor, the equation for thrust may be written in the general form,

Kx = ρV2πR22a 1−a
Kx

(Set dKx da equal to zero to show that maximum thrust occurs when a= 1
2
.)

The energy equation becomes

−W s =
V2
1

2
−ρV1A1 +

V2
3

2
+ ρV3A3 = ρV2πR

2 1

2
V2
3 −V2

1

The ideal output power, �, is equal to W s. In terms of the interference factor,

�=W s = ρV 1−a πR2 V2

2
−
V2

2
1−2a

2
= ρV3 1−a

πR2

2
1− 1−2a

2

After simplifying algebraically,

�ideal =2ρV3πR2a 1−a
2 �ideal

The kinetic energy flux through a stream tube of undisturbed flow, equal in area to the actuator disk, is

KEF = ρVπR2V2

2
=
1

2
ρV3πR2

Thus the ideal efficiency may be written

η=
�ideal

KEF
=
2ρV3πR2a 1−a

2

1
2
ρV3πR2

=4a 1−a
2 η

To find the condition for maximum possible efficiency, set dη da equal to zero. The maximum efficiency is η=0 593, which

occurs when a=1 3.

The Dutch windmill tested by Calvert had a tip-speed ratio of

X =
NR

V
=20

rev

min
× 2π

rad

rev
×
min

60 s
×13 m×

s

10 m
=2 72

X

The maximum theoretically attainable efficiency at this tip-speed ratio, accounting for swirl (Fig. 10.37) would be about 0.53.

The actual efficiency of the Dutch windmill is

ηactual =
�actual

KEF

Based on Calvert’s test data, the kinetic energy flux is

KEF =
1

2
ρV3πR2

=
1

2
× 1 23

kg

m3
× 10

3m
3

s3
× π × 13

2
m2 ×

N s2

kg m
×
W s

N m
KEF = 3 27× 105 W or 327 kW

Substituting into the definition of actual efficiency,

ηactual =
41 kW

327 kW
=0 125

ηactual
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The Rankine model includes some important assumptions that limit its applicability [23]. First, the

wind turbine is assumed to affect only the air contained within the stream tube defined in Fig. 10.40.

Second, the kinetic energy produced as swirl behind the turbine is not accounted for. Third, any radial

pressure gradient is ignored. Glauert [17] partially accounted for the wake swirl to predict the depend-

ence of ideal efficiency on tip-speed ratio, X,

X =
Rω

V
10 46

as shown in Fig. 10.42 (ω is the angular velocity of the turbine).

As the tip-speed ratio increases, ideal efficiency increases, approaching the peak value η=0 593

asymptotically. Avallone et al. [22] presents a summary of the detailed blade-element theory used to

develop the limiting efficiency curve shown in Fig. 10.41. It is necessary to increase the tip-speed ratio

Thus the actual efficiency of the Dutch windmill is about 24 percent of the maximum efficiency theoretically attainable at this tip-

speed ratio.

The actual thrust on the Dutch windmill can only be estimated, because the interference factor, a, is not known. The maximum

possible thrust would occur at a=1 2, in which case,

Kx = ρV2πR2 2a 1−a

=1 23
kg

m3
× 10

2m
2

s2
× π × 13

2
m2 ×2

1

2
1−

1

2
×

N s2

kg m

Kx = 3 27× 104 N or 32 7 kN
Kx

This does not sound like a large thrust force, considering the size D=26 m

of the windmill. However, V =36 km hr is only a moderate wind. The

actual machine would have to withstand much more severe wind conditions

during storms.

This problem illustrates application of the
concepts of ideal thrust, power, and effi-
ciency for awindmill, and calculation of these
quantities for an actual machine.

Turbine disk

Control volume

V V (1 – 2a)

V (1 – a)

Fig. 10.40 Control volume and simplified notation used to analyze wind turbine performance.
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considerably to reach a more favorable operating range. Modern high-speed wind-turbine designs use

carefully shaped airfoils and operate at tip-speed ratios up to 7 [24].

The analysis of aVAWTis slightly different from that of aHAWT.Themain reason for this difference

can be seen in Fig. 10.42 where a cross section of one airfoil in a Darrieus turbine is shown rotating about

the turbine axis. Assuming that the wind emanates from a constant direction, the airfoil angle of attack α

will be a function of the azimuthal angle θ. The angle of attack is due to the relation between the effective

velocity vector and the rotational direction. As θ varies, α will vary as well until it reaches a maximum

value when θ is equal to 90 . In that configuration, the angle of attack is expressed by:

αm = tan−1 V

Rω
10 47a

In terms of the tip speed ratio X from Eq. 10.46, Eq. 10.47a may then be rewritten as:

αm = tan−1 1

X
10 47b

Since the maximum angle of attack must be less than that for stall (10 −15 for most typical airfoils), X

should be a large number (at least on the order of 6). The lift and drag forces (L and D, respectively)

acting on the airfoil can be seen in Fig. 10.42. These aerodynamic forces generate a torque on the rotor.

The torque on the rotor at a given value of α is:

T =ωR L sin α−D cos α 10 48

If the airfoil section is symmetric (zero camber), then the lift coefficient is linearly proportional to the

angle of attack [25]:

CL =mα 10 49

In Eq. 10.49, m is the slope of the lift curve, and is specific to the airfoil being used. In addition, the drag

coefficient may be approximated by:

CD =CD,0 +
C2
L

πAR
9 43

In this expression, CD,0 is the drag coefficient at zero angle of attack, and AR is the aspect ratio of the

airfoil. Decher [16] derived an expression for the efficiency of the rotor based on lift and drag effects,

DL

V

V

Vrel

Vrel

θα

α

θ

αm

Rω  XV

Rω

θ α

θ π/2

Fig. 10.42 Velocities around a Darrieus rotor blade element at a general azimuthal angle θ, as well as at θ= π 2, where the
airfoil angle of attack is maximized.
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ηL D. This expression is defined as the useful work out divided by the available power in the wind. In

terms of the lift and drag, this expression is:

ηL D =
Rω L sin α−D cos α

V L cos α+D sin α

The overbars in this equation indicate average values of those quantities. Since the lift and drag forces on

the rotor change with θ, a time average of the forces needs to be calculated by integrating. Now once we

substitute Eqs. 10.49 and 9.43 into this expression and average over a full revolution of the rotor

0≤ θ≤ 2π , the efficiency becomes:

ηL D =

1−CD,0

2

CD,0AR
+

4X3

1+X2

1+CD,0

1

2π
+

3

2CD,0ARX2

10 50

This efficiency modifies the efficiency based on actuator disk theory for an estimate of the overall

efficiency of the rotor:

η≈ηact diskηL D 10 51

One must keep in mind, however, that in order to determine the efficiency of a complete rotor, one must

add the contributions to the torque over the entire rotor. Since different parts of the rotor have different

radii (different values of R), they will have different values of X. Based on Eq. 10.50, one might realize

that the portions of the rotor with small radii will contribute very little to the torque compared to central

portions of the rotor.

10.7 Compressible Flow Turbomachines
The density change of the working fluid is important in gas turbine and steam turbine power generation.

The modifications to the governing equations and dimensional analyses necessary in compressible flow

applications will be discussed.

Application of the Energy Equation to a Compressible Flow Machine

The first law of thermodynamics for an arbitrary control volume is the energy equation, Eq. 4.56,

Q −W s−Wshear−Wother =
∂

∂t CV

eρdV--- +
CS

u+ pυ+
V2

2
+ gz ρV dA 4 56

Equation 4.56 can be simplified for compressible flow turbomachinery. First, turbomachines typically

run at conditions such that heat transfer with the surroundings are minimized, second, work terms other

than shaft work are negligibly small, and third, changes in gravitational potential energy are small. Since

enthalpy is defined as h≡ u+ pυ, for steady flow, Eq. 4.56 becomes

W s = −

CS

h+
V2

2
ρV dA

At this point, we introduce the stagnation enthalpy as the sum of the fluid enthalpy and kinetic energy:

h0 = h+
V2

2

Therefore, we may rewrite the energy equation as:

W s = −

CS

h0ρV dA 10 52a
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Equation 10.52a states that, for a turbomachine with work input, the power required causes an increase

in the stagnation enthalpy in the fluid; for a turbomachine with work output, the power produced is due to

a decrease in the stagnation enthalpy of the fluid. In this equation, W s is positive when work is being

done by the fluid (as in a turbine), while W s is negative when work is being done on the fluid (as in a

compressor).

The integrand on the right side of Eq. 10.52a is the product of the stagnation enthalpy with the mass

flow rate at each section. If we make the additional assumption of uniform flow into the machine at

section 1, and out of the machine at section 2, Eq. 10.52a becomes

W s = − h02 −h01 m 10 52b

Compressors

Compressorsmay be centrifugal or axial, depending on specific speed. Automotive turbochargers, small

gas-turbine engines, and natural-gas pipeline boosters usually are centrifugal. Large gas and steam tur-

bines and jet aircraft engines (as seen in Figs. 10.3 and 10.4b) frequently are axial-flow machines.

Since the flow through a compressor will see a change in density, the dimensional analysis pre-

sented for incompressible flow is no longer appropriate. Rather, we quantify the performance of a

compressor throughΔh0s , the ideal rise in stagnation enthalpy of the flow, the efficiency η, and the power

�. The functional relationship is:

Δh0s , η,�= f μ, N, D, m, ρ01 , c01 , k 10 53

In this relation, the independent variables are, in order, viscosity, rotational speed, rotor diameter, mass

flow rate, inlet stagnation density, inlet stagnation speed of sound, and ratio of specific heats.

If we apply the Buckingham Pi theorem to this system, the resulting dimensionless groups are:

Π1 =
Δh0s

ND
2

Π2 =
�

ρ01N
3D5

Π3 =
m

ρ01ND
3

Π4 =
ρ01ND

2

μ

Π5 =
ND

c01

Since the efficiency η and ratio of specific heats k are dimensionless quantities, they can be thought

of as Π-terms. The resulting functional relationships are:

Δh0s

ND
2
,η,

�

ρ01N
3D5

= f1
m

ρ01ND
3
,
ρ01ND

2

μ
,
ND

c01
,k 10 54a

This equation is actually an expression of three separate functions; that is, the terms Π1 = Δh0s ND
2
,η,

and Π2 =� ρ01N
3D5 are all functions of the other dimensionless quantities. Δh0s ND

2
is a measure

of the energy change in the flow and is the compressible analog to the head coefficient Ψ (Eq. 10.6).

� ρ01N
3D5 is a power coefficient, similar to that in Eq. 10.8. m ρ01ND

3 is a mass flow coefficient,

analogous to the incompressible flow coefficient Φ (Eq. 10.5). ρ01ND
2 μ is a Reynolds number based

on rotor tip speed, and ND c01 is a Mach number based on rotor tip speed. Using the relationships for

isentropic processes and for the compressible flow of a perfect gas, we can make some simplifications.

As a result, Eq. 10.54a may be rewritten as:

p02
p01

,η,
ΔT0

T01
= f2

m RT01
p01D

2
,Re,

ND

RT01
,k 10 54b

The functional relationships presented here can be used to investigate scaling the performance of

similar flow machines. An example of this is presented in Example 10.16.
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Example 10.16 SCALING OF A COMPRESSOR

A 1/5 scale model of a prototype air compressor consuming 300 hp and running at a speed of 1000 rpm delivers a flow rate of

20 lbm s through a pressure ratio of 5. At dynamically and kinematically similar conditions, what would the operating speed,

mass flow rate, and power consumption be for the full-scale prototype?

Given: 1/5 scale compressor model

Power: 300 hp

Speed: 1000 rpm

Pressure ratio: 5

Mass flow rate: 50 lbm s

Find: Prototype speed, mass flow rate, and power consumption at similar conditions.

Solution: Apply the equations presented above and the concepts presented in Chapter 7 on similitude to the compressor:

Governing equations:

ND

c01 p

=
ND

c01 m

m

ρ01ND
3

p

=
m

ρ01ND
3

m

�

ρ01N
3D5

p

=
�

ρ01N
3D5

m

Assumption:
Similar entrance conditions for both model and prototype.

Similar entrance conditions would stipulate that the stagnation sound speed and density would be equal for both the model and

the prototype. Solving the first equation for the prototype speed:

Np =Nm

Dm

Dp

c01p

c01m
=1000 rpm×

1

5
× 1= 200 rpm

Np =200 rpm
Np

Solving the second equation for the prototype mass flow rate:

mp =mm

ρ01p

ρ01m

Np

Nm

Dp

Dm

3

=20
lbm

s
×

200

1000
×

5

1

3

=500
lbm

s

m p =500 lbm s
mp

To calculate the power requirement for the prototype:

�p =�m

ρ01p

ρ01m

Np

Nm

3
Dp

Dm

5

=300 hp×
200

1000

3

×
5

1

5

=7500 hp

�p =7500 hp
Pp

This problem demonstrates the scaling of
compressible flow machines. Note that if the
working fluid for the two different scale
machines were different, e.g., air versus
helium, the effects of different gas constants
and specific heat ratios would have to be
taken into account.
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For scaling of compressors operating with the same fluid and at high Reynolds numbers, Eq. 10.54b

can be simplified to

p02
p01

,η,
ΔT0

T01
= f3

m T01
p01

,
N

T01
10 54c

This equation is not dimensionless but is still useful in characterizing the performance of a com-

pressor, provided the performance is assessed for a single machine using a single working fluid. The

relationship portrayed in Eq. 10.54c is normally expressed in the form of a compressor operability

map, as shown in Fig. 10.43. On this map we can see the compression ratio versus mass flow ratio

m T01 p01 , with curves of constant normalized speed N T01 and efficiency. Often, the abscissa

is a “corrected mass flow”:

mcorr =
m T01 Tref

p01 pref

and the lines of constant compressor speed are a “corrected speed”:

Ncorr =
N

T01 Tref

In these expressions, Tref and pref are reference pressure and temperature. This allows the user

to read the chart quickly in terms of “real” physical quantities and to be able to make adjustments

for varying entrance conditions with a minimum of calculation. The operating line is the locus of points

of maximum efficiency for a given mass flow.

This figure shows two of the phenomena that must be avoided in the operation of a compressor. The

first is choking, which is experienced when the localMach number at some point in the compressor reaches

unity. The maximum possible flow rate for a given rotor speed is reached, and the compressor is choked.

It is impossible to increase mass flow without increasing rotor speed.

The second phenomenon is surge, which is a cyclic pulsation phenomenon that causes the mass

flow rate through the machine to vary, and even reverse. Surge occurs when the pressure ratio in the

compressor is raised beyond a certain level for a given mass flow rate. As pressure ratio increases,

the adverse pressure gradient across the compressor increases as well. This increase in pressure gradient

can cause boundary-layer separation on the rotor surfaces and constrict flow through the space between

two adjacent blades. Therefore, the extra flow gets diverted to the next channel between blades. The

separation is relieved in the previous channel and moves to the next channel, causing the cyclic pulsation

mentioned above. Surge is accompanied by loud noises and can damage the compressor or related com-

ponents; it too must be avoided. Fig. 10.43 shows the surge line, the locus of operating conditions

beyond which surge will occur.

Maximum efficiency

Opera
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Constant
efficiency
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Surge
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u
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a
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o
, 

p
0

2
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0
1
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m  T01

N/        lineT01
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Fig. 10.43 Typical performance map for a compressor.

40910.7 Compressible Flow Turbomachines

www.konkur.in

Telegram: @uni_k



In general, as shown in Fig. 10.43, the higher the performance, the more narrow the range in which

the compressor may be operated successfully. Thus a compressor must be carefully matched to its flow

system to assure satisfactory operation.

Compressible-Flow Turbines

The flow through a gas turbine is governed by the same general relationship as the compressor.

Figure 10.44 shows the performance map for a compressible flow turbine. As in the case for the com-

pressor the turbine map shows lines of constant normalized speed on a graph of pressure ratio versus

normalized mass flow rate. The most striking difference between this map and that for the compressor

is that the performance is a very weak function of N T01 ; the curves are set very close together. The

choking of the turbine flow is well-defined on this map. There is a normalized mass flow that cannot be

exceeded in the turbine, regardless of the pressure ratio.

10.8 Summary and Useful Equations
In this chapter, we:

✓ Defined the two major types of fluid machines: positive displacement machines and
turbomachines.

✓ Described the various turbomachines: radial, axial, and mixed-flow types of pumps, fans,
blowers, compressors, and turbines.

✓ Used the angular-momentum equation for a control volume to derive the Euler turbomachine
equation.

✓ Drew velocity diagrams and applied the Euler turbomachine equation to the analysis of
various idealized machines to derive ideal torque, head, and power.

✓ Evaluated the performance—head, power, and efficiency—of various actual machines from
measured data.

✓ Defined and used dimensionless parameters to scale the performance of a fluid machine from
one size, operating speed, and set of operating conditions to another.

✓ Discussed various defining parameters, such as pump efficiency, turbine efficiency, shutoff
head, specific speed, cavitation, NPSHR, and NPSHA.

✓ Matched pumps to pipe systems to obtain the operating point.
✓ Discussed and analyzed propellers and wind turbines.
✓ Discussed the use and performance of compressible flow turbomachines.

With these concepts and techniques, we learned how to use manufacturers’ literature and other
data to perform preliminary analyses and make appropriate selections of pumps, fans, hydraulic
and wind turbines, and other fluid machines.
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Fig. 10.44 Typical performance map for a compressible flow turbine.
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Note: Most of the equations in the table below have a number of constraints or limitations—be sure to

refer to their page numbers for details!

Useful Equations
Euler turbomachine

equation:

Tshaft = r2Vt2 −r1Vt1 m (10.1c) Page 349

Turbomachine theoretical

power:
Wm = U2Vt2 −U1Vt1 m (10.2b) Page 349

Turbomachine theoretical

head: H =
Wm

mg
=

1

g
U2Vt2 −U1Vt1

(10.2c) Page 349

Pump power, head, and

efficiency:
Wh = ρQgHp

Hp =
p

ρg
+
V

2

2g
+ z

discharge

−
p

ρg
+
V

2

2g
+ z

sution

ηp =
Wh

Wm

=
ρQgHp

ωT

(10.3a)

(10.3b)

(10.3c)

Page 352

Page 353

Turbine power, head, and

efficiency:
Wh = ρQgHt

Ht =
p

ρg
+
V

2

2g
+ z

inlet

−
p

ρg
+
V

2

2g
+ z

outlet

ηt =
Wm

Wh

ωT

ρQgHt

(10.4a)

(10.4b)

(10.4c)

Page 353

Dimensionless flow

coefficient:
Φ=

Q

A2U2

=
Vn2

U2

(10.5) Page 353

Dimensionless head

coefficient:
Ψ=

gH

U2
2

(10.6) Page 354

Dimensionless torque

coefficient:
τ=

T

ρA2U
2
2R2

(10.7) Page 354

Dimensionless power

coefficient: Π=
W

ρQU2
2

=
W

ρω2QR2
2

(10.8) Page 354

Centrifugal pump specific

speed (in terms of head h): NS =
ωQ1 2

h3 4

(7.22a) Page 354

Centrifugal pump specific

speed (in terms of

head H):

NScu =
N rpm Q gpm

1 2

H ft
3 4

(7.22b) Page 355

Centrifugal turbine

specific speed (in terms of

head h):

NS =
ω

h3 4

�

ρh

1 2

=
ω�

1 2

ρ1 2h5 4

(10.13a) Page 355

Centrifugal turbine

specific speed (in terms of

head H):

NScu =
N rpm � hp

1 2

H ft
5 4

(10.13b) Page 355

Axial-flow turbomachine

ideal performance:

Tshaft =Rm Vt2 −Vt1 m

Wm =U Vt2 −Vt1 m

H =
Wm

mg
=
U

g
Vt2 −Vt1

(10.20)

(10.21)

(10.22)

Page 360

(Continued)
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Table (Continued)

Propeller thrust:
FT = qN

R

Rhub

CLcosϕ−CDsinϕ

sin 2ϕ
cdr

(10.37a) Page 397

Propeller torque:
T = qN

R

Rhub

CLsinϕ+CDcosϕ

sin 2ϕ
rcdr

(10.37b) Page 397

Propeller speed of

advance coefficient:
J ≡ V

nD
(10.39) Page 398

Propeller thrust, torque,

power, and efficiency

coefficients:

CF =
FT

ρn2D4
, CT =

T

ρn2D5
,

CP =
�

ρn3D5
, η=

FTV

�input

(10.40) Page 398

Cavitation number: Ca=
p−pv
1
2
ρV2

(10.41) Page 398

Actuator disk efficiency:
η=

�

KEF
=4a 1−a

2 (10.45) Page 401

Tip-speed ratio
X =

Rω

V

(10.46) Page 404

VAWT efficiency:

ηL D =

1−CD,0
2

CD,0AR
+

4X3

1+X2

1+CD,0
1

2π
+

3

2CD,0ARX2

η≈ηact diskηL D

(10.50)

(10.51)

Page 406

Page 406

Energy equation for

compressible flow

turbomachine:

Ws = − h02 −h01 m (10.52b) Page 407

Performance parameters

for compressible flow

turbomachine:

p02
p01

,η,
ΔT0

T01
= f3

m T01
p01

,
N

T01

(10.54c) Page 409
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Chapter 11 Problems

Basic Concepts and Definitions
11.1 A pebble is dropped into a stream of water that flows in a rec-

tangular channel at 2 m depth. In one second, a ripple caused by the

stone is carried 7 m downstream. Determine the speed of the stream

and whether it is subcritical, critical, or supercritical. At another loca-

tion the ripple moves downstream 11 m. Determine the speed of the

stream and whether it is subcritical, critical, or supercritical at that

location.

11.2 A water flow rate of 250 cfs flows at a depth of 5 ft in a rectan-

gular channel that is 9 ft wide. Determine whether the flow is sub- or

supercritical. For this flow rate, determine the depth for critical flow.

11.3 Determine and plot the relation between water velocity and

depth over the range of V = 0 1 m s to 10 m s for Froude numbers

of 0.5 (subcritical), 1.0 (critical), and 2 (supercritical). Explain how

the flow can be subcritical, critical, or supercritical for (a) the same

velocity and (b) the same depth.

11.4 Capillary waves (ripples) are small amplitude and wavelength

waves, commonly seen, for example, when an insect or small particle

hits the water surface. They are waves generated due to the interac-

tion of the inertia force of the fluid ρ and the fluid surface tension σ.

The wavelength is

λ=2π
σ

ρg

Find the speed of capillary waves in water and mercury.

11.5Waves on the surface of a tank of water on Earth travel at 5 ft/s.

Determine the wave speed if the tank were (a) on the moon, (b) on

Jupiter, or (c) on an orbiting space station. Explain your results.

11.6Verify the equation given in Table 11.1 for the hydraulic radius

of a circular channel. Evaluate and plot the ratio R D for liquid

depths between 0 and D.

11.7Awater flow of 10 m3/s in a 5-m-wide rectangular channel with

a depth of 2.5 m accelerates under a sluice gate. Determine the depth

and Froude number of the accelerated flow.

Energy Equation for Open-Channel Flows
11.8 Find the critical depth for flow at 3 m3 s in a rectangular chan-

nel of width 2.5 m.

11.9 Determine the maximum flow rate that may occur in a rectan-

gular channel 2.4 m wide for a specific energy of 1.5 m.

11.10 A rectangular channel carries a discharge of 10 ft3 s per foot

of width. Determine the minimum specific energy possible for this

flow. Compute the corresponding flow depth and speed.

Localized Effects of Area Change
(Frictionless Flow)
11.11 Consider the Venturi flume shown. The bed is horizontal,

and the flow may be considered frictionless. The upstream depth

is 1 ft, and the downstream depth is 0.75 ft. The upstream breadth

is 2 ft, and the breadth of the throat is 1 ft. Estimate the flow rate

through the flume.

Elevation view

Plan view

b1 = 2 ft b2 = 1 ft

y1 = 1 ft y2 = 0.75 ft

P11.11

11.12 A horizontal rectangular channel 3 ft wide contains a sluice

gate. Upstream of the gate the depth is 6 ft and downstream the depth

is 0.9 ft. Determine the volume flow rate and the upstream and down-

stream Froude numbers.

11.13 Determine the depths of an 800 cfs flow in a trapezoidal chan-

nel of base width 12 ft and side slopes 1 (vertical) on 3 (horizontal)

for a specific energy of 7 ft.

11.14 Water, at 3 ft s and 2 ft depth, approaches a smooth rise in a

wide channel. Estimate the stream depth after the 0.5 ft rise.

y = 2 ft

0.5 ft

V = 3
s
ft

P11.14

The Hydraulic Jump
11.15 A hydraulic jump occurs in a rectangular channel 4.0 m wide.

The water depth before the jump is 0.4 m and after the jump is 1.7 m.

Compute the flow rate in the channel, the critical depth, and the head

loss in the jump.

11.16A hydraulic jump occurs in a wide horizontal channel carrying

2 m3/s per meter of width. The upstream depth is 0.5 m. Determine

the depth and velocity of the water after the jump.

11.17 A hydraulic jump occurs in a rectangular channel. The

flow rate is 200 ft3 s, and the depth before the jump is 1.2 ft. Deter-

mine the depth behind the jump and the head loss. The channel is

10 ft wide.

11.18 A hydraulic jump occurs on a spillway at a location where

depth is 0.9 m and speed is 25 m/s. Determine the depth and speed

downstream of the jump. Determine the ratio of the specific energy

downstream of the jump to that upstream and determine the

head loss.

11.19 A hydraulic jump occurs in a rectangular channel. The

flow rate is 50 m3 s and the depth before the jump is 2 m.

Determine the depth after the jump and the head loss if the channel

is 1 m wide.

Uniform Flow
11.20 A 2-m-wide rectangular channel with a bed slope of 0.0005

has a depth of flow of 1.5 m. Manning’s roughness coefficient is

0.015. Determine the steady uniform discharge in the channel.
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11.21 Determine the uniform flow depth in a rectangular channel

8 ft wide with a slope of 0.0004 that carries a discharge of 90 cfs.

Manning’s roughness factor is 0.015.

11.22 A rectangular flume built of timber is 3 ft wide. The flume is

to handle a flow of 90 ft3 s at a normal depth of 6 ft. Determine the

slope required.

11.23 A channel with square cross section is to carry 20 m3/s of

water at normal depth on a slope of 0.003. Determine the cross-sec-

tional area and wetted perimeter of the channel required for

(a) concrete and (b) masonry.

11.24 Determine the depth for a 4.25 m3/s flow in a rectangular

channel 3.6 m wide that is lined with rubble masonry and laid on

a slope of 1:4000.

11.25 A semicircular trough of corrugated steel, with diameter

D=1m, carries water at depth y=0 25 m. The slope is 0.01. Find

the discharge.

11.26 Determine the slope is necessary to carry 11 m3/s at a depth

of 1.5 m in a rectangular channel 3.6 m wide lined with gravel.

11.27 For a trapezoidal shaped channel with n=0 014 and

slope Sb =0 0002 with a 20-ft bottom width and side slopes of

1 vertical to 1.5 horizontal, determine the normal depth for a discharge

of 1000 cfs.

11.28A trapezoidal canal lined with brick has side slopes of 2:1 and

bottom width of 10 ft. It carries 600 ft3 s at critical speed. Determine

the critical slope (the slope at which the depth is critical).

11.29 Determine the discharge for a sharp-crested suppressed weir

of length 8.0 ft, crest height of 2.0 ft, and upstream water depth of

3.0 ft. Neglect the velocity of approach head.

11.30 A rectangular sharp-crested weir with end contractions is

1.5 m long. Determine the necessary height of the weir crest to

maintain an upstream depth of 2.5 m for a flow rate of 0.5 m3/s.

11.31 Determine the depth of water behind a rectangular sharp-

crested weir 1.5 m wide and 1.2 m high for a flow of 0.28 m3/s.

Determine the velocity of approach.

11.32 A broad-crested weir 0.9 m high and 6 m long has a flat

crest and a coefficient of 1.6. Determine the flow rate for a head

of 0.46 m.

11.33 Determine the flow for a 90 V-notch weir for a head of 1.5 ft.

Determine the flow rate if the head doubles to 3.0 ft.
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C H A P T E R 1 1

Flow in Open Channels
11.1 Basic Concepts and Definitions

11.2 Energy Equation for Open-Channel Flows

11.3 Localized Effect of Area Change (Frictionless Flow)

11.4 The Hydraulic Jump

11.5 Steady Uniform Flow

11.6 Flow with Gradually Varying Depth

11.7 Discharge Measurement Using Weirs

11.8 Summary and Useful Equations

Learning Objectives
After completing this chapter, you should be able to

• Describe the effect of Froude number on the characteristics of open channel flow.

• Determine the relation between flow properties and specific energy.

• Determine the effects of area change.

• Determine the flow properties for a hydraulic jump.

• Determine the flow rate in an open channel using Manning’s equation.

• Determine the flow properties due to changes in the channel depth.

• Determine the flow rate in an open channel using weirs.

Case Study

Many flows of liquids in engineering and in nature occur with a
free surface. An example of a human-made channel that
carries water is shown in the photograph. This is a view of the
190-mile-long Hayden-Rhodes Aqueduct, which is part of the
Central Arizona Project (CAP). The CAP is a 336-mile (541 km)
diversion canal used to redirect water from the Colorado River
into central and southern Arizona. The CAP originates in Lake
Havasu on the western border of Arizona, travels through the
Phoenix area, and terminates in the SanXavier IndianReservation
southwest of Tucson. It is designed to carry about 1.5 million
acre-feet of Colorado River water per year, making it the largest
single resource of renewable water supplies in the state of
Arizona.

The design of the CAP involvedmany of the engineering prin-
ciples we will study in this chapter. Because of the large flow rate
of water, the aqueduct was designed as an open channel with a
trapezoidal cross section that provided the smallest channel for
the desired flow rate. Gravity is the driving force for the flow,
and the land was graded to give the correct slope to the channel
for the flow. As Lake Havasu is nearly 3000 feet below the

terminus, the final aqueduct design included 15 pumping
stations, eight inverted siphons, and three tunnels.
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Aqueduct, Central Arizona Project.
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Free surface flows differ in several important respects from the flows in closed conduits that we studied

in Chapter 8. Familiar examples where the free surface of a water flow is exposed to the atmosphere

include flows in rivers, aqueducts, irrigation canals, rooftop or street gutters, and drainage ditches.

Human-made channels, termed aqueducts, encompass many different types, such as canals, flumes,

and culverts. A canal usually is below ground level and may be unlined or lined. Canals generally

are long and of very mild slope and are used to carry irrigation or storm water or for navigation.

A flume usually is built above ground level to carry water across a depression. A culvert, which usually

is designed to flow only part-full, is a short covered channel used to drain water under a highway or

railroad embankment.

Figure 11.1 illustrates a typical example of water flowing in an open channel. The channel,

often called an aqueduct, carries water from a source, such as a lake, to where the water is needed,
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Fig. 11.1 A typical example of an open-channel flow of water; located in California’s Central Valley with supply pipes visible
in background.
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often for crop irrigation or as a water supply for a city. As you can see in this figure, the channel

is relatively wide with sloped sides and has a gradual slope that allows the water to proceed

downhill. Water enters this aqueduct through large corrugated pipes from a higher elevation. Pipes

are used because the slope of the hillside is too steep for an open channel. The structure at

the entrance to the aqueduct could also house a low head turbine that extracts power from the

flowing water.

In this chapter we will introduce some of the basic concepts in open-channel flows. These flows are

covered in much more detail in a number of specialized texts [1–8]. We will use the control volume

concepts from Chapter 4 to develop the basic theory that describes the behavior and classification of

flows in natural and human-made channels. We shall consider:

• Flows for which the local effects of area change predominate and frictional forces may be

neglected. An example is flow over a bump or depression for which friction is negligible.

• Flow with an abrupt change in depth. This occurs during a hydraulic jump in which the water flow

goes from fast and shallow to slow and deep in a very short distance.

• Flow at what is called normal depth. For this, the flow cross section does not vary in the flow

direction. This is analogous to fully developed flow in a pipe.

• Gradually varied flow. An example is flow in a channel in which the bed slope varies. The major

objective in the analysis of gradually varied flow is to predict the depth of the water.

• Flow measurement techniques for use in open channels. Weirs are commonly used for measuring

flow in open channels. Weirs are devices placed normal to the channel that cause the flow to go

through the critical depth. A depth measurement yields the flow rate.

It is quite common to observe surface waves in flows with a free surface, the simplest example

being when an object such as a pebble is thrown into the water. The propagation speed of a surface

wave is analogous in many respects to the propagation of a sound wave in a compressible fluid

medium (which we discuss in Chapter 12). We shall determine the factors that affect the speed of

such surface waves and see that this is an important determinant in whether an open-channel flow

is able to gradually adjust to changing conditions downstream or a hydraulic jump occurs.

11.1 Basic Concepts and Definitions
Before analyzing the different types of flows that may occur in an open channel, we will discuss some

common concepts and state some simplifying assumptions. There are some important differences

between our previous studies of pipes and ducts in Chapter 8 and the study of open-channel flows.

One significant difference between flows in pipes and ducts is that the driving force for open channel

flows is gravity. The gravity force in open-channel flow is opposed by friction force on the solid bound-

aries of the channel.

Simplifying Assumptions

The flow in an open channel, especially in a natural one such as a river, is often very complex, three-

dimensional, and unsteady. However, in most cases, we can obtain useful results by approximating such

flows as being:

• One-dimensional.

• Steady.

A third simplifying assumption is:

• The flow at each section in an open-channel flow is approximated as a uniform velocity.

Although the actual velocity in a channel is really not uniform, we will justify this assumption.

Figure 11.2 indicates the regions of the maximum velocity in some open-channel flow geometries.
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The minimum velocity is zero along the walls because of viscosity. Measurements show that the region

of maximum velocity occurs below the free surface. There is a negligible shear stress due to air drag

on the free surface, so one would expect the maximum velocity to occur at the free surface.

However, secondary flows occur and produce a nonuniform velocity profile with the maximum usually

occurring below the surface. Secondary flows also occur when a channel has a bend or curve or has an

obstruction, such as a bridge pier. These obstructions can produce vortices that erode the bottom of a

natural channel.

Most open-channel flows of water are large in physical scale, so the Reynolds number is

generally quite high. Consequently, open-channel flow is seldom laminar, and so we will assume

that the flow in open channels is always turbulent. As we saw in earlier chapters, turbulence tends

to smooth out the velocity profile. Hence, although there is a velocity profile in an open channel flow,

as indicated in Fig. 11.2, we will assume a uniform velocity at each section, as illustrated in

Fig. 11.3a.

The next simplifying assumption we make is:

• The pressure distribution is approximated as hydrostatic.

This is illustrated in Fig. 11.3b and is a significant difference from the analysis of flows in pipes and

ducts of Chapter 8. For these we found that the pressure was uniform at each axial location and varied

in the streamwise direction. In open-channel flows, the free surface will be at atmospheric pressure (zero

gage), so the pressure at the surface does not vary in the direction of flow. The major pressure variation

occurs across each section; this will be exactly true if streamline curvature effects are negligible, which is

often the case.

We rely on empirical correlations to relate frictional effects to the average velocity of flow. The

empirical correlation is included through a head loss term in the energy equation (Section 11.2). Addi-

tional complications in many practical cases include the presence of sediment or other particulate matter

in the flow, as well as the erosion of earthen channels or structures by water action.

Triangular

channel

Shallow channel

Trapezoidal

channel

Narrow rectangular channel

Region of

maximum velocity

Fig. 11.2 Region of maximum velocity in some typical open-channel geometries. (Based on Chow [1].)
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Channel Geometry

Channels may be constructed in a variety of cross-sectional shapes and in many cases regular geo-

metric shapes are used. A channel with a constant slope and cross section is termed prismatic.

Lined canals often are built with rectangular or trapezoidal sections; smaller troughs or ditches

sometimes are triangular. Culverts and tunnels generally are circular or elliptical in section. Natural

channels are highly irregular and nonprismatic, but often they are approximated using trapezoid or

paraboloid sections. Geometric properties of common open-channel shapes are summarized in

Table 11.1.

The depth of flow, y, is the perpendicular distance measured from the channel bed to the free surface.

The flow area, A, is the cross section of the flow perpendicular to the flow direction. The wetted perim-

eter, P, is the length of the solid channel cross-section surface in contact with the liquid. The hydraulic

radius, Rh, is defined as

Rh =
A

P
11 1

For flow in noncircular closed conduits (Section 8.7), the hydraulic diameter was defined as

Dh =
4A

P
8 50

Although the hydraulic diameter is used for internal flows, the hydraulic radius, as defined by Eq. 11.1, is

commonly used in the analysis of open-channel flows. One reason for this usage is that the hydraulic

radius of a wide channel, as seen in Table 11.1, is equal to the actual depth.

For nonrectangular channels, the hydraulic depth is defined as

yh =
A

bs
11 2

where bs is the width at the surface. Hence the hydraulic depth represents the average depth of the

channel at any cross section. It gives the depth of an equivalent rectangular channel.

V

(a) Approximate velocity profile (b) Approximate pressure

distribution (gage)

Fig. 11.3 Approximations for velocity profile and pressure distribution.
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Speed of Surface Waves and the Froude Number

We will learn later in this chapter that the behavior of an open-channel flow as it encounters down-

stream changes (e.g., a bump of the bed surface, a narrowing of the channel, or a change in slope)

is strongly dependent on whether the flow is “slow” or “fast.” A slow flow will have time to grad-

ually adjust to changes downstream, whereas a fast flow will also sometimes gradually adjust but

in some situations will do so “violently” (called a hydraulic jump). It turns out that the speed at

which surface waves travel along the surface is key to defining more precisely the notions of slow

and fast.

To determine the speed (or celerity) of surface waves, consider an open channel with movable end

wall containing a liquid initially at rest. If the end wall is given a sudden motion, as in Fig. 11.4a, a wave

forms and travels down the channel at some speed, c.

If we shift coordinates so that we are traveling with the wave speed, c, we obtain a steady control

volume, as shown in Fig. 11.4b. To obtain an expression for c, we will use the continuity and momentum

equations for this control volume. We also have the following assumptions:

Table 11.1
Geometric Properties of Common Open-Channel Shapes

Shape

Trapezoidal

Triangular

Rectangular

Wide flat

Circular

Section

Flow

Area, A

Wetted

Perimeter, P

Hydraulic

Radius, Rh

8

y2 cot α

D2

by

by b

y  cos α

y (b y cot α) b
2y

sin α

2y

sin α 2

by
b 2y

b 2y

y (b y cot α)

b
2y

sin α

y

2

αD

4
(α sin α) 1

D sin α

α

bs

bs

bs

α

α

b

b

y

y

y

y

y
α

D

b>>y
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1 Steady flow.

2 Incompressible flow.

3 Uniform velocity at each section.

4 Hydrostatic pressure distribution at each section.

5 Frictionless flow.

Assumption 1 is valid for the control volume in shifted coordinates. Assumption 2 is obviously valid for

our liquid flow. Assumptions 3 and 4 are commonly used for all channel flows. Assumption 5 is valid in

this case because we assume the area on which it acts, bΔx, is relatively small so the total friction force is

negligible.

For an incompressible flow with uniform velocity at each section, the continuity equation is

CS
V A=0 4 13b

Applying Eq. 4.13b to the control volume, we obtain

c−ΔV y+Δy b −cyb=0 11 3

or

cy−ΔVy+ cΔy−ΔVΔy−cy=0

Solving for ΔV ,

ΔV = c
Δy

y+Δy
11 4

For the momentum equation, again with the assumption of uniform velocity at each section, we use the

following form of the x component of momentum

Fx =FSx +FBx
=

∂

∂t CV

uρ dV--- +
CS
uρV dA 4 18d

The unsteady term ∂ ∂t disappears as the flow is steady, and the body force FBx
is zero for horizontal

flow. So we obtain

FSx = CS
uρV A 11 5

ΔV

(a) Absolute coordinates

Fluid

moving at

speed ΔV

Fluid at

rest

Fluid moving

at speed

(c –ΔV)

Wave at rest

Wave moving

at speed c

(b) Coordinates at rest relative to wave

Fluid moving

at speed

c

Control

volume

x

y

Δy

y y + Δy y

Δx

Fig. 11.4 Motion of a surface wave.
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The surface force consists of pressure forces on the two ends. By assumption 5, we neglect friction. The

gage pressure at the two ends is hydrostatic, as illustrated in Fig. 11.4b. The hydrostatic force FR on a

submerged vertical surface of area A is given by the simple result

FR = pcA 3 10b

where pc is the pressure at the centroid of the vertical surface. For the two vertical surfaces of the control

volume, then, we have

FSx =FRleft
−FRright

= pcA left− pcA right

= ρg
y+Δy

2
y+Δy b − ρg

y

2
yb

=
ρgb

2
y+Δy

2
−
ρgb

2
y2

Using this result in Eq. 11.5 and evaluating the terms on the right,

FSx =
ρgb

2
y+Δy

2
−
ρgb

2
y2 =

CS
uρV A

= − c−ΔV ρ c−ΔV y+Δy b −cρ −cyb

The two terms in braces are equal, from continuity as shown in Eq. 11.3, so the momentum equation

simplifies to

gyΔy+
g Δy

2

2
= ycΔV

or

g 1+
Δy

2y
Δy= cΔV

Combining this with Eq. 11.4, we obtain

g 1+
Δy

2y
Δy= c2

Δy

y+Δy

and solving for c,

c2 = gy 1+
Δy

2y
1+

Δy

y

For waves of relatively small amplitude Δy≪ y , we can simplify this expression to

c= gy 11 6

Hence the speed of a surface disturbance depends on the local fluid depth. For example, it explains why

waves “crash” as they approach the beach. Out to sea, the water depths belowwave crests and troughs are

approximately the same, and hence so are their speeds. As the water depth decreases on the approach to

the beach, the depth of crests start to become significantly larger than trough depths, causing crests to

speed up and overtake the troughs.

