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Preface

This book has grown out of an undergraduate course developed and taught
by us in MIT’s Department of Electrical Engineering and Computer Science.
Our course is typically taken by third- and fourth-year undergraduate students
from many engineering branches, as well as undergraduate and graduate stu-
dents from applied science. There are two formal prerequisites for the course,
and for this book: an introductory subject in time- and frequency-domain anal-
ysis of signals and systems, and an introductory subject in probability. These
two subjects are typically taken by most engineering students early in their
degree programs. The signals and systems subject almost invariably builds
on an earlier course in differential equations, ideally with some basic linear
algebra folded into it.

In many engineering departments, students with a strong interest in
applied mathematics have then traditionally gone on to a more specialized
undergraduate subject in control, signal processing, or communication. In
addition to being specialized, such subjects often focus on deterministic signals
and systems. Our aim instead was to build broadly on the prerequisite mate-
rial, folding together signals, systems, and probability in ways that could make
our course relevant and interesting to a wider range of students. The course
could then serve both as a terminal undergraduate subject and as a sufficiently
rigorous basis for more advanced undergraduate subjects or introductory
graduate subjects in many engineering and applied science departments.

The course that gave rise to this book teaches students about signals
and signal descriptions that are typically new to them, for example, random
signals and their characterization through correlation functions and power
spectral densities. It introduces them to new kinds of systems and system
properties, such as state-space models, reachability and observability, opti-
mum filters, and group delay. And it highlights model-based approaches to
inference, particularly in the context of state estimation, signal estimation, and
signal detection.

11
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12 Preface

Although some parts of our course are well covered by existing text-
books, we did not find one that fit our needs across the range of topics. This
led to lecture notes, which was the easier part, and then eventually this book.
In the process, we continually experimented with and refined the content and
order of presentation. Along the way we also at times included other mate-
rial or excluded some that is now back in the book. Among the conclusions
of these experiments was that we did not have time in a one-semester class to
fold in even basic notions of information theory, despite its central importance
to communication systems and, more generally, to inference.

As suggested in the Prologue to this book, signals, systems and prob-
ability have been and will continue to be usefully combined in studying
fields such as signal processing, control, communication, financial engineer-
ing, biomedicine, and many others that involve dynamically varying processes
operating in continuous or discrete time, and affected by disturbances, noise,
or uncertainty. This premise forms the basis for the overall organization and
content of our course and this text.

The book can be thought of as comprising four parts, outlined below. A
more detailed overview of the individual chapters is captured in the table of
contents. Chapters 1 and 2 present a brief review of the assumed prerequisites
in signals and linear time-invariant (LTI) systems, though some portions of
the material may be less familiar. A key intent in these chapters is to establish
uniform notation and concepts on which to build in the chapters that follow.
Chapter 3 discusses the application of some of this prerequisite material in the
setting of digital communication by pulse amplitude modulation.

Chapters 4–6 are devoted to state-space models, concentrating on the
single-input single-output LTI case. The development is largely built around
the eigenmodes of such systems, under the simplifying assumption of distinct
natural frequencies. This part of the book introduces the idea of model-based
inference in the context of state observers for LTI systems, and examines
associated feedback control strategies.

Chapters 7–9 provide a brief review of the assumed probability prerequi-
sites, including estimation and hypothesis testing for static random variables.
As with Chapters 1 and 2, we felt it important to set out our notation and
perspectives on the concepts while making contact with what students might
have encountered in their earlier probability subject. Again, some parts of
this material, particularly on hypothesis testing, may be previously unfamiliar
to some students.

In Chapters 10–13, we characterize wide-sense stationary random sig-
nals, and the outputs that result from LTI filtering of such signals. The
associated properties and interpretations of correlation functions and power
spectral densities are then used to study canonical signal estimation and
signal detection problems. The focus in Chapter 12 is on linear minimum
mean square error signal estimation, i.e., Wiener filtering. In Chapter 13, the
emphasis is on signal detection for which optimum solutions involve matched
filtering.

As is often said, the purpose of a course is to uncover rather than to
cover a subject. In this spirit, each chapter includes a final section with some
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suggestions for further reading. Our intent in these brief sections is not to be
exhaustive but rather to suggest the wealth of learning opened up by the mate-
rial in this text. We have pointed exclusively to books rather than to papers in
the research literature, and have in each case listed only a fraction of the books
that could have been listed.

Each chapter contains a rich set of problems, which have been divided
into Basic, Advanced, and Extension. Basic problems are likely to be easy
for most students, while the Advanced problems may be more demanding.
The Extension problems often involve material somewhat beyond what is
developed in the chapter. Certain problems require simulation or computa-
tion using some appropriate computational package. Given the variety and
ubiquity of such packages, we have intentionally not attempted to structure
the computational exercises around any specific platform.

There is more material in this book than can be taught comfortably in a
one-semester course. This allows the instructor or self-learner to choose dif-
ferent routes through the text, and over the years we have experimented with
various paths. For a course that is more oriented towards communication or
signal processing, Chapters 4, 5 and 6 (state-space models) can be omitted,
or addressed only briefly. For a course with more of a control orientation,
Chapter 3 (pulse amplitude modulation), Chapter 9 (hypothesis testing) and
Chapter 13 (signal detection) can perhaps be considered optional.

A third version of the course, and the one that we currently teach, is out-
lined in a little more detail below. This version involves two weekly lectures
over a semester of approximately thirteen weeks. The lectures are interleaved
with an equal number of small-group recitation sections, devoted to more
interactive discussion of specific problems that illustrate the lectures and help
address the weekly homework. In addition, we staff optional small-group
tutorials. Finally an optional evening “common room” that we run several
times each week allows students in the class to congregate and interact with
each other and with a member of the teaching staff while they work on their
homework.

In our teaching in general, we like to emphasize that the homework is
intended to provide an occasion for learning and engaging with the concepts
and mechanics, rather than being an exam. We recommend that the end-of-
chapter problems in this book be approached in the same spirit. In particular,
we encourage students to work constructively together, sharing insights and
approaches. Our grading of the problems is primarily for feedback to the stu-
dents and to provide some accountability and motivation. The course does
typically have a midterm quiz and a final exam, and many of the end-of-
chapter problems in this text were first created as quiz or exam problems.
There are also many possibilities for term projects that can grow out of the
material in the class, if desired.

An introductory lecture in the same spirit as the Prologue to this text is
followed by a brief review of the signals and systems material in Chapter 1.
The focus in class is on what might be less familiar from the prerequisite sub-
ject, and students are tasked with reviewing the rest on their own, guided by
appropriate homework problems. We then move directly to the state-space
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material in Chapters 4, 5 and 6. Even if students have had some prior expo-
sure to state-space models, there is much that is likely to be new to them here,
though they generally relate easily to the material. We have not held students
responsible for the more detailed proofs, such as those on eigenvalue place-
ment for LTI observers or state feedback, but do expect them to develop an
understanding of the relevant results and how to apply them to small exam-
ples. An important lesson from the state-space observer framework is the role
of a system model in going from measured signals to inferences about the
system.

Our course then turns to probabilistic models and random signals. The
probability review in Chapter 7 is mostly woven into lectures covering mini-
mum mean square error (MMSE) and linear MMSE (LMMSE) estimation,
which are dealt with in Chapter 8. In order to move more quickly to ran-
dom signals rather than linger on review of material from the prerequisite
probability course, we defer the study of hypothesis testing in Chapter 9 to
the end of the course, using it as a lead-in to the signal detection material in
Chapter 13. Part of the rationale is also that Chapters 9 and 13 are devoted
to making inferences about discrete random quantities, namely the hypothe-
ses, whereas Chapters 8 and 12 on (L)MMSE estimation deal with infer-
ences about continuous random variables. We therefore move directly from
Chapter 8 to Chapter 10, studying random signals, i.e., stochastic processes,
focusing on the time-domain analysis of wide-sense stationary (WSS) pro-
cesses, and LTI filtering of such processes.

The topic of power spectral density in Chapter 11 connects back to the
development of transforms and energy spectral density in Chapter 1, and
also provides the opportunity to refer to relevant sections of Chapter 2 on
all-pass filters and spectral factorization. These topics are again important in
Chapter 12, on LMMSE (or Wiener) filtering for WSS processes. In most
offerings of the course, we omit the full causal Wiener filter development,
instead only treating the case of prediction of future values of a process from
past values of the same process.

The last part of the course refers strongly back to Chapter 3, using
the context of digital communication via pulse amplitude modulation to moti-
vate the hypothesis testing problem. The return to Chapter 3 can also involve
reference to the material in Chapter 2 on channel distortions and group delay.
The hypothesis testing paradigm is then treated as in Chapter 9. This serves as
the foundation for the study of signal detection in the last chapter, Chapter 13.

The breadth of this book, and the different backgrounds we brought to
the project, meant that we had much to learn from each other. We also learn
each term from the very engaged students, teaching assistants and faculty col-
leagues who are involved in the course, as well as from the literature on the
subjects treated here. This book will have amply met its objectives if it sparks
and supports a similar voyage of discovery in its readers, as they construct their
own individual re-synthesis of the themes of signals, systems and inference.

Alan V. Oppenheim & George C. Verghese
Cambridge, Massachusetts
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The Cover

The choice of images for the front and back covers of both the North
American Edition and this Global Edition originated in our desire to suggest
some of the book’s themes in a visually pleasing and striking way. Our explo-
rations began with images of sundials, clocks, and astrolabes. The astrolabe
(www.astrolabes.org), invented over two thousand years ago and used well
into the 17th century, was an important instrument for astronomy and naviga-
tion. Our search for the front cover of this Global Edition eventually led to the
photograph by Frans Lemmens (www.franslemmens.com), taken inside the
Eisinga Planetarium (www.planetarium-friesland.nl/en) in Franeker, Holland.
This exquisite scale model of the solar system was meticulously built by the
amateur astronomer Eise Eisinga in the ceiling of his living room, during the
period 1774–1781, and is considered the oldest functioning planetarium.

The image of the dwarf planet Ceres on the back cover of this
edition is derived from photographs taken by NASA’s spacecraft Dawn
(www.dawn.jpl.nasa.gov), which entered into orbit around Ceres in March
2015, after an eight-year journey from our planet. The mastery of signals, sys-
tems and inference that humankind has attained in the four centuries since
the astrolabe faded from use is represented here: in the precisely controlled
launch and trajectory of the Dawn spacecraft – which first included a ren-
dezvous with the asteroid Vesta before moving on to Ceres – and in the
subsequent recording, retrieval, and processing of data from it to yield such
revealing and awe-inspiring images. But the image also evokes the boundless
opportunities for new advances and horizons.
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Prologue

SIGNALS, SYSTEMS AND INFERENCE

Signals, in the sense that we refer to them in this book, have been of inter-
est at least since the time when human societies began to record and analyze
numerical data, for example to track climate, commerce, population, disease,
and the movements of celestial bodies. We are continually immersed in signals,
registering them through our senses, measuring them through instruments,
and analyzing, modifying, and interrelating them.

Systems and signals are intimately connected. In many contexts, it is
important to understand the behavior of the underlying systems that generate
the signals of interest. Furthermore, the challenges of collecting, interpret-
ing, modeling, transforming, and utilizing signals motivate us to design and
implement systems for these purposes, and to generate signals to control and
manipulate systems.

Inference, as the term is used in this text, refers to combining prior
knowledge and available measurements of signals to draw conclusions in
the presence of uncertainty. The prior knowledge may take the form of par-
tially specified models for the measured signals. Inference may be associated
with the construction and refinement of such models. The implementation
of algorithms for inference can also require designing systems to process the
measured signals.

The application of concepts and methods involving signals, systems,
and inference in combination is pervasive in science, engineering, medicine,
and the social sciences. However, the mathematical, algorithmic, and com-
putational underpinnings often evolve to become largely independent of the
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specific application. It is this common foundational material that is the focus
of this text.

A LITTLE HISTORY

An example of the sophistication attained centuries ago in signals, systems
and inference is the astrolabe1, the most popular astronomical instrument of
the medieval world, used for navigation and time keeping in addition to chart-
ing the positions of celestial objects. Around 150 AD, Ptolemy of Alexandria
described in detail the stereographic projection that forms the basis for the
astrolabe; the trigonometric framework for this was developed even earlier,
by Hipparchus of Rhodes around 180 BC. The instrument itself made its
appearance around 400 AD, and was in widespread use well into the 1600s.

The interplay of signals, systems and inference is also nicely illustrated
by Carl Friedrich Gauss’s celebrated prediction2 of the location of the aster-
oid Ceres, almost a full year after it had been lost to view. Ceres, whose image
is on the back cover of this book, is now known to be the largest object in
the asteroid belt, and – along with Pluto – is classified as a dwarf planet. The
astronomer Giuseppe Piazzi in Palermo discovered the object on New Year’s
Day of 1801, but was only able to track its motion across the sky for a few
degrees of arc before it faded six weeks later in the glare of the sun. There
was at the time major interest in the possibility of this being a new planet
that had been suspected to exist between Mars and Jupiter. The 24-year-old
Gauss, using just three of Piazzi’s observations, along with strategic combi-
nations and simplifications of equations derived from Kepler’s model of the
trajectories of celestial objects, and with many days of hand calculation, was
able to generate an estimate of the orbit of Ceres. The predictions made by
other astronomers, who had typically assumed circular rather than elliptical
orbits, failed to yield sightings of the asteroid. However, successful observa-
tions using Gauss’s specifications were recorded in early December that year,
and again on New Year’s Eve. As Gauss put it, he had “restored the fugitive
to observation.” In later refinements of his method to account for all nineteen
of Piazzi’s observations rather than just three, and to apply to the motions
of other celestial objects, Gauss also brought into play the method of least
squares, which he had developed several years earlier. Chapter 8 of this text
is devoted to the closely related topic of minimum mean square error esti-
mation of random variables, while Chapter 12 extends this to estimation of
random signals.

By 1805, and still motivated by the problem of interpolating mea-
surements of asteroid orbits, Gauss had developed an efficient algorithm
to compute the coefficients of finite trigonometric series3. He unfortunately
never published his algorithm, though it was included in his posthumous
collected works sixty years later. Variants of this algorithm were then indepen-
dently rediscovered by others, as the problem of fitting harmonic series arose
in diverse settings, for example to represent variations in barometric pres-
sure or underground temperature, to calculate corrections to compasses on
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ships, or to model X-ray diffraction data from crystals. The most well known of
these variants, commonly referred to collectively as the Fast Fourier Transform
(FFT), was published by James Cooley and John Tukey4 in 1965. Coming at
a time when programmable electronic digital computers were beginning to
enter routine use in science and engineering, the FFT soon found widespread
application, and has had a profound impact.

Many of the foundational concepts and analytical tools discussed
throughout this text for both deterministic and probabilistic systems, such
as those reviewed in Chapters 1 and 7, have their origins in the work of
mathematicians and scientists who lived around the time of Gauss, including
Pierre-Simon Laplace and Jean-Baptiste Joseph Fourier, though later con-
tributions also feature prominently, of course. Laplace today is most often
associated with the transform that bears his name, but his place in probabil-
ity theory is considerably more significant, for his 1812 treatise on the subject,
and as the “discoverer” of the central limit theorem. Other parts of our text
derive more directly from advances made in engineering and applied science
since 1800.

The invention of the telegraph in the 1830s sparked a revolution5 in com-
munication, with subsequent major impact on theory and practice related to
all of the topics in this book. It also led to advances in other areas such as trans-
portation and weather prediction, in part because messages could now travel
faster than horses, trains, and storms. Within a few years the dots and dashes of
Morse code were being transmitted over electrical cables extended between
and across continents. Telephony followed in the 1870s, wireless telegraphy
and AM radio in the early 1900s, FM radio and television in the 1930s, and
radar in the 1940s. Today we have satellite communication, wireless internet,
and GPS navigation.

All these transformative technologies exploited and enhanced our abil-
ity to work with signals, systems and inference, and were significant catalysts
for the creative development of electrical engineering in general. They pre-
sented the need to effectively generate electrical signals or electromagnetic
waves, to characterize transmission media so that these signals could be prop-
agated through them in predictable ways, to design any necessary filtering and
amplification at various intermediate stages, and to develop appropriate signal
processing circuits and systems for embedding information at the transmitter
and extracting the intended information at the receiver. The modern study
of signals and systems in engineering degree programs, with circuits as prime
examples of systems, began to take root in the 1930s and ’40s. Some of the
notions that we describe in Chapter 2 arose primarily in the context of circuits
and transmission lines for communication.

Occurring in parallel with advances in communication were develop-
ments relevant to the analysis and design of control systems. Among these
were analog computation aimed at the simulation of differential equations
that modeled various systems of interest. Though the concepts were described
over fifty years earlier, the first practical mechanical implementation was
the Differential Analyzer of Vannevar Bush and collaborators around 1930.
More flexible and powerful electronic versions, namely analog computers
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using operational amplifiers, were widely used from the 1950s until they were
supplanted by digital computers in the 1980’s.

The design of self-regulating devices that utilize feedback dates back to
at least around 250 BC, with the water clock of Ctesibius of Alexandria. One
of the earliest and most important applications of feedback in the industrial
age was James Watt’s 1788 centrifugal governor for regulating the speed of
steam engines, but it was only in 1868 that James Clerk Maxwell6 showed
how to analyze the dynamic stability of such governors. Feedback control
began to be routinely incorporated in engineered systems from the begin-
ning of the 20th century. Much of the associated mathematical theory that
is in widespread application today – associated with people such as Harold
Black, Harry Nyquist, and Hendrik Bode at Bell Labs in the 1920s and ’30s –
was actually developed in the context of designing stable and robust elec-
tronic amplifiers and oscillators for communication and signal processing.
Other work on feedback control was motivated by servomechanism design
for regulation in industrial manufacturing, chemical processes, power gen-
eration, transportation, and similar settings. Aleksandr Lyapunov’s work in
the 1890s on the stability of linear and nonlinear dynamic systems that were
described in state-space form was not widely known till the 1960s, but is now
an essential part of systems and control theory. These state-space models
and methods, including the study of equilibrium, stability, measurement-
driven simulations for state estimation, and feedback control, are treated in
Chapters 4, 5, and 6.

Feedback mechanisms also play an essential role in living systems, as
was explicitly described in 1865 by the physiologist Claude Bernard. As the
mathematical study of communication and control developed in the early
20th century, Norbert Wiener and colleagues in such diverse fields as psycho-
logy, physiology, biology and the social sciences recognized the commonal-
ity and importance of feedback in these various disciplines. Their interactions
in the 1940’s eventually led to Wiener’s definition and elaboration in 1948
of cybernetics as the study of control and communication in the animal and
machine7.

The treatment of signals, systems and inference in communication, con-
trol and signal processing inherently has to address distortion and errors
introduced by non-ideal and poorly characterized components. Feedback is
often introduced to overcome precisely such difficulties. A related issue, which
inserts uncertainty in the behavior of the system, is that of random distur-
bances. These can corrupt the signal on a communication channel or at the
receiver; can affect the performance of a feedback control system; and can
affect the reliability of an inferred outcome. By showing how to model ran-
dom disturbances in probabilistic terms, and characterizing them in the time
and frequency domains, mathematical theory has made a significant impact
on these applications. The work of Wiener8 from the 1920’s onward helped to
set the foundations for engineering applications in these and related areas. A
famous report of his on the extrapolation, interpolation and smoothing of time
series9 was a major advance in bringing the notions of Fourier analysis and
stochastic processes into the setting of practical problems in signal processing
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and inference. Chapter 12, building on Chapters 8, 10 and 11, treats a class
of filtering problems associated with Wiener’s name, and shows how having a
model for a random process provides a basis for filtering and prediction.

Claude Shannon went a step further in his revolutionary 1948 papers10

that essentially gave birth to information theory. He modeled the communi-
cation source itself as a discrete random process, and introduced notions of
information, entropy, channel capacity and coding that still form the frame of
reference for the field. As noted in the Preface, a treatment of information
theory is beyond the scope of this text. However, Shannon’s work launched
the era of digital communication, and the material we study in Chapter 3 on
pulse amplitude modulation, including Nyquist’s key contributions, is of con-
siderable practical importance in digital communication. The task of signal
detection in noise, addressed in Chapters 9 and 13, is also fundamental in this
and many other applications.

As indicated at the beginning of this Prologue, another domain of inves-
tigation that has a long history and relationship to the material in this text
is the study of time series, carried out not only in the natural sciences –
astronomy and climatology, for example – and engineering but also in eco-
nomics and elsewhere in the social sciences. A typical objective in time series
analysis is to use measured noisy data to construct causal dynamic models,
which can then be used to infer future values of these signals. There is partic-
ular interest in detecting and exploiting any trends or periodicities that might
exist in the data. The considerations here are similar to those that motivated
the work of Wiener and others, and the mathematical tools overlap, though the
time-series literature tends to be more application driven and data centered.
For example, the notion of a periodogram, which we encounter in Chapter 11,
first appears in this literature, as a tool for detecting underlying periodicity in
a random process11.

The emergence over the past half-century of real-time digital computa-
tion capabilities has had major impact on the applications of signals, systems
and inference, and has also given rise to new theoretical formulations. An
important early example of how real-time computation can fundamentally
change the approach to a central problem in signal processing and control
is the Kalman filter, which generalized Wiener filtering in several respects
and greatly extended its application. The seminal state-space formulation12

introduced by Rudolf Kalman in 1960 for problems of signal filtering involves
recursive least squares estimation of the state of a system whose output rep-
resents the signal of interest. The filter runs a computational algorithm in
parallel with the operation of the system, with the results of the computation
also available for incorporation into a feedback control law. The initial use of
the Kalman filter was for navigation applications in the space program, but it is
now much more widely applied. The treatment of state observers in Chapter 6
of this text makes connections with the Kalman filter, and the relation to the
Wiener filter is outlined in Chapter 12.
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A GLANCE AHEAD

Among the most striking developments that the transition to the 21st century
has brought to signals, systems and inference is vast distributed and networked
computational power, including in small, inexpensive, and mobile packages.
Advances in computing, communication, control, and signal processing have
resulted in connection and action on scales that were imagined by only a few
in the 1960s, at the dawn of the Internet, among them J. C. R. Licklider13. A
transformational event on the path to making this vision a reality today for so
much of humanity was Tim Berners-Lee’s invention of the World Wide Web
in 1989.

The close coupling of continuous- and discrete-time technologies is of
growing importance. Digital signals, communication, and computation com-
monly mediate interactions among analog physical objects – in automotive
systems, entertainment, robotics, human-computer interfaces, avionics, smart-
grids, medical instrumentation, and elsewhere. It is also increasingly the case
that a given engineered device or component is not easily classified as being
intended specifically for communication or control or signal processing or
something else; these aspects come together in different combinations at dif-
ferent times. The term “cyber-physical system”14 is sometimes used to describe
the combination of a networked interconnection of embedded computers and
the distributed physical processes that they jointly monitor and control.

Our continuing exploration of the universe at both the smallest and
largest scales relies in many ways on understanding how to work with signals,
systems and inference. The invention of the microscope at the end of the 16th
century had profound implications for the development of science at the cel-
lular level and smaller. The invention of the telescope a few years later, at the
beginning of the 17th century, similarly enlarged our view of the heavens, and
had equally revolutionary consequences. The launch of the Hubble telescope
in 1990 has led to our current ability to observe the cosmos at distances of
hundreds of millions of light-years. The processing of images from the Hubble
telescope incorporates sophisticated extensions of the basic concepts in this
text. As one illustration, the techniques of deconvolution, an example of which
is examined in Chapter 12, have played an important role in processing of
Hubble telescope images, and most critically in initially helping to correct the
distortions caused by spherical aberrations in the mirror until it was repaired.
In 2003 and 2004, the Hubble telescope captured intriguing images of Ceres.
And in March 2015, NASA’s Dawn spacecraft, after a journey that lasted eight
years, entered the orbit of Ceres, obtaining the most detailed and striking pic-
tures yet of this dwarf planet, including the one that is incorporated into the
back cover of this book. We imagine Gauss would be pleased.

Our intention in this book is to address foundational material for appli-
cations to signals, systems and inference across a broad set of domains in
today’s world. These applications are deeply embedded in so many of the
systems that we see and use in our everyday lives, and yet are virtually
invisible to, and taken for granted by, the casual observer or user. Automotive
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and entertainment systems, for example, are currently among the largest mar-
kets for specialized signal processing systems. Without question, this material
will remain foundational for many years to come.

Speculations about the future are always subject to surprises. However,
it is certain that new implementation platforms will continue to emerge
from advances in such disciplines as quantum physics, materials science, pho-
tonics, and biology. And new mathematics will also emerge that will impact the
study and application of signals, systems and inference. The novel directions
that are opened up by these advances will undoubtedly still derive in part from
concepts studied in this book, just as so much of what we use today is rooted
in very specific ways on contributions from past centuries. The basic principles
and concepts central to this text have a rich historical importance and an even
richer future.

NOTES

[1] J. E. Morrison, The Astrolabe, Janus 2007 (see also Morrison’s rich
website, astrolabes.org).
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History, A Theory, A Flood, Vintage Books 2012.
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[11] A. Schuster, “On the investigation of hidden periodicities with appli-
cation to a supposed 26 day period of meteorological phenomena,”
Terrestrial Magnetism, vol. 3, no. 1, pp. 13–41, 1898. The title and venue of
this paper are reflective of the sorts of interests that drove early studies
in the time series literature.

[12] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Transactions of the ASME-Journal of Basic Engineering, vol. 82
(series D), pp. 35–45, 1960. Although our text does not include direct
treatment of the Kalman filter, it does provide the foundation for read-
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in which the paper is written reflects the fact that it introduces an almost
entirely new approach to signal filtering.

[13] J. C. R. Licklider, “Man-computer symbiosis,” IRE Transactions on
Human Factors in Electronics, vol. HFE-1, pp. 4–11, 1960.

[14] A lucid description of such systems and the challenges they present is
given in the introduction to E. A. Lee and S. A. Seshia’s Introduction
to Embedded Systems: A Cyber-Physical Systems Approach, edition 1.5,
LeeSeshia.org, 2014.
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1 Signals and Systems

This text assumes a basic background in the representation of linear, time-
invariant systems and the associated continuous-time and discrete-time
signals, through convolution, Fourier analysis, Laplace transforms, and z-
transforms. In this chapter, we briefly summarize and review this assumed
background, in part to establish the notation that we will use throughout the
text, and also as a convenient reference for the topics in later chapters.

1.1 SIGNALS, SYSTEMS, MODELS, AND
PROPERTIES

Throughout this text we will be considering various classes of signals and
systems, developing models for them, and studying their properties.

Signals are represented by real- or complex-valued functions of one or more
independent variables. They may be one-dimensional, that is, functions of
only one independent variable, or multidimensional. The independent vari-
able may be continuous or discrete. For many of the one-dimensional signals,
the independent variable is naturally associated with time although it may
not correspond to “real time.” When the independent variable is continuous,
it is enclosed in curved parentheses, and when discrete in square parenthe-
ses to denote an integer variable. For example, x(t) would correspond to a
continuous-time (CT) signal and x[n] to a discrete-time (DT) signal. The nota-
tions x(·) and x[·] will also be used to refer to the entire signal, suppressing the
particular variable t or n used to denote time.

31
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32 Chapter 1 Signals and Systems

In the first six chapters, we focus entirely on deterministic signals.
Starting with Chapter 7, we incorporate stochastic signals, that is, signals
drawn from an ensemble of signals, any one of which can be the outcome
of a given probabilistic process. To distinguish a signal ensemble representing
a random process from a deterministic signal, we will typically use uppercase.
For example, X(t) would represent a CT random process whereas x(t) would
denote a specific signal in the ensemble. Similarly, X[n] would correspond to
a DT random process.

Systems are collections of software or hardware elements, components, or
subsystems. A system can be viewed as mapping a set of input signals to a set of
output or response signals. A more general view (which we don’t incorporate
in this text) is that a system is an entity imposing constraints on a designated
set of signals without distinguishing specific ones as inputs or outputs. Any
particular set of signals that satisfies the constraints is termed a behavior of
the system.

Models are (usually approximate) mathematical, software, hardware, lin-
guistic, or other representations of the constraints imposed on a designated
set of signals by a system. A model is itself a system because it imposes
constraints on the set of signals represented in the model, so we often use
the words system and model interchangeably. However, it can sometimes be
important to preserve the distinction between something truly physical and
our representations of it mathematically or in a computer simulation.

The difference between representation as a mapping or in behavioral
form can be illustrated by considering, for example, Ohm’s law for a resistor.
Expressed as v(t) = R i(t), it suggests current i(t) as an input signal and voltage
v(t) as the response, whereas expressed as

R i(t)/v(t) = 1 (1.1)

it is more suggestive of a constraint relating these two signals. Similarly, the
resistor-capacitor circuit in Figure 1.1 has constraints among the signals v(t),
iR(t), and vC(t) imposed by Kirchhoff’s laws but does not identify which
of the variables are input variables and which are output variables. More
broadly, a behavioral representation comprises a listing of the constraints that
the signals must satisfy. For example, if a particular system imposed a time-
shift constraint between two signals without preference as to which would

iR(t)

v(t) vC(t)-
+

-
+

Figure 1.1 Resistor-capacitor circuit.
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Section 1.1 Signals, Systems, Models, and Properties 33

correspond to the input and which to the output, then a behavioral interpreta-
tion would be more appropriate. In this text, we will typically express systems
as mappings from inputs to outputs.

The representation of a system or model as a mapping comprises the
following: a set of input signals {x(·)}, each of which can vary within some
specified range of possibilities; similarly, a set of output signals {y(·)}, each of
which can vary; and a description of the mapping that uniquely defines the
output signals as a function of the input signals.

One way of depicting a system as a mapping is shown in Figure 1.2 for the
single-input, single-output CT case, with the interpretation that for each signal
in the input set, T{ · } specifies a mapping to a signal in the output set. Given
the input x(·) and the mapping T{ · }, the output y(·) is unique. More com-
monly, the representation in Figure 1.3 is used to show the input and output
signals at some arbitrary time t. With the notation in Figure 1.3, it is important
to understand that the mapping T{ · } is in general a mapping between sets of
signals and not a memoryless mapping between a signal value x(t) at a specific
time instant to the signal value y(t) at that same time instant. For example, if
the system delays the input by t0, then

y(t) = x(t − t0) . (1.2)

x(·) y(·)mapping T { · } Figure 1.2 Representation of a system
as an input-output mapping.

x(t) y(t)T { · } Figure 1.3 Alternative representation
of a system as an input-output mapping.

1.1.1 System Properties

For a system specified as a mapping, we use the following definitions of var-
ious properties, all of which we assume are familiar. They are stated here
for the DT case but are easily modified for the CT case. We also assume a
single-input, single-output system in our mathematical representation of the
definitions that follow, for notational convenience.

• Memoryless: The output at any time instant does not depend on values of
the input at any other time instant. The CT delay-by-t0 system described
in Eq. (1.2) is not memoryless. A simple example of a memoryless DT
system is one for which

y[n] = x2[n] (1.3)

for every n.

• Linear: The response to an arbitrary linear combination (or “superpo-
sition”) of input signals is always the same linear combination of the
individual responses to these signals.
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34 Chapter 1 Signals and Systems

• Time-Invariant: The response to any set of inputs translated arbitrarily
in time is always the response to the original set, but translated by the
same amount.

• Linear and Time-Invariant (LTI): The system is both linear and time-
invariant.

• Causal: The output at any instant does not depend on future inputs: for
all n0, y[n0] does not depend on x[n] for n > n0. Said another way, if
x̂ [n], ŷ [n] denotes another input-output pair of the system, with x̂ [n] =
x[n] for n ≤ n0 where n0 is fixed but arbitrary, then it must be also true
that ŷ [n] = y[n] for n ≤ n0.

• Bounded-Input, Bounded-Output (BIBO) Stable: The output response
to a bounded input is always bounded: |x[n]| ≤ Mx < ∞ for all n implies
that |y[n]| ≤ My < ∞ for all n.

Example 1.1 System Properties

As an example of these system properties, consider the system with input x[n] and
output y[n] defined by the relationship

y[n] = x[4n + 1] (1.4)

for all n. We would like to determine whether the system is memoryless, linear, time-
invariant, causal, and/or BIBO stable.

Memoryless: A simple counterexample suffices to show that this system is not
memoryless. Consider for example y[n] at n = 0. From Eq. (1.4), y[0] = x[1] and there-
fore depends on the value of the input at a time other than at n = 0. Consequently it is
not memoryless.

Linearity: To check for linearity, we consider two arbitrary input signals, xA[n]
and xB[n], and compare the output of their linear combination to the linear combina-
tion of their individual outputs. From Eq. (1.4), the response yA[n] to xA[n] and the
response yB[n] to xB[n] are respectively (for all n):

yA[n] = xA[4n + 1] (1.5)

and

yB[n] = xB[4n + 1] . (1.6)

If with xC[n] = axA[n] + bxB[n] for arbitrary a and b the output is yC[n] = ayA[n] +
byB[n], then the system is linear. Applying Eq. (1.4) to xC[n] shows that this holds.

Time Invariance: To check for time invariance, we need to compare the output
due to a time-shifted version of x[n] to the time-shifted version of the output due to
x[n]. The output y[n] resulting from any specific input x[n] is given in Eq. (1.4). The
output ŷ [n] results from an input x̂ [n] that is a time-shifted (by n0) version of the
signal x[n]. Consequently

ŷ [n] = x̂ [4n + 1] = x[4n + 1 + n0] . (1.7)

If the system were time-invariant, then ŷ[n] would correspond to shifting y[n] in
Eq. (1.4) by n0, resulting in replacing n by (n + n0) in Eq. (1.4), which yields

y[n + n0] = x[4n + 4n0 + 1] . (1.8)
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Section 1.2 Linear, Time-Invariant Systems 35

Since the expressions on the right side of Eqs. (1.7) and (1.8) are not equal, the system is
not time-invariant. To illustrate with a specific input, suppose that x[n] is a unit impulse
δ[n], which has the value 1 at n = 0 and the value 0 elsewhere. The output y[n] of
the system Eq. (1.4) would be δ[4n + 1], which is zero for all values of n, and y[n +
n0] would likewise always be zero. However, if we consider x[n + n0] = δ[n + n0], the
output will be δ[4n + 1 + n0], which for n0 = 3 will be 1 at n = −1 and zero otherwise.

Causality: Since the output at time n = 0 is the input value at n = 1, the system
is not causal.

BIBO Stability: Since |y[n]| = |x[4n + 1]| and the bound on |x[n]| also bounds
|x[4n + 1]|, the system is BIBO stable.

1.2 LINEAR, TIME-INVARIANT SYSTEMS

Linear, time-invariant (LTI) systems form the basis for engineering design in
many contexts. This class of systems has the advantage of a rich and well-
established theory for analysis and design. Furthermore, in many systems
that are nonlinear, small deviations from some nominal steady operation are
approximately governed by LTI models, so the tools of LTI system anal-
ysis and design can be applied incrementally around a nominal operating
condition.

1.2.1 Impulse-Response Representation
of LTI Systems

A very general way of representing an LTI mapping from an input signal to
an output signal is through convolution of the input with the system impulse
response. In CT the relationship is

y(t) =
∫ ∞

−∞
x(v)h(t − v) dv =

∫ ∞

−∞
x(t − τ )h(τ ) dτ (1.9)

where x(t) is the input, y(t) is the output, and h(t) is the unit impulse response
of the system. In DT, the corresponding relationship is

y[n] =
∞∑

k=−∞
x[k] h[n − k] =

∞∑
m=−∞

x[n − m] h[m] (1.10)

where h[n] is the unit sample (or unit “impulse”) response of the system.
The common shorthand notations for the convolution integral in

Eq. (1.9) and the convolution sum in Eq. (1.10) are

y(t) = x(t) ∗ h(t) (1.11)

y[n] = x[n] ∗ h[n] . (1.12)

While these notations can be convenient, they can also easily lead to misinter-
pretation if not well understood. Alternative notations such as

y(t) = (x ∗ h)(t) (1.13)
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36 Chapter 1 Signals and Systems

have their advantages and disadvantages. We shall use the notations indi-
cated in Eqs. (1.11) and (1.12) as shorthand for Eqs. (1.9) and (1.10), with
the understanding that Eqs. (1.9) and (1.10) are the correct interpretations.

The characterization of LTI systems through convolution is obtained by
representing the input signal as a superposition of weighted impulses. In the
DT case, suppose we are given an LTI mapping whose impulse response is
h[n], that is, when its input is the unit sample or unit “impulse” function δ[n],
its output is h[n]. A general input x[n] can be assembled as a sum of scaled
and shifted impulses, specifically:

x[n] =
∞∑

k=−∞
x[k] δ[n − k] . (1.14)

As a consequence of linearity and time invariance, the response y[n] to this
input is the sum of the similarly scaled and shifted impulse responses, and is
therefore given by Eq. (1.10). What linearity and time invariance have allowed
us to do is write the response to a general input in terms of the response to a
special input. A similar derivation holds for the CT case.

It may seem that the preceding derivation indicates that all LTI map-
pings from an input signal to an output signal can be represented through
a convolution sum. However, the use of infinite integrals or sums like
those in Eqs. (1.9) and (1.10) actually involves some assumptions about the
corresponding mapping. We make no attempt here to elaborate on these
assumptions. Nevertheless, it is not hard to find “pathological” examples of
LTI mappings—not significant for us in this text, or indeed in most engineer-
ing models—where the convolution relationship does not hold because these
assumptions are violated.

It follows from Eqs. (1.9) and (1.10) that a necessary and sufficient con-
dition for an LTI system to be BIBO stable is that the impulse response be
absolutely integrable (CT) or absolutely summable (DT):

BIBO stable (CT) ⇐⇒
∫ ∞

−∞
|h(t)| dt < ∞ (1.15)

BIBO stable (DT) ⇐⇒
∞∑

n=−∞
|h[n]| < ∞ . (1.16)

It also follows from Eqs. (1.9) and (1.10) that a necessary and sufficient con-
dition for an LTI system to be causal is that the impulse response be zero for
t < 0 (CT) or for n < 0 (DT).

1.2.2 Eigenfunction and Transform
Representation of LTI Systems

Exponentials are eigenfunctions of LTI mappings, that is, when the input is
an exponential for all time, which we refer to as an “everlasting” exponential,
the output is simply a scaled version of the input. Therefore, computing the
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response to an everlasting exponential reduces to simply multiplying by the
appropriate scale factor. Specifically, in the CT case, suppose

x(t) = es0t (1.17)

for some possibly complex value s0 (termed the complex frequency). Then
from Eq. (1.9)

y(t) =
∫ ∞

−∞
h(τ )x(t − τ ) dτ

=
∫ ∞

−∞
h(τ )es0(t−τ )dτ

= H(s0)es0t , (1.18)

where

H(s) =
∫ ∞

−∞
h(τ )e−sτ dτ , (1.19)

provided the above integral has a finite value for s = s0 (otherwise the
response to the exponential is not well defined). Equation (1.18) demonstrates
that x(t) in the form of Eq. (1.17) is an eigenfunction with associated eigen-
value given by H(s0). Note that Eq. (1.19) is precisely the bilateral Laplace
transform of the impulse response, or the transfer function of the system, and
the set of values of s in the complex plane for which the above integral takes
a finite value constitutes the region of convergence (ROC) of the transform.
We discuss the Laplace transform further in Section 1.4.

The fact that the everlasting exponential is an eigenfunction of an LTI
system derives directly from the fact that time shifting an everlasting exponen-
tial produces the same result as scaling it by a constant factor. In contrast, the
one-sided exponential es0tu(t), where u(t) denotes the unit step, is in general
not an eigenfunction of an LTI mapping: time shifting a one-sided exponen-
tial does not produce the same result as scaling this exponential, as indicated
in Example 1.2.

Example 1.2 Eigenfunctions of LTI Systems

As demonstrated above, the everlasting complex exponential ejωt is an eigenfunction
of any LTI system for which the integral in Eq. (1.19) converges at s = jω, while ejωtu(t)
is not. Consider, as a simple example, a time delay:

y(t) = x(t − t0) . (1.20)

The output due to the input ejωtu(t) is

e−jωt0 ejωtu(t − t0) .

This is not a simple scaling of the input, so ejωtu(t) is not in general an eigenfunction of
LTI systems.
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38 Chapter 1 Signals and Systems

When x(t) = ejωt , corresponding to having s0 take the purely imaginary
value jω in Eq. (1.17), the input is bounded for all positive and negative time,
and the corresponding output is of the form

y(t) = H( jω)ejωt (1.21)

provided that H(s) in Eq. (1.19) converges for s = jω. Here ω is the (real-
valued) frequency of the input. From Eq. (1.19), H( jω) is given by

H( jω) =
∫ ∞

−∞
h(t)e−jωt dt . (1.22)

The function H( jω) in Eq. (1.22) is referred to as the system frequency
response, and is also the continuous-time Fourier transform (CTFT) of the
impulse response. The integral that defines the CTFT has a finite value for
each ω (and can be shown to be a continuous function of ω) if h(t) is absolutely
integrable, in other words if ∫ +∞

−∞
|h(t)| dt < ∞ . (1.23)

This condition ensures that s = jω is in the ROC of H(s). Comparing Eq. (1.23)
and Eq. (1.15), we note that this condition is equivalent to the system being
BIBO stable. The CTFT can also be defined for certain classes of signals that
are not absolutely integrable, as for h(t) = (sin t)/t whose CTFT is a rectangle
in the frequency domain, but we defer examination of conditions for existence
of the CTFT to Section 1.3.

Knowing the response to ejωt allows us to also determine the response to
a general (real) sinusoidal input of the form

x(t) = A cos(ωt + θ) = A
2

[
ej(ωt+θ) + e−j(ωt+θ)

]
. (1.24)

Invoking superposition, and assuming h(t) is real so H(jω) is conjugate
symmetric, some algebra shows that the corresponding output is

y(t) = ∣∣H( jω)
∣∣A cos(ωt + θ + � H( jω)) . (1.25)

Thus the output is again a sinusoid at the same frequency, but scaled in magni-
tude by the magnitude of the frequency response at the input frequency, and
shifted in phase by the angle of the frequency response at the input frequency.

We can similarly examine the eigenfunction property in the DT case. A
DT everlasting exponential is a geometric sequence or signal of the form

x[n] = zn
0 (1.26)

for some possibly complex value z0, termed the complex frequency. With this
DT exponential input, the output of a convolution mapping follows by a sim-
ple computation that is analogous to what we showed above for the CT case.
Specifically,

y[n] = h[n] ∗ x[n] = H(z0)zn
0 , (1.27)

where

H(z) =
∞∑

k=−∞
h[k]z−k , (1.28)
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Section 1.2 Linear, Time-Invariant Systems 39

provided the above sum has a finite value when z = z0. Note that this sum is
precisely the bilateral z-transform of the impulse response, and the set of val-
ues of z in the complex plane for which the sum takes a finite value constitutes
the ROC of the z-transform. As in the CT case, the one-sided exponential
zn

0u[n] is not in general an eigenfunction. We discuss the z-transform further
in Section 1.4.

Again, an important case is when x[n] = (ej�)n = ej�n, corresponding to
z0 in Eq. (1.26) having unit magnitude and taking the value ej�, where �—
the (real) “frequency”—denotes the angular position (in radians) around the
unit circle in the z-plane. Such an x[n] is bounded for all positive and negative
time. Although we use a different symbol, �, for frequency in the DT case,
to distinguish it from the frequency ω in the CT case, it is not unusual in the
literature to find ω used in both CT and DT cases for notational convenience.
The corresponding output is

y[n] = H(ej�)ej�n (1.29)

provided that ej� is in the ROC of H(z). From Eq. (1.28), H(ej�) is given by

H(ej�) =
∞∑

n=−∞
h[n]e−j�n . (1.30)

The function H(ej�) in Eq. (1.30) is the frequency response of the DT sys-
tem, and is also the discrete-time Fourier transform (DTFT) of the impulse
response. The sum that defines the DTFT has a finite value (and can be shown
to be a continuous function of �) if h[n] is absolutely summable, in other
words provided

∞∑
n=−∞

| h[n] | < ∞ . (1.31)

This condition ensures that ej� is in the ROC of H(z). As in continuous time,
this condition is equivalent to the system being BIBO stable. As with the
CTFT, the DTFT can be defined for signals that are not absolutely summable;
we will elaborate on this in Section 1.3.

Using Eq. (1.29), assuming h[n] is real, and proceeding as in the CT case,
it follows that the response to the sinusoidal input

x[n] = A cos(�n + θ) (1.32)

is

y[n] =
∣∣∣H(ej�)

∣∣∣A cos(�n + θ + � H(ej�)) . (1.33)

Note from Eq. (1.30) that the frequency response for DT systems is always
periodic, with period 2π. The “low-frequency” response is found in the vicinity
of � = 0, corresponding to an input signal that is constant for all n. The “high-
frequency” response is found in the vicinity of � = ±π , corresponding to an
input signal e±jπn = (−1)n that is the most rapidly varying DT signal possible.
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40 Chapter 1 Signals and Systems

When the input of an LTI system can be expressed as a linear combina-
tion of eigenfunctions, for instance (in the CT case)

x(t) =
∑

�

a�ejω�t , (1.34)

then, by linearity, the output is the same linear combination of the responses
to the individual exponentials. By the eigenfunction property of exponentials
in LTI systems, the response to each exponential involves only scaling by the
system’s frequency response at the frequency of the exponential. Thus

y(t) =
∑

�

a�H( jω�)ejω�t . (1.35)

Similar expressions can be written for the DT case.

1.2.3 Fourier Transforms

A broad class of input signals can be represented as linear combinations of
bounded exponentials through the Fourier transform. The synthesis/analysis
formulas for the continuous-time Fourier transform (CTFT) are

x(t) = 1
2π

∫ ∞

−∞
X( jω) ejωtdω (synthesis) (1.36)

X( jω) =
∫ ∞

−∞
x(t) e−jωtdt (analysis). (1.37)

Note that Eq. (1.36) expresses x(t) as a linear combination of exponentials, but
this weighted combination involves a continuum of exponentials rather than a
finite or countable number. If this signal x(t) is the input to an LTI system with
frequency response H( jω), then by linearity and the eigenfunction property
of exponentials the output is the same weighted combination of the responses
to these exponentials, that is,

y(t) = 1
2π

∫ ∞

−∞
H( jω)X( jω) ejωtdω . (1.38)

By viewing this equation as a CTFT synthesis equation, it follows that the
CTFT of y(t) is

Y( jω) = H( jω)X( jω) . (1.39)
The convolution relationship Eq. (1.9) in the time domain therefore becomes
multiplication in the transform domain. Thus, to determine Y( jω) at any par-
ticular frequency ω0, we only need to know the Fourier transform of the input
at that single frequency, and the frequency response of the system at that fre-
quency. This simple fact serves, in large measure, to explain why the frequency
domain is virtually indispensable in the analysis of LTI systems.

The corresponding DTFT synthesis/analysis pair is defined by

x[n] = 1
2π

∫
〈2π〉

X(ej�) ej�nd� (synthesis) (1.40)

X(ej�) =
∞∑

n=−∞
x[n] e−j�n (analysis) (1.41)
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Section 1.3 Deterministic Signals and Their Fourier Transforms 41

where the notation 〈2π〉 on the integral in the synthesis formula denotes inte-
gration over any contiguous interval of length 2π. This is because the DTFT is
always periodic in � with period 2π, a simple consequence of the fact that ej�

is periodic with period 2π. Note that Eq. (1.40) expresses x[n] as a weighted
combination of a continuum of exponentials.

As in the CT case, it is straightforward to show that if x[n] is the input to
an LTI mapping, then the output y[n] has the DTFT

Y(ej�) = H(ej�)X(ej�) . (1.42)

1.3 DETERMINISTIC SIGNALS AND THEIR
FOURIER TRANSFORMS

In this section, we review the DTFT of deterministic DT signals in more detail
and highlight classes of signals that can be guaranteed to have well-defined
DTFTs. We shall also devote some attention to the energy density spectrum
of signals that have DTFTs. The section will bring out aspects of the DTFT
that may not have been emphasized in your earlier signals and systems course.
A similar development can be carried out for CTFTs.

1.3.1 Signal Classes and Their Fourier Transforms

The DTFT synthesis and analysis pair in Eqs. (1.40) and (1.41) hold for at least
the three large classes of DT signals described below.

Finite-Action Signals

Finite-action signals, which are also called absolutely summable signals or �1

(“ell-one”) signals, are defined by the condition
∞∑

k=−∞

∣∣∣x[k]
∣∣∣ < ∞ . (1.43)

The sum on the left is often called the action of the signal. For these signals,
the infinite sum that defines the DTFT is well behaved and the DTFT can
be shown to be a continuous function for all �. In particular, the values at
� = +π and � = −π are well defined and equal to each other, which need
not be the case when signals are not �1.

Finite-Energy Signals

Finite-energy signals, which are also referred to as square summable or �2

(“ell-two”) signals, are defined by the condition
∞∑

k=−∞

∣∣∣x[k]
∣∣∣2 < ∞ . (1.44)

The sum on the left is called the energy of the signal.
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42 Chapter 1 Signals and Systems

In discrete time, an absolutely summable (i.e., �1) signal is always square
summable (i.e., �2). However, the reverse is not true. For example, consider
the signal (sin �cn)/πn for 0 < �c < π , with the value at n = 0 taken to be
�c/π, or consider the signal (1/n)u[n − 1], both of which are �2 but not �1. If
x[n] is such a signal, its DTFT X(ej�) can be thought of as the limit for N → ∞
of the quantity

XN(ej�) =
N∑

k=−N

x[k]e−j�k (1.45)

and the resulting limit will typically have discontinuities at some values of �.
For instance, the transform of (sin �cn)/πn has discontinuities at � = ±�c.

Signals of Slow Growth

Signals of slow growth are signals whose magnitude grows no faster than poly-
nomially with the time index, for example, x[n] = n for all n. In this case
XN(ej�) in Eq. (1.45) does not converge in the usual sense, but the DTFT
still exists as a generalized (or singularity) function; for example, if x[n] = 1
for all n, then X(ej�) = 2πδ(�) for |�| ≤ π .

Within the class of signals of slow growth, those of most interest to us
are bounded (or �∞) signals defined by∣∣∣x[k]

∣∣∣ ≤ M < ∞ (1.46)

that is, signals whose amplitude has a fixed and finite bound for all time.
Bounded everlasting exponentials of the form ej�0n, for instance, play a key
role in Fourier transform theory. Such signals need not have finite energy, but
will have finite average power over any time interval, where average power is
defined as total energy over total time.

Similar classes of signals are defined in continuous time. Finite-action
(or L1) signals comprise those that are absolutely integrable, that is,∫ ∞

−∞

∣∣∣x(t)
∣∣∣ dt < ∞ . (1.47)

Finite-energy (or L2) signals comprise those that are square integrable, that is,∫ ∞

−∞

∣∣∣x(t)
∣∣∣2 dt < ∞ . (1.48)

In continuous time, an absolutely integrable signal (i.e., L1) may not be square
integrable (i.e., L2), as is the case, for example, with the signal

x(t) =
{

1/
√

t 0 < t ≤ 1
0 elsewhere.

(1.49)

However, an L1 signal that is bounded will also be L2. As in discrete time, a CT
signal that is L2 is not necessarily L1, as is the case, for example, with the signal

x(t) = sin ωct
π t

. (1.50)
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Section 1.3 Deterministic Signals and Their Fourier Transforms 43

In both continuous time and discrete time, there are many important Fourier
transform pairs and Fourier transform properties developed and tabulated in
basic texts on signals and systems. For convenience, we include here a brief
table of DTFT pairs (Table 1.1) and one of CTFT pairs (Table 1.2). Other pairs
are easily derived from these by applying various Fourier transform proper-
ties. Note that δ[·] in the left column in Table 1.1 denotes unit sample functions,
while δ(·) in the right column are unit impulses. Also, the DTFTs in Table 1.1
repeat periodically outside the interval −π < � ≤ π .

In general, it is important and useful to be fluent in deriving and utilizing
the main transform pairs and properties. In the following subsection we discuss
Parseval’s identity, a transform property that is of particular significance in our
later discussion.

There are, of course, other classes of signals that are of interest to us in
applications, for instance growing one-sided exponentials. To deal with such

TABLE 1.1 BRIEF TABLE OF DTFT PAIRS

DT Signal ←→ DTFT for −π < � ≤ π

δ[n] ←→ 1

δ[n − n0] ←→ e−j�n0

1 (for all n) ←→ 2πδ(�)

e j�0n (−π < �0 ≤ π) ←→ 2πδ(� − �0)

anu[n], |a| < 1 ←→ 1
1 − ae−j�

u[n] ←→ 1
1 − e−j� + πδ(�)

sin �cn
πn

←→
{

1, −�c < � < �c
0, otherwise

1, −M ≤ n ≤ M
0, otherwise

}
←→ sin[�(2M + 1)/2]

sin(�/2)

TABLE 1.2 BRIEF TABLE OF CTFT PAIRS

CT Signal ←→ CTFT

δ(t) ←→ 1

δ(t − t0) ←→ e−jωt0

1 (for all t) ←→ 2πδ(ω)

e jω0 t ←→ 2πδ(ω − ω0)

e−atu(t),Re{a} > 0 ←→ 1
a + jω

u(t) ←→ 1
jω

+ πδ(ω)

sin ωct
π t

←→
{

1, −ωc < ω < ωc
0, otherwise

1, −M ≤ t ≤ M
0, otherwise

}
←→ sin ωM

ω/2
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44 Chapter 1 Signals and Systems

signals, we make use of z-transforms in discrete time and Laplace transforms
in continuous time.

1.3.2 Parseval’s Identity, Energy Spectral Density,
and Deterministic Autocorrelation

An important property of the Fourier transform is Parseval’s identity for �2

signals. For discrete time, this identity takes the general form
∞∑

n=−∞
x[n]y∗[n] = 1

2π

∫
<2π>

X(ej�)Y∗(ej�) d� (1.51)

and for continuous time,∫ ∞

−∞
x(t)y∗(t) dt = 1

2π

∫ ∞

−∞
X( jω)Y∗( jω) dω (1.52)

where the superscript symbol ∗ denotes the complex conjugate. Specializing
to the case where y[n] = x[n] or y(t) = x(t), we obtain

∞∑
n=−∞

|x[n]|2 = 1
2π

∫
<2π>

|X(ej�)|2 d� (1.53)

∫ ∞

−∞
|x(t)|2 dt = 1

2π

∫ ∞

−∞
|X( jω)|2 dω . (1.54)

Parseval’s identity allows us to evaluate the energy of a signal by integrating
the squared magnitude of its transform. What the identity tells us, in effect, is
that the energy of a signal equals the energy of its transform (scaled by 1/2π).

The right-hand sides of Eqs. (1.53) and (1.54) integrate the quantities
|X(ej�)|2 and |X( jω)|2. We denote these quantities by Sxx(ej�) and Sxx( jω):

Sxx(ej�) = |X(ej�)|2 (1.55)

or
Sxx( jω) = |X( jω)|2 . (1.56)

These are referred to as the energy spectral density (ESD) of the associated
signal because they describe how the energy of the signal is distributed over
frequency. To justify this interpretation more concretely, for discrete time,
consider applying x[n] to the input of an ideal bandpass filter of frequency
response H(ej�) that has narrow passbands of unit gain and width 	 centered
at ±�0, as indicated in Figure 1.4.The energy ofthe output signalmustthen be
the energy of x[n] that is contained in the passbands of the filter. To calculate
the energy of the output signal, note that this output y[n] has the transform

Y(ej�) = H(ej�)X(ej�) . (1.57)
Consequently, by Parseval’s identity, the output energy is

∞∑
n=−∞

|y[n]|2 = 1
2π

∫
〈2π〉

|Y(ej�)|2 d�

= 1
2π

∫
〈2π〉

|H(ej�)|2 |X(ej�)|2 d� . (1.58)
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x[n] H(e jÆ)

H(e jÆ)

y[n]

1
¢ ¢

-Æ0 Æ0 Æ Figure 1.4 Ideal bandpass filter.

Since |H(ej�)| is unity in the passband and zero otherwise, Eq. (1.58) re-
duces to

∞∑
n=−∞

|y[n]|2 = 1
2π

∫
passband

|X(ej�)|2 d�

= 1
2π

∫
passband

Sxx(ej�) d� . (1.59)

Thus the energy of x[n] in any frequency band is given by integrating Sxx(ej�)
over that band (and scaling by 1/2π). In other words, the energy density of x[n]
as a function of � is Sxx(�)/(2π) per radian. An exactly analogous discussion
can be carried out for CT signals.

Since the ESD Sxx(ej�) is a real function of �, an alternate notation for
it might be Exx(�). However, we use the notation Sxx(ej�) in order to make
explicit that it is the squared magnitude of X(ej�) and also the fact that the
ESD for a DT signal is periodic with period 2π .

The ESD also has an important interpretation in the time domain. In
discrete time, for example, and assuming x[n] is real, we obtain

Sxx(ej�) = |X(ej�)|2 = X(ej�)X(e−j�) . (1.60)

Note that X(e−j�) is the transform of the time-reversed signal ←−x [k] = x[−k].
Thus, since multiplication of transforms in the frequency domain corresponds
to convolution of signals in the time domain, we have

Sxx(ej�) = |X(ej�)|2 ⇐⇒ x[k] ∗ ←−x [k] =
∞∑

n=−∞
x[n + k]x[n] = Rxx[k] .

(1.61)
The function Rxx[k] is referred to as the deterministic autocorrelation func-
tion of the signal x[n], and we have just established that the transform of the
deterministic autocorrelation function is the energy spectral density Sxx(ej�).
A basic Fourier transform property tells us that Rxx[0], which is the signal
energy

∑∞
n=−∞ x2[n], is the area under the Fourier transform of Rxx[k], scaled

by 1/(2π), namely the scaled area under Sxx(ej�) = |X(ej�)|2; this, of course,
corresponds directly to Eq. (1.53).

The deterministic autocorrelation function measures how alike a signal
and its time-shifted version are in a total-squared-error sense. More specif-
ically, in discrete time the total squared error between the signal and its
time-shifted version is given by
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∞∑
n=−∞

(x[n + k] − x[n])2 =
∞∑

n=−∞
x2[n + k]

+
∞∑

n=−∞
x2[n] − 2

∞∑
n=−∞

x[n + k]x[n]

= 2(Rxx[0] − Rxx[k]) . (1.62)

Since the total squared error is always nonnegative, it follows that Rxx[k] ≤
Rxx[0], and that the larger the deterministic autocorrelation Rxx[k] is, the
closer the signal x[n] and its time-shifted version x[n + k] are.

Corresponding results hold in continuous time, and in particular

Sxx( jω) = |X( jω)|2 ⇐⇒ x(τ ) ∗ ←−x (τ ) =
∫ ∞

−∞
x(t + τ )x(t)dt = Rxx(τ )

(1.63)
where Rxx(t) is the deterministic autocorrelation function of x(t).

1.4 BILATERAL LAPLACE AND z-TRANSFORMS

Laplace and z-transforms can be thought of as extensions of Fourier trans-
forms and are useful for a variety of reasons. They permit a transform
treatment of certain classes of signals for which the Fourier transform does
not converge. They also augment our understanding of Fourier transforms by
moving us into the complex plane, where we can apply the theory of com-
plex functions. We begin in Section 1.4.1 with a detailed review of the bilateral
z- transform. In Section 1.4.2, we give a short review of the bilateral Laplace
transform, paralleling the discussion in Section 1.4.1.

1.4.1 The Bilateral z -Transform

The bilateral z-transform is defined as

X(z) =
∞∑

n=−∞
x[n]z−n . (1.64)

Here z is a complex variable, which we can also represent in polar form as

z = rej�, r ≥ 0, −π < � ≤ π (1.65)

so

X(z) =
∞∑

n=−∞
x[n]r−ne−j�n . (1.66)

The DTFT corresponds to setting r = 1, in which case z takes values on the
unit circle. However, there are many useful signals for which the infinite sum
does not converge (even in the sense of generalized functions) for z confined
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Section 1.4 Bilateral Laplace and z-Transforms 47

to the unit circle. The term z−n in the definition of the z-transform introduces
a factor r−n into the infinite sum, which permits the sum to converge (provided
r is appropriately restricted) for interesting classes of signals, many of which
do not have DTFTs.

More specifically, note from Eq. (1.66) that X(z) can be viewed as
the DTFT of x[n]r−n. If r > 1, then r−n decays geometrically for positive
n and grows geometrically for negative n. For 0 < r < 1, the opposite hap-
pens. Consequently, there are many sequences for which x[n] is not absolutely
summable, but x[n]r−n is for some range of values of r.

For example, consider x1[n] = anu[n]. If |a| > 1, this sequence does not
have a DTFT. However, for any a, x[n]r−n is absolutely summable provided
r > |a|. In particular, for example,

X1(z) = 1 + az−1 + a2z−2 + · · · (1.67)

= 1
1 − az−1

, |z| = r > |a| . (1.68)

As a second example, consider x2[n] = −anu[−n − 1]. This signal does not
have a DTFT if |a| < 1. However, provided r < |a|,

X2(z) = −a−1z − a−2z2 − · · · (1.69)

= −a−1z
1 − a−1z

, |z| = r < |a| (1.70)

= 1
1 − az−1

, |z| = r < |a| . (1.71)

The z-transforms of the two distinct signals x1[n] and x2[n] above get con-
densed to the same rational expressions, but for different regions of conver-
gence. Hence the ROC is a critical part of the specification of the transform.

When x[n] is a sum of left-sided and/or right-sided DT exponentials, with
each term of the form illustrated in the examples above, then X(z) will be
rational in z (or equivalently, in z−1):

X(z) = Q(z)
P(z)

(1.72)

with Q(z) and P(z) being polynomials in z or, equivalently, z−1.
Rational z-transforms are typically depicted by a pole-zero plot in the

z-plane, with the ROC appropriately indicated. This information uniquely
specifies the signal, apart from a constant amplitude scaling. Note that there
can be no poles in the ROC, since the transform is required to be finite in the
ROC. z-transforms are often written as ratios of polynomials in z−1. However,
the pole-zero plot in the z-plane refers to the roots of the polynomials in
z. Also note that if poles or zeros at z = ∞ are counted, then any ratio of
polynomials always has exactly the same number of poles as zeros.
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Region of Convergence

To understand the complex-function properties of the z-transform, we split the
infinite sum that defines it into nonnegative-time and negative-time portions.
The nonnegative-time or one-sided z-transform is defined by

∞∑
n=0

x[n]z−n (1.73)

and is a power series in z−1. The convergence of the finite sum
∑N

n=0 x[n]z−n as
N → ∞ is governed by the radius of convergence R1 ≥ 0 of the power series.
The series converges (absolutely) for each z such that |z| > R1. The resulting
function of z is an analytic function in this region, that is, it has a well-defined
derivative with respect to the complex variable z at each point in this region,
which is what gives the function its nice properties. The series diverges for
|z| < R1. The behavior of the sum on the circle |z| = R1 requires closer exami-
nation and depends on the particular series; the series may converge (but may
not converge absolutely) at all points, some points, or no points on this cir-
cle. The region |z| > R1 is referred to as the ROC of the power series for the
nonnegative-time part.

Next consider the negative-time part:

−1∑
n=−∞

x[n]z−n =
∞∑

m=1

x[−m]zm (1.74)

which is a power series in z, and has a radius of convergence R2. The series
converges (absolutely) for |z| < R2, which constitutes its ROC; the series is an
analytic function in this region. The series diverges for |z| > R2. The behavior
on the circle |z| = R2 takes closer examination, and depends on the particular
series; and the series may converge (but may not converge absolutely) at
all points, some points, or no points on this circle. If R1 < R2, then the
z-transform of x[n] converges (absolutely) for R1 < |z| < R2; this annular
region is its ROC. The transform is analytic in this region. The series that
defines the transform diverges for |z| < R1 and |z| > R2. If R1 > R2, then the
z-transform does not exist (for example, for x[n] = 0.5nu[−n − 1] + 2nu[n]). If
R1 = R2, then the transform may exist in a technical sense, but is not useful as
a z-transform because it has no ROC. However, if R1 = R2 = 1, then we may
still be able to compute and use a DTFT. For example, for x[n] = 3 for all n, or
for x[n] = (sin �0n)/(πn), the DTFT can be used by incorporating generalized
functions such as impulses and step functions in the frequency domain.

Relating the ROC to Signal Properties

For an absolutely summable sequence (such as the impulse response of a
BIBO-stable system), that is, an �1-signal, the unit circle must lie in the ROC
or must be a boundary of the ROC. Conversely, we can conclude that a signal
is �1 if the ROC contains the unit circle because the transform converges abso-
lutely in its ROC. If the unit circle constitutes a boundary of the ROC, then
further analysis is generally needed to determine if the signal is �1. Rational
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Section 1.4 Bilateral Laplace and z-Transforms 49

transforms always have a pole on the boundary of the ROC, as elaborated
on below, so if the unit circle is on the boundary of the ROC of a rational
transform, then there is a pole on the unit circle and the signal cannot be �1.

For a right-sided signal, it is the case that R2 = ∞, that is, the ROC
extends everywhere in the complex plane outside the circle of radius R1, up
to (and perhaps including) ∞. The ROC includes ∞ if the signal is zero for
negative time.

We can state a converse result if, for example, we know the signal com-
prises only sums of one-sided exponentials of the form obtained when inverse
transforming a rational transform. In this case, if R2 = ∞, then the signal must
be right-sided; if the ROC includes ∞, then the signal must be causal, that is,
zero for n < 0.

For a left-sided signal, R1 = 0, that is, the ROC extends inward from the
circle of radius R2, up to (and perhaps including) zero. The ROC includes
z = 0 if the signal is zero for positive time.

In the case of signals that are sums of one-sided exponentials, we have
the converse: if R1 = 0, then the signal must be left-sided; if the ROC includes
z = 0, then the signal must be anticausal, that is, zero for n > 0.

As indicated earlier, the ROC cannot contain poles of the z-transform
because poles are values of z where the transform has infinite magnitude,
while the ROC comprises values of z where the transform converges. For
signals with rational transforms, one can use the fact that such signals are
sums of one-sided exponentials to show that the possible boundaries of
the ROC are in fact precisely determined by the locations of the poles.
Specifically:

(a) The outer bounding circle of the ROC in the rational case contains a
pole and/or has radius ∞. If the outer bounding circle is at infinity, then
(as we have already noted) the signal is right-sided, and is in fact causal
if there is no pole at ∞.

(b) The inner bounding circle of the ROC in the rational case contains a pole
and/or has radius 0. If the inner bounding circle reduces to the point 0,
then (as we have already noted) the signal is left-sided, and is in fact
anticausal if there is no pole at 0.

The Inverse z-Transform

One method for inverting a rational z-transform is using a partial fraction
expansion, then either directly recognizing the inverse transform of each term
in the partial fraction representation or expanding the term in a power series
that converges for z in the specified ROC. For example, a term of the form

1
1 − az−1

(1.75)

can be expanded in a power series in az−1 if |a| < |z| for z in the ROC, and
expanded in a power series in a−1z if |a| > |z| for z in the ROC. Carrying
out this procedure for each term in a partial fraction expansion, we find
that the signal x[n] is a sum of left-sided and/or right-sided exponentials. For
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50 Chapter 1 Signals and Systems

nonrational transforms, where there may not be a partial fraction expansion to
simplify the process, it is still reasonable to attempt the inverse transformation
by expansion into a power series consistent with the given ROC.

Although we will generally use partial fraction or power series methods
to invert z-transforms, there is an explicit formula that is similar to that of the
inverse DTFT, specifically,

x[n] = 1
2π

∫ π

−π

X(z)zn d�

∣∣∣
z=rej�

(1.76)

where the constant r is chosen to place z in the ROC. This is not the most gen-
eral inversion formula, but is sufficient for us, and shows that x[n] is expressed
as a weighted combination of DT exponentials.

As is the case for Fourier transforms, there are many useful z-transform
pairs and properties developed and tabulated in basic texts on signals and sys-
tems. Appropriate use of transform pairs and properties is often the basis for
obtaining the z-transform or the inverse z-transform of many other signals.

1.4.2 The Bilateral Laplace Transform

As with the z-transform, the Laplace transform is introduced in part to handle
important classes of signals that do not have CTFTs, but it also enhances our
understanding of the CTFT. The definition of the Laplace transform is

X(s) =
∫ ∞

−∞
x(t) e−st dt (1.77)

where s is a complex variable, s = σ + jω. The Laplace transform can thus be
thought of as the CTFT of x(t) e−σ t . With σ appropriately chosen, the integral
in Eq. (1.77) can exist even for signals that have no CTFT.

The development of the Laplace transform parallels closely that of the
z-transform in the preceding section, but with eσ playing the role that r did
in Section 1.4.1. The interior of the set of values of s for which the defining
integral converges, as the limits on the integral approach ±∞, comprises the
ROC for the transform X(s). The ROC is now determined by the minimum
and maximum allowable values of σ , say σ1 and σ2 respectively. We refer to
σ1, σ2 as abscissas of convergence. The corresponding ROC is a vertical strip
between σ1 and σ2 in the complex plane, σ1 < Re{s} < σ2. Equation (1.77)
converges absolutely within the ROC; convergence at the left and right bound-
ing vertical lines of the strip has to be separately examined. Furthermore, the
transform is analytic (that is, differentiable as a complex function) throughout
the ROC. The strip may extend to σ1 = −∞ on the left, and to σ2 = +∞ on
the right. If the strip collapses to a line (so that the ROC vanishes), then the
Laplace transform is not useful (except if the line happens to be the jω axis, in
which case a CTFT analysis may perhaps be recovered).

For example, consider x1(t) = eatu(t); the integral in Eq. (1.77) eval-
uates to X1(s) = 1/(s − a) provided Re{s} > a. On the other hand, for
x2(t) = −eatu(−t), the integral in Eq. (1.77) evaluates to X2(s) = 1/(s − a)
provided Re{s} < a. As with the z-transform, note that the expressions for the
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Section 1.5 Discrete-Time Processing of Continuous-Time Signals 51

transforms above are identical; they are distinguished by their distinct regions
of convergence.

The ROC may be associated with properties of the signal. For example,
for absolutely integrable signals, also referred to as L1 signals, the integrand in
the definition of the Laplace transform is absolutely integrable on the jω axis,
so the jω axis is in the ROC or on its boundary. In the other direction, if the jω
axis is strictly in the ROC, then the signal is L1, because the integral converges
absolutely in the ROC. Recall that a system has an L1 impulse response if and
only if the system is BIBO stable, so the result here is relevant to discussions
of stability: if the jω axis is strictly in the ROC of the system function, then the
system is BIBO stable.

For right-sided signals, the ROC is some right half-plane (i.e., all s such
that Re{s} > σ1). Thus the system function of a causal system will have an
ROC that is some right half-plane. For left-sided signals, the ROC is some left
half-plane. For signals with rational transforms, the ROC contains no poles,
and the boundaries of the ROC will have poles. Since the location of the ROC
of a transfer function relative to the imaginary axis relates to BIBO stability,
and since the poles identify the boundaries of the ROC, the poles relate to
stability. In particular, a system with a right-sided impulse response (e.g., a
causal system) will be stable if and only if all its poles are finite and in the
left half-plane, because this is precisely the condition that allows the ROC
to contain the entire imaginary axis. Also note that a signal with a rational
transform and no poles at infinity is causal if and only if it is right-sided.

A further property worth recalling is connected to the fact that exponen-
tials are eigenfunctions of LTI systems. If we denote the Laplace transform
of the impulse response h(t) of an LTI system by H(s), then es0t at the input
of the system yields H(s0) es0t at the output, provided s0 is in the ROC of the
transfer function.

1.5 DISCRETE-TIME PROCESSING OF
CONTINUOUS-TIME SIGNALS

Many modern systems for applications such as communication, entertain-
ment, navigation, and control are a combination of CT and DT subsystems,
exploiting the inherent properties and advantages of each. In particular,
the DT processing of CT signals is common in such applications, and we
describe the essential ideas behind such processing here. As with the ear-
lier sections, we assume that this discussion is primarily a review of familiar
material, included here to establish notation and for convenient reference
from later chapters in this text. In this section, and throughout this text,
we will often relate the CTFT of a CT signal and the DTFT of a DT sig-
nal obtained from samples of the CT signal. We will use the subscripts c
and d when necessary to help keep clear which signals are CT and which
are DT.
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52 Chapter 1 Signals and Systems

1.5.1 Basic Structure for DT Processing
of CT Signals

Figure 1.5 depicts the basic structure of this processing, which involves
continuous-to-discrete (C/D) conversion to obtain a sequence of samples of
the CT input signal; followed by DT filtering to produce a sequence of sam-
ples of the desired CT output; then discrete-to-continuous (D/C) conversion
to reconstruct this desired CT output signal from the sequence of samples. We
will often restrict ourselves to conditions such that the overall system in Figure
1.5 is equivalent to an LTI CT system. The necessary conditions for this typ-
ically include restricting the DT filtering to LTI processing by a system with
frequency response Hd(ej�), and also requiring that the input xc(t) be appro-
priately bandlimited. To satisfy the latter requirement, it is typical to precede
the structure in the figure by a filter whose purpose is to ensure that xc(t) is
essentially bandlimited. While this filter is often referred to as an anti-aliasing
filter, we can often allow some aliasing in the C/D conversion if the DT system
removes the aliased components; the overall system can then still be a CT LTI
system.

The ideal C/D converter in Figure 1.5 has as its output a sequence of
samples of xc(t) with a specified sampling interval T1, so that the DT sig-
nal is xd[n] = xc(nT1). Conceptually, therefore, the ideal C/D converter is
straightforward. A practical analog-to-digital (A/D) converter also quantizes
the signal to one of a finite set of output levels. However, in this text we do not
consider the additional effects of quantization.

In the frequency domain, the CTFT of xc(t) and the DTFT of xd[n] can
be shown to be related by

Xd(ej�)

∣∣∣∣∣
�=ωT1

= 1
T1

∑
k

Xc

(
jω − jk

2π

T1

)
. (1.78)

When xc(t) is sufficiently bandlimited so that

Xc( jω) = 0, |ω| ≥ π

T1
(1.79)

xd[n]xc(t)

T1

yc( t)
C/D

T2

D/CHd(e jÆ)

Hc( jv)

yd[n]

Figure 1.5 DT processing of CT signals.
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that is, when the sampling is at or above the Nyquist rate, then Eq. (1.78) can
be rewritten as

Xd(ej�)

∣∣∣∣∣
�=ωT1

= 1
T1

Xc( jω) , |ω| < π/T1 (1.80a)

or equivalently

Xd(ej�) = 1
T1

Xc

(
j
�

T1

)
, |�| < π . (1.80b)

Note that Xd(ej�) is extended periodically outside the interval |�| < π .
The ideal D/C converter in Figure 1.5 is defined through the interpola-

tion relation

yc(t) =
∑

n

yd[n]
sin (π (t − nT2) /T2)

π(t − nT2)/T2
, (1.81)

which shows that yc(nT2) = yd[n]. Since each term in the above sum is band-
limited to |ω| < π/T2, the CT signal yc(t) is also bandlimited to this frequency
range, so this D/C converter is more completely referred to as the ideal band-
limited interpolating converter. The C/D converter in Figure 1.5, under the
assumption Eq. (1.79), is similarly characterized by the fact that the CT signal
xc(t) is the ideal bandlimited interpolation of the DT sequence xd[n].

Because yc(t) is bandlimited and yc(nT2) = yd[n], analogous relations to
Eq. (1.80) hold between the DTFT of yd[n] and the CTFT of yc(t):

Yd(ej�)

∣∣∣∣∣
�=ωT2

= 1
T2

Yc( jω) , |ω| < π/T2 (1.82a)

or equivalently

Yd(ej�) = 1
T2

Yc

(
j
�

T2

)
, |�| < π . (1.82b)

Figure 1.6 shows one conceptual representation of the ideal D/C
converter. This figure interprets Eq. (1.81) to be the result of evenly spacing
a sequence of impulses at intervals of T2—the reconstruction interval—with
impulse strengths given by the yd[n], then filtering the result by an ideal
low-pass filter L( jω) with gain T2 in the passband |ω| < π/T2. This operation

yd[n] yp(t)

D/C

yc(t)
L(jv)

@[n - k] S
@(t - kT2)

T2

Figure 1.6 Conceptual representation
of processes that yield ideal D/C
conversion, interpolating a DT sequence
into a bandlimited CT signal using
reconstruction interval T2.
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54 Chapter 1 Signals and Systems

produces the bandlimited CT signal yc(t) that interpolates the specified
sequence values yd[n] at the instants t = nT2, that is, yc(nT2) = yd[n].

1.5.2 DT Filtering and Overall CT Response

We now assume, unless stated otherwise, that T1 = T2 = T. If in Figure 1.5 the
bandlimiting constraint of Eq. (1.79) is satisfied, and if we set yd[n] = xd[n],
then yc(t) = xc(t). More generally, when the DT system in Figure 1.5 is an LTI
DT filter with frequency response Hd(ej�), so

Yd(ej�) = Hd(ej�)Xd(ej�) , (1.83)

and provided any aliased components of xc(t) are eliminated by Hd(ej�), then
assembling Eqs. (1.80), (1.82), and (1.83) yields

Yc( jω) = Hd(ej�)

∣∣∣∣∣
�=ωT

Xc( jω) , |ω| < π/T . (1.84)

The action of the overall system is thus equivalent to that of a CT filter whose
frequency response is

Hc( jω) = Hd(ej�)

∣∣∣∣∣
�=ωT

, |ω| < π/T . (1.85)

In other words, under the bandlimiting and sampling rate constraints men-
tioned above, the overall system behaves as an LTI CT filter, and the response
of this filter is related to that of the embedded DT filter through a simple fre-
quency scaling. The sampling rate can be lower than the Nyquist rate, provided
that the DT filter eliminates any aliased components.

If we wish to use the system in Figure 1.5 to implement a CT LTI filter
with frequency response Hc( jω), we choose Hd

(
ej�
)

according to Eq. (1.85),
provided that xc(t) is appropriately bandlimited. If we define Hc( jω) = 0 for
|ω| ≥ π/T, then Eq. (1.85) also corresponds to the following relation between
the DT and CT impulse responses:

hd[n] = T hc(nT) . (1.86)

The DT filter is therefore a sampled version of the CT filter. When xc(t) and
Hd(ej�) are not sufficiently bandlimited to avoid aliased components in yd[n],
then the overall system in Figure 1.5 is no longer time-invariant. It is, however,
still linear since it is a cascade of linear subsystems.

The following two examples illustrate the use of Eq. (1.85) as well as
Figure 1.5, both for DT processing of CT signals and for interpretation of two
important DT systems.
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Example 1.3 Digital Differentiator

In this example we wish to implement a CT differentiator using a DT system in the
configuration of Figure 1.5. We need to choose Hd

(
ej�
)

so that yc(t) = dxc(t)
dt , assuming

that xc(t) is bandlimited to π/T. The desired overall CT frequency response is therefore

Hc( jω) = Yc( jω)
Xc( jω)

= jω . (1.87)

Consequently, using Eq. (1.85) we choose Hd(ej�) such that

Hd(ej�)

∣∣∣∣∣
�=ωT

= jω , |ω| <
π

T
(1.88a)

or equivalently

Hd(ej�) = j�/T , |�| < π . (1.88b)

A DT system with the frequency response in Eq. (1.88b) is commonly referred to as
a digital differentiator. To understand the relation between the input xd[n] and output
yd[n] of the digital differentiator, note that yc(t)—which is the bandlimited interpola-
tion of yd[n]—is the derivative of xc(t), and xc(t) in turn is the bandlimited interpolation
of xd[n]. It follows that yd[n] can, in effect, be thought of as the result of sampling the
derivative of the bandlimited interpolation of xd[n].

Example 1.4 Half-Sample Delay

In designing DT systems, a phase factor of the form e−jα�, |�| < π , is often included or
required. When α is an integer, this has a straightforward interpretation: it corresponds
simply to an integer shift of the time sequence by α. When α is not an integer, the
interpretation is not as immediate, since a DT sequence can only be directly shifted by
integer amounts.

In this example we consider the case of α = 1
2 , referred to as a half-sample delay.

To provide an interpretation, we consider the implications of choosing the DT system
in Figure 1.5 to have frequency response

Hd(ej�) = e−j�/2 , |�| < π . (1.89)

Whether or not xd[n] explicitly arose by sampling a CT signal, we can associate xd[n]
with its bandlimited interpolation xc(t) for any specified sampling or reconstruction
interval T. Similarly, we can associate yd[n] with its bandlimited interpolation yc(t)
using the reconstruction interval T. With Hd

(
ej�
)

given by Eq. (1.89), the equivalent
CT frequency response relating yc(t) to xc(t) is

Hc( jω) = e−jωT/2 (1.90)

representing a time delay of T/2, which is half the sample spacing; consequently,
yc(t) = xc(t − T/2). We therefore conclude that for a DT system with frequency
response given by Eq. (1.89), the DT output yd[n] corresponds to samples of the half-
sample delay of the bandlimited interpolation of the input sequence xd[n]. Note that
in this interpretation the choice for the value of T is immaterial.
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56 Chapter 1 Signals and Systems

The preceding interpretation allows us to find the unit sample (or impulse)
response of the half-sample delay system through a simple argument. If xd[n] = δ[n],
then xc(t) must be the bandlimited interpolation of this (with some T that we could
have specified to take any particular value), so

xc(t) = sin(π t/T)
π t/T

(1.91)

and therefore

yc(t) =
sin
(
π(t − (T/2))/T

)
π(t − (T/2))/T

(1.92)

which shows that the desired unit sample response is

yd[n] = hd[n] =
sin
(
π(n − (1/2))

)
π(n − (1/2))

. (1.93)

This discussion of a half-sample delay also generalizes in a straightforward way to any
integer or non-integer choice for the value of α.

1.5.3 Nonideal D/C Converters

In Section 1.5.1 we defined the ideal D/C converter through the bandlimited
interpolation formula Eq. (1.81), also illustrated in Figure 1.6, which corre-
sponds to processing a train of impulses with strengths equal to the sequence
values yd[n] through an ideal low-pass filter. A more general class of D/C con-
verters, which includes the ideal converter as a particular case, creates a CT
signal yc(t) from a DT signal yd[n] according to the following:

yc(t) =
∞∑

n=−∞
yd[n] p(t − nT) (1.94)

where p(t) is some selected basic pulse and T is the reconstruction interval or
pulse repetition interval. This too can be seen as the result of processing an
impulse train of sequence values through a filter, but a filter that has impulse
response p(t) rather than that of the ideal low-pass filter. The CT signal yc(t)
is thus constructed by adding together shifted and scaled versions of the basic
pulse; the number yd[n] scales p(t − nT), which is the basic pulse delayed by
nT. Note that the ideal bandlimited interpolating converter of Eq. (1.81) is
obtained by choosing

p(t) = sin(π t/T)
π t/T

. (1.95)

In Chapter 3, we will discuss the interpretation of Eq. (1.94) as pulse-
amplitude modulation (PAM) for communicating DT information over a CT
channel.

The relationship in Eq. (1.94) can also be described quite simply in the
frequency domain. Taking the CTFT of both sides, denoting the CTFT of p(t)
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by P( jω), and using the fact that delaying a signal by t0 in the time domain
corresponds to multiplication by e−jωt0 in the frequency domain, we get

Yc( jω) =
( ∞∑

n=−∞
yd[n] e−jnωT

)
P( jω)

= Yd(ej�)

∣∣∣∣∣
�=ωT

P( jω) . (1.96)

In the particular case where p(t) is the sinc pulse in Eq. (1.95), with transform
P( jω) that has the constant value T for |ω| < π/T and 0 outside this band, we
recover the relation in Eq. (1.82).

In practice, the ideal frequency characteristic can only be approximated,
with the accuracy of the approximation often related to cost of implemen-
tation. A commonly used simple approximation is the (centered) zero-order
hold (ZOH), specified by the choice

pz(t) =
{

1 for |t| < (T/2)
0 elsewhere. (1.97)

This D/C converter holds the value of the DT signal at time n, namely the
value yd[n], for an interval of length T centered at nT in the CT domain, as
illustrated in Figure 1.7. The centered ZOH is of course noncausal, but is easily
replaced with the noncentered causal ZOH, for which the basic pulse is

pz′(t) =
{

1 for 0 ≤ t < T
0 elsewhere.

(1.98)

Such ZOH converters are commonly used.
Another common choice is a centered first-order hold (FOH), for which

the basic pulse pf (t) is triangular as shown in Figure 1.8. Use of the FOH rep-
resents linear interpolation between the sequence values. Of course, the use of
the ZOH and FOH will not be equivalent to exact bandlimited interpolation
as required by the Nyquist sampling theorem. The transform of the centered
ZOH pulse is

Pz( jω) = T
sin(ωT/2)

ωT/2
(1.99)

yd(n)

n1 2

3

0-1

(a) (b)

yc(t)

tT0-T 2T

Figure 1.7 A centered zero-order hold (ZOH): (a) DT sequence;
(b) the result of applying the centered ZOH to (a).
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p(t)

t
T-T

1

Figure 1.8 Basic pulse pf (t) for
centered first-order hold (FOH).

T

ZOH

FOH

Ideal bandlimited

interpolator

-6p/T -4p/T -2p/T 2p/T 4p/T 6p/T-p/T p/T v

Figure 1.9 The Fourier transform amplitudes of the ideal bandlimited
interpolator, the ZOH, and the FOH.

and that of the centered FOH pulse is

Pf ( jω) = T
(

sin(ωT/2)
ωT/2

)2

. (1.100)

The Fourier transform amplitudes of the ideal bandlimited interpolator, the
ZOH, and the FOH are shown in Figure 1.9.

1.6 FURTHER READING

As noted in the Preface, we assume a background in the foundations of signals
and systems analysis in both continuous and discrete time. Chapters 1 and 2,
which follow the development in [Op1] quite closely, are primarily intended to
review and summarize basic concepts and establish notation. Computational
explorations of this material are found in [Buc] and [McC]. Other texts on
the basics of signals and systems include [Ch1], [Ha1], [Kwa], [La1], [Phi],
and [Rob]. A rich set of perspectives is found in [Sie], which emphasizes
continuous-time signals and systems. A somewhat more advanced develop-
ment for discrete-time signals and systems is in [Op2], see also [Mit], [Ma1],
[Pra] and [Pr1]. The geometric treatment in [Vet] exploits the view of sig-
nals as Hilbert-space vectors. Classic and fairly advanced books on signal
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analysis and Fourier transforms are [Bra], [Gui], [Pa1], [Pa2], [Pa3], all of
which offer useful viewpoints. The treatment of Fourier theory in [Cha] is
concise and illuminating.

Problems

Basic Problems

1.1. A simple physical model for the motion of a certain electric vehicle along a track
is given by the following differential equation, with the position of the vehicle
denoted by y(t):

d2y(t)
dt2

= −
( cf

m

) dy(t)
dt

−
( cb

m

) dy(t)
dt

xb(t) + xa(t) ,

where xb(t) is the braking force applied to the wheels; xa(t) is the acceleration
provided by the electric motor; m is the mass of the car; and cf and cb are fric-
tional constants for the vehicle and brakes, respectively. Assume that we have
the constraint xb ≥ 0, but that xa can be positive or negative.

(a) Is the model linear? That is, do its nonzero solutions obey the superposition
principle? Is the model time-invariant?

(b) How do your answers change if the braking force xb(t) is identically zero?

1.2. (a) Suppose the input signal to a stable LTI system with system function H(s) is
constant at some value α for all time t. What is the corresponding output at
each t?

(b) Denote by y(t) the output signal obtained from the system in (a) when
the input to it is the signal x(t) = t for all time. Now obtain two dis-
tinct expressions for the output corresponding to the input t − α, where
α is an arbitrary constant. Hint: Invoke the linearity and time invariance
of the system, and use your result from (a). By choosing α appropri-
ately, deduce that y(t) = bt + y(0) for some constant b. Express b in terms
of H(s).

1.3. Indicate whether the systems below satisfy the following system properties:
linearity, time invariance, causality, and BIBO stability.

(a) A system with input x(t) and output y(t), with input-output relation

y(t) = x4(t), −∞ < t < ∞ .

(b) A system with input x[n] and output y[n], and input-output relation

y[n] =
{

0 n ≤ 0
y[n − 1] + x[n] n > 0 .

(c) A system with input x(t) and output y(t), with input-output relation

y(t) = x(4t + 3) − ∞ < t < ∞ .

(d) A system with input x(t) and output y(t), with input-output relation

y(t) =
∫ ∞

−∞
x(τ) dτ − ∞ < t < +∞ .
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60 Chapter 1 Signals and Systems

1.4. We are given a certain LTI system with impulse response h0(t), and are told that
when the input is x0(t), the output y0(t) is the waveform shown in Figure P1.4.

y0(t)

1

0 2 t Figure P1.4

We are then given the following set of inputs x(t) to LTI systems with the
indicated impulse responses h(t):

Input x(t) Impulse response h(t)

(a) x(t) = 2x0(t) h(t) = h0(t)
(b) x(t) = x0(t) − x0(t − 2) h(t) = h0(t)
(c) x(t) = x0(t − 2) h(t) = h0(t + 1)
(d) x(t) = x0(−t) h(t) = h0(t)
(e) x(t) = x0(−t) h(t) = h0(−t)
(f) x(t) = dx0(t)

dt h(t) = dh0(t)
dt

In each of these cases, determine whether or not we have enough informa-
tion available to determine the output y(t) uniquely. If it is possible to determine
y(t) uniquely, provide an analytical expression for it and a sketch of it. In those
cases where you believe it is not possible to find y(t) uniquely, see if you can
prove that this is not possible.

1.5. (a) Consider an LTI system with input x(t) and output y(t) related through the
equation

y(t) =
∫ t

−∞
e−(t−τ )x(τ − 2) dτ .

What is the impulse response h(t) for this system?
(b) Determine the response of this system when the input x(t) is as shown in

Figure P1.5-1.

x(t)

t2-1

1

Figure P1.5-1

(c) Consider the interconnection of LTI systems shown in Figure P1.5-2. Here
h(t) is as in part (a). Determine the output w(t) when the input x(t) is the
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same as in part (b). Do this using the result of part (b), together with the
properties of convolution; do not directly evaluate a convolution integral.

h(t)

d(t - 1)

+
-

+

h(t)

x(t) w(t)

Figure P1.5-2

1.6. For each of the following pairs of signals, use convolution to find the response
y(t) of the LTI system with impulse response h(t) to the input x(t). Sketch your
result.

(a) x(t) = e−3tu(t), h(t) = u(t − 1).
(b) The signals are as shown in Figure P1.6.

x(t) h(t)

1 2 3 t

2

1 2 6 t

1

3

Figure P1.6

1.7. (a) Determine the Fourier transform of the sequence

r[n] =
⎧⎨⎩ 1 , 0 ≤ n ≤ M

0 , otherwise.

Note that M might not be an even number here. Sketch the magnitude of
R(ej�).

(b) Consider the sequence

w[n] =

⎧⎪⎨⎪⎩
1
2

(
1 + cos

2πn
M

)
, 0 ≤ n ≤ M

0 , otherwise.

Express the DTFT of w[n] in terms of the DTFT of r[n].

1.8. Figure P1.8-1 shows four DTFT magnitudes, numbered 1 through 4. Fig-
ure P1.8-2 shows the four associated DT signals, labeled A through D, but
arranged in random order.

(a) Match the DTFTs with the signals. Explain why you choose each
combination.

(b) The scales are missing from DTFT numbers 1 and 4. What should the scales
or the maximum magnitude on the plot be and why?
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-1 -0.5 0 0.5 1

DTFT number 1

Frequency normalized to p
−1 −0.5 0 0.5 1

0

1

2

3

4
DTFT number 2

Frequency normalized to p

−1 −0.5 0 0.5 1
0

1

2

3

4
DTFT number 3

Frequency normalized to p
−1 −0.5 0 0.5 1

DTFT number 4

Frequency normalized to p

Figure P1.8-1

0
-2

-1

0

1

2

2 4 6

Signal A

8 10 0
-2

-1

0

1

2

2 4 6

Signal B

8 10

0
-2

-1

0

1

2

2 4 6

Signal C

8 10 0
-2

-1

0

1

2

2 4 6

Signal D

8 10

Figure P1.8-2
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1.9. The Fourier transform of a DT signal x[n] is

X(ej�) = ej2� (1 − e−j3�) .

Completely specify x[n].

1.10. For each of the signals in (a)–(g) below, determine which of the properties
(1)–(6) listed here is satisfied by its Fourier transform. Compute as little as
possible; instead invoke transform properties as necessary.

(1) �e{X(ej�)} = 0.
(2) �m{X(ej�)} = 0.
(3) There exists a real α such that ejα�X(ej�) is real.
(4)

∫ π

−π X(ej�) d� = 0.

(5) X(ej�) is periodic.
(6) X(ej�)

∣∣
�=0 = 0.

(a) x[n] in Figure P1.10-1.
(b) x[n] in Figure P1.10-2.
(c) x[n] in Figure P1.10-3.
(d) x[n] in Figure P1.10-4.

-1 n

1
2

0 1

1

2

2 3 4 5

3
2

x[n]

(a)

Figure P1.10-1

-2 -1

-1
n

1

1

0 2

…

…

…

…

x[n]

(b)

Figure P1.10-2

-1

1

2

0 n

x[n]

(c)

Figure P1.10-3
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-1

1

2

0 n

x[n]

(d)

Figure P1.10-4

(e) x[n] =
(

1
2

)n
u[n].

( f ) x[n] = δ[n − 1] + δ[n + 2].
(g) x[n] = δ[n − 1] + δ[n + 1].

1.11. Let X(ej�) be the Fourier transform of the DT signal x[n]. The magnitude and
phase of X(ej�) are shown in Figure P1.11 for |�| < π .

|X(e jÆ)|

jX(e jÆ)1

-p p -p p

p/4

-p/4

Figure P1.11

(a) Give a fully labeled sketch of the magnitude and phase of the DTFT of x[−n]
over the range −2π < � < 2π .

(b) Give a fully labeled sketch of the magnitude and phase of the DTFT of
x[n − 1] over the range −2π < � < 2π .

Note that you are being asked to sketch the graphs over the range −2π <

� < 2π , while the graphs of X(ej�) are given over the range −π < � < π .

1.12. Consider a DT LTI system with frequency response

H(ej�) = e−j3�/2 , −π < � < π .

Determine the output y[n] if the input is x[n] = cos( 4π
3 n + π

4 ).

1.13. Compute the DTFT of each of the following signals for −π < � ≤ π :

(a) x[n] =
⎧⎨⎩ n, −3 ≤ n ≤ 3

0 otherwise

(b) x[n] = sin
(π

2
n
)

+ cos (n)

(c) x[n] = e−2|n|
(d) x[n] = u[n − 2] − u[n − 6]
(e) x[n] = ( 1

3 )|n|u[n + 2]
( f ) x[n] = (n − 1)( 1

3 )|n|.
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1.14. Compute the CTFT of each of the following signals:

(a) x(t) = e−2(t−1)u(t − 1);
(b) x(t) = e−|t| ;
(c) x(t) = [e−αt cos(ω0t)]u(t).

1.15. Parseval’s relation for CT signals states that∫ +∞

−∞
|x(t)|2dt = 1

2π

∫ +∞

−∞
|X( jω)|2dω .

This says that the total energy of the signal can be obtained by integrating
|X( jω)|2 over all frequencies. Now consider a real-valued signal x(t) processed
by the ideal bandpass filter H( jω) shown in Figure P1.15.

H( jv)

H( jv)

-vo vo v

x(t) y(t)

1

¢ ¢

Figure P1.15

(a) Express the energy in the output signal y(t) as an integration over frequency
of |X( jω)|2.

(b) For 	 sufficiently small so that |X( jω)| is approximately constant over a
frequency interval of width 	, show that the energy of the output y(t) of the
bandpass filter is approximately proportional to 	|X( jω0)|2.

On the basis of the foregoing result, 	|X( jω0)|2 is proportional to the energy of
the signal in a bandwidth 	 around the frequency ω0. For this reason, |X( jω)|2 is
referred to as the energy spectral density of the signal x(t).

(c) Now consider a DT signal x[n]. Suppose we know that the DTFT X(ej�)
of the deterministic signal x[n] has a magnitude of 2 for |�| < 0.4π , and
unknown magnitude for 0.4π ≤ |�| ≤ π . This signal is applied to the input of
an ideal low-pass filter whose frequency response H(ej�) is 3 in the interval
|�| < 0.25π and is 0 for 0.25π ≤ |�| ≤ π . What is the energy

∑
y2[n] of the

output signal y[n]?

1.16. For each of the following, indicate whether the statement is true or false, and
justify your conclusion for each.
Statement:
Exact reconstruction of a CT signal from its samples requires that the sampling
frequency be greater than twice the highest frequency.
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Statement:
Exact reconstruction of a CT signal from its samples is always possible if the
sampling frequency is greater than twice the highest frequency.
Statement:
Exact reconstruction of a CT signal from its samples is always possible if the
sampling frequency is greater than or equal to twice the highest frequency.

1.17. (a) Let x(t) be a signal with Nyquist rate ωc. Determine the Nyquist rate for
each of the following signals:

(i) x(t) + 3x(t − 4)

(ii) x(t) ∗ sin(3000π t)
π t

(iii) x2(t).

(b) The signal x(t) is generated by convolving a bandlimited signal x1(t) with
another bandlimited signal x2(t), that is,

x(t) = x1(t) ∗ x2(t) ,

where

X1( jω) = 0 for |ω| > 1000π ,

X2( jω) = 0 for |ω| > 2000π .

Impulse-train sampling is performed on x(t) to obtain

xp(t) =
+∞∑

n=−∞
x(nT)δ(t − nT) .

Specify the range of values for the sampling period T that ensures x(t) is
recoverable from xp(t) through ideal low-pass filtering.

1.18. Consider a general D/C converter of the form described in Section 1.5.3. Suppose

yd[n] = sin(πn/2)
πn

.

Make fully labeled sketches of what yc(t) and Yc( jω) look like for:

(a) an ideal bandlimited interpolating D/C converter;
(b) a centered zero-order-hold D/C converter; and
(c) a linear interpolating D/C converter.

1.19. Consider the system shown in Figure P1.19-1 for filtering a CT signal using a DT
filter. Here x[n] = xc(nT), y[n] = yc(nT), and LT( jω) is an ideal low-pass filter
with cutoff frequency π/T and gain T.

xc(t)
xp(t) yc(t)x[n] y[n] yp(t)

C/D D/C

LT( jv)
@(t - kT) S

@[n - k]

@[n - k] S
@(t - kT)

@(t - nT)©+q
n = -q

h[n], H(e jÆ)

Figure P1.19-1
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If Xc( jω) and H(ej�) are as shown in Figure P1.19-2, and if T is chosen
to provide sampling of xc(t) at the Nyquist rate, sketch Xp( jω), X(ej�), Y(ej�),
Yp( jω), and Yc( jω).

Xc( jv)

H(e jÆ)

4

-p * 104

p Æ-p -

p * 104

1

v

p

4

p

1

Figure P1.19-2

1.20. In the system shown in Figure P1.20-1, the magnitude and phase of Xc( jω) and
H(ej�) are shown in Figure P1.20-2. Draw neat sketches of the magnitude and
phase of the following functions, with all relevant amplitudes and slopes labeled:
(a) X(ej�) as a function of � for −2π < � < 2π ;
(b) Y(ej�) as a function of � for −2π < � < 2π ;
(c) Yc( jω) as a function of ω.

x[n]x(t)

T = 0.1 ms T = 0.1 ms

y( t)
C/D D/CH(e jÆ)

y[n]

Figure P1.20-1
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|H(e jÆ)|

|Xc( jv)|

jXc( jv)

4

Slope = -2

p Æ-p - p

4

p

jH(e jÆ)

4
p Æ-p

2p * 2.5 * 103

2p * 2.5 * 103

- p

4

p

Slope = -0.25 * 10-4

 

v

v

1

1

Figure P1.20-2

1.21. Figure P1.21-1 shows a CT filter that is implemented using an LTI DT filter with
frequency response H(ej�).

(a) If the CTFT of xc(t), namely Xc( jω), is as shown in Figure P1.21-2 and
�c = π

5, sketch and label X(ej�), Y(ej�), and Yc( jω) for each of the follow-
ing cases:
(i) 1

T1
= 1

T2
= 2 × 104

(ii) 1
T1

= 4 × 104, 1
T2

= 104

(iii) 1
T1

= 104, 1
T2

= 3 × 104

(b) For 1
T1

= 1
T2

= 6 × 103, and for input signals xc(t) whose spectra are band-

limited to |ω| < 2π × 5 × 103 (but otherwise unconstrained), what is the
maximum choice of the cutoff frequency �c of the filter H(ej�) for which
the overall system is LTI? For this maximum choice of �c, specify Hc( jω).

www.konkur.in

Telegram: @uni_k



Chapter 1 Problems 69

H(e jÆ)

p Æ-p -Æ c Æ c

1

x[n]xc(t)

T1

yc( t)
C/D

T2

D/CH(e jÆ)

Hc( jv)

y[n]

Figure P1.21-1

Xc( jv)

2p * 5 * 103-2p * 5 * 103 v

1

Figure P1.21-2

1.22. Consider our standard system for DT processing of CT signals, where the C/D
converter samples the CT signal xc(t) with a sampling interval of T seconds, while
the ideal D/C converter at the output produces a bandlimited interpolation of
the samples y[n] using a reconstruction interval of T seconds. Suppose the LTI
DT system between these two converters is a notch filter, i.e., has a frequency
response H(ej�) whose value is 0 at � = ±�o (where �o > 0 is termed the notch
frequency) and whose value is nonzero everywhere else in the interval |�| < π .
Suppose the input signal is of the form

xc(t) = cos(ωint + θ) .

Determine all values of ωin for which the output yc(t) will be identically 0.

1.23. A bandlimited CT signal xc(t) is known to contain a 60-Hz component, which we
want to remove using the system in Figure P1.23. Suppose T = 2 × 10−4 s and

H(ej�) = (1 − e−j(�−�0 ))(1 − e−j(�+�0 ))

(1 − 0.5e−j(�−�0 ))(1 − 0.5e−j(�+�0 ))
.

xc(t)

T T

yc( t)C/D D/CH(e jÆ)

Figure P1.23
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(a) What is the highest frequency that xc(t) can contain to avoid aliasing?
(b) What value should be chosen for �0?
(c) Draw a pole-zero diagram for H(z) and sketch |H(ej�)|.

1.24. In this problem we consider the system shown in Figure P1.24-1.

xd[n]xc(t)

T T

yc( t)
C/D D/CHd(e jÆ)

yd[n]

Figure P1.24-1

The DT filter is described on the interval −π ≤ � ≤ π by Figure P1.24-2
and the following equation:

Hd(ej�) =
{

e−j�/3 |�| ≤ π/3
0 π/3 < |�| ≤ π

3
p-p - p

3

p

|Hd(e jÆ)|

1

0 0
3

p-p - p

3

p

jHd(e jÆ)

Æ Æ

Figure P1.24-2

(a) Assume that we are sampling with period T = 1
2 × 10−6 sec. Suppose the

input to the system is xc(t) = cos (ω0t). What is the output yc(t) for each of
the following cases:
(i) ω0 = π

2 × 106 rad/sec;
(ii) ω0 = π × 106 rad/sec;

(iii) ω0 = 7
2π × 106 rad/sec.

Suppose now that the input xc(t) is bandlimited such that Xc( jω) = 0 for
|ω| ≥ 2π × 106 rad/sec.

(b) What is the largest sampling period, T, for which the output is identical to
the input (except for a possible time shift t0), i.e., yc(t) = xc(t − t0)?

(c) What is the largest sampling period, T, for which the given system (with
Hd(ej�) as specified) acts from the input to the output as an LTI CT system?

Advanced Problems

1.25. Note: This problem requires utilizing an appropriate computational package.
Consider the simple DT difference equation

x[n + 1] = rx[n]
(
1 − x[n]

)
, n ≥ 0 .
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Assume 0 < x[0] < 1 and r ≥ 0.

(a) Is this system linear? Time-invariant?
(b) If x[0] = 1/2, for what values of r is x[n] bounded?
(c) Using an appropriate computational package, compute and plot x[n] for dif-

ferent values of r, including r = k/4, k = 1, 2, . . . , 15. Do the plots support
your answer for (b)?

1.26. (a) The input x(t) and output y(t) of an LTI system satisfy the differential
equation

4
dy(t)

dt
− 2y(t) = 3x(t) .

(i) Show that the input-output pairs

x(t) = δ(t) , y(t) = 3
4

e0.5tu(t)

and

x(t) = δ(t) , y(t) = −3
4

e0.5tu(−t)

both satisfy the differential equation.
(ii) Specify all outputs y(t) that satisfy the differential equation when

x(t) = δ(t), and explicitly verify that the two special cases in (i) are
included in your answer. Hint: Recall that the general solution to a
linear differential equation is a particular solution plus a homogeneous
solution. Also note that in general, a solution y(t) does not need to have
a Laplace transform; in fact, the only two solutions to this problem that
do have Laplace transforms are the ones you found in part (i).

(iii) If the system is causal, what is its impulse response?
(iv) If the system is stable, what is its impulse response?

(b) The input and output of an LTI system satisfy the difference equation

y[n] − 3y[n − 1] = 2x[n] .

(i) Assuming the system is causal, determine its impulse response, i.e., its
unit sample response. Is the system BIBO stable?

(ii) Assuming instead that the system is stable, determine its impulse
response. Is the system causal?

1.27. Consider the causal cascade interconnection of three LTI systems in Fig-
ure P1.27-1.

x[n] y[n]h1[n] h2[-n]h2[n]

h[n]

Figure P1.27-1

The impulse response h2[n] is given by h2[n] = u[n] − u[n − 2], and the overall
impulse response h[n] is as shown in Figure P1.27-2.
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-1 0

1

1

5

2

10

3

11

4

8

5

4

6

1

7 n Figure P1.27-2

(a) Find the impulse response h1[n].
(b) Find the response of the overall system to the input

x[n] = δ[n] − δ[n − 2] .

1.28. If the response of a CT LTI system to the unit step u(t) is g(t), what is its response
y(t) to a general input x(t)? What condition on g(t) is necessary and sufficient for
the system to be BIBO stable?

1.29. For each of the DT systems S1, S2, S3, and S4 shown in Figure P1.29, the
indicated input-output pair represents the results of one experiment with the cor-
responding system. Decide whether the output y[n] and input x[n] of this system
definitely cannot, possibly could, or must satisfy a convolution relationship of
the form y[n] = h[n] ∗ x[n] for some appropriate impulse response h[n]. Choose
the statement that applies and explain your reasoning. In each case where your
answer is “possibly could” or “must,” determine an impulse response h[n], fre-
quency response H(ej�), or system function H(z) that would account for the
given input-output pair.

u[n] S1

n1
2 )(

n1
2 )(

u[n] u[n - 1]S2

n1
2

2 )(
n1

3 )(

e j(p/2)n 4e j(3p/4)nS3

e j(p/4)n 4e j(9p/4)(n - 1)S4

Figure P1.29

1.30. Determine whether each of the following statements is true or false, and give
a brief justification (for a false statement, a counterexample will be adequate
justification).
(i) If ejt + ej3t is an eigenfunction of a CT system, then the system cannot be

LTI.
(ii) If h(t) is the nonzero impulse response of a stable LTI system, then h(t) can

be periodic.
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(iii) There always exists a causal inverse of a causal and stable LTI system,
although this inverse may not be stable.

1.31. Consider a real DT LTI system with frequency response

H(ej�) = 1 + ae−j2� + 2e−j4�

1 + be−j2�
.

Determine the constants a and b, given the input/output pairs in Figure P1.31.

pn
2

cos )(pn
2

cos )(

cos(pn) 2 cos(pn)H(e jÆ)

H(e jÆ)

Figure P1.31

1.32. (a) A particular DT system maps its input signal x[n] to the output signal y[n].
When the input is

x[n] = (−1)n for all n,

the output is

y[n] = 1 for all n.

When the input is

x[n] = (−1)n+1 for all n,

the output is again

y[n] = 1 for all n.

(i) Could the system be linear? Explain.
(ii) Could the system be time-invariant? Explain.

(b) A particular DT system maps the input signal x[n] to the output signal y[n].
When the input is

x[n] = (−1)n for all n,

the output is

y[n] = 1 for all n.

When the input is

x[n] = (−1)n+1 for all n,

the output is

y[n] = −1 for all n.

Answer the same questions as in (i) and (ii) of (a) above.

1.33. A DT LTI system has frequency response

H(ej�) =

⎧⎪⎪⎨⎪⎪⎩
e−j�3 |�| <

π

5

0
π

5
≤ |�| ≤ π
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The input to the system is the periodic unit sample “train” with period N = 12:

x[n] =
∞∑

k=−∞
δ[n + 12k] .

Find the output y[n] of the system.

1.34. Consider a DT LTI system with frequency response defined by

Hd(ej�) = |�| e−j g(�) for |�| < π .

The function g(�) is known to be either g(�) = �2 or g(�) = �3.

(a) The unit sample response hd [n] of the system is known to be real. Use this
fact to deduce which of the two possible choices of g(�) listed above is the
correct one. Explain.

(b) Determine
∑∞

n=−∞ hd [n].
(c) Determine

∑∞
n=−∞ h2

d [n].

1.35. Consider an LTI system whose impulse response h(t) is real, and whose associ-
ated system function is H(s). Suppose throughout this problem that the input is
x(t) = e−3t cos t, for all t, and that the corresponding output y(t) is well defined
for this input.

(a) If you were allowed to determine the value of H(s) for only a single value of
s, which value of s would you pick in order to obtain an explicit time-domain
expression for the output y(t) corresponding to the above input? Now write
down such an expression for y(t) in terms of H(s) evaluated at the s that you
selected.

(b) Suppose it is known that y(0) = 0 and ẏ(0) = 1. Reduce your expression for
y(t) in part (a) to the form y(t) = e−3t(A cos t + B sin t), and determine the
constants A and B.

1.36. Consider the causal LTI system described by the differential equation

d2y(t)
dt2

+ 6
dy(t)

dt
+ 9y(t) = d2x(t)

dt2
+ 3

dx(t)
dt

+ 2x(t) .

The inverse of this system is described by a differential equation. Find the differ-
ential equation describing the inverse. Also, find the impulse responses h(t) and
g(t) of the original system and its causal inverse.

1.37. Suppose we want to design a DT LTI system which has the property that if the
input is

x[n] =
(

1
2

)n

u[n] − 1
4

(
1
2

)(n−1)

u[n − 1] ,

then the output is

y[n] =
(

1
3

)n

u[n] .

(a) Find the impulse response and frequency response of a DT LTI system that
has the desired property.

(b) Find a difference equation relating the system input and output.

1.38. A DT LTI system has frequency response

H(ej�) = 4 − 9e−j�

4 cos � + 2e−j� − 9
.
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(a) The rational system function H(z) corresponding to the frequency response
above can be written as

H(z) = α1

z − 1
2

+ α2

z − 4
.

Find α1 and α2 and specify the ROC.
(b) Is the system causal?
(c) What is the system’s impulse response h[n]?
(d) Suppose the input to the system is the signal x[n] = 3n for all n. What is the

corresponding output, y[n]?
(e) Suppose the input to the system is the signal x[n] = 3nu[n], where u[n] is the

unit step function. As n → −∞, y[n] → βzn
0 . What is z0?

1.39. A CT LTI system with a rational system function H(s) has the s-plane plot shown
in Figure P1.39, where the ROC is 1 < Re{s} < 5. The poles are at 1 and 5, and
the zeros are at 0 and 6. We also know that H(3) = 9. We would like to find an
inverse system G(s) so that when H(s) and G(s) are cascaded, the overall output
y(t) equals the input x(t).

Re{s}

Im{s}

1 5 6

Figure P1.39

(a) Write the rational system function H(s) for this system.
(b) Does a causal inverse exist? If so, write down its system function G(s) and

specify its ROC. If not, why not?
(c) Does a BIBO stable inverse exist? If so, write down its system function G(s)

and specify its ROC. If not, why not?
(d) Does a two-sided inverse exist? If so, write down its system function G(s)

and specify its ROC. If not, why not?

1.40. Suppose we are given a real and finite-energy (but otherwise arbitrary) DT signal
w[n], with associated DTFT W(ej�). We want to approximate w[n] by another
real, finite-energy DT signal y[n] that is bandlimited to the frequency range
|�| < π/4; so Y(ej�) is zero for |�| ≥ π/4. Apart from this constraint on its
bandwidth, we are free to choose y[n] as needed to get the best approximation.

Suppose we measure the quality of approximation by the following sum-
of-squared-errors criterion:

E =
∞∑

n=−∞
(w[n] − y[n])2 .

Our problem is then to minimize E by appropriate choice of the bandlimited y[n],
given the signal w[n]. This problem leads you through to the solution.
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(a) Express E in terms of a frequency-domain integral on the interval |�| < π

that involves W(ej�) − Y(ej�).

(b) Write your integral from (a) as a sum of integrals, one over each of the
ranges −π/4 ≤ � ≤ π/4, π/4 ≤ � < π , and −π ≤ � ≤ −π/4. Use this to
deduce how Y(ej�) needs to be picked in order to minimize E , and what
the resulting minimum value of E is. (Hint: Resist the temptation in this case
to expand out |a − b|2, for complex a and b, as |a|2 + |b|2 − ab∗ − a∗b.)

(c) Using your result in (b), write down an explicit formula for the y[n] that
minimizes E , expressing this y[n] as a suitable integral involving W(ej�).

1.41. (a) What is the value at n = 0 of the signal x[n] whose DTFT for |�| ≤ π is
shown in A in Figure P1.41-1?

(+ jp) (p) (p) (-jp)

-p -p/2
ÆA

1/2 1/2

p/2 p0

(+ jp) (p) (p) (-jp)

-p -p/2
ÆC

1/2 1/2

p/2 p0

-p -p/2
ÆD

1/2 1/2

p/2 p0

(+ jp) (p) (p) (-jp)

-p -p/2
ÆB

1/2 1/2

p/2 p0

1

Figure P1.41-1

(b) List those DTFTs in A through H in Figure P1.41-1 and Figure P1.41-2 that
correspond to a signal x[n] for which

∑
x[n] = 0. Explain. (The summation∑

is over all n.)
(c) What is the value of

∑
(x[n])2 for the signal whose DTFT is shown in G in

Figure P1.41-2? Explain. (The summation
∑

is over all n.)
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(d) Determine and explain which of the DTFTs (A through H) in Figure P1.41-1
or Figure P1.41-2 is that of the signal

x[n] =
cos
(

3πn/4
)

sin
(
πn/2

)
πn

.

(e) List those DTFTs in the set A through H in Figure P1.41-1 and Figure
P1.41-2 that correspond to signals that are even in time.

( f ) List those DTFTs in the set A through H in Figure P1.41-1 and Figure
P1.41-2 that correspond to absolutely summable signals.

(g) List those DTFTs in the set A through H in Figure P1.41-1 and Figure
P1.41-2 that correspond to a signal x[n] for which

∑
x[n] �= 0, and for each

such case compute the nonzero value of this sum.
(h) List those DTFTs in the set A through H in Figure P1.41-1 and Figure

P1.41-2 that correspond to a signal x[n] for which
∑

(−1)nx[n] = 1.

(+ jp) (p) (p) (-jp)

-p -p/2
ÆE

p/2 p0

-p -p/2
ÆG

p/2 p0

-p -p/2
ÆH

p/2 p0

-p -p/2
ÆF

p/2 p0

1 1

1/2

1/2 1/2

1/2

1/2 1/2

1

Figure P1.41-2

1.42. Consider the system shown in Figure P1.42-1, where the D/C converter is the
standard ideal bandlimited interpolating converter. Suppose the DTFT of v[n] is
as shown in Figure P1.42-2.
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q(t)v[n] w[n]

T1 T2

D/C C/D

Figure P1.42-1

V(e jÆ)

A

-p p-Æm Æm Æ Figure P1.42-2

(a) Assume T2 = MT1 for some integer M ≥ 2.
(i) Write an expression relating w[n] to v[n]. If v[n] corresponds to peri-

odic sampling of a CT signal vc(t) with sampling period T0, i.e., if
v[n] = vc(nT0), does w[n] correspond to periodic sampling of vc(t) with
a (possibly) new sampling period?

(ii) Using what you know about the action of (ideal) D/C and C/D con-
verters, draw fully labeled sketches of Q( jω) and W(ej). What is the
relationship between W(ej) and V(ej�)?

(b) Assume T2 = T1/M for some integer M ≥ 2.
(i) Write an expression relating w[n] to v[n]. Is w[n] an upsampled version

of v[n], a downsampled version, or neither?
(ii) Using what you know about the action of (ideal) D/C and C/D convert-

ers, draw fully labeled sketches of Q( jω) and W(ej). Again, what is the
relationship between W(ej) and V(ej�)?

1.43. Figure P1.43 shows a CT filter implemented by using: (i) a C/D converter that
samples the CT input at integer multiples of T; (ii) a DT LTI filter with frequency
response H(ej�); and (iii) an ideal (i.e., bandlimited interpolating) D/C converter
operating with reconstruction interval T. Suppose H(ej�) = e−j 0.4 � for |�| < π ,
and assume the output yc(t) is

yc(t) = 2
sin
(
π(t − 0.7T)/T

)
π(t − 0.7T)/T

.

(a) Write down an explicit expression for an input xc(t) that is bandlimited to
π/T and that could have produced the above output.

(b) Is the input in (a) the only one that could have generated the given output?
If so, why? If not, describe all other inputs that could have produced the
same output.

(c) Find explicit expressions for x[n] and y[n], and in each case state whether
these are the only possible x[n] and y[n] that could correspond to the given
output yc(t).

(d) What is the unit sample response h[n] of the DT system whose frequency
response is the H(ej�) given above?
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x[n]xc(t)

T

yc( t)
C/D

T

D/CH(e jÆ)
y[n]

Figure P1.43

1.44. Figure P1.44-1 shows the standard configuration we have been using to dis-
cuss DT processing of CT signals by a DT LTI system. The C/D converter
operates with sampling interval T, so that xd[n] = x(nT). The D/C converter is
an ideal bandlimited interpolator operating with reconstruction (or interpola-
tion) interval T, so that y(t) is bandlimited to the frequency range |ω| < π

T and
y(nT) = yd[n]; and Hd(ej�) is the frequency response of the indicated DT LTI
system. Assume for this problem that T = 10−3 sec.

Now consider two signals b(t) and c(t) whose plots for 0 < t < 6 × 10−3 sec
are shown in Figure P1.44-2, and which have the property that

c(nT) = b(nT)
for all n, not just those values of n represented in the figure. These signals will be
used as inputs to the system in Figure P1.44-1.

xd[n]x(t) y(t)

T T

C/D D/CHd(e jÆ)
yd[n]

Figure P1.44-1

0 .001 .002 .003 .004 .005
−1

−0.5

0

0.5

1

1.5

2

t (sec)

c(t)

b(t)

Figure P1.44-2
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(a) One of the signals b(t) and c(t) is definitely not bandlimited. Which one is
not bandlimited? Give a brief explanation.

Assume in what follows that the other signal, i.e., not the one you just identified
in part (a), is bandlimited to the frequency range |ω| < π/T. The two remaining
parts of this problem refer to experiments in which b(t) and c(t) are used, but not
necessarily in this order, as inputs to the system shown in Figure P1.44-2.

(b) When the input x(t) to the system is chosen to be the bandlimited signal of
the pair b(t) and c(t), the output y(t) turns out to be y(t) = x(t − 0.75T).
Fully specify one possible choice of the frequency response Hd(ej�) that
would yield this output for the specified input.

(c) If hd[n] denotes the unit sample response corresponding to the Hd(ej�) that
you have picked, evaluate

hd[0] ,
∞∑

n=−∞
hd[n] , and

∞∑
n=−∞

(hd[n])2 .

(d) For the same system as in (b), determine what the output y(t) of the system
would be, in terms of b(t) or c(t), when the input x(t) is the non-bandlimited
signal of the pair b(t) and c(t).

1.45. In the system shown in Figure P1.45, the C/D converter samples the CT signal
xc(t) with a sampling interval of T1 = 0.1 seconds, while the ideal D/C converter
at the output produces a bandlimited interpolation of the samples y[n] using a
reconstruction interval of T2 seconds. The frequency response of the DT LTI
system between these two converters is

H(ej�) = e−j�/2 , |�| < π

and the input signal is

xc(t) = cos
(

22π t − π

4

)
.

xc(t) x[n] y[n]

T1 = 0.1 sec T2

yc( t)
C/D D/CH(e jÆ)

Figure P1.45

(a) Suppose the reconstruction interval of the D/C converter is T2 = 0.1 =
T1 sec. Obtain analytical expressions for x[n], y[n], and yc(t). (Don’t feel
obliged to compute these quantities in the indicated order!).

(b) Suppose now that the sampling interval T1 remains at 0.1 sec, but that
the reconstruction interval is modified to T2 = 0.2 sec. Obtain an analytical
expression for the new yc(t).

1.46. A system for DT processing of a CT signal is shown in Figure P1.46-1. In this
figure:
(i) the C/D box is an ideal sampler whose output is xd[n] = xc(nT1);

(ii) the output of the squarer is zd[n] = x2
d[n];
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(iii) zd[n] is filtered by a DT LTI filter whose frequency response is Hd(ej�); and
(iv) the D/C box is an ideal bandlimited interpolator whose output is

yc(t) =
∞∑

n=−∞
yd[n]

sin[π(t − nT2)/T2]
π(t − nT2)/T2

.

(v) Formulas that may (or may not) be useful include:

cos(2θ) = cos2(θ) − sin2(θ)

sin(2θ) = 2 sin(θ) cos(θ)

cos2(θ) = 1
2

+ 1
2

cos(2θ)

sin2(θ) = 1
2

− 1
2

cos(2θ) .

Suppose that xc(t) = cos(π t/3T), T1 = T2/2 = T, and Hd(ej�) is as shown in
Figure P1.46-2 for |�| ≤ π . Determine yc(t).

xc(t) yc(t)
xd[n]

T1 T2

C/D D/CSquarer
zd[n]

Hd(e jÆ)
yd[n]

Figure P1.46-1

-p -p/4
Æ

p/4

2

p0

Hd(e jÆ)

Figure P1.46-2

1.47. (a) Consider the time-invariant nonlinear deterministic system shown in
Figure P1.47-1, with constant output A, whose value is determined by all
time instances of the input signal x[n]. Consider the class of inputs of the
form x[n] = ej�n, with � a real finite number. Varying the value of � at the
input will change A, i.e., A will be a function of �. Specify whether A will be
periodic in �, and if so, with what period. Explain.

x[n] A
Time-invariant,

nonlinear system
Figure P1.47-1

(b) Now consider the system shown in Figure P1.47-2. System 1 is a memory-
less nonlinear system. System 2 determines the value of A according to the
relation

A =
100∑
n=0

|y[n]| .
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w[n]
System 1x[n] A

y[n]
LTI, stable System 2

Figure P1.47-2

Again, the class of inputs being considered are of the form x[n] = ej�n, with
� a real finite number. Varying the value of � at the input will change A;
i.e., A will be a function of �.
(i) If the LTI system is just the identity system and System 1 is defined by

w[n] = x2[n], will A be periodic in �?
(ii) More generally, if System 1 is a memoryless nonlinear system, and

the LTI stable system is not necessarily the identity system, will A be
periodic in � and if so, with what period?

(c) Explain in words why the frequency response H(ej�) of a DT LTI stable
system is always periodic in frequency.

Extension Problems

1.48. A real-valued (or complex-valued) DT signal x[·], sometimes denoted simply by
x, can be considered an infinite-dimensional vector, with the associated scalars
being the set of real (or complex) numbers. Such a signal/vector can be scaled
by α to get the signal/vector αx[·], and two such signals/vectors x1[·] and x2[·]
can be added component-wise to get a signal/vector x[·] whose nth component is
x1[n] + x2[n]. To define the “length” or magnitude of such a signal/vector, we use
a signal norm. This problem looks at a widely used family of signal norms, and at
the norms of signals obtained by convolving other signals.

The p-norm of a signal for 1 ≤ p < ∞ is defined as

||x||p = ||x[·]||p =
( ∞∑

k=−∞

∣∣∣x[k]
∣∣∣p)1/p

.

A signal whose p-norm is finite is said to be an �p signal.
Taking the limit p → ∞ allows us to recognize the ∞-norm as

||x||∞ = supk

{∣∣∣x[k]
∣∣∣} ,

where “sup” denotes the supremum or least upper bound. A signal whose ∞-
norm is finite, i.e., a signal that is bounded in magnitude, is said to be an �∞
signal.

Note that an �p signal is also �m for any m > p. This is because the values of
an �p signal x[n] for large |n| must fall off in magnitude toward 0, and for m > p
this fall-off at large |n| is even faster.

The p-norm for 1 ≤ p ≤ ∞ satisfies the three properties required of a
norm: (i) it is nonzero for all nonzero signals; (ii) it scales according to the
relation

||αx||p = |α|.||x||p
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when the signal is scaled by α (so we see, by taking α = 0, that the norm of the
zero signal is 0); and (iii) it satisfies the triangle inequality (also referred to as the
Minkowski inequality),

||x + y||p ≤ ||x||p + ||y||p .

(a) For each of the following signals, determine (or numerically approximate)
its �p norm for p = 1, 2, and ∞ in each case where this norm is finite:

(i) x[n] = (−1)n/n2 for n > 0, and 0 elsewhere;
(ii) the signal defined by

x[n] = sin(πn/5)
πn

for n �= 0, with x[0] defined to be 1/5; and

(iii) x[n] =
(

(0.2)n − 1
)

u[n], where u[n] is the unit step function (= 1 for

n ≥ 0, and 0 elsewhere).

It turns out that the convolution h ∗ x of two signals h and x satisfies the
following inequality (called Young’s inequality):

||h ∗ x||r ≤ ||h||p ||x||q ,

where 1 ≤ p ≤ ∞, and similarly for q, r, with

1
r

= 1
p

+ 1
q

− 1 .

Use this inequality to answer the following questions.

(b) Suppose x[·] is the input to an LTI system with a unit sample response of
h[·], and an output signal denoted by y[·].
(i) If the input is bounded (i.e., �∞) and the unit sample response is abso-

lutely summable (i.e., �1), what can you say about the output signal?
How does this change if the input is absolutely summable and the unit
sample response is bounded?

(ii) If the input and the unit sample response are both square summable
(i.e., �2), what can you say about the output?

(iii) If the unit sample response is absolutely summable and the input is �s

for some 1 ≤ s ≤ ∞, what can you say about the output?

1.49. Suppose x[n] is a known (real) signal of possibly infinite duration but finite (and
nonzero) energy

∞∑
k=−∞

x2[k] = Ex < ∞ .

(a) With the deterministic autocorrelation defined as

Rxx[m] =
∞∑

n=−∞
x[n]x[n − m] ,

the discussion around Eq. (1.62) shows that Rxx[0] ≥ Rxx[k] for all k. Modify
the argument to show that in addition Rxx[0] ≥ −Rxx[k] for all k, and
hence that

Rxx[0] ≥
∣∣∣Rxx[k]

∣∣∣ .
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(b) Is it possible to have equality in the preceding equation when k takes some

nonzero value P? (Hint: Show that if Rxx[0] =
∣∣∣Rxx[P]

∣∣∣ for some P �= 0,

then x[n] would have to be periodic—with period P or 2P—which would
contradict its having finite energy.)

Suppose now that we measure a signal y[n] related to x[ · ] by

y[n] = x[n − L] ,

where L is a fixed but unknown lag. Since the signal x[ · ] is known, we can
compute the deterministic cross-correlation function

Ryx[m] =
∞∑

n=−∞
y[n]x[n − m] .

For instance, x[n − L] may be the signal that a radar expects to have arrive back
at its antenna in the noise-free case, after bouncing off a target, with L being pro-
portional to the distance of the target from the radar. We are assuming the radar
knows the signal shape x[k], and measures y[n], so is in a position to compute the
cross-correlation function of the nominal and received signals.
(c) Express Ryx[m] in terms of Rxx[m]. Then find out for what value of m the

deterministic cross-correlation Ryx[m] takes its largest value, and determine
what this largest value is (in terms of properties of the signal x[ · ]). Explain
how your results here could allow you to discover the unknown lag L from
Ryx[m] in the noise-free case.

Now suppose instead that the measured signal y[n] is related to x[ · ] by

y[n] = x[n − L] + v[n] ,

where L is again a fixed but unknown lag, and v[n] denotes a noise process whose
value at each time n is also not known, except for the fact that it is a zero-mean
random variable of variance σ 2

v > 0, and is chosen independently of the values
of the noise process at other times.
(d) We can again compute the deterministic correlation function Ryx[m].

Because of the noise, the value of this function at each m will differ from
the value computed in case (c) by a random amount, which we denote by
w[m]. Determine the mean and standard deviation of w[m].

(e) If in the noisy case (d) we apply the approach of (c) to guess at the right
value of L, we might make an error because of the perturbations caused by
the noise. Does your answer in (d) suggest that the task of determining L
can be performed more accurately when the ratio Ex/σ

2
v of signal energy to

noise variance increases, or does increasing this ratio not help this task?
(f) Suppose x[n] is allowed to be nonzero only at D instants of time, and to take

only the value 1 or −1 at each of these D instants. This restriction causes
the energy of the signal to be fixed at Ex = D. It is often of interest (and the
preceding parts of this problem should suggest why) to design such a signal
x[n] to have Rxx[0] be much larger than Rxx[m] for all m �= 0. You might find
it interesting in this connection to read about Barker codes, which have this
feature. Compute and plot the deterministic autocorrelation and the energy
spectral density of the Barker code of length 13 (which is the longest such
code known), for which x[n] takes the following values for n = 0, 1, · · · , 12
respectively (and the value 0 everywhere else):

+1 , +1 , +1 , +1 , +1 , −1 , −1 , +1 , +1 , −1 , +1 , −1 , +1 .
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1.50. In this problem, you will compute and compare the DTFTs of several
finite-length signals derived from the everlasting signal

x[n] = cos(πn/4) .

If we know that x[n] is a sinusoid, but do not know that its angular frequency is
π/4, then one way to determine its frequency is to take the DTFT of a windowed
segment of x[n]. However, the windowing leads to a spreading or blurring of the
DTFT, thereby introducing some uncertainty into the frequency determination.
Parts (a) and (b) below explore this issue. Parts (c) and (d) respectively deal with
the spectra of systematically and randomly modulated (and then rectangularly
windowed) versions of a sinusoid.

(a) Obtain an expression for the magnitude of the DTFT of the signal

y1[n] = x[n]r[n] ,

where

r[n] = (u[n] − u[n − 101]
)
/101 ,

and u[n] is the unit step. Compute and plot the magnitude of this DTFT in
the following two ways:
(i) by evaluating the expression you obtained; and

(ii) by using an appropriate computational package that can compute
samples of the DTFT of a finite sequence.

Verify that you get the same answer either way. In a sentence or two, summa-
rize what this calculation tells you about how rectangular windowing affects
the spectrum of a cosine.

(b) What happens if x[n], instead of being a single cosine, is actually the sum
of two cosines with closely spaced frequencies? Approximately how close
together can the two frequencies get before the DTFT of the windowed sig-
nal fails to display a distinct peak for each of the cosines? Hint: You may find
it helpful to first examine the DTFT of the rectangular window of length 101
samples used to obtain the segment y1[n] of x[n].

(c) Now consider the signal

y2[n] = x[n]t[n] ,

where

t[n] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(n + 1)/1012, 0 ≤ n < 100

(201 − n)/1012, 100 ≤ n ≤ 200

0, otherwise.

Compute and plot the magnitude of the DTFT of y2[n]. How does this plot
relate to the DTFT in part (a)? In a sentence or two, summarize what this
calculation tells you about how triangular windowing of a cosine compares
with rectangular windowing. How does triangular windowing compare with
rectangular windowing when the signal is the sum of two cosines with closely
spaced frequencies?

(d) Now consider the signal

y3[n] = y1[n](−1)n .

Compute and plot the magnitude of the DTFT of y3[n]. How does this plot
relate to the DTFT in part (a)? At what frequency is the signal energy
concentrated now? Is this as expected?
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86 Chapter 1 Signals and Systems

(e) To begin developing a feel for random (or probabilistic or stochastic) signals,
consider

y4[n] = y1[n]b[n] ,

where each value of b[n] is independently set to either −1 or +1, each with
probability equal to 1/2, for 0 ≤ n ≤ 100. You can generate b[n] using any
computational package that can generate random numbers. Compute and
plot the magnitude of the DTFT of y4[n] using the same commands as in
(a). Repeat for four different sets (“realizations”) of the sequence b[n]. Do
your DTFTs in this case look like they have any particular structure or do
they look irregular? Is the energy of the signal concentrated in some part
of the frequency spectrum, or is it spread out? Do you see any hint of the
underlying cosine signal, x[n], in the spectrum of y4[n]? Do your results for
the four different realizations appear to have anything in common?

If a friend received (or an enemy intercepted!) your signal y4[n], and
happened to know the particular sequence b[n] that was used to generate
y4[n], can you see a way she could determine the signal multiplying b[n]
(which happens to be y1[n] in our example)? What do you think are the
prospects of recovering y1[n] from y4[n] if one didn’t know b[n]?

( f ) The ideas touched on in part (e) underlie code-division multiple access
(CDMA) schemes for wireless communication. To explore this more
directly, suppose

y5[n] = 7 b1[n] + 3 b2[n] + 4 b3[n] ,

where the codes b1[n], b2[n], and b3[n] are each obtained independently in
the same fashion as b[n] in part (e). In a CDMA communication context,
y5[n] would be the signal transmitted from the base station to mobile units
in its area. Mobile unit 1 only knows the code b1[n] and, after receiving
y5[n], wants to determine the scale factor (in this case 7) multiplying b1[n].
Similarly, mobile unit 2 knows only the code b2[n] and wants to determine
the scale factor (in this case 3) multiplying b2[n]. And similarly again for
mobile unit 3. In actual systems, these constants represent the information
transmitted to the respective mobile units over a time interval comparable
with the duration of the code bi[n]; the constants are actually varied on a
time scale that is slow compared to the code duration.

Independently generate, in the same way that you generated b[n] in
(e) above, codes b1[n], b2[n], and b3[n]. Also use these to construct y5[n]
according to the above equation. Now compare the sums∑

n

b1[n] b2[n] ,
∑

n

b2[n] b3[n] ,
∑

n

b3[n] b1[n]

with the values of ∑
n

b2
1[n] ,

∑
n

b2
2[n] ,

∑
n

b2
3[n] .

Does this calculation suggest how mobile unit i can estimate the constant
that multiplies bi[n], for i = 1, 2, 3, using just knowledge of bi[n] and y5[n]?
Implement whatever scheme you come up with, and see how well you can
estimate the various scale factors.

1.51. In the system shown in Figure P1.51, the C/D converter samples the CT signal
xc(t) with a sampling interval of T1 = 0.1 sec, while the D/C converter at the
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output produces a bandlimited interpolation of the samples y[n] using a recon-
struction interval of T2 seconds. The frequency response of the DT LTI system
between these two converters is

H(ej�) = j�
T1

, |�| < π

and the input signal is

xc(t) = cos
(

25π t − π

4

)
.

x[n]xc(t)

T1 = 0.1 sec

H(e jÆ)C/D
y[n]

T2

D/C
yc(t)

Figure P1.51

(a) Suppose the reconstruction interval of the D/C converter is T2 = 0.1
seconds. We would like to determine whether yc(t) is the derivative of the
given xc(t).
(i) Obtain analytical expressions for x[n], y[n], and yc(t), and provide

fully labeled sketches of each for the range of 0 ≤ n ≤ 6 and 0 ≤ t ≤ 6,
respectively.

(ii) Is yc(t) equal to the derivative of xc(t)?
(iii) Is the overall system linear? Explain.

(b) Suppose now that the sampling interval T1 remains at 0.1 seconds, but that
the reconstruction interval is modified to T2 = 0.2 sec. Obtain an analytical
expression for the new yc(t), and provide a sketch.

1.52. Figure P1.52 shows the block diagram of a system for DT processing of CT sig-
nals. The overall CT system is linear and time-invariant, with frequency response
Hc( jω) for inputs xc(t) that are appropriately bandlimited. In the following parts,
we will use the particular input x1(t) = sin(9t) to illustrate properties of this sys-
tem. We would like to design H(ej�) such that the overall system, Hc( jω), is a CT
differentiator, in which yc(t) = dxc(t)/dt.

x[n]

xc(t)

T = 0.2 sec

H(e jÆ)C/D
y[n]

T = 0.2 sec

D/C
yc(t)

Hc( jv)

Figure P1.52
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88 Chapter 1 Signals and Systems

(a) First, find an expression for dx1(t)/dt.
(b) A common approximation of the derivative of a signal with respect to time,

for small values of T, is as follows:

yc(t) = dxc(t)
dt

≈ xc(t + T) − xc(t − T)
2T

.

In order to implement this, we can use a DT system that imposes the
following input-output relation on x[n] and y[n]:

y[n] = x[n + 1] − x[n − 1]
2T

.

Compute H(ej�) and h[n], given this difference equation relating x[n]
and y[n].

(c) Use an appropriate computational package to implement and plot x1(t) and
its corresponding output y1(t) for this system. (Only plot the middle section
of the signals to remove the effects of using a finite length sample of x1(t)
as input.) Is the resulting y1(t) what you expected? How is the amplitude
related to that of the expression you found in (a)?

(d) Another possible way of computing the derivative of xc(t) is to use a DT
system with frequency response H(ej�) = j�/T for |�| < π . In this case, as
we know from Example 1.3, the output yc(t) will be equal to the derivative
of an appropriately bandlimited input xc(t). Show that the impulse response
of this DT system, h[n], is

h[n] =
⎧⎨⎩ (−1)n

nT
, n �= 0

0 , n = 0 .

Hint: Remember that if xc(t) = T sin(π t/T)/π t, then x[n] = δ[n]. Find the
response of the CT system to this input and sample to get y[n].

(e) Now, using only the values of h[n] for −40 ≤ n ≤ 40, compute and plot an
approximation to y1(t) again, using an appropriate computational package.
How close is this y1(t) to the one you calculated in part (a)? (Just check a
few values.)

( f ) Plot both approximations. Which one is better? Is this what you expected?
You may also want to plot the actual derivative you found in part (a) along
with the two approximations.

1.53. This problem examines the use of a DT filter to compensate for the effects of a
CT transmission channel. As shown in Figure P1.53, a CT signal xc(t) is trans-
mitted through a CT LTI channel with frequency response H( jω) and impulse
response

h(t) = e−3tu(t) .

The output of the channel is vc(t), which is converted to a DT signal vd[n] using
an ideal C/D converter with sampling period T, and then processed using a DT
LTI filter with frequency response G(ej�) and impulse response g[n]. The output
yd[n] of the DT filter is finally converted back into a CT signal yc(t) using an
ideal (bandlimited interpolation) D/C converter with reconstruction interval T.
We wish to choose the compensator so as to obtain yc(t) = xc(t) for appropriately
bandlimited inputs xc(t).
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vc(t)xc(t) yd[n]

T

Channel Compensator

G(e jÆ)C/DH( jv)

h(t) g[n]

vd[n]

T

D/C
yc(t)

Figure P1.53

(a) What is H( jω)?
(b) What is the highest frequency that xc(t) can contain, i.e., to what fre-

quency must Xc( jω) be bandlimited, if aliasing is to be avoided in the C/D
conversion? Assume from now on that xc(t) satisfies this condition.

(c) Determine G(ej�) such that yc(t) = xc(t).
(d) For G(ej�) as in (c), determine:

(i)
∑+∞

n=−∞ g2[n]; and
(ii) g[n].

1.54. Consider the system shown in Figure P1.54-1. The anti-aliasing filter is a CT filter
with the frequency response L( jω) shown in Figure P1.54-2.

H( jv)

v(t)xc(t) y[n]

T1

Anti-aliasing

Hd(e jÆ)C/DCT filter
v[n]

T2

D/C
yc(t)

Figure P1.54-1

L( jv)

1

-vc vc v Figure P1.54-2

For parts (a), (b), and (c), Hd(ej�) is as shown in Figure P1.54-3, where
0 < �c < π .

Hd(e jÆ)

1

-Æc-p pÆc Æ Figure P1.54-3

www.konkur.in

Telegram: @uni_k



90 Chapter 1 Signals and Systems

(a) Let T1 = T2 = 0.5 × 10−4 sec, �c = π/4, and ωc = 2π × 104 /sec. Is the over-
all system that processes xc(t) to produce yc(t) LTI or not? If not, explain
why not. If so, find and plot the CT transfer function H( jω). Give the
frequency in hertz at which H( jω) goes to zero.

(b) Again, let T1 = T2 = 0.5 × 10−4 sec, but now �c is variable. Let ωc,max be
the largest value of ωc for which the overall system is LTI for all inputs xc(t).
Find and plot ωc,max as a function of �c for 0 < �c < π .

(c) Is the overall system linear under the conditions in part (a) if T2 is reduced
to 0.25 × 10−4 sec? Is it time-invariant? Explain why or why not in each case.

For the remainder of the problem, suppose xc(t) is an audio signal r(t)
recorded in an environment with an echo that is a delayed version of r(t):

xc(t) = r(t) + αr(t − To) , To > 0 , 0 < α < 1 .

(d) Find the CT transfer function Hec(s) for an echo canceller that removes the
echo as shown in Figure P1.54-4.

xc(t) r(t)Hec(s)

Figure P1.54-4

(e) Find the DT filter Hd(ej�) which causes the overall CT system to act as an
echo canceller, i.e., it has Hec(s) as its transfer function. Assume that, as
in part (a), T1 = T2 = 0.5 × 10−4 sec, ωc = 2π × 104 /sec. Also assume that
xc(t) is a low-pass signal with no energy above 10 kHz.

1.55. Consider a system modeled by the following set of constraint equations, arranged
in matrix form: [

q1[k + 1]
q2[k + 1]

]
=
[ 1

3 1
0 1

2

][
q1[k]
q2[k]

]
+
[

1
1

]
x[k]

y[k] = [ 1 1
] [q1[k]

q2[k]

]
This is said to be a state-space model; the two-component, or two-dimensional,

signal q[k] ≡
[

q1[k]
q2[k]

]
is called the state of the model at time k, while x[k] is its

input and y[k] is its output. The noteworthy features of a state-space model are
that (i) the state at the next time instant, k + 1, is given as a function of the state
and input at the present time k; and (ii) the output at the present time is given
as a function of the state and input at the present time (although in the above
example, the input at time k happens to not affect the output at time k).

(a) Is the system linear with respect to the four signals q1, q2, x, and y? Is it
time-invariant? Memoryless?

(b) Suppose the system is known to be causal. Find its output response y[n] for
n ≥ 0, if its input is the unit sample x[n] = δ[n] and its initial condition is

q[0] =
[

2
0

]
. This can be done in the time domain, or by using z-transforms.
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(c) Suppose that the first equation in (a) is replaced by[
q1[k + 1]
q2[k + 1]

][ 1
3 2 cos

(
π
3 k
)

0 1
2

][
q1[k]
q2[k]

] [
1
1

]
x[k]

while the second equation is kept the same. Is the system linear? Memo-
ryless? Time-invariant?

(d) Show that there is a natural sense in which the model in (c) is periodically
varying, and determine its period. Does the periodicity mean that any signals
q1, q2, x, and y which simultaneously satisfy the model constraints have to
be periodic?
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2
Amplitude, Phase, 
and Group Delay

As you have seen in your prior studies of signals and systems, and as empha-
sized in Chapter 1, transforms play a central role in characterizing and
representing signals and linear, time-invariant (LTI) systems in both con-
tinuous and discrete time. In this chapter, we discuss some specific aspects
of transform representations that may not be as familiar but will play an
important role in later chapters. One aspect is the interpretation of Fourier
transform phase through the concept of group delay. A second involves the
conditions under which the Fourier transform phase is uniquely specified by
the magnitude. We also discuss one particular approach to recovering the
phase from the magnitude, which is referred to as spectral factorization.

2.1 FOURIER TRANSFORM MAGNITUDE
AND PHASE

The Fourier transform of a signal or the frequency response of an LTI system
is in general a complex-valued function. A magnitude-phase representation of
a Fourier transform H( jω) takes the form

H( jω) = |H( jω)| ej � H( jω) . (2.1)

In Eq. (2.1), |H( jω)| denotes the (nonnegative) magnitude and � H( jω)
denotes the (real-valued) phase. For example, if H( jω) is the sinc function,
sin(ω)/ω, then |H( jω)| is the absolute value of this function, while � H( jω) is
0 in frequency ranges where the sinc function is positive and ±π in frequency

92
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Section 2.1 Fourier Transform Magnitude and Phase 93

ranges where the sinc function is negative. An alternative representation is an
amplitude-phase representation

H( jω) = A(ω) ej � AH( jω) (2.2)

in which A(ω) = ±|H( jω)| is real but can be positive for some frequencies
and negative for others. Correspondingly, � AH( jω) = � H( jω) when A(ω) =
+|H( jω)|, and � AH( jω) = � H( jω) ± π when A(ω) = −|H( jω)|. This repre-
sentation is often preferred when its use can eliminate discontinuities of π

radians in the phase as A(ω) changes sign. In the case of the sinc function
above, for instance, we can choose A(ω) = sin(ω)/ω and � AH( jω) = 0. A
similar discussion applies also in discrete time.

In either a magnitude-phase representation or an amplitude-phase rep-
resentation, the phase is ambiguous, as any integer multiple of 2π can be
added at any frequency without changing H( jω) in Eq. (2.1) or Eq. (2.2).
A typical phase computation resolves this ambiguity by generating the
phase modulo 2π , that is, as the phase passes up through +π it
“wraps around” to −π (or down through −π it wraps around to +π).
In Section 2.2, we will find it convenient to resolve this ambiguity by choosing
the phase to be a continuous function of frequency. This is referred to as the
unwrapped phase, since the discontinuities at ±π are unwrapped to obtain a
continuous phase curve. The unwrapped phase is obtained from � H( jω) by
adding steps of height equal to ±π or ±2π wherever needed, in order to pro-
duce a continuous function of ω. The steps of height ±π are added at points
where H( jω) passes through 0, to absorb sign changes as needed; the steps
of height ±2π are added wherever else is needed, invoking the fact that such
steps make no difference to H( jω), as is evident from Eq. (2.1). We shall pro-
ceed as though � H( jω) is indeed continuous and differentiable at the points
of interest, understanding that continuity can indeed be obtained by adding in
the appropriate steps of height ±π or ±2π .

Typically, our intuition for the time-domain effects of the frequency
response magnitude or amplitude of an LTI filter on a signal is rather well
developed. For example, if the frequency response magnitude is small at high
frequencies, then we expect the output signal to vary slowly and without
sharp discontinuities even when the input might have these features. On the
other hand, an input signal whose low frequencies are attenuated relative
to the high frequencies will tend to vary rapidly and without slowly varying
trends.

