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Preface

Not so long ago, anyone who had heard the word “algorithm” was

almost certainly a computer scientist or mathematician. With

computers having become prevalent in our modern lives, however, the

term is no longer esoteric. If you look around your home, you’ll find

algorithms running in the most mundane places: your microwave oven,

your washing machine, and, of course, your computer. You ask

algorithms to make recommendations to you: what music you might

like or what route to take when driving. Our society, for better or for

worse, asks algorithms to suggest sentences for convicted criminals. You

even rely on algorithms to keep you alive, or at least not to kill you: the

control systems in your car or in medical equipment.1 The word

“algorithm” appears somewhere in the news seemingly every day.

Therefore, it behooves you to understand algorithms not just as a

student or practitioner of computer science, but as a citizen of the

world. Once you understand algorithms, you can educate others about

what algorithms are, how they operate, and what their limitations are.

This book provides a comprehensive introduction to the modern

study of computer algorithms. It presents many algorithms and covers

them in considerable depth, yet makes their design accessible to all

levels of readers. All the analyses are laid out, some simple, some more

involved. We have tried to keep explanations clear without sacrificing

depth of coverage or mathematical rigor.

Each chapter presents an algorithm, a design technique, an

application area, or a related topic. Algorithms are described in English

and in a pseudocode designed to be readable by anyone who has done a
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little programming. The book contains 231 figures—many with multiple

parts—illustrating how the algorithms work. Since we emphasize

efficiency as a design criterion, we include careful analyses of the

running times of the algorithms.

The text is intended primarily for use in undergraduate or graduate

courses in algorithms or data structures. Because it discusses

engineering issues in algorithm design, as well as mathematical aspects,

it is equally well suited for self-study by technical professionals.

In this, the fourth edition, we have once again updated the entire

book. The changes cover a broad spectrum, including new chapters and

sections, color illustrations, and what we hope you’ll find to be a more

engaging writing style.

To the teacher

We have designed this book to be both versatile and complete. You

should find it useful for a variety of courses, from an undergraduate

course in data structures up through a graduate course in algorithms.

Because we have provided considerably more material than can fit in a

typical one-term course, you can select the material that best supports

the course you wish to teach.

You should find it easy to organize your course around just the

chapters you need. We have made chapters relatively self-contained, so

that you need not worry about an unexpected and unnecessary

dependence of one chapter on another. Whereas in an undergraduate

course, you might use only some sections from a chapter, in a graduate

course, you might cover the entire chapter.

We have included 931 exercises and 162 problems. Each section ends

with exercises, and each chapter ends with problems. The exercises are

generally short questions that test basic mastery of the material. Some

are simple self-check thought exercises, but many are substantial and

suitable as assigned homework. The problems include more elaborate

case studies which often introduce new material. They often consist of

several parts that lead the student through the steps required to arrive at

a solution.
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As with the third edition of this book, we have made publicly

available solutions to some, but by no means all, of the problems and

exercises. You can find these solutions on our website,

http://mitpress.mit.edu/algorithms/. You will want to check this site to

see whether it contains the solution to an exercise or problem that you

plan to assign. Since the set of solutions that we post might grow over

time, we recommend that you check the site each time you teach the

course.

We have starred (★) the sections and exercises that are more suitable

for graduate students than for undergraduates. A starred section is not

necessarily more difficult than an unstarred one, but it may require an

understanding of more advanced mathematics. Likewise, starred

exercises may require an advanced background or more than average

creativity.

To the student

We hope that this textbook provides you with an enjoyable introduction

to the field of algorithms. We have attempted to make every algorithm

accessible and interesting. To help you when you encounter unfamiliar

or difficult algorithms, we describe each one in a step-by-step manner.

We also provide careful explanations of the mathematics needed to

understand the analysis of the algorithms and supporting figures to help

you visualize what is going on.

Since this book is large, your class will probably cover only a portion

of its material. Although we hope that you will find this book helpful to

you as a course textbook now, we have also tried to make it

comprehensive enough to warrant space on your future professional

bookshelf.

What are the prerequisites for reading this book?

You need some programming experience. In particular, you

should understand recursive procedures and simple data

structures, such as arrays and linked lists (although Section 10.2

covers linked lists and a variant that you may find new).
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You should have some facility with mathematical proofs, and

especially proofs by mathematical induction. A few portions of

the book rely on some knowledge of elementary calculus.

Although this book uses mathematics throughout, Part I and

Appendices A–D teach you all the mathematical techniques you

will need.

Our website, http://mitpress.mit.edu/algorithms/, links to solutions

for some of the problems and exercises. Feel free to check your solutions

against ours. We ask, however, that you not send your solutions to us.

To the professional

The wide range of topics in this book makes it an excellent handbook

on algorithms. Because each chapter is relatively self-contained, you can

focus on the topics most relevant to you.

Since most of the algorithms we discuss have great practical utility,

we address implementation concerns and other engineering issues. We

often provide practical alternatives to the few algorithms that are

primarily of theoretical interest.

If you wish to implement any of the algorithms, you should find the

translation of our pseudocode into your favorite programming language

to be a fairly straightforward task. We have designed the pseudocode to

present each algorithm clearly and succinctly. Consequently, we do not

address error handling and other software-engineering issues that

require specific assumptions about your programming environment. We

attempt to present each algorithm simply and directly without allowing

the idiosyncrasies of a particular programming language to obscure its

essence. If you are used to 0-origin arrays, you might find our frequent

practice of indexing arrays from 1 a minor stumbling block. You can

always either subtract 1 from our indices or just overallocate the array

and leave position 0 unused.

We understand that if you are using this book outside of a course,

then you might be unable to check your solutions to problems and

exercises against solutions provided by an instructor. Our website,

http://mitpress.mit.edu/algorithms/, links to solutions for some of the
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problems and exercises so that you can check your work. Please do not

send your solutions to us.

To our colleagues

We have supplied an extensive bibliography and pointers to the current

literature. Each chapter ends with a set of chapter notes that give

historical details and references. The chapter notes do not provide a

complete reference to the whole field of algorithms, however. Though it

may be hard to believe for a book of this size, space constraints

prevented us from including many interesting algorithms.

Despite myriad requests from students for solutions to problems and

exercises, we have adopted the policy of not citing references for them,

removing the temptation for students to look up a solution rather than

to discover it themselves.

Changes for the fourth edition

As we said about the changes for the second and third editions,

depending on how you look at it, the book changed either not much or

quite a bit. A quick look at the table of contents shows that most of the

third-edition chapters and sections appear in the fourth edition. We

removed three chapters and several sections, but we have added three

new chapters and several new sections apart from these new chapters.