Note that fluid properties do not enter into the speed. Viscosity is a minor factor and the wave we

have described is due to the interaction of gravitational and inertia forces, both of which are linear with

density. Equation 11.6 was derived on the basis of one-dimensional motion (x direction); a more realistic

model allowing two-dimensional fluid motion (x and y directions) shows that Eq. 11.6 applies for the

limiting case of large wavelength waves. Also, there are other types of surface waves, such as capillary

waves driven by surface tension, for which Eq. 11.6 does not apply. Example 11.1 illustrates the

calculation for the speed of a surface wave that depends only on the depth.
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The speed of surface disturbances given in Eq. 11.6 provides us with a more useful “litmus test” for

categorizing the speed of a flow than the terms “slow” and “fast.” To illustrate this, consider a flow mov-

ing at speed V , which experiences a disturbance such as a bump in the channel floor or a barrier. The

disturbance will travel upstream at speed c relative to the fluid. If the fluid speed is slow, V < c, and

the disturbance will travel upstream at absolute speed c−V . However, if the fluid speed is fast,

V > c, and the disturbance cannot travel upstream and instead is washed downstream at absolute speed

V−c . This leads to radically different responses of slow and fast flows to a downstream disturbance.

Hence, recalling Eq. 11.6 for the speed c, open-channel flows may be classified on the basis of Froude

number first introduced in Chapter 7:

Fr=
V

gy
11 7

Instead of the rather loose terms “slow” and “fast,” we now have the following criteria:

Fr< 1 Flow is subcritical, tranquil, or streaming. Disturbances can travel upstream; downstream conditions can

affect the flow upstream. The flow can gradually adjust to the disturbance.

Fr= 1 Flow is critical.

Example 11.1 SPEED OF FREE SURFACE WAVES

You are enjoying a summer’s afternoon relaxing in a rowboat on a pond. You decide to find out how deep the water is by splash-

ing your oar and timing how long it takes the wave you produce to reach the edge of the pond. (The pond is artificial; so it has

approximately the same depth even to the shore.) From floats installed in the pond, you know you’re 20 ft from shore, and you

measure the time for the wave to reach the edge to be 1.5 s. Estimate the pond depth. Does it matter if it’s a freshwater pond or if

it’s filled with seawater?

Given: Time for a wave to reach the edge of a pond.

Find: Depth of the pond.

Solution: Use the wave speed equation, Eq. 11.6.

Governing equation: c= gy

The time for a wave, speed c, to travel a distance L, is Δt=
L

c
, so c=

L

△t
. Using this and Eq. 11.6,

gy=
L

△t

where y is the depth, or

y=
L2

gΔt2

Using the given data

y=202ft2 ×
1

32 2

s2

ft
×

1

1 52
1

s2
=5 52 ft y

The pond depth is about 51
2
ft.

The result obtained is independent of
whether the water is fresh or saline,
because the speed of these surface waves
is independent of fluid properties.
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Fr> 1 Flow is supercritical, rapid, or shooting. No disturbance can travel upstream; downstream conditions cannot

be felt upstream. The flow may “violently” respond to the disturbance because the flow has no chance to

adjust to the disturbance before encountering it.

For nonrectangular channels we use the hydraulic depth yh,

Fr=
V

gyh
11 8

These regimes of flow behavior are qualitatively analogous to the subsonic, sonic, and supersonic

regimes of gas flow that we will discuss in Chapter 12. We will discuss the ramifications of these various

Froude number regimes later in this chapter.

11.2 Energy Equation for Open-Channel Flows
In analyzing open-channel flows, we will use the continuity, momentum, and energy equations. As in the

case of pipe flow, friction in open-channel flows results in a loss of mechanical energy which is

characterized by a head loss. The energy equation for pipe flow derived in Section 8.6 is

p1

ρg
+ α1

V
2

2

2g
+ z1 −

p2

ρg
+ α2

V
2

2

2g
+ z2 =

hlT
g

=HlT 8 30

Equation 8.30 was derived using the assumption that the pressure is uniform over each cross-section. In

open-channel flow, there is a hydrostatic pressure variation with depth.

To derive an appropriate energy equation we will use the generic control volume shown in Fig. 11.5,

with the following assumptions:

1 Steady flow.

2 Incompressible flow.

3 Uniform velocity at a section.

4 Gradually varying depth so that pressure distribution is hydrostatic.

5 Small bed slope.

6 Ws =W shear =Wother =0

Assumption 5 simplifies the analysis so that depth, y, is taken to be vertical and speed, V , is taken to be

horizontal, rather than normal and parallel to the bed, respectively. Assumption 6 states that there is no

shaft work or no work due to fluid shearing at the boundaries. There will still be mechanical energy

dissipation within the fluid due to friction.

Control

volume

z1

y1

y

z2

y2

z

Fig. 11.5 Control volume and coordinates for energy analysis of open-channel flow.
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We have chosen a generic control volume so that we can derive a generic energy equation for open-

channel flows, that is, an equation that can be applied to a variety of flows such as ones with a variation in

elevation, or a hydraulic jump, or a sluice gate, between sections and . Coordinate z indicates dis-

tances measured in the vertical direction; distances measured vertically from the channel bed are denoted

by y. Note that y1 and y2 are the flow depths at sections and , respectively, and z1 and z2 are the

corresponding channel elevations.

The energy equation for a control volume is

= 0 6 = 0 6 = 0 6 = 0 1

Q−W s − W shear−Wother =
∂

∂t CV

eρdV +
CS

e+ pυ ρV dA

e= u+
V2

2
+ gz

4 56

Recall that u is the thermal specific energy and v=1 ρ is the specific volume. After using assumptions 1

and 6, and rearranging, with m= ρV dA, and dA= bdy where b y is the channel width, we obtain

Q = −

1

p

ρ
+
V2

2
+ gz ρVbdy−

1

uρVbdy+
2

p

ρ
+
V2

2
+ gz ρVbdy+

2

uρVbdy

=
1

p

ρ
+
V2

2
+ gz ρVbdy+

2

p

ρ
+
V2

2
+ gz ρVbdy+m u2−u1

or

1

p

ρ
+
V2

2
+ gz ρVbdy−

2

p

ρ
+
V2

2
+ gz ρVbdy=m u2−u1 −Q=mhlT 11 9

This states that the loss in mechanical energies (pressure, kinetic and potential) through the control vol-

ume leads to a gain in the thermal energy and/or a loss of heat from the control volume. As in Section 8.6,

these thermal effects are collected into the head loss term hlT .

The surface integrals in Eq. 11.9 can be simplified. The speed, V , is constant at each section by

assumption 3. The pressure, p, does vary across sections and , as does the potential, z. However,

by assumption 4, the pressure variation is hydrostatic. Hence, for section , using the notation of

Fig. 11.5

p= ρg y1−y

and

z= z1 + y

We see that the pressure decreases linearly with y while z increases linearly with y, so the two terms

together are constant,

p

ρ
+ gz

1

= g y1−y + g z1 + y = g y1 + z1

Using these results in the first integral in Eq. 11.9,

1

p

ρ
+
V2

2
+ gz ρVbdy=

1

V2

2
+ g y1 + z1 ρVbdy=

V2
1

2
+ gy1 + gz1 m

We find a similar result for section , so Eq. 11.9 becomes

V2
2

2
+ gy2 + gz2 −

V2
1

2
+ gy1 + gz1 = hlT
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Finally, dividing by g, with Hl = hlT g, leads to an energy equation for open-channel flow

V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 +Hl 11 10

This can be compared to the corresponding equation for pipe flow, Eq. 8.30, presented at the beginning

of this section. Note that we Hl use rather than HlT ; in pipe flow we can have major and minor losses,

justifying T for total, but in open-channel flow we do not make this distinction.

The total head or energy head, H, at any location in an open-channel flow can be defined from

Eq. 11.10 as

H =
V2

2g
+ y+ z 11 11

where y and z are the local flow depth and channel bed elevation, respectively (they no longer represent

the coordinates shown in Fig. 11.5). This is a measure of the mechanical energy (kinetic and pressure/

potential) of the flow. Using this in the energy equation, we obtain an alternative form

H1−H2 =Hl 11 12

From this we see that the loss of total head depends on head loss due to friction.

Specific Energy

We also define the specific energy (or specific head), denoted by the symbol E,

E=
V2

2g
+ y 11 13

This is a measure of the mechanical energy of the flow above and beyond that due to channel bed ele-

vation; it essentially indicates the energy due to the flow’s speed and depth. Using Eq. 11.13 in

Eq. 11.10, we obtain another form of the energy equation,

E1−E2 + z1−z2 =Hl 11 14

From this we see that the change in specific energy depends on friction and on channel elevation change.

While the total head must decrease in the direction of flow (Eq. 11.12), the specific head may decrease,

increase, or remain constant, depending on the bed elevation, z.

From continuity, V =Q A, so the specific energy can be written

E=
Q2

2gA2
+ y 11 15

For all channels the area A increases with depth, causing the first term in Eq. 11.5 to decrease with

depth. The energy then is a combination of two terms, one decreasing with depth and one

increasing. This is illustrated in Fig. 11.6. For a given flow rate, Q, there is a range of possible flow

depths and energies and one depth at which the specific energy is at a minimum. Instead of E versus y

Typically we plot y versus E so that the plot corresponds to the flow section, as shown in Fig. 11.7.

A given flow,Q, can have a range of energies, E, and corresponding flow depths, y. Figure 11.7 also

reveals some interesting flow phenomena. For a given flow, Q, and specific energy, E, there are two

possible flow depths, y; these are called alternate depths. For example, we can have a flow at a large

depth that is moving slowly, or a flow that is shallow but fast moving. The plot graphically indicates
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this: for the first flow, E1 is made up of a large y1 and small V2
1 2g; for the second flow,E2 is made up of a

small y2 and large V
2
2 2g. Additionally, for a given Q, there is one flow for which the specific energy is

the minimum. We will show that the minimum corresponds to critical conditions.

Critical Depth: Minimum Specific Energy

Example 11.2 treated the case of a rectangular channel. We now consider channels of general cross

section. For flow in such a channel we have the specific energy in terms of flow rate Q,

E=
Q2

2gA2
+ y 11 15

For a given flow rate Q, to find the depth for minimum specific energy, we differentiate:

dE

dy
=0= −

Q2

gA3

dA

dy
+1 11 16

For any given cross section we can write

dA= bsdy 11 17

E

y

2gA2

Q2

y

Fig. 11.6 Dependence of specific energy on flow depth for a given flow rate.

Critical flow

Constant Q

E1 = E2 Q2

2gA2
E = y+

y

yc

y2

y2

y1

y1

2V2

2g

2V1

2g

Fig. 11.7 Specific energy curve for a given flow rate.

426 Chapter 11 Flow in Open Channels

www.konkur.in

Telegram: @uni_k



Example 11.2 SPECIFIC ENERGY CURVES FOR A RECTANGULAR CHANNEL

For a rectangular channel of width b=10 m, construct a family of specific energy curves for Q=0,2,5, and 10 m3 s. What are

the minimum specific energies for these curves?

Given: Rectangular channel and range of flow rates.

Find: Curves of specific energy. For each flow rate, find the minimum specific energy.

Solution: Use the flow rate form of the specific energy equation (Eq. 11.15) for generating the curves.

Governing equations:

E=
Q2

2gA2
+ y 11 15

For the specific energy curves, express E as a function of depth, y.

E=
Q2

2gA2
+ y=

Q2

2g by
2
+ y=

Q2

2gb2
1

y2
+ y 1

The table and corresponding graph were generated from

this equation using Excel.

Specific Energy, E (m)

y (m) Q = 0 Q = 2 Q = 5 Q = 10

0.100 0.10 0.92 5.20 20.49

0.125 0.13 0.65 3.39 13.17

0.150 0.15 0.51 2.42 9.21

0.175 0.18 0.44 1.84 6.83

0.200 0.20 0.40 1.47 5.30

0.225 0.23 0.39 1.23 4.25

0.250 0.25 0.38 1.07 3.51

0.275 0.28 0.38 0.95 2.97

0.30 0.30 0.39 0.87 2.57

0.35 0.35 0.42 0.77 2.01

0.40 0.40 0.45 0.72 1.67

0.45 0.45 0.49 0.70 1.46

0.50 0.50 0.53 0.70 1.32

0.55 0.55 0.58 0.72 1.22

0.60 0.60 0.62 0.74 1.17

0.70 0.70 0.72 0.80 1.12

0.80 0.80 0.81 0.88 1.12

0.90 0.90 0.91 0.96 1.15

1.00 1.00 1.01 1.05 1.20

1.25 1.25 1.26 1.28 1.38

1.50 1.50 1.50 1.52 1.59

2.00 2.00 2.00 2.01 2.05

2.50 2.50 2.50 2.51 2.53

To find the minimum energy for a given Q, we differentiate Eq. 1,

dE

dy
=

Q2

2gb2
−

2

y3
+1=0

0

1

2

3

0 1 2 3

E (m)

y
 (

m
)

Q = 0

Q = 2 m3/s

Q = 5 m3/s

Q = 10 m3/s

Emin
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where, as we saw earlier, bs is the width at the surface. This is indicated in Fig. 11.8; the incremental

increase in area dA due to incremental depth change dy occurs at the free surface, where b= bs.

Using Eq. 11.17 in Eq. 11.16 we find

−
Q2

gA3

dA

dy
+1= −

Q2

gA3
bs +1=0

so

Q2 =
gA3

bs
11 18

for minimum specific energy. From continuity V =Q A, so Eq. 11.18 leads to

V =
Q

A
=
1

A

gA3

bs

1 2

=
gA

bs
11 19

We have previously defined the hydraulic depth,

yh =
A

bs
11 2

Hence, using Eq. 11.2 in Eq. 11.19, we obtain

V = gyh 11 20

The Froude number is given by

Fr=
V

gyh
11 8

bs

dy

dA  bsdy

Fig. 11.8 Dependence of flow area change dA on depth change dy.

Hence, the depth yEmin
for minimum specific energy is

yEmin
=

Q2

gb2

1
3

Using this in Eq. 11.15:

Emin =
Q2

2gA2
+ yEmin

=
Q2

2gb2y2Emin

+
Q2

gb2

1
3

=
1

2

Q2

gb2
gb2

Q2

2
3

+
Q2

gb2

1
3

=
3

2

Q2

gb2

1
3

Emin =
3

2

Q2

gb2

1
3

=
3

2
yEmin

2

Hence for a rectangular channel, we obtain a simple result for the minimum

energy. Using Eq. 2 with the given data:

Q m3 s 2 5 10

Emin m 0 302 0 755 1 51

The depths corresponding to these flows are 0.201 m, 0.503 m, and 1.01 m, respectively.
We will see in the next topic that the depth
at which we have minimum energy is the
critical depth, yc, and Emin = Ecrit.
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Hence we see that, for minimum specific energy, Fr=1, which corresponds to critical flow. We obtain

the important result that, for flow in any open channel, the specific energy is at its minimum at critical

conditions.

We collect Eqs. 11.18 and 11.20; for critical flow

Q2 =
gA3

c

bsc
11 21

Vc = gyhc 11 22

for E=Emin. In these equations, Ac, Vc, bsc , and yhc are the critical flow area, velocity, channel surface

width, and hydraulic depth, respectively. Equation 11.21 can be used to find the critical depth, yc, for a

given channel cross-section shape, at a given flow rate. The equation is deceptively difficult: Ac and bsc
each depend on flow depth y, often in a nonlinear fashion; so it must usually be iteratively solved for y.

Once yc is obtained, area, Ac, and surface width, bsc , can be computed, leading to yhc (using Eq. 11.2).

This in turn is used to find the flow speed Vc. Finally, the minimum energy can be computed from

Eq. 11.15. Example 11.3 shows how the critical depth is determined for a triangular section channel.

For the particular case of a rectangular channel, we have bs = b= constant and A= by, so Eq. 11.21

becomes

Q2 =
gA3

c

bsc
=
gb3y3c
b

= gb2y3c

so

yc =
Q2

gb2

1 3

11 23

with

Vc = gyc =
gQ

b

1 3

11 24

For the rectangular channel, a particularly simple result for the minimum energy is obtained when

Eq. 11.24 is used in Eq. 11.15,

E=Emin =
V2
c

2g
+ yc =

gyc

2g
+ yc

or

Emin =
3

2
yc 11 25

This is the same result we found in Example 11.2. The critical state is an important benchmark. It will be

used in the next section to help determine what happens when a flow encounters an obstacle such as a

bump. Also, near the minimum E, as Fig. 11.7 shows, the depth y changes rapidly with E. This means

that for critical flow conditions, even small changes in E, due to channel irregularities or disturbances,

can cause pronounced changes in fluid depth.

Example 11.3 CRITICAL DEPTH FOR TRIANGULAR SECTION

A steep-sided triangular section channel α=60∘ has a flow rate of 300 m3 s. Find the critical depth for this flow rate. Verify

that the Froude number is unity.

Given: Flow in a triangular section channel.
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Find: Critical depth; verify that Fr=1.

Solution: Use the critical flow equation, Eq. 11.21

Governing equations:

Q2 =
gA3

c

bsc
Fr=

V

gyh

The given data is:

Q=300 m3 s α=60

From Table 11.1 we have the following:

A= y2 cot α

and from basic geometry

tan α=
y

bs 2
so bs =2y cot α

Using these in Eq. 11.21

Q2 =
gA3

c

bsc
=
g y2c cot α

3

2yc cot α
=
1

2
gy5c cot

2 α

Hence

yc =
2Q2 tan2 α

g

1 5

Using the given data

yc = 2× 3002
m3

s

2

× tan2
60× π

180
×

s2

9 81 m

1 5

= 5 51× 104 m5 1 5

Finally

yc =8 88 m
yc

To verify that Fr=1, we need V and yh.

From continuity

Vc =
Q

Ac

=
Q

y2c cot α
=300

m3

s
×

1

8 882 m2
×

1

cot
60 × π

180

= 6 60 m s

and from the definition of hydraulic depth

yhc =
Ac

bsc
=

y2c cot α

2yc cot α
=
yc

2
= 4 44 m

Hence

Frc =
Vc

gyhc
=

6 60
m

s

9 81
m

s2
×4 44 m

=1
Frc =1

We have verified that at critical depth the Froude number is unity.

bs

y

α

As with the rectangular channel, the
triangular section channel analysis leads
to an explicit equation for yc from Eq. 11.21.
Other more complicated channel cross
sections often lead to an implicit equation
that needs to be solved numerically.
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11.3 Localized Effect of Area Change (Frictionless Flow)
We will now consider a simple flow case in which the channel bed is horizontal and for which the

effects of channel cross section (area change) predominate: flow over a bump. Since this phenomenon

takes place over a short distance the effects of friction may be neglected.

The energy equation, Eq. 11.10, with the assumption of no losses due to friction then

becomes

V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 =

V2

2g
+ y+ z=const 11 26

Alternatively, using the definition of specific energy

E1 + z1 =E2 + z2 =E+ z= const

We see that the specific energy of a frictionless flow will change only if there is a change in the elevation

of the channel bed.

Flow over a Bump

Consider frictionless flow in a horizontal rectangular channel of constant width, b, with a bump in the

channel bed, as illustrated in Fig. 11.9. The bump height above the horizontal bed of the channel is

z= h x ; the water depth, y x , is measured from the local channel bottom surface.

We have indicated two possibilities for the free surface behavior: the flow gradually

rises over the bump or it gradually dips over the bump. Applying the energy equation

(Eq. 11.26) for frictionless flow between an upstream point and any point along the region

of the bump,

V2
1

2g
+ y1 =E1 =

V2

2g
+ y+ h=E+ h x = const 11 27

Equation 11.27 indicates that the specific energy must decrease through the bump, then increase back to

its original value (of E1 =E2),

E x =E1−h x 11 28

Free

surface

z  0

y1 y (x)

x

y2 y1

z h (x)

Fig. 11.9 Flow over a bump in a horizontal channel.
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From continuity

Q= bV1y1 = bVy

Using this in Eq 11.27

Q2

2gb2y21
+ y1 =

Q2

2gb2y2
+ y+ h= const 11 29

We can obtain an expression for the variation of the free surface depth by differentiating Eq. 11.29:

−
Q2

gb2y3
dy

dx
+
dy

dx
+
dh

dx
=0

Solving for the slope of the free surface, we obtain

dy

dx
=

dh dx

Q2

gb2y3
−1

=
dh dx

V2

gy
−1

Finally,

dy

dx
=

1

Fr2−1

dh

dx
11 30

Equation 11.30 leads to the conclusion that the response to a bump very much depends on the local

Froude number, Fr.

Fr< 1 Flow is subcritical, tranquil, or streaming. When Fr<1, Fr2−1 < 1 and the slope dy dx of the free surface

has the opposite sign to the slope dh dx of the bump: When the bump elevation increases, the flow dips; when

the bump elevation decreases, the flow depth increases. This is the solid free surface shown in Fig. 11.9.

Fr= 1 Flow is critical. When Fr=1, Fr2−1 = 0. Equation 11.30 predicts an infinite water surface slope, unless

dh dx equals zero at this instant. Since the free surface slope cannot be infinite, then dh dx must be zero

when Fr=1; put another way, if we have Fr=1 it can only be at a location where dh dx=0 (at the crest of

the bump, or where the channel is flat). If critical flow is attained, then downstream of the critical flow

location the flow may be subcritical or supercritical, depending on downstream conditions. If critical flow

does not occur where dh dx=0, then flow downstream from this location will be the same type as the

flow upstream from the location.

Fr > 1 Flow is supercritical, rapid, or shooting. When Fr>1, Fr2−1 > 1 and the slope dy dx of the free surface

has the same sign as the slope dh dx of the bump: when the bump elevation increases, so does the flow depth;

when the bump elevation decreases, so does the flow depth. This is the dashed free surface shown in

Fig. 11.9.

The general trends for Fr<1 and Fr>1, for either an increasing or decreasing bed elevation, are illus-

trated in Fig. 11.10. The important point about critical flow Fr=1 is that, if it does occur, it can do so

only where the bed elevation is constant.

An additional visual aid is provided by the specific energy graph of Fig. 11.11. This shows the spe-

cific energy curve for a given flow rate, Q. For a subcritical flow that is at state a before it encounters a

bump, as the flow moves up the bump toward the bump peak, the specific energy must decrease

(Eq. 11.28). Hence we move along the curve to point b. If point b corresponds to the bump peak, then

we move back along the curve to a as the flow descends the bump. Alternatively, if the bump continues

to increase beyond point b, we continue to move along the curve to the minimum energy point, point e

where E=Emin =Ecrit. As we have discussed, for frictionless flow to exist, point e can only be where

dh dx=0 (the bump peak). For this case, as the flow descends down the bump we can return along the

curve to point a, or we can move along the curve to point d. This means that the surface of a subcritical

flow that encounters a bump will dip and then either return to its original depth or if the bump is high

enough for the flow to reach critical conditions may continue to accelerate and become shallower until it
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reaches the supercritical state corresponding to the original specific energy (point d). Which trend occurs

depends on downstream conditions. For example, if there is some type of flow restriction, the flow

downstream of the bump will return to its original subcritical state. Finally, Fig. 11.11 indicates that

a supercritical flow (point d) that encounters a bump would increase in depth over the bump (to point

c at the bump peak), and then return to its supercritical flow at point d. We also see that if the bump is

high enough a supercritical flow could slow down to critical (point e) and then either return to super-

critical (point d) or become subcritical (point a). Which of these possibilities actually occurs obviously

depends on the bump shape, but also on upstream and downstream conditions.

Flow regime
> 0

FlowSubcritical

Fr < 1

Supercritical

Fr > 1

dh

dx

Flow

< 0
dy

dx

> 0
dh

dx
> 0

dy

y

h

dx

< 0
dh

dx
> 0

dy

dx

< 0
dh

dx
< 0

dy

dx

FlowFlow

Fig. 11.10 Effects of bed elevation changes.

y

E

a

b

c
d

e

(E = Emin)

Fig. 11.11 Specific energy curve for flow over a bump.

Example 11.4 FLOW IN A RECTANGULAR CHANNEL WITH A BUMP OR A NARROWING

A rectangular channel 2 m wide has a flow of 2 4 m3 s at a depth of 1.0 m. Determine whether critical depth occurs at (a) a

section where a bump of height h=0 20 m is installed across the channel bed, (b) a side wall constriction (with no bumps) redu-

cing the channel width to 1.7 m, and (c) both the bump and side wall constrictions combined. Neglect head losses of the bump and

constriction caused by friction, expansion, and contraction.
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Given: Rectangular channel with a bump, a side wall constriction, or both.

Find: Whether critical flow occurs.

Solution: Compare the specific energy to the minimum specific energy for the given flow rate in each case to establish whether

critical depth occurs.

Governing equations:

E=
Q2

2gA2
+ y 11 15 yc =

Q

gb2

1 3

11 23

Emin =
3

2
yc 11 25 E=E1−h 11 28

(a) Bump of height h=0 20 m:

The initial specific energy, E1, is

E1 = y1 +
Q2

2gA2
= y1 +

Q2

2gb2y21

=1 0 m+2 42
m3

s

2

×
1

2
×

s2

9 81 m
×

1

22 m2
×

1

12 m2

E1 =1 073 m

Then the specific energy at the peak of the bump, Ebump, is obtained from Eq. 11.28

Ebump =E1−h=1 073 m−0 20m

Ebump =0 873 m
1

We compare this to the minimum specific energy for the flow rate Q. First, the critical depth is

yc =
Q2

gb2

1 3

= 2 42
m3

s

2

×
s2

9 81 m
×

1

22 m2

1 3

yc =0 528 m

(Note that we have y1 > yc, so we have a subcritical flow.)

Then the minimum specific energy is

Emin =
3

2
yc =0 791 m 2

Comparing Eqs. 1 and 2 we see that with the bump we

do not attain critical conditions.

(b) A side wall constriction (with no bump) reducing the channel width to 1.7 m:

In this case the specific energy remains constant throughout h=0 , even at the constriction; so

Econstriction =E1−h=E1 =1 073 m 3

However, at the constriction, we have a new value for b, bconstriction =1 7 m , and so a new critical depth

ycconstriction =
Q2

gb2constriction

1 3

= 2 42
m3

s

2

×
s2

9 81 m
×

1

1 72 m2

1 3

ycconstriction =0 588 m
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11.4 The Hydraulic Jump
We have shown that open-channel flow may be subcritical Fr<1 or supercritical Fr>1 . For sub-

critical flow, disturbances caused by a change in bed slope or flow cross section may move upstream and

downstream and the result is a smooth adjustment of the flow. When flow at a section is supercritical

the flow velocity exceeds the speed of surface waves and disturbances cannot move upstream. If the

Then the minimum specific energy at the constriction is

Eminconstriction =
3

2
ycconstriction =0 882 m 4

Comparing Eqs. 3 and 4 we see that with the constriction

we do not attain critical conditions.

We can determine what constriction would cause critical flow. To find this, solve

E=1 073 m=Emin =
3

2
yc =

3

2

Q2

gb2c

1 3

for the critical channel width bc.

Hence

Q2

gb2c
=

2

3
Emin

3

bc =
Q

8

27
gE3

min

=
27

8

1 2

×2 4
m3

s
×

s

9 811 2 m1 2
×

1

1 0733 2 m3 2

bc =1 27 m

To make the given flow attain critical conditions, the constriction should be 1.27 m; anything wider, and critical conditions are

not reached.

(c) For a bump of h=0 20 m and the constriction to b=1 7 m:

We have already seen in case (a) that the bump h=0 20 m was insufficient by itself to create critical conditions. From case

(b) we saw that at the constriction the minimum specific energy is Emin =0 882 m rather than Emin =0 791 m in the main flow.

When we have both factors present, we can compare the specific energy at the bump and constriction,

Ebump+ constriction =Ebump =E1−h=0 873 m 5

and the minimum specific energy for the flow at the bump and constriction,

Eminconstriction =
3

2
ycconstriction =0 882 m 6

From Eqs. 5 and 6we see that with both factors the specific energy is actually less than the minimum. The fact that wemust have a

specific energy that is less than the minimum allowable means something has to give. What happens is that the flow assumptions

become invalid; the flow may no longer be uniform or one-dimensional, or there may be a significant energy loss, for example

due to a hydraulic jump occurring.

Hence the bump and constriction together are sufficient to make the flow reach

critical state.
This problem illustrates how to determine
whether a channel bump or constriction, or
both, lead to critical flow conditions.
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downstream conditions require a change to subcritical flow, a gradual change with a smooth transition

through the critical point is not possible. The transition from supercritical to subcritical flow occurs

abruptly through a hydraulic jump. Hydraulic jumps can occur in canals downstream of regulating

sluices, at the foot of spillways (see Fig. 11.12a), and where a steep channel slope suddenly becomes

flat. The specific energy curve and general shape of a jump are shown in Fig. 11.13. We will see in this

section that the jump always goes from a supercritical depth y1 < yc to a subcritical depth y2 < yc and

that there will be a dropΔE in the specific energy. Unlike the changes due to phenomena such as a bump,

the abrupt change in depth involves a significant loss of mechanical energy through turbulent mixing.

We shall analyze the hydraulic jump phenomenon by applying the basic equations to the control

volume shown in Fig. 11.14. Experiments show that the jump occurs over a relatively short distance

(a) The Burdekin dam in Australia (b) The Kitchen Sink

(James Kilfiger)
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Fig. 11.12 Examples of a hydraulic jump.

ΔE

Specific energy curve Hydraulic jump

E

yc

y1

y

yc

y2

Fig. 11.13 Specific energy curve for flow through a hydraulic jump.

Control

volume

Flow

y

x

Ff

y1

y2

Fig. 11.14 Schematic of hydraulic jump, showing control
volume used for analysis.
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approximately six times the larger depth y2 [9]. In view of this short length, the friction force Ff acting

on the control volume is negligible compared to pressure forces. We will assume a horizontal bed and

rectangular channel. Hence we have the following assumptions:

1 Steady flow.

2 Incompressible flow.

3 Uniform velocity at each section.

4 Hydrostatic pressure distribution at each section.

5 Frictionless flow (for the momentum equation).

For an incompressible flow with uniform velocity at each section, we use the appropriate form of con-

tinuity from Chapter 4,

CS
V A=0 4 13b

Applying Eq. 4.13b to the control volume we obtain

−V1by1 +V2by2 =0

or

V1y1 =V2y2 11 31

This is the continuity equation for the hydraulic jump. For the momentum equation, again with the

assumption of uniform velocity at each section, we can use the following form for the x component

of momentum

Fx =FSx +FBx
=

∂

∂t

CV

uρ dV--- +
CS

uρV A 4 18d

The unsteady term ∂ ∂t disappears as the flow is steady, and the body force FBx
is zero for horizontal

flow. So we obtain

FSx = CS
uρV A 11 32

The surface force consists of pressure forces on the two ends and friction force on the wetted surface. By

assumption 5 we neglect friction. The gage pressure at the two ends is hydrostatic, as illustrated in

Fig. 11.3b. The hydrostatic force, FR, on a submerged vertical surface of area, A, is given by the simple

result

FR = pcA 3 10b

where pc is the pressure at the centroid of the vertical surface. For the two vertical surfaces of the control

volume, then, we have

FSx =FR1
−FR2

= pcA 1− pcA 2 = ρgy1 y1b − ρgy2 y2b

=
ρgb

2
y21−y22

Using this result in Eq. 11.32, and evaluating the terms on the right,

FSx =
ρgb

2
y21−y22 =

CS
uρV A =V1ρ −V1y1b +V2ρ V2y2b
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Rearranging and simplifying

V2
1 y1

g
+
y21
2
=
V2
2 y2

g
+
y22
2

11 33

This is the momentum equation for the hydraulic jump. We have already derived the energy equation for

open-channel flows,

V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 +Hl 11 10

For our horizontal hydraulic jump, z1 = z2, so

E1 =
V2
1

2g
+ y1 =

V2
2

2g
+ y2 +Hl =E2 +Hl 11 34

This is the energy equation for the hydraulic jump; the loss of mechanical energy is

ΔE=E1−E2 =Hl

The continuity, momentum, and energy equations (Eqs. 11.31, 11.33, and 11.34, respectively) constitute

a complete set for analyzing a hydraulic jump.

Depth Increase Across a Hydraulic Jump

To find the downstream or, as it is called, the sequent depth in terms of conditions upstream from the

hydraulic jump, we first eliminate V2 from the momentum equation. From continuity, V2 =V1y1 y2
(Eq. 11.31), so Eq. 11.33 can be written

V2
1 y1

g
+
y21
2
=
V2
1 y1

g

y1

y2
+
y22
2

Rearranging

y22−y21 =
2V2

1 y1

g
1−

y1

y2
=
2V2

1 y1

g

y2−y1

y2

Dividing both sides by the common factor y2−y1 , we obtain

y2 + y1 =
2V2

1 y1

gy2

Next, multiplying by y2 and dividing by y21 gives

y2

y1

2

+
y2

y1
=
2V2

1

gy1
=2Fr21 11 35

Solving for y2 y1 using the quadratic formula and ignoring the physically meaningless negative root, we

obtain

y2

y1
=
1

2
1+ 8Fr21−1 11 36

Hence, the ratio of downstream to upstream depths across a hydraulic jump is only a function of the

upstream Froude number. Equation 11.36 has been experimentally verified as shown in Fig. 11.15a.

Depths y1 and y2 are referred to as conjugate depths. From Eq. 11.35, we see that an increase in depth

y2 > y1 requires an upstream Froude number greater than one Fr1 >1 .
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Head Loss Across a Hydraulic Jump

From the energy equation for the jump, Eq. 11.34, we can solve for the head loss

Hl =E1−E2 =
V2
1

2g
+ y1−

V2
2

2g
+ y2

From continuity, V2 =V1y1 y2, so

Hl =
V2
1

2g
1−

y1

y2

2

+ y1−y2

or
Hl

y1
=
Fr21
2

1−
y1

y2

2

+ 1−
y2

y1
11 37

Solving Eq. 11.35 for Fr1 in terms of y2 y1 and substituting into Eq.11.37, we obtain

Hl

y1
=
1

4

y2

y1
−1

3

y2

y1

11 38a

The left side is always positive as turbulence must lead to a loss of mechanical energy and so the cubed

term must lead to a positive result. Then, from either Eq. 11.35 or Eq.11.36, we see that we must have

Fr1 >1. An alternative form of this result is obtained after some minor rearranging,

Hl =
y2−y1

3

4y1y2
11 38b

which again shows that y2 > y1 for real flows Hl >0 . Next, the specific energy, E1, can be written as

E1 =
V2
1

2g
+ y1 = y1

V2
1

2gy1
+1 = y1

Fr21 +2

2

0
0

2

4

6

8

10

12

14

1 2 3 4

Upstream Froude number, Fr1

5 6 7 8 9

(a) Depth ratio (b) Head loss

Eq. 11.39
Eq. 11.36
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Fig. 11.15 Depth ratio and head loss for a hydraulic jump. (Data from Peterka [9].)

43911.4 The Hydraulic Jump

www.konkur.in

Telegram: @uni_k



Nondimensionalizing H1 using E1,

Hl

E1

=
1

2

y2

y1
−1

3

y2

y1
Fr21 +2

The depth ratio in terms of Fr1 is given by Eq. 11.36. HenceHl El, can be written purely as a function of

the upstream Froude number. The result, after some manipulation, is

Hl

E1

=
1+8Fr21−3

3

8 1+8Fr21−1 Fr21 +2
11 39

We see that the head loss, as a fraction of the original specific energy across a hydraulic jump, is only a

function of the upstream Froude number. Equation 11.39 is experimentally well verified, as can be seen

in Fig. 11.15b. The figure also shows that more than 70 percent of the mechanical energy of the entering

stream is dissipated in jumps with Fr1 >9. Inspection of Eq. 11.39 also shows that if Fr1 =1, thenHl =0,

and that negative values are predicted for Fr1 <1. Since Hl must be positive in any real flow, this recon-

firms that a hydraulic jump can occur only in supercritical flow. Flow downstream from a jump always

is subcritical. The characteristics of a hydraulic jump are determined in Example 11.5.

Example 11.5 HYDRAULIC JUMP IN A RECTANGULAR CHANNEL FLOW

A hydraulic jump occurs in a rectangular channel 3 mwide. The water depth before the jump is 0.6 m, and after the jump is 1.6 m.

Compute (a) the flow rate in the channel, (b) the critical depth, (c) the head loss in the jump.

Given: Rectangular channel with hydraulic jump in which flow depth changes from 0.6 to 1.6 m.

Find: Flow rate, critical depth, and head loss in the jump.

Solution: Use the equation that relates depths y1 and y2 in terms of the Froude number (Eq. 11.36); then use the Froude number

(Eq. 11.7) to obtain the flow rate; use Eq. 11.23 to obtain the critical depth; and finally compute the head loss from Eq. 11.38b.

Governing equations:

y2

y1
=
1

2
−1+ 1+8Fr21 11 36

Fr=
V

gy
11 7

yc =
Q2

gb2

1 3

11 23

Hl =
y2−y1

3

4y1y2
11 38b

(a) From Eq. 11.36

Fr1 =

1+2
y2

y1

2

−1

8

=

1+ 2×
1 6 m

0 6 m

2

−1

8

Fr1 =2 21
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11.5 Steady Uniform Flow
Steady uniform flow occurs for channels of constant slope and cross section. Figs. 11.1 and 11.2 show

examples of this kind of flow. A fully developed flow is one for which the channel is prismatic, that is, a

channel with constant slope and cross section that flows at constant depth. This depth, yn, is termed the

As expected, Fr1 >1 (supercritical flow). We can now use the definition of Froude number for open-channel flow to find V1

Fr1 =
V1

gy1

Hence

V1 =Fr1 gy1 =2 21×
9 81 m

s2
×0 6 m=5 36 m s

From this we can obtain the flow rate, Q.

Q= by1V1 =3 0 m×0 6 m×
5 36 m

s

Q=9 65 m3 s
Q

(b) The critical depth can be obtained from Eq. 11.23.

yc =
Q2

gb2

1 3

= 9 652
m6

s2
×

s2

9 81 m
×

1

3 02 m2

1 3

yc =1 02 m
yc

Note that as illustrated in Fig. 11.13, y1 < yc < y2.

(c) The head loss can be found from Eq. 11.38b.

Hl =
y2−y1

3

4y1y2

=
1

4

1 6 m−0 6 m
3

1 6 m×0 6 m
=0 260 m

Hl

As a verification of this result, we use the energy equation directly,

Hl =E1−E2 = y1 +
V2
1

2g
− y2 +

V2
2

2g

with V2 =Q by2 =2 01 m s,

Hl = 0 6 m+5 362
m2

s2
×
1

2
×

s2

9 81 m

− 1 6 m+2 012
m2

s2
×
1

2
×

s2

9 81 m

Hl =0 258 m

This problem illustrates computation of
flow rate, critical depth, and head loss, for
a hydraulic jump.
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normal depth and the flow is termed a uniform flow. Hence the expression uniform flow in this chapter

has a different meaning than in earlier chapters. In earlier chapters it meant that the velocity was uniform

at a section of the flow. In this chapter the velocity is uniform and in the flow is the same at all sections.

Hence for the flow shown in Fig. 11.16, we have A1 =A2 =A (cross-section areas), Q1 =Q2 =Q (flow

rates), V1 =V2 =V (average velocity, V =Q A), and y1 = y2 = yn (flow depth).

We make the following assumptions:

1 Steady flow.

2 Incompressible flow.

3 Uniform velocity at a section.

4 Gradually varying depth so that pressure distribution is hydrostatic.

5 Bed slope is small.

6 W s =W shear =Wother =0.

Assumption 5 means that we can approximate the flow depth y to be vertical and flow speed horizontal.

The continuity equation is.