Visualizing the effect on a signal of the phase of the frequency response
of a system is more subtle, but equally important. We begin the discussion
by first considering several specific examples that are helpful in treating the
more general case. Throughout this discussion, we will consider the system to
be an all-pass system with unity gain, that is, the amplitude of the frequency
response A( jω) = 1 (continuous time) or A(ej�) = 1 (discrete time), so that
we can focus entirely on the effect of the phase. The unwrapped phase associ-
ated with the frequency response will be denoted as � AH( jω) for continuous
time and � AH(ej�) for discrete time.
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94 Chapter 2 Amplitude, Phase, and Group Delay

Example 2.1 Linear Phase

Consider an all-pass system with the frequency response

H( jω) = e−jαω . (2.3)

In an amplitude-phase representation, A( jω) = 1 and � AH( jω) = −αω. The unwrap-
ped phase for this example is linear with respect to ω, with slope of −α. For input
x(t) with Fourier transform X( jω), the Fourier transform of the output is Y( jω) =
X( jω)e−jαω and correspondingly the output y(t) is x(t − α). In other words, linear
phase with a slope of −α in the system frequency response corresponds to a time delay
of α (or a time advance of |α| if α is negative).

For a discrete-time (DT) system with

H(ej�) = e−jα� , |�| < π (2.4)

the phase is again linear with slope −α. When α is an integer, the time-domain interpre-
tation of the effect on an input sequence x[n] is again straightforward and is a simple
delay (for α positive) or advance (for α negative) of |α|. When α is not an integer, the
effect is still commonly referred to as “a delay of α,” but the interpretation is more sub-
tle. If we think of x[n] as being the result of sampling a bandlimited, continuous-time
(CT) signal x(t) with sampling period T, the output y[n] will be the result of sam-
pling the signal y(t) = x(t − αT) with sampling period T. In fact, we saw this result in
Example 1.4 of Chapter 1 for the specific case of a half-sample delay, that is, α = 1

2 .

Example 2.2 Constant Phase Shift

As a second example, we again consider an all-pass system with frequency-response
amplitude A( jω) = 1 and unwrapped phase

� AH( jω) =
{−φ0 for ω > 0

+φ0 for ω < 0
(2.5)

as indicated in Figure 2.1.

+f0

-f0

jAH( jv)

v

Figure 2.1 Phase plot of all-pass system with constant phase shift φ0.
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Note that the phase will be an odd function of ω because we assume that the sys-
tem impulse response is real valued. In this example, we consider x(t) to be of the form

x(t) = s(t) cos(ω0t + θ) , ω0 > 0 , (2.6)

that is, an amplitude-modulated signal at a positive carrier frequency of ω0. Conse-
quently, X( jω) can be expressed as

X( jω) = 1
2

S( jω − jω0)ejθ + 1
2

S( jω + jω0)e−jθ (2.7)

where S( jω) denotes the Fourier transform of s(t).
We also assume that S( jω) is bandlimited to |ω| < 	, with 	 sufficiently small

so that the term S( jω − jω0)ejθ is zero for ω < 0 and the term S( jω + jω0)e−jθ is
zero for ω > 0, that is, we assume that (ω0 − 	) > 0. Thus x(t) is characterized by a
slowly varying modulation of its carrier. The associated spectrum of x(t) is depicted in
Figure 2.2.

With these assumptions on x(t), it is relatively straightforward to determine the
output y(t). Specifically, the system frequency response H( jω) is

H( jω) =
{

e−jφ0 ω > 0
e+jφ0 ω < 0 .

(2.8)

Since the term S( jω − jω0)ejθ in Eq. (2.7) is nonzero only for ω > 0, it is simply mul-
tiplied by e−jφ0 , and similarly the term S( jω + jω0)e−jθ is multiplied only by e+jφ0 .
Consequently, the output Fourier transform Y( jω) is given by

Y( jω) = X( jω)H( jω)

= 1
2

S( jω − jω0)e+jθ e−jφ0 + 1
2

S( jω + jω0)e−jθ e+jφ0 , (2.9)

which we recognize as a simple phase shift by φ0 of the carrier in Eq. (2.6), that is,
replacing θ in Eq. (2.7) by θ − φ0. Consequently,

y(t) = s(t) cos(ω0t + θ − φ0) . (2.10)

1
2

S( jv + jv0)e-ju 1
2

S( jv - jv0)e+ju

-v0 v0

v

0

v0 + ¢v0 - ¢

X( jv)

Figure 2.2 Spectrum of x(t) with s(t) a narrowband signal.
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This change in phase of the carrier can also be expressed in terms of a time delay for
the carrier by rewriting Eq. (2.10) as

y(t) = s(t) cos
[
ω0

(
t − φ0

ω0

)
+ θ

]
= s(t) cos

[
ω0
(
t − τp

)+ θ
]

(2.11)

where τp, the negative of the ratio of the phase at ω0, i.e., (−φ0), to the frequency ω0,
is referred to as the phase delay of the system at frequency ω0:

τp = − � H( jω0)
ω0

= φ0

ω0
. (2.12)

2.2 GROUP DELAY AND THE EFFECT
OF NONLINEAR PHASE

In Example 2.1, we saw that a phase characteristic which is linear with fre-
quency corresponds in the time domain to a time shift. In this section, we
consider the effect of a nonlinear phase characteristic. We again assume that
the system is an all-pass system with frequency response

H( jω) = A( jω) ej � A[H( jω)] (2.13)

with A( jω) = 1. A general nonlinear phase characteristic that is an odd func-
tion of ω and is unwrapped for |ω| > 0 is depicted in Figure 2.3. In Section
2.2.1, we first consider the case of narrowband signals. In Section 2.2.2, we
extend that result to broadband signals.

2.2.1 Narrowband Input Signals

As we did in Example 2.2, we again assume that x(t) is narrowband of the
form in Eq. (2.6) and with the Fourier transform depicted in Figure 2.2.

+f1

-f1

jAH( jv)

v-v0

+v0

Figure 2.3 Nonlinear unwrapped
phase characteristic.
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We next assume that 	 in Figure 2.2 is sufficiently small so that in the vicin-
ity of ±ω0 � AH( jω) can be approximated sufficiently well by the zeroth and
first-order terms of a Taylor series expansion, that is,

� AH( jω) ≈ � AH( jω0) + (ω − ω0)
[

d
dω

� AH( jω)
]

ω=ω0

. (2.14)

Defining τg(ω) as

τg(ω) = − d
dω

� AH( jω) (2.15)

our approximation to � AH( jω) in a small region around ω = ω0 is ex-
pressed as

� AH( jω) ≈ � AH( jω0) − (ω − ω0)τg(ω0) . (2.16)

Similarly, in a small region around ω = −ω0 we make the approximation
� AH( jω) ≈ � AH(−jω0) − (ω + ω0)τg(−ω0) . (2.17)

As we will see shortly, the quantity τg(ω) plays a key role in our interpretation
of the effect of a nonlinear phase characteristic on a signal.

With the Taylor series approximations in Eqs. (2.16) and (2.17), and for
input signals with frequency content for which the approximation is valid, we
can replace Figure 2.3 with Figure 2.4. Note that in Figure 2.4

−φ1 = � AH( jω0) (2.18a)
and

−φ0 = � AH( jω0) + ω0τg(ω0) . (2.18b)

For LTI systems in cascade, the frequency responses multiply, and correspond-
ingly their amplitudes multiply and their phases add. Consequently, we can
represent the all-pass frequency response H( jω) in Figure 2.4 as the cascade of
two all-pass systems, HI( jω) and HII( jω), with unwrapped phase as depicted
in Figure 2.5.

We recognize HI( jω) as corresponding to Example 2.2. Consequently,
with x(t) narrowband of the form in Eq. (2.6), we have

x(t) = s(t) cos(ω0t + θ)

xI(t) = s(t) cos
[
ω0

(
t − φ0

ω0

)
+ θ

]
. (2.19)

+f1

+f0

-f0

-f1

-v0

v
+v0

Slope = -tg(v0)

Slope = -tg(v0)

jAH( jv)

Figure 2.4 Taylor series
approximation of nonlinear phase in the
vicinity of ±ω0.
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xI(t)x(t)
HII( jv)HI( jv)

xII(t)

+f0

-f0

jAHI( jv)

v

jAHII( jv)

v

Slope = -tg(v0)

Figure 2.5 An all-pass system with
frequency response H( jω) represented
as the cascade of two all-pass systems
with frequency responses HI ( jω) and
HII ( jω).

Next we recognize HII( jω) as corresponding to Example 2.1 with α =
τg(ω0). Consequently,

xII(t) = xI
(
t − τg

(
ω0
))

(2.20)

or equivalently

xII(t) = s(t − τg(ω0)) cos
[
ω0

(
t − φ0 + ω0τg(ω0)

ω0

)
+ θ

]
. (2.21)

From Eqs. (2.18a) and (2.18b), we see that

φ0 + ω0τg(ω0) = φ1 = −� AH( jω0) . (2.22)

Equation (2.21) can therefore be rewritten as

xII(t) = s(t − τg(ω0)) cos
[
ω0

(
t − φ1

ω0

)
+ θ

]
(2.23a)

or

xII(t) = s(t − τg(ω0)) cos
[
ω0
(
t − τp

(
ω0
))+ θ

]
(2.23b)

where τp(ω0) is the phase delay defined in Eq. (2.12), i.e., τp(ω0) = − �
AH( jω0)

ω0
.

In summary, according to Eq. (2.23b), the time-domain effect of the non-
linear phase for the narrowband group of frequencies around the frequency
ω0 is to delay the narrowband modulating envelope s(t) by the group delay
τg(ω0), and apply a delay of τp(ω0) to the carrier.

2.2.2 Broadband Input Signals

Thus far our discussion has focused on narrowband signals. To extend the
discussion to broadband signals, we need only recognize that any broadband
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x(t) y(t)H( jv)

(a)

(b)

r0(t) y0(t)
G0( jv) H( jv)

ri(t)
y(t)

yi(t)x(t)
Gi( jv) H( jv) +

Figure 2.6 (a) A general LTI system
with frequency response H( jω). (b) An
equivalent system in which the input is
divided into frequency groups.

signal can be viewed as a superposition of narrowband signals. This repre-
sentation can in fact be developed formally by recognizing that the system
in Figure 2.6(a) is equivalent to the parallel combination in Figure 2.6(b)
as long as ∑

i

Gi( jω) = 1 . (2.24)

By choosing the filters Gi( jω) to satisfy Eq. (2.24) and to be narrowband
around center frequencies ωi, each of the intermediate signals ri(t) is a narrow-
band signal. Consequently, the time-domain effect of the phase of H( jω) is to
apply the group delay and phase delay to each of the narrowband components
(i.e., frequency groups) ri(t). If the group delay is different at the different
center (i.e., carrier) frequencies ωi, then according to Eq. (2.23b) in the time
domain different frequency groups will arrive at the output at different times
and with carrier phase related to the phase delay.

Example 2.3 Illustration of the Effect of Nonlinear Phase

As a first example, consider H( jω) in Figure 2.6 to be the CT all-pass system with
frequency-response magnitude, phase, and group delay as shown in Figure 2.7. The cor-
responding impulse response has an impulse at t = 0 followed by the response shown
in Figure 2.8.

If the phase of H( jω) were linear with frequency, the impulse response would
simply be a delayed impulse, that is, all the narrowband components would be delayed
by the same amount and correspondingly would add up to a delayed impulse. However,
as we see in Figure 2.7, the group delay is not constant since the phase is nonlinear.
In particular, frequencies around 1200 Hz are delayed significantly more than around
other frequencies. Correspondingly, in Figure 2.8 we see that specific frequency group
dominant in the impulse response until around 2.5 ms, and fading beyond.
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Figure 2.7 Magnitude, phase, and group delay of an all-pass filter.

-4000

-3000

-2000

-1000

0

0 1 2 3

t (ms)

h(
t)

-
d

(t
)

4 5 6

1000

2000

3000

Figure 2.8 Non-impulsive component of the impulse response for the filter in Figure 2.7.
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Example 2.4 A Second Example of the Effect of Nonlinear Phase

A second example is shown in Figure 2.9, in which H( jω) is again an all-pass system
with nonlinear phase and consequently nonconstant group delay. With this exam-
ple, we would expect to see different delays in the frequency groups around 50 Hz,
150 Hz, and 300 Hz. Specifically, the group delay in Figure 2.9(c) suggests that the fre-
quency group at 300 Hz will be delayed to about 0.02 seconds, that the group at 150 Hz
will be delayed further, and that the tail of the impulse response will consist primarily
of the frequency group at 50 Hz, fading by 0.1 sec.
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Figure 2.9 Phase, group delay, and impulse response for an all-pass system: (a) principal
phase; (b) unwrapped phase; (c) group delay; (d) impulse response. (From A. V. Oppenheim
and A. S. Willsky, Signals and Systems, Prentice Hall, 1997, Figure 6.5.)
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In both of these examples, the input is highly concentrated in time (i.e.,
an impulse) and the response is dispersed in time because of the nonconstant
group delay, which results from the nonlinear phase. In general, the effect of
nonlinear phase is referred to as dispersion. In communication systems and
many other application contexts, even when a channel has a relatively con-
stant frequency-response magnitude characteristic, nonlinear phase can result
in significant distortion and other negative consequences because of the result-
ing time dispersion. For this reason, it is often essential to incorporate phase
equalization to compensate for nonconstant group delay.

Example 2.5 Effect of Nonlinear Phase on a Touch-Tone Signal

As a third example, we consider an all-pass system with phase and group delay as
shown in Figure 2.10. The input for this example is the touch-tone phone digit “five,”
which consists of two very narrowband tones at center frequencies 770 and 1336 Hz.
The time-domain signal and its two narrowband component signals are shown in
Figure 2.11.

The touch-tone signal is processed with multiple passes through the all-pass sys-
tem of Figure 2.10. From the group delay plot, we expect that, in a single pass through
the all-pass filter, the tone at 1336 Hz would be delayed by about 2.5 milliseconds rel-
ative to the tone at 770 Hz. After 200 passes, this would accumulate to a relative delay
of about 0.5 seconds.

In Figure 2.12, we show the result of multiple passes through a filter and the
corresponding accumulation of the relative delays, in a manner consistent with our
expectations.
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Figure 2.10 All-pass system with phase and group delay for touch-tone signal.
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Figure 2.11 Touch-tone signal with its two narrowband component signals.

2.3 ALL-PASS AND MINIMUM-PHASE SYSTEMS

Two particularly interesting and useful classes of stable LTI systems are
all-pass systems and minimum-phase systems. We define and discuss them in
this section.

2.3.1 All-Pass Systems

An all-pass system is a stable system for which the magnitude of the frequency
response is a constant, independent of frequency. The frequency response in
the case of a CT all-pass system is thus of the form

Hap( jω) = Aej � Hap( jω) , (2.25)
where A is a constant, not varying with ω. Assuming the associated transfer
function H(s) is rational in s, it will have the corresponding form

Hap(s) = A
M∏

k=1

s + a∗
k

s − ak
. (2.26)
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Figure 2.12 Effect of passing the touch-tone signal of Figure 2.11 multiple times
through an all-pass filter.

For each pole at s = +ak, there is a zero at the mirror image across the imag-
inary axis, namely at s = −a∗

k; and if ak is complex and the system impulse
response is real-valued, every complex pole and zero will occur in a conjugate
pair, so there will also be a pole at s = +a∗

k and a zero at s = −ak. It is straight-
forward to verify that each of the M factors in Eq. (2.26) has unit magnitude
for s = jω. An example of a pole-zero diagram (in the s-plane) for a causal CT
all-pass system is shown in Figure 2.13.

For a DT all-pass system, the frequency response is of the form

Hap(ej�) = Aej � Hap(ej�) . (2.27)

If the associated transfer function H(z) is rational in z, it will have the form

Hap(z) = A
M∏

k=1

z−1 − b∗
k

1 − bkz−1 . (2.28)

The poles and zeros in this case occur at conjugate reciprocal locations: for
each pole at z = bk, there is a zero at z = 1/b∗

k. A zero at z = 0 (and associated
pole at ∞) is obtained by setting bk = ∞ in the corresponding factor above,
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Figure 2.13 Typical pole-zero plot for a CT all-pass system.

after first dividing both the numerator and denominator by bk; this results
in the corresponding factor in Eq. (2.28) being just z. Again, if the impulse
response is real-valued, then every complex pole and zero will occur in a con-
jugate pair, so there will be a pole at z = b∗

k and a zero at z = 1/bk. It is again
straightforward to verify that each of the M factors in Eq. (2.28) has unit mag-
nitude for z = ej�. An example of a pole-zero diagram (in the z-plane) for a
causal DT all-pass system is shown in Figure 2.14.

The phase of a CT all-pass system will be the sum of the phases associ-
ated with each of the M factors in Eq. (2.26). Assuming the system is causal
(in addition to being stable), then for each of these factors Re{ak} < 0. With

some algebra it can be shown that each factor of the form
s+a∗

k
s−ak

now has pos-
itive group delay at all frequencies, a property that we will make reference
to shortly. Similarly, assuming causality (in addition to stability) for the DT

all-pass system in Eq. (2.28), each factor of the form
z−1−b∗

k
1−bkz−1 with |bk| < 1

contributes positive group delay at all frequencies (or zero group delay in
the special case of bk = 0). Thus, in both continuous and discrete time, the
frequency response of a causal all-pass system has constant magnitude and
positive group delay at all frequencies.

2.3.2 Minimum-Phase Systems

In classical network theory, control systems, and signal processing, a CT LTI
system with a rational transfer function is defined as minimum phase if it is
stable, causal, and has all its finite zeros strictly within the left-half plane. The
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Figure 2.14 Typical pole-zero plot for
a DT all-pass system.

notion arises in the context of deducing the transfer function to within a sign
factor, from its associated magnitude on the imaginary axis, that is, from the
frequency response magnitude. We shall see in the next section, Example 2.7,
how this can be accomplished algebraically for a minimum-phase CT system,
using what we have learned about all-pass system in Section 2.3.1.

For a DT LTI system with a rational transfer function, one can similarly
deduce the transfer function from its magnitude on the unit circle if the system
is stable, causal, has only finite zeros (i.e., has no zeros at infinity), and all
these zeros are strictly inside the unit circle. This is equivalent to requiring that
the system be stable, causal, and have a stable and causal inverse, which we
shall use in this text as the definition of minimum phase for a DT LTI system.
Minimum-phase DT models will be particularly important for our discussion
in Chapter 12 of causal Wiener filtering for random signals.

Group Delay of Minimum-Phase Systems

The use of the term minimum phase is historical, and the property should
perhaps more appropriately be termed “minimum group delay.” This inter-
pretation utilizes the fact, which we establish below, that any causal and stable
CT system with a rational transfer function Hcs(s) and no finite zeros on the
imaginary axis, can be represented as the cascade of a minimum-phase system
and a causal all-pass system:

Hcs(s) = Hmin(s)Hap(s) . (2.29)

Similarly, in the DT case, provided the transfer function Hcs(z) has no zeros
on the unit circle, it can be written as

Hcs(z) = Hmin(z)Hap(z) . (2.30)
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The frequency-response magnitude of the all-pass factor is constant, indepen-
dent of frequency, and for convenience we set this constant to unity. Then from
Eq. (2.29)

|Hcs( jω)| = |Hmin( jω)| and (2.31a)

grpdelay[Hcs( jω)] = grpdelay[Hmin( jω)] + grpdelay[Hap( jω)] . (2.31b)

Similar equations hold in the DT case.
We will see in the next section that the minimum-phase term in

Eq. (2.29) can be uniquely determined from the magnitude of Hcs( jω).
Consequently all causal, stable CT systems with rational transfer func-
tions and no zeros on the imaginary axis, and with the same frequency-
response magnitude, differ only in the choice of the causal all-pass factor
in Eq. (2.29). However, we have shown previously that causal all-pass fac-
tors must contribute positive group delay. Therefore we conclude from
Eq. (2.31b) that within this class of CT systems, the one with no all-pass
factors in Eq. (2.29) will have the minimum group delay. The corresponding
result is established similarly in the DT case.

To illustrate the factorization of Eq. (2.29), we consider a simple
example.

Example 2.6 Causal, Stable System as Cascade of Minimum-Phase and All-Pass

Consider the causal, stable system with transfer function

Hcs(s) = (s − 1)(s + 2)
(s + 3)(s + 4)

. (2.32)

Since it has a zero in the right half-plane, specifically at s = 1, it is not minimum
phase. However, consider the cascade of Hcs(s) with an identity factor (s+1)

(s+1) to express
Hcs(s) as

Hcs(s) = (s − 1)(s + 2)
(s + 3)(s + 4)

· (s + 1)
(s + 1)

(2.33)

or equivalently

Hcs(s) = (s + 1)(s + 2)
(s + 3)(s + 4)

· (s − 1)
(s + 1)

. (2.34)

Equation (2.34) corresponds to a cascade of a minimum-phase factor Hmin(s) and a
causal all-pass factor Hap(s) where

Hmin(s) = (s + 1)(s + 2)
(s + 3)(s + 4)

(2.35a)

and

Hap(s) = (s − 1)
(s + 1)

. (2.35b)

In effect, the factor (s+1)
(s+1) in Eq. (2.33) reflects the zero at s = 1 to the location s = −1

and then also cancels it with a pole at the same location. This approach generalizes
easily for multiple zeros in the right half-plane and also to DT systems.
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Generalizing from Example 2.6, consider a causal, stable transfer func-
tion Hcs(s) expressed in the form

Hcs(s) = A

∏M1
k=1(s − lk)

∏M2
i=1(s − ri)∏N

n=1(s − dn)
, (2.36)

where dn represents the poles of the system, lk represents the zeros in the
left half-plane, and ri represents the zeros in the right half-plane. Since Hcs(s)
is stable and causal, all of the poles are in the left half-plane and would be
associated with the factor Hmin(s) in Eq. (2.29), as would be all of the zeros lk.
We next represent the right half-plane zeros as

M2∏
i=1

(s − ri) =
M2∏
i=1

(s + ri)
M2∏
i=1

(s − ri)
(s + ri)

. (2.37)

Since Re{ri} is positive, the first factor on the right side in Eq. (2.37) represents
the left half-plane zeros. The second factor corresponds to all-pass terms with
left half-plane poles, and with zeros at mirror-image locations to the poles.
Thus, combining Eqs. (2.36) and (2.37), Hcs(s) has been decomposed according
to Eq. (2.29), where

Hmin(s) = A

∏M1
k=1(s − lk)

∏M2
i=1(s + ri)∏N

n=1(s − dn)
(2.38a)

Hap(s) =
M2∏
i=1

(s − ri)
(s + ri)

. (2.38b)

The corresponding result in Eq. (2.30) for discrete time follows in a very
similar manner.

2.4 SPECTRAL FACTORIZATION

The approach used for the minimum-phase/all-pass decomposition developed
above is useful in a variety of contexts. One that is of particular interest to us
in later chapters arises when we are given or have measured the magnitude
of the frequency response of a stable system with a rational transfer function
H(s) (and real-valued impulse response), and our objective is to recover H(s)
from this information. A similar task may be posed in the DT case, but we
focus on the CT version here. We are thus given

|H( jω)|2 = H( jω)H∗( jω) (2.39)

or, since H∗( jω) = H(−jω),

|H( jω)|2 = H( jω)H(−jω) . (2.40)

Now H( jω) is H(s) for s = jω, and therefore

|H( jω)|2 = H(s)H(−s)
∣∣∣
s=jω

. (2.41)
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For any numerator or denominator factor (s − a) in H(s), there will be a
corresponding factor (−s − a) in H(s)H(−s). Thus H(s)H(−s) will consist
of factors in the numerator or denominator of the form (s − a)(−s − a) =
−s2 + a2, and will therefore be a rational function of s2. Consequently
|H( jω)|2 will be a rational function of ω2. Thus, if we are given or can express
|H( jω)|2 as a rational function of ω2, we can obtain the product H(s)H(−s)
by making the substitution ω2 = −s2.

The product H(s)H(−s) will always have its zeros in pairs that are mir-
rored across the imaginary axis of the s-plane, and similarly for its poles. For
any pole or zero of H(s)H(−s) at the real value a, there will be another at the
mirror image −a, while for any pole or zero at the complex value q, there will
be others at q∗, −q, and −q∗, forming a complex conjugate pair (q, q∗) and
its mirror image (−q∗, −q). We then need to assign one of each mirrored real
pole and zero and one of each mirrored conjugate pair of poles and zeros to
H(s), and the mirror image to H(−s).

If we assume (or know) that H(s) is causal, in addition to being stable,
then we would assign the left half-plane poles of each pair to H(s). With no
further knowledge or assumption, we have no guidance on the assignment of
the zeros other than the requirement of assigning one of each mirror image
pair to H(s) and the other to H(−s). If we further know or assume that the
system has all its zeros in the left half-plane, then the left half-plane zeros
from each mirrored pair are assigned to H(s), and the right half-plane zeros
to H(−s). This process of factoring H(s)H(−s) to obtain H(s) is referred to as
spectral factorization.

Example 2.7 Spectral Factorization

Consider a frequency-response magnitude that has been measured or approximated as

|H( jω)|2 = ω2 + 1
ω4 + 13ω2 + 36

= ω2 + 1
(ω2 + 4)(ω2 + 9)

. (2.42)

Making the substitution ω2 = −s2, we obtain

H(s)H(−s) = −s2 + 1
(−s2 + 4)(−s2 + 9)

(2.43)

which we further factor as

H(s)H(−s) = (s + 1)(−s + 1)
(s + 2)(−s + 2)(s + 3)(−s + 3)

. (2.44)

It now remains to associate appropriate factors with H(s) and H(−s). Assuming the
system is causal in addition to being stable, the two left half-plane poles at s = −2 and
s = −3 must be associated with H(s). With no further assumptions, either one of the
numerator factors can be associated with H(s) and the other with H(−s). However, if
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we know or assume that H(s) is minimum phase, then we would assign the left half-
plane zero to H(s), resulting in the choice

H(s) = (s + 1)
(s + 2)(s + 3)

. (2.45)

In the DT case, a similar development leads to an expression for
H(z)H(1/z) from knowledge of |H(ej�)|2. The zeros of H(z)H(1/z) occur in
conjugate reciprocal pairs, and similarly for the poles. We again have to split
such conjugate reciprocal pairs, assigning one of each to H(z), the other to
H(1/z), based on whatever additional knowledge we have. For instance, if
H(z) is known to be causal in addition to being stable, then all the poles
of H(z)H(1/z) that are inside the unit circle are assigned to H(z); and if H(z)
is known to be minimum phase as well, then all the zeros of H(z)H(1/z) that
are in the unit circle are assigned to H(z), along with as many additional zeros
at the origin as needed to ensure a causal inverse.

2.5 FURTHER READING

Chapter 2 has continued the review of the basic concepts of signals and sys-
tems, and the references listed at the end of Chapter 1 are generally useful for
this chapter as well. For further reading specifically about group delay and its
effects on signal transmission and audio, see [Op1], [Op2], [La1], and [Zad].
Minimum-phase systems and spectral factorization are treated in [Gui], [He1],
[Moo], [Op2], [Pa3], [Pa4], and [Th1], for example, sometimes in the setting of
the power spectral densities arising in Chapters 11, 12, and 13.

Problems

Basic Problems

2.1. The output y(t) of a causal LTI system is related to the input x(t) by the
differential equation

dy(t)
dt

+ 2y(t) = x(t) .

(a) Determine the frequency response

H( jω) = Y( jω)
X( jω)

of the system and plot the magnitude and phase as a function of ω.
(b) For the frequency response H( jω) of part (a), determine and plot the group

delay τg(ω).
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2.2. A CT system with frequency response H1( jω) has associated group delay τg1(ω),
and another system with frequency response H2( jω) has group delay τg2(ω).
What is the group delay associated with the cascade of the two systems, whose
frequency response is H1( jω)H2( jω)? Explain your reasoning.

2.3. Consider the signal

s(t) =
∞∑

n=−∞
anp(t − nT) cos(ω1t) +

∞∑
n=−∞

bnp(t − nT) cos(ω2t) ,

where f1 = ω1/2π = 1 kHz and f2 = ω2/2π = 3 kHz, and

p(t) = sinc(0.5 · 103t) ,

where t is in seconds.
Suppose this signal is transmitted over the channel whose frequency

response, H( jω), is shown in Figure P2.3.

(a) Sketch the group delay as a function of ω for this channel.
(b) Give an expression for the channel output y(t).

|H( jv)|

v/2p

jH( jv)/2p

0

Frequency (kHz) Frequency (kHz)

2 4 6 2 4 6-2-4-6

-5

-2.5

2.5

51

-4

-2

-6
v/2p

Figure P2.3

2.4. For each of the following statements, specify whether it is true or false:

(a) For the system with frequency response H( jω) = 3e−j3ω , the phase delay
and the group delay are equal.

(b) Time-shifted versions of eigenfunctions of an LTI system (both CT and DT)
are always eigenfunctions of the LTI system.

(c) Linear combinations of eigenfunctions of an LTI system (both CT and DT)
are always eigenfunctions of the LTI system.

For the following three questions consider the DT LTI system described by the
unit sample response and corresponding frequency response

h[n] =
(

2
3

)n

u[n] − δ[n] , H(ej�) =
2
3 e−j�

1 − 2
3 e−j�

.

(d) The system is causal.

(e) The system is bounded-input, bounded-output (BIBO) stable.
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112 Chapter 2 Amplitude, Phase, and Group Delay

(f) The response y[n] of the system to the input x[n] = (−1)n (for all n) takes
the form

y[n] = K1(−1)n + K2

(
2
3

)n−1

u[n − 1] ,

where K1 �= 0 and K2 �= 0.

2.5. For each of the following multiple-choice questions, select the correct answer
and provide a short explanation. The frequency response of a system is plotted
in Figure P2.5 (−π < � < π).
(a) For the input x[n] = cos( π

3 n), the output is given by

(i) y[n] = 2x[n − 2]
(ii) y[n] = 2x[n − 1]

(iii) y[n] = 2x[n]
(iv) y[n] = 2x[n + 1].

(b) For the input x[n] = s[n] cos( 2π
3 n), where s[n] is a very low frequency

bandlimited signal (compared to 2π/3), the output may be approximated by

(i) y[n] = 2s[n + 1] cos( 2π
3 (n))

(ii) y[n] = 2s[n] cos( 2π
3 (n − 1))

(iii) y[n] = 2s[n − 1] cos( 2π
3 (n − 1))

(iv) y[n] = 2s[n − 1] cos( 2π
3 (n)).

|H(e jÆ)|

jH(e jÆ)

3

0-p p
Æ

-p

-p

p

p
Æ

Figure P2.5

2.6. Consider a DT LTI system whose unit sample response h[n] is δ[n] − δ[n − 1].
(a) The system’s frequency response H(ej�) can be written in the form

H(ej�) = 2ej�(�) sin(�/2) .
Determine �(�) for −π ≤ � ≤ π , and also the phase delay and group delay
of the system in this frequency range.

(b) If the input to the system is

x[n] = p[n] cos
(πn

3

)
,

where p[n] is a slowly varying (narrowband) envelope, the approximate
form of the output signal is

y[n] = q[n] cos
(

π(n − η0)
3

)
.

Determine η0, and describe in words how q[n] is related to p[n].
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2.7. The first plot in Figure P2.7-1 shows a signal x[n] that is the sum of three nar-
rowband pulses which do not overlap in time. Its transform magnitude |X(ej�)|
is shown in the second plot. The frequency-response magnitude and group delay
for filter A, a DT LTI system, are shown in the third and fourth plots, respectively.
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The plots in Figure P2.7-2 show four possible output signals yi[n] : i =
1, 2, 3, 4.

Determine which of the possible output signals is the output of filter A
when the input is x[n]. Clearly state your reasoning.
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Figure P2.7-2

2.8. Figure P2.8-1 shows a DT LTI system with input x[n] and output y[n].

x[n] y[n]Filter A

Figure P2.8-1

The frequency-response magnitude and group delay functions for filter A
are shown in Figure P2.8-2. Also shown in Figure P2.8-2 are the signal x[n], which
is the sum of three narrowband pulses, and its Fourier transform magnitude.

In Figure P2.8-3 you are given four possible output signals yi[n]: i =
1, 2, 3, 4. Determine which one of the possible output signals is the output of
filter A when the input is x[n]. Provide a justification for your choice.
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2.9. Does the system represented by

G(z) = z−1

1 − 0.7z−1
, |z| > 0.7

have a causal and stable inverse?
If yes, specify the transfer function GI(z) (including its region of conver-

gence) that represents the causal, stable inverse.
If no, give the transfer function (including its region of convergence) of

an all-pass system GAP(z) and the transfer function (including its region of
convergence) of a minimum phase system GMP(z) such that

G(z) = GMP(z)GAP(z) .

2.10. Write each of the following stable system functions as the product of an all-
pass system function and a minimum-phase system function. Note that part (a)
pertains to a CT system, while part (b) pertains to a DT system.

(a)

G(s) = s − 2
s + 1

= A(s)M(s) ,

where A(s) is all-pass and M(s) is minimum phase.
(b)

H(z) = 1 − 6z = B(z)N(z) ,

where B(z) is all-pass and N(z) is minimum phase.

2.11. The squared magnitude of the frequency response of a filter is∣∣H( jω)
∣∣2 = ω2 + 1

ω2 + 100
.

Determine H( jω), given that it is stable and causal, and has a stable and causal
inverse. Assume that H( jω) is positive at ω = 0.

Advanced Problems

2.12. Suppose we apply the modulated signal

x(t) = m(t) cos(ω0t)

to the input of the LTI communication channel shown in Figure P2.12-1 with
frequency response H( jω), where the modulating signal is

m(t) = sin(π t/T)
π t/T

.

Assume (1/T) = 75 kHz and (ω0/2π) = 1300 kHz.

x(t) y(t)
H( jv)

Channel

Figure P2.12-1
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(a) Make a neat and fully labeled sketch of X( jω).
(b) Find a time-domain expression for the output y(t) of the channel if the

channel frequency response is

H( jω) = e−jω(4×10−6 ) .
(c) Find an approximate (but reasonably accurate) time-domain expression

for the output y(t) of the channel if the channel characteristics are actu-
ally as shown in Figure P2.12-2 rather than as specified in (b). Also
state what features of the signal and/or channel make your approximation
reasonable.
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2.13. The impulse responses h1(t) through h4(t) of four different all-pass systems are
shown from top to bottom in Figure P2.13-1. In Figure P2.13-2 are the associated
group delay plots, randomly ordered, and labeled A through D from top to bot-
tom. For each impulse response in Figure P2.13-1 specify the associated group
delay plot from Figure P2.13-2, and explain your reasoning.
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Impulse response
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2.14. Consider the ideal (bandlimited interpolating) discrete-to-continuous (D/C)
converter with input sd[n], output sc(t), and reconstruction interval T = 0.5 ×
10−3 sec, shown in Figure P2.14-1.

sc(t)sd[n]

T = 0.5 ms

D/C

Figure P2.14-1

Suppose that the Fourier transform of sd[n] is as shown in Figure P2.14-2.

-2p 2p

Æ

1

Sd(e jÆ)

p
5- p

5
Figure P2.14-2

(a) Express Sc( jω) in terms of Sd(ej�) and give a fully labeled sketch of Sc( jω)
in the interval |ω| < 2π × 2000 rad/sec.

Now consider a scenario, in which Hc( jω) is a frequency response whose magni-
tude is equal to 1 everywhere, and whose phase and group delay characteristics
are as given in Figure P2.14-3.

(b) With xd[n] as given in Figure P2.14-4, draw a detailed sketch of Xc( jω) for
|ω| < 2π × 2, 000 rad/sec.

(c) Provide a time-domain expression for xc(t) in terms of sc(t).
(d) Determine approximate (but reasonably accurate) time-domain expressions

for the signals yc(t) and yd[n] in terms of sc(t).
(e) Does the mapping from xd[n] to yd[n] correspond to an LTI system? If so,

how does the associated frequency response H(ej�) relate to Hc( jω), and
what is its group delay at � = 4π/5? Can you see how to interpret the effect
of fractional group delay in H(ej�) on the signal xd[n]?
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xc(t)xd[n] = sd[n] cos (4pn/5)

T = 0.5 ms

D/C
yd[n]

T = 0.5 ms

C/D
yc(t)

Hc( jv)

Figure P2.14-4
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2.15. Consider a DT causal LTI system whose frequency response is

H(ej�) = e−j4�
1 − 1

2 ej�

1 − 1
2 e−j�

.

(a) Show that |H(ej�)| is unity at all frequencies.
(b) The group delay for a system with frequency response

F(ej�) = ej3�H(ej�) = e−j� 1 − 1
2 ej�

1 − 1
2 e−j�

is given by

τg,F (�) =
3
4

5
4 − cos �

.

Use this fact to determine the group delay τg,H (�) associated with the given
system H(ej�). Plot the resulting expression for τg,H (�).

(c) Obtain an approximate expression for the output of the system H(ej�) when
the input is cos(0.1n) cos (πn/3) .

2.16. The LTI system shown in Figure P2.16-1 is used to filter the signal x[n] shown in
Figure P2.16-2. The Fourier transform log magnitude plot of x[n] is also displayed
in this figure.

The input x[n] is the following sum of the two pulses x1[n] and x2[n]:

x[n] = x1[n] + x2[n − 150] .

w[n]x[n]
Hap(e jÆ)H(e jÆ)

y[n]

Figure P2.16-1
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Original pulse x1[n]
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The two pulses, x1[n] and x2[n], are shown in Figure P2.16-3. The first
filter in Figure P2.16-1 has an impulse response h[n] and frequency response
H(ej�) that are purely real. The log magnitude, 20 log10 |H(ej�)|, for this filter
is shown in Figure P2.16-4. The causal and stable filter Hap(ej�) in the system is
an all-pass filter, i.e., |Hap(ej�)| = 1. The phase of the all-pass filter is shown in
Figure P2.16-5.

Assume that all sequences are zero outside of the intervals shown in
the figures. Also, all of the time signals are DT sequences, with plots showing
consecutive points connected by straight lines.

(a) Calculate the group delay of the filter with frequency response H(ej�), and
specify (by a careful sketch, or in some other appropriate way) w[n] and
|W(ej�)|, the magnitude of the Fourier transform of w[n], for |�| < π .

(b) Make a labeled sketch of what you would expect the output y[n] to look like.
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2.17. The first plot in Figure P2.17-1 shows a signal x[n] that is the sum of three narrow-
band pulses which do not significantly overlap in time. Its transform magnitude
|X(ej�)| is shown in the second plot. The group delay and frequency-response
magnitude functions of filter A, a DT LTI system, are shown in the third and
fourth plots, respectively.

The remaining plots in Figures P2.17-2 and P2.17-3 show eight possible
output signals yi[n] : i = 1, 2, . . . , 8. Determine which of the possible output
signals is the output of filter A when the input is x[n]. Clearly state your
reasoning.
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2.18. The impulse responses h1[n] through h4[n] of four different all-pass systems are
shown from top to bottom in Figure P2.18-1 (the values of hi[n] for consecutive
values of n are connected by straight lines in these figures to improve readability).
Shown in Figure P2.18-2 are the associated group delay plots, but randomly
ordered, and labeled A through D from top to bottom. Specify which impulse
response goes with which group delay plot, being sure to explain your reasoning.
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130 Chapter 2 Amplitude, Phase, and Group Delay

Extension Problems

2.19. The propagation of a light beam through an L-km-long optical fiber can be
modeled as an LTI system whose impulse response, hL(t), and consequently fre-
quency response, HL( jω), depend on the fiber length L. Thus, when the optical
input to the fiber is x(t), the resulting output is

y(t) =
∫ ∞

−∞
x(τ)hL(t − τ) dτ ,

as shown in Figure P2.19-1.

L-km-long optical fiberInput light

x(t)
Output light

y(t)

LTI system:  hL(t), HL( jv) Figure P2.19-1

When the input to this L-km-long optical fiber is

x(t) = cos(ωt) ,

the output is

y(t) = 10−α(ω)L cos(ωt − β(ω)L) ,

where α(ω), β(ω), and dβ(ω)/dω are as shown in Figure P2.19-2, for ω/2π within
±1013 Hz = ±10 terahertz (THz) of center frequency ωo = 4π × 1014 sec−1.
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Figure P2.19-2

Suppose that

x(t) = exp(−t2/T2) cos(ωot) ,

with T = 10−6 sec and ωo = 4π × 1014 sec−1, is the input to an L = 10 km fiber.
Find y(t), clearly explaining your reasoning. You may assume that the Fourier
transform of s(t) = exp(−t2/T2) is zero for |ω| > 10/T.

2.20. The general form for the system function of a DT all-pass system is

HAP(z) = A
M∏

k=1

z−1 − a∗
k

1 − akz−1

and for a CT all-pass is

HAP(s) = B
M∏

k=1

s + b∗
k

s − bk
.
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Chapter 2 Problems 131

While we phrase this problem in terms of the CT all-pass, the conclusions are
identical for discrete time.

(a) For M = 1 and bk real in the given equation, show the pole-zero plot for
HAP(s).

(b) For M = 1, bk possibly complex, and with HAP(s) corresponding to a causal,
stable system, show that the group delay associated with HAP(s) will always
be greater than zero for all frequencies. You can do this analytically by
explicitly differentiating the expression for the phase, but it is also sim-
ple (and more intuitive) to argue it from geometrical consideration of the
pole-zero plot.

(c) By referring to (b), construct an argument to conclude that a stable, causal,
CT all-pass system always has positive group delay (though of course the
specific value of the group delay will be different at different frequencies).
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3
Pulse Amplitude
Modulation

In Chapter 1 we discussed the discrete-time (DT) processing of continuous-
time (CT) signals, and in that context reviewed and discussed D/C conversion
for reconstructing a CT signal from a DT sequence. The basic structure
embodied in Eq. (1.94) involves, in effect, generating a train of equally spaced
CT pulses, most typically the impulse response of an ideal low-pass filter as in
Eq. (1.81), with amplitudes corresponding to the values of the DT sequence.
This constitutes pulse amplitude modulation (PAM).

Another context in which it is useful and important to generate a CT
signal from a DT sequence is in communication systems, in which DT data—
perhaps digital or quantized data—is to be transmitted over a channel as a CT
signal, after which the DT sequence is recovered at the receiver. For exam-
ple, consider transmitting a binary sequence of 1s and 0s from one computer
to another over a telephone line or cable, or from a digital cell phone to a
base station over a high-frequency electromagnetic channel. These instances
correspond to having analog channels that require the transmission of a CT
signal compatible with the bandwidth and other constraints of the channel.
Such requirements impact the choice of the CT waveform that the discrete
sequence is modulated onto.

The translation of a DT signal to a CT signal appropriate for trans-
mission, and the translation back to a DT signal at the receiver, are both
accomplished by modems (modulators/demodulators), many of which are
based on the use of PAM. In addition to the fact that PAM plays an essential
role in signal processing and in communications systems, it offers an oppor-
tunity to further analytically understand the relationship between the CT and
DT domains.

132
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Section 3.1 Baseband Pulse Amplitude Modulation 133

3.1 BASEBAND PULSE AMPLITUDE MODULATION

The structure of the modulator and demodulator for PAM is shown in
Figure 3.1. The signal x(t) in Figure 3.1(a) is referred to as a pulse amplitude
modulated signal.

There are strong similarities between PAM in the context of D/C conver-
sion and in the context of communication systems, as is evident in comparing
Figures 1.5 and 3.1. For example, yc(t) as specified in Figure 1.5 and Eq. (1.81)
has the same form as x(t) in Figure 3.1(a) but with p(t) in the context of ideal
D/C conversion specifically given by

p(t) = sin(π t/T)
π t/T

. (3.1)

The DT sequence xd[n] in Figure 1.5 is obtained from the CT signal to be
processed in the same way that â[n] is obtained from the PAM signal in
Figure 3.1(b). Consequently, similar basic analysis applies, although the con-
texts are very different.

3.1.1 The Transmitted Signal

As indicated above, the idea in PAM for communication over a CT channel is
to transmit a sequence of CT pulses of some prespecified shape p(t), with the
sequence of pulse amplitudes carrying the information. The resulting PAM
signal is

x(t) =
∑

n

a[n] p(t − nT) . (3.2)

This baseband signal at the transmitter is then usually further modulated
onto a high-frequency sinusoidal or complex exponential carrier to form a
bandpass signal before actual transmission, although we ignore this aspect for

x(t)

T

C/D

(b)

(a)

x(t) =      a[n] p(t - nT)a[n]

T p(t)

Pulse amplitude

modulator ©
n

a[n] = x(nT)

Figure 3.1 (a) Pulse amplitude modulation (PAM) of a DT sequence
a[n]. (b) Recovery of a discrete sequence from a PAM signal when p(t)
has the form of Eq. (3.1).
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134 Chapter 3 Pulse Amplitude Modulation

now. The sequence values a[n] are the pulse amplitudes, and T is the pulse
repetition interval or the intersymbol spacing, so 1/T is the symbol rate (or
“baud” rate). The pulse p(t) may be confined in length to T so that the terms
in Eq. (3.2) do not overlap, or it may extend over several intervals, as we will
see in several examples shortly. The DT signal a[n] may comprise samples of a
bandlimited CT signal (taken at the Nyquist rate or higher, and perhaps quan-
tized to a specified set of levels); or 1 and 0 for on/off or “unipolar” signaling;
or 1 and −1 for antipodal or “polar” signaling. Each of these possibilities is
illustrated in Figure 3.2, with the basic pulse being a simple rectangular pulse.
These pulses would require substantial channel bandwidth (of the order of
1/	 at least) in order to be transmitted without significant distortion, so
it is often necessary to find alternative choices that use less bandwidth to
accommodate the constraints of the channel. Such considerations are impor-
tant in designing appropriate pulse shapes, and we will elaborate on them
shortly.

If p(t) is chosen such that p(0) = 1 and p(nT) = 0 for n �= 0, then it is
possible to recover the amplitudes a[n] from the PAM waveform x(t) just by
sampling x(t) at times nT, since x(nT) = a[n] in this case. However, our inter-
est is in recovering the amplitudes from the signal at the receiver, rather than
directly from the transmitted signal, so we need to consider how the commu-
nication channel affects x(t). Our objective will be to recover the DT signal

(a)

(d)

(c)

(b)

0 tT

2T

3T

0 tT

A
2T

3T

+A

-A 0 tT

2T

3T

T

A

-T t

p(t)

≤
2- ≤

2

Figure 3.2 Baseband transmitted signal (a) pulse p(t); (b) x(t) when a[n] are samples of a
CT signal; (c) x(t) for a[n] from on/off signaling; (d) antipodal signaling.
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Section 3.1 Baseband Pulse Amplitude Modulation 135

using a C/D system as in Fig. 3.1(b), after first compensating for distortion and
noise in the channel.

3.1.2 The Received Signal

When a PAM signal is transmitted through a channel, the characteristics of the
channel affect our ability to accurately recover the pulse amplitudes a[n] from
the received signal r(t). We might model r(t) as

r(t) = h(t) ∗ x(t) + v(t) (3.3)

corresponding to the channel being modeled as linear and time-invariant
(LTI) with impulse response h(t), and channel noise being represented
through the additive noise signal v(t). We would still like to recover the pulse
amplitudes a[n] from samples of r(t)—or from samples of an appropriately
filtered version of r(t)—with the samples taken at intervals of T.

The overall model is shown in Figure 3.3, with f (t) representing the
impulse response of an LTI filter at the receiver. This receiver filter will play
a key role in filtering out the part of the noise that lies outside the frequency
bands in which the signal information is concentrated. In Chapters 12 and 13,
we address in detail strategies to account for and filter the noise. In this chap-
ter, we focus only on the noise-free case. Even in the absence of noise, it
may be desirable to utilize a filter before sampling to compensate for channel
distortion characteristics such as group delay and dispersion.

3.1.3 Frequency-Domain Characterizations

Assuming that the noise v(t) is zero and that the combined frequency response
of the channel and receiver filter is unity over the frequency range where
P( jω), the Fourier transform of p(t), is significant, then b(t) and x(t) will
be equal. However, this does not guarantee that â[n] and a[n] will be equal
because without additional conditions on p(t), even in the absence of noise,
periodic sampling of b(t) will not recover a[n]. To explore this, we directly
examine x(t), r(t), b(t), and their respective Fourier transforms X( jω), R( jω),
and B( jω). The understanding that results is a prerequisite for designing P( jω)
and picking the intersymbol time T for a given channel, and also allows us to
determine the influence of the DT signal a[n] on the CT signals x(t) and r(t).

x(t) =

©a[n] p(t - nT) r(t) b(t)
h(t)

T 

C/D

Noise v(t)

Filtering

f(t)+ a[n] = b(nT)

n

Figure 3.3 Transmitter, channel, and receiver model for a PAM system.
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136 Chapter 3 Pulse Amplitude Modulation

To compute X( jω), we take the transform of both sides of Eq. (3.2):

X( jω) =
(∑

n

a[n] e−jωnT
)

P( jω)

= A(ej�)|�=ωT P( jω) (3.4)

where A(ej�) denotes the DTFT of the sequence a[n]. The quantity
A(ej�)|�=ωT that appears in the above expression is a uniform rescaling of
the frequency axis of the DTFT; in particular, the point � = π in the DTFT is
mapped to the point ω = π/T in the expression A(ej�)|�=ωT .

The expression in Eq. (3.4) describes X( jω), assuming the DTFT of the
sequence a[n] is well defined. For example, if a[n] = 1 for all n, corresponding
to periodic repetition of the basic pulse waveform p(t), then A(ej�) = 2πδ(�)
for |�| ≤ π , and repeats with period 2π outside this range. Hence X( jω) com-
prises a train of impulses spaced apart by 2π/T; the strength of each impulse
is 2π/T times the value of P( jω) at the location of the impulse since from the
scaling property of impulses

δ(�)|�=ωT = δ(ωT) = 1
T

δ(ω) for positive T . (3.5)

In the absence of noise, the received signal r(t) and the signal b(t) that results
from filtering at the receiver are both easily characterized in the frequency
domain:

R( jω) = H( jω)X( jω) , B( jω) = F( jω)H( jω)X( jω) . (3.6)

Some important constraints emerge from Eqs. (3.4) and (3.6). Note first that
for a general DT signal a[n], necessary information about the signal will be dis-
tributed in its DTFT A(ej�) at frequencies � throughout the interval |�| ≤ π ;
knowing A(ej�) only in a smaller range |�| ≤ �a < π will in general be insuf-
ficient to allow reconstruction of the DT signal. Setting � = ωT as specified in
Eq. (3.4), we see that A(ejωT ) will contain necessary information about the
DT signal at frequencies ω that extend throughout the interval |ω| ≤ π/T.
Thus, if P( jω) �= 0 for |ω| ≤ π/T, then X( jω) preserves the information in
the DT signal; and if H( jω)P( jω) �= 0 for |ω| ≤ π/T, then R( jω) preserves
the information in the DT signal; and if F( jω)H( jω)P( jω) �= 0 for |ω| ≤ π/T,
then B( jω) preserves the information in the DT signal.

The above constraints have some design implications. A pulse for which
P( jω) is nonzero only in a strictly smaller interval |ω| ≤ ωp < π/T would cause
loss of information in going from the DT signal to the PAM signal x(t), and
would not be a suitable pulse for the chosen symbol rate 1/T but could become
a suitable pulse if the symbol rate was reduced appropriately, to ωp/π or less.

Similarly, even if the pulse was appropriately designed so that x(t) pre-
served the information in the DT signal, if we had a low-pass channel for which
H( jω) was nonzero only in a strictly smaller interval |ω| ≤ ωc < π/T, where ωc
is the cutoff frequency of the channel, then we would lose information about
the DT signal in going from x(t) to r(t); the chosen symbol rate 1/T would be
inappropriate for this channel, and would need to be reduced to ωc/π or lower
in order to preserve the information in the DT signal.
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Section 3.1 Baseband Pulse Amplitude Modulation 137

Example 3.1 Determination of Symbol Rate in a PAM System

In the PAM system of Figure 3.3, assume that the noise v(t) = 0 and that d(t) represents
the combination of h(t) and f (t), that is,

d(t) = h(t) ∗ f (t) (3.7)

so that

b(t) = x(t) ∗ d(t) . (3.8)

Also, assume that the DTFT of the DT sequence a[n] is bandlimited and specifically is
nonzero only for |�| ≤ π/2 in the interval |�| ≤ π and as usual, periodically repeats at
integer multiples of 2π , as illustrated in Figure 3.4.

Suppose that the channel and receiver filter combined constitute an ideal low-
pass filter with a cutoff frequency of 1 kHz and a constant gain of C in the passband,
that is,

D( jω) =
{

C |ω| < 2π × 103

0 |ω| > 2π × 103 .
(3.9)

We want to determine the maximum symbol rate 1/T and constraints on the modulat-
ing pulse p(t) so that no information is lost about a[n] in the process of modulation,
transmission through the channel, and filtering at the receiver, that is, so that a[n] can
be recovered from b(t).

Applying Eq. (3.4) to Figure 3.4, we illustrate separately in Figure 3.5 the two
terms to be multiplied in Eq. (3.4) to produce X( jω).

1

A(e jÆ)

-2p 0-p3p
2

- 3p 2p Æ
2

p
2

- p
2

p

Figure 3.4 DTFT of the sequence a[n] at the input of the PAM system in Figure 3.3.

1

A(e jvT)P( jv)

X( jv) = A(e jvT) P( jv)

0 2p v
T

p
2T

p
2T-2p

T-

Figure 3.5 P( jω) superimposed on A(ejωT ). The product represents X ( jω) in Eq. (3.4).

From Figure 3.5, it should be clear that, for this example, as long as P( jω) �= 0
for |ω| ≤ π

2T , no information is lost due to the pulse modulation. This is different from

www.konkur.in

Telegram: @uni_k



138 Chapter 3 Pulse Amplitude Modulation

the condition stated prior to this example because we assumed in Figure 3.4 that the
spectrum of the signal a[n] does not cover the full frequency range |ω| < π .

Next, b(t) is the result of applying the low-pass filter d(t) to x(t). Specifically,

B( jω) =
{

C X( jω) |ω| < 2π · 103

0 otherwise.
(3.10)

Assuming that P( jω) is nonzero for |ω| ≤ π
2T , all of the frequency information about

a[n] is contained in the frequency range |ω| ≤ π
2T . Consequently, as long as the low-

pass filter cutoff frequency is larger than this, all of the information is retained. If not,
then some information is lost. Specifically, then, we require that

2π · 103 >
π

2T
(3.11)

or

1
T

< 4 · 103 . (3.12)

At a symbol rate lower than 4 · 103, x(t) will be recoverable from b(t). However, since
P( jω) and D( jω) may have imposed some frequency shaping, recovery of a[n] from b(t)
may not be straightforward. Specifically, it may require additional frequency shaping
to equalize for the frequency shaping imposed by P( jω) and by D( jω). In the next
section, we consider conditions under which a[n] can be recovered from b(t) through
the simple use of a C/D system as indicated in Figure 3.3.

3.1.4 Intersymbol Interference at the Receiver

In the absence of channel impairments, signal values can be recovered from
the transmitted pulse trains shown in Figure 3.2 by resampling at time instants
that are integer multiples of T. However, these pulses, while nicely time-
localized, have infinite bandwidth. Since any realistic channel will have a
limited bandwidth, one effect of a communication channel on a PAM wave-
form is to “delocalize,” or disperse, the energy of each pulse through low-pass
filtering and/or nonconstant group delay. As a consequence, pulses that may
not have overlapped (or that overlapped only benignly) at the transmitter may
overlap at the receiver in a way that impedes the recovery of the pulse ampli-
tudes from samples of r(t), that is, in a way that leads to error referred to as
intersymbol interference (ISI). This is illustrated in Figure 3.6.

We now make explicit the condition that is required in order for ISI to be
eliminated from the filtered signal b(t) at the receiver. When this no-ISI condi-
tion is met, we will again be able to recover the DT signal simply by sampling
b(t). Based on this condition, we can identify the additional constraints that
must be satisfied by the pulse shape p(t) and the impulse response f (t) of the
filter at the receiver so as to eliminate or minimize ISI.

With x(t) as given in Eq. (3.2), and noting that b(t) is the convolution of
f (t), h(t), and x(t) in the noise-free case, we can write

b(t) =
∑

n

a[n] g(t − nT) , (3.13)

where g(t) is the convolution of f (t), h(t), and p(t).
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x(t) r(t)
H( jv)

Channel
(a)

(b) (c)

tT 2T 3T

Intersymbol interference

a[1] g(t - T) a[3] g(t - 3T)
a[2] g(t - 2T)

tT 2T 3T

2p
T = vs

Figure 3.6 Illustration of intersymbol interference (ISI). (a) Representation of the channel as an LTI system;
(b) channel input PAM signal x(t); (c) channel output with ISI.

We assume that g(t) is continuous (i.e., has no discontinuity) at the
sampling times nT. Our requirement for signal recovery with no ISI is then
that

g(0) = c , and g(nT) = 0 for nonzero integers n, (3.14)

where c is some nonzero constant. If this condition is satisfied, then it follows
from Eq. (3.13) that b(nT) = ca[n], and consequently the DT signal is exactly
recovered to within the known scale factor c.

Example 3.2 Maximum Symbol Rate for No ISI with a Sinc Pulse

In this example, we consider g(t) in Eq. (3.13) as

g(t) = sin ωct
ωct

, (3.15)

with corresponding CTFT G( jω) given by

G( jω) = π

ωc
for |ω| < ωc

= 0 otherwise. (3.16)

Choosing the intersymbol spacing to be T = π

ωc
, we can avoid ISI in the received

samples, since g(t) = 1 at t = 0 and is zero at other integer multiples of T, as illustrated
in Figure 3.7. We are thereby able to transmit at a symbol rate 1/T that is twice the
cutoff frequency of g(t), or 1/T = (2ωc)/(2π). From the earlier comments, in the dis-
cussion following Eq. (3.4) on constraints involving the symbol rate and the channel
cutoff frequency, we cannot expect to do better, that is, transmit at a higher rate, in
general.
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t
0 T 2T 3T 4T

a[1] g(t - T)

a[3] g(t - 3T)

a[2] g(t - 2T)

Figure 3.7 Illustration of the no-ISI property for the sinc pulse and intersymbol spacing of
T = π

ωc
.

In the next section, we translate the no-ISI time-domain condition in
Eq. (3.14) to a frequency-domain condition that is useful in designing the pulse
p(t) and the receiver filter f (t) for a given channel. The frequency-domain
interpretation of the no-ISI condition of Eq. (3.14) was originally explored
by Nyquist in 1924 and extended by him in 1928 to a statement of the sam-
pling theorem. This theorem then waited almost 20 years to be brought to
prominence by Gabor and Shannon.

3.2 NYQUIST PULSES

Consider the function ĝ(t) obtained by sampling g(t) with a periodic impulse
train:

ĝ(t) = g(t)
+∞∑

n=−∞
δ(t − nT) . (3.17)

Our requirements on g(t) in Eq. (3.14) imply that ĝ(t) = c δ(t), an impulse of
non-zero strength c, whose transform is Ĝ( jω) = c. Taking transforms of both
sides of Eq. (3.17), and utilizing the fact that multiplication in the time domain
corresponds to convolution in the frequency domain, we obtain

Ĝ( jω) = c = 1
T

+∞∑
m=−∞

G

(
jω − jm

2π

T

)
. (3.18)

The expression on the right-hand side of Eq. (3.18) represents a replica-
tion of G( jω) (scaled by 1/T) at every integer multiple of 2π/T along
the frequency axis. The Nyquist requirement is thus that G( jω) and all its
replications, spaced 2π/T apart, add up to a nonzero constant. Some illus-
trations of G( jω) = F( jω)H( jω)P( jω) that satisfy this condition are given in
Example 3.3.

The particular case of the sinc function of Eqs. (3.15) and (3.16) in
Example 3.2 certainly satisfies the Nyquist condition of Eq. (3.18) when
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Section 3.2 Nyquist Pulses 141

T = π/ωc. For example, for an ideal low-pass channel H( jω) with band-
width ωc or greater, with the carrier pulse chosen to be the sinc pulse
of Eq. (3.15), and the receiver filter chosen as F( jω) = 1 for |ω| ≤ ωc
so that there was no additional filtering, there would be no intersym-
bol interference at the sampler. However, there are several problems with
the sinc pulse. First, the signal extends indefinitely in time in both direc-
tions. Second, the sinc has a very slow roll-off in time (as 1/t). The slow
roll-off in time is coupled with the sharp cutoff of the transform of the
sinc in the frequency domain. This is a familiar manifestation of time-
frequency duality: quick transition in one domain means slow transition in the
other.

It is highly desirable in practice to have pulses that taper off more quickly
in time than a sinc pulse. One reason is that, given the inevitable inaccura-
cies in sampling times due to timing jitter, there will be some unavoidable
ISI, and this ISI will propagate for unacceptably long times if the underlying
pulse shape decays too slowly. Also, a faster roll-off allows better approxima-
tion of an infinitely long two-sided signal by a finite-length signal, which can
then be made causal by appropriate delay, as would be required for a causal
implementation. The penalty for more rapid pulse roll-off in time is that the
transition in the frequency domain will tend to be more gradual, necessitat-
ing a larger bandwidth for a given symbol rate or a reduced symbol rate for a
given bandwidth.

Example 3.3 Illustration of Alternative Nyquist Pulses

The two choices in Figure 3.8 have smoother transitions in frequency than the case in
Example 3.2, and correspond to pulses that fall off in time as 1/t2. It is evident that
both can be made to satisfy the Nyquist condition by appropriate choice of T.

Specifically, to satisfy the Nyquist condition requires that

1
T

+∞∑
m=−∞

G
(

jω − jm
2π

T

)
= c . (3.19)

In Figure 3.9 we illustrate Ĝ( jω) for the choices of G( jω) in Figure 3.8, such that the
Nyquist condition is satisfied.

0

(a)

G( jv)

va vb v 0

(b)

G( jv)

vc v

Figure 3.8 Two possible choices for the Fourier transform of pulses that decay in time as 1/t2

and satisfy the Nyquist zero-ISI condition for appropriate choice of T .
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va vbva+vb v

(a)

0

2

G( jv)

2p
T

vc = v

(b)

0

G( jv)

2p
T

Figure 3.9 Equation (3.19) applied to the pulses represented in Figure 3.8.

For the choice in Figure 3.8(a), the Nyquist condition is satisfied if ωa =(
2π
T − ωb

)
or, equivalently, π

T = (ωa+ωb
2

)
. For the choice in Figure 3.8(b), the Nyquist

condition is satisfied if 2π
T = ωc.

Still smoother transitions can be obtained when G( jω) is chosen from the family
of frequency-domain characteristics associated with g(t) specified by

g(t) = sin π
T t

π
T t

cos β π
T t

1 − (2βt/T)2 , (3.20)

where β is termed the roll-off parameter.
The case β = 1 is a raised cosine pulse, in the frequency domain, with g(t) that

falls off as 1/t3 for large t, as in Figure 3.10(a).

-4T -2p/T 2p/T0-p/T p/T-3T -2T -T 0

b = 0

b = 0

1

b = 0

T

T 2T 3T 4T
Time, t Frequency, v

g(t) G(jv)

b = 1

b = 1
b = 0.5
b = 0

b = 0.5

(a) (b)

Figure 3.10 Time and frequency characteristics of the family of pulses in Eq. (3.20).
(a) Time waveform; (b) Fourier transform.
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Section 3.3 Passband Pulse Amplitude Modulation 143

Once G( jω) is specified, knowledge of the channel characteristic H( jω)
allows us to determine the corresponding pulse transform P( jω), if we fix
F( jω) = 1. In the presence of channel noise that corrupts the received signal
r(t), it is often preferable to do only part of the pulse shaping at the transmit-
ter, with the rest done at the receiver prior to sampling. For instance, if the
channel has no distortion in the passband (i.e., if H( jω) = 1 in the passband)
and if the noise intensity is uniform in this passband, then the optimal choice
of pulse is P( jω) = √G( jω), assuming that G( jω) is purely real and nonneg-
ative, and this is also the optimal choice of receiver filter F( jω). We will say
more about this when we discuss matched filtering in Chapter 13.

3.3 PASSBAND PULSE AMPLITUDE MODULATION

The previous discussion centered on the design of baseband pulses. For
transmission over phone lines, wireless links, satellites, cable, or most other
physical channels, the baseband signal needs to be modulated onto a higher
frequency carrier, that is, converted to a passband signal. This also opens
opportunities for augmentation of PAM. Over the years, there has been
considerable evolution of digital modem standards, speeds, and robustness,
based on the principles of pulse amplitude modulation. Variation and aug-
mentation include frequency-shift keying (FSK), phase-shift keying (PSK),
and quadrature amplitude modulation (QAM), each of which we describe
in more detail below. The resulting increase in symbol rate and bit rates
over the years reflects improvements in signal processing, better modulation
schemes, the use of better conditioned channels, and more elaborate coding
with correspondingly sophisticated decoding.

For baseband PAM, the transmitted signal takes the form of Eq. (3.2),
that is,

x(t) =
∑

n

a[n] p(t − nT) , (3.21)

where p(t) is a low-pass pulse. When this is amplitude-modulated onto a
sinusoidal carrier, the transmitted signal takes the form

s(t) =
∑

n

a[n] p(t − nT) cos(ωct + θc) , (3.22)

where ωc and θc are the carrier frequency and phase.
In the simplest form of Eq. (3.22), specifically with ωc and θc fixed,

Eq. (3.22) corresponds to using amplitude modulation to shift the frequency
content from baseband to a band centered at the sinusoidal modulation
frequency ωc. However, since two additional parameters, ωc, and θc, have
been introduced, there are additional possibilities for embedding data in s(t).
Specifically, in addition to changing the amplitude in each symbol interval,
we can consider changing the modulation frequency and/or the phase in each
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144 Chapter 3 Pulse Amplitude Modulation

symbol interval. These alternatives lead to frequency-shift keying (FSK) and
phase-shift keying (PSK).

3.3.1 Frequency-Shift Keying (FSK)

With frequency-shift keying, Eq. (3.22) takes the form

s(t) =
∑

n

a[n] p(t − nT) cos((ω0 + 	n)t + θc) , (3.23)

where ω0 is the nominal carrier frequency and 	n is the shift in the carrier
frequency in symbol interval n. In principle, both a[n] and 	n can incorporate
data, although it is typically the case that in FSK the amplitude a[n] does not
change.

3.3.2 Phase-Shift Keying (PSK)

In phase-shift keying, Eq. (3.22) takes the form

s(t) =
∑

n

a[n] p(t − nT) cos(ωct + θn) . (3.24)

In each symbol interval, information can now be incorporated in both the
pulse amplitude a[n] and the carrier phase θn. In what is typically referred
to as PSK, information is only incorporated in the phase, that is, as with FSK
the amplitude a[n] does not change.

For example, choosing

θn = 2πbn

M
; 0 ≤ bn ≤ M − 1 , (3.25)

where bn is an integer, one of M symbols can be encoded in the phase in
each symbol interval. For M = 2, θn = 0 or π , resulting in what is commonly
referred to as binary PSK (BPSK). With M = 4, θn takes on one of the four
values 0, π

2 , π , or 3π
2 .

To interpret PSK somewhat differently, and as a prelude to expanding
the discussion to a further generalization (quadrature amplitude modulation,
or QAM), it is convenient to express Eq. (3.24) in an alternate form. Using
the identity

cos(ωct + θn) = cos(θn) cos(ωct) − sin(θn) sin(ωct) (3.26)

we can write
s(t) = I(t) cos(ωct) − Q(t) sin(ωct) , (3.27)

with
I(t) =

∑
n

ai[n] p(t − nT) (3.28)

Q(t) =
∑

n

aq[n] p(t − nT) (3.29)

and

ai[n] = a[n] cos(θn) (3.30)

aq[n] = a[n] sin(θn) . (3.31)
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Section 3.3 Passband Pulse Amplitude Modulation 145

+a

+a

ai

aq

-a

-a

Figure 3.11 I-Q constellation for
θn = 0, π

2, π, 3π
2 .

Equation (3.27) is referred to as the quadrature form of Eq. (3.24), with I(t)
and Q(t) referred to as the in-phase and quadrature components. For BPSK,
ai[n] = ±a and aq[n] = 0.

For PSK with θn in the form of Eq. (3.25) and M = 4, we noted that θn
can take on any of the four values 0, π

2, π, or 3π
2 . In the notation of Eqs. (3.30)

and (3.31), ai[n] will then be either +a, −a, or zero and aq[n] will be either
+a, −a, or zero. However, clearly the choice of M = 4 can only encode four
symbols, not nine, that is, the various possibilities for ai[n] and aq[n] are not
independent. Specifically, for M = 4, if ai[n] = +a, then aq[n] must be zero
since ai[n] = +a implies that θn = 0. A convenient way of looking at this is
through what is referred to as an I-Q constellation, as shown in Figure 3.11.
Each point in the constellation represents a different symbol that can be
encoded. With the constellation of Figure 3.11, one of four symbols can be
encoded in each symbol interval.

An alternative form of four-phase PSK is to choose

θn = 2πbn

4
+ π

4
; 0 ≤ bn ≤ 3 (3.32)

in which case ai[n] = ± a√
2

and aq[n] = ± a√
2
, resulting in the constellation in

Figure 3.12. In this case, the amplitude modulation of I(t) and Q(t) as defined
in Eqs. (3.28) and (3.29) can be done independently. Modulation with this con-
stellation is commonly referred to as QPSK (quadrature phase-shift keying).

ai

aq

-  a
 2√

-  a
 2√

+  a
 2√

+  a
 2√

Figure 3.12 I-Q constellation for
quadrature phase-shift keying (QPSK).
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146 Chapter 3 Pulse Amplitude Modulation

3.3.3 Quadrature Amplitude Modulation (QAM)

In PSK as described above, a[n] was assumed constant. Incorporating encod-
ing in both the amplitude a[n] and phase θn in Eq. (3.24) leads to a richer form
of modulation referred to as quadrature amplitude modulation (QAM). In the
expressions in Eqs. (3.27) to (3.31), we now allow ai[n] and aq[n] to be chosen
from a larger set of amplitudes.

Example 3.4 A 16-Point QAM Constellation

The QAM constellation diagram shown in Figure 3.13 is for the case in which each set
of amplitudes can take the values ±a and ±3a. The 16 different combinations that are
available in this case can be used to code 4 bits, as shown in the figure. In one current
voice channel modem standard of this form, the carrier frequency is 1800 Hz, and the
symbol frequency or baud rate (1/T) is 2400 Hz. With 4 bits per symbol, this results
in 9600 bits/second. One baseband pulse shape p(t) that may be used is the square
root of the cosine-transition pulse in Eq. (3.20), say with β = 0.3. This pulse contains
frequencies as high as 1.3 × 1200 = 1560 Hz. After modulation of the 1800 Hz carrier,
the signal occupies the band from 240 Hz to 3360 Hz, which is in the passband of the
voice telephone channel.

1011 1001 1110 1111

1010 1000 1100 1101

0001 0000 0100 0110

0011 0010 0101 0111

+3

+1

+1 +3

aq
a

ai
a

Figure 3.13 A 16-point QAM constellation.
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Section 3.3 Passband Pulse Amplitude Modulation 147

Faster modems use more elaborate QAM-based schemes. One voice
channel standard involves 128 QAM, which could in principle convey 7 bits
per symbol, but at the price of greater sensitivity to noise because the con-
stellation points are more tightly clustered for a given signal power. However,
QAM in combination with so-called trellis-coded modulation (TCM) incorpo-
rates some redundancy by introducing dependencies among the modulating
amplitudes for successive bits, leading to greater noise immunity and an
effective rate of 6 bits per symbol. The symbol rate is still 2400 Hz, so the trans-
mission is at 6 × 2400 = 14,400 bits/second. Yet another standard involves
1024 QAM, which could convey 10 bits per symbol, although with more
noise sensitivity. The combination with TCM introduces redundancy for error
control, and the resulting bit rate is 28,800 bits/second, corresponding to 9
effective bits per symbol at a symbol frequency of 3200 Hz attained by better
exploitation of the channel bandwidth.

Example 3.5 An 8-Point QAM Constellation

In this example, we consider the 8-point QAM constellation shown in Figure 3.14 with
the eight points lying on a circle of radius a. In the expression in Eq. (3.24), θn can be
one of the eight values

0,
π

4
,

π

2
,

3π

4
, π ,

5π

4
,

6π

4
,

7π

4
. (3.33)

aia0

aq

Figure 3.14 An 8-point QAM constellation.

With each of these eight values, ai and aq in Eqs. (3.30) and (3.31) are related
such that a2

i [n] + a2
q[n] = a2. For example, as indicated in Figure 3.14, with θn = 3π

4 , we
have ai[n] = − a√

2
, and aq[n] = + a√

2
.

The modulated signals defined by Eqs. (3.27) to (3.31) can carry encoded
data in both I(t) and Q(t) components. Therefore, in demodulation we must
be able to extract these separately. This can be done through quadrature
demodulation, as shown in Figure 3.15.
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148 Chapter 3 Pulse Amplitude Modulation

LPF I(t)

s(t)

ri(t)

cos(vct)

sin(vct)

LPF Q(t)
rq(t)

Figure 3.15 Demodulation scheme for a quadrature modulated PAM
signal.

In both the modulation and demodulation, it is assumed that the band-
width of p(t) is low compared with the carrier frequency ωc so that the
bandwidths of I(t) and Q(t) are less than ωc. The input signal ri(t) in
Figure 3.15 is

ri(t) = I(t) cos2(ωct) − Q(t) sin(ωct) cos(ωct) (3.34)

= 1
2

I(t) + 1
2

I(t) cos(2ωct) − 1
2

Q(t) sin(2ωct) . (3.35)

Similarly,

rq(t) = I(t) cos(ωct) sin(ωct) − Q(t) sin2(ωct) (3.36)

= 1
2

I(t) sin(2ωct) − 1
2

Q(t) + 1
2

Q(t) cos(2ωct) . (3.37)

Choosing the cutoff frequency of the low-pass filters to be greater than the
bandwidth of p(t), and therefore also greater than the bandwidth of I(t) and
Q(t), but low enough to eliminate the components in ri(t) and rq(t) around
2ωc, the outputs will be the quadrature signals I(t) and Q(t) within a scale
factor that depends on the gains of the low-pass filters.

3.4 FURTHER READING

Texts that deal with digital communication – for example [An1], [An2], [Bar],
[Gib], [Ha2], [La2], [Pr2] and [Zie] – include treatments of pulse amplitude
modulation and the extension to quadrature amplitude modulation. They also
discuss the Nyquist zero-ISI condition and its role in pulse shaping, which
surfaces again in the context of signal detection in Chapter 13.
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Problems

Basic Problems

3.1. Suppose a PAM signal x(t) is

x(t) =
∑

n

a[n] p(t − nT0)

where p(t) is the sinc pulse

p(t) = sin(π t/T1)
π t/T1

.

The signal x(t) is sent through a channel with an ideal low-pass frequency
response given by H( jω) = 1 for |ω| < ωc, and H( jω) = 0 otherwise. Let the sym-
bol repetition interval T0 be chosen as the smallest one that will yield zero ISI at
the output of the channel. Determine T0 in terms of T1 and ωc for the following
two cases:
(i) when ωc > (π/T1);

(ii) when ωc < (π/T1).

3.2. A signal p(t) has transform P( jω) given by

P( jω) = 1 − |ω|
2ωm

for |ω| < ωm ,

and 0 outside this frequency range (leading to a “raised roof” shape). What is
the smallest T for which you can guarantee p(nT) = 0 for all integer n �= 0? And
what is p(0)?

3.3. Consider a PAM system as indicated in Figure P3.3-1, with

r(t) =
∞∑

k=−∞
a[k]g(t − kT)

where g(t) = p(t) ∗ h(t).

a[n] b[n] = r(nT)
r(t)Pulse modulator

p(t)
Channel

h(t)
Sample every T

Figure P3.3-1

The channel frequency response is shown in Figure P3.3-2. Give one choice for
P( jω), the Fourier transform of the transmitted pulse p(t), so that b[n] = a[n] for
all n. Clearly show your reasoning.

v

H( jv)

1

-2p

T
-p
2T

p

2T
2p

T Figure P3.3-2
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150 Chapter 3 Pulse Amplitude Modulation

3.4. Consider a PAM system in which we wish to transmit symbols quickly while
avoiding intersymbol interference (ISI) when sampling at the output of the chan-
nel. The usual block diagram describing this process is shown in Figure P3.4-1,
and the frequency response H( jω) of the particular channel of interest in this
problem is shown in Figure P3.4-2.

PAM

Sample every T

T

x[n] y[n]xPAM(t)

xPAM (t) = gq
n = - q x[n]p(t - nT)

y(t)
H( jv)

Figure P3.4-1

1

2

0

H( jv)

vp
2

--p * 103 p * 103* 103 p
2

* 103

Figure P3.4-2

If the pulse shape is

p(t) = sin(2π × 103t)
π t

what is the fastest symbol rate, 1/T, for which there is no ISI, i.e., for which
y[n] = cx[n] for some constant c? Also determine the value of c.

3.5. A PAM transmitter sends

s(t) =
∞∑

n=−∞
a[n]p(t − nT)

to convey a message sequence a[n]. At the receiver, a sequence b[n] is obtained
by sampling s(t) at integer multiples of T, i.e., the receiver’s output sequence is
b[n] = s(nT).

Given below are two possible choices for P( jω), the Fourier transform of
the pulse shape p(t). For each choice, specify whether there are values of T for
which there will be no ISI, i.e., whether there are values of T for which b[n] =
ca[n] for all a[n] and n, with c being a constant. If your answer for a particular
P( jω) is yes, specify all possible values of T for which there is no ISI. Give a brief
justification for each answer.

(a)

P1( jω) = 2 sin(ω)
ω
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(b)

P2( jω) =
⎧⎨⎩ e−jω/2 for |ω| ≤ π

0 otherwise.

3.6. Consider the system in Figure P3.6 for sending data at a rate of one value every
T seconds.

Channel C( jv)

Sample every T

b[n] = y(nT)
y(t)g+q

n = - q a[n]p(t - nT)

Figure P3.6

We are interested in designing the pulse shape p(t) so that for an arbitrary
data sequence a[n] there is no ISI, i.e., so that b[n] = a[n]. The channel is an ideal
low-pass filter:

C( jω) =
{

1 |ω| ≤ B

0 |ω| > B .

(a) Construct a reasonable but brief argument to show that it is not possible to
find a pulse p(t) that satisfies the no-ISI requirement when B = π

2T .
(b) When B = π

T specify a pulse shape p(t) that satisfies the no-ISI requirement.
Is the p(t) you found unique or are there other pulse shapes that also meet
the no-ISI requirement for the channel? Explain your answer.

3.7. Consider a binary PAM communication system in which antipodal signaling is
used with the pulse

p(t) =
{

1 − |t|/T |t| < T
0 otherwise

and transmitted at a rate of fb pulses per second.

(a) Determine the maximum value of fb such that the N pulses in the following
signal do not overlap:

y(t) =
N∑

k=1

p(t − k/fb) .

(b) What is the maximum value of fb such that samples taken at the bit rate and
located at the pulse peaks are not affected by ISI, i.e.,

y(n/fb) =
N∑

k=1

p((n − k)/fb) = p(0) ?

3.8. In Figure 3.13, we showed a 16-point QAM constellation. Suppose that the binary
numbers to be transmitted in the first three symbol times are

Symbol time n = 0: 1100
Symbol time n = 1: 0011
Symbol time n = 2: 0110
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152 Chapter 3 Pulse Amplitude Modulation

(a) Determine ai[n] and aq[n] (n = 0, 1, 2) for I(t) and Q(t) in the quadrature-
form representation of s(t).

(b) Determine a[n] and θn (n = 0, 1, 2) in the PSK representation of s(t).

3.9. Consider the QAM communication system with the constellation shown in
Figure P3.9-1, where each symbol represents 2 bits as indicated.

Suppose the received signal is

r(t) = ai · p(t) cos(ω0t) + aq · p(t) sin(ω0t) ,

where ω0 = 2π · 106. It is known that p(t) is bandlimited to 2π · 50 and that
p(0) = 1. Nothing else is known about p(t). We want to recover ai and aq from
r(t) by using the system shown in Figure P3.9-2.

Draw the block diagram of System A. Explain clearly why it works.

1001

ai

aq

1100

+1 -1 

 -1

+1

Figure P3.9-1

System A
r(t)

xi(t)
ai = xi(0)

aq = xq(0)
xq(t)

t = 0

t = 0

Figure P3.9-2

3.10. The signal that is transmitted in QAM has the form

x(t) = xC(t) cos ω0t + xS(t) sin ω0t ,

where xC(t) and xS(t) have bandwidths less than the carrier frequency ω0.
Describe what sort of signal processing you would do to recover xC(t) and xS(t)
separately.

Advanced Problems

3.11. Suppose the PAM signal

x(t) =
∑

n

a[n] p(t − nT0)
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with

p(t) =
[ sin(π t/T1)

π t/T1

]2

is sent through a channel with the ideal low-pass frequency response H( jω) = 1
for |ω| < ωc, and H( jω) = 0 otherwise. Let the symbol repetition interval T0 be
chosen as the smallest one that will yield zero ISI at the receiving end.

(a) Determine T0 in terms of T1 and ωc for the following two cases:
(i) when ωc > (2π/T1); and

(ii) when ωc < (2π/T1).
(b) For both the cases in (a), determine what the output of the channel will be

at time t = 0 if the input is simply x(t) = p(t), corresponding to the input DT
sequence being a[n] = δ[n].

(c) How do your answers to part (a) change if the channel frequency response
is actually e−jωD H( jω), where D is a fixed positive constant and H( jω) is
as defined earlier? And at what time would you have to sample the channel
output to get the same value as you did in (b)?

3.12. Consider two candidate pulses to be used in a PAM communication system for
binary data. The time waveform of the first pulse, p1(t), is shown in Figure P3.12,
and the spectrum of the second pulse is

P2( jω) = 2 sin(5 × 10−5ω)
ω

.

1

p1(t)

-5 * 10-5 5 * 10-5 t Figure P3.12

Suppose that antipodal signaling is used. That is, a 1 is represented by transmit-
ting the pulse pi(t) and a 0 is represented by transmitting −pi(t), the negative of
the pulse. Also assume that the channel is sufficiently wideband that it does not
distort either of the candidate pulse shapes.

(a) The pulses are transmitted at a rate of 104 pulses per second, referred to as
the signaling rate, symbol rate, or baud rate. For each pulse, specify whether
there will be ISI at the receiver. You can answer this by thinking in the
time domain, but also try to check that your answer is consistent with the
frequency-domain statement given in the Nyquist theorem on zero-ISI pulse
shapes.

(b) Repeat part (a) for a signaling rate of 2 × 104 pulses per second.
(c) Assume a signaling rate of 2 × 104 pulses per second. For each of the two

pulses, provide a labeled sketch of the signal at the receiving end of the
channel when the symbol sequence “1 1 0 1 0” is sent.

3.13. Suppose p(t) is a triangular pulse of the form

p(t) = 1 − |t|
T

for |t| < T ,
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and p(t) = 0 for |t| ≥ T. Note that p(0) = 1 and p(nT) = 0 for n �= 0, and also
that the Fourier transform of p(t) is

P( jω) = T
sin2

(
ωT
2

)
(

ωT
2

)2
.

Using these facts, or in some other way, evaluate the following infinite sum (i.e.,
find its value as a function of ω):

∞∑
k=−∞

sin2
(

ωT
2 − kπ

)
(

ωT
2 − kπ

)2 .

3.14. A PAM communication system is shown in Figure P3.14-1.

cos(v0t)

Transmitter Channel Receiver

cos(v0t)

b[n]a[n] PAM H( jv) L( jv)
x(t) s(t) r(t) y(t) g(t) T

Figure P3.14-1

In this figure:
• the transmitter input is { a[n] : −∞ < n < ∞}, the data sequence to be sent;
• the output of the PAM system is

x(t) =
∞∑

n=−∞
a[n] p(t − nT) ,

where p(t) is the pulse shape whose Fourier transform, P( jω), is shown in
Figure P3.14-2;

• the transmitter output is s(t) = x(t) cos(ω0t), where ω0 � 2π/T;
• the channel is the passband filter H( jω), shown in Figure P3.14-2, whose

output is r(t) = s(t) ∗ h(t);
• the receiver applies the low-pass filter L( jω), shown in Figure P3.14-2, to

y(t) = r(t) cos(ω0t) to obtain the baseband waveform g(t); and
• the receiver output is the sequence { b[n] : −∞ < n < ∞}, where b[n] =

g(nT).

v

P( jv)

v v

H( jv) L( jv)

1

0

4

-v0 v0-2p/T -2p/T 2p/T0v0-v0+2p/T-2p/T 2p/T

T

0

Figure P3.14-2
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(a) For this part only, assume that a[n] = δ[n], i.e., a0 = 1 and a[n] = 0 for n �= 0.
Make a labeled sketch of R( jω), the Fourier transform of r(t).

(b) Will the receiver’s output suffer from ISI? Justify your answer in detail.

3.15. Figure P3.15-1 shows a PAM system.

Pulse

generator

p(t)

a[n]
s(t)

s(t)
b[n] = s(nT)

Sample every T Figure P3.15-1

(a) If p(t) = δ(t), express S( jω) in terms of A(ej�).

For the remainder of this problem, assume:

p(t) = sin(π · 104t)
π · 104t

P( jω) =
{

10−4 |ω| < π · 104

0 |ω| > π · 104

Also assume that there is no distortion or noise introduced by the channel and
that the decoded sequence b[n] is obtained by sampling the received signal s(t)
at integer multiples of T.

(b) Suppose that T = 10−4 and that a[n] is an arbitrary input sequence.
Determine whether or not b[n] = a[n] for all n.

(c) Now assume that A(ej�) is as sketched in Figure P3.15-2 and T = 1
2 × 10−4.

(i) Sketch S( jω).
(ii) Determine whether or not b[n] = a[n] for all n in this case.

A(ejÆ)

-2p 2p Æ0- p

3

p

3

Figure P3.15-2

Extension Problems

3.16. In PSK one of M waveforms is transmitted in each time block, where the M
waveforms are defined by

sm(t) = A cos(ω0t + 2π

M
(m − 1)) m = 1, 2, . . . , M 0 ≤ t ≤ T .
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156 Chapter 3 Pulse Amplitude Modulation

PSK can also be described as a form of QAM, i.e., the above equation can also
be expressed in the form

sm(t) = ac cos ω0t + as sin ω0 .

(a) Draw the constellation diagram for PSK with M = 16.
(b) Consider a QAM system with a 16-point constellation where ac and as can

each take on values ±1, ±3 and a PSK system with M = 16. The amplitude
A is chosen so that the maximum energy over one time interval in the QAM

pulse and in the PSK pulse is the same, so that A = max
{√

a2
c + a2

s

}
. Which

of the two systems do you think would have better noise immunity? Clearly
explain your reasoning.

3.17. (a) What is the DTFT of
sin ( π ( n − 1

4 ))

π ( n − 1
4 )

?

Explicitly check by verifying that the inverse transform of your answer
gives the above time function. Also determine the value of the expression∑

n

cos

(
πn
3

)
sin(π(n − 1

4 ))

π(n − 1
4 )

,

explaining your reasoning.
(b) Consider the signal x(t) =∑n v[n]w(t − nT), where v[n] is an arbitrary DT

sequence and w(t) is a CT signal whose Fourier transform (CTFT) is as
shown in Figure P3.17. As t → ∞, the magnitude of w(t) falls off as t−k for
some integer k. Determine the value of k, and explain your reasoning. Also
specify what value of T will result in the relationship x(nT) = Cv[n], for
some constant C. Explain your reasoning.

v, rad/sec

W( jv)

-2 * 103p 2 * 103p-103p 103p0 Figure P3.17

3.18. The sequences a[n] and b[n] are to be transmitted over a single PAM channel
as indicated in Figure P3.18-1. The pulse p(t) is the same for both sequences as
indicated in the figure. Figure P3.18-2 shows the Fourier transform P( jω) of the
pulse p(t).

T

T

b[n]

a[n]
xa(t)

s(t) r(t)

Channel

h(t)
5 d(t)

xb(t)

Pulse modulator

p(t)

T
2

DelayPulse modulator

p(t)

1

Figure P3.18-1
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-v1 -v0 v0 v1

v

P( jv)

A

Figure P3.18-2

The signals xa(t), xb(t), s(t), and r(t) are

xa(t) =
∞∑

n=−∞
a[n]p(t − nT)

xb(t) =
∞∑

n=−∞
b[n]p(t − nT)

s(t) = r(t) = xa(t) + xb(t − T
2

) .

Figure P3.18-3 shows the block diagram of the demodulator.

C/D
g[n]

r(t)

T
2

a[n] = g[2n] = even values of g[n]

b[n] = g[2n+1] = odd values of g[n] Figure P3.18-3

The sequence g[n] is

g[n] = r
(

n
T
2

)
.

(a) Determine a condition on p(t) in the time domain so that

â[n] = a[n]

b̂[n] = b[n] .

Justify your answer clearly and succinctly.
(b) Determine a condition on ω0 and ω1 consistent with your answer in part (a),

again so that

â[n] = a[n]

b̂[n] = b[n] .

Also determine the value of A in Figure P3.18-2. Justify your answers clearly
and succinctly.
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158 Chapter 3 Pulse Amplitude Modulation

3.19. We wish to use a PAM communication system, with pulse shape p(t), to send the
DT signal a [n] = ±1 for n ≥ 0 through an ideal channel bandlimited to |ω | ≤ B.
The overall system is shown in Figure P3.19. In this figure,

s(t) =
+∞∑
n=0

a [n] p (t − nT) ,

where T is the intersymbol time (which is to be chosen), and the frequency
response of the channel is

H( jω) =
{

1 , |ω | ≤ B
0 , |ω | > B .

a[n] b[n]

Sample every T
p(t) H( jv)

s(t) r(t)

Figure P3.19

(a) If we use the sinc pulse

p(t) = sin(Bt)
Bt

,

what is the smallest possible intersymbol time T (expressed in terms of B)
for which there is no ISI (i.e., for which b [n] = a [n])?

(b) The sinc pulse is not desirable in practice because of its slow decay over time
(the tails of the pulse decay in magnitude as 1/|t|). Suppose instead of the
sinc pulse in (a), we use the so-called duobinary pulse defined by

p(t) = sin(Bt)
Bt

+ sin(Bt − π)
Bt − π

.

Determine |P( jω)|. What bandwidth does the duobinary pulse occupy?
(c) Show that, as |t| tends toward ∞, the tails of the duobinary pulse p(t) in (b)

decay in magnitude as 1/|t|2.
(d) For the duobinary pulse p(t) in (b), what is the smallest possible intersymbol

time T (expressed in terms of B) for which there is no ISI? How does the
corresponding symbol rate (1/T) compare with the one obtained with the
sinc pulse in (a)?

The result of (d) shows that we have to pay a penalty in symbol rate if we want no
ISI with the duobinary pulse (although we do obtain the benefit of pulse tails that
fall off as 1/|t|2, and hence a better behaved pulse for practical implementation).
However, it turns out that ISI is not bad if it only occurs in a predictable way
and affects only some adjacent samples, because its effects can then be undone
quite simply within the receiver. By allowing some limited ISI of this form, we
can increase the rate at which we send symbols in our PAM system, as the next
two parts of this problem show.

(e) With the duobinary pulse in (b), suppose we transmit symbols at the rate you
determined in (a) (i.e., using the value of T you determined in part (a)). How
is the received sequence b [n] for n ≥ 0 related to a [n] in this case? Explain
how to determine the transmitted sequence from the received sequence.

(f) Although you find in (e) that the b [n] are simply obtained from the a [n],
and vice versa, starting from n = 0, what should be clear is that if there
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Chapter 3 Problems 159

is an error, then all subsequent estimates are corrupted. To overcome this
defect, what we do is, rather than transmitting the desired sequence a [n],
we transmit a precoded version of it, namely the sequence c [n] defined
by c [n] = a [n] c [n − 1], with c[−1] = 1 by definition. Now show that if
b [n] = ±2 then we can infer that a [n] = 1, and if b [n] = 0 we can infer
that a [n] = −1. The receiver decision for each n is no longer coupled to
the decisions at other times, so there is no error propagation in decoding.

3.20. Note: This problem relies on a basic understanding of random variables and ran-
dom processes discussed in Chapters 7 and 10. In a particular DT communication
system similar to the CT PAM system discussed in this chapter, the essential
problem at the receiver involves a received signal r[n] of the form

r[n] = Ap[n] + v[n] ,

where A is a random variable that is chosen by the transmitter; the receiver only
knows the mean μA and variance σ 2

A of A. Assume A is uncorrelated with the
wide-sense stationary (WSS) white-noise process v[ · ], which represents noise
on the communication channel, whose intensity is σ 2

v , i.e., with power spectral
density Svv(ej�) = σ 2

v for all �. Also consider p[ · ] to be a known signal of finite
energy

E =
∑

n

p2[n] .

The received signal in the absence of noise thus has a known shape p[n] but
random amplitude A. The receiver filters the received signal r[n] using a stable
LTI filter with unit sample response f [n], producing a signal b[n] = f [n] ∗ r[n]
at its output, where ∗ denotes convolution. We are particularly interested in the
random variable B = b[0] obtained by sampling the output of the filter at time 0 :

B = b[0] =
∞∑

n=−∞
f [n]r[−n] = A

(∑
f [n]p[−n]

)
+
(∑

f [n]v[−n]
)

= αA + V ,

where we have introduced the symbols

α =
∑

f [n]p[−n] , V =
∑

f [n]v[−n] ,

to simplify notation. Note that α is a deterministic constant but V is a random
variable. It will also be helpful in what follows to denote the energy of f [ · ]
simply by

F =
∑

n

f 2[n] .

The stability of the filter guarantees that F is finite. This problem looks at using
a measurement of B to estimate A, and choosing the filter f [n] to make this
estimation as accurate as possible.

(a) Determine the mean and variance of V, and the cross-covariance σAV of A
and V. All your answers can be written in terms of σv and F .

(b) Determine the mean and variance of B, the cross-covariance σAB of A and B,
and their correlation coefficient ρAB, all expressed in terms of the problem
parameters and the simplified notation introduced above.

(c) Describe the linear minimum mean square error (LMMSE) estimator of A
that uses a measurement of B, i.e., find γ and μ in

Â = γ B + μ ,
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160 Chapter 3 Pulse Amplitude Modulation

so as to minimize E[(A − Â)2]. Again, your answers should be expressed
in terms of the problem parameters and the simplified notation introduced
above.

(d) The minimum mean square error (MMSE) associated with the estimator in
(c) can be written as

σ 2
A(1 − ρ2

AB) .

Express this in terms of the problem parameters and the simplified notation
above, and note that only α and F in your expression are affected by how
we choose the filter f [n]. Use your expression to show that the MMSE is
minimized if α2/F is made as large as possible.

(e) The Cauchy–Schwarz inequality can be used to show that

α2

F ≤ E ,

with equality if and only if

f [n] = c p[−n] ,

for any nonzero constant c, which we can take to be 1 without loss of gen-
erality here. Hence the MMSE is minimized if the filter impulse response at
the receiver is matched to the shape of the signal from the transmitter. Note
that with f [n] = p[−n], we get α = E = F . Using this, rewrite your expres-
sions for the MMSE and for the constants γ and μ in the LMMSE estimator
in (c), in terms of μA, σA, σv, and E . As a check on your answers, explic-
itly verify that your expressions behave reasonably as the parameters take
various extreme values. Pick at least three sets of extreme cases to check.

3.21. Note: This problem relies on a basic understanding of random processes as
discussed in Chapter 10. Figure P3.21-1 depicts a PAM system in which the
transmitted sequence a[n] is a zero-mean wide-sense stationary (WSS) Gaussian
random sequence with autocorrelation function

Raa[m] =
(

1
2

)|m|
.

Pulse

modulator

p(t), T
a[n]  + C/D F

s(t) r(t) b[n]

h(t)

T

a[n]

Figure P3.21-1

The channel introduces additive noise η(t). The received signal r(t) is sam-
pled to obtain b[n]; b[n] is then processed with a memoryless affine system F
whose output â [n] is an estimate of a[n]. The associated relationships are:

• s(t) =∑∞
n=−∞ a[n]p(t − nT);

• r(t) =∑∞
n=−∞ a[n]p(t − nT) + η(t);

• b[n] = r(nT);
• η(t) is zero-mean WSS noise with autocorrelation function Rηη(τ) = Ne−|τ |

and is independent of a[n]; and
• â [n] = k0 + k1b[n].
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(a) If p(t) is as shown in Figure P3.21-2, determine whether there is ISI present
in r(t).

(b) For this part assume that p(t) is chosen so that there is no ISI in r(t), and that
p(0) = 1. The output â [n] of the system F has the form â [n] = k0 + k1b[n].
Determine k0 and k1 to minimize the mean square error ε, given as:

ε = E
[
(a[n] − â [n])2

]
.

(c) For this part assume that p(t) is chosen so that there is no ISI in r(t), and
that p(0) = 1. You are at the transmitter, therefore you know what a[n] is,
and you are trying to estimate what b[n] will be at the receiver. With b̂ [n]
denoting the estimate of b[n], at the transmitter determine the estimate b̂ [n]
that will minimize the mean square error εT defined as

εT = E
[
(b[n] − b̂[n])2

]
.

1

p(t)

t
- 3T

4

3T
4 Figure P3.21-2

3.22. Note: This problem relies on a basic understanding of random processes as dis-
cussed in Chapter 10. In Figure P3.22-1, we show a PAM system in which the
transmitted sequence a[n] is continuous in amplitude.

 + 

Pulse

modulator

Channel

p(t) h(t) f(t) C/D

h(t)

a[n] s(t) r(t) g(t) b[n]

T

Figure P3.22-1

The channel is modeled as an LTI system with impulse response h(t) and
additive output noise η(t). The received signal r(t) is processed with an LTI filter
f (t) and then sampled to obtain b[n]. The associated relationships are

• s(t) =∑∞
n=−∞ a[n]p(t − nT);

• pc(t) is defined as p(t) ∗ h(t);
• r(t) =∑∞

n=−∞ a[n]pc(t − nT) + η(t);
• g(t) = f (t) ∗ r(t);
• b[n] = g(nT); and
• η(t) is a zero-mean wide-sense stationary (WSS) random process with

autocorrelation function Rηη(τ) = Nδ(τ).
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162 Chapter 3 Pulse Amplitude Modulation

(a) For this part only
• η(t) = 0 (i.e., N = 0);
• H( jω) = e−jω/2;
• f (t) = δ(t); and
• p(t) is as shown in Figure P3.22-2.

Determine the fastest symbol rate (1/T) so that there is no ISI in g(t), i.e.,
so that b[n] = ca[n] where c is a constant. Also, determine the value of c.

For the remainder of this problem assume that there is no ISI in r(t) or g(t).

(b) Determine the mean and variance of b[0] in terms of pc(t), f (t), N, and a[n].
(c) Determine f (t) in terms of pc(t) so that E{b[0]} = a[0] and the variance of

b[0] is minimized.

1

p(t)

-1 1 t Figure P3.22-2
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4 State-Space Models

The discussion of system descriptions up to this point has emphasized and used
models that represent the transformation of input signals into output signals.
In the case of linear and time-invariant (LTI) models, we have focused on
their impulse response, frequency response, and transfer function. Such input-
output models do not directly consider the internal behavior of the systems
they represent.

Internal behavior can be important for a variety of reasons. For instance,
in examining issues of stability, a system model can be stable from an
input-output perspective, yet internal variables may display unstable behav-
ior. This chapter begins a discussion of system models that display the
internal dynamical behavior of the system as well as the input-output char-
acteristics. The discussion is illustrated by numerous examples. The study
of such models and their applications continues through Chapters 5 and 6
as well.

4.1 SYSTEM MEMORY

In this chapter we introduce an important model description—the state-space
model—that highlights the internal behavior of a system and is especially
suited to representing causal systems, particularly for real-time applications
such as control. These models arise in both continuous-time (CT) and discrete-
time (DT) forms. In general they can be nonlinear and time-varying, although
we will focus on the LTI case.

163
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164 Chapter 4 State-Space Models

A state-space model for a causal system answers a question asked about
such systems in many settings. We pose the question for the causal DT case,
though it can also be asked for causal CT systems: given the input value x[n] at
some arbitrary time n, how much needs to be known about past values of the
input, that is, about x[k] for k < n, in order to determine the present output
y[n]? As the system is causal, having all past values x[k], in addition to x[n],
will suffice, but the issue is whether all past x[k] are actually needed.

The above question addresses the issue of memory in the system, and
is worthwhile for a variety of reasons. For example, the answer conveys an
idea of the complexity, or number of degrees of freedom, associated with the
dynamic behavior of the system. The more we need to know about past inputs
in order to determine the present output, the richer the variety of possible
output behaviors, and the more ways one can be surprised in the absence of
knowledge of the past. We will only consider systems with a finite number
of degrees of freedom, or with finite-dimensional memory; these are often
referred to as lumped systems.

One application in which the above question arises is in implementing a
computer algorithm that acts causally on a data stream. Thinking of the algo-
rithm as a system, the answer to the question indicates how much memory
will be needed to run the algorithm. In a control application, the answer to
the memory question above suggests the required level of complexity for the
controller of a given system. The controller has to remember enough about
the past to determine the effects of present control actions on the response of
the system.

With a state-space description, everything about the past that is relevant
to the present and future is summarized in the present values of a finite set of
state variables. These values together specify the present state of the system.
We are interested in the case of real-valued state variables. The number of
state variables, also referred to as the order of the state-space description,
indicates the number of degrees of freedom, or the dimension of the memory,
associated with the system or model.

4.2 ILLUSTRATIVE EXAMPLES

As a prelude to developing the general form of a state-space model, this
section presents in some detail a few CT and DT examples. In addition
to illustrating the process of building a state-space model, these examples
will suggest how state-space descriptions arise in a variety of contexts. This
section may alternatively be read after the more general presentation of state-
space models in Section 4.3. Several further examples appear later in the
chapter.

To begin, we examine a mechanical system that, despite its simplicity, is
rich enough to bring out typical features of a CT state-space model, and serves
as a prototype for a variety of other systems.
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Section 4.2 Illustrative Examples 165

Example 4.1 Inverted Pendulum

Consider the inverted pendulum shown in Figure 4.1. The pendulum is rigid, with mass
m, and can rotate about the pivot at its base, moving in the plane orthogonal to the
pivot axis. The distance from the pivot to the center of mass is �, and the pendulum’s
moment of inertia about the pivot is I. These parameters are all assumed constant.

The line connecting the pivot to the center of mass is at an angle θ(t) at time t,
measured clockwise from the vertical. An external torque is applied to the pendulum
around the axis of the pivot. We treat this torque as the input to our system, and denote
it by x(t), taken as positive when it acts counterclockwise.

Suppose the system output variable of interest, y(t), is just the pendulum angle,
so that y(t) = θ(t). In a typical control application, one might want to manipulate
x(t)—in response to measurements that are fed back to the controller—so as to
maintain y(t) near the value 0, thus balancing the inverted pendulum vertically.

The external torque is opposed by the torque due to the acceleration g of gravity
acting on the mass, which produces a clockwise torque of value mg� sin(θ(t)). Finally,
assume a frictional torque that opposes the motion in proportion to the magnitude of
the angular velocity. This torque is thus given by −βθ̇(t), where θ̇(t) = dθ(t)/dt and β

is some nonnegative constant.
Although the inverted pendulum is a simple system in many respects, it cap-

tures some essential features of systems that arise in diverse balancing applications, for
instance, supporting the body on a human ankle or a mass on a robot joint or wheel
axle. There are also control applications in which the pendulum is intended to move
in the vicinity of its normal hanging position rather than the inverted position, that is,
with θ(t) ≈ π . One might alternatively want the pendulum to rotate through full circles
around the pivot. All of these motions are described by the equations below.

A Conventional Model The rotational form of Newton’s law says the rate of
change of angular momentum equals the net torque. We can accordingly write

d
dt

(
I dθ(t)

dt

)
= mg� sin(θ(t)) − β

dθ(t)
dt

− x(t) . (4.1)

Since I is constant, the preceding expression can be rewritten in a form that is closer
to what is typically encountered in an earlier differential equations course:

I d2y(t)
dt2

+ β
dy(t)

dt
− mg� sin(y(t)) = −x(t) , (4.2)

which is a single second-order nonlinear differential equation relating the output y(t)
to the input x(t).

x(t)

mg

θ(t)

Figure 4.1 Inverted pendulum.
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166 Chapter 4 State-Space Models

State Variables To get at the notion of state variables, we examine what constitutes
the memory of the system at some arbitrary time t0. Assume the parameters I, m, �,
and β are all known, as is the external input x(t) for t ≥ t0. The question is, what more
needs to be known about the system at t0 in order to solve for the behavior of the
system for t > t0.

Solving Eq. (4.1) for θ(t) in the interval t > t0 ultimately requires integrating the
equation twice, which in turn requires knowledge of the initial position and velocity,
θ(t0) and θ̇(t0) respectively. Another way to recognize the special role of these two
variables is by considering the energy of the pendulum at the starting time. The energy
is the result of past inputs to the system, and is reflected in the ensuing motion of the
system. The potential energy at t = t0 is determined by θ(t0) and the kinetic energy by
θ̇(t0), so these variables are key to understanding the behavior of the system for t > t0.

State-Space Model The above discussion suggests that two natural memory vari-
ables of the system at any time t are q1(t) = θ(t) and q2(t) = θ̇(t). Taking these as
candidate state variables, a corresponding state-space description is found by trying
to express the rates of change of these variables at time t entirely in terms of the values
of these variables and of the input at the same time t. For this simple example, a pair of
equations of the desired form can be obtained quite directly. Invoking the definitions
of q1(t) and q2(t), as well as Eq. (4.1), and still assuming I is constant, we obtain

dq1(t)
dt

= q2(t) , (4.3)

dq2(t)
dt

= 1
I
(

mg� sin(q1(t)) − βq2(t) − x(t)
)

. (4.4)

This description comprises a pair of coupled first-order differential equations, driven by
the input x(t). These are referred to as the state evolution equations. The corresponding
output equation expresses the output y(t) entirely in terms of the values of the state
variables and of the input at the same time t; in this case, the output equation is simply

y(t) = q1(t) . (4.5)

The combination of the state evolution equations and the output equation constitutes
a state-space description of the system. The fact that such a description of the system
is possible in terms of the candidate state variables θ(t) and θ̇(t) confirms these as state
variables—the “candidate” label can now be dropped.

Not only does the ordinary differential equation description in Eq. (4.1) or equiv-
alently in Eq. (4.2) suggest what is needed to obtain the state-space model, but the
converse is also true: the differential equation in Eq. (4.1), or equivalently in Eq. (4.2),
can be obtained from Eqs. (4.3), (4.4), and (4.5).

Some Variations The choice of state variables above is not unique. For instance, the
quantities defined by q1(t) = θ(t) + θ̇(t) and q2(t) = θ(t) − θ̇(t) could have functioned
equally well. Equations expressing q̇1(t), q̇2(t), and y(t) as functions of q1(t), q2(t), and
x(t) under these new definitions are easily obtained, and yield a different but entirely
equivalent state-space representation.

The state-space description obtained above is nonlinear but time-invariant. It
is nonlinear because the state variables and input, namely q1(t), q2(t), and x(t), are
combined nonlinearly in at least one of the functions defining q̇1(t), q̇2(t), and y(t)—in
this case, the function defining q̇2(t). The description is time-invariant because all the
functions defining q̇1(t), q̇2(t), and y(t) are time-invariant, that is, they combine their
arguments q1(t), q2(t), and x(t) according to a prescription that does not depend on
time.

www.konkur.in

Telegram: @uni_k



Section 4.2 Illustrative Examples 167

For small enough deviations from the fully inverted position, q1(t) = θ(t) is
small, so sin(q1(t)) ≈ q1(t). With this approximation, Eq. (4.4) is replaced by

dq2(t)
dt

= 1
I
(

mg�q1(t) − βq2(t) − x(t)
)

. (4.6)

The function defining q̇2(t) is now an LTI function of its arguments q1(t), q2(t), and
x(t), so the resulting state-space model is now also LTI.

For linear models, matrix notation allows a compact representation of the state
evolution equations and the output equation. We will use bold lowercase letters for
vectors and bold uppercase for matrices. Defining the state vector and its deriva-
tive by

q(t) =
[

q1(t)
q2(t)

]
, q̇(t) = dq(t)

dt
=
[

q̇1(t)
q̇2(t)

]
, (4.7)

the linear model becomes

q̇(t) =
[

q̇1(t)
q̇2(t)

]
=
[

0 1
mg�/I −β/I

] [
q1(t)
q2(t)

]
+
[

0
−1/I

]
x(t)

= Aq(t) + bx(t) , (4.8)

where the definitions of the matrix A and vector b should be clear by comparison with
the preceding equality. The corresponding output equation can be written as

y(t) = [ 1 0
] [q1(t)

q2(t)

]
= cTq(t) , (4.9)

with cT denoting the transpose of a column vector, that is, a row vector. The time
invariance of the system is reflected in the fact that the coefficient matrices A, b, and
cT are constant rather than time-varying.

The ideas in the above example can be generalized to much more elab-
orate settings. In general, a natural choice of state variables for a mechanical
system is the set of position and velocity variables associated with each com-
ponent mass. For example, in the case of N point masses in three-dimensional
space that are interconnected with each other and to rigid supports by mass-
less springs, the natural choice of state variables would be the associated 3N
position variables and 3N velocity variables. If these masses were confined to
move in a plane, we would instead have 2N position variables and 2N velocity
variables.

The next example suggests how state-space models arise in describing
electrical circuits.

Example 4.2 Electrical Circuit

Consider the resistor-inductor-capacitor (RLC) circuit shown in Figure 4.2. All the
component voltages and currents are labeled in the figure.

We begin by listing the characteristics of the various components, which
we assume are linear and time-invariant. The defining equations for the inductor,
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Figure 4.2 RLC circuit.

capacitor, and the two resistors take the form, in each case, of an LTI constraint relating
the voltage across the element and the current through it. Specifically, we have

vL(t) = L
diL(t)

dt

iC(t) = C
dvC(t)

dt

vR1 (t) = R1iR1 (t)

vR2 (t) = R2iR2 (t) . (4.10)

The voltage source is defined by the condition that its voltage is a specified or arbitrary
v(t), regardless of the current i(t) that is drawn from it.

The next step is to describe the constraints on these variables that arise
from interconnecting the components. The interconnection constraints for an elec-
trical circuit are imposed by Kirchhoff’s voltage law (KVL) and Kirchhoff’s cur-
rent law (KCL). Both KVL and KCL produce additional LTI constraints relating
the variables associated with the circuit. Here, KVL and KCL yield the following
equations:

v(t) = vL(t) + vR2 (t)

vR2 (t) = vR1 (t) + vC(t)

i(t) = iL(t)

iL(t) = iR1 (t) + iR2(t)

iR1 (t) = iC(t) . (4.11)

Other such KVL and KCL equations can be written for this circuit, but turn out to be
consequences of the equations above, rather than new constraints.

Equations (4.10) and (4.11) together represent the individual components in the
circuit and their mutual connections. Any set of signals that simultaneously satisfies
all these constraint equations constitutes a valid solution—or behavior—of the cir-
cuit. Since all the constraints are LTI, it follows that weighted linear combinations or
superpositions of behaviors are themselves behaviors of the circuit, and time-shifted
behaviors are again behaviors of the circuit, so the circuit itself is LTI.
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Input, Output, and State Variables Let us take the source voltage v(t) as the input
to the circuit, and also denote this by x(t), our standard symbol for an input. Any of the
circuit voltages or currents can be chosen as the output. Choose vR2 (t), for instance,
and denote it by y(t), our standard symbol for an output.

As in the preceding example, a good choice of state variables is established by
determining what constitutes the memory of the system at any time. Apart from the
parameters L, C, R1, R2, and the external input x(t) for t ≥ t0, we ask what needs to
be known about the system at a starting time t0 in order to solve for the behavior of
the system for t > t0.

The existence of the derivatives in the defining expressions in Eq. (4.10) for the
inductor and capacitor suggests that at least iL(t0) and vC(t0) are needed, or quantities
equivalent to these. Note that, similarly to what was observed in the previous example,
these variables are also associated with energy storage in the system, in this case the
energy stored in the inductor and capacitor respectively. We accordingly identify the
two natural memory variables of the system at any time t as q1(t) = iL(t) and q2(t) =
vC(t), and these are our candidate state variables.

State-Space Model We now develop a state-space description for the RLC circuit
of Figure 4.2 by trying to express the rates of change of the candidate state variables at
time t entirely in terms of the values of these variables and of the input at the same
time t. This is done by reducing the full set of relations in Eqs. (4.10) and (4.11),
eliminating all variables other than the input, output, candidate state variables, and
derivatives of the candidate state variables.

This process for the present example is not as transparent as in Example 4.1,
and some attention is required in order to carry out the elimination efficiently. A
good strategy—and one that generalizes to more complicated circuits—is to express
the inductor voltage vL(t) and capacitor current iC(t) as functions of just the allowed
variables, namely iL(t), vC(t), and x(t) = v(t). Once this is accomplished, we make the
substitutions

vL(t) = L
diL(t)

dt
and iC(t) = C

dvC(t)
dt

, (4.12)

then rearrange the resulting equations to get the desired expressions for the rates of
change of the candidate state variables. Following this procedure, and introducing the
definition

α = R2

R1 + R2
(4.13)

for notational convenience, we obtain the desired state evolution equations. These are
written below in matrix form, exploiting the fact that these state evolution equations
turn out to be linear:[

diL(t)/dt
dvC(t)/dt

]
=
[−αR1/L −α/L

α/C −1/(R1 + R2)C

][
iL(t)
vC(t)

]
+
[

1/L
0

]
x(t) . (4.14)

This is of the form

q̇(t) = Aq(t) + bx(t) , (4.15)
where

q(t) =
[

q1(t)
q2(t)

]
=
[

iL(t)
vC(t)

]
(4.16)
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and the definitions of the coefficient matrices A and b are determined by comparison
with Eq. (4.14). The fact that these matrices are constant establishes that the descrip-
tion is LTI. The key feature here is that the model expresses the rates of change of the
state variables at any time t as constant linear functions of their values and that of the
input at the same time instant t.

As we will see in the next chapter, the state evolution equations in Eq. (4.14) can
be used to solve for the state variables iL(t) and vC(t) for t > t0, given the input x(t) =
v(t) for t ≥ t0 and the initial conditions on the state variables at time t0. Furthermore,
knowledge of iL(t), vC(t), and v(t) suffices to reconstruct all the other voltages and
currents in the circuit at time t. Having picked the output of interest to be vR2 (t) = y(t),
we can write (again in matrix notation)

y(t) = vR2 (t) = [αR1 α
] [ iL(t)

vC(t)

]
= cTq(t) . (4.17)

Input-Output Behavior Transforming Eqs. (4.10) and (4.11) using the bilateral
Laplace transform, and noting that differentiation in the time domain maps to mul-
tiplication by s in the transform domain, we can solve for the transfer function H(s)
of the system from x(t) to y(t). Alternatively, we can obtain the same transfer function
from Laplace transformation of the state-space description in Eqs. (4.14) and (4.17).
The next chapter presents an explicit formula for this transfer function in terms of the
coefficient matrices A, b, and cT.

For our RLC example, this transfer function H(s) from input to output is

H(s) = Y(s)
X(s)

=
α
(

R1
L s + 1

LC

)
s2 + α

(
1

R2C + R1
L

)
s + α 1

LC

. (4.18)

The corresponding input-output second-order LTI differential equation is

d2y(t)
dt2

+ α
( 1

R2C
+ R1

L

)dy(t)
dt

+ α
( 1

LC

)
y(t) = α

(R1

L

)dx(t)
dt

+ α
( 1

LC

)
x(t) . (4.19)

The procedure for obtaining a state-space description that is illustrated
in Example 4.2 can be used even if some of the circuit components are non-
linear. It can then often be helpful to choose inductor flux rather than current
as a state variable, and similarly to choose capacitor charge rather than volt-
age as a state variable. It is generally the case, just as in the Example 4.2, that
the natural state variables in an electrical circuit are the inductor currents or
fluxes, and the capacitor voltages or charges. The exceptions occur in degen-
erate situations, for example where a closed path in the circuit involves only
capacitors and voltage sources. In the latter instance, KVL applied to this path
shows that the capacitor voltages are not all independent.

State-space models arise naturally in many problems that involve track-
ing subgroups of some population of objects as they interact in time. For
instance, in chemical reaction kinetics the interest is in determining the
expected molecule numbers or concentrations of the various interacting chem-
ical constituents as the reaction progresses in continuous time. Another
instance involves modeling, in either continuous time or discrete time, the
spread of a fashion, opinion, idea, or disease through a human population,
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or of a software virus through a computer network. The following example
develops one such DT model and begins to explore its behavior. Some later
examples extend the analysis further.

Example 4.3 Viral Propagation

The DT model presented here captures some essential aspects of viral propagation in a
variety of settings. The model is one of a large family of such models, both deterministic
and stochastic, that have been widely studied. Though much of the terminology derives
from modeling the spread of disease by viruses, the paradigm of viral propagation has
been applied to understanding how, for example, malicious software, advertisements,
gossip, or cultural memes spread in a population or network.

The deterministic model here tracks three component subpopulations from the
nth DT epoch to the (n + 1)th. Suppose the total population of size P is divided into
the following subgroups, or “compartments,” at integer time n:

• s[n] ≥ 0 is the number of susceptibles, currently virus-free but vulnerable to
acquiring the virus;

• i[n] ≥ 0 is the number of infectives, carrying the virus and therefore capable of
passing it to the susceptibles by the next epoch; and

• r[n] ≥ 0 is the number of recovered, no longer carrying the virus and no longer
susceptible, because of acquired immunity.

The model below assumes these variables are real-valued rather than integer-valued,
which results in substantial simplification of the model, and may be a satisfactory
approximation when P is very large.

We assume the birth rate in these three subgroups has the same value β; this
is the (deterministic) fractional increase in the population per unit time due to birth.
Suppose the death rate is also β, so the total size of the population remains constant
at P. Assume 0 ≤ β < 1.

Let the rate at which susceptibles become infected be proportional to the con-
centration of infectives in the general population, hence a rate of the form γ (i[n]/P)
for some 0 < γ ≤ 1. The rate at which infectives move to the recovered compartment
is denoted by ρ, with 0 < ρ ≤ 1. We take newborns to be susceptible, even if born to
infective or recovered members of the population. Suppose also that newborns are
provided immunity at a rate 0 ≤ v[n] ≤ 1, for instance by vaccination, moving them
directly from the susceptible compartment to the recovered compartment. We consider
v[n] to be the control input, and denote it by the alternative symbol x[n].

With the above notation and assumptions, we arrive quite directly at the very
simple (and undoubtedly simplistic) model below, for the change in each subpopulation
over one time step:

s[n + 1] − s[n] = −γ (i[n]/P)s[n] + β(i[n] + r[n]) − βPx[n]

i[n + 1] − i[n] = γ (i[n]/P)s[n] − ρi[n] − βi[n]

r[n + 1] − r[n] = ρi[n] − βr[n] + βPx[n] . (4.20)

A model of this type is commonly referred to as an SIR model, as it comprises
susceptible, infective, and recovered populations. We shall assume that the initial con-
ditions, parameters, and control inputs are chosen so as to maintain all subpopulations
at nonnegative values throughout the interval of interest. The actual mechanisms of
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viral spread are of course much more intricate and complicated than captured in this
elementary model, and also involve substantial randomness and uncertainty.

If some fraction φ of the infectives gets counted at each time epoch, then the
aggregate number of infectives reported can be taken as our output y[n], so

y[n] = φi[n] . (4.21)

Notice that the expressions in Eq. (4.20) have a very similar form to the CT state evo-
lution equations we arrived at in the earlier two examples. For the DT case, take the
rate of change of a variable at time n to be the increment over one time step forward
from n. Then Eq. (4.20) expresses the rates of change of the indicated variables at
time n as functions of these same variables and the input at time n. It therefore makes
sense to think of s[n], i[n], and r[n] as state variables, whose values at time n constitute
the state of the system at time n.

The model here is time-invariant because the three expressions that define the
rates of change all involve combining the state variables and input at time n accord-
ing to prescriptions that do not depend on n. The consequence of this feature is that
any set of s[·], i[·], and r[·] signals that simultaneously satisfy the model equations will
also satisfy the model equations if they are all shifted arbitrarily by the same time off-
set. However, the model is not linear; it is nonlinear because the first two expressions
involve a nonlinear combination of s[n] and i[n], namely their product. The expression
in Eq. (4.21) writes the output at time n as a function of the state variables and input
at time n—though it happens in this case that only i[n] is needed.

It is conventional in the DT case to rearrange the state evolution equations into
a form that expresses the state at time n + 1 as a function of the state variables and
input at time n. Thus Eq. (4.20) would be rewritten as

s[n + 1] = s[n] − γ (i[n]/P)s[n] + β(i[n] + r[n]) − βPx[n]

i[n + 1] = i[n] + γ (i[n]/P)s[n] − ρi[n] − βi[n]

r[n + 1] = r[n] + ρi[n] − βr[n] + βPx[n] . (4.22)

In this form, the equations give a simple prescription for obtaining the state at time
n + 1 from the state and input at time n. Summing the three equations also makes
clear that for this example

s[n + 1] + i[n + 1] + r[n + 1] = s[n] + i[n] + r[n] = P . (4.23)

Thus, knowing any two of the subgroup populations suffices to determine the third,
if P is known. Examining the individual relations in Eqs. (4.20) or (4.22), and noting
that the term i[n] + r[n] in the first equation of each set could equivalently have been
written as P − s[n], we see that the first two relations in fact only involve the suscepti-
ble and infective populations, in addition to the input, and therefore comprise a state
evolution description of lower order, namely

s[n + 1] = s[n] − γ (i[n]/P)s[n] + β(P − s[n]) − βPx[n]

i[n + 1] = i[n] + γ (i[n]/P)s[n] − ρi[n] − βi[n] . (4.24)

Figure 4.3 shows a few state-variable trajectories produced by stepping the model
in Eq. (4.24) forward from a particular s[0], fixed at 8000 out of a population (P)
of 10,000, using different initial values i[0]. Note that in each case the number of
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Figure 4.3 Response of SIR model for a particular choice of parameter values and a variety
of initial conditions.

infectives, i[n], initially increases from its value at the starting time n = 0, before even-
tually decaying. This initial increase would correspond to “going viral” in the case of a
rumor, advertisement, or fashion that spreads through a social network, or to an epi-
demic in the case of disease propagation. The second equation in Eq. (4.24) shows that
i[n + 1] > i[n] precisely when

s[n]
P

>
ρ + β

γ
= 1

R0
. (4.25)

Here

R0 = γ

β + ρ
(4.26)

is a parameter that typically arises in viral propagation models, and is termed the
basic reproductive ratio (referring to “reproduction” of infectives, not to population
growth). Thus i[n] increases at the next time step whenever the fraction of susceptibles
in the population, s[n]/P, exceeds the threshold 1/R0. As s[n]/P cannot exceed 1, there
can be no epidemic if R0 ≤ 1. The greater the amount by which R0 exceeds 1, the fewer
the number of susceptibles required in order for an epidemic to occur.

Figure 4.3 also shows that the system in this case, with the immunization rate
fixed at x[n] = 0.5, reaches a steady state in which there are no infectives. This is
termed an infective-free steady state. In Examples 4.8, 4.10, and 5.5, we explore fur-
ther characteristics of the model in Eq. (4.24). In particular, it will turn out that it is
possible—for instance by dropping the immunization rate to x[n] = 0.2 while keeping
the other parameters as in Figure 4.3—for the attained steady state to have a nonzero
number of infectives. This is termed an endemic steady state.
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Compartmental models of the sort illustrated in the preceding example
are ubiquitous, in both continuous time and discrete time. We conclude this
section with another DT example, related to implementation of a filter using
certain elementary operations.

Example 4.4 Delay-Adder-Gain System

The block diagram in Figure 4.4 shows a causal DT system obtained by interconnecting
delay, adder, and gain elements. A (unit) delay has the property that its output value at
any integer time n is the value that was present at its input at time n − 1; or equivalently,
its input value at any time n is the value that will appear at its output at time n + 1. An
adder produces an output that is the sum of its present inputs. A gain element produces
an output that is the present input scaled by the gain value. These all correspond to LTI
operations on the respective input signals.

Interconnection involves equating, or “connecting,” each input of these various
elements to a selected output of one of the elements. The result of such an inter-
connection turns out to be well behaved if every loop has some delay in it, that
is, provided there are no delay-free loops. An overall external input x[n] and an
overall external output y[n] are also included in Figure 4.4. Such delay-adder-gain
systems (and their CT counterparts, which are integrator-adder-gain systems, as in
Example 4.5) are widely used in constructing LTI filters that produce a signal y[·] from
a signal x[·].

The memory of this system is embodied in the delay elements, so it is natural
to consider the outputs of these elements as candidate state variables. Accordingly,
we label the outputs of the memory elements in this example as q1[n] and q2[n]
at time n. For the specific block diagram in Figure 4.4, the detailed component and
interconnection equations relating the indicated signals are

q1[n + 1] = q2[n]

q2[n + 1] = p[n]

p[n] = x[n] − 0.5q1[n] + 1.5q2[n]

y[n] = q2[n] + p[n] . (4.27)

The response of the system for n ≥ n0 is completely determined by the external
input x[n] for times n ≥ n0 and the values q1[n0] and q2[n0] that are stored at the

1
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Figure 4.4 Delay-adder-gain block diagram.
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outputs of the delay elements at time n0. The delay elements capture the state of the
system at each time step, that is, they summarize all the past history that is relevant
to how the present and future inputs to the system determine the present and future
response of the system.

The relationships in Eq. (4.27) need to be condensed in order to express the
values of the candidate state variables at time n + 1 in terms of the values of these
variables at time n and the value of the external input at the same time instant n. This
corresponds to expressing the inputs to all the delay elements at time n in terms of all
the delay outputs at time n as well as the external input at this same time. The result
for this example is captured in the following matrix equation:

q[n + 1] =
[

q1[n + 1]
q2[n + 1]

]
=
[

0 1
−0.5 1.5

] [
q1[n]
q2[n]

]
+
[

0
1

]
x[n]

= Aq[n] + bx[n] . (4.28)

Similarly, the output at time n can be written in terms of the values of the candidate
state variables at time n and the value of the external input at the same time instant n:

y[n] = [−0.5 2.5
] [q1[n]

q2[n]

]
+ x[n] = cTq[n] + dx[n] . (4.29)

Notice that in this example, unlike in the previous examples, the output y[n] at any
time n depends not only on the state variables at time n but also on the input at that
time n.

Equations (4.28) and (4.29) establish that q1[n] and q2[n] are indeed valid state
variables. Specifically, the equations explicitly show that if one is given the values q1[n0]
and q2[n0] of the state variables at some initial time n0, and also the input trajectory
from n0 onward, that is, x[n] for times n ≥ n0, then we can compute the values of the
state variables and the output for times n ≥ n0. All that is needed is to iteratively apply
Eq. (4.28) to find q1[n0 + 1] and q2[n0 + 1], then q1[n0 + 2] and q2[n0 + 2], and so on
for increasing time arguments, and to use Eq. (4.29) at each time to find the output.

Transforming the relationships in Eq. (4.27) using the bilateral z-transform, and
noting that time-advancing a signal by one step maps to multiplication by z in the
transform domain, we can solve for the transfer function H(z) of the system from x[·]
to y[·]. Alternatively, the same transfer function can be obtained from z-transformation
of the state-space description; the next chapter presents an explicit formula for this
transfer function in terms of the coefficient matrices A, b, cT, and d. Either way, the
resulting transfer function for our example is

H(z) = Y(z)
X(z)

= 1 + z−1

1 − 3
2 z−1 + 1

2 z−2
, (4.30)

which corresponds to the following input-output difference equation:

y[n] − 3
2

y[n − 1] + 1
2

y[n − 2] = x[n] + x[n − 1] . (4.31)

The development of CT state-space models for integrator-adder-gain
systems follows a completely parallel route. Integrators replace the delay ele-
ments. Their outputs at time t constitute a natural set of state variables for
the system; their values at any starting time t0 establish the initial conditions
for integration over the interval t ≥ t0. The state evolution equations result
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from expressing the inputs to all the integrators at time t in terms of all the
integrator outputs at time t as well as the external input at this same time.

4.3 STATE-SPACE MODELS

As illustrated in the examples of the preceding section, it is often natural
and convenient, when studying or modeling physical systems, to focus not
just on the input and output signals but rather to describe the interaction and
time evolution of several key variables or signals that are associated with the
various component processes internal to the system. Assembling the descrip-
tions of these components and their interconnections leads to a description
that is richer than an input-output description. In particular, the examples in
Section 4.2 describe system behavior in terms of the time evolution of a set
of state variables that completely capture at any time the past history of the
system as it affects the present and future response. We turn now to a more
formal definition of state-space models in the DT and CT cases, followed by a
discussion of the two defining characteristics of such models.

4.3.1 DT State-Space Models

A state-space model is built around a set of state variables; we mostly limit
our discussion to real-valued state variables. The number of state variables in
a model or system is referred to as its order. We shall only deal with state-space
models of finite order, which are also referred to as lumped models.

For an Lth-order model in the DT case, we generically denote the values
of the L real state variables at time n by q1[n], q2[n], · · · , qL[n]. It is convenient
to gather these variables into a state vector

q[n] =

⎡⎢⎢⎢⎣
q1[n]
q2[n]

...
qL[n]

⎤⎥⎥⎥⎦ . (4.32)

The value of this vector constitutes the state of the model or system at time n.

DT LTI State-Space Model A DT LTI state-space model with single or scalar
input x[n] and single output y[n] takes the following form, written in compact
matrix notation

q[n + 1] = Aq[n] + bx[n] , (4.33)

y[n] = cTq[n] + dx[n] . (4.34)

In Eqs. (4.33) and (4.34), A is an L × L matrix, b is an L × 1 matrix or column
vector, and cT is a 1 × L matrix or row vector, with the superscript T denoting
transposition of the column vector c into the desired row vector. The quantity
d is a 1 × 1 matrix, or a scalar. The entries of all these matrices in the case of an
LTI model are numbers, constants, or parameters, so they do not vary with n.

www.konkur.in

Telegram: @uni_k



Section 4.3 State-Space Models 177

The next value of each state variable and the present value of the output are
all expressed as LTI functions of the present state and present input. We refer
to Eq. (4.33) as the state evolution equation, and to Eq. (4.34) as the output
equation. The model obtained for the delay-adder-gain system in Example 4.4
in the previous section has precisely the above form.

The system in Eqs. (4.33) and (4.34) is termed LTI because of its struc-
ture: the next state and current output are LTI functions of the current state
and current input. However, this structure also gives rise to a corresponding
behavioral sense in which the system is LTI. A particular set of input, state,
and output signals—x[·], q[·], and y[·], respectively—that together satisfy the
above state evolution equation and output equation is referred to as a behav-
ior of the DT LTI system. It follows from the linear structure of the above
equations that scaling all the signals in a behavior by the same scalar constant
again yields a behavior of this system. Also, summing two behaviors again
yields a behavior. More generally, a weighted linear combination of behaviors
again yields a behavior, so the behaviors of the system have the superposition
property. Similarly, it follows from the time invariance of the defining equa-
tions that an arbitrary time shift of a behavior—shifting the input, state, and
output signals in time by the same amount—again yields a behavior. Thus, the
LTI structure of the equations is mirrored by the LTI properties of its solutions
or behaviors.

Delay-Adder-Gain Realization A delay-adder-gain system of the form en-
countered in Example 4.4 can be used to simulate, or “realize,” any Lth-order,
DT LTI model of the type given in Eqs. (4.33) and (4.34). Key to this is the
fact that adders and gains suffice to implement the additions and multiplica-
tions associated with the various matrix multiplications in the LTI state-space
description.

To set up the simulation, we begin with L delay elements, and label their
outputs at time n as qj[n] for j = 1, 2, · · ·, L; the corresponding inputs are then
qj[n + 1]. The ith row of Eq. (4.33) shows what LTI combination of these qj[n]
and x[n] is required to compute qi[n + 1], for each i = 1, 2, · · ·, L. Similarly, Eq.
(4.34) shows what LTI combination of the variables is required to compute
y[n]. Each of these LTI combinations can now be implemented using gains
and adders.

The implementation produced by the preceding prescription is not
unique: there are multiple ways to implement the linear combinations,
depending, for example, on whether there is special structure in the matri-
ces, or on how computation of the various terms in the linear combination is
grouped and sequenced. In the case of the system in Example 4.4, for example,
starting with the model in Eqs. (4.28) and (4.29) and following the procedure
outlined in this paragraph will almost certainly lead to a different realization
than the one in Figure 4.4.

Generalizations Although our focus in the DT case will be on the above
LTI, single-input, single-output, state-space model, there are various natural
generalizations of this description that we mention for completeness. A multi-
input DT LTI state-space model replaces the single term bx[n] in Eq. (4.33)
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by a sum of terms, b1x1[n] + · · · + bMxM[n], where M is the number of inputs.
This corresponds to replacing the scalar input x[n] by an M-component vector
x[n] of inputs, with a corresponding change of b to a matrix B of dimension
L × M. Similarly, for a multi-output DT LTI state-space model, the single out-
put quantity in Eq. (4.34) is replaced by a collection of such output equations,
one for each of the P outputs. Equivalently, the scalar output y[n] is replaced
by a P-component vector y[n] of outputs, with a corresponding change of cT

and d to matrices CT and D of dimensions P × L and P × M respectively.
A linear but time-varying DT state-space model takes the same form as

in Eqs. (4.33) and (4.34), except that some or all of the matrix entries are time-
varying. A linear but periodically varying model is a special case of this, with
matrix entries that all vary periodically with a common period.

All of the above generalizations can also be simulated or realized by
delay-adder-gain systems, except that the gains will need to be time-varying
for the case of time-varying systems. For the nonlinear systems described
below, more elaborate simulations are needed, involving nonlinear elements
or combinations.

A nonlinear, time-invariant, single input, single output model expresses
q[n + 1] and y[n] as nonlinear but time-invariant functions of q[n] and x[n],
rather than as the LTI functions embodied by the matrix expressions on the
right-hand sides of Eqs. (4.33) and (4.34). Our full and reduced models for
viral propagation in Example 4.3 were of this type. A third-order nonlin-
ear time invariant state-space model, for instance, comprises state evolution
equations of the form

q1[n + 1] = f1

(
q1[n], q2[n], q3[n], x[n]

)
q2[n + 1] = f2

(
q1[n], q2[n], q3[n], x[n]

)
q3[n + 1] = f3

(
q1[n], q2[n], q3[n], x[n]

)
(4.35)

and an output equation of the form

y[n] = g
(

q1[n], q2[n], q3[n], x[n]
)

, (4.36)

where the state evolution functions f1(·), f2(·), f3(·) and the output function
g(·) are all time-invariant nonlinear functions of the three state variables q1[n],
q2[n], q3[n], and the input x[n]. Time invariance here means that the functions
combine their arguments in the same way, regardless of the time index n. In
vector notation,

q[n + 1] = f
(

q[n], x[n]
)

, y[n] = g
(

q[n], x[n]
)

, (4.37)

where for the third-order case

f( · ) =
⎡⎣ f1( · )

f2( · )
f3( · )

⎤⎦ . (4.38)

The notation for an Lth-order description follows the same pattern.
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Finally, a nonlinear, time-varying model expresses q[n + 1] and y[n] as
nonlinear, time-varying functions of q[n] and x[n]. In other words, the manner
in which the state evolution and output functions combine their arguments
can vary with n. For this case, we would write

q[n + 1] = f
(

q[n], x[n], n
)

, y[n] = g
(

q[n], x[n], n
)

. (4.39)

Nonlinear, periodically varying models can also be defined as a particular case
in which the time variations are periodic with a common period.

4.3.2 CT State-Space Models

Continuous-time state-space descriptions take a very similar form to the DT
case. The state variables for an Lth-order system may be denoted as qi(t),
i = 1, 2, . . ., L, and the state vector as

q(t) =

⎡⎢⎢⎢⎣
q1(t)
q2(t)

...
qL(t)

⎤⎥⎥⎥⎦ . (4.40)

In the DT case the state evolution equation expresses the state vector at the
next time step in terms of the current state vector and input values. In the CT
case the state evolution equation expresses the rates of change or derivatives
of each of the state variables as functions of the present state and inputs.

CT LTI State-Space Model The general Lth-order CT LTI state-space repre-
sentation takes the form

dq(t)
dt

= q̇(t) = Aq(t) + bx(t) , (4.41)

y(t) = cTq(t) + dx(t) , (4.42)

where dq(t)/dt = q̇(t) denotes the vector whose entries are the derivatives of
the corresponding entries of q(t). The entries of all these matrices are numbers
or constants or parameters that do not vary with t. Thus, the rate of change of
each state variable and the present value of the output are all expressed as
LTI functions of the present state and present input. As in the DT LTI case,
the LTI structure of the above system is mirrored by the LTI properties of
its solutions or behaviors, a fact that will become explicit in Chapter 5. The
models in Eqs. (4.8) and (4.9) of Example 4.1 and Eqs. (4.14) and (4.17) of
Example 4.2 are precisely of the above form.

Integrator-Adder-Gain Realization Any CT LTI state-space model of the
form in Eqs. (4.41) and (4.42) can be simulated or realized using an integrator-
adder-gain system. The approach is entirely analogous to the DT LTI case
that was described earlier. We begin with L integrators, labeling their out-
puts as qj(t) for j = 1, 2, · · ·, L. The inputs of these integrators are then the
derivatives q̇j(t). The ith row of Eq. (4.41) now determines what LTI combina-
tion of the qj(t) and x(t) is required to synthesize q̇i(t), for each i = 1, 2, · · ·, L.
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We similarly use Eq. (4.42) to determine what LTI combination of these vari-
ables is required to compute y(t). Finally, each of these LTI combinations
is implemented using gains and adders. We illustrate this procedure with a
specific example below.

Generalizations The basic CT LTI state-space model can be generalized
to multi-input and multi-output models, to nonlinear time-invariant mod-
els, and to linear and nonlinear time-varying or periodically varying models.
These generalizations can be described just as in the case of DT systems, by
appropriately relaxing the restrictions on the form of the right-hand sides of
Eqs. (4.41) and (4.42). The model for the inverted pendulum in Eqs.
(4.3), (4.4), and (4.5) in Example 4.1 was nonlinear and time-invariant,
of the form

q̇(t) = f
(

q(t), x(t)
)

, y(t) = g
(

q(t), x(t)
)

. (4.43)

A general nonlinear and time-varying CT state-space model with a single
input and single output takes the form

q̇(t) = f
(

q(t), x(t), t
)

, y(t) = g
(

q(t), x(t), t
)

. (4.44)

Example 4.5 Simulation of Inverted Pendulum for Small Angles

For sufficiently small angular deviations from the fully inverted position for the
inverted pendulum considered in Example 4.1, the original nonlinear state-space
model simplifies to the LTI state-space model described by Eqs. (4.8) and (4.9). This
LTI model is repeated here for convenience, but with the numerical values of a specific
pendulum inserted:

q̇(t) =
[

q̇1(t)
q̇2(t)

]
=
[

0 1
8 −2

] [
q1(t)
q2(t)

]
+
[

0
−1

]
x(t)

= Aq(t) + bx(t) (4.45)

and

y(t) = [ 1 0
] [ q1(t)

q2(t)

]
= cTq(t) . (4.46)

To simulate this second-order LTI system using integrators, adders, and gains,
we begin with two integrators and denote their outputs at time t by q1(t) and q2(t).
The inputs to these integrators are then q̇1(t) and q̇2(t), respectively, at time t. The
right-hand sides of the two expressions in Eq. (4.45) now show how to synthesize
q̇1(t) and q̇2(t) from particular weighted linear combinations of q1(t), q2(t), and x(t).
We use gain elements to obtain the appropriate weights, then adders to produce
the required weighted linear combinations of q1(t), q2(t), and x(t). By feeding these
weighted linear combinations to the inputs of the respective integrators, q̇1(t) and
q̇2(t) are set equal to these expressions. The output y(t) = q1(t) is directly read from
the output of the first integrator. The block diagram in Figure 4.5 shows the resulting
simulation.
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Figure 4.5 Integrator-adder-gain simulation of inverted pendulum for small angular deviations
from vertical.

4.3.3 Defining Properties of State-Space Models

The two defining characteristics of state-space models are the following:

• State Evolution Property The state at any initial time, along with the
inputs over any interval from that initial time onward, determine the
state trajectory, that is, the state as a function of time, over that entire
interval. Everything about the past that is relevant to the future state is
embodied in the present state.

• Instantaneous Output Property The outputs at any instant can be
written in terms of the state and inputs at that same instant.

The state evolution property is what makes state-space models particularly
well suited to describing causal systems. In the DT LTI case, the validity of
this state evolution property is evident from Eq. (4.33), which allows q[n] to
be updated iteratively, moving from time n to time n + 1 using only knowledge
of the present state and input. The same argument can also be applied to the
general DT state evolution expression in Eq. (4.39).

The state evolution property in the general CT case is more subtle to
establish, and actually requires that the function f(q(t), x(t), t) defining the rate
of change of the state vector satisfy certain mild technical conditions. These
conditions are satisfied by all the models of interest to us in this text, so we
shall not discuss the conditions further. Instead, we describe how the avail-
ability of a CT state-space model enables a simple numerical approximation
of the state trajectory at a discrete set of times spaced an interval 	 apart. This
numerical algorithm is referred to as the forward-Euler method.

The algorithm begins by using the state and input information at the
initial time t0 to determine the initial rate of change of the state, namely
f(q(t0), x(t0), t0). As illustrated in Figure 4.6, this initial rate of change is tan-
gent to the state trajectory at t0. The approximation to the actual trajectory
is obtained by stepping forward a time increment 	 along this tangent—the
forward-Euler step—to arrive at the estimate

q(t0 + 	) ≈ q(t0) + f(q(t0), x(t0), t0)	 . (4.47)
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q
.
i(t0)

qi(t)
qi(t0)

t0
t0 + ¢ 

t Figure 4.6 Using the CT state
evolution equations to obtain the state
trajectories over an interval.

This is equivalent to using a first-order Taylor series approximation to the
trajectory, or using a forward-difference approximation to q̇(t0).

With the estimate of q(t0 + 	) now available, and knowing the input
x(t0 + 	) at time t0 + 	, the same procedure can be repeated at this next
time instant, thereby getting an approximation to q(t0 + 2	). This iteration
can be continued over the entire interval of interest. Under the technical
conditions alluded to above, the algorithm accumulates an error of order
	2 at each time step, and takes T/	 time steps in an interval of length
T, thereby accumulating an error of order T	 by the end of the inter-
val. This error can be made arbitrarily small by choosing a sufficiently
small 	.

The forward-Euler algorithm suffices to suggest how a CT state-
space description gives rise to the state evolution property. For actual
numerical computation, more sophisticated numerical routines would be
used, based for example on higher-order Taylor series approximations,
and using variable-length time steps for better error control. The CT LTI
case is, however, much simpler than the general case. We shall demon-
strate the state evolution property for this class of state-space models in
detail in the Chapter 5, when we show how to explicitly solve for their
behavior.

The instantaneous output property is evident in the LTI case from the
output expressions in Eqs. (4.34) and (4.42). It also holds for the various gener-
alizations of basic single-input, single-output LTI models that we listed earlier,
most broadly for the output relations in Eqs. (4.39) and (4.44).

The state evolution and instantaneous output properties are the defining
characteristics of a state-space model. In setting up a state-space model, we
introduce the additional vector of state variables q[n] or q(t) to supplement
the input variables x[n] or x(t) and output variables y[n] or y(t). This supple-
mentation is done precisely in order to obtain a description that satisfies these
properties.

Often there are natural choices of state variables suggested directly by
the particular context or application. As already noted, and illustrated by the
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preceding examples in both DT and CT cases, state variables are related to
the “memory” of the system. In many physical situations involving CT models,
the state variables are associated with energy storage because this is what is
carried over from the past to the future.

One can always choose any alternative set of state variables that together
contain exactly the same information as a given set. There are also situations
in which there is no particularly natural or compelling choice of state variables,
but in which it is still possible to define supplementary variables that enable a
valid state-space description to be obtained.

Our discussion of the two key properties above—and particularly of the
role of the state vector in separating past and future—suggests that state-space
models are particularly suited to describing causal systems. In fact, state-space
models are almost never used to describe noncausal systems. We shall always
assume here, when dealing with state-space models, that they represent causal
systems. Although causality is not a central issue in analyzing many aspects
of communication or signal processing systems, particularly in non-real-time
contexts, it is generally central to control design and operation for dynamic
systems, and this is where state-space descriptions find their greatest value
and use.

4.4 STATE-SPACE MODELS FROM LTI
INPUT-OUTPUT MODELS

State-space representations can be very naturally and directly generated dur-
ing the modeling process in a variety of settings, as the examples in Section 4.2
demonstrated. Other—and perhaps more familiar—descriptions can then be
derived from them, for instance input-output descriptions.

It is also possible to proceed in the reverse direction, constructing state-
space descriptions from transfer functions, unit sample or impulse responses,
or input-output difference or differential equations, for instance. This is often
worthwhile as a prelude to simulation, filter implementation, in control design,
or simply in order to understand the initial description from another point of
view. The state variables associated with the resulting state-space descriptions
do not necessarily have interesting or physically meaningful interpretations,
but still capture the memory of the system.

The following two examples illustrate this reverse process, of synthesiz-
ing state-space descriptions from input-output descriptions, for the important
case of DT LTI systems. Analogous examples can be constructed for the CT
LTI case. The first example below also makes the point that state-space models
of varying orders can share the same input-output description, a fact that we
will understand better following the structural analysis of LTI systems devel-
oped in the next chapter. That structural analysis actually ends up also relating
quite closely to the second example in this section.
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Example 4.6 State-Space Models from an Input-Output Difference Equation

Consider the LTI input-output difference equation

y[n] + a1y[n − 1] + a2y[n − 2] = b1x[n − 1] + b2x[n − 2] . (4.48)

Building on the idea of state variables as memory variables, consider using the
following array of “past” variables as a candidate state vector:

q[n] =

⎡⎢⎢⎣
y[n − 1]
y[n − 2]
x[n − 1]
x[n − 2]

⎤⎥⎥⎦ . (4.49)

To obtain the corresponding state-space model, q[n + 1] has to be related to q[n]
and x[n]. Given that the initial difference equation is linear and time-invariant, we
might anticipate obtaining an LTI state-space description in the matrix form shown in
Eqs. (4.33) and (4.34). Using those equations as the template, consider what entries are
required in the matrices A, b, cT, and d to satisfy the equations for the above choice of
q[n], also taking account of the relationship embodied in the given difference equation.
The resulting fourth-order state-space model takes the form

q[n + 1] =

⎡⎢⎢⎣
y[n]

y[n − 1]
x[n]

x[n − 1]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−a1 −a2 b1 b2

1 0 0 0
0 0 0 0
0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

y[n − 1]
y[n − 2]
x[n − 1]
x[n − 2]

⎤⎥⎥⎦+

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ x[n]

= Aq[n] + bx[n] ,

y[n] = [−a1 −a2 b1 b2
]⎡⎢⎢⎣

y[n − 1]
y[n − 2]
x[n − 1]
x[n − 2]

⎤⎥⎥⎦
= cTq[n] . (4.50)

If we are somewhat more careful about our choice of state variables, it is possible to
get more economical models. For a third-order model, suppose we pick as state vector

q[n] =
⎡⎣ y[n]

y[n − 1]
x[n − 1]

⎤⎦ . (4.51)

The corresponding third-order state-space model takes the form

q[n + 1] =
⎡⎣ y[n + 1]

y[n]
x[n]

⎤⎦ =
⎡⎣−a1 −a2 b2

1 0 0
0 0 0

⎤⎦⎡⎣ y[n]
y[n − 1]
x[n − 1]

⎤⎦+
⎡⎣b1

0
1

⎤⎦ x[n] ,

y[n] = [ 1 0 0
]⎡⎣ y[n]

y[n − 1]
x[n − 1]

⎤⎦ . (4.52)

A more subtle choice of state variables can yield a second-order state-space model. For
instance, picking

q[n] =
[

y[n]
−a2y[n − 1] + b2x[n − 1]

]
, (4.53)
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the corresponding second-order state-space model takes the form[
y[n + 1]

−a2y[n] + b2x[n]

]
=
[−a1 1

−a2 0

][
y[n]

−a2y[n − 1] + b2x[n − 1]

]
+
[

b1
b2

]
x[n]

y[n] = [ 1 0
] [ y[n]

−a2y[n − 1] + b2x[n − 1]

]
. (4.54)

It turns out to be impossible in general to get a state-space description of order lower
than 2 in this case, if we want our state-space model to display all the behavior that
the original difference equation is able to. This should not be surprising, in view of the
fact that Eq. (4.48) is a second-order difference equation, which we know requires two
initial conditions in order to solve forward in time.