We kept the hybrid organization from the first three editions. Rather

than organizing chapters only by problem domains or only according to

techniques, this book incorporates elements of both. It contains

technique-based chapters on divide-and-conquer, dynamic

programming, greedy algorithms, amortized analysis, augmenting data

structures, NP-completeness, and approximation algorithms. But it also

has entire parts on sorting, on data structures for dynamic sets, and on

algorithms for graph problems. We find that although you need to know

how to apply techniques for designing and analyzing algorithms,

problems seldom announce to you which techniques are most amenable

to solving them.

Some of the changes in the fourth edition apply generally across the

book, and some are specific to particular chapters or sections. Here is a
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summary of the most significant general changes:

We added 140 new exercises and 22 new problems. We also

improved many of the old exercises and problems, often as the

result of reader feedback. (Thanks to all readers who made

suggestions.)

We have color! With designers from the MIT Press, we selected a

limited palette, devised to convey information and to be pleasing

to the eye. (We are delighted to display red-black trees in—get this

—red and black!) To enhance readability, defined terms,

pseudocode comments, and page numbers in the index are in

color.

Pseudocode procedures appear on a tan background to make

them easier to spot, and they do not necessarily appear on the

page of their first reference. When they don’t, the text directs you

to the relevant page. In the same vein, nonlocal references to

numbered equations, theorems, lemmas, and corollaries include

the page number.

We removed topics that were rarely taught. We dropped in their

entirety the chapters on Fibonacci heaps, van Emde Boas trees,

and computational geometry. In addition, the following material

was excised: the maximum-subarray problem, implementing

pointers and objects, perfect hashing, randomly built binary

search trees, matroids, push-relabel algorithms for maximum flow,

the iterative fast Fourier transform method, the details of the

simplex algorithm for linear programming, and integer

factorization. You can find all the removed material on our

website, http://mitpress.mit.edu/algorithms/.

We reviewed the entire book and rewrote sentences, paragraphs,

and sections to make the writing clearer, more personal, and

gender neutral. For example, the “traveling-salesman problem” in

the previous editions is now called the “traveling-salesperson

problem.” We believe that it is critically important for engineering

and science, including our own field of computer science, to be

welcoming to everyone. (The one place that stumped us is in

www.konkur.in

Telegram: @uni_k

http://mitpress.mit.edu/algorithms/


Chapter 13, which requires a term for a parent’s sibling. Because

the English language has no such gender-neutral term, we

regretfully stuck with “uncle.”)

The chapter notes, bibliography, and index were updated,

reflecting the dramatic growth of the field of algorithms since the

third edition.

We corrected errors, posting most corrections on our website of

third-edition errata. Those that were reported while we were in

full swing preparing this edition were not posted, but were

corrected in this edition. (Thanks again to all readers who helped

us identify issues.)

The specific changes for the fourth edition include the following:

We renamed Chapter 3 and added a section giving an overview of

asymptotic notation before delving into the formal definitions.

Chapter 4 underwent substantial changes to improve its

mathematical foundation and make it more robust and intuitive.

The notion of an algorithmic recurrence was introduced, and the

topic of ignoring floors and ceilings in recurrences was addressed

more rigorously. The second case of the master theorem

incorporates polylogarithmic factors, and a rigorous proof of a

“continuous” version of the master theorem is now provided. We

also present the powerful and general Akra-Bazzi method

(without proof).

The deterministic order-statistic algorithm in Chapter 9 is slightly

different, and the analyses of both the randomized and

deterministic order-statistic algorithms have been revamped.

In addition to stacks and queues, Section 10.1 discusses ways to

store arrays and matrices.

Chapter 11 on hash tables includes a modern treatment of hash

functions. It also emphasizes linear probing as an efficient method

for resolving collisions when the underlying hardware implements

caching to favor local searches.
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To replace the sections on matroids in Chapter 15, we converted a

problem in the third edition about offline caching into a full

section.

Section 16.4 now contains a more intuitive explanation of the

potential functions to analyze table doubling and halving.

Chapter 17 on augmenting data structures was relocated from

Part III to Part V, reflecting our view that this technique goes

beyond basic material.

Chapter 25 is a new chapter about matchings in bipartite graphs.

It presents algorithms to find a matching of maximum cardinality,

to solve the stable-marriage problem, and to find a maximum-

weight matching (known as the “assignment problem”).

Chapter 26, on task-parallel computing, has been updated with

modern terminology, including the name of the chapter.

Chapter 27, which covers online algorithms, is another new

chapter. In an online algorithm, the input arrives over time, rather

than being available in its entirety at the start of the algorithm.

The chapter describes several examples of online algorithms,

including determining how long to wait for an elevator before

taking the stairs, maintaining a linked list via the move-to-front

heuristic, and evaluating replacement policies for caches.

In Chapter 29, we removed the detailed presentation of the

simplex algorithm, as it was math heavy without really conveying

many algorithmic ideas. The chapter now focuses on the key

aspect of how to model problems as linear programs, along with

the essential duality property of linear programming.

Section 32.5 adds to the chapter on string matching the simple,

yet powerful, structure of suffix arrays.

Chapter 33, on machine learning, is the third new chapter. It

introduces several basic methods used in machine learning:

clustering to group similar items together, weighted-majority

algorithms, and gradient descent to find the minimizer of a

function.
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Section 34.5.6 summarizes strategies for polynomial-time

reductions to show that problems are NP-hard.

The proof of the approximation algorithm for the set-covering

problem in Section 35.3 has been revised.

Website

You can use our website, http://mitpress.mit.edu/algorithms/, to obtain

supplementary information and to communicate with us. The website

links to a list of known errors, material from the third edition that is not

included in the fourth edition, solutions to selected exercises and

problems, Python implementations of many of the algorithms in this

book, a list explaining the corny professor jokes (of course), as well as

other content, which we may add to. The website also tells you how to

report errors or make suggestions.

How we produced this book

Like the previous three editions, the fourth edition was produced in

LATEX 2ε. We used the Times font with mathematics typeset using the

MathTime Professional II fonts. As in all previous editions, we

compiled the index using Windex, a C program that we wrote, and

produced the bibliography using BIBTEX. The PDF files for this book

were created on a MacBook Pro running macOS 10.14.

Our plea to Apple in the preface of the third edition to update

MacDraw Pro for macOS 10 went for naught, and so we continued to

draw illustrations on pre-Intel Macs running MacDraw Pro under the

Classic environment of older versions of macOS 10. Many of the

mathematical expressions appearing in illustrations were laid in with the

psfrag package for LATEX 2ε.