Q=V1A1 =V2A2 =VA

For the momentum equation, again with the assumption of uniform velocity at each section, we can use

the following form for the x component of momentum

Fx =FSx +FBx
=

∂

∂t CV

uρ dV--- +
CS
uρ V A 4 18d

The unsteady term ∂ ∂t disappears as the flow is steady, and the control surface summation is zero

because V1 =V2; hence the right-hand side is zero as there is no change of momentum for the control

volume. The body force FBx
=W sin θ whereW is the weight of fluid in the control volume; θ is the bed

slope, as shown in Fig. 11.16. The surface force consists of the hydrostatic force on the two end surfaces

at and and the friction force Ff on the wetted surface of the control volume. However, because we

have the same pressure distributions at and , the net x component of pressure force is zero. Using all

these results in Eq. 4.18d we obtain

−Ff +W sin θ=0

or

Ff =W sin θ 11 40

We see that for flow at normal depth, the component of the gravity force driving the flow is just balanced

by the friction force acting on the channel walls. The friction force may be expressed as the product of an

Control

volume

z1

y1 = yn

z2Sb = tan θ   θ

y2 = yn

Fig. 11.16 Control volume for uniform channel flow.
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average wall shear stress, τw, and the channel wetted surface area, PL (where L is the channel length), on

which the stress acts

Ff = τwPL 11 41

The component of gravity force can be written as

W sin θ= ρgAL sin θ ≈ ρgALθ ≈ ρgALSb 11 42

where Sb is the channel bed slope. Using Eqs. 11.41 and 11.42 in Eq. 11.40,

τwPL= ρgALSb

or

τw =
ρgASb

P
= ρgRhSb 11 43

where we have used the hydraulic radius, Rh =A P as defined in Eq. 11.1. In Chapter 9 we introduced a

skin friction coefficient,

Cf =
τw

1
2
ρV2

9 22

Using this in Eq. 11.43
1

2
Cf ρV

2 = ρgRhSb

so, solving for V

V =
2g

Cf

RhSb 11 44

The Manning Equation for Uniform Flow

Equation 11.44 gives the flow velocity V as a function of the hydraulic radius, Rh, the slope, Sb, and the

skin friction coefficient, Cf . This latter term is difficult to obtain experimentally or theoretically as it

depends on a number of factors such as bed roughness, fluid properties, and the velocity. We will

combine these terms and define a new quantity,

C=
2g

Cf

so that Eq. 11.44 becomes

V =C RhSb 11 45

Equation 11.45 is termed the Chezy equation, and C is referred to as the Chezy coefficient. Experimental

values of C were obtained by Manning [10]. He suggested that

C=
1

n
R
1 6
h 11 46

where n is a roughness coefficient having different values for different types of boundary roughness.

Some representative values of n are listed in Table 11.2. The range of values given in the table reflects

the importance of surface characteristics. For the same material, the value of n can vary 20 to 30 percent

depending on the finish of the channel surface. SubstitutingC from Eq. 11.46 into Eq. 11.45 results in the

Manning equation for the velocity for flow at normal depth

V =
1

n
R
2 3
h S

1 2
b 11 47a
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Equation 11.47 is not dimensionally consistent and is valid only for SI units. Manning’s equation in SI

units can also be expressed as

Q=
1

n
AR

2 3
h S

1 2
b 11 48a

For V in ft/s and Rh in feet (English Engineering units), Eq. 11.47a becomes

V =
1 49

n
R
2 3
h S

1 2
b 11 47b

and Eq. 11.48a in English Engineering units is

Q=
1 49

n
AR

2 3
h S

1 2
b 11 48b

where A is in square feet. These equations are “engineering” equations; that is, the user needs to be aware

of the required units of each term in the equation.

The relationship among variables in Eqs. 11.48a can be viewed in a number of ways. For example, it

shows that the volume flow rate through a prismatic channel of given slope and roughness is a function

of both channel size and channel shape. This is illustrated in Examples 11.6 and 11.7.

Table 11.2
Representative Manning’s Roughness Coefficients

Channel Type Condition Manning’s n

Constructed, unlined Smooth earth 0.016–0.020

Bare earth 0.018–0.022

Gravel 0.022–0.030

Rocky 0.025–0.035

Constructed, lined Plastic 0.009–0.011

Asphalt 0.013–0.016

Concrete 0.013–0.015

Brick 0.014–0.017

Wood 0.011–0.015

Masonry 0.025–0.030

Corrugated metal 0.022–0.024

Natural Stream, clean 0.025–0.035

Major river, clean 0.030–0.040

Major river, sluggish 0.040–0.080

Source: Data taken from References [1,3,7,11,12].

Example 11.6 FLOW RATE IN A RECTANGULAR CHANNEL

An 8-ft-wide rectangular channel with a bed slope of 0 0004 ft ft has a depth of flow of 2 ft. Assuming steady uniform flow,

determine the discharge in the channel. The Manning roughness coefficient is n=0 015.

Given: Geometry of rectangular channel and flow depth.

Find: Flow rate Q.

Solution: Use the appropriate form of Manning’s equation. For a problem in English Engineering units, this is Eq. 11.48b.
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Governing equations:

Q=
1 49

n
AR

2 3
h S

1 2
b Rh =

by

b+2y
Table 11 1

Using this equation with the given data

Q=
1 49

n
AR

2 3
h S

1 2
b

=
1 49

0 015
× 8 ft × 2 ft ×

8 ft × 2 ft

8 ft + 2× 2 ft

2 3

× 0 004
ft

ft

1 2

Q=38 5 ft3 s
Q

This problem demonstrates use of Man-
ning’s equation to solve for flow rate, Q.
Note that because this is an “engineering”
equation, the units do not cancel.

Example 11.7 FLOW VERSUS AREA THROUGH TWO CHANNEL SHAPES

Open channels, of square and semicircular shapes, are being considered for carrying flow on a slope of Sb =0 001; the channel

walls are to be poured concrete with n=0 015. Evaluate the flow rate delivered by the channels for maximum dimensions

between 0.5 and 2.0 m. Compare the channels on the basis of volume flow rate for given cross-sectional area.

Given: Square and semicircular channels; Sb =0 001 and n=0 015. Sizes between 0.5 and 2.0 m across.

Find: Flow rate as a function of size. Compare channels on the basis of volume flow rate, Q,

versus cross-sectional area, A.

Solution: Use the appropriate form of Manning’s equation. For a problem in SI units, this is

Eq. 11.68a.

Governing equations:

Q=
1

n
AR

2 3
h S

1 2
b 11 48a

Assumption: Flow at normal depth.

For the square channel,

P=3b and A= b2 so Rh =
b

3

Using this in Eq. 11.48a

Q=
1

n
AR

2 3
h S

1 2
b =

1

n
b2

b

3

2 3

S
1 2
b =

1

32 3n
S
1 2
b b8 3

For b=1m,

Q=
1

32 3 0 015
0 001

1 2
1

8 3
=1 01 m3 s

Q

Tabulating for a range of sizes yields

b m 0 5 1 0 1 5 2 0

A m2 0 25 1 00 2 25 4 00

Q m3 s 0 160 1 01 2 99 6 44

b

y b

D
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The relationships given by Eqs. 11.48 mean that, for normal flow, the flow rate depends on the

channel size and shape. For a specified flow rate through a prismatic channel of given slope and rough-

ness, the depth of uniform flow is a function of both channel size and shape and in addition the slope.

There is only one depth for uniform flow at a given flow rate and it may be greater than, less than, or

equal to the critical depth. This is illustrated in Examples 11.8 and 11.9.

For the semicircular channel,

P=
πD

2
and A=

πD2

8

so Rh =
πD2

8

2

πD
=
D

4

Using this in Eq. 11.48a

Q=
1

n
AR

2 3
h S

1 2
b =

1

n

πD2

8

D

4

2 3

S
1 2
b

=
π

45 3 2 n
S
1 2
b D8 3

For D=1m,

Q=
π

45 3 2 0 015
0 001

1 2
1

8 3
=0 329 m3 s

Q

Tabulating for a range of sizes yields

D m 0 5 1 0 1 5 2 0

A m2 0 0982 0 393 0 884 1 57

Q m3 s 0 0517 0 329 0 969 2 09

For both channels, volume flow rate varies as

Q L8 3 or Q A4 3

since A L2. The plot of flow rate versus cross-sectional area shows that the sem-

icircular channel is more “efficient.”

Performance of the two channels may be compared at any specified area. At

A=1m2, Q A=1 01 m s for the square channel. For the semicircular channel

with A=1m2, then D=1 60 m, and Q=1 15 m3 s; so Q A=1 15 m s. Thus

the semicircular channel carries approximately 14 percent more flow per unit area

than the square channel.

The comparison on cross-sectional area is
important in determining the amount of
excavation required to build the channel.
The channel shapes also could be compared
on the basis of perimeter, which would
indicate the amount of concrete needed to
finish the channel.

0.1

1.0

10.0

0.1 1.0 10.0

Cross-sectional area, A (m2) 

V
o
lu

m
e
 fl

o
w

 r
a
te

, 
Q
 (

m
3
/s

) Semicircular

Square

Example 11.8 NORMAL DEPTH IN A RECTANGULAR CHANNEL

Determine the normal depth (for uniform flow) if the channel described in Example 11.6 has a flow rate of 100 cfs.

Given: Geometric data on rectangular channel of Example 11.6.

Find: Normal depth for a flow rate Q=100 ft3 s.
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Solution: Use the appropriate form of Manning’s equation. For a problem in English Engineering units, this is Eq. 11.48b.

Governing equations:

Q=
1 49

n
AR

2 3
h S

1 2
b Rh =

byn

b+2yn
Table 11 1

Combining these equations

Q=
1 49

n
AR

2 3
h S

1 2
b =

1 49

n
byn

byn

b+2yn

2 3

S
1 2
b

Hence, after rearranging

Qn

1 49b5 3S
1 2
b

3

b+2yn
2
= y5n

Substituting Q=100 ft3 s, n=0 015, b=8 ft, and Sb =0 0004 and simplifying

3 89 8+ 2yn
2
= y5n

This nonlinear equation can be solved for yn using a numerical method to yield

yn =3 97 ft
yn

There are five roots, but four of them are mathematically correct but physically

meaningless.

• This problem demonstrates the use of
Manning’s equation for finding the
normal depth.

• This relatively simple physical problem
still involved solving a nonlinear
algebraic equation.

Example 11.9 DETERMINATION OF FLUME SIZE

An above-ground flume, built from timber, is to convey water from amountain lake to a small hydroelectric plant. The flume is to

deliver water at Q=2m3 s; the slope is Sb =0 002 and n=0 013. Evaluate the required flume size for (a) a rectangular

section with y b=0 5 and (b) an equilateral triangular section.

Given: Flume to be built from timber, with Sb =0 002, n=0 013, and Q=2 00 m3 s.

Find: Required flume size for:

(a) Rectangular section with y b=0 5.

(b) Equilateral triangular section.

Solution: Assume flume is long, so flow is uniform at normal depth. Then Eq. 11.48a applies.

Governing equations:
Q=

1

n
AR

2 3
h S

1 2
b 11 48a

The choice of channel shape fixes the relationship between Rh and A; so Eq. 11.48a may be solved for normal depth, yn, thus

determining the channel size required.

(a) Rectangular section

P=2yn + b; yn b=0 5 so b=2yn
P=2yn +2yn =4yn A= ynb= yn 2yn =2y2n

so Rh =
A

P
=
2y2n
4yn

=0 5yn
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Energy Equation for Uniform Flow

To complete our discussion of normal flows, we consider the energy equation. The energy equation

derived in Section 11.2. is

V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 +Hl 11 10

Using this in Eq. 11.48a,

Q=
1

n
AR

2 3
h S

1 2
b =

1

n
2y2n 0 5yn

2 3
S
1 2
b =

2 0 5
2 3

n
y8 3
n S

1 2
b

Solving for yn

yn =
nQ

2 0 5
2 3

S
1 2
b

3 8

=
0 013 2 00

2 0 5
2 3

0 002
1 2

3 8

=0 748 m

The required dimensions for the rectangular channel are

yn =0 748 m A=1 12 m2

b=1 50 m p=3 00 m Flume size

(b) Equilateral triangle section

P=2s=
2yn

cos 30
A=

yns

2
=

y2n
2 cos 30

so Rh =
A

P
=
yn

4

Using this in Eq. 11.48a,

Q=
1

n
AR

2 3
h S

1 2
b =

1

n

y2n
2 cos 30

yn

4

2 3

S
1 2
b =

1

2 cos 30 4
2 3

n
y8 3
n S

1 2
b

Solving for yn

yn =
2 cos 30 4

2 3
nQ

S
1 2
b

3 8

=
2 cos 30 4

2 3
0 013 2 00

0 002
1 2

3 8

=1 42 m

The required dimensions for the triangular channel are

yn =1 42 m A=1 16 m2

bs =1 64 m p=3 28 m Flume size

Note that for the triangular channel

V =
Q

A
=2 0

m3

s
×

1

1 16 m2
=1 72 m s

and
Fr=

V

gyh
=

V

gA bs

Fr=1 72
m

s
×

1

9 81
m

s2
×1 16 m2 ×

1

1 64 m

1 2
=0 653

Hence this normal flow is subcritical (as is the flow in the rectangular channel).

Comparing results, we see that the rectangular flume would be cheaper to

build as its perimeter is about 8.5 percent less than that of the triangular flume.

yn
s

This problem shows the effect of channel
shape on the size required to deliver a
given flow at a specified bed slope and
roughness coefficient. At specified Sb and n,
flow may be subcritical, critical, or
supercritical, depending on Q.

b

yn
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For normal flow we obtain, with V1 =V2 =V , and y1 = y2 = yn,

z1 = z2 +Hl

or

Hl = z1−z2 = LSb 11 49

where Sb is the slope of the bed and L is the distance between points and . Hence we see that for flow

at normal depth, the head loss due to friction is equal to the change in elevation of the bed. The specific

energy, E, is the same at all sections,

E=E1 =
V2
1

2g
+ y1 =E2 =

V2
2

2g
+ y= const

We can also compute the energy grade line EGL and hydraulic grade line HGL. From Section 6.4

EGL=
p

ρg
+
V2

2g
+ ztotal 6 16b

and

HGL=
p

ρg
+ ztotal 6 16c

where ztotal = z+ y. Hence at any point on the free surface (recall that we are using gage pressures),

EGL=
V2

2g
+ z+ y 11 50

and

HGL= z+ y 11 51

Hence, using Eqs. 11.50 and 11.51 in Eqs. 11.10, between points and we obtain

EGL1−EGL2 =Hl = z1−z2

and (because V1 =V2)

HGL1−HGL2 =Hl = z1−z2

For normal flow, the energy grade line, the hydraulic grade line, and the channel bed are all parallel.

The trends for the energy grade line, hydraulic grade line, and specific energy, are shown in Fig. 11.17.

EGL1

V

2g

2
1

HGL1

E1

V

2g

2
2

E2

EGL2

HGL2

EGL line

HGL line

Fig. 11.17 Energy grade line, hydraulic grade line, and specific energy for uniform flow.
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Optimum Channel Cross Section

For given slope and roughness, the optimum channel cross section is that for which we need the smallest

channel for a given flow rate; this is when Q A is maximized. From Eq. 11.48a

Q

A
=
1

n
R
2 3
h S

1 2
b 11 52

Thus the optimum cross section has maximum hydraulic radius, Rh. Since Rh =A P, Rh is maximum

when the wetted perimeter is minimum. Solving Eq. 11.52 for A (with Rh =A P) then yields

A=
nQ

S
1 2
b

3 5

P2 5 11 53

From Eq. 11.53, the flow area will be a minimum when the wetted perimeter is a minimum.

Wetted perimeter, P, is a function of channel shape. For any given prismatic channel shape

(rectangular, trapezoidal, triangular, circular, etc.), the channel cross section can be optimized. Optimum

cross sections for common channel shapes are given in Table 11.3.

Once the optimum cross section for a given channel shape has been determined, expressions for

normal depth, yn, and area, A, as functions of flow rate can be obtained from Eq. 11.48a. These expres-

sions are included in Table 11.3.

Table 11.3
Properties of Optimum Open-Channel Sections (SI Units)

Shape Section

Optimum

Geometry

yn

Qn

Sb

Normal

Depth, yn

Cross-Sectional

 Area, A

2
0.968

1/2

3/8

3

Qn

Sb

1.622
1/2

3/4

Qn

Sb

0.917
1/2

3/8

Qn

Sb

1.682
1/2

3/4

Qn

Sb

1.00
1/2

3/8

Qn

Sb

1.583
1/2

3/4

Qn

Sb

yn

yn

yn

b

b

D

α

α

b >> y

yn

yn
α = 60°

b =

b = 2yn

D = 2yn

α = 45° 1.297
1/2

3/8

Qn

Sb

1.682
1/2

3/4

(Q/b)n
None —1.00

Sb
1/2

3/8

Trapezoidal

Triangular

Rectangular

Wide Flat

Circular
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11.6 Flow with Gradually Varying Depth
Most human-made channels are designed to have uniform flow. However, a channel can have nonuni-

form flow, that is, a flow for which the depth, and hence speed, vary along the channel for a number of

reasons. Examples include when an open-channel flow encounters a change in bed slope, geometry, or

roughness, or is adjusting itself back to normal depth after experiencing an upstream change such as a

sluice gate. We have already studied rapid, localized changes, such as that occurring in a hydraulic jump,

but here we assume flow depth changes gradually. Flow with gradually varying depth is analyzed by

applying the energy equation to a differential control volume. The result is a differential equation that

relates changes in depth to distance along the flow. The resulting equation may be solved analytically or,

more typically numerically, if we approximate the head loss at each section as being the same as that for

flow at normal depth, using the velocity and hydraulic radius of the section. Water depth and channel bed

height are assumed to change slowly. As in the case of flow at normal depth, velocity is assumed uni-

form, and the pressure distribution is assumed hydrostatic at each section.

The energy equation (Eq. 11.10) for open-channel flow was applied to a finite control volume in

Section 11.2,

V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 +Hl 11 10

We apply this equation to the differential control volume, of length dx, shown in Fig. 11.18. The energy

grade line, hydraulic grade line, and channel bottom all have different slopes, unlike for the uniform

flow of the previous section!

The energy equation becomes

V2

2g
+ y+ z=

V2

2g
+ d

V2

2g
+ y+ dy+ z+ dz+ dHl

or after simplifying and rearranging

−d
V2

2g
−dy−dz= dHl 11 54

The differential loss of mechanical energy equals the differential head loss. From channel geometry

dz= −Sbdx 11 55

V2

2g

y

EGL line

HGL line
V2

d
V2

2g2g

z

y + dy

z + dz

dx

Slope Sb

Slope S

Fig. 11.18 Control volume for energy analysis of gradually varying flow.
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We also have the approximation that the head loss can be approximated by the head loss that uniform

flow would have at the same flow rate, Q, at the section. Hence the differential head loss is approxi-

mated by

dHl = Sdx 11 56

where S is the slope of the EGL (see Fig. 11.18). Using Eqs. 11.55 and 11.56 in Eq. 11.54, dividing by

dx, and rearranging, we obtain

d

dx

V2

2g
+
dy

dx
= Sb−S 11 57

To eliminate the velocity derivative, we differentiate the continuity equation, Q=VA= const, to obtain

dQ

dx
=0=A

dV

dx
+V

dA

dx

or

dV

dx
= −

V

A

dA

dx
= −

Vbs

A

dy

dx
11 58

where we have used dA= bsdy (Eq. 11.17), where bs is the channel width at the free surface. Using

Eq. 11.58 in Eq. 11.57, after rearranging

d

dx

V2

2g
+
dy

dx
=
V

g

dV

dx
+
dy

dx
= −

V2bs

gA

dy

dx
+
dy

dx
= Sb−S 11 59

Next, we recognize that

V2bs

gA
=

V2

g
A

bs

=
V2

gyh
=Fr2

where yh is the hydraulic depth (Eq. 11.2). Using this in Eq. 11.59, we finally obtain our desired form of

the energy equation for gradually varying flow

dy

dx
=

Sb−S

1−Fr2
11 60

This equation indicates how the depth y of the flow varies. Whether the flow becomes deeper dy dx>0)

or shallower (dy dx<0) depends on the sign of the right-hand side. For example, consider a channel that

has a horizontal section (Sb =0):

dy

dx
= −

S

1−Fr2

Because of friction the EGL always decreases, so S>0. If the incoming flow is subcritical (Fr<1), the

flow depth will gradually decrease (dy dx<0); if the incoming flow is supercritical (Fr>1), the flow

depth will gradually increase (dy dx>0). Note also that for critical flow (Fr=1), the equation leads to a

singularity, and gradually flow is no longer sustainable.

Calculation of Surface Profiles

Equation 11.60 can be used to solve for the free surface shape y x . It is difficult to solve because the bed

slope, Sb, the local Froude number, Fr, and S, the EGL slope equivalent to uniform flow at rateQ, will in

general all vary with location, x. For S, we use the results obtained in Section 11.5, specifically

Q=
1

n
AR

2 3
h S1 2 11 48a
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or for English Engineering units

Q=
1 49

n
AR

2 3
h S1 2 11 48b

Note that we have used S rather than Sb in Eq. 11.48 as we are using the equation to obtain an equivalent

value of S for a uniform flow at rate Q. Solving for S,

S=
n2Q2

A2R
4 3
h

11 61a

or for English Engineering units

S=
n2Q2

1 492A2R
4 3
h

11 61b

We can also express the Froude number as a function of Q,

Fr=
V

gyh
=

Q

A gyh
11 62

Using Eqs. 11.61a (or 11.61b) and 11.62 in Eq. 11.60

dy

dx
=

Sb−S

1−Fr2
=

Sb−
n2Q2

A2R
4 3
h

1−
Q2

A2gyh

11 63a

or for English Engineering units

dy

dx
=

Sb−
n2Q2

1 492A2R
4 3
h

1−
Q2

A2gyh

11 63b

For a given channel (slope, Sb, and roughness coefficient, n, both of which may vary with x) and flow rate

Q, the area A, hydraulic radius Rh, and hydraulic depth yh are all functions of depth y (see Section 11.1).

Hence Eqs. 11.63 are usually best solved using a suitable numerical integration scheme. Example 11.10

shows such a calculation for the simplest case, that of a rectangular channel.

Example 11.10 CALCULATION OF FREE SURFACE PROFILE

Water flows in a 5-m-wide rectangular channel made from unfinished concrete with n=0 015. The channel contains a long reach

on which Sb is constant at Sb =0 020. At one section, flow is at depth y1 =1 5 m, with speed V1 =4 0 m s. Calculate and plot the

free surface profile for the first 100 m of the channel, and find the final depth.

Given: Water flow in a rectangular channel.

Find: Plot of free surface profile; depth at 100 m.

Solution: Use the appropriate form of the equation for flow depth, Eq. 11.63a.

Governing equations:

dy

dx
=

Sb−S

1−Fr2
=

Sb−
n2Q2

A2R
4 3
h

1−
Q2

A2gyh

11 63a
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We use Euler’s method to convert the differential

equation to a difference equation. In this approach,

the differential is converted to a difference,

dy

dx
≈
Δy

Δx
1

where Δx and Δy are small but finite changes in x

and y, respectively. Combining Eqs. 11.63a and 1,

and rearranging,

Δy=Δx

Sb−
n2Q2

A2R
4 3
h

1−
Q2

A2gyh

Finally, we letΔy= yi+1−yi, where yi and yi+1 are the

depths at point i and a point (i+1) distance Δx further

downstream,

yi+1 = yi +Δx

Sbi −
n2i Q

2

A2
i R

4 3
hi

1−
Q2

A2
i gyhi

2

Equation 2 computes the depth, yi+1, given data at point i. In the current application, Sb and n are constant, but A, Rh, and yh will,

of course, vary with x because they are functions of y. For a rectangular channel we have the following:

Ai = byi

Rhi =
byi

b+2yi

yhi =
Ai

bs
=
Ai

b
=
byi

bs
= yi

The calculations are conveniently performed and results plotted using Excel. Note that partial results are shown in the table, and

that for the first meter, over which there is a rapid change in depth, the step size is Δx=0 05.

i x m y m A m2 Rh m yh m

1 0 00 1 500 7 500 0 938 1 500

2 0 05 1 491 7 454 0 934 1 491

3 0 10 1 483 7 417 0 931 1 483

4 0 15 1 477 7 385 0 928 1 477

5 0 20 1 471 7 356 0 926 1 471

118 98 0 916 4 580 0 670 0 916

119 99 0 915 4 576 0 670 0 915

120 100 0 914 4 571 0 669 0 914

The depth at location x=100 m is seen to be 0.914 m.

y 100 m =0 914 m
y 100 m

Note (following the solution procedure of Example 11.8) that the normal depth for this

flow is yn =0 858 m; the flow depth is asymptotically approaching this value. In general,

this is one of several possibilities, depending on the values of the initial depth and the

channel properties (slope and roughness). A flow may approach normal depth, become

deeper and deeper, or eventually become shallower and experience a hydraulic jump.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 20 40 60 80 100

Distance along channel, x (m)

W
a
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r 
d
e
p
th

, 
y
 (

m
)

The accuracy of the results obtained obvi-
ously depends on the numerical model
used; for example, amore accuratemodel is
the RK4method. Also, for the first meter or
so, there are rapid changes in depth,
bringing into question the validity of
several assumptions, for example, uniform
flow and hydrostatic pressure.
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11.7 Discharge Measurement Using Weirs
A weir is a device that is placed normal to the direction of flow. The weir essentially backs up water so

that, in flowing over the weir, the water goes through critical depth. Weirs have been used for the

measurement of water flow in open channels for many years. Weirs can generally be classified as

sharp-crested weirs and broad-crested weirs. Weirs are discussed in detail in Bos [13], Brater [14],

and Replogle [15].

A sharp-crested weir is basically a thin plate mounted perpendicular to the flow with the top of the

plate having a beveled, sharp edge, which makes the nappe spring clear from the plate (see Fig. 11.19).

The rate of flow is determined by measuring the head, typically in a stilling well (see Fig. 11.20) at a

distance upstream from the crest.

Suppressed Rectangular Weir

These sharp-crested weirs are as wide as the channel and the width of the nappe is the same length as the

crest. Referring to Fig. 11.20, consider an elemental area dA= bdh and assume the velocity is V = 2gh;

then the elemental flow is

dQ= bdh 2gh= b 2gh1 2dh

The discharge is expressed by integrating this over the area above the top of the weir crest:

Q=

H

0

dQ= 2gb

H

0

h1 2dh=
2

3
2gbH3 2 11 64

Friction effects have been neglected in the derivation of Eq. 11.64. The drawdown effect shown in

Fig. 11.19 and the crest contraction indicate that the streamlines are not parallel or normal to the area

in the plane. To account for these effects, a coefficient of discharge Cd is used, so that

Q=Cd

2

3
2gbH3 2

where Cd is approximately 0.62. This is the basic equation for a suppressed rectangular weir, which can

be expressed more generally as

Q=CwbH
3 2 11 65

Crest V

Nappe
V

2g

Drawdown
V0

2

V0

2g

H

P

Fig. 11.19 Flow over sharp-crested weir.

Stilling

well

Crest

b

dh
H

h

P

Fig. 11.20 Rectangular sharp-crested weir without end contraction.
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where theCw is the weir coefficient, Cw =
2
3
Cd 2g. For English Engineering units, Cw≈3 33, and for SI

units, Cw≈1 84.

If the velocity of approach, Va, where H is measured is appreciable, then the integration limits are

Q= 2gb

H +V2
a 2g

V2
a 2g

h1 2dh=Cwb H +
V2
a

2g

3 2

−
V2
a

2g

3 2

11 66

When V2
a 2g

3 2
≈0 Eq. 11.66 can be simplified to

Q=Cwb H +
V2
a

2g

3 2

11 67

Contracted Rectangular Weirs

A contracted horizontal weir is another sharp-crested weir with a crest that is shorter than the width of

the channel and one or two beveled end sections so that water contracts both horizontally and vertically.

This forces the nappe width to be less than b. The effective crest length is

b = b−0 1 nH

where n=1 if the weir is placed against one side wall of the channel so that the contraction on one side is

suppressed and n=2 if the weir is positioned so that it is not placed against a side wall.

Triangular Weir

Triangular or V-notch weirs are sharp-crested weirs that are used for relatively small flows but that have

the advantage that they can also function for reasonably large flows as well. Referring to Fig. 11.21, the

rate of discharge through an elemental area, dA, is

dQ=Cd 2ghdA

where dA=2xdh, and x= H−h tan θ 2 ; so dA=2 H−h tan θ 2 dh. Then

dQ=Cd 2gh 2 H−h tan
θ

2
dh

and

Q=Cd2 2g tan
θ

2

H

0

H−h h1 2dh

=Cd

8

15
2g tan

θ

2
H5 2

Q=CwH
5 2

The value of Cw for a value of θ=90 , the most common, is Cw =1 38 for SI units and Cw =2 50 for

English Engineering units.

H-h

h
x

d

θ

H

Fig. 11.21 Triangular sharp-crested weir.
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Broad-Crested Weir

Broad-crested weirs (Fig. 11.22) are essentially critical-depth weirs in that if the weirs are high enough,

critical depth occurs on the crest of the weir. For critical flow conditions yc = Q2 gb2
1 3

(Eq. 11.23)

and E=3yc 2 (Eq. 11.25) for rectangular channels:

Q= b gy3c = b g
2

3
E

3

= b
2

3

3 2

gE3 2

or, assuming the approach velocity is negligible:

Q= b
2

3

3 2

gH3 2

Q=CwbH
3 2

Figure 11.23 illustrates a broad-crested weir installation in a trapezoidal canal.

Example 11.11 shows the process for calculating the flow over a sharp-crested weir. The procedure for

other weir geometries is basically the same as for this specific geometry.

Vc

2

2g

H

P

V1

2

2g

Ec yc

V1

Fig. 11.22 Broad-crested weir.

Flow

Measuring station

Weirbroad-crested

Fig. 11.23 Broad-crested weir in trapezoidal canal.

Example 11.11 DISCHARGE FROM A RECTANGULAR SHARP-CRESTED SUPPRESSED WEIR

A rectangular, sharp-crested suppressed weir 3 m long is 1 m high. Determine the discharge when the head is 150 mm.

Given: Geometry and head of a rectangular sharp-crested suppressed weir.

Find: Discharge (flow rate), Q.

Solution: Use the appropriate weir discharge equation.

Governing equation:

Q=CwbH
3 2 11 65

In Eq. 11.65 we use Cw≈1 84, and the given data, b=3m and H =150 mm=0 15 m, so

Q=1 84× 3 m× 0 15 m
3 2

Q=0 321 m3 s
Q

Note that Eq. 11.65 is an “engineering” equation; so we do not expect the units to

cancel.
This problem illustrates use of one of a
number of weir discharge equations.
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11.8 Summary and Useful Equations
In this chapter, we:

✓ Derived an expression for the speed of surface waves and developed the notion of the specific
energy of a flow, and derived the Froude number for determining whether a flow is subcritical,
critical, or supercritical.

✓ Investigated rapidly varied flows, especially the hydraulic jump.
✓ Investigated steady uniform flow in a channel, and used energy and momentum concepts to

derive Chezy’s and Manning’s equations.
✓ Investigated some basic concepts of gradually varied flows.

We also learned how to usemany of the important conceptsmentioned above in analyzing a range
of real-world open-channel flow problems.

Note: Most of the equations in the table below have a number of constraints or limitations—be sure to

refer to their page numbers for details!

Useful Equations
Hydraulic radius:

Rh =
A

P

(11.1) Page 418

Hydraulic depth:
yh =

A

bs

(11.2) Page 418

Speed of surface wave: c= gy (11.6) Page 421

Froude number:
Fr=

V

gy

(11.7) Page 422

Energy equation for open-channel flow: V2
1

2g
+ y1 + z1 =

V2
2

2g
+ y2 + z2 +Hl

(11.10) Page 425

Total head:
H =

V2

2g
+ y+ z

(11.11) Page 425

Specific energy:
E=

V2

2g
+ y

(11.13) Page 425

Critical flow:
Q2 =

gA3
c

bsc

(11.21) Page 429

Critical velocity: Vc = gyhc (11.22) Page 429

Critical depth (rectangular channel):
yc =

Q2

gb2

1 3 (11.23) Page 429

Critical velocity (rectangular channel):
Vc = gyc =

gQ

b

1 3 (11.24) Page 429

Minimum specific energy (rectangular

channel):
Emin =

3

2
yc

(11.25) Page 429

Hydraulic jump conjugate depths: y2

y1
=
1

2
1+ 8Fr21−1

(11.36) Page 438

Hydraulic jump head loss:
Hl =

y2−y1
3

4y1y2

(11.38b) Page 439
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Table (Continued)

Hydraulic jump head loss

(in terms of Fr1): Hl

E1

=
1+8Fr21−3

3

8 1+ 8Fr21−1 Fr21 +2

(11.39) Page 440

Chezy equation: V =C RhSb (11.45) Page 443

Chezy coefficient:
C=

1

n
R
1 6
h

(11.46) Page 443

Manning equation for velocity (SI units)
V =

1

n
R
2 3
h S

1 2
b

(11.47a) Page 443

Manning equation for flow (SI units)
Q=

1

n
AR

2 3
h S

1 2
b

(11.48a) Page 444

Manning equation for velocity (English

Engineering units)
V =

1 49

n
R
2 3
h S

1 2
b

(11.47b) Page 444

Manning equation for flow (English

Engineering units)
Q=

1 49

n
AR

2 3
h S

1 2
b

(11.48b) Page 444

Energy Grade Line
EGL=

V2

2g
+ z+ y

(11.50) Page 449

Hydraulic Grade Line HGL= z+ y (11.51) Page 449

Energy equation (gradually varying flow): dy

dx
=

Sb−S

1−Fr2
(11.60) Page 452
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Chapter 12 Problems

Review of Thermodynamics
12.1 Air is expanded in a steady flow process through a turbine.

Initial conditions are 1300 C and 2.0 MPa absolute. Final

conditions are 500 C and atmospheric pressure. Show this process

on a Ts diagram. Evaluate the changes in internal energy, enthalpy,

and specific entropy for this process.

12.2 Hydrogen flows as a perfect gas without friction in the pipe

shown in the figure. Determine the outlet velocity when 7.5 × 105

J/kg of heat is added.

T1 = 50°C

qH

75 m/s

T2 = 100°C

21

P12.2

12.3 Air enters a turbine in steady flow at 0 5 kg s with negligible

velocity. Inlet conditions are 1300 C and 2.0 MPa absolute. The

air is expanded through the turbine to atmospheric pressure. If the

actual temperature and velocity at the turbine exit are 500 C and

200 m s, determine the power produced by the turbine. Label state

points on a Ts diagram for this process.

12.4 Carbon dioxide at 150 C and 120 kPa absolute flows at a

speed of 10 m/s in a pipe and discharges through a nozzle where

the exit velocity is 50 m/s. Determine the temperature and

pressure leaving the nozzle. Assume that this is an adiabatic flow

of a perfect gas.

Propagation of Sound Waves
12.5 Calculate the speed of sound at 20 C for (a) hydrogen,

(b) helium, (c) methane, (d) nitrogen, (e) carbon dioxide and (f) air.

Draw some conclusion from the results.

12.6An airplane flies at 550 km hr at 1500 m altitude on a standard

day. The plane climbs to 15,000 m and flies at 1200 km h. Calculate

the Mach number of flight in both cases.

12.7 An object traveling in atmospheric air emits two pressure

waves at different times. At an instant in time, the waves appear

as in the figure. Determine the velocity and Mach number of the

object and its current location.

0.01 m

1.5 m

0.1 m

P12.7

12.8 An object traveling in atmospheric air emits two pressure

waves at different times. At an instant in time, the waves appear

as in the figure. Determine the velocity and Mach number of the

object and its current location.

1 m
0.2 m

0.5 m

P12.8

12.9 A photograph of a bullet shows a Mach angle of 32 . Deter-

mine the speed of the bullet for standard air.

12.10An aircraft flying at a Mach number of 1.5 passes overhead at

3 km altitude. Determine the air speed of the aircraft. If a headwind

blows at 30 m/s, determine how long after the aircraft passes directly

overhead that its sound reaches a point on the ground. Assume that

the air temperature is constant at 20 C.

12.11 Determine the air density in the undisturbed air and at the

stagnation point of an aircraft flying at 400 m/s in air at 28 kPa

and 5 C. Determine the percentage increase in density and whether

the deceleration process can be approximated as an incompressi-

ble flow.

Reference State: Local Isentropic
Stagnation Properties
12.12 A supersonic wind tunnel test section is designed to have

M =2 5 at 15 C and 35 kPa absolute. The fluid is air. Determine

the required inlet stagnation conditions, T0 and p0. Calculate the

required mass flow rate for a test section area of 0 175 m2.

12.13 Oxygen flows in a duct at a pressure of 25 psia. The pressure

and temperature on the nose of a small object in the flow are 28 psia

and 150 F, respectively. Determine the velocity in duct.

12.14 Consider steady, adiabatic flow of air through a long straight

pipe with A=0 05 m2. At the inlet section the air is at 200 kPa

absolute, 60 C, and 146 m s. Downstream at section , the air is

at 95.6 kPa absolute and 280 m s. Determine p01 , p02 , T01 , T02 ,

and the entropy change for the flow. Show static and stagnation state

points on a Ts diagram.

12.15 Air passes through a normal shock in a supersonic wind

tunnel. Upstream conditions are M1 =1 8, T1 =270K, and p1 =

10 0 kPa absolute. Downstream conditions are M2 =0 6165,T2 =

413 6 K, and p2 =36 13 kPa absolute. (Four significant figures are

given to minimize roundoff errors.) Evaluate local isentropic stagna-

tion conditions (a) upstream from, and (b) downstream from, the

normal shock. Calculate the change in specific entropy across the

shock. Plot static and stagnation state points on a Ts diagram.
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12.16Air flows from the atmosphere into an evacuated tank through

a convergent nozzle of 38-mm tip diameter. If atmospheric pressure

and temperature are 101.3 kPa and 15 C, respectively, determine

the vacuum that must be maintained in the tank to produce sonic

velocity in the jet. Determine the flow rate and the flow rate when

the vacuum is 254 mm of mercury.

12.17 Oxygen discharges from a tank through a convergent nozzle.

The temperature and velocity in the jet are −20 C and 270 m/s,

respectively. Determine the temperature in the tank and the temper-

ature on the nose of a small object in the jet.

Critical Conditions
12.18 The hot gas stream at the turbine inlet of a JT9-D jet engine

is at 1500 C, 140 kPa absolute, and M =0 32. Calculate the critical

conditions (temperature, pressure, and flow speed) that correspond

to these conditions. Assume the fluid properties of pure air.

12.19 Carbon dioxide discharges from a tank through a convergent

nozzle with a diameter of 4 mm into the atmosphere. If the tank

temperature and gage pressure are 38 C and 140 kPa, respectively,

determine the jet temperature, pressure, and velocity and the mass

flow rate. Barometric pressure is 101.3 kPa.

12.20 Air at 100 F and 100 psia in a large tank flows into a

6-in.-diameter pipe, from which it discharges to the atmosphere at

15.0 psia through a convergent nozzle of 4-in. tip-diameter. Calculate

pressure, temperature, and velocity in the pipe.

12.21 Air at a pressure and temperature of 100 in. of mercury abso-

lute and 100 F, respectively, discharges at a rate of 5 lbm/s from a

tank through a convergent-divergent nozzle into another tank main-

tained at a pressure of 20 in. of mercury. Determine the nozzle

throat and exit diameters for full expansion. Determine the pressure,

temperature, velocity in the throat, and the Mach number at the

nozzle exit.

Isentropic Flow—Area Variation
12.22 Air flows adiabatically through a duct. At the entrance, the

static temperature and pressure are 310 K and 200 kPa, respectively.

At the exit, the static and stagnation temperatures are 294 K and

316 K, respectively, and the static pressure is 125 kPa. Find

(a) the Mach numbers of the flow at the entrance and exit and

(b) the area ratio A2/A1.

12.23 Air flows isentropically through a converging nozzle into a

receiver where the pressure is 250 kPa absolute. If the pressure is

350 kPa absolute and the speed is 150 m/s at the nozzle location

where the Mach number is 0.5, determine the pressure, speed, and

Mach number at the nozzle throat.

12.24Air flows isentropically through a converging nozzle attached

to a large tank, where the absolute pressure is 171 kPa and the

temperature is 27 C. At the inlet section the Mach number is 0.2.

The nozzle discharges to the atmosphere; the discharge area is

0 015 m2. Determine the magnitude and direction of the force that

must be applied to hold the nozzle in place.

12.25 Air enters a converging-diverging nozzle with an area of

20 cm2 at 2 MPa absolute and 313 K. At the exit of the nozzle,

the pressure is 200 kPa absolute. Determine the area at the nozzle exit

and the mass flow rate of the air.