Notice how, in each of the above cases, the information contained in Eq. (4.48)—
the original difference equation—has been incorporated into the state-space model.

For an LTI system, the most fundamental description of input-output
behavior is provided by the system’s impulse response. In the case of a causal
LTI system, the impulse response is zero for negative times. The following
example suggests, for the DT case, what additional constraints on the unit
sample response or impulse response h[n] will ensure that it is realizable as
the impulse response of a causal DT LTI state-space system. The class of
causal DT LTI state-space systems considered in the next chapter turns out
to have impulse responses of precisely the form shown in this example. The
example illuminates the relation between exponential components of the
impulse response and state variables of the underlying realization.

Example 4.7 State-Space Model from a Unit Sample Response

Consider the impulse response h[n] of a causal DT LTI system. Causality requires that
h[n] = 0 for n < 0. The output y[n] can be related to past and present inputs x[k], k ≤ n,
through the convolution sum

y[n] =
n∑

k=−∞
h[n − k] x[k] (4.55)

=
( n−1∑

k=−∞
h[n − k] x[k]

)
+ h[0]x[n] . (4.56)

The first term in Eq. (4.56), namely

q[n] =
n−1∑

k=−∞
h[n − k] x[k] , (4.57)

represents the effect of the past on the present at time n, and would therefore seem
to have some relation to the notion of a state variable. Updating q[n] to the next time
step, we obtain

q[n + 1] =
n∑

k=−∞
h[n + 1 − k] x[k] . (4.58)

www.konkur.in

Telegram: @uni_k



186 Chapter 4 State-Space Models

In general, if the impulse response has no special form, the successive values of q[n]
have to be recomputed from Eq. (4.57) for each n. When we move from n to n + 1,
none of the past inputs x[k] for k ≤ n can be discarded because the expression for
q[n + 1] involves a different linear combination of the present and past x[·] than was
used to compute q[n]. Since all past inputs have to be retained, the memory of the
system is infinite.

However, consider the class of systems for which h[n] has the exponential form

h[n] = β λn−1u[n − 1] + d δ[n] , (4.59)

where β, λ, and d are constants. This h[n] is shown in Figure 4.7. The corresponding
transfer function is

H(z) = β

z − λ
+ d (4.60)

(with region of convergence |z| > |λ| ). What is important about this impulse response
is that a time-shifted version of it is simply related to a scaled version of it, because of
its DT-exponential form. For this case,

q[n] = β

n−1∑
k=−∞

λn−k−1x[k] (4.61)

and

q[n + 1] = β

n∑
k=−∞

λn−kx[k] (4.62)

= λ
(

β

n−1∑
k=−∞

λn−k−1x[k]
)

+ βx[n]

= λq[n] + βx[n] . (4.63)

Gathering Eqs. (4.56) and (4.61) with (4.63) results in a pair of equations that together
constitute a state-space description for this system:

q[n + 1] = λq[n] + βx[n] (4.64)

y[n] = q[n] + dx[n] . (4.65)

h[
n]

2.0

1.5

1.0

0.5

0.0
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n
15 20

b = 2.0

n = 0.8

d = 1.0

Figure 4.7 DT-exponential unit sample response.
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Consider next a similar but higher-order system with impulse response

h[n] = ( β1λ
n−1
1 + β2λ

n−1
2 + · · · + βLλn−1

L )u[n − 1] + d δ[n] (4.66)

with the βi, λi, and d being constants. The corresponding transfer function is

H(z) =
( L∑

i=1

βi

z − λi

)
+ d . (4.67)

If the transfer function H(z) of a causal DT LTI system is a rational function of z with
distinct (i.e., nonrepeated) poles, then it can be written in this form using a partial frac-
tion expansion, with appropriate choices of the βi, λi, L, and d. Note that although we
only treat rational transfer functions H(z) whose numerator and denominator poly-
nomials have real coefficients, the poles of H(z) may include some complex λi (and
associated complex βi), but in each such case its complex conjugate λ∗

i will also be a
pole, with associated weighting factor β∗

i , and the sum

βi(λi)n + β∗
i (λ∗

i )n (4.68)

will be real.
The block diagram in Figure 4.8 shows that the LTI system specified by

Eqs. (4.66) or (4.67) can be obtained through the parallel interconnection of sub-
systems with transfer functions corresponding to the simpler case of Eq. (4.60), or
equivalently paralleled subsystems with impulse responses corresponding to Eq. (4.59).
Motivated by this structure and the treatment of the first-order example, we define a
state variable for each of the L subsystems:

qi[n] = βi

n−1∑
k =−∞

λn−k−1
i x[k], i = 1, 2, . . . , L . (4.69)

With these definitions, state evolution equations for the subsystems take the same form
as in Eq. (4.63):

qi[n + 1] = λiqi[n] + βix[n], i = 1, 2, . . . , L . (4.70)

Also, combining Eqs. (4.57), (4.65), and (4.66) with the definitions in Eq. (4.69), the
output equation becomes

y[n] = q1[n] + q2[n] + · · · + qL[n] + d x[n] . (4.71)

x[n] y[n]

d

b1

z - n1

bL
z - nL

+

Figure 4.8 Decomposition of the rational transfer function of a causal DT LTI system, for the
case of distinct poles.

www.konkur.in

Telegram: @uni_k



188 Chapter 4 State-Space Models

Equations (4.70) and (4.71) together comprise an Lth-order state-space descrip-
tion of the given system. This state-space description can be written in the standard
matrix form in Eqs. (4.33) and (4.34), with

A =

⎡⎢⎢⎢⎣
λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 λL

⎤⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎣
β1
β2
...

βL

⎤⎥⎥⎥⎦ (4.72)

cT = [ 1 1 · · · · · 1
]

. (4.73)

The diagonal form of A in Eq. (4.72) reflects the fact that the state evolution
equations in this example are decoupled, with each state variable being updated inde-
pendently according to Eq. (4.70). We will see later how a general description of
the form given in Eqs. (4.33) and (4.34), with a distinct-eigenvalue condition that
we shall impose, can actually be transformed to a completely equivalent descrip-
tion in which the new A matrix is diagonal, as in Eq. (4.72). When there are
complex eigenvalues, this diagonal state-space representation will of course have
complex entries.

4.5 EQUILIBRIA AND LINEARIZATION OF
NONLINEAR STATE-SPACE MODELS

Chapters 5 and 6 will focus on LTI state-space models. One justification for this
focus is that LTI systems have rich structure and behavior that are amenable to
detailed study. This allows the development of powerful analytical approaches
and computational tools for dealing with them. As a consequence, it is
common for various modules in engineered systems—for instance, electrical
circuits as in Example 4.2 or DT filters as in Example 4.4—to be designed
within an LTI framework.

A second reason for our focus is that an LTI model arises naturally
as an approximate description of the local or “small-signal” behavior of a
nonlinear time-invariant model, for small deviations of its state variables
and inputs from a set of constant equilibrium values. The LTI state-space
model in Eqs. (4.8) and (4.9) for the inverted pendulum in Example 4.1 illust-
rates this.

In this section we present the conditions that define equilibrium in a non-
linear time-invariant state-space model, and describe the role of linearization
in obtaining the small-signal LTI model at this equilibrium.

4.5.1 Equilibrium

The DT Case Suppose that the input x[n] in the state-space model of
Eq. (4.37) is kept constant at the value x for all n. The corresponding state
equilibrium is a state value q with the property that if q[n] = q with x[n] = x,
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Section 4.5 Equilibria and Linearization of Nonlinear State-Space Models 189

then q[n + 1] = q. Equivalently, the point q in the state space is an equilibrium
(or equilibrium point) if, with x[n] = x for all n and with the system initialized
at q, the system subsequently remains fixed at q. The equilibrium is thus a
steady state of the system. From Eq. (4.37), this is equivalent in the DT case
to requiring that

q = f(q, x) . (4.74)

The corresponding equilibrium output is

y = g(q, x) . (4.75)

In defining an equilibrium, no consideration is given to what the system behav-
ior is in the vicinity of the equilibrium point, that is, to how the system will
behave if initialized close to—rather than exactly at—the point q. This issue
of the stability of an equilibrium or steady state is considered when we discuss
local behavior, and in particular local stability, around the equilibrium.

For specificity, consider a DT second-order nonlinear time-invariant
state-space system, with state evolution equations of the form

q1[n + 1] = f1

(
q1[n], q2[n], x[n]

)
q2[n + 1] = f2

(
q1[n], q2[n], x[n]

)
, (4.76)

and with the output y[n] defined by the equation

y[n] = g
(

q1[n], q2[n], x[n]
)

. (4.77)

The state evolution functions f1(·), f2(·) and the output function g(·) at time n
are all time-invariant nonlinear functions of the two state variables q1[n] and
q2[n] and of the input x[n]. These equations are the second-order version of
the general expressions in Eq. (4.37).

In this second-order case, and given x, we would find the equilibrium by
solving the following system of two simultaneous nonlinear equations in two
unknowns:

q1 = f1(q1, q2, x)

q2 = f2(q1, q2, x) . (4.78)

There is no guarantee in general that an equilibrium exists for the specified
constant input x, and there is no guarantee of a unique equilibrium when an
equilibrium does exist.

Example 4.8 Equilibrium in the Viral Propagation Model

The state evolution equations of the reduced second-order model for viral propagation
that we considered in Example 4.3 took the form

s[n + 1] = s[n] − γ (i[n]/P)s[n] + β(P − s[n]) − βPx[n]

i[n + 1] = i[n] + γ (i[n]/P)s[n] − ρi[n] − βi[n] , (4.79)
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190 Chapter 4 State-Space Models

where s[n] denoted the number of susceptibles at time n, i[n] the number of infectives
at that time, and x[n] the rate at which newborns are immunized. The parameter P
denoted the total population size, including the third subpopulation, namely that of
the recovered group, r[n]. The birth rate and death rate were both β; the recovery
rate was ρ; and γ denoted the coupling coefficient that determined how effectively the
infectives caused the susceptibles to contract the virus. We also introduced there the
basic reproductive ratio R0 = γ /(β + ρ).

Suppose the immunization rate is held constant at x[n] ≡ x, where 0 ≤ x ≤ 1. The
corresponding pair of equilibrium state variables, namely s susceptibles and ι infectives,
must then satisfy

s = s − γ (ι/P)s + β(P − s) − βPx

ι = ι + γ (ι/P)s − ρι − βι . (4.80)

Some straightforward computation shows that the above equations have two possible
solutions, corresponding to two possible equilibria, which we label IFE and EE for
“infective-free equilibrium” and “endemic equilibrium,” respectively:

IFE: s = P(1 − x) and ι = 0; or (4.81)

EE: s = P/R0 and ι = (βP/γ )[R0(1 − x) − 1] . (4.82)

In the IFE there are no infectives. This is the equilibrium seen in steady state in
Figure 4.3, and it does indeed occur at s = P(1 − x) = 10,000 × 0.5 = 5000.

In the EE, on the other hand, the number of infectives is positive, under the
condition R0 > 1/(1 − x). If R0 = 1/(1 − x) then there are no infectives in equilibrium,
and in fact under this condition the IFE and EE equilibria coalesce into a single equi-
librium. If R0 < 1/(1 − x), as with the system simulated in Figure 4.3, then the only
possible equilibrium with nonnegative populations is the IFE.

The CT Case We can apply the same idea to compute equilibria of CT non-
linear time-invariant state-space systems. Define the equilibrium q for the
system in Eq. (4.43) as a state value that the system does not move from when
initialized there, and when the input is fixed at x(t) = x. In the CT case, what
this requires is that the rate of change of the state, namely q̇(t), be zero at the
equilibrium, which yields the condition

0 = f(q, x) . (4.83)

(In general we shall use 0 for any vectors or matrices whose entries are all 0,
with the correct dimensions being apparent from the context.)

Again consider the concrete case of a second-order system:

q̇1(t) = f1

(
q1(t), q2(t), x(t)

)
q̇2(t) = f2

(
q1(t), q2(t), x(t)

)
, (4.84)

with

y(t) = g
(

q1(t), q2(t), x(t)
)

. (4.85)

For this second-order case, this condition takes the form
0 = f1(q1, q2, x)

0 = f2(q1, q2, x), (4.86)
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which is again a set of two simultaneous nonlinear equations in two unknowns,
with possibly no solution for a specified x, or one solution, or many.

Example 4.9 Equilibrium in the Inverted Pendulum

We saw in Example 4.1 that the state evolution equations for the inverted pendu-
lum are

dq1(t)
dt

= q2(t) , (4.87)

dq2(t)
dt

= 1
I
(

mg� sin(q1(t)) − βq2(t) − x(t)
)

. (4.88)

If the input torque x(t) is held constant at the value x, and the corresponding equilib-
rium values of the state variables are q1 and q2, then setting the rates of change of the
state variables to 0 at the equilibrium yields

0 = q2 , (4.89)

0 = 1
I
(

mg� sin(q1) − βq2 − x
)

. (4.90)

The equilibrium velocity q2 is therefore 0, and the equilibrium position q1 satisfies

sin(q1) = x/(mg�) . (4.91)

Since the maximum attainable magnitude of the function sin(q1) is 1, Eq. (4.91) has
solutions q1 if and only if |x| ≤ mg�. For |x| > mg�, there can be no equilibrium, and in
fact the pendulum exhibits continuous rotations.

If x = mg�, then Eq. (4.91) has the unique solution q1 = π/2 in the range
[−π , π], corresponding to the pendulum being stationary in the horizontal position,
with its mass providing the maximum possible torque to counterbalance the externally
imposed torque x. If x = −mg�, the equilibrium position is at q1 = −π/2, which is
again horizontal.

Otherwise, for mg� > x > 0, there are two solutions: the first is at the angle
q1 = arcsin(x/(mg�)) in the range [0, π/2], and the second at π minus this angle. These
two equilibria correspond to the pendulum being stationary at some angle above a
horizontal line through the pivot, or stationary at the same angle below the horizontal
line; in both cases, the torque due to the mass of the pendulum balances the exter-
nally imposed torque x. For 0 > x > mg�, there is a symmetric pair of equilibria at the
negatives of these angles. If the applied external torque is 0, that is, x = 0, then the
possible equilibrium positions are q1 = 0 and q1 = π , corresponding respectively to
the pendulum balancing straight up, or hanging straight down.

4.5.2 Linearization

We now examine system behavior in the vicinity of an equilibrium point
of a time-invariant nonlinear state-space model. For concreteness, consider
once more the second-order DT nonlinear system in Eq. (4.76). However, the
development below generalizes directly to Lth-order DT systems, and also
to the CT case, which is described separately below. Suppose that instead of
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x[n] being fixed at the constant value x associated with an equilibrium, x[n]
deviates from this by a value x̃[n], so

x̃[n] = x[n] − x . (4.92)

Suppose the state variables are correspondingly perturbed from their respec-
tive equilibrium values by amounts denoted by

q̃1[n] = q1[n] − q1 , q̃2[n] = q2[n] − q2 , (4.93)

and the output is perturbed by

ỹ[n] = y[n] − y . (4.94)

Our objective is to find a model that exactly or closely describes the behavior
of these various perturbations from an equilibrium point. This is possible if the
perturbations or deviations from equilibrium are small, because that allows
truncated Taylor series to provide good approximations to the various non-
linear functions. Linearization corresponds to truncating the Taylor series to
first order (i.e., to terms that are linear in the deviations), and produces an LTI
state-space model in the setting considered here. This LTI model is referred to
as the linearized, or small-signal, model at the equilibrium.

To linearize the original DT second-order nonlinear model in Eq. (4.76),
rewrite the variables appearing in that model in terms of the perturbations,
using the quantities defined in Eqs. (4.92) and (4.93), and then expand in
Taylor series to first order around the equilibrium values:

qi + q̃i[n + 1] = fi

(
q1 + q̃1[n] , q2 + q̃2[n] , x + x̃[n]

)
for i = 1, 2

≈ fi(q1, q2, x) + ∂fi

∂q1
q̃1[n] + ∂fi

∂q2
q̃2[n] + ∂fi

∂x
x̃[n] . (4.95)

All the partial derivatives above are evaluated at the equilibrium values, and
are therefore constants, not dependent on the time index n. Also note that the
partial derivatives above are with respect to the continuously variable state
and input arguments; there are no “derivatives” taken with respect to n, the
discretely varying time index.

The definition of the equilibrium values in Eq. (4.78) shows that the
term qi on the left of the above set of expressions exactly equals the term
fi(q1, q2, x) on the right, so what remains is the approximate relation

q̃i[n + 1] ≈ ∂fi

∂q1
q̃1[n] + ∂fi

∂q2
q̃2[n] + ∂fi

∂x
x̃[n] (4.96)

for i = 1, 2. Replacing the approximate equality sign (≈) with the equality sign
(=) in this set of expressions produces the linearized model at the equilibrium
point. This linearized model may be written in matrix form as[

q̃1[n + 1]
q̃2[n + 1]

]
︸ ︷︷ ︸

q̃[n+1]

=
[

∂f1/∂q1 ∂f1/∂q2
∂f2/∂q1 ∂f2/∂q2

]
︸ ︷︷ ︸

A

[
q̃1[n]
q̃2[n]

]
︸ ︷︷ ︸

q̃[n]

+
[

∂f1/∂x
∂f2/∂x

]
︸ ︷︷ ︸

b

x̃[n] . (4.97)
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We have therefore arrived at a standard DT LTI state-space description of the
state evolution of the linearized model, with state and input variables that are
the respective deviations from equilibrium of the underlying nonlinear model.
The corresponding output equation is derived similarly, and takes the form

ỹ[n] = [ ∂g/∂q1 ∂g/∂q2
]︸ ︷︷ ︸

cT

q̃[n] + [∂g/∂x]︸ ︷︷ ︸
d

x̃[n] . (4.98)

The matrix of partial derivatives denoted by A in Eq. (4.97) is also called a
Jacobian matrix, and denoted in matrix notation by

A =
[ ∂f
∂q

]
q, x

. (4.99)

The entry in its ith row and jth column is the partial derivative ∂fi(·)/∂qj ,
evaluated at the equilibrium values of the state and input variables. Similarly,

b =
[ ∂f
∂x

]
q, x

, cT =
[ ∂g
∂q

]
q, x

, d =
[∂g
∂x

]
q, x

. (4.100)

Example 4.10 Linearized Model for Viral Propagation

We return to the state evolution equations of the second-order model for viral
propagation considered in Example 4.3, namely

s[n + 1] = s[n] − γ (i[n]/P)s[n] + β(P − s[n]) − βPx[n]

i[n + 1] = i[n] + γ (i[n]/P)s[n] − ρi[n] − βi[n] . (4.101)

The two sets of state equilibrium values s and ι for this system were determined in
Example 4.8. Computing the appropriate Jacobians, the linearized model is[

s̃ [n + 1]
ι̃ [n + 1]

]
=
[

1 − (γ ι/P) − β −γ s/P
γ ι/P 1 + (γ s/P) − ρ − β

] [
s̃ [n]
ι̃ [n]

]
+
[−βP

0

]
x̃ [n] .

(4.102)
The output for the original system was defined in Eq. (4.21) and is already linear, so
the linearized output equation is simply

ỹ [n] = φ̃ι [n] = [ 0 φ
] [ s̃ [n]

ι̃ [n]

]
. (4.103)

The state evolution matrix in Eq. (4.102) can be rewritten in terms of the problem
parameters by substituting in the expressions for the equilibrium values s and ι that
were obtained in Example 4.8. In the case of the infective-free equilibrium (IFE),
where ι = 0, the state evolution matrix evaluates to

AIFE =
[

1 − β −γ (1 − x)
0 1 + γ [(1 − x) − (1/R0)]

]
. (4.104)

For the endemic equilibrium (EE), where ι > 0, and which can only exist for the case
R0 > 1/(1 − x), the state evolution matrix evaluates to

AEE =
[

1 − βR0(1 − x) −γ /R0
β[R0(1 − x) − 1] 1

]
. (4.105)
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The derivation of linearized state-space models in continuous time follows
exactly the same route, except that CT equilibrium is specified by the con-
dition in Eq. (4.83) rather than Eq. (4.74). The result is a model with a state
evolution equation of the form

d
dt

q̃(t) =
[ ∂f
∂q

]
q,x

q̃(t) +
[ ∂f
∂x

]
q, x̃

x(t) (4.106)

and output equation

ỹ(t) =
[ ∂g
∂q

]
q, x

q̃(t) +
[∂g
∂x

]
q, x

x̃(t) . (4.107)

Example 4.11 Linearized Model for the Inverted Pendulum

In this example, we return to the second-order state evolution equations for the
inverted pendulum considered in Example 4.1:

dq1(t)
dt

= q2(t) , (4.108)

dq2(t)
dt

= 1
I
(

mg� sin(q1(t)) − βq2(t) − x(t)
)

. (4.109)

The equilibria associated with this system were computed in Example 4.9. Evaluating
the relevant Jacobians, the linearized model is

d
dt

[
q̃1(t)
q̃2(t)

]
=
[

0 1
(mg�/I) cos(q1) −β/I

][
q̃1(t)
q̃2(t)

]
+
[

0
−1/I

]
x̃(t) . (4.110)

Note that for the case of linearization around the vertical equilibrium, with q1 = 0, we
recover the linearized model obtained in Eq. (4.8) of Example 4.1.

The output in the original nonlinear model was defined by the LTI expression
y(t) = θ(t) = q1(t), which is already linear in the state variable, so the output of the
small-signal model is simply

ỹ(t) = [ 1 0
] [ q̃1(t)

q̃2(t)

]
. (4.111)

Chapter 5 is devoted to more detailed analysis of the solution structure
of both DT and CT LTI systems. We will examine the internal behavior of
such a system, its stability, and its coupling to the input and output of the
system.

4.6 FURTHER READING

An excellent introduction to state-space models is [Lue], which illustrates the
value of such models for the study of dynamic behavior, stability and con-
trol in various interesting applications. The very accessible [Str] focuses on
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complex behavior (including limit cycles, bifurcations and chaos) in low-order
nonlinear state-space models, and includes examples from diverse application
domains. A more computationally oriented text that covers a similar range of
nonlinear behavior in a variety of applications is [Lyn]. The text [Clo] shows
how to develop state-space and other models for mechanical, electrical, elec-
tromechanical, thermal and fluid systems, the focus being on LTI models and
their analysis by transform methods. Specialized books in areas such as circuits
[Chu], epidemic modeling [Dal] or population modeling [Cas] also include
material on state-space modeling and analysis in their respective domains.
The texts cited here constitute useful further reading for Chapters 5 and 6
as well.

Problems

Basic Problems

4.1. A mass on a straight frictionless track is attached to one end of the track by a
nonlinear spring, and pulled on by an external force x(t) from the other end. Its
motion is described by the equation

d2y(t)
dt2

= −y3(t) + x(t) ,

where y(t) is the distance from the end where the mass is attached.

(a) Taking x(t) as the input and y(t) as the output, choose appropriate state vari-
ables and write down a (nonlinear) state-space description for this system.

(b) Determine the equilibrium values of the state variables in your model if the
input is x(t) = 8 for all t.

(c) Obtain a linearized state-space model for the system to describe small
deviations of the state variables and output from their equilibrium values in
(b), in response to perturbations in the input and initial values of the state
variables.

4.2. Suppose that instead of the differential equation in Problem 4.1, the system was
described by

d2y(t)
dt2

= −y3(t) + dx(t)
dt

+ x(t) .

(a) Will the choice of state variables you made in Problem 4.1 still work?
(b) Repeat parts (a)–(c) of Problem 4.1 for this new differential equation

model.

4.3. Suppose the motion of a small object is modeled by the equation

d2p(t)
dt2

+ φ
dp(t)

dt
+ p3(t) − μ2p(t) = x(t) ,

where p(t) denotes the position of the object (with respect to some reference
point), x(t) is the force applied to it, and φ (like μ2) is a positive constant.
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(a) Write down a state-space model for the system, using an appropriate choice
of state variables, taking x(t) as the input and the velocity dp(t)/dt as the
output y(t). Is your model nonlinear? Is it time-invariant?

(b) There are three possible equilibria when x(t) = 0 for all t. For each of these
three equilibria, specify the corresponding values of your state variables and
output.

(c) Of the three equilibria you found in (b), only one of them has the corre-
sponding equilibrium position of 0. For this particular equilibrium, write
down the linearized state-space model that describes small deviations q̃(t)
and ỹ(t) of the state variables and output from their respective equilibrium
values, in response to small deviations x̃(t) of x(t) from its equilibrium value
of 0. The entries of the matrices in your model should be expressed in
terms of the parameters φ and μ.

(d) Similarly determine the linearized models at the other two equilibria.

4.4. (a) Obtain a second-order CT state-space description for the circuit shown in
Figure P4.4, choosing appropriate state variables. The resistor, inductor,
and capacitor are all linear and time-invariant components, x(t) is a current
source, and y(t) is the resistor current. Write your description in the standard
form

dq(t)
dt

= Aq(t) + bx(t)

y(t) = cTq(t) + dx(t) .

i(t) y(t)

RC L

+

-
x(t) v(t)

Figure P4.4

(b) Find the differential equation relating x(t) and y(t). The direct (and
intended) approach is to eliminate variables appropriately, using your state
equations. However, also confirm your answer by computing the transfer
function from x(t) to y(t) using impedance methods (if you are familiar with
these), and then seeing what that transfer function implies about the input-
output differential equation.

4.5. Obtain a second-order CT state-space description for the circuit shown in
Figure P4.5, using appropriate state variables, and writing it in the standard
single-input single-output form

dq(t)
dt

= Aq(t) + bx(t)

y(t) = cTq(t) + dx(t) .
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The resistor, inductor, and capacitor are all linear and time-invariant compo-
nents, x(t) is the source voltage, and y(t) is the resistor voltage.

i(t) LR

C

-+
+

-
x(t)

y(t)

v(t)

+

-
Figure P4.5

4.6. Figure P4.6 is a block diagram for a second-order CT LTI system. The boxes in
this figure are integrators and the triangles are amplifiers or gains. The output
of an integrator is the integral of its input. Alternatively, its input can be seen
as the derivative of its output. For example, if the input to the top integrator is
q̇1(t), then its output is q1(t). The output of a gain element is simply the input
scaled by the gain. Specify the values of the nine gains so that the system in the
figure has the same state-space description as the one you have calculated for the
circuit in Problem 4.5.

*

y(t)* *

*

*

•x(t)
q
.
1(t)

+ +

* *

*

*

•
q
.
2(t)

+

Figure P4.6
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4.7. Consider the causal single-input, single-output Lth-order CT LTI state-space
system

q̇(t) = Aq(t) + bx(t) , y(t) = cTq(t) + dx(t) ,

with input x(t) and output y(t).
An inverse system for the above system is, in general terms, one that takes

as input the signal y(t) and produces as output the signal x(t).
When (and only when) d �= 0, there is a causal inverse system for the above

state-space system, and it has a state-space representation involving the same
state vector q(t) but input y(t) and output x(t). Assuming d �= 0, determine this
state-space representation, that is, express the quantities Ain, bin, cT

in, and din in
the state-space representation below in terms of A, b, cT, and d:

q̇(t) = Ainq(t) + biny(t) , x(t) = cT
inq(t) + diny(t) .

4.8. (a) Obtain a state-space description of the form

q[n + 1] = Aq[n] + bx[n]

y[n] = cTq[n] + dx[n]

for the system shown in Figure P4.8. Choose as state variables the outputs of
the delay elements, which have been shown as boxes marked with D. Label
the state variables as q1[n] to qN[n] from top to bottom.

(b) Find the difference equation relating x[n] and y[n]. You may find this eas-
iest to do by first examining the input-output relationship in the transform
domain, with the action of each delay element represented by multiplication
by z−1. Also, first try the computation for N = 2 or 3 to see the pattern that
emerges, before going on to the general case.

1/a0

-a1 b1

x[n] y[n]b0+ +

+ +

D

D

D

-a2 b2
+ +

-aN-1 bN-1
+ +

-aN bN
Figure P4.8

What this problem demonstrates is that the state-space equation in (a),
with the specific A, b, cT, and d that you determined in that part, constitutes one
possible state-space representation of the difference equation in (b). Thus, if you
are given the difference equation in (b) and asked to find one possible state-space
representation or realization of it, you are now in a position to respond.
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4.9. (a) Find the possible equilibrium states (that is, find the possible equilibrium
values q1 and q2 of the state variables) for the following DT second-order
system, when the input x[n] is held constant at a nonzero value x:

q1[n + 1] =
(

q1[n]
)2

x[n]

q2[n + 1] = q1[n] .

(b) If you did things correctly in (a), you should have found that there are two
possible equilibrium states, one being at the origin of the state space. For this
part, we are interested in the other equilibrium state, that is, the nonzero one.

Obtain a linearized state-space model that governs small perturbations from
the nonzero equilibrium, using the notation q̃i[n] = qi[n] − qi for i = 1, 2,
and similarly x̃[n] = x[n] − x.

4.10. The following pair of DT difference equations has been used as a model for
certain types of population growth:

p[n + 1] = q[n]

q[n + 1] = μ q[n]
(
1 − p[n]

)
, μ > 0 .

This model is in state-space form.

(a) Is this system linear? Time-invariant?
(b) Find the equilibrium points of the model, i.e., values p and q of p[n] and q[n]

respectively such that p[n + 1] = p[n] = p and q[n + 1] = q[n] = q.
(c) Assume p[0] = q[0] = 1

2 . Compute and plot the state vector (p[n], q[n]) for
0 ≤ n ≤ 500 for μ = 1.8, 1.9, 2.0, 2.1, and 2.2 (five separate plots). Describe
the behavior of the state trajectories as n increases, for each of these values
of μ.

Advanced Problems

4.11. Consider the LTI difference equation

y[k] + an−1y[k − 1] + · · · + a0y[k − n] = bn−1x[k − 1] + . . . + b0x[k − n] .

Show that this can be put in the state-space form

q[k + 1] = Aq[k] + bx[k]

y[k] = cTq[k] ,

by defining state variables

q1[k] = −a0y[k − 1] + b0x[k − 1]

q2[k] = −a1y[k − 1] + b1x[k − 1] + q1[k − 1]

...

qn−1[k] = −an−2y[k − 1] + bn−2x[k − 1] + qn−2[k − 1]

qn[k] = y[k] .

Determine the matrix A and vectors b and cT.
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4.12. (a) Consider the LTI differential equation

w(n)(t) + an−1w(n−1)(t) + · · · + a0w(t) = x(t) .

Show that if we define qi(t) = w(i−1)(t), then we can obtain an nth-order
state-space description of the form

q̇(t) = Aq(t) + bx(t) ,

where the ith entry of the vector q(t) is qi(t), and the ith entry of q̇(t) is q̇i(t).
Determine the matrix A and vector b.

(b) Define

y(t) = bn−1w(n−1)(t) + · · · + b0w(t) .

Use the fact that the differential equation given in (a) is LTI to show that

y(n)(t) + an−1y(n−1)(t) + · · · + a0y(t) = bn−1x(n−1)(t) + · · · + b0x(t) .

Also show that

y(t) = cTq(t) ,

where cT is a row vector that you should determine.

The preceding development establishes that the state evolution and output
equations we have defined, together with the specific A, b, and cT determined in
(a) and (b), constitute one possible state-space representation of the nth-order
differential equation given here in (b).

4.13. A variety of important biochemical reactions involve four chemical species,
with respective concentrations qi(t) ≥ 0 for i = 1, 2, 3, 4, whose interactions are
approximately—according to the law of mass action—governed by the following
state-space model with input x(t) and output y(t):

dq1(t)
dt

= −kf q1(t)q2(t) + krq3(t) + x(t)

dq2(t)
dt

= −kf q1(t)q2(t) + (kr + kc)q3(t)

dq3(t)
dt

= kf q1(t)q2(t) − (kr + kc)q3(t)

dq4(t)
dt

= kcq3(t)

y(t) = q4(t) .

The most well-known example involves a substrate (species 1, typically denoted
by S) to which an enzyme (species 2, or E) binds, forming a complex (species 3,
or ES), which is then converted into a product (species 4, or P) and the enzyme.
The net effect is the conversion of substrate to product, with the enzyme serving
as a catalyst but not being consumed or produced. The quantities kf , kr, and kc
are reaction rates, and are constant if the temperature is held constant. The input
x(t) ≥ 0 in this case describes the rate of addition of substrate.

(a) Assuming temperature is held constant, is this model time varying or time-
invariant, and is it linear or nonlinear?

(b) Show that q2(t) + q3(t) stays constant at its initial value q2(0) + q3(0). In the
specific example above, this sum is the total enzyme concentration, so the
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result here shows that the enzyme is not consumed or produced—it merely
catalyzes the reaction.

Assume for the rest of this problem that x(t) is fixed at some value x ≥ 0.

(c) With x = 0, what are the equilibrium values of the state variables, if q2(0) +
q3(0) = E0 > 0?

(d) Show that no equilibrium of the full system is possible with x > 0, but
that the first 3 state variables can have constant values in this case. Express
these three constant values in terms of x and the rate constants, and deter-
mine the rate of increase of y(t) (which is the product P in the particular
example above).

(e) Numerically explore the behavior of the system for various choices of the
rate parameters, input value x, and initial conditions.

4.14. Consider a causal CT system with input x(t) and output y(t), obtained by
cascading two CT causal subsystems as shown in Figure P4.14.

x(t) w(t) y(t)
Subsystem 1 Subsystem 2

Figure P4.14

The intermediate variable w(t) is related to the system input x(t) by the
differential equation

dw(t)
dt

+ w(t) = dx(t)
dt

+ γ x(t) ,

where γ is a real parameter. The system output y(t) is related to the intermediate
variable w(t) by the differential equation

dw(t)
dt

− εw(t) = dy(t)
dt

,

where ε is another real parameter.

(a) Three vectors have been respectively suggested by your friends Esmeralda,
Faustus, and Gayatri as candidates for a state vector q(t) in a state-space
model of this system, that is, a model of the form

q̇(t) = f
(

q(t) , x(t)
)

, y(t) = g
(

q(t), x(t)
)

.

The three candidates are

qE(t) =
[

w(t)
y(t)

]
, qF(t) =

[
w(t) − x(t)
y(t) − w(t)

]
, qG(t) =

[
x(t) − y(t)

y(t) − w(t) + 1

]
.

Which of these candidates can actually serve as a system state vector?
(At least one of them will work fine, but you should check whether more
than one might.) Give a brief explanation for your choice or choices of valid
state vectors.

(b) Only one state vector candidate from (a) yields an LTI state-space model
for this system, in the standard form

dq(t)
dt

= Aq(t) + bx(t), y(t) = cTq(t) + dx(t) .

Determine which one of the three state vector candidates it is, and fully
specify the corresponding entries of A, b, cT, and d (possibly as functions of
the parameters γ and ε).
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Extension Problems

4.15. (a) Verify by simulation the claim at the end of Example 4.3 on viral propaga-
tion, regarding what happens in steady state when the immunization rate
drops to x[n] = 0.2, keeping all other parameters the same. Provide plots
similar to those in Figure 4.3

(b) Check that your simulation in (a) actually settles to the endemic equilibrium
computed in Example 4.8.

(c) For the parameter values you used in (a), compute the matrix AEE given in
Eq. (4.105), which governs small deviations from the endemic equilibrium.
Also compute the eigenvalues and associated eigenvectors for this matrix.

4.16. Consider the DT LTI second-order model

[
q1[n + 1]
q2[n + 1]

]
︸ ︷︷ ︸

q[n + 1]

=
[−a1 1

−a2 0

]
︸ ︷︷ ︸

A

[
q1[n]
q2[n]

]
︸ ︷︷ ︸

q[n]

+
[

b1
b2

]
︸ ︷︷ ︸

b

x[n],

y[n] = [ 1 0
]︸ ︷︷ ︸

cT

q[n] .

(a) By working with the relationships embodied in the state-space model,
find a second-order difference equation relating the input and output,
x[n] and y[n].

(b) Let Q1(z), Q2(z), X(z), and Y(z) denote the unilateral or one-sided z-
transforms of q1[n], q2[n], x[n], and y[n], respectively, where the unilateral
z-transform of a signal v[n] is defined as

V(z) =
+∞∑
n=0

v[n]z−n .

Verify that the unilateral z-transform of the time-shifted signal v[n + 1] is

zV(z) − zv[0] .

(c) Apply the result in (b) to the given state-space model and verify that

Q(z) =
[

Q1(z)
Q2(z)

]
= (zI − A)−1bX(z) + z(zI − A)−1q[0] ,

and

Y(z) = cTQ(z) .

Then find an expression in terms of A, b, and cT for H(z), the transfer
function from X(z) to Y(z) when q[0] = 0.

(d) Now evaluate your expression for H(z) in (c) in terms of a1, a2, b1,
and b2, and verify that it is consistent with the difference equation you
obtained in (a).

4.17. The following simple DT state-space model attempts to describe the season-to-
season variations in the population densities of two interacting animal species.
One of them (the predator) feeds on the other (the prey). The classical example
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is that of the Canadian lynx and the snowshoe hare. Denoting the respective
population densities in season n by �[n] and r[n] respectively, the model is

�[n + 1] = (1 − d)�[n] + μ�[n]r[n] ,

r[n + 1] = (1 + b)r[n] − ν�[n]r[n] − βx[n] .

Here 0 < d < 1 represents the rate at which the lynx population would decay in
the absence of hares, and b > 0 represents the rate at which the hare population
would grow in the absence of lynx. The coupling coefficients μ > 0 and ν > 0
respectively determine the advantage to the lynx population and the jeopardy to
the hare population of interactions between the two species, with these interac-
tions assumed to occur in proportion to the product of the population densities.
The coefficient β > 0 determines the effectiveness of external control actions,
represented by the input x[n], that are aimed at limiting the hare population.

(a) Compute the two equilibrium points of this model, when x[n] is fixed at the
value x. You can think of an equilibrium point as an initial state �[0] = � and
r[0] = r from which the system does not move for n > 0.

(b) For each equilibrium point � and r, compute the associated linearized (and
LTI, DT state-space) model that approximately describes small deviations
�̃ [n] = �[n] − � and r̃ [n] = r[n] − r of the species population densities away
from this equilibrium. The linearized model retains only first-order devia-
tions from equilibrium, under the assumption that higher-order terms are
negligible, so a product term of the form �̃[n] r̃ [n], e.g., would be neglected.

Write your linearized model in the form[
�̃ [n + 1]
r̃ [n + 1]

]
= A

[
�̃ [n]
r̃ [n]

]
,

where A is a 2 × 2 matrix. You will, in general, have a different A associated
with each equilibrium point.

(c) Now start with some initial values �[0] > 0 and r[0] > 0 in the close vicin-
ity of the nontrivial equilibrium analyzed in (b), then simulate and plot the
resulting trajectories of �[n] and r[n] over 700 time steps using the original
nonlinear model. Begin by fixing b = d = 0.05, μ = ν = 0.001, and β = 0 for
your simulations. Then explore how changes in these parameter values affect
the results.
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5 LTI State-Space Models

Chapter 4 introduced state-space models for causal dynamical systems. The
state evolution property of these models allows numerical solution to advance
the state forward in time from a given initial state, provided the input is known
from that initial time onward. This will generate the entire state trajectory
associated with the particular initial state and input. For nonlinear models,
we cannot in general make broad qualitative conclusions, such as whether the
state trajectory will always be bounded to some finite region of the state space
when the input magnitude is bounded. However, for linear, time-invariant
(LTI) models, the structure and behavior can be analyzed in great detail and
generality, both in discrete time and continuous time. This chapter is devoted
to the analysis of LTI state-space models. The insights and tools developed
from the study of LTI systems provide a powerful basis for the design of var-
ious modules and components of engineering systems, and are also relevant
to the behavior of nonlinear time-invariant systems for small perturbations
around an equilibrium.

5.1 CONTINUOUS-TIME AND DISCRETE-TIME
LTI MODELS

Throughout this chapter, we restrict ourselves to single-input, single-output
Lth-order continuous-time (CT) LTI state-space models of the form

dq(t)
dt

= q̇(t) = Aq(t) + bx(t) (5.1)

204
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y(t) = cTq(t) + dx(t) , (5.2)

or discrete-time (DT) LTI state-space models of the form

q[n + 1] = Aq[n] + bx[n] (5.3)

y[n] = cTq[n] + dx[n] . (5.4)

Equation (5.1) represents CT LTI system dynamics as a set of coupled, first-
order, linear, constant-coefficient differential equations for the L variables
in q(t), driven by the input x(t). The symbol q̇(t) denotes the component-
wise derivative of q(t), with its ith component given by q̇i(t). Equation (5.3)
provides a similar representation of DT LTI system dynamics using coupled
first-order difference equations.

Solving LTI Models Determining the general solution of an LTI state-space
model follows the process used in solving linear constant-coefficient differen-
tial or difference equations in one variable. The general solution is written
as the sum of a homogeneous solution, that is, a solution for the unforced or
zero-input case, and a particular solution of the system. In the case of state-
space models, the homogeneous or zero-input response (ZIR) of most interest
is the response to the specified nonzero initial state at some starting time, with
the input identically zero at and after this starting time. The ZIR is treated in
Section 5.2. Section 5.3 describes the full solution as the sum of the ZIR and a
specific particular solution, the zero-state response (ZSR) due to the nonzero
input alone, when the initial state is zero. Understanding the ZIR and the full
ZIR-plus-ZSR solution from the starting time onward gives insight into sys-
tem stability, and into how the internal behavior relates to the input-output
characteristics of the system.

The CT and DT LTI state-space models in Eqs. (5.1)–(5.4) are com-
pletely specified by the associated matrix A, vectors b and cT , and scalar d;
their respective states are embodied in the vectors q(t) or q[n]. The analysis
of these models thus involves vector and matrix notation and operations, and
some related linear algebra. The following subsection briefly summarizes the
notation and facts we need in order to get started.

Vector and Matrix Operations We assume familiarity with the idea of a
vector space, where the associated operations of vector addition and scalar
multiplication again yield vectors in the space. A column or row array
of L real numbers specifies a point or vector in an L-dimensional real
Euclidean space, commonly represented in two and three dimensions as an
arrow from the origin to the specified point. Associated with this graphical
picture is the computation of the sum of two vectors using the “parallel-
ogram rule,” which simply corresponds to component-wise addition of the
entries of the associated arrays. Similarly, scalar multiplication just scales
the array, that is, multiplies each component of the array by the given
scalar.
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It will also be necessary, at least at intermediate stages of computa-
tions involving complex eigenvalues, to consider complex Euclidean space.
The vectors in this case are column or row arrays of L complex numbers,
and the scalars are also complex numbers. However, in our setting, no spe-
cial attention is needed when making this extension from real to complex
Euclidean spaces; the algebraic computations proceed as in the real case, with
the obvious modifications. Furthermore, our final answers in each instance
can be written and represented graphically in terms of real Euclidean vec-
tors, because the complex eigenvalues in the problems of interest to us arise
in complex conjugate pairs. We shall therefore generally rely on the con-
text to make clear whether we are working with real or complex vectors and
scalars.

The span of a set of vectors v1, . . . , vk denotes all vectors obtained
as weighted sums, or linear combinations, of the form α1v1 + · · · + αkvk
for arbitrary scalars α1, . . . , αk, with αivi here denoting scalar multiplica-
tion of a vector, and + denoting vector addition. The vectors in the span
themselves form a vector space, so we more commonly refer to the vec-
tors α1v1 + · · · + αkvk as comprising the space spanned by the vectors
v1, . . . , vk.

A set of vectors is termed independent if no vector in the set can be
expressed as a weighted sum of the others. The largest number of vectors
that can form an independent set in a vector space constitutes the dimen-
sion of the space. Such a set of vectors is called a maximal independent set.
In a two-dimensional plane, any two vectors will be independent if and only
if one is not a scalar multiple of the other; any three vectors in the plane will
be dependent, that is, not independent. The space spanned by two indepen-
dent vectors in a three-dimensional space is itself a two-dimensional space—a
plane through the origin—embedded in the larger space, and is an exam-
ple of a subspace, or a subset of a vector space that itself forms a vector
space. Our use of vector space methods will be restricted to the case of finite-
dimensional spaces, though we have actually encountered important infinite-
dimensional vector spaces in earlier chapters, most notably the space of �2 DT
signals.

The vectors in a maximal independent set within a vector space form a
basis for the space, that is, every other vector in the space can be written as a
weighted sum of the vectors in the basis set, and these weights are uniquely
determined. Though we omit the quite straightforward proof of the preceding
statement, it is an important result, and one that will be invoked repeatedly in
the following development.

We will in addition rely on an elementary knowledge of matrix oper-
ations. A matrix is usually viewed as a rectangular array of scalars, but it is
often more helpful to see it as an array of column vectors arranged side by
side. Thus, the L × k matrix P may be viewed as

P = [ p1 p2 · · · pk
]

, (5.5)

where the ith column pi is a column vector in an L-dimensional space. With
this picture, the matrix-vector product Pw can be interpreted as forming a
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weighted linear combination of the columns of P, with weights that are given
by the corresponding entries of the vector w:

Pw = [ p1 p2 · · · pk
]
⎡⎢⎢⎢⎣

w1
w2
...

wk

⎤⎥⎥⎥⎦ =
k∑
1

piwi . (5.6)

We shall invoke this interpretation frequently. The set of vectors of the form
Pw, as w varies over all possibilities, is a vector space that is referred to as
the range of the matrix P; the dimension of the range is called the rank of the
matrix.

There are also situations in which it is helpful to view a matrix as an array
of row vectors arranged one on top of the other, or simply as an operator that
maps vectors or matrices onto other vectors or matrices. We shall also assume
familiarity with the computation and use of the determinant and inverse of a
square matrix, at least for 2 × 2 and 3 × 3 matrices. Some examples later in
this chapter illustrate these computations.

Finally, we will use the fact that the independence of L column vec-
tors (or row vectors) in an L-dimensional space can be tested by forming the
L × L matrix whose columns (or rows) are these vectors, and then computing
the determinant of this matrix. The vectors are independent if and only if the
determinant is nonzero.

5.2 ZERO-INPUT RESPONSE AND
MODAL REPRESENTATION

5.2.1 Undriven CT Systems

We begin with the case of a CT LTI state-space model. For notational conve-
nience, we consider the time at which the analysis starts—the initial time—to
be t = 0. There is no loss of generality in doing so when dealing with time-
invariant models. If the initial time is actually some other time t0, then we only
need to account for the fact that the elapsed time since the starting time is
t − t0 rather than t.

Consider the response of the undriven system corresponding to
Eq. (5.1), that is, the response with x(t) = 0 for t ≥ 0, but with some nonzero
initial condition q(0). This is the ZIR of the system, and is a solution of the
undriven (or unforced, or homogeneous) system

q̇(t) = Aq(t) . (5.7)

CT Exponential Solutions and Modes It is natural when analyzing an
undriven LTI system to look for a solution in exponential form. This is because
undriven LTI systems must have solutions that are invariant to shifting and
scaling, and exponentials have the unique property that shifting them in time
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is equivalent to scaling them in amplitude. We accordingly look for a nonzero
solution of the form

q(t) = veλt , v �= 0 , (5.8)

where each state variable is a scalar multiple of the same exponential eλt, with
these scalar multiples assembled into the vector v. The boldface 0 in Eq. (5.8)
denotes an L-component column vector whose entries are all 0. Writing v �= 0
signifies that at least one component of v is nonzero.

Substituting Eq. (5.8) into the undriven model in Eq. (5.7) results in the
relation

λveλt = Aveλt , (5.9)

from which it follows that the vector v and scalar λ must satisfy

λv = Av , or equivalently, (5.10)

(λI − A)v = 0 , v �= 0 . (5.11)

Here I denotes the identity matrix, in this case of dimension L × L. The iden-
tity matrix has 1 in all its diagonal positions (i.e., positions where the row index
equals the column index), and 0 everywhere off-diagonal, so Iv = v for all vec-
tors v. This matrix is introduced in Eq. (5.11) because the L × L matrix A can
only be subtracted from an L × L matrix, not from the scalar λ.

Equation (5.11) can be interpreted as requiring some nonzero weighted
linear combination of the columns of the matrix (λI − A) to add up to the zero
vector 0, where the weights are the entries of the vector v. In other words, λ

must be such that the columns of the matrix (λI − A) are dependent. As noted
earlier, a simple analytical test for dependence of the columns of a square
matrix is that the determinant of the matrix be 0:

det(λI − A) = 0 . (5.12)

For an Lth-order system, the above determinant is always a monic polynomial
in λ of degree L, called the characteristic polynomial of the system or of the
matrix A:

det(λI − A) = a(λ) = λL + aL−1λ
L−1 + · · · + a0 . (5.13)

(The label monic denotes the fact that the coefficient of the highest-degree
term is 1.) It follows that the assumed exponential-form solution veλt in
Eq. (5.8) is a nonzero solution of the undriven system if and only if λ is one of
the L roots {λi}L

i=1 of the characteristic polynomial. These roots are referred to
as characteristic roots or natural frequencies of the system, and as eigenvalues
of the matrix A.

The vector v in Eq. (5.8) is correspondingly a nonzero solution vi of the
system of equations

(λiI − A)vi = 0 , vi �= 0 , (5.14)

and is termed the characteristic vector or eigenvector associated with λi. Note
from this equation that multiplying any eigenvector by a nonzero scalar again
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yields an eigenvector for the same eigenvalue. Consequently eigenvectors are
only defined up to a nonzero scaling, and any convenient nonzero scaling
or normalization can be used. Thus, it is the one-dimensional space (or line
through the origin) spanned by the eigenvector that is characteristic of the
system, not the actual eigenvector itself.

In summary, the undriven system has a solution of the exponential form
veλt if and only if λ equals some characteristic value or eigenvalue of A, and
the nonzero vector v is an associated characteristic vector or eigenvector.

We shall only be dealing with state-space models for which all the sig-
nals and the coefficient matrices A, b, cT, and d are real-valued (though we
may subsequently transform these models into the diagonal form seen in the
previous chapter, which may then have complex entries, but occurring in very
structured ways). The coefficients {ai} defining the characteristic polynomial
a(λ) in Eq. (5.13) are therefore real, and thus the complex roots of this poly-
nomial occur in conjugate pairs. Also, if vi is an eigenvector associated with
a complex eigenvalue λi, then v∗

i —the vector whose entries are the complex
conjugates of the corresponding entries of vi—is an eigenvector associated
with λ∗

i , the complex conjugate of λi. This can be seen by taking the complex
conjugate of both sides of the equality in Eq. (5.10) for the case where λ = λi,
v = vi, and A is real, to get λ∗

i v∗
i = Av∗

i .

Example 5.1
Eigenvalues and Eigenvectors for the
Linearized Pendulum Model

For the inverted pendulum introduced in Examples 4.1, 4.5, 4.9, and 4.11 in Chapter 4,
consider the undriven LTI model obtained for small deviations from the fully inverted
and stationary equilibrium position, and assume specific numerical values of the
parameters that result in the model

q̇(t) =
[

0 1
8 −2

]
q(t) , (5.15)

as in Example 4.5. Recall that the first state variable denoted the clockwise angular
deviation from the vertical, while the second state variable denoted the clockwise angu-
lar velocity. The linearized model approximately describes the time evolution of these
quantities, as long as they both remain close to their equilibrium values of 0.

To determine the ZIR, we require the eigenvalues and eigenvectors of the matrix

A =
[

0 1
8 −2

]
, (5.16)

so we begin by computing its characteristic polynomial:

det(λI − A) = det
[

λ −1
−8 λ + 2

]
= λ(λ + 2) − (−8)(−1)

= λ2 + 2λ − 8 = (λ − 2)(λ + 4) . (5.17)

In computing the determinant, we have used the fact that the determinant of an
arbitrary 2 × 2 matrix is given by

det
[

a b
c d

]
= ad − bc . (5.18)
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The roots of the characteristic polynomial are λ1 = 2 and λ2 = −4. To find v1, we look
for a nonzero solution to the equation

(λ1I − A)v1 =
[

2 −1
−8 4

] [
v11
v21

]
=
[

0
0

]
= 0 . (5.19)

Since eigenvectors are only defined to within a nonzero scale factor, we can take
v11 = 1, as long as it is not 0, and then solve for v21. If the assumption of nonzero
v11 is invalid, then we will discover that there is no choice of v21 that satisfies the above
pair of equations, in which case we would set v11 = 0 and then solve for v21. In the
present example, setting v11 = 1 in Eq. (5.19) shows that choosing v21 = 2 will satisfy
both equations. Hence

v1 =
[

1
2

]
. (5.20)

Higher-order systems require proceeding more systematically to solve L − 1 linear
equations for the remaining L − 1 components of the eigenvector.

To solve for the eigenvector v2 associated with λ2 = −4, the relevant equation is

(λ2I − A)v2 =
[ −4 −1

−8 −2

] [
v12
v22

]
=
[

0
0

]
= 0 . (5.21)

Again choosing v12 = 1, it follows that v22 = −4, so

v2 =
[

1
−4

]
. (5.22)

Suppose instead that the equilibrium of interest had been the normal hanging
position rather than the inverted position. Then the linearized model would have had
an entry of −8 instead of 8 in the matrix A of Eq. (5.16), resulting in the matrix

A
′ =
[

0 1
−8 −2

]
. (5.23)

The eigenvalues of this matrix are then the roots of

λ2 + 2λ + 8 = (λ + 1)2 + 7 , (5.24)

namely λ1 = −1 + j
√

7 and λ2 = λ∗
1 = −1 − j

√
7. Carrying out the eigenvector compu-

tation as before, with the appropriate modifications, we find

v1 =
[

1
−1 + j

√
7

]
=
[

1
−1

]
+ j
[

0√
7

]
= u + jw , v2 = v∗

1 = u − jw , (5.25)

where u and w are the real and imaginary parts of the vector v1.

When computing the eigenvalues of 3 × 3 matrices, it helps to know the
following expression for the determinant of a 3 × 3 matrix:

det

⎡⎣ a b c
d e f
g h i

⎤⎦ = (aei + bfg + cdh) − (gec + dbi + ahf ) . (5.26)

A general and very useful result is that the eigenvalues of an upper triangular
matrix—one that has all its nonzero entries on the diagonal and above—are
simply the elements along the diagonal of the matrix. The same holds for a

www.konkur.in

Telegram: @uni_k



Section 5.2 Zero-Input Response and Modal Representation 211

lower triangular matrix, and also for a diagonal matrix, that is, one whose
nonzero entries are on the diagonal. These results follow from the fact that
if A is such a matrix, then the determinant of λI − A is simply the product of
the elements along the diagonal.

A nonzero solution of the single-exponential form in Eq. (5.8) with
λ = λi and v = vi is referred to as the ith mode of the undriven system in
Eq. (5.7). The associated λi—which we have already termed a characteristic
frequency or natural frequency—is thus often called the ith mode frequency or
modal frequency, and vi is termed the ith mode shape or modal shape because
its various entries indicate the proportion in which the different state variables
are excited in the mode.

Note that if the solution is precisely the ith mode,

q(t) = vieλit , (5.27)

then the corresponding initial condition is q(0) = vi. It follows from the state
evolution property—applied to this special case of zero input—that for the
initial condition q(0) = vi, only the ith mode will be excited. Thus, to excite
only a single mode, the initial condition must be the associated eigenvector,
or equivalently, must lie in the one-dimensional eigenspace defined by the
eigenvector.

It can also be shown that eigenvectors associated with distinct eigenval-
ues are linearly independent, that is, none of them can be written as a weighted
linear combination of the remaining ones. For simplicity, we shall restrict our-
selves throughout to the case in which all L eigenvalues of A are distinct. This
will guarantee that v1, v2, . . . , vL form an independent set, and hence a basis
for the L-dimensional state space. (In some cases in which A has repeated
eigenvalues, it is possible to find a full set of L independent eigenvectors, but
this is not generally true.) We shall repeatedly use the fact that any vector in
an L-dimensional space, such as our state vector q(t) at any time t, can be writ-
ten as a unique linear combination of any L independent vectors in that space,
such as our L eigenvectors.

Modal Representation of the CT ZIR Because the undriven system in Eq.
(5.7) is linear, a weighted linear combination of modal solutions of the form
in Eq. (5.27), one for each eigenvalue λi, will also satisfy the equation.
Consequently a more general solution for the zero-input response is

q(t) =
L∑

i=1

αivie
λit . (5.28)

To verify that this expression—for arbitrary weights αi—serves as a solution
of the undriven system in Eq. (5.7), simply substitute the expression into the
undriven equation, and invoke the eigenvalue/eigenvector relation λivi = Avi:

d
dt

( L∑
i=1

αivie
λit
)

=
L∑

i=1

αiviλie
λit = A

( L∑
i=1

αivie
λit
)

. (5.29)
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The initial condition corresponding to the expression for q(t) in Eq. (5.28) is

q(0) =
L∑

i=1

αivi . (5.30)

Since the L eigenvectors vi are independent under our assumption of dis-
tinct eigenvalues, the right side of Eq. (5.30) can be made equal to any
desired q(0) by proper choice of the coefficients αi, and these coefficients
are unique. Hence specifying the initial condition of the undriven sys-
tem in Eq. (5.7) specifies the αi via Eq. (5.30). With these coefficients
thereby determined, the expression in Eq. (5.28) becomes an explicit gen-
eral solution of the ZIR for the undriven system in Eq. (5.7), under our
assumption of distinct eigenvalues. The expression on the right side of
Eq. (5.28) is referred to as the modal representation or decomposition of
the ZIR.

Example 5.2 ZIR of the Linearized Inverted Pendulum Model

In Example 5.1 we computed the eigenvalues and eigenvectors associated with the
A matrix that governed small perturbations of a pendulum from its inverted equili-
brium. The two modes of the undriven LTI model were of the form v1e2t and v2e−4t ,
hence respectively one that grows exponentially in magnitude and another that decays
exponentially in magnitude. The particular combination needed to construct the ZIR
depends on the initial condition q(0).

Suppose the initial position is given by q1(0) = 1.1 (in the applicable units), and
the initial velocity by q2(0) = −4. To determine how much the two modes are excited
by this initial condition, we solve Eq. (5.30) for α1 and α2, after making the appropriate
numerical substitutions:

q(0) =
[

1.1
−4

]
= α1v1 + α2v2 = α1

[
1
2

]
+ α2

[
1

−4

]
. (5.31)

Solving these two simultaneous equations for the two unknowns yields α1 = 1
15 and

α2 = 31
30 . The ZIR initiated by this initial condition q(0) is therefore

q(t) = α1v1eλ1t + α2v2eλ2t

= 1
15

[
1
2

]
e2t + 31

30

[
1

−4

]
e−4t . (5.32)

In the LTI model, this yields a solution in which position and velocity both eventually
grow exponentially in magnitude. However, when the position or velocity becomes
sufficiently large, and thereby sufficiently far from its equilibrium value, the behav-
ior of the linearized LTI model is no longer a good approximation of the small-signal
behavior of the nonlinear inverted pendulum model.

It is illuminating to interpret the modal solution graphically. Figure 5.1 shows
the state space—also called the phase plane in the case of a second-order system—
with coordinates q1 and q2. The eigenvectors v1 and v2 are indicated as arrows from

www.konkur.in

Telegram: @uni_k



Section 5.2 Zero-Input Response and Modal Representation 213
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Figure 5.1 Modal decomposition of the ZIR in the phase plane, for three different initial
conditions of the linearized inverted pendulum model in Example 5.2.

the origin to the appropriate points. The solution described above corresponds to the
rightmost trajectory in the figure. The initial condition has a large component along
v2 and a small component along v1; these components can be constructed graphically
using the parallelogram-rule decomposition. However, the component along v2 decays
with time as e−4t , while the component along v1 increases with time as e2t . By around
t = 1, corresponding to four time constants of the associated exponential, the compo-
nent along v2 is negligible, so the motion is essentially an exponential outward motion
along v1.

To excite only the stable mode of the model requires an initial condition of the
form q(0) = α2v2 for some nonzero weighting factor α2, so that the subsequent motion
of the system is α2v2e−4t . Figure 5.1 shows a trajectory corresponding to one such initial
condition, with α2 = −0.5, hence an initial angular position of q1(0) = −0.5 and an
initial angular velocity of q2(0) = 2. The motion of the system is an exponential decay
of both the angular position and the angular velocity to 0, with a decay factor of the
form e−4t . The pendulum thus converges exponentially to rest in the inverted position.

The third trajectory shown in Figure 5.1 corresponds to the pendulum starting
from rest, so q2(0) = 0, with an initial position of q1(0) = −0.5. Decomposing this ini-
tial condition into its components along the eigenvectors, one component decays in
magnitude as e−4t and the other grows as e2t . Again, after about t = 1, the motion is
essentially an exponential outward motion, this time along −v1.

Complex Mode Pairs in CT The eigenvalues in Example 5.2 are both
real. The contribution to the modal decomposition from a conjugate pair of
complex eigenvalues λi and λ∗

i will be a real term of the form

αivie
λit + α∗

i v∗
i eλ∗

i t . (5.33)

Writing λi = σi + jωi, so σi is the real part and ωi the imaginary part of the
eigenvalue, and similarly writing vi = ui + jwi, some algebra shows that

αivieλit + α∗
i v∗

i eλ∗
i t = Kieσit[ui cos(ωit + θi) − wi sin(ωit + θi)] (5.34)
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214 Chapter 5 LTI State-Space Models

for some constants Ki and θi that are determined by the initial conditions
in the process of matching the two sides of Eq. (5.30). The above contribu-
tion to the modal solution therefore lies in the plane spanned by the real
and imaginary parts, ui and wi respectively, of the eigenvector vi. The asso-
ciated motion in this plane involves an exponential spiral, with growth or
decay of the spiral determined by whether σi = Re{λi} is positive or negative
respectively, corresponding to the eigenvalue λi lying in the open right or left
half-plane respectively. If σi = 0, that is, if the conjugate pair of eigenvalues
lies on the imaginary axis, then the spiral degenerates to a closed loop. The
rate of rotation of the spiral is determined by ωi = Im{λi}.

Example 5.3 ZIR of the Linearized Hanging Pendulum Model

Returning to the pendulum model linearized around the normal hanging position, as
presented in Example 5.1, the eigenvalues were found to be

λ1 = −1 + j
√

7 = λ∗
2

and the corresponding eigenvectors were given by

v1 =
[

1
−1

]
+ j
[

0√
7

]
= u + jw = v∗

2 .

Directly applying the result in Eq. (5.34), the ZIR of the system in this case is[
q1(t)
q2(t)

]
= Ke−t

( [ 1
−1

]
cos(

√
7t + θ) −

[
0√
7

]
sin(

√
7t + θ)

)
. (5.35)

This corresponds to a contracting clockwise spiral in the phase plane, as seen in
Figure 5.2. Physically, the trajectory corresponds to the pendulum undergoing damped
oscillations whose amplitude decays exponentially.

q1

q 2

-0.5 0 0.5 1 1.5
-3

-2

-1

0

1

2

3

q(t)

q(0)

Figure 5.2 Phase-plane plot of ZIR for pendulum around normal hanging position in
Example 5.3.
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Section 5.2 Zero-Input Response and Modal Representation 215

The constants K and θ are determined by the initial condition, on solving for
them in the following pair of equations:[

q1(0)
q2(0)

]
= K

( [ 1
−1

]
cos(θ) −

[
0√
7

]
sin(θ)

)
. (5.36)

5.2.2 Undriven DT Systems

A similar development can be carried out in the DT case for the ZIR of the
system in Eq. (5.3), namely the solution of the undriven system

q[n + 1] = Aq[n] . (5.37)

One difference from the CT case is that the ZIR trajectories of the DT system
in state space comprise a sequence of discrete points rather than a continuous
trajectory. Another difference is that Eq. (5.37) is easily stepped forward from
time 0 to obtain the explicit solution

q[n] = Anq[0] . (5.38)

However, this expression does not convey much insight into the qualitative
behavior of the state trajectory over time unless we understand how the
entries of A relate to the entries of An.

Example 5.4 The Entries of A
n

as n Increases

The relation between the entries of a matrix A and the entries of its nth power An is
not direct. The eigenvalues play a central role in this. Consider the following examples:

A1 =
[

0.6 0.6
0.6 0.6

]
, A2 =

[
101 100

−101 −100

]
,

A3 =
[

100.5 100
−100.5 −100

]
, A4 =

[
0.6 100
0 0.5

]
. (5.39)

All four matrices have enough special structure that one can write simple expressions
for their nth powers. The matrix A1 has all its entries less than 1 in magnitude, yet its
nth power for n ≥ 1 is

An
1 = (1.2)n

[
0.5 0.5
0.5 0.5

]
, (5.40)

whose entries grow exponentially with n. This behavior is due to the eigenvalues of A1
being 1.2 and 0. On the other hand, even though A2, A3, and A4 have large entries in
them, for n ≥ 1 their respective nth powers are

An
2 = A2

An
3 = (0.5)n

[
201 200

−201 −200

]
An

4 =
[

0.6n 1000(0.6n − 0.5n)
0 0.5n

]
. (5.41)
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Thus An
2 , whose eigenvalues are at 0 and 1, remains nonzero but bounded; An

3 ,
whose eigenvalues are at 0.5 and 0, has entries going to 0 as n → ∞; and An

4 , whose
eigenvalues are at 0.6 and 0.5, again has all entries going to 0 as n → ∞.

The conclusion from the above observations is that the individual entries of a
matrix do not directly reveal much about how powers of the matrix behave. The eigen-
values of a matrix are what determine whether—and how—the entries of the matrix
power grow, decay, or remain bounded. When all the eigenvalues have magnitude less
than 1, the entries all decay to 0; if any eigenvalues have magnitude greater than 1, the
entries grow exponentially; and if some eigenvalues have magnitude 1, with the rest
of smaller magnitude, then the entries of the matrix power stay bounded but do not
all decay to 0.

Modal Decomposition of the DT ZIR Equation (5.38) shows that the behav-
ior of An determines the ZIR of a DT LTI system. To further elucidate this
ZIR, again assume an exponential solution, which in the DT case takes the
form

q[n] = vλn , v �= 0 . (5.42)

Substituting this into the undriven system of Eq. (5.37) produces exactly the
same eigenvalue/eigenvector condition as in the CT case, namely

λv = Av , or equivalently,

(λI − A)v = 0 , v �= 0 . (5.43)

Assuming that A has L distinct eigenvalues λ1, · · · , λL guarantees that the
associated eigenvectors v1, · · · , vL are independent. The modal decomposition
of the general ZIR solution in the DT case then takes the form

q[n] =
L∑

i=1

αiviλ
n
i , (5.44)

where the coefficients αi are determined by the initial condition, through the
equation

q[0] =
L∑

i=1

αivi . (5.45)

Complex Mode Pairs in DT If the real matrix A has a complex eigenvalue

λi = ρie
j�i , ρi > 0 , 0 < �i < π , (5.46)

written here in a form that is better suited to the DT case, then the com-
plex conjugate of this eigenvalue, namely λ∗

i = ρie−j�i , also appears among
the eigenvalues of A. Furthermore, if vi = ui + jwi is the eigenvector associ-
ated with λi, then its complex conjugate is the eigenvector associated with the
eigenvalue λ∗

i . The contribution of this complex conjugate pair of modes to
the ZIR is a real term of the form

αiviλ
n
i + α∗

i v∗
i (λ∗

i )n . (5.47)
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With some algebra, the real expression in Eq. (5.47) can be reduced to the
form

αiviλ
n
i + α∗

i v∗
i (λ∗

i )n = Kiρ
n
i [ui cos(�in + θi) − wi sin(�in + θi)] . (5.48)

The constants Ki and θi are determined by the initial conditions in the pro-
cess of matching the two sides of Eq. (5.45). This pair of modes thus has an
oscillatory contribution to the ZIR.

The case of an eigenvalue λi that has angle �i = ±π merits special atten-
tion. This corresponds to λi being the negative real number −ρi, rather than
one of a complex pair. Its contribution to the ZIR is nevertheless oscillatory,
due to the alternating sign of (−ρi)n. In fact, this sign alternation represents
the fastest oscillation a DT system can have.

5.2.3 Asymptotic Stability of LTI Systems

An LTI state-space system is termed asymptotically stable or internally stable
if its ZIR decays to zero for all initial conditions. The system is sometimes
called marginally stable if it is not asymptotically stable but has a ZIR that
remains bounded for all time with all initial conditions. The system is called
unstable if it is not asymptotically stable; a marginally stable system is thus also
considered unstable. The stability of an LTI system is directly related to the
behavior of its modes, and more specifically to the values of the characteristic
or natural frequencies λi, which are the roots of the characteristic polynomial.

CT Systems For the CT case, we can write λi = σi + jωi, so σi and ωi denote
the real and imaginary parts of the natural frequency. The complex signal

eλit = eσitejωit (5.49)

decays exponentially in magnitude to 0 if and only if σi < 0, that is, if and only
if Re{λi} < 0. The modal decomposition of the ZIR in Eq. (5.28) now shows
that the condition Re{λi} < 0 for all 1 ≤ i ≤ L is necessary and sufficient for
asymptotic stability of a CT LTI system. Thus all natural frequencies have
to be in the open left half of the complex plane, that is, strictly in the left
half-plane.

An associated observation follows from considering the relative mag-
nitudes of the various terms in the modal decomposition of the ZIR. Note
that for sufficiently large values of time t, the dominant terms in the modal
decomposition will be those involving the eigenvalues of maximum real part
σmax, known as the dominant eigenvalues, as represented in Figure 5.3; the
other modal terms will be much smaller relative to these. The quantity σmax is
referred to as the spectral abscissa of the matrix A. The modal decomposition
in Eq. (5.28) now shows that the state trajectory q(t) for sufficiently large t will
be essentially confined to the space spanned by the eigenvectors associated
with the dominant eigenvalues. The system is marginally stable if σmax = 0.

If the LTI system is the result of linearizing around an equilibrium point
of an underlying nonlinear time-invariant system, then asymptotic stability of
the linearization indicates that the nonlinear system is locally asymptotically
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Figure 5.3 Dominant modes for an
asymptotically stable system.

stable in a sense that can be made precise but which we do not elaborate on
here. On the other hand, if the linearization has at least one mode that grows
exponentially—if σmax > 0—then the nonlinear system is locally unstable. In
the marginal case, where the linearization is not asymptotically stable but
has no growing modes—when σmax = 0—the linearization does not contain
enough information to make a conclusion about the local behavior of the non-
linear system; higher-order terms, beyond those retained in the linearization,
are needed to establish what the local behavior is.

The linearized models of the pendulum examined in Examples 5.1 and
5.2 illustrate some of these results. The linearized model around the inverted
equilibrium had characteristic frequencies at 2 and −4, and was therefore not
asymptotically stable. The graphical analysis in Example 5.2 and Figure 5.1
also showed that the dominant term in the ZIR was associated with the eigen-
value at 2, and that the state trajectory for sufficiently large t was essentially
along the eigenvector associated with this dominant eigenvalue. In contrast,
the linearized model around the normal hanging equilibrium had characteris-
tic frequencies of −1 ± √

7, and therefore was asymptotically stable. This pair
of complex eigenvalues together constituted the dominant set in this case.

DT Systems For the DT case, we write λi = ρiej�i with ρi ≥ 0, so ρi is the
magnitude |λi| and �i is the angle � λi of the natural frequency. Then the
complex signal

λn
i = ρn

i ejn�i (5.50)

decays exponentially in magnitude to 0 if and only if ρi = |λi| < 1. For the
special case of an eigenvalue at 0, the associated mode drops to 0 in a single
step. The modal decomposition of the ZIR in Eq. (5.44) now shows that the
condition |λi| < 1 for all 1 ≤ i ≤ L is necessary and sufficient for asymptotic
stability of a DT LTI system. Thus all natural frequencies have to be in the
open unit circle of the complex plane, that is, strictly within the unit circle.
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The notion of dominant modes carries over to the DT setting as well. In
the DT case, the eigenvalues of maximum magnitude ρmax are the dominant
ones. The quantity ρmax is called the spectral radius of the matrix A. For n
sufficiently large, the trajectory q[n] will be essentially confined to the space
spanned by the eigenvectors associated with the dominant eigenvalues. The
system is marginally stable if ρmax = 1.

As in the CT case, if the DT LTI system is the result of linearizing
around an equilibrium point of an underlying nonlinear time-invariant
system, then asymptotic stability of the linearization indicates that the
nonlinear system is locally asymptotically stable. If the linearization has at
least one mode that grows exponentially—if ρmax > 1—then the nonlinear
system is locally unstable. In the marginal case, where the linearization is
not asymptotically stable but has no growing modes—when ρmax = 1—the
linearization does not contain enough information to make a conclusion about
the local behavior of the nonlinear system; higher-order terms, beyond those
retained in the linearization, are needed to establish what the local behavior is.

The modal decompositions in Eqs. (5.28) and (5.44) served to validate
the claims regarding conditions for asymptotic stability in CT and DT sys-
tems respectively, but these modal decompositions were obtained under the
assumption of distinct eigenvalues. Nevertheless, it can be shown that the
conditions for asymptotic stability in the general case are identical to those
above.

Example 5.5 Asymptotic Stability of Linearized Viral Propagation Model

For the SIR viral propagation model introduced in Example 4.3 of Chapter 4, we
determined in Example 4.8 that the model had two equilibrium points, the infective-
free equilibrium (IFE) and the endemic equilibrium (EE). Subsequently, in Example
4.10, we derived the linearized state-space description at each of these equilibrium
points.

Now consider the parameter values and input associated with the simulations
that yielded the plots in Figure 4.3:

β = 0.01, γ = 0.2, ρ = 0.1, P = 10, 000, x[n] = x = 0.5 .

Here β denotes the common birth and death rates, γ specifies the infection rate, ρ is
the recovery rate, P is the total population size, and x[n] is the immunization rate.

With these parameters, R0 = γ /(β + ρ) = 1.818 < 1/(1 − x) = 2, and hence
there is no EE, as noted in Example 4.8. The small-signal behavior around the IFE
is governed by the state evolution matrix

AIFE =
[

1 − β −γ (1 − x)
0 1 + γ [(1 − x) − (1/R0)]

]
=
[

0.99 −0.1
0 0.99

]
. (5.51)

The two eigenvalues of this matrix are at 0.99, hence of magnitude < 1, so the lin-
earized model is asymptotically stable. We therefore expect that trajectories initiated
sufficiently close to this equilibrium in the nonlinear system will actually converge to
the IFE, and this is seen in Figure 4.3. Since 0.99300 = 0.049, we expect the excursions
to be under 5% of their initial values by the time n = 300, and this is consistent with
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that figure. The specific features of the transient behavior prior to convergence—in
particular, the single excursion in a direction away from the equilibrium values before
settling exponentially (or geometrically) back to these values—are consistent with the
repeated eigenvalues at 0.99. We omit further analysis of this repeated eigenvalue case
(but see the discussion of A2 in Example 5.13).

For a case that settles to the EE, we use the same parameters as above, but
with the lower immunization rate x[n] = x = 0.2, so R0 = 1.818 > 1/(1 − x) = 1.25,
thus allowing a positive equilibrium value of infectives, ι > 0. A simulation of the
system for this case, and for several choices of i[0], is shown in Figure 5.4. The state
variables settle in steady state to the equilibrium values given for the EE in Eq. (4.82):

s = P/R0 = 5500

and

ι = (βP/γ )[R0(1 − x) − 1] ≈ 227 .

The small-signal behavior around the EE is governed by the state evolution matrix

AEE =
[

1 − βR0(1 − x) −γ /R0
β[R0(1 − x) − 1] 1

]
=
[

0.9855 −0.11
0.0045 1

]
. (5.52)

The eigenvalues of this matrix are a complex pair at 0.993e±j0.021 . We thus expect to
see an oscillatory settling to the equilibrium value, with a period of 2π/0.021 ≈ 296
time steps. Since 0.993296 = 0.125, the amplitude at the end of one period of oscillation
is expected to decay to around 12% of its value at the beginning of the period. These
expectations are borne out by the plots in Figure 5.4.

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

8000
Evolution of susceptibles and infectives

n

P
o

p
u

la
ti

o
n

P = 10,000, b = 0.01

g = 0.2, r = 0.1, x[·] = 0.2

s[n]

i[n]

Figure 5.4 Response of SIR model for the same choice of parameter values as in Example 4.3,
but with the immunization rate dropped to x[n] = 0.2. The attained steady state now corre-
sponds to an endemic equilibrium.
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5.3 GENERAL RESPONSE IN
MODAL COORDINATES

In this section we develop the solution of the full driven system in both the CT
and DT cases, again obtaining a modal representation.

5.3.1 Driven CT Systems

Consider the CT LTI state-space description in Eqs. (5.1) and (5.2), with the
input x(t) now being some arbitrary function of time rather than identically
zero. Motivated by the fact that the ZIR was simply described in terms of
modes, that is, in terms of the behavior of components of the state vector along
each of the L independent eigenvectors of the system, we now pursue the same
approach for the driven case.

The state vector q(t) at any time t is a vector in the L dimensional state
space, and can therefore be uniquely written as a weighted linear combina-
tion of the L independent eigenvectors {vi}, with weights denoted by {ri(t)}.
Accordingly,

q(t) =
L∑

i=1

viri(t) = Vr(t) , (5.53)

where the second equality expresses the summation as a matrix-vector mul-
tiplication. The ith entry of the vector r(t) is ri(t), and the ith column of the
L × L matrix V is the ith eigenvector, vi:

V = [ v1 v2 · · · vL
]

. (5.54)

The matrix V is termed the modal matrix. The quantities ri(t) are the modal
coordinates at time t.

In the special case of the ZIR, the modal expansion in Eq. (5.28) shows
that the functions ri(t) are given by

ri(t) = αie
λit , (5.55)

where the values {αi} are determined by the initial condition q(0), using
Eq. (5.30). For the driven case considered here, one should anticipate a more
complicated expression for ri(t) that involves the input trajectory x(·).

We proceed by substituting the expression for q(t) from Eq. (5.53) into
the state evolution description in Eq. (5.1), to determine what constraints the
modal coordinate functions {ri(t)} have to satisfy in order for the state evo-
lution equation to be satisfied. An important preliminary step, however, is
to also express the input vector bx(t) that appears in Eq. (5.1) in terms of
its components along the eigenvectors. Since b is an L-vector in the same
L-dimensional space as q(t), we can express it as

b =
L∑

i=1

viβi = Vβ (5.56)
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222 Chapter 5 LTI State-Space Models

for some uniquely determined weights βi, where β is a vector whose ith
component is βi. With this notation, substitution of Eq. (5.53) into the state
evolution equation, just as was done in the case of the undriven system to
obtain Eq. (5.29), yields

L∑
i=1

viṙi(t) = A
( L∑

i=1

viri(t)
)

+
( L∑

i=1

viβi

)
x(t)

=
L∑

i=1

vi

(
λiri(t) + βix(t)

)
, (5.57)

where we have invoked the fact that Avi = λivi to obtain the second equality.
The left and right sides of Eq. (5.57) express a vector in two different

ways as a weighted linear combination of the eigenvectors {vi}. However, since
the eigenvectors form an independent set, the weights required to express the
vector are unique. It follows that

ṙi(t) = λiri(t) + βix(t) , i = 1, 2, . . . , L . (5.58)

Each of these L equations is a first-order LTI differential equation in a single
variable. It can be solved explicitly, and independently of the others, to yield
the corresponding modal coordinate as a function of time. As shown below, to
solve the ith equation from time 0 onward over any interval of time requires
only the initial value ri(0) and the input x(·) over that interval. Thus, though
we began with a system of L coupled first-order equations, we can now use
Eqs. (5.53) and (5.58) to write the solution in terms of L decoupled scalar
first-order equations, each of which can be solved directly.

The initial conditions {ri(0)} that are needed to solve the scalar LTI dif-
ferential equations in Eq. (5.58) are obtained from the initial state q(0), since
Eq. (5.53) shows that

q(0) =
L∑

i=1

viri(0) . (5.59)

Thus the weights ri(0) are those required to express the initial state of the
system in terms of the eigenvectors. Comparing with Eq. (5.30) shows that
these are precisely the quantities αi introduced in developing the modal
representation of the ZIR, so

ri(0) = αi , i = 1, 2, . . . , L . (5.60)

The explicit solution of the ith scalar first-order LTI differential equation
in Eq. (5.58) for t ≥ 0 can now be found by any of the standard approaches for
solving a forced LTI differential equation in one variable. For instance, the
total solution is the sum of a solution of the homogeneous or undriven system,
and any particular solution of the forced or driven system; the amplitude of
the homogeneous component is chosen such that the total solution matches
the specified initial condition. The solution can also be obtained by Laplace
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transform methods, as shown later, in Section 5.4. For now, the solution of
Eq. (5.58) is most usefully written as

ri(t) = eλitri(0)︸ ︷︷ ︸
ZIR

+
∫ t

0
eλi(t−τ )βix(τ ) dτ︸ ︷︷ ︸

ZSR

, t ≥ 0, 1 ≤ i ≤ L . (5.61)

The braces above show the separate contributions to the total solution made
by (i) the response due to the initial state alone, namely the zero-input
response or ZIR; and (ii) the response due to the system input alone, namely
the zero-state response or ZSR. The ZIR is a solution of the undriven sys-
tem, and the ZSR is a particular solution, namely the one corresponding to
an initial condition of 0. The correctness of the solution in Eq. (5.61) can be
established by directly verifying that it satisfies Eq. (5.58) and has the right
initial condition ri(0) at time t = 0.

One route to the full solution of the LTI state evolution description in
Eq. (5.1) is now apparent: determine the initial values ri(0) of the modal coor-
dinates from the given q(0) using Eq. (5.59), then use these values and the
given x(t) to determine the time functions ri(t) using Eq. (5.61), and finally
use these time functions to determine the state trajectory q(t) via the general
modal decomposition in Eq. (5.53).

To solve for the corresponding output y(t), note from Eq. (5.2) that

y(t) = cTq(t) + dx(t) = cT
( L∑

i=1

viri(t)
)

+ dx(t)

=
L∑

i=1

(cTvi)ri(t) + dx(t)

=
L∑

i=1

ξiri(t) + dx(t) , (5.62)

where

ξi = cTvi . (5.63)

The expression in Eq. (5.61) also serves to show that for an asymptotically
stable system, where all λi have negative real parts, a bounded input always
results in a bounded state trajectory for arbitrary initial conditions. The mag-
nitude of the first term on the right of Eq. (5.61) is bounded by |ri(0)| for
an asymptotically stable system. If |x(t)| ≤ M < ∞ for all t, then the magni-
tude of the second term on the right of Eq. (5.61) can also be bounded as
follows: ∣∣∣∫ t

0
eλi(t−τ )βix(τ ) dτ

∣∣∣ ≤ |βi|M
∫ t

0
|eλi(t−τ )| dτ , (5.64)

and the integral on the right in this expression is also bounded for an asymp-
totically stable system. This establishes the claim that asymptotic stability
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is sufficient to ensure bounded-input, bounded-state stability, and thus also
bounded-input, bounded-output (BIBO) stability.

5.3.2 Driven DT Systems

A closely parallel development can be made for the DT LTI state-space system
in Eqs. (5.3) and (5.4), with CT exponentials replaced by DT exponentials. We
write the state vector q[n] in terms of modal coordinates as follows:

q[n] =
L∑

i=1

viri[n] = Vr[n] , (5.65)

where V is again the modal matrix, whose columns are the eigenvectors of the
matrix A. The given initial condition q[0] serves to determine the initial values
ri[0] of the modal variables via

q[0] =
L∑

i=1

viri[0] . (5.66)

Substituting the modal representation of Eq. (5.65) into the state evolution
equations shows that the modal coordinates ri[n] are governed by decoupled
first-order DT LTI state-space descriptions of the form

ri[n + 1] = λiri[n] + βix[n] , i = 1, 2, . . . , L (5.67)

where the βi are defined exactly as before, via the relation in Eq. (5.56).
The solution of each such equation can be determined by simply step-

ping forward iteratively. The general expression for the solution is thereby
determined to be

ri[n] = λn
i ri[0]︸ ︷︷ ︸
ZIR

+
n−1∑
k=0

λn−k−1
i βix[k]︸ ︷︷ ︸

ZSR

, n ≥ 1, 1 ≤ i ≤ L . (5.68)

The corresponding output can be expressed in terms of the modal variables as

y[n] =
L∑

i=1

ξiri[n] + dx[n] , (5.69)

where the ξi are defined exactly as before through Eq. (5.63). Again,
asymptotic stability of the system is sufficient to ensure that the system is
bounded-input, bounded-state stable, and hence BIBO stable.

The following example brings together CT and DT systems in a manner
that is relevant for DT control of CT systems.

Example 5.6 Sampled-Data Model

Suppose the input x(t) to the CT LTI state-space model in Eqs. (5.1) and (5.2) is pro-
duced by a computer that updates the value of the input every T seconds, starting at
time t = 0, and holds x(t) constant at that value until the next update. Thus
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Figure 5.5 Relation between underlying CT system and the DT sampled-data representation
in Example 5.6.

x(t) = x[n] for nT ≤ t < nT + T , (5.70)

where x[n] is the sequence of input values determined by the computer. We show in this
example that q(nT + T) and y(nT) can be written as LTI functions of q(nT) and x[n],
thus providing a DT LTI state-space model for the sampled state vector q(nT) = q[n].
The situation is shown schematically in Figure 5.5.

The key to establishing this result is to relate ri(nT + T) = ri[n + 1] to ri(nT) =
ri[n] and x[n] for each i from 1 to L. For this, rewrite the solution in Eq. (5.61) to apply
to a starting time of nT and an ending time of nT + T, obtaining

ri(nT + T) = ri[n + 1] = eλi(nT+T−nT)ri(nT) +
∫ nT+T

nT
eλi(nT+T−τ )βix(τ) dτ

= eλiTri[n] + eλiT
(∫ T

0
e−λiσ dσ

)
βix[n] . (5.71)

The second equality results from a change of variables to σ = τ − nT, and moving
the quantities eλiT and βix[n] outside the integral sign, as they do not depend on σ . If
λi = 0, this simplifies to the DT LTI scalar state evolution equation

ri[n + 1] = ri[n] + (Tβi)x[n] , (5.72)

and if λi �= 0, then to the DT LTI scalar state evolution equation

ri[n + 1] = (eλiT)ri[n] +
( eλiT − 1

λi
βi

)
x[n] . (5.73)

Having the sampled values of the modal coordinates ri(t) at integer multiples of T
then yields the sampled values of the state vector q(t) at integer multiples of T, and
thereby also the sampled values of the output y(t). With the matrix notation that we
develop shortly, these various scalar expressions can be assembled into a simple matrix
form that can be recognized as a DT LTI state-space model for the sampled state and
output. Example 5.7 below presents the details.
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226 Chapter 5 LTI State-Space Models

5.3.3 Similarity Transformations and
Diagonalization

Before further applying the modal decomposition obtained above, we revisit
the arguments that led to this decomposition, but now using matrix algebra to
describe what was done. This provides a different and valuable perspective on
state-space representations.

CT Systems We return to Eq. (5.53), repeated below, which related the orig-
inal state vector q(t) to the vector of modal coordinates r(t) using the modal
matrix V:

q(t) = Vr(t) . (5.74)

The entries of r(t) represent the components of a point (i.e., a state) in the
state space when the eigenvectors are used as the basis for the state space.
In these modal coordinates, the eigenvector vi constitutes the basis vector for
the ith modal coordinate, as represented earlier in the phase plane diagram of
Figure 5.1.

Under our assumption of distinct eigenvalues, the eigenvectors vi are
independent, which guarantees that V is invertible, so Eq. (5.74) implies that

r(t) = V−1q(t) . (5.75)

Equations (5.74) and (5.75) establish that the modal coordinate vector r(t) is
completely equivalent to the original state vector q(t); each can be recovered
from the other. The equivalence, however, does not immediately make clear
whether r(t) itself satisfies an LTI state-space equation. We establish this next,
but do so more generally, for the case of a linear transformation to an arbitrary
set of new coordinates, not specifically to modal coordinates.

Consider a coordinate transformation in the state space to a new set of
coordinates that are the components of a vector z(t), related to the original
state vector q(t) by

q(t) = Mz(t) , (5.76)

where the constant matrix M is chosen to be invertible. By considering the case
where z(t) has 1 in its ith position and 0 everywhere else, that is, where z(t) is
the ith unit vector in the new coordinates, we see that the ith column of the
matrix M is the representation of the ith unit vector of the new z coordinates
in terms of the old q coordinates. Substituting the preceding equation in the
original state-space description in Eqs. (5.1) and (5.2), and then solving for
ż(t), we obtain

Mż(t) = AMz(t) + bx(t) , or equivalently,

ż(t) = (M−1AM)z(t) + (M−1b)x(t) , and (5.77)

y(t) = (cTM)z(t) + dx(t) . (5.78)

Equations (5.77) and (5.78) are still in the form of the state evolution
description and the output description of an LTI state-space model, but
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with state vector z(t), and with modified coefficient matrices. This model is
entirely equivalent to the original one, since Eq. (5.76) permits q(t) to be
obtained from z(t), and the invertibility of M permits z(t) to be obtained
from q(t).

The invertible transformation above is termed a similarity transforma-
tion, and the LTI state-space description that results from applying it is said to
be similarity equivalent—or similar—to the original description. Since a simi-
larity transformation is simply a transformation to a new coordinate system in
the state space, it should not be surprising that the essential dynamical proper-
ties of the transformed description in Eqs. (5.77) and (5.78) are unchanged
from those of the original one in Eqs. (5.1) and (5.2). For instance, since
the ZIR of the transformed description is related to the ZIR of the origi-
nal through the constant matrix transformation in Eq. (5.76), the two ZIR
expressions will display the same modal frequencies. This tells us that the
eigenvalues of M−1AM are identical to those of A; only the eigenvectors
change, with vi transforming to M−1vi. These statements are easy to verify
algebraically, as

λv = Av if and only if λ(M−1v) = (M−1AM)(M−1v) . (5.79)

Note also that the input x(t) and output y(t) are unaffected by this state
transformation. For a given input, and assuming an initial state z(0) in the
transformed description that is related to q(0) via Eq. (5.76), one obtains the
same output as would have resulted from the original description in Eqs. (5.1)
and (5.2). Thus, the input-output relationships of the system are unaffected by
a similarity transformation.

DT Systems Similarity transformations can be defined in exactly the same
way for the DT case in Eqs. (5.3) and (5.4), writing

q[n] = Mz[n] (5.80)

for an invertible matrix M, and deducing that

z[n + 1] = (M−1AM)z[n] + (M−1b)x[n] , and (5.81)

y[n] = (cTM)z[n] + dx[n] . (5.82)

Similarity Transformation to Modal Coordinates The transformation q(t) =
Vr(t) in Eq. (5.53) can now be recognized as a similarity transformation, using
the modal matrix V as the transformation matrix. What is interesting and
useful about this modal transformation is that it is a diagonalizing transfor-
mation, in the sense that the state evolution matrix A transforms to a diagonal
matrix �:

V−1AV = diagonal {λ1, · · · , λL} =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λL

⎤⎥⎥⎥⎦ = � . (5.83)
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An easy way to prove this is by verifying that V� = AV:

[
v1 v2 · · · vL

]
⎡⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λL

⎤⎥⎥⎥⎦ = A
[

v1 v2 · · · vL
]

, (5.84)

which is simply the equality in Eq. (5.10), written for i = 1, · · · , L and stacked
up as the columns of the matrices on the right and left. Premultiplying both
sides of this equality by V−1 then yields the relation in Eq. (5.83).

Postmultiplying both sides of the preceding equality by V−1 shows

A = V�V−1 , (5.85)

from which it follows that, for integer n > 0,

An = (V�V−1)(V�V−1) · · · (V�V−1)

= V�nV−1 , (5.86)

where there are n terms being multiplied on the right of the first equality,
and where the cancellation of adjacent V and V−1 in this extended product
yields the second equality. Note that because � is a diagonal matrix, �n is also
diagonal, with λn

i in the ith diagonal position. The relation in Eq. (5.86) can
be used to verify the expressions given in Example 5.4 for the powers of the
matrices A1, A2, A3, and A4.

Diagonalized CT Systems The system description that results from using the
modal similarity transformation is determined by substituting V for M in Eqs.
(5.77) and (5.78). The result is

ṙ(t) = (V−1AV)r(t) + (V−1b)x(t)

= �r(t) + βx(t) , (5.87)

y(t) = (cTV)r(t) + dx(t)

= ξTr(t) + dx(t) , (5.88)

where the column vector β and row vector ξT are defined via

β = V−1b =

⎡⎢⎢⎢⎣
β1
β2
...

βL

⎤⎥⎥⎥⎦ , ξT = cTV = [ ξ1 ξ2 · · · ξL
]

. (5.89)

Rewriting the first of these definitions as b = Vβ =∑ viβi shows that the
scalars βi are precisely those defined earlier in Eq. (5.56). The second of these
definitions shows that ξi = cTvi, which is precisely the definition given earlier
in Eq. (5.63). Taking account of these definitions and of the fact that � in Eq.
(5.87) is diagonal shows that the individual rows of Eq. (5.87) yield the decou-
pled set of first-order LTI differential equations obtained earlier in Eq. (5.58),
while the output equation in (5.88) is exactly Eq. (5.62). The earlier decoupled
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Figure 5.6 Decoupled structure of CT
LTI system in modal coordinates.

description has thus been recovered using matrix operations on the original
description. The decoupling is a consequence of the fact that in these modal
coordinates the matrix governing state evolution, namely �, is diagonal.

Figure 5.6 depicts the decoupled description. This is essentially the CT
version of Figure 4.8, which displayed a natural state-space realization for a
system whose unit sample response was a sum of DT exponentials. What we
have now established for the CT case, but the DT case is exactly parallel to
this, is that any LTI state-space system with distinct natural frequencies can
be thought of in terms of such a decoupled or diagonalized representation.
Example 5.13 at the end of this chapter illustrates how the picture can change
when there are repeated natural frequencies.

The CT Matrix Exponential The solution to the individual modal variables
ri(t) was presented in Eq. (5.61). These equations can also be assembled into
a revealing matrix form. To do this, define the matrix exponential of � by

e�t = diagonal {eλ1t, · · · , eλLt} =

⎡⎢⎢⎢⎣
eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλLt

⎤⎥⎥⎥⎦
= I + �t + �2 t2

2! + �3 t3

3! + · · · , (5.90)

where the second equality above follows from invoking the Taylor series
expansion for a scalar exponential, namely

eλt = 1 + λt + (λt)2

2! + (λt)3

3! + · · · . (5.91)

This allows us to combine the L equations in Eq. (5.61) into the following
single matrix equation:

r(t) = e�tr(0) +
∫ t

0
e�(t−τ )βx(τ ) dτ , t ≥ 0 , (5.92)

where the integral of a vector is interpreted as the component-wise integral,
and β is as defined earlier in Eq. (5.89). This vector expression for r(t) is
thus the solution to the L-dimensional state evolution equation in Eq. (5.87),
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and has the same form as the scalar solution in Eq. (5.61) for the scalar state
evolution equation in Eq. (5.87).

Combining Eq. (5.92) with the expression in Eq. (5.53) that relates r(t)
to q(t) results in

q(t) =
(

Ve�tV−1
)

q(0) +
∫ t

0

(
Ve�(t−τ )V−1

)
bx(τ ) dτ (5.93)

= eAtq(0) +
∫ t

0
eA(t−τ )bx(τ ) dτ , t ≥ 0 , (5.94)

where, by analogy with Eq. (5.90), we have defined the matrix exponential

eAt = Ve�tV−1

= V
(

I + �t + �2 t2

2! + �3 t3

3! + · · ·
)

V−1

= I + At + A2 t2

2! + A3 t3

3! + · · · . (5.95)

If the starting time is t0 rather than 0, the solution in Eq. (5.94) gets modified to

q(t) = eA(t−t0)q(t0) +
∫ t

t0
eA(t−τ )bx(τ ) dτ , t ≥ t0 . (5.96)

This equation gives us, in compact matrix notation, the general solution of the
CT LTI state evolution description in Eq. (5.1). The correctness of the solution
can also be verified by directly substituting it in the state evolution equation,
and using the following product and differentiation properties of the matrix
exponential:

eAt1eAt2 = eA(t1+t2) , and
d
dt

eAt = AeAt = eAtA . (5.97)

The expression in Eq. (5.96) also serves to explicitly verify the linearity
and time-invariance properties of the solution set of an LTI state evolution
equation. The state trajectory is linear in the initial state and input trajectory,
taken together. Superposition of the respective initial conditions and input
trajectories from two experiments generates a state trajectory that is the same
superposition of the state trajectories from the individual experiments.

The matrix exponential of A is also defined by the infinite series in
Eq. (5.95) for the case where A has repeated eigenvalues. The properties in
Eq. (5.97) also hold in this more general case. It follows that the solution given
in Eq. (5.96) is actually the solution of the given LTI system for all cases, not
just for the case of distinct eigenvalues.

Example 5.7 Sampled-Data Model in Matrix Form

In this example we return to the analysis in Example 5.6 of the sampled-data model that
results from having a piecewise-constant input x(t) applied to the CT LTI state-space
system in Eq. (5.1):
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x(t) = x[n] for nT ≤ t < nT + T .

The sampled-data model for the modal variables is given in Eq. (5.71), repeated here:

ri[n + 1] = eλiTri[n] + eλiT
(∫ T

0
e−λiσ dσ

)
βix[n], i = 1, 2, . . . , L .

With the notation and results now available to us, we are able to obtain the following
compact and general representation of the sampled-data model, written in the original
coordinates, and valid even for the case of repeated eigenvalues:

q[n + 1] =
(

eAT
)

q[n] +
(∫ T

0
eA(T−σ) b dσ

)
x[n] . (5.98)

This is a DT LTI state-space model, amenable to analysis using the various methods
and tools we have been developing.

Suppose, for instance, that we begin with the CT LTI system

q̇(t) =
[

0 1
0 −γ

]
︸ ︷︷ ︸

A

q(t) +
[

0
1

]
︸ ︷︷ ︸

b

x(t) . (5.99)

This simple model arises in describing the motion of a rigid object with velocity-
dependent damping but no force other than the external force input x(t)—no restora-
tive spring force, for example. The first state variable q1(t) in this case is the position
of the object, and the second state variable q2(t) is its velocity. The eigenvalues and
corresponding eigenvectors of A are

λ1 = 0 , λ2 = −γ , v1 =
[

1
0

]
, v2 =

[
1

−γ

]
. (5.100)

If the force x(t) is set by a computer-controlled actuator and is piecewise constant,
taking the value x[n] in the interval nT ≤ t < nT + T, then a sampled-data state-space
model allows us to track the state from time nT to time nT + T. The matrices involved
in the sampled-data model are provided in Eq. (5.98) and evaluated below, with their
approximate values for the case where γ T � 1 listed immediately after:

eAT =
[

1 1
0 −γ

][
1 0
0 e−γ T

][
1 1/γ

0 −1/γ

]

=
[

1 	

0 e−γ T

]
≈
[

1 T
0 1

]

eAT
(∫ T

0
e−Aσ dσ

)
b =

[
1
γ

(T − 	)
	

]
≈
[

T2/2
T

]
(5.101)

where

	 = 1
γ

(1 − e−γ T) ≈ T − γ
T2

2
. (5.102)

The limiting case of γ T � 1 in the case of rigid object motion corresponds to having
very low damping. The object then, by Newton’s law, has an acceleration that is pro-
portional to the external input x(t)—and actually equal to x(t) for the units chosen in
the CT model in Eq. (5.99). Over the course of the nth sampling interval, therefore,
the constant force x[n] causes the velocity to vary linearly with time, from q2[n] to
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232 Chapter 5 LTI State-Space Models

q2[n + 1] = q2[n] + Tx[n], and the position to vary quadratically with time, from q1[n]
to q1[n + 1] = q1[n] + Tq2[n] + (T2/2)x[n]. These results are consistent with the state
evolution model obtained by substituting the approximate expressions in Eq. (5.101)
into the sampled-data model in Eq. (5.98).

General Solution for DT Systems A development parallel to that leading to
the CT state solution in Eqs. (5.93) and (5.94) can be carried out for the DT
LTI case. The corresponding expression for the solution of (5.3) is

q[n] =
(

V�nV−1
)

q[0] +
n−1∑
k=0

(
V�n−k−1V−1

)
bx[k] (5.103)

= Anq[0] +
n−1∑
k=0

An−k−1bx[k] , n ≥ 0 . (5.104)

Equation (5.104) is exactly the expression one would get by simply iterat-
ing Eq. (5.3) forward one step at a time, to get q[n] from q[0]. However, the
expression in the modally decomposed form in Eq. (5.103) provides additional
insight because it brings out the role of the eigenvalues of A, that is, the nat-
ural frequencies of the DT system, in determining the behavior of the system,
and in particular its stability properties.

5.4 TRANSFER FUNCTIONS, HIDDEN MODES,
REACHABILITY, AND OBSERVABILITY

The focus has thus far been on the internal or state behavior of state-space
models. We now turn to examining how the input couples to the state, how
the state couples to the output, and how the input couples to the output.
We start with the latter, by examining the input-output transfer function of
an LTI state-space model. This will then lead us to the other couplings of
interest. We treat CT systems first, then DT systems.

5.4.1 Input-State-Output Structure of CT Systems

Input-Output Relations To analyze the behavior of a causal system in
response to initial conditions specified at time t = 0 and inputs specified for
t ≥ 0, the unilateral Laplace transform is particularly useful. For a signal w(t),
the unilateral Laplace transform is defined by

W(s) = L+{w(t)} =
∫ ∞

0−
w(t)e−st dt , (5.105)

with a region of convergence that is some right half-plane. The lower limit
on the integral is written as 0− to indicate that the transform captures any
impulses at time 0; so if w(t) = δ(t), then W(s) = 1. With this definition, the
unilateral Laplace transform of the derivative of the signal w(t) is
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Section 5.4 Transfer Functions, Hidden Modes, Reachability, and Observability 233

L+{ẇ(t)} =
∫ ∞

0−
ẇ(t)e−st dt = sW(s) − w(0−) . (5.106)

If w(t) is continuous at t = 0, that is, if ẇ(t) has no impulse at t = 0, then it
suffices to write w(0) instead of w(0−) in this equation. If the initial condi-
tion is w(0) = 0, then differentiation in time maps to multiplication by s in the
transform domain. In the case of the bilateral Laplace transform described
in Chapter 2, where the lower limit on the defining integral is −∞ instead of
0−, differentiation in time maps to multiplication by s, with no adjustment for
an initial value.

Taking the unilateral Laplace transform of the decoupled modal equa-
tions in Eq. (5.58) and rearranging the result shows that

Ri(s) = 1
s − λi

(
ri(0−) + βiX(s)

)
, i = 1, 2, . . . , L . (5.107)

If x(t) has no impulse at t = 0, then ri(t) is continuous at t = 0, and ri(0−) in
Eq. (5.107) can be replaced by ri(0). The inverse transform of this equation
yields precisely the time-domain solution for ri(t) that was presented earlier
in Eq. (5.61), expressing the solution as the sum of the ZIR and the ZSR. We
now have a transform-domain derivation of that solution.

Similarly taking the Laplace transform of the output equation in
Eq. (5.62), and substituting in the relations from Eq. (5.107), results in

Y(s) =
( L∑

i=1

ξiRi(s)
)

+ dX(s)

=
( L∑

i=1

ξiri(0−)
s − λi

)
+
(

d +
L∑
1

ξiβi

s − λi

)
X(s) . (5.108)

The transfer function H(s) between a given input and output of a CT LTI
system can be identified as the ratio of the transform of the output to the
transform of the input, when all other inputs or excitations, such as initial
conditions, are set to zero. Accordingly, we set ri(0−) = 0 in the preced-
ing equations and solve for the ratio Y(s)/X(s) to arrive at the following
expression for the transfer function of the state-space model in Eqs. (5.1)
and (5.2):

H(s) =
( L∑

i=1

ξiβi

s − λi

)
+ d . (5.109)

Several useful facts can be deduced from this expression. If H(s) in Eq. (5.109)
is written as a ratio of polynomials, the denominator polynomial is

a(s) = (s − λ1)(s − λ2) · · · (s − λL) . (5.110)

Since this is a degree-L monic polynomial whose roots are precisely the eigen-
values of the matrix A, it must be the characteristic polynomial defined in
Eq. (5.13). Thus
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H(s) = η(s)
a(s)

. (5.111)

The expression in Eq. (5.109) shows that the numerator polynomial η(s) in
the above expression has degree L if and only if the direct feedthrough gain
d is nonzero. In this case of equal numerator and denominator degree, the
transfer function is called exactly proper. If d = 0, then η(s) can have any
degree between 0 and L − 1, and then the transfer function is called strictly
proper because the numerator degree is strictly smaller than the denominator
degree. In any case, the transfer function of a state-space system is a proper
rational, that is, the numerator degree does not exceed the denominator
degree.

The poles of H(s) are the values of s at which H(s) has infinite magni-
tude, and the zeros are where it has a magnitude of 0. The expression for H(s)
given by Eqs. (5.111) and (5.110) shows that the poles all have to be natural
frequencies of the system. However, the converse is not guaranteed: not all
natural frequencies have to be poles because η(s) and a(s) might have factors
(s − λj) that cancel. This is commonly referred to as a pole-zero cancellation,
though the cancelled factor is neither a pole nor a zero of H(s). Each cancelled
natural frequency is termed a hidden mode of the system. We shall shortly say
more about what gives rise to these pole-zero cancellations or hidden modes.
When there are pole-zero cancellations, H(s) is typically written in reduced
form, with all cancellations made and with the roots of the resulting denom-
inator (respectively numerator) being precisely the poles (respectively zeros)
of H(s).

The form of the transfer function in Eq. (5.109) also provides a route
to obtaining a state-space realization of any specified proper rational transfer
function H(s) with L distinct poles (after being written in reduced form, so
with all cancellations made). What we seek is a state-space model that has the
specified transfer function. We first expand H(s) in a partial fraction expansion
of the form

H(s) =
( L∑

i=1

ki

s − λi

)
+ d , (5.112)

where

ki = H(s)(s − λi)
∣∣∣
s=λi

and d = H(∞) . (5.113)

Then choosing an arbitrary set of nonzero numbers βi for i = 1, . . . , L, and
subsequently choosing ξi = ki/βi, we can assemble a state-space realization
in the decoupled form specified in Eqs. (5.58) and (5.62) and Figure 5.6. This
state-space model will have the specified transfer function from input x(·) to
output y(·).

Given a proper rational transfer function H(s) with L poles, so that its
denominator degree is L after all cancellations, an Lth-order realization of it
is called a minimal realization because no realization of H(s) can have lower
order. To see this, note that a realization of lower order L′ < L would have
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a transfer function H′(s) = H(s) with no more than L′ poles, since it only has
L′ natural frequencies, but we know H(s) has L poles (after all cancellations).
It can be shown that any two minimal state-space realizations of a transfer
function are related to each other by a similarity transformation.

The expression for the transfer function in Eq. (5.109) can be rewritten
in matrix notation as

H(s) = ξT(sI − �)−1β + d . (5.114)

This expression follows from the definitions of the vectors ξT and β in
Eq. (5.89), and the fact that sI − � is a diagonal matrix, whose inverse is there-
fore again a diagonal matrix, with diagonal entries that are the reciprocals of
the corresponding diagonal entries in the original. Substituting in the defin-
ing relationships ξT = cTV and β = V−1b, and recalling that � = V−1AV,
the above expression for H(s) can be written in terms of the matrices defin-
ing the state-space description in the original coordinates rather than modal
coordinates:

H(s) = cTV(sI − V−1AV)−1V−1b + d . (5.115)

To simplify Eq. (5.115), we use the fact that for invertible matrices M, N, and P
the inverse (MNP)−1 is the product of the individual inverses in reverse order,
that is, P−1N−1M−1, because multiplying the latter product by MNP yields the
identity matrix. The expression in Eq. (5.115) can thus be reduced further, as
follows:

H(s) = cT
(

V(sI − V−1AV)V−1
)−1

b + d

= cT(sI − A)−1b + d . (5.116)

The expression for H(s) in Eq. (5.116) can also be obtained directly by
Laplace transforming the original description in Eqs. (5.1) and (5.2) to get

sQ(s) − q(0) = AQ(s) + bX(s) , (5.117)

Y(s) = cTQ(s) + dX(s) , (5.118)

where Q(s) denotes the component-wise Laplace transform of q(t), that is, a
vector whose ith entry is the Laplace transform of qi(t). The first equation
above can be rearranged and solved for Q(s):

Q(s) = (sI − A)−1q(0) + (sI − A)−1bX(s) . (5.119)

Taking the inverse transform of Eq. (5.119) yields the time domain solution
previously obtained in Eq. (5.94), but with no need for the assumption of dis-
tinct eigenvalues. Comparing the two expressions also shows another way to
obtain the matrix exponential:

eAt = inverse Laplace transform of (sI − A)−1 , (5.120)

where the inverse transform is computed component-wise, that is, separately
for each entry of the matrix (sI − A)−1.
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Assuming q(0) = 0 in Eq. (5.119) and substituting the resulting expression for
Q(s) in the output relation in Eq. (5.118) yields the expression for the transfer
function H(s) in Eq. (5.116). The advantage of this derivation is again that no
assumption is needed regarding the eigenvalues being distinct; the expression
holds generally. Our development below, however, is built on the assumption
of distinct eigenvalues for simplicity—and the expression for H(s) in modal
coordinates, namely Eqs. (5.109) or (5.114), is then very helpful.

CT System Reachability, Observability, and Hidden Modes Equation (5.109)
has demonstrated that H(s) will have L poles in general, and precisely at the
natural frequencies of the system. Suppose, however, that βj = 0 for some j.
Our definition of the {βi} in Eq. (5.56) shows that this happens exactly when
b can be expressed as a linear combination of the eigenvectors other than vj.
In this case, Eq. (5.109) shows that λj fails to appear as a pole of the transfer
function, even though it is still a natural frequency of the system and appears
in the ZIR of the state q(t) for almost all initial conditions.

The underlying cause for this hidden mode—an internal mode that is
hidden from the input-output transfer function—is seen in Eqs. (5.58) or
(5.107): with βj = 0, the input fails to excite the jth mode. The mode asso-
ciated with λj is said to be an unreachable mode in this case. In contrast, if
βk �= 0, the kth mode is termed reachable. (The term controllable is also used
for reachable; strictly speaking there is a slight difference in the definitions of
the two concepts in the DT case, but we shall not be concerned about this.)

If all L modes of the system are reachable, then the system itself is
termed reachable, otherwise it is called unreachable. In a reachable system,
the input can fully excite the state variables, and in fact can transfer the state
vector from any specified initial condition to any desired target state in finite
time. In an unreachable system, this is not possible. The notion of reachability
arises in several places in systems and control theory.

A dual situation happens when ξj = 0 for some j. In this case too,
Eq. (5.109) shows that λj fails to appear as a pole of the transfer function,
even though it is still a natural frequency of the system and appears in the
ZIR of the state q(t) for almost all initial conditions. Once again, we have a
hidden mode. This time, the cause is evident in Eqs. (5.62) or (5.108): with
ξj = 0, the jth mode fails to appear at the output, even when it is present in
the state response. The mode associated with λj is termed unobservable in this
case. In contrast, if ξk �= 0, then the kth mode is called observable.

If all L modes of the system are observable, the system itself is termed
observable, otherwise it is called unobservable. In an observable system, the
behavior of the state vector can be unambiguously inferred from measure-
ments of the input and output over some interval of time, whereas this is not
possible for an unobservable system. The concept of observability also arises
repeatedly in systems and control theory.

Hidden modes can cause difficulty, especially if they are unstable.
However, if all we are concerned about is representing a transfer function,
or equivalently the input-output relation of an LTI system with zero initial
conditions, then hidden modes may be of no significance. We can obtain a
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Section 5.4 Transfer Functions, Hidden Modes, Reachability, and Observability 237

reduced-order state-space model that has the same transfer function by sim-
ply discarding all the equations in Eq. (5.58) that correspond to unreachable
or unobservable modes, and discarding the corresponding terms in Eq. (5.62).

The converse is also true: if a state-space model is reachable and observ-
able, then there is no lower-order state-space system that has the same transfer
function. In other words, a state-space model that is reachable and observable
is a minimal realization of its transfer function.

Reachability and Observability of Composite Systems Consider the com-
posite system shown in Figure 5.7, resulting from the cascade or series
interconnection of two subsystems. The equality x2(t) = y1(t) defines the inter-
connection. The input x1(t) is set equal to the external input x(t), and the
overall system output y(t) is set equal to y2(t). Each subsystem is labeled by its
proper rational transfer function, H1(s) and H2(s) respectively. The assump-
tion or convention, since we are only given the transfer functions, is that each
subsystem is a minimal LTI state-space realization of the associated transfer
function, with an L1-component vector q1(t) and L2-component vector q2(t)
as the respective state vectors. The most natural choice of state variables for
the interconnected system is then the union of the state variables in the two
subsystems, with corresponding state vector

q(t) =
[

q1(t)
q2(t)

]
. (5.121)

Introducing the notation

H1(s) = η1(s)
a1(s)

, H2(s) = η2(s)
a2(s)

, (5.122)

where a1(s), a2(s) have degrees L1 and L2 respectively, and have no cancel-
lations with their respective numerators, it follows that the overall transfer
function of the system from input x(t) to output y(t) is

Hser(s) = H2(s)H1(s) = η2(s)η1(s)
a2(s)a1(s)

. (5.123)

It must therefore be the case that the characteristic polynomial of the inter-
connected system is precisely the polynomial a1(s)a2(s) of degree L1 + L2.
The natural frequencies of the series combination are then the union of the
natural frequencies of the individual systems.

The only possibilities for cancellation are for η2(s) and a1(s) to have one
or more common factors, or for η1(s) and a2(s) to have one or more com-
mon factors. It turns out that the former possibility corresponds to a loss of
observability, and the latter to a loss of reachability. The loss of observability is
because a zero (or zeros) of the second system blocks the corresponding natu-
ral frequency (or frequencies) of the first subsystem from reaching the output.

x(t) = x1(t) y1(t) = x2(t) y2(t) = y(t)
H1(s) H2(s) Figure 5.7 System obtained by

cascading two subsystems.
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Similarly, the loss of reachability is because a zero (or zeros) of the first subsys-
tem prevents the input from exciting the corresponding natural frequency (or
frequencies) of the second subsystem. We illustrate this with a simple example
next.

Example 5.8 Hidden Mode in a Series Combination of Subsystems

Suppose in Figure 5.7 that

H1(s) = 1
s − 1

, H2(s) = s − 1
s + 3

= 1 − 4
s + 3

, (5.124)

which yields an overall transfer function of

Hser(s) = 1
s + 3

, (5.125)

indicating a hidden mode. To confirm that this is due to a loss of observability and
not reachability, we construct first-order state-space models for each of the subsys-
tems, combine them in accordance with the constraints represented in Figure 5.7
to get a second-order state-space model for the combination, and finally check the
observability and reachability of the resulting system.

Both the subsystem transfer functions already have the partial fraction expan-
sion form assumed in Eq. (5.112) as the starting point for obtaining a minimal
state-space realization of a transfer function. Following the procedure outlined there,
the following individual state-space realizations are directly obtained:

q̇1(t) = q1(t) + x1(t) , y1(t) = q1(t) (5.126)

q̇2(t) = −3q2(t) − 4x2(t) , y2(t) = q2(t) + x2(t) (5.127)

Combining these and taking account of the interconnection constraints generates the
following state-space description of the overall system:[

q̇1(t)
q̇2(t)

]
=
[

1 0
−4 −3

]
︸ ︷︷ ︸

A

[
q1(t)
q2(t)

]
+
[

1
0

]
︸ ︷︷ ︸

b

x(t) ,

y(t) = [ 1 1
]︸ ︷︷ ︸

cT

[
q1(t)
q2(t)

]
. (5.128)

The natural frequencies of this system are λ1 = 1 and λ2 = −3, as expected (and the
system is seen to be unstable). Using the formula in Eq. (5.116) to check the overall
transfer function, we get

H(s) = [ 1 1
] [ s − 1 0

4 s + 3

]−1 [ 1
0

]
= 1

(s − 1)(s + 3)

[
1 1

] [ s + 3 0
−4 s − 1

] [
1
0

]
= 1

s + 3
, (5.129)
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as expected. This computation has used the fact that the inverse of a 2 × 2 matrix is
given by [

a b
c d

]−1

= 1
ad − bc

[
d −b

−c a

]
, (5.130)

as can be verified on premultiplying both sides by the matrix that is being inverted,
yielding the identity matrix on both sides. Note that even though the system is not
asymptotically stable internally, it has a bounded output for all bounded inputs, pro-
vided it starts from zero initial conditions (or initial conditions that only excite the
stable mode). The reason for this BIBO stability is that the pole of H(s) is negative,
yielding an absolutely integrable impulse response h(t).

To check observability and reachability, we first determine the eigenvectors,
which are

v1 =
[

1
−1

]
and v2 =

[
0
1

]
. (5.131)

Since cTv1 = 0, the mode associated with λ1 = 1 is indeed unobservable, which
explains why it is hidden from the transfer function. As for reachability, note that b
cannot be written as a multiple of just v1 or just v2—a weighted linear combination
of both eigenvectors is required to generate b, which confirms the reachability of both
modes. This example also serves to point out two important general facts: an entry of
0 in the input vector b (in the original, not modal, coordinates) does not signify a loss
of reachability; and having all entries nonzero in the output vector cT (in the original,
not modal, coordinates) does not ensure observability.

If the two subsystems had been connected in the reverse order, the same proce-
dure as above would have led us to the conclusion now that λ1 = 1 is observable but
unreachable, and therefore hidden again, though for a different reason.

Figure 5.8 shows two other familiar composite systems obtained by inter-
connecting two subsystems: a closed-loop, or feedback, configuration and
a parallel configuration. Both cases can be studied by the same approach
used for the series connection above; we simply summarize the results here.
Assume as before that η1(s) and a1(s) have no common factors, and similarly
for η2(s) and a2(s).

For the feedback configuration, the transfer function is

Hfb(s) = η1(s)a2(s)
a1(s)a2(s) + η1(s)η2(s)

, (5.132)

and the denominator a1(s)a2(s) + η1(s)η2(s) is the characteristic polynomial
of the system. In general, therefore, feedback leads to natural frequencies
that are different from those of the subsystems, since the natural frequencies
are no longer the roots of a1(s)a2(s). Examination of Eq. (5.132) shows that
any cancellations between the numerator and denominator are due to com-
mon factors between η1(s) and a2(s). These common factors represent poles
or modes of the subsystem in the feedback path that are masked or hidden by
the cancelling zeros of the subsystem in the forward path, and that thereby end
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 x1(t)

 x2(t) y2(t)

y1(t) = y(t)
x(t) +

-

 x1(t)

 x2(t)  y2(t)

y1(t) 

y(t) x(t)
+

H1(s)

H1(s)

H2(s)

H2(s)

Figure 5.8 The upper diagram shows
a feedback connection of two
subsystems; the lower one shows a
parallel connection.

up being both unreachable and unobservable. These modes therefore remain
as natural frequencies of the closed-loop system, unaffected by the feedback.

For the parallel configuration, the transfer function is

Hpar(s) = η1(s)a2(s) + η2(s)a1(s)
a1(s)a2(s)

, (5.133)

and the denominator a1(s)a2(s) is the characteristic polynomial of the system.
The natural frequencies of the parallel connection are thus the union of the
subsystem natural frequencies. In this case, cancellations arise from a1(s) and
a2(s) having common factors. However, such cancellation corresponds to an
overall system that has repeated rather than distinct natural frequencies, so
the definitions and methods we have developed for studying reachability and
observability under the assumption of distinct natural frequencies no longer
apply. In the more general framework that includes repeated natural frequen-
cies, it turns out that when a1(s) and a2(s) have common factors, the associated
hidden modes are both unreachable and unobservable. The reason is that
these common modes of the two subsystems are driven in fixed proportion
by the input, and seen in fixed linear combination by the output, so they do
not get recognized as having multiplicity greater than one. Example 5.13 at the
end of this chapter sheds further light on the situation.

5.4.2 Input-State-Output Structure of DT Systems

DT System Transfer Relations A very similar development can be carried
out for the DT case. To analyze the behavior of DT state-space models in
response to initial conditions specified at time n = 0 and inputs specified for
n ≥ 0, the most useful transform is the unilateral z-transform. For a signal

www.konkur.in

Telegram: @uni_k



Section 5.4 Transfer Functions, Hidden Modes, Reachability, and Observability 241

w[n], the unilateral z-transform is defined by

W(z) =
∞∑

n=0

w[n]z−n , (5.134)

with a region of convergence that is the outside of a circle centered at z = 0.
With this definition, the unilateral z-transform of the one-step advanced signal
w[n + 1] is

∞∑
n=0

w[n + 1]z−n = zW(z) − zw[0] . (5.135)

If the initial condition is w[0] = 0, then the one-step advance in time maps
to multiplication by z in the transform domain. In the case of the bilateral
z-transform described in Chapter 1, where the lower limit on the defining sum
is −∞ instead of 0, the one-step advance in time maps to just multiplication
by z, with no adjustment for an initial value.

Taking the unilateral z-transform of the decoupled DT modal equations
in Eq. (5.67) and rearranging the result shows that

Ri(z) = 1
z − λi

(
zri[0] + βiX(z)

)
, i = 1, 2, . . . , L . (5.136)

The inverse transform of this yields precisely the time-domain solution for
ri[n] that was presented earlier in Eq. (5.68), writing the solution as the sum
of the ZIR and the ZSR. We now have a transform-domain derivation of that
solution.

Similarly taking the z-transform of the output equation in Eq. (5.69) and
substituting in the above relations produces

Y(z) =
( L∑

i=1

ξiRi(z)
)

+ dX(z)

=
( L∑

i=1

zξiri[0]
z − λi

)
+
(

d +
L∑

i=1

ξiβi

z − λi

)
X(z) . (5.137)

The transfer function H(z) is then

H(z) =
( L∑

i=1

ξiβi

z − λi

)
+ d

= ξT(zI − �)−1β + d

= cT(zI − A)−1b + d , (5.138)

as in the CT case.
The notion of hidden modes, and the definitions of reachability, observ-

ability, and minimal realizations, all carry over without change to the DT case.
We illustrate these in the following example.
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Example 5.9 Evaluating Reachability and Observability of a DT System

Consider the DT system represented by the state equations⎡⎣q1[n + 1]

q2[n + 1]

⎤⎦ =
⎡⎣ 0 1

−1 5
2

⎤⎦
︸ ︷︷ ︸

A

⎡⎣q1[n]

q2[n]

⎤⎦+
[

0
1

]
︸ ︷︷ ︸

b

x[n] (5.139)

y[n] =
[
−1 1

2

]
︸ ︷︷ ︸

cT

⎡⎣q1[n]

q2[n]

⎤⎦+ x[n] . (5.140)

A delay-adder-gain block diagram representing Eqs. (5.139) and (5.140) is shown in
Figure 5.9.

The modes of the system correspond to the roots of the characteristic polyno-
mial, which is

det (λI − A) = λ2 − 5
2 λ + 1 . (5.141)

The roots are

λ1 = 2 , λ2 = 1
2 . (5.142)

Since |λ1| > 1, the system is not asymptotically stable. The corresponding eigenvectors
are found by solving

(λI − A)v =
[

λ −1
1 λ − 5

2

]
v = 0 (5.143)

with λ = λ1 = 2, and then again with λ = λ2 = 1
2 . This yields

v1 =
[

1
2

]
, v2 =

[
2
1

]
. (5.144)

x[n]

z-1
q1[n]

y[n]

q2[n]
z-1+

+

+

-
+

-

1
2

5
2

Figure 5.9 Delay-adder-gain block diagram for the system in Example 5.9.
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The input-output transfer function of the system is

H(z) = cT(zI − A)−1b + d (5.145)

(zI − A)−1 = 1

z2 − 5
2 z + 1

⎡⎣ z − 5
2 1

−1 z

⎤⎦ (5.146)

H(z) = 1

z2 − 5
2 z + 1

⎧⎨⎩[− 1 1
2

]⎡⎣ z − 5
2 1

−1 z

⎤⎦[ 0
1

]⎫⎬⎭ + 1

= 1
2

z − 2

z2 − 5
2 z + 1

+ 1 = 1
2

1

z − 1
2

+ 1

= 1

1 − 1
2 z−1

. (5.147)

Since the pole is inside the unit circle, the system is input-output stable. However,
the system has two modes. Consequently one of them must be a hidden mode, that
is, it does not appear in the input-output transfer function. Hidden modes are either
unreachable from the input or unobservable in the output, or both. To check reach-
ability, note that the input vector b for this example cannot be written as a scalar
multiple of just v1 or v2; it takes a linear combination of both eigenvectors to gen-
erate b. The system is therefore reachable (despite the fact that b itself has one of
its entries being 0). However, cTv1 = 0, so the first mode is unobservable (despite
the fact that both entries of cT are nonzero), and this is precisely the mode that is
hidden from H(z).

The notion of a minimal realization helps to illuminate Example 4.6,
where state-space realizations of different orders were constructed for a
second-order difference equation. The following example shows that the
third-order realization of this difference equation is nonminimal.

Example 5.10 A Nonminimal Realization

In Example 4.6 we obtained the third-order realization

q[n + 1] =
⎡⎣ −a1 −a2 b2

1 0 0
0 0 0

⎤⎦
︸ ︷︷ ︸

A

q[n] +
⎡⎣ b1

0
1

⎤⎦ x[n] ,

y[n] = [
1 0 0

]︸ ︷︷ ︸
cT

q[n] (5.148)
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of the second-order difference equation

y[n] + a1y[n − 1] + a2y[n − 2] = b1x[n − 1] + b2x[n − 2] . (5.149)

It is easy to see that Av1 = 0, where v1 = [0 b2 a2]T . We conclude from this that
λ1 = 0 is an eigenvalue of A, with associated eigenvector v1, assuming b2 and a2 are
not both 0. Now cTv1 = 0, which shows that this is an unobservable mode of the sys-
tem (though a very benign one, in that the associated modal contribution vanishes in
one time step). We conclude that the third-order system is not minimal, and there-
fore that the input-output relation in Eq. (5.149) can be realized by a lower-order
system.

The concept of reachability—for both CT and DT systems—was intro-
duced in terms of the ability to excite all the modes of the system from the
input. The following example expands this view of reachability, by addressing
its relevance to the problem of reaching particular target states from the origin
of the state space, by appropriate choice of an input signal. We treat the DT
case here, but similar results hold for CT.

Example 5.11 Input Design to Reach a Target State

Consider an Lth-order DT LTI state-space model whose state evolves as

q[n + 1] = Aq[n] + bx[n] . (5.150)

Assume A has distinct eigenvalues λ1, . . . , λL, and associated independent eigenvec-
tors v1, . . . , vL. The constants β1, . . . , βL are defined as in Eq. (5.56) as the weights
required to represent b by a linear combination of the eigenvectors:

b = v1β1 + · · · + vLβL.

Suppose the system is reachable, that is, all βi are nonzero, and that we start from
the origin at time 0, so q[0] = 0. We want to find a sequence of L inputs,
x[0], x[1], . . . , x[L − 1], such that the state at time L takes the value

q[L] = v1γ1 + · · · + vLγL (5.151)

for specified but arbitrary values of γ1, . . . , γL. In other words, we want to find a
sequence of L inputs that will take us from the origin to any specified target state
in L steps.

Equation (5.65) shows that

q[L] = v1r1[L] + · · · + vLrL[L] (5.152)

so the sequence of L inputs has to ensure ri[L] = γi for i = 1, . . . , L, starting from
ri[0] = 0. The explicit solution in Eq. (5.68) shows that

γi = ri[L] =
L−1∑
k=0

λL−1−k
i βix[k] . (5.153)
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The above equations for all i can be arranged into the following matrix form:⎡⎢⎢⎢⎣
γ1
γ2
...

γL

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
β1 λ1β1 λ2

1β1 . . . λL−1
1 β1

β2 λ2β2 λ2
2β2 . . . λL−1

2 β2
...

...
... . . .

...
βL λLβL λ2

LβL . . . λL−1
L βL

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x[L − 1]
x[L − 2]

...
x[0]

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...
0 0 . . . βL

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 λ1 λ2
1 . . . λL−1

1
1 λ2 λ2

2 . . . λL−1
2

...
...

... . . .
...

1 λL λ2
L . . . λL−1

L

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x[L − 1]
x[L − 2]

...
x[0]

⎤⎥⎥⎥⎦
All the βi are nonzero because the system is reachable, so the first matrix on the right
of the latter equality is invertible. The second matrix is termed a Vandermonde matrix,
which is invertible if (and clearly only if) the λi are distinct. (If the Vandermonde
matrix was not invertible with distinct λi, then some nontrivial linear combination of its
columns would add up to the 0 vector, but that would allow us to construct a polynomial
of degree L − 1 that had L distinct roots, which is a contradiction.)

It follows that the above set of equations can be solved to find x[0], . . . , x[L − 1]:⎡⎢⎢⎢⎣
x[L − 1]
x[L − 2]

...
x[0]

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 λ1 . . . λL−1

1
1 λ2 . . . λL−1

2
...

... . . .
...

1 λL . . . λL−1
L

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

β1 0 . . . 0
0 β2 . . . 0
...

...
. . .

...
0 0 . . . βL

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

γ1
γ2
...

γL

⎤⎥⎥⎥⎦
In the case of a second-order system, for example,[

x[1]
x[0]

]
=

[
1 λ1
1 λ2

]−1 [
β1 0
0 β2

]−1 [
γ1
γ2

]
= 1

λ2 − λ1

[
λ2 −λ1
−1 1

] [
γ1/β1
γ2/β2

]
. (5.154)

This second-order example suggests that the closer λ1 and λ2 are, the larger the values
of the inputs required to attain a given target state. Also, larger values of the ratio γi/βi
will require larger inputs.

Now suppose just the first mode is unreachable, that is, suppose β1 = 0, with all
other βi nonzero. The preceding formulation shows that the set of states reachable from
the origin—from q[0] = 0—by manipulation of the input is confined to the (L − 1)-
dimensional subspace of the state space that is spanned by the eigenvectors associated
with the reachable modes. A calculation similar to the above then shows that within
this reachable subspace, any target state can be reached from the origin in L − 1 steps
by appropriate choice of the input.

More generally, the part of the state space that is reachable from the origin by
manipulation of the input is the subspace spanned by the eigenvectors of the reachable
modes. It follows that a system is reachable if and only if one can reach an arbitrary
target state from the origin of the state space by appropriate choice of the input sig-
nal. (These conclusions hold for CT systems as well, though the precise input history
required to reach a target state is not as transparently computed.)

The interplay between the natural dynamics of a system and the motion that
an external input attempts to impose on the system is brought out clearly in the fol-
lowing observation. For a reachable DT LTI system of order ≥ 2, it is impossible to

www.konkur.in

Telegram: @uni_k



246 Chapter 5 LTI State-Space Models

force the state to move from the origin outward strictly along an eigenvector, say its
first eigenvector v1. The reason is that this would require all ri[n] for i �= 1 to remain at
0 for n > 0, while r1[n] moved from 0 to a succession of nonzero values. This is impos-
sible for a reachable system, since all the ri[n] are simultaneously excited by the input.
Thus, in a reachable Lth-order DT system, one can get to any point in the state space in
L steps, including to a point of the form q[L] = γ1v1 for any γ1, but cannot necessarily
get to this point in less than L steps.

Reachability and Observability Matrices The question of reaching target
states from the origin, treated in Example 5.11, can also be addressed with-
out reference to modal coordinates, instead working directly with the initial
system description. For the DT case we start with the LTI state-space model
in Eq. (5.3). The set of states reachable in one step from the origin by appropri-
ate choice of x[0] is of the form q[1] = bx[0], that is, states on the line spanned
by the vector b. The set of states reachable in two steps by appropriate choice
of x[0] and x[1] is of the form

q[2] = Abx[0] + bx[1] , (5.155)

that is, states in the plane spanned by the vectors b and Ab. Proceeding in this
fashion, we conclude—and this is already apparent in Eq. (5.104)—that the
set of states reachable from the origin in L steps is the space spanned by the
columns of the L × L matrix

RL = [AL−1b AL−2b . . . Ab b
]

. (5.156)

This space is referred to as the range of RL. Note that this reasoning did
not assume A has distinct eigenvalues; the result holds in general. Under our
assumption of distinct eigenvalues, the reachable space must be identical with
the space spanned by the eigenvectors of the reachable modes of the system.
The matrix RL is referred to as the L-step reachability matrix, or simply the
reachability matrix. If only p < L modes of the system are reachable, then the
reachable space is already spanned by the columns of Rp, and adding more
columns does not increase the set of reachable states.

For a CT system of the form in Eq. (5.1), the development is different.
We omit the details, but note that the same conclusion is arrived at as in the
DT case: the set of states reachable in finite time, starting at q(0) = 0 and
applying a well-chosen input, is precisely the range of the above matrix RL.

A development similar to Example 5.11 can be used to provide a geo-
metric picture of observability. We define the unobservable subspace to be
the subspace spanned by the eigenvectors associated with the unobservable
modes. It then turns out that the zero-input response of the system for a given
initial condition q[0] is 0 at all times n ≥ 0 if and only if this initial condition is
in the unobservable subspace. Thus any attempt to determine the initial state
of the system from knowledge of the input and output signals for n ≥ 0 will
only be able to determine this initial state modulo the unobservable subspace.
In other words, displacing the initial condition by a vector in the unobservable
subspace will not change the output, for a given input.
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We can also identify the unobservable subspace using a matrix that is
“dual” to the L-step reachability matrix in Eq. (5.156). Specifically, consider-
ation of Eqs. (5.3) and (5.4) shows that the unobservable subspace is precisely
the set of vectors orthogonal to the rows of the following L × L matrix,
referred to as the L-step observability matrix:

OL =

⎡⎢⎢⎢⎢⎢⎢⎣
cT

cTA
...

cTAL−2

cTAL−1

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.157)

This space is referred to as the nullspace of OL.
While our focus has been on LTI systems so far, some of what we have

developed applies to linear periodically varying (LPV) systems. The following
example shows how asymptotic stability of an LPV system can be assessed.

Example 5.12 Asymptotic Stability of an LPV System

The stability of LPV systems can be analyzed by methods that are close to those used
for LTI systems. Suppose, for instance, that

q[n + 1] = A[n]q[n] , A[n] = A0 for even n, A[n] = A1 for odd n. (5.158)

Then

q[n + 2] = A1A0q[n] (5.159)

for even n, so the dynamics of the even samples are governed by an LTI model, and
the stability of the even samples is accordingly determined by the eigenvalues of the
constant matrix Aeven = A1A0.

The stability of the odd samples is similarly governed by the eigenvalues of the
matrix Aodd = A0A1. The nonzero eigenvalues of the matrix Aodd are the same as
those of Aeven because if λ is a nonzero eigenvalue of Aeven, that is, if (A1A0)v = λv
for nonzero λ and v, then A0v must be nonzero and (A0A1)(A0v) = λ(A0v), so λ is an
eigenvalue of Aodd as well. Thus either matrix can be used for a stability check.

As an example, suppose

A0 =
(

0 1
0 3

)
, A1 =

(
0 1

4.25 −1.25

)
, (5.160)

with respective eigenvalues (0 , 3) and (1.53 , −2.78), so both matrices have eigenvalues
of magnitude greater than 1. Now

Aeven = A1A0 =
(

0 3
0 0.5

)
, (5.161)

and its eigenvalues are (0 , 0.5), which corresponds to an asymptotically stable system.

We conclude this chapter with an example that suggests—but stops well
short of fully explaining—how system behavior changes and becomes more
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248 Chapter 5 LTI State-Space Models

intricate when the eigenvalues are not distinct. The example is presented for
the DT case, but the situation is similar for CT.

Example 5.13 Reachability and Observability with Nondistinct Eigenvalues

In this example, we consider three different third-order DT LTI systems of the form
in Eqs. (5.3) and (5.4), with the following respective choices for the associated state
evolution matrix A:

A1 =
⎡⎣ λ1 1 0

0 λ1 1
0 0 λ1

⎤⎦ , A2 =
⎡⎣ λ1 0 0

0 λ1 1
0 0 λ1

⎤⎦ , A3 =
⎡⎣ λ1 0 0

0 λ1 0
0 0 λ1

⎤⎦ . (5.162)

All these matrices have their three eigenvalues at λ1, but differ in structure. The struc-
tural differences are very apparent in the block diagrams in Figure 5.10, which show
the associated systems, but omit the signals feeding in from x[n] or out to y[n], to avoid
clutter in the diagrams.

The matrix A1 has only one independent eigenvector, for example v1 =
[1 0 0]T . Any other vector v that satisfies (λ1I − A)v = 0 is a linear multiple of v1.

The matrix A2 has two independent eigenvectors, for example the same v1 as
before, but also v2 = [0 1 0]T . Any other solution v of (λ1I − A)v = 0 is a linear
combination of these two.

The matrix A3 has three independent eigenvectors, for instance the same v1 and
v2 as before but also v3 = [0 0 1]T . Any other solution v of (λ1I − A)v = 0 is a linear
combination of these three.

In the case of A3, the system is already in diagonal form, so some of our anal-
ysis in this chapter carries over directly. The ZIR of the associated system state will
only involve exponentials of the form λn

1 . The transfer function of the system will also
only show, at most, a single pole at λ1, not repeated poles, suggesting that we have at
least two hidden modes in this case. Once our notion of reachability is extended to the
repeated-eigenvalue case (which we will not do here), it can be shown that two of the
three modes are always unreachable, even if the coupling from x[n] to the three parallel
paths in Figure 5.10(c) is nonzero. The reason is that the three branches of the system
cannot be excited independently of each other by manipulating the single input signal
x[n]. Similarly, once our notion of observability is extended to the repeated-eigenvalue
case (which we will not do here), we can show that two of the three modes are also
unobservable, even if the coupling from the three parallel paths to y[n] in Figure 5.10(c)
is nonzero. The reason is that the responses of the three branches cannot be teased
apart on the basis of observations of the single output signal y[n]. What happens here
for A3 is essentially what would happen for any 3 × 3 matrix A whose eigenvalues are
all at λ1 and that has three independent eigenvectors associated with λ1.

For A2, the state ZIR will have terms of the form λn
1 as before, but also terms of

the form nλn−1
1 . The transfer function will show, at most, two poles at λ1, suggesting that

we have at least one hidden mode. In fact, at least one mode is always unreachable, and
at least one mode is always unobservable, for this structure. What we see happening
here for A2 is essentially what would happen for any 3 × 3 matrix A whose eigenvalues
are all at λ1 and that has only two independent eigenvectors associated with λ1.

For A1, the state ZIR will have terms of the form λn
1 as before, but also terms

of the form nλn−1
1 and n2λn−2

1 . The transfer function will show three poles at λ1 if
and only if there is a nonzero coupling from x[n] to the first of the three stages in
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Figure 5.10(a) and a nonzero coupling from the last of the three stages to y[n].
Equivalently, we will find three poles in the transfer function if and only if the bot-
tom entry of the input vector b is nonzero, and the left entry of the output vector
cT is nonzero. Under these conditions, the system will be reachable and observable.
When these conditions fail, we get more limited reachability and/or observability. What
we see happening here for A1 is essentially what would happen for any 3 × 3 matrix
A whose eigenvalues are all at λ1 and that has only one independent eigenvector
associated with λ1.

z - l1

1

(a) System 1

(b) System 2

(c) System 3

z - l1

1

z - l1

1

q3[n] q2[n] q1[n]

q1[n]

z - l1

1 q1[n]

z - l1

1 q2[n]

z - l1

1 q3[n]

+ z - l1

1

z - l1

1

z - l1

1q3[n] q2[n]

+

+

Figure 5.10 Block diagrams of the three systems in Example 5.13.

Chapter 6 examines how knowing a system’s input and output wave-
forms, along with a model of the system dynamics, allows one to infer the
internal state of the system. This then provides a rational basis for designing a
feedback control scheme to regulate the behavior of the system.

5.5 FURTHER READING

The further reading suggestions at the end of Chapter 4 are also relevant to
this chapter. Foundational material may be found in [Edw]. The dynamics of
LTI systems, and usually including the state estimation and state feedback
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control methods presented in Chapter 6, are treated in numerous books, for
instance [Ant], [Ch2], [Ka1], [Lue] and the classic [Zad]. For extensions to
nonlinear systems, see [Kha], [Slo], [Vid].

Problems

Basic Problems

5.1. A particular object of unit mass, constrained to move in a straight line, is acted
on by an external force x(t) and restrained by a cubic spring. The system can be
described by the equation

d2p(t)
dt2

+ kp(t) − εp3(t) = x(t) ,

where p(t) denotes the position of the mass and p3(t) is the cube of the position;
the quantities k and ε are known positive constants.

(a) Obtain a state-space model for the above system, using physically meaning-
ful state variables. Take x(t) to be the input and let the output y(t) be the
position of the mass.

(b) Suppose x(t) = 0 for all t and the system is in equilibrium. You will
find that there are three possible equilibrium conditions of the system.
Determine the values of your state variables in each of these three equi-
librium conditions, expressing your results in terms of the parameters
k and ε.

(c) For each of the three equilibrium positions you identified in (b), obtain a
linearized state-space model that approximately describes small deviations
away from the equilibrium. Which of these three linearized models, if any, is
asymptotically stable?

5.2. Consider a nonlinear time-invariant state-space model described in the form

q̇1(t) = q2(t)

q̇2(t) = −βq3
1(t) + x(t) ,

where β is some positive constant.

(a) If the input x(t) is fixed at a constant positive value x > 0, determine the
possible equilibrium values q1 and q2 of q1(t) and q2(t) respectively.

(b) If the input deviates by a small amount x̃(t) = x(t) − x from its equilibrium
value, and if the state variables correspondingly deviate by small amounts
q̃1(t) = q1(t) − q1 and q̃2(t) = q2(t) − q2 respectively from their equilibrium
values, find a linearized LTI state-space model that approximately describes
how these small deviations are related to each other. In other words, find an
LTI state-space model that has q̃1(t) and q̃2(t) as state variables and x̃(t) as
input.

(c) Is your linearized model asymptotically stable?
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5.3. Consider the linear dynamical system:

q̇(t) = Aq(t)

y(t) = cTq(t)

where A is a 2 × 2 matrix with eigenvalues +1 and −1 and corresponding

eigenvectors
[

1
4

]
and

[
1

−4

]
, and c =

[
1
0

]
.

(a) Find q(t) and y(t) for t ≥ 0, when q(0) =
[

0
8

]
.

(b) Specify all possible initial states q(0) such that the output for t ≥ 0 is
bounded, i.e., |y(t)| ≤ M for some finite M and for all t ≥ 0.

5.4. Consider a system described by a second-order state-space model of the form

q̇(t) =
[−5 1

6 0

]
q(t) +

[
0
1

]
x(t)

y(t) = [−1 1
]

q(t)

(a) Determine the eigenvalues and corresponding eigenvectors of the
system.

(b) Determine the response q(t) for t ≥ 0 when x(t) = 0 for t ≥ 0 and

q(0) =
[

0
1

]
.

(c) Determine a nonzero choice for the initial condition q(0) such that the ZIR
decays to zero as t → ∞.

5.5. Consider the electrical circuit shown in Figure P5.5, with the voltage w(t) of the
voltage source taken as the input, and the voltage uR(t) across the resistor taken
as the output.

R

L

L

i2(t)

i1(t)

uR(t)w(t)
-
+

+

-

Figure P5.5

(a) Choosing i1(t) and i2(t) as state variables for the circuit, find the correspond-
ing state-space description. In what follows, use q(t) to denote the state
vector in your state-space description. Also assume R/L = 1.

(b) Find the natural frequencies (i.e., eigenvalues) λ1 and λ2 of the circuit, and
compute the associated eigenvectors, v1 and v2 respectively.

(c) Specify for what nonzero initial conditions q(0) the state remains frozen at
its initial value, q(t) = q(0) for all t > 0, when the input is fixed at 0 (i.e.,
when w(t) = 0 for all t ≥ 0).
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(d) Using your results from (b), find all initial conditions q(0) for which each
component of q(t) decays asymptotically to zero as t −→ ∞, when the input
is fixed at 0.

(e) Using the results from (a) and (b), find all nonzero initial q(0) for which
the output uR(t) decays asymptotically to zero as t −→ ∞, when the input is
fixed at 0.

5.6. Consider a second-order state-space model for a particular causal system:

dq(t)
dt

= Aq(t) + bx(t)

y(t) = cTq(t) + dx(t)

Suppose we know that the transfer function of the system is

H(s) = Y(s)
X(s)

= s + 1
(s − 3)(s + 4)

.

Also, if the system is given a zero input, x(t) = 0 for all t ≥ 0, then the state vector
q(t) follows the trajectories (solid lines with arrows) shown in Figure P5.6 for a
number of different initial conditions q(0) = [q1(0) q2(0)]T , labeled on the graph
with circles.

(a) Determine the matrix A.
(b) Is the system reachable? Is it observable?

State trajectories for different initial conditions

-5
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q1(t)

q 2
(t

)
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[2, -0.9]

[4, -2.1]

Figure P5.6
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5.7. You are given the following state-space model for a CT causal system:

q̇(t) =
[

0 1
0 −2

]
q(t) +

[ −2
4

]
x(t) ,

y(t) = [ −1 0
]

q(t) + x(t) .

For all the following questions, explain the reasoning behind your answers.

(a) Determine the natural frequencies of the system, i.e., the eigenvalues λ1
and λ2 of the matrix that governs state evolution, and find the associated
eigenvectors v1 and v2 respectively.

(b) Suppose x(t) = 0 for t ≥ 0. Specify the set of all possible nonzero initial con-
ditions q(0) for which the state is asymptotically zero, i.e., for which the
components q1(t) and q2(t) of q(t) go to 0. Is the system asymptotically
stable?

(c) Still with x(t) ≡ 0, suppose the initial condition is not one of those you spec-
ified in (b). Specify in as much detail as you can where the state will end up,
i.e., what q(∞) will be.