Acknowledgments for the fourth edition

We have been working with the MIT Press since we started writing the

first edition in 1987, collaborating with several directors, editors, and

production staff. Throughout our association with the MIT Press, their
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support has always been outstanding. Special thanks to our editors

Marie Lee, who put up with us for far too long, and Elizabeth Swayze,

who pushed us over the finish line. Thanks also to Director Amy Brand

and to Alex Hoopes.

As in the third edition, we were geographically distributed while

producing the fourth edition, working in the Dartmouth College

Department of Computer Science; the MIT Computer Science and

Artificial Intelligence Laboratory and the MIT Department of

Electrical Engineering and Computer Science; and the Columbia

University Department of Industrial Engineering and Operations

Research, Department of Computer Science, and Data Science Institute.

During the COVID-19 pandemic, we worked largely from home. We

thank our respective universities and colleagues for providing such

supportive and stimulating environments. As we complete this book,

those of us who are not retired are eager to return to our respective

universities now that the pandemic seems to be abating.

Julie Sussman, P.P.A., came to our rescue once again with her

technical copy-editing under tremendous time pressure. If not for Julie,

this book would be riddled with errors (or, let’s say, many more errors

than it has) and would be far less readable. Julie, we will be forever

indebted to you. Errors that remain are the responsibility of the authors

(and probably were inserted after Julie read the material).

Dozens of errors in previous editions were corrected in the process of

creating this edition. We thank our readers—too many to list them all—

who have reported errors and suggested improvements over the years.

We received considerable help in preparing some of the new material

in this edition. Neville Campbell (unaffiliated), Bill Kuszmaul of MIT,

and Chee Yap of NYU provided valuable advice regarding the

treatment of recurrences in Chapter 4. Yan Gu of the University of

California, Riverside, provided feedback on parallel algorithms in

Chapter 26. Rob Shapire of Microsoft Research altered our approach to

the material on machine learning with his detailed comments on

Chapter 33. Qi Qi of MIT helped with the analysis of the Monty Hall

problem (Problem C-1).

Molly Seaman and Mary Reilly of the MIT Press helped us select the

color palette in the illustrations, and Wojciech Jarosz of Dartmouth
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College suggested design improvements to our newly colored figures.

Yichen (Annie) Ke and Linda Xiao, who have since graduated from

Dartmouth, aided in colorizing the illustrations, and Linda also

produced many of the Python implementations that are available on the

book’s website.

Finally, we thank our wives—Wendy Leiserson, Gail Rivest, Rebecca

Ivry, and the late Nicole Cormen—and our families. The patience and

encouragement of those who love us made this project possible. We

affectionately dedicate this book to them.

 

THOMAS H. CORMEN Lebanon, New Hampshire

CHARLES E. LEISERSON Cambridge, Massachusetts
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CLIFFORD STEIN New York, New York

June, 2021

1 To understand many of the ways in which algorithms influence our daily lives, see the book by

Fry [162].
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Introduction

When you design and analyze algorithms, you need to be able to

describe how they operate and how to design them. You also need some

mathematical tools to show that your algorithms do the right thing and

do it efficiently. This part will get you started. Later parts of this book

will build upon this base.

Chapter 1 provides an overview of algorithms and their place in

modern computing systems. This chapter defines what an algorithm is

and lists some examples. It also makes a case for considering algorithms

as a technology, alongside technologies such as fast hardware, graphical

user interfaces, object-oriented systems, and networks.

In Chapter 2, we see our first algorithms, which solve the problem of

sorting a sequence of n numbers. They are written in a pseudocode

which, although not directly translatable to any conventional

programming language, conveys the structure of the algorithm clearly

enough that you should be able to implement it in the language of your

choice. The sorting algorithms we examine are insertion sort, which uses

an incremental approach, and merge sort, which uses a recursive

technique known as “divide-and-conquer.” Although the time each

requires increases with the value of n, the rate of increase differs

between the two algorithms. We determine these running times in

Chapter 2, and we develop a useful “asymptotic” notation to express

them.

Chapter 3 precisely defines asymptotic notation. We’ll use

asymptotic notation to bound the growth of functions—most often,
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functions that describe the running time of algorithms—from above and

below. The chapter starts by informally defining the most commonly

used asymptotic notations and giving an example of how to apply them.

It then formally defines five asymptotic notations and presents

conventions for how to put them together. The rest of Chapter 3 is

primarily a presentation of mathematical notation, more to ensure that

your use of notation matches that in this book than to teach you new

mathematical concepts.

Chapter 4 delves further into the divide-and-conquer method

introduced in Chapter 2. It provides two additional examples of divide-

and-conquer algorithms for multiplying square matrices, including

Strassen’s surprising method. Chapter 4 contains methods for solving

recurrences, which are useful for describing the running times of

recursive algorithms. In the substitution method, you guess an answer

and prove it correct. Recursion trees provide one way to generate a

guess. Chapter 4 also presents the powerful technique of the “master

method,” which you can often use to solve recurrences that arise from

divide-and-conquer algorithms. Although the chapter provides a proof

of a foundational theorem on which the master theorem depends, you

should feel free to employ the master method without delving into the

proof. Chapter 4 concludes with some advanced topics.

Chapter 5 introduces probabilistic analysis and randomized

algorithms. You typically use probabilistic analysis to determine the

running time of an algorithm in cases in which, due to the presence of

an inherent probability distribution, the running time may differ on

different inputs of the same size. In some cases, you might assume that

the inputs conform to a known probability distribution, so that you are

averaging the running time over all possible inputs. In other cases, the

probability distribution comes not from the inputs but from random

choices made during the course of the algorithm. An algorithm whose

behavior is determined not only by its input but by the values produced

by a random-number generator is a randomized algorithm. You can use

randomized algorithms to enforce a probability distribution on the

inputs—thereby ensuring that no particular input always causes poor

performance—or even to bound the error rate of algorithms that are

allowed to produce incorrect results on a limited basis.
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Appendices A–D contain other mathematical material that you will

find helpful as you read this book. You might have seen much of the

material in the appendix chapters before having read this book

(although the specific definitions and notational conventions we use

may differ in some cases from what you have seen in the past), and so

you should think of the appendices as reference material. On the other

hand, you probably have not already seen most of the material in Part I.

All the chapters in Part I and the appendices are written with a tutorial

flavor.
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1          The Role of Algorithms in Computing

What are algorithms? Why is the study of algorithms worthwhile? What

is the role of algorithms relative to other technologies used in

computers? This chapter will answer these questions.

1.1      Algorithms

Informally, an algorithm is any well-defined computational procedure

that takes some value, or set of values, as input and produces some

value, or set of values, as output in a finite amount of time. An

algorithm is thus a sequence of computational steps that transform the

input into the output.