12.26 A converging nozzle is bolted to the side of a large tank. Air

inside the tank is maintained at a constant 50 psia and 100 F. The

inlet area of the nozzle is 10 in 2 and the exit area is 1 in 2 The nozzle

discharges to the atmosphere. For isentropic flow in the nozzle, deter-

mine the total force on the bolts, and indicate whether the bolts are in

tension or compression.

12.27 A converging-diverging nozzle with a throat area of 2 in 2 is

connected to a large tank in which air is kept at a pressure of 80 psia

and a temperature of 60 F. If the nozzle is to operate at design con-

ditions and the ambient pressure outside the nozzle is 12.9 psia, cal-

culate the exit area of the nozzle and the mass flow rate. Assume the

flow is isentropic.

Normal Shocks
12.28 A total-pressure probe is placed in a supersonic wind tunnel

where T =530 R and M =2 0. A normal shock stands in front of

the probe. Behind the shock, M2 =0 577 and p2 =5 76 psia. Find

(a) the downstream stagnation pressure and stagnation temperature

and (b) all fluid properties upstream from the shock. Show static

and stagnation state points and the process path on a Ts diagram.

12.29 A normal shock wave exists in an airflow. The absolute

pressure, velocity, and temperature just upstream from the wave

are 207 kPa, 610 m s, and −17 8 C, respectively. Calculate the pres-

sure, velocity, temperature, and sonic velocity just downstream from

the shock wave.

12.30 Air approaches a normal shock at M1 =2 5, with

T01 =1250 R and p1 =20 psia. Determine the speed and temperature

of the air leaving the shock and the entropy change across the shock.

12.31 The stagnation temperature in an airflow is 149 C upstream

and downstream from a normal shock wave. The absolute stagnation

pressure downstream from the shock wave is 229.5 kPa. Through the

wave the absolute pressure rises from 103.4 to 138 kPa. Determine

the velocities upstream and downstream from the wave.

12.32 A supersonic aircraft cruises at M =2 2 at 12 km altitude.

A pitot tube is used to sense pressure for calculating air speed.

A normal shock stands in front of the tube. Evaluate the local isen-

tropic stagnation conditions in front of the shock. Estimate the stag-

nation pressure sensed by the pitot tube. Show static and stagnation

state points and the process path on a Ts diagram.
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Introduction to Compressible Flow
12.1 Review of Thermodynamics
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Compressible Flow
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12.7 Normal Shocks

12.8 Supersonic Channel Flow with Shocks

12.9 Summary and Useful Equations

Case Study

Supersonic passenger transportation has long been a goal of the
aviation industry. An airplane flying at supersonic speeds has the
potential to shorten international travel time significantly, redu-
cing the discomforts of long-distance travel. The Concorde
was the first commercially successful supersonic airplane and
cruised at Mach 2.04, over four times the speed of conventional
airplanes. The Concorde flew transatlantic routes from 1976 to
2000, when a tragic accident killed all of the passengers on a
flight leaving Paris and terminated the program.

A supersonic passenger airplane as depicted in the figure has a
number of design features that differ from conventional subsonic
planes. To keep the aerodynamic drag low the wingspan is mini-
mized. The delta wing, shownhere, has a short wingspan and also
generates a vortex that energizes the airflowon the upper surface
at high speeds and attack angles. This delays flow separation and
gives the aircraft a very high stall angle. During landing at sub-
sonic speeds, the aircraft needs to be “nose high”, and designs
such as the Concorde had a droop nose that angled down during
landing.

The heat generated by air friction is a major issue. To reduce
weight, most supersonic designs use aluminum alloys that lose
their strength quickly at high temperatures. This limits maxi-
mum speed to around Mach 2.2. The engine air intake design is
especially critical and needs to provide low distortion levels (to
prevent engine surge) and high efficiency for all likely ambient
temperatures to bemet in cruise. Additionally, adequate subsonic
performance at take-off is required. Turbofan engines that pass

additional cold air around the engine core to increase fuel
efficiency are the most suitable.

One of the largest hurdles is the sonic boom created by super-
sonic airplanes. The boom hasn’t been completely eradicated
from current designs and it’s currently illegal to fly at supersonic
speeds above US soil. The latest iterations of supersonic technol-
ogy are attacking this problem.

E
ri

cu
s/

A
d

o
b

e
 S

to
ck

 P
h
o

to

A supersonic passenger aircraft design.
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Learning Objectives
After completing this chapter, you should be able to:

• Compute properties using the ideal gas relations.

• Determine flow characteristics as a function of Mach number.

• Determine the reference state and flow properties for isentropic flow.

• Determine the flow properties at critical conditions.

• Describe the equations that govern one-dimensional compressible flow.

• Determine the flow properties for one-dimensional isentropic flow with changes in flow area.

• Determine the flow properties for a normal shock.

In Chapter 2 we briefly discussed the two most important questions we must ask before analyzing a fluid

flow: whether or not the flow is viscous, and whether or not the flow is compressible. We subsequently

considered incompressible, inviscid flows (Chapter 6) and incompressible, viscous flows (Chapters 8

and 9). We are now ready to study flows that experience compressibility effects. Because this is an intro-

ductory text, our focus will be mainly on one-dimensional compressible, inviscid flows, although wewill

also review some important compressible, viscous flow phenomena.

We first need to establish what we mean by a “compressible” flow. This is a flow in which there are

significant changes in fluid density. Just as inviscid fluids do not actually exist, incompressible fluids do

not actually exist. For example, in this text we have treated water as an incompressible fluid, although in

fact the density of seawater increases by 1 percent for each mile or so of depth. Hence, whether or not a

given flow can be treated as incompressible is a judgment call: Liquid flows will almost always be con-

sidered incompressible, but gas flows could easily be either incompressible or compressible. We will

learn in Example 12.5 that for Mach numbers M less than about 0.3, the change in gas density due

to the flow will be less than 3 percent; this change is small enough in most engineering applications

for the following rule: A gas flow can be considered incompressible when M <0 3.

The consequences of compressibility are not limited simply to density changes. Density changes

mean that we can have significant compression or expansion work on a gas, so the thermodynamic state

of the fluid will change, meaning that in general all properties such as temperature, internal energy, and

entropy, can change. In particular, density changes create a mechanism for exchange of energy between

“mechanical” energies (kinetic, potential, and “pressure”) and the thermal internal energy. For this rea-

son, we begin with a review of the thermodynamics needed to study compressible flow.

After we cover the basic concepts of compressible flow, we will discuss one-dimensional

compressible flow in more detail. We will look at the changes in the fluid properties caused by a

variation in the flow area or by a normal shock. In addition to these basic phenomena, a real flow is

likely to experience friction on the walls of the flow passage, heating or cooling of the flow, and

two-dimensional effects such as oblique shock and expansion waves. We will only introduce the

basic ideas of compressible flow in this text, and provide material on the more complicated aspects

as supplements on the Instructor website. We more hope that our coverage will provide you with a

foundation for further study of this important topic.

12.1 Review of Thermodynamics
The pressure, density, temperature and other properties of a substance are related through an equation of

state. Although many substances are complex in behavior, most gases of engineering interest, at mod-

erate pressure and temperature, are well represented by the ideal gas equation of state. A review of ther-

modynamic relations is given in Moran et al. [1].

p= ρRT 12 1

where R is a unique constant for each gas; For air, R=287 N m kg K =53 3 ft lbf lbm R . R is

given by

R=
Ru

Mm
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where Ru is the universal gas constant, Ru =8314 N m kgmole K =1544 ft lbf lbmole R and

Mm is the molecular mass of the gas. Although the ideal gas equation is derived using a model that

assumes that the gas molecules (a) take up zero volume (i.e., they are point masses) and (b) do not inter-

act with one another, many real gases conform to Eq. 12.1, especially if the pressure is “low” enough

and/or temperature “high” enough. For example, at room temperature, as long as the pressure is less than

about 30 atm, Eq. 12.1 models the air density to better than 1 percent accuracy; similarly, Eq. 12.1 is

accurate for air at 1 atm for temperatures that are greater than about −130 C −200 F .

In general, the internal energy of a simple substance may be expressed as a function of any two

independent properties, e.g., u= u υ, T , where υ≡ 1 ρ is the specific volume. Then

du=
∂u

∂T ν

dT +
∂u

∂ν T

dν

The specific heat at constant volume is defined as cυ ≡ ∂u ∂T υ, so that

du= cυ dT +
∂u

∂ν T

dν

For an ideal gas the internal energy, u, is a function of temperature only, so ∂u ∂υ T =0, and

du= cν dT 12 2

Furthermore, since u= u T , then from Eq. 12.2, cυ = cυ T .

The enthalpy of any substance is defined as h≡ u+ p ρ. For an ideal gas, p= ρRT , and so

h= u+RT . Since u= u T for an ideal gas, h also must be a function of temperature alone.

We can obtain a relation between h and T by recalling once again that for a simple substance any

property can be expressed as a function of any two other independent properties, e.g., h= h υ, T as we

did for u, or h= h p,T . We choose the latter in order to develop a useful relation,

dh=
∂h

∂T p

dT +
∂h

∂p T

dp

Since the specific heat at constant pressure is defined as cp ≡ ∂h ∂T p,

dh= cp dT +
∂h

∂p T

dp

We have shown that for an ideal gas h is a function of T only. Consequently, ∂h ∂T T =0 and

dh= cp dT 12 3

Since h is a function of T alone, Eq. 12.3 requires that cp be a function of T only for an ideal gas.

Although specific heats for an ideal gas are functions of temperature, their difference is a constant

for each gas. To see this, from

h= u+RT

we can write

dh= du+RdT

Combining this with Eqs. 12.2 and 12.3, we can write

dh= cp dT = du+R dT = cυ dT +R dT

Then

cp−cυ =R 12 4

The ratio of specific heats is defined as

k≡
cp

cυ
12 5
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Using the definition of k, we can solve Eq. 12.4 for either cp or cυ in terms of k and R. Thus,

cp =
kR

k−1
12 6a

and

cν =
R

k−1
12 6b

Although the specific heats of an ideal gas may vary with temperature, for moderate temperature ranges

they vary only slightly, and can be treated as constant, so

u2−u1 =
u2

u1

du=
T2

T1

cυ dT = cυ T2−T1 12 7a

h2−h1 =
h2

h1

dh=
T2

T1

cp dT = cp T2−T1 12 7b

Data for Mm, cp, cυ, R, and k for common gases are given in Table A.6 of Appendix A.

We will find the property entropy to be extremely useful in analyzing compressible flows. State

diagrams, particularly the temperature-entropy Ts diagram, are valuable aids in the physical interpre-

tation of analytical results.

Entropy is defined by the equation

ΔS≡
rev

δQ

T
or dS=

δQ

T rev

12 8

where the subscript signifies reversible.

The inequality of Clausius, deduced from the second law, states that

δQ

T
≤ 0

As a consequence of the second law, we can write

dS≥
δQ

T
or T dS≥ δQ 12 9a

For reversible processes, the equality holds, and

T ds=
δQ

m
reversible process 12 9b

The inequality holds for irreversible processes, and

T ds>
δQ

m
irreversible process 12 9c

For an adiabatic process, δQ m=0. Thus

ds=0 reversible adiabatic process 12 9d

and

ds>0 irreversible adiabatic process 12 9e

Thus a process that is reversible and adiabatic is also isentropic; the entropy remains constant during the

process. Inequality 12.9e shows that entropy must increase for an adiabatic process that is irreversible.

Equations 12.9 show that any two of the restrictions—reversible, adiabatic, or isentropic—imply the

third. For example, a process that is isentropic and reversible must also be adiabatic.

A useful relationship among properties p,υ,T ,s,u can be obtained by considering the first and

second laws together. The result is the Gibbs, or T ds, equation

T ds= du+ p dν 12 10a
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This is a differential relationship among properties, valid for any process between any two equilibrium

states. An alternative form of Eq. 12.10a can be obtained by substituting

du= d h−pν = dh−p dν−ν dp

to obtain

T ds= dh−ν dp 12 10b

For an ideal gas, entropy change can be evaluated from the T ds equations as

ds=
du

T
+

p

T
dν= cν

dT

T
+R

dν

ν

ds=
dh

T
−
ν

T
dp= cp

dT

T
−R

dp

p

For constant specific heats, these equations can be integrated to yield

s2−s1 = cν ln
T2

T1
+R ln

ν2

ν1
12 11a

s2−s1 = c p ln
T2

T1
−R ln

p2

p1
12 11b

and also

s2−s1 = cν ln
p2

p1
+ cp ln

ν2

ν1
12 11c

Equation 12.11c can be obtained from either Eq. 12.11a or 12.11b using Eq. 12.4 and the ideal gas

equation, Eq. 12.1, written in the form pυ=RT , to eliminate T . Example 12.1 shows use of the above

governing equations (the T ds equations) to evaluate property changes during a process.

Example 12.1 PROPERTY CHANGES IN COMPRESSIBLE DUCT FLOW

Air flows through a long duct of constant area at 0 15 kg s. A short section of the duct is cooled by liquid nitrogen that surrounds

the duct. The rate of heat loss in this section is 15 0 kJ s from the air. The absolute pressure, temperature, and velocity entering the

cooled section are 188 kPa, 440 K, and 210 m s, respectively. At the outlet, the absolute pressure and temperature are 213 kPa

and 351 K. Compute the duct cross-sectional area and the changes in enthalpy, internal energy, and entropy for this flow.

Given: Air flows steadily through a short section of constant-area duct that is cooled by liquid nitrogen.

T1 =440 K

p1 =188 kPa abs

V1 =210 m s

1 2

CV
Flow

·

T2 =351 K

p2 =213 kPa abs
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Find: (a) Duct area.

(b) Δh.

(c) Δu.

(d) Δs.

Solution: The duct area may be found from the continuity equation.

Governing equations:

=0 1
∂

∂t CV

ρdV +
CV

ρV dA=0 4 12

Assumptions:

1 Steady flow.

2 Uniform flow at each section.

3 Ideal gas with constant specific heats.

Then

−ρ1V1A1 + ρ2V2A2 =0

or

m= ρ1V1A= ρ2V2A

since A=A1 =A2 = constant. Using the ideal gas relation, p= ρRT , we find

ρ1 =
p1

RT1
=1 88× 105

N

m2
×

kg K

287 N m
×

1

440 K
=1 49 kg m3

From continuity,

A=
m

ρ1V1

=0 15
kg

s
×

m3

1 49 kg
×

s

210 m
=4 79× 10−4 m2 A

For an ideal gas, the change in enthalpy is

Δh= h2−h1 =
T2

T1

cp dT = cp T2−T1 12 7b

Δh=1 00
kJ

kg K
× 351−440 K= −89 0 kJ kg

Δh

Also, the change in internal energy is

Δu= u2−u1 =
T2

T1

cν dT = cν T2−T1 12 7a

Δu=0 717
kJ

kg K
× 351−440 K= −63 8 kJ kg

Δu

The entropy change may be obtained from Eq. 12.11b,

Δs= s2−s1 = cp ln
T2

T1
−R ln

p2

p1

=1 00
kJ

kg K
× ln

351

440
−0 287

kJ

kg K
× ln

2 13× 105

1 88× 105

Δs= −0 262 kJ kg K
Δs

We see that entropy may decrease for a nonadiabatic process in which the gas

is cooled.

This problem illustrates the use of the
governing equations for computing prop-
erty changes of an ideal gas during a
process.
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For an ideal gas with constant specific heats, we can use Eqs. 12.11 to obtain relations valid for an

isentropic process. From Eq. 12.11a

s2−s1 =0= cν ln
T2

T1
+R ln

ν2

ν1

Then, using Eqs. 12.4 and 12.5,

T2

T1

ν2

ν1

R cν

=0 or T2ν
k−1
2 = T1ν

k−1
1 =Tνk−1 = constant

where states 1 and 2 are arbitrary states of the isentropic process. Using υ=1 ρ,

Tνk−1 =
T

ρk−1
= constant 12 12a

We can apply a similar process to Eqs. 12.11b and 12.11c, respectively, and obtain the following useful

relations:

Tp1−k k = constant 12 12b

pνk =
p

ρk
= constant 12 12c

Equations 12.12 are for an ideal gas undergoing an isentropic process. To complete our review of the

thermodynamic fundamentals, we evaluate the slopes of lines of constant pressure and of constant vol-

ume on the Ts diagram in Example 12.2.

Example 12.2 CONSTANT-PROPERTY LINES ON A Ts DIAGRAM

For an ideal gas, find the equations for lines of (a) constant volume and (b) constant pressure in the Ts plane.

Find: Equations for lines of (a) constant volume and (b) constant pressure in the Ts plane for an ideal gas.

Solution:

(a) We are interested in the relation between T and s with the volume ν held constant. This suggests use of Eq. 12.11a,

= 0

s2−s1 = cυ ln
T2

T1
+R ln

υ2

υ1

12 8

We relabel this equation so that state 1 is now reference state 0, and state 2 is an arbitrary state,

s−s0 = cν ln
T

T0
or T = T0e

s−s0 cν 1

Hence, we conclude that constant volume lines in the Ts plane are exponential.

(b) We are interested in the relation between T and swith the pressure p held constant. This suggests use of Eq. 12.11b, and using

a similar approach to case (a), we find

T = T0e
s−s0 cp 2

Hence, we conclude that constant pressure lines in the Ts plane are also exponential.
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12.2 Propagation of Sound Waves
Speed of Sound

The speed of sound, c, is an important property in compressible fluid flow. Flows with speeds less than

the speed of sound are called subsonic and those with speeds greater are called supersonic flows. The

behaviors of subsonic and supersonic flows are completely different. We will summarize some of the

important aspects of sub- and supersonic flows in this chapter. References [2] and [3] describe compress-

ible fluid flow behavior in more detail.

We have previously defined the Mach number M of a flow as

M ≡
V

c
12 13

where V is the speed of the fluid. The speed of sound is important in fluid mechanics because this is the

speed at which “signals” can travel through the medium. As an object moves, it generates disturbances

(infinitesimal pressure waves, which are sound waves) that emanate from the object in all directions.

These waves travel out at the speed of sound and cumulatively “signal” the air and redirect it around

the body as it approaches.

Consider propagation of a sound wave of infinitesimal strength into an undisturbed medium, as

shown in Fig. 12.1a. We are interested in relating the speed of wave propagation, c, to fluid property

changes across the wave. If pressure and density in the undisturbed medium ahead of the wave are

denoted by p and ρ, passage of the wave will cause them to undergo infinitesimal changes to become

p+ dp and ρ+ dρ. Since the wave propagates into a stationary fluid, the velocity ahead of the wave, Vx, is

zero. Themagnitude of the velocity behind the wave, Vx + dVx, then will be simply dVx; in Fig. 12.1a, the

direction of the motion behind the wave has been assumed to the left.

The flow of Fig. 12.1a appears unsteady to a stationary observer, viewing the wave motion from a

fixed point on the ground. However, the flow appears steady to an observer located on an inertial control

volume moving with a segment of the wave, as shown in Fig. 12.1b. The velocity approaching the con-

trol volume is then c, and the velocity leaving is c−dVx.

The basic equations may be applied to the differential control volume shown in Fig. 12.1b (we use

Vx for the x component of velocity to avoid confusion with internal energy, u).

What about the slope of these curves? Because cp > cv for all gases, we can see that the exponential, and therefore the slope, of

the constant pressure curve, Eq. 2, is smaller than that for the constant volume curve, Eq. 1.

This is shown in the sketch below:

Constant pressure

T
e
m

p
e
ra

tu
re

Entropy

Decreasing v

Increasing p

Constant volume

This problem illustrates use of governing
equations to explore relations among
properties.
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a. Continuity Equation
Governing equations:

= 0 1
∂

∂t CV

ρdV +
CS

ρV dA=0 4 12

Assumptions:

1 Steady flow.

2 Uniform flow at each section.

Then

−ρcA + ρ+ dρ c−dVx A =0 12 14a

or
≈0

−ρcA+ ρcA−ρ dVxA+ dρcA−dρ dVxA=0

or

dVx =
c

ρ
dρ 12 14b

b. Momentum Equation
Governing equation:

= 0 3 = 0 1

FSx +FBx
=

∂

∂t CV

VxρdV +
CS

VxρV dA
4 18a

Assumption:

3 FBx
=0

The only surface forces acting in the x direction on the control volume of Fig. 12.1b are due to pres-

sure. The upper and lower surfaces have zero friction because the areas are infinitesimal.

FSx = pA− p+ dp A= −Adp

Substituting into the governing equation gives

−Adp= c −ρcA + c−dVx ρ+ dρ c−dVx A

Stationary
observer

p
Vx  0

ρ  dρ

dVx

p  dp

 dρ

c  dVx

p  dp

ρ

ρ

p
c

ρ

c

Y

X

(a) Propagating wave

(b) Inertial control volume moving with wave, velocity c

y

x

Observer
on CV

Fig. 12.1 Propagating sound wave showing control volume chosen for analysis.
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Using the continuity equation (Eq. 12.14a), this reduces to

−Adp= c −ρcA + c−dVx ρcA = −c+ c−dVx ρcA

−Adp= −ρcAdVx

or

dVx =
1

ρc
dp 12 14c

Combining Eqs. 12.14b and 12.14c, we obtain

dVx =
c

ρ
dρ=

1

ρc
dp

from which

dp= c2 dρ

or

c2 =
dp

dρ
12 15

Equation 12.15 indicates that the speed of sound depends on how the pressure and density of the

medium are related. To obtain the speed of sound in a medium we could measure the time a sound wave

takes to travel a prescribed distance, or instead we could apply a small pressure change dp to a sample,

measure the corresponding density change dρ, and evaluate c from Eq. 12.15. For example, an incom-

pressible medium would have dρ=0 for any dp, so c ∞ . We can anticipate that solids and liquids

whose densities are difficult to change will have relatively high c values, and gases whose densities are

easy to change will have relatively low c values. For a simple substance, each property depends on any

two independent properties. For a sound wave, by definition we have an infinitesimal pressure change

(i.e., it is reversible), and it occurs very quickly, so there is no time for any heat transfer to occur (i.e., it is

adiabatic). Thus the sound wave propagates isentropically. Hence, if we express p as a function of den-

sity and entropy, p= p ρ,s , then

dp=
∂p

∂ρ s

dρ+
∂p

∂s ρ

ds=
∂p

∂ρ s

dρ

so Eq. 12.15 becomes

c2 =
dp

dρ
=
∂p

∂ρ s

and

c=
∂p

∂ρ s

12 16

We can now apply Eq. 12.16 to solids, liquids, and gases. For solids and liquids data are usually

available on the bulk modulus Eυ, which is a measure of how a pressure change affects a relative density

change,

Eν =
dp

dρ ρ
= ρ

dp

dρ

For these media

c= Eν ρ 12 17

For an ideal gas, the pressure and density in isentropic flow are related by

p

ρk
=constant 12 12c
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Taking logarithms and differentiating, we obtain

dp

p
−k

dρ

ρ
=0

Therefore,

∂p

∂ρ s

= k
p

ρ

But p ρ=RT , so finally

c= kRT 12 18

for an ideal gas. The speed of sound in air has been measured precisely by numerous investigators [4].

The results agree closely with the theoretical prediction of Eq. 12.18.

The important feature of sound propagation in an ideal gas, as shown by Eq. 12.18, is that the speed

of sound is a function of temperature only. Example 12.3 shows the use of Eqs. 12.17 and 12.18 in deter-

mining the speed of sound in different media.

Example 12.3 SPEED OF SOUND IN STEEL, WATER, SEAWATER, AND AIR

Find the speed of sound in (a) steel Eν≈200GN m2 , (b) water (at 20 C), (c) seawater (at 20 C), and (d) air at sea level on a

standard day.

Find: Speed of sound in (a) steel Eυ≈200 GN m2 , (b) water (at 20 C), (c) seawater (at 20 C), and (d) air at sea level on a

standard day.

Solution:

(a) For steel, a solid, we use Eq. 12.17, with ρ obtained from Table A.1(b),

c= Eυ ρ= Eυ SGρH2O

c= 200× 109
N

m2
×

1

7 83
×

1

1000

m3

kg
×
kg m

N s2
=5050 m s

csteel

(b) For water we also use Eq. 12.17, with data obtained from Table A.2,

c= Eν ρ= Eν SGρH2O

c= 2 24× 109
N

m2
×

1

0 998
×

1

1000

m3

kg
×
kg m

N s2
=1500 m s

cwater

(c) For seawater we again use Eq. 12.17, with data obtained from Table A.2,

c= Eν ρ= Eν SGρH2O

c= 2 42× 109
N

m2
×

1

1 025
×

1

1000

m3

kg
×
kg m

N s2
=1540 m s

cseawater

(d) For air we use Eq. 12.18, with the sea level temperature obtained from

Table A.3,

c= kRT

c= 1 4× 287
N m

kg K
×288 K×

kg m

N s2
=340 m s

cair 288 K

This problem illustrates the relative mag-
nitudes of the speed of sound in typical
solids, liquids, and gases
csolids > cliquids > cgases . Do not confuse the

speed of sound with the attenuation of
sound—the rate at which internal friction
of the medium reduces the sound level—
generally, solids and liquids attenuate
sound much more rapidly than do gases.
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Types of Flow—The Mach Cone

Flows for which M <1 are subsonic, while those with M >1 are supersonic. Flow fields that have both

subsonic and supersonic regions are termed transonic. The transonic regime occurs for Mach numbers

between about 0.9 and 1.2. Although most flows within our experience are subsonic, there are important

practical cases whereM ≥ 1 occurs in a flow field. Perhaps the most obvious are supersonic aircraft and

transonic flows in aircraft compressors and fans. Yet another flow regime, hypersonic flow M 5 , is of

interest in missile and reentry-vehicle design. Some important qualitative differences between subsonic

and supersonic flows can be deduced from the properties of a simple moving sound source.

Consider a point source of sound that emits a pulse everyΔt seconds. Each pulse expands outwards

from its origination point at the speed of sound c, so at any instant t the pulse will be a sphere of radius ct

centered at the pulse’s origination point. We want to investigate what happens if the point source itself is

moving. There are four possibilities, as shown in Fig. 12.2:

(a) V =0. The point source is stationary. Figure 12.2a shows conditions after 3Δt seconds. The first

pulse has expanded to a sphere of radius c 3Δt , the second to a sphere of radius c 2Δt , and

the third to a sphere of radius c Δt ; a new pulse is about to be emitted. The pulses constitute a

set of ever-expanding concentric spheres.

(b) 0<V < c. The point source moves to the left at subsonic speed. Figure 12.2b shows conditions after

3Δt seconds. The source is shown at times t=0,Δt,2Δt, and 3Δt. The first pulse has expanded to a

sphere of radius c 3Δt centered where the source was originally, the second to a sphere of radius

c 2Δt centered where the source was at timeΔt, and the third to a sphere of radius c Δt centered

where the source was at time 2Δt; a new pulse is about to be emitted. The pulses again constitute a

set of ever-expanding spheres, except now they are not concentric. The pulses are all expanding at

c Δt

c(2Δt)

c(3Δt)

c(3Δt)

c(3Δt)

V(3Δt)

(a) V = 0: stationary source

(c) V = c

V > c

(e) M > 1: the Mach cone

c(Δt)

V(Δt)

c(2Δt)

c(2Δt)

V(2Δt)

V(2Δt)

(b) V < c: Doppler shift

Locus of wave fronts

3
4

3

2 1

(d) V > c: supersonic motion

3 2 1

2 1

α

Outside cone:
unaware of sound

Inside cone:
aware of sound

Fig. 12.2 Propagation of sound waves from a moving source: The Mach cone.
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constant speed c. We make two important notes: First, we can see that an observer who is ahead of

the source (or whom the source is approaching) will hear the pulses at a higher frequency rate than

will an observer who is behind the source. This is the Doppler effect that occurs when a vehicle

approaches and passes. Second, an observer ahead of the source hears the source before the source

itself reaches the observer.

(c) V = c. The point source moves to the left at sonic speed. Figure 12.2c shows conditions after 3Δt

seconds. The source is shown at times t=0 (point 1), Δt (point 2), 2Δt (point 3), and 3Δt (point 4).

The first pulse has expanded to sphere 1 of radius c 3Δt centered at point 1, the second to sphere 2

of radius c 2Δt centered at point 2, and the third to sphere 3 of radius c Δt centered around the

source at point 3. We can see once more that the pulses constitute a set of ever-expanding spheres,

except now they are tangent to one another on the left. The pulses are all expanding at constant speed

c, but the source is also moving at speed c, with the result that the source and all its pulses are trav-

eling together to the left. We again make two important notes: First, we can see that an observer who

is ahead of the source will not hear the pulses before the source reaches the observer. Second, over

time an unlimited number of pulses will accumulate at the front of the source, leading to a sound

wave of unlimited amplitude.

(d) V > c. The point source moves to the left at supersonic speed. Figure 12.2d shows conditions after

3Δt seconds.We can see once more that the pulses constitute a set of ever-expanding spheres, except

now the source is moving so fast it moves ahead of each sphere that it generates. For supersonic

motion, the spheres generate what is called a Mach cone tangent to each sphere. In this case, an

observer who is ahead of the source will not hear the pulses until after the source passes the observer.

The region inside the cone is called the zone of action and that outside the cone the zone of silence, as

shown in Fig. 12.2e. From geometry, we see from Fig. 12.2d that

sinα=
c

V
=

1

M

or

α= sin−1 1

M
12 19

Figure 12.3 shows an image of an F/A–18 Hornet just as it accelerates to supersonic speed. The

visible vapor pattern is due to the sudden increase in pressure as a shock wave washes over the aircraft.

The Mach cone, which is not visible, emanates from the nose of the aircraft and passes through the

periphery of the vapor disk. In Example 12.4, the properties of the Mach cone are used in analyzing

a bullet trajectory.

C
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n
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e
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u
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A
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Fig. 12.3 An F/A–18 Hornet as it breaks the sound barrier.

472 Chapter 12 Introduction to Compressible Flow

www.konkur.in

Telegram: @uni_k



12.3 Reference State: Local Isentropic Stagnation Properties
In our study of compressible flow, we will discover that, in general, all properties p, T , ρ, u, s, V may

be changing as the flow proceeds. We need to obtain reference conditions that we can use to relate con-

ditions in a flow from point to point. For any flow, a reference condition is obtained when the fluid

is brought to rest either in reality or conceptually. We will call this the stagnation condition, and the

property values p0, T0, ρ0, u0, h0, s0 at this state the stagnation properties. The stagnation state is

defined by an isentropic process, in which there is no friction, no heat transfer, and no “violent” events.

Hence, the properties we obtain will be the local isentropic stagnation properties and, each point in the

flow will have its own, or local, isentropic stagnation properties. This is illustrated in Fig. 12.4, showing

a flow from some state to some new state . The local isentropic stagnation properties for each state,

Example 12.4 MACH CONE OF A BULLET

In tests of a protective material, we wish to photograph a bullet as it

impacts a jacket made of the material. A camera is set up a perpendicular

distance h=5m from the bullet trajectory. We wish to determine the

perpendicular distance d from the target plane at which the camera must

be placed such that the sound of the bullet will trigger the camera at the

impact time. Note: The bullet speed is measured to be 550 m s; the delay

time of the camera is 0.005 s.

Find: Location of camera for capturing impact image.

Solution: The correct value of d is that for which the bullet hits the target 0.005 s before theMach wave reaches the camera.We

must first find the Mach number of the bullet; then we can find the Mach angle; finally, we can use basic trigonometry to find d.

Assuming sea level conditions, from Table A.3 we have T = 288 K. Hence Eq. 12.18 yields

c= kRT

c= 1 4× 287
N m

kg K
×288 K×

kg m

N s2
=340 m s

Then we can find the Mach number,

M =
V

c
=
550 m s

340 m s
= 1 62

From Eq. 12.19 we can next find the Mach angle,

α= sin−1 1

M
= sin−1 1

1 62
= 38 2

The distance x traveled by the bullet while the Mach wave reaches the camera is then

x=
h

tan α
=

5m

tan 38 2
= 6 35 m

Finally, we must add to this the time traveled by the bullet while the camera is operating, which is 0 005 s × 550 m s,

d=0 005 s ×
550 m

s
+ 6 35 m=2 75 m+6 35 m

d=9 10 m
d

h = 5 m

Bullet trajectory

d
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obtained by isentropically bringing the fluid to rest, are also shown. Hence, s01 = s1 and s02 = s2. If the

flow is isentropic, s1 = s2 = s01 = s02 , so the stagnation states are identical; if it is not isentropic, then

s01 s02 . We will see that changes in local isentropic stagnation properties will provide useful informa-

tion about the flow.

We can obtain information on the reference isentropic stagnation state for incompressible flows

by recalling the Bernoulli equation from Chapter 6

p

ρ
+
V2

2
+ gz= constant 6 8

valid for a steady, incompressible, frictionless flow along a streamline. Equation 6.8 is valid for an

incompressible isentropic process because it is reversible (frictionless and steady) and adiabatic. As

we saw in Section 6.2, the Bernoulli equation leads to

p0 = p+
1

2
ρV2 6 11

The gravity term drops out because we assume the reference state is at the same elevation as the actual

state, and in any event in external flows it is usually much smaller than the other terms. In Example 12.6

we compare isentropic stagnation conditions obtained assuming incompressibility (Eq. 6.11), and allow-

ing for compressibility.

Local Isentropic Stagnation Properties for the Flow of an Ideal Gas

For a compressible flow we can derive the isentropic stagnation relations by applying the mass con-

servation and momentum equations to a differential control volume, and then integrating. For the

process shown schematically in Fig. 12.4, we can depict the process from state to the corresponding

stagnation state by imagining the control volume shown in Fig. 12.5. Consider first the continuity

equation.

p1, T1,   1, u1, h1, s1, V1ρ
p2, T2,   2, u2, h2, s2, V2ρ

p01
, T01

,   01
, u01

, h01
, s01

= s1, V = 0ρ
p02

, T02
,   02

, u02
, h02

, s02
= s2, V = 0ρ

Isentropic processes

Actual flow
(isentropic or not)

1

2

Fig. 12.4 Local isentropic stagnation properties.

y

x

01

CV Stream tube

V = 0
  p = p0

  T = T0

dx

dRx

   + d  

Vx + dVx

A + dA

p + dp

T + dT

ρρ ρ

Vx

A

p

T

Flow

Fig. 12.5 Compressible flow in an infinitesimal stream tube.
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a. Continuity Equation
Governing equation:

= 0 1
∂

∂t CV

ρdV +
CS

ρV dA=0 4 12

Assumptions:

1 Steady flow.

2 Uniform flow at each section.

Then

−ρVxA + ρ+ dρ Vx + dVx A+ dA =0

or

ρVxA= ρ+ dρ Vx + dVx A+ dA 12 20a

b. Momentum Equation
Governing equation:

= 0 3 = 0 1

FSx +FBx
=

∂

∂t CV

VxρdV +
CS

VxρV dA
4 18a

Assumptions:

3 FBx
=0

4 Frictionless flow.

The surface forces acting on the infinitesimal control volume are

FSx = dRx + pA− p+ dp A+ dA

The force dRx is applied along the stream tube boundary, as shown in Fig. 12.5, where the average pres-

sure is p+ dp 2, and the area component in the x direction is dA. There is no friction. Thus,

FSx = p+
dp

2
dA+ pA− p+ dp A+ dA

or

≈0 ≈0

FSx = pdA+
dp dA

2
+ pA−pA−dpA−pdA−dpdA = −dpA

Substituting this result into the momentum equation gives

−dp A=Vx −ρVxA + Vx + dVx ρ+ dρ Vx + dVx A+ dA

which may be simplified using Eq. 12.20a to obtain

−dp A= −Vx +Vx + dVx ρVxA

Finally,

dp= −ρVxdVx = −ρd
V2
x

2

or

dp

ρ
+ d

V2
x

2
= 0 12 20b
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Equation 12.20b is a relation among properties during the deceleration process. In developing this rela-

tion, we have specified a frictionless deceleration process. Before we can integrate between the initial

state and final stagnation state, we must specify the relation that exists between pressure, p, and density,

ρ, along the process path.

Since the deceleration process is isentropic, then p and ρ for an ideal gas are related by the

expression

p

ρk
= constant 12 12c

Along the stagnation streamline there is only a single component of velocity; Vx is the magnitude of the

velocity. Hence we can drop the subscript in Eq. 12.20b.

From p ρk = constant =C, we can write

p=Cρk and ρ= p1 kC−1 k

Then, from Eq. 12.20b,

−d
V2

2
=
dp

ρ
= p−1 kC1 kdp

We can integrate this equation between the initial state and the corresponding stagnation state

−

0

V

d
V2

2
=C1 k

p0

p

p−1 kdp

to obtain

V2

2
=C1 k k

k−1
p k−1 k

p0

p
=C1 k k

k−1
p

k−1 k

0 −p k−1 k

V2

2
=C1 k k

k−1
p k−1 k p0

p

k−1 k

−1

Since C1 k = p1 k ρ,

V2

2
=

k

k−1

p1 k

ρ
p k−1 k p0

p

k−1 k

−1

V2

2
=

k

k−1

p

ρ

p0

p

k−1 k

−1

Since we seek an expression for stagnation pressure, we can rewrite this equation as

p0

p

k−1 k

=1+
k−1

k

ρ

p

V2

2

and

p0

p
= 1+

k−1

k

ρV2

2p

k k−1

For an ideal gas, p= ρRT , and hence

p0

p
= 1+

k−1

2

V2

kRT

k k−1

Also, for an ideal gas the sonic speed is c= kRT , and thus

p0

p
= 1+

k−1

2

V2

c2

k k−1

p0

p
= 1+

k−1

2
M2

k k−1

12 21a
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Equation 12.21a enables us to calculate the local isentropic stagnation pressure at any point in a flow

field of an ideal gas, provided that we know the static pressure and Mach number at that point.

We can readily obtain expressions for other isentropic stagnation properties by applying the relation

p

ρk
=constant

between end states of the process. Thus

p0

p
=

ρ0

ρ

k

and
ρ0

ρ
=

p0

p

1 k

For an ideal gas, then,

T0

T
=
p0

p

ρ

ρ0
=
p0

p

p0

p

−1 k

=
p0

p

k−1 k

Using Eq. 12.21a, we can summarize the equations for determining local isentropic stagnation properties

of an ideal gas as

p0

p
= 1+

k−1

2
M2

k k−1

12 21a

T0

T
=1+

k−1

2
M2 12 21b

ρ0

ρ
= 1+

k−1

2
M2

1 k−1

12 21c

From Eqs. 12.21, the ratio of each local isentropic stagnation property to the corresponding static prop-

erty at any point in a flow field for an ideal gas can be found if the local Mach number is known. We will

usually use Eqs. 12.21 in lieu of the continuity and momentum equations for relating the properties at a

state to that state’s stagnation properties, but it is important to remember that we derived Eqs. 12.21 using

these equations and the isentropic relation for an ideal gas. Appendix D.1 lists flow functions for prop-

erty ratios T0 T ,p0 p, and ρ0 ρ, in terms of M for isentropic flow of an ideal gas. A table of values, as

well as a plot of these property ratios is presented for air k=1 4 for a limited range of Mach numbers.

The calculation procedure is illustrated in Example 12.5. The Mach number range for validity of the

assumption of incompressible flow is investigated in Example 12.6.

Example 12.5 LOCAL ISENTROPIC STAGNATION CONDITIONS IN CHANNEL FLOW

Air flows steadily through the duct shown from 350 kPa (abs), 60 C, and 183 m s at the inlet

state to M =1 3 at the outlet, where local isentropic stagnation conditions are known to be

385 kPa (abs) and 350 K. Compute the local isentropic stagnation pressure and temperature

at the inlet and the static pressure and temperature at the duct outlet. Locate the inlet and outlet

static state points on a Ts diagram, and indicate the stagnation processes.

Given: Steady flow of air through a duct as shown in the sketch.

Flow

1 2

p02
 = 385 kPa (abs)

T02
 = 350 K

M2 = 1.3

p1 = 350 kPa (abs)

T1 = 60°C

V1 = 183 m/s

Flow

OutletInlet
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Find: (a) p01 .

(b) T01 .

(c) p2.

(d) T2.

(e) State points and on a Ts diagram; indicate the stagnation processes.

Solution: To evaluate local isentropic stagnation conditions at section , we must calculate the Mach number, M1 =V1 c1.