(d) Show that the system has an unreachable mode, and determine which mode
(or eigenvalue) is unreachable. Also, if we start the system out with q(0) = 0
and are allowed to use any x(t) we want, there is some region of the two-
dimensional state-space that you can guarantee q(t) will not be in for any t.
Specify this unreachable region as fully as you can.

(e) Suppose q(0) = 0, and x(t) is known to be bounded for all time, i.e., x(t) ≤
M < ∞, but is otherwise unknown. Is q1(t) guaranteed to be bounded? Is
q2(t) guaranteed to be bounded?

( f ) Show that the system is observable.
(g) Using the state-space model above, show that you can express q1(t) and q2(t)

at any time t in terms of just x(t), ẋ(t), y(t), and ẏ(t), without knowing q(0).
Explain why this would not be possible if the system were unobservable.

(h) Find the (zero-state) transfer function H(s) of the system from its input x(t)
to its output y(t). Is the system BIBO stable?

( i ) Write the state-space description of a first-order system that has the same
input and output, and the same transfer function H(s), as the given system.
You can use the symbol q(t) to denote the scalar state of this system.

5.8. Consider the following state-space model:

q̇(t) =
[ −3 1

0 0

]
q(t) +

[
1
0

]
x(t)

y(t) = [ 1 0 ] q(t) .

Answer the following, and explain your reasoning.

(a) Is the system asymptotically stable?
(b) Is the system observable?
(c) If x(t) = 0 for t ≥ 0, is there any nonzero initial condition q(0) for which the

output response y(t) for t ≥ 0 is identically 0? If so, give an example of such
an initial condition.

(d) Is the system reachable?
(e) Is the system BIBO stable?
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( f ) If x(t) = e−2tu(t) and if the initial state is

q(0) =
[

1
0

]
,

what value does the state vector reach asymptotically, i.e., what is q(∞)?
(g) If the input is identically zero, i.e., x(t) = 0 for t ≥ 0, and if the initial state is

q(0) =
[

1
1

]
,

what value does the state vector reach asymptotically?

5.9. Consider a second-order CT causal LTI system with transfer function

H(s) = s + 1
s + 3

and state-space description of the standard form:

d
dt

q(t) = Aq(t) + bx(t) , y(t) = cT q(t) + dx(t) .

Suppose we know that

b =
[

2
0

]
.

Also, with some particular initial state q(0), and with the input x(t) = 0 for t ≥ 0,
we get

q(t) =
[

e−3t

et − 2e−3t

]
.

(a) Determine A, cT , and d.
(b) If q(0) is as in part (a), but now x(t) = e−t for t ≥ 0, determine y(t).
(c) If q(0) is as in part (a), but now

x(t) = q1(t) − 1
8

q2(t)

for t ≥ 0, what is the general form of y(t)? You don’t need to work out all
the constants, but you should at least be able to determine whether y(t)
decays, grows, or oscillates, and at what rate, or determine that it stays
constant.

5.10. The state equations for a causal LTI system are

q̇(t) = Aq(t) + bx(t)

y(t) = cTq(t) + dx(t)

where

A =
[

0 2
6 −1

]
, b =

[
1
1

]
, cT = [ 3 −2

]
, d = 0 .

(a) Find the eigenvalues λ1 and λ2 and the associated eigenvectors v1 and v2 of
matrix A.

(b) Is the system asymptotically stable?
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(c) Is the system reachable? Is it observable?
(d) Find the system function H(s) = Y(s)/X(s).
(e) Is the output of the system bounded when the input is bounded and the

system is initially in the zero state? Reconcile your answer with your answer
in part (b).

5.11. Consider the system

d
dt

[
q1(t)
q2(t)

]
=
[ −1 2

1 0

][
q1(t)
q2(t)

]
+
[

1
0

]
x(t)

y(t) = [ 1 −1
] [ q1(t)

q2(t)

]
.

(a) Is this system asymptotically stable?
(b) Is the system reachable ? Is it observable?
(c) What is the transfer function of the system?
(d) If x(t) = 0 and y(t) = 0 for t ≥ 0, can it be concluded that[

q1(t)
q2(t)

]
=
[

0
0

]
for t ≥ 0 ? If so, explain why. If not, find nonzero solutions q1(t) and q2(t).

5.12. A system with input x(t) and output y(t) is described in terms of the state vector
q(t) as follows:

dq(t)
dt

=
[ −1 3

0 1

]
q(t) +

[
0

−1

]
x(t)

y(t) = [ 2 −3
]

q(t) .

(a) Is the system observable? If not, specify the unobservable mode or modes.
(b) Is the system reachable? If not, specify the unreachable mode or modes.
(c) The system is not asymptotically stable. Is the system BIBO stable?

5.13. Consider the following state-space description of a CT system:

q̇(t) = Aq(t) + bx(t)

y(t) = cTq(t)

where

A = V
[

λ1 0
0 λ2

]
V−1 .

Assume that the system is asymptotically stable. Suppose we would like to sim-
ulate this system on a digital computer, using samples of the input, state, and
output at times t = nT, and approximating q̇(t) at t = nT by a forward difference
(this is the forward-Euler approximation), i.e.,

q̇(nT) ≈ 1
T

[q(nT + T) − q(nT)] .
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The resulting DT system can be written in the form

q[n + 1] ≈ Adq[n] + bdx[n]

y[n] ≈ cT
d q[n] ,

where q[n] = q(nT), x[n] = x(nT), y[n] = y(nT).

(a) Determine Ad, bd, and cd in terms of A, b, and c.
(b) What are the natural frequencies of the DT system?
(c) For what range of values of T is the DT system asymptotically stable?

5.14. Consider the second-order difference equation

y[n] − 3y[n − 1] + 2y[n − 2] = x[n − 1] + 4x[n − 2].

(a) Specify fourth-order, third-order, and second-order state-space models for
the above difference equation.

(b) For each of the state-space models in (a), determine all of the modal
frequencies, i.e., eigenvalues, and associated mode shapes, i.e., eigenvectors.

(c) For each modal frequency of the third-order model from (b), determine:
(i) if the mode associated with the frequency is reachable; and

(ii) if it is observable.
Do your results suggest why there may be a second-order model with the
same input-output behavior? Now test your second-order model for reacha-
bility and observability. Is there any reason to think that a lower-order model
(i.e., a first-order model) could have the same input-output behavior?

5.15. Consider the causal DT system represented by the block diagram in Figure P5.15,
where D denotes a delay element. The system can be described by the second-
order state-space model

q[n + 1] = Aq[n] + bx[n]

y[n] = cTq[n] + dx[n]

where

q[n] =
[

q1[n]
q2[n]

]
.

Suppose the eigenvalues of A are λ1 = 2 and λ2 = − 1
2 . Both eigenvalues are

reachable, but suppose λ1 is unobservable.

D

q
1
[n]

q
2
[n]

 x[n]

D

 y[n]

P

+a g

b

+

+

+

Figure P5.15
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(a) Is the system asymptotically stable? Is it BIBO stable? You should be able
to answer both questions with no computation at all.

(b) Express A, b, cT , and d in terms of the parameters in the block diagram.
(c) Determine α and β.
(d) If q[0] = 0 and x[n] = δ[n], what is q[1]? For this case, do q1[n] and q2[n]

tend to 0 as n → ∞?

5.16. You are given the following state-space model for a causal system:

q[n + 1] =
[

0 1
− 1

2
3
2

]
q[n] +

[
1
1
2

]
x[n]

y[n] = [ 0 1
]

q[n] .

(a) What are the natural frequencies, or eigenvalues, of the system?
(b) Find a nonzero initial condition q[0] for which the ZIR of the state vector

decays asymptotically to zero. Explain your reasoning.
(c) Find a nonzero initial condition q[0] from which the ZIR will not move, i.e.,

q[k] = q[0] for k > 0.
(d) Is the system reachable?
(e) Will every bounded input produce a bounded state response, i.e., bounded

q1[n] and q2[n]? Explain your answer carefully.
( f ) Is the system observable?
(g) What is the transfer function of the system? Is the system BIBO stable?

5.17. Consider a DT system with the following state-space description:

q[n + 1] =
[

3 0
− 3

2
1
2

]
q[n] +

[
1
0

]
x[n]

y[n] = [ 6
5 2

]
q[n] .

(a) Find the natural frequencies of the system and determine whether the
system is asymptotically stable.

(b) Determine which natural frequencies of the system are reachable.
(c) Determine which natural frequencies of the system are observable.
(d) Suppose x[n] = 0 for n ≥ 0. Determine all values of of q[0] that simultane-

ously satisfy both of the following conditions:
(i) y[0] = 5, and

(ii) y[n] decays to 0 as n → ∞.

5.18. Consider the following causal DT state-space system

q[n + 1] = Aq[n] + bx[n]

y[n] = cTq[n] + dx[n]

where

A =
[ 1

2
3
2

0 2

]
and b, cT , and d are unknown.

(a) Determine the eigenvalues λ1, λ2 and the eigenvectors v1 and v2 of A.
(b) Specify all the possible initial conditions (i.e., q[0]) such that the ZIR will

decay asymptotically to zero.
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(c) Indicate which, if any, of the following could be ZSR system functions for
the system:

(i) H(z) = z−1

1 − 1
3 z−1

;

(ii) H(z) = 1 + 1
2 z−1

1 − 1
2 z−1

.

(d) We want to describe the system in terms of the new set of state variables

f[n] =
[

f1[n]
f2[n]

]
,

where f1[n] = q1[n] + q2[n] and f2[n] = q1[n] − q2[n]. In other words, we
want to describe the system using the following equations:

f[n + 1] = Af[n] + bx[n]

y[n] = cT f[n] + dx[n] .

(i) Determine A, b, cT , and d in terms of A, b, cT , and d.
(ii) We can express the ZIR of the system in the general form

f[n] = α1λ
n
1v1 + α2λ

n
2v2 ,

where α1 and α2 are constants. Determine λ1, λ2, v1, and v2.

Advanced Problems

5.19. A particular mechanical system involves a single mass whose position r(t) is
governed by the differential equation

d2

dt2
r(t) − 5

(
1 − r2(t)

) d
dt

r(t) + r(t) = x(t) ,

where x(t) denotes some input force acting on the system. Consider

y(t) =
∫ t

0
r(σ ) dσ

to be the output of interest.

(a) Pick appropriate state variables and write a (nonlinear) state-space descrip-
tion of the system for t ≥ 0, consisting of state evolution equations and an
instantaneous output equation. (Hint: The model will not be second order.)
Is your state-space description time-invariant or time-varying?

(b) Determine the equilibrium values of the state variables in your model, cor-
responding to the constant input x(t) ≡ 0. Then obtain a linearized model
describing the state and output behavior of the system for small deviations
of x(t) and of the state variables from their equilibrium values.

5.20. Consider a pendulum suspended from a support that allows the pendulum to
swing without friction in a vertical plane. We idealize the pendulum as compris-
ing a point mass m at the end of a massless rod of length R, and denote the angle
the pendulum makes with the downward vertical by θ(t). Let γ denote the accel-
eration due to gravity. Assume we can exert a torque x(t) on the pendulum. We
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now arrange for the plane containing the pendulum to be rotated at a constant
angular velocity ω0, as indicated in Figure P5.20.

 x(t)

v0

R

m
u(t)

Figure P5.20

It can be shown that the motion of this spinning pendulum is then
described by the equation

d2

dt2
θ(t) = sin θ(t)

(
ω2

0 cos θ(t) − γ

R

)
+ 1

mR2
x(t) .

(a) Choose appropriate state variables and write a (nonlinear) state evolution
equation and output equation for the system, with x(t) as the input and θ(t)
as the output.

(b) Suppose the input torque is identically zero, x(t) ≡ 0. If ω2
0 < γ/R, then

there are only two equilibrium points, corresponding to the pendulum hang-
ing straight down for all time, i.e., θ(t) ≡ 0, or to its being in the vertical
inverted position for all time, θ(t) ≡ π . Linearize your state-space model
from (a) around the equilibrium corresponding to the pendulum hanging
straight down, and compute the natural frequencies of the system (i.e.,
the eigenvalues of the state evolution matrix). Will the ZIR of the lin-
earized system for an arbitrary initial condition be exponentially decaying,
exponentially growing, or oscillatory?

(c) If the input torque is identically zero, but ω2
0 > γ/R, there are four equi-

librium points. Compute them. One of these equilibrium points again
corresponds to the pendulum hanging straight down, and so the linearized
model around this equilibrium point still has the same form as that in (b),
though a parameter will have changed sign. Compute the new natural fre-
quencies of the system. Will the ZIR of the system for an arbitrary initial
condition in this case be exponentially decaying, exponentially growing, or
oscillatory? Also determine whether the linearized model is (i) reachable,
and (ii) observable.

5.21. Consider an undriven CT LTI state-space model of the form q̇(t) = Aq(t), and
suppose the real matrix A has a complex eigenvalue λ = σ + jω, where σ and ω

are both real, with ω �= 0.

(a) Explain why the eigenvector associated with λ must be of the form v = u +
jw for some real u and w that form an independent pair of vectors (which
also implies u �= 0 and w �= 0). (Hint: Show that otherwise one cannot satisfy
the defining equation Av = λv.)

(b) Show that the complex conjugate of λ, namely λ∗ = σ − jω, is also an
eigenvalue, and that its associated eigenvector is v∗ = u − jw.
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(c) In the modal solution to the above undriven system q̇(t) = Aq(t) for an
arbitrary initial condition q(0), the complex conjugate eigenvalue pair will
contribute a term of the following form:

αveλt + α∗v∗eλ∗t ,

where α = γ + jξ , and is determined by the specific value of q(0). Show that
this sum simplifies to the real expression

eσ t
[
vc cos(ωt) + vs sin(ωt)

]
for some real vectors vc and vs that you should express in terms of the given
quantities—and you’ll then note that this corresponds to a motion in the
plane spanned by the real and imaginary parts of the eigenvector v, namely
u and w. Qualitatively describe what this motion looks like for the cases
σ < 0, σ = 0, and σ > 0.

(d) Suppose that A is 3 × 3, and that in addition to the eigenvalues λ and λ∗
its remaining eigenvalue is at −10, for example, with associated real eigen-
vector vr . By interpreting the modal solution for the system, qualitatively
describe the state trajectory that originates from some arbitrary initial con-
dition q(0), i.e., describe the trajectory in general geometric terms, relating
it to vr and the plane spanned by u and w. Do this for the cases σ < 0, σ = 0,
and σ > 0.

5.22. Consider the LTI circuit in Figure P5.22.
Use the capacitor voltages q1(t) and q2(t) as state variables for this problem.

(a) Suppose x(t) = 0 for t ≥ 0 in the circuit. By invoking the symmetry of the
resulting circuit, answer the following questions:
(i) Find an initial condition vector q(0) = w1 such that the subsequent

response, i.e., q(t) for t > 0, involves zero current flowing in either
direction through the point F. Show that under this condition each
entry of q(t) is just a multiple of a single exponential eμ1t, and deter-
mine μ1.

(ii) Find an initial condition vector q(0) = w2 such that the subsequent
response, i.e., q(t) for t > 0, keeps node F at zero potential with respect
to ground. Show that under this condition each entry of q(t) is just a
multiple of a single exponential eμ2t, and determine μ2.

R R

RR

CC

F
 q1(t)  q2(t)

 x(t) +
-

- + -+

Figure P5.22

(b) Write down a second-order CT LTI state-space description for the circuit in
which the potential at F is specified to be the output of interest y(t). Evaluate
A, b, cT, and d in the resulting model
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dq(t)
dt

= Aq(t) + bx(t)

y(t) = cTq(t) + dx(t)

for the case where C = 1 and R = 4.
(c) Find the eigenvalues λ1 and λ2 of the matrix A that you obtained in (b), and

also determine their associated eigenvectors, v1 and v2 respectively.
(d) Explain any relationship you discover between the quantities you computed

in (a) and those you computed in (b).
(e) Still assuming that x(t) = 0 for t ≥ 0, obtain an expression, in terms of λ1,

λ2, v1, and v2, for the general solution of the state evolution equation
given in part (b). For the specific case where the initial voltages on the
capacitors are given by q1(0) = 1 and q2(0) = 5, what does this expression
reduce to?

( f ) Carry out a similarity transformation for the state-space model in part (b),
with the choice

M = [v1 v2] .

The columns of M are the eigenvectors you calculated in part (c), and

q(t) = Mr(t) .

Determine the resulting state-space model with r(t) as the new state vector.
(g) Using your results from (f), determine the reachability and observability of

each of the two modes. Interpret your results physically.

5.23. Consider the single-input, single-output Lth-order CT LTI state-space system

q̇(t) = Aq(t) + bx(t) , y(t) = cTq(t) + dx(t) ,

whose transfer function is H(s) = ν(s)/a(s), where a(s) = det(sI − A) is the
characteristic polynomial of the system.

(a) For d �= 0 the inverse system has a state-space representation involving the
same state vector q(t) but input y(t) and output x(t). Determine this state-
space representation, i.e., express the quantities Ain, bin, cT

in, and din in the
state-space representation below in terms of A, b, cT , and d:

q̇(t) = Ainq(t) + biny(t) x(t) = cT
inq(t) + diny(t) .

(b) Assuming d �= 0, find an expression in terms of the quantities A, b, cT, and d
for the polynomial ν(s) defined by the expression for H(s) given above.

5.24. (a) Suppose System 1 in Figure P5.24 is described by the first-order state-space
model

dq1(t)
dt

= γ q1(t) + x1(t)

y1(t) = q1(t) + x1(t) ,

where γ is a parameter.

System 1 System 2
y1(t) = x2(t)

x1(t) y2(t)

Figure P5.24
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(i) What is its transfer function H1(s)?
(ii) For what values of γ , if any, is the state-space model unreachable?

Unobservable? Asymptotically stable?

(b) Assuming the transfer function of System 2 is H2(s) = s + 1
s − 2

, find a first-

order state-space model for System 2, using q2(t) to denote its state variable.
Is your model reachable? Is it observable?

(c) (i) Combine the state-space models in (a) and (b) to obtain a second-order

state-space model for the overall system, using
[

q1(t)
q2(t)

]
as the state

vector, x1(t) as the input, and y2(t) as the output.
(ii) Find the natural frequencies λ1 and λ2 of the system. For which values

of γ is the system asymptotically stable? Also explain how to pick the
initial conditions q1(0) and q2(0), such that the ZIR of the system state
vector only contains terms involving eλ1t and not eλ2t, and vice versa.

(iii) Compute the transfer function H(s) from x1(t) to y2(t) using the model
in (i), and verify that it equals H1(s)H2(s).

(iv) For what values of γ , if any, is the system unreachable? Which natural
frequencies are unreachable? For what values of γ is the system unob-
servable? Which natural frequencies are unobservable? Interpret your
results in terms of pole-zero cancellations.

(d) Suppose the overall system had System 2 preceding System 1, reversing the
order in which the systems are cascaded, so that x2(t) was the overall input
and y1(t) was the overall output. You could find a state-space model for this
interconnection, and assess the reachability and observability of the inter-
connection in the same manner as above. Without that detailed analysis
what is your educated guess as to how the answers to part (iv) of (c) above
would change for this case? Present your reasoning.

5.25. Figure P5.25 depicts a reachable and observable second-order system placed in
series with a reachable and observable third-order system. The overall system is
found to have one hidden mode.

H(z), second order G(z), third order

Figure P5.25

If the hidden mode corresponds to a pole in the original second-order sys-
tem, is the hidden mode of the overall system unreachable and/or unobservable?
Explain.

Extension Problems

5.26. A bank has developed the following model for the monthly status of the account
of a credit-card customer:

The account may be paid up in the current month (status 0), or it may be
one month overdue (status 1), or two months overdue (status 2), or three or more
months overdue (status 3). Let qi[n] for i = 0, 1, 2, 3 be the probability that the
account is in status i in month n. For convenience, arrange these status occupancy
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probabilities in a vector q[n]. Let pij denote the probability of going to status i
at the next time instant n + 1, from status j at the present time instant n, and
suppose we have p00 = 0.9, p01 = 0.5, p02 = 0.3, and p03 = 0.2 for all n.

(a) Show that q[n + 1] = Aq[n] for some matrix A that you should fully spec-
ify. Find the eigenvalues and eigenvectors of A. Note that there is one
eigenvalue whose value is 1, and whose associated eigenvector v1 has all
its components positive; call this eigenvalue λ1. Note also that the other
three eigenvalues have magnitudes less than 1. Furthermore, the eigenvec-
tors associated with these three eigenvalues have components that sum to 0;
explain this feature of these three eigenvectors, using the definition of eigen-
values, eigenvectors, and the properties of this particular matrix A. (Hint:
What vector do the columns of A sum to?)

(b) Now explain in detail how the eigenvalues and eigenvectors show you that
the status occupancy probabilities will asymptotically approach constant
steady-state values for very large n, no matter what the initial occupancy
probability vector q[0] is. Find these steady-state probabilities, and denote
the corresponding vector by q[∞]. Next show that a good approxima-
tion to q[n] for large n (but before steady state is reached) takes the
form

q[n] ≈ q[∞] + μnw

for suitably chosen μ and w. Specify μ. Also, for the case where q0[0] = 1,
specify w.

5.27. Show that any two minimal LTI state-space realizations of a transfer function are
related by a similarity transformation.

5.28. The intent of this problem is to give you a feel for how the results in this chapter
on modal solutions and reachablity can change when eigenvalues are repeated.
The full story is more elaborate, but is based on ideas that are exposed here (also
see Example 5.13).

Consider the state-space model

q[n + 1] = Aq[n] + bx[n], y[n] = cTq[n] + dx[n] ,

where

A =
⎡⎣ 0 0 0

1 0 0
0 1 0

⎤⎦ , b =
⎡⎣ 1

0
0

⎤⎦ , cT = [c1 c2 c3
]

,

and d is some scalar constant.

(a) What are the eigenvalues of A? How many independent eigenvectors can
you find for A? Can A be transformed to diagonal form, i.e., expressing it
as A = M�M−1 for a diagonal matrix � and some invertible matrix M ?
(Hint: If such a representation were possible, then the diagonal elements
of � would have to be the eigenvalues of A, and the columns of M would
be the associated eigenvectors, with invertibility of M ensuring that the
eigenvectors were independent.)

(b) Determine Ak for all k > 1. Now determine, given an arbitrary initial state
and zero input, how many steps it takes for the state to go to zero? The
system is termed deadbeat because the ZIR of its state vector goes to zero
in a finite number of steps, rather than decaying asymptotically.
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264 Chapter 5 LTI State-Space Models

(c) Draw a delay-adder-gain block diagram of the system, and using this, or
in some other way, determine the unit sample response h[n] and transfer
function H(z) from input x to output y. Does it appear as though the sys-
tem has any unreachable or unobservable eigenvalues? We have not defined
unreachability or unobservability formally for the case of repeated eigenval-
ues, so what you are being asked here is to use any informal notion of what
these concepts mean in order to guess at a plausible answer, along with an
explanation of your reasoning.

(d) How do your answers in (c) change if the input vector is changed to

b =
⎡⎣ 0

1
0

⎤⎦?

5.29. (a) Find a state-space description for the circuit in Figure P5.29, in the form

q̇(t) = Aq(t) + bi(t)

ν(t) = cTq(t) + di(t) .

Choose as state variables the current in the inductor, iL(t), and the voltage
across the capacitor, νC(t). For the remainder of this problem, let L and C
equal 1.

(b) Calculate the eigenvalues λ1 and λ2 of A in terms of R, and the transfer func-
tion H(s) = V(s)/I(s). This transfer function can be computed directly from
the circuit by determining its input impedance, or it can be computed from
the state-space representation via the expression given within the chapter,
namely

H(s) = cT(sI − A)−1b + d .

For R �= 1, is the system reachable and observable? You should be able to
determine this quite easily from the form of H(s).

iL(t)i(t) v(t)

R

L C

R
+

vC(t)
+

-- Figure P5.29

Given your expression for H(s) in part (b), you might (correctly) think that there
are only three possibilities when R = 1: (i) both modes are unreachable; (ii)
both modes are unobservable; or (iii) one mode is observable but unreachable,
while the other one is reachable but unobservable. However, what complicates
the discussion of reachability and observability for R = 1 is the fact that now
λ1 = λ2, while our results were developed for the case of distinct eigenvalues.
Nevertheless, the basic ideas remain the same: an unreachable mode is one that
cannot be excited from the input; an unobservable mode is one that cannot
be seen at the output. Proceeding with these notions of what unreachability
and unobservability mean in the repeated-eigenvalue case, parts (c) and (d)
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below are designed to help you rule out possibilities (i) and (ii) above. All three
remaining parts of this problem apply to the case R = 1.

(c) Find the transfer functions from the input i(t) to each of the two state
variables. Can you conclude that at least one of the modes is reachable?

(d) Find the transform-domain expression relating an arbitrary initial state q(0)
to the output ν(t), when the input is identically zero, i(t) ≡ 0. Can you
conclude that at least one of the modes is observable?

(e) Only one of the following equations, for some appropriate choice of the
parameters, precisely represents the set of voltage waveforms ν(t) that are
possible for this circuit, assuming arbitrary initial conditions and an arbitrary
input i(t). Determine which one, and specify the coefficients. Explain.

(i) ν(t) = αi(t);

(ii) [dν(t)/dt] + βν(t) = α
(

[di(t)/dt] + βi(t)
)

;

(iii) [d2ν(t)/dt2] + γ [dν(t)/dt] + βν(t) = α
(

[d2i(t)/dt2] + γ [di(t)/dt] +
βi(t)

)
.
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6
State Observers and
State Feedback

The modal-form representation developed in Chapter 5 for the solution of a
linear and time-invariant (LTI) state-space model of a causal system shows
explicitly that the state at any given time summarizes everything about the
past that is relevant to future behavior of such a model. More specifically,
given the value of the state vector at some initial instant, and given the entire
input trajectory from the initial instant onward over some interval of time,
the entire future state and output trajectories of the model over that inter-
val can be determined. The same general conclusion holds for nonlinear and
time-varying state-space models, although they are generally far less tractable
analytically. We will continue to focus on LTI state-space models.

It is typically the case that direct measurements of the full state of a sys-
tem are not available, and therefore the initial state of the system is unknown.
Uncertainty about the initial state generates uncertainty about the future state
trajectory, even if the model for the system is perfect, and even if we have
accurate knowledge of the inputs to the system. The initial state and subse-
quent trajectory therefore have to be inferred, using the available information,
namely the known or measured signals, along with the model of how these
signals are interrelated.

Sections 6.1 and 6.2 of this chapter are devoted to addressing the issue
of state trajectory estimation, given uncertainty about the initial state of the
system. We shall see that the state can actually be determined under appro-
priate conditions, using what is called a state observer. The observer employs
a model of the system along with measurements of both the input and output
trajectories of the system, in order to asymptotically infer the state trajectory.

266

www.konkur.in

Telegram: @uni_k



Section 6.1 Plant and Model 267

Sections 6.3 and 6.4 of the chapter examine how the input to the system
can be controlled in order to yield desirable system behavior. We demonstrate
that having knowledge of the present state of the system provides a power-
ful basis for designing feedback control to stabilize or otherwise improve the
behavior of the resulting closed-loop system. When direct measurements of
the state are not available, the state estimate provided by an observer turns
out to suffice.

6.1 PLANT AND MODEL

It is important to make a distinction between the actual, physical, causal sys-
tem that we are interested in studying, working with, or controlling—this is
often termed the plant—and our idealized model for the plant. The plant is
usually complex, nonlinear, and time-varying, typically requiring an infinite
number, or even a continuum, of state variables and parameters to represent
it with ultimate fidelity. The model, on the other hand, is usually an idealized
and simplified LTI representation, of relatively low order, that aims to cap-
ture the behavior of the plant in some limited regime of its operation, while
remaining tractable for analysis, computation, simulation, and design.

The inputs to the model represent the inputs acting on or driving the
actual plant, and the outputs of the model represent signals in the plant that
are accessible for measurement or are otherwise of interest. In practice not all
the inputs to the plant are known. There will generally be unmeasured distur-
bance inputs that can only be characterized in some general way, perhaps as
random processes. Similarly, the measured outputs of the plant will differ from
what would be predicted on the basis of our limited model. These differences
are partly due to modeling errors and approximations, and partly because of
measurement noise.

We focus on the DT case first, but essentially everything carries over in
a natural way to the CT case. We shall only treat situations where the under-
lying plant differs from the model in very limited ways. Specifically, suppose
the plant is correctly described by the following Lth-order LTI state-space
equations:

q[n + 1] = Aq[n] + bx[n] + w[n] , (6.1)

y[n] = cTq[n] + dx[n] + ζ [n] . (6.2)

These equations are represented in Figure 6.1. Here x[n] is the known scalar
control input, and w[n] denotes a vector of unknown disturbances that drive
the plant, not necessarily through the same mechanisms or actuators or chan-
nels as the input x[n]. For example, perhaps w[n] = fv[n], where v[n] is a scalar
disturbance signal and f is a vector describing how this scalar disturbance
drives the system, just as b describes how x[n] drives the system. We refer
to w[n] as the plant disturbance. The state vector q[n] is also not known. The
output y[n] is a known or measured quantity, while ζ [n] denotes the unknown
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268 Chapter 6 State Observers and State Feedback

x[n] y[n]

1[n]

w[n]

q[n]

A, b, cT, d
+

Figure 6.1 Representation of a DT LTI
plant with known control input x[n] and
available output measurements y[n],
but with unknown disturbance input
vector w[n], state q[n], and
measurement noise ζ [n].

noise component of this measured output. We refer to ζ [n] as measurement
noise.

With the above equations representing the true plant, we seek a model
that might be used to simulate the plant, deduce the plant’s internal behavior
from available measurements, or support control design. We shall assume that
not only x[n] and y[n] are known but also the matrices A, b, cT , and d that gov-
ern the plant. We further suppose that nothing is known about the disturbance
variables in w[n] and the measurement noise ζ [n], or alternatively, that they
can be represented as zero-mean random processes. The simplest approach to
constructing a model for the plant behavior is to ignore these disturbance and
noise variables. The resulting model then takes the following LTI state-space
form:

q̂[n + 1] = Aq̂[n] + bx[n] , (6.3)

ŷ[n] = cT q̂[n] + dx[n] . (6.4)

The input that drives this model is the same x[n] that is an input to the plant,
and is therefore known. However, the state q̂[n] and output ŷ[n] of the model
will generally differ from the corresponding true state q[n] and measured out-
put y[n] of the plant, because the true initial state q[0] of the plant is unknown,
and the plant state and output are additionally perturbed by w[n] and ζ [n]
respectively.

As already noted, several sources of uncertainty are ignored here. At
the very least, there will be discrepancies between the actual and assumed
parameter values—that is, between the actual entries of A, b, cT, and d in
Eqs. (6.1) and (6.2) and the assumed entries of these matrices in Eqs. (6.3)
and (6.4) respectively. These discrepancies could have been acknowledged by
denoting the matrices in Eqs. (6.3) and (6.4) by Â, b̂, ĉT, and d̂ instead of by
the same symbols as in Eqs. (6.1) and (6.2), but we shall assume there are no
such parameter discrepancies.

More typically, the actual physical system is better represented by a non-
linear, time-varying model of much higher order than the assumed LTI model,
and with various other disturbance signals acting on it. The framework of
robust control theory is aimed at studying and mitigating the effects of these
various additional sources of uncertainty. We limit ourselves here to examin-
ing the effects of uncertainty regarding the initial state, plant disturbances, and
measurement noise.
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Section 6.2 State Estimation and Observers 269

6.2 STATE ESTIMATION AND OBSERVERS

In this section we focus on using the plant model, along with knowledge of the
input and output signals, in order to causally infer the state of the plant. Our
primary interest is in permitting the inferred state to be used in real time to
generate appropriate control actions. There are applications where causal and
real-time operation are not required, but we will not treat those here.

6.2.1 Real-Time Simulation

A natural way to obtain an estimate of the current plant state is by running
a model forward in real time as a simulator, in synchrony with the operation
of the plant. For this, we initialize the model in Eq. (6.3) at some initial time,
which can be chosen as n = 0 without loss of generality, and pick its initial state
q̂[0] to be some guess or estimate of the initial state of the plant, for example,
q̂[0] = 0. We then drive the model with the known plant input values x[n]
from time n = 0 onward, generating an estimated or predicted state trajec-
tory q̂[n] for n > 0. The corresponding predicted output ŷ[n] can be computed
using Eq. (6.4).

In order to examine how well this real-time simulator performs as a state
estimator, consider the behavior of the state error vector

q̃[n] = q[n] − q̂[n] . (6.5)

Note that q̃[n] is the difference between the actual and estimated or predicted
state trajectories. We will similarly denote the difference between the actual
and estimated output trajectories by

ỹ[n] = y[n] − ŷ[n] . (6.6)

Subtracting Eq. (6.3) from Eq. (6.1) shows that the state estimation error q̃[n]
is itself governed by an LTI state-space equation, namely

q̃[n + 1] = Aq̃[n] + w[n] , (6.7)

with initial condition

q̃[0] = q[0] − q̂[0] . (6.8)

This initial condition represents the uncertainty about the initial state of the
plant. The output error can similarly be obtained by subtracting Eq. (6.4) from
Eq. (6.2), yielding

ỹ[n] = cT q̃[n] + ζ [n] . (6.9)

The model in Eq. (6.7) is called the state error model of the real-time
simulator. Note that its dynamics are determined by the same matrix A that
governs the plant and model. Consequently, if the plant in Eq. (6.1) is unstable
or has otherwise undesirable dynamics, and if either q̃[0] or w[n] is nonzero,
then the error q̃[n] between the actual and estimated state trajectories will
grow exponentially, or will have otherwise undesirable behavior. Even if the
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270 Chapter 6 State Observers and State Feedback

plant is not unstable, it is apparent from Eq. (6.7) that the state error dynamics
are driven by the disturbance process w[n], and there is no means to shape the
effect of this disturbance on the estimation error. The real-time simulator is
thus generally an inadequate way of reconstructing the state.

The same development in CT for a plant of the form

q̇(t) = Aq(t) + bx(t) + w(t) , (6.10)

y(t) = cTq(t) + dx(t) + ζ (t) , (6.11)

leads to a model and real-time simulator of the form

q̇̂(t) = Aq̂(t) + bx(t) , (6.12)

ŷ(t) = cT q̂(t) + dx(t) . (6.13)

Defining the state estimation error as

q̃(t) = q(t) − q̂(t) , (6.14)

we obtain the state error equation

q̇̃(t) = Aq̃(t) + w(t) , (6.15)

with initial condition

q̃(0) = q(0) − q̂(0) . (6.16)

The corresponding output error is given by

ỹ(t) = cT q̃(t) + ζ (t) . (6.17)

The following example shows how a CT real-time simulator performs at
estimating the state of a particular plant.

Example 6.1
Real-Time Simulation to Estimate the State of
a Suspended Pendulum

We choose as the plant for this example the linearized representation of pendulum
dynamics for small deviations around the hanging or suspended position, as described
at the end of Example 5.1. Suppose the specific plant is described by

q̇(t) =
[

0 1
−8 −β

]
q(t) +

[
0

−1

] (
x(t) + v(t)

)
y(t) = [1 0

]
q(t) + ζ (t) , (6.18)

where v(t) is a disturbance torque on the plant and y(t) is a noisy measurement of
angular position q1(t), with measurement noise ζ (t). The parameter β determines the
damping. For the undamped case where β = 0, the natural frequencies of the system
are ±j

√
8, which gives rise to a zero-input response (ZIR) that is sinusoidal of period

2π/
√

8 ≈ 2.22 sec.
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A real-time simulator for this plant takes the form

q̇̂(t) =
[

0 1
−8 −β

]
q̂(t) +

[
0

−1

]
x(t)

ŷ(t) = [1 0
]

q̂(t) . (6.19)

This can be realized as in Example 4.5 (changing the gain of 8 to –8). The corresponding
error dynamics are

q̇̃(t) =
[

0 1
−8 −β

]
q̃(t) +

[
0

−1

]
v(t)

ỹ(t) = [1 0
]

q̃(t) + ζ (t) . (6.20)

Figure 6.2 shows stimulation results obtained for a case with damping parameter
β = 0.2, with a pulsed torque input x(t) that takes the value 1 for the first 5 seconds
and is zero thereafter, and assuming no plant disturbance. The plots describe the pen-
dulum angle q1(t), the estimate q̂1(t) of this angle from a real-time simulator, and the
associated estimation error q̃1(t). Note that the dynamics of the error appear similar to
those of the underlying plant.
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Figure 6.2 For the pendulum in Example 6.1 with damping parameter β = 0.2 and with no
plant disturbance, the plots show the trajectories of the pendulum angle q1(t), the estimate
q̂1(t) of this angle from the real-time simulator, and the associated estimation error q̃1(t).

6.2.2 The State Observer

To do better in the DT case than the real-time simulator in Eq. (6.3), we use
not only the input x[n] but also the measured output y[n]. The key idea is
to use the discrepancy between y[n] and the output ŷ[n] that is predicted by
the model or simulator—that is, use the output error ỹ[n]—to generate a cor-
rection to the real-time simulator. The same idea applies in CT, but we focus
initially on the DT case.
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272 Chapter 6 State Observers and State Feedback

Inserting a scaled version of ỹ[n] as an additive correction to each
state evolution equation of the real-time simulator in Eq. (6.3) results in the
following system of equations:

q̂[n + 1] = Aq̂[n] + bx[n]

− �
(

y[n] − ŷ[n]
)

. (6.21)

The resulting system is termed a state observer or state estimator for the plant.
The observer equation above has been written in a way that displays its two
constituent components: a part that simulates the plant whose state we are
trying to estimate, and a part that feeds the correction term ỹ[n] = y[n] − ŷ[n]
into the simulation. This correction term is applied through the L-component
vector �, termed the observer gain vector, with ith component �i. The nega-
tive sign in front of � is used only to simplify the appearance of some later
expressions. Figure 6.3 is a block-diagram representation of the resulting
structure.

Subtracting Eq. (6.21) from Eq. (6.1) shows that the state estimation
error or observer error satisfies

q̃[n + 1] = Aq̃[n] + w[n] + �̃y[n]

= (A + �cT )̃q[n] + w[n] + �ζ [n] . (6.22)

This is again an LTI state-space representation—with state vector q̃[n] and
inputs w[n] and ζ [n]—and thus amenable to the analytical tools developed in
Chapter 5. These tools can be used to choose the observer gain vector � so as
to shape the state error dynamics and its response to plant disturbance and
measurement noise.

x[n] y[n]

y[n]

[n]

w[n]

Z[n]

q[n]

A, b, cT

Plant

Observer

+

+-
[n]

A, b, cT

B

q [n]q y

Figure 6.3 An observer for the plant in
the upper part of the diagram comprises
a real-time simulation of the plant,
driven by the same input, and corrected
by a signal derived from the output
error.
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Section 6.2 State Estimation and Observers 273

The development of an observer in the CT case is completely analogous.
The real-time simulator in Eq. (6.12) is modified to

q̇̂(t) = Aq̂(t) + bx(t)

− �
(

y(t) − ŷ(t)
)

(6.23)

to create the observer. The associated state error equation is then

q̇̃(t) = Aq̃(t) + w(t) + �̃y(t)

= (A + �cT )̃q(t) + w(t) + �ζ (t) . (6.24)

6.2.3 Observer Design

Since the structure of the observer is specified, the design of an observer for
an LTI plant reduces to choosing the observer gain vector �. This gain should
be chosen to obtain sufficiently rapid decay of the error magnitude, with low
sensitivity to plant disturbance, measurement noise, and modeling errors.

Error Dynamics The error dynamics are governed by the natural frequencies
of the DT or CT state error equation, Eq. (6.22) or Eq. (6.24) respectively. In
both cases these natural frequencies are the L eigenvalues of A + �cT or the
roots of the characteristic polynomial

κ(λ) = det
(
λI − (A + �cT)

)
(6.25)

= λL + κL−1λ
L−1 + · · · + κ0 . (6.26)

For � = 0, the observer error eigenvalues are simply the eigenvalues {λi} of A,
which are the roots of its characteristic polynomial

a(λ) = det(λI − A) =
L∏

i=1

(λ − λi) . (6.27)

These roots are the natural frequencies of the real-time simulator and of the
plant. We next present the key results on how the choice of nonzero observer
gains � affects the error dynamics, and discuss some of the implications. The
analytical demonstrations of these results are presented at the end of this
subsection, following Example 6.3.

For nonzero gains �, the unobservable eigenvalues of the plant remain
as eigenvalues of A + �cT ; these eigenvalues are unaffected by the choice of
�. The reason is that information about the unobservable modes does not
make its way into the output error signal that is used to correct the real-time
simulator. The remaining eigenvalues of the matrix A + �cT can be given arbi-
trary real or complex values by appropriate choice of �, except that for every
complex eigenvalue there has to be a corresponding eigenvalue at the com-
plex conjugate location, since the matrix A + �cT is real. Thus, the observable
eigenvalues can be moved to any self-conjugate set of locations in the complex
plane, while the unobservable eigenvalues remain fixed.
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It follows from the preceding statements that the design of an observer
whose state error magnitude decays to zero, in the absence of plant distur-
bance and measurement noise, is possible if and only if all unstable modes
of the plant are observable (or equivalently, all unobservable modes are
asymptotically stable). This property is termed detectability. For a detectable
system, the observer gain � can be chosen to produce asymptotically stable
error dynamics. From the bounded-input, bounded-state property of asymp-
totically stable LTI systems, which was proved in Chapter 5, it will then be the
case that bounded plant disturbance and bounded measurement noise result
in the observer error being bounded.

The preceding results also suggest an alternative way to determine the
unobservable eigenvalues of the plant: the roots of det[λI − (A + �cT)] that
cannot be moved, no matter how � is chosen, are precisely the unobserv-
able eigenvalues of the plant. This approach to exposing unobservable modes
can be easier in many problems than the approach used in Chapter 5, which
required first computing the eigenvectors vi of the system, and then checking
for which i we had cTvi = 0.

In designing observers analytically for low-order systems, we can start
by specifying a desired self-conjugate set of natural frequencies ε1, · · · εL
for the observer error dynamics, thus specifying the characteristic polynomial
κ(λ) as

κ(λ) =
L∏

i=1

(λ − εi) . (6.28)

Expanding out this product and equating it to det[λI − (A + �cT)], as in
Eq. (6.25), yields L simultaneous linear equations in the unknown gains
�1, · · · , �L. These equations will be consistent and solvable for the observer
gains if and only if all the unobservable eigenvalues of the plant are included
among the specified observer error eigenvalues εi. Yet another approach to
observer design, involving a transformation to modal coordinates, is described
following Example 6.3. For larger systems, specialized computational software
would be used.

The above results show that the observer error for an observable LTI
plant can be made to decay arbitrarily fast, by choosing the gain vector � to
place the observer error eigenvalues at appropriate locations. In CT, a very
fast decay is obtained by choosing these eigenvalues to have sufficiently neg-
ative real parts, while in DT the eigenvalues need to be of sufficiently small
magnitude. However, rapid error decay is only part of the story because other
factors constrain the choice of �, as we discuss next.

Sensitivity to Disturbances, Noise, and Modeling Error The observer error
representation in Eqs. (6.22) and (6.24) shows that the observer gain � enters
in two places: it causes the error dynamics to be governed by the state evo-
lution matrix A + �cT rather than A, and it serves as the input vector for the
measurement noise. This highlights a basic trade-off between error decay and
noise immunity. The observer gain can be used to obtain fast error decay,
as might be needed in the presence of plant disturbances that continually
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perturb the system state. However, large entries in � may be required to
accomplish fast error decay in the CT case, in order to place the eigenval-
ues of A + �cT well into the left half-plane; this is illustrated in Example 6.2
below. Large gains may also be needed in the DT case to obtain fast error
decay, if the model is a sampled-data version of some underlying CT system;
this is apparent in Example 6.3. These large entries in � will have the unde-
sired effect of accentuating the impact of the measurement noise on the state
error.

A large observer gain may also lead to large overshoots or oscillations in
the observer error, even when the eventual error decay is fast. These transients
can cause problems if the state estimates are being used by a feedback con-
troller, for instance. Also, a large observer gain may increase the susceptibility
of the observer design to the effects of the various simplifications, approxi-
mations, and errors inherent in our using a simple LTI model of the plant.
In practice, such considerations would lead us to design conservatively, not
attempting to obtain unnecessarily fast error-decay dynamics.

Some aspects of the trade-offs above can be captured in a tractable opti-
mization problem. Modeling the plant disturbance and measurement noise
as stationary random processes (which are introduced in Chapter 10), we
can pick � to minimize some measure of the steady-state variances in the
components of the state estimation error. The resulting observer is called a
steady-state Kalman filter. We will be in a position to formulate and solve
basic problems of this type after we develop the machinery for analyzing sta-
tionary random processes. The more general Kalman filter for a state-space
system still has the structure of an observer, but with an observer gain that is
time-varying, because this filter addresses the more demanding task of opti-
mizing the estimation performance at each instant, not just in the steady
state.

Example 6.2 Observer for Undamped Suspended Pendulum

We return to the plant considered in Example 6.1, namely the linearized representa-
tion of the dynamics of a particular pendulum for small deviations around the normal
hanging or suspended position in the undamped case:

q̇(t) =
[

0 1
−8 0

]
q(t) +

[
0

−1

] (
x(t) + v(t)

)
y(t) = [1 0

]
q(t) + ζ (t) . (6.29)

As noted earlier, the natural frequencies of this system are ±j
√

8, and the ZIR is a
sinusoid of period 2π/

√
8 ≈ 2.22 sec.

An observer for this plant takes the form

q̇̂(t) =
[

0 1
−8 0

]
q̂(t) +

[
0

−1

]
x(t)

−
[
�1
�2

] (
y(t) − q̂1(t)

)
. (6.30)
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The corresponding error dynamics are

q̇̃(t) =
[

�1 1
−8 + �2 0

]
q̃(t) +

[
0

−1

]
v(t) +

[
�1
�2

]
ζ (t) , (6.31)

with characteristic polynomial

κ(λ) = (λ − �1)λ + (8 − �2) = λ2 − �1λ + (8 − �2) . (6.32)

Note that appropriate choice of �1 and �2 can convert this into any desired monic poly-
nomial of degree 2, which immediately confirms that the system is observable from the
specified output, namely the pendulum angle.

To get an error decay that is a fraction of the oscillatory period of the pendu-
lum, we can pick the natural frequencies of the error dynamics to be ε1 = −2 and
ε2 = −5, for example. The corresponding ZIR will be the sum of two exponentials with
respective time constants 1/2 = 0.5 sec and 1/5 = 0.2 sec, and the transient will essen-
tially vanish in around three time-constants of the dominant mode, hence in around
3 × 0.5 = 1.5 seconds. The associated characteristic polynomial is

κ(λ) = (λ + 2)(λ + 5) = λ2 + 7λ + 10 . (6.33)

Setting this equal to the polynomial in Eq. (6.32) yields �1 = −7 and �2 = −2.
Figure 6.4 shows plots of plant and observer variables with the preceding choice

of observer gains: the pendulum angle q1(t) under the action of a known pulsed torque
x(t); the estimate q̂1(t) of this angle from the observer; and the associated estimation
error q̃1(t). The particular results shown here are for the case of no plant disturbance
and no measurement noise. As expected, the estimation error essentially vanishes in
around 1.5 seconds in this ideal case.

Figure 6.5 illustrates the behavior of the observer in the presence of measure-
ment noise. The input torque x(t) and disturbance torque v(t) are both set to zero
for this case, while the measurement noise ζ (t) takes and holds a random value in

1.5

Undamped suspended pendulum,

input torque x(t) = unit-amplitude pulse

of duration 5 seconds

Observer gains /1 = -7 and /2 = -2
Estimate
Actual

Error

0.5
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)
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Figure 6.4 For the undamped pendulum in Example 6.2 with a pulsed input torque x(t)
and no plant disturbance or measurement noise, the plots show trajectories of the pendulum
angle q1(t), the estimate q̂1(t) of this angle from the observer, and the associated estimation
error q̃1(t), with observer gains chosen to yield error decay with a dominant time constant of
0.5 seconds.
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Figure 6.5 For the undamped pendulum in Example 6.2 with x(t) = 0 and no plant distur-
bance, but with measurement noise ζ (t) that takes and holds some random value in the interval
[−1, 1] every millisecond, the plots show the trajectory of the pendulum angle q1(t) and the
estimate q̂1(t) of this angle generated by the observer. The observer gains were chosen to yield
error decay with a dominant time constant of 0.1 seconds.

the interval [−1, 1] every millisecond. The observer gains for this illustration are set at
�1 = −30 and �2 = −192, which according to the expression in Eq. (6.32) results in the
characteristic polynomial

κ(λ) = λ2 + 30λ + 200 = (λ + 10)(λ + 20) (6.34)

for the observer error equation. The associated exponentials have time constants
1/10 = 0.1 and 1/20 = 0.05, so the dominant time constant is 0.1 seconds, and the tran-
sients are expected to settle in around 3 × 0.1 = 0.3 sec. Note that the noise in the
estimate q̂1(t) is considerably attenuated relative to the noise in the original measure-
ment y(t) of the position q1(t)—the measurement noise took values in the interval
[−1, 1] that varied randomly every millisecond, whereas the noise in the estimate
occupies roughly half that range, with much slower variations. The observer has thus
provided some filtering of this measurement noise. Furthermore, the estimate of the
velocity q2(t) provided by the observer (though not shown here) is of comparable
quality, whereas attempting to estimate the velocity q2(t) by directly approximating
the derivative of the noisy position measurement y(t) will result in an estimate that is
completely obscured by the noise component.

The next example illustrates observer design for a DT system obtained
as a sampled-data model for an underlying CT system.
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278 Chapter 6 State Observers and State Feedback

Example 6.3 Observer for Ship Heading Error

In this example we consider the following simplified sampled-data model for the steer-
ing dynamics of a ship traveling at constant speed, with a rudder angle that is controlled
in a piecewise-constant fashion by a computer-based controller:

q[n + 1] =
[

q1[n + 1]
q2[n + 1]

]
=
[

1 σ

0 α

][
q1[n]
q2[n]

]
+
[

ρ

σ

]
x[n]

= Aq[n] + bx[n] . (6.35)

The state vector q[n] comprises the sampled heading error q1[n], which is the direction
the ship points in relative to the desired direction of motion, and the sampled rate of
turn q2[n] of the ship, both sampled at time t = nT. The control input x[n] is the con-
stant value of the rudder angle in the interval nT ≤ t < nT + T; this angle is measured
relative to the direction in which the ship points, and positive rudder angle is that which
would tend to increase the heading error. These variables are represented in Figure 6.6.

The positive parameters α, σ , and ρ are determined by the type of ship, its
speed, and the sampling interval T. In particular, α is generally smaller than 1, but
can be greater than 1 for a large tanker; in any case, the system in Eq. (6.35) is not
asymptotically stable.

This model has the same form as the sampled-data model derived in Exam-
ple 5.7, for an underlying CT system comprising a mass moving under damping, with
an external input force acting on it. A sampled-data model of this form also describes,
for instance, the motion of a DC motor whose input is a voltage that is held constant
over intervals of length T by a computer-based controller; in this case we have α = 1,
σ = T, and (for x[n] in appropriate units) ρ = T2/2 .

Suppose we had noisy measurements of the rate of turn, so in Eq. (6.2)

cT = [0 1
]

(6.36)

Desired

heading

Actual

headingq1[n]

x[n]

Rudder

angle

Figure 6.6 Heading error and rudder angle for the ship steering system in Example 6.3.
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and d = 0. Using this measurement, the error dynamics of an observer for the system
would be governed by the matrix

A + �cT =
[

1 σ + �1
0 α + �2

]
. (6.37)

The triangular form of this matrix shows that one natural frequency of the error equa-
tion is fixed at 1, independent of �. This natural frequency corresponds to a mode of the
original system that is unobservable from rate-of-turn measurements. Moreover, it is
not an asymptotically stable mode, so the corresponding observer error will not decay.
Physically, the problem is that the rate of turn contains no input from or information
about the heading error itself.

Suppose instead that we have noisy measurements of the heading error, so

cT = [1 0
]

. (6.38)

With this measurement, the associated observer error dynamics would be governed by
the matrix

A + �cT =
[

1 + �1 σ

�2 α

]
. (6.39)

The characteristic polynomial of this matrix is

κ(λ) = λ2 − λ(1 + �1 + α) + α(1 + �1) − �2σ , (6.40)

which can be made an arbitrary monic polynomial of degree 2 by choice of the gains �1
and �2. This fact also establishes the observability of the plant model with this output
measurement.

One interesting choice of observer gains in this case is �1 = −1 − α along with
�2 = −α2/σ ; for typical parameter values, this results in the value of �2 being large.
With this choice, the characteristic polynomial of the matrix A + �cT is κ(λ) = λ2, so
the natural frequencies of the observer error equation are both at 0. We have not
treated the repeated-eigenvalue case so far (apart from a brief illustration of possi-
bilities in Example 5.13). However, for this particular case the behavior of the system
can easily be deduced from the fact that, with the specified choice of �,

(A + �cT)2 =
[ −α σ

−α2/σ α

]2

=
[

0 0
0 0

]
. (6.41)

Thus, the ZIR of the observer error dynamics in Eq. (6.22) decays to 0 in two time steps
at most, which is the fastest decay possible for this second-order DT system.

We know that the smaller the magnitude of a natural frequency in a DT LTI
system, the more rapidly its associated mode decays. It is therefore not surprising that
when all natural frequencies are at 0, the system settles quickly. Any L × L matrix Z
with all its eigenvalues at 0 turns out to satisfy ZL = 0, the zero matrix. It is also pos-
sible, depending on the more detailed structure of such a matrix, that a lower power
of the matrix is already 0. A DT LTI system with all natural frequencies at 0 is some-
times referred to as a deadbeat system, precisely because its ZIR settles to zero in
finite time.

In the presence of measurement noise, one may want to choose a slower
error decay, so as to keep the observer gain vector � smaller than in the deadbeat
case, and thereby not accentuate the effects of measurement noise on the estimation
error.

www.konkur.in

Telegram: @uni_k



280 Chapter 6 State Observers and State Feedback

Proofs Earlier we presented, without proofs, the key results on how the
choice of the observer gain � affects observer error dynamics. We turn now
to establishing those various earlier claims.

To show that each unobservable eigenvalue of the plant remains an
eigenvalue of the observer error dynamics, recall from Chapter 5 that for an
unobservable eigenvalue λj of the plant

cTvj = 0 for some eigenvector vj �= 0, with Avj = λjvj . (6.42)

It follows that

(A + �cT)vj = Avj = λjvj with vj �= 0 , (6.43)

no matter how � is chosen. The observer error dynamics thus has λj as an
eigenvalue, with associated eigenvector vj, which proves the desired result.

To see how to place the remaining eigenvalues of A + �cT at an arbitrary
self-conjugate set of points, it is simplest to work in modal coordinates. Recall
from Chapter 5 that A = V�V−1, where V is the modal matrix, whose ith
column is the ith eigenvector vi. We can therefore write

A + �cT = V(� + ψξT)V−1 where ψ = V−1�, ξT = cTV . (6.44)

Thus ψ is the observer gain vector expressed in modal coordinates, with ith
entry ψi. Also ξT is cT expressed in modal coordinates, which is notation we
introduced in Chapter 5. The jth mode is observable precisely when the jth
entry of ξ , namely ξj, is nonzero.

Equation (6.44) establishes that A + �cT is related by a similarity trans-
formation to � + ψξT . The two matrices therefore have the same character-
istic polynomial κ(λ) and the same eigenvalues. If we can determine how to
choose ψ to obtain a desired characteristic polynomial for � + ψξT , then we
will have determined how to choose �(= Vψ) to obtain the same characteristic
polynomial for A + �cT . The first step is to note that

κ(λ) = det
(
λI − (� + ψξT)

)
= det

(
(λI − �) − ψξT

)
= det

(
(λI − �)

[
I − (λI − �)−1ψξT

])
. (6.45)

Two determinant identities that simplify the preceding expression are stated
without proof here. If M, P are square matrices of the same dimension,

det(MP) = det(M) det(P) . (6.46)

Also, for rectangular matrices R, S of the same respective dimensions,

det(I − RST) = det(I − STR) . (6.47)

The latter result is known as Sylvester’s identity. The identity matrices I on
the left and right sides of this equation may have different dimension, equal
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respectively to the dimensions of RST and STR. If R and S are column vectors,
for instance, then STR is a scalar, so the identity matrix on the right of the
preceding equation is scalar, hence just the number 1.

The identities in Eqs. (6.46) and (6.47) now justify continuing the chain
of equalities in Eq. (6.45) as follows:

κ(λ) = det(λI − �) det
(

I − (λI − �)−1ψξT
)

= a(λ) det
(

1 − ξT(λI − �)−1ψ
)

. (6.48)

Since λI − � is a diagonal matrix, its inverse is also diagonal, with diago-
nal entries that are the reciprocals of the corresponding diagonal entries in
the original matrix. Using this fact to evaluate the last expression above, and
rearranging the result, we conclude that

κ(λ)
a(λ)

= 1 −
L∑

i=1

ξiψi

λ − λi
. (6.49)

This expression forms the basis for our observer design, as discussed next.
If the desired monic, degree-L characteristic polynomial κ(λ) of the

observer error equation is specified, a standard partial-fraction expansion of
the rational function of λ on the left in Eq. (6.49) yields

κ(λ)
a(λ)

= 1 −
L∑

i=1

mi

λ − λi
(6.50)

where

mi = −κ(λ)
a(λ)

(λ − λi)
∣∣∣
λ=λi

. (6.51)

Comparing Eqs. (6.49) and (6.50) then shows that the observer gains needed
to attain the desired polynomial κ(λ) are given by

ψi = mi/ξi . (6.52)

However, this is only possible if ξi �= 0 for all i, that is, if the plant is observable.
If the jth mode of the plant is unobservable, corresponding to ξj = 0,

then the pole at λ = λj will not appear in the expansion in Eq. (6.49). The only
way to satisfy the equality in that case is to ensure κ(λ) has a root at λ = λj, so
that this factor can cancel out on the left side of the equality. In other words,
the natural frequencies of the observer error dynamics will have to include
every unobservable natural frequency of the plant.

The remaining part of κ(λ) is unconstrained, and can have arbitrary self-
conjugate roots. The partial fraction expansion of κ(λ)/a(λ) in Eq. (6.50) will
then only involve terms that correspond to observable modes of the plant,
rather than all L modes, but for these modes the prescription in Eq. (6.52) still
works. The ψj corresponding to unobservable modes can be chosen arbitrarily.
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6.3 STATE FEEDBACK CONTROL

For a causal system or plant with inputs that we are able to manipulate, it is
natural to ask how the inputs should be chosen in order to cause the system
to behave in some desirable fashion. Open-loop control uses only information
available at the time that one starts interacting with the system. The trouble
with open-loop control is that errors, even if recognized, are not corrected or
compensated for. If the plant is poorly behaved or unstable, then uncorrected
errors can lead to bad or catastrophic consequences. Feedback control, on the
other hand, is based on sensing the system’s ongoing behavior, and using the
measurements of the sensed variables to generate control signals to apply to
the system. Feedback control is often also referred to as closed-loop control.

Feedforward control incorporates measurements of signals that affect
the plant but that are not themselves affected by the control. For example, in
generating electrical control signals for the positioning motor of a steerable
radar antenna, the use of measurements of wind velocity would correspond
to feedforward control, whereas the use of measurements of antenna posi-
tion would correspond to feedback control. In general, controls can have both
feedback and feedforward components.

We begin our examination of control ideas with the DT case, but the
CT case is very similar and is mentioned later. Suppose the DT plant that we
want to control is well modeled by the following Lth-order LTI state-space
description:

q[n + 1] = Aq[n] + bx[n] (6.53)

y[n] = cTq[n] + dx[n] . (6.54)

We shall also refer to this as the open-loop system. As before, x[n] denotes the
control input and y[n] denotes the measured output, both taken to be scalar
functions of time. The effects of plant disturbance and measurement noise will
be discussed later. The direct feedthrough gain d plays no essential role in what
follows, and complicates the appearance of various algebraic expressions, so
we shall generally assume d = 0.

6.3.1 Open-Loop Control

The following argument provides an illustration of the potential inadequacy of
open-loop control, especially when dealing with an unstable plant. Suppose we
pick a control input trajectory x∗[·] that would cause the system in Eq. (6.53)
to execute some desired state trajectory q∗[·], provided the system was started
in the initial state q∗[0]. Thus

q∗[n + 1] = Aq∗[n] + bx∗[n] . (6.55)

If this control input is now applied when the actual initial state is q[0] �= q∗[0],
then the resulting actual state trajectory q[·] satisfies

q[n + 1] = Aq[n] + bx∗[n] . (6.56)
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Subtracting Eq. (6.56) from Eq. (6.55) shows that the difference or error
between the desired and actual state trajectories satisfies

(q∗[n + 1] − q[n + 1]) = A(q∗[n] − q[n]) . (6.57)

This is an LTI state-space model for the evolution of the error between the
desired and actual state trajectories, q∗[n] − q[n], and is governed by the same
state evolution matrix A as the plant. If the original reason for designing a
control input was that the plant dynamics were unsatisfactory, then open-loop
control produces state error dynamics that will be similarly unsatisfactory. In
particular, if the plant is unstable with some eigenvalue of A having magnitude
greater than 1, then the magnitude of the state error will grow geometrically
for almost any initial condition.

In open-loop control, we commit to a particular control input at the
time we begin interacting with the system, so there is no opportunity to adjust
the nominal or baseline control in response to observations of actual system
behavior.

6.3.2 Closed-Loop Control via LTI State Feedback

As the state variables of a system completely summarize the relevant past of
the system, we should expect that knowledge of the state at every instant pro-
vides a powerful basis for designing feedback control signals. In this section
we consider the use of state feedback for the system in Eq. (6.53), assuming
that the entire state vector at each time instant is accessible and measured.
Though this assumption is typically unrealistic in practice, it will allow some
preliminary results to be developed as a benchmark. A more realistic situa-
tion, in which the state cannot be measured but instead has to be estimated,
will be treated later. It will turn out in the LTI case that the estimate provided
by a state observer will actually suffice to accomplish much of what can be
achieved when the actual state is used for feedback.

The particular case of LTI state feedback is represented in Figure 6.7, in
which the feedback part of the input x[n] is a weighted linear function of the
state variables at that instant:

x[n] =
(

L∑
i=1

giqi[n]

)
+ p[n] = gTq[n] + p[n] . (6.58)

p[n]
x[n]

q[n]

A, b, cT

gT

+

Figure 6.7 LTI system with LTI state
feedback. Here gT is the state feedback
gain vector, and p[n] is the new external
input signal that augments the feedback
signal.
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The row vector gT is the state feedback gain vector, with ith component gi,
and p[n] is an external input signal that can be used to augment the feedback
signal.

With this choice for x[n], the system in Eqs. (6.53), (6.54) with the
assumption d = 0 becomes

q[n + 1] = Aq[n] + b
(

p[n] + gTq[n]
)

=
(

A + bgT
)

q[n] + bp[n] , (6.59)

y[n] = cTq[n] . (6.60)

We refer to this as the closed-loop system. It is again in LTI state-space form,
and therefore amenable to analysis by the tools we developed in Chapter 5.
Note that since p[n] is the new external input to the closed-loop system, our
references below to the ZIR of the closed-loop system will signify the case
where p[n] ≡ 0 rather than x[n] ≡ 0.

The development for CT systems is essentially identical. For an open-
loop system that is well modeled by the LTI state-space representation

q̇(t) = Aq(t) + bx(t) , (6.61)

y(t) = cTq(t) , (6.62)

the LTI state feedback control

x(t) = gTq(t) + p(t) (6.63)

produces the closed-loop LTI state-space system

q̇(t) = (A + bgT)q(t) + bp(t) , (6.64)

y(t) = cTq(t) . (6.65)

6.3.3 LTI State Feedback Design

Since the structure of the closed-loop system under LTI state feedback is spec-
ified, the design task is to choose the feedback gain vector gT . This gain should
be picked to obtain desirable closed-loop dynamics, with sufficiently rapid set-
tling of the transient or ZIR behavior of the closed-loop system, but taking
account of constraints on control effort and limitations imposed by modeling
errors.

Closed-Loop Dynamics In both the DT and CT cases, the closed-loop
dynamics of the feedback system are governed by the L eigenvalues of the
matrix A + bgT, that is, the roots of the characteristic polynomial

ν(λ) = det
(
λI − (A + bgT)

)
= λL + νL−1λ

L−1 + · · · + ν0 . (6.66)
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It is reasonable to expect that appropriate choice of the state feedback
gain gT can result in the natural frequencies of the closed-loop system
differing from those of the open-loop system. We describe the possibili-
ties in more detail below, but defer the analytical justification until after
Example 6.4.

Note first that the structure of the matrix A + bgT is analogous to that of
the matrix A + �cT, which governed observer error dynamics. The two struc-
tures are said to be dual, meaning that matrix transposition will map the
structure of one problem into that of the other. Thus the analysis of how
the choice of gT affects the eigenvalue placement possibilities for A + bgT

proceeds in close analogy to the earlier arguments for A + �cT, except that
reachability now plays the role that observability did earlier.

When gT = 0, the eigenvalues of A + bgT are just those of the matrix A
that governs the open-loop system, that is, the roots of its characteristic
polynomial a(λ) defined in Eq. (6.27). For nonzero state feedback gains
gT, the unreachable eigenvalues of the plant remain as eigenvalues of A + bgT;
these eigenvalues are unaffected by the choice of gT. The reason is that feed-
back through the control input has no effect on the unreachable modes. The
remaining eigenvalues of A + bgT can be given arbitrary self-conjugate values,
by appropriate choice of gT.

It follows from the preceding statements that for an LTI system with
LTI state feedback, the design of a closed-loop system whose ZIR magnitude
decays to 0 is possible if and only if all unstable modes of the plant are reach-
able (or equivalently, all unreachable modes are asymptotically stable). This
property is termed stabilizability. For a stabilizable system, the state feedback
gain gT can be chosen to produce asymptotically stable closed-loop dynamics.
With this, a bounded external signal p[n] will lead to a bounded state trajec-
tory in the closed-loop system; we established this property of asymptotically
stable LTI systems in Chapter 5.

The preceding results also suggest an alternative way to determine the
unreachable eigenvalues of the system: the roots of det[λI − (A + bgT)] that
cannot be modified, no matter how gT is chosen, are precisely the unreach-
able eigenvalues. This route to exposing unreachable modes can be easier in
many problems than the approach used in Chapter 5, which required first com-
puting the eigenvectors vi of the system and then checking which of these
eigenvectors were not needed in writing b as a linear combination of the
eigenvectors.

In designing LTI state feedback analytically for low-order systems, one
way to proceed is by specifying a desired self-conjugate set of closed-loop
natural frequencies μ1, · · · μL, thus specifying the characteristic polynomial
ν(λ) as

ν(λ) =
L∏

i=1

(λ − μi) . (6.67)

Expanding out the product on the right and equating it to det[λI − (A + bgT)],
as in Eq. (6.66), yields L simultaneous linear equations in the unknown gains

www.konkur.in

Telegram: @uni_k



286 Chapter 6 State Observers and State Feedback

g1, · · · , gL. These equations will be consistent and solvable for the state feed-
back gains if and only if all the unreachable eigenvalues of the open-loop
system are included among the specified closed-loop eigenvalues μi. Another
approach to state feedback gain design, involving a transformation to modal
coordinates, is outlined after Example 6.4. As in the case of observer design,
for state feedback design in larger systems, specialized computational software
would be used.

As noted earlier, an unreachable mode of the open-loop system remains
fixed at the same frequency in the closed-loop system because the feedback
control has no way to access this mode from the input in order to modify it.
For the same reason, this unreachable mode of the open-loop system remains
unreachable in the closed-loop system. State feedback also cannot pro-
duce additional unreachable modes in the closed-loop system beyond those
already present in the open-loop system. This is because—again by the same
reasoning—these unreachable modes of the closed-loop system would
have to then be unreachable modes of the open-loop system as well, since state
feedback around the closed-loop system can cancel the original feedback and
recover the open-loop system.

The results in this subsection show that the closed-loop ZIR for a reach-
able LTI system can be made to decay arbitrarily fast, by choosing the gain
gT to place the closed-loop eigenvalues at appropriate locations. In CT, a rapid
decay is obtained by choosing these eigenvalues to have sufficiently nega-
tive real parts, while in DT the eigenvalues need to be of sufficiently small
magnitude. However, rapid settling of the closed-loop ZIR is only one con-
sideration, because other factors constrain the choice of gT, as we discuss
next.

Control Effort The state feedback gain gT affects the closed-loop system in
two key ways: first by causing the dynamics to be governed by the eigenvalues
of A + bgT rather than those of A, and second by determining the level of con-
trol effort x[n] expended for a given state excursion q[n], via the relationship in
Eq. (6.58). This highlights a basic trade-off between the response rate and the
control effort. The state feedback gain can be used to obtain a fast response,
bringing the system state from its initially disturbed value rapidly back to the
origin. However, large entries in gT may be needed to do this—certainly in the
CT case, but also in DT if the model is a sampled-data version of some under-
lying CT system. These large entries in gT result in large control effort being
expended. Furthermore, the effects of any errors in measuring or estimating
the state vector, or of modeling errors and other discrepancies, are likely to
be accentuated with large feedback gains. In practice, these considerations
would lead us to design somewhat conservatively, not attempting to obtain
excessively fast closed-loop dynamics. Aspects of the trade-offs involved can
be captured in tractable optimization problems. Some of these problems are
dual to the Kalman filter design problem that we mentioned in connection
with optimal observer design.

The following example illustrates the use of state feedback to shape the
closed-loop dynamics of a system.
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Example 6.4 State Feedback for a Pendulum with Torque Control

The linearized model of a particular undamped pendulum around either the inverted
or suspended positions takes the form

q̇(t) =
[

0 1
−K 0

]
q(t) +

[
0

−1

]
x(t) , (6.68)

where K > 0 for the normal suspended position, and K < 0 for the inverted position.
Both cases will be treated together here.

We could now compute the system eigenvalues and eigenvectors to determine
whether the system is reachable and therefore responsive to control. However, this step
is actually not necessary. Instead, directly considering the effect of the state feedback
x(t) = gT q(t) + p(t) on the system yields the closed-loop description

q̇(t) =
[

0 1
−K 0

]
q(t) +

[
0

−1

]
[g1 g2]q(t) +

[
0

−1

]
p(t)

=
[

0 1
−K − g1 −g2

]
q(t) +

[
0

−1

]
p(t) . (6.69)

The corresponding characteristic polynomial is

ν(λ) = λ(λ + g2) + (K + g1) = λ2 + g2λ + (K + g1) . (6.70)

Inspection of this expression shows that by appropriate choice of the gains g1 and
g2 this polynomial can equal any desired monic second-degree polynomial. In other
words, we can obtain any self-conjugate set of closed-loop eigenvalues. This also
establishes that the original system is reachable.

Suppose we want the closed-loop eigenvalues at particular values μ1, μ2. This is
equivalent to specifying the closed-loop characteristic polynomial to be

ν(λ) = (λ − μ1)(λ − μ2) = λ2 − λ(μ1 + μ2) + μ1μ2 . (6.71)

Equating this polynomial to the one in Eq. (6.70) shows that

g1 = μ1μ2 − K and g2 = −μ1 − μ2 . (6.72)

For the inverted pendulum, both gains are positive when μ1 and μ2 form a self-
conjugate set in the open left half-plane. For the normal suspended pendulum, g1 may
be positive, negative, or zero, while g2 will still be positive.

Proofs We had earlier presented, without proofs, the key results on how the
choice of state feedback gain gT affects the closed-loop dynamics. We turn now
to establishing the various claims. Just as with the dual case of observer error
dynamics, it is simplest to work in modal coordinates, noting that

A + bgT = V(� + βγ T)V−1 where β = V−1b, γ T = gTV . (6.73)

Thus γ T is the state feedback gain vector expressed in modal coordinates, with
ith entry γi. Also β denotes the input vector b expressed in modal coordinates,
which is notation introduced in Chapter 5. The jth mode is reachable precisely
when the jth entry of β, namely βj, is nonzero. The above equation shows that
the matrix � + βγ T is related to A + bgT by a similarity transformation, and
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therefore the two have the same characteristic polynomial and eigenvalues.
If we can determine how to choose γ to obtain a desired characteristic poly-
nomial for the matrix � + βγ T , then we will have determined how to choose
gT (= γ TV−1) to obtain this same characteristic polynomial for the matrix
A + bgT .

Proceeding in a similar vein to the earlier analysis of observer error
dynamics produces a helpful expression for the closed-loop characteristic
polynomial:

ν(λ) = det
(
λI − (� + βγ T)

)
= det(λI − �) det

(
I − (λI − �)−1βγ T

)
= a(λ)

(
1 −

L∑
i=1

βiγi

λ − λi

)
. (6.74)

A rearrangement of this result yields

ν(λ)
a(λ)

= 1 −
L∑

i=1

βiγi

λ − λi
. (6.75)

If the desired monic, degree-L characteristic polynomial ν(λ) of the closed-
loop system is specified, a standard partial fraction expansion of the rational
function of λ on the left in Eq. (6.75) will take the form

ν(λ)
a(λ)

= 1 −
L∑

i=1

ni

λ − λi
, (6.76)

where

ni = −ν(λ)
a(λ)

(λ − λi)
∣∣∣
λ=λi

. (6.77)

Comparing Eqs. (6.75) and (6.76) then shows that the feedback gains needed
to attain the desired polynomial ν(λ) are given by

γi = ni/βi . (6.78)

However, this is only possible if βi �= 0 for all i, that is, if the system is
reachable.

If the jth mode of the system is unreachable, corresponding to βj = 0,
then the pole at λ = λj will not appear in the expansion in Eq. (6.75). The only
way to satisfy the equality in that case is to ensure ν(λ) has a root at λ = λj, so
that this factor can cancel out on the left side of the equality. In other words,
the natural frequencies of the closed-loop dynamics will have to include every
unreachable natural frequency of the plant.

The remaining part of ν(λ) is unconstrained, and can have arbitrary self-
conjugate roots. The partial fraction expansion of ν(λ)/a(λ) in Eq. (6.76) will
then only involve terms that correspond to reachable modes of the system,
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rather than all L modes, but for these modes the prescription in Eq. (6.78) still
works. The γj corresponding to unreachable modes can be chosen arbitrarily.

Closed-Loop Transfer Function We now examine the input-output char-
acteristics of the closed-loop system by determining its transfer function,
focusing on the DT case; the CT version is exactly parallel. The transfer func-
tion of the open-loop system in Eqs. (6.1) and (6.2) for the case d = 0 is
given by

H(z) = cT(zI − A)−1b (6.79)

= η(z)
a(z)

, (6.80)

where a(z) is the characteristic polynomial of the system, defined earlier in
Eq. (6.27). Note that there may be pole-zero cancellations involving common
roots of a(z) and η(z) in Eq. (6.80), corresponding to the presence of sys-
tem modes that are unreachable, unobservable, or both. Only the uncancelled
roots of a(z) remain as poles of H(z), and similarly only the uncancelled roots
of η(z) remain as zeros of the transfer function.

The closed-loop transfer function from the external input p[n] to the
output y[n] is the transfer function of the system in Eqs. (6.59) and (6.60),
namely

G(z) = cT
(

zI − (A + bgT)
)−1

b . (6.81)

The denominator polynomial of this transfer function, prior to any cancel-
lations with its numerator, is ν(z) = det(zI − A − bgT). To determine the
numerator polynomial of G(z), we follow an indirect route. Note first that
the closed-loop transfer function from p[n] to the plant input x[n] is the
ratio X(z)/P(z) when the initial condition is zero, q[0] = 0. It follows from
Eq. (6.58) and identities we have already established that

X(z) = gT(zI − A)−1bX(z) + P(z)

= γ T(zI − �)−1βX(z) + P(z)

=
(

L∑
i=1

βiγi

z − λi

)
X(z) + P(z) . (6.82)

Rearranging this equation to solve for X(z) and then invoking Eq. (6.74)
establishes that

X(z)
P(z)

= a(z)
ν(z)

, (6.83)

where ν(z) is the closed-loop characteristic polynomial defined in Eq. (6.66).
The transfer function from the input p[n] to the output y[n] of the closed-loop
system is therefore
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G(z) = Y(z)
P(z)

= Y(z)
X(z)

X(z)
P(z)

(6.84)

= η(z)
a(z)

a(z)
ν(z)

(6.85)

= η(z)
ν(z)

. (6.86)

This expression confirms that state feedback has changed the denominator of
the input-output transfer function from a(z) in the open-loop case to ν(z) in
the closed-loop case, and has accordingly modified the characteristic polyno-
mial and poles. However, state feedback has left unchanged the numerator
polynomial η(z) from which the zeros are selected. The actual zeros of the
closed-loop system are those roots of η(z) that are not cancelled by roots of
the new closed-loop characteristic polynomial ν(z), and may therefore differ
from the zeros of the open-loop system.

A zero of the open-loop system will disappear from the closed-loop sys-
tem if state feedback places a closed-loop natural frequency at this location,
producing a new cancellation between η(z) and ν(z). Since state feedback does
not affect the reachability or unreachability of modes, this disappearance or
cancellation must correspond to the mode having been made unobservable
by state feedback. Conversely, a root of η(z) that was not a zero of the open-
loop system will appear in the closed-loop system if state feedback moves the
cancelling open-loop natural frequency to a new location, so the original can-
cellation between η(z) and a(z) does not occur between η(z) and ν(z). This
corresponds to an unobservable but reachable mode of the open-loop sys-
tem now becoming observable—and remaining reachable—in the closed-loop
system.

An exactly parallel development holds for the CT case, with changes that
at this point should be very familiar, so we omit the details.

Example 6.5 Ship Steering by State Feedback

Consider again the sampled-data DT state-space model in Example 6.3, representing
the steering dynamics of a ship traveling at constant speed:

q[n + 1] =
[

q1[n + 1]
q2[n + 1]

]
=
[

1 σ

0 α

][
q1[n]
q2[n]

]
+
[

ρ

σ

]
x[n]

= Aq[n] + bx[n] . (6.87)

Recall that the state vector q[n] comprises the sampled heading error q1[n] and the
sampled rate of turn q2[n] of the ship, both sampled at time t = nT, while the control
input x[n] is the constant value of the rudder angle in the interval nT ≤ t < nT + T.
The same kind of model could describe the motion of a DC motor under a piecewise-
constant applied voltage.

For the purposes of this example, take α = 1, σ = T, and ρ = T2/2, so

A =
[

1 T
0 1

]
, b =

[
T2/2

T

]
. (6.88)
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Setting

x[n] = g1q1[n] + g2q2[n] (6.89)

results in the closed-loop state evolution matrix

A + bgT =
[

1 + g1(T2/2) T + g2(T2/2)
g1T 1 + g2T

]
. (6.90)

The characteristic polynomial of this matrix is

ν(λ) =
(
λ − 1 − g1(T2/2)

)(
λ − 1 − g2T

)
− g1T

(
T + g2(T2/2)

)
= λ2 − λ

(
2 + g1(T2/2) + g2T

)
+
(

1 − g1(T2/2) + g2T
)

. (6.91)

For desired closed-loop roots at μ1 and μ2, this polynomial will have to be

ν(λ) = (λ − μ1)(λ − μ2) = λ2 − λ(μ1 + μ2) + μ1μ2 . (6.92)

Comparing this equation with Eq. (6.91), we arrive at the following pair of simultane-
ous linear equations that have to be solved for the required feedback gains:[

T/2 1
−T/2 1

] [
g1
g2

]
= 1

T

[
μ1 + μ2 − 2
μ1μ2 − 1

]
, (6.93)

so [
g1
g2

]
= 1

T2

[
1 −1

T/2 T/2

] [
μ1 + μ2 − 2
μ1μ2 − 1

]
. (6.94)

For illustration, suppose we wish to obtain the fastest possible closed-loop
response in this DT model, that is, the deadbeat behavior described earlier in
Example 6.3 for the case of the observer error model for this system. This results from
placing both closed-loop natural frequencies at 0, so μ1 = 0 = μ2 and ν(λ) = λ2. Then
Eq. (6.94) shows that

g1 = −1/T2 , g2 = −1.5/T . (6.95)

As noted in connection with the deadbeat observer, we have not shown how to analyze
system behavior when there are repeated eigenvalues, but in the particular instance of
repeated eigenvalues at 0, it is easy to show that the state will die to 0 in a finite number
of steps—at most two steps, for this second-order system. To establish this here, note
that with the above choice of g we get

A + bgT =
[

1/2 T/4
−1/T −1/2

]
, (6.96)

so [
A + bgT

]2 = 0 , (6.97)

which shows that the effects of any nonzero initial condition will vanish in two steps at
most.

In practice, such deadbeat behavior may not be attainable, as unduly large con-
trol effort—rudder angles, in the case of the ship—would be needed if T was small.
Values of μ1 and μ2 that had larger magnitudes, though still less than 1, would corre-
spond to slower settling, and would thus require smaller control effort. On the other
hand, to the extent we have confidence in how well the underlying CT model predicts
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292 Chapter 6 State Observers and State Feedback

behavior over longer intervals, we could in principle use the deadbeat control law with
a large enough T to satisfy the control constraints, and then allow the ship to settle with
just two motions of the rudder:

x[0] = −(1/T2)q1[0] − (1.5/T)q2[0] ,

x[1] = −(1/T2)q1[1] − (1.5/T)q2[1] ,

x[n] = 0 for n ≥ 2 . (6.98)

Typically, we do not have direct measurements of the state variables of
the plant, but rather knowledge of only the control input, along with noisy
measurements of the system output. However, the state can be reconstructed
using an observer that produces asymptotically convergent estimates of the
state variables, provided the system is well described by an observable (or at
least detectable) model of the form in Eqs. (6.53) and (6.54). The next section
studies the closed-loop behavior that results from using the state estimates
produced by the observer in place of direct state measurements.

6.4 OBSERVER-BASED FEEDBACK CONTROL

An obstacle to state feedback is the general unavailability of direct measure-
ments of the state. We focus on the DT case, but the CT case proceeds in
a closely parallel way. All we typically have are knowledge of the control
signal x[n] that we are applying to the plant, along with possibly noise-
corrupted measurements y[n] of the plant output, and a nominal model of
the system. We have already seen how to use this information to estimate
the state variables, using an observer or state estimator. Let us therefore
consider what happens when we substitute the state estimate provided by
the observer for the unavailable actual state, in the feedback control law
in Eq. (6.58).

With this substitution, the control law is modified to

x[n] = gT q̂[n] + p[n]

= gT(q[n] − q̃[n]) + p[n] . (6.99)

The overall closed-loop system is then as shown in Figure 6.8.
A state-space model for this composite closed-loop system is obtained by

combining the representations of the subsystems that comprise it, namely the
plant in Eq. (6.1) and the observer in Eq. (6.21), factoring in their closed-loop
coupling via x[n] and y[n]. This would suggest using the vector[

q[n]
q̂[n]

]
(6.100)

as the state vector for the combined system. This is a 2L-component vector
that comprises the entries of q[n] followed by those of q̂[n]. However, recalling
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x[n]p[n] y[n]

y[n]

gT
[n]

w[n]

ζ[n]

q[n]

A, b, cT

Plant

Observer

++

+-
[n]

A, b, cT

B

yq [n]q

Figure 6.8 Observer-based compensator, feeding back an LTI combi-
nation of the estimated state variables.

that the observer error state is described by q̃[n] = q[n] − q̂[n], an equivalent
choice of state vector for the combined system is provided by[

q[n]
q̃[n]

]
, (6.101)

because q̃[n] can be determined from q[n] and q̂[n], and conversely q̂[n] can
be determined from q[n] and q̃[n]. The choice in Eq. (6.101) of a state vector
for the combined system leads to a more easily interpreted system description,
namely the following LTI state-space model:[

q[n + 1]
q̃[n + 1]

]
=
[

A + bgT −bgT

0 A + �cT

][
q[n]
q̃[n]

]
+
[

b
0

]
p[n]

+
[

I
I

]
w[n] +

[
0
�

]
ζ [n] . (6.102)

The first matrix on the right is a 2 × 2 block matrix or partitioned matrix,
having A + bgT as its leading L × L block, and the L × L matrix −bgT

adjacent to it in the first L rows; the latter matrix in turn has the L × L
matrix A + �cT below it in the last L columns. The remaining positions of
the matrix are filled with 0s, denoted by the L × L matrix 0. The other
block matrices are interpreted similarly. Equation (6.102) combines the plant
description in Eqs. (6.1) and (6.2), the observer description in Eq. (6.21),
and the feedback control law in Eq. (6.99). Note that we have reverted here
to the more elaborate plant representation in Eqs. (6.1) and (6.2) rather
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than the streamlined one in Eqs. (6.53) and (6.54), in order to display the
effect of plant disturbance and measurement noise on the overall closed-loop
system.

The block-triangular structure of the state evolution matrix in
Eq. (6.102), and the fact that the blocks in the diagonal positions are both
square, allows us to conclude that the natural frequencies of the overall sys-
tem are simply the eigenvalues of A + bgT along with those of A + �cT .
Equivalently, we conclude that the characteristic polynomial of the state evo-
lution matrix is ν(λ)κ(λ) in our earlier notation. This is a consequence of the
fact that for square matrices R and S the following determinantal identity
holds:

det
[

R T
0 S

]
= det(R) det(S) . (6.103)

We shall not prove this identity.
The preceding result shows that the observer-based feedback control law

results in a well characterized closed-loop system, with natural frequencies
that are the union of those obtained with perfect state feedback and those
obtained for the observer error equation. Both sets of natural frequencies
can be arbitrarily selected, provided the open-loop system is reachable and
observable. One would normally pick the modes that govern observer error
decay to be faster than those associated with state feedback, in order to have
reasonably accurate estimates available to the feedback control law before the
plant state can wander too far away from what is desired.

Another interesting fact is that the transfer function from p[n] to y[n]
in the new closed-loop system is exactly what would be obtained with perfect
state feedback, namely the transfer function in Eqs. (6.81) and (6.86). The rea-
son is that the condition under which the transfer function is computed—as
the input-output response when starting from the zero state, and with other
external inputs set to zero—ensures that the observer starts up from the same
initial condition, in this case q̂[0] = 0, as the plant. This in turn ensures that
there is no estimation error in the absence of plant disturbance and measure-
ment noise, so the estimated state equals the true state. Another way to reach
the same conclusion regarding the closed-loop transfer function is to note that
the observer error modes are undriven by the external input p[n] or by any-
thing that p[n] can excite, so these modes are unreachable from p[n]; they are
therefore hidden from the transfer function.

The preceding observer-based compensator is the starting point for
a very general and powerful approach to control design, one that carries
over to the multi-input, multi-output case. With the appropriate embel-
lishments around this basic structure, one can obtain every possible sta-
bilizing LTI feedback controller for the system in Eqs. (6.53) and (6.54).
Within this class of controllers, we can search for those that have robust
properties, in the sense that they are relatively immune to the uncertain-
ties in our models. Further exploration of this is left to more advanced
courses.
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Example 6.6 Observer-Based Controller for an Inverted Pendulum

Consider as our plant the following linearized model of a particular undamped
pendulum around the inverted position:

q̇(t) =
[

0 1
8 0

]
q(t) +

[
0

−1

]
x(t) . (6.104)

Its natural frequencies are at ±√
8, indicating an unstable system. We saw in

Example 6.4 that state feedback with gains

gT = [g1 g2
] = [μ1μ2 + 8 −μ1 − μ2

]
(6.105)

will place the closed-loop natural frequencies at μ1 and μ2. Suppose, for example,
we choose μ1 = −2, μ2 = −3; then g1 = 14, g2 = 5. The associated time constants are
1/2 = 0.5 and 1/3 = 0.33, so under perfect state feedback we expect the system to settle
in around 3 × 0.5 = 1.5 seconds.

Using a measurement of the angular position q1(t) of the system, an observer for
this system takes the form

q̇̂(t) =
[

0 1
8 0

]
q̂(t) +

[
0

−1

]
x(t)

−
[
�1
�2

](
y(t) − q̂1(t)

)
. (6.106)

The corresponding error dynamics are

q̇̃(t) =
[

�1 1
8 + �2 0

]
q̃(t) , (6.107)

with characteristic polynomial

κ(λ) = (λ − �1)λ − (8 + �2) = λ2 − �1λ − (8 + �2) . (6.108)

Choosing �1 = −7 and �2 = −18, for example, this polynomial becomes

κ(λ) = λ2 + 7λ + 10 = (λ + 2)(λ + 5) (6.109)

so the error decay time constants are 1/2 = 0.5 and 1/5 = 0.2. We thus expect the
observer error to settle in around 3 × 0.5 = 1.5 seconds.

Now suppose we feed back the estimated state instead of the unavailable actual
state, so x(t) = gT q̂(t) + p(t). The response of the resulting closed-loop system is shown
by the pair of plots in the upper part of Figure 6.9, with the pendulum angle q1(t)
obtained under this feedback control, and also the corresponding estimate q̂1(t) of the
pendulum angle provided by the observer, starting from its zero state, that is, with
q̂1(0) = 0, q̂2(0) = 0. The control x(t) is shown as well.

The pair of plots in the lower part of the figure show, as a benchmark, q1(t) under
the exact state feedback control designed previously, along with the required control
effort x(t) under exact state feedback. Note that for a comparable control effort, exact
state feedback is able to deal with an intial offset q1(0) that is 10 times larger than in
the observer-based case.

The observer-based controller is associated with a control input that is more
oscillatory than under perfect state feedback until the observer estimate is close to
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Figure 6.9 The upper pair of plots show the response of the inverted pendulum position
q1(t) under feedback control, using an observer-based controller whose estimate q̂1(t) of the
position is shown. The input x(t) is also shown. For comparison, the response obtained under
exact state feedback is displayed in the bottom pair of plots.

the underlying plant state. Once observer convergence is obtained at approximately
1.5 seconds, the feedback is essentially as good as exact state feedback, and the system
settles in an additional 1.5 seconds.

As the controller here was designed on the basis of a linearized model, a nat-
ural next step would be to simulate the effect of the controller on a more realistic
nonlinear model of the pendulum, to ascertain for what range of initial conditions and
perturbations the controller performs satisfactorily.
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6.5 FURTHER READING

Some of the texts suggested for further reading in Chapters 4 and 5 include
material on state estimation and state feedback control in LTI systems, see for
example [Ant], [Ch2], [Ka1], and [Lue]. A detailed treatment, illustrated by
aerospace and other applications, is given in [Frd]. The text [Ast] is an accessi-
ble modern introduction to feedback systems, including state-space models,
and incorporates key notions in robust control. The control of nonlinear
systems is addressed in [Kha], [Slo], [Vid].

Problems

Basic Problems

6.1. The dynamics of a synchronous electric generator are governed by a model of
the form

d2θ(t)
dt2

+ β
dθ(t)

dt
+ α sin θ(t) = T(t) ,

where θ(t) is the (relative) angular position of the generator and T(t) is the (nor-
malized) external torque acting on it; the parameter α is positive, but β can be
positive or negative. Write a state-space model of this system. Then, assuming
T(t) is constant at a positive value T(t) = T, determine for what values of T the
system will have:

(i) no equilibrium solutions;
(ii) one equilibrium solution with θ(t) = θ in the range [0, 2π];

(iii) two equilibrium solutions with θ(t) = θ in the range [0, 2π].

Write down the two linearized models computed at the two equilibrium
solutions you found in part (iii) above, expressing them in the standard form

q̇(t) = Aq(t) + bx(t) .

Determine the reachability of each of them by checking whether you can obtain
an arbitrary closed-loop characteristic polynomial by LTI state feedback.

6.2. Consider the linear dynamic system

q̇(t) = Aq(t) + bx(t)

y(t) = cTq(t)

where A =
[

0 1
2 −1

]
, b =

[
1
0

]
, and c =

[
1
0

]
.

(a) Is the system reachable? Justify your answer.
(b) Assuming that the states of the system are available, we wish to use state

feedback to control the modes of the system. The resulting closed-loop
system is shown in Figure P6.2.

www.konkur.in

Telegram: @uni_k



298 Chapter 6 State Observers and State Feedback

p[n]
x[n]

q[n]

A, b, cT

gT

+

Figure P6.2

The corresponding state-space equations are

q̇(t) = Aq(t) + b
(

p(t) + gTq(t)
)

y(t) = cTq(t) .

(i) Is it possible to place the natural frequencies or eigenvalues of this
system arbitrarily through the choice of an appropriate gain g?

(ii) Find a gain g such that the natural frequencies or eigenvalues of the
closed-loop system are −2 and −1.

6.3. A second-order CT causal LTI system is described by a state-space model of the
form:

dq(t)
dt

= Aq(t) + bx(t)

y(t) = cTq(t)

q2

q1

q(0) =

q(0) = 1

1

1

0

For q(0) =
[

q1(0)
q2(0)

]
=
[

1
0

]
and x(t) = 0 for t ≥ 0, we find that

q(t) =
[

q1(t)
q2(t)

]
=
[

1
0

]
e2t .

On the other hand, for q(0) =
[

1
1

]
and x(t) = 0 for t ≥ 0, we find that

q(t) =
[

1
1

]
e−3t .

(a) What are the two eigenvalues of the system and their corresponding
eigenvectors?

(b) Determine the matrix A.
Now suppose in the state-space description specified above, we are told that

b =
[

0
1

]
, cT = [0 1] .

(c) Determine whether the system is reachable.
(d) Determine whether the system is observable.
(e) With b and cT as above, and with q(0) = 0, is the output y(t) bounded for

every bounded input x(t), i.e., is the system BIBO stable?
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( f ) We now apply state feedback x(t) = gTq(t), with gT = [g1 g2].

(i) Is it possible to select (real) constants g1 and g2 such that the resulting
system is asymptotically stable? You need not actually compute such a
g1 and g2 if they do exist.

(ii) If we restrict g2 to zero, is it possible to select a constant g1 such that the
resulting system is asymptotically stable? Again, you need not actually
compute such a g1 if it exists.

(iii) If we restrict g1 to zero, is it possible to select a constant g2 such that
the resulting system is asymptotically stable? You need not actually
compute such a g2 if it exists.

6.4. Consider a causal CT system described by a state-space model of the form

dq(t)
dt

= Aq(t) + bx(t), y(t) = cTq(t) + dx(t) ,

with

A =
[−1 0
−1 0

]
, b =

[
γ

−1

]
, cT = [1 1] , d = 1 ,

where γ is a real parameter.
(a) Determine the eigenvalues of A, and the associated eigenvectors.
(b) For the case when the input is identically 0, i.e., when x(t) = 0 for t ≥ 0,

determine:

(i) all nonzero initial conditions q(0) for which the state vector does not
move from its initial value, i.e., q(t) = q(0) for t > 0;

(ii) all nonzero initial conditions q(0) for which the state vector q(t) decays
exponentially to the zero vector 0 as t → ∞.

Note from your answer to (b)(i) that the system is not asymptotically
stable.

(c) Find all values of γ for which the state-space model is not reachable, and
specify the associated unreachable eigenvalue or eigenvalues for each
such γ .

(d) For each γ in (c) for which you found the system to be unreachable,
determine whether state feedback of the form x(t) = gTq(t) could have
made the system asymptotically stable, for some choice of feedback gain
vector gT. Be sure to explain your reasoning.

6.5. The state evolution of a DT system is described by the equation

q[n + 1] = Aq[n] + bx[n]

with

A =
[

1 β

−α 1 − αβ

]
, b =

[
1
1

]
,

where α and β are real-valued constants. The matrix A has one eigenvalue at

λ1 = 0.5, with associated eigenvector v1 =
[

2
−1

]
.

(a) Determine the parameters α and β, the second eigenvalue λ2, and its
associated eigenvector v2.

(b) Is the system asymptotically stable? That is, with zero input, will the state
vector asymptotically decay to zero for every choice of initial conditions?
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The state of the system is measured at each time n and used for state
feedback to the input according to the relation

x[n] = gTq[n] + p[n] ,

where p[n] is the input to the closed-loop system.

(c) If possible, determine a gT so that the eigenvalues of the closed-loop system
are at 0.5 and 0. If it is not possible, clearly explain why not.

6.6. Consider the causal DT LTI system

q[n + 1] =
[

0 1
−6 −5

]
q[n] +

[
0
1

]
x[n] +

[
1
0

]
w[n] ,

where x[n] is a control input and w[n] is a disturbance input.

(a) What are the natural frequencies of the system (i.e., the eigenvalues of the
state evolution matrix)? Is the system asymptotically stable?

(b) Suppose you use the LTI state feedback

x[n] = g1q1[n] + g2q2[n] .

What choice of the gains g1 and g2 will yield the closed-loop characteris-
tic polynomial z(z + 0.5)? For this choice, write down the eigenvalues of
the matrix that describes the state evolution of the closed-loop system, and
compute the associated eigenvectors.

(c) Suppose the system output is y[n] = q1[n]. With x[n] chosen as in (b), is the
closed-loop system observable?

(d) With x[n] as in (b) and y[n] as in (c), what is the transfer function from w[n]
to y[n] for the closed-loop system?

(e) Determine in two distinct ways, using the results in (b), (c), and (d), whether
the closed-loop system is reachable from the disturbance input w[n].

6.7. Consider the DT LTI state-space model

q[n + 1] =
[−1 1

0 −2

]
q[n] +

[
0
1

]
x[n]

y[n] = [−0.5 1] q[n].

(a) Explicitly compute its transfer function H(z) from input x[n] to output
y[n]. Are the poles where you expect them to be? Explain. You should be
able to conclude directly from the computed H(z) that the system is reach-
able and observable—explain your reasoning. Is the system asymptotically
stable?

(b) Now suppose we implement LTI state feedback of the form

x[n] = gTq[n] + p[n] ,

where g is a gain vector and p[n] is a new external input. Determine what
choice of g will result in the closed-loop eigenvalues (or natural frequencies)
of the system being at ±0.5. What are the eigenvectors respectively associ-
ated with these eigenvalues? Is the closed-loop system still reachable from
p[n]? Is it still observable from y[n]?

(c) With g chosen as in (b), what is the transfer function F(z) of the closed-
loop system from input p[n] to output y[n]? Taking note of your answers in
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(a) and (b), explain (in terms of poles, zeros, cancellations, etc.) what has
happened to result in this transfer function.

6.8. A particular second-order CT causal LTI system has natural frequencies λ1 = −3
and λ2 = −4; these are the eigenvalues of the matrix that governs state evolution.
Their associated eigenvectors are denoted by v1 and v2 respectively. The system’s
input-output transfer function is

H(s) = s + 1
(s + 3)(s + 4)

.

(a) Is the system reachable? Is it observable? Explain.
(b) Suppose the system is initially at rest, i.e., its initial state is zero. Is it now

possible to choose the input in such a way that the state moves out along
the eigenvector v1, with no component along v2 during the entire motion?
Explain your answer carefully.

(c) Suppose the output of the above system is applied to the input of another
causal second-order LTI system with transfer function

G(s) = s + 3
s(s + 5)

.

The input to the combined system is then just the original input to the first
system, while the output of the combined system is the output of the second
system, as shown in Figure P6.8.

s + 1  
(s + 3) (s + 4) s(s + 5)

(s + 3)

Figure P6.8

(i) How many state variables are there in the state-space description of
the combined system, and what are the natural frequencies of this
combined system?

(ii) Is the combined system asymptotically stable? Explain.
(iii) Is the combined system reachable from the input of the first system? Is

it observable from the output of the second system? Explain.
(iv) If you were to build an observer for the combined system using mea-

surements of the input to the first system and the output of the second
system, could you get the estimation error of the observer to decay? If
not, why not; and if so, could you get the error to decay arbitrarily fast?

6.9. Suppose the equations of a DT plant and its observer are as follows.
Plant:

q[n + 1] = Aq[n] + bx[n]

y[n] = cTq[n] + dx[n] .

Observer:

q̂[n + 1] = Aq̂[n] + bx[n] − �(y[n] − ŷ[n])

ŷ[n] = cT q̂[n] + dx[n] .

(a) Assume that the initial state of the plant is unknown, that � = 0 (i.e., no
error feedback in the observer), and the initial state of the observer is zero.
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Describe the time behavior for n ≥ 0 of the output error y[n] − ŷ [n] and the
state error q[n] − q̂ [n] if

A =
[

0 1
− 1

2
3
2

]
, b =

[
1
1
2

]
, cT = [ 0 1

]
, d = 0.

(b) Determine whether the system (i.e., the plant) is observable if A, b, c, and d
are as given in (a).

(c) Determine a choice for the vector � so that the the eigenvalues governing
state estimation error decay are at 1

8 and at 1
16 .

6.10. Consider the levitated ball in a magnetic suspension system shown in
Figure P6.10. The dynamical behavior of the ball is described by the follow-
ing state equations, where q1(t) is the vertical position and q2(t) is the vertical
velocity of the ball:

dq(t)
dt

= Aq(t) + bx(t)

y(t) = cTq(t)

with

A =
[

0 1
25 0

]
, b =

[
0
1

]
.

x(t)

0

q1(t)

Figure P6.10

(a) Determine the eigenvalues and eigenvectors of the system.
(b) Determine all possible values of c for which the system is BIBO stable.
(c) Determine whether it is possible to place the natural frequencies or eigen-

values of the system at arbitrary self-conjugate locations through the use of
state feedback of the form

x(t) = gT q(t) .

(d) We assume that the state variables are not directly measurable but both the
input x(t) and the output y(t) are with cT = [1 0]. We want to estimate the
state of the system based on the following equations:

d̂q(t)
dt

= Aq̂(t) + bx(t) − �(y(t) − ŷ(t))

ŷ(t) = cT q̂(t)

where q̂ is the estimate for q. Can the gain vector � be chosen so that the
error in the state estimate decays asymptotically?
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6.11. A given system is not asymptotically stable but is BIBO stable. Is it possible to
implement observer-based feedback to make the system asymptotically stable?
Explain.

6.12. In this problem we will consider state feedback to stabilize the inverted pendu-
lum shown in Figure P6.12, comprising a mass m at the end of a massless rod of
length L.

m

L

u

Figure P6.12

For small θ , θ̈(t) = g
L θ(t) + x(t), where g is the acceleration due to gravity,

and x(t) is the applied torque, in some appropriate units. The natural associated
state-space description is

q̇(t) ≡
[

q̇1(t)
q̇2(t)

]
=
[

0 1
g/L 0

] [
q1(t)
q2(t)

]
+
[

0
1

]
x(t) = Aq(t) + bx(t)

where q1(t) = θ(t), q2(t) = θ̇(t). For this problem pick g/L = 16.

(a) Determine the eigenvalues and associated eigenvectors of the state evolu-
tion matrix A.

(b) Determine the input-output (ZSR) transfer function from input x(t) to
output θ(t).

(c) Determine a nonzero choice for the initial conditions so that the state vector
q(t) asymptotically decays to zero.

(d) Consider the use of state feedback, i.e., choose x(t) = gTq(t) where g is the
feedback gain vector. Determine the constraints on g so that the system is
stabilized.

(e) The use of state feedback in this system requires measuring both θ(t) and
θ̇(t). Determine whether it is possible to stabilize the system by choosing
x(t) to be of the form x(t) = aθ(t) where a is a scalar constant.

( f ) Suppose now that we only have an inaccurate measurement of the angle θ(t)
(i.e., q1(t)), so the available quantity is

y(t) = [1 0]
[

q1(t)
q2(t)

]
+ ζ (t) = cTq(t) + ζ (t) ,

where ζ (t) denotes the error in the measurement of θ(t). We would like to
stabilize the system by using an estimate of the state rather than the actual
state. To obtain an estimate q̂(t) of the state q(t), we use our knowledge of
the system dynamics (i.e., of the matrix A and the vector b) and the (inac-
curate) measurement y(t). The state-space model that produces q̂(t) is the
following:

d̂q(t)
dt

= Aq̂(t) + bx(t) −
[
�1
�2

](
y(t) − cT q̂(t)

)
.

Find the state-space description governing the estimation error, defined as
q̃(t) = q(t) − q̂(t), i.e., find E and f such that

d̃q(t)
dt

= Eq̃(t) + fζ (t) .
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Can you pick �1 and �2 so that the natural frequencies of the error equa-
tion are stable? If so, choose them so that the natural frequencies are at −4
and −3.

(g) Repeat the preceding part (f) for the case when we have a noisy measure-
ment of the angular velocity, i.e.,

y(t) = [0 1]
[

q1(t)
q2(t)

]
+ ζ (t) .

(h) Using �1 and �2 as found in part (f), provide a state-space description of the
system obtained by combining the inverted pendulum state-space descrip-
tion with the state-space description of q̃(t), and using the estimated state as
feedback:

x(t) = [ γ1 γ2 ]
[

q̂1(t)
q̂2(t)

]
.

What is the characteristic polynomial of the system? Can you choose γ1 and
γ2 so that the overall system is stable with natural frequencies at −1, −2, −3,
and −4?

Advanced Problems

6.13. Suppose we are given the state-space model q̇(t) = Aq(t) + bx(t) with output
equation y(t) = cTq(t), where

A =
⎡⎣ 0 1 0

0 0 1
−12 −19 −8

⎤⎦ , b =
⎡⎣0

0
1

⎤⎦ ,

cT = [2 1 0
]

.

It turns out for this choice of A and b, and no matter what the particular numbers
are in the last row of A, that

(sI − A)−1b = 1
det(sI − A)

⎡⎣ 1
s
s2

⎤⎦ .

It may also help you in this problem to know that

s3 + 8s2 + 19s + 12 = (s + 1)(s + 3)(s + 4) .

(a) Find the characteristic polynomial of the system, the natural or modal
frequencies (i.e., eigenvalues of A), the associated mode shapes (i.e., eigen-
vectors), and the transfer function H(s). Is the system reachable? Is it
observable? If you find the system to be unreachable or unobservable
(or both), specify which mode or modes are respectively unreachable or
unobservable (or both).

(b) Suppose we implement the state feedback control x(t) = gTq(t) + p(t).
Specify what choice of gT will make the characteristic polynomial of the
closed-loop system equal to

(s + 1)(s + 3)(s + 5) .

For this choice of state feedback gain, what are the mode shapes of the
closed-loop system, and what is the transfer function from p(t) to y(t)? Is the
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closed-loop system reachable from p(t)? Is it observable from y(t)? If you
find the system to be unreachable or unobservable (or both), specify which
mode or modes are respectively unreachable or unobservable (or both).

(c) Repeat (b) for the case where the desired closed-loop characteristic polyno-
mial is

(s + 1)(s + 2)(s + 4) .

6.14. In the following CT second-order LTI state-space system, x(t) is a known scalar
input, w is an unknown but constant scalar disturbance that adds to the known
input, y(t) is a measured output, and q(t) denotes a state vector with components
q1(t) and q2(t):

q̇(t) =
[

0 a1
1 a2

]
q(t) +

[
b1
b2

](
x(t) + w

)
,

y(t) = [
0 1

]
q(t) .

Our plan is to incorporate w as a third state variable, then estimate it using an
observer, and finally use this estimate to cancel the effect of the disturbance.
Assume a1 and a2 are such that the system has distinct eigenvalues.

(a) First determine precisely under what conditions on the parameters the given
second-order system is observable from the output y(t).

(b) Now determine precisely under what conditions on the parameters the given
second-order system is reachable from the input x(t).

Assume in what follows that whatever conditions you identified in (a) and
(b) are satisfied, i.e., take the given system as observable and reachable.

(c) Taking q3(t) = w as a third state variable, write down a new third-order
LTI state-space model that has just the known x(t) as an input (with no
disturbance component) and has the same y(t) as its output.

(d) Suppose you were now to construct an observer for the third-order sys-
tem you obtained in (c), with observer gains �1, �2, �3 used to feed the
output error y(t) − ŷ(t) into the real-time simulator that forms the core of
the observer. Write down the 3 × 3 matrix whose eigenvalues govern the
time evolution of the observer error, and obtain the associated characteristic
polynomial.

(e) What condition on the parameters a1, a2, b1, and b2 of the original system
is necessary and sufficient to guarantee that the eigenvalues governing the
error decay of the observer in (d) can be placed at any self-conjugate set of
locations by appropriate choice of the observer gains? Interpret this condi-
tion as a condition on the poles and/or zeros of the original second-order
system.

(f) Assume the condition in (e) is satisfied. Determine the observer gains
required to place the eigenvalues governing observer error decay at −1, −2,
and −3, expressing the gains in terms of the system parameters a1, a2, b1,
and b2.

(g) Our plan now is to set x(t) = −ŵ(t), where ŵ(t) is the estimate at time t of
the constant disturbance w. When ŵ(t) has converged to w, this will cancel
the effect of the constant disturbance w on the system. Determine the char-
acteristic polynomial of the resulting overall sixth-order closed-loop system.
(Hint: it will be the product of two third-degree polynomials that you should

www.konkur.in

Telegram: @uni_k



306 Chapter 6 State Observers and State Feedback

be able to write down quite directly.) You should find that one of the roots of
this sixth-degree characteristic polynomial is at 0, corresponding to the fact
that the disturbance variable w remains fixed at some value. What condition
will ensure that the remaining roots are all strictly in the left half-plane?

6.15. (a) Suppose the transfer function of System 1 in the block diagram shown in
Figure P6.15 is

H1(s) = s
s − 1

= 1
s − 1

+ 1 .

System 1 System 2
y1(t) = x2(t)

x1(t) y2(t)

Figure P6.15

(i) Find a first-order state-space model for System 1, using q1(t) to denote
its state variable and arranging things such that y1(t) = q1(t) + x1(t).

(ii) Is your state-space model for System 1 reachable? Observable?
Asymptotically stable?

(b) Suppose System 2 in Figure P6.15 is described by the first-order state-space
model

q̇2(t) = μq2(t) + x2(t)

y2(t) = 2q2(t)

where μ is a parameter, and we are given that μ �= 1.

(i) What is the transfer function H2(s) of System 2?
(ii) For what values of μ, if any, is the state-space model of System 2

unreachable? Unobservable? Asymptotically stable?
(c) (i) Combine the state-space models in (a) and (b) to obtain a second-order

state-space model of the form

q̇(t) = Aq(t) + bx1(t) , y2(t) = cTq(t) + dx1(t)

for the overall system in Figure P6.15, using
[

q1(t)
q2(t)

]
as the overall state

vector q(t), x1(t) as the overall input, and y2(t) as the overall output.
(ii) Compute the transfer function H(s) from x1(t) to y2(t) using the model

in (c)(i), and verify that it equals H1(s)H2(s).
(iii) What are the eigenvalues of A in (c)(i)? Check that the eigenvalues you

obtain are consistent with what you expect from your results in (c)(ii).
What are the eigenvectors associated with these eigenvalues?

(iv) There are values of μ for which one can find nonzero initial conditions
q(0) such that the resulting zero-input solution q(t) (i.e., the solution
with x1(t) ≡ 0) decays to 0 as t → ∞. Find all such values of μ, and
for each such μ specify all initial conditions that lead to such decaying
zero-input solutions.

(v) For what values of μ, if any, is the overall system in (c)(ii):
(i) Unreachable? Which natural frequencies are unreachable?

(ii) Unobservable? Which natural frequencies are unobservable?
Interpret your results in terms of pole-zero cancellations in the block
diagram in Figure P6.15.
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(d) Suppose you can measure both state variables q1(t) and q2(t), so that you
can choose

x1(t) = g1q1(t) + g2q2(t) .

The resulting closed-loop system is still described by a second-order LTI
state-space model. What choice of g1 and g2 will result in the closed-loop
natural frequencies being at −1 ± j1? You can express your answer in terms
of μ. Now determine for what values of μ, if any, your expressions for g1
and/or g2 have infinite magnitude, and reconcile your answer with what you
found in (c)(v).

(e) Suppose you can only measure the input x1(t) and the output y2(t). Fully
specify a procedure for estimating the state variables q1(t) and q2(t), in such
a way that the error between each of the actual and estimated state variables
can be expressed as a linear combination of two decaying exponential terms
with time constants of 0.5 and 0.25 respectively. Will your estimation scheme
work for all values of μ? Again, reconcile your answer with what you found
in (c)(v).

Extension Problems

6.16. A model of a rotating machine driven by a piecewise-constant torque takes the
state-space form

q[k + 1] =
[

q1[k + 1]
q2[k + 1]

]
=
[

1 T
0 1

][
q1[k]
q2[k]

]
+
[

T2/2
T

]
x[k]

= Aq[k] + bx[k]

where the state vector q[k] comprises the position q1[k] and velocity q2[k] of
the rotor, sampled at time t = kT; x[k] is the constant value of the torque in the
interval kT ≤ t < kT + T. Assume for this problem that T = 0.5.

(a) Is the system asymptotically stable? Note that this model does not have dis-
tinct eigenvalues. To answer the question here, you might invoke the stability
result that we proved only for the case of distinct eigenvalues, but which we
claimed held for the general case as well. Alternatively, for a more direct
and more satisfying argument, you could try to find general expressions for
the entries of Ak in this case. Evaluate A20 and A100. Are the entries of Ak

growing linearly with k? Quadratically? Exponentially?
(b) Suppose we implement a position-feedback control law of the form

x[k] = γ q1[k] .

Write down a state-space model for the closed-loop system, and obtain
an expression for its characteristic polynomial. Can γ be chosen so as to
place the roots of the closed-loop characteristic polynomial at arbitrary self-
conjugate locations, i.e., subject to the requirement that complex roots occur
in conjugate pairs ?

(c) Suppose we implement a state feedback control law of the form
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x[k] = [γ1 γ2]
[

q1[k]
q2[k]

]
.

Write down a state-space model of the closed-loop system.
(d) What choice of gains γ1 and γ2 in (c) will result in the natural frequen-

cies of the closed-loop system being at ±0.6, corresponding to a closed-loop
characteristic polynomial of (z − 0.6)(z + 0.6) ? For this choice of gains, and
with q1[0] = 4 and q2[0] = 1, determine and plot q1[k], q2[k], and x[k] for
0 ≤ k ≤ 20 .

(e) The state feedback law in (c) and (d) assumed that we had access to accurate
position and velocity measurements. Suppose instead that all we have is a
noisy measurement of the position, so the available quantity is

y[k] = [1 0]
[

q1[k]
q2[k]

]
+ ζ [k] = cTq[k] + ζ [k] ,

where ζ [k] denotes the unknown noise. One way to estimate the actual
position and velocity is by using an observer, which has the form

q̂[k + 1] = Aq̂[k] + bx[k] −
[
�1
�2

](
y[k] − cT q̂[k]

)
.

Here q̂[k] is our estimate of q[k]. Let the observer error be denoted by
q̃[k] = q[k] − q̂[k]. Determine the state-space equation that q̃[k] satisfies.

Show for our rotating machine example that, by proper choice of the
observer gain, we can obtain arbitrary self-conjugate natural frequencies
for this error equation. What choice of �1 and �2 will place the natural fre-
quencies of the error equation at 0 and 0.25 ? For this choice of observer
gains, with q1[0] = 4, q2[0] = 1 as in (d), and with q̂1[0] = 0 and q̂2[0] = 0,
compare q̂1[k] and q̂2[k] with the plots you obtained for q1[k] and q2[k] in
(d), still assuming x[k] is generated as specified by (c) and (d), and assuming
that the measurement noise is zero, i.e., ζ [·] = 0.

Also explore what happens to the estimation error for zero-mean mea-
surement noise ζ [·] that is independent and identically distributed at each
instant, for example taking the values +σ or −σ with equal probability at
each instant, for some σ > 0.

( f ) Obtain a state-space description of the system obtained by combining the
observer with the model of the machine, and using the control law

x[k] = [γ1 γ2]
[

q̂1[k]
q̂2[k]

]
,

rather than the state feedback law of part (c). You may find it most
convenient to use the following state vector:⎡⎢⎢⎣

q1[k]
q2[k]
q̃1[k]
q̃2[k]

⎤⎥⎥⎦ .

Compute and plot q1[k], q2[k], and x[k] for the same initial conditions you
used in (d) and (e), and assuming zero measurement noise. Do you notice
any consequences of using feedback of the estimated state rather than of the
actual state?

Again explore what happens to your plots when there is zero-mean
measurement noise.
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7 Probabilistic Models

In the preceding chapters, we have emphasized deterministic signals. Here and
in the remaining chapters, we expand our discussion to include signals based
on probabilistic models, referred to as random or stochastic processes or sig-
nals. To introduce this important class of signals, we begin in this chapter with
a review of the basics of probability and random variables. We assume that you
have encountered this foundational material in a previous course, but include
a review here for convenient reference and to establish notation. In the fol-
lowing chapters, we apply these concepts to define random signals, explore
their properties, and develop methods for signal estimation and detection in
this context.

7.1 THE BASIC PROBABILITY MODEL

Associated with a basic probability model are the following three components,
as indicated in Figure 7.1:

1. The sample space, �, is the set of all possible outcomes ψ of the prob-
abilistic experiment that the model represents. We require that one and
only one outcome be produced in each experiment with the model.

2. An event algebra is a collection of subsets of the sample space—
referred to as events in the sample space—chosen such that unions of
events, intersections of events, and complements of events are them-
selves events, that is, they are in the collection of subsets. Note that
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Sample space °

A specific

outcome c
Collection of

outcomes (event)

Figure 7.1 Sample space and events.

intersections of events can also be expressed in terms of unions and com-
plements. A particular event is said to have occurred if the outcome of
the experiment lies in this event subset; thus the set � is the “certain
event” because it always occurs, and the empty set ∅ is the “impossible
event” because it never occurs.

3. A probability measure associates with each event A a number P(A),
termed the probability of A, in such a way that

• P(A) ≥ 0;
• P(�) = 1; and
• if A ∩ B = ∅, that is, if events A and B are mutually exclusive, then

P(A ∪ B) = P(A) + P(B) . (7.1)

Note that for any particular case we often have a range of options in specifying
what constitutes an outcome, in defining an event algebra, and in assigning a
probability measure. It is generally convenient to have as few elements or out-
comes as possible in a sample space, but enough of them are needed to enable
specification of the events of interest. Typically, the smallest event algebra that
contains the events of interest is chosen. An assignment of probabilities to
events is also required that is consistent with the above conditions. This assign-
ment may be made on the basis of symmetry arguments or in some other way
that is suggested by the particular application.

The joint probability P(A ∩ B) is often alternatively written as P(A, B).

7.2 CONDITIONAL PROBABILITY, BAYES’ RULE,
AND INDEPENDENCE

The probability of event A, given that event B has occurred, is denoted by
P(A|B). Knowledge that B has occurred in effect reduces the sample space to
the outcomes in B, so a natural definition of the conditional probability is

P(A|B) = P(A, B)
P(B)

if P(B) > 0 . (7.2)

It is straightforward to verify that this definition of conditional probability
yields a valid probability measure on the sample space B. The preceding
equation can also be rearranged to the form

P(A, B) = P(A|B)P(B) . (7.3)
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If P(B) = 0, then the conditional probability in Eq. (7.2) is undefined.
By symmetry, we can also write

P(A, B) = P(B|A)P(A) . (7.4)

Combining Eqs. (7.3) and (7.4), we can write

P(B|A) = P(A|B)P(B)
P(A)

. (7.5)

Equation (7.5) plays an essential role in much of the development of methods
for signal detection, classification, and estimation.

A more detailed form of Eq. (7.5) can be written for the conditional
probability of one of a set of events {Bj} that are mutually exclusive and
collectively exhaustive, that is, B� ∩ Bm = ∅ if � �= m, and ∪jBj = �. In this
case,

P(A) =
∑

j

P(A, Bj) =
∑

j

P(A|Bj)P(Bj) (7.6)

so that

P(B�|A) = P(A|B�)P(B�)∑
j P(A|Bj)P(Bj)

. (7.7)

The general form of Eq. (7.7) is commonly referred to as Bayes’ rule or Bayes’
theorem, although that terminology is also often applied to the more specific
case of Eq. (7.5).

Events A and B are said to be independent if

P(A|B) = P(A) (7.8)

or equivalently, from Eq. (7.3), if the joint probability factors as

P(A, B) = P(A)P(B) . (7.9)

More generally, a collection of events is said to be mutually independent if
the probability of the intersection of events from this collection, taken any
number at a time, is always the product of the individual probabilities. Note
that pairwise independence is not sufficient. Also, two sets of events A and B
are said to be independent of each other if the probability of an intersection
of events taken from these two sets always factors into the product of the joint
probability of those events that are in A and the joint probability of those
events that are in B.

Example 7.1 Transmission Errors in a Communication System

Consider a communication system that transmits symbols labeled A, B, and C. Because
of errors (e.g., noise, dropouts, fading, etc.) introduced by the channel, there is a
nonzero probability that for each transmitted symbol, the received symbol differs from
the transmitted one. Table 7.1 describes the joint probability for each possible pair of
transmitted and received symbols under a certain set of system conditions.
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312 Chapter 7 Probabilistic Models

TABLE 7.1 JOINT PROBABILITY FOR EACH
POSSIBLE PAIR OF TRANSMITTED
AND RECEIVED SYMBOLS

Symbol Received

Symbol Sent A B C

A 0.05 0.10 0.09

B 0.13 0.08 0.21

C 0.12 0.07 0.15

For notational convenience, we use As, Bs, Cs to denote the events that the
symbol A, B, or C, respectively, is sent, and Ar, Br, Cr to denote that A, B, or C, respec-
tively, is the symbol received. For example, according to Table 7.1, the probability that
symbol A is received and symbol B is sent is P(Ar , Bs) = 0.13. Similarly, P(Cr , Cs) =
0.15. To determine the marginal probability P(Ar), we sum the probabilities for all the
mutually exclusive ways that A is received, so,

P(Ar) = P(Ar, As) + P(Ar , Bs) + P(Ar , Cs)

= .05 + .13 + .12 = 0.30 . (7.10)

Similarly, we can determine the marginal probability P(As) as

P(As) = P(Ar , As) + P(Br , As) + P(Cr , As) = 0.24 . (7.11)

In a communication context, it may be important to know the probability, for example,
that C was sent, given that B was received, that is, P(Cs|Br). That information is not
entered directly in the table but can be calculated from it using Eq. (7.2), which allows
the desired conditional probability to be expressed as

P(Cs|Br) = P(Cs, Br)
P(Br)

. (7.12)

The numerator in Eq. (7.12) is given directly in the table as 0.07. The denominator is
calculated as P(Br) = P(Br, As) + P(Br , Bs) + P(Br , Cs) = 0.25. The result then is that
P(Cs|Br) = 0.28.

To determine the probability that symbol A is received, given that symbol B was
sent, that is, the conditional probability P(Ar|Bs), we express P(Ar|Bs) as

P(Ar|Bs) = P(Ar , Bs)
P(Bs)

. (7.13)

The numerator is specified in the table as 0.13. The denominator is calculated as
P(Bs) = P(Bs, Ar) + P(Bs, Br) + P(Bs, Cr) = 0.42. Consequently, P(Ar|Bs) = 0.31.

In communication systems, it is also often of interest to measure or calculate
the probability of a transmission error. A transmission error in this example would
correspond to any of the following mutually exclusive events happening:

(As, Br), (As, Cr), (Bs, Ar), (Bs, Cr), (Cs, Ar), (Cs, Br) . (7.14)

The transmission error probability Pt is therefore the sum of the probabilities of these
six mutually exclusive events, and all these probabilities can be read directly from the
table in the off-diagonal locations, yielding Pt = 0.72.
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Real line°

X(c)

c

Figure 7.2 A random variable.

7.3 RANDOM VARIABLES

A real-valued random variable X( · ) is a function that maps each outcome
ψ of a probabilistic experiment to a real number X(ψ), which is termed the
realization of (or value taken by) the random variable in that experiment. This
is illustrated in Figure 7.2. An additional technical requirement imposed on
this function is that the set of outcomes {ψ} which maps to the interval X ≤ x
must be an event in �, for all real numbers x. We shall typically just write the
random variable as X instead of X( · ) or X(ψ).

It is often also convenient to consider mappings of probabilistic out-
comes to one of a finite or countable set of categories or labels, say
L0, L1, L2, . . . , rather than to a real number. For instance, the random status
of a machine may be tracked using the labels Idle, Busy, and Failed. Similarly,
the random presence of a target in a radar scan can be tracked using the labels
Absent and Present. We can think of these labels as comprising a set of mutu-
ally exclusive and collectively exhaustive events, in which each such event
comprises all the outcomes that carry that label. Such a mapping associates
each outcome ψ of a probabilistic experiment to the category or label L(ψ),
chosen from the possible values L0, L1, L2, . . . . We shall typically just write L
instead of L(ψ) and refer to this mapping as a categorical random variable or
simply as a random variable when the context is clear.

7.4 PROBABILITY DISTRIBUTIONS

Cumulative Distribution Function For a (real-valued) random variable X,
the probability of the event comprising all outcomes ψ for which X(ψ) ≤ x is
described using the cumulative distribution function (CDF) FX(x):

FX(x) = P(X ≤ x) . (7.15)

We can therefore write

P(a < X ≤ b) = FX(b) − FX(a) . (7.16)

In particular, if there is a nonzero probability that X takes a specific
value x1, that is, if P(X = x1) > 0, then FX(x) will have a jump at x1
of height P(X = x1), and FX(x1) − FX(x1−) = P(X = x1), as illustrated in
Figure 7.3. The CDF is always nondecreasing as a function of x; it starts from
FX(−∞) = 0 and rises to FX(∞) = 1.
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x1 x2

FX(x)

x

1

1
3

Figure 7.3 Example of the CDF
associated with the random variable X
for which P(X = x1) = 1

3 ,
P(X = x2) = 2

3 .

A related function is the conditional CDF FX|L(x|Li), used to describe
the distribution of X conditioned on some random label L taking the specific
value Li, and assuming P(L = Li) > 0:

FX|L(x|Li) = P(X ≤ x|L = Li) = P(X ≤ x, L = Li)
P(L = Li)

. (7.17)

Probability Density Function The probability density function (PDF) fX(x)
of the real random variable X is the derivative of FX (x):

fX(x) = dFX (x)
dx

. (7.18)

The PDF is always nonnegative because FX(x) is nondecreasing. At points
of discontinuity in FX(x), corresponding to values of x that have nonzero
probability of occurring, there will be (Dirac) impulses in fX(x), of strength
(i.e. area) equal to the height of the discontinuity. We can write

P(a < X ≤ b) =
∫ b

a
fX(x) dx . (7.19)

When a and b are minus and plus infinity, respectively, the left side of
Eq. (7.19) must be unity and therefore so is the total area under the PDF. Note
that because of the structure of the inequalities in the left side of Eq. (7.19),
any impulse of fX(x) at x = b would be included in the integral, while any
impulse at x = a would be excluded—that is, the integral actually goes from
a+ to b+.

We can heuristically think of fX(x) dx as corresponding to the probability
that X lies in the interval (x − dx, x]:

P(x − dx < X ≤ x) ≈ fX(x) dx . (7.20)

Note that at values of x where fX(x) does not have an impulse, the probability
of X having the value x is zero, that is, P(X = x) = 0.

A related function is the conditional PDF fX|L(x|Li), defined as the
derivative of FX|L(x|Li) with respect to x.

Probability Mass Function A real-valued discrete random variable X is one
that takes only a finite or countable set of real values, {x1, x2, · · · }. Hence this
is actually a categorical random variable—as defined earlier—but specified
numerically rather than with labels. The CDF in this case would be a “stair-
case” function, while the PDF would be zero everywhere, except for impulses
at the values xj, with strengths corresponding to the respective probabilities of
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Section 7.5 Jointly Distributed Random Variables 315

the xj. These probabilities are conveniently described by the probability mass
function (PMF) pX(x), which gives the probability of the event X = xj:

P(X = xj) = pX (xj) . (7.21)

7.5 JOINTLY DISTRIBUTED RANDOM VARIABLES

Models involving multiple (or compound) random variables are described by
joint probabilities. For example, the joint CDF of two random variables X
and Y is

FX,Y(x, y) = P(X ≤ x, Y ≤ y) . (7.22)

The corresponding joint PDF is

fX,Y(x, y) = ∂2FX,Y(x, y)
∂x ∂y

, (7.23)

which has the heuristic interpretation that

P(x − dx < X ≤ x, y − dy < Y ≤ y) ≈ fX,Y(x, y) dx dy . (7.24)

The marginal PDF fX(x) is defined as the PDF of the random variable X
considered on its own, and is related to the joint density fX,Y(x, y) by

fX(x) =
∫ +∞

−∞
fX,Y(x, y) dy . (7.25)

A similar expression holds for the marginal PDF fY(y).
We have noted that when the model involves a random variable X and

a random label L, we may work with the conditional CDF in Eq. (7.17):

FX|L(x|Li) = P(X ≤ x|L = Li) = P(X ≤ x, L = Li)
P(L = Li)

, (7.26)

which is well defined provided P(L = Li) > 0. The derivative of this func-
tion with respect to x results in the conditional PDF fX|L(x|Li). When the
model involves two continuous random variables X and Y, the corresponding
function of interest is the conditional PDF fX|Y(x|y) that describes the dis-
tribution of X, given Y = y. However, for a continuous random variable Y,
P(Y = y) = 0; so even though the following result may seem natural, its
justification is more subtle:

fX|Y(x|y) = fX,Y(x, y)
fY(y)

. (7.27)

To see the plausibility of Eq. (7.27), note that the conditional PDF fX|Y(x|y)
must have the property that

fX|Y(x|y) dx ≈ P(x − dx < X ≤ x | y − dy < Y ≤ y) , (7.28)
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but by Bayes’ rule, the quantity on the right in the previous equation can be
rewritten as

P(x − dx < X ≤ x | y − dy < Y ≤ y) ≈ fX,Y(x, y) dx dy
fY(y)dy

. (7.29)

Combining the latter two equations yields Eq. (7.27).
Using similar reasoning, we can obtain relationships such as:

P(L = Li|X = x) = fX|L(x|Li)P(L = Li)
fX(x)

. (7.30)

Two random variables X and Y are said to be independent or statistically inde-
pendent if their joint PDF (or equivalently their joint CDF) factors into the
product of the individual ones:

fX,Y(x, y) = fX(x)fY(y) , or

FX,Y(x, y) = FX(x)FY(y) .
(7.31)

This condition is equivalent to having any collection of events defined in terms
of X be independent of any collection of events defined in terms of Y.

For a set of more than two random variables to be independent, we
require that the joint PDF (or CDF) of random variables from this set fac-
tors into the product of the individual PDFs (respectively, CDFs). One can
similarly define independence of random variables and random labels.

Example 7.2 Independence of Events

To illustrate some of the above definitions and concepts, consider two independent
random variables X and Y whose individual (i.e., marginal) PDFs are uniform between
0 and 1:

fX (x) =
{

1 0 ≤ x ≤ 1
0 otherwise

(7.32)

fY(y) =
{

1 0 ≤ y ≤ 1
0 otherwise.

(7.33)

Because X and Y are independent, the joint PDF fX,Y (x, y) is given by

fX,Y (x, y) = fX(x)fY (y) . (7.34)

We define the events A, B, C, and D as follows:

A =
{

y >
1
2

}
, B =

{
y <

1
2

}
, C =

{
x <

1
2

}
,

D =
{

x <
1
2

and y <
1
2

}
∪
{

x >
1
2

and y >
1
2

}
. (7.35)

These events are illustrated pictorially in Figure 7.4.
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Figure 7.4 Illustration of events A, B, C, and D for Example 7.2.

Questions we might ask include whether these events are pairwise independent,
for example, whether A and C are independent. To answer such questions, we consider
whether the joint probability factors into the product of the individual probabilities.
So, for example,

P(A, C) = P
(

y >
1
2

, x <
1
2

)
= 1

4
(7.36)

P(A) = P(C) = 1
2

. (7.37)

Since P(A, C) = P(A)P(C), events A and C are independent. However,

P(A, B) = P
(

y >
1
2

, y <
1
2

)
= 0 (7.38)

P(A) = P(B) = 1
2

. (7.39)

Since P(A, B) �= P(A)P(B), events A and B are not independent.
Note that P(A, C, D) = 0 since there is no region where all three sets overlap.

However, P(A) = P(C) = P(D) = 1
2 , so P(A, C, D) �= P(A)P(C)P(D) and the events

A, C, and D are not mutually independent, even though they are easily seen to be
pairwise independent. For a collection of events to be independent, we require the
probability of the intersection of any of the events to equal the product of the proba-
bilities of each individual event. So for the three-event case, pairwise independence is
a necessary but not sufficient condition for independence.

7.6 EXPECTATIONS, MOMENTS, AND VARIANCE

For many purposes it suffices to have a more aggregated or approxi-
mate description than the PDF provides. The expectation—also termed the
expected, mean, or average value, or the first moment—of the real-valued
random variable X is denoted by E[X] or X or μX , and defined as

E[X] = X = μX =
∫ ∞

−∞
xfX(x) dx . (7.40)

Considering fX(x) as a density describing the distribution of a probability
“mass” on the real line, the expectation gives the location of the center of
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mass. Note that the expected value of a sum of random variables is the sum of
the individual expected values:

E[X + Y] = E[X] + E[Y] . (7.41)

Other simple measures of where the PDF is centered or concentrated are pro-
vided by the median, which is the value of x for which FX(x) = 0.5, and by the
mode, which is the value of x for which fX(x) is maximum.

The variance or centered second moment of a random variable X is
denoted by σ 2

X and defined as

σ 2
X = E[(X − μX)2] = expected squared deviation from the mean

=
∫ ∞

−∞
(x − μX)2fX(x) dx (7.42)

= E[X2] − μ2
X ,

where the last equation follows on writing (X − μX)2 = X2 − 2μXX + μ2
X

and taking the expectation term by term. We refer to E[X2] as the second
moment of X. The square root of the variance, termed the standard deviation,
is a widely used measure of the spread of the PDF and is expressed in the same
units as the underlying random variable.

The focus of many engineering models that involve random variables is
primarily on the means and variances of the random variables. In some cases
this is because the detailed PDFs are hard to determine or represent or work
with. In other cases, the reason for this focus is that the means and variances
completely determine the PDFs, as with the Gaussian (or normal) and uniform
PDFs, which are illustrated in the following example.

Example 7.3 Gaussian and Uniform Random Variables

Two common PDFs that we will work with are the Gaussian (or equivalently normal)
density and the uniform density:

Gaussian: fX (x) = 1
σ
√

2π
exp

{
− 1

2

( x−m
σ

)2}
Uniform: fX (x) =

{ 1
b−a a < x < b
0 otherwise.

(7.43)

The two parameters m and σ that define the Gaussian PDF can be shown to be
its mean and standard deviation respectively. Similarly, though the uniform den-
sity can be simply parametrized by its lower and upper limits a and b as above,
an equivalent parametrization is via its mean m = (a + b)/2 and standard deviation

σ = √(b − a)2/12.

There are useful statements that can be made for general PDFs on the
basis of just the mean and variance. Among the most familiar of these is the
Chebyshev inequality:
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P
( |X − μX |

σX
≥ α

)
≤ 1

α2 . (7.44)

The inequality in Eq. (7.44) states that for any random variable, the probability
that it lies at α or more standard deviations away from the mean (on either
side of the mean) is not greater than 1/α2. For particular PDFs, much more
precise statements can be made, and conclusions derived from the Chebyshev
inequality can be very conservative. For instance, choosing α = 3 in the case
of a Gaussian PDF, the actual probability of being more than three standard
deviations away from the mean is only 0.0027, far less than the Chebyshev
bound value of 1

9 . Similarly, for a uniform PDF the probability of being more
than even two standard deviations away from the mean is precisely 0.

The conditional expectation of the random variable X, given that the
random variable Y takes the value y, is

E[X|Y = y] =
∫ +∞

−∞
xfX|Y(x|y) dx = g(y) , (7.45)

that is, this conditional expectation takes some value g(y) when Y = y. We
may also consider the random variable g(Y), namely the function of the ran-
dom variable Y that, for each Y = y, evaluates to the conditional expectation
E[X|Y = y]. We refer to this random variable g(Y) as the conditional expec-
tation of X “given Y” (as opposed to “given Y = y”), and denote g(Y) by
E[X|Y]. Note that the expectation E[g(Y)] of the random variable g(Y)—the
iterated expectation E[E[X|Y]]—is well defined. What we show next is that
this iterated expectation works out to something simple, namely E[X]. This
result will be of particular use in Chapter 8.

Consider first how to compute E[X] when we have the joint PDF
fX,Y(x, y). One way is to evaluate the marginal density fX(x) of X, and then
use the definition of expectation in Eq. (7.40):

E[X] =
∫ ∞

−∞
x
(∫ ∞

−∞
fX,Y(x, y) dy

)
dx . (7.46)

However, it is often simpler to compute the conditional expectation of X,
given Y = y, then average this conditional expectation over the possible val-
ues of Y, using the marginal density of Y. To derive this more precisely,
recall that

fX,Y(x, y) = fX|Y(x|y)fY(y) (7.47)

and use this in Eq. (7.46) to deduce that

E[X] =
∫ ∞

−∞
fY(y)

(∫ ∞

−∞
xfX|Y(x|y) dx

)
dy = EY[EX|Y[X|Y]] . (7.48)

We have used subscripts on the preceding expectations in order to make
explicit which densities are involved in computing each of them. More simply,
one writes

E[X] = E[E[X|Y]] . (7.49)
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The preceding result has an important implication for the computation of
the expectation of a function of a random variable. Suppose X = h(Y). then
E[X|Y] = h(Y), so

E[X] = E[E[X|Y]] =
∫ ∞

−∞
h(y)fY(y) dy . (7.50)

This shows that we only need fY(y) to calculate the expectation of a function
of Y; to compute the expectation of X = h(Y), we do not need to determine
fX(x).

Similarly, if X is a function of two random variables, X = h(Y, Z), then

E[X] =
∫ ∞

−∞

∫ ∞

−∞
h(y, z)fY, Z(y, z) dy dz . (7.51)

It is easy to show from this that if Y and Z are independent, and if h(y, z) =
g(y)�(z), then

E[g(Y)�(Z)] = E[g(Y)]E[�(Z)] . (7.52)

The converse is also true: if Eq. (7.52) holds for all functions g(·) and �(·), then
Y and Z are independent.

7.7 CORRELATION AND COVARIANCE FOR
BIVARIATE RANDOM VARIABLES

Consider a pair of jointly distributed random variables X and Y. Their
marginal PDFs are obtained by projecting the probability mass along the
y-axis and x-axis directions respectively:

fX(x) =
∫ ∞

−∞
fX,Y(x, y) dy , fY(y) =

∫ ∞

−∞
fX,Y(x, y) dx . (7.53)

In other words, the PDF of X is obtained by integrating the joint PDF over
all possible values of the other random variable Y—and similarly for the
PDF of Y.

It is of interest, just as in the single-variable case, to be able to capture the
location and spread of the bivariate PDF in some aggregate or approximate
way, without having to describe the full PDF. This again suggests focusing on
notions of mean and variance. The mean value of the bivariate PDF is speci-
fied by giving the mean values of each of its two component random variables:
the mean value has an x component that is E[X] and a y component that is
E[Y], and these two numbers can be evaluated from the respective marginal
densities. The center of mass of the bivariate PDF is thus located at

(x, y) = (E[X], E[Y]) . (7.54)

A measure of the spread of the bivariate PDF in the x direction may be
obtained from the standard deviation σX of X, computed from fX(x); and a
measure of the spread in the y direction may be obtained from σY , computed
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similarly from fY(y). However, these two numbers only offer a partial view.
It is also of interest to determine what the spread is in a general direction
rather than just along the two coordinate axes. We can consider, for instance,
the standard deviation, or equivalently, the variance, of the random variable
Z defined as

Z = αX + βY (7.55)

for arbitrary constants α and β. Note that by choosing α and β appropriately,
Eq. (7.55) reduces to Z = X or Z = Y, and therefore recovers the special
coordinate directions that we have already considered. However, being able
to analyze the behavior of Z for arbitrary α and β allows assessment of the
behavior in all directions.

Before considering the computations involved in determining the vari-
ance of Z, note that the mean of Z is directly found in terms of quantities
already computed, namely E[X] and E[Y]:

E[Z] = αE[X] + βE[Y] . (7.56)

As for the variance of Z, it is easy to establish from Eqs. (7.55) and (7.56) that

σ 2
Z = E

[
(Z − E[Z])2

]
= α2σ 2

X + β2σ 2
Y + 2αβ σX,Y (7.57)

where σ 2
X and σ 2

Y are the variances along the coordinate directions x and y,
and σX,Y is the covariance of X and Y, also denoted by cov(X, Y) or cX,Y , and
defined as

σX,Y = cov(X, Y) = cX,Y = E[(X − E[X])(Y − E[Y])] . (7.58)

Equivalently,

σX,Y = E[XY] − E[X]E[Y] , (7.59)

where Eq. (7.59) follows from multiplying out the terms in parentheses in
Eq. (7.58) and then taking term-by-term expectations. Note that when Y = X
we recover the familiar expressions for the variance of X. The quantity E[XY]
that appears in Eq. (7.59), namely, the expectation of the product of the ran-
dom variables, is referred to as the correlation or second cross-moment of X
and Y to distinguish it from the second self-moments E[X2] and E[Y2], and
will be denoted by rX,Y :

rX,Y = E[XY] . (7.60)

Note also that in Eq. (7.57), the covariance σX,Y is the only new quantity
needed when going from mean and spread computations along the coordinate
axes to such computations along any axis; we do not need a new quantity for
each new direction. In summary, we can express the location of fX,Y(x, y) in an
aggregate or approximate way in terms of the first moments, E[X], E[Y]; and
we can express the spread around this location in an aggregate or approximate
way in terms of the (central) second moments, σ 2

X , σ 2
Y , σX,Y .
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It is common to work with a normalized form of the covariance, namely
the correlation coefficient ρX,Y :

ρX,Y = σX,Y

σXσY
. (7.61)

This normalization ensures that the correlation coefficient is unchanged if X
and/or Y is multiplied by any nonzero constant or has any constant added to
it. For instance, the centered and normalized random variables

V = X − μX

σX
, W = Y − μY

σY
, (7.62)

each of which has mean 0 and variance 1, have the same correlation coeffi-
cient as X and Y. The correlation coefficient might have been better called
the covariance coefficient, since it is defined in terms of the covariance and
not the correlation of the two random variables, but this more helpful name is
not generally used.

Invoking the fact that σ 2
Z in Eq. (7.57) must be nonnegative, and further

noting from this equation that σ 2
Z/β2 is quadratic in α, it can be proved by

straightforward analysis of the quadratic expression that

|ρX,Y | ≤ 1 . (7.63)

From the various preceding definitions, a positive correlation rX,Y > 0 sug-
gests that X and Y tend to take the same sign, on average, whereas a
positive covariance σX,Y > 0—or equivalently, a positive correlation coeffi-
cient ρX,Y > 0—suggests that the deviations of X and Y from their respec-
tive means tend to take the same sign, on average. Conversely, a negative
correlation suggests that X and Y tend to take opposite signs, on aver-
age, while a negative covariance or correlation coefficient suggests that the
deviations of X and Y from their means tend to take opposite signs, on
average.

Since the correlation coefficient of X and Y captures some features of
the relation between their deviations from their respective means, we might
expect that the correlation coefficient can play a role in constructing an esti-
mate of Y from measurements of X, or vice versa. We will see in Chapter 8,
where linear minimum mean square error (LMMSE) estimation is discussed,
that this is indeed the case.

The random variables X and Y are said to be uncorrelated (or linearly
independent, a less common and potentially misleading term) if

E[XY] = E[X]E[Y] , (7.64)

or equivalently if

σX,Y = 0 or ρX,Y = 0 . (7.65)

Thus, uncorrelated does not mean zero correlation unless one of the ran-
dom variables has an expected value of zero. Rather, uncorrelated means
zero covariance. Again, a better term for uncorrelated might have been
noncovariant, but this term is not widely used.
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Note that if X and Y are independent, then E[XY] = E[X]E[Y] and con-
sequently X and Y are uncorrelated. The converse does not hold in general.
For instance, consider the case where the combination (X, Y) takes only the
values (1, 0), (−1, 0), (0, 1), and (0, −1), each with equal probability 1

4 . Then X
and Y are easily seen to be uncorrelated but not independent.

Additional terminology that we will shortly motivate and find useful
occurs in the following definition: two random variables X and Y are referred
to as orthogonal if E[XY] = 0.

Example 7.4 Correlation and Functional Dependence

Consider the case in which Y is specified by a deterministic linear function of a random
variable X , in which case Y is also a random variable:

Y = ξX + ζ , (7.66)

where ξ and ζ are known constants. Clearly the outcome of the random variable Y is
totally determined by the outcome of the random variable X , that is, Y is deterministic-
ally dependent on X . It is straightforward to show that ρX,Y = 1 if ξ > 0 and ρX,Y = −1
if ξ < 0.

Next, consider the case in which

Y = ξX2 + ζ (7.67)

and X has a PDF fX(x) that is even about 0, so fX (−x) = fX(x). In this case, X and Y
are uncorrelated, even though Y is again completely determined by X . As we will see
in more detail in Chapter 8, the correlation coefficient is a measure of how well Y is
predicted by a linear function of X . It is generally not helpful in assessing nonlinear
predictability.

In Example 7.3, we specified the Gaussian density for a single random
variable. In the following example, we describe the bivariate Gaussian density
for a pair of random variables.

Example 7.5 Bivariate Gaussian Density

The random variables X and Y are said to be bivariate Gaussian or bivariate normal if
their joint PDF is

fX,Y (x, y) = c exp
{
−q
(x − μX

σX
,

y − μY

σY

)}
(7.68)

where c is a normalizing constant (so that the volume or “mass” under the PDF inte-
grates to 1) and q(v, w) is a quadratic function of its two arguments v and w, expressed
in terms of the correlation coefficient ρ of X and Y:

c = 1

2πσXσY
√

1 − ρ2
, (7.69)

q(v, w) = 1
2(1 − ρ2)

(v2 − 2ρvw + w2) . (7.70)
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This density is the natural bivariate generalization of the Gaussian density, and has
several nice properties:

• The marginal densities of X and Y are Gaussian.

• The conditional density of Y, given X = x, is Gaussian with mean

μY + ρ

(
σY

σX

)
(x − μX ) (7.71)

and variance

σ 2
Y(1 − ρ2) (7.72)

(which does not depend on the value of x); and similarly for the conditional
density of X , given Y = y.

• If X and Y are uncorrelated, that is, if ρ = 0, then X and Y are independent, a
fact that is not generally true for other bivariate random variables.

• Any two affine (i.e., linear plus constant) combinations of X and Y are
themselves bivariate Gaussian (e.g., Q = X + 3Y + 2 and R = 7X + Y − 3 are
bivariate Gaussian).

The bivariate Gaussian PDF and indeed the associated notion of correlation were
essentially discovered by the statistician Francis Galton (a first cousin of Charles
Darwin) in 1886, while studying the joint distribution of the heights of parents and
children. There is a two-dimensional version of the central limit theorem, with the
bivariate Gaussian as the limiting density. Consequently, this is a reasonable model
for two jointly distributed random variables in many settings. There are also natural
generalizations to many variables.

Many of the generalizations of the preceding discussion from two ran-
dom variables to many random variables are straightforward. In particular,
the mean of a joint PDF

fX1, X2, · · · , X�
(x1, x2, · · · , x�) (7.73)

in the �-dimensional space of possible values has coordinates that are the
respective individual means, E[X1], · · · , E[X�]. The spreads in the coordinate
directions are deduced from the individual (marginal) spreads, σX1 , · · · , σX�

.
To be able to compute the spreads in arbitrary directions, we need all the addi-
tional �(� − 1)/2 central second moments, namely σXi ,Xj for all 1 ≤ i < j ≤ �

(note that σXj ,Xi = σXi ,Xj)—but nothing more.