You can also view an algorithm as a tool for solving a well-specified

computational problem. The statement of the problem specifies in

general terms the desired input/output relationship for problem

instances, typically of arbitrarily large size. The algorithm describes a

specific computational procedure for achieving that input/output

relationship for all problem instances.

As an example, suppose that you need to sort a sequence of numbers

into monotonically increasing order. This problem arises frequently in

practice and provides fertile ground for introducing many standard

design techniques and analysis tools. Here is how we formally define the

sorting problem:

Input: A sequence of n numbers 〈a1, a2, … , an〉.
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Output: A permutation (reordering)  of the input sequence

such that .

Thus, given the input sequence 〈31, 41, 59, 26, 41, 58〉, a correct sorting

algorithm returns as output the sequence 〈26, 31, 41, 41, 58, 59〉. Such

an input sequence is called an instance of the sorting problem. In

general, an instance of a problem1 consists of the input (satisfying

whatever constraints are imposed in the problem statement) needed to

compute a solution to the problem.

Because many programs use it as an intermediate step, sorting is a

fundamental operation in computer science. As a result, you have a

large number of good sorting algorithms at your disposal. Which

algorithm is best for a given application depends on—among other

factors—the number of items to be sorted, the extent to which the items

are already somewhat sorted, possible restrictions on the item values,

the architecture of the computer, and the kind of storage devices to be

used: main memory, disks, or even—archaically—tapes.

An algorithm for a computational problem is correct if, for every

problem instance provided as input, it halts—finishes its computing in

finite time—and outputs the correct solution to the problem instance. A

correct algorithm solves the given computational problem. An incorrect

algorithm might not halt at all on some input instances, or it might halt

with an incorrect answer. Contrary to what you might expect, incorrect

algorithms can sometimes be useful, if you can control their error rate.

We’ll see an example of an algorithm with a controllable error rate in

Chapter 31 when we study algorithms for finding large prime numbers.

Ordinarily, however, we’ll concern ourselves only with correct

algorithms.

An algorithm can be specified in English, as a computer program, or

even as a hardware design. The only requirement is that the specification

must provide a precise description of the computational procedure to be

followed.

What kinds of problems are solved by algorithms?
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Sorting is by no means the only computational problem for which

algorithms have been developed. (You probably suspected as much

when you saw the size of this book.) Practical applications of algorithms

are ubiquitous and include the following examples:

The Human Genome Project has made great progress toward the

goals of identifying all the roughly 30,000 genes in human DNA,

determining the sequences of the roughly 3 billion chemical base

pairs that make up human DNA, storing this information in

databases, and developing tools for data analysis. Each of these

steps requires sophisticated algorithms. Although the solutions to

the various problems involved are beyond the scope of this book,

many methods to solve these biological problems use ideas

presented here, enabling scientists to accomplish tasks while using

resources efficiently. Dynamic programming, as in Chapter 14, is

an important technique for solving several of these biological

problems, particularly ones that involve determining similarity

between DNA sequences. The savings realized are in time, both

human and machine, and in money, as more information can be

extracted by laboratory techniques.

The internet enables people all around the world to quickly access

and retrieve large amounts of information. With the aid of clever

algorithms, sites on the internet are able to manage and

manipulate this large volume of data. Examples of problems that

make essential use of algorithms include finding good routes on

which the data travels (techniques for solving such problems

appear in Chapter 22), and using a search engine to quickly find

pages on which particular information resides (related techniques

are in Chapters 11 and 32).

Electronic commerce enables goods and services to be negotiated

and exchanged electronically, and it depends on the privacy of

personal information such as credit card numbers, passwords, and

bank statements. The core technologies used in electronic

commerce include public-key cryptography and digital signatures
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(covered in Chapter 31), which are based on numerical algorithms

and number theory.

Manufacturing and other commercial enterprises often need to

allocate scarce resources in the most beneficial way. An oil

company might wish to know where to place its wells in order to

maximize its expected profit. A political candidate might want to

determine where to spend money buying campaign advertising in

order to maximize the chances of winning an election. An airline

might wish to assign crews to flights in the least expensive way

possible, making sure that each flight is covered and that

government regulations regarding crew scheduling are met. An

internet service provider might wish to determine where to place

additional resources in order to serve its customers more

effectively. All of these are examples of problems that can be

solved by modeling them as linear programs, which Chapter 29

explores.

Although some of the details of these examples are beyond the scope

of this book, we do give underlying techniques that apply to these

problems and problem areas. We also show how to solve many specific

problems, including the following:

You have a road map on which the distance between each pair of

adjacent intersections is marked, and you wish to determine the

shortest route from one intersection to another. The number of

possible routes can be huge, even if you disallow routes that cross

over themselves. How can you choose which of all possible routes

is the shortest? You can start by modeling the road map (which is

itself a model of the actual roads) as a graph (which we will meet

in Part VI and Appendix B). In this graph, you wish to find the

shortest path from one vertex to another. Chapter 22 shows how

to solve this problem efficiently.

Given a mechanical design in terms of a library of parts, where

each part may include instances of other parts, list the parts in

order so that each part appears before any part that uses it. If the

design comprises n parts, then there are n! possible orders, where
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n! denotes the factorial function. Because the factorial function

grows faster than even an exponential function, you cannot

feasibly generate each possible order and then verify that, within

that order, each part appears before the parts using it (unless you

have only a few parts). This problem is an instance of topological

sorting, and Chapter 20 shows how to solve this problem

efficiently.

A doctor needs to determine whether an image represents a

cancerous tumor or a benign one. The doctor has available images

of many other tumors, some of which are known to be cancerous

and some of which are known to be benign. A cancerous tumor is

likely to be more similar to other cancerous tumors than to

benign tumors, and a benign tumor is more likely to be similar to

other benign tumors. By using a clustering algorithm, as in

Chapter 33, the doctor can identify which outcome is more likely.

You need to compress a large file containing text so that it

occupies less space. Many ways to do so are known, including

“LZW compression,” which looks for repeating character

sequences. Chapter 15 studies a different approach, “Huffman

coding,” which encodes characters by bit sequences of various

lengths, with characters occurring more frequently encoded by

shorter bit sequences.

These lists are far from exhaustive (as you again have probably

surmised from this book’s heft), but they exhibit two characteristics

common to many interesting algorithmic problems:

1. They have many candidate solutions, the overwhelming majority

of which do not solve the problem at hand. Finding one that

does, or one that is “best,” without explicitly examining each

possible solution, can present quite a challenge.