For an ideal gas, c= kRT . Then

c1 = kRT1 = 1 4× 287
N m

kg K
× 273+ 60 K×

kg m

N s2

1 2

=366 m s

and

M1 =
V1

c1
=
183

366
= 0 5

Local isentropic stagnation properties can be evaluated from Eqs. 12.21. Thus

p01 = p1 1+
k−1

2
M2

1

k k−1

=350 kPa 1+ 0 2 0 5
2 3 5

=415 kPa abs
p01

T01 = T1 1+
k−1

2
M2

1 =333 K 1+ 0 2 0 5
2
=350 K

T01

At section , Eqs. 12.21 can be applied again. Thus from Eq. 12.21a,

p2 =
p02

1+
k−1

2
M2

2

k k−1
=

385 kPa

1+ 0 2 1 3
2 3 5

=139 kPa abs
p2

From Eq. 12.21b,

T2 =
T02

1+
k−1

2
M2

2

=
350 K

1+0 2 1 3
2
=262 K

T2

To locate states and in relation to one another, and sketch the stagnation processes on the Ts diagram, we need to find the

change in entropy s2−s1. At each state we have p and T , so it is convenient to use Eq. 12.11b,

s2−s1 = cp ln
T2

T1
−R ln

p2

p1

=1 00
kJ

kg K
× ln

262

333
−0 287

kJ

kg K
× ln

139

350

s2−s1 =0 0252 kJ kg K

Hence in this flow we have an increase in entropy. Perhaps there is irreversibility (e.g., friction), or heat is being added, or both.

(We will see in Chapter 13 that the fact that T01 = T02 for this particular flow means that actually we have an adiabatic flow.) We

also found that T2 <T1 and that p2 < p1. We can now sketch the Ts diagram, and as we saw in Example 12.2 that isobars (lines of

constant pressure) in Ts space are exponential.

Isentropic processes

T

T1

T2

T01
 = T02

p = p1
p = p2

s

State 1

State 2

p01
p02

This problem illustrates use of the local
isentropic stagnation properties
(Eqs. 12.21) to relate different points
in a flow.
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Example 12.6 MACH-NUMBER LIMIT FOR INCOMPRESSIBLE FLOW

We have derived equations for p0 p for both compressible and incompressible flows. By writing both equations in terms ofMach

number, compare their behavior. Find the Mach number below which the two equations agree within engineering accuracy.

Given: The incompressible and compressible forms of the equations for stagnation pressure, p0.

Incompressible p0 = p+
1

2
ρV2 6 11

Compressible
p0

p
= 1+

k−1

2
M2

k k−1

12 21a

Find: (a) Behavior of both equations as a function of Mach number.

(b) Mach number below which calculated values of p0 p agree within engineering accuracy.

Solution: First, let us write Eq. 6.11 in terms of Mach number. Using the ideal gas equation of state and c2 = kRT ,

p0

p
=1+

ρV2

2p
=1+

V2

2RT
=1+

kV2

2kRT
=1+

kV2

2c2

Thus,
p0

p
=1+

k

2
M2 1

for “incompressible” flow.

Equation 12.21a may be expanded using the binomial theorem,

1+ x
n
=1+ nx+

n n−1

2
x2 + , x <1

ForEq. 12.21a, x= k−1 2 M2, and n= k k−1 . Thus the series converges for k−1 2 M2 <1, and for compressible flow,

p0

p
=1+

k

k−1

k−1

2
M2 +

k

k−1

k

k−1
−1

1

2

k−1

2
M2

2

+
k

k−1

k

k−1
−1

k

k−1
−2

1

3

k−1

2
M2

3

+

=1+
k

2
M2 +

k

8
M4 +

k 2−k

48
M6 +

p0

p
=1+

k

2
M2 1+

1

4
M2 +

2−k

24
M4 +

2

In the limit, as M 0, the term in brackets in Eq. 2 approaches 1.0. Thus, for flow at low Mach number, the incompressible

and compressible equations give the same result. The variation of p0 p with Mach number is shown below. As Mach number is

increased, the compressible equation gives a larger ratio, p0 p.

Compressible
Eq. 12.21a

Incompressible
Eq. 6.11
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12.4 Critical Conditions
Stagnation conditions are useful as reference conditions for thermodynamic properties. A useful refer-

ence value for velocity is the critical speed, which is the speed V we attain when a flow is either accel-

erated or decelerated isentropically untilM =1. Even if there is no point in a given flow field where the

Mach number is equal to unity, such a hypothetical condition still is useful as a reference condition.

Using asterisks to denote conditions at M =1, by definition

V ≡ c

At critical conditions, Eqs. 12.21 for isentropic stagnation properties become

p0

p
=

k+1

2

k k−1

12 22a

T0

T
=
k+1

2
12 22b

ρ0

ρ
=

k+1

2

1 k−1

12 22c

The critical speed may be written in terms of either critical temperature, T∗, or isentropic stagnation

temperature, T0.

For an ideal gas, c = kRT , and thus V = kRT . Since, from Eq. 12.22b,

T =
2

k+1
T0

we have

V = c =
2k

k+1
RT0 12 23

We shall use both stagnation conditions and critical conditions as reference conditions when we

consider a variety of compressible flows.

12.5 Basic Equations for One-Dimensional Compressible Flow
We will develop general equations for a one-dimensional flow that express the basic laws mass conser-

vation (continuity),momentum, the first law of thermodynamics, the second law of thermodynamics, and

an equation of state. To do so, we will use the fixed control volume shown in Fig. 12.6. We initially

assume that the flow is affected by area change, friction, and heat transfer. Then, for each individual

phenomenon we will simplify the equations to obtain useful results.

As shown in Fig. 12.6, the properties at sections and are labeled with corresponding subscripts.

Rx is the x component of surface force from friction and pressure on the sides of the channel. There will

also be surface forces from pressures at surfaces and . Note that the x component of body force is

zero, so it is not shown. Q is the heat transfer.

Equations 1 and 2 may be compared quantitatively most simply by writing

p0

p
−1=

k

2
M2

“incompressible”

p0

p
−1=

k

2
M2 1+

1

4
M2 +

2−k

24
M4 + compressible
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Continuity Equation

Basic equation:

= 0 1
∂

∂t CV

ρ dV +
CS

ρV dA=0 4 12

Assumptions:

1 Steady flow.

2 One-dimensional flow.

Then

−ρ1V1A1 + ρ2V2A2 =0

or

ρ1V1A1 = ρ2V2A2 = ρVA=m= constant 12 24a

Momentum Equation

Basic equation:

= 0 3 =0 1

FSx +FBx
=

∂

∂t CV

VxρdV +
CS

VxρV dA
4 18a

Assumption:

3 FBx
=0

The surface force is caused by pressure forces at surfaces and , and by the friction and distributed

pressure force, Rx, along the channel walls. Substituting gives

Rx + p1A1−p2A2 =V1 −ρ1V1A1 +V2 ρ2V2A2

Using continuity, we obtain

Rx + p1A1−p2A2 =mV2−mV1 12 24b

First Law of Thermodynamics

Basic equation:

Q−W s−W shear−W other =
∂

∂t CV

eρdV +
CS

e+ pυ ρV dA 4 56

Rx

Flow

CV

x

y

T2

p2

A2

V2

  2ρ

T1

p1

A1

V1

  1ρ
Q

•

Fig. 12.6 Control volume for analysis of a general one-dimensional flow.
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where

0 6

e= u+
V2

2
+ gz

Assumptions:

4 W s =0.

5 W shear =Wother =0.

6 Effects of gravity are negligible.

Note that even if we have friction, there is no friction work at the walls because with friction the velocity

at the walls must be zero from the no-slip condition. Under these assumptions, the first law reduces to

Q= u1 + p1ν1 +
V2
1

2
−ρ1V1A1 + u2 + p2ν2 +

V2
2

2
ρ2V2A2

This can be simplified by using h≡ u+ pν, and continuity (Eq. 12.24a),

Q=m h2 +
V2
2

2
− h1 +

V2
1

2

We can write the heat transfer on a per unit mass rather than per unit time basis:

δQ

dm
=

1

m
Q

so

δQ

dm
+ h1 +

V2
1

2
= h2 +

V2
2

2
12 24c

Equation 12.24c expresses the fact that heat transfer changes the total energy (the sum of thermal energy

h, and kinetic energy V2 2) of the flowing fluid. This combination, h+V2 2, occurs often in compress-

ible flow, and is called the stagnation enthalpy, h0. This is the enthalpy obtained if a flow is brought

adiabatically to rest.

Hence, Eq. 12.24c can also be written

δQ

dm
= h02 −h01

We see that heat transfer causes the stagnation enthalpy, and hence, stagnation temperature, T0, to

change.

Second Law of Thermodynamics

Basic equation:

= 0 1

∂

∂t CV

s ρdV +
CS

s ρV dA≥
CS

1

T

Q

A
dA

4 58

or

s1 −ρ1V1A1 + s2 ρ2V2A2 ≥
CS

1

T

Q

A
dA

and, again using continuity,

m s2−s1 ≥
CS

1

T

Q

A
dA 12 24d
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Equation of State

The equation of state for a simple substance can be expressed as a function of any two other indepen-

dent properties. For example, we could write h= h s,p , or ρ= ρ s,p , and so on. We will primarily

be concerned with ideal gases with constant specific heats, and for these we can write Eqs. 12.1 and

12.7b (renumbered for convenient use in this section),

p= ρRT 12 24e

and

Δh= h2−h1 = cpΔT = cp T2−T1 12 24f

For ideal gases with constant specific heats, the change in entropy, Δs= s2−s1, for any process can be

computed from any of Eqs. 12.11. For example, Eq. 12.11b (renumbered here for convenience) is

Δs= s2−s1 = cp ln
T2

T1
−R ln

p2

p1
12 24g

We now have a basic set of equations for analyzing one-dimensional compressible flows of an ideal gas

with constant specific heats:

ρ1V1A1 = ρ2V2A2 = ρVA=m= constant 12 24a

Rx + p1A1−p2A2 =mV2−mV1 12 24b

δQ

dm
+ h1 +

V2
1

2
= h2 +

V2
2

2
12 24c

m s2−s1 ≥
CS

1

T

Q

A
dA 12 24d

p= ρRT 12 24e

Δh= h2−h1 = cpΔT = cp T2−T1 12 24f

Δs= s2−s1 = cp ln
T2

T1
−R ln

p2

p1
12 24g

Note that Eq. 12.24e applies only if we have an ideal gas; Equations 12.24f and 12.24g apply only if we

have an ideal gas with constant specific heats. We can simplify this set of equations for each of the phe-

nomena that can affect the flow:

• Flow with varying area.

• Normal shock.

• Flow in a channel with friction.

• Flow in a channel with heating or cooling.

12.6 Isentropic Flow of an Ideal Gas: Area Variation
The first phenomenon is one in which the flow is changed only by area variation without heat transfer,

friction, or shocks. The absence of heat transfer, friction, and shocks means the flow will be reversible

and adiabatic, so Eq. 12.24d becomes

m s2−s1 =
CS

1

T

Q

A
dA=0

or

Δs= s2−s1 =0
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so such a flow is isentropic. This means that Eq. 12.24g leads to the result we saw previously,

T1p
1−k k

1 = T2p
1−k k

2 = Tp 1−k k = constant 12 12b

or its equivalent, which can be obtained by using the ideal gas equation of state in Eq. 12.12b to eliminate

temperature,

p1

ρk1
=
p2

ρk2
=

p

ρk
= constant 12 12c

Hence, the basic set of equations (Eqs. 12.24) becomes:

ρ1V1A1 = ρ2V2A2 = ρVA=m=constant 12 25a

Rx + p1A1−p2A2 =mV2−mV1 12 25b

h01 = h1 +
V2
1

2
= h2 +

V2
2

2
= h02 = h0 12 25c

s2 = s1 = s 12 25d

p= ρRT 12 25e

Δh= h2−h1 = cpΔT = cp T2−T1 12 25f

p1

ρk1
=
p2

ρk2
=

p

ρk
= constant 12 25g

Equations 12.25c, 12.25d, and 12.25f provide insight into how this process appears on an hs diagram and

on a Ts diagram. From Eq. 12.25c, the total energy, or stagnation enthalpy h0, of the fluid is constant; the

enthalpy and kinetic energy may vary along the flow, but their sum is constant. This means that if the

fluid accelerates, its temperature must decrease, and vice versa. Equation 12.25d indicates that the

entropy remains constant. These results are shown for a typical process in Fig. 12.7.

Equation 12.25f indicates that the temperature and enthalpy are linearly related; hence, processes

plotted on a Ts diagram will look very similar to that shown in Fig. 12.7 except for the vertical scale.

Equations 12.25 could be used to analyze isentropic flow in a channel of varying area. For example,

if we know conditions at section (i.e., p1, ρ1, T1, s1, h1, V1, and A1) we could use these equations to

find conditions at some new section where the area is A2. We would have seven equations and seven

unknowns (p2, ρ2, T2, s2, h2, V2, and Rx).

We can gain insight into the isentropic process by reviewing the results we obtained previously

when we analyzed a differential control volume (Fig. 12.5). The momentum equation for this was

dp

ρ
+ d

V2

2
= 0 12 20b

Then

dp= −ρV dV

h

s

h0

h1

h2

Reference
state Kinetic

energy of
state

State

p = const

1
1

Thermal
energy of
state 1State 2

Kinetic
energy of
state 2

Thermal
energy of
state 2

Total
energy
h0 of all
states

Fig. 12.7 Isentropic flow in the hs plane.
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Dividing by ρV2, we obtain

dp

ρV2
= −

dV

V
12 26

A convenient differential form of the continuity equation can be obtained from Eq. 12.25a, in the form

ρAV = constant

Differentiating and dividing by ρAV yields

dρ

ρ
+
dA

A
+
dV

V
=0 12 27

Solving Eq. 12.27 for dA A gives

dA

A
= −

dV

V
−
dρ

ρ

Substituting from Eq. 12.26 gives

dA

A
=

dp

ρV2
−
dρ

ρ

or

dA

A
=

dp

ρV2
1−

V2

dp dρ

Now recall that for an isentropic process, dp dρ= ∂p ∂ρ s = c2, so

dA

A
=

dp

ρV2
1−

V2

c2
=

dp

ρV2
1−M2

or

dp

ρV2
=
dA

A

1

1−M2
12 28

Substituting from Eq. 12.26 into Eq. 12.28, we obtain

dV

V
= −

dA

A

1

1−M2
12 29

Note that for an isentropic flow there can be no friction. Equations 12.28 and 12.29 confirm that for this

case, from a momentum point of view we expect an increase in pressure to cause a decrease in speed, and

vice versa. Although we cannot use them for computations because we have not so far determined

how M varies with A, Eqs. 12.28 and 12.29 give us insights into how the pressure and velocity change

as we change the area of the flow. Three possibilities are discussed below.

Subsonic Flow, M< 1

For M <1, the factor 1 1−M2 in Eqs. 12.28 and 12.29 is positive, so that a positive dA leads to a

positive dp and a negative dV . These mathematical results mean that in a divergent section dA>0

the flow must experience an increase in pressure dp>0 and the velocity must decrease dV <0 .

Hence a divergent channel is a subsonic diffuser that decelerates a flow.

On the other hand, a negative dA leads to a negative dp and a positive dV . These mathematical

results mean that in a convergent section dA<0 the flow must experience a decrease in pressure

dp<0 and the velocity must increase dV >0 . Hence a convergent channel is a subsonic nozzle that

accelerates a flow.

These results are consistent with our everyday experience. For example, recall the venturi meter in

Chapter 8, in which a reduction in area at the throat of the venturi led to a local increase in velocity, and
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because of the Bernoulli principle, to a pressure drop, and the divergent section led to pressure recovery

and flow deceleration. The subsonic diffuser and nozzle are also shown in Fig. 12.8.

Supersonic Flow, M> 1

For M >1, the factor 1 1−M2 in Eqs. 12.28 and 12.29 is negative, so that a positive dA leads to a

negative dp and a positive dV . These mathematical results mean that in a divergent section dA>0

the flow must experience a decrease in pressure dp<0 and the velocity must increase dV >0 . Hence

a divergent channel is a supersonic nozzle.

On the other hand, a negative dA leads to a positive dp and a negative dV . These mathematical

results mean that in a convergent section dA<0 the flow must experience an increase in pressure

dp>0 and the velocity must decrease dV <0 . Hence a convergent channel is a supersonic diffuser.

These results are inconsistent with our everyday experience the opposite of what we saw in the ven-

turi meter. The supersonic nozzle and diffuser are also shown in Fig. 12.8.

These somewhat counterintuitive results can be understood when we realize that we are used to

assuming that ρ= constant, but we are now in a flow regime where the fluid density is a function of

flow conditions. From Eq. 12.27,

dV

V
= −

dA

A
−
dρ

ρ

For example, in a supersonic diverging flow (dA positive) the flow actually accelerates (dV also positive)

because the density drops sharply (dρ is negative and large, with the net result that the right side of the

equation is positive).

Sonic Flow, M= 1

Aswe approachM =1, from either a subsonic or supersonic state, the factor 1 1−M2 in Eqs. 12.28 and

12.29 approaches infinity, implying that the pressure and velocity changes also approach infinity. This is

obviously unrealistic, so we must look for some other way for the equations to make physical sense. The

only way we can avoid these singularities in pressure and velocity is if we require that dA 0 asM 1.

Hence, for an isentropic flow, sonic conditions can only occur where the area is constant. We can imag-

ine approachingM =1 from either a subsonic or a supersonic state. A subsonic flow M <1 would need

to be accelerated using a subsonic nozzle, which we have learned is a converging section; a supersonic

flow M >1 would need to be decelerated using a supersonic diffuser, which is also a converging sec-

tion. Hence, sonic conditions are limited not just to a location of constant area, but one that is a minimum

area. The important result is that for isentropic flow the sonic condition M =1 can only be attained at a

throat, or section of minimum area.

Flow

Flow

Flow

Flow

Flow regime

Subsonic
M < 1

Supersonic
M > 1

Nozzle

dp < 0
dV > 0

dp > 0
dV < 0

Diffuser

Fig. 12.8 Nozzle and diffuser shapes as a function of initial Mach number.
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We can see that to isentropically accelerate a fluid from rest to supersonic speed we would need to

have a subsonic nozzle (converging section) followed by a supersonic nozzle (diverging section), with

M =1 at the throat. This device is called a converging-diverging nozzle (C-D nozzle). Of course, to cre-

ate a supersonic flow we need more than just a C-D nozzle: We must also generate and maintain a pres-

sure difference between the inlet and exit.

We must be careful in our discussion of isentropic flow, especially deceleration, because real

fluids can experience nonisentropic phenomena such as boundary-layer separation and shock waves.

In practice, supersonic flow cannot be decelerated to exactly M =1 at a throat because sonic flow near

a throat is unstable in a rising (adverse) pressure gradient. It turns out that disturbances that are always

present in a real subsonic flow propagate upstream, disturbing the sonic flow at the throat, causing shock

waves to form and travel upstream, where they may be disgorged from the inlet of the supersonic

diffuser.

The throat area of a real supersonic diffuser must be slightly larger than that required to reduce the

flow to M =1. Under the proper downstream conditions, a weak normal shock forms in the diverging

channel just downstream from the throat. Flow leaving the shock is subsonic and decelerates in the diver-

ging channel. Thus deceleration from supersonic to subsonic flow cannot occur isentropically in prac-

tice, since the weak normal shock causes an entropy increase. Normal shocks will be analyzed in

Section 12.7.

For accelerating flows (favorable pressure gradients), the idealization of isentropic flow is generally

a realistic model of the actual flow behavior. For decelerating flows, the idealization of isentropic flow

may not be realistic because of the adverse pressure gradients and the attendant possibility of flow sep-

aration, as discussed for incompressible boundary-layer flow in Chapter 9.

Reference Stagnation and Critical Conditions
for Isentropic Flow of an Ideal Gas

As we discussed at the beginning of this section, in principle we could use Eqs. 12.25 to analyze one-

dimensional isentropic flow of an ideal gas, but the computations would be somewhat tedious. Instead,

because the flow is isentropic, we can use the results of Sections 12.3 (reference stagnation conditions)

and 12.4 (reference critical conditions). The idea is illustrated in Fig. 12.9: Instead of using Eqs. 12.25 to

compute, for example, properties at state from those at state , we can use state to determine two

reference states (the stagnation state and the critical state), and then use these to obtain properties at state

. We need two reference states because the reference stagnation state does not provide area

information.

We will use Eqs. 12.21 (renumbered for convenience),

p0

p
= 1+

k−1

2
M2

k k−1

12 30a

T0

T
=1+

k−1

2
M2 12 30b

Reference stagnation state

Reference critical state

State

T0

T1

T2

T*

T

s

1

State      to
stagnation state

to state     

1

State 2

2

State      to
critical state
to state     

1

2 Fig. 12.9 Example of stagnation and critical
reference states in the Ts plane.
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ρ0

ρ
= 1+

k−1

2
M2

1 k−1

12 30c

We note that the stagnation conditions are constant throughout the isentropic flow. The critical condi-

tions (M =1) were related to stagnation conditions in Section 12.4,

p0

p
=

k+1

2

k k−1

12 22a

T0

T∗
=
k+1

2
12 22b

ρ0

ρ∗
=

k+1

2

1 k−1

12 22c

V = c =
2k

k+1
RT0 12 23

Although a particular flow may never attain sonic conditions, as in the example in Fig. 12.9, we will

still find the critical conditions useful as reference conditions. Equations 12.30a, 12.30b, and 12.30c

relate local properties (p, ρ, T , and V) to stagnation properties (p0, ρ0, and T0) via the Mach number

M, and Eqs. 12.22 and 12.23 relate critical properties (p , ρ , T , and V ) to stagnation properties

(p0, ρ0, and T0) respectively, but we have yet to obtain a relation between areas A and A . To do this

we start with continuity (Eq. 12.25a) in the form

ρAV = constant = ρ A V∗

Then
A

A
=
ρ

ρ

V

V
=
ρ

ρ

c

Mc
=

1

M

ρ

ρ

T

T

A

A
=

1

M

ρ

ρ0

ρ0

ρ

T T0

T T0

A

A∗
=

1

M

1+
k−1

2
M2

1 k 1

k+1

2

1 k−1

1+
k−1

2
M2

k+1

2

1 2

A

A
=

1

M

1+
k−1

2
M2

k+1

2

k+1 2 k−1

12 30d

Equations 12.30 form a set that is convenient for analyzing isentropic flow of an ideal gas with

constant specific heats, which we usually use instead of the basic equations, Eqs. 12.25. For convenience

we list Eqs. 12.30 together:

p0

p
= 1+

k−1

2
M2

k k−1

12 30a

T0

T
=1+

k−1

2
M2 12 30b

ρ0

ρ
= 1+

k−1

2
M2

1 k−1

12 30c

A

A
=

1

M

1+
k−1

2
M2

k+1

2

k+1 2 k−1

12 30d
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Equations 12.30 provide property relations in terms of the local Mach number, the stagnation con-

ditions, and critical conditions. These equations are readily programmed (e.g. [5] and [6]). While they are

somewhat complicated algebraically, they have the advantage over the basic equations, Eq. 12.25, that

they are not coupled. Each property can be found directly from its stagnation value and the Mach

number.

Equation 12.30d shows the relation betweenMach numberM and area A. The critical area A∗ is used

to normalize area A. For each Mach numberM we obtain a unique area ratio, but as shown in Fig 12.10

each A A ratio (except 1) has two possible Mach numbers—one subsonic, the other supersonic. The

shape shown in Fig. 12.10 looks like a converging-diverging section for accelerating from a subsonic to

a supersonic flow (with, as necessary, M =1 only at the throat), but in practice this is not the shape

to which such a passage would be built. For example, the diverging section usually will have a much

less severe angle of divergence to reduce the chance of flow separation.

Appendix D.1 lists flow functions for property ratios T0 T , p0 p, ρ0 ρ, and A A∗ in terms ofM for

isentropic flow of an ideal gas. A table of values, as well as a plot of these property ratios, is presented for

air k=1 4 for a limited range of Mach numbers.

Example 12.7 demonstrates use of some of the above equations. As shown in Fig. 12.9, we can use

the equations to relate a property at one state to the stagnation value and then from the stagnation value to

a second state, but note that we can accomplish this in one step—for example, p2 can be obtained from p1
by writing p2 = p2 p0 p0 p1 p1, where the pressure ratios come from Eq. 12.30a evaluated at the two

Mach numbers.

3.02.52.01.5

Mach number, M

1.00.50
0

0.5

1.0

1.5

2.0

2.5

3.0

A
re

a
 r

a
ti

o
,

A_
_

A
*

Fig. 12.10 Variation of A A∗ with Mach number for isentropic flow of an ideal gas with k= 1 4.

Example 12.7 ISENTROPIC FLOW IN A CONVERGING CHANNEL

Air flows isentropically in a channel. At section , the Mach number is 0.3, the area is 0 001 m2, and the absolute pressure and

the temperature are 650 kPa and 62 C, respectively. At section , the Mach number is 0.8. Sketch the channel shape, plot a Ts

diagram for the process, and evaluate properties at section . Verify that the results agree with the basic equations, Eqs. 12.25.

Given: Isentropic flow of air in a channel. At sections and , the following data are given:

M1 =0 3, T1 =62 C, p1 =650 kPa abs , A1 =0 001 m2, and M2 =0 8.

Find: (a) The channel shape.

(b) A Ts diagram for the process.

(c) Properties at section .

(d) Show that the results satisfy the basic equations.

Solution: To accelerate a subsonic flow requires a converging nozzle. The channel shape must be as shown.

1 2

Flow
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On the Ts plane, the process follows an s= constant line. Stagnation conditions remain fixed for isentropic flow.

Consequently, the stagnation temperature at section can be calculated (for air, k=1 4) from

Eq. 12.30b.

T02 =T01 = T1 1+
k−1

2
M2

1

= 62+ 273 K 1+ 0 2 0 3
2

T02 =T01 =341 K
T01 ,T02

For p02 , from Eq. 12.30a,

p02 = p01 = p1 1+
k−1

2
M2

1

k k−1

= 650 kPa 1+ 0 2 0 3
2 3 5

p02 =692 kPa abs
p02

For T2, from Eq. 12.30b,

T2 = T02 1+
k−1

2
M2

2 = 341 K 1+ 0 2 0 8
2

T2 =302 K
T2

For p2, from Eq. 12.30a,

p2 = p02 1+
k−1

2
M2

2

k k−1

=692 kPa 1+ 0 2 0 8
2 3 5

p2 =454 kPa
p2

Note that we could have directly computed T2 from T1 because T0 = constant:

T2

T1
=
T2

T0

T0

T1
= 1+

k−1

2
M2

1 1+
k−1

2
M2

2 = 1+0 2 0 3
2

1+ 0 2 0 8
2

T2

T1
=
0 8865

0 9823
= 0 9025

Hence,

T2 =0 9025 T1 =0 9025 273+ 62 K=302 K

Similarly, for p2,

p2

p1
=
p2

p0

p0

p1
=0 88653 5 0 98233 5 =0 6982

Hence,

p2 =0 6982 p1 =0 6982 650 kPa = 454 kPa

The density ρ2 at section can be found from Eq. 12.30c using the same procedure we used for T2 and p2, or we can use the ideal

gas equation of state, Eq. 12.25e,

ρ2 =
p2

RT2
=4 54× 105

N

m2
×

kg K

287 N m
×

1

302 K
=5 24 kg m3

ρ2

and the velocity at section is

V2 =M2c2 =M2 kRT2 =0 8× 1 4× 287
N m

kg K
×302 K×

kg m

s2 N
=279 m s

V2

1

2
T2

T1

T01
 = T02

p01
 = p02

p1

p2

T

s
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The area A2 can be computed from Eq. 12.30d, noting that A is constant for this flow,

A2

A1

=
A2

A

A

A1

=
1

M2

1+
k−1

2
M2

2

k+1

2

k+2 2 k−1

1

M1

1+
k−1

2
M2

1

k+1

2

k+1 2 k−1

=
1

0 8

1+ 0 2 0 8
2

1 2

3
1

0 3

1+ 0 2 0 3
2

1 2

3

=
1 038

2 035
= 0 5101

Hence,

A2 =0 5101A1 =0 5101 0 001 m2 =5 10× 10−4 m2 A2

Note that A2 <A1 as expected.

Let us verify that these results satisfy the basic equations.

We first need to obtain ρ1 and V1:

ρ1 =
p1

RT1
=6 5× 105

N

m2
×

kg K

287 N m
×

1

335 K
=6 76 kg m3

and

V1 =M1c1 =M1 kRT1 =0 3× 1 4× 287
N m

kg K
×335 K×

kg m

s2 N
=110 m s

The mass conservation equation is

ρ1V1A1 = ρ2V2A2 = ρVA=m= constant 12 25a

m=6 76
kg

m3
×110

m

s
× 0 001 m2 =5 24

kg

m3
×279

m

s
× 0 00051 m2 =0 744 kg s Check!

We cannot check the momentum equation (Eq. 12.25b) because we do not know the force Rx produced by the walls of the device

(we could use Eq. 12.25b to compute this if we wished). The energy equation is

h01 = h1 +
V2
1

2
= h2 +

V2
2

2
= h02 = h0 12 25c

We will check this by replacing enthalpy with temperature using Eq. 13.2f,

Δh= h2−h1 = cpΔT = cp T2−T1 12 25f

so the energy equation becomes

cpT1 +
V2
1

2
= cpT2 +

V2
2

2
= cpT0

Using cp for air from Table A.6,

cpT1 +
V2
1

2
= 1004

J

kg K
× 335 K+

110
2

2

m

s

2

×
N s2

kg m
×

J

N m
=342 kJ kg

cpT2 +
V2
2

2
= 1004

J

kg K
× 302 K+

278
2

2

m

s

2

×
N s2

kg m
×

J

N m
=342 kJ kg

cpT0 =1004
J

kg K
× 341 K=342 kJ kg Check!

The final equation we can check is the relation between pressure and density

for an isentropic process (Eq. 12.25g),

p1

ρk1
=
p2

ρk2
=

p

ρk
= constant Check!

p1

ρ1 4
1

=
650 kPa

6 76
kg

m3

1 4
=

p2

ρ1 4
2

=
454 kPa

5 24
kg

m3

1 4
=44 7

kPa

kg

m3

1 4
Check!

The basic equations are satisfied by our solution.

This problem illustrates:

• Use of the isentropic equations,
Eqs. 12.30

• That the isentropic equations are con-
sistent with the basic equations,
Eqs. 12.25

• That the computations can be quite
laborious without using preprogrammed
isentropic relations (available, for
example, in the Excel add-ins on the
website)!
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Isentropic Flow in a Converging Nozzle

Now that we have our computing equations (Eqs. 12.30) for analyzing isentropic flows, we are ready to

see how we could obtain flow in a nozzle, starting from rest. We first look at the converging nozzle, and

then the C-D nozzle. In either case, to produce a flow we must provide a pressure difference. For exam-

ple, as illustrated in the converging nozzle shown in Fig. 12.11a, we can do this by providing the gas

from a reservoir (or “plenum chamber”) at p0 and T0, and using a vacuum pump/valve combination to

create a low pressure, the “back pressure,” pb. We are interested in what happens to the gas properties as

the gas flows through the nozzle, and also in knowing how the mass flow rate increases as we progres-

sively lower the back pressure.

Let us call the pressure at the exit plane pe. The results we obtain as we progressively open the valve

from a closed position are shown in Figs. 12.11b and 12.11c. We consider each of the cases shown.

When the valve is closed, there is no flow through the nozzle. The pressure is p0 throughout, as

shown by condition i in Fig. 12.11a.

If the back pressure, pb, is now reduced to slightly less than p0, there will be flow through the nozzle

with a decrease in pressure in the direction of flow, as shown by condition ii . Flow at the exit plane will

be subsonic with the exit-plane pressure equal to the back pressure.

As we continue to decrease the back pressure the flow rate will continue to increase, and the

exit-plane pressure will continue to decrease, as shown by condition iii in Fig. 12.11a. As we progres-

sively lower the back pressure the flow rate increases, and so do the velocity and Mach number at the

exit plane.

The maximum flow rate occurs when we have sonic conditions at the exit plane, whenMe =1, and

pe = pb = p , the critical pressure. This is shown as condition iv in Fig. 12.11a, and is called a “choked

flow,” beyond which the flow rate cannot be increased. From Eq. 12.30a with M =1 (or from

Eq. 12.21a),

pe

p0 choked

=
p

p0
=

2

k+1

k k−1

12 31

For air, k=1 4, so pe p0 choked =0 528. For example, if we wish to have sonic flow at the exit of a nozzle

from a plenum chamber that is at atmospheric pressure, we would need to maintain a back pressure of

about 7.76 psia, or about 6.94 psig vacuum. For the maximum, or choked, mass flow rate we have

mchoked = ρ V A∗

p0

T0

V0     0

Flow

pb

pe

To vacuum

pump

(b)

Valve 0 1.0p*/p0

0

m
•

pb__
p0

0 1.0p*/p0

p*/p0

0

1.0

0

p*/p0

p/p0

0

1.0

pb__
p0

pe__
p0

(c)(a)
Throat

x

pe]min = p*
(v)

(iv)
(iii)

(ii)
(i)

Regime I

Regime II

Fig. 12.11 Converging nozzle operating at various back pressures.

492 Chapter 12 Introduction to Compressible Flow

www.konkur.in

Telegram: @uni_k



Using the ideal gas equation of state, Eq. 12.25e, and the stagnation to critical pressure and temperature

ratios, Eqs. 12.30a and 12.30b respectively, with M =1 (or Eqs. 12.21a and 12.21b, respectively), with

A =Ae, it can be shown that this becomes

mchoked =Aep0
k

RT0

2

k+1

k+1 2 k−1

12 32a

Note that for a given gas (k and R), the maximum flow rate in the converging nozzle depends only on the

size of the exit area Ae and the conditions in the reservoir (p0, T0).

For air, for convenience we write an “engineering” form of Eq. 12.32a,

mchoked =0 04
Aep0

T0
12 32b

with mchoked in kg/s, Ae in m2, p0 in Pa, and T0 in K, and

mchoked =76 6
Aep0

T0
12 32c

with mchoked in lbm/s, Ae in ft2, p0 in psia, and T0 in R.

If we continue to lower the back pressure, the flow remains choked. The mass flow rate does not

increase, as shown in Fig. 12.11b, and the pressure distribution in the nozzle remains unchanged, with

pe = p∗ > pb, as shown in condition υ in Figs. 12.11a and 12.11c. After exiting, the flow adjusts down

to the applied back pressure, but does so in a nonisentropic, three-dimensional manner in a series of

expansion waves and shocks, and for this part of the flow our one-dimensional, isentropic flow concepts

no longer apply. We will return to this discussion in Section 12.8.

This idea of choked flow can be explained in at least two ways. First, we have already discussed that

to increase the mass flow rate beyond choked would requireMe >1, which is not possible. Second, once

the flow reaches sonic conditions, it becomes “deaf” to downstream conditions: Any change (i.e., a

reduction) in the applied back pressure propagates in the fluid at the speed of sound in all directions,

so it gets “washed” downstream by the fluid which is moving at the speed of sound at the nozzle exit.

Flow through a converging nozzle may be divided into two regimes:

1 In Regime I, 1≥ pb p0 ≥ p p0. Flow to the throat is isentropic and pe = pb.

2 In Regime II, pb p0 < p∗ p0. Flow to the throat is isentropic, and Me =1. A nonisentropic expansion

occurs in the flow leaving the nozzle and pe = p∗ > pb (entropy increases because this is adiabatic but

irreversible).

T*

s  constant

Nozzle exit plane

p*

s = constant

pb < p*

T0

p0

s

T

Fig. 12.12 Schematic Ts diagram for choked flow through a converging nozzle.
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Although isentropic flow is an idealization, it often is a very good approximation for the actual

behavior of nozzles. Since a nozzle is a device that accelerates a flow, the internal pressure gradient

is favorable. This tends to keep the wall boundary layers thin and to minimize the effects of friction.

The flow processes corresponding to Regime II are shown on a Ts diagram in Fig. 12.12. Two problems

involving converging nozzles are solved in Examples 12.8 and 12.9.

Example 12.8 ISENTROPIC FLOW IN A CONVERGING NOZZLE

A converging nozzle, with a throat area of 0 001 m2, is operated with air at a back pressure of 591 kPa (abs). The nozzle is fed

from a large plenum chamber where the absolute stagnation pressure and temperature are 1.0 MPa and 60 C. The exit Mach

number and mass flow rate are to be determined.

Given: Air flow through a converging nozzle at the conditions shown:

Flow is isentropic.

Find: (a) Me.

(b) m.

Solution: The first step is to check for choking. The pressure ratio is

pb

p0
=
5 91× 105

1 0× 106
=0 591> 0 528

so the flow is not choked. Thus pb = pe, and the flow is isentropic, as sketched on the Ts diagram.

Since p0 = constant, Me may be found from the pressure ratio,

p0

pe
= 1+

k−1

2
M2

e

k k−1

Solving for Me, since pe = pb, we obtain

1+
k−1

2
M2

e =
p0

pb

k−1 k

and

Me =
p0

pb

k−1 k

−1
2

k−1

1 2

=
1 0× 106

5 91× 105

0 286

−1
2

1 4−1

1 2

=0 90
Me

The mass flow rate is

m= ρeVeAe = ρeMeceAe

We need T to find ρe and ce. Since T0 = constant,

T0

Te
=1+

k−1

2
M2

e

or

Te =
T0

1+
k−1

2
M2

e

=
273+ 60 K

1+ 0 2 0 9
2
=287 K

ce = kRTe = 1 4× 287
N m

kg K
×287 K×

kg m

N s2

1 2

=340 m s

and

ρe =
pe

RTe
=5 91× 105

N

m2
×

kg K

287 N m
×

1

287 K
=7 18 kg m3

pe

pb = 591 kPa (abs)p0 = 1.0 MPa (abs)

T0 = 333K

T0

Te
T*

pe

p0

s

T
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Finally,

m= ρeMeceAe =7 18
kg

m3
×0 9× 340

m

s
× 0 0001 m2

=2 20 kg s
m This problem illustrates use of the isen-

tropic equations, Eqs. 12.30a for a flow that
is not choked.

Example 12.9 CHOKED FLOW IN A CONVERGING NOZZLE

Air flows isentropically through a converging nozzle. At a section where the nozzle area is 0 013 ft2, the local pressure, tem-

perature, and Mach number are 60 psia, 40 F, and 0.52, respectively. The back pressure is 30 psia. The Mach number at the

throat, the mass flow rate, and the throat area are to be determined.

Given: Air flow through a converging nozzle at the conditions shown:

M1 =0 52

T1 =40 F

p1 =60 psia

A1 =0 013 ft2

Find: (a) Mt. (b) m. (c) At.

Solution:
First we check for choking, to determine if flow is isentropic down to pb. To check, we evaluate the stagnation conditions.

p0 = p1 1+
k−1

2
M2

1

k k−1

=60 psia 1+ 0 2 0 52
2 3 5

=72 0 psia

The back pressure ratio is

pb

p0
=
30 0

72 0
=0 417< 0 528

so the flow is choked. For choked flow,

Mt =1 0
Mt

The Ts diagram is

The mass flow rate may be found from conditions at section , using ρ1V1A1.

V1 =M1c1 =M1 kRT1

=0 52 1 4× 53 3
ft lbf

lbm R
× 460+ 40 R×32 2

lbm

slug
×
slug ft

lbf s2

1 2

V1 =570 ft s

ρ1 =
p1

RT1
=60

lbf

in 2
×

lbm R

53 3 ft lbf
×

1

500 R
×144

in 2

ft2
=0 324 lbm ft3

m= ρ1V1A1 =0 324
lbm

ft3
×570

ft

s
× 0 013 ft2 =2 40 lbm s

m

1 t

pb = 30 psia

T0

p0

pb

pt
Tt

T1

T0

p0

p1

T

s
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Isentropic Flow in a Converging-Diverging Nozzle

Having considered isentropic flow in a converging nozzle, we turn now to isentropic flow in a

converging-diverging (C-D) nozzle. As in the previous case, flow through the converging-diverging

passage of Fig. 12.13 is induced by a vacuum pump downstream, and is controlled by the valve shown;

upstream stagnation conditions are constant. Pressure in the exit plane of the nozzle is pe; the nozzle

discharges to back pressure pb. As for the converging nozzle, we wish to see, among other things,

how the flow rate varies with the driving force, the applied pressure difference p0−pb . Consider

the effect of gradually reducing the back pressure. The results are illustrated graphically in

Fig. 12.13. Let us consider each of the cases shown.

With the valve initially closed, there is no flow through the nozzle; the pressure is constant at p0.

Opening the valve slightly (pb slightly less than p0) produces pressure distribution curve i . If the flow

rate is low enough, the flow will be subsonic and essentially incompressible at all points on this curve.

Under these conditions, the C-D nozzle will behave as a venturi, with flow accelerating in the converging

portion until a point of maximum velocity and minimum pressure is reached at the throat, then decel-

erating in the diverging portion to the nozzle exit.

As the valve is opened further and the flow rate is increased, a more sharply defined pressure

minimum occurs, as shown by curve ii . Although compressibility effects become important, the

flow is still subsonic everywhere, and flow decelerates in the diverging section. Finally, as the valve

is opened completely, curve iii results. At the section of minimum area the flow finally reaches

M =1, and the nozzle is choked. The flow rate is the maximum possible for the given nozzle and

stagnation conditions.