7.8 A VECTOR-SPACE INTERPRETATION
OF CORRELATION PROPERTIES

A vector-space picture is often a useful aid in recalling the first- and second-
moment relationships between two random variables X and Y. This picture is
not just a mnemonic: there is a very precise sense in which random variables
can be thought of as (or are) vectors in a vector space (of infinite dimensions),
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as long as we are only interested in their first- and second-moment proper-
ties. Although we will not develop this correspondence in any depth, it can be
very helpful in conjecturing or checking answers in the LMMSE estimation
problems that we will encounter in later chapters.

To develop this picture, we represent the random variables X and Y
as vectors X and Y in some abstract vector space. We define the squared
lengths of these vectors as E[X2] and E[Y2], respectively the second moments
of the associated random variables. Recall that in Euclidean vector space
the squared length of a vector is the inner product of the vector with itself.
Consistent with this, in our vector-space interpretation we define the inner
product 〈X, Y〉 between two general vectors X and Y as the correlation (or
second cross-moment) of the associated random variables:

〈X, Y〉 = E[XY] = rX,Y . (7.74)

With this definition, the standard properties required of an inner product in a
vector space are satisfied, namely:

• Symmetry: 〈X, Y〉 = 〈Y, X〉;
• Linearity: 〈X, a1Y1 + a2Y2〉 = a1〈X, Y1〉 + a2〈X, Y2〉;
• Positivity: 〈X, X〉 is positive for X �= 0, and 0 otherwise.

This definition of inner product is also consistent with the fact that we refer to
two random variables as orthogonal when E[XY] = 0.

The centered random variables X − μX and Y − μY can similarly be
represented as vectors X̃ and Ỹ in this abstract vector space, with squared
lengths that are now the variances of the random variables X and Y:

σ 2
X = E[(X − μX)2] , σ 2

Y = E[(Y − μY)2] . (7.75)

The lengths of the vectors representing the centered random variables are
therefore the standard deviations σX and σY respectively of the associated
random variables X and Y. The inner product of the vectors X̃ and Ỹ becomes

〈X̃, Ỹ〉 = E[(X − μX)(Y − μY)] = σX,Y , (7.76)

namely the covariance of the random variables.
In Euclidean space, the standard inner product of two vectors is given by

the product of the lengths of the individual vectors and the cosine of the angle
between them, so

〈X̃, Ỹ〉 = σX,Y = σXσY cos(θ) . (7.77)

Consequently, as depicted in Figure 7.5 the quantity

θ = cos−1
( σX,Y

σXσY

)
= cos−1 ρ (7.78)

can be thought of as the angle between the vectors, where we can see from
Eq. (7.78) that ρ is the correlation coefficient of the two random variables.
Correspondingly

ρ = cos(θ) . (7.79)
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X - mX

Y - mY

sY

sX

u = cos-1r
Figure 7.5 Random variables as
vectors.

Thus, the correlation coefficient is the cosine of the angle between the vectors.
It is therefore not at all surprising that

−1 ≤ ρ ≤ 1 . (7.80)

When ρ is near 1 the vectors are nearly aligned in the same direction, whereas
when ρ is near −1 they are close to being oppositely aligned. The correlation
coefficient is zero when these vectors X̃ and Ỹ (which represent the centered
random variables) are orthogonal, or equivalently, the corresponding random
variables have zero covariance,

σX,Y = 0 . (7.81)

7.9 FURTHER READING

There are numerous books that introduce probability at a level sufficient
for this text. The foundations of probabilistic modeling and stochastic pro-
cesses are presented with notable clarity in [Ber], and illustrated by many
worked-out examples that help to develop and anchor the theory. [Gr1]
is a more advanced and comprehensive text, accompanied by the exten-
sive collection of solved problems in [Gr2]. The coverage of probabil-
ity and stochastic processes in texts such as [Coo], [Fin], [He1], [Kay1],
[Kri], [Leo], [Mil], [Pa4], [Sha], [Shy], [Th2], [Wll], and [Yat] is slanted
towards signals and systems, and includes material treated in later chap-
ters of this text. [Gal] combines intuition and precision in its deeper
study of random processes that are important in applications, and also
addresses the signal estimation and detection problems considered in our
later chapters. We cite it here because it includes (in its Section 10.6) a
more detailed description of the vector space picture we have presented in
Section 7.8 for the correlation properties of random variables. As noted in
the Preface, this text does not venture into the vast domain of information
theory opened up by Shannon’s seminal 1948 paper [Shn]. Nevertheless, the
importance of information theory to a broader understanding of signals, sys-
tems and inference is suggested, for example, by the lively treatment in [Mac].
See also [Cov], and [An2] for an introduction in the setting of information
transmission.
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Problems

Basic Problems

7.1. Two numbers x and y are selected independently and at random (i.e., with uni-
form density) between 0 and 1. The events A, B, C, and D depicted in Figure P7.1
are defined as follows:

A =
{

y >
1
2

}
, B =

{
y <

1
2

}
, C =

{
x <

1
2

}
,

D =
{

x <
1
2

and y <
1
2

}
∪
{

x >
1
2

and y >
1
2

}
.

1

A

y

x1

1

B

y

x1

1

C

y

x1

1

D

D

y

x1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure P7.1

(a) Determine in each of the following three cases whether the indicated pair of
events is independent: (i) A and D; (ii) C and D; and (iii) A and B.

(b) Are events B, C, and D mutually independent? Remember that for a set
of events to be mutually independent, the probabilities of all possible inter-
sections of these events, taken any number at a time, must be given by the
products of the individual event probabilities.

7.2. (a) A random variable V is uniformly distributed in the interval [a, b]. Find its
expected value μV , its second moment E[V2], and its variance σ 2

V .
(b) A second random variable W is independent of V but distributed iden-

tically to it. Find the mean and variance of the random variable Y =
V + W. Also determine the covariance of Y and V, and their correlation
coefficient.

7.3. Suppose X = 2 + V and Y = 2 − V, where V is a zero-mean Gaussian random
variable of variance 4. Determine the correlation of X and Y. Are X and Y
orthogonal? What is their covariance? What is their correlation coefficient? Are
they uncorrelated?

7.4. Suppose

X = Z + V

Y = βZ + W

where the random variables Z, V, and W have respective mean values μZ, μV ,
and μW , and variances σ 2

Z, σ 2
V , and σ 2

W , but are mutually uncorrelated (i.e., have
zero covariance); the quantity β is a scale factor.
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(a) Determine the covariance σXY of X and Y, and the correlation coefficient
ρXY = σXY/(σXσY), in terms of the quantities specified above.

(b) Assume σ 2
V = σ 2

W = σ 2. What does your answer for the correlation coeffi-
cient in (a) simplify to? Explicitly check that this simplified answer matches
your intuition for what the answer should be when each of the quantities σ 2

and β takes extreme values.

7.5. The random variables X and Y have

E(X) = −1 , E(Y) = 2, E(X2) = 9, E(XY) = −4, E(Y2) = 7 .

(a) Calculate the covariance σZW of the random variables

Z = 2X − Y + 5 , W = X + 1
2

Y − 1 .

(b) If X and Y are bivariate Gaussian, what is the joint density of Z and W?
(Utilize the fact that affine combinations of bivariate Gaussian random
variables are bivariate Gaussian.)

7.6. A communication system transmits signals labeled 1, 2, and 3. The probability
that symbol j is sent and symbol k is received is listed in Table P7.6 for each pair
( j, k) of sent and received symbols. For example, the probability is 0.21 that a 3 is
sent and 2 is received.

Calculate the probability that the symbol k was sent, given that symbol k
is received, for k = 1, 2, 3. Also calculate the probability of transmission error
incurred in using this system. A transmission error is defined as the reception of
any symbol other than the one transmitted.

TABLE P7.6

k received

j sent 1 2 3

1 0.05 0.13 0.12

2 0.10 0.08 0.07

3 0.09 0.21 0.15

Advanced Problems

7.7. Two numbers x and y are selected independently and at random (i.e., with uni-
form density) between zero and one. Let the events A, B, C, and D depicted in
Figure P7.7 be defined as follows:

A =
{

y >
1
2

}
, B =

{
y <

1
2

}
, C =

{
x <

1
2

}
,

D =
{

x <
1
2

and y <
1
2

}
∪
{

x >
1
2

and y >
1
2

}
.
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1

A

y

x1

1

B

y

x1

1

C

y

x1

1

D

D

y

x1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Figure P7.7

(a) Using the events defined here, and/or other events defined similarly by
geometric regions in the unit square, establish the following facts:
(i) Two independent events need not remain independent when condi-

tioned on some other event; i.e., define events E, F, and G such that

P(E ∩ F) = P(E)P(F) but P(E ∩ F|G) �= P(E|G)P(F|G) .

(ii) Two conditionally independent events need not be independent in the
absence of conditioning; i.e., define events J, K, and L such that

P(J ∩ K|L) = P(J|L)P(K|L) but P(J ∩ K) �= P(J)P(K) .

Sketch the regions corresponding to the events you define.
(b) Determine whether the following statement is true or false for a general

choice of events Q, V, and W, explaining your reasoning, and then illustrate
your answer with a particular choice of events of the above type (i.e., regions
in the unit square, sketched appropriately):

P(V ∩ W|Q) = P(V|W ∩ Q)P(W|Q) .

7.8. Indicate whether each statement below is true or false and give a brief
explanation.

(a) If X and Y are uncorrelated random variables, then X2 and Y2 must be
uncorrelated.

(b) If X and Y are independent random variables, then

E[g(X)h(Y)] = E[g(X)] E[h(Y)] ,

where g(X) and h(Y) are arbitrary functions of X and Y respectively.
(c) Consider two random variables X and Y for which the joint density

fX,Y (x, y) factors into the product fX,Y (x, y) = fX|Y (x|y)fY (y) of the condi-
tional density of X times the marginal density of Y. Then X and Y must be
independent.

7.9. If σXY denotes the covariance of two random variables X and Y whose respective
variances are σ 2

X and σ 2
Y , then we know that σ 2

XY ≤ σ 2
Xσ 2

Y , or equivalently

−σXσY ≤ σXY ≤ σXσY . (7.82)

(a) Use the above inequality to deduce the inequality r2
XY ≤ r2

X r2
Y , where rXY =

E[XY] = σXY + μXμY (the correlation of the two random variables), r2
X =

E[X2] (the second moment of X), and r2
Y = E[Y2] (the second moment

of Y). Equivalently, what we want to deduce is

−rX rY ≤ rXY ≤ rX rY . (7.83)
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(b) Use the vector-space picture for random variables in Section 7.8 to deduce
the inequality in Eq. (7.83) more directly.

(c) In the special case where X and Y have the same mean μ and the same
variance σ 2, one can actually obtain a better (i.e., higher) lower bound on
rXY than the one in Eq. (7.83). Utilize Eq. (7.82) to show that

−r2 + 2μ2 ≤ rXY ≤ r2 ,

where r2 = σ 2 + μ2 = r2
X = r2

Y .

7.10. Figure P7.10 shows the transition probabilities for a communication channel with
two possible input symbols, {a, b}, and two possible output symbols, {A, B}. We
will use this channel to transmit a binary digit, m, whose prior probability distri-
bution is P(m = 0) = 0.6, P(m = 1) = 0.4. When m = 0 occurs we transmit a, and
when m = 1 occurs we transmit b. Now we must design a decoder. The decoder
assigns a decision, m̂ = 0 or 1, to each of the symbols {A, B}.

A

B

a
0.7

0.5

0.3

0.5

b

Figure P7.10

(a) Find the minimum-probability-of-error decoder for the given encoder,
i.e., the decision rule that minimizes the error probability, Pe = P(m̂ �= m).

(b) Find the error probability for your decoder from part (a).

7.11. Consider the communication system shown in Figure P7.11. The source pro-
duces messages whose possible values are from the set {−1, 1} according to the
following probability distribution:

P(X = −1) = g, P(X = 1) = 1 − g .

The channel is an additive noise channel, with noise N that is statistically
independent of the source messages X . The received signal R is

R = X + N ,

where

N =
{ +1 with probability p

−1 with probability 1 − p.

Source Channel
Decision

maker

N

X XR ˆ

Figure P7.11

(a) List all the possible values of R. For each possible value r of R, compute
P(R = r).
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(b) Our estimate, X̂ , of the transmitted message X is chosen to be the value of
X that is the most probable, given the observation R = r. For 1

2 < g < 1 and
1
2 < p < 1, determine the value of X̂ for each possible value of R.

(c) The probability of being correct for the estimation procedure in (b) is
defined as

P(correct) = P(X̂ = −1, X = −1) + P(X̂ = 1, X = 1) .

Compute P(correct) for the decision rule obtained in (b). Does the proce-
dure in (b) for estimating X maximize the probability of being correct or
could a different procedure increase that probability?

7.12. In a binary optical communication system, the receiver counts the number of
photoelectrons ejected by the light incident on the photocell during an interval
(0, T). When no light signal has been transmitted toward the photocell (event
H0), the probability that k electrons are counted is

P(k | H0) = A0v0
k , k = 0, 1, 2, . . .

However, when a signal has been transmitted (event H1),

P(k | H1) = A1v1
k , k = 0, 1, 2, . . .

with 0 < v0 < v1 < 1. The prior probabilities for the two events are given by
P(H0) and P(H1), respectively.

(a) Determine the two constants A0 and A1.

For parts (b) and (c), assume P(H0) = P(H1) = 1
2 .

(b) Determine the conditional (i.e., posterior) probability that a signal was sent,
given that exactly m photoelectrons were counted.

(c) When k ≥ n0 the receiver decides that a signal was indeed sent; when
0 ≤ k < n0, it decides that no signal was sent, where n0 is some positive inte-
ger. For this decision rule, calculate the probability Pe of error incurred by
the receiver in terms of n0, v0, and v1. For what value of n0 is the probability
Pe of error minimum? Is there an alternative decision rule that would lead
to a lower Pe?

Now assume that v0 = 0.3, v1 = 0.7, and P(H1) > 0.7.

(d) How does your choice of n0 (to achieve minimum error) change as P(H1)
increases from 0.7 to 1.0? What is Pe for this range of P(H1)?

7.13. A particular communication system has a source that transmits the symbol
X = −1 and the symbol X = 1 with equal probability. The source can use one
of two channels, Channel A or Channel B. Figure P7.13 shows the charac-
teristics of each of these channels; the number next to an arrow denotes the
probability of receiving the symbol at the right of the arrow, given transmission
of the symbol at the left of the arrow. Channel A occasionally loses the symbol
completely, while for Channel B the symbol X = 1 is at times misinterpreted as
a −1 at the receiver.
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Channel A:

Source X Receiver Y

3
4

3

11

-1-1

0

4

1
4

1
4

Channel B:

Source X Receiver Y

1

3

11

-1-1

4

1
4

Figure P7.13

(a) If the source uses Channel A, what is the probability that −1 is received?
What are the probabilities for 0 and 1? Repeat your calculations when the
source uses Channel B.

(b) Assume now and for the remainder of this problem that the source uses
Channel A with probability α, and Channel B with probability 1 − α.
Suppose the received symbol is −1. What is the probability that Channel
A was used, given that −1 was received?

(c) Suppose we used the following rule to decide which channel is used when
−1 is received: if Y = −1, we decide in favor of Channel A if

P(A used | Y = −1) > P(B used | Y = −1) .

For what range of α will you decide that Channel A was used when Y = −1?
For what range of α will you decide that Channel A was used, regardless
of Y?

(d) Now the same channel is used N times in succession, with each use being
independent of the others. We receive a −1s, b 0s, and c 1s (so that a + b +
c = N), and wish to decide which channel was used. Express in terms of
a, b, c, and α the decision rule that chooses whichever channel is more
probable, given the received sequence.

(e) Assume that α = 0.8 with the scheme in (d). Under what conditions will we
decide that Channel B was used?

Extension Problems

7.14. Suppose the random variable Z is related to the random variables Q and V by
the equation

Z = cQ + V ,

where c is a known constant and

E(Q) = 1, E(V) = 0 , variance(Q) = σ 2
Q ,

variance(V) = σ 2
V , covariance(Q, V) = σQ,V .
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(a) Determine E(Z), variance(Z), covariance(Z, Q), and covariance(Z, V) in
terms of the above parameters.

(b) We now consider one way of estimating Q from measurements of Z.
Consider the following linear (actually, linear-plus-constant, or “affine”)
function of Z:

Q̂ = a + bZ .

Find the values of the constants a, and b in this expression (expressed in
terms of the quantities you computed in (a), and/or in terms of the given
parameters of the problem) that will minimize E[(Q − Q̂)2], and determine
this minimum value of E[(Q − Q̂)2]. We refer to Q̂ as the LMMSE estimator
of Q in terms of Z.

7.15. The input to a communication channel at some instant of time is a Gaussian ran-
dom variable Q with mean value μQ and variance σ 2

Q. Suppose the corresponding
channel output is X = Q + W, where the additive disturbance W is a zero-mean
Gaussian random variable of variance σ 2

W , and is independent of Q.

(a) Compute the mean μX and variance σ 2
X of X in terms of the specified param-

eters. Will this mean and variance suffice to write down the PDF of X?
Explain your answer. If your answer is yes, write down the PDF.

(b) Compute the covariance σXQ, and then determine the correlation coefficient
ρXQ = σXQ/(σXσQ). Over what range does ρXQ vary as:

(a) μQ varies from 0 to ∞?
(b) σQ

σW
varies from 0 to ∞?

(c) Determine the joint PDF of X and Q, using the fact that fX|Q(x|q) and fQ(q)
are easy to obtain, and combine them appropriately to obtain the desired
joint PDF. Confirm that the resulting PDF is a bivariate Gaussian density.

(d) Compute the conditional density fQ|X (q|x) and verify that it is Gaussian.
This constitutes a verification of the fact that the conditional densities of
bivariate Gaussian variables are Gaussian.

(e) Using the result in (c), compute the MMSE estimate, Q̂MMSE(x), of the
channel input Q, given that X = x; i.e., find Q̂MMSE(x) that minimizes the
conditional MSE

E
{(

Q − Q̂MMSE(X)
)2 | X = x

}
.

In the next chapter, you will see that this estimate is given by E[Q|X = x].
If you’ve done this correctly, you’ll discover that the estimate is an affine—
i.e., linear plus constant—function of x. Also determine the corresponding
conditional mean square error as given in the above expression.

( f ) Suppose Q and W are uncorrelated but no longer independent. Which of
your answers in (a) to (d) above would change, if any?

7.16. Let f +(v, w) be the bivariate Gaussian density function

f +(v, w) = (2π)−1(1 − ρ2)−1/2 exp

[
−v2 − 2ρvw + w2

2(1 − ρ2)

]
,

and assume 0 < ρ < 1. Let f −(v, w) be the same function, but with correla-
tion coefficient −ρ instead of +ρ. The forms of f + and f − are suggested by
Figure P7.16, which shows contours of equal probability for each of these
densities.
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f -w

v

f +w

v

Figure P7.16

Now suppose V and W are random variables defined by the joint PDF

fV,W(v, w) = 1
2

(
f +(v, w) + f −(v, w)

)
. (7.84)

This corresponds to picking V and W with equal probability from the joint PDF’s
f + and f −.

(a) Show that V is Gaussian, and that W is Gaussian, but that V and W are not
bivariate Gaussian. Present a pictorial argument rather than detailed calcu-
lations. Hence the fact that two variables are Gaussian does not necessarily
make them bivariate Gaussian. Equivalently, the fact that a bivariate density
has Gaussian marginals does not necessarily mean that the density is bivari-
ate Gaussian. However, two independent Gaussian variables are bivariate
Gaussian.

(b) Show that V and W are not independent.
(c) Without integration or any other detailed calculations, argue from the struc-

ture of the joint PDF of V and W that E[VW] = 0; i.e., these two zero-mean
Gaussian random variables are uncorrelated, even though they are not inde-
pendent. Thus uncorrelated Gaussian variables need not be independent.
However, uncorrelated bivariate Gaussian variables are independent.

7.17. A communication system transmits signals labeled 1, 2, and 3. The probability
that symbol j is sent and symbol k is received is listed in Table P7.17 for each pair
( j, k) of sent and received symbols. For example, the probability is 0.21 that a 2
is sent and 3 is received. A receiver decision rule associates one of the transmit-
ted symbols with each possible received symbol. This association specifies, for
each possible received symbol, what the receiver’s guess, estimate, or decision
is regarding the corresponding transmitted symbol. We will consider different
receiver decision rules in the remaining parts of this problem.

TABLE P7.17

k received

j sent 1 2 3

1 0.05 0.10 0.09

2 0.13 0.08 0.21

3 0.12 0.07 0.15

(a) Suppose the following simple-minded receiver decision rule is used: if k
is received, decide k was sent. What is the probability of error (i.e., the
probability of making an erroneous decision) with this decision rule?
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(b) Specify the receiver decision rule that yields the minimum probability of
error, and determine the corresponding probability of error.

(c) Consider a situation in which we incur a cost c( j, �) when j is sent and � is the
output of the receiver decision rule. Obtain an expression for the expected
cost, also called the risk, of the decision rule in (a). One could similarly
obtain an expression for the risk associated with any other decision rule,
and it is then reasonable to ask what decision rule yields minimum risk. We
shall do this in part (d) for a specific choice of the cost function c( j, �).

(d) With the same setup as in (c), and with c( j, �) = 0 if j = � and c( j, �) = 1 if
j �= �, find the decision rule that yields minimum risk. How does minimiza-
tion of risk for this particular choice of (“all-or-none”) cost function relate
to minimizing the probability of error as in (b), and how do the resulting
decision rules relate to each other?
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Estimation

A recurring theme in this text and in much of communication, control,
and signal processing is that of making systematic estimates or predictions
about some set of quantities, based on information obtained from measure-
ments of other quantities. This process is commonly referred to as inference.
Typically, inferring desired information from measurements involves incor-
porating models that represent prior knowledge or beliefs about how the
measurements relate to the quantities of interest.

Inferring the values of a continuous random variable and ultimately
those of a random process is the topic of this chapter and several that follow.
One key step is the introduction of an error criterion that measures, in a prob-
abilistic sense, the error between the desired quantity and the estimate of it.
Throughout the discussion in this and the subsequent related chapters, we
focus primarily on choosing the estimate that minimizes the expected or mean
value of the square of the error, referred to as a minimum mean square
error (MMSE) criterion. In Sections 8.1 and 8.2, we consider the MMSE esti-
mate without imposing any constraint on the form that the estimator takes. In
Section 8.3, we restrict the estimator to a linear combination of the measure-
ments, a form of estimation referred to as linear minimum mean square error
(LMMSE) estimation.

In Chapter 9, our focus moves from inference problems for continuous
random variables to inference problems for discrete random quantities, which
may be numerically specified or may be nonnumerical. In the latter case espe-
cially, the various possible outcomes are often termed hypotheses, and the

336
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inference task in this setting is then referred to as hypothesis testing, that is,
the task of deciding which hypothesis applies, given measurements or obser-
vations. In such hypothesis testing scenarios the MMSE criterion is often
not as meaningful as minimizing the probability of inferring an incorrect
hypothesis.

8.1 ESTIMATION OF A CONTINUOUS RANDOM
VARIABLE

To begin the discussion, assume that Y is a random variable whose value
is to be estimated from knowledge of only its probability density function.
The discussion will then be broadened to estimation when a measurement or
observation of another random variable X is available, together with the joint
probability density function of X and Y.

Based only on knowledge of the probability density function (PDF) of Y,
it is desirable to obtain an estimate of Y, denoted as ŷ, that minimizes the
mean square error between the actual outcome of the experiment and the
estimate ŷ. Specifically, ŷ will be chosen to minimize

E[(Y − ŷ)2] =
∫ ∞

−∞
(y − ŷ)2fY(y) dy . (8.1)

Differentiating Eq. (8.1) with respect to ŷ and equating the result to zero
results in the equation

−2
∫ ∞

−∞
(y − ŷ)fY(y) dy = 0 (8.2)

or ∫ ∞

−∞
ŷfY(y) dy =

∫ ∞

−∞
yfY(y) dy (8.3)

from which

ŷ = E[Y] . (8.4)

The second derivative of E[(Y − ŷ)2] with respect to ŷ is

2
∫ ∞

−∞
fY(y) dy = 2 , (8.5)

which is positive, so Eq. (8.4) does indeed define the minimizing value of ŷ.
Hence the MMSE estimate of Y in this case is simply its mean value, E[Y].

The associated error—the actual MMSE—is found by evaluating the
expression in Eq. (8.1) with ŷ = E[Y]. Thus the MMSE is simply the variance
of Y, namely σ 2

Y :

min E[(Y − ŷ)2] = E[(Y − E[Y])2] = σ 2
Y . (8.6)
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In a similar manner, it is possible to show that the median of Y, which has
half the probability mass of Y below it and the other half above, is the value
of ŷ that minimizes the mean absolute deviation, E[ |Y − ŷ| ]. Also, the mode
of Y, which is the value of y at which the PDF fY(y) is largest, can be shown
to minimize the expected value of an all-or-none cost function—a cost that
is unity when the error is outside of a vanishingly small tolerance band and
is zero within the band. We will not pursue these alternative error metrics
further here, but it is important to be aware that the choice of mean square
error, while convenient, is only one of many possible error metrics.

The insights from the simple problem leading to Eqs. (8.4) and (8.6) carry
over directly to the case in which additional information is available in the
form of the measured or observed value x of a random variable X that is
related in some way to Y. The only change from the previous discussion is
that, given the additional measurement, the conditional or a posteriori density
fY|X(y|x) is used, rather than the unconditioned density fY(y), and now the
aim is to minimize

E[{Y − ŷ(x)}2|X = x] =
∫ ∞

−∞
{y − ŷ(x)}2fY|X(y|x) dy . (8.7)

The notation ŷ(x) is introduced to show that, in general, the estimate will
depend on the specific value x. Exactly the same calculations as in the case
of no measurements then show that

ŷ(x) = E[Y|X = x] , (8.8)

the conditional expectation of Y, given X = x. The associated MMSE is the
variance σ 2

Y|x of the conditional density fY|X (y |x), that is, the MMSE is the
conditional variance. Thus, the only change from the case of no measurements
is that the expectation is now conditioned on the obtained measurement.

Going a step further, if multiple measurements, say X1 = x1,
X2 = x2, · · · , XL = xL, are available, then one uses the a posteriori density
fY | X1, X2, · · ·, XL(y | x1, x2, · · · , xL). Apart from this modification, there is no
change in the structure of the solutions. Thus, without further calculation, it
can be stated that the MMSE estimate of Y, given X1 = x1, · · · , XL = xL, is
the conditional expectation of Y:

ŷ(x1, · · · , xL) = E[Y | X1 = x1, · · · , XL = xL] . (8.9)

For notational convenience, the measured random variables can be arranged
into a column vector X, and the corresponding measurements into the column
vector x. The dependence of the MMSE estimate on the measurements can
now be indicated by the notation ŷ(x), with

ŷ(x) =
∫ ∞

−∞
y fY|X(y | x) dy = E[ Y | X = x ] . (8.10)

The minimum mean square error for the given value of X is again the condi-
tional variance, that is, the variance σ 2

Y|x of the conditional density fY|X(y | x).
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Example 8.1 MMSE Estimate for Discrete Random Variables

A discrete-time (DT) discrete-amplitude sequence s[n] is stored on a noisy medium.
The retrieved sequence is r[n]. The values of s[n] and r[n] at any time instant n0 are
random variables, denoted by S and R respectively. It is known that the joint probability
mass function (PMF) is as shown in Figure 8.1. In this figure, the small squares denote
the outcomes (−1, −1), (0, 0), and (1, 1), each occurring with probability 0.2, and the
small circles denote the outcomes (0, 1), (0, −1), (1, 0), and (−1, 0), each occurring with
probability 0.1.

Based on receiving the value R = 1, an MMSE estimate ŝ of S can be made.
From Eq. (8.9), ŝ = E(S|R = 1), which can be determined from the conditional PMF
pS|R(s|1), which in turn can be expressed as

pS|R(s|1) = pS, R(s, 1)
pR(1)

. (8.11)

From Figure 8.1,

pR(1) = 0.3 (8.12)

and

pS,R(s, 1) =
⎧⎨⎩

0 s = −1
0.1 s = 0
0.2 s = +1 .

(8.13)

Consequently, using Eqs. (8.12) and (8.13) in Eq. (8.11),

pS|R(s|1) =
{

1/3 s = 0
2/3 s = +1 .

(8.14)

Using Eq. (8.14), the conditional expectation of S—the MMSE estimate ŝ—is

ŝ = 1
3

· 0 + 2
3

· 1 = 2
3

. (8.15)

Note that although this estimate minimizes the mean square error, it is not con-
strained to take account of the fact that S can only have the discrete values of

1

1

s

r
pS,R(s,r)

-1

-1

Figure 8.1 Joint PMF of S and R. The probability associated with the outcome represented
by each square is 0.2 and by each circle is 0.1.
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+1, 0, or −1. This example will be considered in Chapter 9 from the perspective of
hypothesis testing, that is, determining which of the three known possible values will
minimize a more suitable error criterion.

In Example 8.1, we considered MMSE estimation of a discrete random
variable whose value has been potentially changed, stored, or measured incor-
rectly. In Example 8.2, we estimate a continuous random variable from a noisy
measurement.

Example 8.2 MMSE Estimate of a Signal in Additive Noise

Consider the noisy measurement X of the angular position of an airport radar antenna.
The true position in the absence of noise is a random variable Y and the additive noise
is another random variable W. Consequently,

X = Y + W . (8.16)

Assume the measurement noise W is independent of the true angular position, that is,
Y and W are independent random variables. Y is uniformly distributed in the interval
[−1, 1] and W uniformly distributed in the interval [−2, 2]. The specific measured value
for X is X = 1. Consider the MMSE estimate ŷ for the antenna position Y, based on
this measurement. From Eq. (8.9),

ŷ = E(Y|X = 1) . (8.17)

Equation (8.17) can be evaluated by first obtaining fY|X(y|1):

fY|X (y|1) = fX|Y (1|y)fY (y)
fX(1)

. (8.18)

The numerator and denominator terms on the right of Eq. (8.18) are next evaluated
separately. The PDF fX|Y (x|y) is identical in shape to the PDF of W, but with the mean
shifted to y, as indicated in Figure 8.2. Consequently, fX|Y (1|y) is as shown in Figure
8.3, and fX|Y (1|y)fY (y) is as shown in Figure 8.4.

-2 + y +2 + y
x

fX |Y (x | y)
1

4

Figure 8.2 Conditional PDF of X given Y , fX |Y (x |y).

-1 0 3

y

1

4

fX |Y (1| y)

Figure 8.3 Plot of fX |Y (1|y).
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-1 0 1

y

1

8

fX |Y (1| y)fY(y) 

Figure 8.4 Plot of fX |Y (1|y)fY (y).

To obtain fY|X(y|1), divide the function in Figure 8.4 by fX(1), which can easily
be obtained by evaluating the convolution of the PDFs of Y and W at the argument 1.
More simply, since fY|X (y|1) must have total area of unity and is the same shape as
Figure 8.4 but scaled by fX (1), it is easily obtained by multiplying Figure 8.4 by 4 to have
an area of 1. The resulting value for ŷ is the mean associated with the PDF fY|X (y|1),
which will be

ŷ = 0 . (8.19)

The associated MMSE is the variance of this PDF, namely 1
3 .

For the next example, we consider the MMSE estimate of the value
of one random variable from the measurement of a second random variable
when the two are related through a bivariate Gaussian density.

Example 8.3 MMSE Estimate for Bivariate Gaussian Random Variables

Consider two random variables X and Y with a bivariate Gaussian joint PDF as defined
in Example 7.5, Eq. (7.68). It is convenient to define the centered and normalized
bivariate random variables V and W given by

V = X − μX

σX
, W = Y − μY

σY
(8.20)

with associated PDF

fV,W(v, w) = 1

2π
√

1 − ρ2
exp

{
− (v2 − 2ρvw + w2)

2(1 − ρ2)

}
. (8.21)

The number ρ is the correlation coefficient of X and Y, and is defined by

ρ = σXY

σXσY
, with σXY = E[XY] − μXμY (8.22)

where σXY is the covariance of X and Y.
Now consider ŷ(x), the MMSE estimate of Y given X = x, when X and Y are

bivariate Gaussian random variables. From Eq. (8.9),

ŷ(x) = E[Y |X = x] . (8.23)

In terms of V and W,

ŷ(x) = E
[

(σYW + μY ) | V = x − μX

σX

]
= σY E

[
W | V = x − μX

σX

]
+ μY . (8.24)
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It is straightforward to show with some computation that fW|V(w | v) is also Gaussian,
but with mean ρv and variance 1 − ρ2, from which it follows that

E
[

W | V = x − μX

σX

]
= ρ

(
x − μX

σX

)
. (8.25)

Combining Eqs. (8.24) and (8.25),

ŷ(x) = E[ Y | X = x ]

= μY + ρ
σY

σX
(x − μX ) . (8.26)

The MMSE estimate in the case of bivariate Gaussian variables has a nice linear (or,
more correctly, affine, i.e., linear plus a constant) form.

The MMSE is the variance of the conditional PDF fY|X (y|x):

E[ (Y − ŷ(x))2 | X = x ] = σ 2
Y (1 − ρ2) . (8.27)

Note that σ 2
Y is the mean square error in Y in the absence of any additional

information. Equation (8.27) shows what the residual mean square error is after
a measurement of X is obtained. It is evident and intuitively reasonable that the
larger the magnitude of the correlation coefficient between X and Y, the smaller
the residual mean square error. Also note that in the bivariate Gaussian case,
the MMSE of the estimate of Y given X = x does not depend on the specific
value x.

8.2 FROM ESTIMATES TO THE ESTIMATOR

The MMSE estimate of Y in Eq. (8.8) is based on knowing the specific
value x that the random variable X takes. While X is a random variable,
the specific value x is not, and consequently ŷ(x) is also not a random
variable.

It is important in this discussion to draw a distinction between the
estimate of a random variable and the procedure by which the estimate
is formed for an arbitrary x. This is completely analogous to the distinc-
tion between the value of a function at a point and the function itself.
The procedure or function that produces the estimate is referred to as the
estimator.

For instance, in Example 8.1 the MMSE estimate of S for the specific
value of R = 1 was determined. More generally, an estimate of S for each of
the possible values of R could be determined, namely, for −1, 0, and +1. A
tabulation of these results then allows the MMSE estimate to be looked up
when a specific value of R is received. Such a table or, more generally, a func-
tion of R would correspond to what is termed the MMSE estimator. The input
to the table or estimator would be the specific retrieved value and the output
would be the estimate associated with that retrieved value.
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The notation ŷ(x) has already been introduced to denote the estimate
of Y, given X = x. The function ŷ( · ) determines the corresponding estima-
tor, which is denoted by ŷ(X), or more simply by just Ŷ, if it is understood
what random variable the estimator is operating on. Note that the estimator
Ŷ = ŷ(X) is a random variable. The MMSE estimate ŷ(x) was previously seen
to be given by the conditional mean, E[Y|X = x], which suggests yet another
natural notation for the MMSE estimator:

Ŷ = ŷ(X) = E[Y|X] . (8.28)

Note that E[Y|X] denotes a random variable, not a single number.
The preceding discussion applies, essentially unchanged, to the case

where several random variables are observed, assembled in the vector X. The
MMSE estimator in this case is denoted by

Ŷ = ŷ(X) = E[Y|X] . (8.29)

Perhaps not surprisingly, the MMSE estimator for Y given X minimizes the
mean square error averaged over all Y and X. This is because the MMSE
estimator minimizes the mean square error for each particular value x of X.
More formally,

EY,X

(
[Y − ŷ(X)]2

)
= EX

(
EY|X

(
[Y − ŷ(X)]2 | X

))
=
∫ ∞

−∞

(
EY|X

(
[Y − ŷ(x)]2 | X = x

)
fX(x) dx . (8.30)

The subscripts on the expectation operators indicate explicitly which den-
sities are involved in computing the associated expectations; the densities
and integration are multivariate when X is not a scalar. Because the esti-
mate ŷ(x) is chosen to minimize the inner expectation EY|X for each
value x of X, it also minimizes the outer expectation EX, since fX(x) is
nonnegative.

Example 8.4 MMSE Estimator for Bivariate Gaussian Random Variables

In Example 8.3, we constructed the MMSE estimate of one member of a pair of bivari-
ate Gaussian random variables, given a measurement of the other. Using the same
notation as in that example, it is evident that the MMSE estimator is simply obtained
on replacing x by X in Eq. (8.26):

Ŷ = ŷ(X) = μY + ρ
σY

σX
(X − μX ) . (8.31)

The conditional MMSE given X = x was found in the earlier example to be σ 2
Y(1 − ρ2),

which did not depend on the value of x, so the MMSE of the estimator, averaged over
all X , is still σ 2

Y (1 − ρ2).
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In Example 8.2, we considered the MMSE estimate of the angular
position Y of an antenna from a noisy measurement X of the position, that is,

X = Y + W (8.32)

where W is the random noise. In that example, the MMSE estimate ŷ was
determined for a specific measured value of X. In the following example,
we do not assume a specific measured value for X but instead determine the
MMSE estimator.

Example 8.5 MMSE Estimator for Signal in Additive Noise

As with Example 8.2, assume that Y and W are independent random variables with Y
uniformly distributed in the interval [−1, 1] and W uniformly distributed in the interval
[−2, 2]. The estimator is

Ŷ = ŷ(X) . (8.33)

Ŷ is itself a random variable that takes on the specific value ŷ(x) when X takes on
the specific value x. To develop the estimator, assume that X = x and then deter-
mine the MMSE estimate ŷ(x) just as in Example 8.2. As x ranges over the possible
values that can occur, the value of ŷ(x) will change. In the discussion below, in addition
to determining the MMSE estimator Ŷ = ŷ(X), we can also determine the resulting
overall mean square error averaged over all possible values x that the random variable
X can take.

Since ŷ(x) is the conditional expectation of Y given X = x, fY|X (y|x) must be
determined. For this, first determine the joint density of Y and W, and from this the
required conditional density.

From the independence of Y and W:

fY,W(y, w) = fY(y)fW(w) =

⎧⎪⎨⎪⎩
1
8

− 2 ≤ w ≤ 2, −1 ≤ y ≤ 1

0 otherwise
(8.34)

and is therefore uniform over the rectangle shown in Figure 8.5 and zero outside it.
Conditioned on Y = y, X is the same as y + W, uniformly distributed over the

interval [ y − 2, y + 2]. Now

fX,Y (x, y) = fX|Y(x|y)fY (y) =
(

1
4

)(
1
2

)
= 1

8
(8.35)

-1

-2 2

1

y

w0

Figure 8.5 Joint PDF of Y and W for Example 8.5.
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-1

1

y

x2 3-3 -2 -1 0 1

Figure 8.6 Joint PDF of X and Y and plot of the MMSE estimator of Y from X for Example 8.5.

for −1 ≤ y ≤ 1, y − 2 ≤ x ≤ y + 2, and zero otherwise. The joint PDF is therefore
uniform over the parallelogram shown in Figure 8.6, and zero outside it.

Given X = x, the conditional PDF fY|X (y|x) is uniform on the corresponding
vertical section of the parallelogram:

fY|X(y|x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
3 + x

− 3 ≤ x ≤ −1 , −1 ≤ y ≤ x + 2

1
2

− 1 ≤ x ≤ 1 , −1 ≤ y ≤ 1

1
3 − x

1 ≤ x ≤ 3 , x − 2 ≤ y ≤ 1 .

(8.36)

This is shown in Figure 8.7 for various specific values of x.
The MMSE estimate ŷ(x) is the conditional mean of Y given X = x, which is the

midpoint of the corresponding vertical section of the parallelogram. The conditional
mean is displayed as the heavy line on the parallelogram in Figure 8.6. In analytical
form,

fY | X (y | -3) fY | X (y | -1)

-1

0

1

y

fY | X (y | 3)

y

fY | X (y | -2)

1

y

fY | X (y | 2)

1

yy

1

2

fY | X (y | 0)

y

1

2

fY | X (y | 1)

y

1

2

(1)

(1)

Figure 8.7 Conditional PDF fY |X (y |x) for various realized values of X for Example 8.5.
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ŷ(x) = E[Y|X = x] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2

+ 1
2

x − 3 ≤ x < −1

0 − 1 ≤ x < 1

−1
2

+ 1
2

x 1 ≤ x ≤ 3.

(8.37)

Note that when x = 1, ŷ(x) = 0, which is consistent with Example 8.2.
The conditional MMSE associated with this estimate is the variance of the

uniform distribution in Eq. (8.36), specifically:

E[{Y − ŷ(x)}2|X = x] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(3 + x)2

12
− 3 ≤ x < −1

1
3

− 1 ≤ x < 1

(3 − x)2

12
1 ≤ x ≤ 3

(8.38)

which again is consistent with Example 8.2, when X = 1.
Equation (8.38) specifies the mean square error that results for any specific value

x of the measurement of X . Since the measurement is a random variable, it is also of
interest to know what the mean square error is when averaged over all possible values
of the measurement, that is, over the random variable X . To determine this, we first
determine the marginal PDF of X . This can be obtained either by the convolution of
fY and fW since X is the sum of the two independent random variables Y and W, or
through the use of Bayes’ rule, with the result that

fX(x) = fX,Y (x, y)
fY|X (y|x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 + x
8

− 3 ≤ x < −1

1
4

− 1 ≤ x < 1

3 − x
8

1 ≤ x ≤ 3

0 otherwise .

(8.39)

The mean square error can be obtained by a weighted averaging over all values of x
through the expression

EX {EY|X [(Y − ŷ(x))2|X = x]} =
∞∫

−∞
E[(Y − ŷ(x))2|X = x] fX (x) dx

=
−1∫

−3

(
(3 + x)2

12

) (
3 + x

8

)
dx +

1∫
−1

(
1
3

) (
1
4

)
dx

+
3∫

1

(
(3 − x)2

12

) (
3 − x

8

)
dx

= 1
4

.

(8.40)
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It is interesting to compare this with the mean square error that would result if
Y was estimated by its mean, namely 0. The mean square error would then be the
variance σ 2

Y :

σ 2
Y = [1 − (−1)]2

12
= 1

3
, (8.41)

so the mean square error is indeed reduced by using knowledge of X and of the
probabilistic relation between Y and X .

8.2.1 Orthogonality

An important property of the MMSE estimator is that the residual error
Y − ŷ(X) is orthogonal to any function h(X) of the measured random variable,
that is,

EY,X[{Y − ŷ(X)}h(X)] = 0 , (8.42)

where X is the vector of measured random variables and the expectation
is computed over the joint density of Y and X. This result follows by first
expanding the left side of Eq. (8.42) to obtain

EY,X[{Y − ŷ(X)}h(X)] = EY,X[Yh(X)] − EY,X [̂y(X)h(X)] . (8.43)

Next, apply the following sequence of equalities to the term EY,X [̂y(X)h(X)]:

EY,X[̂y(X)h(X)] = EX[EY|X[Y|X]h(X)] (8.44)

= EX[EY|X[Yh(X)|X]] (8.45)

= EY,X[Yh(X)] . (8.46)

Applying Eq. (8.46) to Eq. (8.43) results in Eq. (8.42).

Equation (8.46) states that the MMSE estimator has the same correla-
tion that Y does with any function of X. In particular, choosing h(X) = 1,

EX [̂y(X)] = EY[Y] . (8.47)

When the expected value of the estimator ŷ(X) is equal to the expected value
of the random variable Y, the estimator is referred to as unbiased. Equation
(8.47) states that the MMSE estimator is indeed unbiased. This property can
be invoked to interpret Eq. (8.42) as stating that the estimation error of the
MMSE estimator is uncorrelated with any function of the random variables
used to construct the estimator.
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8.3 LINEAR MINIMUM MEAN SQUARE ERROR
ESTIMATION

8.3.1 Linear Estimation of One Random Variable
from a Single Measurement of Another

In general, the conditional expectation E(Y|X) required for the MMSE esti-
mator developed in the preceding sections is difficult to determine because
the conditional density fY|X(y|x) is not easily determined. A useful and widely
used compromise is to restrict the estimator to be a fixed linear (or more
specifically, affine, i.e., linear plus a constant) function of the measured ran-
dom variables, and to choose the linear relationship so as to minimize the
overall mean square error averaged over the values that Y and X can jointly
take. The resulting estimator is called the linear minimum mean square error
(LMMSE) estimator. The simplest case is presented first.

Suppose an estimator for the random variable Y is constructed in terms
of another random variable X, restricting the estimator to the form

Ŷ� = ŷ�(X) = aX + b , (8.48)

where a and b are to be determined so as to minimize the mean square error

EY,X [(Y − Ŷ�)2] = EY,X [{Y − (aX + b)}2] . (8.49)

Note that the expectation is taken over the joint density of Y and X, that is,
the linear estimator is picked to be optimum when averaged over all possible
combinations of Y and X that may occur. The subscripts on the expectation
operations in Eq. (8.49) for now make explicit the variables whose joint den-
sity the expectation is being computed over; eventually the subscripts will be
dropped.

Once the optimum values for the parameters a and b have been
chosen in this manner, the estimate of Y, given a particular x, is simply
ŷ�(x) = ax + b, computed with the values of a and b already determined. Thus,
in the LMMSE case an optimal linear estimator is constructed, and for any
particular x this estimator generates an estimate that is not claimed to have
any individual optimality property. This is in contrast to the MMSE case con-
sidered in the previous sections, where an optimal MMSE estimate for each
x was obtained, namely E[Y|X = x], that minimized the mean square error
conditioned on X = x. The distinction can be summarized as follows: in the
unrestricted MMSE case, the optimal estimator is obtained by joining together
all the individual optimal estimates, whereas in the LMMSE case the (gener-
ally nonoptimal) individual estimates are obtained by simply evaluating the
optimal linear estimator.

The expression in Eq. (8.49) is minimized by differentiating it with
respect to the parameters a and b, and setting each of the derivatives to
0. (Consideration of the second derivatives will show that the values found
in this fashion are minimizing, but the demonstration is omitted.) First
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differentiating Eq. (8.49) with respect to b, taking the derivative inside the
integral that corresponds to the expectation operation, and then setting the
result to 0, the conclusion is

EY,X [Y − (aX + b)] = 0 . (8.50)

Equivalently,

E[Y] = E[aX + b] = E[Ŷ�] , (8.51)

from which

b = μY − aμX (8.52)

is deduced, where μY = E[Y] = EY,X [Y] and μX = E[X] = EY,X [X]. The
optimum value of b specified in Eq. (8.52) in effect serves to make the linear
estimator unbiased, that is, the expected value of the estimator is equal to the
expected value of the random variable being estimated, as Eq. (8.51) shows.

Using Eq. (8.52) to substitute for b in Eq. (8.48), it follows that

Ŷ� = μY + a(X − μX) . (8.53)

In other words, to the expected value μY of the random variable Y that is
being estimated, the optimal linear estimator adds a suitable multiple of the
difference X − μX between the measured random variable and its expected
value. To find the optimum value of this multiple, a, first rewrite the error
criterion in Eq. (8.49) as

E[{(Y − μY) − (Ŷ� − μY)}2] = E[(Ỹ − aX̃)2] , (8.54)

where

Ỹ = Y − μY and X̃ = X − μX , (8.55)

and where Eq. (8.53) is invoked to obtain the second equality in Eq. (8.54).
Taking the derivative of the error criterion in Eq. (8.54) with respect to a, and
setting it to 0, results in

E[(Ỹ − aX̃)X̃] = 0 . (8.56)

Rearranging Eq. (8.56), and recalling that E[ỸX̃] = σYX , namely the covari-
ance of Y and X, and that E[X̃2] = σ 2

X , we obtain

a = σYX

σ 2
X

= ρYX
σY

σX
, (8.57)

where ρYX—which will simply be written as ρ when it is clear from context
what variables are involved—denotes the correlation coefficient between Y
and X.

It is also enlightening to interpret Eq. (8.57) in terms of the vector-
space picture for random variables developed in Chapter 7. The expression in
Eq. (8.54) for the error criterion can be visualized with Figure 8.8. We choose
the vector aX̃, which lies along the vector X̃, such that the squared length of
the error vector Ỹ − aX̃ is minimum. The associated vectors are illustrated
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Y
'

 - aX
'

 = Y - Y/

aX
'

cos-1 (r
YX

)

X
'

Y
'

ˆ

Figure 8.8 Expression for a from Eq. (8.57) illustrated in vector space.

in Figure 8.8. It follows from familiar geometric reasoning that the optimum
choice of aX̃ must be the orthogonal projection of Ỹ on X̃, and that this
projection is

aX̃ = 〈Ỹ, X̃〉
〈X̃ ,X̃〉 X̃ . (8.58)

Here, as in Chapter 7, 〈U, V〉 denotes the inner product of the vectors U
and V, and in the case where the “vectors” are random variables, denotes
E[UV]. The expressions for a in Eq. (8.57) follow immediately. Recall from
Chapter 7 that the correlation coefficient ρ denotes the cosine of the angle
between the vectors Ỹ and X̃, and that these vectors have respective lengths
σY and σX .

The preceding projection operation implies that the error Ỹ − aX̃, which
can also be written as Y − Ŷ�, must be orthogonal to X̃ = X − μX . This is
precisely what Eq. (8.56) says. In addition, invoking the unbiasedness of Ŷ�

shows that (Y − Ŷ�) must be orthogonal to μX (or any other constant), so
(Y − Ŷ�) is therefore orthogonal to X itself:

E[(Y − Ŷ�)X] = 0 . (8.59)

In other words, the optimal LMMSE estimator is unbiased and such that the
estimation error is orthogonal to the random variable on which the estimator
is based. Note that the statement in the case of the MMSE estimator in the
previous section was considerably stronger, namely that the error was orthog-
onal to any function h(X) of the measured random variable, not just to the
random variable itself.

The preceding development shows that the properties of (i) unbiased-
ness of the estimator and (ii) orthogonality of the error to the measured
random variable completely characterize the LMMSE estimator. Invoking
these properties yields the LMMSE estimator.

Carrying the geometric reasoning further, the Pythagorean theorem
applied to the triangle in Figure 8.8 leads to the conclusion that the minimum
mean square error (MMSE) obtained through use of the LMMSE estimator is

MMSE = E[(Ỹ − aX̃)2] = E[Ỹ2](1 − ρ2) = σ 2
Y(1 − ρ2) . (8.60)
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This result could also be obtained purely analytically, of course, without
recourse to geometric interpretation. The result shows that the mean square
error σ 2

Y prior to estimation in terms of X is reduced by the factor 1 − ρ2

when the observed value of X is used in an LMMSE estimator. The closer
that ρ is to +1 or −1 (corresponding to strong positive or negative correlation
respectively), the more that uncertainty about Y is reduced by using an
LMMSE estimator to extract information that X carries about Y.

Results on the LMMSE estimator can now be summarized in the follow-
ing expressions for the estimator, with the associated minimum mean square
error being given by Eq. (8.60):

Ŷ� = ŷ�(X) = μY + σYX

σ 2
X

(X − μX) = μY + ρ
σY

σX
(X − μX) , (8.61)

or the equivalent but perhaps more suggestive form

Ŷ� − μY

σY
= ρ

X − μX

σX
. (8.62)

Equation (8.62) states that the normalized deviation of the estimator from
its mean is ρ times the normalized deviation of the observed variable from
its mean; the more highly correlated Y and X are, the more closely the two
normalized deviations match.

Note that the above expressions for the LMMSE estimator and its mean
square error are the same as those obtained in Example 8.4 for the MMSE
estimator in the bivariate Gaussian case. The reason is that the MMSE esti-
mator in that case turned out to be linear (actually, affine), as already noted in
the example.

Example 8.6 LMMSE Estimator for a Signal in Additive Noise

In Example 8.5, we determined the MMSE estimator. This example now focuses on
the design of an LMMSE estimator. Recall that the random variable X denotes a
noisy measurement of the angular position Y of an antenna, so X = Y + W, where W
denotes the additive noise. The noise is assumed to be independent of the angular posi-
tion, that is, Y and W are independent random variables, with Y uniformly distributed
in the interval [−1, 1] and W uniformly distributed in the interval [−2, 2].

The LMMSE estimator of Y in terms of X requires the respective means and
variances, as well as the covariance, of these random variables. It is straightforward to
determine that

μY = 0, μW = 0, μX = 0, σ 2
Y = 1

3
, σ 2

W = 4
3

,

σ 2
X = σ 2

Y + σ 2
W = 5

3
, σYX = σ 2

Y = 1
3

, ρYX = 1√
5

. (8.63)

The LMMSE estimator is accordingly

Ŷ� = 1
5

X , (8.64)
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and the associated MMSE is

σ 2
Y(1 − ρ2) = 4

15
. (8.65)

This MMSE should be compared with the (larger) mean square error of 1
3 obtained

if μY = 0 is used as the estimator for Y, and the (smaller) value 1
4 obtained using the

MMSE estimator in Example 8.5.

In the next example we consider a parameterized time function for which
the parameters are random variables. The LMMSE estimator is used to esti-
mate the value at one time instant from the observed value at a different time
instant.

Example 8.7
Single-Measurement LMMSE Estimator for
Sinusoidal Random Process

Consider a sinusoidal signal of the form

X(t) = A cos(ω0t + �) (8.66)

where ω0 is assumed known, while A and � are statistically independent random vari-
ables, with the PDF of � being uniform in the interval [0, 2π]. Thus X(t) is a random
signal, or equivalently a set, or “ensemble,” of signals corresponding to the various
possible outcomes for A and � in the underlying probabilistic experiment. Such sig-
nals will be discussed in more detail in Chapter 10, where they will be referred to as
random processes. The value that X(t) takes at some particular time t = t0 is simply a
random variable, whose specific value will depend on which outcomes for A and � are
produced by the underlying probabilistic experiment.

Suppose the LMMSE estimator for X(t1) is based on a measurement of X(t0),
where t0 and t1 are specified sampling times. In other words, the estimator is of the
form

X̂(t1) = aX(t0) + b (8.67)

with a and b chosen so as to minimize the mean square error between X(t1) and X̂(t1).
It was established that b must be chosen to ensure that the estimator is unbiased:

E[X̂(t1)] = aE[X(t0)] + b = E[X(t1)] . (8.68)

Since A and � are independent, and � is uniform in [0, 2π],

E[X(t0)] = E[A]
∫ 2π

0

1
2π

cos(ω0t0 + θ) dθ = 0 (8.69)

and similarly E[X(t1)] = 0, so b = 0.
Next, use the fact that the error of the LMMSE estimator is orthogonal to the

data:

E[(X̂(t1) − X(t1))X(t0)] = 0 (8.70)

and consequently

aE[X2(t0)] = E[X(t1)X(t0)] (8.71)
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or

a = E[X(t1)X(t0)]
E[X2(t0)]

. (8.72)

The numerator and denominator in Eq. (8.72) are respectively

E[X(t1)X(t0)] = E[A2]
∫ 2π

0

1
2π

cos(ω0t1 + θ) cos(ω0t0 + θ) dθ

= E[A2]
2

cos{ω0(t1 − t0)} (8.73)

and E[X2(t0)] = E[A2]
2 . Thus a = cos{ω0(t1 − t0)}, so the LMMSE estimator is

X̂(t1) = X(t0) cos{ω0(t1 − t0)} . (8.74)

Note that the distribution of A does not play a role in this equation.
To evaluate the mean square error associated with the LMMSE estimator, com-

pute the correlation coefficient between the samples of the random signal at t0 and t1.
It is easily seen that ρ = a = cos{ω0(t1 − t0)}, so the mean square error is

E[A2]
2

(
1 − cos2{ω0(t1 − t0)}

)
= E[A2]

2
sin2{ω0(t1 − t0)} . (8.75)

8.3.2 Multiple Measurements

In this section, we extend the LMMSE estimator to the case where the esti-
mation of a random variable Y is based on observations of multiple random
variables, say X1, . . . , XL, gathered in the vector X. The affine estimator may
then be written in the form

Ŷ� = ŷ�(X) = a0 +
L∑

j=1

ajXj . (8.76)

The coefficients aj of this LMMSE estimator can be found by solving a linear
system of equations that is completely defined by the first and second moments
(i.e., means, variances, and covariances) of the random variables Y and Xj. The
fact that the model Eq. (8.76) is linear in the parameters aj is what results in
a linear system of equations; the fact that the model is affine in the random
variables is why the solution only depends on the first and second moments.
Linear equations are easy to solve, and first and second moments are generally
easy to determine, hence the popularity of LMMSE estimation.

The development below follows along the same lines as in Section 8.3.1,
in which there was a single observed random variable X. The opportunity of
the extension in this subsection to multiple measurements allows a review of
the logic of the development and provides a few additional insights.
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The objective is to minimize the mean square error

E
[(

Y − (a0 +
L∑

j=1

ajXj)
)2]

, (8.77)

where the expectation is computed using the joint density of Y and X. The
joint density is used rather than the conditional because the parameters are
not going to be chosen to be best for a particular set of measured values x—
otherwise the nonlinear estimate would work as well in this case, by setting
a0 = E[Y | X = x] and setting all the other ai to zero. Instead, the parameters
are chosen to be the best averaged over all possible combinations of X and Y.
The linear estimator will in general not be as good as the unconstrained esti-
mator, except in special cases (some of them important, as in the case of
multivariate Gaussian random variables), but the linear estimator has the
advantage that it is easy to solve for, as is now shown.

The expression in Eq. (8.77) is minimized by differentiation with respect
to ai for i = 0, 1, · · · , L, and setting each of the derivatives to 0. (Again, cal-
culations involving second derivatives establish that indeed minimizing values
are obtained, but these calculations are omitted here.) Differentiating with
respect to a0 and setting the result to 0 shows that

E[Y] = E[ a0 +
L∑

j=1

ajXj ] = E[Ŷ�] (8.78)

or

a0 = μY −
L∑

j=1

aj μXj , (8.79)

where μY = E[Y] and μXj = E[Xj]. This optimum value of a0 serves to make
the linear estimator unbiased, in the sense that Eq. (8.78) holds, that is, the
expected value of the estimator is the expected value of the random variable
for which an estimate is desired.

Using Eq. (8.79) to substitute for a0 in Eq. (8.76), it follows that

Ŷ� = μY +
L∑

j=1

aj(Xj − μXj ) . (8.80)

In other words, the estimator adjusts the expected value μY of the variable
being estimated, by a linear combination of the deviations Xj − μXj between
the measured random variables and their respective expected values.

Taking account of Eq. (8.80), the mean square error criterion in Eq.
(8.77) can be rewritten as

E[{(Y − μY) − (Ŷ� − μY)}2] = E
[(

Ỹ −
L∑

j=1

ajX̃j

)2]
, (8.81)
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where

Ỹ = Y − μY and X̃j = Xj − μXj . (8.82)

Differentiating Eq. (8.81) with respect to each of the remaining coefficients
ai, i = 1, 2, . . . L, and setting the result to zero produces the equations

E

⎡⎣⎛⎝Ỹ −
L∑

j=1

ajX̃j

⎞⎠ X̃i

⎤⎦ = 0 i = 1, 2, . . . , L . (8.83)

or equivalently, taking into account Eq. (8.80),

E[(Y − Ŷ�)X̃i] = 0 i = 1, 2, . . . , L . (8.84)

Yet another version follows on noting from Eq. (8.78) that Y − Ŷ� is orthogo-
nal to all constants, in particular to μXi , so

E[(Y − Ŷ�)Xi] = 0 i = 1, 2, . . . , L . (8.85)

Equations (8.83), (8.84), and (8.85) all express, in slightly different forms, the
orthogonality of the estimation error to the random variables used in the
estimator. The relationship between these forms follows by invoking the unbi-
asedness of the estimator. The last of these, Eq. (8.85), is the usual statement
of the orthogonality condition that governs the LMMSE estimator. Note once
more that the statement in the case of the MMSE estimator in the previous
section was considerably stronger, namely that the error was orthogonal to
any function h(X) of the measured random variables, not just to the random
variables themselves. Rewriting Eq. (8.85) as

E[YXi] = E[Ŷ�Xi] i = 1, 2, . . . , L (8.86)

yields an equivalent statement of the orthogonality condition, namely that
the LMMSE estimator Ŷ� has the same correlations as Y with the measured
variables Xi.

The orthogonality and unbiasedness conditions together determine the
LMMSE estimator completely. Also, the preceding development shows that
the first moment of Y and the second cross-moments with the Xi are exactly
matched by the corresponding first moment of Ŷ� and its second cross-
moments with the Xi. It follows that Y and Ŷ� cannot be told apart on the
basis of only these moments.

Equation (8.83) provides a convenient route to a solution for the
coefficients aj, j = 1, . . . , L. This set of equations can be expressed as

L∑
j=1

σXiXj aj = σXiY , (8.87)
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where σXiXj is the covariance of Xi and Xj (so σXiXi is just the variance σ 2
Xi

),
and σXiY is the covariance of Xi and Y. Collecting these equations in matrix
form results in⎡⎢⎢⎢⎣

σX1X1 σX1X2 · · · σX1XL

σX2X1 σX2X2 · · · σX2XL
...

...
. . .

...
σXLX1 σXLX2 · · · σXLXL

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a1
a2
...

aL

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
σX1Y
σX2Y

...
σXLY

⎤⎥⎥⎥⎦ . (8.88)

This set of equations is referred to as the normal equations, and can be
expressed compactly in matrix notation as

(CXX) a = cXY (8.89)

where the definitions of CXX, a, and cXY should be evident on comparing
Eqs. (8.88) and (8.89). The solution of this set of L equations in L unknowns
yields the {aj} for j = 1, · · · , L, and these values may be substituted in
Eq. (8.80) to completely specify the estimator. In matrix notation, the
solution is

a = (CXX)−1cXY . (8.90)

It can be shown in a straightforward way that the MMSE obtained with the
LMMSE estimator is

σ 2
Y − cYX(CXX)−1cXY = σ 2

Y − cYXa , (8.91)

where cYX is the transpose of cXY . In the case of a single measurement, this
reduces to σ 2

Y (1 − ρ2), that is, Eq. (8.60).

Example 8.8 Estimation from Two Noisy Measurements

Assume that a random variable Y is observed through two noisy measurements X1 and
X2 so that

X1 = Y + R1

X2 = Y + R2, (8.92)

where Y and the two noise variables R1 and R2 are mutually uncorrelated. Assume
also that R1 and R2 have zero mean and variance σ 2

R. The LMMSE estimator for Y
can be found, given measurements of X1 and X2. This estimator takes the form Ŷ� =
a0 + a1X1 + a2X2. The requirement that Ŷ� be unbiased results in the constraint

a0 = μY − a1μX1 − a2μX2 = μY (1 − a1 − a2) . (8.93)
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Noting that

E[X2
i ] = E[Y2] + E[R2

i ] ,

E[X1X2] = E[Y2] ,

E[XiY] = E[Y2] , (8.94)

the normal equations for this case become[
σ 2

Y + σ 2
R σ 2

Y
σ 2

Y σ 2
Y + σ 2

R

] [
a1
a2

]
=
[

σ 2
Y

σ 2
Y

]
. (8.95)

The solution of Eq. (8.95) results in[
a1
a2

]
= 1

(σ 2
Y + σ 2

R)2 − σ 4
Y

[
σ 2

Y + σ 2
R −σ 2

Y−σ 2
Y σ 2

Y + σ 2
R

][
σ 2

Y

σ 2
Y

]

= σ 2
Y

2σ 2
Y + σ 2

R

[
1
1

]
. (8.96)

Therefore,

Ŷ� = 1

2σ 2
Y + σ 2

R

(σ 2
RμY + σ 2

YX1 + σ 2
YX2) . (8.97)

Thus Ŷ� is a weighted linear combination of the prior estimate μY for Y in the absence
of measurements, and the two measurements X1 and X2. The prior estimate μY is given
more weight as the noise in the measurements increases. The measurements are given
more weight as the prior uncertainty σ 2

Y increases.
Applying Eq. (8.91), the associated MMSE is

σ 2
Yσ 2

R

2σ 2
Y + σ 2

R

. (8.98)

It is straightforward to check that both the estimator and the associated MMSE take
intuitively reasonable values at extreme ranges of the ratio σ 2

Y/σ 2
R.

8.4 FURTHER READING

Most of the texts suggested for further reading at the end of Chapter 7
contain material on mean-square-error estimation. See also [Kay2] and
[Moo]. We have assumed in our study of MMSE estimation that the req-
uisite probability density functions are known, and similarly in LMMSE
estimation that the required first and second moments are known. The
subject of statistics is concerned with situations in which such quanti-
ties have to be estimated or learned from data. [DeG], [Dek], [Rce]
and [Wal] provide good introductions to the statistical approach, while
[Cox], [Was], and [Wil] range more widely; none of these has a signals
and systems perspective. [St1] and [St2] provide absorbing historical
accounts of the development of probability-based statistical methods for
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describing and quantifying uncertainty, accuracy, and variability in fields
ranging from astronomy and geodesy to psychology, biology, and the social
sciences.

Problems

Basic Problems

8.1. For each of the following parts, state whether the given statement is true or
false. For a true statement, give a brief but convincing explanation; for a false
statement, give a counterexample or convincing explanation.

(a) If Ŷ� is the LMMSE estimator of Y in terms of some other random variable
X , then the corresponding MMSE E[(Y − Ŷ�)2] can be expressed as

E[(Y − Ŷ�)2] = E[Y2] − E[Ŷ�Y].

(b) Suppose X and Y are random variables with mean 0 and the same variance
σ 2, and suppose it is known that E[Y|X = x] = 1

3 x for all values x that the
random variable X can take. The correlation coefficient of X and Y must
then be 1

3 .

8.2. For each of the following parts, state whether the given statement is true or
false. For a true statement, give a brief but convincing explanation; for a false
statement, give a counterexample or convincing explanation.

(a) Suppose the LMMSE estimator Ŷ� of the random variable Y in terms of X
is simply the mean of Y, i.e., Ŷ� = μY . Then X and Y must be independent.

(b) Suppose the random variable X is uniformly distributed in the interval
[−1, 1], and let Y = X2 (so Y is completely determined by X). The LMMSE
estimator Ŷ� of Y in terms of X is 0.

(c) Suppose X1 and X2 are uncorrelated random variables. Then the LMMSE
estimator for Y in terms of X1 and X2 is given by Ŷ� = Ŷ�1 + Ŷ�2, where
Ŷ�1 is the LMMSE estimator of Y in terms of just X1, and similarly Ŷ�2 is
the LMMSE estimator of Y in terms of just X2.

8.3. X and Y are two random variables with unknown PDFs. X is zero-mean. The
MMSE estimator Ŷ of Y given X is Ŷ = 5. From the information given, specify
whether X and Y are definitely statistically independent, definitely not statis-
tically independent, or if it can’t be determined from the information given.
Explain.

8.4. Consider the pair of bivariate Gaussian random variables, X and Y, where
μX = 0. The MMSE estimator for Y in terms of X is ŶMMSE(X) = 2.

(a) What is E[Y]?
(b) Specify whether X and Y are correlated, uncorrelated, or there isn’t enough

information to make this determination. Explain.
(c) Specify whether X and Y are independent, dependent, or there isn’t enough

information to make this determination. Explain.
(d) What is the MMSE estimator of X in terms of Y, X̂MMSE(Y)?
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8.5. Suppose X and Y are zero-mean unit-variance random variables. If the LMMSE
estimator ŷ�(X) of Y in terms of X is given by

ŷ�(X) = 3
4

X ,

what is its mean square error? Also, suppose the random variable Q is defined by
Q = Y + 3; what is the LMMSE estimator q̂�(X) of Q in terms of X , and what
is its mean square error? Finally, what is the LMMSE estimator x̂�(Y) of X in
terms of Y, and what is its mean square error?

8.6. The random variables X and Y are uniformly distributed in the shaded region
shown in Figure P8.6.

y

x

1

0.5

0.5

Height = 4

1 Figure P8.6

(a) Determine and sketch the MMSE estimator ŶMMSE(X) of Y given X .
(b) Determine and sketch the MMSE estimator X̂MMSE(Y) of X given Y.

8.7. Suppose that two random variables X and Y have a joint PDF fX,Y (x, y) that is
constant in the shaded region shown in Figure P8.7, and zero elsewhere:

y

x

1

10

fX ,Y (x ,y)

Figure P8.7

(a) Make fully labeled sketches of the densities fX (x) and fY|X (y | 1
3 ).

(b) Are X and Y statistically independent? Explain.
(c) Determine and make a fully labeled sketch (as a function of x) of

ŷMMSE(X), the MMSE estimator of Y based on observing X .
(d) To evaluate how well your estimator from (c) will perform on average,

determine the mean square error e2 and the bias b associated with the
estimator:

e2 = E
[(̂

yMMSE(X) − Y
)2], and b = E [̂yMMSE(X) − Y],

where the expectation is over X and Y jointly.

www.konkur.in

Telegram: @uni_k



360 Chapter 8 Estimation

(e) Determine ŷLMMSE(X), the linear MMSE estimator of Y, and its associated
MMSE.

8.8. Two random variables X and Y have a joint PDF fX,Y(x, y) that is equal to a con-
stant K in the shaded region shown in Figure P8.8, and is equal to zero elsewhere.

(a) (i) Find K.
(ii) Make a labeled sketch of the marginal PDF fY(y).

(iii) Make a labeled sketch of the conditional PDF fY|X (y | 1
4 ).

(b) Find the MMSE estimate of Y given that X = x has been observed, i.e., the
conditional mean E(Y | X = x ), where x can be any value between 0 and 2.

(c) Find the LMMSE estimate of Y given that X = x has been observed, where
x can be any value between 0 and 2. Note that E(YX) = 3

4 for the joint
probability density function shown in Figure P8.8.

x

y

1

10
0

2

2

fX ,Y (x ,y) 

Figure P8.8

8.9. Suppose that X and Y are random variables with joint PDF fX,Y (x, y) that is
constant in the shaded area depicted in Figure P8.9, and zero elsewhere.

x

y

-1

1

-2 -1

-2

2

2

fX ,Y (x ,y) 

Figure P8.9
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(a) Find the LMMSE estimator of Y based on measuring X .
(b) For x in the range −2 to 2, make a fully labeled sketch of the MMSE

estimator of Y. How does the corresponding estimator compare with that
in (a)?

8.10. Consider a sinusoidal signal of the form

X(t) = Acos(ω0t + �)

where ω0 is assumed known, while A and � are statistically independent random
variables, with the PDF of � being uniform in the interval [0, 2π]. Suppose an
LMMSE estimator for X(t2) is to be constructed based on measurements X(t0)
and X(t1), i.e., an estimator of the form

X̂�(t2) = a0X(t0) + a1X(t1) + b

that minimizes the mean square error

E
[(

X(t2) − X̂�(t2)
)2]

.

(a) Determine the optimum value of b.
(b) Set up in detail the specific equations you would need to solve in order to

obtain the optimum values of a0 and a1, and use these to compute a0 and a1.
Check that your answers take reasonable values for the following two cases:
(i) t2 = t1; (ii) t2 = t0. To handle these computations cleanly, it may help to
recall that the inverse of a 2 × 2 matrix of the form[

p q
r s

]
is

1
ps − qr

[
s −q

−r p

]
,

a claim that you can directly verify by multiplying the two matrices together.
(c) Show that the MMSE associated with this linear estimator is zero.

8.11. Consider a digital communication system in which an independent identically
distributed (i.i.d.) bit stream s[n] of 1s and 0s is transmitted over a faulty, mem-
oryless channel with 1s and 0s equally probable. The probability of a 1 being
received as a 0 is 1/8 and the probability of a 0 being received as a 1 is 1/4. This
type of channel is referred to as a memoryless binary channel and is depicted in
Figure P8.11-1.

1

0

1

0

s[n] r[n]

7/8

3/4

1/8

1/4

Figure P8.11-1

(a) For any time index n, determine the joint PMF P(r, s) and the marginal
PMF P(r).
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(b) To obtain an estimate ŝ [n] of s[n] from r[n], the received signal can be pro-
cessed through a memoryless, possibly nonlinear system F. The memoryless
system F in Figure P8.11-2 is to be designed to minimize the mean square
error ε defined as:

ε = E
{

(s[n] − ŝ [n])2
}

.

Determine the system F.
(c) With your system from (b), determine the value ŝ [n] that minimizes

E
{

(s[n] − ŝ [n])2 | r[n] = r
}

.

r [n] s  [n]F

Figure P8.11-2

Also determine the probability that at an arbitrary time index n0, the
estimate ŝ [n0] and the true value s[n0] will be equal.

8.12. Consider a communication system in which the random variable Y is transmit-
ted through a channel with a random gain W, so that the received variable is
X = WY. Assume that Y and W are independent, and that both of them are
uniformly distributed in the range [1, 2].

(a) Suppose you are sitting at the receiver and want to estimate the trans-
mitted value Y from a measurement of the received value X , using the
LMMSE estimator Ŷ� = d1X + d2. Determine what d1 and d2 should be,
and compute the associated MMSE.

(b) Suppose instead that you are sitting at the transmitter and want to estimate
what the received value X will be from a measurement of the transmitted
value Y. Find the (unconstrained) MMSE estimator X̂(Y).

Advanced Problems

8.13. Determine if each of the following statements is true or false. For a true state-
ment, give a brief but convincing explanation; for a false statement, give a
counterexample or convincing explanation.

(a) If Ŷ� = aX + b is the LMMSE estimator of Y in terms of X , then Y − Ŷ� is
orthogonal to cX + d for any arbitrary constants c and d, i.e.,

E
[(

Y − Ŷ�

)(
cX + d

)]
= 0

for any constants c and d.
(b) If Ŷ� = aX + b is the LMMSE estimator of Y in terms of X , then

E
[(

Y − Ŷ�

)2] = E[Y2] − E
[
Ŷ2

�

]
.

(c) Assume X1, X2, and Y are all zero mean. Suppose

• Ŷ1� = a1X1 is the LMMSE estimator of Y in terms of X1 alone;
• Ŷ2� = a2X2 is the LMMSE estimator of Y in terms of X2 alone; and
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• Ŷ� = γ1X1 + γ2X2, is the LMMSE estimator of Y in terms of X1
and X2.

Then, if X1 and X2 are uncorrelated with each other,

Ŷ� = Ŷ1� + Ŷ2� .

(In other words, γ1 = a1 and γ2 = a2.)

(d) Recall that Ŷ = E[Y | X] is the MMSE estimator of Y in terms of X . Then
Y − Ŷ is orthogonal to 1

X2+1
.

(e) Suppose X and Y have correlation coefficient ρ = σXY/(σXσY). Then

σ 2
Y(1 − ρ2) ≥ E

[(
Y − E[Y | X]

)2]
.

8.14. Suppose that X and Y are two random variables for which the LMMSE estimator
Ŷ� = aX + b of Y in terms of X is Ŷ� = 3X . For each of the following parts,
say whether the given statement is true or false. For a true statement, give a
brief but convincing explanation; for a false statement, give a counterexample or
convincing explanation.

(a) It must be the case that X and Y both have mean value 0.
(b) It must be the case that the LMMSE estimator of X in terms of Y is

X̂� = 1
3 Y.

(c) It must be the case that E[Y|X = 2] = 6.
(d) It must be the case that the LMMSE estimator of Z = 2Y + 7 in terms of X

is Ẑ� = 6X + 7.

8.15. Suppose X = aV + bW + c and Y = dV + eW + f , where V and W are zero
mean, unit variance, and uncorrelated with each other, and a, b, c, d, e, and f are
some known constants. In this problem, X is a random variable that will be
measured and V, W, and Y are random variables that will be estimated using
LMMSE estimators based on measurement of X .

(a) Find the LMMSE estimator V̂� of V in terms of X , i.e., set V̂� = αX + β and
choose the coefficients α and β to minimize the mean square error, namely
E[(V − V̂�)2]. Also find this MMSE.

(b) Similarly find the LMMSE estimator Ŵ� of W in terms of X , and find the
associated MMSE.

(c) You might think that perhaps X = aV̂� + bŴ� + c, so that the estimates V̂�

and Ŵ� are consistent with the fact that X = aV + bW + c. Use your results
from (a) and (b) to check whether this does indeed turn out to be the case.

(d) With similar computations to those you used in (a) and (b), find the LMMSE
estimator Ŷ� of Y in terms of X , and find the associated mean square
error. You might think that Ŷ� = dV̂� + eŴ� + f , reflecting the fact that
Y = dV + eW + f . Check whether this is true. Hint: To verify that a par-
ticular linear function is the LMMSE estimator for a given random variable,
you only need to verify that it is unbiased and that the error between the
estimator and the given random variable is orthogonal to all the available
data.

8.16. Let V and W be zero-mean unit-variance random variables that are uncorrelated
with each other. Suppose

X = V + 4 ,
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and

Y = −V + 2W − 3 .

(a) Determine the means, variances, covariance, and correlation coefficient of
X and Y.

(b) Consider the random variables as specified in (a), but with the added con-
straint that V and W are independent of each other. Suppose it is known
after a measurement that X = 5. Find the MMSE estimates of V, W, and Y,
given this measurement of X , and determine the corresponding MMSEs.

8.17. Suppose the random variable Q is defined by

Q =
{

1 with probability p
0 with probability 1 − p ,

so the mean of Q is μQ = p, and the variance of Q is σ 2
Q = p(1 − p). Now

consider random variables X and Y that are two different noise-corrupted
observations of Q, defined by the following equations:

X = Q + V

Y = Q + W .

The noise variables V and W are zero-mean unit-variance bivariate Gaussian
random variables with correlation coefficient r, i.e.,

fV,W(v, w) = 1

2π
√

1 − r2
exp

{
− (v2 − 2rvw + w2)

2(1 − r2)

}
.

Take Q to be independent of V and W. (Note: All expectations are taken with
respect to all of the random variables involved in the expectation.)

(a) Compute the following quantities:

(i) E[VW] and E[QV];
(ii) E[X], E[X2], and E[XY].

(b) Suppose Y is to be estimated from X using an estimator Y(X) of the form

Y(X) = βX

where β is a scalar constant. Find an expression for the value of β that
minimizes the mean square error E[{Y − Y(X)}2].

(c) Suppose, instead of the estimator in (b), an estimator Ŷ(X) is used whose
form is not constrained, but still chosen to minimize the mean square error,
i.e., to minimize E[{Y − Ŷ(X)}2]. Determine what Ŷ(X) is in the following
special cases, without elaborate calculations:

(i) p = 0 .
(ii) p = 1 .

8.18. Consider a communication system for which the channel gain g[n] is time-
varying, as shown in Figure P8.18-1.

g[n]

s[n] r[n] = g[n]s[n]
Figure P8.18-1
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• The transmitted signal s[n] is a random bit stream, modeled as an i.i.d.
Bernoulli random process with probability p of being +1 and probability
1 − p of being –1 at each time instant.

• The channel gain g[n] is an i.i.d. process, uniformly distributed between 0
and 1, at each instant i.e.,

fG(g[n]) =
{

1 0 ≤ g[n] ≤ 1 for each n
0 otherwise.

• s[n] and g[n] are statistically independent.

(a) Determine and make a fully labeled sketch of the PDF fR(r[n]).
(b) Determine E{r[n]} and E{r2[n]}.
For parts (c) and (d) only, consider processing r[n] with a memoryless and
possibly nonlinear system F to obtain an estimate ŝ [n] of s[n], as indicated in
Figure P8.18-2.

r[n]
s[n] = F{r[n]}Memoryless

system F
Figure P8.18-2

The mean square error E of the estimator is defined as

E = E{(s[n] − ŝ [n])2} .

(c) For this part only, let p = 1
2 . If F{r[n]} is restricted to be of the form

F{r[n]} = ŝ [n] = a0 + a1r[n]

with a0 and a1 being some constants, determine a0 and a1 to minimize the
mean square error E and determine the corresponding E .

(d) If there is no restriction on the form of the system F other than it being
memoryless, determine F to minimize the mean square error E and deter-
mine the corresponding value of E .

8.19. Suppose a random variable X is related to the random variables G, Y, and W as
follows:

X = GY + W .

Here G has mean μG and variance σ 2
G, and is independent of Y and W. Both Y

and W have zero mean, and are uncorrelated with each other; their respective
variances are σ 2

Y and σ 2
W .

(a) Compute the following, in terms of the given quantities:

E[G2] , E[X] , E[X2] , σ 2
X , E[YX] , σYX .

(b) Compute the LMMSE estimator of Y given X , i.e., determine the constants
a and b in ŷ�(X) = aX + b so as to minimize

E[{̂y�(X) − Y)}2] .

Write down what your expression for ŷ�(X) reduces to in the particular case
where σ 2

W = 0, and for this particular case find an expression for the cor-
responding MMSE, E[{̂y�(X) − Y}2]. Do the expressions for the estimator
and the MMSE in this particular case further reduce in a reasonable way
when you assume (in addition to σ 2

W = 0) that σ 2
G = 0? Explain.

www.konkur.in

Telegram: @uni_k



366 Chapter 8 Estimation

8.20. A signal s[n] to be retrieved from storage is subject to errors due to faulty
electronics. The retrieved signal r[n] can be written as

r[n] = s[n] + e[n] ,

where e[n] represents the error. Both s[n] and e[n] are i.i.d. random processes.
The joint PDF of r[n] and s[n] is shown in Figure P8.20-1.

r

s

2

0 2

r = V2s

Figure P8.20-1

fR,S(r, s) =
⎧⎨⎩

3
4 , for

√
2s ≤ r ≤ 2 and 0 ≤ s ≤ 2

0, otherwise.

For the remainder of this problem, you may find some, none, or all of the
following useful:

fS(s) = 3
4 (2 − √

2s ) for 0 ≤ s ≤ 2.

E{S | R = r} = r2/4, E{S} = 3
5 , E{R} = 3

2 ,

E{RS} = 1, E{R2} = 12
5 , E{S2} = 4

7 .

(a) Show that fR(r) = 3
8 r2 for 0 ≤ r ≤ 2, and 0 elsewhere.

(b) Determine E{R | S = s}.
An estimate ŝ [n] of s[n] can be obtained from r[n] as indicated in
Figure P8.20-2.

r[n] A s  [n]

Figure P8.20-2

The mean square error E of the estimator is defined as

E = E{(s[n] − ŝ [n])2} .

(c) Determine the memoryless system A that minimizes the mean square
error E .

(d) In this part, the output of system A is restricted to be of the form

ŝ [n] = a0 + a1r[n] ,

where a0 and a1 are constants. Determine values a0 and a1 that minimize the
mean square error E .

(e) In this part, the output of system A is of the form

ŝ [n] = cr[n − 1]

where c is a constant. Determine the value of c that minimizes the mean
square error E .
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8.21. Let X be a noisy measurement of the angular position Y of an antenna:
X = Y + W, where W denotes the additive noise. Treat Y and W as inde-
pendent random variables. Suppose Y is uniformly distributed in the interval
[−1, 1], and W has the triangular PDF fW(w) = [1 − (|w|/2)]/2 for |w| ≤ 2 (and
fW(w) = 0 elsewhere). Given that X = 1, what is the MMSE estimate of Y,
namely ŶMMSE(1), and what is the corresponding MMSE?

8.22. Suppose X and Y are two random variables. The estimator Ŷ of Y from observ-
ing X is specified to be of the form Ŷ = aX2, where a is a constant chosen to
minimize EX,Y {(Y − Ŷ)2}. Specify whether with this choice of a it is (necessarily)
true or (can be) false that

EX,Y {(Y − Ŷ) · X} = 0.

Explain your reasoning.

8.23. Two random variables X and Y have a joint PDF fX,Y (x, y). Assume that
their joint moments of all orders are available. The random variable Y can be
estimated from the random variable X by the following quadratic estimator:

ŷq(X) = aX2 .

(a) Determine the parameter a so that the quadratic estimator ŷq(X) minimizes
the mean square error

ε = EX,Y

{[
Y − aX2

]2
}

.

(b) The error of the optimal quadratic estimator is

e = Y − ŷq(X) .

Is the error e orthogonal to the measurement X?
(c) Is the optimal quadratic estimator ŷq(X) unbiased? If yes, justify. If no,

determine the bias, i.e., EX,Y {e}.
8.24. A certain coin has a probability R of coming up heads (H), and a probability

1 − R of coming up tails (T). However, suppose this probability is completely
unknown, so R is modeled as a uniformly distributed random variable in the
interval [0, 1], i.e., fR(r) = 1 in this interval. The goal now is to estimate R in
some reasonable way by observing the relative number of H’s in a series of
independent tosses of the coin.

Suppose 11 independent tosses of the coin are made, with R staying fixed
from toss to toss, and let S denote the resulting sequence of 11 H’s and T’s. In the
experiment that the calculations will be based on here, the particular sequence
turned out to be s = HHTHTTTHHTH (which happens to have 6 H’s and 5 T’s).

(a) Determine the conditional probability P(S = s | R = r) of observing the par-
ticular sequence s above, given R = r, i.e., given that the probability of
getting H on a toss is r.

(b) Determine P(S = s), the probability of getting the particular sequence s
above, no longer conditioned on any particular value of R. It may help you
to know the following for nonnegative integers m and k:∫ 1

0
pm(1 − p)k dp = m! k!

(m + k + 1)! .
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(c) Determine the conditional PDF of R, given the particular sequence s above,
i.e., find the function fR|S(r | s).

(d) Given the sequence s above, find the unconstrained estimate R̂ of R that
minimizes the conditional mean square error: E[(R̂ − R)2 | S = s].

Extension Problems

8.25. (a) Consider a pair of bivariate Gaussian random variables, X and Y. The
MMSE estimator for Y in terms of X is ŷ(X) = 5. Are X and Y correlated?
Explain.

(b) Consider a pair of random variables, X and Y, both with unit variance and
zero mean. The LMMSE estimator X̂� of X given Y is X̂� = 2

3 Y. Can the
LMMSE estimator of Y given X be Ŷ� = 3

2 X? Clearly explain why or why
not.

(c) If X is a random variable and Y = X2, then can X and Y be uncorrelated
random variables?

(d) Let Y be uniform on the interval [−1, 1], let U equal 1 or −1 with probability
0.5 each, independent of Y, and let X = UY. Can the LMMSE estimator of
Y based on observation of X be ŷ�(X) = X?

(e) If X and Y are uncorrelated random variables, is the LMMSE estimator of
Y in terms of X always Ŷ� = μY , the expected value of Y?

( f ) If X and Y are uncorrelated random variables, is the MMSE estimate of Y,
given X = x, always ŷ(x) = μY , the expected value of Y?

8.26. The input to a communication channel at some instant of time is a uniformly
distributed random variable Q with mean value μQ and variance σ 2

Q. Suppose
the corresponding channel output is X = Q + W, where the additive disturbance
W is a zero-mean uniformly distributed random variable of variance σ 2

W , and is
independent of Q.

(a) We wish to construct a linear estimator of the form q̂�(X) = aX + b for the
random variable Q. What choice of a and b minimizes the mean square

error of the estimator, E
{(

Q − q̂�(X)
)2}? For this choice of a and b, what

is the mean square error? Show that the estimator is unbiased, i.e., that
E
(
Q − q̂�(X)

) = 0, and that the estimation error is orthogonal to X (which
is an illustration of the orthogonality principle that characterizes linear
estimators).

(b) For this part, you are asked to verify experimentally the value for the
mean square error obtained in part (a) above, using an appropriate
computational package available to you. Assume μQ = 5, σ 2

Q = 64
3 , and

σ 2
W = 4

3 .

(i) First, determine the coefficients a and b, given the information above.
(ii) Now, generate 100 sample values of Q and W.

(iii) Then calculate the corresponding values for X .
(iv) Using the coefficients of the estimator, a and b as determined above,

calculate the LMMSE estimate of Q for each measured X .
(v) Now compute the empirical mean square error. (The law of large num-

bers is invoked here to approximate an ensemble mean or probabilistic
mean by a sample mean or empirical mean.)
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(vi) Repeat this procedure a few times (by generating new sets of values for
Q and W) and verify that the values for the empirical MSE are close to
the mean square error you found in (a), evaluated for these values of a
and b.

8.27. Suppose the random variables X and Y are distributed according to a joint
density—known as Morgenstern’s bivariate density—that is given by the fol-
lowing expression over the unit square 0 ≤ x, y ≤ 1 of the (x, y)-plane, and is 0
everywhere else:

fX,Y(x, y) = 1 + α(1 − 2x)(1 − 2y) . (8.99)

Plots of this bivariate density are shown in Figure P8.27 for α = 1, 0, −1.
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(a) Determine the marginal density of X , namely fX (x). The marginal den-
sity of Y follows simply by symmetry. For what choices of α are X and Y
independent?

(b) Determine μX , μY , σ 2
X , and σ 2

Y .
(c) Write down the integral that defines E[XY] for this problem. Evaluating this

integral will show that

E[XY] = 1
4

+ α

36
.

Compute σXY and ρXY .
(d) Determine the LMMSE estimator of Y given X , and the associated mean

square error.
(e) Determine the MMSE estimator, and state whether it performs any better

than the LMMSE estimator in this case.

8.28. The random variables X and Y have a joint PDF fX,Y (x, y) that is uniformly
distributed over the shaded region shown in Figure P8.28, and zero elsewhere.
Certain moments of this distribution are as listed here:

E(X2) = 20/3, E(X6) = 5440/7,

E(Y2) = 7, E(XY) = 6, E(X3Y) = 60.
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Figure P8.28

(a) Determine E[X], E[Y], and E[X3]. This should not require any significant
computation, but justify your answers.

(b) Let ŷ�(X) = aX + b be a linear estimator for Y, where a and b are constants.
Find the numerical values of a and b that minimize E[(Y − ŷ�(X))2], and
also determine the numerical value of this minimum.

(c) Let ŷc(X) = cX3 + d be a cubic estimator for Y, where c and d are constants.
Find the numerical values of c and d that minimize E[(Y − ŷc(X))2], and
write down an expression for this minimum value in terms of the appropriate
moments of X and Y. Is the cubic estimator better or worse than the linear
estimator from (b) in this particular instance?

8.29. Consider two random variables X and Y whose joint PDF is constant in
the shaded region shown in Figure P8.29, and is zero outside the shaded
region.

-1

-1 1 2 x-2

1

y

0

fX ,Y (x ,y) 

Figure P8.29
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The following statistics computed from the density function are provided:
E[X] = 0 E[Y] = 0

E[X2] = 4
3 E[Y2] = 1

3 E[XY] = 0
E[X3] = 0 E[Y3] = 0 E[X2Y] = 1

2 E[XY2] = 0
E[X4] = 16

5 E[Y4] = 1
5

(a) Are X and Y uncorrelated? Are X and Y independent? Explain.
(b) Give the expression for the LMMSE estimator ŷ�(X), and calculate the

mean square error for your result, E[(̂y�(X) − Y)2].
(c) In this part, examine the quadratic estimator ŷq(X) = a + bX2. Determine

the values of a and b that minimize the mean square error,
E[(̂yq(X) − Y)2]. For the values of a and b you just determined, calculate
the mean square error.

(d) Sketch and label graphs of the linear and quadratic estimators of parts (b)
and (c) respectively, each drawn as a function of the value x of X . Also
sketch and label the MMSE estimator ŷ(X) on the same graph. Explain how
you arrive at the MMSE estimator, and calculate the mean square error for
this estimator. How does the mean square error of the MMSE estimator
compare to that of the linear and quadratic estimators of parts (b) and (c)
above?

8.30. Let y[·] denote the output of a system driven for all time by a random input signal
w[·], and suppose the output at time n is given by

y[n] = w[n] + w[n − 1]

for all n. The input w[k] at any time k has a mean value μw = 0 and
variance σ 2

w, neither of which varies with k. Also, the input at time k is
uncorrelated with the input values at all other times. We know nothing else
about w[·], and in particular we do not have any measurements of this input
signal.

(a) Determine the mean value μy of y[n] and its variance σ 2
y (which will not

vary with n), expressing the latter in terms σ 2
w. Also determine the covariance

between y[n + 1] and y[n], and the covariance between y[n + 1] and y[n − 1],
again expressing your answers in terms of σ 2

w.
(b) Find the LMMSE estimator of y[n + 1] that uses measurements of y[n],

written as

ŷ1[n + 1] = ay[n] + b

for optimally chosen a and b. Determine a and b, and also the resulting mean
squared error E[(y[n + 1] − ŷ1[n + 1])2].

(c) Find the LMMSE estimator of y[n + 1] that uses measurements of y[n − 1],
written as

ŷ2[n + 1] = cy[n − 1] + d

for optimally chosen c and d. Determine c and d, and also the resulting mean
square error.

(d) Determine whether y[n + 1] − ŷ1[n + 1] is orthogonal to y[n − 1], that is,
determine if the residual error of the one-step predictor is orthogonal to
the value two steps back.
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(e) Draw a careful sketch that depicts the mutual relationships that you have
exposed in this problem among the three random variables y[n + 1], y[n],
y[n − 1], regarded as vectors (see Section 7.8). Verify that your sketch is
consistent with your answers in (a)–(d). Also use it to explain why the
LMMSE estimator that uses measurements of both y[n] and y[n − 1] will
do better than estimators using measurements of y[n] alone or y[n − 1]
alone.

(f) Find the LMMSE estimator of y[n + 1] using measurements of both y[n] and
y[n − 1], written as

ŷ12[n + 1] = ey[n] + fy[n − 1] + g

for optimally chosen e, f , and g. Determine e, f , and g, and also the resulting
mean square error. Verify that the mean square error is lower than the values
you obtained in (b) and (c).

8.31. This problem represents the task of estimating what one might call the ser-
vice rate R of a randomly chosen server at the College Food Court, from
measurements of the durations X1, X2, · · · , Xn of his or her service to n cus-
tomers (who may or may not be successive customers—it doesn’t matter for this
problem). Thus Xk is measured from the time the kth customer places an order
with the server to the time that the order is delivered by the server.

Suppose it is believed (on the basis of extensive prior observations of
large numbers of servers) that R is well modeled as an exponentially distributed
random variable with PDF given by

fR(r) = be−br u(r)

where the parameter b is assumed known. Here u( · ) denotes the usual unit step
function (taking the value 0 for negative arguments and the value 1 otherwise).

Assume the random variables X1, X2, · · · , Xn, when conditioned on R = r
(i.e., assuming the selected server has service rate r), are independent and
identically distributed, each being independently chosen from the following
exponential PDF with parameter r:

fXi|R(x | r) = r e−rx u(x), i = 1, 2, . . . , n .

You will find the following integral (with appropriate choices of α, y, and k) to
be of repeated help in solving this problem:∫ ∞

0
αke−αy dα = k!

yk+1
, y > 0 .

(a) What is E[R] ?
(b) What is E[Xi|R = r], the conditional expectation of Xi given R = r ?
(c) What is the joint PDF of R, Xi? And what is the joint PDF of R, X1,

X2, · · · , Xn ?
(d) What is the PDF of Xi, and what is the joint PDF of X1, X2, · · · , Xn ? Are

all the Xi mutually independent (when they are not conditioned on R = r) ?
(e) What is the conditional density of R, given X1 = x1, X2 = x2, · · · , Xn = xn ?
( f ) What is the MMSE estimate of R, given X1 = x1, X2 = x2, · · · , Xn = xn ?

Verify that for n = 0 your answer simplifies to the expression required by
your answer to (a). Also show that your answer simplifies for large n to an
expression that appears reasonable in view of your answer to (b).
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Hypothesis Testing

The topic of hypothesis testing arises in many contexts in signal processing and
communications, as well as in medicine, statistics, and other settings in which
a choice among multiple explanations or hypotheses is made on the basis of
limited and noisy data. For example, from tests on such data, we may need
to determine whether a person has a particular disease; whether a particular
radar return indicates the presence of an aircraft; which of four values was
transmitted at a given time in a pulse-amplitude modulation (PAM) system;
and so on. Hypothesis testing provides a framework for selecting among M
possible explanations for the available data in some principled or optimal way.

9.1 BINARY PULSE-AMPLITUDE MODULATION
IN NOISE

As a prelude to the broader discussion in later sections of this chapter, we first
outline an example of how hypothesis testing naturally arises in the context of
pulse-amplitude detection in noise. Chapter 3 introduced the basic principles
of PAM, and considered the effects of pulse rate, pulse shape, and channel
and receiver filtering in PAM systems. We also developed and discussed the
condition for no intersymbol interference (the no-ISI condition). Under the
assumption of no ISI, we want to now examine the effects of noise in the chan-
nel. Toward this end, we consider the overall PAM model in Figure 9.1, with
the channel noise v(t) represented as an additive term.

373
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Channel

© a[n]p(t - nT)

Filtering

Noise v(t)

Sample every T

Samples b(nT)x(t) =
h(t) f(t)

r(t) b(t)
+

Figure 9.1 Overall model of a PAM system.

© a[n]s(t - nT)

Sample every T

b[n] = r(nT)
r(t)

Noise v(t)

+

Figure 9.2 Simplified representation of a PAM system.

For the present we will assume no postfiltering at the receiver, so
f (t) = δ(t). In Chapter 13 we will see how performance is improved with
the use of filtering in the receiver. The pulse p(t) going through the channel
with impulse response h(t) produces the signal s(t) = p(t) ∗ h(t) at the channel
output. Figure 9.1 thus reduces to the overall system shown in Figure 9.2.

Since we are assuming no ISI, the discussion can focus on a single pulse
index n, chosen as n = 0 for convenience. From Figure 9.2,

b[0] = r(0) = a[0]s(0) + v(0) . (9.1)

Denoting r(0), a[0], and v(0) simply as r, a, and v respectively, and setting
s(0) = 1 without loss of generality, Eq. (9.1) becomes

r = a + v . (9.2)

Our broad objective is to determine the value of a as accurately as possible,
given the measured value r.

There are several variations of this problem, depending on the nature of
the transmitted sequence a[n] and the characteristics of the noise. The ampli-
tude a[n] may span a continuous range or it may be discrete, as would be the
case, for example, with data represented by a binary code. The amplitude may
correspondingly be modeled as a random variable A with a known probability
density function (PDF) or probability mass function (PMF); then a is the spe-
cific value that A takes in a particular outcome or instance of the probabilistic
model. The contribution of the noise also is typically represented as a random
variable V, usually continuous, with v being the specific value that it takes. We
may thus model the quantity r at the receiver as the observation of a random
variable R, with

R = A + V . (9.3)
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We want to then estimate the value of the random variable A, given that R = r.
A further processing step thus needs to be added to our receiver to obtain an
estimate of A.

In the case of binary signaling, for which the pulse amplitude can be only
one of two values, finding an estimate of A reduces to deciding, on the basis
of the observed value r of R, which of the two possible amplitudes was trans-
mitted. Two common forms of binary signaling in PAM systems are on-off
signaling and antipodal signaling. Letting a1 and a0 denote the two possible
amplitudes (representing for example a binary “one” or “zero”), in on-off
signaling we have a0 = 0, a1 �= 0, whereas in antipodal signaling a0 = −a1 �= 0.

Thus, in binary signaling, the required post-processing corresponds to
deciding between two alternative hypotheses, where the available information
may include some prior information along with a measurement r of the single
continuous random variable R. The hypotheses H are

• H0: the transmitted amplitude A takes the value a0, so R = a0 + V.

• H1: the transmitted amplitude A takes the value a1, so R = a1 + V.

The task is then to decide, given the measurement R = r, whether H0
or H1 is responsible for the measurement. Section 9.2 develops a framework
for this sort of hypothesis testing or classification task. The extension from
two hypotheses to multiple hypotheses and multiple measurements will be
straightforward, once the two-hypothesis case is understood.

9.2 HYPOTHESIS TESTING WITH MINIMUM
ERROR PROBABILITY

We begin with choosing optimally between two hypotheses, and then extend
to the case of more than two hypotheses. The general binary hypothesis test-
ing task is to decide, on the basis of a measurement r of a random variable R,
which of two hypotheses, H = H0 or H = H1, is responsible for the mea-
surement. We shall indicate these decisions by ‘H0’ and ‘H1’ respectively,
where the single quotation marks are intended to suggest the announce-
ment of a decision. An alternative common notation is Ĥ = H0 and Ĥ = H1
respectively, where Ĥ denotes the inferred value of the hypothesis H. The
measurement may be a continuous or discrete random variable.

Suppose H is modeled as a random quantity, and assume we know the
a priori or prior probabilities

P(H0 is true) = P(H = H0) = P(H0) = p0 (9.4)
and

P(H1 is true) = P(H = H1) = P(H1) = p1 , (9.5)

where the last two equalities in each case simply define streamlined notation
that we will be using. When the measured quantity is a continuous random
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variable, we shall require the conditional densities fR|H(r|H0) and fR|H(r|H1)
that tell us how the measured variable is distributed under the two respective
hypotheses. These conditional densities in effect constitute the relevant model
or specification of how the measured data relates to the two hypotheses. For
example, in the PAM setting, with R defined as in Eq. (9.3) and assuming V
is independent of A under each hypothesis, these conditional densities are
simply

fR|H(r|H0) = fV(r − a0) and fR|H(r|H1) = fV(r − a1) . (9.6)

If R is a discrete random variable, then conditional PMFs are used instead of
conditional densities.

It is natural in many settings, as in the case of digital communication
using PAM, to want to minimize the probability of picking the wrong
hypothesis, that is, to decide with minimum probability of error between the
hypotheses, given the measurement R = r. Our initial discussion of hypothesis
testing focuses on this criterion of minimum probability of error.

9.2.1 Deciding with Minimum Conditional
Probability of Error

Consider first how one would decide between H0 and H1 with minimum prob-
ability of error in the absence of any measurement of R. With the choice
‘H0’, we make an error precisely when H0 does not hold, so the probability
of error with this choice is 1 − P(H0) = 1 − p0. Similarly, with the choice ‘H1’,
the probability of error is 1 − P(H1) = 1 − p1. Thus, for minimum probability
of error, we should decide in favor of whichever hypothesis has maximum
probability—an intuitively reasonable conclusion. The preceding reasoning
extends in the same way to choosing one from among many hypotheses, and
leads to the same conclusion.

The same reasoning also applies when the objective is to decide between
H0 and H1 with minimum probability of error, knowing that R = r. However,
in this case all probabilities now need to be conditioned on the measurement
R = r. The conclusion is that to minimize the conditional probability of error,
P(error|R = r), we need to decide in favor of whichever hypothesis has maxi-
mum conditional probability, conditioned on the measurement R = r. Thus if
P(H1|R = r) > P(H0|R = r), we decide ‘H1’, and if P(H1|R = r) < P(H0|R =
r), we decide ‘H0’. This choice may be compactly written as

P(H1|R = r)

‘H1’
>

<

‘H0’

P(H0|R = r) . (9.7)

The corresponding conditional probability of error is

P(error|R = r) = min{1 − P(H0|R = r), 1 − P(H1|R = r)} . (9.8)

If the two conditional probabilities happen to be equal, the same conditional
probability of error is obtained whether we choose ‘H0’ or ‘H1’, so the choice
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is arbitrary. If there were several random variables for which we had mea-
surements, rather than just the single random variable R, we would simply
condition on all the available measurements in the preceding expressions.

The conditional probabilities P(H0|R = r) and P(H1|R = r) that appear
in Eq. (9.7) are referred to as the a posteriori, or posterior, probabilities of
the hypotheses, to distinguish them from the a priori, or prior, probabilities,
P(H0) and P(H1). The decision generated by Eq. (9.7) is accordingly referred
to as the maximum a posteriori probability decision, usually abbreviated as
the MAP decision. This MAP decision minimizes the conditional probability
of error, given the measurement.

To evaluate the posterior probabilities in Eq. (9.7), we use Bayes’ rule
to rewrite them in terms of known quantities, so the optimal decision is
determined from the comparison

p1fR|H(r|H1)
fR(r)

‘H1’
>

<

‘H0’

p0fR|H(r|H0)
fR(r)

, (9.9)

under the reasonable assumption that fR(r) > 0, that is, that the PDF of R is
positive at the value r that was actually measured. Since the denominator is
the same and positive on both sides of the above expression, the comparison
can be further simplified to

p1fR|H(r|H1)

‘H1’
>

<

‘H0’

p0fR|H(r|H0) . (9.10)

9.2.2 MAP Decision Rule for Minimum Overall
Probability of Error

A decision rule specifies a decision for each possible measurement r that
might be obtained. The probability of error Pe associated with such a rule
is obtained by averaging the conditional probability of error over all possible
measurements r, so

Pe =
∫ ∞

−∞
P(error|R = r)fR(r) dr . (9.11)

The fact that fR(r) ≥ 0 ensures that Pe is minimized by minimizing
P(error|R = r) for each r. The decision rule for minimum Pe is therefore
simply given by Eqs. (9.7) or (9.10), applied for each r. The expression in
Eq. (9.11) also shows that Pe is unaffected by the choice of hypothesis in the
case of fR(r) = 0.

The form of the MAP decision rule in Eq. (9.10) is easily visualized and
implemented. The prior probabilities pi = P(Hi) are used to scale the PDFs
fR|H(r|Hi) that describe how the measured quantity R is distributed under
each of the hypotheses. The optimal decision rule then decides in favor of the
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hypothesis associated with whichever scaled PDF is largest at the measured
value r.

The MAP decision rule induces a partitioning of the measurement space,
in this case the r axis, into decision regions. The region D1 comprises those val-
ues of r for which the decision rule chooses ‘H1’, and the region D0 comprises
those values of r for which the decision rule chooses ‘H0’.

The preceding description also applies to choosing with minimum prob-
ability of error among multiple hypotheses, rather than just two, and given
measurements of several associated random variables, rather than just one.
The reasoning is identical.

Example 9.1 MAP Rule for On-Off Signaling in Uniform Noise

Consider a random variable S that can take one of the two values 0 and 1, with cor-
responding a priori probabilities p0 = 1

4 and p1 = 3
4 . This may correspond to the two

possible sampled values a0 and a1 at the receiver in an on-off PAM signaling system in
the noise-free case. In the presence of additive noise, the noisy received observation is
R = S + N. Assume N is independent of S and is uniformly distributed in amplitude
between −2 and +2, as indicated in Figure 9.3. Under the two hypotheses H0 and H1,
the received value R is

H0 : R = 0 + N (9.12)

H1 : R = 1 + N . (9.13)

For minimum probability of error in deciding between H0 and H1 given an observation
of R, we use the MAP rule in Eq. (9.7), implemented in the form of Eq. (9.10). The left
and right sides of Eq. (9.10) are shown in Figure 9.4. Consequently, the MAP rule
specifies the following decisions:

decide ‘H0’ for − 2 < r < −1 , (9.14)

decide ‘H1’ for − 1 < r < 3 . (9.15)

0

1
4

2-2

fN (a)

a

Figure 9.3 The PDF of the noise N.

-2 2 3 r-1

p
1
fR ƒH1

 (r ƒH1)p
0
fR ƒH0

 (r ƒH0)
3

16

1

16

Figure 9.4 The scaled conditional probabilities.
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Section 9.2 Hypothesis Testing with Minimum Error Probability 379

Example 9.2 illustrates the use of the MAP rule with more than two
hypotheses, and given a measurement of a discrete random variable rather
than a continuous one.

Example 9.2 Use of the MAP Rule with Three Hypotheses

In Example 8.1 we considered minimum mean square error (MMSE) estimation of
a discrete random variable S from a noisy measurement R, where S and R have
the joint PMF shown in Figure 8.1 and reproduced in Figure 9.5. Here (S, R) takes
the values (1, 1), (0, 0), (−1, −1) with probabilities 0.2 each, and takes the values
(1, 0), (−1, 0), (0, 1), (0, −1) with probabilities 0.1 each.

Even though S can only have one of the three discrete values 0, +1, or −1, the
MMSE criterion in Example 8.1 does not account for this constraint on S. The MMSE
estimate when R = 1 is the conditional mean ŝ = E[S|R = 1] = 2

3 . This estimate mini-
mizes the mean square error but not the conditional probability of error. Given R = 1,
the conditional probability of error with the choice ŝ = 2

3 is 1. On the other hand,
choosing ŝ = 0 leads to a conditional probability of error of 2

3 because S = 0 with
probability 1

3 , given that R = 1. Choosing ŝ = 1 results in the smallest conditional
probability of error 1

3 , because S = 1 with probability 2
3 , given that R = 1.

We now extend this analysis, using the notation of hypothesis testing and invok-
ing the MAP rule to minimize the overall probability of error. The three hypotheses in
this case are

H−1 : S = −1 (9.16)

H0 : S = 0 (9.17)

H1 : S = +1 . (9.18)

For the MAP rule we determine the three conditional probabilities of these hypotheses,
given R = r, and choose the hypothesis that corresponds to the maximum conditional
(or a posteriori) probability. For example, if P(H−1 |R = r) is greater than P(H0|R = r)
and P(H1|R = r), then the optimal decision for R = r is ‘H−1’ or equivalently Ĥ =
H−1. This strategy is the extension of Eq. (9.7) for the present ternary hypothesis
example.

1

1

s

r

-1

-1

Figure 9.5 Joint PMF of S and R. The probability associated with the outcome represented
by each square is 0.2 and by each circle is 0.1.

We can also implement the preceding MAP rule in the form of Eq. (9.8) by
utilizing Bayes’ rule to express P(Hi|R = r) as
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380 Chapter 9 Hypothesis Testing

P(Hi|R = r) = P(S = i)P(R = r|S = i)
P(R = r)

i = 0, +1, −1 . (9.19)

In comparing the a posteriori probabilities for a given r, the probability P(R = r)
appears as a common scale factor in each expression, so it suffices to compare the
three terms P(S = i)P(R = r|S = i) for i = −1, 0, +1 and choose the hypothesis Hi cor-
responding to the maximum of these three terms. This is the extension of Eq. (9.10) for
this ternary example.

For this particular case, since Figure 9.5 specifies the joint probabilities, it is
easiest to recognize that

P(S = i)P(R = r|S = i) = P(R = r, S = i) i = 0, +1, −1 . (9.20)

The probability of error is thus minimized by the following decision rule:

If : r = +1 decide S = 1, (9.21)

r = 0 decide S = 0, (9.22)

r = −1 decide S = −1 . (9.23)

9.2.3 Hypothesis Testing in Coded Digital
Communication

The discussion of PAM earlier in this chapter considered binary hypothe-
sis testing on a single received pulse whose two amplitudes represented a
0 or 1 respectively. In modern digital communication systems, the message
to be sent uses an alphabet of symbols, with each symbol encoded into a
binary sequence of 0s and 1s. Consequently, in addition to making a deci-
sion on each received pulse to determine whether it represents a transmitted
0 or 1, we need to further decode a string of such bits to make our best judge-
ment of the transmitted symbol, and perhaps yet further processing to decide
on the sequence of symbols that constitutes the entire transmitted message.
It would, in principle, be better to take all the raw measurements and then
make optimal decisions about the entire sequence of symbols that was trans-
mitted, but this would be a much more complex task, involving many more
hypotheses and measurements. In practice, therefore, the task is commonly
broken down into stages, with locally optimal decisions made at the single-
pulse level to decode sequences of 0s and 1s, then further decisions made
to decode at the symbol level, and still further decisions made at the symbol
sequence level.

In the following example, we illustrate the second of these decoding
stages. The example involves deciding at the receiver which of four possible
symbols, each represented by a code word comprising 0s and 1s, was sent
from the transmitter over the channel. The example derives the minimum-
error-probability decision rule in a slightly different way than in the preceding
development, but results again in the MAP rule, embodied in extensions of
Eqs. (9.7) and (9.10) that are appropriate to the example.
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Example 9.3 Minimum-Error-Probability Symbol Detection

Symbol

selector

A
A
B
C
D

000 010
‘B’Encoder

Noise

Binary

channel

Decoder
(decision

rule)

Figure 9.6 Communication over a binary channel.

Consider the system in Figure 9.6. Suppose the transmitter randomly selects for trans-
mission one of four possible symbols: A, B, C, or D. The probabilities with which
these are selected will be denoted by P(A), P(B), P(C), and P(D) respectively.
Whatever symbol the transmitter selects is now coded appropriately for transmission
over the binary channel. The coding adds some redundancy to provide a basis for error
detection or correction at the receiver, in order to combat errors introduced by chan-
nel noise that may corrupt the individual bits. The resulting signal is then sent to the
receiver. After the receiver decodes the received pulses, attempting to correct for
channel noise in the process, it has to arrive at a decision as to which symbol was
transmitted.

We model the channel as a binary channel, which accepts a sequence of 0s and 1s
from the transmitter, and delivers a sequence of 0s and 1s to the receiver. Suppose
that because of the noise in the channel there is a probability p > 0 that a trans-
mitted 1 is received as a 0, and that a transmitted 0 is received as a 1. Because the
probability is the same for both types of errors, this binary channel is called sym-
metric. We could treat the nonsymmetric case as easily, apart from some increased
notational burden. Implicit in our definition of this channel is the assumption that it is
memoryless, that is, its characteristics during any particular transmission slot are inde-
pendent of what has been transmitted in other time slots. The channel is also assumed
time-invariant.

Given such a channel, the transmitter needs to code the selected symbol into
binary form. Suppose the transmitter uses three binary digits or bits to code each
symbol, as follows:

A : 000 , B : 011 , C : 101 , D : 110 . (9.24)

Because of the nonzero probability of bit errors introduced by the channel, the
received sequence for any of these transmissions could be any three-bit binary number:

R0 = 000 , R1 = 001 , R2 = 010 , R3 = 011 ,

R4 = 100 , R5 = 101 , R6 = 110 , R7 = 111 . (9.25)

The redundancy introduced by using three bits—rather than the two bits that would
suffice to communicate the set of four symbols—is intended to provide some protection
against channel noise. Notice that with this particular three-bits/symbol code, a single
bit error would be recognized at the receiver as an error because it would result in an
invalid code word. It takes two bit errors, which are less likely than single bit errors
(for the typical case of p < 0.5), to convert any valid code word into another valid one,
and thereby elude recognition of the error by the receiver.
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382 Chapter 9 Hypothesis Testing

The sample space governing the communication of a single symbol across the
channel is described as suggested in Table 9.1, listing the probability of every possi-
ble combination of transmitted symbol and received sequence. The ( j + 1)th row of
column A, for example, has the probability P(A, Rj) that A was transmitted and Rj
received, and similarly for columns B, C, and D. The simplest way to actually compute
this probability is by recognizing that P(A, Rj) = P(Rj|A)P(A); the characterization of
the channel permits computation of P(Rj|A), while the characterization of the infor-
mation source at the transmitter yields the prior probability P(A). The calculations are
illustrated in the table for the case of R0.

A decision rule at the receiver selects, for each possible received sequence Rj,
one of the four possible symbols or hypotheses A, B, C, or D. Any such rule can
thus be represented in Table 9.1 by selecting one and only one entry in each row. For
instance, a particular decision rule may declare D to be the transmitted signal when-
ever it receives R4; this is indicated in the table by the box around the entry in row R4,
column D. Each possible decision rule is therefore associated with a table of this form,
with precisely one entry boxed in each row. For a given decision rule, the probability
of being correct is the sum of the probabilities in all the boxed entries because this sum
gives the total probability that the decision rule declares in favor of the same symbol
that was transmitted. The probability of error, Pe, is therefore 1 minus the probability
of being correct.

It follows that to specify the decision rule for minimum probability of error or
maximum probability of being correct, we must pick in each row the box that has the
maximum entry. If more than one entry has the maximum value, we are free to pick
arbitrarily between these; Pe is not affected by which of these we pick. For row Rj in
Table 9.1, for the optimum decision rule, we should choose the symbol for which

P(symbol, Rj) = P(Rj| symbol)P(symbol) (9.26a)

= P(symbol |Rj)P(Rj) (9.26b)

is maximum. Table 9.2 displays some examples of the required computation, with
parameter values as specified in the table caption. The computation in this example
is carried out according to the prescription on the right side of Eq. (9.26a).

TABLE 9.1 JOINT PROBABILITY OF TRANSMITTED SYMBOL
AND RECEIVED BINARY SEQUENCE

A: 000 B : 011 C: 101 D : 110

P(A, R0) P(B, R0) P(C, R0) P(D, R0)
R0 = 000 = P(R0|A)P(A) = P(R0|B)P(B) = P(R0|C)P(C) = P(R0|D)P(D)

= (1 − p)3P(A) = p2(1 − p)P(B) = p2(1 − p)P(C) = p2(1 − p)P(D)

R1 = 001

R2 = 010

R3 = 011

R4 = 100 P(A, R4) P(B, R4) P(C, R4) P(D, R4)

R5 = 101

R6 = 110

R7 = 111
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TABLE 9.2 ILLUSTRATION OF THE OPTIMAL (MAP) DECISION
RULE WITH P(A) = 1

2 , P(B) = 1
4 , P(C) = 1

8 , P(D) = 1
8 , AND

p = 1
4 . The table entries are calculated as the right side of

Eq. (9.26a)

000 011 101 110
A B C D Decision

R0
000

R1
001

R2

010

(
3
4

)2 1
4

1
2

(
3
4

)2 1
4

1
4

(
1
4

)3 1
8

(
3
4

)2 1
4

1
8

‘A’

R3
011

R4
100

R5
101

R6

110

(
1
4

)2 3
4

1
2

(
1
4

)2 3
4

1
4

(
1
4

)2 3
4

1
8

(
3
4

)3 1
8

‘D’

R7
111

The right side of Eq. (9.26b) permits an intuitive interpretation of what the
optimum decision rule does. Since our comparison is being done across the row to
find the maximum entry, for a given Rj the term P(Rj) in Eq. (9.26b) stays the
same across the row, so all that we need to compare are the a posteriori prob-
abilities, P(symbol |Rj), that is, the probabilities of the various symbols, given the
data. This is again the MAP decision rule that we derived previously in a slightly
different way.

9.3 BINARY HYPOTHESIS TESTING

This section focuses on binary hypothesis testing, elaborating on vari-
ous associated concepts that help provide a more detailed picture. The
basic task is to use a measurement r of a random variable R to decide
between hypotheses H0 and H1, whose respective prior probabilities are p0
and p1 = 1 − p0.

www.konkur.in

Telegram: @uni_k
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9.3.1 False Alarm, Miss, and Detection

The sample space that is relevant to evaluating a decision rule for binary
hypothesis testing consists of the following four mutually exclusive and col-
lectively exhaustive possibilities: Hi is true and ‘Hj’ is declared, i, j = 1, 2. Of
the four possible outcomes, the two that represent errors are (H0, ‘H1’) and
(H1, ‘H0’). Therefore, the probability of error Pe—averaged over all possible
values of the measured random variable—is

Pe = P(H0, ‘H1’) + P(H1, ‘H0’)

= p0P(‘H1’|H0) + p1P(‘H0’|H1) . (9.27)

The conditional probability P(‘H1’|H0) is referred to as the conditional prob-
ability of a false alarm, and is denoted by PFA. The conditional probability
P(‘H0’|H1) is referred to as the conditional probability of a miss, and is
denoted by PM. The word conditional is usually omitted from these terms in
normal use, but it is important to keep in mind that the probability of a false
alarm and the probability of a miss are defined as conditional probabilities,
and are furthermore conditioned on different events.

The preceding terminology is historically motivated by the radar context,
in which H1 represents the presence of a target and H0 the absence of a tar-
get. A false alarm then occurs if a target is declared present when it actually
is absent, and a miss occurs when a target is declared absent when it actu-
ally is present. We will also make reference to the conditional probability of
detection,

PD = P(‘H1’|H1) . (9.28)

In the radar context, this is the probability of declaring a target is present when
it actually is present. As with PFA and PM, the word conditional is usually
omitted in normal use, but it is important to keep in mind that the probability
of detection is a conditional probability.

Expressing the probability of error in terms of PFA and PM, Eq. (9.27)
becomes

Pe = p0PFA + p1PM . (9.29)

Also note that

P(‘H0’|H1) + P(‘H1’|H1) = 1 (9.30)

or

PM = 1 − PD . (9.31)

To explicitly relate PFA and PM to whatever the corresponding decision rule
is, we recall the notion of a decision region in the measurement space. In the
case of a decision rule based on measurement of a single continuous random
variable R, specifying the decision rule corresponds to choosing a set D1 of
points on the real line such that, when the measured value r of R falls in D1,
we declare ‘H1’, and when r falls outside D1—in the region that is denoted
by D0—we declare ‘H0’. This is illustrated in Figure 9.7, for some arbitrary
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D1

f (r ƒH1)

r

f (r ƒH0)

Figure 9.7 Decision regions. The choice of D1 marked here is
arbitrary, not the optimal choice for minimum probability of error.

choice of D1. Typically, each of these decision regions comprises a collection
of intervals on the real line. There is a direct generalization of this notion to
the case where multiple random variables are measured.

With the preceding definitions, we can write

PFA =
∫
D1

fR|H(r|H0) dr (9.32)

and

PM =
∫
D0

fR|H(r|H1) dr . (9.33)

Example 9.4 False Alarm, Miss, Detection, and Error Probabilities

We return to Example 9.1 to calculate PFA, PM, PD, and Pe for the MAP decision rule
specified there. With the definitions

PFA = P (decide H1, given H0 is true) (9.34)

PM = P (decide H0, given H1 is true) (9.35)

PD = P (decide H1, given H1 is true) (9.36)

we obtain

PFA = 3
4

, PM = 0 , PD = 1 ,

so

Pe = p0PFA + p1PM = 1
4

· 3
4

= 3
16

.

While the terminology introduced earlier in this section (e.g., probability
of false alarm, miss, and detection) derives from the setting of radar detection,
other contexts in which binary hypothesis testing arises have their own terms
for these concepts. In the medical literature, for example, the interpretation
of clinical results is often understood and described in a hypothesis testing
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framework similar to that used here for communication and signal detection
problems. In the medical setting, hypothesis H0 would denote the absence of
a medical condition, and H1 its presence. The task is to decide between these
hypotheses after obtaining a measurement r in a clinical test whose outcome
is modeled as a random variable R. Though the terminology is now slightly
different, it is still suggestive of the intent, as the following examples show:

• PD is the sensitivity of the clinical test;

• PFA is the probability of a false positive;

• 1 − PFA is the specificity of the test;

• PM is the probability of a false negative;

• P(H1) is the prevalence of the condition that the test is aimed at;

• P(H1 |‘H1’) is the positive predictive value of the test and P(H0 | ‘H0’) is
the negative predictive value.

Some easy exploration using Bayes’ rule and the above terminology will show
how small the positive predictive value of a test can be if the prevalence of
the targeted medical condition is low, even if the test is highly sensitive and
specific.

9.3.2 The Likelihood Ratio Test

An alternative way of writing the minimum-Pe decision rule in Eq. (9.10) is
often useful. Rearranging that equation results in the following equivalent
decision rule:

fR|H(r|H1)
fR|H(r|H0)

‘H1’
>

<

‘H0’

p0

p1
(9.37)

or

�(r)

‘H1’
>

<

‘H0’

η . (9.38)

With fR|H(r|Hi) interpreted as measuring the likelihood of the obtained mea-
surement r under the hypothesis Hi, the ratio �(r) is called the likelihood
ratio. The above test compares the likelihood ratio with a threshold η. The
higher the prior probability p0 of H0, the greater the threshold η is, and the
greater the likelihood ratio has to be in order for the test to declare ‘H1’.

The rewriting of the decision rule as a threshold test on the likelihood
ratio is of interest because other formulations of the binary hypothesis testing
problem—with criteria other than minimization of Pe—also often lead to a
decision rule that can be expressed as a likelihood ratio test. The only differ-
ence is that the (nonnegative) threshold η is picked differently in these other
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formulations. We describe one of these alternate formulations, the Neyman–
Pearson approach, in the next subsection. The last section of the chapter then
presents another formulation, which has the objective of minimizing expected
cost, and again leads to a likelihood ratio test.

9.3.3 Neyman–Pearson Decision Rule and
Receiver Operating Characteristic

A difficulty with using the minimization of Pe as the decision criterion in many
contexts is that it relies on knowing the a priori probabilities p0 and p1, which
may be hard to determine. A useful alternative, attributable to Neyman and
Pearson, is to maximize the conditional probability of detection PD, while
keeping the conditional probability of false alarm PFA below some specified
tolerable level. The conditional probabilities are determined by the measure-
ment models under the different hypotheses, and by the decision rule, but
not by the a priori probabilities governing the selection of hypotheses. This
Neyman–Pearson formulation of the hypothesis testing problem in terms of
PD and PFA again leads to a decision rule that involves comparing the likeli-
hood ratio with a threshold, but with the threshold picked differently than for
minimum error probability. The approach is developed in more detail next,
with the assumption throughout that the measured quantity R is a continuous
random variable.

We begin by relating PD and PFA to the decision regions that define the
decision rule. Equation (9.32), repeated here, exhibits this relation for PFA:

PFA = P(‘H1’|H0) =
∫
D1

fR|H(r|H0) dr . (9.39)

The analogous integral defining PD is

PD = P(‘H1’|H1) =
∫
D1

fR|H(r|H1) dr . (9.40)

Both integrals are over the decision region D1, and have nonnegative inte-
grands. Thus increasing PD requires augmenting the set D1 by adding more of
the real axis to it (and correspondingly reducing D0). However, augmenting
the set D1 only allows PFA to stay unchanged or increase, not to decrease. Our
objective is therefore to include in D1 values of r that contribute as much as
possible to the integral that defines PD, but as little as possible to the integral
that defines PFA. As will be shown shortly, this objective can be achieved by
choosing the decision region D1 to comprise those values of r for which the
likelihood ratio �(r) exceeds a certain threshold η, so

�(r) = fR|H(r|H1)
fR|H(r|H0)

‘H1’
>

<

‘H0’

η . (9.41)

Before deriving the above rule, it helps to consider how it operates for values
of η starting at ∞ and dropping steadily from there. With η = ∞, the decision
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is always ‘H0’, so the region D1 is empty and correspondingly PD = 0, PFA = 0.
Once η drops below the largest value that �(r) can take, ‘H1’ is declared for
some values of r, so the decision region D1 is then nonzero. If an infinitesimal
drop in η in the vicinity of some value η0 causes PD to increase by 	PD and
PFA to increase by 	PFA, it follows from Eqs. (9.32), (9.40), and (9.41) that

	PD = η0 	PFA . (9.42)

Hence, at large values of η0, PD increases much faster than PFA for infinites-
imal drops in the threshold, while at lower values of η0 one obtains a
correspondingly smaller increase in PD relative to the increase in PFA.

If PFA increases continuously with decreasing η, then η eventually drops
to a value η at which one of the following happens:

• the specified bound on PFA is attained while PD < 1; or

• PD reaches 1 before PFA has attained its bound; or

• the bound on PFA is attained simultaneously with PD reaching the
value 1.

This value η is the threshold to use in the Neyman–Pearson test.
It is possible that as η is lowered through some value η, the probabil-

ity PFA jumps discontinuously from a value below its specified bound, and
at which PD < 1, to a value above this bound. In this case, it turns out that
a randomized decision rule at the threshold η allows PFA to attain its speci-
fied bound and thereby maximize PD. This randomized rule chooses ‘H1’ with
some probability α when �(r) > η, and otherwise chooses ‘H0’. The proba-
bility α is chosen to obtain a value for PFA that equals the specified bound.
Problem 9.20 involves such a randomized decision rule.

The following argument, illustrated in Figure 9.8, suggests in a little more
detail why the Neyman–Pearson criterion yields a likelihood ratio test. If the
decision region D1 is optimal for the Neyman–Pearson criterion, then any
change in D1 that keeps PFA the same cannot lead to an improvement in PD.
So suppose an infinitesimal segment of width dr at a point r in the optimal D1
region is converted to be part of D0. To keep PFA unchanged, an infinitesimal

D1

f (r ƒH1)

dr dr¿
r

f (r ƒH0)

Figure 9.8 Illustrating the construction used in deriving the likelihood
ratio test for the Neyman–Pearson criterion.
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segment of width dr′ at an arbitrary point r′ in the optimal D0 region must be
converted to be a part of D1.

The requirement that PFA be unchanged then imposes the condition

fR|H(r′|H0) dr′ = fR|H(r|H0) dr , (9.43)

while the requirement that the new PD not be larger than the old implies that

fR|H(r′|H1) dr′ ≤ fR|H(r|H1) dr . (9.44)

Combining Eqs. (9.43) and (9.44), we find

�(r′) ≤ �(r) . (9.45)

Equation (9.45) shows that the likelihood ratio cannot be less inside D1 than it
is in D0. We can therefore conclude that the optimum solution to the Neyman–
Pearson formulation is in fact based on a threshold test on the likelihood
ratio, where the threshold η is picked to obtain the largest possible PD while
ensuring that PFA is not larger than the pre-specified bound.

Receiver Operating Characteristic

In considering which numerical value to choose as a bound on PFA in the
Neyman–Pearson test, it is often useful to look at a plot of PD as a function
PFA, as the parameter η is varied between 0 and ∞. This is referred to as
the receiver operating characteristic (ROC). More broadly, the term is used
for a plot of PD versus PFA as some parameter of the decision rule is var-
ied. The ROC can be used to identify whether, for instance, modifying the
variable parameter in a given test to permit a slightly higher PFA results in a
significantly higher PD. The ROC can also be used to compare different tests.

Example 9.5 Detection and ROC for Signal in Gaussian Noise

Consider a scenario in which a radar pulse is emitted from a ground station. If an air-
craft is located in the propagation path, a reflected pulse will travel back toward the
radar station. We assume that the received signal will then consist of noise alone if
no aircraft is present, and noise plus the reflected pulse if an aircraft is present. The
processing of the received signal results in a number that we model as the realiza-
tion of a random variable R. If an aircraft is not present, then R = W, where W is
a random variable denoting the result of processing just the noise. If an aircraft is
present, then R = s + W, where the constant s is due to processing of the reflected
pulse, and is assumed here to be a known value. We thus have the following two
hypotheses:

H0 : R = W, (9.46)

H1 : R = s + W . (9.47)

Assume that the additive noise term W is Gaussian with zero mean and unit variance:

fW(w) = 1√
2π

e−w2/2. (9.48)
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Consequently,

fR|H(r|H0) = 1√
2π

e−r2/2 (9.49)

fR|H(r|H1) = 1√
2π

e−(r−s)2/2 . (9.50)

The likelihood ratio defined in Eq. (9.37) is then

�(r) = exp
[
− (r − s)2

2
+ r2

2

]
= exp

[
sr − s2

2

]
. (9.51)

For detection with minimum probability of error, the decision rule compares this
likelihood ratio against the threshold p0/p1, as specified in Eq. (9.37):

exp
[
sr − s2

2

] ‘H1’
>

<

‘H0’

η = p0

p1
(9.52)

It is interesting and important to note that, for this case, the threshold test on the
likelihood ratio can be rewritten as a threshold test on the received value r. Specifically,
Eq. (9.52) can equivalently be expressed as

[sr − s2

2

] ‘H1’
>

<

‘H0’

ln η , (9.53)

or, if s > 0,

r

‘H1’
>

<

‘H0’

1
s

[ s2

2
+ ln η

]
= γ , (9.54)

where γ denotes the threshold on r. (If s < 0, the inequalities in Eq. (9.54) are
reversed.) For example, if both hypotheses are equally likely a priori, so that p0 = p1,
then ln η = 0 and the decision rule for minimum probability of error when s > 0 is

r

‘H1’
>

<

‘H0’

s
2

= γ . (9.55)

The situation is represented in Figure 9.9.
The receiver operating characteristic displays PD versus PFA as η varies between

0 and ∞, or equivalently as γ varies between −∞ and ∞. For a specified γ in this
problem, and with s > 0,

PFA = 1√
2π

∫ ∞

γ

e−r2/2dr (9.56)

and

PD = 1√
2π

∫ ∞

γ

e−(r−s)2/2dr . (9.57)
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Varying γ from −∞ to ∞ generates the ROC shown in Figure 9.10. The point where
PFA = 0 = PD corresponds to γ = ∞ and the point where PFA = 1 = PD corresponds
to γ = −∞.

f (r ƒH0)

s r

f (r ƒH1)

g

Figure 9.9 Threshold γ on measured value r .

1.0

0.0
0.0 1.0

PFA

P
D

.5

.5

Figure 9.10 Receiver operating characteristic.

In a setting more general than the Gaussian case in Example 9.5, a
threshold test on the likelihood ratio would not simply translate to a threshold
test on the measurement r. Nevertheless, we could still decide to use a simple
threshold test on r as our decision rule, and then generate and evaluate the
associated receiver operating characteristic.

9.4 MINIMUM RISK DECISIONS

This section briefly describes a decision criterion, called minimum risk, that
includes minimum probability of error as a special case, and that in the binary
case again leads to a likelihood ratio test. We describe it for the general case
of M hypotheses.

Let the available measurement be the value r of the random variable R
(the same development holds if we have measurements of several random
variables). Suppose there is a cost cij associated with each combination of the
correct hypothesis Hj and the decision ‘Hi’ for 0 ≤ i, j ≤ M − 1, reflecting the
costs of actions and consequences that follow from this combination of model
and decision. Our objective now is to pick whichever decision has minimum
expected cost, or minimum “risk,” given the measurement.
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392 Chapter 9 Hypothesis Testing

The expected cost of deciding ‘Hi’, conditioned on R = r, is given by

E[Cost of ‘Hi’|R = r] =
M−1∑
j=0

cijP(Hj|R = r) . (9.58)

We compare these conditional expected costs for all i, and decide in favor of
the hypothesis with minimum conditional expected cost. Specifying this opti-
mal decision for each possible r yields the decision rule that minimizes the
overall expected cost or risk.

In this setting hypothesis testing comes close to the estimation problems
for continuous random variables that were considered in Chapter 8. We noted
there that a variety of such estimation problems can be formulated in terms of
minimizing an expected cost function. Establishing an estimate for a continu-
ous random variable is like carrying out a hypothesis test for a continuum of
numerically specified hypotheses, rather than just M general hypotheses, with
a cost function that reflects some numerical measure of the distance between
the actual hypothesis and the one we decide on.

Note that if cii = 0 for all i and if cij = 1 for j �= i, so all errors are
penalized equally, then the conditional expected cost in Eq. (9.58) becomes

E[Cost of ‘Hi’|R = r] =
∑
j �=i

P(Hj|r) = 1 − P(Hi|r) . (9.59)

This conditional expected cost is thus precisely the conditional probability of
error associated with deciding ‘Hi’, conditioned on R = r. The right side of the
equation then shows that to minimize this conditional probability of error we
should decide in favor of the hypothesis with largest conditional probability.
In other words, with this choice of costs, the risk (when the expectation is
taken over all possible values of r) is exactly the probability of error Pe, and
the optimum decision rule for minimizing this criterion is again seen to be the
MAP rule.

Using Bayes’ rule to rewrite P(Hj|R = r) in Eq. (9.58), and noting that
fR(r)—assumed positive—is common to all the quantities involved in our com-
parison, we see that an equivalent but more directly implementable procedure
is to pick the hypothesis for which

M−1∑
j=0

cijfR|H(r|Hj)P(Hj) (9.60)

is minimum. In the case of two hypotheses, and assuming c01 > c11, it is easy
to see that the decision rule based on Eq. (9.60) can be rewritten as

�(r) = fR|H(r|H1)
fR|H(r|H0)

‘H1’
>

<

‘H0’

P(H0)(c10 − c00)
P(H1)(c01 − c11)

= η , (9.61)

where �(r) denotes the likelihood ratio and η is the threshold. We have there-
fore again arrived at a decision rule that involves comparing a likelihood ratio
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with a threshold. If cii = 0 for i = 0, 1 and if cij = 1 for j �= i, then we obtain the
threshold associated with the MAP decision rule for minimum Pe, as expected.

An issue with the above minimum risk approach to classification, and
with the minimum-error-probability formulation that we have examined a few
times already, is the requirement that the prior probabilities P(Hi) be known.
It is often unrealistic to assume that prior probabilities are known, so we are
led to consider alternative criteria. Most important among these alternatives
is the Neyman–Pearson approach treated earlier, where the decision is based
on the conditional probabilities PD and PFA, thereby avoiding the need for
prior probabilities on the hypotheses.

9.5 FURTHER READING

Most of the texts suggested for further reading at the end of Chapter 7 con-
tain material on hypothesis testing, but see also [Kay3], [He2], [He3]. Good
introductions to the topic from the viewpoint of statistics are in [DeG], [Dek],
[Rce], and [Wal]. The challenges involved in meaningful application to an area
such as medical statistics are made apparent in [Bl1], [Bl2]. Typically the statis-
tics texts do not address the signals and systems aspects. With the growth of
Artificial Intelligence and computer or “machine” vision, hypothesis testing
took center place in tasks of classification and pattern recognition from data.
These tasks underlie much of machine learning, see for example [Abu], [Alp],
[Bis], [Kul], and [Mur].

Problems

Basic Problems

9.1. A student is taking an exam that she is equally likely to have not studied for
(hypothesis H0) or to have studied for (hypothesis H1).

The exam consists of two problems, a and b. If the student answers
correctly on problem a (respectively problem b) we shall say that event A
(respectively B) has occurred, and otherwise we shall say that event A (respec-
tively B) has occurred. Assume that the student’s performance on problem a is
independent of performance on problem b if the student has not studied, and
also if the student has studied.

Suppose P(A|H1) = 0.8, P(B|H1) = 0.6, P(A|H0) = 0.5, and
P(B|H0) = 0.2.

(a) For each possible outcome of the exam, namely each possible combination
of A or A with B or B, find the minimum-probability-of-error decision.

(b) For the decision rule you developed in (a), find the conditional probability
of declaring that the student has not studied (‘H0’), given that she actually
has (H1).
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394 Chapter 9 Hypothesis Testing

9.2. In choosing with minimum probability of error between the hypothesis H0 that
a given measurement x comes from a normal (i.e., Gaussian) distribution with
mean 0 and variance 4, and the hypothesis H1 that this measurement comes from
a normal distribution with mean 1 and variance 4, we know that the optimal
test declares ‘H1’ if x exceeds some threshold γ . Determine γ in each of the
following cases: (i) the conditional probability of false alarm is PFA = 0.5; and
(ii) the conditional probability of a miss is PM = 0.5.

9.3. Consider a binary hypothesis testing problem in which we observe a ran-
dom variable X with the following conditional PDFs specified, and shown in
Figure P9.3:

fX|H( x | H0 ) = 1
π(x2 + 1)

and fX|H( x | H1 ) = 2
π(x2 + 4)

.

Suppose that the two hypotheses H0 and H1 have prior probabilities P(H0) = 0.4
and P(H1) = 0.6, respectively. We are interested in designing a decision rule for
declaring ‘H0’ or ‘H1’, and analyzing its performance.

(a) Find the minimum-probability-of-error decision rule, i.e., the decision rule
that minimizes P(H0,‘H1’) + P(H1,‘H0’). Simplify your answer as much as
possible.

(b) Indicate, by shading the appropriate regions of the conditional probability
density plots in the figure, how you would calculate:
(i) the (conditional) probability of false alarm, PFA; and

(ii) the (conditional) probability of miss, PM.
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fX ƒH(x ƒH1)

Figure P9.3

9.4. A random variable R is observed and it is known that with probability p0 = 1
3 its

PDF is f0(r), and with probability p1 = (1 − p0) = 2
3 its PDF is f1(r), as specified

below:
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f0(r) =
{

1
2 , −1 ≤ r ≤ 1,
0, otherwise,

f1(r) = 1
2

e−|r| .

We observe the value of R and from this decide that either f0(r) is the underlying
PDF or that f1(r) is.

Decision

box

decide f0

or

decide f1

R

For Parts (a) and (b) only, assume that the decision box is specified as follows:

if |r| > γ decide f0(r),

if |r| ≤ γ decide f1(r) .

(a) For γ = 1
2 , determine the probability of error. Clearly show your reasoning.

(b) Make a carefully labeled sketch of the ROC for this decision box, as γ ranges
from 0 to +∞. Clearly show your reasoning.

(c) Determine the design for the decision box that minimizes the probability of
error. Clearly show your reasoning.

(d) For this part of the problem, p0 and p1 are no longer constrained to the val-
ues 1

3 , 2
3 , but p0 cannot be either 0 or 1. For which value(s) of p0, 0 < p0 < 1,

does the decision rule that minimizes the probability of error always decide
the same hypothesis, regardless of the value of R observed? Explain.

9.5. Consider the following hypothesis testing problem. Under the two hypothesis H0
and H1, the observation Y is

H0 : Y = s0 + N,

H1 : Y = s1 + N .

Here s0 and s1 are both known constants, and N is a random variable with the
PDF fN(α) shown in Figure P9.5.

fN (a)

a

1
2

-1 +1 Figure P9.5

As a reminder, below are the definitions associated with the decision rule:
(i) P0 and P1 are the prior probabilities for H0 and H1 respectively;

(ii) PFA is P(‘H1’|H0);
(iii) PM is P(‘H0’|H1);
(iv) PD is P(‘H1’|H1); and
(v) P(error) = P(H0, ‘H1’) + P(H1, ‘H0’), i.e., it is the probability that the

declared hypothesis is different from the true hypothesis.
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(a) Must PFA and PD sum to 1 for every decision rule? Briefly justify your
answer.

(b) Suppose P0 = 1
4 and for a particular decision rule we find that PFA = 1

4 and
PD = 3

4 . Determine the probability P(‘H1’) that the detector decides H1.
(c) Assume the following values:

P0 = 1
4

, s0 = 0, s1 = 1 . (9.62)

Determine the range or ranges of values for the observation y for which you
would decide ‘H1’ so that the probability of error is minimized.

(d) Assume the following values:

s0 = −1
2

, s1 = 1
2

. (9.63)

The decision rule is

y
‘H1’
><

‘H0’
γ .

Draw the ROC representing PD versus PFA as γ ranges from −∞ to +∞.

9.6. On any particular day, inbound subway trains arrive at the train station according
to one of three equally likely schedules: H1, H2, and H3. When schedule Hi is
in effect (i = 1, 2, 3), the first-order interarrival time Y, i.e., the time between a
randomly selected pair of consecutive train arrivals, is uniformly distributed in
the interval [0, i].

Suppose we make only one observation, i.e., we measure the interarrival
time between a randomly selected pair of consecutive trains; let this measured
time be Y = y. We wish to decide which schedule is in effect.

(a) Determine the minimum-error-probability decision rule based on this
observation.

(b) Find the probability of error for the decision rule you found in (a).

9.7. Consider a binary hypothesis testing problem in which a receiver observes a
random variable R. Based on this observation the receiver decides which one
of two hypotheses—denoted by H0 and H1—to declare as true. The receiver
can be tuned to operate at any point on the receiver operating characteristic,
which for this receiver is given by PD = √

PFA, where PD = P(‘H1’|H1) and
PFA = P(‘H1’|H0). (As a reminder, the probability of error Pe of the receiver
is defined as the probability of declaring ‘H0’ and having H1 true, or declaring
‘H1’ and having H0 true.)

(a) For this part, suppose that the prior probability of hypothesis H0 being true
is P(H0) = 3

4 and that the receiver is tuned to operate at the point PD = 1
2

on the ROC curve. Determine PFA and the probability of error Pe at that
operating point.

(b) For the prior probability of H0 given in (a) (i.e., P(H0) = 3
4 ), there is an

operating point on the ROC curve that minimizes the overall probability of
error Pe. Determine PD if the receiver operates at that point.

(c) Now let P(H0) = 1
4 . Determine PD and PFA on the ROC curve and the

corresponding Pe such that Pe is minimized.
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9.8. Consider a digital communication system in which an independent identically
distributed (i.i.d.) bit stream s[n] of 1s and 0s is transmitted over a faulty, mem-
oryless channel. P0 denotes the probability that a 0 is sent and P1 denotes
the probability that a 1 is sent, with P1 = 1 − P0. The probability of a 1 being
received as a 0 is 1

4 and the probability of a 0 being received as a 1 is 1
4 . We

then process the received signal r[n] through a memoryless, and possibly nonlin-
ear system H to obtain an estimate ŝ [n] of s[n] from r[n]. The overall system is
depicted in Figure P9.8-1.

1

0

1

0

r[n]
H

Binary memoryless channel

s[n]
s[n]

3
4

3
4

1
4

1
4

Figure P9.8-1

(a) Determine the system H in terms of P0 so that the error probability Pe is
minimized, where Pe is defined as the probability that ŝ[n] is not equal to
s[n] at a given time index n.

(b) In this part, assume that the system H has been designed for us and
according to the manufacturer it has PM = 1

10 and the ROC specified by:
ROC: PD = (PFA)

1
10

where

PD = Prob (declare that a 1 was sent | a 1 was sent);

PFA = Prob (declare that a 1 was sent | a 0 was sent); and

PM = Prob (declare that a 0 was sent | a 1 was sent) .

The overall system in Figure P9.8-1 can then be represented as a new
binary memoryless channel as depicted in Figure P9.8-2. Determine the new
probabilities Pa, Pb, Pc, and Pd.

1

0

1

0

Pa

Pb

Pc

Pd

Binary memoryless channel

s[n] s[n]

Figure P9.8-2
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Advanced Problems

9.9. Suppose X and Y are two real random variables. You observe that X = x but
don’t know the value that Y has taken, and would like to decide with minimum
probability of error whether Y is greater than x or less than x. (You can assume
that the joint, conditional, and marginal probability density functions of X and
Y are continuous, i.e., have no jumps or delta functions.)

(a) Specify the appropriate decision rule for the case where X and Y are inde-
pendent. (You should find that your answer involves one or more of the
following numbers associated with a PDF: (i) the mean or expected value;
(ii) the median (which is the point where the cumulative distribution func-
tion takes the value 0.5, i.e., the probability mass above the median equals
the probability mass below it); and (iii) the mode or modes (which are the
points at which the PDF takes its maximum value).)

(b) Specify the appropriate decision rule for the case where X and Y are not
independent.

9.10. A radar pulse is emitted from a ground station. If an aircraft is located in the
propagation path, a reflected pulse will travel back toward the radar station. We
assume that the received signal consists of noise plus the reflected pulse if an
aircraft is present, and noise alone if no aircraft is present. The processing of the
received signal produces a number R modeled as a random variable. If an aircraft
is present, then R = s + N; if an aircraft is not present, then R = N. The constant
s > 0 is due to the reflected pulse and is a known value; the random variable N is
due to the noise. We thus have the two hypotheses:

H1 : R = s + N, and

H0 : R = N .

Assume that the additive noise is Gaussian with zero mean and variance σ 2, i.e.,

fN(x) = 1

σ
√

2π
e−x2/(2σ2) .

Also assume that the a priori probability of an aircraft being in the path of the
radar is 0.05, i.e., P(H1) = 0.05.

(a) What is fR|H1 (r|H1), the PDF for R when an aircraft is present?
(b) What is fR|H0 (r|H0), the PDF for R when an aircraft is not present?
(c) Suppose we use a minimum-probability-of-error detection strategy for

which the corresponding decision rule is

�(r)
‘H1’

><
‘H0’

η ,

where ‘Hi’ denotes “decide Hi”. Determine the likelihood ratio, �(r), and
the threshold, η. Also solve this detection strategy for r to arrive at an
expression of the form

r
‘H1’
><

‘H0’
γ

and find γ .
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(d) In terms of the standard Q-function, defined as

Q(x) = 1√
2π

∫ ∞

x
e−t2/2 dt ,

determine the probability of making an error.
(e) Recall that the conditional probability of detection is defined by PD =

P(‘H1’ | H1), and the probability of false alarm by PFA = P(‘H1’ | H0).