2. They have practical applications. Of the problems in the above

list, finding the shortest path provides the easiest examples. A

transportation firm, such as a trucking or railroad company, has

a financial interest in finding shortest paths through a road or
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rail network because taking shorter paths results in lower labor

and fuel costs. Or a routing node on the internet might need to

find the shortest path through the network in order to route a

message quickly. Or a person wishing to drive from New York to

Boston might want to find driving directions using a navigation

app.

Not every problem solved by algorithms has an easily identified set

of candidate solutions. For example, given a set of numerical values

representing samples of a signal taken at regular time intervals, the

discrete Fourier transform converts the time domain to the frequency

domain. That is, it approximates the signal as a weighted sum of

sinusoids, producing the strength of various frequencies which, when

summed, approximate the sampled signal. In addition to lying at the

heart of signal processing, discrete Fourier transforms have applications

in data compression and multiplying large polynomials and integers.

Chapter 30 gives an efficient algorithm, the fast Fourier transform

(commonly called the FFT), for this problem. The chapter also sketches

out the design of a hardware FFT circuit.

Data structures

This book also presents several data structures. A data structure is a way

to store and organize data in order to facilitate access and

modifications. Using the appropriate data structure or structures is an

important part of algorithm design. No single data structure works well

for all purposes, and so you should know the strengths and limitations

of several of them.

Technique

Although you can use this book as a “cookbook” for algorithms, you

might someday encounter a problem for which you cannot readily find a

published algorithm (many of the exercises and problems in this book,

for example). This book will teach you techniques of algorithm design

and analysis so that you can develop algorithms on your own, show that

they give the correct answer, and analyze their efficiency. Different
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chapters address different aspects of algorithmic problem solving. Some

chapters address specific problems, such as finding medians and order

statistics in Chapter 9, computing minimum spanning trees in Chapter

21, and determining a maximum flow in a network in Chapter 24. Other

chapters introduce techniques, such as divide-and-conquer in Chapters

2 and 4, dynamic programming in Chapter 14, and amortized analysis

in Chapter 16.

Hard problems

Most of this book is about efficient algorithms. Our usual measure of

efficiency is speed: how long does an algorithm take to produce its

result? There are some problems, however, for which we know of no

algorithm that runs in a reasonable amount of time. Chapter 34 studies

an interesting subset of these problems, which are known as NP-

complete.

Why are NP-complete problems interesting? First, although no

efficient algorithm for an NP-complete problem has ever been found,

nobody has ever proven that an efficient algorithm for one cannot exist.

In other words, no one knows whether efficient algorithms exist for NP-

complete problems. Second, the set of NP-complete problems has the

remarkable property that if an efficient algorithm exists for any one of

them, then efficient algorithms exist for all of them. This relationship

among the NP-complete problems makes the lack of efficient solutions

all the more tantalizing. Third, several NP-complete problems are

similar, but not identical, to problems for which we do know of efficient

algorithms. Computer scientists are intrigued by how a small change to

the problem statement can cause a big change to the efficiency of the

best known algorithm.

You should know about NP-complete problems because some of

them arise surprisingly often in real applications. If you are called upon

to produce an efficient algorithm for an NP-complete problem, you are

likely to spend a lot of time in a fruitless search. If, instead, you can

show that the problem is NP-complete, you can spend your time

developing an efficient approximation algorithm, that is, an algorithm

that gives a good, but not necessarily the best possible, solution.
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As a concrete example, consider a delivery company with a central

depot. Each day, it loads up delivery trucks at the depot and sends them

around to deliver goods to several addresses. At the end of the day, each

truck must end up back at the depot so that it is ready to be loaded for

the next day. To reduce costs, the company wants to select an order of

delivery stops that yields the lowest overall distance traveled by each

truck. This problem is the well-known “traveling-salesperson problem,”

and it is NP-complete.2 It has no known efficient algorithm. Under

certain assumptions, however, we know of efficient algorithms that

compute overall distances close to the smallest possible. Chapter 35

discusses such “approximation algorithms.”

Alternative computing models

For many years, we could count on processor clock speeds increasing at

a steady rate. Physical limitations present a fundamental roadblock to

ever-increasing clock speeds, however: because power density increases

superlinearly with clock speed, chips run the risk of melting once their

clock speeds become high enough. In order to perform more

computations per second, therefore, chips are being designed to contain

not just one but several processing “cores.” We can liken these multicore

computers to several sequential computers on a single chip. In other

words, they are a type of “parallel computer.” In order to elicit the best

performance from multicore computers, we need to design algorithms

with parallelism in mind. Chapter 26 presents a model for “task-

parallel” algorithms, which take advantage of multiple processing cores.

This model has advantages from both theoretical and practical

standpoints, and many modern parallel-programming platforms

embrace something similar to this model of parallelism.

Most of the examples in this book assume that all of the input data

are available when an algorithm begins running. Much of the work in

algorithm design makes the same assumption. For many important real-

world examples, however, the input actually arrives over time, and the

algorithm must decide how to proceed without knowing what data will

arrive in the future. In a data center, jobs are constantly arriving and

departing, and a scheduling algorithm must decide when and where to
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run a job, without knowing what jobs will be arriving in the future.

Traffic must be routed in the internet based on the current state, without

knowing about where traffic will arrive in the future. Hospital

emergency rooms make triage decisions about which patients to treat

first without knowing when other patients will be arriving in the future

and what treatments they will need. Algorithms that receive their input

over time, rather than having all the input present at the start, are online

algorithms, which Chapter 27 examines.

Exercises

1.1-1

Describe your own real-world example that requires sorting. Describe

one that requires finding the shortest distance between two points.

1.1-2

Other than speed, what other measures of efficiency might you need to

consider in a real-world setting?

1.1-3

Select a data structure that you have seen, and discuss its strengths and

limitations.

1.1-4

How are the shortest-path and traveling-salesperson problems given

above similar? How are they different?

1.1-5

Suggest a real-world problem in which only the best solution will do.

Then come up with one in which “approximately” the best solution is

good enough.

1.1-6

Describe a real-world problem in which sometimes the entire input is

available before you need to solve the problem, but other times the input

is not entirely available in advance and arrives over time.
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1.2      Algorithms as a technology

If computers were infinitely fast and computer memory were free, would

you have any reason to study algorithms? The answer is yes, if for no

other reason than that you would still like to be certain that your

solution method terminates and does so with the correct answer.

If computers were infinitely fast, any correct method for solving a

problem would do. You would probably want your implementation to

be within the bounds of good software engineering practice (for

example, your implementation should be well designed and

documented), but you would most often use whichever method was the

easiest to implement.

Of course, computers may be fast, but they are not infinitely fast.