From Eq. 12.29,

A1

A
=

1

M1

1+
k−1

2
M2

1

k+1

2

k+1 2 k−1

=
1

0 52

1+ 0 2 0 52
2

1 2

3 00

=1 303

For choked flow, At =A . Thus,

At =A =
A1

1 303
=
0 013 ft2

1 303

At =9 98× 10−3 ft2
At

This problem illustrates use of the isen-
tropic equations, Eqs. 12.30a for a flow that
is choked.
• Because the flow is choked, we could also
have used Eq. 12.32a for m (after find-
ing T0).

pb

pe

Valve

To vacuum
pumpt

T0

p0

V0     0

1.0

p/p0

p*___
p0

Throat Exit plane x

iii

iv

v

ii

i

Me < 1

Me > 1

M = 1

Flow

Fig. 12.13 Pressure distributions for isentropic flow in a converging-diverging nozzle.
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All flows with pressure distributions i , ii , and iii are isentropic; as we progress from i to ii

to iii we are generating increasing mass flow rates. Finally, when curve iii is reached, critical con-

ditions are present at the throat. For this flow rate, the flow is choked, and

m= ρ V A

where A =At, just as it was for the converging nozzle, and for this maximum possible flow rate

Eq. 12.32a applies (with Ae replaced with the throat area At),

mchoked =Atp0
k

RT0

2

k+1

k+1 2 k−1

12 33a

For a given gas (k and R), the maximum flow rate in the C-D nozzle depends only on the size of the throat

area At and the conditions in the reservoir (p0, T0).

As with the converging nozzle, for air we write an “engineering” form of Eq. 12.33a,

mchoked =0 04
Atp0

T0
12 33b

with mchoked in kg/s, At in m2, p0 in Pa, and T0 in K, and

mchoked =76 6
Atp0

T0
12 33c

with mchoked in lbm/s, At in ft
2, p0 in psia, and T0 in R. We again have Eqs. 12.32b and 12.32c, with the

exit area Ae now replaced by the throat area At.

Any attempt to increase the flow rate by further lowering the back pressure will fail, for the two rea-

sons we discussed earlier: once we attain sonic conditions, downstream changes can no longer be trans-

mitted upstream; and we cannot exceed sonic conditions at the throat, because this would require passing

through the sonic state somewhere in the converging section, which is not possible in isentropic flow.

With sonic conditions at the throat, we consider what can happen to the flow in the diverging sec-

tion. We have previously discussed (see Fig. 12.8) that a diverging section will decelerate a subsonic

flow M <1 but will accelerate a supersonic flow M >1 . The flow in the diverging section can be

either subsonic or supersonic, depending on the back pressure. We have already seen subsonic flow

behavior [curve iii ]: the applied back pressure leads to a gradual downstream pressure increase, decel-

erating the flow. We now consider accelerating the choked flow.

To accelerate flow in the diverging section requires a pressure decrease. This condition is illustrated

by curve iv in Fig. 12.13. The flow will accelerate isentropically in the nozzle provided the exit pres-

sure is set at piv. Thus, we see that with a throat Mach number of unity, there are two possible isentropic

flow conditions in the converging-diverging nozzle. This is consistent with the results of Fig. 12.10,

where we found two Mach numbers for each A A in isentropic flow.

Lowering the back pressure below condition iυ , say to condition υ , has no effect on flow in the

nozzle. The flow is isentropic from the plenum chamber to the nozzle exit [as in condition iυ ] and then

it undergoes a three-dimensional irreversible expansion to the lower back pressure. A nozzle operating

under these conditions is said to be underexpanded, since additional expansion takes place outside the

nozzle.

A converging-diverging nozzle generally is intended to produce supersonic flow at the exit plane.

If the back pressure is set at piv, flow will be isentropic through the nozzle, and supersonic at the

nozzle exit. Nozzles operating at pb = piv [corresponding to curve iυ in Fig. 12.13] are said to operate

at design conditions.

Flow leaving a C-D nozzle is supersonic when the back pressure is at or below nozzle design pres-

sure. The exit Mach number is fixed once the area ratio, Ae A , is specified. All other exit plane
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properties are uniquely related to stagnation properties by the fixed exit plane Mach number. The

assumption of isentropic flow for a real nozzle at design conditions is a reasonable one. However,

the one-dimensional flow model is inadequate for the design of relatively short nozzles.

Rocket-propelled vehicles use C-D nozzles to accelerate the exhaust gases to the maximum possible

speed to produce high thrust. A propulsion nozzle is subject to varying ambient conditions during flight

through the atmosphere, so it is impossible to attain the maximum theoretical thrust over the complete

operating range. Because only a single supersonic Mach number can be obtained for each area ratio,

nozzles for developing supersonic flow in wind tunnels often are built with interchangeable test sections,

or with variable geometry.

For a converging-diverging nozzle operating with back pressure in the range piii > pb > piυ, the

flow cannot expand isentropically to pb. Under these conditions a shock occurs somewhere within

the flow.

Nozzles operating with piii > pb > piv are said to be overexpanded because the pressure at some

point in the nozzle is less than the back pressure. Obviously, an overexpanded nozzle could be

made to operate at a new design condition by removing a portion of the diverging section. In

Example 12.10, we consider isentropic flow in a C-D nozzle and in Example 12.11, we consider choked

flow in a C-D nozzle.

Example 12.10 ISENTROPIC FLOW IN A CONVERGING-DIVERGING NOZZLE

Air flows isentropically in a converging-diverging nozzle, with exit area of 0 001 m2. The nozzle is fed from a large plenum

where the stagnation conditions are 350 K and 1.0 MPa (abs). The exit pressure is 954 kPa (abs) and the Mach number at

the throat is 0.68. Fluid properties and area at the nozzle throat and the exit Mach number are to be determined.

Given: Isentropic flow of air in C-D nozzle as shown:

T0 =350 K

p0 =1 0MPa abs

pb =954 kPa abs

Mt =0 68 Ae =0 001 m2

Find: (a) Properties and area at nozzle throat.

(b) Me.

Solution: Stagnation temperature is constant for isentropic flow. Thus, since

T0

T
=1+

k−1

2
M2

then

Tt =
T0

1+
k−1

2
M2

t

=
350 K

1+ 0 2 0 68
2
=320 K

Tt

Also, since p0 is constant for isentropic flow, then

pt = p0
Tt

T0

k k−1

= p0
1

1+
k−1

2
M2

t

k k−1

pt =1 0× 106 Pa
1

1+ 0 2 0 68
2

3 5

=734 kPa abs
pt

Flow

t e

pb
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so

ρt =
pt

RTt
=7 34× 105

N

m2
×

kg K

287 N m
×

1

320 K
=7 99 kg m3

ρt

and

Vt =Mtct =Mt kRTt

Vt =0 68 14× 287
N m

kg K
×320 K×

kg m

N s2

1 2

=244 m s
Vt

From Eq. 12.30d we can obtain a value of At A∗

At

A∗
=

1

Mt

1+
k−1

2
M2

t

k+1

2

k+1 2 k−1

=
1

0 68

1+0 2 0 68
2

1 2

3 00

=1 11

but at this point A is not known.

Since Mt <1, flow at the exit must be subsonic. Therefore, pe = pb. Stagnation properties are constant, so

p0

pe
= 1+

k−1

2
M2

e

k k−1

Solving for Me gives

Me =
p0

pe

k−1 k

−1
2

k−1

1 2

=
1 0× 106

9 54× 105

0 286

−1 5

1 2

=0 26
Me

The Ts diagram for this flow is

T

T0
Te

Tt

pt

pe

p0

s

Since Ae and Me are known, we can compute A∗. From Eq. 12.30d

Ae

A∗
=

1

Me

1+
k−1

2
M2

e

k+1

2

k+1 2 k−1

=
1

0 26

1+ 0 2 0 26
2

1 2

3 00

=2 317

Thus,

A∗ =
Ae

2 317
=
0 001 m2

2 317
= 4 32× 10−4 m2

and

At =1 110A∗ = 1 110 4 32× 10−4 m2

=4 80× 10−4 m2
At

This problem illustrates use of the isentropic
equations, Eqs. 12.30a for flow in a C-D nozzle
that is not choked.
• Note that use of Eq. 12.30d allowed us to
obtain the throat area without needing to
first compute other properties.
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Example 12.11 ISENTROPIC FLOW IN A CONVERGING-DIVERGING NOZZLE: CHOKED FLOW

The nozzle of Example 12.10 has a design back pressure of 87.5 kPa (abs) but is operated at a back pressure of 50.0 kPa (abs).

Assume flow within the nozzle is isentropic. Determine the exit Mach number and mass flow rate.

Given: Air flow through C-D nozzle as shown:

T0 =350 K

p0 =1 0MPa abs

pe design = 87 5 kPa abs

pb =50 0 kPa abs

Ae =0 001 m2

At =4 8× 10−4m2 (Example 12.10)

Find: (a) Me.

(b) m.

Solution: The operating back pressure is below the design pressure. Consequently, the nozzle is underexpanded, and the Ts

diagram and pressure distribution will be as shown:

T0

Tt

Te

pe

pb

pt

T

s

p0

1.0

0

p/p0

x
b

t

e

Flow within the nozzle will be isentropic, but the irreversible expansion from pe to pb will cause an entropy

increase; pe = pe design = 87 5 kPa abs .

Since stagnation properties are constant for isentropic flow, the exitMach number can be computed from the pressure ratio. Thus

p0

pe
= 1+

k−1

2
M2

e

k k−1

or

Me =
p0

pe

k−1 k

−1
2

k−1

1 2

=
1 0× 106

8 75× 104

0 286

−1
2

0 4

1 2

=2 24
Me

Because the flow is choked we can use Eq. 12.33b for the mass flow rate,

mchoked =0 04
Atp0

T0
12 33b

(with mchoked in kg/s, At in m2, p0 in Pa, and T0 in K), so

mchoked =0 04× 4 8× 10−4 ×1× 106 350

m=mchoked =1 04 kg s
m

t e

pb
Flow

This problem illustrates use of the isen-
tropic equations, Eqs. 12.30a for flow in a
C-D nozzle that is choked.
• Note that we used Eq. 12.33b, an “engi-
neering equation”—that is, an equation
containing a coefficient that has units.
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12.7 Normal Shocks
Wementioned normal shocks in the previous section in the context of flow through a nozzle. In practice,

these irreversible discontinuities can occur in any supersonic flow field, in either internal flow or external

flow. Knowledge of property changes across shocks and of shock behavior is important in understanding

the design of supersonic diffusers, e.g., for inlets on high performance aircraft, and supersonic wind

tunnels.

Before applying the basic equations to normal shocks, it is important to form a clear physical picture

of the shock itself. Although it is physically impossible to have discontinuities in fluid properties, the

normal shock is nearly discontinuous. The thickness of a shock is about 0 2 μm 10−5 in , or roughly 4

times the mean free path of the gas molecules. Large changes in pressure, temperature, and other proper-

ties occur across this small distance. Fluid particle decelerations through the shock reach tens of millions

of gs. These considerations justify treating the normal shock as an abrupt discontinuity; we are interested

in changes occurring across the shock rather than in the details of its structure.

Consider the short control volume surrounding a normal shock standing in a passage of arbitrary

shape shown in Fig. 12.14. As for isentropic flow with area variation (Section 12.6), our starting point in

analyzing this normal shock is the set of basic equations (Eqs. 12.24), describing one-dimensional

motion that may be affected by several phenomena: area change, friction, and heat transfer. These are

ρ1V1A1 = ρ2V2A2 = ρVA=m= constant 12 24a

Rx + p1A1−p2A2 =mV2−mV1 12 24b

δQ

dm
+ h1 +

V2
1

2
= h2 +

V2
2

2
12 24c

m s2−s1 ≥
CS

1

T

Q

A
dA 12 24d

p= ρRT 12 24e

Δh= h2−h1 = cpΔT = cp T2−T1 12 24f

Δs= s2−s1 = cp ln
T2

T1
−R ln

p2

p1
12 24g

We recall that Equation 12.24a is continuity, Eq. 12.24b is a momentum equation, Eq. 12.24c is an

energy equation, Eq. 12.24d is the second law of thermodynamics, and Eqs. 12.24e, 12.24f, and

12.24g are useful property relations for an ideal gas with constant specific heats.

Basic Equations for a Normal Shock

We can now simplify Eqs. 12.24 for flow of an ideal gas with constant specific heats through a normal

shock. The most important simplifying feature is that the width of the control volume is infinitesimal

(in reality about 0 2 μm), so A1≈A2≈A, the force due to the walls Rx≈0 because the control volume

wall surface area is infinitesimal, and the heat exchange with the walls δQ dm≈0, for the same reason.

Hence, for this flow our equations become

ρ1V1 = ρ2V2 =
m

A
= constant 12 34a

CV

y

x

1 2

Flow
T1
p1

V1

T2
p2

V2

Fig. 12.14 Control volume used for analysis of normal shock.
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p1A−p2A=mV2−mV1

or, using Eq. 12.34a,

p1 + ρ1V
2
1 = p2 + ρ2V

2
2 12 34b

h01 = h1 +
V2
1

2
= h2 +

V2
2

2
= h02 12 34c

s2 > s1 12 34d

p= ρRT 12 34e

Δh= h2−h1 = cpΔT = cp T2−T1 12 34f

Δs= s2−s1 = cp ln
T2

T1
−R ln

p2

p1
12 34g

Equations 12.34 can be used to analyze flow through a normal shock. For example, if we know condi-

tions before the shock, at section (i.e., p1, ρ1, T1, s1, h1, and V1), we can use these equations to find

conditions after the shock, at section . We have six equations (not including the constraint of

Eq. 12.34d) and six unknowns (p2, ρ2, T2, s2, h2, and V2). Hence, for given upstream conditions there

is a single unique downstream state. To analyze a shock, we need to solve this set of nonlinear coupled

algebraic equations. We have shown that changes in a one-dimensional flow can be caused by area var-

iation, friction, or heat transfer, but in deriving Eqs. 12.34 we have eliminated all three causes. In the

absence of area change, friction, and heat transfer, flow properties will not change except in a very

abrupt, irreversible manner, for which the entropy increases. In fact, all properties except T0 change

through the shock.

A normal shock can occur only when the incoming flow is supersonic. Fluid flows will generally

gradually adjust to downstream conditions (e.g., an obstacle in the flow) as the pressure field redirects the

flow (e.g., around the object). However, if the flow is moving at such a speed that the pressure field

cannot propagate upstream (when the flow speed, V , is greater than the local speed of sound, c, or in

other words M >1), then the fluid has to “violently” adjust to the downstream conditions. The pressure

suddenly increases through the shock, so that, at the instant a particle is passing through the shock,

there is a very large negative pressure gradient. This pressure gradient causes a dramatic reduction

in speed, V , and hence a rapid rise in temperature, T , as kinetic energy is converted to internal thermal

energy, and the density, ρ, increases through the shock. Because the shock is adiabatic but highly irre-

versible, entropy, s, increases through the shock. Finally, we see that as speed, V , decreases and the speed

of sound, c, increases (because temperature, T , increases) through the normal shock, the Mach number,

M, decreases; in fact, we will see later that it always becomes subsonic. These results are shown graph-

ically in Fig. 12.15 and in tabular form in Table 12.1.

1

2

1

2

Flow

T1

T2

p2

p1

Shock

p01 p02

T01
 = T02

s2 – s1

T

s

Fig. 12.15 Schematic of normal-shock process on the Ts plane.
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Normal-Shock Flow Functions for One-Dimensional Flow
of an Ideal Gas

The basic equations, Eqs. 12.34, can be used to analyze flows that experience a normal shock. However,

it is often more convenient to use Mach number-based equations, in this case based on the incoming

Mach number, M1. This involves three steps: First, we obtain property ratios (e.g., T2 T1 and p2 p1)

in terms ofM1 andM2, then we develop a relation betweenM1 andM2, and finally, we use this relation

to obtain expressions for property ratios in terms of upstream Mach number, M1.

The temperature ratio can be expressed as

T2

T1
=

T2

T02

T02
T01

T01
T1

Since stagnation temperature is constant across the shock, we have

T2

T1
=
1+

k−1

2
M2

1

1+
k−1

2
M2

2

12 35

A velocity ratio may be obtained by using

V2

V1

=
M2c2

M1c1
=
M2

M1

kRT2

kRT1
=
M2

M1

T2

T1

or

V2

V1

=
M2

M1

1+
k−1

2
M2

1

1+
k−1

2
M2

2

1 2

A ratio of densities may be obtained from the continuity equation

ρ1V1 = ρ2V2 12 34a

so that

ρ2

ρ1
=
V1

V2

=
M1

M2

1+
k−1

2
M2

2

1+
k−1

2
M2

1

1 2

12 36

Finally, we have the momentum equation,

p1 + ρ1V
2
1 = p2 + ρ2V

2
2 12 34b

Table 12.1
Summary of Property Changes Across a Normal Shock

Property Effect Obtained from:

Stagnation temperature T0 =Constant Energy equation

Entropy s Second law

Stagnation pressure p0 Ts diagram

Temperature T Ts diagram

Velocity V Energy equation, and effect on T

Density ρ Continuity equation, and effect on V

Pressure p Momentum equation, and effect on V

Mach number M M =V c, and effects on V and T
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Substituting ρ= p RT , and factoring out pressures, gives

p1 1+
V2
1

RT1
= p2 1+

V2
2

RT2

Since

V2

RT
= k

V2

kRT
= kM2

then

p1 1+ kM2
1 = p2 1+ kM2

2

Finally,

p2

p1
=
1+ kM2

1

1+ kM2
2

12 37

To solve for M2 in terms of M1, we must obtain another expression for one of the property ratios

given by Eqs. 12.35 through 12.37.

From the ideal gas equation of state, the temperature ratio may be written as

T2

T1
=
p2 ρ2R

p1 ρ1R
=
p2

p1

ρ1

ρ2

Substituting from Eqs. 12.36 and 12.37 yields

T2

T1
=

1+ kM2
1

1+ kM2
2

M2

M1

1+
k−1

2
M2

1

1+
k−1

2
M2

2

1 2

12 38

Equations 12.35 and 12.38 are two equations for T2 T1. We can combine them and solve forM2 in terms

of M1. Combining and canceling gives

1+
k−1

2
M2

1

1+
k−1

2
M2

2

1 2

=
M2

M1

1+ kM2
1

1+ kM2
2

Squaring, we obtain

1+
k−1

2
M2

1

1+
k−1

2
M2

2

=
M2

2

M2
1

1+ 2kM2
1 + k2M4

1

1+ 2kM2
2 + k2M4

2

which may be solved explicitly for M2
2 . Two solutions are obtained:

M2
2 =M2

1 12 39a

and

M2
2 =

M2
1 +

2

k−1
2k

k−1
M2

1−1

12 39b

Obviously, the first of these is trivial. The second expresses the unique dependence of M2 on M1.

Now, having a relationship between M2 and M1, we can solve for property ratios across a shock.

Knowing M1, we obtain M2 from Eq. 12.39b; the property ratios can be determined subsequently from

Eqs. 12.35 through 12.37.
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Since the stagnation temperature remains constant, the stagnation temperature ratio across the shock

is unity. The ratio of stagnation pressures is evaluated as

p02
p01

=
p02
p2

p2

p1

p1

p01
=
p2

p1

1+
k−1

2
M2

2

1+
k−1

2
M2

1

k k−1

12 40

Combining Eqs. 12.37 and 12.39b, we obtain (after considerable algebra)

p2

p1
=
1+ kM2

1

1+ kM2
2

=
2k

k+1
M2

1−
k−1

k+1
12 41

Using Eqs. 12.39b and 12.41, we find that Eq. 12.40 becomes

p02
p01

=

k+1

2
M2

1

1+
k−1

2
M2

1

k k−1

2k

k+1
M2

1−
k−1

k+1

1 k−1
12 42

After substituting for M2
2 from Eq.12.39b into Eqs. 12.35 and 12.36, we summarize the set of Mach

number-based equations (renumbered for convenience) for use with an ideal gas passing through a nor-

mal shock:

M2
2 =

M2
1 +

2

k−1
2k

k−1
M2

1−1

12 43a

p02
p01

=

k+1

2
M2

1

1+
k−1

2
M2

1

k k−1

2k

k+1
M2

1−
k−1

k+1

1 k−1
12 43b

T2

T1
=

1+
k−1

2
M2

1 kM2
1−

k−1

2

k+1

2

2

M2
1

12 43c

p2

p1
=

2k

k+1
M2

1−
k−1

k+1
12 43d

ρ2

ρ1
=
V1

V2

=

k+1

2
M2

1

1+
k−1

2
M2

1

12 43e

Equations 12.43 are useful for analyzing flow through a normal shock. Note that all changes through

a normal shock depend only on the incoming Mach number M1 and the ratio of specific heats, k. The

equations are usually preferable to the original equations, Eq. 12.34, because they provide explicit,

uncoupled expressions for property changes; Eqs. 12.34 are occasionally useful too. Note that

Eq. 12.43d requires M1 >1 for p2 > p1, which agrees with our previous discussion. The ratio p2 p1
is known as the strength of the shock; the higher the incomingMach number, the stronger (more violent)

the shock.

Equations 12.43, while quite complex algebraically, provide explicit property relations in terms

of the incoming Mach number,M1. They are easily programmed and there are also interactive websites

that make them available (e.g. [5] and [6]). The equations can also be programmed in Excel and
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spreadsheets are available from the website; with the add-ins, functions are available for computingM2,

and the stagnation pressure, temperature, pressure, and density/velocity ratios, from M1, and M1 from

these ratios. Appendix D.2 lists flow functions for M2 and property ratios p02 p01 , T2 T1, p2 p1, and

ρ2 ρ 1 V1 V2 in terms ofM1 for normal-shock flow of an ideal gas. A table of values, as well as a plot

of these property ratios, is presented for air k=1 4 for a limited range of Mach numbers. A problem

involving a normal shock is solved in Example 12.12.

Example 12.12 NORMAL SHOCK IN A DUCT

A normal shock stands in a duct. The fluid is air, which may be considered an ideal gas. Properties upstream from the shock are

T1 =5 C, p1 =65 0 kPa abs , and V1 =668 m s. Determine properties downstream and s2−s1. Sketch the process on a Ts

diagram.

Given: Normal shock in a duct as shown:

T1 =5 C

P1 =65 0 kPa abs

V1 =668 m s

Find: (a) Properties at section .

(b) s2−s1.

(c) Ts diagram.

Solution: First compute the remaining properties at section . For an ideal gas,

ρ1 =
p1

RT1
=6 5× 104

N

m2
×

kg K

287 N m
×

1

278 K
=0 815 kg m3

c1 = kRT1 = 1 4× 287
N m

kg K
×278 K×

kg m

N s2

1 2

=334 m s

Then

M1 =
V1

c1
=
668

334
= 2 00, and (using isentropic stagnation relations, Eqs. 12.21b and 12.21a)

T01 = T1 1+
k−1

2
M2

1 =278 K 1+ 0 2 2 0
2
=500 K

p01 = p1 1+
k−1

2
M2

1

k k−1

=65 0 kPa 1+0 2 2 0
2 3 5

=509 kPa abs

From the normal-shock flow functions, Eqs. 12.43, at M1 =2 0,

M1 M2 p02 p01 T2 T1 p2 p1 V2 V1

2 00 0 5774 0 7209 1 687 4 500 0 3750

From these data

T2 =1 687T1 = 1 687 278 K=469 K
T2

p2 =4 500p1 = 4 500 65 0 kPa= 293 kPa abs
p2

V2 =0 3750V1 = 0 3750 668 m s= 251 m s
V2

Flow Flow is airy

x

1 2

CV
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12.8 Supersonic Channel Flow with Shocks
Supersonic flow is a necessary condition for a normal shock to occur and the possibility of a normal

shock must be considered in any supersonic flow. Sometimes a shockmust occur to match a downstream

pressure condition; it is desirable to determine if a shock will occur and the shock location when it

does occur.

In this section isentropic flow in a converging-diverging nozzle (Section 12.6) is extended to include

shocks and complete our discussion of flow in a converging-diverging nozzle operating under varying

back pressures. The pressure distribution through a nozzle for different back pressures is shown in

Fig. 12.16.

Four flow regimes are possible. In Regime I the flow is subsonic throughout. The flow rate increases

with decreasing back pressure. At condition iii , which forms the dividing line between Regimes I and

II, flow at the throat is sonic, and Mt =1.

For an ideal gas,

ρ2 =
p2

RT2
=2 93× 105

N

m2
×

kg K

287 N m
×

1

469 K
=2 18 kg m3

ρ2

Stagnation temperature is constant in adiabatic flow. Thus

T02 = T01 =500 K
T02

Using the property ratios for a normal shock, we obtain

p02 = p01
p02
p01

=509 kPa 0 7209 = 367 kPa abs
p02

For the change in entropy (Eq. 12.34g),

s2−s1 = cp ln
T2

T1
−R ln

p2

p1

But s02 −s01 = s2−s1, so

= 0

s02 −s01 = s2−s1 = cp ln
T02
T01

−R ln
p02
p01

= −0 287
kJ

kg K
× ln 0 7209

s2−s1 =0 0939 kJ kg K
s2−s1

The Ts diagram is

2

1

Shock

T1

T2

p2

p1 s2 – s1

s02
 – s01

p02
p01

T02
 = T01

T

s

This problem illustrates the use of the
normal shock relations, Eqs. 12.43, for
analyzing flow of an ideal gas through a
normal shock.
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As the back pressure is lowered below condition iii , a normal shock appears downstream from the

throat, as shown by condition vi . There is a pressure rise across the shock. Since the flow is subsonic

M <1 after the shock, the flow decelerates, with an accompanying increase in pressure, through the

diverging channel. As the back pressure is lowered further, the shock moves downstream until it appears

at the exit plane (condition vii). In Regime II, as in Regime I, the exit flow is subsonic, and consequently

pe = pb. Since flow properties at the throat are constant for all conditions in Regime II, the flow rate in

Regime II does not vary with back pressure.

In Regime III, as exemplified by condition viii , the back pressure is higher than the exit pressure,

but not high enough to sustain a normal shock in the exit plane. The flow adjusts to the back pressure

through a series of oblique compression shocks outside the nozzle; these oblique shocks cannot be trea-

ted by one-dimensional theory.

As previously noted in Section 12.6, condition iv represents the design condition. In Regime IV

the flow adjusts to the lower back pressure through a series of oblique expansion waves outside the noz-

zle; these oblique expansion waves cannot be treated by one-dimensional theory.

The Ts diagram for converging-diverging nozzle flow with a normal shock is shown in Fig. 12.17;

state is located immediately upstream from the shock and state is immediately downstream. The

entropy increase across the shock moves the subsonic downstream flow to a new isentropic line. The

critical temperature is constant, so p2 is lower than p∗1. Since ρ = p RT , the critical density down-

stream also is reduced. To carry the same mass flow rate, the downstream flowmust have a larger critical

area. From continuity (and the equation of state), the critical area ratio is the inverse of the critical pres-

sure ratio, i.e., across a shock, p A = constant.

b
et

Valve

To vacuum
pump

Flow
T0
p0

V0     0

(v)
(iv)

(viii)

(vii)

(vi)

(iii)
(ii)

(i)

––Me < 1

––Me > 1

Regime I

Regime II

Regime III

Regime IV

Exit
plane

x

s = c

Throat

Mt = 1

p* ____
p0

p___
p0

1.0

Fig. 12.16 Pressure distributions for flow in a converging-diverging nozzle for different back pressures.

1 2
e

pb

Flow
p01

T01

V0 = 0

T p01
p02

pe
Te

T2

p2

p1*

p1

T1

p2*

Shock

T* = constant

T0 = constant

s

Fig. 12.17 Schematic Ts diagram for flow in a converging-diverging nozzle with a normal shock.
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If the Mach number (or position) of the normal shock in the nozzle is known, the exit-plane pressure

can be calculated directly. In the more realistic situation, the exit-plane pressure is specified, and the

position and strength of the shock are unknown. The subsonic flow downstream must leave the nozzle

at the back pressure, so pb = pe. Then

pb

p01
=

pe

p01
=

pe

p02

p02
p01

=
pe

p02

A∗

1

A∗

2

=
pe

p02

At

Ae

Ae

A∗

2

12 44

Because we have isentropic flow from state (after the shock) to the exit plane, A∗

2 =A∗

e and p02 = p0e .

Then from Eq. 12.44 we can write

pe

p01
=

pe

p02

At

Ae

Ae

A∗

2

=
pe

p0e

At

Ae

Ae

A∗

e

Rearranging,

pe

p01

Ae

At

=
pe

p0e

Ae

A∗

e

12 45

In Eq. 12.45 the left side contains known quantities, and the right side is a function of the exit Mach

number Me only. The pressure ratio is obtained from the stagnation pressure relation (Eq. 12.21a);

the area ratio is obtained from the isentropic area relation (Eq. 12.30d). Finding Me from Eq. 12.45

usually requires iteration. The magnitude and location of the normal shock can be found once Me is

known by rearranging Eq. 12.45 (remembering that p02 = p0e ),

p02
p01

=
At

Ae

Ae

A∗

e

12 46

In Eq. 12.46 the right side is known (the first area ratio is given and the second is a function ofMe only),

and the left side is a function of the Mach number before the shock,M1, only. Hence, M1 can be found.

The area at which this shock occurs can then be found from the isentropic area relation (Eq. 12.30d, with

A =At) for isentropic flow between the throat and state .

In this introductory chapter on compressible flow, we have covered some of the basic flow phenom-

ena and presented the equations that allow us to evaluate the flow properties in some of the simpler flow

situations. There are many more complex compressible flow situations and we have provided an intro-

duction to some of these advanced topics on the Instructor website.

12.9 Summary and Useful Equations
In this chapter, we:

✓ Reviewed the basic equations used in thermodynamics, including isentropic relations.
✓ Introduced some compressible flow terminology, such as definitions of the Mach number and

subsonic, supersonic, transonic, and hypersonic flows.
✓ Learned about several phenomena having to do with the speed of sound.
✓ Learned the two useful reference states for a compressible flow: the isentropic stagnation con-

dition, and the isentropic critical condition.
✓ Developed a set of governing equations for one-dimensional flow of a compressible fluid as it

may be affected by area change, friction, heat exchange, and normal shocks.
✓ Developed the equations for isentropic flow affected only by area change.
✓ Developed the relations for a normal-shock.

While investigating the above flows we developed insight into some interesting compressible
flow phenomena, including:

✓ Use of Ts plots in visualizing flow behavior.
✓ The necessary shape of, subsonic and supersonic nozzles and diffusers.
✓ The phenomenon of choked flow in converging nozzles and C-D nozzles, and the circum-

stances under which shock waves develop in C-D nozzles.
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Note: Most of the equations in the table below have a number of constraints or limitations. Be sure to

refer to their page numbers for details! In particular, most of them assume an ideal gas, with constant

specific heats.

Useful Equations
Definition of Mach number M:

M ≡
V

c

(12.13) Page 467

Speed of sound c:
c=

∂p

∂ρ s

(12.16) Page 469

Speedofsoundc (solids and liquids): c= Eν ρ (12.17) Page 469

Speed of sound c (ideal gas): c= kRT (12.18) Page 470

Mach cone angle α:
α= sin−1 1

M

(12.19) Page 472

Isentropic pressure ratio (ideal gas,

constant specific heats):
p0

p
= 1+

k−1

2
M2

k k−1 (12.21a) Page 477

Isentropic temperature ratio (ideal

gas, constant specific heats):

T0

T
=1+

k−1

2
M2 (12.21b) Page 477

Isentropic density ratio (ideal gas,

constant specific heats):
ρ0

ρ
= 1+

k−1

2
M2

1 k−1 (12.21c) Page 477

Critical pressure ratio (ideal gas,

constant specific heats):
p0

p
=

k+1

2

k k−1 (12.22a) Page 480

Critical temperature ratio (ideal gas,

constant specific heats):

T0

T∗
=
k+1

2

(12.22b) Page 480

Critical density ratio (ideal gas,

constant specific heats):
ρ0

ρ∗
=

k+1

2

1 k−1 (12.22c) Page 480

Critical velocity V∗ (ideal gas,

constant specific heats): V = c∗=
2k

k+1
RT0

(12.23) Page 480

One-dimensional flow equations: ρ1V1A1 = ρ2V2A2 = ρVA=m= constant

Rx + p1A1−p2A2 =mV2−mV1

δQ

dm
+ h1 +

V2
1

2
= h2 +

V2
2

2

m s2−s1 ≥
CS

1

T

Q

A
dA

p= ρRT

Δh= h2−h1 = cpΔT = cp T2−T1

Δs= s2−s1 = cp ln
T2

T1
−R ln

p2

p1

(12.24a)

(12.24b)

(12.24c)

(12.24d)

(12.24e)

(12.24f)

(12.24g)

Page 483

Isentropic relations:

These equations are listed and

tabulated and plotted for air in

Appendix D.

p0

p
= f M

T0

T
= f M

ρ0

ρ
= f M

A

A∗
= f M

(12.30a)

(12.30b)

(12.30c)

(12.30d)

Page 488

Pressure ratio for choked

converging nozzle, pe p0 choked:
pe

p0 choked

=
p∗

p0
=

2

k+1

k k−1 (12.31) Page 492
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Table (Continued)

Mass flow rate for choked

converging nozzle: mchoked =Aep0
k

RT0

2

k+1

k+1 2 k−1 (12.32a) Page 493

Mass flow rate for choked

converging nozzle (SI units):
mchoked =0 04

Aep0

T0

(12.32b) Page 493

Mass flow rate for choked

converging nozzle (English

Engineering units):

mchoked =76 6
Aep0

T0

(12.32c) Page 493

Mass flow rate for choked

converging-diverging nozzle: mchoked =Atp0
k

RT0

2

k+1

k+1 2 k−1 (12.33a) Page 497

Mass flow rate for choked

converging-diverging nozzle

(SI units):

mchoked =0 04
Atp0

T0

(12.33b) Page 497

Mass flow rate for choked

converging-diverging nozzle

(English Engineering units):

mchoked =76 6
Atp0

T0

(12.33c) Page 497

Normal shock relations: These

equations are listed and tabulated

and plotted for air in Appendix D.

M2 = f M1
p02
p01

= f M1

T2

T1
= f M1

p2

p1
= f M1

ρ2

ρ1
=
V1

V2

= f M1

(12.43a)

(12.43b)

(12.43c)

(12.43d)

(12.43e)

Page 505

Useful relations for determining the

normal shock location in

converging-diverging nozzle:

pe

p01

Ae

At

=
pe

p0e

Ae

Ae

p02
p01

=
At

Ae

Ae

Ae

(12.45)

(12.46)

Page 509
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A P P E N D I X A

Fluid Property Data

A.1 Specific Gravity
Specific gravity data for several common liquids and solids are presented in Fig. A.1a and b and

in Tables A.1 and A.2. For liquids specific gravity is a function of temperature. (Density data for water

and air are given as functions of temperature in Tables A.7 through A.10.) For most liquids specific

gravity decreases as temperature increases. Water is unique: It displays a maximum density of

1000 kg m3 1 94 slug ft3 at 4 C 39 F . The maximum density of water is used as a reference value

to calculate specific gravity. Thus

SG≡
ρ

ρH2O
at 4 C

Consequently, the maximum SG of water is exactly unity.

Specific gravities for solids are relatively insensitive to temperature; values given in Table A.1 were

measured at 20 C.

The specific gravity of seawater depends on both its temperature and salinity. A representative value

for ocean water is SG=1 025, as given in Table A.2.

A-1

www.konkur.in

Telegram: @uni_k



Table A.1
Specific Gravities of Selected Engineering Materials

(a) Common Manometer Liquids at 20 C

Liquid Specific Gravity

E.V. Hill blue oil 0.797

Meriam red oil 0.827

Benzene 0.879

Dibutyl phthalate 1.04

Monochloronaphthalene 1.20

Carbon tetrachloride 1.595

Bromoethylbenzene (Meriam blue) 1.75

Tetrabromoethane 2.95

Mercury 13.55

Source: Data from References [1–3].
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Fig. A.1 Specific gravity of water and mercury as functions of temperature. (Data from Reference [1].) (The specific gravity
of mercury varies linearly with temperature. The variation is given by SG= 13 60−0 00240 T when T is measured in C.)
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Table A.1
Specific Gravities of Selected Engineering Materials (Continued)

(b) Common Materials

Material Specific Gravity (—)

Aluminum 2.64

Balsa wood 0.14

Brass 8.55

Cast Iron 7.08

Concrete (cured) 2.4a

Concrete (liquid) 2.5a

Copper 8.91

Ice (0 C) 0.917

Lead 11.4

Oak 0.77

Steel 7.83

Styrofoam (1 pcfb) 0.0160

Styrofoam (3 pcf ) 0.0481

Uranium (depleted) 18.7

White pine 0.43

Source: Data from Reference [4].
a depending on aggregate.
b pounds per cubic foot.

Table A.2
Physical Properties of Common Liquids at 20 C

Liquid Isentropic Bulk Modulusa (GN/m2) Specific Gravity (—)

Benzene 1.48 0.879

Carbon tetrachloride 1.36 1.595

Castor oil 2.11 0.969

Crude oil — 0.82–0.92

Ethanol — 0.789

Gasoline — 0.72

Glycerin 4.59 1.26

Heptane 0.886 0.684

Kerosene 1.43 0.82

Lubricating oil 1.44 0.88

Methanol — 0.796

Mercury 28.5 13.55

Octane 0.963 0.702

Seawaterb 2.42 1.025

SAE 10W oil — 0.92

Water 2.24 0.998

Source: Data from References [1, 5, 6].
aCalculated from speed of sound; 1 GN m2 =109 N m2 1 N m2 =1 45× 10−4 lbf in 2 ).
bDynamic viscosity of seawater at 20 C is μ=1 08× 10−3 N s m2. (Thus, the kinematic viscosity of seawater is about 5 percent

higher than that of freshwater.)
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A.2 Surface Tension
The values of surface tension, σ, for most organic compounds are remarkably similar at room temper-

ature; the typical range is 25 to 40 mN m. Water is higher, at about 73 mN m at 20 C. Liquid metals

have values in the range between 300 and 600 mN m; mercury has a value of about 480 mN m at 20 C.

Surface tension decreases with temperature; the decrease is nearly linear with absolute temperature.

Surface tension at the critical temperature is zero.

Values of σ are usually reported for surfaces in contact with the pure vapor of the liquid being

studied or with air. At low pressures both values are about the same.

Table A.3
Properties of the U.S. Standard Atmosphere

Geometric Altitude (m) Temperature (K) p/pSL (—) ρ/ρSL (—)

−500 291.4 1.061 1.049

0 288.2 1.000a 1.000b

500 284.9 0.9421 0.9529

1,000 281.7 0.8870 0.9075

1,500 278.4 0.8345 0.8638

2,000 275.2 0.7846 0.8217

2,500 271.9 0.7372 0.7812

3,000 268.7 0.6920 0.7423

3,500 265.4 0.6492 0.7048

4,000 262.2 0.6085 0.6689

4,500 258.9 0.5700 0.6343

5,000 255.7 0.5334 0.6012

6,000 249.2 0.4660 0.5389

7,000 242.7 0.4057 0.4817

8,000 236.2 0.3519 0.4292

9,000 229.7 0.3040 0.3813

10,000 223.3 0.2615 0.3376

11,000 216.8 0.2240 0.2978

12,000 216.7 0.1915 0.2546

13,000 216.7 0.1636 0.2176

14,000 216.7 0.1399 0.1860

15,000 216.7 0.1195 0.1590

16,000 216.7 0.1022 0.1359

17,000 216.7 0.08734 0.1162

18,000 216.7 0.07466 0.09930

19,000 216.7 0.06383 0.08489

20,000 216.7 0.05457 0.07258

22,000 218.6 0.03995 0.05266

24,000 220.6 0.02933 0.03832

26,000 222.5 0.02160 0.02797

28,000 224.5 0.01595 0.02047

30,000 226.5 0.01181 0.01503

40,000 250.4 0.002834 0.003262

50,000 270.7 0.0007874 0.0008383

60,000 255.8 0.0002217 0.0002497

70,000 219.7 0.00005448 0.00007146

80,000 180.7 0.00001023 0.00001632

90,000 180.7 0.000001622 0.000002588

Source: Data from Reference [7].
a
pSL =1 01325× 105 N m2 abs = 14 696 psia .

b
ρSL =1 2250 kg m3 =0 002377 slug ft3 .
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A.3 The Physical Nature of Viscosity
Viscosity is a measure of internal fluid friction, i.e., resistance to deformation. The mechanism of gas

viscosity is reasonably well understood, but the theory is poorly developed for liquids. We can gain some

insight into the physical nature of viscous flow by discussing these mechanisms briefly.

The viscosity of a Newtonian fluid is fixed by the state of the material. Thus, μ= μ T p . Temper-

ature is the more important variable, so let us consider it first. Excellent empirical equations for viscosity

as a function of temperature are available.