(i) What is γ if PFA = 1 and PD = 1?
(ii) What is γ if PFA = 0 and PD = 0?

(iii) If PD = 0.5, what is γ ?
(iv) If PFA = 0.5, what is γ ?

Note that the answers to (i)–(iv) allow you to label, with the corresponding values
of γ, some points on the receiver operating characteristic for this example, as
described in the text.

9.11. In this problem you will use an appropriate computational platform to get some
empirical feel for the performance of a decision rule in a signal detection prob-
lem, using Monte Carlo simulation, i.e., by running repeated random trials of the
decision rule and computing appropriate statistics.

Suppose, after some processing of a received signal, we obtain a numerical
quantity R that, according to some model we have of the signal detection process,
equals the sum of a random variable X (which can take the values ±A with equal
probability) and a random variable N, i.e.,

H1(x = +A) : R = +A + N

H0(x = −A) : R = −A + N.

The random variable N is Gaussian with zero mean and variance σ 2:

fN(x) = 1

σ
√

2π
e−x2/(2σ2).

(a) Using σ = 2 and A = 2, generate 10,000 sample values of N, and 10,000
sample values of X . Then define the received values

R = X + N

corresponding to the numerical results of 10,000 experiments.
(b) Plot the first 50 points of X and R and compare the two plots.
(c) Determine the minimum-probability-of-error decision rule that you would

use to recover the value of X from R. Evaluate the corresponding theoretical
probability of error, Pe, for this decision rule, using the Q-function.

(d) Use the rule in (c) to decide (or hypothesize), for each value of R in your
data set, what the underlying value of X is (i.e., ±A), and store these
decisions in a vector ̂X .

(e) Compare X and ̂X . How many wrong decisions were made? Calculate the
empirical probability of error, P̂e, by dividing the number of wrong decisions
your decision rule made by the total number of decisions made.

( f ) Repeat (a)–(e), but with σ = 2 and A = 1.
(g) Repeat (a)–(e), but appropriately modified for the case where P(X =

+A) = 0.75 rather than 0.5.
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9.12. Consider the binary hypothesis testing problem in which the conditional PDFs
of the data under the two hypotheses are:

H0 : fR|H(r | H0) = 1√
2π

e− (r−μ0)2

2 , and

H1 : fR|H(r | H1) = 1√
2π

e− (r−μ1)2

2 .

The a priori probabilities are denoted by p0 = P(H0) and p1 = P(H1), respec-
tively. Assume that p0 = p1 = 1

2 . We will also refer throughout this problem to a
positive, known value A > 0.

Figure P9.12 shows a set of ROC curves for different detection systems.
The point X on the solid ROC curve denotes the detection probability or rate
(PD) and the false alarm rate (PFA) for the minimum-probability-of-error detec-
tor that chooses between H0 and H1, under the assumption that μ0 = 0 and
μ1 = +A.

Answer the following questions and justify your answers.

(a) We are now told that μ0 = −A (with μ1 = +A), and the a priori prob-
abilities remain equal. From the set (M, N, O, P) of possible points in
Figure P9.12, identify all that could correspond to the minimum-error-
probability detector under the stated assumptions.

(b) We are now told that μ0 = 0 and μ1 = +A, but the a priori probabilities
change to

p0 = 0.38 and p1 = 0.62.

From the set (M, N, O, P) of possible points in Figure P9.12, identify all
that could correspond to the minimum-error-probability detector under the
stated assumptions.
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9.13. Consider a system for determining whether a radio channel is being used for a
covert communication session. Let H1 denote the hypothesis that such a session
is in progress, and let H0 denote the hypothesis that one is not. We will base our
decision on a single scalar measurement R of the channel via our antenna. This
measurement is a zero-mean Gaussian random variable whose variance is larger
when a session is in progress. Specifically,

H0 : fR|H(r | H0) = 1√
2π

e−r2/2

H1 : fR|H(r | H1) = 1√
4π

e−r2/4.

The a priori probabilities are denoted by p0 = P(H0) and p1 = P(H1),
respectively.

(a) Determine p0 such that the minimum-error-probability decision rule is

|r|
‘H1’
><

‘H0’
1.

(b) Determine constants a1, a2, b1, b2, and c, such that the probability of error
Pe for your rule in part (a) can be expressed in the form

Pe = a1Q(b1) + a2Q(b2) + c ,

where the Q-function is defined as

Q(x) = 1√
2π

∫ ∞

x
e−t2/2dt .

(c) Is the following statement true or false?
“When p0 > 0, it is possible that the optimal decision rule will always decide
H1 irrespective of the observed value of r.”
If your answer is false, explain. If true, construct an example (i.e., determine
a value of p0 > 0 such that the decision rule which minimizes the probability
of error always decides H1).

9.14. Consider a transmitter that sends either the message m0 (hypothesis H0) or the
message m1 (hypothesis H1), where these hypotheses occur with respective prob-
abilities p0 and p1, Assume that a receiver observes R = r, where R has the
following conditional statistics: when H0 is true, R is Gaussian with mean s0 and
variance σ 2

0 , and when H1 is true, R is Gaussian with mean s1 and variance σ 2
1 .

Assume that 0 < s0 < s1 and 0 < σ 2
0 < σ 2

1 .

(a) Show that the minimum-probability-of-error decision rule for this problem
can be reduced to

r2 + ar

‘H1’
>

<

‘H0’

γ ,

and provide expressions for the constants a and γ .
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(b) Now suppose that we implement a simple threshold decision rule,

r

‘H1’
>

<

‘H0’

ξ ,

instead of the minimum-probability-of-error rule. For this threshold receiver
express the (conditional) false-alarm probability PFA and the (conditional)
miss probability PM in terms of

Q(x) ≡
∫ ∞

x

e−y2/2
√

2π
dy .

(c) Choose the value of ξ for your receiver in part (b) to make PFA = PM. Find
the probability of error that results, written in terms of Q(x).

9.15. An exponentially distributed random variable X has different variances under
hypotheses H0 and H1, as given by the following densities:

fX|H(x | H0) = 1
2

e−|x| P(H0) = 3
5

fX|H(x | H1) = 1
8

e−|x|/4 P(H1) = 2
5

(a) The decision rule for choosing between H0 and H1 with minimum probabil-
ity of error, given the measurement X = x, involves comparing the absolute
value |x| with a threshold γ . State the precise form of the decision rule and
determine γ .

(b) Draw plots of the two conditional densities using the same set of axes (i.e.,
superimpose them on the same diagram), then indicate and label the areas
corresponding to the (conditional) probability of a false alarm, PFA, and the
(conditional) probability of a miss, PM, for the decision rule you derived in
part (a).

(c) If PFA = α and PM = β, write expressions for the probability Pe of mak-
ing an error in your decision, and for P(H1 | ‘H1’), the probability that H1
actually holds, given that your decision rule has decided H1 holds.

(d) Now suppose the prior probabilities are P(H0) = p0 and P(H1) = 1 − p0,
instead of the values you considered for the preceding parts. Is there any
range of values of p0 for which you would always declare ‘H1’, no matter
what the value of x? And is there any range of values of p0 for which you
would always declare ‘H0’, no matter what x is?

9.16. A signal X[n] that we will be measuring for n = 1, 2 is known to be generated
according to one of the following two hypotheses:

Hneg : X[1] = −1 + W[1] and X[2] = −s + W[2] and

Hpos : X[1] = +1 + W[1] and X[2] = +s + W[2],

where s is some known positive number and, under each hypothesis, W[1] and
W[2] are i.i.d. random variables uniformly distributed in the interval [−2, 2].
Given measurements x[1] and x[2] of X[1] and X[2] respectively, we would like
to decide between the hypotheses Hneg and Hpos.
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(a) One ad hoc strategy for processing the measurements is to base the decision
on the sum of the measurements:

r = x[1] + x[2] .

To analyze decision schemes that are based on consideration of the sum r,
we first examine the random variable

R = X[1] + X[2] .

For the case where s = 2, draw fully labeled sketches of the conditional den-
sities of R under each of the hypotheses, i.e., sketches of fR|H(r|Hneg) and
fR|H(r|Hpos).

(b) With things still set up as in (a), suppose that the two hypotheses have
equal prior probabilities, so P(Hneg) = P(Hpos) = 1

2 . Specify a decision rule
that, on the basis of knowledge that R = r, decides between Hneg and Hpos
with minimum probability of error. Also compute the probability of error
associated with this decision rule.

(c) If your decision rule in (b) announces in favor of Hneg, what is the probabil-
ity that Hneg actually holds? In other words, what is P(Hneg | ‘Hneg’)?

(d) Now forget about working with the sum of the measurements, and instead
take advantage of the fact that you actually have two measurements.
Accordingly, first sketch or fully describe the conditional densities

f
X[1],X[2]

∣∣H(x[1], x[2]
∣∣Hneg

)
and f

X[1],X[2]
∣∣H(x[1], x[2]

∣∣Hpos

)
,

still for the case where s = 2, and use this to specify a decision rule that can
actually pick perfectly (i.e., with zero probability of error) between the two
hypotheses, no matter what the prior probabilities of the two hypotheses are.

(e) Suppose now that s = 1. Again sketch or fully describe the two conditional
densities listed in (d). Then, for the case where P(Hneg) = 1

3 , so P(Hpos) =
2
3 , specify the decision rule that will pick between the two hypotheses
with minimum probability of error, on the basis of knowledge that X[1] =
x[1] and X[2] = x[2]. Also determine the conditional probability of declar-
ing that Hpos holds, given that Hneg actually holds. Finally, determine the
probability of error associated with this decision rule.

Extension Problems

9.17. In a hospital ward for lung disease, a surgeon has discovered a suspicious shadow
in the lung X-ray of her patient. The hypothesis H takes the value H0 or H1.
Under hypothesis H1 the shadow represents a cancer, and under hypothesis H0
the shadow represents harmless scar tissue. Moreover, assume that the results of
the X-ray test are summarized by a random variable X , with

fX|H (x | H1) = xe−xu(x) ,

and

fX|H (x | H0) = e−xu(x) ,

where u(x) is the unit step function. The doctor must decide, based on the value
of X obtained from the X-ray results, whether or not to operate. Since a priori
probabilities would be difficult to apply here, we will consider an alternative
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404 Chapter 9 Hypothesis Testing

to the MAP rule for our decision criterion. Specifically, we’ll define PD, the
conditional probability of correct detection, as

PD = P(decide H1 | H1 true) ,

and PFA, the conditional probability of a false alarm, as

PFA = P(decide H1 | H0 true) .

Our hypothesis testing rule will aim to maximize PD with the constraint that
PFA = α = 0.1. This framework corresponds to the Neyman–Pearson hypo-
thesis test.

(a) Show that this maximization problem is equivalent to minimizing

η(1 − α) +
∫

D0

[
fx|H(x | H1) − ηfx|H (x | H0)

]
dx ,

where D0 denotes the range of X values for which we decide in favor of
H0 (the complementary range, where we decide in favor of H1, is denoted
by D1).

(b) It should be clear from (a) that the optimal D0 contains precisely those val-
ues of x for which the term in brackets inside the integral above is negative.
Show that this is equivalent to

�(x)
‘H1’
><

‘H0’
η

where η is chosen so that PFA = α.
(c) Using the result in part (b), find the optimal D1 and D0 for deciding whether

to operate on the patient. What is the resulting value of PD?

9.18. Assume we have to decide between hypotheses H0 and H1 based on a measured
random variable X . The conditional densities for X given H0 and H1 are shown
in Figure P9.18.

f(x ƒH0) f(x ƒH1)

-2 -12 1x x

1
4

1
2

Figure P9.18

(a) You observe X = x. What is the minimum-error-probability decision rule
for choosing between ‘H0’ and ‘H1’ when P(H0) = P(H1)? Find the
corresponding (conditional) probability of detection PD, (conditional) prob-
ability of false alarm PFA, and probability of error Pe.

(b) For what range of values of P(H0) does the minimum-error-probability
decision rule always choose ‘H0’?

(c) Now consider what happens when you have measurements x1 and x2,
respectively, of two random variables X1 and X2. Assume that under each
hypothesis, H0 and H1, these random variables are independent, and that
each is distributed as shown in Figure P9.18. With P(H0) = P(H1), what is
the minimum-probability-of-error decision rule? What is the probability of
error? Does the value of the probability of error seem reasonable, given the
value of Pe obtained in part (a)?
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(d) Suppose the situation is exactly as in (d) with P(H0) = P(H1) again, except
that now you are not given x1 and x2 separately, but instead only have the
sum s = x1 + x2, which you can consider as a measurement of the random
variable S = X1 + X2. Determine and make fully labeled sketches of the
density of S under each of the hypotheses, and use this information to deter-
mine the minimum-probability-of-error decision rule and the probability of
error Pe.

9.19. A continuous random variable X can take values in the range [0, 2] and is
governed by one of two possible PDFs, corresponding to the following two
hypotheses:

H0 : fX|H(x|H0) = 1
2

for 0 ≤ x ≤ 2

H1 : fX|H(x|H1) = x
2

for 0 ≤ x ≤ 2 .

In other words, X is uniformly distributed under H0, and has a “triangular”
distribution under H1.
(a) Draw fully labeled sketches of the conditional densities

fX|H(x|H0) and fX|H(x|H1)

on the same figure (i.e., use a common set of horizontal and vertical axes).
In a separate figure below the first figure, draw a fully labeled plot of the
likelihood ratio

�(x) = fX|H(x|H1)
fX|H(x|H0)

.

(b) We have seen that a variety of decision rules take the form

�(x)

‘H1’
>

<

‘H0’

η

for some appropriately chosen threshold η. For what range of η will PD =
P(‘H1’ | H1) take the value 0, and for what range of η will it take the value
1? Also determine the corresponding values of PFA = P(‘H1’ | H0) in these
two instances.

(c) For 0 ≤ η ≤ 2, write PD and PFA in terms of η, and check that your expres-
sions yield the answers you obtained in (b) for the corresponding values of
η there.

(d) Use your expressions in (c) to compute PD as a function of PFA. If you’ve
done this correctly, you should discover that dPD/dPFA = η, which is true
much more generally, and is a useful check. Sketch this function in the form
of a receiver operating characteristic (ROC) curve. On the same figure, plot
PM = P(‘H0’ | H1) as a function of PFA.

(e) The probability of error for this decision rule depends in general on the prior
probabilities P(H0) = p0 and P(H1) = 1 − p0. However, if PFA and PM are
related in a particular way, the probability of error will not depend on p0.
How should PFA and PM be related for this to happen? And is there any
choice of η that will allow PFA and PM to be related in this way? Your plot
of PM as a function of PFA in part (d) should allow you to decide.
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9.20. A signal X[n] that we will be measuring for n = 1, 2 is known to be generated
according to one of the following two hypotheses:

H0 : X[n] = s0[n] + W[n] and

H1 : X[n] = s1[n] + W[n] ,

where s0[n] and s1[n] are specified signals and W[n] are i.i.d. Gaussian random
variables with mean 0 and variance σ 2. We would like to decide between the
hypotheses H0 and H1 with minimum probability of error. In this Gaussian case
the optimum decision rule involves comparing a weighted combination of the
measurements with a threshold. The weighted combination takes the form

R = v[1]X[1] + v[2]X[2] ,

for appropriately chosen weights v[1] and v[2], and we denote the threshold by γ .
When the measurements are obtained, the random variable R takes a specific
value r. We decide ‘H1’ if r > γ , and decide ‘H0’ otherwise.

(a) Suppose the hypotheses are equally likely a priori, and that s0[n] = 0 for
n = 1, 2, while s1[n] = δ[n − 1] − δ[n − 2]. What v[1], v[2], and γ should be
chosen for the optimum decision rule? Also write expressions for the corre-
sponding probability of error Pe and for P(H0 | ‘H0’); your results should be
stated in terms of the standard function

Q(α) = 1√
2π

∫ ∞

α

e−t2/2 dt .

It may help you to first sketch a figure showing how R is distributed under
H0 and H1 respectively.

(b) Suppose in (a) that the hypotheses were not equally likely, and that the opti-
mum decision rule resulted in P(‘H1’| H0) = 0.5. What would v[1], v[2] and
γ be for this case?

(c) Suppose in (a) that the hypotheses were not equally likely, but that both
had nonzero probability. Are there values of P(H0) �= 0 and P(H1) = 1 −
P(H0) �= 0 for which the optimum decision rule ends up always deciding in
favor of H0? Explain.

(d) Suppose that s1[n] is as in (a), but s0[n] = −s1[n]. Assuming that the
hypotheses are equally likely, determine v[1], v[2], and γ . Will the proba-
bility of error in this case be greater than, equal to, or smaller than in (a)?
Explain your answer.

9.21. A signal X[n] that we will be measuring for n = 1, 2 is known to be generated
according to one of the following two hypotheses:

Hno : X[n] = W[n] and

Hyes : X[n] = s[n] + W[n],

where s[1] and s[2] are specified (deterministic) numbers, with 0 < s[i] ≤ 1 for
i = 1, 2, and where W[1] and W[2] are i.i.d. random variables uniformly dis-
tributed in the interval [−1, 1] (and hence with mean 0 and variance 1

3 ). Given
measurements x[1] and x[2] of X[1] and X[2] respectively, we would like to
decide between the hypotheses Hno and Hyes.

(a) One strategy for processing the measurements is to only look at a linear
combination of the measurements, of the form

r = g[1]x[1] + g[2]x[2] .
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To analyze decision schemes that are based on consideration of the
number r, consider the random variable

R = g[1]X[1] + g[2]X[2] .

Determine the mean and variance of R under each of the hypotheses, and
note that the variance does not depend on which hypothesis applies. Hint:
you do not need to find the densities of R under the two hypotheses in order
to find these conditional means and variances.

Now choose g[1] and g[2] to maximize the relative distance between these
means, where “relative” signifies that the distance is to be measured relative
to the standard deviation of R under hypothesis Hno (or equivalently under
Hyes). Equivalently, maximize the following signal-to-noise ratio (SNR):(

E[R|Hyes] − E[R|Hno]
)2

variance(R|Hno)
.

(b) In the particular case where s[1] = s[2] = 1, which we shall focus on for the
rest of this problem, it turns out that the choice g[1] = g[2] = c will serve, for
any nonzero constant c, to maximize the SNR in (a). Taking c = 3, draw fully
labeled sketches of the conditional densities of R under each of the hypothe-
ses, i.e., sketches of fR|H(r|Hno) and fR|H(r|Hyes). Suppose now that the prior
probabilities on the two hypotheses are p(Hno) = 2

3 and hence p(Hyes) = 1
3 .

Specify a decision rule that, on the basis of knowledge that R = r, decides
between Hno and Hyes with minimum probability of error. Also compute
the probability of error associated with this decision rule. (It will probably
help you to shade on the appropriate sketch the regions corresponding to
the conditional probability of a false yes and to the conditional probability
of a false no.)

(c) If we did not hastily commit ourselves to working with a scalar measure-
ment obtained by taking a linear combination of the measurements x[1] and
x[2], we might perhaps have done better. Accordingly, first sketch or fully
describe the conditional densities

fX[1],X[2]|H
(

x[1], x[2] | Hno

)
and fX[1],X[2]|H

(
x[1], x[2] | Hyes

)
for the case where s[1] = s[2] = 1. Then specify a decision rule that will
pick between the two hypotheses with minimum probability of error, on the
basis of knowledge that X[1] = x[1] and X[2] = x[2], and still with the prior
probabilities specified in (b), namely p(Hno) = 2

3 and hence p(Hyes) = 1
3 .

Determine the probability of error associated with this decision rule, and
compare with your result in (b).

9.22. We observe a random variable Y whose statistics are as follows:

Y =
{

W when H = H0

1 + W when H = H1 ,

where the hypotheses H = H0 and H = H1 occur with a priori probabilities
P0 and P1 = 1 − P0, respectively, and W is a continuous random variable with
probability density fW(w) under both H0 and H1 (i.e., W is independent of H).

(a) Express the conditional probability densities fY|H( y | H0 ) and fY|H( y | H1 )
in terms of fW( · ).
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(b) Suppose we use the threshold test

y

‘H1’
>

<

‘H0’

γ ,

to make a decision based on the observation Y = y. The corresponding con-
ditional probability of a miss, PM , is shown in Figure P9.22 as a function of
the test’s threshold, γ . Use this PM versus γ behavior and your answers
from (a) to determine and sketch the conditional probability densities
fY|H( y | H0 ) and fY|H( y | H1 ).

(c) Use your results from (b) to determine the conditional probability of false
alarm, PFA, as a function of the threshold, γ , for the threshold test given
above. Plot your answer.

(d) Suppose that P0 = P1 = 1
2 . Find the minimum error probability, Pmin, that

can be realized by optimizing the γ value in the threshold test given above.
(e) Suppose that P0 = P1 = 1

2 . Find the rule for deciding between ‘H0’ and ‘H1’
with minimum probability of error. Your answer should be an explicit pair
of decision regions: D0 = { y : ‘H0’ }, the set of measurements y for which
you will announce ‘H0’; and D1 = { y : ‘H1’ }, the set of measurements for
which you will announce ‘H1’. Note that you are not restricted to using the
given threshold test. Evaluate the probability of error, Pe, for your optimum
decision rule.

PM

1

1/2
3/8

0 1 2 3 4
g Figure P9.22

9.23. Suppose that under hypothesis H0 a random variable X is distributed uniformly
in the interval [−2, 2], while under hypothesis H1 it is distributed uniformly in
the interval [−1, 1]. We will be getting a measurement x of X , and would like
to design a decision rule that will maximize the conditional probability of detec-
tion, PD = P(‘H1’|H1), subject to the conditional probability of false alarm not
exceeding a specified level β, i.e., PFA = P(‘H1’|H0) ≤ β. The Neyman–Pearson
result tells us we can do this by choosing a decision rule that announces ‘H1’ if
the likelihood ratio

�(x) = fX|H(x|H1)
fX|H(x|H0)

exceeds a properly selected threshold η, i.e., if �(x) > η; and we announce ‘H0’ if
the likelihood ratio falls below the threshold, i.e., if �(x) < η. The value we pick
for η will determine what values of PD and PFA we get. This problem will explore
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how we might extend the simple Neyman–Pearson decision rule above if there is
a nonzero probability that �(X) can exactly equal η.

(a) Sketch �(x) as a function of x for −2 < x < 2. Note that we need not spend
time wondering what �(x) is at the edges of the PDFs or for |x| > 2, since the
probability that X will take any of these specific values is 0. Also note, for use
in interpreting (c) below, that �(X), with the random variable X replacing
the argument x, is a function of a random variable, hence a random variable
itself.

(b) For η fixed at some value in each of the following ranges, specify PD and
PFA:

(1) η at some value strictly below 0;
(2) η at some value strictly between 0 and 2; and
(3) η at some value strictly above 2.

It is clear from the results in (b) that with η restricted to the ranges there, we will
only get three possible values of PFA, with the three values of PD that go along
with these. In other words, the ROC that plots PD as a function of PFA will only
have three points on it. The next part shows how we can get other values of PFA
and correspondingly other values of PD to enable us to meet the specification
PFA ≤ β more closely, thereby getting a higher PD than if we had to make do
with just the three-point ROC above.

(c) Suppose we choose η = 2. What is the probability that we get �(X) = 2 if
H0 holds? And what is the probability we get �(X) = 2 if H1 holds? With
η = 2, you should see from the above computations that we will never get
�(x) > η, but we might well get �(x) = η or �(x) < η. Suppose we still
announce ‘H0’ when �(x) < η; however, when �(x) = η we shall announce
‘H0’ with probability α, and otherwise announce ‘H1’. What are PFA and PD
with this randomized decision rule? Explain carefully. Draw the ROC that
you get as α varies from 0 to 1, and also include the three points on the ROC
that you computed in (b).

Using a similar randomized decision rule for the threshold η = 0, we can get
additional points on the ROC, but we omit this here.
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10 Random Processes

The earlier chapters in this text focused on the effect of linear and time-
invariant (LTI) systems on deterministic signals, developing tools for analyz-
ing this class of signals and systems, and using these to understand applications
in communication (e.g., pulse amplitude modulation), control (e.g., stability
of feedback systems), and signal processing (e.g., filtering). It is important
to develop a comparable understanding and associated tools for treating the
effect of LTI systems on signals modeled as the outcome of probabilistic exper-
iments, that is, the class of signals referred to as random signals, alternatively
referred to as random processes or stochastic processes. Such signals play a
central role in signal and system analysis and design. In this chapter, we define
random processes through the associated ensemble of signals, and explore
their time-domain properties. Chapter 11 examines their characteristics in the
frequency domain. The subsequent chapters use random processes as models
for random or uncertain signals that arise in communication, control and sig-
nal processing applications, and study a variety of related inference problems
involving estimation and hypothesis testing.

10.1 DEFINITION AND EXAMPLES OF
A RANDOM PROCESS

In Section 7.3, we defined a random variable X as a function that maps
each outcome of a probabilistic experiment to a real number. In a similar
manner, a real-valued continuous-time (CT) or discrete-time (DT) random
process—X(t) or X[n], respectively—is a function that maps each outcome of

410
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Section 10.1 Definition and Examples of a Random Process 411

a probabilistic experiment to a real CT or DT signal, termed the realization
of the random process in that experiment. For any fixed time instant t = t0 or
n = n0, the quantities X(t0) and X[n0] are simply random variables. The col-
lection of signals that can be produced by the random process is referred to as
the ensemble of signals in the random process.

Example 10.1 Random Oscillators

As an example of a random process, consider a warehouse containing N harmonic
oscillators, each producing a sinusoidal waveform of some specific amplitude, fre-
quency, and phase. The three parameters may in general differ between oscillators.
This collection constitutes the ensemble of signals. The probabilistic experiment that
yields a particular signal realization consists of selecting an oscillator according to some
probability mass function (PMF) that assigns a probability to each of the numbers from
1 to N, so that the ith oscillator is picked with probability pi. Associated with each
outcome of this experiment is a specific sinusoidal waveform. Before an oscillator is
chosen, there is uncertainty about what the amplitude, frequency, and phase of the
outcome of the experiment will be, that is, the amplitude A, frequency , and phase �

are all random variables. Consequently, for this example, we might express the random
process as

X(t; A, , �) = A sin(t + �) (10.1)

where, as in Figure 10.1, we have listed after the semi-colon the parameters that are
random variables. As the discussion proceeds, we will typically simplify the notation to
refer to X(t) when it is clear which parameters are random variables; so, for example,
Eq. (10.1) will alternatively be written as

X(t) = A sin(t + �) . (10.2)

The value X(t1) at some specific time t1 is also a random variable. In the context of
this experiment, knowing the PMF associated with the selection of the numbers 1 to
N involved in choosing an oscillator, as well as the specific amplitude, frequency, and
phase of each oscillator, we could determine the probability distributions of any of the
underlying random variables A, , �, or X(t1) mentioned above.

°

c

Amplitude

tt1

X(t; c)

Figure 10.1 A random process.

Throughout this and later chapters, we will consider many examples of
random processes. What is important at this point, however, is to develop a
good mental picture of what a random process is. A random process is not just
one signal but rather an ensemble of signals. This is illustrated schematically
in Figure 10.2, for which the outcome of the probabilistic experiment could
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be any of the four waveforms indicated. Each waveform is deterministic, but
the process is probabilistic or random because it is not known a priori which
waveform will be generated by the probabilistic experiment. Consequently,
prior to obtaining the outcome of the probabilistic experiment, many aspects
of the signal are unpredictable, since there is uncertainty associated with which
signal will be produced. After the experiment, or a posteriori, the outcome is
totally determined.

If we focus on the values that a CT random process X(t) can take at a
particular instant of time, say t1—that is, if we look down the entire ensem-
ble at a fixed time—what we have is a random variable, namely X(t1). If we
focus on the ensemble of values taken at an arbitrary collection of � fixed
time instants t1 < t2 < · · · < t� for some arbitrary positive integer �, we have a
set of � jointly distributed random variables X(t1), X(t2), · · · , X(t�), all deter-
mined together by the outcome of the underlying probabilistic experiment.
From this point of view, a random process can be thought of as a family of
jointly distributed random variables indexed by t. A full probabilistic char-
acterization of this collection of random variables would require the joint
probability density functions (PDFs) of multiple samples of the signal, taken
at arbitrary times:

fX(t1),X(t2), · · · ,X(t�)(x1, x2, · · · , x�) (10.3)

for all � and all t1, t2, · · · , t�.
Correspondingly, a DT random process consists of a collection of ran-

dom variables X[n] for all integer values of n, with a full probabilistic
characterization consisting of the joint PDF

fX[n1],X[n2], · · · ,X[n�](x1, x2, · · · , x�) (10.4)

for all � and all integers n1, · · · , n�.

t
X(t) = Xa(t)

t
X(t) = Xb(t)

t
X(t) = Xc(t)

t
X(t) = Xd(t)

t2t1

Figure 10.2 Realizations of the random process X (t).
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In a general context, it would be impractical to have a full characteri-
zation of a random process through Eqs. (10.3) or (10.4). As we will see in
Example 10.2 and in other examples in this chapter, in many useful cases
the full characterization can be inferred from a simpler probabilistic char-
acterization. Furthermore, for much of what we deal with in this text, a
characterization of a random process through first and second moments, as
discussed in Section 10.2, is useful and sufficient.

Example 10.2 An Independent Identically Distributed (I.I.D.) Process

Consider a DT random process whose values X[n] may be regarded as independently
chosen at each time n from a fixed PDF fX (x), so the values are independent and identi-
cally distributed, thereby yielding what is called an independent identically distributed
(i.i.d.) process. Such processes are widely used in modeling and simulation. For exam-
ple, suppose a particular DT communication channel corrupts a transmitted signal with
added noise. If the noise takes on independent values at each time instant, but with
characteristics that seem unchanging over the time window of interest, then the noise
may be well modeled as an i.i.d. process. It is also easy to generate an i.i.d. process in
a simulation environment, provided a random number generator can be arranged to
produce samples from a specified PDF. Processes with more complicated dependence
across time samples can then be obtained by filtering or other operations on the i.i.d.
process, as we will see in this chapter as well as the next.

For an i.i.d. process, we can write the joint PDF as a product of the marginal
densities, that is,

fX[n1],X[n2], · · · X[n�](x1, x2, · · ·, x�) = fX(x1)fX(x2) · · · fX (x�) (10.5)

for any choice of � and n1, · · · , n�.

An important set of questions that arises as we work with random pro-
cesses in later chapters of this text is whether, by observing just part of the
outcome of a random process, we can determine the complete outcome. The
answer will depend on the details of the random process. For the process in
Example 10.1, the answer is yes, but in general the answer is no. For some ran-
dom processes, having observed the outcome in a given time interval might
provide sufficient information to know exactly which ensemble member it cor-
responds to. In other cases this will not be sufficient. Some of these aspects are
explored in more detail later, but we conclude this section with two additional
examples that further emphasize these points.

Example 10.3 Ensemble of Batteries

Consider a collection of N batteries, with Ni of the batteries having voltage vi, where vi
is an integer between 1 and 10. The plot in Figure 10.3 indicates the number of batteries
with each value vi. The probabilistic experiment is to choose one of the batteries, with
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Figure 10.3 Plot of battery voltage distribution for Example 10.3.

the probability of picking any specific one being 1
N , that is, any one battery is equally

likely to be picked. Thus, scaling Figure 10.3 by 1
N represents the PMF for the battery

voltage obtained as the outcome of the probabilistic experiment. Since the battery volt-
age is a signal (which in this case happens to be constant with time), this probabilistic
experiment generates a random process. In fact, this example is similar to the oscilla-
tor example discussed earlier, but with frequency and phase both zero so that only the
amplitude is random, and restricted to be an integer.

For this example, observation of X(t) at any one time is sufficient information to
determine the outcome for all time.

Example 10.3 is a very simple random process that, together with
Example 10.4, helps to visualize some important general concepts of station-
arity and ergodicity associated with random processes.

Example 10.4 Ensemble of Coin Tossers

In this example, consider a collection of N people, each independently having written
down a long arbitrary string of 1s and 0s, with each entry chosen independently of
any other entry in their string (similar to a sequence of independent coin tosses), and
with an identical probability of a 1 at each entry. The random process now comprises
this ensemble of the strings of 1s and 0s. A realization of the process is obtained by
randomly selecting a person (and therefore one of the N strings of 1s and 0s). After
selection, the specific ensemble member of the random process is totally determined.

Next, suppose that you are shown only the 10th entry in the selected string.
Because of the manner in which the string was generated, it is clearly not possible
from that information to determine the 11th entry. Similarly, if the entire past history
up to the 10th entry was revealed, it would not be possible to determine the remaining
sequence beyond the tenth.

While the entire sequence has been determined in advance by the nature of the
experiment, partial observation of a given ensemble member is in general not sufficient
to fully specify that member.

Rather than looking at the nth entry of a single ensemble member, we can con-
sider the random variable corresponding to the values from the entire ensemble at the
nth entry. Looking down the ensemble at n = 10, for example, we would see 1s and 0s
in a ratio consistent with the probability of a 1 or 0 being chosen by each individual
at n = 10.
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Section 10.2 First- and Second-Moment Characterization of Random Processes 415

10.2 FIRST- AND SECOND-MOMENT
CHARACTERIZATION OF RANDOM
PROCESSES

In the above discussion, we noted that a random process can be thought of as
a family of jointly distributed random variables indexed by t or n. However
it would in general be extremely difficult or impossible to analytically repre-
sent a random process in this way. Fortunately, the most widely used random
process models have special structure that permits computation of such a sta-
tistical specification. Also, particularly when we are processing our signals
with linear systems, we often design the processing or analyze the results by
considering only the first and second moments of the process.

The first moment or mean function of a CT random process X(t), which
we typically denote as μX (t), is the expected value of the random variable X(t)
at each time t, that is,

μX (t) = E[X(t)] . (10.6)

The autocorrelation function and the autocovariance function represent sec-
ond moments. The autocorrelation function RXX (t1, t2) is

RXX(t1, t2) = E[X(t1)X(t2)] (10.7)

and the autocovariance function CXX (t1, t2) is

CXX(t1, t2) = E[(X(t1) − μX (t1))(X(t2) − μX (t2))]

= RXX (t1, t2) − μX (t1)μX (t2) , (10.8)

where t1 and t2 are two arbitrary time instants. The word auto (which is some-
times dropped to simplify the terminology) refers to the fact that both samples
in the correlation function or the covariance function come from the same
process.

One case in which the first and second moments actually suffice to com-
pletely specify the process is a Gaussian process, defined as a process whose
samples are always jointly Gaussian, represented by the generalization of the
bivariate Gaussian to many variables.

We can also consider multiple random processes, for example, two
processes, X(·) and Y(·). A full stochastic characterization of this requires the
PDFs of all possible combinations of samples from X(·) and Y(·). We say that
X(·) and Y(·) are independent if every set of samples from X(·) is independent
of every set of samples from Y(·), so that the joint PDF factors as follows:

fX(t1), · · ·X(tk),Y(t′1), · · ·Y(t′�)(x1, · · · , xk, y1, · · · , y�)

= fX(t1), · · ·X(tk)(x1, · · · , xk).fY(t′1), · · ·Y(t′�)(y1, · · · , y�) (10.9)

for all k, �, and all choices of sample times.
If only first and second moments are of interest, then in addition to the

individual first and second moments of X(·) and Y(·), we need to consider the
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cross-moment functions. Specifically, the cross-correlation function RXY (t1, t2)
and the cross-covariance function CXY (t1, t2) are defined respectively as

RXY (t1, t2) = E[X(t1)Y(t2)], and (10.10)

CXY (t1, t2) = E[(X(t1) − μX(t1))(Y(t2) − μY(t2))]

= RXY(t1, t2) − μX(t1)μY (t2) (10.11)

for arbitrary time t1, t2. If CXY(t1, t2) = 0 for all t1, t2, we say that the processes
X(·) and Y(·) are uncorrelated. Note again that the term uncorrelated in its
common usage means that the processes have zero covariance rather than zero
correlation.

The above discussion carries over to the case of DT random processes,
with the exception that now the sampling instants are restricted to integer
times. In accordance with our convention of using square brackets [ · ] around
the time argument for DT signals, we will write μX [n] for the mean func-
tion of a random process X[ · ] at time n. Similarly, we will write RXX [n1, n2]
and CXX [n1, n2] for the correlation and covariance functions involving sam-
ples at times n1 and n2, and RXY[n1, n2] and CXY[n1, n2] for the cross-moment
functions of two random variables X[ · ] and Y[ · ] sampled at times n1 and n2
respectively.

10.3 STATIONARITY

10.3.1 Strict-Sense Stationarity

In general, we would expect that the joint PDFs associated with the random
variables obtained by sampling a random process at an arbitrary number � of
arbitrary times will be time-dependent, that is, the joint PDF

fX(t1), · · · ,X(t�)(x1, · · · , x�) (10.12)

will depend on the specific values of t1, · · · , t�. If all the joint PDFs remain the
same under arbitrary time shifts, so that if

fX(t1), · · · ,X(t�)(x1, · · · , x�) = fX(t1+α), · · · ,X(t�+α)(x1, · · · , x�) (10.13)

for arbitrary α, then the random process is said to be strict-sense stationary
(SSS). Said another way, for an SSS process, the statistics depend only on the
relative times at which the samples are taken, not on the absolute times. The
processes in Examples 10.2 and 10.3 are SSS. More generally, any i.i.d. process
is strict-sense stationary.

10.3.2 Wide-Sense Stationarity

Of particular use is a less restricted type of stationarity. Specifically, if the mean
value μX(t) is invariant with time and the autocorrelation RXX (t1, t2) or,
equivalently, the autocovariance CXX(t1, t2) is a function of only the time dif-
ference (t1 − t2), then the process is referred to as wide-sense stationary
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(WSS). A process that is SSS is always WSS, but the reverse is not necessarily
true. For a WSS random process X(t), we have

μX(t) = μX (10.14)

RXX (t1, t2) = RXX(t1 + α, t2 + α) for every α

= RXX(t1 − t2, 0)

= RXX(t1 − t2) , (10.15)

where the last equality defines a more compact notation since a single argu-
ment for the time difference (t1 − t2) suffices for a WSS process. Similarly,
CXX(t1, t2) will be written as CXX (t1 − t2) for a WSS process. The time differ-
ence (t1 − t2) will typically be denoted as τ and referred to as the lag variable
for the autocorrelation and autocovariance functions.

For a Gaussian process, that is, a process whose samples are always
jointly Gaussian, WSS implies SSS because jointly Gaussian variables are
entirely determined by their joint first and second moments.

Two random processes X(·) and Y(·) are referred to as jointly WSS if
their first and second moments, including the cross-covariance, are station-
ary. In this case, we use the notation RXY (τ ) to denote E[X(t + τ )Y(t)]. It is
worth noting that an alternative convention sometimes used elsewhere is to
define RXY(τ ) as E[X(t)Y(t + τ )]. In our notation, this expectation would be
denoted by RXY (−τ ). It is important to take account of what notational con-
vention is being followed when referencing other sources, and you should also
be clear about the notational convention used in this text.

Example 10.5 Random Oscillators Revisited

Consider again the harmonic oscillators introduced in Example 10.1:

X(t; A, �) = A cos(φ0t + �) (10.16)

where A and � are independent random variables, and now the frequency is fixed at
some known value denoted by φ0.

If � is also fixed at a constant value θ0, then every outcome is of the form
x(t) = A cos(φ0t + θ0), and it is straightforward to see that this process is not WSS (and
consequently also not SSS). For instance, if A has a nonzero mean value, μA �= 0, then
the expected value of the process, namely μA cos(φ0t + θ0), is time varying. To show
that the process is not WSS even when μA = 0, we can examine the autocorrelation
function. Note that x(t) is fixed at 0 for all values of t for which φ0t + θ0 is an odd
multiple of π/2, and takes the values ±A halfway between such points; the correlation
between such samples taken π/φ0 apart in time can correspondingly be 0 (in the former
case) or −E[A2] (in the latter). The process is thus not WSS, even when μA = 0.

However, if � is distributed uniformly in [−π , π], then

μX (t) = μA

∫ π

−π

1
2π

cos(φ0t + θ) dθ = 0 , (10.17)

CXX (t1, t2) = RXX (t1, t2)

= E[A2]E[cos(φ0t1 + �) cos(φ0t2 + �)] . (10.18)
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418 Chapter 10 Random Processes

Equation (10.18) can be evaluated as

CXX (t1, t2) = E[A2]
2

∫ π

−π

1
2π

[cos(φ0(t2 − t1)) + cos(φ0(t2 + t1) + 2θ)] dθ (10.19)

to obtain

CXX (t1, t2) = E[A2]
2

cos(φ0(t2 − t1)) . (10.20)

For this restricted case, then, the process is WSS. It can also be shown to be SSS,
although this is not totally straightforward to show formally.

For the most part, the random processes that we treat will be WSS. As
noted earlier, to simplify notation for a WSS process, we write the correla-
tion function as RXX (t1 − t2); the argument (t1 − t2) is often denoted by the
lag variable τ at which the correlation is computed. When considering only
first and second moments and not the entire PDF or cumulative distribution
function (CDF), it will be less important to distinguish between the random
process X(t) and a specific realization x(t) of it—so a further notational simpli-
fication is introduced by using lowercase letters to denote the random process
itself. We shall thus refer to the random process x(t), and—in the case of a WSS
process—denote its mean by μx and its correlation function E[x(t + τ )x(t)]
by Rxx(τ ). Correspondingly, for DT we refer to the random process x[n]
and, in the WSS case, denote its mean by μx and its correlation function
E[x[n + m]x[n]] by Rxx[m].

10.3.3 Some Properties of WSS Correlation
and Covariance Functions

For real-valued WSS processes x(t) and y(t), the correlation and covariance
functions have the following symmetry properties:

Rxx(τ ) = Rxx(−τ ) , Cxx(τ ) = Cxx(−τ ) , (10.21)

Rxy(τ ) = Ryx(−τ ) , Cxy(τ ) = Cyx(−τ ) . (10.22)

For example, the symmetry in Eq. (10.22) of the cross-correlation function
Rxy(τ ) follows directly from interchanging the arguments inside the defining
expectations:

Rxy(τ ) = E[x(t)y(t − τ )] (10.23a)

= E[y(t − τ )x(t)] (10.23b)

= Ryx(−τ ) . (10.23c)

The other properties in Eqs. (10.21) and (10.22) follow in a similar manner.
Equation (10.21) indicates that the autocorrelation and autocovariance

functions have even symmetry. Equation (10.22) indicates that for cross-
correlation and cross-covariance functions, interchanging the random vari-
ables is equivalent to reflecting the function about the τ axis. And of course,
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Eq. (10.21) is a special case of Eq. (10.22) with y(t) = x(t). Similar properties
hold for DT WSS processes.

Another important property of correlation and covariance functions
follows from noting that, as discussed in Section 7.7, Eq. (7.63), the corre-
lation coefficient of two random variables has magnitude not exceeding 1.
Specifically since the correlation coefficient between x(t) and x(t + τ ) is given
by Cxx(τ )/Cxx(0), then

−1 ≤ Cxx(τ )
Cxx(0)

≤ 1 , (10.24)

or equivalently,

−Cxx(0) ≤ Cxx(τ ) ≤ Cxx(0) . (10.25)

Adding μ2
x to each term above, we can conclude that

−Rxx(0) + 2μ2
x ≤ Rxx(τ ) ≤ Rxx(0) . (10.26)

In Chapter 11, we will demonstrate that correlation and covariance func-
tions are characterized by the property that their Fourier transforms are real
and nonnegative at all frequencies, because these transforms describe the fre-
quency distribution of the expected power in the random process. The above
symmetry constraints and bounds will then follow as natural consequences,
but they are worth highlighting here.

We conclude this section with two additional examples. The first, the
Bernoulli process, is the more formal name for repeated independent flips of a
possibly biased coin. The second example, referred to as the random telegraph
wave, is often used as a simplified representation of a random square wave or
switch in electronics or communication systems.

Example 10.6 The Bernoulli Process

The Bernoulli process is an example of an i.i.d. DT process with

P(x[n] = 1) = p (10.27)

P(x[n] = −1) = (1 − p) (10.28)

and with the value at each time instant n independent of the values at all other time
instants. The mean, autocorrelation, and covariance functions are:

E
{
x[n]

} = 2p − 1 = μx (10.29)

E
{
x[n + m]x[n]

} =
{

1 m = 0
(2p − 1)2 m �= 0

(10.30)

Cxx[m] = E{(x[n + m] − μx)(x[n] − μx)} (10.31)

= {1 − (2p − 1)2}δ[m] = 4p(1 − p)δ[m] . (10.32)
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420 Chapter 10 Random Processes

Example 10.7 Random Telegraph Wave

An example of a CT random process that we will make occasional reference to is
the random telegraph wave. A representative sample function of a random telegraph
wave process is shown in Figure 10.4 and can be defined through the following two
properties:

1. x(0) = ±1 with equal probability 0.5. This property together with the obvious
fact that in any time interval the number of sign changes will be either even or
odd also implies that x(t) = ±1 with equal probability 0.5 at any time t.

2. x(t) changes polarity at Poisson times, that is, the probability of k sign changes in
a time interval of length T is

P(k sign changes in an interval of length T) = (λT)ke−λT

k! , (10.33)

where the constant λ represents the rate of the transitions.

Property 2 implies that the probability of a (nonnegative), even number of sign
changes in an interval of length T is

P(even # of sign changes) =
∞∑

k=0
k even

(λT)ke−λT

k! = e−λT
∞∑

k=0

1 + (−1)k

2
(λT)k

k! . (10.34)

Using the identity

eλT =
∞∑

k=0

(λT)k

k! , (10.35)

Eq. (10.34) becomes

P(even # of sign changes) = e−λT (eλT + e−λT)
2

= 1
2

(1 + e−2λT ) . (10.36)

Similarly, the probability of an odd number of sign changes in an interval of length T is

P(odd # of sign changes) = 1
2

(1 − e−2λT ) . (10.37)

t

+1

-1

x(t)

Figure 10.4 One realization of a random telegraph wave.
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Section 10.4 Ergodicity 421

From Eqs. (10.36) and (10.37), we conclude that

μX (t) = 0, and (10.38)

Rxx(t1, t2) = E[x(t1)x(t2)]

= 1 × P
(
x(t1) = x(t2)

)+ (−1) × P
(
x(t1) �= x(t2)

)
= e−2λ|t1−t2| . (10.39)

In other words, the process is exponentially correlated and WSS.

10.4 ERGODICITY

The formal concept of ergodicity is sophisticated and subtle and beyond the
scope of this book, but the essential idea is described here. We typically
observe a particular realization of a random process (e.g., we record a noise
waveform) and want to characterize the statistics of the random process by
measurements on one ensemble member. For instance, we could consider the
time average of the waveform to represent the mean value of the process,
assuming the mean value is constant for all time. If for (almost) every real-
ization or with probability 1, the time average equals the ensemble mean, the
process is referred to as ergodic in mean value.

We could also construct a histogram that represents the fraction of
time—rather than the fraction of the ensemble at any given time—for which
the waveform lies in different amplitude bins, and then examine whether
this temporal amplitude histogram reflects the probability density across the
ensemble of the value obtained at a particular sampling time. If the random
process is such that the amplitude distribution of (almost) any particular real-
ization over time is representative of the probability distribution down the
ensemble, then the process is called ergodic in distribution. More generally, a
process is simply termed ergodic if ensemble statistics can be replaced by tem-
poral statistics on (almost) every particular realization. A simple example of
a process that is not ergodic is Example 10.3, although the process is SSS. For
this example, the behavior of any particular realization is not representative
of the behavior down the ensemble.

In our discussion of random processes, we will primarily be concerned
with first- and second-order moments. While it is difficult to determine in
general whether a random process is ergodic, there are criteria, specified in
terms of the moments of the process, that establish ergodicity in the mean and
in autocorrelation. Of course, a process with time-varying mean cannot be
ergodic in the mean. It can be shown, however, that a WSS process with finite
variance at each instant and with an autocovariance function that approaches
zero as the lag goes to infinity is ergodic in the mean. Criteria for ergodicity of
the mean are explored in Example 11.3 (see also Problem 10.43).

Frequently, ergodicity is simply assumed for convenience, in the absence
of evidence that the assumption is not reasonable. Under this assumption, the
mean and autocorrelation can be obtained from time averaging on (almost)
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any single ensemble member or realization, through the following equalities,
stated here for the CT case:

E[x(t)] = lim
T→∞

1
2T

T∫
−T

x′(t) dt (10.40)

and

E[x(t)x(t − τ )] = lim
T→∞

1
2T

T∫
−T

x′(t)x′(t − τ ) dt , (10.41)

where x′(t) here denotes a particular realization, not the ensemble.
A random process for which Eqs. (10.40) and (10.41) are true for

(almost) any realization is referred as second-order ergodic. The DT version
of Eq. (10.40), for a process that is ergodic in mean value, states that

E{x[n]} = lim
K→∞

1
2K + 1

K∑
−K

x′[k] , (10.42)

with an analogous version of Eq. (10.41) for ergodicity in correlation.

10.5 LINEAR ESTIMATION OF RANDOM
PROCESSES

A common class of problems in a variety of aspects of communication, con-
trol, and signal processing involves the estimation of one random process from
observations of another, or estimating (predicting) future values of a process
from observation of its past values. For example, it is common in commu-
nication systems that the signal at the receiver is a corrupted version of the
transmitted signal, and we would like to estimate the transmitted signal from
the received signal. Other examples are predicting weather or financial data
from past observations. We will be treating this general topic in more detail
in Chapter 12, but a first look at it here can be beneficial in understanding
random processes.

We first consider a simple example of linear prediction of a random
process, and then a more elaborate example of linear finite-impulse-response
(FIR) filtering of a noise-corrupted process to estimate the underlying random
signal.

10.5.1 Linear Prediction

As a simple illustration of linear prediction, consider a WSS DT process x[n].
Knowing the value at time n0, we may wish to predict what the value will be m
samples into the future, that is, at time n0 + m. We limit the prediction strat-
egy to an affine one: with x̂ [n0 + m] denoting the predicted value, we restrict
x̂ [n0 + m] to be of the form

x̂ [n0 + m] = ax[n0] + b (10.43)
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and choose the predictor parameters a and b to minimize the expected value
of the square of the error, that is, we choose a and b to minimize

ε = E{(x[n0 + m] − x̂ [n0 + m])2} , (10.44)

or equivalently,

ε = E{(x[n0 + m] − ax[n0] − b)2} . (10.45)

This is identical to the linear minimum mean square error (LMMSE) esti-
mation problem in Section 8.2, with Ŷ� in Eqs. (8.38) and (8.43) now corre-
sponding to x̂ [n0 + m], and X in those equations corresponding to x[n0]. The
development in Section 8.2 concluded that the error x[n0 + m] − x̂ [n0 + m]
associated with the optimal estimate is orthogonal to the available data x[n0]
and that the estimate is unbiased, that is, the expected value of the error is
zero. The corresponding equations are

E{(x[n0 + m] − ax[n0] − b)x[n0]} = E{(x[n0 + m] − x̂ [n0 + m])x[n0]} = 0
(10.46a)

E{x[n0 + m] − ax[n0] − b} = E{x[n0 + m] − x̂ [n0 + m]} = 0 .
(10.46b)

Carrying out the multiplications and expectations in Eqs. (10.46) results in the
following, which can be solved for the desired constants:

Rxx[n0 + m, n0] − aRxx[n0, n0] − bμx[n0] = 0 (10.47a)

μx[n0 + m] − aμx[n0] − b = 0 . (10.47b)

Equivalently, from Eq. (8.57), we obtain

a = Cxx[n0 + m, n0]/Cxx[n0] (10.48)

and from Eq. (8.52) we obtain

b = μx[n0 + m] − aμx[n0] . (10.49)

Since the process is assumed to be WSS, Rxx[n0 + m, n0] = Rxx[m]. Assume
also that it is zero mean, so μx = 0. Equations (10.47), (10.48), and (10.49)
then reduce to

a = Rxx[m]/Rxx[0] = Cxx[m]/Cxx[0] (10.50)

b = 0 (10.51)

so that

x̂ [n0 + m] = Cxx[m]
Cxx[0]

x[n0] . (10.52)

When the process is WSS but not necessarily zero mean, the LMMSE
predictor is given by

x̂ [n0 + m] = μx + Cxx[m]
Cxx[0]

(x[n0] − μx) . (10.53)
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An extension of this discussion would consider how to do LMMSE prediction
when measurements of several past values are available.

In the next section, we consider another context in which linear estima-
tion of random processes naturally arises, specifically estimation of a random
process from noisy measurements.

10.5.2 Linear FIR Filtering

As another example, which we will treat in more generality in Chapter 12
on signal estimation, consider a DT signal s[n] that has been corrupted by
additive noise d[n]. For example, s[n] might be a signal transmitted over a
channel and d[n] the noise introduced by the channel. The received signal r[n]
is then

r[n] = s[n] + d[n] . (10.54)

Assume that s[·] and d[·] are zero-mean jointly WSS random processes
and are uncorrelated. At the receiver we would like to process r[·] with
a causal FIR filter to estimate the transmitted signal s[n], as indicated in
Figure 10.5.

s [n]
s[n]

d[n]

r[n]
h[n]+ Figure 10.5 Estimating the

noise-corrupted signal.

If h[·] is a causal FIR filter of length L, then

ŝ [n] =
L−1∑
k=0

h[k]r[n − k] . (10.55)

We would like to determine the filter coefficients h[k] to minimize the mean
square error between ŝ [n] and s[n], that is, minimize ε given by

ε = E{(s[n] − ŝ [n])2}

= E{(s[n] −
L−1∑
k=0

h[k]r[n − k])2} . (10.56)

We again apply the results from Section 8.2. Specifically, the error {s[n] − ŝ [n]}
associated with the optimal estimate is orthogonal to the available data,
r[n − m] for m = 0, · · · , L – 1. This corresponds to the condition

E{(s[n] −
∑

k

h[k]r[n − k])r[n − m]} = 0, m = 0, 1, · · · , L − 1 . (10.57)
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Carrying out the multiplications in Eq. (10.57) and taking expectations
results in

L−1∑
k=0

h[k]Rrr[m − k] = Rsr[m] , m = 0, 1, · · · , L − 1 . (10.58)

These are the normal equations, Eq. (8.87) and Eq. (8.88), specialized to the
context of FIR filtering. They are written here in terms of correlation rather
than covariance functions as the two are identical for the zero-mean case
that we are assuming. Equation (10.58) constitutes L equations that can be
solved for the L parameters h[k]. With r[n] = s[n] + d[n], it is straightfor-
ward to show that Rsr[m] = Rss[m] + Rsd[m] and since we assumed that s[·]
and d[·] are uncorrelated, then Rsd[m] = 0 and Rsr[m] = Rss[m]. Similarly,
Rrr[m] = Rss[m] + Rdd[m].

As will be done in Chapter 12, these results are also easily modified for
the case where the processes no longer have zero mean.

10.6 LTI FILTERING OF WSS PROCESSES

We will see in later chapters how the correlation properties of a WSS random
process, and the effects of LTI systems on these properties, play an important
role in understanding and designing systems for such tasks as filtering, signal
estimation, signal detection, and system identification. We focus in this section
on understanding in the time domain how LTI systems shape the correlation
properties of a WSS random process. In Chapter 11, we will develop a parallel
picture in the frequency domain, after establishing that the frequency distribu-
tion of the expected power in a WSS random signal is described by the Fourier
transform of the autocorrelation function.

Consider an LTI system whose input is a sample function of a WSS ran-
dom process x(t), that is, a signal chosen by a probabilistic experiment from
the ensemble that constitutes the random process x(t). More simply, the input
is the random process x(t).

Among other considerations, it is of interest to know when the output
process y(t)—the ensemble of signals obtained as responses to the signals in
the input ensemble—will itself be WSS, and to determine its mean and auto-
covariance or autocorrelation functions, as well as its cross-correlation with
the input process. For an LTI system with impulse response h(t), the output
y(t) is given by the convolution

y(t) =
∫ +∞

−∞
h(v)x(t − v) dv =

∫ +∞

−∞
x(v)h(t − v) dv (10.59)

for any specific input signal x(t) for which the convolution is well defined. The
convolution is well defined if, for instance, the input x(t) is bounded and the
system is bounded-input, bounded-output (BIBO) stable, that is, the system
impulse response is absolutely integrable. Figure 10.6 illustrates generically
what the two components of the integrand in the convolution integral might
look like.
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t v

v

x(v)

h(t - v)

Figure 10.6 Illustration of the two
terms in the integrand of Eq. (10.59).

Rather than requiring that every sample function of our input process
be bounded, it will suffice for the convolution computations below to assume
that E[x2(t)] = Rxx(0) is finite. This assumption, assuming also that the system
is BIBO stable, ensures that y(t) is a well-defined random process, and that the
formal manipulations carried out below—for instance, interchanging expecta-
tion and convolution—can all be justified more rigorously by methods that
are beyond our scope here. In fact, the results obtained can also be applied,
when properly interpreted, to cases where the input process does not have a
bounded second moment, for example, when x(t) is so-called CT white noise,
for which Rxx(τ ) = δ(τ ). The results can also be applied to a system that is not
BIBO stable, as long as it has a well-defined frequency response H( jω), as in
the case of an ideal low-pass filter, for example.

The convolution relationship Eq. (10.59) can be used to deduce the first-
and second-order properties of y(t). What will be established is that y(t) is
itself WSS, and that x(·) and y(·) are in fact jointly WSS. Expressions for the
autocorrelation of the output and the cross-correlation between input and
output will also be developed.

First, consider the mean value of the output. Taking the expected value
of both sides of Eq. (10.59),

E[y(t)] = E
[∫ +∞

−∞
h(v)x(t − v) dv

]
=
∫ +∞

−∞
h(v)E[x(t − v)] dv

=
∫ +∞

−∞
h(v)μx dv

= μx

∫ +∞

−∞
h(v) dv

= H( j0) μx = μy . (10.60)

In other words, the mean of the output process is constant, and equals the
mean of the input scaled by the “DC” or zero-frequency gain of the system.
This is also what the constant response of the system would be if its input were
held constant at the value μx.

The preceding result and the linearity of the system also allow us to con-
clude that applying the zero-mean WSS process x(t) − μx to the input of the
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stable LTI system will result in the zero-mean process y(t) − μy at the out-
put. This fact will be useful below in converting results that are derived for
correlation functions into results that also apply to covariance functions.

Next, consider the cross-correlation between output and input:

E[y(t + τ )x(t)] = E
[{ ∫ +∞

−∞
h(v)x(t + τ − v) dv

}
x(t)
]

=
∫ +∞

−∞
h(v)E[x(t + τ − v)x(t)] dv . (10.61)

Since x(t) is WSS, E[x(t + τ − v)x(t)] = Rxx(τ − v), so

E[y(t + τ )x(t)] =
∫ +∞

−∞
h(v)Rxx(τ − v) dv

= Ryx(τ ) . (10.62)

Note that the cross-correlation depends only on the lag τ between the output
and input processes, not on both τ and the absolute time location t.

We recognize the integral in Eq. (10.62) as the convolution of the sys-
tem impulse response and the autocorrelation function of the system input.
This convolution operation in Eq. (10.62) is a deterministic relation, that is,
the cross-correlation between the output and input is deterministically related
to the autocorrelation of the input, and can be viewed as the signal that would
result if the system input were the autocorrelation function Rxx(τ ), as indi-
cated in Figure 10.7. Correspondingly, Rxy(τ ) and equivalently Ryx(−τ ) would
be the output resulting from an input of Rxx(−τ ) = Rxx(τ ) to a system with an
impulse response which is reversed in time, that is, h(−τ ), which we denote as←−
h (τ ). With this notation,

Rxy(τ ) =
∫ +∞

−∞
←−
h (v)Rxx(τ − v) dv . (10.63)

The above relations can also be expressed in terms of covariance functions,
rather than in terms of correlation functions. For this, simply consider the case
where the input to the system is the zero-mean WSS process x(t) − μx, with
corresponding zero-mean output y(t) − μy. Since the correlation function for
x(t) − μx is the same as the covariance function for x(t), that is, since

Rx−μx,x−μx (τ ) = Cxx(τ ) , (10.64)

the results above hold unchanged when every correlation function is replaced
by the corresponding covariance function. It therefore follows, for instance,
that Cyx(τ ) is the convolution of h(τ ) and Cxx(τ ), or

Rxx(t) Ryx(t)h(·) Figure 10.7 Representation of
Eq. (10.62).
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Cyx(τ ) =
∫ +∞

−∞
h(v)Cxx(τ − v) dv . (10.65)

Next, we consider the autocorrelation of the output y(t):

E[y(t + τ )y(t)] = E
[{ ∫ +∞

−∞
h(v)x(t + τ − v) dv

}
y(t)
]

=
∫ +∞

−∞
h(v) E[x(t + τ − v)y(t)]︸ ︷︷ ︸

Rxy(τ−v)

dv

=
∫ +∞

−∞
h(v)Rxy(τ − v) dv ,

= Ryy(τ ) . (10.66)

Equation (10.66) states that Ryy(τ ) is the convolution of the system impulse
response and the cross-correlation Rxy(τ ). Note that the autocorrelation of
the output depends only on τ , and not on both τ and t. Combining this with
the earlier results, we conclude that x(·) and y(·) are jointly WSS, as claimed.
The corresponding result for covariances is

Cyy(τ ) =
∫ +∞

−∞
h(v)Cxy(τ − v) dv . (10.67)

The combination of Eqs. (10.63) and (10.66) can be represented pictori-
ally as shown in Figure 10.8, and corresponds to the relation

Ryy(τ ) = Rhh(τ ) ∗ Rxx(τ ) . (10.68)

The composite impulse response Rhh(τ ) is the deterministic autocorrelation
function of h(t) introduced in Chapter 1, and is given by

Rhh(τ ) = ←−
h (τ ) ∗ h(τ ) =

∫ +∞

−∞
h(t + τ )h(t) dt . (10.69)

For the covariance function version of Eq. (10.68), we have

Cyy(τ ) = Rhh(τ ) ∗ Cxx(τ ) . (10.70)

(a)

Rxy(t)
Rxx(t) Ryy(t)h (·)h(·)

d

Rxx(t) Ryy(t)Rhh(·)

(b)
Figure 10.8 Combination of
Eqs. (10.63) and (10.66).
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Note that the deterministic correlation function of h(t) is still what we use,
even when relating the covariances of the input and output. Only the means
of the input and output processes are adjusted in arriving at the present result;
the impulse response is untouched.

The correlation relations in Eqs. (10.62), (10.63), (10.66), and (10.68),
as well as their covariance counterparts, are very powerful, and we will
make considerable use of them. Of equal importance are their statements
in the Fourier and Laplace transform domains. Denoting the Fourier and
Laplace transforms of the correlation function Rxx(τ ) by Sxx( jω) and Sxx(s)
respectively, and similarly for the other correlation functions of interest,
we have

Syx( jω) = H( jω)Sxx( jω) , Syy( jω) = |H( jω)|2Sxx( jω) ,

Syx(s) = H(s)Sxx(s) , Syy(s) = H(s)H(−s)Sxx(s) . (10.71)

We can denote the Fourier and Laplace transforms of the covariance function
Cxx(τ ) by Dxx( jω) and Dxx(s), respectively, and similarly for the other covari-
ance functions of interest, and then write the same sorts of relationships as
above.

Exactly parallel results hold in the DT case. Consider a stable DT LTI
system whose impulse response is h[n] and whose input is the WSS random
process x[n]. Then, as in the CT case, we can conclude that the output process
y[·] is jointly WSS with the input process x[·], and

μy = μx

∞∑
n=−∞

h[n] (10.72)

Ryx[m] = h[m] ∗ Rxx[m] (10.73)

Ryy[m] = Rhh[m] ∗ Rxx[m] , (10.74)

where Rhh[m] is the deterministic autocorrelation function of h[m], defined as

Rhh[m] =
+∞∑

n=−∞
h[n + m]h[n] . (10.75)

The corresponding Fourier and z-transform statements of these relation-
ships are

μy = H(ej0)μx , Syx(ej�) = H(ej�)Sxx(ej�) , Syy(ej�) = |H(ej�)|2Sxx(ej�) ,

μy = H(1)μx , Syx(z) = H(z)Sxx(z) , Syy(z) = H(z)H(1/z)Sxx(z) .
(10.76)

All of these expressions can also be rewritten for covariances and their
transforms.

In Chapter 11, we will use these relationships to show that the Fourier
transform of the autocorrelation function describes how the expected power
of a WSS process is distributed in frequency. For this reason, the Fourier

www.konkur.in

Telegram: @uni_k
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transform of the autocorrelation function is termed the power spectral density
(PSD) of the process.

The relationships developed in this chapter are also very important in
using random processes to measure or identify the impulse response of an LTI
system. For example, from Eq. (10.73), if the input x[n] to a DT LTI system
is a WSS random process with autocorrelation function Rxx[m] = δ[m], then
by measuring the cross-correlation between the input and output, we obtain a
measurement of the system impulse response. It is easy to construct a DT input
process with autocorrelation function δ[m], for example, an i.i.d. process that
is equally likely to take the values +1 and −1 at each time instant, such as that
in Example 10.6.

As another example, suppose the input x(t) to a CT LTI system with
impulse response h(t) is a WSS random telegraph wave, as in Example 10.7.
The process x(t) has zero mean and autocorrelation function Rxx(τ ) = e−2λ|τ |.
If we determine the cross-correlation Ryx(τ ) with the output y(t) and then use
the relation

Ryx(τ ) = Rxx(τ ) ∗ h(τ ) , (10.77)

we can obtain the system function H(s) and the system impulse response
h(τ ). Specifically, if Syx(s), Sxx(s), and H(s) denote the associated Laplace
transforms, then

H(s) = Syx(s)
Sxx(s)

. (10.78)

Note that Sxx(s) is a well-behaved function of the complex variable s
in this case, whereas any particular sample function of the process x(t)
would not have such a well-behaved transform. The same comment applies
to Syx(s).

As a third example, suppose that we know the autocorrelation func-
tion Rxx[m] of the input x[n] to a DT LTI system, but do not have access
to x[n] and therefore cannot determine the cross-correlation Ryx[m] with
the output y[n], but can determine the output autocorrelation Ryy[m]. For
example, if

Rxx[m] = δ[m] (10.79)

and we determine Ryy[m] to be Ryy[m] =
(

1
2

)|m|
, then

Ryy[m] =
(

1
2

)|m|
= Rhh[m] = ←−

h [m] ∗ h[m] . (10.80)

Equivalently, H(z)H(z−1) is the z-transform Syy(z) of Ryy[m]. Additional
assumptions or constraints, for instance on the stability and causality of the
system and its inverse, may allow one to recover H(z) from knowledge of
H(z)H(z−1).
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10.7 FURTHER READING

Several references suggested for further reading at the end of Chapter 7 con-
tain detailed discussions of specific classes of random processes—Bernoulli,
Poisson, renewal, Markov, Gaussian and martingale processes. WSS pro-
cesses are much more simply characterized, and well suited to analysis as
random signals that can be the inputs and outputs of LTI systems. (Since
Gaussian processes are characterized by their first and second moments,
they are amenable to similar analysis.) Thus references in Chapter 7 that
include material on WSS processes generally describe LTI filtering of WSS
processes as in this chapter, examine the frequency domain or spectral charac-
terization of WSS processes as we do in Chapter 11, and treat some of the
signal estimation and detection problems we consider in Chapters 12 and
13. Additional references for this and later chapters include classics such as
[Dav] and [Van], as well as more recent texts such as [Gar], [Had], [Hay],
[Jan], [Pur], and [Shi]. Treatments of random processes, their spectral char-
acteristics, and signal estimation—material related to Chapters 10, 11, and 12
here—are also found in books devoted to time series and forecasting, such as
[Blo], [Bro], [Cht], [Dur], and [Woo]. These are typically more grounded in
statistics, with applications as varied as econometrics, climatology and pro-
cess control. [Kle] gives an absorbing history of the development of time
series, spanning a period that includes the era of statistics described in
[St1] and [St2].

Problems

Basic Problems

10.1. For the random telegraph wave introduced in Example 10.7, evaluate (as a func-
tion of T for T > 0) the conditional probability that X(t0 + T) = +1, given that
X(t0) = +1. For what range of T > 0 is this conditional probability higher than
the conditional probability that X(t0 + T) = −1? If, for a given T > 0, you were
to predict that X(t0 + T) = +1, given that X(t0) = +1, what would be the prob-
ability that your prediction is wrong? How does this probability vary with T, and
does this seem reasonable?

10.2. As shown in Figure P10.2, a particular random process X(t) is represented by a
sample space with three possible time functions as outcomes. The probabilities
for the three outcomes x1(t), x2(t), and x3(t) are

P
{
x1(t)

} = 1
3

, P
{
x2(t)

} = 1
4

, and P
{
x3(t)

} = 5
12

.

(a) Determine the PMF for the random variable X(t1).
(b) Determine the joint PMF pX(t1),X(t2)(x1, x2) for the two random variables

X(t1) and X(t2).
(c) Determine the autocorrelation RXX (t1, t2) = E[x(t1)x(t2)].
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1

2

3

4

5

X(t)

x1(t)

x2(t)

x3(t)

t1 t2
t

Figure P10.2

10.3. A random process W(t) can have four different time functions as outcomes, as
shown in Figure P10.3. The probabilities for the four outcomes w1(t), w2(t), w3(t),
and w4(t) are

P
{
w1(t)

} = 1
3

, P
{
w2(t)

} = 1
4

, P
{
w3(t)

} = 1
4

, and P
{
w4(t)

} = 1
6

.

Given that W(t1) = 6 and W(t2) = 4, find the minimum mean square error
(MMSE) estimate for W(t3).

2

4

6

8

10
w1(t)

w2(t)

w3(t)

W(t)

w4(t)

t1 t2 t3
t

Figure P10.3

10.4. If x(t) and y(t) are two zero-mean WSS random processes with Rxy(τ) = 0 for
all τ , is it always true that

E{x2(t + τ)y2(t)} = Rxx(0)Ryy(0)?

Explain.

10.5. Is an SSS random process x(t) necessarily mean-ergodic? Explain.

10.6. Let {θk} be a set of i.i.d. random variables, uniformly distributed on the interval
[0, 2π]. Let the process x[n] be formed by

x[2n] = cos θn ,

x[2n + 1] = sin θn ,

so that, for example, x[−2] = cos θ−1, x[−1] = sin θ−1, x[0] = cos θ0, x[1] = sin θ0,
x[2] = cos θ1, x[3] = sin θ1, and so on.

www.konkur.in

Telegram: @uni_k



Chapter 10 Problems 433

(a) Is the process x[n] WSS? Explain.
(b) Is the process x[n] i.i.d.? Explain.

10.7. (a) If x[n] is a DT WSS random process with autocorrelation function Rxx[m],
then either

E
[
(x[n] − x[k])2

]
= 2(Rxx[n] − Rxx[k])

or

E
[
(x[n] − x[k])2

]
= 2(Rxx[0] − Rxx[n − k]) .

Choose the correct equality, and explain.
(b) True or false: If x(t) is a zero-mean WSS process with autocovariance func-

tion Cxx(τ) = e−|τ |, and y(t) = V + x(t), where V is a zero-mean random
variable uncorrelated with x(·), then for almost all sample functions y(t)

lim
T→∞

1
2T

∫ T

−T
y(t) dt = 0 .

10.8. (a) Consider a random process X(t) that is defined by X(t) = A cos(ω0t), where
ω0 is a constant.

(i) Suppose that A is a random variable uniformly distributed over
[0, 1]. Determine the autocorrelation RXX (t1, t2) and autocovariance
CXX (t1, t2) of X(t).

(ii) Repeat part (i) for the case when A is a Gaussian random variable with
mean μA = 0.5 and variance σ 2

A = 1
12 .

(iii) Is X(t) WSS?

(b) Now let X(t) = A cos(ω0t + θ0) + B cos(ω1t + θ1), where ω0 �= ω1 are con-
stants, A, B, θ0, and θ1 are all random variables that are mutually inde-
pendent, and both θ0 and θ1 are uniformly distributed over the interval
0 ≤ θ < 2π . What are the first- and second-order moments of the process
X(t)? In other words, find E[X(t)] and E[X(t1)X(t2)]. Is the process WSS?

10.9. Consider a CT random process x(t) defined as follows:

x(t) = cos(Wt + �), for –∞ < t < ∞,

where W and � are statistically independent random variables, with W taking
values ω uniformly distributed on the interval [−ωo, ωo] and � taking values θ

uniformly distributed on the interval [0, 2π].
The trigonometric identity below might be helpful:

cos(A) cos(B) = cos(A + B) + cos(A − B)
2

.

(a) Determine the following ensemble-average statistics of the random pro-
cess x(t):

(i) the mean function μx(t) ≡ E[x(t)], and
(ii) the correlation function Rxx(t1, t2) ≡ E[x(t1)x(t2)].

(b) Is the process WSS? Is the process ergodic in the mean?
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(c) Determine in terms of ω and θ the following time averages of a single real-
ization of the random process (for notational simplicity we use x(t) to denote
the particular realization):

〈x(t)〉 ≡ lim
T→∞

1
T

∫ T/2

−T/2
x(t) dt

〈x(t + τo)x(t)〉 ≡ lim
T→∞

1
T

∫ T/2

−T/2
x(t + τo)x(t) dt, where τo is a positive constant.

(d) Can a really long record of a single realization be used with appropriate time
averaging to calculate, at least approximately, Rxx(t1, t2)?

10.10. Consider the random process

X(t) = cos(ωt + θ) ,

where ω and θ are independent random variables, with ω uniformly distributed
over [−B0, B0] and θ uniformly distributed over [−π , π].

(a) Determine E[X(t)], the expected value of X(t).
(b) Determine the autocorrelation function RXX (t1, t2) = E[X(t1)X(t2)].
(c) Is the process X(t) WSS? Clearly explain why or why not.

10.11. (a) Suppose x(t) is a WSS random process with mean μx and autocovariance
function Cxx(τ) = 2e−|τ | . What feature of this characterization guarantees
that the process x(t) is ergodic in the mean, i.e., that the time average equals
the ensemble mean for almost every sample function x(t):

lim
T→∞

1
2T

∫ T

−T
x(t) dt = μx .

(b) If now y(t) = x(t) + Z, where Z is a zero-mean random variable with vari-
ance σ 2

Z, and Z is uncorrelated with the process x(t), determine the mean
μy and autocovariance function Cyy(τ) of the process y(t). Also determine
what the time average

lim
T→∞

1
2T

∫ T

−T
y(t) dt

would be for a general sample function of the process y(t). Using this result
or otherwise, determine if the process y(t) is ergodic in the mean.

10.12. A DT zero-mean WSS process e[n] has autocorrelation function

Ree[m] = sin(πm/3)
m

,

for m �= 0, and Ree[0] = π/3. The process x[n] is defined by the relation

x[n] = (−1)n e[n]

for all n. Show that x[n] is WSS and sketch its PSD Sxx(ej�) in the region |�| ≤ π .
Is x[ · ] also jointly WSS with e[ · ]?
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10.13. Suppose x[n] is a zero mean, WSS random sequence with autocorrelation
Rxx[m] = δ[m] and is the input to an LTI system with impulse response

h[n] =
{

1 n = 0, 1, 2
0 otherwise .

The system output is y[n]. Determine Ryy[m] and Rxy[m] as defined below:

Ryy[m] � E(y[n + m]y[n])

Rxy[m] � E(x[n + m]y[n]).

10.14. Suppose the DT random process w[n] is WSS with mean μ, and with autoco-
variance function Cww[m] = σ 2δ[m]. Let w[n] be applied to the input of a stable
DT LTI system with unit sample response h[n] = βnu[n], where u[n] is the unit
step function. Denote the random process at the output of this system by y[n].
Now suppose we generate another random process x[n] from w[n] according to
the equation x[n] = b[n]w[n], where b[n] is a Bernoulli process whose value at
any time is 1 with probability p, and otherwise 0. You can think of x[n] as a cor-
rupted version of w[n], in which random samples of w[n] are set to 0. Assume the
process b[·] is independent of w[·]. Write down expressions for:

(a) the autocorrelation function Rww[m] of the process w[n];
(b) the mean μy and autocovariance function Cyy[m] of the process y[n];
(c) the cross-covariance function Cyw[m] of the processes y[·] and w[·];
(d) the mean μx and autocovariance function Cxx[m] of the process x[n];
(e) the cross-covariance function Cxw[m] of the processes x[·] and w[·]; and
( f ) the cross-covariance function Cyx[m] of the processes y[·] and x[·].

10.15. As depicted in Figure P10.15, p(t) is the output of a stable LTI system with
impulse response h(·) and WSS input x(·), so

p(t) =
∫ ∞

−∞
h(α)x(t − α) dα .

Suppose y(t) = p(t) + e(t) for some zero-mean WSS process e(·) that is uncorre-
lated with x(·). Let e(·) and x(·) have autocorrelation functions Ree(τ) and Rxx(τ),
respectively.

+
x(t) p(t) y(t)

e(t)

h(·)

Figure P10.15

(a) Express Rpx(τ) in terms of an appropriate combination of h( · ) and Rxx( · ).
(b) Determine Rxe(τ) and explain why Rpe(τ) = 0.
(c) Write Rye(τ), Ryp(τ), Ryx(τ), and Ryy(τ) in terms of appropriate combina-

tions of h( · ), Ree( · ), and Rxx( · ).
10.16. For each of the following parts, indicate whether the given statement is true or

false. For a true statement, give a brief but convincing explanation; for a false
statement, give a counterexample or convincing explanation.

(a) Consider a CT LTI system whose (unit) impulse response is −δ(t − 17). If
the input to this system is a WSS process x(t) with autocorrelation function
Rxx(τ), then the corresponding WSS output process y(t) has autocorrelation
function Ryy(τ) = Rxx(τ).
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(b) Suppose the WSS input x(t) to a stable CT LTI system has autocorrela-
tion function Rxx(τ) = e−|τ |. It is possible for the corresponding WSS output
process y(t) to have autocorrelation function Ryy(τ) = e−3|τ | .

(c) Suppose x(t) is a CT WSS random process with autocorrelation function
Rxx(τ), and let y(t) be defined as

y(t) = dx(t)
dt

.

Then

Ryx(τ) = dRxx(τ)
dτ

.

10.17. For the system in Figure P10.17, x(t) is WSS with PSD Sxx( jω) = N0. Determine
the expected value of r(t), E{r(t)}, in terms of N0, t0 and h(t).

LTI
x(t)

h(·)
g

1
(t)

g
2
(t)

LTI

r(t) = g
1
(t)g

2
(t)

Delay
by t0 Figure P10.17

10.18. Consider a stable LTI system with impulse response h(t), such that if a WSS
signal x(t) with autocorrelation function Rxx(τ) = e−|τ | is applied to the input of
the system, the resulting output y(t) has autocorrelation function Ryy(τ) = e−|τ |.
Can y(t) always be written in the form y(t) = αx(t − t0) for some constants α, t0?
Explain.

Advanced Problems

10.19. Give a simple example of each of the following. If it is not possible to specify
such an example, clearly state, in one or two sentences, why not:

(a) a random process that is SSS but not strict-sense or wide-sense ergodic;
(b) a random process that is wide-sense ergodic but not wide-sense stationary;
(c) a nonstationary random process.

10.20. Suppose x[n] is a zero-mean WSS random process with autocorrelation function

Rxx[k] = ρ|k| 0 < ρ < 1.

Find the LMMSE predictor of x[n] given x[n − 1] and x[n − 2]. Also determine
its corresponding mean square error.

10.21. A particular WSS process x[n] has mean denoted by μx and has autocovariance
function Cxx[m] whose value at the origin is Cxx[0] = 4. It is also known that
the LMMSE predictor of x[n + 1] based on measurements of the current and
previous values of the process, namely x[n] and x[n − 1], is

x̂n,n−1[n + 1] = 1
3

x[n] + 1
3

x[n − 1] + 2. (10.81)
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(a) Determine μx.
(b) Determine Cxx[1] and Cxx[2].
(c) Even without computation of the mean square error, we can guarantee that

it will not exceed 4—why is that? Now actually compute the mean square
error associated with the above estimator.

(d) Suppose instead that you used an LMMSE predictor of the form

x̂n−K[n + 1] = γ x[n − K] + ζ ,

for some fixed K ≥ 0, with γ and ζ chosen to minimize the mean square
error. For what choices of K are you guaranteed to not do better than the
estimator in Eq. (10.81)? (For all other K, it might be possible to do better,
depending on what the rest of the autocovariance function is.)

10.22. (a) The process x[n] is WSS, with mean 0 and autocovariance function Cxx[m] =
α|m| for some α of magnitude less than one. If you compute the quantity

1
2N + 1

N∑
k=−N

x[k]

for a particular realization of the process x[n], will the quantity converge to
any specific value as N becomes large, and if so, to what value, and why?

(b) Suppose

y[n] = W + x[n] ,

where x[n] is the process defined in (a), and W is a random variable with
mean 0 and variance σ 2

W , and is uncorrelated with x[k] for all k. Show
that y[n] is WSS, and determine its mean μy and autocovariance function
Cyy[m].

(c) With x[n] and y[n] defined as in (a) and (b), show that the two processes
are jointly WSS, and determine the cross-covariance function Cyx[m]. Also
compute:

(i) the LMMSE estimator of y[1] in terms of x[0] (in the form ŷ [1] =
ax[0] + b for some optimally chosen a and b), along with the associated
mean square error;

(ii) the LMMSE estimator of x[0] in terms of y[1], along with the associated
mean square error.

(d) For the process defined in (b), if you compute the quantity

1
2N + 1

N∑
k=−N

y[k]

for a particular realization of the process y[n], will the quantity converge to
any specific value as N becomes large, and if so, to what value, and why?

10.23. Consider a CT zero-mean WSS process x(t), with correlation function

Rxx(τ) = r0 e−β |τ | .

(a) Show that the LMMSE estimator of x(t), given measurements of x(t − τk)
for k = 1, 2, · · · , N and 0 < τ1 < τ2 < · · · < τN , is x̂(t) = ax(t − τ1) for some
appropriate constant a. In other words, the estimator depends only on
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the most recent past measurement. Determine the constant a and the
MMSE. One approach is to show that an appropriate choice of a will
ensure the conditions that define the LMMSE estimator, namely unbiased-
ness and the orthogonality condition between the estimation error and
the data,

E[{x(t) − ax(t − τ1)}x(t − τk)] = 0 ,
or equivalently

E[x(t)x(t − τk)] = aE[x(t − τ1)x(t − τk)] , k = 1, 2, · · · , N .

Alternatively, but equivalently, set up the associated normal equations and
show that there is a solution with only one component of the estima-
tor’s parameter vector being nonzero, namely the one corresponding to the
quantity x(t − τ1).

(b) Show that the LMMSE estimator of x(t), given measurements of both
x(t − τk) and x(t + τ ′

k) for k = 1, 2, · · · , N and 0 < τ1 < τ2 < · · · < τN ,
0 < τ ′

1 < τ ′
2 < · · · < τ ′

N , is of the form x̂(t) = ax(t − τ1) + bx(t + τ ′
1) for

some appropriate constants a and b. Again, set up the normal equations, and
note that there is a solution with only x(t − τ1) and x(t + τ ′

1) having nonzero
weights.

10.24. (a) Consider the random process X(t) = A cos(�t + �), where A, �, and � are
all random variables that are independent of each other, with � uniformly
distributed over the interval 0 ≤ θ ≤ 2π . Suppose the PDF of �, which we
denote by f�(ω), is an even function of its argument, i.e., f�(−ω) = f�(ω).
(There is actually no loss of generality in assuming this, since cos(ωt) is an
even function of ω.)

Denote the inverse Fourier transform of this PDF, namely
1

2π

∫∞
−∞ f�(ω)ejωτ dω, by g(τ). Determine the mean function E[X(t)]

and autocorrelation function E[X(t + τ)X(t)], expressing the latter in terms
of E[A2] and g(τ). Is the process WSS?

Also determine the autocorrelation function of the process in the
following cases:

(i) f�(ω) = 1
2 [δ(ω − ω0) + δ(ω + ω0)];

(ii) f�(ω) uniform in the interval [−ω0, ω0];
(iii) f�(ω) = 1

2π
2a

a2+ω2 , with a > 0.

(b) Consider the random process X(t) = A cos(ω0t + �0) + B cos(ω1t + �1),
where ω0 �= ω1, but both of these numbers are fixed and known. Suppose �0
and �1 are random variables that are independent of the random variables
A and B; also assume A and B are orthogonal to each other, i.e., E[AB] = 0.
If both �0 and �1 are uniformly distributed over the interval 0 ≤ θ < 2π ,
find E[X(t)] and E[X(t + τ)X(t)]. Is the process WSS?

10.25. The signal x(t) is a zero-mean WSS random process with autocorrelation function
Rxx(τ). Consider the random process y(t) defined in terms of x(t) as:

y(t) = x(t) · cos(2π t + φ).

Specify for the following cases whether y(t) is WSS. Clearly justify your answers
in a few lines. You may find the following trigonometric identity useful:

cos(α ± β) = cos α cos β ∓ sin α sin β.
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(a) If φ = 0.
(b) If φ is uniformly distributed in the interval [0, 2π] and is independent of x(t).

10.26. Suppose x(t) = y(t) cos(ωot + �), where y(t) is a WSS process with mean μy and
autocovariance function Cyy(τ); ωo is a known constant; and � is a random vari-
able that is independent of y(·) and is uniformly distributed in the interval [0, 2π].
You might find it helpful in one or more parts of the problem to recall that

cos(A) cos(B) = 1
2

[cos(A + B) + cos(A − B)] .

(a) Find the mean μx(t) and autocorrelation function E[x(t + τ)x(t)] of the pro-
cess x(t). Also find the cross-correlation function E[y(t + τ)x(t)]. Explain
precisely what features of your answers tell you that (i) x( · ) is a WSS
process; and (ii) x( · ) and y( · ) are jointly WSS.

(b) Suppose Cyy(τ) = e−|τ | and μy �= 0. Obtain an expression for the PSD
Syy( jω) in this case, and draw a fully labeled sketch of it. Also obtain an
expression for the PSD Sxx( jω), and draw a fully labeled sketch of it.

(c) With the properties of y(t) specified as in (b), is y(t) ergodic in mean value?
Be sure to give a reason for your answer. A somewhat harder question: is
x(t) ergodic in mean value? Again, describe your reasoning. If you are able
to evaluate either of the following integrals on the basis of your answers
here, please do so:

lim
T→∞

1
2T

∫ T

−T
y(t) dt , lim

T→∞
1

2T

∫ T

−T
x(t) dt ,

where y(t) and x(t) here should be interpreted as the specific realizations
taken by these quantities in a particular experiment.

10.27. Suppose xc(t) is a zero-mean WSS random process with autocorrelation function
Rxcxc (τ). The C/D converter in Figure P10.27-1 is ideal, i.e., xd[n] = xc(nT).

xd[n]

T

C/Dxc(t)

Figure P10.27-1

1

-2p * 104 2p * 104

Sxcxc
( jv)

v

Figure P10.27-2

(a) Determine the mean E{xd[n]}, and also express the autocorrelation function
E{xd[n + m]xd[n]} of the DT random process xd[n] in terms of Rxcxc (τ). Is
xd[n] necessarily WSS if xc(t) is WSS?

(b) Assume that Sxcxc ( jω), the CT Fourier transform of Rxcxc (τ), is as shown in
Figure P10.27-2. Determine Rxcxc (τ) and E{x2

c(t)}.
(c) Determine E{x2

d[n]} for 1
T = 40 kHz and for 1

T = 15 kHz.
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10.28. We wish to generate a WSS random process y[n] by processing another random
process x[n] with an LTI system shown in Figure P10.28.

x[n] y[n]
H(z)

Figure P10.28

The autocorrelation of the input random process x[n] is

Rxx[m] = σ 2
x δ[m].

We choose the system function H(z) so that the cross-correlation between the
processes x[n] and y[n] is

Rxy[m] = (0.5)−mu[−m].

The corresponding cross-PSD is

Sxy(ej�) = 1
1 − 0.5ej�

.

In each of the following parts, choose the correct statement: (i), (ii), (iii). If more
than one is correct, indicate all that are correct. Explain your reasoning succintly.

(a) To obtain the desired y[n], H(z) must represent
(i) a stable minimum phase system.

(ii) a system that is stable, but is not minimum phase.
(iii) a system that is not uniquely specified by the given information.

(b) From what is given, we can say that x[n] and x[n + k], for k �= 0, are
(i) definitely independent.

(ii) definitely not independent.
(iii) may be independent or not.

(c) From what is given, we can say that y[n] and y[n + 1] are
(i) definitely independent.

(ii) definitely not independent.
(iii) may be independent or not.

10.29. Consider the second-order state-space model for a particular linear, CT system:

q̇(t) = Aq(t) + bx(t)

y(t) = cTq(t).

The eigenvalues associated with the state transition matrix A are

λ1 = −1

λ2 = −2.

The mode λ1 = −1 is unreachable from the input.
The mode λ2 = −2 is unobservable from the output.

Let r1(t), r2(t) be the state variables in modal form associated with λ1 = −1
and λ2 = −2, respectively.

Assume the system started a long time ago, effectively at t = −∞, and is
already in steady state. The input x(t) is zero-mean CT noise with constant power
spectral density Sxx( jω).
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Determine the following to within a scale factor:

(a) Sr2r2 ( jω), the PSD of r2(t);
(b) Syy( jω), the PSD of the output y(t).

10.30. For each of the following parts, state whether the given statement is true or
false. For a true statement, give a brief but convincing explanation; for a false
statement, give a counterexample or convincing explanation.

(a) It is possible to generate two jointly WSS DT processes x[·] and y[·]
whose cross-correlation function Ryx[m] is any specified function g[m],
provided that

∞∑
m=−∞

|g[m]| < ∞ .

(b) If a CT WSS process y(t) has expected value μy and autocovariance function
Cyy(τ) = 3−|τ | + 2, then

lim
T→∞

1
2T

∫ T

−T
y(t) dt = μy

(in the sense that the variance of the difference between the left and right
sides goes to 0).

10.31. Suppose x(t) is a real-valued, zero-mean WSS process with autocorrelation func-
tion given by Rxx(τ) = e−|τ |. Let x(t) be processed by a stable, LTI system with
real-valued impulse response h(t) as shown in Figure P10.31.

x(t) y(t)h(·)

Figure P10.31

(a) We are told that h(t) is causal and stable and that the output y(t) has
autocorrelation

Ryy(τ) = 3e−3|τ | .

(i) Find |H( jω)|, i.e., the magnitude of the Fourier transform of h(t).
(ii) Suppose the system has a stable and causal inverse. Find a possible h(t)

for the LTI system. Is your answer unique to within a scaling factor? If
yes, explain why. If no, give an example of another possible h(t).

(b) Now suppose that we have no other information about the LTI system h(t)
beside its stability, but we know the cross-correlation function

Ryx(τ) = e−τ u(τ) − 2e−2τ u(τ) + e−3τ u(τ) .

Find a possible impulse response h(t). Is your answer unique? If yes, explain
why. If no, specify another possible h(t).

10.32. (a) Suppose x(t) is a WSS random process and is the input to a stable and causal
LTI system with impulse response h(t) = e−tu(t). If μx = 3, determine the
mean of the output.

(b) Consider two zero-mean and jointly WSS processes x(t) and w(t) with auto-
correlation functions Rxx(τ) and Rww(τ). Their cross-correlation is Rwx(τ).
The process x(t) is filtered by a stable and causal LTI system with impulse
response h(t) as indicated in Figure P10.32.
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x(t) y(t)h(·)

Figure P10.32

The output is the WSS random process y(t). Determine the cross-correlation
function Rwy(τ) between w(·) and y(·) in terms of Rxx(τ), Rww(τ), Rwx(τ),
and h(t). Choose the correct form from the list below. Explain your reason-
ing (i.e., derive your answer) succinctly.

(i) Rxx(τ) convolved with h(−τ).
(ii) Rxx(τ) convolved with h(τ).

(iii) Rwx(τ) convolved with h(−τ).
(iv) Rwx(τ) convolved with h(τ).
(v) Rww(τ) convolved with h(−τ).

(vi) Rww(τ) convolved with h(τ).

Extension Problems

10.33. Suppose we are given a pair of jointly WSS random processes x(t) and w(t) with
known cross-correlation Rxw(τ). If y(t) is the WSS random process obtained
by passing x(t) through a stable CT LTI system with known impulse response
h(t), derive an expression for Ryw(τ) in terms of the known functions. Also
derive an expression for Rwy(τ) if we are given Rwx(τ). As a check, be
sure that you recover the results that you expect when: (i) w(t) = x(t); and
(ii) w(t) = y(t).

10.34. In a wide variety of real situations, two or more uncorrelated sources are received
through a channel or system with cross talk. In the receivers or sensors, the sig-
nals interfere with each other and it is of interest to process the received signals
to separate them. One such scenario is depicted in Figure P10.34-1.

Room

x1

x2

m2

m1

Figure P10.34-1

The two sources x1(t) and x2(t) might be speech or music; the received
signals m1(t) and m2(t) could correspond to the outputs of two microphones.
Room acoustics can be effectively modeled in terms of LTI systems. The impulse
response from source i to microphone k is denoted as hik(t). A two-input, two-
output LTI model for the two received signals is shown in Figure P10.34-2.

If microphone 1 is close to source 1 and microphone 2 is close to source
2, it is reasonable (and simplifies the algebra in this problem) to assume that
h11(t) = h22(t) = δ(t). We also assume that the two sources x1(t) and x2(t) are
WSS, zero-mean, uncorrelated, and that their autocorrelation functions are
known.
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x1(t) m1(t)h11(t) +

h12(t)

h21(t)

x2(t) m2(t)+h22(t)
Figure P10.34-2

Approaches to recover x1(t) and x2(t) from m1(t) and m2(t) typically
require a way of estimating the impulse responses h12(t) and h21(t). Some infor-
mation can be obtained by measuring the autocorrelation and cross-correlation
functions for the microphone outputs.

(a) Determine Rm1m1 (τ), Rm2m2 (τ), and Rm1m2 (τ) in terms of Rx1x1 (τ), Rx2x2 (τ),
h12(t), and h21(t).

(b) If it is known that h12(t) = h21(t), and you could measure only one of
Rm1m1 (τ), Rm2m2 (τ), or Rm1m2 (τ), which one would be the most useful in
determining h12(t)?

10.35. Consider a stable, causal, DT system with input w[n] and output y[n] that are
related by

y[n] = −
( N∑

k=1

aky[n − k]
)

+ w[n] .

The output is said to be governed by an Nth-order auto-regressive model in this
case, because the output depends on past values of itself as well as on the present
input. Suppose w[n] is an i.i.d. process that at each time (and independently of
what happens at other times) takes the values +M and −M with equal probabil-
ity. Assume M and the coefficients ak are all known. Determine the LMMSE esti-
mator ŷ [n] of y[n], in terms of all past values of y[·], and find the associated mean
square error. (Hint: Study the above equation to come up with a guess for what
ŷ [n] might be, then verify it by invoking the orthogonality principle that governs
LMMSE estimation; the causality and stability of the system also play a role.)

10.36. Suppose the CT WSS random process x(t) has some mean μx and autocovari-
ance function Cxx(τ) that are both unknown. We want to estimate the ensemble
mean μx by taking a time average of x(t). To do this, we will pass x(t) through an
LTI filter with impulse response h(t) that you will specify in (a) below, and then
examine its sampled output y(0) as specified in (b). What will emerge in (c) is
then a condition for ergodicity in the mean of the process x(t), i.e., a condition
for the time average of x(t), taken over an infinitely long interval, to equal its
ensemble average μx.
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(a) Specify what the filter impulse response h(t) should be in order for the
output y(t) of the filter to be

y(t) = 1
2T

∫ t+T

t−T
x(α) dα ,

where T is given. Show that the mean μy of the WSS output process y(t) is
the same as the input mean μx. Also express the output covariance function
Cyy(τ) in terms of Cxx(·) and T.

(b) Suppose we sample the output y(t) of the filter in (a) at time t = 0, so

y(0) = 1
2T

∫ +T

−T
x(α) dα .

This is the time average of x(t) over a finite window of length 2T, centered
at 0. The mean of this random variable y(0) is evidently still μy = μx.
Express the variance σ 2

y(0) of this random variable in terms of Cxx(τ) and T.
The random variable y(0) will be centered around μx and will have a spread
that is indicated by the variance σ 2

y(0). Each time we run this experiment
we will get a different y(0), i.e., a different finite time average of x(t), but
staying within a few standard deviations of μx with high probability (invoke
the Chebyshev inequality to infer this).

(c) In general, the variance you computed in (b) is positive for any finite T,
so the finite time average of x(t) does not equal the ensemble average.
However, if the variance computed in (b) tends to 0 as T tends to ∞, then
effectively y(0) will tend to μx as T tends to ∞, i.e.,

lim
T→∞

1
2T

∫ +T

−T
x(α) dα = μx ,

which is what we would like. For which of the following Cxx(τ) does the
variance you computed in (b) go to 0 as T tends to ∞?

(i) Cxx(τ) = e−|τ |.
(ii) Cxx(τ) = e−|τ | + A, where A is a positive constant.

(iii) Cxx(τ) = 1
1+|τ | .

(iv) Cxx(τ) = cos |τ |.
Whether the variance σ 2

y(0) tends to 0 as T tends to ∞ can often be decided
with only approximate information on the covariance Cxx(τ). We started off
this problem saying that the covariance was unknown; in practice, you would
probably have approximate information (e.g., bounds on rate of decay with |τ |)
that would suffice to check the above condition.

This problem could have been phrased for the case of a DT WSS process,
and you would then perhaps have recognized its conclusion as a generalization of
the (weak) law of large numbers to the case of a correlated process x[n], whereas
your previous encounter with this “law” was for the case of an i.i.d. process.

10.37. For each of the following random process examples described in this chapter,
determine whether the process is second-order ergodic.

(a) Random phase sinusoid x(t) = Acos(ω0t + θ), where A, ωo are nonzero
constants, and θ is a random variable distributed uniformly over the interval
0 ≤ θ < 2π .
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(b) Random amplitude and phase sinusoid x(t) = Acos(ω0t + θ), where ωo
is a nonzero constant, A is a random variable uniformly distributed over
−2 ≤ A < 2, and θ is a random variable uniformly distributed over the
interval 0 ≤ θ < 2π .

(c) The Bernoulli process x[n], where at each time instant n,

P(x[n] = 1) = p, P(x[n] = −1) = 1 − p;

the value at each time instant n is independent of the values at all other
time instants.

(d) The random telegraph wave.

10.38. Suppose the random process y[n] is given by

y[n] = w[n] + βw[n − 1]

where w[n] is an i.i.d. process that takes the values ±1 with equal probability at
each time.
(a) Show that y[n] is WSS with mean value 0. Also determine and plot the

autocorrelation function Ryy[m] of y[n] for |m| ≤ 4, in each of the following
four cases: β = 3, 1, −1, and −3.

(b) Use an appropriate computational package to generate a sample realization
of the process w[n] for n = 0 to 100. Then for each of the four values
of β given in (a), use the w[n] you have generated in order to obtain a
corresponding realization of the process y[n] for n = 1 to 100. Show plots
of your realization of w[n] and these four realizations of y[n]. Are there
qualitative differences among the plots of y[n] for the different β? If so,
describe them.

10.39. Suppose the input x[n] and output y[n] of a causal system are related by

y[n] = x[n] + αx[n − D] ,

where x[n] is i.i.d. and uniformly distributed in the interval [−1, 1] at each
time step, and α, D are parameters denoting a scale factor and (integer) delay
respectively. Note that this system is stable for all α.

(a) Compute the means μx and μy, as well as the autocovariance functions
Cxx[m] and Cyy[m], in term of α and D.

(b) Using an appropriate computational package, generate a segment of one
realization of the signal x[n] for n = 1, . . . , 500. With computations on
this single realization, and assuming ergodicity of the mean and of the
covariance (both assumptions actually hold in this i.i.d. case), numerically
estimate μx and Cxx[m] for values of m in the range |m| ≤ 10. For instance,
a plausible estimate of the autocorrelation function at lag 2 would be

Rxx[2] ≈ 1
498

498∑
k=1

x[k + 2]x[k] .

Do you come close to what you expect to get?
(c) With your realization of x[n] from (b), and choosing α = 1 and D = 5,

compute the corresponding realization of y[n] using the input-output
relation above for n = 6, · · · , 500. Now suppose you were given only this
y[n] and the form of the model above that relates x[n] to y[n], but did not
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know α, D, or x[n] (except for the fact that it is a realization of an i.i.d.
process). Plot a segment of y[n], say for n = 6, · · · , 60, and see if you are
able to deduce anything about α and D by inspection of this.

(d) Assuming ergodicity of y[n] for mean and covariance computations,
estimate μy and Cyy[m] for |m| ≤ 10. Plot the resulting autocovariance, and
see if you can deduce from the plot what α and D might be.

10.40. Suppose w[n] is a WSS random process, with mean μw and autocovariance
function Cww[m] = σ 2

w δ[m].

(a) The random signal w[n] is the input at time n to a causal system whose
output y[n] at that time satisfies

y[n] = w[n] + αw[n − 1] .

What is the unit sample response, h1[n], of this system? Explain how you
know that the system is BIBO stable for all α.

(b) For the system in (a), determine μy, Cyw[m], and Cyy[m] in terms of μw, σ 2
w,

and α.
(c) Using your results from (b), compute the correlation coefficient ρ between

y[n + 1] and y[n] in terms of the parameters of the problem. Then deter-
mine for what respective values of α this correlation coefficient ρ takes its
maximum and minimum values, and determine what these extreme values
of ρ are.

(d) Suppose instead that w[n] is the input at time n to a causal and stable system
whose output y[n] at that time satisfies

y[n] = αy[n − 1] + w[n − 1] .

Find the impulse response h2[n] of this system, and specify what constraint
on α, if any, is needed for stability of this causal system.

(e) Repeat (b), but this time for the system in (d) rather than the one in (a),
and assuming it started operation infinitely far back in the past (so it is in
steady state at any finite time).

( f ) Repeat (c), but this time for the system in (d), and using your results from
(e). For this system, though, what you will actually be computing for the
extreme values of ρ will be the least upper bound and greatest lower bound,
rather than the maximum and minimum, because though you will be able
to approach these extreme values arbitrarily closely, you cannot attain them
exactly—explain why not.

10.41. Suppose x[n] is an i.i.d. random process whose PDF at each value of n is a
Gaussian density of mean 0 and variance σ 2.

(a) Determine the mean μx[n] and autocovariance function of the process x[n]:

E{(x[n + m] − μx[n + m])(x[n] − μx[n])} .

(b) A random process y[n] is obtained from x[n] as

y[n] = x[n] + αx[n − 1] ,

where α is a known constant. Determine the mean μy[n] of the output
process y[n], its autocovariance function

E{(y[n + m] − μy[n + m])(y[n] − μy[n])} ,
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the correlation coefficient ρn+m,n between y[n + m] and y[n], and the
cross-covariance between the output and input, namely

E{(y[n + m] − μy[n + m])(x[n] − μx[n])} .

Which of your answers, if any, depends on n? Also check that your various
answers take reasonable values (i.e., values that you can verify directly by
some explicit reasoning) in the following three limiting cases:

α → −∞ , α = 0, α → +∞ .

(c) Suppose we want to estimate y[n + 1] given a measurement of y[n], i.e., we
want to do a one-step prediction using a linear estimator of the form

ŷ [n + 1] = ay[n] + b .

Find a and b to minimize the mean square error

E{(̂y [n + 1] − y[n + 1])2} ,

and also determine the value of this MMSE. Again, check that your answers
are reasonable in the three limiting cases mentioned in (b).

(d) Repeat (c) for the case of a two-step prediction, with

ŷ [n + 2] = ay[n] + b

chosen to minimize

E[(̂y [n + 2] − y[n + 2])2] .

(e) It can be shown that y[n + m] and y[n] are bivariate Gaussian. Use this to
write down, or fully describe in some other convincing fashion, the joint
density

fy[n+m],y[n](y1, y2)

for (i) m = 1, and (ii) m ≥ 2. What does your result in part (ii) here tell you
about whether you could have done a better job of two-step prediction in
part (d) by using some fancier estimator?

( f ) Repeat the problem where x[n] is an i.i.d. random process with the PDF at
each value of n a Gaussian density of mean μ and variance σ 2.

10.42. Suppose a CT signal x(t) is broadcast by a transmitter, and let

y(t) = x(t) + α x(t − 	)

denote the signal picked up at the antenna of a particular receiver. You can
think of the received signal y(t) as comprising the transmitted signal x(t) arriving
on a direct path and without noticeable delay or attenuation, followed by an
echo arriving with delay 	 and attenuation factor α. Suppose x(t) is modeled as
a WSS random process, with mean μx and autocovariance function Cxx(τ).

(a) Determine (i) the mean of y(t), (ii) the cross-covariance function between
y(·) and x(·), (iii) the autocovariance function of y(t), all expressed in terms
of Cxx(τ) and the constants μx, α, 	. Explain on what basis you conclude
that x(·) and y(·) are jointly WSS.

(b) Suppose we know that μx = 0, but we don’t know any of the quantities
Cxx(τ), α, and 	. However, assume we are able to use extensive measure-
ments of y(t) to obtain its autocovariance Cyy(τ), as shown in Figure P10.42.
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Using your results in (a), draw a fully labeled sketch of a choice for Cxx(τ)
and specify numerical values for α and 	 that are all consistent with the
Cyy(τ) in the figure. Also, explain what tests you would make on the Cxx(τ)
you have come up with, to confirm that it is a valid autocovariance function;
then verify that your choice of Cxx(τ) does indeed satisfy those tests.

10.43. Underwater acoustic communication systems have many difficulties imposed by
fluctuations in the environment as well as multipath phenomena. In particular,
when a signal is emitted from a source, there are multiple paths over which the
sound can propagate as it travels to the receiver. For example, two common paths
of propagation include the direct, or line-of-sight, path and a bottom-reflected
path. At the receiver, it is often difficult to separate the multiple paths if they
overlap in time. However, if we can accurately estimate the time difference of
the arrivals, we may be able to correctly recover the transmitted signal. Consider
the model shown in Figure P10.43-1 for a signal transmitted through a multipath
environment. Assume that α1 is the attenuation and 	1 is the delay associated
with the direct path of propagation, corresponding to a channel system function
of α1e−s	1 . Similarly, α2 is the attenuation and 	2 is the delay associated with
the bottom-reflected path corresponding to a system function of α2e−s	2 . Also
assume that the direct arrival is stronger than the bottom-reflected signal, i.e.,
α1 > α2.

y(t)+x(t)

a2e- s¢
2

a1e- s¢
1

Figure P10.43-1

Although we may not have explicit measurements of the transmitted
signal, x(t), we can often model the signal as a random process of known
autocorrelation. Based on our receiver measurements, we may also obtain an
estimate of the autocorrelation of the received signal, y(t). The autocorrelations
of both x(t) and y(t), Rxx(τ), and Ryy(τ), are shown in Figure P10.43-2. The units
of τ are seconds.
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(a) Find expressions for Ryx(τ) and Ryy(τ) in terms of Rxx(τ) and the problem
parameters α1, α2, 	1, and 	2.

(b) If Ryx(τ) is as shown in Figure P10.43-3, estimate the values of α1, α2, 	1,
and 	2.
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Figure P10.43-3

10.44. A signal s(t) is transmitted over a multipath channel as depicted in
Figure P10.44-1, where T = 10−3 = 1 msec. This s(t) is a zero-mean WSS
random process with autocorrelation function shown in Figure P10.44-2. A
receiver is to be designed to compensate for the multipath propagation. Assume
that the receiver has the structure shown in Figure P10.44-3. Determine the gain
constant α in the receiver so that the mean square error between ŝ(t) and s(t) is
minimized, i.e., determine α to minimize ε defined as:

ε = E
{(

s(t) − ŝ(t)
)2} .
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Power Spectral Density

Understanding a signal in the frequency domain is central to the design of
any linear and time-invariant (LTI) system intended to extract, enhance, or
suppress the signal. We know this well in the case of deterministic signals, and
it is just as true in the case of random signals. For instance, to extract an audio
signal from background disturbance or noise, one might want to build an LTI
filter that enhances the audio component of the received signal and suppresses
the noise. The design of the filter characteristic requires understanding the
spectral or frequency distribution of the audio and noise components, both
of which are often modeled as random processes, since the specific signal and
noise waveforms are not known.

There are challenges in trying to find an appropriate frequency-domain
description for a wide-sense stationary (WSS) random process. The indi-
vidual sample functions of such a process typically extend over the entire
time axis; they generally have nonzero instantaneous power at all times and
nonzero time-averaged power over all intervals, and thus infinite energy. They
are therefore unlikely to have Fourier transforms that are ordinary, well-
behaved functions of frequency. Instead, the transforms of individual sample
functions are generalized functions of frequency that have to be interpreted
in terms of frequency-domain integrals. This is in contrast to the finite-energy
signals that we treated in Chapter 1, which have zero time-averaged power
and well-behaved Fourier transforms. In addition, since a particular sample
function of a WSS process is specified as the outcome of a probabilistic exper-
iment, its features will have a random component, so it is necessary to search
for transform features that are representative of the whole class of sample
functions, that is, of the random process itself.

451
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452 Chapter 11 Power Spectral Density

A particularly useful approach is to focus on the frequency distri-
bution of the expected value of the signal power. This measure of signal
strength is well suited to the second-moment characterizations of WSS pro-
cesses. Section 11.1 examines the spectral distribution of expected instan-
taneous power, while Section 11.2 explores the spectral distribution of
expected time-averaged power. The Einstein–Wiener–Khinchin theorem out-
lined in Section 11.2 shows the two notions of power spectral density
(PSD) are identical. Section 11.3 then presents some examples of how
PSDs can be applied. The PSD also plays an important role in our treat-
ment of signal estimation and signal detection in Chapters 12 and 13
respectively.

11.1 SPECTRAL DISTRIBUTION OF EXPECTED
INSTANTANEOUS POWER

In this section, we develop the continuous-time (CT) case in some detail;
the discrete-time (DT) version is very similar. Motivated by situations in
which x(t) is the voltage across or current through a unit resistor, the quan-
tity x2(t) is typically referred to as the instantaneous power in the signal x(t).
Suppose x(t) is a WSS process with finite expected instantaneous power, so
E[x2(t)] = Rxx(0) < ∞. We can then write that

E[x2(t)] = Rxx(0) = 1
2π

∫ ∞

−∞
Sxx( jω) dω , (11.1)

where Sxx( jω) is the CT Fourier transform (CTFT) of the autocorrelation
function Rxx(τ ). We shall assume throughout that the autocorrelation func-
tion behaves well enough to possess a Fourier transform, though we will allow
the transform to have components that are impulses. Since the autocorrela-
tion is a real and even function of the lag τ , that is, since Rxx(τ ) = Rxx(−τ ),
the transform Sxx( jω) is real and even in ω. Although this fact could be used
to simplify our notation, we shall stay with the notation Sxx( jω) to avoid a
proliferation of notational conventions, and to keep apparent the fact that this
quantity is the Fourier transform of Rxx(τ ).

11.1.1 Power Spectral Density

A physical interpretation of the function Sxx( jω) can be obtained by consid-
ering the result of passing the signal x(t) through an ideal bandpass filter, as
indicated in Figure 11.1. The frequency response H( jω) of this filter has the
value 1 in the passband, and the value 0 outside.

Because of the way in which y(t) is obtained from x(t), the expected
value of the instantaneous power in the output y(t) can be interpreted as the
expected instantaneous power that x(t) has in the selected passband. Using
the fact that
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1

x(t)

-v0 v0 v

y(t)H( jv)

H( jv) ¢¢

Figure 11.1 Ideal bandpass filter to
extract a band of frequencies from a
WSS input process.

Syy( jω) = |H( jω)|2Sxx( jω) , (11.2)

which was established in Eq. (10.72) in Chapter 10, this expected power can
be computed as

E[y2(t)] = Ryy(0) = 1
2π

∫ +∞

−∞
Syy( jω) dω = 1

2π

∫
passband

Sxx( jω) dω . (11.3)

The first two equalities are the result of applying the relations in Eq. (11.1)
to the signal y(t) instead of x(t), while the last equality follows from invoking
Eq. (11.2) and the characteristics of the ideal bandpass filter. Thus the integral

1
2π

∫
passband

Sxx( jω) dω (11.4)

is the expected value of the instantaneous power of x(t) in the passband, no
matter how narrow the passband is, or where it is on the frequency axis. It
is therefore reasonable to think of Sxx( jω) as describing how the expected
instantaneous power of the WSS process x(t) is distributed over frequency.
Thus Sxx( jω), which is the transform of the autocorrelation function of the
WSS process x(t), is referred to as the power spectral density or PSD of x(t).
This is analogous to the definition in Chapter 1 of the energy spectral density
(ESD) for finite-energy signals.

Note that the instantaneous power of y(t), and hence the expected
instantaneous power E[y2(t)], is always nonnegative, no matter how narrow
the passband. For a sufficiently narrow passband comprising sections of width
	 centered on some arbitrary nonzero frequency pair ±ω0 at which Sxx( jω) is
continuous, we can write

0 ≤ E[y2(t)] ≈ 1
π

Sxx( jω0)	 . (11.5)

Similarly, if Sxx( jω) is continuous at ω = 0, then for a narrow passband of total
width 	 centered at ω0 = 0 we can write

0 ≤ E[y2(t)] ≈ 1
2π

Sxx( j0)	 . (11.6)

It follows that, in addition to being real and even in ω, the PSD is nonnegative
at all frequencies:

Sxx( jω) ≥ 0 for all ω . (11.7)
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A small modification of this argument similarly shows that any impulses in
Sxx( jω) must have positive area.

The preceding development has established that if the function R(τ ) is
the autocorrelation function of a WSS process, with R(0) finite, then its Fourier
transform S( jω) is a real, even, and nonnegative function of ω whose integral
over the entire frequency axis is finite.

The converse is also true: if S( jω) is a real, even, and nonnega-
tive function of ω whose integral over the entire frequency axis is finite,
then its inverse transform R(τ ) is the autocorrelation function of a WSS pro-
cess, with R(0) finite. The idea behind this converse result—though for the
DT version—is described in Section 11.3.2, where we discuss modeling filters,
which allow us to construct a process with a specified PSD or autocorrelation
function. The fact that R(τ ) is the autocorrelation function of a WSS process
if and only if its transform S( jω) is real, even, and nonnegative is known as
Bochner’s theorem, and the corresponding result in the DT case is Herglotz’s
theorem. This result immediately shows, for example, that the “rectangular”
function defined by

F(τ ) = K > 0 for |τ | < τo and = 0 for |τ | ≥ τo (11.8)

cannot be the autocorrelation function of a WSS process, because its transform
G( jω) is a sinc function and therefore is negative for certain ranges of ω. On
the other hand, the “triangular” function

F(τ ) = 1 − |τ |
τo

for |τ | < τo and = 0 for |τ | ≥ τo (11.9)

is a valid autocorrelation function because its transform is the square of a sinc
function, hence real, even, and nonnegative.

While the PSD Sxx( jω) is the Fourier transform of the autocorrela-
tion function, it is useful to have a name for the Laplace transform of the
autocorrelation function; we shall refer to Sxx(s) as the complex PSD.

Example 11.1 PSD of a Sinusoidal Random Process

The sinusoidal random process

X(t) = A sin(ω0t + �) , (11.10)

with a specified frequency ω0, but with amplitude A and phase angle � that are inde-
pendent random variables, and with � uniformly distributed in [−π , π], was shown in
Example 10.5 to be WSS, with mean value μX = 0 and autocovariance function

CXX (τ) = E[A2]
2

cos(ω0τ) = RXX (τ) . (11.11)

The definition of X(t) in Example 10.5 was actually written in terms of a cosine rather
than a sine, but the derivation used there carries over to this case with minor mod-
ifications and yields the same result. The corresponding PSD is the CTFT of the
autocorrelation function RXX (τ) in Eq. (11.11):
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SXX( jω) = πE[A2]
2

(
δ(ω − ω0) + δ(ω + ω0)

)
. (11.12)

Thus, as might have been anticipated, the expected instantaneous power is concen-
trated at the frequency of the sinusoid, that is, at ±ω0, and the strength of the associated
impulses is linear in the second moment of the amplitude, E(A2).

This example can be generalized in various directions. Consider, for instance, the
sum of sinusoids

X(t) =
∑

i

Ai sin(ωit + �i) , (11.13)

with specified frequencies ωi, but with amplitude Aj and phase angle �j that are inde-
pendent random variables for each j, with each �j uniformly distributed in [−π , π], and
with either the set of amplitudes {Ai} being pairwise orthogonal—that is, E[AiAj] = 0
for i �= j—or the set of {�i} being pairwise independent. Computations similar to those
in Example 10.5 then show that

RXX (τ) =
∑

i

E[A2
i ]

2
cos(ωiτ) . (11.14)

The CTFT of RXX (τ) is the corresponding PSD:

SXX( jω) = π

2

∑
i

E[A2
i ]
(
δ(ω − ωi) + δ(ω + ωi)

)
. (11.15)

Example 11.1 exhibits a discrete or “line” spectrum, reflecting the fact
that the random process is constructed from a discrete set of sinusoids. In con-
trast, the next example has a continuous spectrum, corresponding to frequency
content in all frequency bands.

Example 11.2 PSD of Exponentially Correlated Process

Consider a CT WSS process x(t) with autocorrelation function

Rxx(τ) = e−α|τ | , α > 0 . (11.16)

The autocorrelation of the random telegraph wave in Example 10.7 is of this form, with
α = 2λ, where λ is the rate of the Poisson switching between the levels ±1. In that case,
the expected duration of a cycle was 2/λ, which suggests that the frequency

ωo = 2π

2/λ
= πα

2
(11.17)

roughly demarcates the range of frequencies of interest.
The CTFT of Rxx(τ) is the PSD of the process, and is given by

Sxx( jω) = 2α

ω2 + α2
. (11.18)

This function Sxx( jω) is plotted in Figure 11.2 for the case α = 6. The points
corresponding to ωo = πα/2 = 3π and −ω0 are marked.
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Figure 11.2 PSD of a WSS process with exponential autocorrelation Rxx (τ ) = e−α|τ |, for the
case α = 6.

11.1.2 Fluctuation Spectral Density

The autocovariance function Cxx(τ ) of a WSS process x(t) is also the autocor-
relation function of the WSS process x(t) − μx, which represents deviations or
fluctuations of the process from its mean value μx. It follows that the CTFT of
Cxx(τ ), denoted by Dxx( jω) in Chapter 10, is also a power spectral density, but
represents the frequency distribution of the expected instantaneous power in
the fluctuations. We shall refer to Dxx( jω) as the fluctuation spectral density,
or FSD, of the process x(t). The same reasoning as was used in the case of
Sxx( jω) leads to the constraint

Dxx( jω) ≥ 0 . (11.19)

An immediate implication of this is an inequality we deduced in Chapter 10,
namely

|Cxx(τ )| ≤ Cxx(0) , (11.20)

which follows from the following set of relations:

|Cxx(τ )| = 1
2π

∣∣∣∫ ∞

−∞
Dxx( jω)ejωτ dω

∣∣∣
≤ 1

2π

∫ ∞

−∞
|Dxx( jω)ejωτ | dω

= 1
2π

∫ ∞

−∞
Dxx( jω) dω = Cxx(0) . (11.21)
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Example 11.3 Conditions for Ergodicity of the Mean

This example develops time- and spectral-domain conditions for ergodicity of the mean
of a WSS process x(t), that is, for convergence of the time average of a sample function
to the ensemble average μx. Specifically, consider the stable LTI system whose impulse
response is

h(t) = 1
2T

for |t| < T and = 0 elsewhere . (11.22)

If x(t) is the input to this system, then the results in Chapter 10 show that its output
y(t) is also WSS, with mean

μy = μx

∫ ∞

−∞
h(t) dt = μx (11.23)

and autocovariance function

Cyy(τ) = Rhh(τ) ∗ Cxx(τ) , (11.24)

where Rhh(τ) is the deterministic autocorrelation of the impulse response in
Eq. (11.22). This deterministic autocorrelation is a triangular pulse of height 1/(2T)
at the origin that drops linearly on both sides to the value 0 at |τ | = 2T.

The output y(t) at time t = 0 is given by

y(0) = 1
2T

∫ T

−T
x(v) dv , (11.25)

and is therefore the time average computed over a window of length 2T. The expected
value of this time average is E[y(0)] = μy = μx, and is therefore the ensemble aver-
age of interest, μx. However, for any given sample function, the time average will
vary randomly around this value μx. The associated variance of this time average is
Var{y(0)} = Cyy(0). With �(τ) denoting a triangular pulse of height 1 at the origin that
drops linearly to 0 at |τ | = 2T, we can use Eq. (11.24) to write

Var{y(0)} = Cyy(0) = 1
2T

∫ 2T

−2T
�(τ)Cxx(τ) dτ . (11.26)

The time average of x(t) will tend to its expected value, namely μx, as T → ∞ if
and only if the variance in Eq. (11.26) tends to 0 as T → ∞. (Convergence to the
expected value that results from the variance going to 0 is referred to as mean square
convergence to the expected value.) This condition can be tested explicitly for any
specified Cxx(τ) by substituting it in the right side of Eq. (11.26) and check-
ing whether Cyy(0) → 0 as T → ∞. A sufficient condition for the variance in
Eq. (11.26) to go to 0 as T → ∞ is that Cxx(τ) → 0 as τ → ∞, meaning that samples
taken increasingly far apart are asymptotically uncorrelated.

To deduce a spectral condition for ergodicity of the mean, note that Cyy(0) in
Eq. (11.26) can be written as

Cyy(0) = 1
2π

∫ ∞

−∞
Dyy( jω) dω , (11.27)

and the CTFT of Eq. (11.24) yields

Dyy( jω) = |H( jω)|2Dxx( jω) . (11.28)
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The quantity |H( jω)|2 in this equation is a sinc-squared function in the frequency
domain, with height |H( j0)|2 = 1 at the origin, and its first null at |ω| = π/T. Thus, as
T → ∞, this function is more narrowly concentrated around the origin, but its height
at the origin remains fixed at 1. It follows from this and Eqs. (11.27) and (11.28) that
Cyy(0) → 0 as T → ∞ if and only if the FSD Dxx( jω) has no impulse at ω = 0. Thus a
process is ergodic in mean value if and only if its FSD has no impulse at the origin.

The focus so far has been entirely on CT WSS processes. Exactly paral-
lel results apply in the DT case, with the conclusion that Sxx(ej�)—the real,
even, and nonnegative function of � obtained as the DT Fourier transform
(DTFT) of the autocorrelation function Rxx[m]—is the power spectral den-
sity of x[n]. Similarly, Dxx(ej�) is the PSD of the fluctuations x[n] − μx. The
examples below illustrate how the DT results can be applied.

Example 11.4 PSD of a One-Step Correlated Process

Consider a WSS DT process x[n] with mean μx and autocovariance function

Cxx[m] = σ 2
x (ρδ[m − 1] + δ[m] + ρδ[m + 1]) . (11.29)

Adjacent time samples of the process are therefore correlated, with correlation
coefficient ρ, while samples that are two or more time instants apart are uncorrelated.
The corresponding FSD is the DTFT of this autocovariance function, hence

Dxx(ej�) = σ 2
x

(
1 + 2ρ cos(�)

)
, (11.30)

which is nonnegative for all � if and only if |ρ| ≤ 0.5. This is therefore also the
condition for the function in Eq. (11.29) to be a valid autocovariance function.

Note that if ρ is near +0.5 then the FSD peaks around the frequency � = 0,
while if ρ is near −0.5 then it peaks around � = ±π . This reflects the fact that a
positive covariance between adjacent samples is suggestive of an ensemble of signals
that are generally slowly varying, while a negative covariance between adjacent sam-
ples suggests an ensemble of signals whose signs tend to alternate from one time step
to the next.

The special case of ρ = 0 in the above example is worth treating
separately, which we do in the next example.

Example 11.5 PSD of an I.I.D. Process

Consider an independent identically distributed (i.i.d.) process x[n], where the value
at each time is drawn independently of all others, using a distribution fX (x) with mean
μx and variance σ 2

x . In the special case of the Bernoulli process of Example 10.6, for
instance, where x[n] = 1 with probability p > 0 and x[n] = −1 with probability 1 − p
at each time instant, independently of all other times, we have μx = 2p − 1 and

σ 2
x = E[X2] − μ2

x = 1 − (2p − 1)2 = 4p(1 − p) . (11.31)
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Section 11.1 Spectral Distribution of Expected Instantaneous Power 459

The autocovariance function of such an i.i.d. process is

Cxx[m] = E[(x[n + m] − μx)(x[n] − μx)] = σ 2
x δ[m] , (11.32)

since for m �= 0 the two deviations from the mean in the preceding expression are inde-
pendent, while for m = 0 the above expression is simply the defining equation for σ 2

x .
The FSD of the process is accordingly

Dxx(ej�) = σ 2
x , (11.33)

which is constant or flat over the entire frequency range for �, namely [−π , π].
The autocorrelation function of the i.i.d. process is

Rxx[m] = Cxx[m] + μ2
x , (11.34)

so the PSD of the process is

Sxx(ej�) = σ 2
x + 2πμ2

xδ(�) . (11.35)

This PSD is constant over frequency, apart from the impulse at � = 0 that reflects the
power contributed by the mean value of the process. If the mean value is μx = 0, then
the PSD is constant over the entire frequency range [−π , π].

Note that because the conclusions in this example were built on first and second
moments, we did not actually require the process to be i.i.d. It would have sufficed for
the process values at distinct times just to be uncorrelated, not necessarily independent.

DT White Process The preceding example shows that a zero-mean DT
WSS process x[n] with values that are uncorrelated across time—that is, with
Cxx[m] = Kδ[m] for some K > 0—has a spectral density that is constant or flat
at the value K over all frequencies. A WSS process with this characteristic is
said to be a white process of intensity K (by analogy with the notion that white
light is an equal-intensity mixture of all colors). A nonwhite WSS process is
called colored.

The converse is also true: a WSS process x[n] with a flat spectrum has
zero mean and is uncorrelated across time. To see this, suppose

Sxx(ej�) = K > 0 (11.36)

for all �, where K is some positive constant. The corresponding autocorre-
lation function is determined by taking the inverse DTFT of the PSD, and is
therefore

Rxx[m] = Kδ[m] . (11.37)

Suppose the mean value of the process is μx. Then

Cxx[m] = Rxx[m] − μ2
x = Kδ[m] − μ2

x , (11.38)

with corresponding DTFT

Dxx(ej�) = K − 2πμ2
xδ(�) . (11.39)

Since this FSD has to be nonnegative at all �, including at � = 0, it must be the
case that μx = 0 to avoid a negative impulse at � = 0. Thus the white process
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460 Chapter 11 Power Spectral Density

has zero mean, and its autocovariance function is Cxx[m] = Kδ[m], that is, the
process is uncorrelated across time.

The same argument used above to establish that a white process neces-
sarily has zero mean can be used to demonstrate that any WSS process whose
PSD has no impulse at � = 0 must correspond to a zero-mean process. The
converse is not true, however: a zero-mean process could have a PSD with an
impulse at � = 0, as the following example demonstrates. An impulse in the
PSD at � = 0 indicates a nonzero mean value if and only if an impulse of the
same strength is not present in the FSD at � = 0.

Example 11.6 Zero-Mean Process Whose PSD has an Impulse at � = 0

Suppose x[n] is a white process, therefore with a mean value of 0 and autocorrelation
function Rxx[m] = Kδ[m], with K > 0. Let

y[n] = A + x[n] , (11.40)

where A is a zero-mean random variable with variance σ 2
A > 0 and uncorrelated

with x[·]. The mean of the process y[n] is therefore also 0, and its autocorrelation
function is

Ryy[m] = σ 2
A + Rxx[m] = σ 2

A + Kδ[m] = Cyy[m] . (11.41)

The corresponding PSD is determined by computing the DTFT of the preceding
equation:

Syy(ej�) = 2πσ 2
Aδ(�) + K = Dyy(ej�) . (11.42)

Thus, although y[n] has zero mean, its PSD has an impulse at � = 0.

The result in the above example relates to the fact that y[n] is not ergodic
in mean value, though x[n] is. The time average of any realization of y[·] is
the particular value of A that corresponds to that realization, and this will be
nonzero for almost all realizations. The expected value of the instantaneous
power accordingly has a nonzero “DC” or zero-frequency component. The
lack of ergodicity of the mean, and its association with the impulse in the
FSD Dyy(ej�) at � = 0, also follow from the DT versions of the results of
Example 11.3.

CT White Process As in the DT case, a CT WSS process x(t) is termed
white, with intensity K, if its PSD is flat over all frequencies: Sxx( jω) =
K > 0 for all ω. The corresponding autocorrelation function is Rxx(τ ) =
Kδ(τ ). However, Eq. (11.1)—with the integral being taken over the entire
ω axis—shows that the expected instantaneous power of such a process must
be infinite. Thus a white CT process is unrealizable, and does not satisfy the
condition E[x2(t)] < ∞ that we have been assuming. It is nevertheless a use-
ful idealization, for the same reasons that an impulse, though unrealizable, is
useful as an idealization in many areas of analysis.

A physically important CT WSS process, whose PSD is indeed essen-
tially constant out to the terahertz range at room temperature, is generated by
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Section 11.1 Spectral Distribution of Expected Instantaneous Power 461

the thermal fluctuations of the electrons in a resistor held at constant temper-
ature. This process manifests itself as a fluctuating voltage across the terminals
of an open-circuit resistor, and was experimentally discovered by J. B. Johnson.
A theoretical derivation on the basis of classical physics was subsequently
given by H. Nyquist, who was Johnson’s colleague at Bell Labs. The PSD of
this Johnson–Nyquist noise for a resistor of value R held at temperature T
degrees Kelvin, and with k denoting Boltzmann’s constant, is flat at the value

Sxx( jω) = 2kTR (11.43)

out to very high frequencies. The PSD begins to decay in magnitude when
quantum effects set in, at frequencies of the order of kT/h, where h is Planck’s
constant.

A related process in the CT case is what is referred to as a bandlim-
ited white process. Its spectrum is nonzero and flat in some finite region of
the frequency axis, and zero outside this: Sxx( jω) = K > 0 for |ω| < ωm, and
Sxx( jω) = 0 for |ω| ≥ ωm > 0. The corresponding autocorrelation function is

Rxx(τ ) = K
sin(ωmτ )

πτ
. (11.44)

11.1.3 Cross-Spectral Density

In the context of two jointly WSS processes x(·) and y(·), Chapter 10 intro-
duced the cross-spectral densities Syx( jω) and Dyx( jω) as the respective
Fourier transforms of the cross-correlation functions Ryx(τ ) = Rxy(−τ ) and
Cyx(τ ) = Cxy(−τ ). These arise, for example, in determining the frequency
response of an LTI system whose input is x(t) and output is y(t), as illustrated
at the end of Chapter 10. They are also crucial in linear minimum mean square
error (LMMSE) estimation of a process y(t) from measurements of a process
x(·), as the next chapter shows in the setting of Wiener filtering. The following
example illustrates how the cross-spectral density arises when computing the
spectral density of the sum of two jointly WSS random signals.

Example 11.7 FSD of a Sum of Two Jointly WSS Signals

Suppose a sensor produces an output signal z(t) that is related to two jointly WSS input
signals x(t) and y(t) as follows:

z(t) = x(t) + αy(t − 	) . (11.45)

The signal x(t) is from a source whose transmissions are received at the sensor without
attenuation or delay, while the signal y(t) is from a source whose transmissions are
received with attenuation α and delay 	.

Taking the expected value of Eq. (11.45) produces the relationship

μz = μx + αμy , (11.46)

and subtracting this relation from Eq. (11.45) then yields the following relation among
the deviations from the respective means:

z̃(t) = x̃(t) + αỹ(t − 	) . (11.47)
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462 Chapter 11 Power Spectral Density

We use this equation to compute the autocovariance of z(t) as follows:

E[̃z(t + τ )̃z(t)] = Cxx(τ) + α[Cxy(τ + 	) + Cyx(τ − 	)] + α2Cyy(τ) = Czz(τ) .
(11.48)

The last equality in Eq. (11.48) introduces streamlined notation, taking account of the
observation that the autocovariance function of z(t) does not depend on t.

Taking the CTFT of Eq. (11.48) now shows that

Dzz( jω) = Dxx( jω) + α [ejω	Dxy( jω) + e−jω	Dyx( jω)]︸ ︷︷ ︸
2Re{e−jω	Dyx( jω)}

+α2Dyy( jω) ≥ 0 , (11.49)

where the last inequality invokes the nonnegativity of any FSD, Eq. (11.19).

A Fundamental Inequality The preceding example allows us to derive an
important inequality that constrains the cross-FSD of two jointly WSS pro-
cesses. The inequality in Eq. (11.49) holds for all values of α and 	. For this
quadratic expression in α to always be nonnegative, the following condition
must be satisfied: (

Re{e−jω	Dyx( jω)
)2 ≤ Dxx( jω)Dyy( jω) . (11.50)

The largest value the left-hand side of this inequality can take is |Dyx( jω)|2, so
we arrive at the fundamental inequality

|Dyx( jω)|2 ≤ Dxx( jω)Dyy( jω) . (11.51)

This inequality is the extension of a very similar—and familiar—inequality for
two random variables X and Y, namely

σ 2
YX ≤ σXXσYY , (11.52)

where σXX = σ 2
X and σYY = σ 2

Y . The similarity is not accidental: by going to
the frequency domain, the analysis of jointly WSS processes is made as simple,
at each frequency, as the analysis of two random variables. This theme will
appear again in the next chapter, in connection with Wiener filtering.

The preceding development shows that the bound in Eq. (11.51) is a nec-
essary condition for the function Dyx( jω) to be the cross-fluctuation density
of two jointly WSS processes x(·) and y(·). The bound is also sufficient, in the
sense that processes x(·) and y(·) with specified FSDs Dxx( jω) and Dyy( jω)
can be constructed to be jointly WSS with a prescribed cross-fluctuation den-
sity Dyx( jω) if the bound in Eq. (11.51) is satisfied. The proof of this fact is
outlined in Problem 11.20, and again in the context of the estimation results
in Chapter 12, specifically in Problem 12.26.

11.2 EXPECTED TIME-AVERAGED POWER SPECTRUM AND THE
EINSTEIN–WIENER–KHINCHIN THEOREM

Section 11.1 showed that the PSD of a WSS process, defined as the transform
of its autocorrelation function, describes the spectral or frequency distri-
bution of the expected instantaneous power in the process. In the case of
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Section 11.2 Expected Time-Averaged Power Spectrum and the Einstein–Wiener–Khinchin Theorem 463

a CT process x(t), this is the spectral distribution of E[x2(t)]. If x(t) is ergodic
in correlation, so that time averages and ensemble averages are almost always
equal when correlations are evaluated, then E[x2(t)] is also the time-averaged
power in almost any ensemble member. This suggests that an alternate route
to the PSD for a WSS process might be based on analyzing the spectral dis-
tribution of the time-averaged power. Such an approach is described here for
the CT case, as this is notationally simpler, but the development for DT WSS
processes is very similar.

As noted at the beginning of this chapter, individual sample functions
of a WSS process are unlikely to have well-behaved Fourier transforms.
However, truncating a sample function to a finite-duration window typically
leads to a finite-energy signal, which then does have a well-defined Fourier
transform. Let xT(t) be the signal obtained by rectangular windowing of x(t) to
the interval (−T, T). Thus xT(t) = x(t) in the interval (−T , T) but is 0 outside
this interval, so

xT(t) = wT(t) x(t) , (11.53)

where the window function wT(t) is defined to be 1 for |t| < T and 0 otherwise.
Denoting the Fourier transform of xT(t) by XT( jω), the results in Section 1.3.2
of Chapter 1 show that the energy spectral density (ESD) of xT(t) is given by

Sxx( jω) = |XT( jω)|2 . (11.54)

Recall that the ESD of a signal describes how the energy of the signal is
distributed over frequency. The results in Chapter 1 were for the case of deter-
ministic signals, so the preceding equation should be read as being applied to
individual sample functions of the WSS process.

The ESD in Eq. (11.54) is the Fourier transform of the deterministic
autocorrelation of xT(t), as was established for the DT case in Chapter 1, but
the CT case is derived the same way. The following CTFT pair captures this
relation:∫ ∞

−∞
wT(α)wT(α − τ )x(α)x(α − τ ) dα ⇐⇒ |XT( jω)|2 , (11.55)

where the double arrow denotes a Fourier transform pair. Dividing both sides
of this by 2T (which is valid because scaling a signal by a constant scales its
Fourier transform by the same factor) produces the transform pair

1
2T

∫ ∞

−∞
wT(α)wT(α − τ )x(α)x(α − τ ) dα ⇐⇒ 1

2T
|XT( jω)|2 . (11.56)

The quantity on the right—the ESD normalized by the window length—is
called the periodogram of the finite-duration signal xT(t). The units asso-
ciated with the ESD are “energy/Hz,” so the units of the periodogram are
“power/Hz.” The periodogram accordingly describes how the time-averaged
power—the total energy divided by the total time—is distributed over fre-
quency for the particular sample function.
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464 Chapter 11 Power Spectral Density

To move beyond a relationship that holds for sample functions and
arrive at one that characterizes the process as a whole, we have to aver-
age over the ensemble, that is, take expectations. Because of the linearity
of the Fourier transform, the expected value of the Fourier transform of a
signal is the Fourier transform of the expected value, so we can take expec-
tations of both sides in Eq. (11.56) to obtain a new Fourier transform pair.
Moving the expectation inside the integral on the left side produces the
transform pair

1
2T

∫ ∞

−∞
wT(α)wT(α − τ )E[x(α)x(α − τ )] dα ⇐⇒ 1

2T
E[|XT( jω)|2] .

(11.57)

Now invoking the fact that E[x(α)x(α − τ )] = Rxx(τ ), which does not depend
on α, we can move the autocorrelation out of the integral, so the left side of
Eq. (11.57) becomes

1
2T

Rxx(τ )
∫ ∞

−∞
wT(α)wT(α − τ ) dα = Rxx(τ )�(τ ) , (11.58)

where �(τ ) is a triangular pulse of height 1 at the origin that decays linearly to
0 at |τ | = 2T, as in Example 11.3, and is the result of carrying out the determin-
istic autocorrelation of wT(τ ) and dividing by 2T. The preceding steps allow
the transform pair in Eq. (11.57) to be written as

Rxx(τ )�(τ ) ⇐⇒ 1
2T

E[|XT( jω)|2] . (11.59)

Now taking the limit as T goes to ∞ leads to the desired result:

Rxx(τ ) ⇐⇒ Sxx( jω) = lim
T→∞

1
2T

E[|XT( jω)|2] . (11.60)

The interpretation of this limit is most direct when Sxx( jω) is a contin-
uous function of ω, as is the case when Rxx(τ ) is absolutely integrable.
The result in Eq. (11.60) is the Einstein–Wiener–Khinchin (EWK) theorem,
proved by Wiener, and independently by Khinchin, in the early 1930s, but
stated by Einstein in 1914. It shows that the PSD can indeed also be inter-
preted as the spectral distribution of the expected time-averaged power in the
process.

Minor changes to the above derivation produce a similar result for the
cross-spectral density between jointly WSS processes x(·) and y(·). Instead of
Eq. (11.56), the relevant equation is

1
2T

∫ ∞

−∞
wT(α)wT (α − τ )x(α)y(α − τ ) dα ⇐⇒ 1

2T
XT( jω)YT(−jω) ,

(11.61)

where YT( jω) is the CTFT of the windowed signal yT(t) = wT(t)y(t). Taking
the expected value of both sides and then the limit as T → ∞ results in
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Rxy(τ ) ⇐⇒ Sxy( jω) = lim
T→∞

1
2T

E[XT( jω)YT(−jω)] . (11.62)

Spectral Estimation The task of estimating Sxx( jω) or Sxy( jω) from exper-
imental or simulated data is referred to as spectral estimation. The topic is
vast, but the EWK result underlies one important practical approach to the
task that is worth sketching out here. In the case of Sxx( jω), the basic idea
is—for a well-chosen and fixed value of T—to compute the periodogram on
each of M nonoverlapping windows. Averaging these M results produces an
averaged periodogram estimate of the PSD. This estimate will approximate
the expected value of the periodogram, namely

1
2T

E[|XT( jω)|2] , (11.63)

with an error whose variance can decrease as 1/M if the windows are suffi-
ciently uncorrelated. The question then is how well the expected periodogram
approximates the PSD of interest.

To answer this, we return to Eq. (11.59). The transform of the left side
of that equation is the frequency-domain convolution of Sxx( jω) with the
squared-sinc transform of the triangular pulse, so

1
2T

E[|XT( jω)|2] = 1
2π

Sxx( jω) ∗ 2 sin2(ωT)
ω2T

. (11.64)

Thus the expected value of the periodogram is a smoothed or blurred version
of the PSD, where the smoothing is the result of convolving the true PSD with
the squared sinc function. The expected value of the periodogram therefore
does not exactly equal the PSD.

The main lobe of the squared sinc in Eq. (11.64) extends ±π/T on either
side of the maximum, so this gives some indication of the frequency resolu-
tion attained by a periodogram-based estimate. Two sharp peaks in Sxx( jω)
that are separated by less than π/T will probably not be recognized as two
separate peaks in the estimate. This limit on resolution also follows from
the observation that the lowest-frequency spectral component that can be
detected using a window of length 2T will need to contribute around a period’s
worth of data to the window—and this period corresponds to a frequency
of ωmin = π/T.

For a fixed T, the situation can be improved by carefully choosing win-
dows other than the rectangular window wT(t). Windows that fall off less
sharply in the time domain will yield sharper cutoffs in the frequency domain.
When such tapered windows are employed, it can also be useful to over-
lap the M windows somewhat, to allow more effective use of the available
data and thereby reduce the error variance. A widely used approach with
tapered overlapping windows is Welch’s method (developed for the DT case).
Beyond these measures, improved resolution requires a longer window, that is,
larger T.
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It is interesting to note that in the limit of T → ∞, the squared sinc
function in Eq. (11.64) behaves as an impulse; more precisely,

lim
T→∞

1
2π

2 sin2(ωT)
ω2T

→ δ(ω) . (11.65)

The EWK theorem is then recovered from Eq. (11.64)—through a slightly
different argument than the one we invoked with Eq. (11.59)—by taking
T → ∞, since Sxx( jω) ∗ δ(ω) = Sxx( jω).

A similar process yields an estimate of the cross-spectral density Sxy( jω),
but now based on approximating the expectation in Eq. (11.62) by averaging

1
2T XT( jω)YT(−jω).

The DT versions of all the above results can be obtained similarly, so the
details are not presented here, but the following example illustrates how the
DT results are applied.

Example 11.8 Periodogram Averaging for a ±1 Bernoulli Process

Example 11.5 established that a Bernoulli process x[n] taking the values ±1 with equal
probability at each instant, independently of the values at other instants, has mean
μx = 0 and variance σ 2

x = 1 at each instant, and has a flat PSD, in this case

Sxx(ej�) = σ 2
x = 1 . (11.66)

Although the analysis is straightforward in this simple case, that may not be so in more
complicated cases. Instead, we may only have measurements of the process, or access
to a simulator that can generate sample functions of the process. In these cases, an
estimate of the PSD could be obtained by some version of periodogram averaging. For
our Bernoulli i.i.d. example, the simulation of the process is very easy.

Each plot in the first row of Figure 11.3 shows a single periodogram without
averaging (so M = 1) for a window length of 50, but computed using four distinct seg-
ments of a single simulation run. The plots illustrate how different the results can be
from one case to the next because of the random variations. It would be a mistake
to attempt an interpretation of any specific peak in any of these plots as indicative
of anything fundamental about the process. The vertical spread of values obtained in
each case reflects the standard deviation (i.e., square root of the variance) in the peri-
odogram estimate. The variation in the periodogram waveform as a function of � is
commensurate with the smoothing expected for a window of size 50, namely variations
on a scale of π/50.

The second row of plots in Figure 11.3 shows the periodograms for window
lengths of 50 and 200, but now averaged over M = 4 windows, which reduces the vari-
ance by a factor of 4 and the standard deviation by a factor of 2 in both cases. The
spread of values is similar for the two window lengths, as they have the same value
of M; and this spread is around half of that seen in the top row, as anticipated. What
differs between the two window lengths is the rate of variation with �: variations on
a scale of π/50 for the shorter window, and π/200 for the longer one, reflecting the
potentially better resolution obtainable with the longer window.
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Figure 11.3 Spectral estimation of the PSD of a ±1 Bernoulli process, using periodogram
averaging. Each plot in the first row shows a single periodogram for a window length of 50,
computed using distinct segments of a single simulation run. The second row of plots shows
the periodograms for window lengths of 50 and 200, but now averaged over M = 4 windows.
The bottom row repeats the experiment of the second row, but now averaging the periodograms
over M = 16 realizations. All plots are over the frequency range [0, 2π].

The bottom row repeats the experiment of the second row, but now averaging
the periodograms over M = 16 realizations, which reduces the standard deviation by 4
over the original single-periodogram case.

The behavior seen in these various plots is consistent with the above discussion
of spectral estimation based on the EWK result.

11.3 APPLICATIONS

In this section we give a few additional examples of settings in which PSDs
provide useful analytical or computational tools and insights.

11.3.1 Revealing Cyclic Components

An important application of PSD computations is to reveal the presence of
cyclic behavior, which is associated with strong peaks in the PSD. The follow-
ing example from biomedical signal processing is representative of this kind
of investigation.
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468 Chapter 11 Power Spectral Density

Example 11.9 Heart Rate Variability

Figure 11.4(a) shows an electrocardiogram (ECG) recording from electrodes on
the chest of a normal human subject at rest. A heartbeat is defined as the inter-
val between successive R waves; these are the tall spikes in the recording, which
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Figure 11.4 (a) Electrocardiogram trace; (b) CT instantaneous heart rate signal x(t); and
(c) heart rate variability spectrum, showing strong peak at the respiratory frequency, due to
systematic variation of heart rate over the course of a respiratory cycle.
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result from the electrical wave that causes the heart ventricles to contract on each
beat. Computing the reciprocal of the duration of a heartbeat yields the instantaneous
heart rate (HR) in beats per second, which we associate with all time points within that
heartbeat. This computation produces the piecewise constant HR signal x(t) shown in
Figure 11.4(b).

For the PSD estimation, we generate a DT signal from x(t) by sampling it at a rate
at least equal to the fastest heart rate in the data, so that the DT signal x[n] = x(nT)
is defined at least once per heartbeat. Here T is the smallest heartbeat duration in the
data record, or equivalently, 1/T is the fastest heart rate in the data record. A reason-
able choice for this data is to sample x(t) at 2 Hz. To avoid aliasing effects, x(t) should
actually be bandlimited to frequencies below 1/2T by a preliminary filtering operation,
before sampling. Alternatively, we could first sample x(t) at a considerably higher rate
for which the aliasing is negligible, say K/T for some integer K � 1, then band-limit
the DT signal to 1/(2TK) by appropriate DT filtering, before finally downsampling by
the factor K to recover the original sampling rate of 1/T.