Computing time is therefore a bounded resource, which makes it

precious. Although the saying goes, “Time is money,” time is even more

valuable than money: you can get back money after you spend it, but

once time is spent, you can never get it back. Memory may be

inexpensive, but it is neither infinite nor free. You should choose

algorithms that use the resources of time and space efficiently.

Efficiency

Different algorithms devised to solve the same problem often differ

dramatically in their efficiency. These differences can be much more

significant than differences due to hardware and software.

As an example, Chapter 2 introduces two algorithms for sorting. The

first, known as insertion sort, takes time roughly equal to c1n
2 to sort n

items, where c1 is a constant that does not depend on n. That is, it takes

time roughly proportional to n2. The second, merge sort, takes time

roughly equal to c2n lg n, where lg n stands for log2 n and c2 is another

constant that also does not depend on n. Insertion sort typically has a

smaller constant factor than merge sort, so that c1 < c2. We’ll see that

the constant factors can have far less of an impact on the running time

than the dependence on the input size n. Let’s write insertion sort’s

running time as c1n · n and merge sort’s running time as c2n · lg n. Then
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we see that where insertion sort has a factor of n in its running time,

merge sort has a factor of lg n, which is much smaller. For example,

when n is 1000, lg n is approximately 10, and when n is 1,000,000, lg n is

approximately only 20. Although insertion sort usually runs faster than

merge sort for small input sizes, once the input size n becomes large

enough, merge sort’s advantage of lg n versus n more than compensates

for the difference in constant factors. No matter how much smaller c1 is

than c2, there is always a crossover point beyond which merge sort is

faster.

For a concrete example, let us pit a faster computer (computer A)

running insertion sort against a slower computer (computer B) running

merge sort. They each must sort an array of 10 million numbers.

(Although 10 million numbers might seem like a lot, if the numbers are

eight-byte integers, then the input occupies about 80 megabytes, which

fits in the memory of even an inexpensive laptop computer many times

over.) Suppose that computer A executes 10 billion instructions per

second (faster than any single sequential computer at the time of this

writing) and computer B executes only 10 million instructions per

second (much slower than most contemporary computers), so that

computer A is 1000 times faster than computer B in raw computing

power. To make the difference even more dramatic, suppose that the

world’s craftiest programmer codes insertion sort in machine language

for computer A, and the resulting code requires 2n2 instructions to sort

n numbers. Suppose further that just an average programmer

implements merge sort, using a high-level language with an inefficient

compiler, with the resulting code taking 50 n lg n instructions. To sort 10

million numbers, computer A takes

while computer B takes
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By using an algorithm whose running time grows more slowly, even

with a poor compiler, computer B runs more than 17 times faster than

computer A! The advantage of merge sort is even more pronounced

when sorting 100 million numbers: where insertion sort takes more than

23 days, merge sort takes under four hours. Although 100 million might

seem like a large number, there are more than 100 million web searches

every half hour, more than 100 million emails sent every minute, and

some of the smallest galaxies (known as ultra-compact dwarf galaxies)

contain about 100 million stars. In general, as the problem size

increases, so does the relative advantage of merge sort.

Algorithms and other technologies

The example above shows that you should consider algorithms, like

computer hardware, as a technology. Total system performance depends

on choosing efficient algorithms as much as on choosing fast hardware.

Just as rapid advances are being made in other computer technologies,

they are being made in algorithms as well.

You might wonder whether algorithms are truly that important on

contemporary computers in light of other advanced technologies, such

as

advanced computer architectures and fabrication technologies,

easy-to-use, intuitive, graphical user interfaces (GUIs),

object-oriented systems,

integrated web technologies,

fast networking, both wired and wireless,

machine learning,

and mobile devices.

The answer is yes. Although some applications do not explicitly require

algorithmic content at the application level (such as some simple, web-

based applications), many do. For example, consider a web-based

service that determines how to travel from one location to another. Its

implementation would rely on fast hardware, a graphical user interface,
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wide-area networking, and also possibly on object orientation. It would

also require algorithms for operations such as finding routes (probably

using a shortest-path algorithm), rendering maps, and interpolating

addresses.

Moreover, even an application that does not require algorithmic

content at the application level relies heavily upon algorithms. Does the

application rely on fast hardware? The hardware design used

algorithms. Does the application rely on graphical user interfaces? The

design of any GUI relies on algorithms. Does the application rely on

networking? Routing in networks relies heavily on algorithms. Was the

application written in a language other than machine code? Then it was

processed by a compiler, interpreter, or assembler, all of which make

extensive use of algorithms. Algorithms are at the core of most

technologies used in contemporary computers.

Machine learning can be thought of as a method for performing

algorithmic tasks without explicitly designing an algorithm, but instead

inferring patterns from data and thereby automatically learning a

solution. At first glance, machine learning, which automates the process

of algorithmic design, may seem to make learning about algorithms

obsolete. The opposite is true, however. Machine learning is itself a

collection of algorithms, just under a different name. Furthermore, it

currently seems that the successes of machine learning are mainly for

problems for which we, as humans, do not really understand what the

right algorithm is. Prominent examples include computer vision and

automatic language translation. For algorithmic problems that humans

understand well, such as most of the problems in this book, efficient

algorithms designed to solve a specific problem are typically more

successful than machine-learning approaches.

Data science is an interdisciplinary field with the goal of extracting

knowledge and insights from structured and unstructured data. Data

science uses methods from statistics, computer science, and

optimization. The design and analysis of algorithms is fundamental to

the field. The core techniques of data science, which overlap significantly

with those in machine learning, include many of the algorithms in this

book.
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Furthermore, with the ever-increasing capacities of computers, we

use them to solve larger problems than ever before. As we saw in the

above comparison between insertion sort and merge sort, it is at larger

problem sizes that the differences in efficiency between algorithms

become particularly prominent.

Having a solid base of algorithmic knowledge and technique is one

characteristic that defines the truly skilled programmer. With modern

computing technology, you can accomplish some tasks without

knowing much about algorithms, but with a good background in

algorithms, you can do much, much more.

Exercises

1.2-1

Give an example of an application that requires algorithmic content at

the application level, and discuss the function of the algorithms

involved.

1.2-2

Suppose that for inputs of size n on a particular computer, insertion sort

runs in 8n2 steps and merge sort runs in 64 n lg n steps. For which

values of n does insertion sort beat merge sort?

1.2-3

What is the smallest value of n such that an algorithm whose running

time is 100n2 runs faster than an algorithm whose running time is 2n on

the same machine?