Effect of Temperature on Viscosity

a. Gases
All gas molecules are in continuous random motion. When there is bulk motion due to flow, the bulk

motion is superimposed on the random motions. It is then distributed throughout the fluid by molecular

collisions. Analyses based on kinetic theory predict

μ T

The kinetic theory prediction is in fair agreement with experimental trends, but the constant of propor-

tionality and one or more correction factors must be determined; this limits practical application of this

simple equation.

Table A.4
Surface Tension of Common Liquids at 20 C

Liquid Surface Tension, σ (mN/m)a Contact Angle, θ (degrees)

(a) In contact with air

θ

Air

Liquid

Benzene 28.9

Carbon tetrachloride 27.0

Ethanol 22.3

Glycerin 63.0

Hexane 18.4

Kerosene 26.8

Lube oil 25–35

Mercury 484 140

Methanol 22.6

Octane 21.8

Water 72.8 0

Source: Data from References [1, 5, 8, 9].

(b) In contact with water

θ

Water

Liquid

Benzene 35.0

Carbon tetrachloride 45.0

Hexane 51.1

Mercury 375 140

Methanol 22.7

Octane 50.8

Source: Data from References [1, 5, 8, 9].
a 1 mN m=10−3 N m.
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If two or more experimental points are available, the data may be correlated using the empirical

Sutherland correlation [7]

μ=
bT1 2

1+ S T
A 1

Constants b and S may be determined most simply by writing

μ=
bT3 2

S+ T

or

T3 2

μ
=

1

b
T +

S

b

(Compare this with y=mx+ c.) From a plot of T3 2 μ versus T , one obtains the slope, 1 b, and the

intercept, S b. For air,

b=1 458× 10−6 kg

m s K1 2

S=110 4 K

These constants were used with Eq. A.1 to compute viscosities for the standard atmosphere in [7], the air

viscosity values at various temperatures shown in Table A.10, and using appropriate conversion factors,

the values shown in Table A.9.

b. Liquids
Viscosities for liquids cannot be estimated well theoretically. The phenomenon of momentum transfer

by molecular collisions is overshadowed in liquids by the effects of interacting force fields among the

closely packed liquid molecules.

Liquid viscosities are affected drastically by temperature. This dependence on absolute temperature

may be represented by the empirical equation

μ=AeB T−C A 2

or the equivalent form

μ=A10B T−C A 3

where T is absolute temperature.

Equation A.3 requires at least three points to fit constants A, B, and C. In theory, it is possible to

determine the constants from measurements of viscosity at just three temperatures. It is better practice to

use more data and to obtain the constants from a statistical fit to the data.

However a curve-fit is developed, always compare the resulting line or curve with the available data.

The best way is to critically inspect a plot of the curve-fit compared with the data. In general, curve-fit

results will be satisfactory only when the quality of the available data and that of the empirical relation

are known to be excellent.

Data for the dynamic viscosity of water are fitted well using constant values A=2 414×10−5

N s m2, B=247 8 K, and C=140 K. Reference [10] states that using these constants in Eq. A.3 pre-

dicts water viscosity within 2 5 percent over the temperature range from 0 C to 370 C. Equation A.3

and Excel were used to compute the water viscosity values at various temperatures shown in Table A.8,

and using appropriate conversion factors, the values shown in Table A.7.

Note that the viscosity of a liquid decreases with temperature, while that of a gas increases with

temperature.
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Effect of Pressure on Viscosity

a. Gases
The viscosity of gases is essentially independent of pressure between a few hundredths of an atmosphere

and a few atmospheres. However, viscosity at high pressures increases with pressure (or density).

b. Liquids
The viscosities of most liquids are not affected by moderate pressures, but large increases have been

found at very high pressures. For example, the viscosity of water at 10,000 atm is twice that at

1 atm. More complex compounds show a viscosity increase of several orders of magnitude over the same

pressure range.

More information may be found in Reid and Sherwood [11].
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Fig. A.2 Dynamic (absolute) viscosity of common fluids as a function of temperature. (Data from References [1, 6, 10].)
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Fig. A.3 Kinematic viscosity of common fluids (at atmospheric pressure) as a function of temperature. (Data from References [1, 6, 10].)
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A.4 Lubricating Oils
Engine and transmission lubricating oils are classified by viscosity according to standards established by

the Society of Automotive Engineers [12]. The allowable viscosity ranges for several grades are given in

Table A.5.

Viscosity numbers with W (e.g., 20W) are classified by viscosity at 0 F. Those without W are clas-

sified by viscosity at 210 F.

Multigrade oils (e.g., 10W-40) are formulated to minimize viscosity variation with temperature.

High polymer “viscosity index improvers” are used in blending these multigrade oils. Such additives

are highly non-Newtonian; they may suffer permanent viscosity loss caused by shearing.

Special charts are available to estimate the viscosity of petroleum products as a function of temper-

ature. The charts were used to develop the data for typical lubricating oils plotted in Figs. A.2 and A.3.

For details, see [15].

Table A.5
Allowable Viscosity Ranges for Lubricants

Engine Oil SAE

Viscosity Grade

Max. Viscosity (cP)a

at Temp. ( C)

Viscosity (cSt)b at 100 C

Min Max

0W 3250 at −30 3.8 —

5W 3500 at −25 3.8 —

10W 3500 at −20 4.1 —

15W 3500 at −15 5.6 —

20W 4500 at −10 5.6 —

25W 6000 at −5 9.3 —

20 — 5.6 <9.3

30 — 9.3 <12.5

40 — 12.5 <16.3

50 — 16.3 <21.9

Axle and Manual

Transmission Lubricant

SAE

Viscosity Grade

Max. Temp. ( C) for

Viscosity of 150,000 cP

Viscosity (cSt) at 100 C

Min Max

70W −55 4.1 —

75W −40 4.1 —

80W −26 7.0 —

85W −12 11.0 —

90 — 13.5 <24.0

140 — 24.0 <41.0

250 — 41.0 —

Automatic Transmission

Fluid (Typical)

Maximum

Viscosity (cP) Temperature ( C)

Viscosity (cSt) at 100 C

Min Max

50000 −40 6.5 8.5

4000 −23.3 6.5 8.5

1700 −18 6.5 8.5

Source: Data from References [12–14].
a centipoise = 1 cP= 1 mPa s= 10−3 Pa s = 2 09× 10−5 lbf s ft2 .
b centistoke= 10−6 m2 s = 1 08× 10−5 ft2 s .
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A.5 Properties of Common Gases, Air, and Water

Table A.6
Thermodynamic Properties of Common Gases at STPa

Gas

Chemical

Symbol

Molecular

Mass, Mm

Rb

J

kg K

cp
J

kg K

cυ
J

kg K

k=
cp

cυ
–

Rb

ft lbf

lbm R

cp
Btu

lbm R

cυ
Btu

lbm R

Air — 28 98 286 9 1004 717 4 1 40 53 33 0 2399 0 1713

Carbon

dioxide

CO2 44 01 188 9 840 4 651 4 1 29 35 11 0 2007 0 1556

Carbon

monoxide

CO 28 01 296 8 1039 742 1 1 40 55 17 0 2481 0 1772

Helium He 4 003 2077 5225 3147 1 66 386 1 1 248 0 7517

Hydrogen H2 2 016 4124 14,180 10 060 1 41 766 5 3 388 2 402

Methane CH4 16 04 518 3 2190 1672 1 31 96 32 0 5231 0 3993

Nitrogen N2 28 01 296 8 1039 742 0 1 40 55 16 0 2481 0 1772

Oxygen O2 32 00 259 8 909 4 649 6 1 40 48 29 0 2172 0 1551

Steamc H2O 18 02 461 4 2000 1540 1 30 85 78 0 478 0 368

Source: Data from References [7, 16, 17].
a STP = standard temperature and pressure, T =15 C=59 F and p=101 325 kPa abs = 14 696 psia.
b
R≡Ru Mm;Ru =8314 3 J kgmol K =1545 3 ft lbf lbmol R ; 1 Btu= 778 2 ft lbf.

cWater vapor behaves as an ideal gas when superheated to 55 C (100 F) or more.

Table A.7
Properties of Water (U.S. Customary Units)

Temperature,

T ( F)

Density, ρ

(slug/ft3)

Dynamic Viscosity, μ

(lbf s/ft2)

Kinematic

Viscosity, ν (ft2/s)

Surface Tension,

σ (lbf/ft)

Vapor Pressure,

pυ (psia)

Bulk Modulus,

Eυ (psi)

32 1.94 3.68E-05 1.90E-05 0.00519 0.0886 2.92E + 05

40 1.94 3.20E-05 1.65E-05 0.00514 0.122

50 1.94 2.73E-05 1.41E-05 0.00509 0.178

59 1.94 2.38E-05 1.23E-05 0.00504 0.247

60 1.94 2.35E-05 1.21E-05 0.00503 0.256

68 1.94 2.10E-05 1.08E-05 0.00499 0.339

70 1.93 2.05E-05 1.06E-05 0.00498 0.363 3.20E + 05

80 1.93 1.80E-05 9.32E-06 0.00492 0.507

90 1.93 1.59E-05 8.26E-06 0.00486 0.699

100 1.93 1.43E-05 7.38E-06 0.00480 0.950

110 1.92 1.28E-05 6.68E-06 0.00474 1.28

120 1.92 1.16E-05 6.05E-06 0.00467 1.70 3.32E + 05

130 1.91 1.06E-05 5.54E-06 0.00461 2.23

140 1.91 9.70E-06 5.08E-06 0.00454 2.89

150 1.90 8.93E-06 4.70E-06 0.00448 3.72

160 1.89 8.26E-06 4.37E-06 0.00441 4.75

170 1.89 7.67E-06 4.06E-06 0.00434 6.00

180 1.88 7.15E-06 3.80E-06 0.00427 7.52

190 1.87 6.69E-06 3.58E-06 0.00420 9.34

200 1.87 6.28E-06 3.36E-06 0.00413 11.5 3.08E + 05

212 1.86 5.84E-06 3.14E-06 0.00404 14.7
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Table A.8
Properties of Water (SI Units)

Temperature,

T ( C)

Density, ρ

(kg/m3)

Dynamic Viscosity, μ

(N s/m2)

Kinematic

Viscosity, ν (m2/s)

Surface Tension,

σ (N/m)

Vapor Pressure,

pυ (kPa)

Bulk Modulus,

Eυ (GPa)

0 1000 1.76E-03 1.76E-06 0.0757 0.661 2.01

5 1000 1.51E-03 1.51E-06 0.0749 0.872

10 1000 1.30E-03 1.30E-06 0.0742 1.23

15 999 1.14E-03 1.14E-06 0.0735 1.71

20 998 1.01E-03 1.01E-06 0.0727 2.34 2.21

25 997 8.93E-04 8.96E-07 0.0720 3.17

30 996 8.00E-04 8.03E-07 0.0712 4.25

35 994 7.21E-04 7.25E-07 0.0704 5.63

40 992 6.53E-04 6.59E-07 0.0696 7.38

45 990 5.95E-04 6.02E-07 0.0688 9.59

50 988 5.46E-04 5.52E-07 0.0679 12.4 2.29

55 986 5.02E-04 5.09E-07 0.0671 15.8

60 983 4.64E-04 4.72E-07 0.0662 19.9

65 980 4.31E-04 4.40E-07 0.0654 25.0

70 978 4.01E-04 4.10E-07 0.0645 31.2

75 975 3.75E-04 3.85E-07 0.0636 38.6

80 972 3.52E-04 3.62E-07 0.0627 47.4

85 969 3.31E-04 3.41E-07 0.0618 57.8

90 965 3.12E-04 3.23E-07 0.0608 70.1 2.12

95 962 2.95E-04 3.06E-07 0.0599 84.6

100 958 2.79E-04 2.92E-07 0.0589 101

Table A.9
Properties of Air at Atmospheric Pressure (U.S. Customary Units)

Temperature, T ( F) Density, ρ (slug/ft3) Dynamic Viscosity, μ (lbf s/ft2) Kinematic Viscosity, ν (ft2/s)

40 0.00247 3.63E-07 1.47E-04

50 0.00242 3.69E-07 1.52E-04

59 0.00238 3.74E-07 1.57E-04

60 0.00237 3.74E-07 1.58E-04

68 0.00234 3.79E-07 1.62E-04

70 0.00233 3.80E-07 1.63E-04

80 0.00229 3.85E-07 1.68E-04

90 0.00225 3.91E-07 1.74E-04

100 0.00221 3.96E-07 1.79E-04

110 0.00217 4.02E-07 1.86E-04

120 0.00213 4.07E-07 1.91E-04

130 0.00209 4.12E-07 1.97E-04

140 0.00206 4.18E-07 2.03E-04

150 0.00202 4.23E-07 2.09E-04

160 0.00199 4.28E-07 2.15E-04

170 0.00196 4.33E-07 2.21E-04

180 0.00193 4.38E-07 2.27E-04

190 0.00190 4.43E-07 2.33E-04

200 0.00187 4.48E-07 2.40E-04
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Table A.10
Properties of Air at Atmospheric Pressure (SI Units)

Temperature, T ( C) Density, ρ (kg/m3) Dynamic Viscosity, μ (N s/m2) Kinematic Viscosity, ν (m2/s)

0 1.29 1.72E-05 1.33E-05

5 1.27 1.74E-05 1.37E-05

10 1.25 1.76E-05 1.41E-05

15 1.23 1.79E-05 1.45E-05

20 1.21 1.81E-05 1.50E-05

25 1.19 1.84E-05 1.54E-05

30 1.17 1.86E-05 1.59E-05

35 1.15 1.88E-05 1.64E-05

40 1.13 1.91E-05 1.69E-05

45 1.11 1.93E-05 1.74E-05

50 1.09 1.95E-05 1.79E-05

55 1.08 1.98E-05 1.83E-05

60 1.06 2.00E-05 1.89E-05

65 1.04 2.02E-05 1.94E-05

70 1.03 2.04E-05 1.98E-05

75 1.01 2.06E-05 2.04E-05

80 1.00 2.09E-05 2.09E-05

85 0.987 2.11E-05 2.14E-05

90 0.973 2.13E-05 2.19E-05

95 0.960 2.15E-05 2.24E-05

100 0.947 2.17E-05 2.29E-05
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A P P E N D I X B

Videos for Fluid Mechanics

Referenced in the text are the following videos available in the enhanced ebook.

Chapter 2
Streamlines

Streaklines

Capillary Rise

Boundary Layer Flow

Streamlined Flow over an Airfoil

Internal Laminar Flow in a Tube

Streamlines around a Car

Laminar and Turbulent Flow

Chapter 4
Mass Conservation: Filling a Tank

Momentum Effect: A Jet Impacting a

Surface

Chapter 5
An Example of Streamlines/Streaklines

Particle Motion in a Channel

Linear Deformation

Flow Past a Cylinder

Chapter 6
An Example of Irrotational Flow

Chapter 7
Geometric, Not Dynamic, Similarity:

Flow Past a Block 1

Geometric, Not Dynamic, Similarity:

Flow Past a Block 2

Chapter 8
The Reynolds Transition Experiment

Pipe Flow: Laminar

Pipe Flow: Transitional

The Glen Canyon Dam: A Turbulent

Pipe Flow

Chapter 9
Flow around an Airfoil

Flow Separation on an Airfoil

Effect of Viscosity on Boundary

Layer Growth

Examples of Boundary Layer Growth

Flow Separation: Airfoil

Flow about a Sports Car

Plate Normal to the Flow

An Object with a High Drag Coefficient

Examples of Flow around a Sphere

Vortex Trail behind a Cylinder

Flow Past an Airfoil (α = 0 )

Flow Past an Airfoil (α = 10 )

Flow Past an Airfoil (α = 20 )

Wing Tip Vortices

Leading Edge Slats

Chapter 10
Flow in an Axial Flow Compressor

(Animation)

Chapter 11
A Laminar Hydraulic Jump

Chapter 12
Shock Waves due to a Projectile

Shock Waves over a Supersonic Airplane
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The following videos were developed by the National Committee for Fluid Mechanics Films (NCFMF)

and may be viewed at http://web.mit.edu/hml/ncfmf.html. Each of these videos goes into the subject in

more depth than may be appropriate for an undergraduate class. However, selected segments of the

videos are useful in bringing out important fluids phenomena.

These videos are supplied by:

Encyclopaedia Britannica Educational Corporation

331 North La Salle Street

Chicago, IL 60654

Aerodynamic Generation of Sound (44 min, principals: M. J. Lighthill, J. E. Ffowcs-Williams)

Cavitation (31 min, principal: P. Eisenberg)

Channel Flow of a Compressible Fluid (29 min, principal: D. E. Coles)

Deformation of Continuous Media (38 min, principal: J. L. Lumley)

Eulerian and Lagrangian Descriptions in Fluid Mechanics (27 min, principal: J. L. Lumley)

Flow Instabilities (27 min, principal: E. L. Mollo-Christensen)

Flow Visualization (31 min, principal: S. J. Kline)

The Fluid Dynamics of Drag (4 parts, 120 min, principal: A. H. Shapiro)

Fundamentals of Boundary Layers (24 min, principal: F. H. Abernathy)

Low-Reynolds-Number Flows (33 min, principal: Sir G. I. Taylor)

Magnetohydrodynamics (27 min, principal: J. A. Shercliff )

Pressure Fields and Fluid Acceleration (30 min, principal: A. H. Shapiro)

Rarefied Gas Dynamics (33 min, principals: F. C. Hurlbut, F. S. Sherman)

Rheological Behavior of Fluids (22 min, principal: H. Markovitz)

Rotating Flows (29 min, principal: D. Fultz)

Secondary Flow (30 min, principal: E. S. Taylor)

Stratified Flow (26 min, principal: R. R. Long)

Surface Tension in Fluid Mechanics (29 min, principal: L. M. Trefethen)

Turbulence (29 min, principal: R. W. Stewart)

Vorticity (2 parts, 44 min, principal: A. H. Shapiro)

Waves in Fluids (33 min, principal: A. E. Bryson)

Another source of fluid mechanics videos is a CD entitled “Multimedia Fluid Mechanics” by Homsy

et al. It is available from Cambridge University Press, 32 Avenue of the Americas, New York, NY

10013-2473, ISBN 9780521721691. This CD contains a very large number of videos that illustrate

different phenomena in fluid flow.
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A P P E N D I X C

Selected Performance Curves
for Pumps and Fans

C.1 Introduction
Many firms, worldwide, manufacture fluid machines in numerous standard types and sizes. Each man-

ufacturer publishes complete performance data to allow application of its machines in systems. This

appendix contains selected performance data for use in solving pump and fan system problems. Two

pump types and one fan type are included.

Choice of a manufacturer may be based on established practice, location, or cost. Once a manufac-

turer is chosen, machine selection is a three-step process:

1. Select a machine type, suited to the application, from a manufacturer’s full-line catalog, which gives

the ranges of pressure rise (head) and flow rate for each machine type.

2. Choose an appropriate machine model and driver speed from a master selector chart, which super-

poses the head and flow rate ranges of a series of machines on one graph.

3. Verify that the candidate machine is satisfactory for the intended application, using a detailed per-

formance curve for the specific machine.

It is wise to consult with experienced system engineers, either employed by the machine manufac-

turer or in your own organization, before making a final purchase decision.

Manymanufacturers currently use computerized procedures to select a machine that is most suitable

for each given application. Such procedures are simply automated versions of the traditional selection

method. Use of the master selector chart and the detailed performance curves is illustrated below for

pumps and fans, using data from one manufacturer of each type of machine. Literature of other man-

ufacturers differs in detail but contains the necessary information for machine selection.

C.2 Pump Selection
Representative data are shown in Figs. C.1 through C.10 for Peerless horizontal split case single-stage

(series AE) pumps and in Figs. C.11 and C.12 for Peerless multi-stage (series TU and TUT) pumps [1].

Figures C.1 and C.2 are master pump selector charts for series AE pumps at 3500 and 1750 nominal

rpm. On these charts, the model number (e.g., 6AE14) indicates the discharge line size (6 in nominal

pipe), the pump series (AE), and the maximum impeller diameter (approximately 14 in ).

Figures C.3 through C.10 are detailed performance charts for individual pump models in the AE

series.

Figures C.11 and C.12 are master pump selector charts for series TU and TUT pumps at 1750 nom-

inal rpm. Data for two-stage pumps are presented in Fig. C.11, while Fig. C.12 contains data for pumps

with three, four, and five stages.

Each pump performance chart contains curves of total head versus volume flow rate; curves for

several impeller diameters—tested in the same casing—are presented on a single graph. Each perfor-

mance chart also contains curves showing pump efficiency and driver power; the net positive suction

head (NPSH) requirement, as it varies with flow rate, is shown by the curve at the bottom of each chart.

The best efficiency point (BEP) for each impeller may be found using the efficiency curves.

Use of the master pump selector chart and detailed performance curves is illustrated in Example C.1.
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C.3 Fan Selection
Fan selection is similar to pump selection. A representative master fan selection chart is shown in

Fig. C.13 for a series of Howden Buffalo axial-flow fans. The chart shows the efficiency of the entire

series of fans as a function of total pressure rise and flow rate. The series of numbers for each fan indi-

cates the fan diameter in inches, the hub diameter in inches, and the fan speed in revolutions per minute.

For instance, a 54-26-870 fan has a fan diameter of 54 in , a hub diameter of 26 in , and should be oper-

ated at 870 rpm.

Normally, final evaluation of suitability of the fan model for the application would be done using

detailed performance charts for the specific model. Instead, we use the efficiencies from Fig C.13, which

are indicated by the shading of the different zones on the map. To calculate the power requirement for the

fan motor, we use the following equation:

� hp =
Q cfm ×Δp in H2O

6350× η

A sample fan selection is presented in Example C.2.

Example C.1 PUMP SELECTION PROCEDURE

Select a pump to deliver 1750 gpm of water at 120 ft total head. Choose the appropriate pumpmodel and driver speed. Specify the

pump efficiency, driver power, and NPSH requirement.

Given: Select a pump to deliver 1750 gpm of water at 120 ft total head.

Find:

(a) Pump model and driver speed.

(b) Pump efficiency.

(c) Driver power.

(d) NPSH requirement.

Solution: Use the pump selection procedure described in Section C-1. (The numbers below correspond to the numbered steps

given in the procedure.)

1. Select a machine type suited to the application. (This step actually requires a manufacturer’s full-line catalog, which is not

reproduced here. The Peerless product line catalog specifies a maximum delivery and head of 2500 gpm and 660 ft for series

AE pumps. Therefore the required performance can be obtained; assume the selection is to be made from this series.)

2. Consult the master pump selector chart. The desired operating point is not within any pump contour on the 3500 rpm selector

chart (Fig. C.1). From the 1750 rpm chart (Fig. C.2), select a model 6AE14 pump. From the performance curve for the 6AE14

pump (Fig. C.6), choose a 13-in. impeller.

3. Verify the performance of the machine using the detailed performance chart. On the performance chart for the 6AE14 pump,

project up from the abscissa at Q=1750 gpm. Project across from H =120 ft on the ordinate. The intersection is the pump

performance at the desired operating point:

η≈85 8 percent �≈64 hp

From the operating point, project down to the NPSH requirement curve. At

the intersection, read NPSH≈17 ft.

This completes the selection process for
this pump. One should consult with
experienced systemengineers to verify that
the system operating condition has been
predicted accurately and the pump has
been selected correctly.
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Example C.2 FAN SELECTION PROCEDURE

Select an axial flow fan to deliver 30 000 cfm of standard air at 1 25 in H2O total pressure. Choose the appropriate fan model and

driver speed. Specify the fan efficiency and driver power.

Given: Select an axial flow fan to deliver 30 000 cfm of standard air at 1 25 in H2O total head.

Find:

(a) Fan size and driver speed.

(b) Fan efficiency.

(c) Driver power.

Solution: Use the fan selection procedure described in Section C-1. (The numbers below correspond to the numbered steps

given in the procedure.)

1. Select a machine type suited to the application. (This step actually requires a manufacturer’s full-line catalog, which is not

reproduced here. Assume the fan selection is to be made from the axial fan data presented in Fig. C.13.)

2. Consult the master fan selector chart. The desired operating point is within the contour for the 48-21-860 fan on the selector

chart (Fig. C.13). To achieve the desired performance requires driving the fan at 860 rpm.

3. Verify the performance of the machine using a detailed performance chart. To

determine the efficiency, we consult Fig. C.13 again. We estimate an effi-

ciency of 85 percent. To determine the motor power requirement, we use

the equation given above:

�=
Q×Δp

6350 × η
=
30 000 cfm×1 25 in H2O

6350× 0 85
= 6 95 hp

This completes the fan selection process.
Again, one should consult with experienced
system engineers to verify that the system
operating condition has been predicted
accurately and the fan has been selected
correctly.
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Fig. C.1 Selector chart for Peerless horizontal split case (series AE) pumps at 3500 nominal rpm.
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Fig. C.2 Selector chart for Peerless horizontal split case (series AE) pumps at 1750 nominal rpm.
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Fig. C.3 Performance curve for Peerless 4AE11 pump at 1750 rpm.
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A P P E N D I X D

Flow Functions for Computation
of Compressible Flow

D.1 Isentropic Flow
Isentropic flow functions are computed using the following equations:

p0

p
= 1+

k−1

2
M2

k k−1

12 21a 12 30a

T0

T
=1+

k−1

2
M2 12 21b 12 30b

ρ0

ρ
= 1+

k−1

2
M2

1 k−1

12 21c 12 30c

A

A∗
=

1

M

1+
k−1

2
M2

k+1

2

k+1 2 k−1

12 30d

Representative values of the isentropic flow functions for k=1 4 are presented in Table D.1 and

plotted in Fig. D.1. These functions can also be calculated using the Excel worksheets available on

the website.

Table D.1
Isentropic Flow Functions (one-dimensional flow, ideal gas, k=1 4)

M T/T0 p/p0 ρ/ρ0 A/A∗

0.00 1.0000 1.0000 1.0000 ∞

0.50 0.9524 0.8430 0.8852 1.340

1.00 0.8333 0.5283 0.6339 1.000

1.50 0.6897 0.2724 0.3950 1.176

2.00 0.5556 0.1278 0.2301 1.688

2.50 0.4444 0.05853 0.1317 2.637

3.00 0.3571 0.02722 0.07623 4.235

3.50 0.2899 0.01311 0.04523 6.790

4.00 0.2381 0.006586 0.02766 10.72

4.50 0.1980 0.003455 0.01745 16.56

5.00 0.1667 0.001890 0.01134 25.00
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D.2 Normal Shock
Normal-shock flow functions are computed using the following equations:

M2
2 =

M2
1 +

2

k−1
2k

k−1
M2

1−1

12 43a

p02
p01

=

k+1

2
M2

1

1+ k−1
2

M2
1

k k−1

2k

k+1
M2

1−
k−1

k+1

1 k−1
12 43b

T2

T1
=

1+
k−1

2
M2

1 kM2
1−

k−1

2

k+1

2

2

M2
1

12 43c

p2

p1
=

2k

k+1
M2

1−
k−1

k+1
12 43d

ρ2

ρ1
=
V1

V2

=

k+1

2
M2

1

1+
k−1

2
M2

1

12 43e
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Fig. D.1 Isentropic flow functions.
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Representative values of the normal-shock flow functions for k=1 4 are presented in Table D.2 and

plotted in Fig. D.2.

Table D.2
Normal-Shock Flow Functions (one-dimensional flow, ideal gas, k=1 4)

M1 M2 p02/p01 T2/T1 p2/p1 ρ2/ρ1

1.00 1.000 1.000 1.000 1.000 1.000

1.50 0.7011 0.9298 1.320 2.458 1.862

2.00 0.5774 0.7209 1.687 4.500 2.667

2.50 0.5130 0.4990 2.137 7.125 3.333

3.00 0.4752 0.3283 2.679 10.33 3.857

3.50 0.4512 0.2130 3.315 14.13 4.261

4.00 0.4350 0.1388 4.047 18.50 4.571

4.50 0.4236 0.09170 4.875 23.46 4.812

5.00 0.4152 0.06172 5.800 29.00 5.000

Upstream Mach number
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Fig. D.2 Normal-shock flow functions.
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A P P E N D I X E

Analysis of Experimental
Uncertainty

E.1 Introduction
Experimental data often are used to supplement engineering analysis as a basis for design. Not all data

are equally good; the validity of data should be documented before test results are used for design.

Uncertainty analysis is the procedure used to quantify data validity and accuracy. Analysis of uncertainty

also is useful during experiment design. Careful study may indicate potential sources of unacceptable

error and suggest improved measurement methods. An error analysis is often relevant to simulations

in which there is uncertainty in the input parameters. It is important that any results presented have

an indication of their accuracy and uncertainty.

E.2 Types of Error
Errors always are present when experimental measurements are made. Aside from gross blunders by the

experimenter, experimental error may be of two types. Fixed (or systematic) error causes repeated mea-

surements to be in error by the same amount for each trial. Fixed error is the same for each reading and

can be removed by proper calibration or correction. Random error (nonrepeatability) is different for

every reading and hence cannot be removed. The factors that introduce random error are uncertain

by their nature. The objective of uncertainty analysis is to estimate the probable random error in exper-

imental results.

We assume that equipment has been constructed correctly and calibrated properly to eliminate fixed

errors. We assume that instrumentation has adequate resolution and that fluctuations in readings are not

excessive. We assume also that care is used in making and recording observations so that only random

errors remain.

E.3 Estimation of Uncertainty
Our goal is to estimate the uncertainty of experimental measurements and calculated results due to ran-

dom errors. The procedure has three steps:

1. Estimate the uncertainty interval for each measured quantity.

2. State the confidence limit on each measurement.

3. Analyze the propagation of uncertainty into results calculated from experimental data.

Below we outline the procedure for each step and illustrate applications with examples.

Step 1 Estimate the measurement uncertainty interval. Designate the measured variables in an experiment as

x1, x2, , xn. One possible way to find the uncertainty interval for each variable would be to repeat each

measurement many times. The result would be a distribution of data for each variable. Random errors in

measurement usually produce a normal (Gaussian) frequency distribution of measured values. The data

scatter for a normal distribution is characterized by the standard deviation, σ. The uncertainty interval

for each measured variable, xi, may be stated as nσi, where n=1, 2, or 3.

However, the most typical situation in engineering work is a “single-sample” experiment, where only

one measurement is made for each point [1]. A reasonable estimate of the measurement uncertainty due

to random error in a single-sample experiment usually is plus or minus half the smallest scale division

(the least count) of the instrument. However, this approach also must be used with caution, as illustrated

in the following example.
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When repeated measurements of a variable are available, they are usually normally distributed data, for

which over 99 percent of measured values of xi lie within 3σi of the mean value, 95 percent lie within

2σi, and 68 percent lie within σi of the mean value of the data set [2]. Thus it would be possible to

quantify expected errors within any desired confidence limit if a statistically significant set of data were

available.

The method of repeated measurements usually is impractical. In most applications it is impossible to

obtain enough data for a statistically significant sample owing to the excessive time and cost involved.

However, the normal distribution suggests several important concepts:

1. Small errors are more likely than large ones.

2. Plus and minus errors are about equally likely.

3. No finite maximum error can be specified.

Step 2 State the confidence limit on each measurement. The uncertainty interval of a measurement should be

stated at specified odds. For example, one may write h=752 6 0 5 mm 20 to 1 . This means that one

is willing to bet 20 to 1 that the height of the mercury column actually is within 0 5 mm of the stated

value. It should be obvious [3] that “. . . the specification of such odds can only be made by the experimenter

based on . . . total laboratory experience. There is no substitute for sound engineering judgment in estimat-

ing the uncertainty of a measured variable.”

The confidence interval statement is based on the concept of standard deviation for a normal distribu-

tion. Odds of about 370 to 1 correspond to 3σ; 99.7 percent of all future readings are expected to fall

within the interval. Odds of about 20 to 1 correspond to 2σ and odds of 3 to 1 correspond to σ con-

fidence limits. Odds of 20 to 1 typically are used for engineering work.

Step 3 Analyze the propagation of uncertainty in calculations. Suppose that measurements of independent vari-

ables, x1, x2, , xn, are made in the laboratory. The relative uncertainty of each independently measured

quantity is estimated as ui. The measurements are used to calculate some result, R, for the experiment. We

wish to analyze how errors in the xis propagate into the calculation of R from measured values.

In general, R may be expressed mathematically as R=R x1,x2, ,xn . The effect on R of an error in

measuring an individual xi may be estimated by analogy to the derivative of a function [4]. A variation,

δxi, in xi would cause variation δRi in R,

δRi =
∂R

∂xi
δxi

The relative variation in R is

δRi

R
=
1

R

∂R

∂xi
δxi =

xi

R

∂R

∂xi

δxi

xi
E 1

Example E.1 UNCERTAINTY IN BAROMETER READING

The observed height of the mercury barometer column is h=752 6 mm. The least

count on the vernier scale is 0 1 mm, so one might estimate the probable mea-

surement error as 0 05 mm.

A measurement probably could not be made this precisely. The barometer sli-

ders and meniscus must be aligned by eye. The slider has a least count of 1 mm.

As a conservative estimate, a measurement could be made to the nearest millime-

ter. The probable value of a single measurement then would be expressed as

752 6 0 5 mm. The relative uncertainty in barometric height would be stated as

uh =
0 5 mm

752 6 mm
= 0 000664 or 0 0664 percent

Comments:
1. An uncertainty interval of 0 1 percent

corresponds to a result specified to three
significant figures; this precision is
sufficient for most engineering work.

2. The measurement of barometer height
was precise, as shown by the uncertainty
estimate. But was it accurate? At typical
room temperatures, the observed
barometer reading must be reduced by
a temperature correction of nearly 3mm!
This is an example of a fixed error that
requires a correction factor.
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Equation E.1 may be used to estimate the relative uncertainty in the result due to uncertainty in xi. Introducing the

notation for relative uncertainty, we obtain

uRi
=
xi

R

∂R

∂xi
uxi E 2

How do we estimate the relative uncertainty in R caused by the combined effects of the relative uncertainties in all

the xis? The random error in each variable has a range of values within the uncertainty interval. It is unlikely that all

errors will have adverse values at the same time. It can be shown [1] that the best representation for the relative

uncertainty of the result is

uR =
x1

R

∂R

∂x1
u1

2

+
x2

R

∂R

∂x2
u2

2

+ +
xn

R

∂R

∂xn
un

2 1 2

E 3

Example E.2 UNCERTAINTY IN VOLUME OF CYLINDER

Obtain an expression for the uncertainty in determining the volume of a cylinder from measurements of its radius and height.

The volume of a cylinder in terms of radius and height is

V--- =V--- r,h = πr2h

Differentiating, we obtain

dV--- =
∂V---

∂r
dr+

∂V---

∂h
dh=2πrh dr+ πr2 dh

since

∂V---

∂r
=2πrh and

∂V---

∂h
= πr2

From Eq. E.2, the relative uncertainty due to radius is

uV--,r =
δV---r

V---
=

r

V---

∂V---

∂r
ur =

r

πr2h
2πrh ur =2ur

and the relative uncertainty due to height is

uV--,h =
δV---h

V---
=

h

V---

∂V---

∂h
uh =

h

πr2h
πr2 uh = uh

The relative uncertainty in volume is then

uV-- = 2ur
2
+ uh

2 1 2
E 4

Comment:
The coefficient 2, in Eq. E.4, shows that the
uncertainty in measuring cylinder radius
has a larger effect than the uncertainty in
measuring height. This is true because the
radius is squared in the equation for
volume.
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E.4 Applications to Data
Applications to data obtained from laboratory measurements are illustrated in the following

examples.

Example E.3 UNCERTAINTY IN LIQUID MASS FLOW RATE

The mass flow rate of water through a tube is to be determined by collecting water in a beaker. The mass flow rate is calculated

from the net mass of water collected divided by the time interval,

m=
Δm

Δt
E 5

where Δm=mf −me. Error estimates for the measured quantities are

Mass of full beaker, mf = 400 2 g 20 to 1

Mass of empty beaker, me = 200 2 g 20 to 1

Collection time interval, Δt = 10 0 2 s 20 to 1

The relative uncertainties in measured quantities are

umf
=

2 g

400 g
= 0 005

ume
=

2 g

200 g
= 0 01

uΔt =
0 2 s

10 s
= 0 02

The relative uncertainty in the measured value of net mass is calculated from Eq. E.3 as

uΔm =
mf

Δm

∂Δm

∂mf

umf

2

+
me

Δm

∂Δm

∂me

ume

2 1 2

= 2 1 0 005
2
+ 1 −1 0 01

2 1 2

uΔm = 0 0141

Because m=m Δm,Δt , we may write Eq. E.3 as

um =
Δm

m

∂m

∂Δm
uΔm

2

+
Δt

m

∂m

∂Δt
uΔt

2 1 2

E 6

The required partial derivative terms are

Δm

m

∂m

∂Δm
=1 and

Δt

m

∂m

∂Δt
= −1

Substituting into Eq. E.6 gives

um = 1 0 0141
2
+ −1 0 02

2 1 2

um = 0 0245 or 2 45 percent 20 to 1

Comment:
The 2 percent uncertainty interval in time
measurement makes the most important
contribution to the uncertainty interval
in the result.
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Example E.4 UNCERTAINTY IN THE REYNOLDS NUMBER FOR WATER FLOW

The Reynolds number is to be calculated for flow of water in a tube. The computing equation for the Reynolds number is

Re=
4m

πμD
=Re m, D, μ E 7

We have considered the uncertainty interval in calculating the mass flow rate. What about uncertainties in μ and D? The

tube diameter is given as D=6 35 mm. Do we assume that it is exact? The diameter might be measured to the nearest

0 1 mm. If so, the relative uncertainty in diameter would be estimated as

uD =
0 05 mm

6 35 mm
= 0 00787 or 0 787 percent

The viscosity of water depends on temperature. The temperature is estimated as T =24 0 5 C. How will the uncertainty in

temperature affect the uncertainty in μ? One way to estimate this is to write

uμ T =
δμ

μ
=
1

μ

dμ

dT
δT E 8

The derivative can be estimated from tabulated viscosity data near the nominal temperature of 24 C. Thus

dμ

dT
≈
Δμ

ΔT
=
μ 25 C −μ 23 C

25−23 C
= 0 000890−0 000933

N s

m2
×

1

2 C

dμ

dT
= −2 15× 10−5 N s m2 C

It follows from Eq. E.8 that the relative uncertainty in viscosity due to temperature is

uμ T =
1

0 000911

m2

N s
× −2 15× 10−5 N s

m2 C
× 0 5 C

uμ T = 0 0118 or 1 18 percent

Tabulated viscosity data themselves also have some uncertainty. If this is 1 0 percent, an estimate for the resulting relative

uncertainty in viscosity is

uμ = 0 01
2
+ 0 0118

2 1 2
= 0 0155 or 1 55 percent

The uncertainties in mass flow rate, tube diameter, and viscosity needed to compute the uncertainty interval for the calculated

Reynolds number now are known. The required partial derivatives, determined from Eq. E.7, are

m

Re

∂Re

∂m
=

m

Re

4

πμD
=
Re

Re
=1

μ

Re

∂Re

∂μ
=

μ

Re
−1

4m

πμ2D
= −

Re

Re
= −1

D

Re

∂Re

∂D
=

D

Re
−1

4m

πμD2
= −

Re

Re
= −1

Substituting into Eq. E.3 gives

uRe =
m

Re

∂Re

∂m
um

2

+
μ

Re

∂Re

∂μ
uμ

2

+
D

Re

∂Re

∂D
uD

2 1 2

uRe = 1 0 0245
2
+ −1 0 0155

2
+ −1 0 00787

2
1 2

uRe = 0 0300 or 3 00 percent

Comment:
Examples E.3 and E.4 illustrate two points
important for experiment design. First, the
mass of water collected, Δm, is calculated
from two measured quantities, mf and me.
For any stated uncertainty interval in the
measurements of mf and me, the relative
uncertainty in Δm can be decreased by
making Δm larger. This might be accom-
plished by using larger containers or a
longer measuring interval, Δt, which also
would reduce the relative uncertainty in the
measured Δt. Second, the uncertainty in
tabulated property datamay be significant.
The data uncertainty also is increased by
the uncertainty in measurement of fluid
temperature.
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E.5 Summary
A statement of the probable uncertainty of data is an important part of reporting experimental results

completely and clearly. Many journals require that manuscripts include an adequate statement of uncer-

tainty of experimental data [5]. Estimating uncertainty in experimental results requires care, experience,

and judgment, in common with many endeavors in engineering. We have emphasized the need to

quantify the uncertainty of measurements. More information is available in References [4, 6, 7].

We urge you to consult them when designing experiments or analyzing data.
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Example E.5 UNCERTAINTY IN AIR SPEED

Air speed is calculated from pitot tube measurements in a wind tunnel. From the Bernoulli equation,

V =
2ghρwater

ρair

1 2

E 9

where h is the observed height of the manometer column.