To avoid having the “DC” or zero-frequency component dominate the PSD, we
first—in each window for which the periodogram is computed—subtract out the time
average of x[n] in that window, to obtain the zero-average signal x̃[n]. In effect, we end
up estimating the FSD, Dxx(ej�). The PSD of the resulting signal x̃[n] is now estimated
by periodogram averaging.

Figure 11.4(c) shows the PSD estimate obtained by averaging four windows
(M = 4) of 50 points each, using Welch’s method, with a tapered rather than a rect-
angular window, and with some overlap of the windows. The frequency axis is marked
from −1/(2T) to 1/(2T) Hz, rather than from −π to π radians, to enable interpretation
in terms of the original CT HR signal.

A particularly interesting feature of this PSD is the prominent peak at the fre-
quency 0.166 Hz, which corresponds to the average respiratory rate of the subject in
this experiment. The peak indicates that HR varies cyclically over the course of a respi-
ratory period. The physiological explanation for this coupling from respiration to HR
involves both the mechanical effect of respiration on filling and emptying of the heart,
and the action of control reflexes that regulate blood pressure in the body, even over
the time scale of a single respiratory cycle, by modulating heart rate.

11.3.2 Modeling Filters

Generating sample functions of a unit-intensity DT white process w[·] is
straightforward, for instance as a ±1 Bernoulli process of the sort described
in Example 11.5. This can be useful in simulating stochastic systems and in
other applications. In many situations, however, what one wants are sam-
ple functions of a colored DT WSS process x[·] with specified mean μx and
specified autocovariance function Cxx[m] = Rxx[m] − μ2

x or FSD Dxx(ej�) =
Sxx(ej�) − 2πμ2

xδ(�).
A natural way to generate such a colored process is to pass a white pro-

cess through an appropriately chosen stable filter with unit sample response
h[n] or frequency response H(ej�). Applying the above unit-intensity white
process w[·] to the input of such a filter produces at the output a zero-mean
WSS process x̃[·] whose PSD is given by

S̃x̃x(ej�) = Dxx(ej�) = H(ej�)H(e−j�) = |H(ej�)|2 . (11.67)
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470 Chapter 11 Power Spectral Density

The second equality in Eq. (11.67) shows that the desired H(ej�) is a spectral
factor of the FSD Dxx(ej�), in the sense described in Chapter 2. The spectral
factor constitutes a generalized square root of the FSD.

If an appropriate frequency response H(ej�) can be chosen to satisfy
Eq. (11.67) for the specified Dxx(ej�), then sample functions of the process x̃[·]
are produced at the output of the filter when the filter is driven by unit-
intensity white noise. Sample functions of x[·] can be obtained by adding the
constant μx to this output, thus obtaining the correct mean value. The filter
H(ej�) is therefore referred to as a modeling or shaping filter because it mod-
els the given colored process or shapes the constant-intensity white process
into the given colored process.

A spectral factor can sometimes be determined by inspection, or with
elementary computations, as in Example 11.10. More generally, since Dxx(ej�)
is real, even, and nonnegative, and assuming that it contains no impulses, it has
a square root

√
Dxx(ej�) that is also real, even, and nonnegative. The corre-

sponding noncausal filter is guaranteed to be bounded-input, bounded-output
(BIBO) stable under an appropriate continuity condition on

√
Dxx(ej�) that

limits how fast it can change with �. As the discussion of spectral factorization
and all-pass filters in Chapter 2 shows, all possible choices for H(ej�) are then
given by

H(ej�) = A(ej�)
√

Dxx(ej�) , (11.68)

where A(ej�) is the frequency response of an all-pass filter, that is, a stable
filter satisfying |A(ej�)| = 1. The all-pass factor is chosen to obtain a frequency
response H(ej�) that has desirable characteristics for the implementation or
application.

If the original Dxx(ej�) had impulses, at � = 0 or at pairs of nonzero fre-
quencies � = ±�i, then the preceding modeling filter would be used first to
generate the process corresponding to the nonimpulsive portion of Dxx(ej�).
To this process we could then add a zero-mean random constant to generate a
suitable impulse at � = 0 in Dxx(ej�), following the pattern in Example 11.6.
Similarly, we could add a random-phase cosine at frequency � = �i to gener-
ate a pair of impulses in the original Dxx(ej�) at the frequencies ±�i, following
the DT version of the pattern in Example 11.1.

Example 11.10 Modeling a One-Step Correlated Process

Suppose we want to generate sample functions of the zero-mean DT WSS process x[n]
described in Example 11.4. Its autocovariance function was specified as

Cxx[m] = σ 2
x (ρδ[m − 1] + δ[m] + ρδ[m + 1]) , (11.69)

so the process at any time is correlated across adjacent time steps, but uncorre-
lated beyond that. This autocovariance is simple enough that a time-domain approach
works well, so we describe that first, and then the spectral version that parallels the
time-domain approach very closely.
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The process x[n] is to be generated as the output of a stable modeling filter with
unit sample response h[·] and with input w[n] that is a unit-intensity white process, so
Cww[m] = δ[m]. It follows from the relations developed in Chapter 10 that

Cxx[m] = Rhh[m] , (11.70)

where the right side of this equation is the deterministic autocorrelation of h[n]. With
Cxx[m] being nonzero at only three values of m, the preceding equation suggests that
we can choose h[n] to be nonzero at only two instants of time, for instance

h[n] = aδ[n] + bδ[n − 1] . (11.71)

The corresponding Rhh[m] is then

Rhh[m] = ab δ[m − 1] + (a2 + b2) δ[m] + ab δ[m + 1] . (11.72)

Taking account of Eqs. (11.69) and (11.70), the coefficients a and b have to satisfy

a2 + b2 = σ 2
x , ab = σ 2

x ρ . (11.73)

Since a2 + b2 ± 2ab = (a ± b)2 ≥ 0, it follows that 1 ± 2ρ ≥ 0, or |ρ| ≤ 0.5. This con-
straint on ρ that is necessary for realizability of a modeling filter is also—and not
coincidentally—the same constraint discovered in Example 11.4 for nonnegativity
of the associated FSD. Furthermore, the constraint suffices to guarantee that a real
a and b can be found to simultaneously solve the two relations in Eq. (11.73). Com-
bining the relations leads to

a4 − σ 2
x a2 + (σ 2

x ρ)2 = 0 , (11.74)

from which

a2 = σ 2
x

2

(
1 ±

√
1 − 4ρ2

)
and b = σ 2

x ρ/a . (11.75)

In general, four possible real values for a, and the corresponding real values for b, can
be extracted from Eq. (11.75). The existence of multiple solutions shows that different
choices of h[n] can give rise to the same Rhh[m]. As the spectral-domain analysis below
makes evident, convolving any given solution h[n] with the unit sample response of an
all-pass filter yields another choice for h[n] that will provide the same modeling or
shaping effect on the PSD.

The spectral-domain argument for this example closely parallels the above time-
domain development. Note that the FSD of the process x[n] is

Dxx(ej�) = σ 2
x

(
1 + 2ρ cos(�)

)
, (11.76)

with the restriction that |ρ| ≤ 0.5. One way to determine a convenient spectral factor is
by working with the complex form of the FSD, obtained by setting ej� = z. The result
for this example is

Dxx(z) = σ 2
x

(
1 + ρ(z + z−1)

)
= (a + bz)(a + bz−1) = (a2 + b2) + ab(z + z−1) , (11.77)
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472 Chapter 11 Power Spectral Density

so a and b again need to satisfy Eq. (11.73). The modeling filter transfer function can
thus be written as

H(z) = A(z)(a + bz−1) , (11.78)

where A(z) is the transfer function of a (stable) all-pass system, so A(z)A(z−1) = 1.
When A(z) = 1, the filter unit sample response is exactly that in Eq. (11.71). Other
choices of all-pass A(z) for a particular a and b that satisfy Eq. (11.73) will produce
the filters corresponding to the other solutions of Eq. (11.73). Choices of the form
A(z) = z−N will produce delayed (for N > 0, otherwise advanced) versions of the
unit sample response in Eq. (11.71). An endless set of further choices is possible,
though all others will have unit sample response that are no longer of finite duration.

Figure 11.5(a) shows two sample functions of this process obtained by passing
two independently generated Bernoulli ±1 sequences through the preceding modeling
filter, for the extreme case of ρ = 0.5. Figure 11.5(b) repeats this for ρ = −0.5. The
sample functions for the two cases bear out the expectations mentioned at the end of
Example 11.4.
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Figure 11.5 (a) The upper figures show two sample functions of a one-step correlated pro-
cess obtained by passing two independently generated Bernoulli ±1 sequences through the
modeling filter in Example 11.10, for the case ρ = 0.5. (b) The lower figures repeat this
for ρ = −0.5.

The PSD of a DT WSS process—that is, the transform of its auto-
correlation function—is necessarily real, even, and nonnegative. The above
development of the modeling filter suggests why the following converse,
referred to earlier as Herglotz’s theorem, holds: if S(ej�) is a real, even, and
nonnegative function of �, with period 2π , and if its integral over [−π , π] is
finite, then its inverse transform R[m] is the autocorrelation function of a WSS
process, with R[0] < ∞. We had earlier stated the CT version of this result,
Bochner’s theorem. More careful statements and proofs of these results are
beyond the scope of this text.
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11.3.3 Whitening Filters

Some of the estimation and detection problems that we examine in the fol-
lowing chapters are relatively easy to formulate, analyze, and solve when a
random process involved in the problem—for instance, the set of measure-
ments—is white, that is, has a flat spectral density. When the process is colored
rather than white, the results from the white case can still often be invoked in
some appropriate way under one of the following two circumstances.

• The colored process is modeled as the result of passing a white process
through some LTI modeling or shaping filter, as described in the preced-
ing subsection. The modeling filter shapes the white process at the input
into one that has the spectral characteristics of the given colored process
at the output.

• The colored process is transformable into a white process by passing it
through an appropriately chosen LTI filter. This filter flattens the spectral
characteristic of the colored process presented at the input, resulting in
the flat spectral characteristic of a white process at the output. Such a
filter is referred to as a whitening filter.

To obtain the equation governing the design of a whitening filter, sup-
pose that the filter input x[n] is a WSS process with a PSD Sxx(ej�) that has no
impulses. We would like the output w[n] to be a white process with variance
σ 2

w. Since

Sww(ej�) = |H(ej�)|2 Sxx(ej�) , (11.79)
it follows that

|H(ej�)|2 = σ 2
w

Sxx(ej�)
. (11.80)

This tells us what the squared magnitude of the frequency response of the
LTI whitening filter must be to obtain a white output with variance σ 2

w. If the
complex PSD Sxx(z) is available as a rational function of z, then we can obtain
H(z) by appropriate factorization of H(z)H(z−1), as discussed in Chapter 2.

Example 11.11 Whitening Filter

To illustrate the determination of a whitening filter, suppose that

Sxx(ej�) = 5
4

− cos(�) = (1 − 1
2

ej�)(1 − 1
2

e−j�) . (11.81)

To whiten x[n], we require a stable LTI filter for which

|H(ej�)|2 = 1

(1 − 1
2 ej�)(1 − 1

2 e−j�)
, (11.82)

or equivalently,

H(z)H(z−1) = 1

(1 − 1
2 z)(1 − 1

2 z−1)
. (11.83)
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474 Chapter 11 Power Spectral Density

The filter is constrained to be stable in order to produce a WSS output. One choice of
H(z) that results in a causal filter is

H(z) = 1

1 − 1
2 z−1

, (11.84)

with region of convergence given by |z| > 1
2 . This system function could be multiplied

by the system function A(z) of any all-pass system, that is, a system function satisfying
A(z)A(z−1) = 1, and still produce the same whitening action because |A(ej�)|2 = 1.

11.3.4 Sampling Bandlimited Random Processes

A WSS random process is termed bandlimited if its PSD is bandlim-
ited, that is, is zero for frequencies outside some finite band. For deter-
ministic signals that are bandlimited, we can sample at or above the
Nyquist rate and recover the signal exactly. When properly interpreted,
a similar result holds for bandlimited random processes, as described
below.

Assume the CT WSS random process xc(t) has autocorrelation
function Rxcxc(τ ) and corresponding PSD Sxcxc( jω) that is bandlimited to
|ω| < π

T :

Sxcxc( jω) = 0 for |ω| ≥ π

T
. (11.85)

The sampled DT process is defined by x[n] = xc(nT), and is easily seen to be
WSS, with autocorrelation function Rxx[m] = Rxcxc(mT).

The CT signal reconstructed from the DT samples is defined—as in the
deterministic case—by the expression

yc(t) =
∑

n

x[n]
sin(π(t − nT)/T)

π(t − nT)/T
. (11.86)

The sampling theorem in the stochastic case then asserts that the mean square
value of the error between xc(t) and yc(t) is zero:

E{[xc(t) − yc(t)]2} = 0 . (11.87)

In other words, there is zero expected power in the error between the original
process and the signal reconstructed from its samples. One proof of this result
is outlined in Problem 11.21.

11.4 FURTHER READING

Several of the references suggested for further reading at the end of
Chapters 7 and 10 address WSS processes in detail, including the frequency
domain characteristics captured by the power spectral density. The begin-
nings of such treatments in the engineering literature can be seen in [Dav]
and [Lee]. Texts such as [Jen], [Kay4], [Koo], [Ma2], [Mar], [Per], [Por], and
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[Sto] are primarily devoted to the study and application of spectral analysis for
WSS processes. The classical periodogram-averaging approach to estimating
PSDs that we have outlined in this chapter is a prime example of a nonpara-
metric approach to the problem. Parametric methods instead typically aim to
directly identify the parameters of a modeling filter for the WSS process of
interest, using measured sample functions of the process. The modeling fil-
ter is assumed to come from some particular family of parameterized models
(for instance, autoregressive models), and its parameters are chosen to min-
imize a cost function that reflects how well the modeling filter accounts for
the observed data while using only a modest number of parameters. Both
the parametric and non-parametric viewpoints are represented in the above
references.

Problems

Basic Problems

11.1. (a) Suppose x(·) and y(·) are independent random processes, and each is WSS.
Show that z(t) = x(t)y(t) is also WSS, and write its PSD in terms of the
PSDs Sxx( jω) and Syy( jω).

(b) Suppose x(t) is a WSS process and y(t) = x(t − τ1). Is Cyx(τ1) ≥ Cyx(τ) for
all τ? Express Syx( jω) in terms of Sxx( jω).

11.2. (a) Figure P11.2 shows three candidates (labeled [A], [B], and [C]) for the
autocorrelation function Rxx(τ) of a WSS CT random process x(t). For each
candidate Rxx(τ), state whether it is a possible autocorrelation function for
a WSS random process x(t). Give brief justifications for your answers.

[A] [B]

[C]

(1) (1)

(2)

0 τ

( ) = impulse area

τo−τo

0 ττo−τo

0 ττo−τo

1

1

Rxx (τ)

Rxx (τ)

Rxx (τ)

Figure P11.2

(b) For each of the following functions R[m], state whether it can be the auto-
correlation function of a DT WSS random process, where m denotes the
lag. If it cannot be, explain why not. If it can be, explain in detail how you
would obtain such a process by appropriately filtering a Bernoulli process
that takes values at each time instant of +1 or −1, with equal probability.
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476 Chapter 11 Power Spectral Density

(i) R[m] = 1 for m = 0; 0.7 for |m| = 1; and 0 elsewhere.
(ii) R[m] = 2 for m = 0; −1 for |m| = 1; and 0 elsewhere.

11.3. Figure P11.3-1 shows a sampling system whose input, xc(t), is a zero-mean
WSS random process with PSD as shown in Figure P11.3-2. Assume that the
continuous-to-discrete (C/D) box in Figure P11.3-1 is an ideal sampler for which
the output is xd[n] = xc(nT).

xd[n]

T

C/Dxc(t)

Figure P11.3-1

1

0-2p * 104 2p * 104

Sxcxc
( jv)

v

Figure P11.3-2

(a) Determine E[x2
c(t)], the mean-squared value of the input process xc(t).

(b) Show that Rxdxd [m] = Rxcxc (τ)
∣∣
τ=mT . State whether there are any restric-

tions on the value of T for this to be true, and if so, what they are.
(c) (i) Determine and sketch Sxdxd (ej�) for 1

T = 40 kHz.
(ii) Determine and sketch Sxdxd (ej�) for 1

T = 15 kHz.

11.4. We are given a DT LTI system whose frequency response H(ej�) over the inter-
val [−π , π] is 1 for (π/4) < |�| ≤ π , and is 0 for |�| ≤ (π/4); in other words,
this system functions as an ideal high-pass filter. The input to the system is a
white-noise process w[n] with E{w2[n]} = 10. If v[n] denotes the output of the
system, what is E{v2[n]}?

11.5. For each of the following parts, state whether the claim is true or false, and give
a brief explanation.

(a) Consider a DT LTI system whose frequency response is

H(ej�) = 2 for |�| <
π

2
,

and is 0 elsewhere in the interval [−π , π], i.e., for π
2 < |�| ≤ π . If the sys-

tem is driven by an i.i.d. input signal x[n] that takes the values ±1 with
equal probability, then the output y[n] of the system has unit variance, i.e.,
σ 2

y[n] = 1.

(b) If the autocorrelation function of a WSS random process x[n] is given by

Rxx[m] = δ[m] − 0.3
(
δ[m − 1] + δ[m + 1]

)
,
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then the frequency distribution of the expected instantaneous power of the
process is more concentrated at low frequencies than high frequencies.

11.6. Suppose the WSS random processes g[·] and v[·] are zero mean and uncorre-
lated. Let x[n] = g[n] + v[n]. We are told that the complex PSD of this sum is
given by

Sxx(z) = (1 − 1
3 z)(1 − 1

3 z−1)

(1 − 1
2 z)(1 − 1

2 z−1)
,

and that the autocorrelation of v[n] is

Rvv[m] = 2
3
δ[m] .

Determine Sgg(z) and Sgx(z).

11.7. Suppose w[n] is a zero-mean WSS random process, with Cww[m] = σ 2 δ[m]. If
w[n] is the input to a causal system whose output y[n] satisfies

y[n] = w[n] + w[n − 1] + w[n − 2] ,

determine the unit sample response h[·] of the system, and also the covariance
functions Cyw[m] and Cyy[m] in terms of σ 2. Then compute and sketch the PSD
Syy(ej�) of the output, for |�| ≤ π , and taking σ 2 = 1.

11.8. Suppose x(·) and y(·) are two real-valued jointly WSS random processes. The
autocorrelation function of x(t) is Rxx(τ) = e−|τ |. State whether it is possible to
specify a choice for y(t) so that the cross spectral density Sxy( jω) is as shown
in Figure P11.8. Note that the amplitude at ω = 1 is j = √−1. If your answer
is no, explain why not. If your answer is yes, explain how you might specify or
construct y(t).

-3 -2 -1

1 2 3

- j

j

v

Sxy( jv)

Figure P11.8

11.9. Figure P11.9 depicts a stable LTI system with input x[n] and output y[n], which
are real-valued jointly WSS random processes with PSDs Sxx(ej�) and Syy(ej�)
and cross-spectral density Sxy(ej�).

x[n] y[n]h[·]

Figure P11.9

For each of the statements below, specify whether it is true or false. Clearly show
your reasoning.

(a) At any value of � for which Syy(ej�) is not zero, Sxy(ej�) is necessarily not
zero.

(b) At any value of � for which Sxy(ej�) is not zero, Sxx(ej�) is necessarily not
zero.
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478 Chapter 11 Power Spectral Density

(c) At any value of � for which Syy(ej�) is zero, Sxy(ej�) is necessarily zero.
(d) The real part of the cross spectral density Sxy(ej�) must always be

nonnegative.

11.10. Suppose q1(t) is obtained from x1(·) by filtering through a stable system with
frequency response 1−jω

1+jω , and q2(t) is obtained from x2(·) by filtering through

another stable system with the same frequency response 1−jω
1+jω . Express the

cross-spectral density Sq1q2 ( jω) in terms of Sx1x2 ( jω). Assume x1(·) and x2(·)
are jointly WSS.

11.11. Let x(t) be a real-valued, zero-mean WSS process with autocorrelation Rxx(τ);
the Fourier transform of this autocorrelation is the PSD Sxx( jω). Suppose x(t)
is processed by a pair of stable LTI systems as shown in Figure P11.11. The
impulse responses are known to be real.

x(t)

h1(·)

h2(·)

y1(t)

y2(t)

Figure P11.11

(a) Find Ry1y2 (τ) and Sy1y2 ( jω) in terms of Rxx(τ), h1(t), h2(t), Sxx( jω), H1( jω),
and H2( jω).

(b) Show that if H1( jω) and H2( jω) occupy disjoint frequency bands then
y1(·) and y2(·) are uncorrelated. Are y1(·) and y2(·) also guaranteed to be
statistically independent?

11.12. Suppose that the output y[n] and input w[n] of a causal LTI DT system are
related by

y[n] = βy[n − 1] + w[n]

for all times n.
(a) What is the unit sample response h[n] of this system, and what condition

on β will ensure the system is BIBO stable?

Assume for the rest of this problem that the stability condition you identified
in (a) is satisfied. Also, suppose the input w[n] is actually a WSS process whose
PSD Sww(ej�) is constant at some value M > 0 for all frequencies �.

(b) What is the mean value μw of the input w[n]? And what is the autocovari-
ance function Cww[m] of w[n]?

All remaining answers should be expressed in terms of β and M.

(c) Determine the PSD Syy(ej�) of the output. Assuming β > 0, determine at
what frequencies in the range |�| ≤ π this output PSD takes its maximum
and minimum values, and find these maximum and minimum values.

(d) Using any method you choose, determine Cyy[0] and Cyy[1], where Cyy[m]
denotes the autocovariance function of the output.

(e) Determine the linear minimum mean square error (LMMSE) estimator

ŷ [4] = c y[3] + d
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of y[4] in terms of y[3], i.e., find the constants c and d for which the mean
square error

E[(y[4] − ŷ [4])2]

is minimized. Also determine the associated mean square error.
(f) Determine the LMMSE estimator ŷ [3] of y[3] in terms of y[4], and the

associated mean square error.
(g) Determine the LMMSE estimator of y[4] in terms of all past values y[k],

k ≤ 3, and also determine the associated mean square error. (Hint: Use
what you know of the relation between y[n] and w[n] to conjecture a form
for this estimator, then verify that the requisite orthogonality conditions
are satisfied.)

11.13. We wish to produce a WSS stochastic process y[n] with a specified autocorrela-
tion function Ryy[m]. The approach is to apply an LTI filter to a white random
process x[n] as indicated in Figure P11.13.

x[n] y[n]
h[·]

H(z)

Figure P11.13

The process x[n] is zero mean and has autocorrelation function:

Rxx[m] = δ[m] =
{

1 m = 0
0 m �= 0 .

We will choose the filter transfer function H(z) so that Ryy[m] = 0.5|m| , with
corresponding PSD

Syy(ej�) = 1

1 − 1
2 e−j�

+
1
2 ej�

1 − 1
2 ej�

= 3
5 − 4 cos �

.

(a) Choose the correct statement and explain your reasoning. To obtain the
desired y[n], H(z) must represent a

(i) stable, minimum-phase system.
(ii) system that is stable, but doesn’t need to be minimum phase.

(iii) system that doesn’t need to be stable or minimum phase.

(b) Choose the correct statement and explain your reasoning. From what is
given, we can say that x[n] and x[n + k], k �= 0, are:

(i) definitely independent;
(ii) definitely not independent;

(iii) may be independent.

(c) Choose the correct statement and explain your reasoning. From what is
given, we can say that y[n] and y[n + k], k �= 0, are:

(i) definitely independent;
(ii) definitely not independent;

(iii) may be independent.
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480 Chapter 11 Power Spectral Density

(d) Determine one choice for H(z) (including its region of convergence) that
produces a process y[n] with the desired Ryy[m].

11.14. The input to a particular stable and causal first-order system with transfer func-
tion H(z) is a unit-intensity white-noise process w[n], i.e., a process with PSD
Sww(ej�) = 1. The corresponding output y[n] is a WSS process with PSD

Syy(ej�) = 16
(1 − 3z−1)(1 − 3z)
(1 − 4z−1)(1 − 4z)

∣∣∣
z=ej�

.

(a) Plot this PSD as a function of � for |�| ≤ π .
(b) Suppose we know that the system has a stable and causal inverse, also of

first order. Find a choice of H(z) that is consistent with this information.

11.15. A measured PSD for a CT random process is modeled as

S( jω) = ω2 + 1
ω2 + 100

.

We would like to represent the process as the output of an LTI filter with the
transfer function H(s) excited by a white process noise w(t), where

Sww( jω) = 1.

(a) Assume that H(s) is minimum phase. Determine a choice for H(s).
(b) Assume that H(s) is only constrained to be causal and stable, rather than

minimum phase. Suppose it is also known that h(t) asymptotically decays
as e−t as t → ∞, i.e., as t → ∞, h(t) is approximately proportional to e−t .
Determine a choice for H(s).

11.16. Consider the LTI system shown in Figure P11.16-1.

x[n] y[n]h[·]
Figure P11.16-1

Here x[n] is an i.i.d. process with mean μx = 1 and variance σ 2
x = 1

4 . The impulse
response h[n] of the system is given in Figure P11.16-2.

b

-3 -2 -1 0

h[n]

1 2 3 n

ca

Figure P11.16-2

The process y[n] at the output has zero mean and variance σ 2
y = 3

2 . The
cross-spectrum Syx(ej�) between the input and the output of the system is a
real-valued function of �.
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(a) Determine the values of a, b, and c consistent with the information given.
(b) Determine and sketch the spectrum Syy(ej�) of the process y[n] for � ∈

[−π , π]. What kind of filter is h[n] (low-pass, high-pass, band-pass, band-
stop, all-pass)?

(c) If possible, find the impulse response g[n] of a causal, stable LTI system
whose output w[·] is a white process when its input is the process y[·]. If
this is not possible, explain why not.

11.17. Consider a WSS random process x[n] for which the complex PSD is

Sxx(z) = (1 − 1
3 z)(1 − 1

3 z−1)

(1 − 1
2 z)(1 − 1

2 z−1)
.

Find a whitening filter Hw(z) for the process x[n], choosing it to be stable and
causal, and to have a stable and causal inverse. Is your answer unique to within
a constant scale factor? If yes, explain why. If not, construct a second whitening
filter.

Advanced Problems

11.18. Denote the PSD of a DT WSS random process x[n] by Sxx(ej�), and assume the
mean value of the process is μx.
(a) Let q[n] = x[n] − μx. Express Sqq(ej�) in terms of Sxx(ej�), μx.
(b) Suppose

Sxx(ej�) = 10 + Kej� + Ke−j�

for some constant K. Determine the following quantities:
(i) The autocorrelation function Rxx[m].

(ii) E{x2[n]}.
(iii) The mean μx (your answer to (a) may help you here, invoking

Sqq(ej�) ≥ 0).
(iv) The most positive and most negative values that K can take.
(v) The time average

lim
N→∞

1
2N + 1

N∑
n=−N

x[n] ,

where x[n] now denotes a particular sample function of the random
process.

(c) Suppose K = −2 in (b). Write an expression for the LMMSE estimator
of x[n + 1] in terms of x[n], and for its mean square error. Also write an
expression for the LMMSE estimator of x[n + 2] in terms of x[n], and for
its mean square error.

(d) Suppose the process x[n] above for some K > 0 is applied to a filter with
unit sample response

h[n] = δ[n − 100] + δ[n − 101] ,

resulting in the output process y[n]. Determine the autocorrelation func-
tion Ryy[m], and provide a fully labeled sketch of it.
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482 Chapter 11 Power Spectral Density

11.19. A DT WSS stationary random process v[n] has PSD given by

Svv(ej�) = K + ej2� + e−j2� ,

where K is some constant.

(a) What is the smallest value that K can take? Sketch Svv(ej�) in the range
|�| ≤ π for the case where K takes this smallest possible value, and state in
what frequency range or ranges—low, middle, and/or high—the expected
instantaneous power of v[n] is concentrated for this K.

For the rest of this problem, use the value K = 4.

(b) Determine the mean value μv of v[n] (explaining your reasoning carefully),
and also determine and sketch the autocorrelation function Rvv[m].

(c) Obtain the following four LMMSE estimators of v[n + 1], and their associ-
ated mean square errors:

(i) the estimator of v[n + 1] using measurement of v[n];
(ii) the estimator of v[n + 1] using measurement of v[n − 1];

(iii) the estimator of v[n + 1] using measurement of v[n] and v[n − 1]; and
(iv) the estimator of v[n + 1] using measurement of v[n − 1] and v[n − 3].

(d) Define the random process x[n] by

x[n] = v[n] + A ,

where v[n] is as specified above, and A is a zero-mean random variable,
uncorrelated with v[n] for all n, and of variance σ 2

A > 0 (so a random choice
of A is made for each realization of the random process, and this A does
not vary with n). Determine:

(i) the mean μx and autocorrelation function Rxx[m];
(ii) the LMMSE estimator of x[n + 1] using measurement of x[n];

(iii) the power spectral density Sxx(ej�), specified for |�| ≤ π ; and
(iv) whether the process x[n] is ergodic in mean value.

11.20. Suppose x[n] is a zero-mean WSS process with Rxx[m] = N0δ[m], so that the
Fourier transform of the autocorrelation, i.e., the PSD, is flat at all frequencies:
Sxx(ej�) = N0. In other words, x[n] is a white process. Assume this process x[n]
is applied to the input of a stable system with transfer function

H(z) = z + 5

z − 1
2

.

(a) What is the PSD Syy(ej�) of the output y[n]?

The filter H(z) is referred to as a shaping filter for the process y[n] because it
shapes the flat spectrum of the input into that of the output, impressing on the
output its own frequency characteristics. It is also called a modeling filter for the
process y[n], since it models y[n] by relating it to the simpler white process.

(b) Specify the transfer function of a stable and causal first-order (i.e., single
pole) filter G(z) that will produce a WSS white-noise process at its output
when its input is the process y[n] defined in (a). Such a filter is termed a
causal whitening filter for y[n].

(c) Are there other stable, causal first-order filters that could serve as whiten-
ing filters for y[n] in (a)? If so, how are they related to G(z) in (b)?

(d) Are there higher-order causal filters that could serve as whitening filters for
y[n] in (a)? If so, again specify how they are related to G(z).
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(e) Are there first-order noncausal filters that could serve as whitening filters
for y[n]? If so, give an example of one.

11.21. Consider a DT WSS process x[n] with PSD given by

Sxx(ej�) = 9

( 1
2 + ej�)( 1

2 + e−j�)
.

Find the unit impulse response h[n] of one possible whitening filter satisfying
h[n] = 0 for n ≤ 1, so that the PSD Syy(ej�) of y[n] = x[n] ∗ h[n] is a (nonzero)
constant for all �.

11.22. Assume that x[n] in Figure P11.22 is zero-mean WSS, with correlation function
Rxx[m] and PSD Sxx(ej�). Suppose that the process w[·] is independent of the
process x[·], and at any time instant takes the value 1 with probability p or the
value 0 with probability 1 − p ; also assume that the values of w[·] at different
time instants are independent. Thus the signal y[n] = x[n]w[n] is obtained by
setting random components of x[·] to zero.

w[n]

x[n]
y[n]

Figure P11.22

Explicitly check all your answers to the questions below, to be sure that
they take reasonable values for the extreme cases of p = 1 and p = 0. Make
sure to explain why you think these extreme values are reasonable.

(a) Find the mean μw of the WSS process w[n]. Show that its autocorrelation
function has the form Rww[m] = αδ[m] + β, where α and β are constants
that you should determine, and δ[m] is the unit sample function. Also find
an expression for the PSD Sww(ej�) of the process w[n].

(b) Verify that y[·] and x[·] are jointly WSS, and compute Ryx[m], Ryy[m] and
the PSD Syy(ej�).

11.23. Let x[n] be a WSS DT process, with PSD given by Sxx(ej�). Also assume this
PSD contains no impulses.

(a) We would like to filter x[n] through the LTI system in Figure P11.23-1,
which has frequency response H(ej�), producing an output z[n] whose
cross-spectral density Szx(ej�) is some specified function T(ej�). Determine
the H(ej�) that will accomplish this, expressing your answer in terms of
Sxx(ej�) and T(ej�).

x[n] z[n]H(e jÆ)

Figure P11.23-1

(b) Let e[n] be a zero-mean WSS process that is uncorrelated with the x[n]
defined above, so Rex[m] = 0, and denote its PSD by See(ej�). With z[n]
defined as in (a), let y[n] = z[n] + e[n]. The relation of the various signals is
indicated in Figure P11.23-2. Show that Syx(ej�) can be expressed in terms
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484 Chapter 11 Power Spectral Density

of just Szx(ej�) alone. Also evaluate Syy(ej�) in terms of Sxx(ej�), H(ej�),
and See(ej�).

x[n]

z[n] y[n]

e[n]

H(e jÆ) +

Figure P11.23-2

(c) Suppose that in addition to picking T(ej�)—and thus specifying both
Szx(ej�) and Syx(ej�)—we also wanted to make Syy(ej�) equal to some
specified real, nonnegative, even function of frequency, U(ej�). Use your
result from (b) to show what choice of See(ej�) is needed to accomplish this,
expressing See(ej�) in terms of Sxx(ej�), T(ej�), and U(ej�). Using the fact
that See(ej�) is a PSD will show you that we cannot actually have U(ej�) be
an arbitrary real, nonnegative, and even function of frequency; write down
a constraint involving Sxx(ej�), T(ej�), and U(ej�) that must be satisfied.

Note that if the constraint you identified at the end of (c) is satis-
fied, then the scheme above provides a way of generating a process y[n] of
specified cross-correlation with x[n], and specified autocorrelation.

11.24. This problem leads you through one derivation of the sampling theorem for
bandlimited random processes. The common input to the two systems in
Figure P11.24 is a WSS random process x(t) with power spectral density
Sxx( jω).

x(t)

y1(t)

y2(t)

H1( jv)

H2( jv)

Figure P11.24

(a) Express E
{

[y1(t) − y2(t)]2
}

in terms of H1( jω), H2( jω), and Sxx( jω).

Suppose for the remainder of this problem that Sxx( jω) is nonzero only in the
frequency range |ω| < ωm, for some ωm. The process x(t) is then referred to as
a bandlimited random process.

(b) Suppose H1( jω) = H2( jω) for |ω| < ωm, but that these two frequency
responses possibly differ outside this band. Using your result in (a),

determine what E
{

[y1(t) − y2(t)]2
}

is for this case.

(c) Suppose H1( jω) = ejωτ for some τ , and

H2( jω) =
∞∑

n=−∞
s[n]ejωnT , T = π/ωm ,

where s[n] is a sequence of real numbers. Express y1(t), y2(t) in terms
of x(·).
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(d) Suppose now that the sequence s[n] in (c) is given by

s[n] =
sin
(
ωm(τ − nT)

)
ωm(τ − nT)

.

Carefully explain why in this case H1( jω) = H2( jω) for |ω| < ωm.
(Hint: H2( jω) in (c) is periodic in ω.)

(e) Put the preceding calculations together to deduce the sampling theorem
for bandlimited WSS processes, expressing x(τ) in terms of its samples.

Extension Problems

11.25. An analog-to-digital (A/D) converter can be represented as a C/D converter
followed by a quantizer. A useful model for quantization error in a linear quan-
tizer is to represent the error as a zero-mean i.i.d. process with variance σ 2

e , and
uncorrelated with the DT quantizer input xd[·]. This leads to the model for an
A/D converter shown in Figure P11.25-1, where q[n] represents the quantized
signal and e[n] represents the error introduced by quantization.

e[n]

x(t) 
C/D

A/D

xd[n]

T

q[n]+

Figure P11.25-1

Assume:
(i) x(t) is a zero-mean WSS random process;

(ii) e[n] is i.i.d., zero mean, with variance σ 2
e = 1

5 × 10−3;
(iii) xd[·] and e[·] are uncorrelated random processes;
(iv) the PSD, Sxx( jω), of x(t) is as shown in Figure P11.25-2; and
(v) the sampling period is T = 1

4 × 10−5, i.e., the sampling frequency is ωs =
2π
T = 8π × 105.

1

-p * 105 p * 105

Sxx( jv)

v Figure P11.25-2

(a) Determine and make a labeled sketch of Sqq(ej�), the PSD of q[n], in the
range |�| ≤ 4π .
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(b) The signal-to-noise ratio, SNRq, of the quantized signal q[n] is defined as:

SNRq �
E{x2

d[n]}
E{e2[n]} .

Determine SNRq.
(c) Suppose q[n] is now processed as shown in Figure P11.25-3, where H(ej�)

is the ideal low-pass filter shown in Figure P11.25-4, xr[n] is due only to
xd[n], and er[n] is due only to e[n]. What value of �co would you choose so
that Rxrxr [n] = Rxdxd [n] and E{x2

r [n]}/E{e2
r [n]} (i.e., the SNR after filtering)

is maximized? State the maximized SNR value.

q[n] H(e jÆ) r[n] = xr[n] + er[n]

Figure P11.25-3

H(e jÆ)

Æ-Æco Æco p- p

1

Figure P11.25-4

11.26. A zero-mean WSS random process s(t) is the input to an A/D converter fol-
lowed by a D/A converter. As shown in the Figure P11.26-1, the A/D–D/A
cascade is modeled by an ideal C/D converter, with additive quantization noise,
followed by an ideal D/C converter.

T

ed[n]

sd[n] rd[n]

T

s(t)
C/D D/C

r(t)
H( jv)

s(t) +

Figure P11.26-1

In particular:

(i) the input process s(t) has the bandlimited PSD shown in Figure P11.26-2;
(ii) the C/D output is sd[n] = s(nT);

(iii) the quantization noise ed[n] is a zero-mean, WSS, white-noise process with
PSD Seded (ej�) = σ 2

e ;
(iv) the process ed[n] is uncorrelated with the process sd[·];
(v) the A/D output is rd[n] = sd[n] + ed[n]; and

(vi) the D/A output is

r(t) =
∞∑

n=−∞
rd[n]

sin[π(t − nT)/T]
π(t − nT)/T

.
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A

-p/2T p/2T

Sss( jv)

v
0 Figure P11.26-2

(a) Determine and make a labeled sketch of Srr( jω), the PSD of r(t).
(b) Determine and make a labeled sketch of Ssr( jω), the cross-spectral density

of s(t) and r(t).

To reduce the effect of the quantization noise, we want to pass r(t) through an
LTI filter with frequency response H( jω) to obtain an estimate ŝ (t) of s(t). The
error measure that we want to minimize is the mean square error

E = E{[s(t) − ŝ(t)]2}.
(c) In this part we restrict the filter H( jω) to be an ideal low-pass filter with

unity gain and cutoff frequency ωc, as shown in Figure P11.26-3. For A >

σ 2
e T, determine the ωc value, in terms of A, T, and σ 2

e , that minimizes the
mean square error E defined above.

1

0-vc vc

H( jv)

v Figure P11.26-3

11.27. The audio on a compact disc is stored at a sampling rate of 44.1 kHz (on the
CD it’s stored in a coded format that allows for significant error detection
and correction). As part of the digital-to-analog (D/A) conversion, the data is
upsampled to a much higher sampling rate. As we explore in this problem, this
allows for a much simpler, and therefore less expensive D/A converter.

The basic strategy is suggested in the block diagram shown in
Figure P11.27-1. Here x[n] represents the audio on the compact disc, which is
an appropriately bandlimited xc(t) sampled at 44.1 kHz, and is so finely quan-
tized that for the purposes of this problem we can ignore the quantization of
x[n]. The upsampler converts x[n] to samples that correspond to having sampled
xc(t) at a rate of L · 44.1 kHz, i.e., if x[n] = xc(nT) then g[n] = xc(nT/L).

Audio

out

Upsample by

a factor of L
Quantizer D/C

T/L

w(t)q[n]g[n]x[n]

Figure P11.27-1
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488 Chapter 11 Power Spectral Density

Suppose a b-bit (plus sign bit) linear quantizer is applied to g[n] as shown
in Figure P11.27-2. Denoting the peak quantizer output by Q, we shall model
the quantization error e[n] as an i.i.d. process that is uncorrelated with g[·] and
uniformly distributed in an interval of width Q2−b with zero mean and variance
σ 2

e = 1
12 Q2 2−2b at each instant.

Linear

quantizer
D/C

T/L

w(t)q[n]g[n]

Quantizer

model

D/C

T/L

w(t)q[n]g[n]

e[n]

+

Figure P11.27-2

As shown in Figure P11.27-3, assume that x[n] is a random process
obtained by sampling a CT signal xc(t) at a sampling frequency of 44.1 kHz,
and that the PSD of xc(t) is as shown in Figure P11.27-4.

x[n] = xc(nT)

T = 

C/D
xc(t)

1
44.1

. 10-3 Figure P11.27-3

A

-v0 v0 = 2p · 22 · 103

Sxx(v)

v
Figure P11.27-4

(a) Sketch the PSDs of x[n], g[n], e[n], and w(t).
(b) Suggest some further processing to be done to w(t) to improve the signal-

to-noise ratio (SNR) before listening to the audio.
(c) As an alternative to the quantizer in Figure P11.27-2, consider the proce-

dure in Figure P11.27-5, referred to as first-order noise shaping. For this
quantizer sketch the PSD of q[n] and w(t).
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-
- +

1-sample

delay

b-bit quantizer

e[n]

g[n] q[n]
+ +

+

Figure P11.27-5

(d) In a high-quality CD player, L = 256 and b = 1 bit. Which of the two
quantizers do you think would be preferable?

11.28. Figure P11.28 depicts a DT � − 	 quantizer where the random process e[n]
denotes the error introduced by a linear quantizer.

x[n]

e[n]

y[n] = yx[n] + ye[n] 

az-1

- +

++

-

+
+ +

+

Figure P11.28

Suppose the signal x[n] is a WSS process with a triangular PSD that has the
value M at � = 0, and decays linearly to the value 0 for � = ±π/2. The quanti-
zation noise e[n] is modeled as a (zero-mean) white-noise random process that
is uncorrelated with x[·] and has autocorrelation function Ree[m] = σ 2

e δ[m].
The output process y[n] is represented as the sum

y[n] = yx[n] + ye[n] ,

where

yx[n] denotes the output due to x[n],

ye[n] denotes the output due to e[n].

In the block diagram in Figure P11.28, a is an adjustable parameter.

(a) Determine the transfer functions Hx(z) from x[n] to yx[n] and He(z) from
e[n] to ye[n].

(b) Determine the PSDs of yx[n] and ye[n] in terms of M, σ 2
e , and a. Will the

sum of these PSDs yield Syy(ej�), the PSD of y[·]?
(c) Determine E{y2

x[n]} and E{y2
e [n]}, expressing them in terms of appropriate

integrals in the frequency domain.
(d) Determine the value of a that maximizes the in-band output SNR, defined

as the ratio of E{y2
x[n]} to the expected squared value of the noise

component ye[n] that is contained in the signal band |�| ≤ π/2.
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11.29. You are asked to design the microprocessor-based cruise control system for a
car. Let v[n] denote the deviation of the car’s velocity from the desired value at
the nth sampling instant, and let x[n] denote the deviation of the throttle posi-
tion at this time from the position nominally required to maintain the desired
velocity; the throttle position is only varied at the sampling instants. Assume
these variables are related via the first-order state-space description

v[n + 1] = (1 − α)v[n] + βx[n] + d[n],

where d[n] represents the effects of external disturbances acting on the car.
Assume also that d[n] is zero-mean white noise, i.e., its power spectral den-
sity is constant at all frequencies, Sdd(ej�) = σ 2, and its correlation function is
correspondingly Rdd[m] = σ 2δ[m]. Take α (which represents the effect of fric-
tional damping) to be positive but less than 1, and β to be positive; assume both
these parameters are known. Now suppose that you pick the control to be in
state-feedback form, i.e., x[n] = gv[n], where g is a constant gain, so that the
closed-loop system is actually

v[n + 1] = (1 − α + βg)v[n] + d[n].

(a) What condition on g ensures that the closed-loop system is a BIBO stable
LTI mapping from d[n] to v[n]?

(b) Assuming that g is chosen in a way that satisfies the condition in (a), find:

(i) the PSD Svv(ej�) of the velocity, i.e., the Fourier transform of the
autocorrelation Rvv[m];

(ii) an expression for E{v2[n]}.
Now, still assuming that the condition in (a) holds, suppose our control design
task is formulated as that of choosing g to minimize E{v2[n] + rx2[n]}. This cri-
terion reflects our desire to keep both the velocity variations and the throttle
variations close to 0. The positive parameter r allows us to reflect how unde-
sirable throttle variations are relative to velocity variations; a large r would be
used if we did not want excessive throttle variations (e.g., for reasons of fuel
economy or emission control).

(c) Use your expression in (b)(ii) above to find an equation that could be
solved to determine the optimum g.

11.30. A particular DT WSS random process κ[n] has autocorrelation function

Rκκ[m] = 10δ[m] + 3γ
(
δ[m − 1] + δ[m + 1]

)
.

(a) What are the most positive and most negative values that γ can take
in this instance? Determine the mean and variance of κ[n], and also the
correlation coefficient between κ[n] and κ[n − 1].

For the rest of this problem, assume γ = 1.

(b) Show that κ[n] can be generated as the output of an appropriate stable
first-order state-space system driven from time −∞ by a (zero-mean) white
process w[n] of unit intensity, so w[n] has variance 1. (Hint: First consider
what unit sample response or transfer function you would want this sys-
tem to have.) Explicitly write down this state-space system in the following
form:

q[n + 1] = αq[n] + βw[n], κ[n] = ξq[n] + dw[n] ,
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with appropriately chosen values of the coefficients α, β, ξ , and d. Explain
your reasoning.

You might find more than one first-order state-space model that will
accomplish the objective, but any one of them will suffice as an answer for
our purposes.

(c) Suppose we have another first-order state-space system, driven by the col-
ored process κ[n] that was produced by the system in (b). Let p[n] denote
the state variable of this system, and assume the output y[n] of this system
can be measured. The system thus takes the form

p[n + 1] = ap[n] + bκ[n] , y[n] = p[n] + v[n] .

Here a and b are some fixed nonzero scalar parameters whose precise val-
ues don’t matter to us, and v[n] is a (zero-mean) white measurement-noise
process with variance σ 2 and is uncorrelated with w[·]. Combine this sys-
tem description with your result from (b) to write down a second-order
state-space model with state variables q[n] and p[n], white input w[n], and
measured output y[n]. Also determine the eigenvalues and eigenvectors
associated with the system, i.e., the eigenvalues and eigenvectors of the
one-step state transition matrix of this system. As a check, one of the
eigenvalues of your model should turn out to be 0.

(d) Determine what conditions, if any, have to be satisfied by the various
coefficients in this problem for the combined system in (c) to be:

(i) reachable from the input signal w[n]?
(ii) observable in the output signal y[n]?

For each of the above cases, also specify which modes become unreachable
or unobservable when the respective conditions are not satisfied.

(e) Suppose w[n], κ[n], and v[n] cannot be measured, although their properties
specified above are known. However, as mentioned before, y[n] is mea-
sured. Write down in detail the equations of a second-order observer to
propagate estimates q̂ [n] and p̂ [n] of q[n] and p[n] respectively for all
n ≥ 0. Also write down a second-order state-space model describing the
evolution of the errors q̃[n] = q[n] − q̂ [n] and p̃[n] = p[n] − p̂ [n]. Pick the
observer gains to put both eigenvalues of the error model at 0.

(f) For the observer you designed in (e), obtain an expression for the steady-
state variance of p̃[n], expressed in terms of a, b, and σ .

11.31. (a) (i) Numerically generate a 100-point segment of a random signal v[n],
n = 1, · · · , 100, constructed as a realization of an i.i.d. process whose
values at any time are chosen uniformly in the interval (−1, 1). Also
determine analytically the mean μv and autocorrelation function
Rvv[m] of this i.i.d. process, as well as its PSD Svv(ej�).

(ii) Plot the 100-point signal v[n] for two different realizations. Compute
the time average for each of these realizations, and compare with
the theoretical (ensemble) mean μv. Also compute the deterministic
autocorrelation for each of your realizations, for m = 0, 1, 2, 3, 4 (and
additional values of m, if you like):

Rvv[m] = 1
Nm

∑
n

v[n + m]v[n] ,

where the sum ranges over the Nm terms for which both v[n + m]
and v[n] are defined (this is needed since you have only defined
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492 Chapter 11 Power Spectral Density

v[n] for 100 values of n). Compare your results with the theoretical
(ensemble) autocorrelation function Rvv[m] computed earlier. Does
the evidence suggest the process v[n] is ergodic, as far as means and
autocorrelations are concerned?

(iii) For each realization in (ii), compute and plot the periodogram, defined
as the squared magnitude of the DTFT of the 100-point signal, divided
by 100. Comment on any significant similarities and differences
between the periodograms for the two realizations. Also compute and
plot the empirical (i.e., experimental) average periodogram over 200
realizations. What, if anything, changes with the preceding results if
you use a signal segment of duration 400 instead of 100 time instants?

(b) (i) Consider the random signal defined by x[n] = 3 + (−1)n + v[n], where
v[n] is constructed as in (a). Analytically determine the mean μx[n],
autocorrelation Rxx[n + m, n], and autocovariance Cxx[n + m, n] of
this random signal. Determine which of these quantities, if any, does
not depend on n.

(ii) Generate and plot a 150-point realization of x[n], then apply it to
the input of a causal filter whose transfer function H(z) has zeros at
z = 1 and z = −1, and poles at z = 0.8 ± j0.2. Plot the output y[n]
for n = 1, · · · , 150. Comment on any features of y[n] that seem to
reflect characteristics imposed by the filter. Compute and plot the
periodogram of y[n], omitting any initial filter transient.

(iii) Repeat this experiment for 200 realizations, then compute and plot the
averaged periodogram of y[n]. Compare this plot with the theoretical
expression for the PSD of the output, namely Syy(ej�) = σ 2

v |H(ej�)|2,
where σ 2

v = Rvv[0] is the variance of v[n] at any time.

11.32. Consider a zero-mean WSS process y[n] with E{y2[n]} = σ 2. Suppose signal val-
ues at adjacent instants have a correlation coefficient of ρ, but that signal values
more than one instant apart are uncorrelated.

(a) Use an appropriate modeling filter driven by a white process to numerically
generate and plot 100 consecutive values of y[n], for ρ = ±0.1 and ρ =
±0.4, with σ 2 = 9. For each of these four cases, also evaluate

1
99

∑
k

y[k]y[k + 1] and
1

98

∑
k

y[k]y[k + 2] ,

where k in the first sum ranges over the 99 values in your data set for which
both y[k] and y[k + 1] are defined, and in the second sum ranges over the
98 values for which both y[k] and y[k + 2] are defined. Are the values you
get close to what you would expect to find?

(b) (i) Design an LMMSE estimator ŷ [k + 1] for y[k + 1], based on measure-
ment of y[k], and test it out on your data set for the case where ρ = 0.4.
In particular, compute

1
99

∑
k

(̂y [k + 1] − y[k + 1])2 ,

where k ranges over the first 99 values of your data set. Is the value
you get close to what you would expect to find?
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(ii) Design an LMMSE estimator ŷ [k + 1] for y[k + 1] based on measure-
ment of both y[k] and y[k − 1], and test it out on your data set. In
particular, compute

1
98

∑
k

(̂y [k + 1] − y[k + 1])2 ,

where k ranges over the middle 98 values of your data set. Do you
seem to be doing better than in (b)(i), or are these numbers about
the same? Would you expect, in the limit of an infinitely long exper-
iment rather than one involving just 100 points, that this number will
be smaller than the corresponding quantity you computed in (b)(i), or
do you think the two numbers should be the same?
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Signal Estimation

In the preceding two chapters we developed concepts and tools for deal-
ing with random processes in both the time and frequency domains. We are
now equipped to address some prototypical problems of inference involv-
ing such processes. This chapter deals with linear minimum mean square
error (LMMSE) estimation of a wide-sense stationary (WSS) process from
measurements of another process that is jointly WSS with it. Such esti-
mation is generally referred to as Wiener filtering, after Norbert Wiener,
who in the early 1940s solved the challenging causal version of this prob-
lem. In causal Wiener filtering, past and present measurements are pro-
cessed by an optimally chosen causal linear and time-invariant (LTI) filter
to produce LMMSE estimates of the process of interest. The derivation
of the causal Wiener filter makes use of a minimum-phase LTI model-
ing filter whose input is some white process and whose output is the WSS
measured process.

Rudolph Kalman in the 1960s extended such LMMSE estimation to non-
stationary processes, with the measured process now modeled as the noisy
output of a time-varying linear state-space model driven by some white distur-
bance process. The objective in Kalman filtering is to use the measurements
to obtain LMMSE estimates of the state variables. In the case of an LTI sys-
tem, the resulting filter takes the form of the state-space observer studied in
Chapter 6, but with a possibly time-varying observer gain vector. If the dis-
turbance and noise processes are stationary, and if the system is reachable
from the disturbance input and is observable from the measured output, then
the observer gain or Kalman gain converges to some constant vector, exactly
yielding an observer of the sort studied in Chapter 6.

494
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Section 12.1 LMMSE Estimation for Random Variables 495

The current chapter focuses on Wiener filtering, though a simple exam-
ple of a Kalman filter, viewed as an optimal observer, is also presented at
the end.

12.1 LMMSE ESTIMATION FOR RANDOM
VARIABLES

As LMMSE estimation for jointly WSS processes is closely related to LMMSE
estimation for random variables, it is helpful to first briefly summarize the key
results from Chapter 8. That chapter showed how to construct an LMMSE
estimator of a random variable Y in terms of some collection of L measured
random variables {Xi}L

i=1. This estimator Ŷ is a linear combination of the mea-
sured random variables (actually a linear combination plus a constant, also
referred to as an affine combination):

Ŷ = μY +
L∑

i=1

ai(Xi − μXi) = μY + aT(X − μX) , (12.1)

as seen in Eq. (8.79). We had previously written Ŷ� for the LMMSE estimator,
but since this chapter deals only with linear estimators, we drop the subscript
� throughout for notational simplicity. The quantities μY and μXi in Eq. (12.1)
denote the expected or mean values of the indicated random variables, and we
also use the following vector notation:

a =

⎡⎢⎢⎢⎣
a1
a2
...

aL

⎤⎥⎥⎥⎦ , X =

⎡⎢⎢⎢⎣
X1
X2
...

XL

⎤⎥⎥⎥⎦ , μX =

⎡⎢⎢⎢⎣
μX1

μX2
...

μXL

⎤⎥⎥⎥⎦ . (12.2)

The form of the estimator in Eq. (12.1) shows that it is unbiased, that is,
E[Ŷ] = μY = E[Y].

The optimal vector a is obtained by solving the normal equations given in
Eq. (8.87), which are the result of invoking the orthogonality of the estimation
error Y − Ŷ to each measured random variable Xi. In matrix form, the normal
equations are written as

(CXX)a = cXY . (12.3)

Here CXX is the symmetric L × L covariance matrix of the random vec-
tor X. Its i, jth element is the covariance σXiXj between the measured ran-
dom variables Xi and Xj, and equals its j, ith element, namely σXjXi . Similarly,
cXY is an L × 1 vector whose ith component is the covariance σXiY between
the measured random variable Xi and the random variable Y that we are esti-
mating. Equivalently, this matrix and vector of covariances can respectively be
defined by the expressions

CXX = E[(X − μX)(X − μX)T], cXY = E[(X − μX)(Y − μY)] = cT
YX ,
(12.4)
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X

-mX
mY

cXY (CXX)
-1T Y+ +

Figure 12.1 Schematic representation
of Eq. (12.5), showing the LMMSE
estimator of a random variable Y in
terms of a measured random vector X.

where the expectation of the matrix or vector is taken entry-by-entry. The
LMMSE estimator is thus completely specified in terms of the first and second
moments of the constituent random variables.

The preceding equations allow us to write

Ŷ = μY + cT
XY (CXX)−1(X − μX) . (12.5)

This relationship is shown schematically by the block diagram in Figure 12.1,
which will form a useful point of comparison for our later results.

The associated minimum mean square error (MMSE) can be computed
directly, and written in at least the following ways:

MMSE = E[(Y − Ŷ)2]

= E[(Y − Ŷ)Y]

= E[Y2] − E[ŶY]

= σ 2
Y − aTcXY

= σ 2
Y − cT

XY(CXX)−1cXY

= σ 2
Y

(
1 − 1

σ 2
Y

cT
XY(CXX)−1cXY

)
. (12.6)

The second equality in the chain above follows from noting that since the zero-
mean error Y − Ŷ is orthogonal to each of the measured random variables, it
is also orthogonal to Ŷ, that is, E[(Y − Ŷ)Ŷ] = 0. The fourth equality is the
result of subtracting and adding μ2

Y to the expression that precedes it, then
grouping terms to form variances and covariances. The nonnegative quantity

ρ2
XY = 1

σ 2
Y

cT
XY(CXX)−1cXY (12.7)

that appears in the last line of Eq. (12.6) must be no greater than 1 because the
MMSE must be nonnegative. It plays a role analogous to ρ2

XY , the square of
the correlation coefficient between random variables X and Y when perform-
ing LMMSE estimation of Y from a single random variable X. In the vector
space language for LMMSE estimation introduced in Chapter 8, the quantity
ρ2

XY is the squared cosine of the angle between the vector Y and the subspace
spanned by the vectors {Xi}, or equivalently between Y and Ŷ.

Our goal in this chapter is to extend LMMSE estimation to the case
where the measurements come from a WSS process, and the random variable
we are estimating is the value at some instant of another WSS process that
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Section 12.2 FIR Wiener Filters 497

is jointly WSS with the measured process. As expected with LMMSE esti-
mation problems, the solution will only require first and second moments of
the involved random processes, specifically only their means, autocovariance
functions, and cross-covariance function. We treat only the discrete-time (DT)
case in detail, as the development in DT is more transparent. However, most
of the DT results have close continuous-time (CT) parallels that are briefly
stated at the end of the chapter.

12.2 FIR WIENER FILTERS

Let x[·] and y[·] be two jointly WSS random processes, with respective
mean values μx, μy, autocovariance functions Cxx[m] and Cyy[m], and cross-
covariance function Cxy[m]. Suppose initially that we want to construct an
LMMSE estimator of y[n] for some specific n, using measurements of the L
samples x[n], x[n − 1], . . . , x[n − L + 1] from the process x[·]. This estimator
then takes the form

ŷ [n] = μy +
L−1∑
j=0

h[ j]
(

x[n − j] − μx

)
(12.8)

for some optimally chosen set of coefficients h[0], h[1], . . . , h[L − 1]. This
is essentially Eq. (12.1), apart from notational changes. Furthermore, since
only relative positions on the time axis matter for jointly WSS processes,
the same choice of h[ j] will be optimum for any value of n because
changing n does not change the relative times of the samples involved in
the problem.

The optimum values of the h[ j] are obtained by solving the associated
normal equations, which will take the form in Eq. (12.3), with the appropriate
substitutions. In particular, the i, jth and j, ith entries of the covariance matrix
CXX in Eq. (12.3) will be Cxx[i − j], that is, the autocovariance of the process
x[·] at lag i − j. Similarly, the ith entry of cXY in Eq. (12.3) will be Cxy[1 − i],
that is, the cross-covariance of the processes x[·] and y[·] at lag i − 1. The fol-
lowing example, which is similar to the one in Section 10.5.2, illustrates the
procedure.

Example 12.1 FIR Estimation of a Signal Corrupted by Additive Noise

Suppose we have noise-corrupted measurements x[n] of a scaled version of a WSS
process y[n]:

x[n] = 2y[n] + v[n] , (12.9)

where v[n] is a white-noise process (and thus necessarily zero mean) with autocovari-
ance function Cvv[m] = σ 2δ[m], and is uncorrelated with y[·]. Assume that y[n] has
mean μy = 1 and autocovariance function Cyy[m] = (0.3)|m| . Then x[n] is WSS, with
μx = 2, and

Cxx[m] = 4Cyy[m] + Cvv[m] = 4(0.3)|m| + σ 2δ[m] . (12.10)
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498 Chapter 12 Signal Estimation

Also, x[·] is jointly WSS with y[·], with cross-covariance

Cxy[m] = 2Cyy[m] = 2(0.3)|m| . (12.11)

The LMMSE estimator for y[n] that is based on x[n], x[n − 1], x[n − 2] takes the form

ŷ [n] = 1 + h[0]
(

x[n] − 2
)

+ h[1]
(

x[n − 1] − 2
)

+ h[2]
(

x[n − 2] − 2
)

, (12.12)

and the values of h[ j] are determined by solving the associated normal equations,
namely

4

⎡⎣ 1 + (σ 2/4) 0.3 (0.3)2

0.3 1 + (σ 2/4) 0.3
(0.3)2 0.3 1 + (σ 2/4)

⎤⎦⎡⎣h[0]
h[1]
h[2]

⎤⎦ = 2

⎡⎣ 1
0.3

(0.3)2

⎤⎦ . (12.13)

As a check on these equations, note that if there is no noise, that is, if σ 2 = 0, then the
unique solution to this system of equations is h[0] = 1/2, h[1] = 0, h[2] = 0, so

ŷ [n] = 1 + (1/2)
(

x[n] − 2
)

= x[n]/2 ,

which, in the noise-free case, precisely equals y[n], and must therefore be the optimal
estimator for that case. At the other extreme, if the noise intensity is high, that is,
σ 2 � 1, then all the h[ j] are small, so ŷ [n] ≈ 1 = μy. In other words, the best estimator
of y[n] in the high-noise case approaches its mean value μy.

The summation in Eq. (12.8) is easily recognized as a convolution sum,
which suggests the LTI filter implementation shown in Figure 12.2. This is
the Wiener filter for the problem—an LMMSE estimator that works for
all n because the processes involved are jointly WSS. The estimator first
removes the mean of the WSS measured process to obtain the zero-mean
WSS fluctuation process x̃[n] = x[n] − μx, then feeds this to the input of an
LTI system whose unit sample response h[·] is the set of optimal h[ j] val-
ues computed for j = 0, 1, . . . , L − 1 and is 0 for all other j. This filter thus
has a unit sample response of finite duration—it is a finite impulse response
or FIR filter—and is causal. The output of the LTI system is the zero-
mean WSS fluctuation process ŷ [n] − μy, so adding μy produces the LMMSE
estimate ŷ [n].

The LTI system associated with Eq. (12.8), which filters the measure-
ment fluctuations to produce the LMMSE estimate fluctuations, is a simple
example of a Wiener filter, namely a causal FIR Wiener filter. There are many
variations on this that are amenable to the same sort of solution. For instance,
we could have specified an estimator of the form

x[n] h[·] y[n]

-mx my

+ +

Figure 12.2 Structure of the Wiener
filter. Optimal choice of the unit sample
response h[·] generates the LMMSE
estimate of a WSS process y[·] from
measurements of a related process x[·].
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ŷ [n] = μy +
L∑

j=−L

h[ j]
(

x[n − j] − μx

)
, (12.14)

which uses measurements x[·] over the time window [n − L, n + L] to estimate
the value y[n] of the process y[·] at the center of the window. Determination of
the optimal values of the h[ j] again simply involves setting up the correspond-
ing 2L + 1 normal equations and solving them. The result is once more an FIR
Wiener filter with the structure shown in Figure 12.2, except that the filter is no
longer causal. The following example illustrates yet another variation, namely
FIR Wiener prediction of a future value of a process from measurements of
the present and past values of the process over a finite window.

Example 12.2 FIR Prediction

For a WSS process x[·], consider obtaining the LMMSE estimator of x[n + 1]
using measurements of x[n], x[n − 1], · · · , x[n − L + 1]. This corresponds to one-step
LMMSE prediction of a WSS process, using measurements of the L most recent val-
ues. If we define the WSS process y[n] by the relation y[n] = x[n + 1] for all n, then
this reduces exactly to the problem addressed at the beginning of this section. The
estimator takes the form of Eq. (12.8), but with ŷ [n] = x̂ [n + 1]. We can thus write

x̂ [n + 1] = μx +
L−1∑
j=0

h[ j]
(

x[n − j] − μx

)
(12.15)

and determine the optimal values of the h[ j] using the normal equations. Since
Cxy[m] = Cxx[m − 1], these take the form⎡⎢⎢⎢⎣

Cxx[0] Cxx[1] Cxx[2] · · · Cxx[L − 1]
Cxx[−1] Cxx[0] Cxx[1] · · · Cxx[L − 2]

... · · · · · · · · · ...
Cxx[1 − L] Cxx[2 − L] · · · · · · Cxx[0]

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

h[0]
h[1]

...
h[L − 1]

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Cxx[−1]
Cxx[−2]

...
Cxx[−L]

⎤⎥⎥⎥⎦ .

(12.16)
As Cxx[−m] = Cxx[m], the square matrix on the left is symmetric. The relations
gathered in Eq. (12.16) are referred to as the Yule–Walker equations.

It is interesting to consider two special cases: a geometrically (i.e., exponentially)
correlated process and a finitely correlated process.

Geometrically Correlated Process For the first special case, suppose Cxx[m] =
C0(ρ)|m| for some C0 > 0 and ρ of magnitude less than 1. This corresponds to a geo-
metrically correlated process—one that is exponentially correlated but in discrete time.
The normal or Yule–Walker equations in Eq. (12.16) then become⎡⎢⎢⎢⎣

1 ρ ρ2 · · · ρL−1

ρ 1 ρ · · · ρL−2

... · · · · · · · · · ...
ρL−1 ρL−2 · · · · · · 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

h[0]
h[1]

...
h[L − 1]

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
ρ

ρ2

...
ρL

⎤⎥⎥⎥⎦ . (12.17)

For |ρ| < 1, the matrix on the left is invertible, and therefore these equations have
a unique solution. We see by inspection that the choice h[0] = ρ and h[ j] = 0
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for 1 ≤ j ≤ L − 1 satisfies Eq. (12.17). Thus, for an exponentially correlated process,
the LMMSE one-step predictor is

x̂ [n + 1] = μx + ρ(x[n] − μx) = ρx[n] + (1 − ρ)μx (12.18)

and therefore involves only the most recent measured value x[n]. All previous
measurements are ignored, even though x[n + 1] is correlated with each previous
measurement. Knowledge of x[n] carries all that is relevant to estimating x[n + 1].

The corresponding MMSE is most directly determined from the fourth equality
in Eq. (12.6), and results in

MMSE = Cxx[0] − h[0]Cxx[−1] = C0(1 − ρ2) . (12.19)

The additional terms of the form h[ j]Cxx[−j − 1] that would have appeared in the pre-
ceding equation are absent because h[ j] = 0 for j > 0. The expression in Eq. (12.19)
is consistent with what we know from Chapters 7 and 8 for LMMSE estimation of a
random variable from measurement of a single other random variable.

Proximally Correlated Process As the second special case, suppose

Cxx[m] = C0

(
ρδ[m + 1] + δ[m] + ρδ[m − 1]

)
, (12.20)

so that the value of the process at any time is only correlated with the values one
step before and after, and is uncorrelated for lags greater than 1. (More generally, one
could consider a process whose nonzero correlations are confined to some finite set of
lags.) As we saw in Example 11.4, the constraint |ρ| ≤ 0.5 is required for this to be a
valid autocovariance function, with a DT Fourier transform (DTFT) that is nonnega-
tive, as a spectral density is required to be. For this case, and restricting ourselves to
L = 3 in order to keep the calculations simple, the normal or Yule–Walker equations
in Eq. (12.16) become ⎡⎣ 1 ρ 0

ρ 1 ρ

0 ρ 1

⎤⎦⎡⎣h[0]
h[1]
h[2]

⎤⎦ =
⎡⎣ ρ

0
0

⎤⎦ . (12.21)

The form of the matrix on the left motivates an alternative name for a proximally
correlated process, namely a banded process. Solving this system of three equations in
three unknowns shows that

h[0] = ρ(1 − ρ2)
1 − 2ρ2

; h[1] = − ρ2

1 − 2ρ2
; h[2] = ρ3

1 − 2ρ2
. (12.22)

Note that both h[1] and h[2] are nonzero: both x[n − 1] and x[n − 2] are used along
with x[n] in the estimator for x[n + 1], even though x[n + 1] is uncorrelated with both
x[n − 1] and x[n − 2].

The corresponding MMSE is again easiest to determine from the fourth equality
in Eq. (12.6), which yields

MMSE = Cxx[0] − h[0]Cxx[−1] = C0

(
1 − ρ2(1 − ρ2)

1 − 2ρ2

)
. (12.23)

The additional terms of the form h[ j]Cxx[−j − 1] that would have appeared in the
preceding equation are again absent, but now because Cxx[−j − 1] = 0 for j > 0.

The MMSE in Eq. (12.23) is smaller than the MMSE of C0(1 − ρ2) that would
have been obtained if the prediction of x[n + 1] had used a measurement of x[n] alone.
For example, with |ρ| = 0.5, the MMSE in Eq. (12.23) evaluates to 0.625C0, whereas
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with measurement of x[n] alone the MMSE is 0.75C0. This corresponds to a 16.7%
reduction in the variance (and 8.7% reduction in the standard deviation) of the error,
by going from measurement of x[n] alone to measurement of x[n], x[n − 1], x[n − 2].
Such a reduction could be significant in a particular application. For smaller values
of |ρ|, the reduction in MMSE will be less.

A particular realization of a zero-mean process x[n] with the autocovariance
function in Eq. (12.20) is shown in Figure 12.3(a), for the case of ρ = 0.5, with C0 = 1.
This signal is generated as described in Example 11.10. The middle panel (b) in
the figure shows the one-step predictions produced for this process by the LMMSE
estimator specified via Eqs. (12.15) and (12.22), which give h[0] = 0.75, h[1] = −0.5,
and h[2] = 0.25. The corresponding estimates are labeled x̂3[n + 1] in the figure. The
MMSE associated with the estimator is 0.625, while the empirical time-averaged square
error across all the time points shown for the particular realization of the estimator in
panel (b) is 0.614.

For comparison, Figure 12.3(c) shows the one-step predictions produced by
an LMMSE estimator that only uses a measurement of x[n] to predict x[n + 1].
The corresponding estimates are labeled x̂1[n + 1] in the figure, and are
simply given by x̂1[n + 1] = ρx[n] = 0.5x[n]. The associated MMSE for this estimator
is 0.75, while the empirical time-averaged square error for the particular realization of
the estimator in panel (c) is 0.746.

It is visually apparent from the plots in Figure 12.3 that the estimates in panels
(b) and (c) tend to have smaller amplitudes than the true signal x[n + 1]. The reason is
that the LMMSE estimator in Eq. (12.15) factors in both the available measurements
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Figure 12.3 Panel (a) shows a realization of a zero-mean process x[·] with autocovariance
function Cxx [m] = 0.5δ[m + 1] + δ[m] + 0.5δ[m − 1], generated as in Example 11.10. Panel
(b) shows the one-step predictions of x[n + 1] using the LMMSE estimator designed for this
finitely correlated case in Example 12.2, with measurements of x[n], x[n − 1], and x[n − 2]:
these estimates are denoted by x̂3[n + 1]. Panel (c) shows the one-step predictions of x[n + 1]
using an LMMSE estimator that just measures x[n]; these estimates are denoted by x̂1[n + 1].
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and the mean μx, which is the MMSE estimate in the absence of measure-
ments. In this case μx = 0, so the estimates have some tendency to be pulled
toward 0. As more measurements are folded into the estimator, that is, as L in
Eq. (12.15) increases, the importance of the mean μx decreases, because the estimates
are then more determined by the measurements.

12.3 THE UNCONSTRAINED DT WIENER FILTER

With jointly WSS processes x[·] and y[·] as in the preceding section, suppose
we again want to construct an LMMSE estimator of y[n] for some specific n,
but now using measurements of all values of the process x[·], so

ŷ [n] = μy +
∞∑

j=−∞
h[ j]

(
x[n − j] − μx

)
(12.24)

for some optimally chosen set of coefficients h[ j]. The difference from
Eq. (12.8) is that the summation now ranges from −∞ to ∞. As before, the
same set of coefficients will work for all n because the processes involved are
jointly WSS. The relation in the preceding equation still involves a convolu-
tion, and has the structure shown in Figure 12.2. However, now the filter has
a unit sample response of potentially infinite duration. The normal equations
can no longer have a finite matrix form, so we have to proceed differently.

Recall that the normal equations for LMMSE estimation of Y from X
resulted from

• deducing that the LMMSE estimator has to be unbiased, that is, E[Ŷ] =
E[Y], which yields the form of estimator in Eq. (12.1); and then

• invoking the orthogonality condition: that when Ŷ is the LMMSE
estimator, the error Y − Ŷ or equivalently (Y − μY) − (Ŷ − μY) is
orthogonal to all the measurements used in the estimator, that is, to
the components of the vector X or, equivalently, to the components of
X − μX (because unbiasedness ensures orthogonality to any constant).

The unbiasedness and orthogonality conditions in turn came from simple cal-
culations, for instance setting to 0 the first derivatives of the mean square error
with respect to the estimator weights.

The same reasoning applies in the case being considered here, and
will not be developed in full detail again. The unbiasedness condition leads
the estimator to have the structure given in Eq. (12.24), which causes the
estimation error

e[n] = y[n] − ŷ [n] = (y[n] − μy) − (̂y [n] − μy) (12.25)

to have a mean value of 0. The orthogonality condition requires

E
[
e[n]x[n − m]

]
= 0 = E

[
e[n]

(
x[n − m] − μx

)]
(12.26)
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Section 12.3 The Unconstrained DT Wiener Filter 503

for all m. The range m ≥ 0 ensures orthogonality of the error e[n] to present
and past values of x[·], while the range m < 0 ensures orthogonality to future
values of x[·].

Under the assumption that the filter with unit sample response h[·] in
Figure 12.2 is stable, or at least has a well-defined frequency response, it fol-
lows that its output process ŷ [n] − μy is jointly WSS with the measured input
process. The above orthogonality condition can therefore be written more
simply as

Cex[m] = Cyx[m] − Cŷx[m] = 0 , (12.27)

or

Cŷx[m] = Cyx[m] (12.28)

for all m. The latter equation provides an alternative way of stating the orthog-
onality condition for the optimal system, namely that the cross-covariance
between the estimate and the measurements (i.e., the left side of the preceding
equation) equals the cross-covariance between the process being estimated
and the measurements (the right side of the preceding equation).

To compute the unit sample response h[·], we observe that since ŷ [n]
is obtained by filtering x[n] through an LTI system with unit sample resp-
onse h[·], the following relationship applies, obtained by arguments similar
to those used to establish Eq. (10.65):

Cŷx[m] =
∞∑

j=−∞
h[ j]Cxx[m − j] = h[m] ∗ Cxx[m] . (12.29)

This result may be derived directly from Eq. (12.24) by rewriting it as

ŷ [n] − μy =
∞∑

j=−∞
h[ j]

(
x[n − j] − μx

)
, (12.30)

then multiplying both sides by (x[n − m] − μx), moving this term inside the
summation on the right side, and taking the expected value.

Combining the relation in Eq. (12.29) with the equality in Eq. (12.28)
then yields

h[m] ∗ Cxx[m] = Cyx[m] (12.31)

for all m, where Cxx[m] and Cyx[m] are known, and h[m] is to be determined.
Transforming this time-domain convolution relationship to the frequency
domain results in the simple multiplicative relation

H(ej�)Dxx(ej�) = Dyx(ej�) . (12.32)

Rearranging this equation, we get the desired expression for the frequency
response of the unconstrained LMMSE or Wiener filter at all � for which
Dxx(ej�) �= 0:

H(ej�) = Dyx(ej�)
Dxx(ej�)

. (12.33)
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x[n] y[n]

-mx my

H(e jÆ) = 
Dyx(e jÆ)

Dxx(e jÆ)
+ +

Figure 12.4 Representation of the unconstrained Wiener filter in the frequency domain.

At frequencies � for which Dxx(ej�) = 0 we are guaranteed by Eq. (11.51) that
Dyx(ej�) = 0 also, so H(ej�) can be chosen arbitrarily at these frequencies; the
choice does not affect the mean square error because the measurement pro-
cess x[n] has no spectral content at these frequencies. The resulting expression
for H(ej�) is guaranteed to correspond to a stable filter under a mild continuity
condition.

The overall structure is shown in Figure 12.4. Note the close similarity
to the LMMSE estimator structure and gain shown in Figure 12.1. The terms
Dxx(ej�) and Dyx(ej�) play roles analogous to CXX and cT

XY = cYX respec-
tively. By expressing the result in the frequency domain, we have in effect
made the answer to the LMMSE estimation problem for two jointly WSS pro-
cesses as simple as the answer to the LMMSE estimation problem for two
random variables. Specifically, in the frequency domain, the action of the LTI
filter at each frequency � is decoupled from the action at other frequencies.
This familiar pattern will become apparent again in the following paragraphs.

The mean square error corresponding to the optimum filter, that is, the
MMSE, is

MMSE = E
[
e2[n]

]
= Cee[0] , (12.34)

so we begin by determining an expression for Cee[m], similar to the fourth
equality in Eq. (12.6):

Cee[m] = Cyy[m] − Cŷy[m] = Cyy[m] − (h[m] ∗ Cxy[m]) , (12.35)

where h[m] is the unit sample response of the optimum filter. The terms on
the right are all known, so Cee[m] and thus Cee[0] are now computable.

A frequency-domain expression for the MMSE is also useful. Taking the
DTFT of Eq. (12.35), we get the error fluctuation spectral density (FSD)

Dee(ej�) = Dyy(ej�) − H(ej�)Dxy(ej�)

= Dyy(ej�)
(

1 − ρyx(ej�)ρ∗
yx(ej�)

)
, (12.36)

where

ρyx(ej�) = Dyx(ej�)√
Dyy(ej�)Dxx(ej�)

. (12.37)

The function ρyx(ej�) plays the role of a complex frequency-domain cor-
relation coefficient and is referred to as the coherence function of the
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Section 12.3 The Unconstrained DT Wiener Filter 505

two processes. The fact that Dee(ej�) in Eq. (12.36) is nonnegative at all
frequencies ensures |ρyx(ej�)| ≤ 1 at all �; this observation provides an
alternative route to deriving the bound in Eq. (11.51). We can now write

MMSE = Cee[0] = 1
2π

∫ π

−π

Dee(ej�) d�

= 1
2π

∫ π

−π

Dyy(ej�)
(

1 − |ρyx(ej�)|2
)

d� . (12.38)

The closer the magnitude of the coherence function is to 1 in some frequency
range, the better y[·] is approximated by the LMMSE estimate ŷ [·] in that
frequency range, that is, by appropriate LTI filtering of the components of x[·]
in that frequency range.

Again, note the similarity of the integrand Dyy(ej�)(1 − |ρyx(ej�)|2) in
the last line of Eq. (12.38) to the expression σ 2

Y (1 − ρ2
YX) that gives the MMSE

after LMMSE estimation of a random variable Y using measurements of a
random vector X. The difference in the context of WSS processes is that the
expression is integrated over all frequencies to get the MMSE.

The following examples show how the preceding development is applied
in various settings. The first example serves mainly as a simple check on the
Wiener filter solution.

Example 12.3 Noncausal Prediction

Suppose the measured process x[n] is WSS, and we wish to predict it n0 > 0 steps
ahead, so

y[n] = x[n + n0] . (12.39)

This is straightforward for an unconstrained Wiener filter, as it suffices to choose
the filter’s unit sample response to be h[n] = δ[n + n0]. Alternatively, we can use the
expression in Eq. (12.33). Note that

Cyx[m] = Cxx[m + n0] (12.40)

so

Dyx(ej�) = ej�n0 Dxx(ej�) . (12.41)

The optimum filter therefore has frequency response

H(ej�) = Dyx(ej�)/Dxx(ej�) = ej�n0 . (12.42)

The corresponding unit sample response is thus δ[n + n0], as expected; this filter shifts
its input forward in time by n0 steps. The corresponding MMSE is easily determined to
be 0, using the expressions in Eq. (12.38).

Causal prediction is more challenging and interesting, and we will examine it
later in this chapter.

The canonical Wiener filtering problem is examined in the following
example, where the aim is to estimate a signal from a set of measurements
of the signal that are corrupted by additive noise.
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Example 12.4 Unconstrained Estimation of a Signal in Additive Noise

Suppose, as in Example 12.1, that we have noise-corrupted measurements x[n] of a
scaled version of an underlying WSS random signal y[n] of interest to us, with

x[n] = 2y[n] + v[n] , (12.43)

where v[n] is a WSS noise process. Assume that v[·] is uncorrelated with y[·], so their
covariance is zero, that is, Cyv[m] = 0 for all m. Assume also that we know the means
μy, μv and autocovariances Cyy[m], Cvv[m]. We would like to construct an LMMSE
estimator of y[n] using the entire record of the measured signal x[·]. This is provided
by a Wiener filter acting on the measurement process x[·], using the structure in Figure
12.4 with μx = 2μy + μv, and producing the output ŷ [n].

The quantities required to determine the Wiener filter are very directly com-
puted, invoking the fact that Cyv[m] = 0 in order to simplify the expressions:

Cxx[m] = 4Cyy[m] + Cvv[m] + 2Cyv[m] + 2Cyv[−m]

= 4Cyy[m] + Cvv[m] (12.44)

and

Cyx[m] = 2Cyy[m] + Cyv[m] = 2Cyy[m] . (12.45)

Taking transforms and substituting into Eq. (12.35), the frequency response of the
Wiener filter is found to be

H(ej�) = 2Dyy(ej�)
4Dyy(ej�) + Dvv(ej�)

. (12.46)

Note that the filter in this case must have a unit sample response that is an even function
of time, since its frequency response is a real, and hence even, function of frequency.
The filter is thus noncausal.

For � where the power in the signal fluctuations is much greater than
the power in the noise fluctuations, H(ej�) ≈ 1/2, and for � where the fluctu-
ation noise power is much greater than the fluctuation signal power, H(ej�) ≈
2Dyy(ej�)/Dvv(ej�) ≈ 0. For example, when the noise is white with variance σ 2 = 4
and Cyy[m] has the proximally correlated form in Eq. (12.20), with C0 = 2 and ρ = 0.5,
we have

Dyy(ej�) = 2(1 + cos �) . (12.47)

The optimal filter then has the low-pass frequency response shown in Figure 12.5.
Figure 12.6 shows a simulation of this filter. The plots show a realization of the

underlying signal y[n]; a realization of the corresponding measured signal x[n]; and the
corresponding LMMSE estimate of y[n], namely ŷ[n].

The MMSE for this filter is found by making the appropriate substitutions in
Eq. (12.38). The result is

MMSE = 1
2π

∫ π

−π

Dyy(ej�)Dvv(ej�)
4Dyy(ej�) + Dvv(ej�)

d� . (12.48)
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Figure 12.5 Plots of the signal FSD Dyy (ej�), the white noise FSD Dvv (ej�), and the frequency
response H(ej�) of the Wiener filter.
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Figure 12.6 Estimating a signal corrupted by additive noise. From top to bottom: a realization
of the underlying signal y[n]; a realization of the corresponding measured signal x[n]; and the
corresponding LMMSE estimate of y[n], namely ŷ [n].
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If the noise intensity is low relative to the FSD of the signal, then the above expression
can be simplified to

MMSE ≈ 1
2π

∫ π

−π

1
4

Dvv(ej�) d� = 1
4

Cvv[0] . (12.49)

This is consistent with the fact that in the low-noise regime ŷ [n] ≈ 1
2 x[n], so the error

is essentially 1
2 v[n]. At the other extreme, when the noise intensity is large relative to

the FSD of the signal,

MMSE ≈ 1
2π

∫ π

−π

Dyy(ej�) d� = Cyy[0] , (12.50)

which is the signal variance. Again, this is consistent with the fact that in the high-noise
regime ŷ [n] ≈ μy, so the error is essentially the deviation of y[n] from its mean.

The following example goes a step further than the previous one, and
addresses a situation that arises in many applications.

Example 12.5 Deconvolution of a Blurred Signal

In Figure 12.7, r[n] represents a filtered or “blurred” version of the WSS signal of
interest, y[n], with G(z) representing the transfer function of the stable LTI system
or sensor that is used to measure y[n]. Thus r[·] is the result of convolving y[·] with the
unit sample response g[·]. The process v[·] is WSS additive noise that is uncorrelated
with y[·], so Cyv[m] = 0. The noise is therefore uncorrelated with r[·] as well, because
Crv[m] = g[m] ∗ Cyv[m]. We only have access to the blurred and noise-corrupted mea-
surement process x[·], and wish to design an LTI system with transfer function H(z)
that will filter this measured signal to produce an estimate of the underlying input
signal y[n]. This filtering operation is often referred to as deconvolution or deblurring.

In the absence of the additive noise, we have x[n] = r[n], so a stable inverse fil-
ter with transfer function H(z) = 1/G(z) will recover the input y[·] exactly. This stable
inverse filter will be causal if G(z) is minimum phase, as explained in Section 2.3.2, but
will otherwise be noncausal. However, an inverse filter is not a good solution when
noise is present because the inverse filter frequency response H(ej�) has large magni-
tude where the magnitude of G(ej�) is small. As a result, the inverse filter accentuates
precisely those frequencies where the power in the signal-related component r[n] of the
measured process is small relative to that of the noise, and therefore produces a very
noisy estimate of y[n]. We shall instead design a Wiener filter to produce an LMMSE
estimate of the signal y[n].

y[n]

v[n]

r[n] x[n]
H(z)G(z)

Known, stable system Wiener filter

y[n]+

Figure 12.7 Wiener filtering of a blurred and noisy signal.
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The expression in Eq. (12.33) for the frequency response of the Wiener filter
shows that we need to determine Dxx(ej�) and Dyx(ej�). Straightforward calculations
show that

Dxx(ej�) = Drr(ej�) + Dvv(ej�)

= G(ej�)G(e−j�)Dyy(ej�) + Dvv(ej�) (12.51)

and

Dyx(ej�) = Dyr(ej�) = G(e−j�)Dyy(ej�) . (12.52)

The frequency response of the Wiener filter is then

H(ej�) = G(e−j�)Dyy(ej�)
G(ej�)G(e−j�)Dyy(ej�) + Dvv(ej�)

. (12.53)

Rewriting the above expression as

H(ej�) = 1
G(ej�)

Drr(ej�)
Drr(ej�) + Dvv(ej�)

(12.54)

shows that the same Wiener filter is obtained if we first find the LMMSE estimate r̂ [n]
from x[n] (as in Example 12.4), and then pass r̂ [n] through the inverse filter 1/G(ej�).

In the limiting case of low noise, where Dvv(ej�) → 0, this becomes just the
inverse filter, with frequency response 1/G(ej�). If the noise is white, with an intensity
Dvv(ej�) = σ 2

v that dominates the other term in the denominator, then

H(ej�) ≈ 1
G(ej�)

Drr(ej�)
σ 2

v
, (12.55)

which corresponds to first filtering the measured process x[n] to preferentially pass
those frequencies that are strongly present in r[n], and subsequently applying the
inverse filter.

The next example deals with Wiener filtering for a situation involving
multiplicative rather than additive uncertainty or noise.

Example 12.6 Demultiplication

A WSS signal s[n] with mean μs and autocovariance function Css[m] is transmit-
ted over a multiplicative channel that causes the received signal r[n] at time n to be
given by

r[n] = f [n]s[n] , (12.56)

where f [n] is the channel’s multiplicative factor at time n. A channel with time-varying
transmission characteristics, as here, is also referred to as a fading channel. For exam-
ple, s[n] might be the intensity of an optical source at the nth transmission, f [n] the
attenuation experienced by transmission through some turbulent medium, and r[n] the
received intensity. Assume that f [n] is also a WSS process, with mean μf and autoco-
variance function Cff [m], and that it is independent of the input signal s[·]. We wish to
estimate s[n] from r[·] using a Wiener filter.
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Note that r[n] is also WSS, with mean value μr = μf μs and autocovariance
function

Crr[m] = Rrr[m] − μ2
r

= Rff [m]Rss[m] − μ2
f μ

2
s

= (Cff [m] + μ2
f )(Css[m] + μ2

s ) − μ2
f μ

2
s

= Cff [m]Css[m] + μ2
f Css[m] + μ2

s Cff [m] . (12.57)

It is also jointly WSS with s[·], with cross-covariance given by

Csr[m] = Rsr[m] − μsμr

= Rss[m]μf − μ2
s μf

= Css[m]μf . (12.58)

The frequency response of the Wiener filter is now given by

H(ej�) = Dsr(ej�)
Drr(ej�)

= Dss(ej�)μf
1

2π
[Dff (ej�) � Dss(ej�)] + μ2

f Dss(ej�) + μ2
s Dff (ej�)

, (12.59)

where � denotes periodic convolution:

Dff (ej�) � Dss(ej�) =
∫

<2π>

Dff (ejν)Dss(ej(�−ν)) dν . (12.60)

Evaluating this integral requires invoking the fact that both Dff (ej�) and Dss(ej�) are
periodic, with period 2π .

For a special case that serves as a check on this answer, suppose f [n] is fixed
at the value μf . Then Dff (ej�) = 0, and we simply get H(ej�) = 1/μf , which is easily
verified to yield ŝ [n] = s[n], so the input signal is exactly recovered.

Another special case occurs when the deviations of f [n] from its mean are white,
so Dff (ej�) = σ 2

f . Then

H(ej�) = Dss(ej�)μf

σ 2
f E{s2[n]} + μ2

f Dss(ej�)
. (12.61)

12.4 CAUSAL DT WIENER FILTERING

The previous two sections treated cases of DT Wiener filtering that had
relatively direct solutions. In the FIR case, this involved setting up the appro-
priate normal equations and solving. In the unconstrained case, the orthog-
onality condition led to a convolution relationship that held on the entire
time axis, and transforming this to the frequency domain then permitted
a simple algebraic solution for the optimal filter. In both cases, the filter
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implementation involved the structure in Figure 12.2, with the LTI filter being
FIR in the first case, and unconstrained in the second case.

Other scenarios for Wiener filtering can be more subtle. The most impor-
tant of these is the case where the LTI filter is constrained to be causal, so
h[ j] = 0 for j < 0. The estimator is thus restricted to have the form

ŷ [n] = μy +
∞∑

j=0

h[ j]
(

x[n − j] − μx

)
, (12.62)

with the lower limit on the summation now being 0. The estimate of y[n] in
this case is determined by present and past values of x[·], but future values are
excluded. The form of this filter already ensures that the estimator is unbiased.
The requirement that the error e[n] = y[n] − ŷ [n] be orthogonal to present
and past values of x[·] is written as

E
[
e[n]x[n − m]

]
= 0 = E

[
e[n]

(
x[n − m] − μx

)]
, m ≥ 0, (12.63)

or equivalently as

Cŷx[m] = Cyx[m] , m ≥ 0. (12.64)

Note that the identities in Eqs. (12.63) and (12.64) now hold only for m ≥ 0.
Similarly, the relation that we derived from this equation in the unconstrained
case now becomes

h[m] ∗ Cxx[m] = Cyx[m] , m ≥ 0. (12.65)

The restriction of the equalities in Eqs. (12.63)–(12.65) to nonnegative
m means that the Fourier transforms of the two sides are in general not
equal, so our previous solution for the frequency response of the Wiener fil-
ter no longer holds. This is not an impediment when Cxx[m] = σ 2

x δ[m], that is,
when the measured process is white. The reason is that the values for m < 0
are irrelevant in this case, since now h[m] ∗ Cxx[m] = σ 2

x h[m]. Using this in
Eq. (12.65) shows that

h[m] = 1
σ 2

x
Cyx[m] (12.66)

for m ≥ 0, and h[m] = 0 for m < 0. One approach to solving the general case is
to first whiten the measurements in a causal and causally invertible way, then
apply the preceding solution, and finally work back to what filtering is implied
for the original measured process. We shall instead proceed more directly,
essentially following Wiener’s original solution.

Returning to the general relation in Eq. (12.65), the challenge now is to
isolate the part of the left side of Eq. (12.65) that relates to m ≥ 0, while still
preserving enough information to solve for h[·] or its transform. Wiener’s solu-
tion of this problem involved recognizing that under appropriate assumptions
the autocovariance function Cxx[m] can be written as

Cxx[m] = f [m] ∗ ←−
f [m] , (12.67)
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where
←−
f [k] = f [−k] is the time-reversed version of f [k], and where f [·] is the

unit sample response of a stable, causal system with a stable, causal inverse. In
the transform domain, this translates to having

Dxx(ej�) = F(ej�)F∗(ej�) = F(ej�)F(e−j�) , (12.68)

where the superscript ∗ denotes the complex conjugate. Using F(z) to denote
the z-transform of f [n], we can write

Dxx(z) = F(z)F(z−1) . (12.69)

The stability and causality conditions translate to requiring that F(z) have all
its poles and zeros inside the unit circle. Thus F(z) is a minimum-phase func-
tion, as discussed in Section 2.3.2. The decomposition of Dxx(ej�) or Dxx(z)
into a product of the form in Eq. (12.68), respectively Eq. (12.69), is referred to
as minimum-phase spectral factorization, and was discussed in Section 2.4. The
existence of a minimum-phase spectral factor is guaranteed under a condition
due to Paley and Wiener on the FSD Dxx(ej�), requiring that | log Dxx(ej�)|
have a finite integral over an interval of length 2π . The condition rules out,
for instance, a Dxx(ej�) that is identically zero over some finite interval in
[−π , π]. This is reasonable because the inverse of a spectral factor of such
an FSD will not have a well-defined frequency response, and therefore could
not be minimum phase.

Given the properties above, the function
←−
f [·] in Eq. (12.67) corre-

sponds to the unit sample response of a stable anticausal system with a
stable anticausal inverse. Denote the unit sample response of this inverse
by ←−g [·]. Thus

←−
f [ j] = 0 = ←−g [ j] for j > 0, and both

←−
f [·] and ←−g [·] are abso-

lutely summable, with
←−
f [k] ∗ ←−g [k] = δ[k]. The absolute summability of ←−g [·]

is what guarantees that the convolutions carried out below are well behaved.
We are now in a position to determine h[·] from Eq. (12.65). Convolving

the left side of that equation with ←−g [·] produces the function h[m] ∗ f [m]. The
results of this convolution for m ≥ 0 only depend on values of h[m] ∗ Cxx[m]
for m ≥ 0, as ←−g [·] is anticausal. Observe also that since h[m] ∗ f [m] is the
convolution of two causal functions, it is itself causal, that is, 0 for m < 0.

Convolving the right side of Eq. (12.65) with ←−g [·] produces the func-
tion ←−g [m] ∗ Cyx[m], which is in general nonzero for all m. Again, however, its
values for m ≥ 0 depend only on values of Cyx[m] for m ≥ 0 because ←−g [·] is
anticausal. As the equality in Eq. (12.65) holds for m ≥ 0, we can now write

h[m] ∗ f [m] =
(←−g [m] ∗ Cyx[m]

)
u[n] , (12.70)

where u[n] is the unit step function. Now taking the DTFT on both sides
and rearranging the result, we have the desired expression for the frequency
response of the causal Wiener filter:

H(ej�) = 1
F(ej�)

[Dyx(ej�)
F(e−j�)

]
+ , (12.71)

where the notation [P(ej�)]+ denotes the transform of the causal part of the
signal p[n], that is, the transform of p[n]u[n]. In terms of z-transforms, we can
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Section 12.4 Causal DT Wiener Filtering 513

write the transfer function of the causal Wiener filter as

H(z) = 1
F(z)

[Dyx(z)
F(z−1)

]
+ . (12.72)

The corresponding MMSE is given by

MMSE = Cee[0] = 1
2π

∫ π

−π

Dee(ej�) d�

= 1
2π

∫ π

−π

(
Dyy(ej�) − H(ej�)Dxy(ej�)

− H(e−j�)Dyx(ej�) + |H(ej�)|2Dxx(ej�)
)

d� . (12.73)

This involves more terms than the corresponding expression for the uncon-
strained case, namely Eq. (12.38), because the relation in Eq. (12.65) only
holds for m ≥ 0 in the causal case and therefore cannot be used to condense
the above expression. It can be shown fairly directly, though we omit the
derivation, that this MMSE exceeds the MMSE of the unconstrained Wiener
filter by the amount

	MMSE = 1
2π

∫ π

−π

∣∣∣[Dyx(ej�)
F(e−j�)

]
−

∣∣∣2 d� , (12.74)

where the notation [P(ej�)]− denotes the transform of the strictly anticausal
part of the signal p[n], that is, the transform of p[n](1 − u[n]).

Example 12.7 The Causal DT Wiener Predictor

Consider a measured process x[n] that is the result of passing (zero-mean) white noise
of unit variance through a modeling or shaping filter with transfer function

F(z) = α0 + α1z−1 , (12.75)

where both α0 and α1 are assumed nonzero. The filter is stable (and causal), so the
process x[n] is WSS, has zero mean, and has PSD

Dxx(ej�) = F(ej�)F∗(ej�) = F(ej�)F(e−j�) . (12.76)

If |α1| < |α0| then the inverse of the filter F(z) is also stable and causal. Under this
inequality condition, F(z) constitutes a minimum-phase spectral factor of Dxx(z).
Assume for now that this inequality holds (we shall see later in this example what
to do if it does not hold).

Suppose we want to perform causal one-step prediction for this process x[n]:
obtaining the LMMSE estimator ŷ [n] for y[n] = x[n + 1] in terms of x[k] for k ≤ n.
Then Cyx[m] = Cxx[m + 1], so

Dyx(z) = zDxx(z) = zF(z)F(z−1) . (12.77)

Therefore [Dyx(z)
F(z−1)

]
+ =

[
zF(z)

]
+ = α1 . (12.78)
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514 Chapter 12 Signal Estimation

Now using the expression in Eq. (12.72), the transfer function of the causal Wiener
predictor is

H(z) = 1
F(z)

[
zF(z)

]
+ = α1

α0 + α1z−1
. (12.79)

The MMSE of the unconstrained Wiener predictor is 0, as was pointed out in
Example 12.3, so the MMSE of the causal filter is given by the expression in Eq.
(12.74), which evaluates to α2

0. For comparison, estimating x[n + 1] by its mean value
of 0 results in a mean square error of Cxx[0] = α2

0 + α2
1 . Also, the LMMSE estimator

of x[n + 1] in terms of a measurement of just x[n] would have produced a mean square
error of

α2
0 + α2

1 − α2
0α2

1

α2
0 + α2

1

. (12.80)

For |α1| ≈ |α0| = α, the mean square error for the causal Wiener predictor is α2, while
predicting x[n + 1] by its mean value results in a mean square error of 2α2, and pre-
diction in terms of just x[n] results in a mean square error of 1.5α2. Thus going from
a predictor based on the most recent measurement to the full causal Wiener predictor
results in a one-third reduction in mean square error in this case, from 1.5α2 to α2.

Figure 12.8 revisits Example 12.2, to compare the results obtained there using
an FIR prediction filter with results obtained using the full causal Wiener filter in
Eq. (12.79). We again choose ρ = 0.5 and Cxx[0] = 1, obtained by having α0 = α1 =
α = 1/

√
2. This does not quite satisfy the condition |α1| < |α0| required for stability of

the causal inverse, 1/F(z), of the modeling filter. As a result, the transfer function of
the causal Wiener filter that results from formal substitution in Eq. (12.79) is

H(z) = 1
1 + z−1 , (12.81)

which has its single pole on the unit circle, and is thus only marginally stable. The
situation can be remedied by choosing |α1| to be slightly less than |α0| throughout
(i.e., restricting ourselves to the case of |ρ| < 1), but we proceed pragmatically and
approximate the transfer function of the predictor by

H(z) ≈ 1
1 + 0.99z−1

. (12.82)

We will see below that this filter provides performance consistent with our earlier
calculations.

Figure 12.8(a) shows a realization of the finitely correlated process in
Example 12.2, though a different realization from the one in Figure 12.3(a).
Figure 12.8(b) shows the predictions x̂∞[n + 1] produced by the approxima-
tion in Eq. (12.82) to the full causal Wiener filter in Eq. (12.79). The the-
oretical MMSE for this case is α2 = 0.5, while the empirical time-averaged
square error for the specific realization here is 0.497. Panels (c) and (d) in
Figure 12.8 show the prediction results for this specific realization using respectively
the FIR predictors x̂3[n + 1] and x̂1[n + 1] developed in Example 12.2. The respective
empirical time-averaged square errors for these predictors are 0.650 (compared to the
theoretical MMSE of 0.625) and 0.754 (compared to the theoretical MMSE of 0.75).

The derivation above assumed that |α1| < |α0|, which guarantees that the mod-
eling filter F(z) is minimum phase. If |α1| > |α0|, then F(z) = α0 + α1z−1 is still
stable and causal, with a pole at z = 0 and a zero at −α1/α0, but this zero is now
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Figure 12.8 Panel (a) shows a realization of a zero-mean process x[n] with autoco-
variance function Cxx [m] = 0.5δ[m + 1] + δ[m] + 0.5δ[m − 1], generated as in Example
11.10. Panel (b) shows the predictions x̂∞[n + 1] of x[n + 1] using the full causal
Wiener filter. Panel (c) shows the predictions x̂3[n + 1] obtained using the LMMSE estima-
tor designed in Example 12.2, with measurements of x[n], x[n − 1], and x[n − 2]. Panel
(d) shows the predictions x̂1[n + 1] using the LMSSE estimator with a measurement of
just x[n].

outside the unit circle. The causal inverse of F(z) is therefore not stable because it has
a pole outside the unit circle. The required minimum-phase factor F̃(z) is obtained on
multiplying F(z) by an appropriately chosen all-pass factor A(z) of the form given in
Eq. (2.27), which replaces the zero at −α1/α0 by a zero at its reciprocal location:

F̃(z) = F(z)A(z) (12.83)

= α0

(
1 + (α1/α0)z−1

)( z−1 + (α1/α0)
1 + (α1/α0)z−1

)
(12.84)

= α1 + α0z−1. (12.85)

It is easily verified that F̃(z)F̃(z−1) = F(z)F(z−1) = Dxx(z).

The Role of the Modeling Filter in Prediction The minimum-phase model-
ing filter for the measured process x[n], or equivalently the minimum-phase
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516 Chapter 12 Signal Estimation

spectral factor of Dxx(z), plays a key role in causal Wiener filtering. For the
specific case of prediction, such as that considered in Example 12.7, there is a
more direct way to understand the significance of this modeling filter, as out-
lined next. We focus on one-step prediction, though the approach generalizes
in a natural way.

Suppose the measured process x[k], whose values for k ≤ n will be
used for LMMSE estimation of x[n + 1], can be modeled as the output of a
minimum-phase filter with transfer function

F(z) = f0 + f1z−1 + f2z−2 + · · · (12.86)

and associated causal unit sample response

f [n] = fn for n ≥ 0 and f [n] = 0 otherwise, (12.87)

driven by a (zero-mean) unit-variance white process w[n]. Then x[n] for any n
can be determined from knowledge of w[ j] for all j ≤ n, by taking the weighted
linear combination specified by the above unit sample response, that is,

x[n] =
n∑

j=−∞
fn−jw[ j] . (12.88)

The causal invertibility of F(z), which is equivalent to having F(∞) = f0 �= 0,
similarly guarantees that w[n] for any n can be uniquely recovered from
knowledge of x[k] for all k ≤ n by taking an appropriate weighted linear
combination. Thus, having w[ j] for all j ≤ n is equivalent to having x[k] for
all k ≤ n.

Note now that an expression similar to Eq. (12.88) holds for x[n + 1]
as well:

x[n + 1] = f0w[n + 1] +
n∑

j=−∞
fn−j+1w[ j] . (12.89)

Knowledge of x[k] for all k ≤ n, along with the causal invertibility of F(z),
ensures that all w[ j] for j ≤ n are known, but w[n + 1] is not, so the summation
term in the preceding equation is known but the first term is not. The fact that
w[·] is white means that the known w[ j] are uncorrelated with w[n + 1], and
therefore yield no information about it to an LMMSE estimator. It follows
that our LMMSE estimate of x[n + 1] is

x̂ [n + 1] =
n∑

j=−∞
fn−j+1w[ j] . (12.90)

This can be formally verified by checking that x[n + 1] − x̂ [n + 1] is orthogo-
nal to all w[ j] for j ≤ n, and hence to x[k] for all k ≤ n. The associated MMSE
is simply the variance of the term f0w[n + 1] that was eliminated in going from
Eq. (12.89) to Eq. (12.90):

MMSE = f 2
0 = [F(∞)]2 . (12.91)
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Section 12.5 Optimal Observers and Kalman Filtering 517

The summation in Eq. (12.90) can be seen as the result at time n of convolving
w[·] with a causal filter whose transform is [zF(z)]+, in the notation introduced
earlier. To generate w[·] causally from x[·], we pass x[·] through a filter with
transfer function 1/F(z). Putting all this together, it follows that the causal
one-step Wiener prediction filter has transfer function

H(z) = 1
F(z)

[
zF(z)

]
+ . (12.92)

This is precisely the result that was obtained in the preceding example in
Eq. (12.79).

12.5 OPTIMAL OBSERVERS AND
KALMAN FILTERING

This section revisits the canonical problem considered in Example 12.4—
estimating a DT signal from measurements corrupted by additive noise. We
will now restrict the estimation filter to be causal, however, so its design will
require the results developed in Section 12.4. Furthermore, we shall assume
the signal of interest is the result of filtering a white DT process through a
causal and stable LTI state-space system. This formulation opens the door
to an important set of extensions of Wiener filtering, referred to as Kalman
filtering.

12.5.1 Causal Wiener Filtering of a Signal
Corrupted by Additive Noise

As in Example 12.4, suppose we have available the measured process

x[n] = y[n] + v[n] , (12.93)

where the zero-mean WSS process y[n] that we wish to estimate from our
measurements is the result of passing a white process w[·] of intensity σ 2

w > 0
through a causal and stable modeling filter, with transfer function

G(z) = η(z)
a(z)

. (12.94)

In the next subsection we shall explicitly consider a reachable and observ-
able Lth-order state-space realization of this modeling filter, but for now it
suffices to note that a(z) is the monic degree-L characteristic polynomial of
the system, and η(z) has degree less than L, corresponding to the simplify-
ing assumption we shall make that there is no direct feedthrough from input
to output in the state-space model. The reachability and observability of the
system ensure that the polynomials η(z) and a(z) have no common factors,
and the stability of the system means that the roots of a(z) are all within the
unit circle. It follows that the underlying signal of interest, y[n], is a zero-mean
WSS process with complex FSD given by
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Dyy(z) = σ 2
w

η(z)η(z−1)
a(z)a(z−1)

. (12.95)

Assume the additive noise process v[·] is also white, with intensity σ 2
v > 0, and

is uncorrelated with the driving process w[·], and therefore with the signal y[·].
Under the preceding assumptions, x[·] is also zero-mean and WSS. With the
definition r = σ 2

w/σ 2
v > 0, the complex PSD of x[n] is given by

Dxx(z) = σ 2
w

η(z)η(z−1)
a(z)a(z−1)

+ σ 2
v

= σ 2
v

rη(z)η(z−1) + a(z)a(z−1)
a(z)a(z−1)

= σ 2
v

ν(z)ν(z−1)
a(z)a(z−1)

, (12.96)

where ν(z) is a degree-L monic polynomial with roots inside the unit circle,
satisfying

ν(z)ν(z−1) = rη(z)η(z−1) + a(z)a(z−1) . (12.97)

This equation embodies the minimum-phase spectral factorization step that is
expected in such problems.

The existence of a spectral factor ν(z) in Eq. (12.97) that has all its roots
within the unit circle follows from the fact that the expression on the right side
of the equation has self-reciprocal zeros, meaning that if it has a zero at z = zo,
then it also has a zero at z = z−1

o . Furthermore, this expression cannot have
zeros on the unit circle because a zero at z = ej�0 for r > 0 would imply that

r|η(ej�0 )|2 + |a(ej�0 )|2 = 0 ,

which means η(z) and a(z) would each individually have a zero at z = ej�0 ,
contradicting the fact that η(z) and a(z) have no common roots. The poly-
nomial ν(z) is then defined by the requirement that it contain precisely the
zeros of the right side of Eq. (12.97) that lie inside the unit circle. Note also
that ν(z) and a(z) will not have any common zeros because Eq. (12.97) shows
that any value of z where both these polynomials go to 0 must also be a z at
which η(z) goes to 0—but that would again contradict the fact that η(z) and
a(z) have no common factors. Finally, since the degree of η(z) is less than L,
it follows that the degree-L polynomial ν(z) must be monic, that is, have the
coefficient of its highest-degree term be 1, just as a(z) has.

From Eq. (12.96), the minimum-phase spectral factor for Dxx(z) is

F(z) = σv
ν(z)
a(z)

. (12.98)

The remaining quantity required to compute the causal Wiener filter is Dyx(z).
Since y[·] and v[·] are uncorrelated, it follows that

Dyx(z) = Dyy(z) (12.99)

and is thus given by Eq. (12.95).
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Section 12.5 Optimal Observers and Kalman Filtering 519

Substituting the results of the preceding calculations into Eq. (12.72)
and using Eq. (12.97) to make a simplification along the way, we see that the
transfer function of the required causal Wiener filter is

H(z) = 1
F(z)

[Dyx(z)
F(z−1)

]
+

= a(z)
σvν(z)

[
σ 2

w
η(z)η(z−1)
a(z)a(z−1)

a(z−1)
σvν(z−1)

]
+

= a(z)
ν(z)

[ rη(z)η(z−1)
a(z)ν(z−1)

]
+

= a(z)
ν(z)

[ν(z)
a(z)

− a(z−1)
ν(z−1)

]
+ . (12.100)

The term ν(z)/a(z) survives the [·]+ operation intact, as its inverse transform
is causal. Since the term a(z−1)/ν(z−1) has an anticausal inverse transform,
its only contribution to the [·]+ operation is the value of the associated time
function at time 0. This value is 1 because both a(z) and ν(z) are monic poly-
nomials in z. It follows therefore that the optimum causal filter is given by the
simple expression

H(z) = 1 − a(z)
ν(z)

= ν(z) − a(z)
ν(z)

, (12.101)

which is completely determined by the result of the spectral factorization in
Eq. (12.97).

The Wiener filter we have arrived at in Eq. (12.101) takes the measured
process x[·] as input and causally generates the LMMSE estimate ŷ [n] of the
signal y[n], thereby extracting the signal from the additive noise (with some
residual error, of course). The next subsection shows that the same effect can
be obtained by using an appropriately designed observer for the underlying
state-space system that generates the signal y[n].

12.5.2 Observer Implementation of the
Wiener Filter

Observers were introduced in Chapter 6 as a mechanism for state estima-
tion in LTI state-space systems. It is therefore perhaps not surprising that an
observer is relevant to estimating a signal obtained as the output of such a sys-
tem. The notation used for various signals in the present context differs from
that introduced in Chapter 6. We therefore set up the framework and notation
again here.

The signal of interest to us, y[n], is the output of a causal and stable
LTI state-space system driven by an unknown white process w[·] of known
variance σ 2

w > 0. The measured signal x[n] is the result of an unknown addi-
tive white-noise process v[n] of known variance σ 2

v > 0, and uncorrelated
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with w[·], corrupting the signal y[n]. The relevant Lth-order reachable and
observable state-space model takes the form

q[n + 1] = Aq[n] + bw[n] , (12.102)

y[n] = cTq[n] , (12.103)

x[n] = y[n] + v[n] . (12.104)

Note that our use of y[n] to denote the actual system output and x[n] to
represent its noise-corrupted version differs from our use of these symbols in
Chapter 6. We also assume that this system has been operating since time −∞,
as our analysis is restricted to WSS processes. The system transfer function
from w[n] to y[n] is

G(z) = cT(zI − A)−1b = η(z)
a(z)

, (12.105)

as in Eq. (12.94), where a(z) = det(zI − A) is the characteristic polynomial of
the system.

The observer for this system takes the form

q̂[n + 1] = Aq̂[n] − �
(

x[n] − ŷ [n]
)

= (A + �cT )̂q[n] − �x[n] , (12.106)

where � is the observer gain vector and

ŷ [n] = cT q̂[n] . (12.107)

Note that the observer is not driven by the underlying system output y[n] but
rather by the measured signal x[n], and that the unknown noise processes w[n]
and v[n] do not enter the construction of the observer either. The quantity ŷ [n]
denotes the observer’s estimate of y[n], but with no implication yet that this
is the LMMSE estimate, given x[k] for k ≤ n. One motivation for construct-
ing an observer in Chapter 6 was to overcome uncertainty about the initial
state q[0], whereas here the uncertainty in the state is a consequence of w[n]
and v[n] being unknown. The initial condition plays no role because we have
assumed a stable system operating since time −∞.

Equations (12.106) and (12.107) show that the observer in the current
context can be viewed as an LTI state-space system that has x[n] as input and
ŷ [n] as output. The interesting and important fact now is that the observer gain
� can be chosen such that this system has precisely the transfer function H(z)
of the Wiener filter designed in the Section 12.5.1, as specified in Eq. (12.101).
With this choice of � the quantity ŷ [n] does indeed become the causal LMMSE
estimate of y[n].

The denominator of the observer transfer function is the characteristic
polynomial of A + �cT . The results on observer design in Chapter 6 show
that this characteristic polynomial can be made equal to any monic polyno-
mial of degree L by appropriate choice of � because the given state-space
system is observable. Thus � can be chosen to make the denominator of
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Section 12.5 Optimal Observers and Kalman Filtering 521

the transfer function equal to ν(z), as required by Eq. (12.101), with ν(z)
defined through the spectral factorization in Eq. (12.97). If this choice of �

results in the numerator polynomial of the observer transfer function being
ν(z) − a(z), as also required by Eq. (12.101), then the desired result would be
established.

We use an indirect argument to deduce what the numerator polyno-
mial of the observer transfer function must be. Note from Eqs. (12.106) and
(12.107) that implementing a unit-gain output feedback around this observer
by setting

x[n] = ŷ [n] + p[n] , (12.108)

where p[n] is now some new external input, results in the state-space system

q̂[n + 1] = Aq̂[n] − �p[n] (12.109)

with the same output as before, specified in Eq. (12.107). Such unit-gain
feedback produces a new denominator polynomial for the transfer function,
changing it from ν(z) to the difference between ν(z) and the original numer-
ator polynomial. However, inspection of the preceding equation shows that
its characteristic polynomial, which is also the denominator polynomial of
the new system, is a(z) = det(zI − A). The conclusion is that the original
numerator polynomial of the observer must have been ν(z) − a(z), which is
exactly the numerator polynomial of the Wiener filter derived in the previous
subsection, see Eq. (12.101).

In summary, if the signal y[n] that we wish to estimate from measure-
ments corrupted by additive white noise has been generated by driving a stable
LTI state-space system with another white process that is uncorrelated with
the measurement noise, then the requisite Wiener filter can be realized as an
observer for the state-space system. The observer gain is chosen to make the
observer characteristic polynomial equal to the ν(z) that results from the spec-
tral factorization in Eq. (12.97). The observer output ŷ [n] is then the LMMSE
estimate of y[n].

12.5.3 Optimal State Estimates and Kalman
Filtering

It is natural now to wonder whether the components q̂i[n] of the state esti-
mate q̂[n] generated by the observer in Eq. (12.106) are optimal estimates,
that is, if they are the causal LMMSE estimates of the underlying state vari-
ables qi[n]. It can be shown that this is indeed the case: the optimal observer
generates the causal LMMSE estimate q̂[n] of the state q[n] and not just the
causal LMMSE estimate ŷ [n] of the output y[n]. We will not demonstrate this,
but offer the following intuitive explanation. Because the state-space system
generating y[n] is reachable and observable, its state vector is fully excited,
and fully reflected in the output measurements over time. Hence the only way
for the optimal output estimate ŷ [n] to be generated by the state observer is
for the underlying observer state q̂[n] to also be the optimal estimate.
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The optimal observer developed in Section 12.5.2 is the simplest form
of Kalman filter. In the usual development of a Kalman filter, one begins
with a state-space model such as in Eqs. (12.102), (12.103), and (12.104), then
develops the causal LMMSE estimator for the underlying state vector q[n],
discovering in the process that this estimator takes the form of an observer for
the initial state-space model, with an optimally chosen observer gain. We have
reversed the process in our development, in order to arrive at this via Wiener
filtering.

The Kalman filter can take much more general forms, with an underlying
causal state-space model that can be time-varying and even unstable, with no
requirement of wide-sense stationarity for the associated processes, and with
multiple disturbance inputs and measurement outputs allowed. The spectral
factorization step that characterizes causal Wiener filtering is replaced by solu-
tion of a so-called Riccati equation that, in the case where the disturbance and
noise processes are Gaussian, propagates the error covariance matrix of the
state estimate.

12.6 ESTIMATION OF CT SIGNALS

A very similar development to the DT case can be carried out in CT for several
of the prototype signal estimation problems we have considered, though the
details of the derivations may differ. Also, in DT the notion of white noise is
simple and accessible, whereas in CT white noise is an extreme idealization,
with infinite expected power at every instant. We briefly summarize the CT
parallels below for some of the preceding results on DT Wiener filtering, but
omit all derivations.

For the unconstrained CT case, where measurements x(·) of some WSS
process are filtered to construct the LMMSE estimate ŷ(t) for some process
y(t) that is jointly WSS with x(·), the frequency response of the Wiener filter
is given by

H( jω) = Dyx( jω)
Dxx( jω)

, (12.110)

and the associated MMSE is

MMSE = 1
2π

∫ ∞

−∞

(
Dyy( jω) − H( jω)Dxy( jω)

)
dω

= 1
2π

∫ π

−π

(
Dyy( jω) − Dyx( jω)Dxy( jω)

Dxx( jω)

)
dω . (12.111)

For causal CT Wiener filtering, the frequency response of the optimum filter
is given by

H( jω) = 1
F( jω)

[Dyx( jω)
F(−jω)

]
+ , (12.112)

where F( jω) is the frequency response of a causal and causally invertible
spectral factor of Dxx( jω).
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Finally, for prediction of a WSS CT process a time T > 0 into the future,
the filter transfer function is given by

H(s) = 1
F(s)

[
esTF(s)

]
+ . (12.113)

12.7 FURTHER READING

The design of optimal systems for LMMSE estimation of wide-sense station-
ary signals was sparked by Wiener’s work in [Wie]. The topic was reflected
in engineering textbooks such as [Dav] and [Lee] a decade later. A read-
able recent biography of Wiener is [Con]. Several of the texts cited in
Chapters 7, 8, 10, and 11 for their inclusion of WSS processes and power
spectral density devote particular attention to Wiener filtering. The spectral
factorization required for causal Wiener filtering is treated in [Moo], [Op2],
[Pa1], [Pa3], [Pa4], and [Th1], for example. Kalman filtering is covered by
some of these references, also [Poo], and by others cited in Chapter 6 in
the context of optimal observers for feedback control. The relation between
Wiener and Kalman filtering is addressed in [And], [Ka2], and [Kam]. Filtering
and prediction for finite-state, discrete-time Markov processes (including
hidden Markov models or HMMs) is treated in [Frs].

Problems

Basic Problems

12.1. A certain zero-mean WSS signal y(t) with autocorrelation function Ryy(τ) and
corresponding PSD Syy( jω) is transmitted through a channel that has a fixed but
random gain G, whose mean and variance are μG and σ 2

G respectively. Due to
noise at the receiver, the received signal x(t) takes the form

x(t) = Gy(t) + w(t) ,

where w(t) is a zero-mean WSS noise process with autocorrelation function
Rww(τ) and corresponding PSD Sww( jω). The transmitted process y( · ) and the
noise process w( · ) are uncorrelated with each other, i.e., Ryw(τ) = 0, and are
independent of G.

(a) Determine the following in terms of the given quantities:
(i) E[G2];

(ii) mean value of x(t);
(iii) autocorrelation function Rxx(τ) of the process x(t); and
(iv) cross-correlation function Ryx(τ) between x( · ) and y( · ).

(b) Compute the frequency response H( jω) of a stable and possibly noncausal
LTI Wiener filter that takes as input the received signal x(·) and produces as
output the LMMSE estimate ŷ(t) of the transmitted signal y(t), i.e., find the
filter that minimizes E[{̂y(t) − y(t)}2].
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(i) What does H( jω) reduce to for those frequencies ω, if any, where the
PSD of the noise process Sww( jω) is zero, but the PSD of the trans-
mitted process, Syy( jω) is nonzero? Is this the answer you would have
expected? Explain.

(ii) What does H( jω) reduce to for those frequencies ω, if any, where the
PSD of the transmitted process is zero, but the PSD of the noise process
is nonzero? Is this the answer you would have expected? Explain.

12.2. A certain zero-mean CT WSS signal y(t) with autocorrelation function Ryy(τ)
and corresponding PSD Syy( jω) is transmitted through a channel. The character-
istics of the channel and receiver are such that the received signal x(t) is of the
form

x(t) = by(t) + v(t) .

The quantity v(t) represents receiver noise, and is a zero-mean WSS noise pro-
cess with autocorrelation function Rvv(τ) and corresponding PSD Svv( jω), and
is uncorrelated with y( · ), i.e., Ryv(τ) = 0. The quantity b is a random variable
that is independent of y( · ) and v( · ), and that takes the value 1 or 0 for all time;
it can be thought of as indicating whether the channel works (b = 1) or doesn’t
(b = 0). The probability that b = 1 is p.

(a) Compute Syx( jω) and Sxx( jω), then find the frequency response H( jω) of
a stable and possibly noncausal LTI (Wiener) filter that takes as input the
received signal x(·) and produces as output the LMMSE estimate ŷ(t) of the
transmitted signal y(t), i.e., find the filter that minimizes E[{y(t) − ŷ(t)}2].
Express your answer in terms of quantities specified in the problem state-
ment. Check that your filter specializes to what you expect when p = 1
and p = 0.

(b) Find an expression for the PSD See( jω) of the error e(t) = y(t) − ŷ(t)
associated with the optimum filter you designed in (a), again expressing
your answer in terms of quantities specified in the problem statement.
Again check that your expression reduces to what you expect when p = 1
and p = 0.

12.3. In your new job as a research scientist at the the Oceanographic Institute, you
have access to recorded measurements of a random process x(t). What you are
really interested in, however, is the zero-mean WSS random process y(t), which
is related to x(t) as follows:

x(t) = y(t) + w(t) ,

where w( · ) is a zero-mean WSS noise process that is uncorrelated with the pro-
cess y( · ). You want to design a (possibly noncausal) LTI filter with impulse
response h(t) that will filter x(t) and produce the LMMSE estimate of y(t),
i.e., you want a Wiener filter to produce ŷ(t). However, suppose you have no
measurements of y(t) or w(t) from which to directly compute the correlation
information that will allow you to design the optimum filter. What you do have
are extensive records of measurements taken by your predecessor, using an old
sensor, of the filtered signals

v(t) = g(t) ∗ w(t) and m(t) = g(t) ∗
(

y(t) + w(t)
)

,
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where g(t) is the impulse response of the old sensor, but is unknown to you, and
∗ denotes convolution. You can use these old records to compute good approx-
imations of Rvv(τ) and Rmm(τ). The question now is whether these correlation
functions suffice to design the Wiener filter.

(a) Express the PSDs Svv( jω) and Smm( jω) in terms of Syy( jω), Sww( jω), and
the frequency response G( jω) of the old sensor.

(b) Express the frequency response H( jω) of the desired Wiener filter in terms
of only Svv( jω) and Smm( jω).

(c) Let See( jω) denote the PSD of the error signal e(t) = y(t) − ŷ(t). Express
the ratio See( jω)/Syy( jω) in terms of only H( jω) and/or the PSDs Svv( jω)
and Smm( jω). This ratio gives some idea of the quality of the Wiener filter
at each frequency because it compares the spectral power of the error after
estimation to the spectral power of the error before estimation.

12.4. The random process r[n] is a zero-mean, unit-variance, white process. The ran-
dom process y[n] is obtained by filtering r[n] through a filter with frequency
response G(ej�), as depicted in Figure P12.4-1. Assume all signals and system
impulse responses are real-valued.

(a) What is the PSD of y[n], Syy(ej�), expressed in terms of G(ej�)?

r[n] y[n]

G(e jÆ)

Figure P12.4-1

The process x[n] is obtained from the multiplication of the process r[n]
specified above and a process w[n] as shown in Figure P12.4-2. The process
w[·] is independent of r[n] and takes the value 1 with probability p, and 0
with probability (1 − p), independently for each n:

w[n] =
{

1 with probability p
0 with probability 1 − p .

r[n] x[n]

w[n] Figure P12.4-2

(b) Calculate the mean and autocovariance functions of x[n]. Is x[n] a white
process?

(c) Design the LTI filter H1(ej�) in Figure P12.4-3 with the input x[n], so that
the output process q[n] has the same PSD as y[n], your result from part (a).

x[n] q[n]
H1(e jÆ)

Figure P12.4-3

(d) Design the LTI filter H2(ej�) in Figure P12.4-4 for which the input x[n] will
produce an output ŷ [n] that at every instant is the LMMSE estimate of y[n].
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x[n] y[n]
H2(e jÆ)

Figure P12.4-4

(e) For your answer in part (d), calculate the resulting mean square error. What
is the mean square error when p = 0 and when p = 1? Comment on these
answers; do they seem reasonable to you?

12.5. Assume that y[n] in Figure P12.5 is zero-mean WSS, with correlation function
Ryy[m] and PSD Syy(ej�). Suppose that the process w[·] is independent of the
process y[n], and at any time instant takes the value 1 with probability p or the
value 0 with probability 1 − p; also assume that the values of w[·] at different time
instants are independent. Thus the signal x[n] = y[n]w[n] is obtained by setting
random components of y[n] to zero.

y[n]
x[n]

w[n]

H(e jÆ) y[n]

Figure P12.5

(a) Find the mean μw of the WSS process w[n], and show that the correlation
function of w[n] is of the form Rww[m] = αδ[m] + β, where α and β are con-
stants that you should determine, and δ[m] is the unit sample function. Also
find an expression for the PSD Sww(ej�) of the process w[n].

(b) Compute Ryx[m] and Rxx[m].
(c) Specify the frequency response H(ej�) of a stable LTI filter that will take

x[n] as its input and produce an estimate ŷ[n] of y[n] at its output, with
H(ej�) chosen such that the mean square error, namely E[(y[n] − ŷ[n]

)2],
is minimized. Your answer can be specified in terms of the PSDs of y[n] and
w[n]. What would you expect your expression for H(ej�) to reduce to when
p = 1? Does it indeed reduce to what you expect?

(d) Find an expression for the mean square error that results from application of
the filter in (c). Your answer can be specified in terms of integrals involving
the PSDs of y[n] and w[n]. What would you expect your expression to reduce
to when (i) p = 0, and (ii) p = 1? Does it indeed reduce to what you expect
in these two cases?

12.6. Figure P12.6 is a block diagram of a faulty DT memory system in which sample
values are randomly set to 0 (“dropped out”) when they are retrieved, and a
post-retrieval estimation filter that is used to estimate the correct value of the
signal stored in memory. It is known that

s[n]
g[n]

p[n]

H(e jÆ) s[n]

Figure P12.6
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(i) s[n] is the correct signal that is stored in memory; it is a zero-mean WSS
random process with autocorrelation function Rss[n], and with PSD Sss(ej�),
specified as follows:

Rss[n] = 16
15

· (
1
4

)|n|, Sss(ej�) = 16
|4 − e−j�|2 for |�| ≤ π .

(ii) p[n] is a random sequence of 0s and 1s that models memory dropouts; p[n]
has the following properties:

• p[·] and s[·] are statistically independent;
• p[·] is i.i.d., i.e., each time sample of p[·] is statistically independent of

all other time samples; and
• Prob(p[n] = 1) = 3

4 , Prob(p[n] = 0) = 1
4 .

(iii) g[n] = s[n]p[n] is the corrupted signal that is retrieved from the memory in
the presence of dropouts; g[n] can always be written in the form

g[n] = ks[n] + r[n] ,

where k is a constant, and r[n] is the WSS random process r[n] =
s[n](p[n] − k).

(iv) H(ej�) is the frequency response of an LTI (but not necessarily causal) filter
that is used to estimate s[n] from g[·].

Answer the following questions with the information given above:

(a) Determine the constant k for which the process r[n] is zero mean and
uncorrelated with the process s[n].

(b) Determine Rrr[n], the autocorrelation function of r[n], when r[n] is zero
mean and uncorrelated with the process s[n].

(c) Determine the filter frequency response H(ej�) that minimizes the mean
square estimation error, E

[
(s[n] − ŝ [n])2].

12.7. (a) The frequency response of a particular DT LTI system is

H(ej�) = ej2�

1 − 1
2 e−j�

.

Determine its unit sample response h[n]. If you do this correctly, you will
find that the system is neither causal nor anticausal. Also determine

∞∑
k=−∞

h[k] and
∫ π

0
|H(ej�)|2 d� .

Recall:
∞∑

i=0

ri = 1
1 − r

, |r| < 1 .

(b) If x[n] denotes a WSS process with mean value μx and autocovariance func-
tion Cxx[m] = σ 2

x δ[m], what is the LMMSE estimate of x[n + 2] in terms
of x[n]? In other words, find α and β in x̂ [n + 2] = αx[n] + β such that
E{(x[n + 2] − x̂ [n + 2])2} is minimized. Also find the associated MMSE.

(c) If the process x[n] in (b) is applied to the input of the system in (a), what is
the PSD Syy(ej�) of the output process y[n]? Also evaluate E{y[n]}, E{y2[n]},
and
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lim
N→∞

1
2N + 1

N∑
k=−N

y[k] .

(d) For this part of the question, assume μx = 0 for simplicity. With all quantities
as previously defined, suppose what you can measure is q[n] = y[n] + v[n]
for all n, where v[n] is (zero-mean) white noise of intensity σ 2

v , and is uncor-
related with the process x[k]. Compute the frequency response W(ej�) of
the noncausal Wiener filter that has q[n] as input at time n and produces the
LMMSE estimate x̂ [n + 2] as output at time n. Explicitly check that your
answer reduces to something that you expect in the case of σ 2

v = 0.

12.8. The message signal y[n] in Figure P12.8 is to be encrypted and transmitted across
a noisy channel, then decrypted and filtered at the receiver. We model y[n] as a
zero-mean WSS random process with autocorrelation function Ryy[m] and cor-
responding PSD Syy(ej�). The signal p[n] is used for both the encryption at the
transmitter and the decryption at the receiver, and is an i.i.d. process that takes
the values +1 or −1 with equal probability at each time; it is independent of
the process y[ · ]. Note that p2[n] = 1 for all n. The transmitted signal q[n] is the
product p[n]y[n].

Message signal

y[n]

Channel noise

v[n]

Encryption/decryption signal

x[n]q[n]
H(e jÆ)

y[n]

p[n]

Noncausal

Wiener filter

+

Figure P12.8

(a) Determine the respective means μp and μq of the processes p[n] and q[n],
their respective autocorrelations Rpp[m] and Rqq[m] (expressed in terms of
Ryy[ · ]), and also the cross-correlation Ryq[m] between the message signal
and the transmitted signal. Would an intruder who was able to intercept
the transmitted process q[ · ] have any use for a (possibly noncausal) linear
estimator of y[n] based on measurements of q[ · ]? Explain your answer.

The channel adds a noise signal v[n] to the transmitted signal, so that the received
signal is

q[n] + v[n] = p[n]y[n] + v[n] .

Assume v[n] is a zero-mean and white WSS process, with Rvv[m] = σ 2
v δ[m]; sup-

pose it is uncorrelated with y[ · ], and both processes are independent of p[ · ]. We
assume, as indicated in Figure P12.8, that the intended receiver knows the specific
encryption signal p[n], i.e., the specific sample function from the ensemble that
was used for encryption. If there was no channel noise (i.e., if we had v[n] = 0),
the decryption would then simply involve multiplying the received signal by p[n]
because

p[n]q[n] = p[n] (p[n]y[n]) = p2[n]y[n] = y[n] ,
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where the last equality is a consequence of having p2[n] = 1. In the presence of
noise, we can still attempt to decrypt in the same manner, but will follow it up by
a further stage of filtering. The signal to be filtered is thus

x[n] = p[n]
(

p[n]y[n] + v[n]
)

= y[n] + p[n]v[n] .

(b) Determine μx, Rxx[m], and Ryx[m].
(c) Suppose the filter at the receiver is to be a (stable) noncausal Wiener filter,

constructed so as to produce the LMMSE estimate ŷ [n] of y[n]. Determine
the frequency response H(ej�) of this filter, and explicitly check that it is
what you would expect it to be in the two limiting cases of σ 2

v = 0 and
σ 2

v → ∞. Also write an expression, in terms of Syy(ej�) and σ 2
v , for the mean

square error obtained with this filter, and explicitly check that it is what you
would expect it to be in the preceding two limiting cases.

12.9. Consider a zero-mean WSS process y[n] with E{y2[n]} = σ 2. Suppose signal val-
ues at adjacent instants have a correlation coefficient of ρ, but that signal values
more than one instant apart are uncorrelated. We already know how to con-
struct a one-step LMMSE predictor for the process using just the present value,
i.e., picking ŷ [n + 1] = ay[n] with an optimally chosen a. It is also easy to see that
prediction based on a single measurement that is strictly in the past is not useful:
if ŷ [n + 1] = by[n − k] for some k > 0, then the optimal choice is b = 0.

Suppose now that we construct a one-step LMMSE predictor using the
present and most recent past value, i.e., suppose we choose ŷ [n + 1] = cy[n] +
dy[n − 1]. You might think, based on what is said in the preceding paragraph, that
we would discover c = a and d = 0, where a is the optimum value referred to in
the previous paragraph. If you did think so, you’d be wrong! Explain intuitively
why the optimum d might end up being nonzero, then find the best choices of c
and d, and determine the associated mean square error.

12.10. Consider the system described by the block diagram in Figure P12.10-1.

x[n]

v[n] w[n]

y[n]

z-1

+
Figure P12.10-1

The random sequences x[·], v[·], and w[·] are mutually independent,
WSS, with autocorrelations Rxx[m], Rvv[m], and Rww[m] respectively, and PSDs
Sxx(ej�), Svv(ej�), and Sww(ej�) respectively. The sequence x[n] is zero mean. The
sequences v[n] and w[n] have means μv and μw, respectively.

Design the noncausal Wiener filter that estimates x[n] for all n from the
measurements

{
y[k], −∞ < k < +∞}, i.e., the noncausal linear filter HWF

(
ej�
)

in Figure P12.10-2. Express your answer in terms of the available statistics for
x[n], w[n], v[n], and any algebraic or trigonometric operations needed, including
but not limited to addition, scalar multiplication, multiplication by a complex
number, and convolution.
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y[n] HWF(e jÆ) x[n]

Figure P12.10-2

12.11. Consider a stable and causal DT system with input w[n] and output y[n] that are
related by

y[n] = −
N∑

k=1

aky[n − k] + w[n] .

The output is said to be governed by an Nth-order autoregressive model in this
case, because the output depends on past values of itself, as well as on the present
input. Suppose w[n] is known to be a (zero-mean) white process with variance
σ 2

w, but is otherwise unknown, and assume the ak are known. Determine the
LMMSE estimator ŷ [n] of the output y[n], in terms of measurements of all past
values of y[ · ]. Also find the associated MMSE. Be sure to explain where/how
you used the stability and causality of the system in your reasoning. Hint: To find
the LMMSE estimator, study the governing equation above and come up with a
plausible guess for what you think ŷ [n] will be, then verify that this guess satisfies
the orthogonality conditions associated with this problem.

12.12. The input to a particular stable LTI filter with frequency response

H(ej�) = 1

1 − 1
2 e−j�

is a white DT WSS process w[n] whose PSD is Sww(ej�) = 9 for all �. Denote the
output of the system at time n by y[n].

(a) Find a first-order difference equation relating the input and output of the
system, and also explicitly determine the unit sample response h[n] of the
system. As a check, explicitly compute

∑
h[n] and compare the value you

get with what you should expect for the given H(ej�). Is the system causal?
(b) Determine the mean E{y[n]} = μy and the autocorrelation function

E{y[n + m]y[n]} = Ryy[m]

of the WSS output process y[ · ]. Your answer for the autocorrelation func-
tion should be written out explicitly, not left as an integral or sum. If you’ve
done things correctly, you should find that the variance of y[n] is 12; verify
this explicitly.

(c) Specify completely the LMMSE causal one-step predictor for the process
y[ · ]. This predictor forms the LMMSE estimator ŷ [n + 1] for y[n + 1], using
all values of y[k] for k ≤ n. One way to do this is using your input–output
equation from (a) to conjecture the form of this predictor, and then to
verify your conjecture using the orthogonality condition that characterizes
LMMSE estimation. Another way is to design an appropriate causal Wiener
filter. Use either of the above approaches to find the predictor, showing
the main steps of your calculation. Also find the predictor using the other
way, to check that you get the same answer either way. Finally, determine
the MMSE associated with the predictor. Could the correct answer for the
MMSE be larger than 12?
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You may find it helpful to recall the following identity for geometric series:

1 + α + · · · + αm−1 = 1 − αm

1 − α
.

12.13. Let y[n] be a WSS process with autocorrelation function

Ryy[m] = 9
(
δ[m] − αδ[m − 1] − αδ[m + 1]

)
where α > 0.

(a) What is the maximum value α can take? Explain your reasoning. If α is
increased toward its maximum value, does the power of the signal shift to
lower or higher frequencies?

(b) Determine the following (expressed in terms of α, if necessary):
(i) E{y[n]} and E{y2[n]};

(ii) the correlation coefficient ρ between y[4] and y[5].
(c) Suppose we are told that we will be given the measurement y[4], and

we want to find the LMMSE estimator of y[5] in terms of y[4]. Find the
estimator, and determine the associated MMSE.

(d) Suppose x[n] = y[n] + w[n], where w[n] is a white process that is uncorre-
lated with y[ · ] and has PSD Sww(ej�) = 9α2. Determine the PSD Sxx(ej�)
and show that it can be written in the form

Sxx(ej�) = K(1 − βe−j�)(1 − βej�)

for K and β that you should determine, expressed in terms of α if necessary.
Also determine the cross spectral density Syx(ej�) in terms of α.

(e) Determine the frequency response H(ej�) of the noncausal Wiener filter
that produces the LMMSE estimate ŷ [n] of y[n] in terms of measurements
of the entire process x[ · ].

( f ) Determine the frequency response G(ej�) of the causal Wiener filter that
at time n uses measurements of x[k] for all present and past times k ≤ n to
produce an LMMSE prediction of the measurement at the next step, i.e., an
LMMSE estimate x̂ [n + 1] of x[n + 1]. Also determine the associated mean
square error.

12.14. Suppose y[n] is a zero-mean WSS random process with PSD given by
Syy(ej�) = 5 + 4 cos � and the corresponding autocorrelation function shown in
Figure P12.14-1.

m

2

−1 0 1

5

2

Ryy[m]

......

Figure P12.14-1

(a) Sketch the pole-zero plot corresponding to Syy(z). Be sure to plot all the
poles and zeros.

(b) Suppose y[n] is generated via the system shown in Figure P12.14-2. where
w[n] is a WSS white process with unit PSD, i.e., Sww(ej�) = 1. Determine
one possible unit sample response g[·].
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w[n] g[·] y[n]

Figure P12.14-2

We now want an optimum causal LTI filter with impulse response h[·] for
obtaining a one-step prediction of y[n]. The desired system is shown in
Figure P12.14-3, with h[·] chosen to minimize E

[
(̂y[n + 1] − y[n + 1])2].

y[n] h[·] y[n + 1]

Figure P12.14-3

(c) If h[n] is restricted to have length two as shown in Figure P12.14-4,
determine h[n], i.e., find a and b.

n

a
b

h[n]

0 1

Á Á

Figure P12.14-4

(d) Restricting h[n] to be causal but of possibly infinite length, determine h[n],
the impulse response of the causal Wiener filter.

12.15. The system shown in Figure P12.15-1 comprises a causal plant embedded in
a feedback loop. The input signal, a[·], and the noise disturbance, w[·], are
zero-mean, uncorrelated, WSS white processes, with respective autocorrelation
functions:

Raa[m] = σ 2
a δ[m], Rww[m] = σ 2

wδ[m] .

The transfer function E(z) from a[n] to b[n] and the transfer function F(z) from
w[n] to b[n] are easily seen to be

E(z) = 1
z

, F(z) = z − 3
z

= 1 − 3z−1 .

+
+

-

3

Input signal

a[n]

Noise

w[n]

Measured output

b[n]1
z - 3 +

+ +

Figure P12.15-1

This problem concerns the design of an LTI filter with system function H(z) that
will use measurements of the output signal b[n] to generate â [n], the LMMSE
estimate of the input a[n], as shown in Figure P12.15-2:
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b[n]
H[z]

a[n]

Figure P12.15-2

(a) Suppose there is no noise w[n], i.e., σ 2
w = 0, and that the filter h[n] is allowed

to be noncausal. Determine, without much work, what H(z) should be, and
find the corresponding mean square error E

[
(a[n] − â [n])2].

(b) Suppose now that the filter h[n] is still allowed to be noncausal, but that σ 2
w

is no longer restricted to 0, i.e., σ 2
w ≥ 0. Determine H(z). Make sure to check

that your answer reduces to what you obtained in part (a), when σ 2
w = 0.

(c) Suppose again that there is no noise w[n], i.e., σ 2
w = 0, but the estimation

filter H(z) is restricted to be causal. Again, find H(z) and the corresponding
mean square error.

(d) Find the causal Wiener filter when σ 2
w > 0.

12.16. Suppose the zero-mean WSS process x[n] is obtained by applying a zero-mean
WSS white process w[n] with PSD Sww(ej�) = σ 2 to the input of a (stable, causal)
filter with system function

M(z) = 1 − 3z−1 .

(a) If Sxx(ej�) denotes the PSD of x[n], find Sxx(z). Also find the autocovariance
function Cxx[m] of the process x[n], the variance of the random variable
x[n + 1], and the correlation coefficient ρ between x[n] and x[n + 1].

(b) Specify the LMMSE estimator of x[n + 1] based on a measurement of x[n],
and compute the associated mean square error. Is it less than the variance
of x[n + 1] that you computed in (a)?

(c) Find the system function F(z) of a stable and causal filter whose inverse
1/F(z) is also stable and causal, such that Sxx(z) = F(z)F(z−1).

(d) Find the system function of the causal Wiener filter that generates an esti-
mate of x[n + 1] based on the present and all past x[k], k ≤ n, i.e., find the
system function of the one-step predictor. Do you expect that the mean
square error for this case will be less than, equal to, or greater than what
you computed in (b)? Determine the mean square error to confirm whether
your expectation is correct.

12.17. We have measurements of a WSS random process x[n] that is modeled as the
output of a minimum-phase LTI system whose input is a white process w[n],
with E{w2[n]} = 1. (Recall that a minimum-phase DT system is defined as sta-
ble, causal, and with a stable, causal inverse.) The situation is shown in Figure
P12.17-1.

M(z), minimum phase
w[n], white x[n], measured

Figure P12.17-1

Suppose the transfer function of the system above is

M(z) = γ

z − λ
+ d ,

where γ �= 0 and d �= 0. We would like to pass the process x[n] through a sta-
ble LTI filter with system function H(z) that is chosen to make this filter the
LMMSE estimator of x[n + 1], i.e., the LMMSE one-step predictor, as shown in
Figure P12.17-2.
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H(z), LMMSE predictor
x[n], measured               x[n + 1], prediction

Figure P12.17-2

(a) Suppose there are no constraints on the LTI filter H(z) beyond stability.
Determine the optimum filter and the associated MMSE,

E{(x[n + 1] − x̂ [n + 1])2} .

(b) Suppose now that we constrain the filter H(z) to not only be stable but also
causal. Again determine the optimum filter and the associated mean square
error. Your answers will be expressed in terms of the given parameters,
namely γ , λ, and d.

12.18. (a) Suppose x[n] is a zero-mean WSS random sequence with autocorrelation
Rxx[m] = ( 1

3 )|m|. We want to design a causal LTI filter h[n], as shown in
Figure P12.18, with only one nonzero value, i.e., with h[n] = aδ[n − no],
where no is an integer greater than or equal to 0. The output g[n] is to be the
best such linear one-step predictor of x[n], i.e., it is chosen to minimize the
mean square prediction error, E[(g[n] − x[n + 1])2]. If no is fixed, determine
the value of a, in terms of no, to minimize this error.

x[n] h[·] g[n]

Figure P12.18

(b) A zero-mean WSS process x(t) is known to have autocorrelation function
Rxx(τ) = 6e−3|τ | . Determine the optimum causal LTI Wiener filter to obtain
the LMMSE estimate of x(t + T) for a fixed T > 0, using measurements
of x( · ) from the infinite past up to time t. Also compute the associated
MMSE. State in words what your answer for the Wiener filter tells you about
LMMSE prediction for an exponentially correlated process.

Advanced Problems

12.19. Suppose the autocorrelation function Rxx[m] of a zero-mean WSS process x[n]
has the following z-transform:

Sxx(z) = 1
a(z)a(z−1)

,

where

a(z) = zL + a1zL−1 + a2zL−2 + · · · + aL

is a polynomial of degree L whose roots are all inside the unit circle. Note that
we can also write Sxx(z) as

Sxx(z) = zL

a(z)
z−L

a(z−1)
= 1

1 + a1z−1 + · · · + aLz−L

1
1 + a1z + · · · + aLzL

.
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(a) Find the system function M(z) of a stable and causal filter with a stable and
causal inverse such that M(z)M(z−1) = Sxx(z).

(b) Find the system function H1(z) and the corresponding unit sample response
h1[n] of a (stable) causal Wiener filter that uses measurements of x[ · ]
up to and including time n in order to produce the LMMSE estimate of
x[n + 1], so the filter is the one-step Wiener predictor. (Hint: Depending on
how you tackle the problem, you may or may not find it convenient to use
the relation

zL+1

a(z)
= z − a1zL + a2zL−1 + · · · + aLz

a(z)
,

along with the observation that

a1zL + a2zL−1 + · · · + aLz
a(z)

has an inverse transform that is a causal and stable, or absolutely summable,
signal.)

(c) Find the system function H2(z) and unit sample response h2[n] of the causal
two-step Wiener predictor for LMMSE estimation of x[n + 2] from mea-
surements of x[ · ] up to and including time n. You may leave your answer in
terms of the coefficients p1, · · · , pL defined through the identity below:

zL+2

a(z)
= z2 − a1z − p1zL + p2zL−1 + · · · + pLz

a(z)
.

Note these coefficients p1, · · · , pL can easily be written explicitly in terms of
a1, · · · , aL, but that’s not important to do here.

12.20. A DT random process x[n] is the sum of a zero-mean DT WSS random process
y[n] and a zero-mean DT WSS white-noise process v[n], so x[n] = y[n] + v[n].
Assume the following:

(i) The PSD of y[n] is Syy(ej�) = 4 − 4 cos(�).
(ii) The PSD of v[n] is Svv(ej�) = 1.

(iii) The random processes y[·] and v[·] are uncorrelated.

We are interested in finding a causal Wiener filter to generate a one-step pre-
diction of y[n], i.e., to obtain the LMMSE estimate of p[n] = y[n + 1], based on
measurements of x[k] for all k ≤ n. Denote this LMMSE estimate by ŷ [n + 1]. It
may help you in this problem to recall that a causal system with transfer function

1
1 − αz−1

has unit sample response αnu[n].