Problems

1-1     Comparison of running times

For each function f (n) and time t in the following table, determine the

largest size n of a problem that can be solved in time t, assuming that

the algorithm to solve the problem takes f (n) microseconds.
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Chapter notes

There are many excellent texts on the general topic of algorithms,

including those by Aho, Hopcroft, and Ullman [5, 6], Dasgupta,

Papadimitriou, and Vazirani [107], Edmonds [133], Erickson [135],

Goodrich and Tamassia [195, 196], Kleinberg and Tardos [257], Knuth

[259, 260, 261, 262, 263], Levitin [298], Louridas [305], Mehlhorn and

Sanders [325], Mitzenmacher and Upfal [331], Neapolitan [342],

Roughgarden [385, 386, 387, 388], Sanders, Mehlhorn, Dietzfelbinger,

and Dementiev [393], Sedgewick and Wayne [402], Skiena [414], Soltys-

Kulinicz [419], Wilf [455], and Williamson and Shmoys [459]. Some of

the more practical aspects of algorithm design are discussed by Bentley

[49, 50, 51], Bhargava [54], Kochenderfer and Wheeler [268], and

McGeoch [321]. Surveys of the field of algorithms can also be found in

books by Atallah and Blanton [27, 28] and Mehta and Sahhi [326]. For

less technical material, see the books by Christian and Griffiths [92],

Cormen [104], Erwig [136], MacCormick [307], and Vöcking et al. [448].

Overviews of the algorithms used in computational biology can be

found in books by Jones and Pevzner [240], Elloumi and Zomaya [134],

and Marchisio [315].
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1 Sometimes, when the problem context is known, problem instances are themselves simply

called “problems.”

2 To be precise, only decision problems—those with a “yes/no” answer—can be NP-complete.

The decision version of the traveling salesperson problem asks whether there exists an order of

stops whose distance totals at most a given amount.
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2          Getting Started

This chapter will familiarize you with the framework we’ll use

throughout the book to think about the design and analysis of

algorithms. It is self-contained, but it does include several references to

material that will be introduced in Chapters 3 and 4. (It also contains

several summations, which Appendix A shows how to solve.)

We’ll begin by examining the insertion sort algorithm to solve the

sorting problem introduced in Chapter 1. We’ll specify algorithms using

a pseudocode that should be understandable to you if you have done

computer programming. We’ll see why insertion sort correctly sorts and

analyze its running time. The analysis introduces a notation that

describes how running time increases with the number of items to be

sorted. Following a discussion of insertion sort, we’ll use a method

called divide-and-conquer to develop a sorting algorithm called merge

sort. We’ll end with an analysis of merge sort’s running time.

2.1      Insertion sort

Our first algorithm, insertion sort, solves the sorting problem introduced

in Chapter 1:

Input: A sequence of n numbers 〈a1, a2, … , an〉.

Output: A permutation (reordering)  of the input sequence

such that .
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The numbers to be sorted are also known as the keys. Although the

problem is conceptually about sorting a sequence, the input comes in

the form of an array with n elements. When we want to sort numbers,

it’s often because they are the keys associated with other data, which we

call satellite data. Together, a key and satellite data form a record. For

example, consider a spreadsheet containing student records with many

associated pieces of data such as age, grade-point average, and number

of courses taken. Any one of these quantities could be a key, but when

the spreadsheet sorts, it moves the associated record (the satellite data)

with the key. When describing a sorting algorithm, we focus on the keys,

but it is important to remember that there usually is associated satellite

data.

In this book, we’ll typically describe algorithms as procedures

written in a pseudocode that is similar in many respects to C, C++, Java,

Python,1 or JavaScript. (Apologies if we’ve omitted your favorite

programming language. We can’t list them all.) If you have been

introduced to any of these languages, you should have little trouble

understanding algorithms “coded” in pseudocode. What separates

pseudocode from real code is that in pseudocode, we employ whatever

expressive method is most clear and concise to specify a given

algorithm. Sometimes the clearest method is English, so do not be

surprised if you come across an English phrase or sentence embedded

within a section that looks more like real code. Another difference

between pseudocode and real code is that pseudocode often ignores

aspects of software engineering—such as data abstraction, modularity,

and error handling—in order to convey the essence of the algorithm

more concisely.

We start with insertion sort, which is an efficient algorithm for

sorting a small number of elements. Insertion sort works the way you

might sort a hand of playing cards. Start with an empty left hand and

the cards in a pile on the table. Pick up the first card in the pile and hold

it with your left hand. Then, with your right hand, remove one card at a

time from the pile, and insert it into the correct position in your left

hand. As Figure 2.1 illustrates, you find the correct position for a card

by comparing it with each of the cards already in your left hand,
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starting at the right and moving left. As soon as you see a card in your

left hand whose value is less than or equal to the card you’re holding in

your right hand, insert the card that you’re holding in your right hand

just to the right of this card in your left hand. If all the cards in your left

hand have values greater than the card in your right hand, then place

this card as the leftmost card in your left hand. At all times, the cards

held in your left hand are sorted, and these cards were originally the top

cards of the pile on the table.

The pseudocode for insertion sort is given as the procedure

INSERTION-SORT on the facing page. It takes two parameters: an

array A containing the values to be sorted and the number n of values of

sort. The values occupy positions A[1] through A[n] of the array, which

we denote by A[1 : n]. When the INSERTION-SORT procedure is

finished, array A[1 : n] contains the original values, but in sorted order.

Figure 2.1 Sorting a hand of cards using insertion sort.

INSERTION-SORT(A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1 : i – 1].

4 j = i – 1

5 while j > 0 and A[j] > key
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6 A[j + 1] = A[j]

7 j = j – 1

8 A[j + 1] = key

Loop invariants and the correctness of insertion sort

Figure 2.2 shows how this algorithm works for an array A that starts

out with the sequence 〈5, 2, 4, 6, 1, 3〉. The index i indicates the “current

card” being inserted into the hand. At the beginning of each iteration of

the for loop, which is indexed by i, the subarray (a contiguous portion of

the array) consisting of elements A[1 : i – 1] (that is, A[1] through A[i –

1]) constitutes the currently sorted hand, and the remaining subarray

A[i + 1 : n] (elements A[i + 1] through A[n]) corresponds to the pile of

cards still on the table. In fact, elements A[1 : i – 1] are the elements

originally in positions 1 through i – 1, but now in sorted order. We state

these properties of A[1 : i – 1] formally as a loop invariant:

Figure 2.2 The operation of INSERTION-SORT(A, n), where A initially contains the sequence

〈5, 2, 4, 6, 1, 3〉 and n = 6. Array indices appear above the rectangles, and values stored in the

array positions appear within the rectangles. (a)–(e) The iterations of the for loop of lines 1–8. In

each iteration, the blue rectangle holds the key taken from A[i], which is compared with the

values in tan rectangles to its left in the test of line 5. Orange arrows show array values moved

one position to the right in line 6, and blue arrows indicate where the key moves to in line 8. (f)

The final sorted array.