The only new element in this example is the square root. The variation in V due to the uncertainty interval in h is

h

V

∂V

∂h
=

h

V

1

2

2ghρwater
ρair

−1 2
2gρwater
ρair

h

V

∂V

∂h
=

h

V

1

2

1

V

2gρwater
ρair

=
1

2

V2

V2
=
1

2

Using Eq. E.3, we calculate the relative uncertainty in V as

uV =
1

2
uh

2

+
1

2
uρwater

2

+ −
1

2
uρair

2 1 2

If uh = 0 01 and the other uncertainties are negligible,

uV =
1

2
0 01

2 1 2

uV = 0 00500 or 0 500 percent

Comment:
The square root reduces the relative
uncertainty in the calculated velocity to
half that of uh.
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A P P E N D I X F

Introduction to Computational
Fluid Dynamics

F.1 Introduction to Computational Fluid Dynamics
In this section we will discuss in a very basic manner the ideas behind computational fluid dynamics

(CFD). We will first review some very basic ideas in numerically solving an ordinary and a partial dif-

ferential equation with a couple of examples. After studying these, the reader will be able to numerically

solve a range of simple CFD problems. Then, for those with further interest in CFD, we will review in

more detail some concepts behind numerical methods, particularly CFD. This review will highlight some

of the advantages and pitfalls of CFD. We will apply some of these concepts to a simple 1D model, but

these concepts are so fundamental that they are applicable to almost any CFD calculation. As we apply the

CFD solution procedure to themodel, wewill comment on the extension to the general case. Our goal is to

help the reader understand what CFD entails and the power of it to solve fluid problems.

The Need for CFD

As discussed in Section 5.4, the equations describing fluid flow can be a bit intimidating. For example,

even though we may limit ourselves to incompressible flows for which the viscosity is constant, we still

end up with the following equations from Chapter 5:

∂u

∂x
+
∂υ

∂y
+
∂w

∂z
=0 5 1c

ρ
∂u

∂t
+ u

∂u

∂x
+ υ

∂u

∂y
+w

∂u

∂z
= ρgx−

∂p

∂x
+ μ

∂
2
u

∂x2
+
∂
2
u

∂y2
+
∂
2
u

∂z2
5 27a

ρ
∂υ

∂t
+ u

∂υ

∂x
+ υ

∂υ

∂y
+w

∂υ

∂z
= ρgy−

∂p

∂y
+ μ

∂
2
υ

∂x2
+
∂
2
υ

∂y2
+
∂
2
υ

∂z2
5 27b

ρ
∂w

∂t
+ u

∂w

∂x
+ υ

∂w

∂y
+w

∂w

∂z
= ρgz−

∂p

∂z
+ μ

∂
2
w

∂x2
+
∂
2
w

∂y2
+
∂
2
w

∂z2
5 27c

Equation 5.1c is the continuity equation (mass conservation) and Eqs. 5.27 are theNavier–Stokes equations

(momentum), expressed inCartesian coordinates. In principle, we can solve these equations for the velocity

field V = iu+ jυ+ kw and pressure field p, given sufficient initial and boundary conditions. Note that in

general, u,υ,w, and p all depend on x, y, z, and t. In practice, there is no general analytic solution to these

equations, for the combined effect of a number of reasons (none of which is insurmountable by itself ):

1 They are coupled. The unknowns, u,υ,w, and p, appear in all the equations (p is not in Eq. 5.1c) and

we cannot manipulate the equations to end up with a single equation for any one of the unknowns.

Hence we must solve for all unknowns simultaneously.

2 They are nonlinear. For example, in Eq. 5.27a, the convective acceleration term,

u ∂u ∂x+ υ ∂u ∂y+w ∂u ∂z, has products of u with itself as well as with υ and w. The consequence

of this is that we cannot combine one solution of the equations with a second solution to obtain a

third solution.

3 They are second-order partial differential equations. For example, in Eq. 5.27a, the viscous term,

μ ∂
2
u ∂x2 + ∂

2
u ∂y2 + ∂

2
u ∂z2 , is second-order in u. These are obviously of a different order of

complexity than, say, a first-order ordinary differential equation.
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These difficulties have led engineers, scientists, and mathematicians to adopt several approaches to

the solution of fluid mechanics problems. For relatively simple physical geometries and boundary or

initial conditions, the equations can often be reduced to a solvable form. We saw two examples of this

in Examples 5.9 and 5.10 (for cylindrical forms of the equations). If we can neglect the viscous terms, the

resulting incompressible, inviscid flow can often be successfully analyzed. This is the entire topic of

Chapter 6. Most incompressible flows of interest do not have simple geometries and are not inviscid.

The only option remaining is to use numerical methods to analyze problems. It is possible to obtain

approximate computer-based solutions to the equations for a variety of engineering problems. This is

the main subject matter of CFD.

Applications of CFD

CFD is employed in a variety of applications and is now widely used in various industries. As examples

of CFD simulations, Figure F.1 shows the paths taken by selected fluid particles around a Formula 1 car.

By studying such pathlines and other flow attributes, engineers gain insights into how to design the car so

as to reduce drag and enhance performance. The flow through a catalytic converter, a device used to

clean automotive exhaust gases, is shown in Figure F.2. This image shows path lines colored by velocity

magnitude. CFD helps engineers develop more effective catalytic converters by allowing them to study

how different chemical species mix and react in the device. Figure F.3 presents contours of static pres-

sure in a backward-inclined centrifugal fan used in ventilation applications. Fan performance character-

istics obtained from the CFD simulations compared well with results from physical tests.

F.2 Finite Difference Approach to CFD
We will introduce the approach of CFD using a finite difference approximation to represent the differ-

ential equations that describe fluid motion. By using finite differences, we reduce a problem from one of

solving differential equations to one of solving algebraic equations. This is a significant advantage that,

coupled with the advent of high-speed computing equipment, makes solvable problems that were pre-

viously intractable.
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Fig. F.3 Static pressure contours for flow through a
centrifugal fan.
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Fig. F.2 Flow through a catalytic converter.

A
N

S
Y

S
 I
n
c

Fig. F.1 Pathlines around a Formula 1 car.
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We will use as an example the flow between two stationary parallel plates, Section 8.2, where we

have only one differential equation and have the exact solution for comparison. For this situation, the

analytical solution for the velocity is given by Eq. 8.5 as

u=
a2

2μ

dp

dx

y

a

2

−
y

a
8 5

And the shear stress distribution is given by

τyx = a
dp

dx

y

a
−
1

2
8 6a

The shear stress is related to the velocity through Newton’s law of viscosity

τyx = μ
du

dy
2 15

To illustrate the numerical integration process, we will solve for the velocity profile numerically

using equations 8.6a and 2.15 and then compare to the exact solution, Eq. 8.5. We first divide the flow

up into a grid. Since the velocity is one-dimensional and varies only in the y-direction, we divide the y

coordinate into a number of horizontal layers spaced the distanceΔy apart. The grid, with the final results

for the velocity profile plotted, is shown in Figure F.4. We identify the velocity at a location y= n as un,

and the next location at y+Δy= n+ 1 as un+1. We will recast Eq. 2.15 in a simple finite difference form

by representing the derivative as a finite difference. The finite difference approximates the derivative as

du

dy
≈
Δu

Δy
=
un+1−un

Δy

Using the finite difference approximation, we combine Eqs 8.6a and 2.15 as

τyx = μ
du

dy
≈μ

un+1−un

Δy
= a

dp

dx

yn

a
−
1

2

Solving this relation for the velocity at n= 1 in terms of the velocity at n, we have

un+1 = un +
a

μ

dp

dx

yn

a
−
1

2
Δy F 1

Equation F.1 is now an algebraic finite difference equation that represents the velocity at a new

y-location in terms of the velocity at a previous location. This simple representation is termed Euler’s

method. It bases the next value of u only on the previous value and thus there is an error. More sophis-

ticated finite difference formulations reduce the error.

We will illustrate the numerical integration process. We will write Eq. F.1 in terms of the variable

yn/a and combine the constant terms into a coefficient C:

un+1 = un +
a2

μ

dp

dx

yn

a
−
1

2
Δ

yn

a
= un +C

yn

a
−
1

2
Δ

yn

a
F 2

We will solve for the velocity profile for a value of C=− 4 m/s and a= 1 cm. The value of C is

negative because the pressure gradient is negative. To solve Eq. F.2, we create a table as shown below

with values of n, y/a, and u. The coordinate y starts at the wall where the value of u is 0 m/s. We have

chosen a relatively large increment of Δy= 0.1 cm to illustrate the process.

n y/a u (m/s) n y/a u (m/s)

1 0 7 0.6

2 0.1 8 0.7

3 0.2 9 0.8

4 0.3 10 0.9

5 0.4 11 1.0

6 0.5

A-37F.2 Finite Difference Approach to CFD

www.konkur.in

Telegram: @uni_k



The value of u2 at n= 2 and y= 0.1 is calculated as follows:

u2 = u1 +C
y1

a
−
1

2

Δy

a
=0−4 0−

1

2
0 1= 0 2

m

s

The value of u3 is calculated similarly

u3 = u2 +C
y2

a
−
1

2
Δy=0 2−4 0 1−

1

2
0 1= 0 36

m

s

The process proceeds and the final values are shown in the table below.

n y/a u (m/s) n y/a u (m/s)

1 0 0 7 0.6 0.6

2 0.1 0.2 8 0.7 0.56

3 0.2 0.36 9 0.8 0.48

4 0.3 0.48 10 0.9 0.36

5 0.4 0.56 11 1.0 0.2

6 0.5 0.6

The results for the velocity profile using an increment of Δy/a of 0.1 are plotted in Figure F.4. Also

shown are values for the same Euler calculation procedure but with a value of Δy/a of 0.01. For com-

parison, the profile obtained analytically, Eq. 8.5 is plotted. The results demonstrate that even a relatively

crude grid produces the general shape of the velocity profile. As the number of grid points is increased

from 11 to 101, the accuracy becomes much better.

This example illustrates a number of important issues relating to the numerical computation of flow

problems. First, for this relatively simple example, we needed a large number of grid points, on the order

of 100, to get an accurate answer. Even so, there is still some error and the Euler method does not meet

the no-slip condition at the upper wall. The calculated velocity there is small, but nonzero.

More sophisticated numerical techniques such as Crank-Nicholson or Runge-Kutta methods would

increase accuracy and allow fewer grid points. These methods involve more complicated calculations

and often iteration at each step. For nonlinear equations, there is also the issue of stability and the solu-

tions may not converge or be reasonable if the grid spacing is too large. The calculation time may be

increased even though the number of grid points is reduced. Reference [3] describes some of the most

widely used finite difference approaches to solving fluid problems.

If we had been interested in solving the developing flow problem for this parallel plate example,

we would have also needed a grid that extended downstream. Laminar flow develops on the order of

1

0.8

0.6

Exact solution

Δy=0.1 cm

Δy=0.01 cm

0.4

0.2

0
0 0.2 0.4

u (m/s)

y 
(c

m
)

0.6 0.8

Fig. F.4 Comparison of finite difference and analytical solutions.
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100 diameters, and so we would then have needed on the order of 100 times the 100 grid points down-

stream for each of the grid points across the flow, or on the order of 10,000 downstream grid points. The

number of calculations is increased dramatically for more complex flow patterns.

To solve the entry length problem, we would also need more than the steady state relation between

the shear stress and pressure gradient. We would need to put the continuity equation and momentum

equation in finite difference form. These are coupled equations and the momentum equation is nonlinear

and second order and they would need to be solved for u and v simultaneously at each grid point. The

calculation time would then be significant.

Another fundamental problem is that finite difference solutions do not necessarily satisfy the con-

servation equations. This means that there is possibly not a balance between the forces and momentum

flows for any one fluid element, leading to errors in the solution.

Lastly, the example problem is for laminar flow. Much of the interest in fluid mechanics is in tur-

bulent flow, which requires accurate models for turbulence. A simple mixing length model for turbu-

lence was presented in Section 8.5. This semi-empirical model is valid for many flows, but

complicated flow patterns such as the flow over an automobile or in a combustion chamber require a

much more sophisticated turbulence model. Such models exist and are described in [1] and [2], but they

often bring in more equations that also need to be solved simultaneously with the continuity and momen-

tum equations.

The general conclusion to draw from this discussion is that finite difference techniques are useful,

but not as amenable to complex flow problems as other approaches. Modern CFD codes usually employ

other formulations as discussed in the next section.

Techniques of CFD

All CFD approaches employ the same approach of modeling the flow field by using a mesh consisting of

cells or elements as illustrated in Figure F.5. This mesh is constructed with a finer structure in the regions

of greatest interest and/or the regions with the largest changes in properties. As shown in the figure, the

mesh is very fine near the surface of the airfoil and in the wake region and becomes coarse farther from

the airfoil.

In the finite element method applied to fluid problems, the flow field is also divided up into sub-

domains, with the relevant equations applied to each subdomain [4]. For example, a flow field might

be divided up into the boundary layer region and the inviscid free stream. The finite element method

eliminates the spatial derivatives by approximating the partial differential equations locally with a set

of algebraic equations for steady state problems. The equations for the elements are then relatively sim-

ple equations that locally approximate the original complex partial differential equations with algebraic

equations that describe the flow. The error in this approximation is minimized by fitting trial functions

into the partial differential equations and using variational methods to minimize the error. In this step, the

conservation equations are satisfied.

Finite element analysis is suitable for analyzing problems over complicated domains such as the

flow over a complex shape. In order to simulate a given flow field, a mesh consisting of up to millions

of small elements that form the shape of the flow field is created. The calculations are made for each

element and the individual results combined to describe the whole flow field. The approximation is

due to representing the solution over each mesh by a polynomial. This yields the values of the variable,

for example, velocity, at certain points within the element but not at every point.

The finite volumemethod is another commonly used approach for CFD software [5]. The basis for this

method is the integral conservation law. The approach is to approximate the conservation law on each of

the many control volumes represented by the mesh. The governing partial differential equations are then

solved over a finite control volume rather than between grid points. Using the finite volume method guar-

antees that mass, momentum, and energy fluxes through a particular control volume are conserved.

An advantage of the finite element and finite volumemethods over finite difference methods is that a

structured mesh is not required. The finite volume method is possibly preferable to other methods in its

application of boundary conditions because the values of the conserved variables are determined within

the volume element and not at nodes or surfaces.

As in the finite difference methods, models for turbulence are essential to modeling real flows. A

number of turbulence models of increasing sophistication have been developed. A number of them are

described in References [1] and [2].
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Computational fluid dynamics is now widely used. The powerful software developed by ANSYS

called Fluent [6] is widely used in academic, research, and industrial settings to model complex flow

problems. Simulations are commonly used in conjunction with limited laboratory experiments in both

basic research and production. There is a reduction in cost and time, as experiments can be expensive and

time-consuming to set up, while CFD simulations are relatively inexpensive and fast. In industry, this

allows a quick assessment of design variations, with engineering data to be introduced early in the design

process. For researchers, CFD can be used to explore new flow situations. The results provide informa-

tion at any location in the region of interest, rather than being confined to discrete locations as in

experiments.

There are several caveats to using CFD codes for analyzing a new situation. The simulation neces-

sitates incorporating many engineering approximations, modeling shortcuts, and real-world variabilities.

Turbulence modeling is especially critical. These limitations produce uncertainty in the accuracy of the

solution and force the user to determine if the degree of uncertainty is acceptable enough to be useful.

Experience is essential as an untrained user has the tendency to believe that the CFD results are true.

Carefully constructed experiments may be necessary to validate the CFD solution. The white paper

by Linfield and Mudry [7] succinctly summarizes the advantages and limitations of CFD.
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New York, 1999, ISBN 3-540-65373-2

3. Patankar, S. V., Numerical Heat Transfer and Fluid Flow,
Hemisphere Publishing CO., New York, 1980.

4. Myers, G. E., Analytical methods in conduction heat transfer,
McGraw-Hill Book Company, New York, 1971. Available
for Amazon and the Wiley online library https://onlinelibrary.
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John Wiley and Sons, New York, 2017, ISBN 978-11-1900-
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15317, 2019
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Fig. F.5 Example of CFD mesh used to study the flow over an airfoil.
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Index

Absolute metric (system of units), 10

Absolute pressure, 42

Absolute viscosity, 27

Acceleration

convective, 141

gravitational, 11

local, 141

of particle in velocity field, 140, 142

cylindrical coordinates, 147

rectangular coordinates, 152

Adiabatic process, 463

Adverse pressure gradient, 33, 176, 314,

323, 326, 328, 346, 409, 487

Alternate depths, 425

Anemometer

laser Doppler, 289

thermal, 289

Angle of attack, 314, 327, 328, 396, 405

Angular deformation, 138, 144, 147–149

Angular-momentum principle, 72, 347, 348

fixed control volume, 110–114

A-pillars, 337

Apparent shear stress, 246

Apparent viscosity, 29

Aqueduct, 415

Archimedes’ principle, 61

Area, centroid of, 51

second moment of, 52

Area ratio, 259

isentropic flow, 489

Aspect ratio

airfoil, 331, 405

flat plate, 320

rectangular duct, 263

Atmosphere, standard, 42, 48

Average velocity, 78, 229

open channel, 417

parallel plates, 234, 238

pipe, 244, 279, 288

Barometer, 30, 48

Barotropic fluid, 35

Basic equation of fluid statics, 39–42

Basic equations for control volume, 77

angular-momentum principle, for inertial

control volume, 110

for Euler turbomachine, 348

conservation of mass, 77–82

first law of thermodynamics, 118–125

Newton’s second law (linear momentum),

for control volume moving with

constant velocity, 97

for control volume with rectilinear

acceleration, 99–105

for differential control volume, 93–96

for nonaccelerating control volume, 83

second law of thermodynamics, 125

Basic laws for system, 71–73

angular-momentum principle, 72

conservation of mass, 71–72

first law of thermodynamics, 72–73

Newton’s second law (linear

momentum), 72

differential form, 151

second law of thermodynamics, 73

Basic pressure-height relation, 43

Bernoulli equation, 11, 95, 167

applications, 171–176

cautions on use of, 176–177

interpretation as an energy equation,

177–181

irrotational flow, 185–200

restrictions on use of, 95, 167, 177

Best efficiency point (BEP), 367

Betz’s law, 1, 401

Bingham plastic, 29

Blower, 262, 344, 358, 380

Body force, 23, 72

Boundary layer, 33, 199, 229

control, 335, 336

displacement thickness, 296

effect of pressure gradient on, 314

flat plate, 296

laminar, approximate solution, 309–311

momentum-flux profiles, 315

momentum integral equation for,

302–306

momentum thickness, 297

pressure gradients, 314–316

separation, 314

shape factor, 315

thickness, 296

transition, 296

turbulent, 312

velocity profiles, 315

British Gravitational systems of units, 11

Broad-crested weirs, 457

Buckingham Pi theorem, 203, 407

Buffer layer, 249

Bulk (compressibility) modulus, 35, 469

Buoyancy force, 61

Camber, 328

Capillary effect, 30, 210–211

Capillary rise, 30

Capillary viscometer, 244–245

Cavitation, 35, 213, 371

Cavitation number, 213, 398

Celerity, 419

Center of pressure, 50, 52

Centrifugal pump, 358

CFD, see Computational fluid

dynamics (CFD)

Chezy equation, 443

Choked flow, 492

Chord, 328, 331

Circulation, 146, 192, 330

Closed system, 5

Compressible flow, 34–35, 406–410, 479

basic equations for, 480–483

property changes, 464–465

Compressor, 344, 407

Computational fluid dynamics (CFD), 3,

128, 293, 546

and Navier–Stokes equations, 154

Conical diffuser, 259, 286

Conjugate depth, 438

Conservation

of energy, see First law of

thermodynamics

of mass, 77–82

cylindrical coordinates, 133–135

rectangular coordinates, 129–133

Consistency index, 28

Contact angle, 29

Continuity, see Conservation, of mass

Continuity equation, 77

differential form, 132–133

cylindrical coordinates, 133

rectangular coordinates, 131

Continuum, 16

Contracted horizontal weir, 456

Control surface, 6

Control volume, 5, 6, 71

rate of work done by, 119–121

Convective acceleration, 141

Converging-diverging nozzle, see Nozzle

Converging nozzle, see Nozzle

Couette flow, 237

Critical conditions, compressible

flow, 480

Critical depth, 426–430

Critical flow in open channel, 422,

426–429, 432

Critical pressure ratio, 480, 492

Critical speed

compressible flow, 480

open-channel flow, 426

Curl, 145

Cylinder

drag coefficient, 323

inviscid flow around, 192, 194–196
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D’Alembert paradox, 32, 33, 199

Deformation

angular, 138, 144, 147–149

linear, 149–150

rate of, 4, 26, 149

Del operator

cylindrical coordinates, 131, 186

rectangular coordinates, 131

Density, 4, 16

Density field, 17

Derivative, substantial, 141

Design conditions, see Nozzle

Differential equation, nondimensionalizing,

204–206

Differential momentum equation, 152

Diffuser, 258, 274, 347

optimum geometries, 258

pressure recovery in, 258, 261

supersonic, 486

Dilatant, 29

Dilation, volume, 149

Dimensional analysis, 202

Dimensional homogeneity, 9, 10

Dimensions of flow field, 20

Discharge coefficient, 281

flow nozzle, 281

orifice plate, 281

venturi meter, 286

weir, 456

Displacement thickness, 296

Disturbance thickness, see Boundary layer

Doppler effect, 288, 472

Doublet, 189

strength of, 191

Downwash, 330

Draft tube, 347, 387, 392

Drag, 32, 295

form, 32, 332

friction and pressure drag, 320–326

induced, 330

parasite, 337

profile, 332

pure friction drag, 317–320

pure pressure drag, 320

streamlining, 326–328

Drag coefficient, 203, 317

airfoil, 328, 329

complete aircraft, 333

cylinder, 323

rotating, 339

flat plate normal to flow, 320

flat plate parallel to flow, 318

golf balls, 337

induced, 330

selected objects, 320

sphere, 321

spinning, 337

streamlined strut, 327

supertanker, 319–320

vehicle, 311

Duct flows, 35

Dynamic pressure, 169, 170

Dynamic similarity, 214

Dynamic viscosity, 26

Dyne, 10

Efficiency, 221

hydraulic turbine, 353

propeller, 396

propulsive, 396

pump, 222, 262, 351

Elastic, 4, 25

Electric truck, 70

Elementary plane flows, see Potential flow

theory

End-plate, 334

Energy equation, for pipe flow, 251, 262,

see also First law of thermodynamics

Energy grade line (EGL), 181–183,

251, 449

English Engineering (system of units), 10

Enthalpy, 124, 462

Entrance length, 229

Entropy, 463

Equations of motion, see Navier–Stokes

equations

Equation of state, 4, 483–485

ideal gas, 4, 461

Euler equations, 163

along streamline, 165

cylindrical coordinates, 163

normal to streamline, 165

rectangular coordinates, 163

streamline coordinates, 164

Eulerian method of description, 9, 142

Euler number, 213

Euler’s equations, 205

Euler turbomachine equation, 348

Experimental uncertainty, 13

Extensive property, 73

External flow, 35–36

Fan, 262, 344, 358, 380

“laws,” 223, 382

specific speed, 382

Federal Aviation Administration

(FAA), 335

Field representation, 17

Finite systems, 7

First law of thermodynamics, 72–73,

118–125

Fittings, losses in, see Head loss, in valves

and fittings

Flap, 335

Flat plate, flow over, 295

Float-type flow meter, 288

Flow behavior index, 28

Flow coefficient, 222, 281

flow nozzle, 281

orifice plate, 281

turbomachine, 353

venturi, 281

Flow field, dimensions of, 18

Flow measurement, 279

internal flow, 279–290

linear flow meters, 288

electromagnetic, 288

float-type, 288

rotameter, 288

turbine, 288

ultrasonic, 288

vortex shedding, 288

traversing methods, 289–290

laser Doppler anemometer, 289

thermal anemometer, 289

open-channel flow, 455

restriction flow meters

flow nozzle, 281

laminar flow element, 287

orifice plate, 281

venturi, 286

Flow meter, see Flow measurement

Flow nozzle, 281

Flow similarity. see Similarity

Flow visualization, 19, 219

Flow work, 121

Fluid, 3

Fluid machinery

fan, 344

performance characteristics, 363

positive displacement, 344, 384

propeller, 381

pump, 344, 384

turbine, 344, 346

Fluid particle, 9, 18

forces acting on, 151–152

Fluid rotation, 144–147

Fluid statics

basic equation of, 39–42

pressure-height relation, 41

Fluid system, 262, 374

Force

body, 23, 39

buoyancy, 60

compressibility, 212

drag, 316–328

gravity, 212

hydrostatic, 50

on curved submerged surface, 57

on plane submerged surface, 50–57

inertia, 206, 212

lift, 316, 328–340

pressure, 32, 39, 212, 316

shear, 317

surface, 23, 40

surface tension, 29, 212

viscous, 212

Forced vortex, 146

Francis turbine, 347, 357, 392

Free-body diagram (FBD), 5, 56
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Free vortex, 145

Friction drag, see Drag

Friction factor, 253–257

compressible adiabatic, see

Isentropic flow

Darcy, 255

data correlation for, 254

Fanning, 255

laminar flow, 256

smooth pipe correlation, 257

Frictionless flow, incompressible, 163

Friction velocity, 248

Froude number, 213, 216, 419–423

Fully developed flow, 229

laminar, 230–245

turbulent, 246

Fully rough flow regime, 256

Gage pressure, 42

Gas constant

ideal gas equation of state, 4, 461

universal, 462

gc, 10, 11

Geometric similarity, 214

Gibbs equations, 179, 463

Grade line, 181

energy, 181–183, 251, 276

hydraulic, 181–183, 276

Gradient, 40

Gradually varied flow, 451

Ground effect, 337

Guide vanes, 347

Head, 182, 349

gross, 389

net, 389, 392

pump, 262, 353, 375

shutoff, 359

Head coefficient, 222, 354, 407

Head loss, 252–253

in diffusers, 258

in enlargements and contractions,

258–261

in exits, 258

in gradual contractions, 259

hydraulic jump, 439–441

in inlets, 258

major, 253–257

minor, 258–261

in miter bends, 261

in nozzles, 258

in open-channel flow, 423–430

in pipe bends, 261

in pipe entrances, 259

in pipes, 261

in sudden area changes, 259

total, 253

in valves and fittings, 261

Head loss coefficient, 258

Hydraulic depth, 418, 423

Hydraulic diameter, 246, 262, 418

Hydraulic grade line, 182, 273, 449

Hydraulic jump, 419, 435

basic equation for, 438–439

depth increase across, 438–439

head loss across, 439–440

Hydraulic power, 352, 384

Hydraulic radius, 418

Hydraulic turbine, 346, 387

Hydrostatic force, 50

on curved submerged surfaces, 57

on plane submerged surfaces, 50–57

Hydrostatic pressure distribution, 54

Hydrostatic pressure force, 90–92

Hypersonic flow, 471

Ideal fluid, 187, 199

Ideal gas, 4, 461

Impeller, 344, 380

Incomplete similarity, 216–221

Incompressible flow, 34–35, 78, 131, 135

Incompressible fluid, 32

Individual fluid particle, 71

Induced drag, 330

Inertial control volume, 82–99

Inertial coordinate system, 83, 103

Infinitesimal systems, 7

Intensive property, 73

Internal energy, 461

Internal flow, 35–36, 228

Inviscid flow, 32–34, 146

Irreversible process, 463

Irrotational flow, 146, 185–200

Irrotationality condition, 185

Irrotational vortex, 146, 191

Isentropic flow

basic equations for, ideal gas, 476, 488

converging-diverging nozzle, 496–500

in converging nozzle, 492–496

effect of area variation on, 483–500

flow functions for computation of, 477

in hs plane, 484

reference conditions for, 473, 488

Isentropic process, 466

Isentropic stagnation properties, 473–480

Journal bearing, 236

Kaplan turbine, 347, 392

Kinematic similarity, 214

Kinematics of fluid motion

fluid deformation, 147–150

fluid rotation, 144–147

fluid translation, 138–143

Kinematic viscosity, 27

Kinetic energy coefficient, 252

Lagrangian method of description, 142–143

Laminar boundary layer, 294, 308

exact solution, 299–302

flat plate approximate solution, 309–311

Laminar flow, 34, 228

between infinite parallel plates, 230–241

in pipe, 241–245

Laminar flow element (LFE), 287

Laplace’s equation, 187–189

Lift, 295, 316, 328–340

Lift coefficient, 328

airfoil, 328

Darrieus rotor blade, 405

rotating cylinder, 340

spinning golf ball, 337

spinning sphere, 337

Lift/drag ratio, 329

Lift-induced drag, 15

Linear deformation, 149–150

Linear momentum, see Newton’s second

law of motion

Local oscillations, 323

Loss coefficient, see Head loss

Loss, major and minor, see Head loss

Mach cone, 471–473

Mach number, 35, 214, 467

Magnus effect, 340

Major loss, see Head loss

Manning

equation, 443–444

roughness coefficient, 444

Manometer, 30, 43

capillary effect in, 30

multiple liquid, 47

reservoir, 45

sensitivity, 44

U-tube, 44

Material derivative, 141

Measurement, flow, see Flow measurement

Mechanical energy, 179, 245, 251, 263

Mechanical flow meter, see Flow

measurement

Mechanical power, 349

Meniscus, 30, 210

Meridional plane, 353

Meridional velocity, 353

Meter, flow, see Flow measurement

Methods of description

Eulerian, 9, 142

Lagrangian, 7, 142–143

Minor loss, see Head loss

Minor loss coefficient, see Head loss

coefficient

Model studies, 214–225

Model test facilities, 224–225

Modulus of elasticity, 35

Molecular mass, 462

Momentum

angular, see Angular-momentum

principle

linear, see Newton’s second law of

motion
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Momentum equation, 101, 151

for control volume moving with constant

velocity, 97

for control volume with rectilinear

acceleration, 99–105

for differential control volume, 93–96

differential form, 151

for inertial control volume, 82–99

for inviscid flow, 163

Momentum flux, 94

Momentum integral equation, 302–306

for zero pressure gradient flow, 295

Momentum thickness, 297

Moody diagram, 255

Multiple dependent parameters, 221–224

Nappe, 455

Navier–Stokes equations, 152–159, 204

Negligible pressure effects, 349

Net positive suction head, 366, 371–372

Network, pipe, 276

Newton, 10

Newtonian fluid, 26, 152–159

Newton’s second law of motion, 5, 72

Noncircular duct, 262–263

Non-Newtonian fluid, 26, 28–29

apparent viscosity, 29

consistency index, 28

flow behavior index, 28

power-law model, 28

pseudoplastic, 29

rheopectic, 29

thixotropic, 29

time-dependent, 29

viscoelastic, 29

Normal depth, 442

Normal shock, 501

basic equations for, 501–503

flow functions for computation of,

503–507

supersonic channel flow with, 507–509

Ts diagram, 506

Normal stress, 23, 39, 119–120

No-slip condition, 4, 18, 33, 199, 229

Nozzle, 172, 176, 485

choked flow in, 493, 497

converging, 485, 492–496

converging-diverging, 487, 507

design conditions, 497, 508

incompressible flow through, 175,

372, 486

normal shock in, 507

Oblique shock, 508

One-dimensional compressible flow, basic

equations

continuity equation, 481

equation of state, 483

first law of thermodynamics, 481–482

momentum equation, 481

second law of thermodynamics, 482

One-dimensional flow, 18–19

Open-channel flow, 36, 419

critical flow, 422, 426–429

energy equation for, 423–429

geometric properties, 419

gradually varied depth, 419–420, 451

hydraulic jump, 419, 435

measurements in, 455

normal depth, 442

rapidly varied flow, 423, 432

steady uniform flow, 441–444

total head, 425

Open system, 5

Orifice plate, 281

Parasite drag, 337

Particle derivative, 141

Pathline, 19, 20

Pelton wheel, 347, 392

Pipe

head loss, see Head loss

laminar flow in, 212, 229, 241–245

noncircular, 262–263

roughness, 254, 255

standard sizes, 265

turbulent flow in, 228, 246

Pipe flow, 35

pressure drop, 208–209

Pipe systems, 261, 276

networks, 276

pumps in, 262, 374

Pitch, 396, 398

Pi theorem, 203

Pitot-static tube, 171

Pitot tube, 171

Planform area, 327

Poise, 27

Polar plot, lift-drag, 329

Potential flow theory, 187

elementary plane flows

doublet, 191

sink, 191

source, 191

uniform flow, 192

vortex, 191

functions for five elementary two-

dimensional flows, 189

Potential function, 186

Potential, velocity, 186–187

Power coefficient, 222, 348, 354, 367

Power-law model, non-Newtonian fluid, 28

Power-law velocity profile, 250

Prandtl boundary layer equations, 249

Pressure, 39

absolute, 42

center of, 52

dynamic, 169–171, 258

gage, 42

stagnation, 169–171

static, 169–171

thermodynamic, 121, 153, 169

Pressure coefficient, 213, 337

Pressure distribution, 316

airfoil, 320

automobile, 337

converging-diverging nozzle, 487, 508

converging nozzle, 493

cylinder, 339

cylinder, inviscid flow, 192, 195

diffuser, 258, 314

sphere, 33, 337

wing, 7

Pressure drag, see Drag

Pressure field, 39

Pressure force, 40

Pressure gradient, 40, 294

effect on boundary layer, 320

Pressure recovery coefficient, 258

Pressure tap, 169, 182, 281

Primary dimension, 9, 207

Profile, velocity, see Velocity profile

Propeller, 346, 381, 395

actuator disk, 397

efficiency, 396

pitch, 398

power coefficient, 398

propulsive efficiency, 396

solidity, 346

speed of advance coefficient, 398

thrust coefficient, 398

torque coefficient, 398

Propulsive efficiency, 396

Pseudoplastic, 29

Pump, 344

in fluid system, 262, 344

“laws,” 223

operating point, 350

parallel operation, 367, 378

positive displacement, 384–387

series operation, 367, 378

specific speed, 353

variable-speed operation, 367, 379

Rate of deformation, 4, 26, 149

Reentrant entrance, 259

Reference frame, noninertial, 100

Repeating parameter, 208

Restriction flow meters, 279–290

Reversible process, 463

Reynolds experiment, 228

Reynolds number, 32, 205, 212

critical, see Transition

Reynolds stress, 246

Reynolds transport theorem, 76

Rheopectic, 29

Rotating control volume, 113–118

Rotor, 345

Roughness coefficient, Manning, 444

Roughness, pipe, 254, 255
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Secondary dimension, 10

Secondary flow, 261

Second law of thermodynamics, 73,

125, 126

Separation, 258, 294

Separation point, 33

Sequent depth, 438

Shaft work, 119

Shape factor, velocity profile, 315

Sharp-crested weirs, 455

Shear rate, 26

Shear stress, 3, 23, 138

distribution in pipe, 243

Shear work, 120

Shockless entry flow, 350

Shock, normal, see Normal shock

Shock, oblique, see Oblique shock

Shutoff head, 359

Significant figures, 3

Similarity

dynamic, 214

geometric, 214

incomplete, 216–221

kinematic, 214

rules, 367–369

Similar velocity profiles, 299

Sink, 189

Skin friction coefficient, 308, 443

Slope, bed, 419

Slug, 10

Sluice gate, 90–92, 174–175, 424

Solidity, 346

Sonic flow, 486–487

Sound waves, propagation

Mach cone, 471–473

speed of sound

continuity equation, 468

momentum equation, 468–470

Source, strength of, 189

Span, wing, 327, 330

Specific energy, 425–426

Specific gravity, 17

Specific heat

constant pressure, 462

constant volume, 462

Specific heat ratio, 462

Specific speed, 223, 348, 353, 382

Specific volume, 121, 424, 462

Specific weight, 17

Speed of advance coefficient, 398

Speed of sound, 467–470

ideal gas, 469

solid and liquid, 469

Sphere

drag coefficient, 322

flow around, 33

pressure distribution, 322

Spin ratio, 337

Stability, 60–63

Stage, 345

Stagnation enthalpy, 406, 482

Stagnation point, 33, 195, 197, 294

Stagnation pressure, 169–171

isentropic, see Isentropic stagnation

properties

Stagnation pressure probe, 170

Stagnation properties, see Isentropic

stagnation properties

Stagnation state, 474

Stagnation temperature, 480

Standard atmosphere, 42

Standard pipe sizes, 265

Static fluid, pressure variation in, 43–50

Static pressure, 169

Static pressure probe, 169

Static pressure tap, 170

Steady flow, 18, 79, 131, 442

Stoke, 27

Stokes’ theorem, 147

STP (standard temperature and pressure),

16, 216

Streakline, 19

Stream function, 135–137

Streamline, 19, 33

coordinates, 164, 167

curvature, 165, 337

equation of, 20, 21, 136

Stream tube, 93, 177

Stress, 23

components, 24, 152

compressive, 40

Newtonian fluid, 153

normal, 23, 121, 152

notation, 24

shear, 23, 159

sign convention, 24

yield, 28, 29

Stress field, 23–25

Strouhal number, 288, 324

Subsonic flow, 485–486

Substantial derivative, 141

Sudden expansion, 258

Superposition, of elementary plane flows,

191–199

direct method of, 192

inverse method of, 199

Supersonic flow, 486

Supersonic passenger aircraft

design, 460

Supersonic passenger transportation, 460

Surface force, 23

Surface tension, 29

Surface waves, speed of, 419–423

System derivative, 73

relation to control volume, 76

System head curves, 375

Systems, 6

of dimensions, 9–10

of units, 10–11

System volume, 5

Taylor series expansion, 39, 129, 133, 144,

147, 151, 232, 303

Tds equations, 463

Theoretical hydrodynamics, 295

Thermodynamic pressure, see Pressure

Thermodynamics, review of, 461–467

Thixotropic, 29

Three-dimensional flow, 18–19

Throat, nozzle, 487, 498

Thrust coefficient, 398

Time-independent behavior, 28

Timeline, 19

Torque coefficient, 348, 354, 398

Total head tube, 170

Trailing vortex, 331, 334

Transition, 212, 256, 294, 323

Transonic flow, 471

Ts diagram, 463, 484, 494

constant-property lines, 466–467

Turbine, 346

hydraulic, 346, 356, 387

impulse, 347, 389, 392

reaction, 347, 387, 392

specific speed, 348, 353, 382

wind, 347, 395, 400

Turbine flow meter, 288

Turbofan engines, 460

Turbomachine, 344

axial flow, 344, 359–362

centrifugal, 344

fan, 344, 358

flow coefficient, 222, 348, 353, 357

head coefficient, 222, 354

mixed flow, 344

power coefficient, 222, 353, 366,

402, 407

pump, 344

radial flow, 344, 350, 359

scaling laws for, 223

specific speed, 223, 353–358

stage, 345

torque coefficient, 348, 354, 398

Turbulent boundary layer, flat plate, 312

Turbulent flow, 34, 228

Turbulent pipe flow, 247

fluctuating velocity, 247

mean velocity, 247, 248

shear stress distribution, 246

velocity profile, 247–251

Two-dimensional flow, 20

Uncertainty, experimental, 13

Underexpanded nozzle, 497

Uniform flow

in open channel, 441–444

at a section, 18, 79

Uniform flow field, 197

Units, 9

Universal gas constant, 462

Unsteady flow, 20, 82
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Vapor pressure, 35

Vector, differentiation of, 131,

134, 142

Velocity diagram, 350–351

Velocity field, 17

Velocity measurement, see Flow

measurement

Velocity potential, 186–187

Velocity profile, 27, 243, 247–251

Vena contracta, 258, 273, 280

Venturi flowmeter, 281, 286

Viscoelastic, 4, 29

Viscometer, capillary, 244–245

Viscosity, 4, 29

absolute (or dynamic), 27

apparent, 29

kinematic, 27

Viscous flow, 4, 25, 32–34

Viscous sublayer, 248

Visualization, flow, 19, 219

V-notch weirs, 456

Volume dilation, 149

Volume flow rate, 78

Vortex, 146, 197

irrotational, 146, 191

shedding, 288, 323

strength of, 190

trailing, 330, 332

Vorticity, 146

Wake, 33, 314, 316

Wall shear stress, 247, 255, 301,

313, 314

Water hammer, 35

Waves, capillary, 30

Weber number, 214

Weir, 455

broad crested, 455, 457

coefficient, 455

contracted rectangular, 456

suppressed rectangular, 455–456

triangular, 456

Wetted area, 317

Wetted perimeter, 263, 418, 450

Windmill, 344, 400

Wind power, 344, 347, 400

Wind tunnel, 215, 219, 224

Wind turbines, 1, 347

Winglet, 334

Wing loading, 332

Wing span, 330

Work, rate of, 119–121

shaft, 119

shear, 120

sign convention for, 73, 119

Yield stress, 28

Zero pressure gradient flow, 295

laminar flow, 307–311

turbulent flow, 311–314

Zone of action, 472

of silence, 472
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