(a) Find a spectral factor (or “generalized square root”) Mxx(ej�) with all of the
following properties:

(i) Sxx(ej�) = |Mxx(ej�)|2;
(ii) Mxx(ej�) could be the frequency response of an LTI system that is both

causal and stable; and
(iii) 1/Mxx(ej�) could be the frequency response of an LTI system that is

both causal and stable.
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536 Chapter 12 Signal Estimation

(b) Using your answer from (a), find the inverse transform wxx[n] of

Wxx(ej�) = 1
Mxx(ej�)

.

(c) Determine Rpx[m] in terms of Ryy[m].
(d) Let h[n] be the impulse response of the causal Wiener filter whose output

is the process ŷ [n + 1] when its input is the process x[n]. Find an explicit
expression for h[n] in terms of wxx[n]. For the purposes of this part, the
most helpful expression for Syy(ej�) will probably be

Syy(ej�) = 4 − 2ej� − 2e−j� .

(e) By modifying your calculations in (d)—or in some other fashion—determine
the causal Wiener filter for two-step prediction, i.e., for obtaining the
LMMSE estimate of y[n + 2], based on measurements of x[k] for all k ≤ n,
and explain why this result is reasonable.

12.21. A particular causal first-order DT LTI system is governed by a model in state-
space form:

q[n + 1] = 3q[n] + x[n] + d[n]

where x[n] is a known control input and d[n] is an unknown zero-mean, WSS
white-noise disturbance input with E(d2[n] ) = σ 2

d . We would like to use an
observer to construct an estimate q̂ [n] of q[n], using the noisy output measure-
ments

y[n] = 2q[n] + v[n] ,

where the measurement noise v[n] is also an unknown zero-mean, WSS white-
noise process with E(v2[n] ) = σ 2

v . Assume the measurement noise is uncorre-
lated with the system disturbance: E(v[n]d[k] ) = 0 for all n, k.

(a) Specify which of the following equations you would implement as your
(causal) observer, explaining your reasoning. In each case, � denotes the
observer gain.

(i) q̂ [n + 1] = 3̂q [n] + x[n] + d[n] − � ( y[n] − 2̂q [n] − v[n] ) .
(ii) q̂ [n + 1] = 3̂q [n] + x[n] − � ( y[n] − 2̂q [n] − v[n] ) .

(iii) q̂ [n + 1] = 3̂q [n] + x[n] − � ( y[n] − 2̂q [n] ) .
(iv) q̂ [n + 1] = 3̂q [n] − � ( y[n] − 2̂q [n] ) .
(v) q̂ [n + 1] = 3̂q [n] − � ( y[n] − 2̂q [n] − v[n] ) .

(vi) Something other than the above (specify).

(b) Obtain a state-space model for the observer error, q̃[n] = q[n] − q̂ [n],
writing it in the form

q̃[n + 1] = α q̃[n] + p[n] ,

with α and p[n] expressed in terms of the parameters and signals specified in
the problem statement (but with p[n] not involving q̃[n], of course). Check:
If you have done things correctly, you should find that α = 0 when � = − 3

2 .
(c) Determine the system function of the error system in (b) and the corre-

sponding impulse response, i.e., find the system function and corresponding
impulse response that relate q̃[n] to the input p[n].

(d) Note that the input process p[n] in (b) is WSS and zero-mean. Determine
its autocovariance function Cpp[m] in terms of parameters specified in the
problem statement.
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(e) For � = − 3
2 , determine the mean E( q̃[n] ) of the observer error, its second

moment E( q̃2[n] ), and its variance.
( f ) If we no longer fix � to have the value specified in (e), what constraints

must � satisfy if the observer error q̃[n] is to be a zero-mean WSS process
(assuming the observer has been running since the beginning of time, i.e.,
starting infinitely far in the past)? Verify that the choice of � in (e) satisfies
the constraints that you specify here.

(g) Assume the constraints on � that you specified in (f) are satisfied and that
the observer has been running since the beginning of time. Find a general
expression for the mean E( q̃[n] ) of the observer error, its second moment
E( q̃2[n] ), and its variance. You might find it helpful to recall that for |α| < 1

∞∑
k=0

α2k = 1
1 − α2 .

(h) Evaluate your variance expression in (g) for the case σ 2
d = 0 and � = − 4

3 ,
and show that the error variance in this case is smaller that what you get
(still for σ 2

d = 0) with the earlier choice in (e) of � = − 3
2 .

( i ) Find a quadratic equation satisfied by the value of � that minimizes the
variance expression you obtained in part (g).

12.22. We have measurements of a WSS random process x[n] that is modeled as the
output of a causal and BIBO-stable LTI system whose input is a (zero-mean)
WSS white process w[n], with E{w2[n]} = 1.

Causal, stable
w[n], white x[n], measured

Figure P12.22
Suppose the above model has a reachable and observable state-space represen-
tation of the form

q[n + 1] = Aq[n] + bw[n] (12.114)

x[n] = cTq[n] + dw[n] , (12.115)

where the first equation is the state evolution equation, and the second equation
is the output equation. The corresponding system function is

M(z) = cT(zI − A)−1b + d . (12.116)

(a) Explain why the above BIBO-stable state-space model is guaranteed to be
asymptotically stable.

Note that we don’t have access to the processes w[n] or q[n]; all we have is the
measured output x[n]. This problem will make use of the inverse system for the
above model. We assume the above model has a causal and BIBO-stable inverse,
i.e., the model is minimum-phase. Causality of the inverse requires d �= 0, which
we will assume from now on.

The rest of this problem is concerned with using the present and all past
values of the measured process, i.e., x[k] for k ≤ n, to construct the LMMSE
estimator x̂ [n + 1] for the next value of the measured process, namely x[n + 1].
In other words, we will be constructing an optimal one-step predictor. Our strat-
egy is based on writing Eq. (12.115) at time n + 1 rather than n, from which one
can deduce (though we don’t ask you to do so here) that

www.konkur.in

Telegram: @uni_k
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x̂ [n + 1] = cT q̂[n + 1] + dŵ [n + 1] = cT q̂[n + 1] , (12.117)

where the ̂ on the other quantities in the preceding equation again denotes
the LMMSE estimator based on x[k] for k ≤ n in each case, and where the last
equality follows from the fact that ŵ [n + 1] = 0.

(b) Explain carefully why ŵ [n + 1] = 0, i.e., why the LMMSE estimate of
w[n + 1], based on measurements of x[k] for k ≤ n, turns out to be zero.

You will discover in what follows how one can, using only the available measure-
ments x[k] for k ≤ n, construct an estimate q̂[n + 1], not necessarily LMMSE,
that converges to q[n + 1] exponentially fast. Thus, following a transient interval,
having this estimate is essentially as good as having q[n + 1] itself.

(c) Show that a state-space model for the inverse system of the model in
Eqs. (12.114) and (12.115) can be written in the form

q[n + 1] = Ainvq[n] + binvx[n] (12.118)

w[n] = cT
invq[n] + dinvx[n] , (12.119)

for some appropriate Ainv, binv, cT
inv, and dinv that you should write in terms

of the quantities A, b, cT, and d in Eq. (12.114) that describe the original
system. Note that the above model has the same state vector as the original
system, but its input and output are interchanged from the original.

Our assumption of a BIBO-stable inverse, combined with the reasoning that
went into answering part (a), guarantees that the above inverse system is
asymptotically stable.

Suppose we now build a real-time simulator for the state evolution of the
inverse system, in the form

q̂[n + 1] = Ainvq̂[n] + binvx[n] . (12.120)

If we were to start this with the correct initial condition q̂[0] = q[0] at time 0,
and drive it with x[k] for 0 ≤ k ≤ n, we would have q̂[k + 1] = q[k + 1] for 0 ≤
k ≤ n. However, since we don’t have access to q[0], we use some guessed initial
condition q̂[0] in our simulator.

(d) Find a state evolution equation for the error q̃[n] = q[n] − q̂[n] for n ≥ 0,
and use the equation to explain why this error goes to zero exponentially
fast, at a rate determined by the eigenvalues of the inverse system, i.e., by
the zeros of the system function M(z) in Eq. (12.116).

In view of the above facts, we can use cT q̂[n + 1] as our approximation
of x̂ [n + 1]. Invoking Eq. (12.120), we have

x̂ [n + 1] ≈ cTAinvq̂[n] + cTbinvx[n] . (12.121)

This approximation becomes good exponentially fast. The state evolution
Eq. (12.120) along with its output Eq. (12.121) is thus a state-space model of
the one-step predictor.

To find the MMSE of the estimator, note that after the transient period the
error is

x[n + 1] − x̂ [n + 1] = dw[n + 1] , (12.122)

so the MMSE is simply d2E{w2[n + 1]} = d2.
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(e) Specialize to the case of a first-order model, replacing A, b, and cT by scalars
a, b, and c respectively, and check that you obtain the causal Wiener one-
step predictor and associated MMSE that you know how to derive by other
methods.

12.23. Consider three jointly WSS zero-mean CT random processes y( · ), x1( · ), and
x2( · ). Suppose we wish to construct an LMMSE estimator for y(t), using all
past, present, and future values of x1( · ) and x2( · ). We do this by computing
the estimate ŷ(t) of y(t) as follows:

ŷ(t) = h1 ∗ x1(t) + h2 ∗ x2(t) , (12.123)

then choosing h1( · ) and h2( · ) to minimize E[{y(t) − ŷ(t)}2]. We can think of
h1( · ) and h2( · ) as the impulse responses of two stable LTI systems that respec-
tively take as inputs the measurements x1( · ) and x2( · ); the outputs of these
two systems are then added to form the estimate of interest. Our objective is to
determine these two impulse responses, or equivalently their Fourier transforms
H1( jω) and H2( jω).
(a) Invoking the orthogonality condition that governs the solution of LMMSE

problems (you need not derive this condition), write down the equation that
relates the correlation functions Ryx1 (τ) and Rŷx1 (τ) when the estimator is
LMMSE, and explain your answer.

Similarly write down the equation that relates the correlation func-
tions Ryx2 (τ) and Rŷx2 (τ).

(b) Using your results from (a) and the expression in Eq. (12.123), obtain a
formula expressing Ryx1 (τ) as appropriate convolutions and/or sums involv-
ing the functions Rx1x1 ( · ), Rx1x2 ( · ), h1( · ), and h2( · )—or functions closely
related to these.

Similarly obtain an expression for Ryx2 (τ) in terms of the given
functions.

How do your expressions simplify if the processes x1( · ) and x2( · ) are
uncorrelated, i.e., if Rx1x2 (τ) = 0 for all τ?

(c) Taking Fourier transforms of your equations in (b) will give you two linear
simultaneous equations in the transform domain for the desired frequency
responses H1( jω) and H2( jω). Assemble these equations in the following
matrix form, filling in the asterisks appropriately:[ ∗ ∗

∗ ∗
][

H1( jω)
H2( jω)

]
=
[ ∗

∗
]

.

(As a check, if you’ve done things correctly then the determinant of the 2×2
matrix will be a real function of ω.)

There is no need to solve this set of equations in the general case, but write
down the solution for the special case you considered in (b), namely where the
two measured processes are uncorrelated: Rx1x2 (τ) = 0 for all τ .

12.24. Figure P12.24 shows the channel model for a wireless communication system
with a direct path and a reflected path.

In this figure:

(i) The channel input s(t) is a zero-mean WSS random process whose PSD is

Sss( jω) = 2λσ 2
s

ω2 + λ2 ,

where λ and σ 2
s are positive constants.
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+s(t) r(t) = s(t) + ks(t - T) + h(t)

ks(t - T)

+

Delay T

k

h(t)

Figure P12.24

(ii) The channel output is r(t) = s(t) + ks(t − T) + η(t), where k is a positive
constant representing the strength of the reflected path, T is a positive con-
stant representing the delay of the reflected path relative to the direct path,
and η(t) is the channel noise.

(iii) The channel noise η(t) is zero-mean WSS white noise that is uncorrelated
with the process s(·), and has PSD Sηη( jω) = N.

Answer the following questions, given the information above:

(a) Determine Srr( jω), the power spectral density of r(t).
(b) We want to pass r(t) through an LTI filter with frequency response H( jω)

to obtain an estimate of the channel input s(t). Determine the frequency
response H( jω) that minimizes the mean square error of this estimate.

Extension Problems

12.25. Suppose we have access to a WSS process x[n] with mean μx and FSD given by
Dxx(ej�). Describe how you would generate another process y[·] that is jointly
WSS with x[n], and that has a specified mean μy, FSD Dyy(ej�), and cross fluctu-
ation density Dyx(ej�). (Hint: Start by generating ŷ [n], the LMMSE estimate
of y[n] in terms of x[·].) Also explicitly identify what constraint the specified
Dyx(ej�) has to satisfy, relative to the given Dxx(ej�) and Dyy(ej�), in order for
your method to work.

12.26. (a) Suppose an estimator ŷ [n] for a zero-mean process y[n] is constructed by
LTI filtering of a zero-mean measured process x[n] using a system with fre-
quency response H(ej�), where x[·] and y[·] are jointly WSS. Derive the
expression in Eq. (12.73) for the mean square error of this estimator. (This
result applies even if the estimator is not LMMSE, and also to processes
whose means are nonzero, after the standard adjustments in constructing
the estimator: subtract the mean μx of x[n] at the input to the filter, and add
back the mean μy of y[n] at the output of the filter.)

(b) For the case where the filter in (a) is the causal Wiener filter for LMMSE
estimation of y[n] using all x[k], k ≤ n, derive the expression in Eq. (12.74)
for the “price of causality,” that is, the additional mean square error over
that of the unrestricted Wiener filter.
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In Chapter 9 we treated the problem of deciding optimally among multiple
hypotheses Hi, given a measurement r of a related random variable R. In a
digital communication setting, for example, the measurement could be a sam-
ple of a processed signal at a receiver, and the hypotheses might then relate to
which of several candidate symbols was transmitted by the sender in a partic-
ular time slot. It was shown in Chapter 9 that the probability of error in such
hypothesis testing problems is minimized by picking whichever hypothesis has
the largest posterior probability, that is, the largest probability conditioned on
the measurement.

The reasoning that yielded the maximum a posteriori probability (or
MAP) rule for minimum-error-probability decisions also extends to the case
where we have measurements of more than one random variable. The dif-
ference with multiple measurements is that the posterior probabilities are
conditioned on all the available measurements. This extension was noted in
Chapter 9, and is explored in more detail here.

In many applications multiple measurements are obtained as a sequence
of samples of one or more received waveforms over an interval of time.
The typical problem involves deciding whether a measured waveform is just
noise or is a particular signal of interest that is hidden in noise. This signal
detection problem arises in many forms in radar, sonar, and communications
applications, for example, and is the focus of this chapter.

Though we start the chapter quite generally, the emphasis—just as in
the case of LMMSE signal estimation in Chapter 12—will be on problems
where the noise is only described by its first and second moments, either
because it is Gaussian, or because only first and second moments are known.

541
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542 Chapter 13 Signal Detection

In the Gaussian case, we can obtain minimum-error-probability solutions. In
the non-Gaussian case, and given only first and second moments, one has to
settle for weaker notions of optimality, typically maximizing some measure
of signal-to-noise ratio (SNR) involving a decision variable derived from the
measurements.

13.1 HYPOTHESIS TESTING WITH MULTIPLE
MEASUREMENTS

Consider the problem of choosing with minimum probability of error between
two possible hypotheses, H = H0 and H = H1, knowing that a set of ran-
dom variables Ri takes respective values ri, for i = 0, 1, 2, . . . , L − 1. More
compactly, let R denote the vector of random variables Ri, and r denote the
corresponding vector of values ri taken by these random variables. Then to
minimize the conditional probability of error, P(error|R = r), we decide in
favor of whichever of the two hypotheses has maximum conditional proba-
bility, conditioned on R = r. The optimum decision rule for binary hypothesis
testing thus takes the form

P(H1|R = r)

‘H1’
>
<

‘H0’

P(H0|R = r) . (13.1)

The notation ‘Hi’ was introduced in Chapter 9 as a shorthand to indicate
that our choice Ĥ of hypothesis H is Hi, or Ĥ = Hi. The associated decision
regions Di—defined such that we declare ‘Hi’ precisely when r falls in the
region Di—are now regions in an L-dimensional space, rather than segments
of the real line. If more than two hypotheses are involved, the minimum-error-
probability decision rule chooses whichever hypothesis Hi has the largest
posterior probability P(Hi|R = r) among all the available hypotheses.

As seen in Chapter 9, a rule equivalent to the one above follows from
applying Bayes’ rule to the posterior probabilities on both sides of Eq. (13.1),
then canceling the factor fR(r) that appears in both denominators. The result is

p(H1)fR|H(r|H1)

‘H1’
>
<

‘H0’

p(H0)fR|H(r|H0) . (13.2)

This latter form of the MAP rule is the most useful for applications, as
the quantities that appear in it are typically known or deducible from the
problem description. In particular, the two conditional densities constitute
the probabilistic models for the measurements under each of the hypotheses.
Again, for minimum-error-probability decisions among more than two
hypotheses, we would pick whichever hypothesis Hi has the largest value of
p(Hi)fR|H(r|Hi).
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A further rearrangement of Eq. (13.2) yields the likelihood-ratio form
of the optimal binary decision rule:

fR|H(r|H1)
fR|H(r|H0)

‘H1’
>
<

‘H0’

η , (13.3)

where the threshold η is chosen to be the ratio P(H0)/P(H1) for minimum-
error-probability decisions, but could be specified differently for criteria such
as Neyman–Pearson or minimum-risk detection.

Example 13.1 Two Measurements are Better Than One

Assume that we have to decide between hypotheses H0 and H1 based on a measured
random variable X , with the conditional densities for X , given H0 and H1 respectively,
being those shown in Figure 13.1. We can think of H1 as corresponding to the pres-
ence of some underlying condition that the hypothesis-testing problem is intended to
detect, on the basis of a measurement of X ; thus H0 corresponds to the absence of this
condition. The prior probabilities of the two hypotheses are P(H0) = 3

4 and P(H1) = 1
4 .

The minimum-error-probability decision rule for choosing between the two
hypotheses is found by direct application of Eq. (13.2). Since

1
4 fX|H(x|H1) = 1

8 < 3
4 fX|H(x|H0) = 3

16 (13.4)

for all x in the region |x| < 2, we declare ‘H0’ always, no matter what the obtained
value of x is. Thus the conditional probability of false alarm is PFA = P(‘H1’|H0) = 0,
but the conditional probability of detection is PD = P(‘H1’|H1) = 1 − P(‘H0’|H1) =
1 − PM = 0 as well, where PM denotes the conditional probability of a miss. As indi-
cated in Eq. (9.29), the associated overall probability of error, averaged over all
possible X , can be written in terms of PFA and PM as

Pe = P(H0)PFA + P(H1)PM = P(H1) = 1
4 . (13.5)

Now suppose instead that we have measurements x1 and x2, respectively, of
two random variables X1 and X2 that are each distributed in the same way as the
random variable X above, and are independent of each other under either hypoth-
esis. We arrange these two random variables in the random vector X for notational
convenience. Since the random variables are independent under each hypothesis,

fX|H(x1, x2|Hi) = fX|H(x1|Hi)fX|H(x2|Hi) for i = 0, 1 . (13.6)

This equation shows that the conditional joint probability density function (PDF) of
the two random variables for H = H0 is nonzero and uniform at the value 1

16 over the

f(x|H0) f(x|H1)

2- 2 - 1 1x x

2
 1

4
 1

Figure 13.1 The conditional densities for X given H0 and H1.

www.konkur.in

Telegram: @uni_k
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region |x1| < 2, |x2| < 2. For H = H1 the conditional joint PDF is nonzero and uni-
form at the value 1

4 over the region |x1| < 1, |x2| < 1. Both conditional densities are
0 outside the specified regions. Again applying Eq. (13.2), we find that in the region
|x1| < 1, |x2| < 1,

1
4 fX|H(x1, x2|H1) = 1

16 > 3
4 fX|H(x1, x2|H0) = 3

64 , (13.7)

so the optimum decision rule declares ‘H1’ in this region. In the remainder of the bigger
region |x1| < 2, |x2| < 2,

1
4 fX|H(x1, x2|H1) = 0 < 3

4 fX|H(x1, x2|H0) = 3
64 , (13.8)

so the optimum decision rule declares ‘H0’. The corresponding PFA = 4
16 = 1

4 and
PD = 1, so the associated overall probability of error is

P(error) = P(H0)PFA + P(H1)PM = P(H0)PFA = 3
16 . (13.9)

With two measurements, therefore, the probability of error is reduced, from 1
4

to 3
16 .

A nonoptimal use of two independent measurements could in principle lead to
performance that is no better, and possibly worse, than using a single measurement
optimally. For instance, in this particular example it turns out that a decision rule based
on using the average of x1 and x2 does best if it always declares ‘H0’, which yields the
same performance as the optimal decision rule for a single measurement.

The remainder of this chapter deals with hypothesis tests for which opti-
mal implementations involve more elaborate processing of measurements
than in the above example. The formulation and approach, however, are
essentially as straightforward as in the preceding example.

13.2 DETECTING A KNOWN SIGNAL IN I.I.D.
GAUSSIAN NOISE

The prototype detection problem that we study in this section involves a
discrete-time (DT) signal r[n] measured over a finite-length time window,
say n = 0, 1, 2, · · · , L − 1. We consider these measurements to be the realized
values of a set of random variables R[n].

Let H0 denote the hypothesis that the random variables R[n] constitute
independent, identically distributed (i.i.d.) zero-mean Gaussian noise, so

H0 : R[n] = W[n] , (13.10)

where the random variables W[n] for n = 0, 1, 2, · · · , L − 1 are indepen-
dent, zero mean, and Gaussian, with variance σ 2. Similarly, let H1 denote
the hypothesis that the sequence of random variables R[n] is the sum of
a known deterministic signal s[n] and the i.i.d. Gaussian noise sequence
W[n], so

H1 : R[n] = s[n] + W[n] , (13.11)
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where the W[n] are again distributed as above. We typically refer to s[n] as the
target signal. The signal detection problem here is to decide in favor of H0 or
H1 on the basis of the measurements r[n], that is, to decide whether the target
signal is absent from or present in the received measurements.

The simplest version of this problem was presented in Example 9.5 (see
also Problem 9.9), which dealt with the special case of a single measurement,
L = 1. The problem there reduced to deciding whether a particular measure-
ment r was the realized value of a Gaussian random variable with mean 0
and specified standard deviation (taken to be 1 in that example), or of another
Gaussian random variable with the same standard deviation of 1 but a nonzero
mean s.

The optimal solution that we develop for L > 1 reduces the analysis to
calculations as simple as in the case of L = 1. The eventual task ends up being
to decide whether a particular quantity g—derived from the measurements
r[n] and the signal s[n]—is the realized value of a zero-mean Gaussian random
variable with specified standard deviation, or of another Gaussian random
variable with the same standard deviation but a nonzero mean. The details
follow.

13.2.1 The Optimal Solution

For detection with minimum probability of error, the MAP rule in Eq. (13.2)
is again used, comparing the values of

P(Hi)f (r[0], r[1], . . . , r[L − 1] | Hi) (13.12)

for i = 0, 1, and deciding in favor of whichever hypothesis yields the maximum
value of this expression. We have dropped the subscripts R and H on the PDF
for notational simplicity.

With W[n] being i.i.d. and Gaussian, the conditional densities in
Eq. (13.12) are easy to evaluate, and take the form

f (r[0], r[1], . . . , r[L − 1] | H0) = 1

(2πσ 2)(L/2)

L−1∏
n=0

exp

{
− (r[n])2

2σ 2

}

= 1

(2πσ 2)(L/2)
exp

{
−

L−1∑
n=0

(r[n])2

2σ 2

}
(13.13)

and

f (r[0], r[1], . . . , r[L − 1] | H1) = 1

(2πσ 2)(L/2)

L−1∏
n=0

exp

{
− (r[n] − s[n])2

2σ 2

}

= 1

(2πσ 2)(L/2)
exp

{
−

L−1∑
n=0

(r[n] − s[n])2

2σ 2

}
.

(13.14)
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The test in Eq. (13.2) will still hold if a nonlinear, strictly increasing function is
applied equally to both sides. Because of the exponential form of the expres-
sions in Eqs. (13.13) and (13.14) it is particularly convenient to take the natural
logarithm of both sides of the test for our particular case. After some subse-
quent simplification and rearrangement, and also denoting P(Hi) by pi for
notational simplicity, the MAP test takes the equivalent form

g =
L−1∑
n=0

r[n]s[n]

‘H1’
>

<

‘H0’

σ 2 ln(p0/p1) + 1
2

L−1∑
n=0

s2[n] , (13.15)

where all computations that involve the measurements r[n] have been gath-
ered on the left side of the inequalities, and the quantity on the right side
can be precomputed from the problem specifications. The summation on the
right side of Eq. (13.15) is the energy of the deterministic signal s[n], which we
denote by E :

E =
L−1∑
n=0

s2[n] . (13.16)

The test in Eq. (13.15) now becomes

g

‘H1’
>

<

‘H0’

γ (13.17)

where the threshold γ is given by

γ = σ 2 ln(p0/p1) + E
2

. (13.18)

The case L = 1 was treated in Example 9.5 and also Problem 9.9, where g =
r[0]s[0] or more simply g = rs. Under the assumption that s > 0, the threshold
test for this case can be rewritten as

r

‘H1’
>

<

‘H0’

γ /s = γ ′ . (13.19)

This is the form in which the threshold test was written in Example 9.5 and
Problem 9.9, except that the symbol γ was used previously for what we are
calling γ ′ now. If s < 0, the only change in the above test is that ‘H1’ and ‘H0’
are interchanged.

If the criterion changes from minimum-error-probability detection to
minimum-risk or Neyman–Pearson detection, the optimal decision rule is
still of the form in Eq. (13.19), except that the term p0/p1 in the expres-
sion for the threshold in Eq. (13.18) is replaced by some other appropriate
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constant η. In the Neyman–Pearson setting, for instance, this η—or equiva-
lently γ itself—would be chosen as low as possible, subject to the specified
upper bound on PFA.

13.2.2 Characterizing Performance

The performance of the optimum solution to the signal detection problem
in this chapter can be assessed through its associated probability of error.
This requires considering the range of possible values that the quantity g =∑

r[n]s[n] in Eq. (13.15) can take under each hypothesis, and computing the
probability that the value lies on the wrong side of the threshold γ , thus lead-
ing to an incorrect decision. We next describe the associated reasoning and
computations.

If hypothesis H0 is true, the sequence r[n] on the left-hand side of
Eq. (13.15) will consist only of the values realized by i.i.d. Gaussian noise.
Correspondingly, g will be the realized value of the random variable

G =
L−1∑
n=0

W[n]s[n] . (13.20)

Since W[n] at each instant n is Gaussian and independent of the W[·] at other
times, and since a weighted linear combination of independent Gaussian ran-
dom variables is also Gaussian, the random variable G is Gaussian. From
Eq. (13.20), its mean value is zero and its variance is

σ 2
L−1∑
n=0

s2[n] = σ 2E , (13.21)

so its standard deviation is σ
√E .

If hypothesis H1 is true, then the signal is in fact present along with
the additive zero-mean noise. The sequence r[n] on the left-hand side of
Eq. (13.15) in this case will consist of the signal values s[n] perturbed addi-
tively by the values realized by Gaussian white noise. Correspondingly, g will
be the realized value of the random variable

G =
L−1∑
n=0

(
s[n] + W[n]

)
s[n] = E +

L−1∑
n=0

W[n]s[n] . (13.22)

Thus the random variable G is the sum of a known constant E and a linear
combination of independent Gaussian variables, and thus is Gaussian itself.
Its mean value is E , but its variance is still as in Eq. (13.21), hence its standard
deviation is still σ

√E .
The optimal test in Eq. (13.15) is therefore described by Figure 13.2.

This figure is essentially identical to the one presented in Example 9.5,
except that the figure there had the received value r on the horizontal
axis, whereas Figure 13.2 has g. The hypothesis test for the presence of
a known signal in i.i.d. Gaussian noise is equivalent to using the thresh-
old γ to decide which of two Gaussian distributions—of respective means
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f(g|H0) f(g|H1)

g = a r[n]s[n]

PM PFA

g

sU

E

E

n

Figure 13.2 Evaluating the
performance of the threshold test for
minimum-error-probability detection of
a known signal in i.i.d. Gaussian noise.

0 (for H0) and E (for H1) but equal standard deviations σ
√E—has pro-

duced the value g. The value of g is derived according to the summation
on the left of Eq. (13.15); it is a weighted combination of the measured
values r[n], with the respective weights being the corresponding signal val-
ues s[n].

If the prior probabilities of the hypotheses are equal, the threshold
γ = E/2, exactly halfway between the two means. If H0 is more likely
than H1, so p0 > p1, then γ shifts to a larger value, indicating that g needs
to be even larger before the test is willing to declare ‘H1’, which makes
sense.

From Figure 13.2 we see that the conditional probability of a false alarm,
PFA = P(‘H1’|H0), is the area in the tail to the right of γ under a Gaussian
PDF of mean 0 and standard deviation σ

√E . This area cannot be computed
in closed form, but can be written in terms of the tabulated tail-probability
function Q(x) for a standard (i.e., zero mean, unit variance) Gaussian:

Q(x) = 1√
2π

∫ ∞

x
e−v2/2 dv . (13.23)

It is helpful in applications to know the following bounds on Q(x) for x > 0:

x
(1 + x2)

e−x2/2
√

2π
< Q(x) <

1
x

e−x2/2
√

2π
, x > 0 . (13.24)

It is also useful to recognize, from the symmetry of the Gaussian PDF, that

Q(−x) = 1 − Q(x) . (13.25)

A simple change of variables demonstrates that for a Gaussian random vari-
able of mean value α and standard deviation β, the area under the PDF to the
right of some value γ can be written in terms of Q( · ) as follows:

1

β
√

2π

∫ ∞

γ

e−(w−α)2/(2β2) dw = Q
(γ − α

β

)
. (13.26)

The argument of Q(·) is the distance of γ from the mean α, measured in units
of the standard deviation β. With this notation, PFA for our problem is
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PFA = Q
( γ

σ
√E
)

= Q
( σ√E ln(p0/p1) +

√E
2σ

)
, (13.27)

where the second equation is the result of substituting in the expression for γ

from Eq. (13.18).
Similarly, the conditional probability of a miss, PM = P(‘H0’|H1), is the

area in the tail portion to the left of γ under a Gaussian PDF of mean E and
standard deviation σ

√E . Using Eq. (13.26) and then Eq. (13.25), this area is

PM = 1 − Q
(γ − E

σ
√E

)
= 1 − Q

( σ√E ln(p0/p1) −
√E
2σ

)
= Q

(
− σ√E ln(p0/p1) +

√E
2σ

)
. (13.28)

Note that both PFA and PM depend only on the relative prior probabilities
of the two hypotheses and on the signal-energy-to-noise-power ratio (SNR)
E/σ 2—or equivalently the square root of this SNR. In the particular setting
of the signal detection problem being considered here, the variation of the
known signal s[n] as a function of time does not affect the performance of
the optimal decision rule; only the signal energy is relevant. We will later see
modifications of the problem in which the signal shape does indeed matter.

The probability of error over all possible outcomes can now be computed
as shown in Chapter 9, Eq. (9.29):

Pe = p0PFA + p1PM . (13.29)

Thus the probability of error depends only on the relative prior probabilities
of the two hypotheses and on the SNR.

As a simple illustration, consider the special case where the two hypothe-
ses are equally likely, so p0 = p1 and ln(p0/p1) = 0. Then

PFA = PM = Pe = Q
(√E

2σ

)
<

1√
2π

e−E/(8σ 2)
√E/(2σ )

, (13.30)

where we have invoked the upper bound from Eq. (13.24). Thus PFA, PM, and
the overall error probability Pe fall off somewhat faster than exponentially
with increasing SNR.

13.2.3 Matched Filtering

The decision variable g in Eq. (13.15) is linearly dependent on the measure-
ments r[n]. This allows the value of g to be computed by means of a linear
and time-invariant (LTI) filter whose input is r[n], and whose output g[n] is
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sampled at an appropriate time to form the desired value. Specifically, con-
sider an LTI filter with unit sample response h[·]. When the input r[·] is applied
to this filter, the output g[n] at any arbitrary time n is given by the following
convolution:

g[n] =
∞∑

k=−∞
r[k]h[n − k] . (13.31)

If we sample the filter output at time n = 0, the result is

g[0] =
∞∑

k=−∞
r[k]h[−k] . (13.32)

Choosing the filter’s unit sample response such that

h[−k] = s[k] (13.33)

for 0 ≤ k ≤ L − 1, with h[·] = 0 elsewhere, causes the filter output g[0] in
Eq. (13.32) to be

g[0] =
L−1∑
k=0

r[k]s[k] = g , (13.34)

where g is the quantity defined in Eq. (13.15) and required for the thresh-
old test. The unit sample response of this filter, as specified in Eq. (13.33),
is thus the time reversal of the target signal. The filter is said to be
matched to the target signal, or to be the matched filter for the target
signal.

Putting together the above results, an implementation of the opti-
mum detector for a known and finite-duration signal in i.i.d. Gaussian
noise can be constructed as in Figure 13.3. The matched filter h[·] speci-
fied above in Eq. (13.33) is anticausal. For a purely causal implementation
of the optimal detector, all that is needed is for h[·] to be delayed by L
steps, and the output correspondingly sampled L steps later. We shall gen-
erally work with the anti-causal, i.e., unshifted matched filter, for notational
simplicity.

Scaling the Matched Filter If the unit sample response of the matched fil-
ter is scaled by some positive number K > 0, so it changes from the h[·]
defined above to Kh[·], then the output of the filter at time 0 will be Kg rather
than simply g. Equation (13.17) shows that the only modification required
in the detection procedure to account for this is a corresponding change
in the threshold, from γ to Kγ . The underlying reason is that the distance

g[n] g[0]r[n]
h[k] = s[-k] Threshold g 

n = 0

‘H1’

‘H0’

76

Figure 13.3 Optimum detector for a known signal in additive i.i.d.
Gaussian noise.
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between the mean values of the random variable G under the two hypotheses
gets scaled by K, as does the common standard deviation. With the thresh-
old scaled by the same factor as the filter, there is no change in detection
performance.

Properties of the Matched Filter The matched filter was derived above as
a device for generating the quantity g that is compared with a threshold to
decide optimally whether or not the target signal is present in the measure-
ments. Further examination of this filter’s time-domain and frequency-domain
characteristics gives additional insight on why matched filtering is a very rea-
sonable way to process the received measurements, prior to sampling and
thresholding in order to decide between the two hypotheses.

Suppose the noise-free signal s[n] is applied to the input of a filter that is
matched to it. Denoting the output of the filter in this noise-free case by g[n],
the output at time n is given by

g[n] =
∞∑

k=−∞
s[k]h[n − k] =

∞∑
k=−∞

s[k]s[k − n] = Rss[n] . (13.35)

(In writing the second summation, we are taking s[j] = 0 for j outside the inter-
val 0, 1, 2, . . . , L − 1.) Thus the output of the matched filter when s[n] is applied
to it is the deterministic autocorrelation function Rss[n] of s[·]. The peak value
of Rss[n] is the signal energy E , and occurs at zero lag:

Rss[0] = E > Rss[n] for n �= 0 . (13.36)

The best time at which to sample the output of the matched filter is therefore
at n = 0, from the viewpoint of obtaining the largest possible contribution
from the signal (if the signal is present), relative to the contribution of the
noise component of the received measurements. The noise contribution does
not depend on when the sampling is done.

We next consider the matched filter in the frequency domain. Taking the
transform of Eq. (13.33), the frequency response of the matched filter is

H(ej�) = S(e−j�) = |S(ej�)| e−j � S(ej�) , (13.37)

where S(ej�) is the DT Fourier transform (DTFT) of the target signal s[n].
Hence the magnitude|H(ej�)| of the matched filter’s frequency response
equals the magnitude |S(ej�)| of the target signal’s spectral distribution. The
matched filter therefore accentuates those frequencies where the target signal
has strong spectral content, and attenuates those frequencies where the signal
has relatively little content. This seems reasonable, given that the i.i.d. noise
W[n], when considered for all n rather just for n in [0, L − 1], has flat spectral
content.

On the other hand, Eq. (13.37) shows that the phase � H(ej�) of the
matched-filter’s frequency response is the negative of the phase � S(ej�) of
the target signal’s DTFT. In effect, the matched filter adjusts the phase of the
frequency components of the target signal, when this signal is present, so that
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the components all add up constructively for the sampling at the filter out-
put at time 0. The spectrum of the noise component of the received signal is
unaffected by the phase characteristic of the filter.

13.3 EXTENSIONS OF MATCHED-FILTER
DETECTION

The prototype signal detection problem of the preceding section can be devel-
oped further in various ways, building on the matched-filter structure. Some of
these extensions are considered briefly in the subsections below. Section 13.4
then extends the discussion to discriminating among multiple known signals
observed with additive i.i.d. Gaussian noise, where the solution again involves
matched filtering.

13.3.1 Infinite-Duration, Finite-Energy Signals

The detection problem of Section 13.2 involved a signal s[n] and mea-
surements r[n] that were, for convenience, defined for n = 0, 1, 2, . . . , L − 1.
However, any other interval of finite length L could have been chosen in set-
ting up the problem. With s[n] defined to be 0 outside of whatever interval
is chosen, the optimum solution would still involve matched filtering using an
LTI filter with unit sample response satisfying h[n] = s[−n]. The filter’s output
sampled at time 0 is then compared to the threshold γ , as before, to arrive at
a decision.

We noted briefly in Section 13.2 that an alternate choice for the unit
sample response of the matched filter is h[n] = s[−n + D] for some fixed time
shift D, with the output of this shifted matched filter accordingly sampled at
time D rather than 0. For a signal of finite duration, the value of D can always
be chosen such that the time-shifted matched filter is causal.

Our derivation of the matched filter solution for minimum-error-
probability detection of a signal in additive i.i.d. Gaussian noise applies for
an arbitrarily large L, and with the interval of interest being arbitrarily posi-
tioned in time. What is less obvious, however, is that the result also applies
to the case of a signal s[n] of infinite duration, provided the signal has finite
energy E , meaning it is an �2 signal. We shall simply assume this extension,
without attempting a rigorous demonstration. The matched filter’s unit sample
response h[·] in this case will be of infinite duration, and there will typically be
no time shift that makes it causal.

13.3.2 Maximizing SNR for Signal Detection
in White Noise

In the signal detection problem of Section 13.2, the fact that the noise was
i.i.d. and Gaussian allowed the solution of the minimum-error-probability
detection problem to be described in detail. It also permitted a simple
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implementation of this solution: LTI processing of the measurements by a
matched filter, followed by sampling, and then by thresholding. In addition, it
guaranteed that the sampled output of the matched filter was Gaussian under
each hypothesis, and could therefore be characterized entirely by its mean
and variance under each hypothesis. With the means and the common vari-
ance determined, the computation of the error probability proceeded directly,
exposing the dependence of this error probability on the SNR and the prior
probabilities of the two hypotheses.

Suppose now that the noise component of the received measurements is
only known to come from a (zero-mean) white process of intensity σ 2, but
is otherwise unknown. An i.i.d. Gaussian process of mean 0 and variance σ 2 is
only one of an unlimited number of ways of producing such noise. Without a
more detailed description of the noise, it is not possible in general to evalu-
ate and implement the MAP rule for minimum-error-probability detection.
However, it is reasonable to consider what can be accomplished using the
same appealing detector structure as in the Gaussian case, namely process-
ing by an LTI detection filter with some well-chosen unit sample response h[·],
followed by sampling and thresholding, as in Figure 13.4. We assume the target
signal s[n] whose presence we are checking for has possibly infinite duration,
as allowed in Section 13.3.1.

To pursue this idea, consider the quantity g[0] that appears at the output
of the sampler at time 0, namely

g[0] =
∞∑

−∞
r[n]h[−n] , (13.38)

considered as the realized value of some random variable G. Though the
PDF of G under each hypothesis cannot be determined without more detailed
information on the noise PDF, the mean and variance of G under each hypoth-
esis can be computed in terms of known quantities. This computation requires
determining what values the sequence r[n] in Eq. (13.38) can take under each
of the hypotheses, and noting that g[0] is a linear combination of these values,
with weight h[−n] on the value r[n]. We conclude that under H0, the mean of
G is 0, while under H1 the mean is

μ =
∞∑

−∞
s[n]h[−n] . (13.39)

To simplify the following discussion, but without loss of generality, let us
assume μ is positive rather than negative.

g[n] g[0]r[n]
LTI, h[∙] Threshold g 

n = 0

‘H1’

‘H0’

7
6

Figure 13.4 Structure of detector based on thresholding of sampled
output of an LTI filter acting on the received signal.
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From Eq. (13.38), the variance of G under either hypothesis is similarly
computed to be

σ 2
G = σ 2

∑
h2[−n] . (13.40)

If the separation between the means associated with H0 and H1, namely the
distance μ − 0 = μ, is large compared to the common standard deviation σG,
then one might expect to distinguish quite well between a sample g[0] that
was obtained under H0 versus one obtained under H1. This is suggested,
for instance, by the Chebyshev inequality from elementary probability, which
states that the probability of g[0] under H0 being more than CσG away from
its mean value of 0 (in either direction) is less than 1/C2—and this probabil-
ity could be much less because the Cheybshev inequality is generally quite
conservative. Similarly, the probability of g[0] under H1 being more than CσG
away from its mean value μ is less than 1/C2. Thus, it is reasonable to suppose
that the larger the ratio μ/σG, the better our ability to distinguish between H0
and H1 on the basis of a measurement of g[0].

As both μ and σG depend on the filter’s unit sample response h[·],
according to the expressions in Eqs. (13.39) and (13.40) respectively, we can
look for the h[·] that maximizes μ/σG, or equivalently maximizes the square
of this, namely the SNR at the output of the filter, defined by

SNRout = μ2

σ 2
G

=
(∑∞

−∞ s[n]h[−n]
)2

σ 2
∑

h2[−n]
. (13.41)

The reason for calling this an SNR is that μ2 reflects the signal energy while
σ 2

G reflects the noise power or intensity. Note that maximizing the output SNR
will not in general—except in the Gaussian case—minimize the probability of
error. Maximization of the SNR in Eq. (13.41) is easily carried out by invoking
the Cauchy–Schwarz inequality, which we state and prove next.

Cauchy–Schwarz Inequality For real �2 functions x[n] and y[n] the Cauchy–
Schwarz inequality is( ∞∑

−∞
x[n]y[n]

)2 ≤
( ∞∑

−∞
x2[n]

)( ∞∑
−∞

y2[n]
)

, (13.42)

with equality if and only if y[n] = Kx[n] for all n and some constant K. In
the case of functions that are nonzero only over some finite interval, this
inequality reduces to the statement that the inner product or dot product of
two vectors in real Euclidean space is bounded in magnitude by the prod-
uct of the lengths of the individual vectors, and that equality is attained only
when the two vectors are positively or negatively aligned. A direct proof of
the inequality in the general case comes from noting that

∞∑
−∞

(αx[n] − y[n])2 ≥ 0 (13.43)
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for all real α. Expanding this out, we get( ∞∑
−∞

x2[n]
)

︸ ︷︷ ︸
a

α2 −
(

2
∞∑

−∞
x[n]y[n]

)
︸ ︷︷ ︸

b

α +
( ∞∑

−∞
y2[n]

)
︸ ︷︷ ︸

c

≥ 0 . (13.44)

This quadratic function of α, namely aα2 − bα + c, is nonnegative for large
|α| because a > 0. It remains nonnegative for all α precisely under the con-
dition b2 ≤ 4ac that guarantees the quadratic has at most one real root.
Using the definitions in Eq. (13.44) to substitute for a, b, and c in the
inequality b2 ≤ 4ac produces the Cauchy–Schwarz inequality in Eq. (13.42).
Also, b2 = 4ac precisely when the quadratic attains the value 0 for
some α = K, and Eq. (13.43) shows that this happens precisely when
y[n] = Kx[n].

Returning now to the problem of choosing the unit sample response
h[·] in Eq. (13.41) so as to maximize the output SNR, we apply the Cauchy–
Schwarz inequality:

SNRout =
(∑∞

−∞ s[n]h[−n]
)2

σ 2
∑

h2[−n]
≤
∑∞

−∞ s2[n]

σ 2 = E
σ 2 = SNRin , (13.45)

where E denotes the energy of the target signal, as before. Equality is attained
precisely when h[−n] = Ks[n] for some K, which we can take without loss of
generality to be 1. Thus the optimum filter is again the matched filter. With
matched filtering, the sample at the output of the filter attains its highest
possible SNR, which equals the SNR of the input signal, namely E/σ 2.

Without further information about the PDF of the noise, there is little
to guide the choice of a detection threshold γ for the sampled output of the
matched filter. However, if the matched filter has been effective in separating
the distribution of g[0] under H0 from its distribution under H1, then a thresh-
old at some location between the two conditional means may be appropriate,
for instance at μ/2.

The matched filter can thus be seen as simply a device for maximizing
the SNR of the sampled output of an LTI detection filter, even in the case
where the noise is only known to be white, but possibly non-Gaussian. We will
assume this interpretation for the rest of this chapter whenever matched filter-
ing is discussed without an explicit assumption that the noise is Gaussian. In
the Gaussian case, the matched filter (with the correct threshold on its sampled
output) also minimizes the probability of error.

13.3.3 Detection in Colored Noise

We now consider the case where the noise in our detection problem, rather
than being a white process w[n], is a zero-mean, wide-sense stationary (WSS)
process v[n] with fluctuation spectral density (FSD) given by Dvv(ej�). If we

www.konkur.in

Telegram: @uni_k



556 Chapter 13 Signal Detection

think of this colored noise as obtained by passing a white noise process w[n]
of intensity σ 2 through a stable modeling or shaping filter with frequency
response M(ej�), then

Dvv(ej�) = σ 2M(ej�)M(e−j�) . (13.46)

Thus σM(ej�) is a spectral factor of Dvv(ej�). We assume that M(ej�) and
therefore Dvv(ej�) are nonzero at all frequencies. If this was not the case,
there would be noise-free frequency components in the received measure-
ments, which leads to degeneracies in the solution. Note also that we could
have assumed w[n] had unit intensity, as the shaping filter can incorporate any
scaling that is required—but the assumption of intensity σ 2 will allow more
transparent comparison with expressions written down earlier for the case of
white noise with intensity σ 2.

If the underlying white-noise process w[n] is actually zero-mean i.i.d.
and Gaussian, then the process v[n] obtained by filtering w[n] through the
shaping filter is colored Gaussian noise. It has the property, for example,
that the values at any two distinct times are bivariate Gaussian; more gen-
erally, the values at an arbitrary set of times are multivariate Gaussian. For
this case, the matched-filter solution we develop below will result in the
minimum-error-probability decision, after appropriate sampling and thresh-
olding of the matched-filter output. If it is only known that the process
w[n] is white, then the matched-filter solution below will only guarantee
maximization of the SNR of an output sample, as in Section 13.3.2. The
validity of these claims follows from the way the colored-noise problem is
converted below—in a reversible way—to the white-noise problems treated
earlier.

We again wish to decide between the hypothesis H0 that the received
measurements r[n] constitute only the colored noise v[n], and the hypothesis
H1 that the measurements contain a known signal s[n] corrupted additively
by this noise. The setting is illustrated by the diagram in Figure 13.5(a). The
diagram also shows the filtering of the received signal r[n] by an LTI fil-
ter of frequency response H(ej�), followed by sampling, which yields the
quantity g[0] that is compared against a threshold in the optimum decision
rule.

The optimum solution to this problem is obtained by transforming it to
the problem solved in Section 13.2. The first step is to transform the portion of
the diagram in Figure 13.5(a) that generates r[n] into the equivalent diagram
in Figure 13.5(b). This diagram makes apparent the presence of an underlying
signal q[n] that is either white noise of intensity σ 2, or is a signal p[n] additively
corrupted by this noise. This signal p[n] is the result of passing s[n] through a
filter with frequency response 1/M(ej�).

The optimum solution to this transformed problem has already been
determined in Section 13.2.3: we process q[n] through a filter matched to the
target signal p[n], then sample at time 0 and compare with an appropriate
threshold. In the system shown in Figure 13.5, the filtering of q[n] prior to
the sampling is performed by the series combination of M(ej�) and H(ej�). It
follows that
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0

0 0

or

(a)

(b)

or or

n = 0

H(ejÆ)

M(ejÆ)

M(ejÆ)
M(ejÆ)

1

r[n]

r[n]

g[0]s[n]

s[n] p[n]

q[n]

v[n]

w[n]

w[n]

+

+

Figure 13.5 (a) Detecting a signal s[n]
in additive colored noise v[n], using
measurements r [n]. (b) The equivalent
problem of detecting a signal p[n] in
additive white noise w[n], where p[n] is
the result of filtering s[n] through a filter
with frequency response 1/M(ej�).

H(ej�)M(ej�) = P(e−j�) = S(e−j�)
M(e−j�)

, (13.47)

where S(ej�) denotes the transform of the original signal s[n]. Hence the
frequency response of the desired optimum filter is given by

H(ej�) = S(e−j�)
M(ej�)M(e−j�)

= S(e−j�)
Dvv(ej�)/σ 2 . (13.48)

This is the matched-filter frequency response for colored noise; the ear-
lier result for white noise is recovered on setting Dvv(ej�) = σ 2 in the last
expression in Eq. (13.48).

The generalized matched-filter frequency response in Eq. (13.48) has
its magnitude determined by the signal spectrum magnitude |S(ej�)| in the
numerator and also the FSD of the noise (measured relative to the FSD of
white noise of intensity σ 2) in the denominator. Just as in the white-noise
case, therefore, the detection filter has its highest magnitude response at
those frequencies where the input SNR is large, and lowest response at those
frequencies where the input SNR is small. The phase characteristic of the
generalized matched filter is still the negative of the target signal’s phase char-
acteristic. The noise plays no role because the phase of the FSD Dvv(ej�) is 0
at all frequencies.

Invoking our earlier results shows that the performance of the optimum
solution developed here is determined by the ratio of the energy of the pre-
filtered signal p[n] to the variance σ 2 of the white noise w[n]. Denoting the
energy of p[n] as Ep, the performance of the system—probability of error in
the case w[n] is Gaussian white noise, or output sample SNR otherwise—is
thus determined by the ratio
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Ep

σ 2 = 1
2π

∫ π

−π

∣∣∣P(ej�)
∣∣∣2

σ 2 d�

= 1
2π

∫ π

−π

∣∣∣S(ej�)
∣∣∣2

Dvv(ej�)
d� , (13.49)

where we have used Parseval’s theorem in writing the first equation, and then
substituted from Eqs. (13.47) and (13.46). If the noise v[n] is already white
with intensity σ 2, then Dvv(ej�) = σ 2, and the earlier solution is recovered.

The expression in Eq. (13.49) shows that, unlike in the white-noise
case, the shape of the signal s[n] now affects performance. Roughly speak-
ing, concentrating signal energy around the frequency regions where the noise
intensity is minimum makes the integral in the preceding equation large, and
thereby results in improved detection. However, in many situations the trans-
mitted signal is constrained in other ways, for example in its peak amplitude
and time duration. The task then is to choose s[n] so that its transform maxi-
mizes the integral in Eq. (13.49) under these constraints. There are generally
no closed-form solutions to this optimization problem.

13.3.4 Continuous-Time Matched Filters

We have so far focused on DT rather than continuous-time (CT) signal detec-
tion, largely because CT white noise is an idealization that is much harder
to visualize than DT white noise or even the CT unit impulse. For exam-
ple, the expected power in CT white noise at each instant of time is infinite.
However, the colored-noise case developed for DT in Section 13.3.3 can be
directly carried over to CT, with straightforward changes.

Consider, for example, a zero-mean CT WSS noise process v(t) with FSD
given by Dvv(jω). A known finite-energy signal s(t) is either added to this
(hypothesis H1) or not (hypothesis H0), and the resulting measured signal r(t)
has to be processed in order to decide which hypothesis applies. Suppose we
commit to processing r(t) through some detection filter with impulse response
h(·) and frequency response H(jω), then sampling the output g(t) of this at
time 0, and finally comparing the sample value with a threshold to arrive at a
decision, as in Figure 13.6.

In this setting, the quantity

g(0) =
∫ ∞

−∞
r(τ )h(−τ ) dτ (13.50)

g(t)

g(0)

r(t)
LTI h(·) Threshold g 

t = 0 ‘H1’

‘H0’

7
6

Figure 13.6 CT signal detection.
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is the realized value of a random variable G that has expected value 0 under
H0, and expected value∫ ∞

−∞
s(τ )h(−τ ) dτ = 1

2π

∫ ∞

−∞
S(jω)H(jω) dω (13.51)

under H1. The variance of G under either hypothesis is

Cgg(0) = 1
2π

∫ ∞

−∞
|H(jω)|2Dvv(jω) dω . (13.52)

The output SNR can now be defined in a natural way as the squared dis-
tance between the means under the two hypotheses, divided by the common
variance:

1
2π

(∫∞
−∞ S(jω)H(jω) dω

)2

∫∞
−∞ |H(jω)|2Dvv(jω) dω

. (13.53)

The optimization task is to pick H(jω) to maximize this output SNR.
The above problem formulation is quite similar to what was treated in

Section 13.3.2, although now in the frequency domain, and involving integrals
rather than summations. The solution can be carried out using the appro-
priate form of the Cauchy–Schwarz inequality. However, the DT version of
this problem was already solved in Section 13.3.3 using a different (noise-
whitening) argument, so we shall simply state the CT solution by analogy with
Eq. (13.48):

H(jω) = S(−jω)
Dvv(jω)/σ 2 , (13.54)

where σ 2 is interpreted here as an arbitrary positive parameter whose specific
value needs to be taken account of in setting the threshold γ . Substituting this
in Eq. (13.53) shows that the optimum output sample SNR is given by

1
2π

∫ ∞

−∞

∣∣∣S(jω)
∣∣∣2

Dvv(jω)
dω , (13.55)

which is the CT analog of Eq. (13.49).

13.3.5 Matched Filtering and Nyquist Pulse
Design

In Chapter 3 we assumed a noise-free setting in describing the design of a
Nyquist pulse for zero intersymbol interference (ISI) in pulse amplitude mod-
ulation (PAM). Section 3.2 concluded with the statement that in the presence
of noise it is desirable to perform part of the pulse shaping at the receiver. We
are now in a position to better understand this statement.

Consider an on-off signaling scheme in which, for each bit, a pulse is
either transmitted or not. At the receiver we wish to detect the presence or
absence of a transmitted pulse. If a pulse with transform P(jω) passes through
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a baseband channel with frequency response H(jω), the pulse that the receiver
is aiming to detect will have transform P(jω)H(jω). Suppose the channel intro-
duces additive white noise. The optimum receiver filter, matched to this pulse,
should then have frequency response H(−jω)P(−jω), in order to produce an
output sample whose SNR is maximized when a pulse is present.

Let us assume that a matched filter is implemented at the receiver. The
design of the transmitted pulse transform P(jω) for zero ISI at the receiver
now requires that the pulse transform after filtering by the channel and
processing at the receiver, namely

P(jω)H(jω)H(−jω)P(−jω) = |P(jω)|2|H(jω)|2 , (13.56)

satisfies the Nyquist zero-ISI condition. If |H(jω)| is constant in its pass-
band, then the quantity |P(jω)|2 has to satisfy the Nyquist zero-ISI condition,
that is, its periodic replications at integer multiples of the (angular) sig-
naling frequency 2π/T should add up to a constant. Once such a P(jω) is
designed, it determines both the transmitted pulse and the receiver filter.
The task of pulse shaping is thus equally shared between the transmitter and
receiver.

13.3.6 Unknown Arrival Time and
Pulse Compression

In an application such as radar or sonar, a known signal pulse—electro-
magnetic or acoustic respectively—is propagated out from the transmitter. If
a reflecting object is present in the propagation path, an attenuated and noise-
corrupted version of the transmitted signal is returned to the receiver. If no
object is present, the device simply measures noise during this interval. The
delay from initial transmission to the arrival of any reflected pulse determines
the round-trip distance to the object, on multiplication by the speed of propa-
gation of the signal. The propagating signals in these applications are CT, but
the analysis below is phrased in terms of the DT signals that correspond to
samples of the CT waveforms at some regular sampling rate.

The signal processing task at the radar or sonar device is to determine
whether the received measurements during some window of time constitute
only noise or the reflected signal plus noise. Assuming the noise is i.i.d.
Gaussian, and that the received signal shape differs from the transmitted
shape only by amplitude scaling through an attenuation factor α, we are
faced with essentially the signal detection problem studied earlier. The opti-
mal detector will use an amplitude-scaled version of a filter matched to the
transmitted signal, and an appropriately chosen threshold.

In practice, an upper limit on the transmitted signal amplitude A is deter-
mined by the peak transmitter power, so the only way to increase the signal
energy E for better detection is by increasing L, that is, by sending a longer
pulse. A longer pulse, however, implies that the next interrogating pulse will
have to be correspondingly delayed. More importantly, if a second reflecting
object is a small further distance away in the path of the original pulse, its
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reflection may overlap with that of the first object, and the ability to resolve
the two objects—to recognize them as two objects rather than one—will be
compromised. We shall see below that clever signal design can greatly improve
the resolution.

There are at least two key differences from the signal detection prob-
lem considered in Section 13.2. First, the location of the reflected signal in
time—if there is a reflected signal—is unknown because the position of the
reflecting object is unknown. As a result, the time at which the output of the
matched-filter should be sampled is unknown. Second, the attenuation factor
α is unknown, so the required scaling of the detection filter (or equivalently,
the scaling of the threshold) is unknown.

A strategy for dealing with these two issues comes from returning to the
discussion of matched filter properties in Section 13.2.3. A calculation similar
to what generated Eqs. (13.35) and (13.36) shows that if the matched filter
input is the delayed noise-free signal s[n − D], where D is the delay, then the
filter output is given by

g[k] =
∞∑

n=−∞
s[n − D]h[k − n] =

∞∑
n=−∞

s[n − D]s[n − k] = Rss[k − D] .

(13.57)
The output is therefore the delayed deterministic autocorrelation of the
received signal, and its peak value E occurs when its argument is 0, hence at
k = D. As a consequence, in the case where the noise-free signal is received,
one can deduce the value of the delay D simply by noting at what instant the
matched filter output attains its maximum.

If the reflected signal is received in the presence of additive noise, the
matched filter output at each time will be perturbed by a noise component.
If the noise is not excessive, then the matched filter output is not greatly
perturbed from the noise-free case. The maximum output value can then
be sampled and passed on for comparison to the selected threshold. In the
absence of a reflected signal, the sample value will reflect only the noise, and
this will typically fall below the detection threshold.

If the signal is received with a higher noise intensity, the maximum
output of the matched filter may occur at a different value of k than in the
noise-free case, because the maximum of the component due to the reflec-
tion has been masked by the component due to the noise. This will lead to
an incorrect choice of sampling time and sample value. It may also happen
in this high-noise case that the noise alone, with no reflected signal present,
causes a prominent peak in the matched detector output, which then gets
misinterpreted as indicating the presence of the reflected signal.

The preceding considerations support performing what is known as pulse
compression: shaping the length-L signal s[n] so that Rss[k] � E for k �= 0, or
for k beyond some small region (� L) around 0, so that the matched-filter
output is concentrated at—or narrowly around—the peak value. The location
of the maximum in Rss[k − D] for this case will be well preserved even when
the signal is corrupted by noise. Furthermore, having a maximum value that
is much larger than the noise-perturbed values adjacent to it may suffice for
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one to decide that an underlying signal is present, despite uncertainty about
the attenuation factor and therefore about the appropriate threshold.

An example of a signal that performs well in this respect and is widely
used is the sequence

+A, +A, +A, +A, +A, −A, −A, +A, +A, −A, +A, −A, +A , (13.58)

(known as the Barker-13 sequence) extended on both sides by zeros. The
deterministic autocorrelation function of this signal has the value 13A2 at zero
lag, while the value at all other lags has magnitude A or 0. Another popu-
lar way to achieve pulse compression is by using a so-called chirp signal: a
quasi-sinusoidal signal whose frequency is swept linearly—or in some other
monotonic fashion—over time. Because different subintervals of the chirp
waveform are composed of essentially sinusoidal segments of different fre-
quencies, the deterministic autocorrelation is small at lags greater than the
length of such a segment.

13.4 SIGNAL DISCRIMINATION IN I.I.D.
GAUSSIAN NOISE

The two-hypothesis signal detection problems considered in the preceding sec-
tions can be easily extended to the case of several hypotheses. Suppose, as ear-
lier, that the values of the DT signal r[n] measured over n = 0, 1, 2, · · · , L −1
are the realized values of a set of random variables R[n]. Now, however, let
Hi, i = 0, 1, · · · , M − 1, denote the hypothesis that the variables R[n] are the
result of additive i.i.d. Gaussian noise corrupting the ith signal, si[n], out of a
set of M known deterministic signals, so

Hi : R[n] = si[n] + W[n] . (13.59)

Here again, the quantities W[n] under each hypothesis denote independent,
zero-mean, Gaussian random variables with variance σ 2. We assume the prior
probability of hypothesis Hi is P(Hi). The task is to decide, on the basis of
the measured r[n] and with minimum probability of error, which hypothesis
holds. This may be regarded as a problem of discriminating among M possible
choices for the underlying signal, given noise-corrupted measurements of one
of these signals.

The above situation arises, for example, in digital communication.
Assume one of M symbols is selected for transmission during an allocated
time slot. Each symbol is mapped to a distinct signal that is suited to the
transmission characteristics of the particular communication channel. Let si[n]
for n = 0, 1, 2, · · · , L − 1 denote the sequence of measurements that would be
received in the allocated time slot in the noise-free case, if the signal associated
with the symbol i is transmitted. Assume the transmission channel corrupts
the signal at each instant with additive i.i.d. Gaussian noise. The task at the
receiver is then to decide which of the M signals was actually transmitted,
given the received measurements r[n] for n = 0, 1, 2, · · · , L − 1 in a particular
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time slot. This is exactly the signal discrimination task formulated here as a
hypothesis testing problem.

For minimum error probability, we again use the MAP rule in Eq. (13.2),
in this case comparing the values of

P(Hi)f (r[0], r[1], . . . , r[L − 1] | Hi) (13.60)

for i = 0, 1, 2, · · · , M − 1, and deciding in favor of whichever hypothesis yields
the maximum value of this expression. Equivalently, given that the natural
logarithm is a monotonically increasing function of its argument, the logs of
the above expressions can be compared:

ln{P(Hi)} + ln{f (r[0], r[1], . . . , r[L − 1] | Hi)} , i = 0, 1, 2, · · ·M − 1 .
(13.61)

Making the appropriate substitutions, and discarding terms that are common
to all of the M expressions in Eq. (13.61), it is straightforward to conclude that
the optimal test requires comparison of the quantities(

L−1∑
n=0

r[n]si[n]

)
+ σ 2 ln{P(Hi)} − Ei

2
, i = 0, 1, 2, · · · M − 1 , (13.62)

where Ei denotes the energy of the ith signal:

Ei =
L−1∑
n=0

s2
i [n] . (13.63)

The largest of the expressions in Eq. (13.62), for i = 0, 1, · · · , M − 1, deter-
mines which hypothesis is selected by the decision rule.

If the signals have equal energies and equal prior probabilities, then the
above comparison reduces to deciding in favor of the signal with the highest
value of

gi =
L−1∑
n=0

r[n]si[n] . (13.64)

The computations in Eq. (13.64) can again be carried out using matched filters
whose outputs are sampled at the appropriate time.

As done earlier with the case of signal detection, we can generalize the
signal discrimination problem here in several ways. In particular, the signals
can be allowed to exist for all time rather than just the interval [0, L − 1],
as long as they have finite energy. We shall assume this more general set-
ting in what follows, and omit writing explicit limits on the summations in our
expressions.

Example 13.2 Binary Signal Discrimination in I.I.D. Gaussian Noise

We consider the case in which there are only two candidate signals that need to be
distinguished from each other in the presence of additive i.i.d. Gaussian noise. This is
a special case of the preceding results, with M = 2. The optimal test becomes
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(∑
n

r[n]s1[n]

)
+ σ 2 ln p1 − E1

2

‘H1’
>

<

‘H0’

(∑
n

r[n]s0[n]

)
+ σ 2 ln p0 − E0

2
, (13.65)

where p0 = P(H0) and p1 = P(H1), as before. This can be rewritten as

g =
∑

n

r[n]
(

s1[n] − s0[n]
) ‘H1’

>

<

‘H0’

σ 2 ln(p0/p1) + E1 − E0

2
= γ . (13.66)

The quantity on the left is what would be computed for detection of the difference
signal s1[n] − s0[n], and can be obtained using a filter that is matched to this difference
signal, that is, with unit sample response h[n] = s1[−n] − s0[−n].

The performance analysis of the above decision rule can be carried out exactly
as described in Section 13.2.2, by examining the distribution of the random variable

G =
∑

n

R[n]
(

s1[n] − s0[n]
)

(13.67)

under the two hypotheses. Before doing so, we introduce the following notation for a
quantity that arises in the analysis:

X =
∑

n

s0[n]s1[n] . (13.68)

From the Cauchy–Schwarz inequality in Eq. (13.42) we can write

−√E0E1 ≤ X ≤ √E0E1 , (13.69)

where we attain the upper bound if s0[n] = Ks1[n] for some positive K (which must
equal

√E0/E1), and attain the lower bound if s0[n] = −Ks1[n] for this same positive K.
Under H0 the random variable G in Eq. (13.67) is Gaussian of mean value −E0 +

X and variance σ 2Ed, where Ed is the energy of the difference signal:

Ed =
∑

n

(
s1[n] − s0[n]

)2 = E1 + E0 − 2X . (13.70)

Under H1, the random variable G is again Gaussian, with mean E1 − X , and still with
variance σ 2Ed. This leads us back to the now familiar task of assessing the performance
of a hypothesis test for separating two Gaussians of equal variance but different means,
using a specified threshold γ , given in this case by the right side of Eq. (13.66).

Consider two special cases. If s0[n] is the zero signal and s1[n] = s[n] for all n,
we recover the problem considered in Section 13.2, namely detecting a known signal
in i.i.d. Gaussian noise. In the context of digital communication, this would corre-
spond to on-off signaling, where the presence of the signal s[n] indicates binary digit
1, and its absence indicates binary digit 0. The expressions here reduce appropriately
to those obtained earlier. If the two hypotheses are equally likely, so p0 = p1, then the
probability of error is again given by the expression in Eq. (13.30), namely

Pon-off = Q
(√E

2σ

)
. (13.71)

For a second special case, suppose the two signals have equal energy, so E1 = E2 = E ,
fixed at some specified value. Also assume the two hypotheses have equal prior prob-
ability, so p0 = p1. Under these conditions, the threshold γ is 0. Now PFA = PM = Pe,
so the probability of error is
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Pe = Q
(E − X

σ
√Ed

)
= Q

(√E − X
σ

√
2

)
, (13.72)

where the second equality follows from using Eq. (13.70).
Suppose we are free to choose s0[n] and s1[n], subject only to the constraint

that their respective energies equal some given common value E . The smallest prob-
ability of error then results from choosing these signals to give the largest possible
argument in the Q(·) function above. Noting the bounds in Eq. (13.69) and the signal
choices that cause the bounds to be attained, the probability of error is minimized
by choosing X = −√E0E1 = −E , obtained by setting s1[n] = −s0[n] for all n. This
yields what is known as bipolar or antipodal signaling. Note that antipodal signaling
involves only the same peak power at the transmitter as in the case of on-off signaling,
though the average power and the average energy per bit are doubled (at least when
p0 = p1 = 0.5).

With antipodal signaling, therefore, the probability of error is

Pantip = Q
(√E

σ

)
. (13.73)

Compared with the on-off signaling case, where s0[·] = 0 and where the probability of
error Pon-off is in Eq. (13.71), the effect of antipodal signaling is to double the distance
between the means of the two Gaussians that have to be separated, for a fixed noise
intensity. The argument of the Q(·) function is thereby doubled, and the effective SNR
is increased by a factor of four. Thus antipodal signaling yields substantially better
error performance than on-off signaling.

The following example demonstrates the above results more con-
cretely in the setting of PAM communication, which was discussed in
Chapter 3. Though the problem is stated in CT, it is DT in the numerical
simulation.

Example 13.3 On-Off and Antipodal PAM, with Matched-Filter Detector

We illustrate some of the ideas in this chapter through numerical simulation of a PAM
strategy for CT communication of a binary DT signal a[n]. The basic signal or pulse
p(t) being communicated in a given time slot of duration T = 1 time unit is rect-
angular in this example: p(t) = A for |t| < T/4, which is the middle half of the time
slot, and p(t) = 0 elsewhere, for some A > 0. The full PAM signal is constructed from
a concatenation of such pulses, with the nth pulse p(t − nT) being amplitude-scaled
by the value a[n] that is to be transmitted in the nth time slot. The PAM signal is
therefore

x(t) =
∑

n

a[n] p(t − nT) . (13.74)

For on-off signaling, a[n] is either 0 or 1, whereas for antipodal signaling a[n] is +1
or −1; we assume the two levels are equally likely in each case. Antipodal signaling
entails the same peak power as on-off signaling, but is expected to provide better noise
immunity, though at the cost of higher average power. This example ignores distortion
on the communication channel and focuses on dealing with the effects of noise. In each
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566 Chapter 13 Signal Detection

time slot, the receiver has to decide which of the two possible signal values was sent,
based on the received noisy waveform.

The top two panels in Figure 13.7 show schematically how the noise-free PAM
signal can be generated by sending an appropriate impulse train into a filter with
impulse response p(t). The PAM waveform here corresponds to on-off signaling of
the sequence of 13 bits shown at the top of the figure, with the choice A = 1. The time
axis indicates the sample number, with 100 samples corresponding to one unit of time
in CT.

We assume additive wideband Gaussian noise in CT, producing i.i.d. Gaussian
noise of intensity σ 2 at the DT sampling times in the simulation. The third panel in
Figure 13.7 has the same underlying PAM signal as in the second panel, but with the
added noise shown for σ = 3.5. The noise is seen to swamp out the signal, giving lit-
tle clue as to what the PAM signal is. If we did not do any filtering of this noise, but
instead just took a single sample every T units of time and compared it with a thresh-
old of A/2 = 0.5, we would not expect to do much better than if we decided randomly.
Our analysis in this chapter shows that the probability of error for this situation is
Q(A/(2σ )) = Q(1/7) = 0.443.

Recognizing that the decisions in distinct bit slots are independent in our setting,
the decisions constitute a Bernoulli process, and the number of errors is governed by
a binomial distribution. The expected number of errors in 13 bits is therefore given
by 0.443 × 13 = 5.76 bits, and the standard deviation in this number is computed as√

13 × 0.433 × (1 − 0.433) =1.79 bits.
The result of using a matched filter on the received signal is shown in the bottom

panel of Figure 13.7. In CT, the matched-filter impulse response is h(t) = p(−t) in each
time slot. Since p(t) is a rectangular pulse that is nonzero only over an interval of length
T/2 around 0, the action of the corresponding matched filter is simply a windowed
integration, sometimes referred to as “boxcar” integration, or a sliding average of the
received signal over a window of length T/2, with its output sampled every T units of

d Gen.
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Figure 13.7 Binary detection with on-off signaling.
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time. The output of the matched filter at these sampling times has therefore accu-
mulated the effect of the underlying PAM signal in the corresponding bit slot, while
simultaneously averaging out the noise, thereby improving the SNR over direct sam-
pling of the received signal. Our DT simulation uses a scaled version of the matched
filter, with a correspondingly scaled threshold, shown in the bottom panel by the
horizontal line at the value 0.5.

The decoded binary sequence in the simulation has 2 bit errors out of 13. Taking
account of the fact that we have a pulse that is 50 samples long, the expression in
Eq. (13.71) gives the probability of error for our on-off signaling as Q(

√
50/(2 ×

3.5)) = 0.156, so the expected number of errors in 13 bits is 0.156 × 13 = 2.03 bits and
the corresponding standard deviation is 1.31 bits, which matches what is observed.

In Figure 13.8, we show the corresponding results when antipodal rather than on-
off signaling is used. The top two panels depict the generation of the transmitted PAM
waveform with the same binary sequence as was used in Figure 13.7, and the third panel
shows the received signal, including the additive noise. Despite the two underlying sig-
nal levels being twice as far apart as in on-off signaling, the noise still obscures the
underlying signal. We again do not expect to do well by directly comparing one sam-
ple of this noisy signal in each bit slot against a threshold of 0. The probability of error
for this direct approach would be Q(A/σ ) = Q(1/3.5) = 0.388, with the expected num-
ber of errors in 13 bits then being 0.388 × 13 = 5.03 bits, and the associated standard
deviation being 1.76.

The matched filter for this antipodal case has impulse response h(t) equal to the
difference between the two target signals, namely p(t) and −p(t). This again causes the
matched-filter to perform windowed integration of the received signal over an interval
of T/2. The resulting matched-filter output is shown in the bottom panel of Figure 13.8,
after scaling. The decoded binary sequence in this case happens to have no bit errors.
The expression in Eq. (13.73) gives the probability of error for our antipodal signaling
as Q(

√
50/3.5) = 0.022, so the expected number of errors in 13 bits is 0.022 × 13 = 0.28

bits, with standard deviation 0.53 bits.
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Figure 13.8 Binary detection with antipodal signaling.
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568 Chapter 13 Signal Detection

In Table 13.1 we summarize the results for this example, showing the advantage
of using matched filtering, and of antipodal over on-off signaling.

TABLE 13.1 COMPUTED BIT-ERROR RATES FOR THE PAM
SIGNALS IN EXAMPLE 13.3.

No matched filter With matched filter

On-off signaling 0.443 0.156
Antipodal signaling 0.388 0.022

13.5 FURTHER READING

Much of the development of the theory of signal detection has been motivated
by application contexts such as radar, treated in the early classic [Wod] and
more recently in texts such as [Rch] and [Sko], also sonar and communications
systems. However, the formulation, approach and terminology established in
these domains have extended broadly into other applications. Several of the
texts cited in Chapters 7–12 for their inclusion of WSS processes, power spec-
tral density and signal estimation also address signal detection. Books that
focus primarily on signal detection include [He2], [He3], [Kay3], [Lev], and
[McD]. For a fascinating exploration of the Cauchy–Schwarz inequality and
its applications, see [Ste].

Problems

Basic Problems

13.1. This problem refers to the setting described in Example 13.1.

(a) Verify the claim made in the example, that deciding optimally between the
two given hypotheses on the basis of the average of two independent mea-
surements of X results in the same probability of error as just using a single
measurement.

(b) For the case of K independent measurements of X , what is the optimum
decision rule, and what is the associated probability of error?

13.2. Consider a DT communication system in which one of two deterministic signals
has been transmitted over a noisy channel. The received signal, r[n], is given by

r[n] = si[n] + w[n] , i = 1 or i = 2 .

The process w[n] is i.i.d. Gaussian noise with zero mean and variance σ 2
w = 1

2 .
The a priori probabilities of the two pulses s1[n] and s2[n] are both equal to 1

2 .
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The pulses have the following properties:
∞∑

n=−∞
s2

1[n] =
∞∑

n=−∞
s2

2[n] = 1 and
∞∑

n=−∞
s1[n]s2[n] = 1

2
.

Consider the following two proposed receivers, shown in Figure P13.2:

Detection scheme 1

g1[n]

G1

r[n] h1[k] = s1[-k]

n = 0 Decision device

‘i = 1’ or ‘i = 2’
Threshold

l1

Detection scheme 2

g2[n]

G2

r[n] h2[k]

= s1[-k] - s2[-k]

n = 0 Decision device

‘i = 1’ or ‘i = 2’
Threshold

l2

Figure P13.2

(a) On the same plot, sketch the PDF of G1 given that i = 1 and the PDF of G1
given that i = 2 when detection scheme 1 is used. On a second plot, sketch
the PDF of G2 given that i = 1 and the PDF of G2 given that i = 2 when the
detection scheme 2 is used.

In detection scheme 1 of Figure P13.2, the value of G1 is tested against
the threshold λ1, and in detection scheme 2 of Figure P13.2, G2 is tested
against the threshold λ2, i.e.,

G1

‘i = 1’
><

‘i = 2’
λ1 , G2

‘i = 1’
><

‘i = 2’
λ2 .

(b) Determine the value of λ1 that minimizes the probability of error and the
value of λ2 that minimizes the probability of error.

(c) Choose the correct statement below, and clearly and succinctly explain your
reasoning.
(i) Detection scheme 1 achieves a lower probability of error than detect-

ion scheme 2.
(ii) Detection scheme 2 achieves a lower probability of error than detec-

tion scheme 1.
(iii) Detection scheme 1 and detection scheme 2 achieve the same probabil-

ity of error.

13.3. Consider the following signal detection problem, which is based on measure-
ments of a received signal r[n] under two possible hypothesis, H0 and H1:

H0 : r[n] = −s[n] + v[n] ,

H1 : r[n] = s[n] + v[n] ,

where s[n] is a known pulse, and the noise samples, v[n], are independent,
Gaussian, and zero-mean random variables with variance σ 2. At the receiver
we decide to use the strategy shown in Figure P13.3.
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g[n] g[0]r[n]
LTI, h[∙] Threshold g 

n = 0

‘H1’

‘H0’

7
6

Figure P13.3

Here h[·] is the unit sample response of an LTI system and γ is a constant.
Suppose the pulse s[n] is given by s[n] = 2δ[n] − δ[n − 1].

Determine the unit sample response h[n] and the value of γ that minimize
the probability of error, first for the case where H0 and H1 are equally likely
a priori, and then for the case where H1 is twice as likely as H0. In each case,
compute the corresponding probability of error, expressing your answer in terms
of the standard Q(·) function,

Q(x) = 1√
2π

∫ ∞

x
e−z2/2dz .

13.4. The transmitted signal in the communication system shown in Figure P13.4 is

s[n] = Ap[n],

where A = 0 with probability 1
3 and A = 1 with probability 2

3 . The two hypothe-
ses are thus

H0 : A = 0 and

H1 : A = 1 .

The pulse p[n] has unit energy, i.e.,

+∞∑
n=−∞

p2[n] = 1 .

The noise w[n] introduced by the channel is zero-mean, i.i.d. Gaussian noise with
variance σ 2, and independent of the transmitted signal.

+ *s[n] = Ap[n]
r[n]

R

w[n] c[n]

© l

‘H1’

‘H0’

7
6

Figure P13.4

The received signal r[n] is

r[n] = Ap[n] + w[n].

The system acting on the received signal in Figure P13.4 is referred to as a corre-
lation receiver and is often used in radar and communications sytems. The pulse
c[n] is a finite-energy pulse, the choice for which is considered in (c). The block
denoted by

∑
in the figure computes the quantity R defined by

R =
+∞∑

n=−∞
r[n]c[n] .
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The detector applies a threshold test to the random variable R:

R

‘H1’
>

<

‘H0’

λ

(a) In terms of p[n], c[n], and σ 2, determine the expected value of R under H0
and H1.

(b) In terms of p[n], c[n], and σ 2, determine the variance of R under H0 and H1.
(c) Suppose the energy of c[n] is specified to be some value K. Determine the

choice for c[n] to maximize(
E[R|H0] − E[R|H1]

)2 .

(d) Will your choice for c[n] in (c) with an appropriate choice of λ necessarily
minimize the probability of error? Recall that

Probability of error = P(‘H0’, H1) + P(‘H1’, H0) .

Explain, and if your answer is affirmative, determine λ in terms of the
specified parameters.

13.5. The diagram in Figure P13.5-1 represents a system in which the signal d[n] is
transmitted through a noisy communications channel, and r[n] is received:

+ +
d[n] r[n]

w[n] v[n]

c[n] = anu[n]

Figure P13.5-1

The parameter α that specifies the impulse response of the channel is some
known number, with magnitude less than 0.5. The noise process w[n] is such that
its value at each instant is a zero-mean Gaussian random variable with known
variance σ 2

w, and the values at different instants are independent of each other;
in other words, w[n] is a zero-mean i.i.d. Gaussian process, with autocovari-
ance function Cww[m] = σ 2

w δ[m]. The noise process v[n] is also a zero-mean i.i.d.
Gaussian process, independent of the process w[ · ] and with known variance σ 2

v
at each instant, i.e., Cvv[m] = σ 2

v δ[m].
The signal d[n] can be either 0 for all time (hypothesis H0), or can be the

unit sample function (hypothesis H1):

H1 : d[n] = δ[n] P(H1) = p1 ,

H0 : d[n] = 0 P(H0) = p0 .

In each of the two cases specified in (a) and (b) below, you are to design a receiver
that takes r[n] as input and decides between H0 and H1 with minimum proba-
bility of error. The optimum receiver in each case involves the following steps,
shown in Figure P13.5-2: LTI (but possibly noncausal) filtering of r[n]; sampling
the output g[n] of the filter at some appropriate time n0; and deciding in favor of
H0 or H1, based on where the sample value is relative to a threshold γ .
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g[n]

g[n0]

r[n]
h[∙], H(z) Threshold g 

n = n0

Figure P13.5-2

Thus, in order to specify the minimum-error-probability receiver in each of
the following two cases, you will need to specify: (i) the filter impulse response
h[·] or system function H(z); (ii) the instant n0 at which you sample the output
g[n] of the filter; (iii) the threshold γ that you compare the sample with; and
(iv) what the decisions are for sample values above and below the threshold,
respectively.

(a) Suppose σ 2
w = 0 and σ 2

v > 0. Specify the minimum-error-probability
receiver. If the channel impulse response were changed such that the mag-
nitude of α was doubled, would the probability of error increase, decrease,
or stay unchanged? If you believe it would change, by what factor would the
noise variance σ 2

v have to be multiplied in order to bring the probability of
error back to its original value?

(b) Suppose σ 2
w > 0 and σ 2

v = 0. Specify the minimum-error-probability
receiver. Find an expression for the probability of error in the case where
σ 2

w = 1, writing this probability in terms of the standard Q-function defined
in Eq. (13.23). If the channel impulse response were changed such that
the magnitude of α was doubled, would the probability of error increase,
decrease, or stay unchanged?

Advanced Problems

13.6. Figure P13.6-1 shows a baseband model for a communication system that
employs in-line amplification. For simplicity, only transmission of a single bit is
considered.

sm(t)

w(t)

y(t)

v(t)

m r(t)
Transmitter

Amplifier

Source Receiver m+

Figure P13.6-1

In Figure P13.6-1:

(i) m is a binary symbol that is equally likely to be 0 or 1.
(ii) sm(t) is the transmitter waveform that is used to convey the message m.

The waveforms s0(t) and s1(t) associated with messages m = 0 and m = 1,
respectively, are shown in Figure P13.6-2.

(iii) The amplifier output y(t) is given by

y(t) = √
Gsm(t) + v(t) ,

where G > 1 is the power gain of the amplifier and v(t) is noise that the
amplifier injects. v(t) is a zero-mean, white Gaussian noise process that
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T/3

2T/3 T
0

0

P1/2

−P1/2

s0(t) s1(t)

t t

Figure P13.6-2

is statistically independent of the message m and has PSD Svv(jω) = Nv.
A Gaussian process has the property (among many others) that filtering it
through an LTI system yields a process whose value at any time instant is
Gaussian random variable.

(iv) w(t) is a zero-mean, white Gaussian noise process that is generated by the
receiver electronics. It is statistically independent of the message m and the
amplifier’s noise process v(·). The PSD of w(t) is Sww(jω) = Nw.

(v) The receiver shown in detail in Figure P13.6-3 filters and then samples
the received waveform, r(t) = y(t) + w(t), to obtain the random variable
Z = z(T). The receiver’s output is its decision, m̂ = 0 or 1, as to which
message was sent, based on the value of Z.

z(t) Z
r(t) h(∙)

Decision

rulet = T
m

Figure P13.6-3

(vi) The receiver filter has impulse response

h(t) =
{

1/
√

T, for 0 ≤ t ≤ T,

0, otherwise,

as shown in Figure P13.6-4.

T0

t

T
−1/2

h(t)

Figure P13.6-4

(a) Determine the conditional probability densities for Z given m = 0 and
m = 1, i.e., determine fZ|m(z |0) and fZ|m(z |1).

(b) Determine the minimum-error-probability decision rule for deciding m̂ = 0
or m̂ = 1. Reduce your rule to a threshold test on Z.

13.7. One of two equally likely symbols A and B is sent over a noisy channel. The
symbol A is represented by sending the pulse p(t) whose Fourier transform is
P(jω) as shown in Figure P13.7-1(a), so

P(jω) =
{

(1 − |ω|
2π ·103 ) |ω| < 2π · 103

0 |ω| ≥ 2π · 103.

The symbol B is represented by sending no pulse (i.e., zero). The noise n(t) on
the channel is an additive zero-mean WSS bandlimited Gaussian noise process
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with PSD Snn(jω) as shown in Figure P13.7-1(b). The property of a Gaussian
process that is of interest here is that LTI filtering of such a process yields an
output process whose value at any instant is Gaussian.

If symbol A is transmitted, the received signal is r(t) = p(t) + n(t). If sym-
bol B is transmitted, the received signal is r(t) = n(t). The system for deciding
whether A or B was transmitted is shown in Figure P13.7-2.

The LTI filter with impulse response h(·) is an ideal low-pass filter with
frequency response shown in Figure P13.7-3.

1

0

(a)

(b)

0

P( jv)

Snn(jv)

−2p  103

−2p  104 2p  104

10−4

2p  103 v

v

Figure P13.7-1

g(t)

g(0)

r(t)
h(∙)

t = 0
if g(0)  7 g decide ‘A’

if g(0)  6 g decide ‘B’

Figure P13.7-2

H(jω)

K

0

0 < |vo| < 2π · 104

−vo vo
v

Figure P13.7-3

The impulse response h(t) is scaled to have unit energy, i.e.,∫ +∞
−∞ h2(t) dt = 1

(a) Determine p(0).
(b) Determine the variance of the noise n(t).
(c) Determine the relationship between K and ωo to ensure that∫ +∞

−∞ h2(t) dt = 1.
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(d) Assume that |ωo| < 2π · 104. The filter output g(t) can be represented as

g(t) = ph(t) + nh(t),

where ph(t) = p(t) ∗ h(t) is the signal component of g(t) and nh(t) =
n(t) ∗ h(t) is the noise component. Determine the variance of the noise
component nh(t).

(e) Again assume that |ωo| < 2π · 104. Determine the values of ωo and γ that
minimize the probability of error.

13.8. Two measurements, R1 and R2, are taken at the receiving end of a communica-
tion channel at two different times. Under hypothesis H0, “noise alone is present
at the receiver,” the values of R1 and R2 are given by

R1 = X1
R2 = X2

where the noise samples X1 and X2 have means 0, variances σ 2, but are not
independent, instead being governed by a bivariate Gaussian density, i.e.,

fX1,X2 (x1, x2|H0) = 1

2πσ 2
√

1 − ρ2
exp

[
−x2

1 − 2ρx1x2 + x2
2

2(1 − ρ2)σ 2

]
.

The quantity ρ turns out to be the correlation coefficient between X1 and X2.
Under hypothesis H1, “both signal and noise are present,” the received

signal samples are given by

R1 = s1 + X1
R2 = s2 + X2

where s1 and s2 are the signal samples (which are known constants).
The prior probabilities of the hypotheses are

p0 = P(H0), p1 = P(H1), p0 + p1 = 1.

Suppose the receiver implements the MAP decision rule for minimum error
probability, deciding that a signal is present—i.e., declaring ‘H1’—for each pair
(r1, r2) of samples for which P(H1|r1, r2) > P(H0|r1, r2), and otherwise deciding
that no signal is present.

(a) Show that the decision rule is of the form

k1r1 + k2r2

‘H1’
><

‘H0’
γ ,

and obtain expressions for γ , k1, and k2. Describe how the decision varies
as p0 varies between 0 and 1.

(b) When ρ = 0 in the bivariate Gaussian case, the associated random variables
are not just uncorrelated but are also independent. For this case, your
solution in (a) should reduce to the matched-filter solution developed in
this chapter for minimum-error-probability detection. Verify that it does.

13.9. This problem involves the Laplacian PDF, defined as

fX(x) = α

2
e−α|x−m|
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576 Chapter 13 Signal Detection

where X is a random variable, α is a parameter related to the variance σ 2 of X
(actually α = √

2/σ ), and m is the mean of X . The Laplacian PDF is often used
in models for speech and images.

A received signal R[n] is known to be given by one of the following two
models, with equal probability:

H0 : R[n] = W[n] ,

H1 : R[n] = s[n] + W[n] .

Here each W[n] is a Laplacian random variable, with the value at each time
n given by the Laplacian PDF with zero mean (m = 0); all of the W[n] are
independent. The signal s[n] is deterministic and known.

(a) Given only a measurement r[1] of R[1], explain how to decide between H0
and H1 with minimum probability of error, and compute this probability.

(b) Determine the joint PDF of R[1], R[2], . . . , R[L] given H1, i.e., find

fR|H1 (r[1], r[2], . . . , r[L] | H1) .

(c) Given measurements of R[n] for n = 1, 2, . . . , L, obtain the decision rule
that will decide between H0 and H1 with minimum probability of error. For
the case of L = 2, try and interpret your answer geometrically, with a sketch
to show the decision regions associated with ‘H0’ and ‘H1’ in the (r[1], r[2])
plane.

13.10. Consider a (memoryless) communication channel whose input Xj and output Yj
at time j are random variables related for 1 ≤ j ≤ 4 by

Yj = GjXj + Wj , 1 ≤ j ≤ 4 ,

where the gains Gj are i.i.d. Gaussian random variables of mean 0 and variance
σ 2

G, so Gj is distributed as N (0, σ 2
G). The random variables Wj denote channel

noise, assumed to be i.i.d. Gaussians distributed as N (0, σ 2
W ) and independent

of the Gk. The situation is shown in Figure P13.10.

Xj Yj

Gj Wj

 + 
Figure P13.10

We wish to transmit a single binary random variable H = {0, 1} across this
channel, using the following scheme:

• Given that H = 0, the inputs are selected to be (X1, X2, X3, X4) = (1, 1, 0, 0).
• Given that H = 1, the inputs are selected to be (X1, X2, X3, X4) = (0, 0, 1, 1).

Assume that the prior probabilities for the two possible choices of H are
P(H0) = p0 and P(H1) = p1 = 1 − p0. Based on the observation of the channel
outputs Yj for 1 ≤ j ≤ 4, we need to make a decision on which binary value H
was transmitted.

(a) Explain why under each of the hypotheses H = 0 and H = 1, the random
variables Yj for 1 ≤ j ≤ 4 are individually Gaussian and independent of
each other. Determine the corresponding means and variances of these
conditionally Gaussian output variables under each hypothesis.
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(b) Your friend suggests passing the received sequence of channel outputs
through an LTI filter whose unit sample response is matched to the differ-
ence between the two known input signals, then comparing the output of
the matched filter at some appropriate time with a well-chosen threshold.
You think this is worth a try, even though the situation here is not quite
the one for which your friend’s prescription would be optimal (because the
channel gain varies randomly in time here). As a result, you try to use a
measurement of the random variable

D = Y1 + Y2 − Y3 − Y4

to decide between the hypotheses. Determine how this random variable is
distributed under H = 0 and under H = 1. Does this tell you why looking
at the measured value of D will not help distinguish between the two
possibilities for H? Explain. So it’s time to go back to basics!

(c) Determine the PDFs

fY1,Y2,Y3,Y4|H(y1, y2, y3, y4|0)

and

fY1,Y2,Y3,Y4|H(y1, y2, y3, y4|1) .

(d) Find the likelihood ratio

�(y1, y2, y3, y4) = fY1,Y2,Y3,Y4|H(y1, y2, y3, y4|1)
fY1,Y2,Y3,Y4|H(y1, y2, y3, y4|0)

and also the log-likelihood ratio ln �(y1, y2, y3, y4).
(e) Determine the rule that uses the measured values yj of the random variables

Yj for 1 ≤ j ≤ 4 to decide with minimum probability of error what bit H was
sent, either 0 or 1 (denote this decision by Ĥ = 0 and Ĥ = 1 respectively).
Make clear in the way you write the decision rule that it only needs the
quantities q = y2

1 + y2
2 and r = y2

3 + y2
4 rather than the individual output

measurements.

It can be shown that under the condition H = 0 the quantity

Q = Y2
1 + Y2

2

is an exponentially distributed random variable with mean μQ0 = 2(σ 2
G + σ 2

W),
i.e., its conditional PDF is

fQ|H(q|0) = 1
μQ0

exp
(
− q

μQ0

)
for q > 0

and 0 for q < 0. Similarly, still under the condition H = 0, the quantity

R = Y2
3 + Y2

4

is exponentially distributed with mean μR0 = 2σ 2
W , and is independent of Q.

You may also recall from your probability class that for such (condition-
ally) independent exponential random variables, the probability that R is larger
than Q, conditioned on H = 0, is given by

P(R > Q|H = 0) = μR0

μQ0 + μR0
.
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Under H = 1, the roles are reversed, i.e., Q and R are still independent and
exponentially distributed, but the conditional mean of Q is μQ1 = 2σ 2

W and the
conditional mean of R is μR1 = 2(σ 2

G + σ 2
W), while

P(Q > R|H = 1) = μQ1

μQ1 + μR1
.

(f) Use these facts in the case where the hypotheses are equally likely, i.e.,
p0 = p1 = 0.5, to obtain expressions (stated in terms of the problem
parameters) for:

(i) the conditional probabilities

P(Ĥ = 1|H = 0)

and
P(Ĥ = 0|H = 1) ;

(ii) the probability of error Pe.

13.11. A signal X[n] that we will be measuring for n = 1, 2, . . . , L is known to be
generated according to one of the following two hypotheses:

H0 : X[n] = W[n] holds with a priori probability P(H0) = p0 ,

H1 : X[n] = V[n] holds with a priori probability P(H1) = p1 = 1 − p0 .

Here W[n] is a zero-mean i.i.d. Gaussian process with known constant variance
σ 2

0 at each time instant, i.e., the value at each time instant is governed by the
probability density function

fW(w) = 1

σ0
√

2π
exp
{
− w2

2σ 2
0

}
and the values at different times are independent of each other. Similarly, V[n]
is a zero-mean Gaussian process, taking values that are independent at distinct
times, but with a variance that changes in a known manner over time, so the
variance at time n is known to be σ 2

n . We will find it notationally helpful in
working through this problem to use the definition

h[n] =
( 1

σ 2
0

− 1
σ 2

n

)
.

Note that h[n] may be positive for some n but negative or zero for others,
corresponding to having σ0 < σn, σ0 > σn or σ0 = σn respectively.

(a) Suppose we only have a measurement at n = 1, with X[1] = x[1]. Show
that the decision rule for choosing between H0 and H1 with minimum
probability of error, given this measurement, takes the form

h[1]
(

x[1]
)2 ‘H1’

><
‘H0’

γ

for some appropriately chosen threshold γ . Also specify γ in terms of the
problem parameters.

(b) With your result from (a), but now assuming h[1] > 0, sketch and label the
two conditional densities—namely fX[1]|H (x|H0) and fX[1]|H (x|H1)—that
govern X[1] under the two respective hypotheses.
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Assuming that the two hypotheses are equally likely so p0 = p1,
mark in the points ±√γ /h[1] on the horizontal (i.e., x) axis, then shade in
the region or regions whose total area yields the conditional probability
P(‘H1’|H0), and express this conditional probability in terms of the standard
Q function,

Q(α) = 1√
2π

∫ ∞

α

e−ν2/2 dν .

(c) With the same situation as in (b), but with the hypotheses no longer
restricted to be equally likely a priori, specify the range of values for p0
in which the optimal decision will always be ‘H1’, no matter what the
measured value x[1].

(d) Now suppose we have measurements at n = 1, 2, . . . , L, i.e., we know
X[1] = x[1], X[2] = x[2], . . . , X[L] = x[L]. Determine the decision rule for
minimum probability of error, writing it in a form that generalizes your
result from (a).

(e) Suppose that in fact

V[n] = S[n] + W[n]

where S[n] is a zero-mean i.i.d. Gaussian process that is independent of
W[·] and has variance α2

n, so σ 2
n = α2

n + σ 2
0 . Show that your decision rule

from (d) can be written as a comparison of the quantity

L∑
n=1

x[n] ŝn(x[n]) (13.75)

with a fixed threshold, where ŝn(X[n]) denotes the LMMSE estimator of
S[n] from a measurement of X[n] under hypothesis H1. This form of the
decision rule is similar to what we obtained in the case of a deterministic
signal, see Eq. (13.15).

13.12. In a particular binary communication system, we are interested in detecting the
presence or absence of a known pulse s[n] in a received signal r[n]. If the pulse
is present, the received signal is r[n] = s[n] + v[n]; if the pulse is absent, the
received signal is r[n] = v[n]. Thus

H0(pulse absent) : r[n] = v[n]

H1(pulse present) : r[n] = s[n] + v[n].

The following is known about v[n]:
(i) v[n] is a WSS Gaussian random process with mean value v̄. Equivalently,

v[n] − v̄ is the result of passing unit-variance, zero-mean, i.i.d. Gaussian
noise through an appropriate LTI shaping filter with unit sample response
b[n] and frequency response B(ej�).

(ii) Rvv[m] − v̄2 = E{(v[n + m] − v̄)(v[n] − v̄)} = Cvv[m] = 5
2 δ[m] + δ[m − 1] +

δ[m + 1].

(a) Find a choice of b[n] that results in the above Cvv[m].
(b) Assume v̄ = 0. Determine the unit sample-response of a whitening filter

for v[n], i.e., determine hw[·] in Figure P13.12-1 such that Rww[m] = δ[m]. Is
your choice unique?
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w[n]v[n] hw[∙]

Figure P13.12-1

The signal r[n] will be processed as shown in Figure P13.12-2. The following is
known about s[n] and h[n]:
(i) s[n] = δ[n]; and

(ii)
∞∑

n=−∞
h2[n] = 1.

g[n] g[0]r[n]
LTI, h[∙] Threshold g 

n = 0

‘H1’

‘H0’

7
6

Figure P13.12-2

(c) For a fixed probability of false alarm, and still with v̄ = 0, determine a
choice for h[n] and a corresponding γ so that the probability of detection is
maximized. Also, state whether or not your choice is unique.

(d) Now suppose that v̄ = 1. Find the mean value of g[n], the output of the LTI
filter, under each of the hypotheses.

(e) Repeat part (c) for v̄ = 1.

13.13. Consider the communication system shown in Figure P13.13-1. A binary message
m, which is equally likely to be 0 or 1, is encoded into DT waveform sm[n], where

s0[n] = 0, for all n

s1[0] =
√
E − a2, s1[1] = a, and s1[n] = 0 otherwise,

with −√E ≤ a ≤ √E , as shown in Figure P13.13-2. Here E denotes the energy of
the signal s1[n].

+m mXMTR

v[n]

r[n]sm[n]
RCVR

Figure P13.13-1

0
1 2

0
1 2

s0[n]

E − a2

s1[n]

n n
a

√

Figure P13.13-2

The receiver observes the signal

r[n] = sm[n] + v[n],
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where v[n] is a zero-mean, WSS colored Gaussian noise process that is
statistically independent of the message m, and whose correlation function is

Rvv[k] = E(v[n + k]v[n]) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ 2

v , for k = 0

σ 2
v /4 for k = ±1

0, otherwise.

You can think of a colored Gaussian process as being the result of LTI filtering
of an i.i.d. Gaussian process. In this problem you will need to invoke the fact that
every linear combination of samples of a Gaussian process yields a Gaussian
random variable.

Assume that the receiver is constructed as shown in Figure P13.13-3.
Here, the LTI filter has impulse response h[n] = s1[1 − n]. The output of this
filter, y[n], is sampled at n = 1 to yield Y = y[1], and used in the decision
rule

Y

m̂ = 1
>

<

m̂ = 0

γ .

This would have been the optimum filter structure for minimum probability of
error if v[n] had been white Gaussian noise. Even though this structure is not
the optimum for the colored noise v[n] that we have here, we shall try and do
the best we can with it.

y[n]
r[n]

LTI

filter

Y Decision

rule
m

n = 1 Figure P13.13-3

(a) Find E(Y | m = 1) and var(Y | m = 1), the mean and variance of Y given
that m = 1. What is the probability density function of Y, conditioned on
m = 1?

(b) For the same questions as in (a), but now for the case of m = 0, state (but
there is no need to derive) the corresponding answers.

(c) What value of γ in this structure minimizes the probability of error,
Pe = Pr(m̂ �= m)? Briefly justify your answer.

(d) Find the error probability of the receiver in Figure P13.13-3 when the
optimum γ value is employed. Express your result in terms of the
Q-function,

Q(x) =
∫ ∞

x

e−t2/2
√

2π
dt .

If you have done this part correctly, you should find that you get the same
error probability Pe whether a = 0,

√E , or −√E . However, there is a choice
of a in the allowed range that yields a smaller Pe; find this optimum value
of a.

(e) Instead of the h[n] specified earlier, determine the h[n] and associated
threshold γ that will actually minimize the probability of error for this
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colored-noise problem. Again express the resulting probability of error in
terms of the Q-function.

13.14. The DT signal emitted by a particular transmitter is either x0[n] = 0 or
x1[n] = δ[n] + δ[n − 1], and these two possibilities are equally likely. The signal
is sent over an LTI channel with impulse response c[n] = δ[n] + 0.2 δ[n − 1]. The
received signal y[n] is given by

y[n] = c[n] ∗ xi[n] + v[n]

with either i = 0 or i = 1, where v[n] is a zero-mean WSS colored Gaussian noise
process with autocorrelation function Rvv[m] = (0.5)|m| . A colored Gaussian
process may be thought of as resulting from LTI filtering of an i.i.d. Gaussian
process through a shaping or modeling filter. The received signal y[n] is pro-
cessed to decide with minimum probability of error whether x0[n] or x1[n] was
transmitted.

(a) Compute and sketch c[n] ∗ x1[n].
(b) What is the PSD, Svv(ej�), of the noise process v[n] ?
(c) Suppose we first pass y[n] through an LTI prefilter with impulse response

φ[n] chosen so as to make the “noise component” of the prefilter’s output,
namely vφ [n] = φ[n] ∗ v[n], into a WSS white process with autocorre-
lation function Rvφvφ [m] = δ[m]. Find a causal φ[n] that accomplishes
this.

(d) With φ[n] as in (c), compute and sketch the signal component of the
prefilter’s output if x1[n] is sent, i.e., find x1p[n] = φ[n] ∗ c[n] ∗ x1[n].

(e) What is the smallest interval over which you need to observe the prefiltered
signal yφ[n] = φ[n] ∗ y[n] in order to decide whether x0[n] or x1[n] was sent,
with minimum probability of error?

( f ) Suppose you are now permitted to process yφ [n] through an LTI filter, and
to base your choice of hypothesis on the value, relative to some threshold,
of the filter output g[n] at some instant, say n = 0. What choice of filter
will maximize the SNR in g[0]? If you omitted the prefiltering, and instead
directly filtered y[n] to produce an output g[n], could there be a choice
of filter that improved the SNR in g[0]? Is there a choice of threshold for
which the SNR-maximizing filter also minimizes the probability of error? If
so, what threshold value is needed?

Extension Problems

13.15. Consider the following causal DT system. The input, x[n], is Gaussian i.i.d. noise
with zero mean and Rxx[m] = δ[m]. The input is sent simultaneously through
two channels producing w0[n] and w1[n], as indicated in Figure P13.15.

Assume the system started a long time ago and is already in steady state. For
each n, the output y[n] is independently chosen to be either w0[n] or w1[n].

(a) Compute the impulse response of the filters from x[n] to w0[n] and from
x[n] to w1[n], i.e., determine h0[n] and h1[n].

(b) Given a particular measurement y[n], design a test to decide whether the
output came from w0[n] or w1[n], and determine the corresponding range
of values for y[n] for which the test decides w1[n]. Your decision should
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h0[n]

h1[n]

x[n]

w0[n]
z-1

3/4

1/2 2
Random

switch

z-1

1/4

1/3 3
w0[n]

y[n]

+

+

Figure P13.15

be based on a minimum-probability-of-error test, assuming the a priori
probabilities associated with w0[n] and w1[n] are each equal to 1

2 .
(c) Now assume instead that the switch chooses w0[n] with probability P0 and

w1[n] with probability P1 = 1 − P0. The probability of false alarm, PFA, and
the probability of detection, PD, are defined as follows:

PFA = P(declare w1[n]|switch chose w0[n])

PD = P(declare w1[n]|switch chose w1[n]).

(i) Find the largest P0 such that PFA = PD = 1.
(ii) Find the smallest P0 such that PFA = PD = 0.

13.16. Using a suitable computational package, write a program that generates a signal
r[n] by first randomly choosing, with respective probabilities p and 1 − p, one
of a given pair of signals s1[n] and s0[n], then adding zero-mean i.i.d. Gaussian
noise of a specified variance to the selected signal. Your given signals should
be of comparable energy, though not necessarily identical energy. Now write a
program to perform detection on r[n] by correlating it with a specified signal
d[n], i.e., computing g =∑ r[n]d[n], comparing the result with a specified
threshold t, declaring “s1” when r > t, and “s0” otherwise. Arrange to perform
the detection a large number of times (e.g., 10,000), so that empirical statistics
regarding the probability of detection, probability of false alarm, and probability
of error can be determined and compared with their theoretical values.

(a) Plot s1[n] and s0[n], and also plot a typical r[n] when it is (i) a noise-
corrupted version of s1[n], and (ii) a noise-corrupted version of s0[n].

(b) With p = 0.5, run your program repeatedly with d[n] and t chosen appro-
priately for minimum-error-probability detection. Determine the empirical
values of PD, PFA, and Perror and compare them with the theoretical values.
Repeat this for a few different choices of noise variance.

(c) Keep d[n] and p the same as in (b), and fix the noise variance, but now
run your program with a range of values of t, from very negative to very
positive. Plot the empirical values of PD as a function of the empirical
values of PFA that you obtain as you vary t; this is the empirical receiver
operating characteristic, or ROC. Finally, plot the empirical value of Perror
as a function of t, and check if your choice of t in part (b) indeed seems
plausible as the one that gives minimum error probability (keep in mind
that the empirical results will have some variability, and will not exactly line
up with theoretical results). What is the effect on your results of changing
the noise variance to some other value?
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(d) Return to (b), but now suppose that p is varied, and for each p you pick the
optimal t for minimium probability of error (you should convince yourself
that the optimal d[n] is still the same as before). Plot the empirical PD values
as a function of the empirical PFA values that you obtain as p (and with it, the
optimal t) varies. Would you expect the ideal (as opposed to empirical) ROC
for this case to differ from the ideal ROC for the scenario in (c)? Explain.

13.17. Consider the task of detecting the presence of a known, finite-length signal in
a set of noisy measurements X[1], X[2], . . . , X[L], i.e., we would like to choose
between the two hypotheses:

H0 : X[n] = W[n] , 1 ≤ n ≤ L
H1 : X[n] = s[n] + W[n] , 1 ≤ n ≤ L .

Here each W[n] is a zero-mean Gaussian random variable—the noise—with
variance σ 2, and the W[·] at distinct times are independent. The signal s[n] is
deterministic and known. Denote the prior probabilities of hypotheses H0 and
H1 by p0 and p1 = 1 − p0, respectively.

(a) Using an appropriate computational package, write a program to cre-
ate a realization of X[n] under one of the two hypotheses above, with
p0 = p1 = 1

2 , L = 5000, σ 2 = 1, and

s[n] = 0.5 cos(π(n − 	)/2)

where 	 can be set as 0, 1, 2, or 3, but will not be known to the receiver.
(b) Run your program from (a) and plot the resulting measurements. Can you

decide which hypothesis (i.e., signal absent or signal present) is appropriate
just by visually examining the plot? And if so, can you determine the
underlying value of 	?

(c) Implement a minimum-error-probability decision rule in order to select
an appropriate hypothesis (signal present or signal absent) for the data
generated in (b). There is a complication here in that s[n] is not completely
known because of the uncertainty in 	. However, a reasonable thing to do is
evaluate each of the four candidate signals (namely s[n] with 	 = 0, 1, 2, 3)
using your decision rule, and decide in favor of the candidate signal (if any)
that satisfies by the largest margin whatever condition you developed for
deciding ‘H1’.

(d) Write a program to repeat (b) and (c) automatically a large number
of times (e.g., 10,000), and determine the empirical probability of cor-
rectly deciding the hypothesis (i.e., the fraction of outcomes in which
the hypothesis is correctly decided), and of correctly choosing 	 when
‘H1’ is correctly decided. How does the empirical probability of a correct
decision on the hypothesis compare with the theoretical probability for the
case of known 	?
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absolute summability, 512
absolutely integrable

impulse response, 239
signal, 42

absolutely summable (l1) signal, 42
action of a signal, 41
additive noise, 424, 561

causal Wiener filtering of a signal corrupted by,
517–519

FIR estimation of a signal corrupted by,
497–498

LMMSE for a signal in, 351–352
MMSE estimate for signal in, 340–341, 344–347
unconstrained estimation of a signal corrupted

by, 506–508
aliasing, 52, 469
all-pass frequency response, 94, 96–98
all-pass systems, 93–94, 96–99, 101–106, 472, 474

causal, stable system as cascade of, 107
frequency response of, 94–99, 103–105

amplitude-phase representation of a Fourier
transform, 93

analog-to-digital (A/D) converter, 52
anti-aliasing filter, 52
antipodal signaling, 134, 375, 565

binary detection with, 567
detection with matched filter, 565–568
error performance, 565
probability of error with, 565

asymptotic stability of linear periodically varying
systems, 247

asymptotic stability of LTI systems
CT case, 217–218
DT case, 218–219
of linearized viral propagation model, 219–220

autocorrelation
CT Fourier transform (CTFT) of, 452
deterministic, 45–46, 428–429, 457, 463–464,

551, 561–562

DT Fourier transform (DTFT) of, 458
Fourier transform of, 429–430 (See also power

spectral density (PSD) of the process)
functions, 415–418, 425–430
of i.i.d. process, 459
of WSS process, 453–456, 472, 474

CT, 460–461
autocovariance function, 415–419, 421, 425, 511
autoregressive model, 475, 530

banded process, 500
bandlimited CT signal, 134
bandlimited interpolation, 53, 55–57
bandlimited random processes, 474
bandpass filters, 44–45, 133, 452–453
Barker-13 sequence, 84, 562
baseband pulse-amplitude modulation, 133–140

frequency-domain characterizations, 135–136
received signal, 135
transmitted signal, 133–135, 143

baud rate, 134
Bayes’ rule or Bayes’ theorem, 311, 316, 377,

386, 392
behavior of system, 32–33, 219, 282–283, 467

of a causal system, 232
on circle, 48
of circuits, 168
of DT system, 215–216, 232, 240–241, 291
dynamic, 164
in endemic equilibrium (EE), 220
equilibrium point, 189

of a time-invariant nonlinear state-space
model, 191–193

in infective-free equilibrium (IFE), 219
input–output, 170, 185
internal, 163, 205
of LTI structure, 177, 185, 188, 212, 217
of observer in presence of noise, 276–277
of plant, 267–270

591

www.konkur.in

Telegram: @uni_k



592 Index

behavior of system (continued)
state variables and, 166, 169
time evolution and, 176, 179
of Z, 321
zero-input response (ZIR), 284

Bernoulli process, 419, 566
bilateral Laplace transform, 50–51
bilateral z-transform, 46–50

of impulse response, 39
binary signal discrimination in i.i.d. Gaussian

noise, 562–565
biochemical reactions, 200
bipolar or antipodal signaling, 565
bivariate Gaussian, 556

density, 323–324
random variables, 341–342

blurred signal, 508–509
Bochner’s theorem, 454, 556
bounded-input, bounded-output (BIBO) stable

system, 34–35, 38, 224, 425–426, 470
bounded signals, 42
boxcar integration, 566
broadband input signals, 99–102

carrier frequency, 95, 143–144
Cauchy-Schwarz inequality, 554–555, 559, 564
causality, 105, 183
causal systems, 34–36, 49, 51, 163, 181, 183
centered zero-order hold (ZOH), 57
characteristic polynomial, 208
characteristic roots, 208
Chebyshev inequality, 318–319, 554
closed-loop characteristic polynomial, 288
closed-loop control, 282
closed-loop LTI state-space system, 283–284
closed-loop system, 284–286
closed-loop transfer function, 289–290
coherence function of two processes, 504
coin tosses, probabilistic experiment with, 414
colored process, 459
communication system, transmission errors in,

311–312
complex conjugate, 44, 109, 187, 206, 209, 216, 512
complex frequency, 38
complex mode pair, 213, 216
conditional probability, 310–311
conditional expectation, 319
constant phase shift, 94–96
constellation. See I–Q constellation
continuous random variables, 337–342
continuous-time (CT) all-pass system, 103–104

phase of a, 105

continuous-time (CT) filter, 54
Wiener, 522

continuous-time Fourier transform (CTFT), 40,
452, 463

Fourier transform pairs, 43
of impulse response, 38

continuous-time (CT) random process, 412
continuous-time (CT) signal, 31, 410–411

absolutely integrable signal, 42
discrete-time processing of, 51–58
estimation of, 522–523
exponential representation of, 36–37
mapping of, 33
matched-filter impulse response of, 566
one-sided exponential of, 39
random process, 32

continuous-time (CT) state-space models,
179–180

equilibria of nonlinear time-invariant, 190–191
generalizations in, 180
for integrator-adder-gain systems, 174–175,

179–181
LTI model, 179
nonlinear and time-varying model, 180

continuous-time (CT) white noise, 426, 522
continuous-time (CT) white process, 460–461
continuous-time matched filters, 558–559
continuous-to-discrete (C/D) converter, 52
convolution integral, 35
convolution of system impulse response,

426–428
convolution sum, 35
covariance, 321

matrix, 356, 495
correlation, 320, 321
correlation coefficient, 322, 326
correlation function, 418, 427
cross-correlation, 425–428, 430, 461

function, 84, 416, 418, 461
cross-spectral densities, 461

fundamental inequality for, 462
cumulative distribution function (CDF), 313–314,

316, 418
cutoff frequency, 48, 136

deadbeat, 279, 291
deblurring, 508–509
decision regions in measurement space, 384–385
decision rule, 377

randomized, 409
deconvolution, 508–509
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decoupled or diagonalized representation
CT system, 228–229
DT system, 232
Laplace transform of, 233

delay-adder-gain systems, 174–175
detailed component and interconnection

equations, 174
input-output difference equation, 175
memory of, 174
realization, 177
response of, 174–175

demultiplication using DT Wiener filters, 509–510
detectability, 274
detection. See also signal detection

in colored noise, 555–558
conditional probability of, 384, 387
error probabilities, 385
minimum-error-probability symbol, 381–383
with minimum probability of error, decision

rule for, 390
and ROC for signal in Gaussian noise, 389–391
setting of radar, 385

deterministic autocorrelation function, 45–46, 83,
428–429, 457, 463–464, 551, 561–562

digital differentiator, 55
diagonalized system, 228
discrete-time (DT) all-pass system, 104–105

pole-zero plot for, 105–106
discrete-time (DT) filtering, 52, 54, 188, 469
discrete-time (DT) random process, 412
discrete-time (DT) signal, 31, 410–411

absolutely summable signal, 42
energy spectral density (ESD) of, 45
finite-action signals, 41
finite-energy signals, 41–42
Parseval’s identity, 43
signals of slow growth, 42–44

discrete-time (DT) state-space models, 176–179
delay-adder-gain simulation of, 177
equilibria of nonlinear time-invariant, 189
generalizations in, 177–178
impulse responses of causal, 185–188
LTI model, 176–177
nonlinear time-invariant model, 178–179
time-varying, 178

discrete-time (DT) white process, 459–460
discrete-time (DT) Wiener filters

causal, 510–517
deconvolution or deblurring of blurred signal

using, 508–509
demultiplication using, 509–510

noncausal prediction, 505
unconstrained, 502–510

estimation of a signal corrupted by additive
noise using, 506–508

discrete-time Fourier transform (DTFT), 39,
46–47, 458

of deterministic DT signals, 41–44
Fourier transform pairs, 43
of impulse response, 39
inverse, 50
synthesis/analysis pair, 40–41

discrete-time LTI filters, 204–206
discrete-time processing of continuous-time (CT)

signals, 51–58
basic structure, 52–53
DT filtering and frequency response, 54

dispersion, 102, 135
dominant time constant, 276–277, 295
downsampling, 469
duality, time-frequency, 141

eigenfunction of an LTI system, 36–40
eigenfunction property in DT case, 38
eigenvalues, 206, 208–216

nondistinct, 248
eigenvectors, 206, 208–216
Einstein-Wiener-Khinchin (EWK) theorem,

464–466
electrical circuit. See resistor-inductor-capacitor

(RLC) circuit
endemic equilibrium or steady state, 173, 190,

193, 219, 220
energy density spectrum, 41
energy of a signal, 41

output signal, 44
energy spectral density (ESD), 44–45, 453, 463
equilibrium, 188–191
ergodicity of random process, 421–422

ergodic in correlation, 463
ergodic in distribution, 421
ergodic in mean value, 421–422, 443
second-order ergodic, 422
spectral distribution, conditions for, 457–458

estimate, 337
estimation, 336, 494
estimator, 342
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Euclidean vector space, 325
even function, 452, 506
even symmetry, 418
event algebra, 309
expectations, 316–317
expected time-averaged power spectrum, 462–466
exponentially correlated process, PSD of, 455–456

false alarm, 384–386
error probabilities, 385

false negative, 386
false positive, 386
feedback control

closed-loop control, 282
LTI state feedback, 283–286
observer-based, 292–296
state, 282–292

filters. See also Wiener filters
causal, 474, 498, 514, 517, 519
causal discrete-time (DT) Wiener, 510–517
continuous-time (CT), 54, 522
continuous-time matched, 558–559
demultiplication using DT Wiener, 509–510
discrete-time (DT), 52, 54, 188, 469
finite impulse response (FIR) Wiener, 497–501
ideal bandpass, 45
Kalman, 275
linear FIR, 424–425
low-pass, 148
modeling, 469–472
noncausal, 470
steady-state Kalman, 275
whitening, 473–474

finite-action signals, 41–42
finite-energy signals, 41–42
finite impulse response (FIR) estimation of a

signal corrupted by additive noise, 497–498
finite impulse response (FIR) Wiener filters,

497–501
in estimation of a signal corrupted by additive

noise,
497–498

in WSS random processes, 497–499
finite impulse response (FIR) Wiener prediction,

499–502
first-order hold (FOH) pulse, 57–58
fluctuation spectral density (FSD), 456–458, 504,

512, 517, 557
spectral factor of, 470
of a sum of two jointly WSS signals, 461–462

forward-Euler algorithm, 181–182
forward path, system function of, 239

Fourier transform phase, 141–142
amplitude-phase representation, 93
change in phase of carrier, 96
constant phase shift and system frequency

response, 94–96
for a discrete-time (DT) system, 94
effect of a nonlinear phase characteristic,

96–103
linear phase, 94
magnitude-phase representation, 92–95
phase ambiguity, 93
time-domain effects, 93–94, 99
unwrapped phase, 93

Fourier transforms, 40–41, 46, 50, 463–464, 511
correlation relations, 429
Parseval’s identity, 43–45
synthesis/analysis pair, 40–41

frequency response, 135, 560
amplitude of, 93
of an all-pass system, 94–99, 103–105
of an ideal bandpass filter, 44
of CT filter, 54–55, 107
of CT LTI filter, 54
defined, 38
of the desired optimum filter, 557
of DT system, 39, 55
high, 39
of ideal bandpass filter, 452
of ideal low-pass filter, 426
low, 39
of LTI DT filter, 54
in LTI systems, 40, 52, 92, 556

time-domain effects of, 93
magnitude of, 38, 107–109
of matched filter, 551, 557
in nonlinear phase, 102
role in modeling filters, 469–470
of Wiener filter, 503, 505–512, 522

frequency-shift keying (FSK), 143–144

Gaussian process, 415
generalized functions, 46, 48, 451
group delay, 96–108

of minimum-phase system, 106–108
nonconstant, 101–102
for touch-tone signal, 102–103

half-sample delay, 55–56
heart rate variability, PSD estimation of, 468–469
Herglotz’s theorem, 454, 472
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hidden mode of the system, 234, 236–237,
240–241, 243, 248

in a combination of subsystems, 238–240
of CT system, 236–237

homogeneous solution, 205
hypothesis testing

binary, 383–391
binary detection with antipodal signaling,

565–568
in coded digital communication, 380
conditional probability of a miss, 384
extensions of matched-filter detection, 552–562
likelihood ratio test, 386–387, 392
MAP decision rule in, 377–380
maximum a posteriori probability decision, 377
with minimum probability of error, 375–383
minimum risk decisions, 391–393
with multiple measurements, 542–544
Neyman-Pearson decision rule, 389–390
optimal decision, 377
probability of error in terms of miss, false

alarm and detection, 384–386
receiver operating characteristic, 390
signal detection in i.i.d Gaussian noise, 544–552
signal discrimination in i.i.d Gaussian noise,

562–565

I–Q constellation, 145
ideal bandlimited interpolating converter, 56
ideal bandpass filter, 45

frequency response of, 452
ideal C/D converter, 52
ideal D/C converter, 56
ideal low-pass filter, 53, 56, 132, 426
i.i.d. See independent identically distributed

process
impulse response, 132, 183, 239, 374, 428, 558, 567

for all-pass filter, 99–101
of an LTI filter, 135
of BIBO-stable system, 48
bilateral z-transform of, 39
of a causal DT LTI state-space system, 185–187
constant phase shift and, 95
continuous-time Fourier transform (CTFT)

of, 38
of CT LTI system, 430
discrete-time Fourier transform (DTFT) of, 39
finite, 498
L1, 51
Laplace transform of, 51
of LTI systems, 35–36, 422, 425, 430, 457

nonlinear phase shift and, 101
real-valued, 105, 108
relation between the DT and CT, 54
right-sided, 51
of stable DT LTI system, 429

incrementally linear systems, 35
independence of events, 311, 316–317
independent identically distributed (i.i.d.)

process, 413, 553
signal discrimination in i.i.d. Gaussian noise,

562–565
zero-mean Gaussian noise, detecting, 544–552

infective-free equilibrium or steady state, 173,
190, 193

input-state-output structure of CT systems
of composite systems, 237–238
feedback configuration, 239–240
hidden modes, 236–239
input-output relations, 232–236
loss of observability, 237
loss of reachability, 237–238
observability, notion of, 236–238
parallel configuration, 240
reachability, notion of, 236–238
transfer function in, 233–235, 237

input-state-output structure of DT systems
hidden modes, 241
nonminimal realization, 243–244
reachability and observability of, 242–244,

246–249
target states, reaching, 244–246
transfer relations, 240–241
unilateral z-transform, 240–241

instantaneous output property, 181–182
instantaneous power, spectral distribution of

expected, 452–455
integrator-adder-gain systems

CT state-space models for, 174–175
of inverted pendulum for small angles,

180–181
integrators, 175–176, 179–180
interference, intersymbol, 138–140
internal behavior of a system, 163
interpolation

bandlimited, 53, 55–57
of the DT sequence, 53
linear, 57

intersymbol interference (ISI), 138–140
no ISI, 139
Nyquist condition for no ISI, 140
zero ISI, 559
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intersymbol spacing, 134, 139–140
inverse Fourier transform, 438
inverse Laplace transform, 235
inverse system, 198
inverse z-transform, 49–50
inverted pendulum, 165–167, 180–181, 191, 194,

212–213
eigenvalues and eigenvectors for linearized

model, 209–210
equilibrium in, 191
linearized state-space models, 194, 209–210
observer-based feedback control, 295–296

ith mode frequency. See modal frequency
ith mode of undriven system, 211

Johnson-Nyquist noise, 461
jointly distributed random variables, 315
jointly wide-sense stationary (WSS) processes,

417, 424, 426, 428–429, 441, 461–462, 464,
494–495, 497–498, 502–504, 522

Kalman filter for a state-space system, 275
Kalman filtering, 494, 517

optimal state estimates, 521–522
Kirchhoff’s current law (KCL), 168
Kirchhoff’s laws, 32
Kirchhoff’s voltage law (KVL), 168

Laplace transforms, 50
correlation relations, 429

left half-plane, 51, 108–110, 214, 217, 275
left-sided signal, 49, 51
likelihood ratio test, 386–387
linear and time-invariant (LTI) state feedback

design
closed-loop, 284–286
control effort, 286

linear and time-invariant (LTI) state-space
models

continuous-time (CT) and discrete-time (DT),
204–208

CT exponential solutions and modes, 207–209
general solution of, 205
Lth-order LTI state-space equations, 267
open-loop control, 282–283
state estimation error, 269, 272
state feedback control, 282–292
undriven system, response of, 207–209
vector and matrix operations, 205–207
zero-input response (ZIR) of, 205, 207–220
zero-state response (ZSR) of, 205

linear and time-invariant (LTI) system,
34–35, 168

characterization through convolution, 36
condition to be BIBO stable, 36
exponentials as eigenfunctions of, 36–40
Fourier transforms, 40–41
impulse responses, 35–36, 425, 430
state-space model from LTI input-output

models, 183–188
linear estimation of random processes, 422–425

linear FIR filtering, 424–425
linear prediction, 422–424

linear FIR filtering, 424–425
linear interpolation, 57
linearity, 34, 36, 40, 230, 325, 426, 464
linearization, 191–194
linearized state-space models

inverted pendulum, 194, 209–210
second-order DT nonlinear system, 191–193
for viral propagation, 193

linear minimum mean square error (LMMSE)
estimation, 322, 325

matrix and vector of covariances, 495–496
mean square error criterion for, 354–355
multiple measurements, 353–356
normal equations for, 356, 495
of one random variable from a single

measurement of another, 348–351
optimal linear estimator, 349
orthogonality and unbiasedness conditions,

350, 355
prediction of a WSS process, 422, 499
of random variables

associated minimum mean square error
(MMSE), 496

construction of LMMSE estimator, 495–496
matrix and vector of covariances, 495–496
from a WSS process, 496–497
zero-mean error, 496

for a signal in additive noise, 351–352
for sinusoidal random process, 352–353
for two noisy measurements, 356–357

linear periodically varying (LPV) systems, 247
linear phase, 94
linear system, 33
LMMSE. See linear minimum mean square error

(LMMSE) estimation
low-pass filters, 148
L-step observability matrix, 247
lumped models, 176
lumped systems, 164
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magnitude
of all-pass system frequency response, 103, 105,

107
Fourier transform, 92–93
of frequency response, 38, 107–109
of signals of slow growth, 42
squared, 44–45, 473
of a stable system, 108
ZIR, 212, 217–219, 285

magnitude-phase representation of a Fourier
transform, 92–95

MAP. See maximum a posteriori probability
(MAP) decision

mapping, 32–33, 35–38, 41, 313
marginally stable system, 217, 219, 514
matched filter, 549–563

continuous-time (CT) versions, 558–559
extensions of, 552–562
frequency response of, 551, 557
on-off and antipodal signaling, detection of,

565–568
properties of, 551–552
scaling of, 550–551

matched filtering
continuous-time (CT) versions of the detection

problem, 558–559
for infinite duration and finite-energy signals,

552
maximizing SNR for signal detection in white

noise, 552–555
for Nyquist pulse design, 559–560
optimum decision rule, 556
for signal detection in colored noise, 557
thresholding of sampled output of an LTI

filter, 553
for unknown arrival time and pulse

compression, 560–562
matrix exponential of CT system, 229–230

sampled-data model, 230–232
maximum a posteriori probability (MAP)

decision, 377–380
for minimum probability of error,

392–393
for on-off signaling in uniform noise, 378
with three hypotheses, 379–380

measurement noise, 267–268, 272–276, 279,
282, 521

memoryless DT system, 33
memoryless systems, 33–34
memory of the system, 163–164
minimal realization, 234, 263

minimum-error-probability symbol detection,
381–383

minimum mean square error (MMSE), 336–337,
348–357, 496

for bivariate Gaussian random variables,
341–342

of causal Wiener filter, 513
for discrete random variables, 339–340
estimate vs estimator, 343–344
estimator for bivariate Gaussian random

variables, 343
of finitely correlated process, 500–501
frequency-domain expression for, 504
of geometrically correlated process, 500
orthogonality of MMSE estimator, 347
of a signal in additive noise, 340–341,

344–347
of unconstrained discrete-time (DT) Wiener

filters, 503
estimation of a signal corrupted by additive

noise, 507–508
minimum-phase modeling filter, 515–517
minimum-phase spectral factorization, 512
minimum-phase system, 106

causal, stable system as cascade of, 107
group delay of, 106–108

minimum-probability-of-error hypothesis testing,
375–383, 552

for symbol detection, 381–383
using MAP rule, 553, 563

minimum risk, 391
miss, 384–386

conditional probability of, 549
error probabilities, 385

MMSE. See minimum mean square error
(MMSE)

modal coordinates
constraints on, 221–222
driven CT systems, 221–224
driven DT systems, 224
as a function of time, 222
general modal decomposition, 223
modal matrix, 221
sampled values of, 224–225
similarity transformations and diagonalization,

226–230
in state evolution equation, 222
in terms of eigenvectors, 222, 224, 226

modal frequency, 211
modal solution, 211–212, 214
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mode, 318, 338
asymptotically stable, 279
complex pairs

in CT, 213–214
in DT, 216–217

decay, 279
hidden, 234, 236–241, 243, 248
ith, of undriven system, 211
observable and unobservable, 236, 244–245,

280, 290
reachable and unreachable, 236, 248, 286–288

modeling filters, 469
models, 32–33

mapping vs behavioral form, 32–33
moment of a random variable, 318
monic polynomial, 208
multivariate Gaussian, 354, 556

narrowband input signals, 96–98
natural frequencies, 208
Newton’s law, rotational form of, 165
Neyman-Pearson decision rule, 389–390
Neyman-Pearson test, 389
noise, 311, 413, 421, 541–542

additive (See additive noise)
binary pulse-amplitude modulation in,

373–375
channel, 135, 143, 381
colored, detecting in, 555–558
CT white, 426, 522, 558
Gaussian

detection and ROC for signal in, 389–391
independent, identically distributed (i.i.d.),

544–552, 560
signal discrimination in i.i.d, 562–568

immunity, 147
trade-off between error decay and, 274–275

Johnson-Nyquist, 461
MAP rule for on-off signaling in uniform, 378
measurement, 267–268, 272–276, 279, 282, 521

modeling of, 275
overall closed-loop system, impact on, 294
state error, impact on, 275

observer error representation of, 274–281
unit-intensity white, 470
white, 522, 560

maximizing SNR for signal detection in,
552–555

zero intersymbol interference (ISI) in
noise-free case, 559

nonideal D/C converter, 56–58

nonlinear phase, 96–103
effect on touch-tone signal, 102–103
time-domain effect of, 98

nonlinear systems, 178, 250
nonlinear time-invariant state-space model,

equilibrium in, 188–191
normal equations, 356, 495
nullspace, 247
Nyquist frequency, 67
Nyquist pulses, 140–143

design, 559–560
smoother frequency-domain transitions,

141–142
for zero intersymbol interference (ISI), 559–560

Nyquist rate, 53–54, 134, 474
Nyquist sampling theorem, 57, 140

observer design, 273–281
for detectable system, 274
error dynamics, 273–274
observer error dynamics, 273–274, 280–281
observer gain, 272
plant disturbances, noises and error dynamics,

274–275
for ship heading error, 278–279
for undamped suspended pendulum, 275–277

observability, 240–241, 285, 517
of composite systems, 237–238
of CT systems, 237–238
of a DT system, 242–243
with nondistinct eigenvalues, 248–249
in a series combination of subsystems, 239

observability matrix, 246–247
observable system, 236
observer-based compensator, 292–294
observer-based feedback control, 292–296

for inverted pendulum, 295–296
odd function, 95–96
one-sided z-transform, 48
one-step correlated process, 458, 500
one-step Wiener filter for prediction, 517
on-off signaling, 134, 375, 565

binary detection with, 566
detection with matched filter, 565–568

open-loop control, 282–283
open-loop system, 282, 285–286, 289–290
order of state-space description, 164
orthogonal random variables, 323
orthogonality, 502–503

of LMMSE estimator, 355
of MMSE estimator, 347
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outcome, 309
overshoot, 275

Paley–Wiener condition, 512
PAM. See pulse amplitude modulation (PAM)
parallel interconnection, 187
Parseval’s identity, 43–45
Parseval’s theorem, 558
partial fraction expansion, inverse z-transform,

49–50
passband pulse-amplitude modulation, 143–148

binary PSK (BPSK), 144–145
frequency-shift keying (FSK), 144
I-Q constellation, 145
phase-shift keying (PSK), 144–145
QPSK (quadrature phase-shift keying), 145
quadrature-amplitude modulation (QAM),

146–148
pendulum

conventional model, 165
hanging, 210, 214
inverted, 165–167, 180–181, 191, 194, 212–213
linear model of, 167
observer-based feedback control, 295–296
real-time simulation, 270–271
state-space description of, 166
time-invariant description of, 166–167
variables, 166

period, sampling, 88, 94
periodic convolution, 510
periodic impulse train, 140
periodic sampling, 135
periodogram, 463, 465, 475

of a ±1 Bernoulli process, 466–467
of finite-duration signal, 463
Welch’s method, 465, 469

phase. See also Fourier transform phase
of a continuous-time (CT) all-pass system, 105
delay of the system, 96, 99

for touch-tone signal, 102–103
linear, 94
nonlinear, 99–103
unwrapped, 93–94, 96–97, 99

phase plane, 212–213
phase-shift keying (PSK), 143–145
phase shift, 94–95, 143–145
plant, 267

design of an observer for, 273–281
Lth-order LTI state-space equations, 267–268
model for, 267–268
observer-based feedback control, 292–296

real-time simulation, 269–271
representation of a DT LTI, 268
state feedback control, 282–292
state observer or state estimator for the plant,

271–273
Poisson times, 420
polar signaling, 134
pole-zero cancellations, 234
pole-zero plot, 47, 105–106
positive predictive value, 386
power spectral density (PSD), 430, 451

of an independent identically distributed
(i.i.d.) process, 458–459

application of, 467–474
of a ±1 Bernoulli process, 466–467
DTFT of, 459
of a DT WSS process, 469–472
of exponentially correlated process, 455–456
heart rate variability, PSD estimation of,

468–469
modeling filters, 469–472
of one-step correlated process, 458
of sinusoidal random process, 454–455
spectral distribution of expected instantaneous

power, 452–455
predator-prey model, 202
prediction

FIR, 499–502, 514
linear, 422–424
noncausal, 505
one-step Wiener filter for, 517
role of modeling filter in, 515–517
of a WSS CT process, 523

prevalence, 386
price of causality, 540
probability

conditional, 310–311
of declaring a target, radar context, 384
distributions, 313–315
event algebra, 309–310
independence of events, 311, 316–317
measure, 310
mutually independent events, 311
sample space, 309

probability density function (PDF), 314, 316,
337, 412

bivariate, 320
Morgenstern’s, 369

Gaussian, 319
general, 318
particular, 319
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probability density function (PDF) (continued)
strict-sense stationary (SSS), 416
uniform, 319

probability mass function (PMF), 314–315
probability of error

with bipolar or antipodal signaling, 565
hypothesis testing in, 375–383
MAP decision rule for, 392–393
minimum conditional, 376–377
in terms of miss, false alarm and detection,

384–386
proximally correlated process, 500. See also

one-step correlated process
PSD. See power spectral density (PSD) of the

process
pulse-amplitude detection in noise, 373
pulse-amplitude modulation (PAM), 132

baseband, 133–140
binary, 373–375
determination of symbol rate in, 137–138
intersymbol interference (ISI), 138–140
no-ISI property of, 139–140
numerical simulation of, 565–568
passband, 143–148

pulse compression, 561
pulse repetition interval, 56, 134

Q(·) function, 548
quadrature-amplitude modulation (QAM),

146–148
constellation diagrams, 146–147
demodulation scheme for, 148

radius of convergence, 48
raised cosine, 142
random noise, 344
random oscillators, 411, 417–418
random processes, 32, 267, 336

bandlimited, 474
batteries, probabilistic experiment with,

413–414
coin tosses, probabilistic experiment with, 414
CT WSS, 474
definition and examples of, 410–414
ergodicity of, 421–422
first- and second-moment characterization of,

415–416
linear estimation of, 422–425
sinusoidal, 352–353
stationary, 275
zero-mean, 268

random signals, 309, 352–353, 410
random telegraph wave, 420–421

random variables, 313
centered and normalized, 322
conditional expectation of, 319
continuous, 337–342
correlation and covariance for bivariate,

320–324
correlation or second cross-moment, 321
deterministic linear function of, 323
expectation of a function of, 320
expected value of a sum of, 318
Gaussian density for, 318, 323
jointly distributed, 315–316
moment of a, 318
uniform, 318
variance of, 321
variance or centered second moment

of, 318
as vectors, 324–326

randomized decision rule, 409
range (of a matrix), 207

of L-step reachability matrix, 246
rank (of a matrix), 207
rational z-transforms, 47
reachability, 240–241, 244, 285, 517

of composite systems, 237–238
of CT system, 236–237
of a DT System, 242–243
with nondistinct eigenvalues, 248–249
in a series combination of subsystems, 239
state feedback and, 290

reachability matrix, 246–247
L-step, 247

reachable system, 236
realization, 411, 421
real-time simulation of plant behavior,

269–271
behavior of state error vector, 269
in CT, 270
state error equation and output error, 270
of a suspended pendulum, 270–271

receiver operating characteristic (ROC), 389
for signal in Gaussian noise, 389–391

rectangular window, 465, 469
region of convergence (ROC), 37–39, 47–48

boundaries of, 48–50
for a left-sided signal, 49–50
for a right-sided signal, 49–50
signal properties, 48–49

reproductive ratio, 173
resampling, 138
resistor-capacitor circuit, 32
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resistor-inductor-capacitor (RLC) circuit, 167–168
constraints on variables, 168
input, output, and state variables, 169
input-output second-order LTI differential

equation, 170
state-space description for, 169–170
transfer function from input to output, 170
voltage source, defined, 168

Riccati equation, 522
right half-plane, 51, 107–109, 232
right-sided signal, 49, 51
roll-off parameter, 142

sample space, 309
sampled-data model, 224
sampling, 52, 141, 143, 416, 551–553, 556, 558, 560,

566–567, 571
bandlimited random processes, 474
a CT signal, 55

bandlimited, 94
Nyquist rate and, 53–54
Nyquist sampling theorem, 57, 140
in PAM scheme, 134–135
in PSD estimation, 469
a random process, 416

sampling frequency, 488
sampling interval, 52, 79, 231, 278
sampling period, 88, 94
sampling theorem, 57, 140, 474
scaling property, 136
second cross-moment, 321
second self-moment, 321
sensitivity, 386
ship heading error dynamics, 278–279,

290–292
signal detection, 425. See also matched filtering

solution
hypothesis testing with multiple measurements,

542–544
minimum-error-probability decisions,

542–544
optimum decision rule for, 542–543

in identically distributed (i.i.d.) zero-mean
Gaussian noise, 544–552
characterizing performance, 547–549
hypothesis test for, 547–548
matched filtering, 549–552
optimal solution for, 545–547
probability of error over possible outcomes,

549
signal discrimination in, 562–568

probability, role of, 311

signal discrimination in i.i.d. zero-mean Gaussian
noise, 562–568

binary, 563–565
Cauchy-Schwarz inequality in, 564
detecting known signal, 564
probability of error in, 564–565

minimum error probability, 563
using matched filters, 563

on-off and antipodal PAM, 565–568
signal estimation, 425

of CT signals, 522–523
Kalman filtering, 494, 517

optimal estimates, 521–522
LMMSE estimation for random variables,

495–497
associated minimum mean square error

(MMSE), 496
construction of LMMSE estimator, 495–496
matrix and vector of covariances, 495–496
from a WSS process, 496–497
zero-mean error, 496

Wiener filtering
causal DT, 510–517
FIR, 497–502
observer implementation and, 519–521
of a signal corrupted by additive noise,

517–519
unconstrained DT, 502–510

signal in additive noise
LMMSE estimator for, 351–352
MMSE estimator for, 344–347
Wiener filter for, 506–507, 517–519

signal processing, 106, 183, 336, 373, 410, 422
biomedical, 467
pulse amplitude modulation (PAM), role in,

132, 143
signals, 31–32. See also continuous-time (CT)

signal;
discrete-time (DT) signal

of slow growth, 42–44
signal-to-noise ratio (SNR), 407, 542, 552
similarity transformations, 226–230

CT systems, 226–227
DT systems, 227
input-output relationships of, 227
to modal coordinates, 227–228

sinc function, 92–93, 140, 454, 465–466
singularity function, 42
sinusoidal random process

LMMSE estimator for, 352–353
PSD of, 454–455
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SIR model, 171
SNR. See signal-to-noise ratio (SNR)
specificity, 386
spectral abscissa, 217
spectral distribution

conditions for ergodicity of mean, 457–458
of expected instantaneous power, 452–455
fluctuation spectral density, 456–458

spectral estimation, 465–466
spectral factorization, 108–110, 512
squared error, 45–46
squared-sinc transform of triangular pulse,

465–466
square summable or l2 signals, 41
stable. See bounded-input, bounded-output

(BIBO) stable system
stabilizability, 285
standard deviation, 318
state error model of the real-time simulator,

269
state error vector, behavior of, 269
state evolution property, 181
state feedback control, 282–292

closed-loop transfer function, 289–290
for a pendulum with torque control, 287
steering dynamics of a ship, 290–292

state observer or state estimator for the plant,
271–273

state-space model, 520
from an input-output difference equation,

184–185
approximation of state trajectory at a discrete

set of times, 181–182
for a causal system, 163–164
CT case, 179–180
defining characteristics of, 181–183
delay-adder-gain systems, 174–175
DT case, 176–179
electrical circuits, 167–170
equilibria and linearization of nonlinear,

188–194
fourth-order, 184
instantaneous output property, 182
inverted pendulum, 165–167
linearization of, 191–194
from LTI input-output models, 183–188
realization, 198
state evolution property, 181–182
for unit-sample or impulse response, 185–188
viral propagation, 171–173

stationarity
strict-sense (SSS), 416
wide-sense (WSS), 416–417

stationary random process, 275
steady-state Kalman filter, 275
stochastic process, 309, 410, 479. See also random

processes
strict-sense stationary (SSS), 416
superposition property, 177
symbol rate, 134
symmetry, 310–311, 325, 418–419, 548
system function, 51, 430, 474
system identification, 425
systems, 32. See also linear and time-invariant

(LTI) system
causal, 34–36, 49, 51
continuous-time (CT) all-pass, 103–105
discrete-time (DT) all-pass, 104–106
properties, 33–35
representation as an input-output

mapping, 33

Taylor series approximation, 97
time-domain effects of frequency response,

93–94, 99
time-frequency duality, 141
time invariance, 34, 36, 177–178
time-invariant system, 34. See also linear and

time-invariant (LTI) system
time-reversed signal, 45
time-shifted version of signal, 34
time window, 413
total squared error, 45–46
transfer function, 37, 51, 103–108, 163, 183,

248–249, 264
of a causal DT LTI system, 186–187
of causal Wiener filter, 513–514, 517,

519
closed-loop, 289–290, 294
coefficient matrices of, 170, 175
exactly proper, 234
for feedback configuration, 239
input-output, 232–243
of minimum-phase filter, 516
of modeling filter, 472, 480, 513
observer, 520–521
of one-stepWiener prediction filter, 517
for parallel configuration, 240
of stable LTI system or sensor, 107–108,

508
strictly proper, 234

transposition, 176, 285
triangular function, 454
two-sided signal, 141
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unbiased estimator, 347
unconstrained discrete-time (DT) Wiener filters,

502–510
coherence function, 504–505
construction of an LMMSE estimator, 502
deconvolution or deblurring by, 508–509
demultiplication by, 509–510
error fluctuation spectral density (FSD), 504
estimation of a signal corrupted by additive

noise using, 506–508
in frequency domain, representation, 504
minimum mean square error (MMSE), 504,

513–514
noncausal prediction, 505
orthogonality condition, 502–503
response of unconstrained optimal LMMSE, 503
unbiasedness condition, 502
unconstrained estimation of a signal corrupted

by additive noise, 506–508
uncorrelated, 322
undriven system

CT system, 207–215
DT system, 215–217
ith mode of, 211
linear and time-invariant (LTI), 207–209
modal solution of, 207

unipolar signaling, 134
unit circle, 39, 46–49, 106, 110, 218
unit delay, 174
unit impulse response or unit sample response, 35
unobservable subspace, 246–247
unobservable system, 236
unreachable system, 236
unwrapped phase of frequency response, 93–94,

96–97, 99, 101
nonlinear, 97

variance, 317
vector-space interpretation of correlation

properties, 324–326
correlation coefficient, 325–326
in Euclidean space, 325
lengths of vectors, 325
standard properties, 325

viral propagation model, 171–173
asymptotic stability of linearized, 219–220
basic reproductive ratio, 173
component subpopulations, 171
endemic steady state, 173
equilibria in, 189–190
infective-free steady state, 173

linearized model for, 193
state-variable trajectories, 172–173
time-invariant equations, 171–172

Welch’s method, 465, 469
whitening filter, 473–474
white noise, 426, 470, 519, 522
white process, 459–461, 469–471, 473, 482, 486,

494, 516–517, 519, 521, 530, 553, 555
wide-sense stationary (WSS) process, 416–417,

451
autocorrelation function of, 415–418, 425–426,

428–430, 454
autocovariance function of, 415–419, 421, 425
colored, 459
correlation and covariance functions, 418–419
cross-correlation between output and input,

426–428
with finite expected instantaneous power,

spectral distribution of, 452
jointly WSS processes, 417
LMMSE estimation of random variables from,

496–497
LTI filtering of, 425–430
zero-mean, 426–427
zero-mean CT-WSS noise process, 558

Wiener filters, 510–517
autocovariance function, 511–512
causal, 517–519
corresponding MMSE, 513
FIR, 497–501
frequency response of, 503, 505–512, 522
LMMSE estimation, 516
minimum-phase modeling filter, 515–517
MMSE estimation, 516–517
observer implementation of, 519–521
predictor, 513–517
of a signal corrupted by additive noise, 517–519
spectral factor, 518
stability and causality conditions, 512
unconstrained, 502–510

windowing, 463

Young’s inequality, 83
Yule–Walker equations, 499

zero-input response (ZIR) of LTI state-space
models, 205, 207–220

asymptotic stability, 217–220
complex mode pairs in CT, 213–214
complex mode pairs in DT, 216–217
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zero-input response (ZIR) of LTI state-space
models (continued)

entries of nth power, 215–216
general ZIR solution in DT case, 216
of linearized inverted pendulum model,

212–213
of linearized pendulum model in normal

hanging position, 214–215
modal coordinate values, 221, 223
modal decomposition of DT ZIR, 216
modal representation of CT system,

211–212
oscillatory contribution to, 217

similarity transformation, 227
undriven CT system, 207–215
undriven DT system, 215–217

zero intersymbol interference (ISI), 559. See also
intersymbol interference (ISI)

zero-mean random process, 268
zero-order hold (ZOH) pulse, 57–58
z-transform pairs, 50
z-transforms, 39, 44, 47, 429–430, 512–513

bilateral, 39, 46–50, 241
inverse, 49–50
one-sided, 48
unilateral, 240–241
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