At the start of each iteration of the for loop of lines 1–8, the

subarray A[1 : i – 1] consists of the elements originally in A[1 : i

– 1], but in sorted order.

Loop invariants help us understand why an algorithm is correct.

When you’re using a loop invariant, you need to show three things:
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Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true

before the next iteration.

Termination: The loop terminates, and when it terminates, the invariant

—usually along with the reason that the loop terminated—gives us a

useful property that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to

every iteration of the loop. (Of course, you are free to use established

facts other than the loop invariant itself to prove that the loop invariant

remains true before each iteration.) A loop-invariant proof is a form of

mathematical induction, where to prove that a property holds, you

prove a base case and an inductive step. Here, showing that the

invariant holds before the first iteration corresponds to the base case,

and showing that the invariant holds from iteration to iteration

corresponds to the inductive step.

The third property is perhaps the most important one, since you are

using the loop invariant to show correctness. Typically, you use the loop

invariant along with the condition that caused the loop to terminate.

Mathematical induction typically applies the inductive step infinitely,

but in a loop invariant the “induction” stops when the loop terminates.

Let’s see how these properties hold for insertion sort.

Initialization: We start by showing that the loop invariant holds before

the first loop iteration, when i = 2.2 The subarray A[1 : i – 1] consists

of just the single element A[1], which is in fact the original element in

A[1]. Moreover, this subarray is sorted (after all, how could a subarray

with just one value not be sorted?), which shows that the loop

invariant holds prior to the first iteration of the loop.

Maintenance: Next, we tackle the second property: showing that each

iteration maintains the loop invariant. Informally, the body of the for

loop works by moving the values in A[i – 1], A[i – 2], A[i – 3], and so

on by one position to the right until it finds the proper position for

A[i] (lines 4–7), at which point it inserts the value of A[i] (line 8). The

subarray A[1 : i] then consists of the elements originally in A[1 : i], but
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in sorted order. Incrementing i (increasing its value by 1) for the next

iteration of the for loop then preserves the loop invariant.

A more formal treatment of the second property would require us to

state and show a loop invariant for the while loop of lines 5–7. Let’s

not get bogged down in such formalism just yet. Instead, we’ll rely on

our informal analysis to show that the second property holds for the

outer loop.

Termination: Finally, we examine loop termination. The loop variable i

starts at 2 and increases by 1 in each iteration. Once i’s value exceeds n

in line 1, the loop terminates. That is, the loop terminates once i

equals n + 1. Substituting n + 1 for i in the wording of the loop

invariant yields that the subarray A[1 : n] consists of the elements

originally in A[1 : n], but in sorted order. Hence, the algorithm is

correct.

This method of loop invariants is used to show correctness in various

places throughout this book.

Pseudocode conventions

We use the following conventions in our pseudocode.

Indentation indicates block structure. For example, the body of

the for loop that begins on line 1 consists of lines 2–8, and the

body of the while loop that begins on line 5 contains lines 6–7 but

not line 8. Our indentation style applies to if-else statements3 as

well. Using indentation instead of textual indicators of block

structure, such as begin and end statements or curly braces,

reduces clutter while preserving, or even enhancing, clarity.4

The looping constructs while, for, and repeat-until and the if-else

conditional construct have interpretations similar to those in C,

C++, Java, Python, and JavaScript.5 In this book, the loop

counter retains its value after the loop is exited, unlike some

situations that arise in C++ and Java. Thus, immediately after a

for loop, the loop counter’s value is the value that first exceeded
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the for loop bound.6 We used this property in our correctness

argument for insertion sort. The for loop header in line 1 is for i =

2 to n, and so when this loop terminates, i equals n + 1. We use the

keyword to when a for loop increments its loop counter in each

iteration, and we use the keyword downto when a for loop

decrements its loop counter (reduces its value by 1 in each

iteration). When the loop counter changes by an amount greater

than 1, the amount of change follows the optional keyword by.

The symbol “//” indicates that the remainder of the line is a

comment.

Variables (such as i, j, and key) are local to the given procedure.

We won’t use global variables without explicit indication.

We access array elements by specifying the array name followed

by the index in square brackets. For example, A[i] indicates the ith

element of the array A.

Although many programming languages enforce 0-origin indexing

for arrays (0 is the smallest valid index), we choose whichever

indexing scheme is clearest for human readers to understand.

Because people usually start counting at 1, not 0, most—but not

all—of the arrays in this book use 1-origin indexing. To be clear

about whether a particular algorithm assumes 0-origin or 1-origin

indexing, we’ll specify the bounds of the arrays explicitly. If you

are implementing an algorithm that we specify using 1-origin

indexing, but you’re writing in a programming language that

enforces 0-origin indexing (such as C, C++, Java, Python, or

JavaScript), then give yourself credit for being able to adjust. You

can either always subtract 1 from each index or allocate each

array with one extra position and just ignore position 0.

The notation “:” denotes a subarray. Thus, A[i : j] indicates the

subarray of A consisting of the elements A[i], A[i + 1], … , A[j].7

We also use this notation to indicate the bounds of an array, as we

did earlier when discussing the array A[1 : n].
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We typically organize compound data into objects, which are

composed of attributes. We access a particular attribute using the

syntax found in many object-oriented programming languages:

the object name, followed by a dot, followed by the attribute

name. For example, if an object x has attribute f, we denote this

attribute by x.f.

We treat a variable representing an array or object as a pointer

(known as a reference in some programming languages) to the

data representing the array or object. For all attributes f of an

object x, setting y = x causes y.f to equal x.f. Moreover, if we now

set x.f = 3, then afterward not only does x.f equal 3, but y.f equals

3 as well. In other words, x and y point to the same object after

the assignment y = x. This way of treating arrays and objects is

consistent with most contemporary programming languages.

Our attribute notation can “cascade.” For example, suppose that

the attribute f is itself a pointer to some type of object that has an

attribute g. Then the notation x.f.g is implicitly parenthesized as

(x.f).g. In other words, if we had assigned y = x.f, then x.f.g is the

same as y.g.

Sometimes a pointer refers to no object at all. In this case, we give

it the special value NIL.

We pass parameters to a procedure by value: the called procedure

receives its own copy of the parameters, and if it assigns a value to

a parameter, the change is not seen by the calling procedure. When

objects are passed, the pointer to the data representing the object

is copied, but the object’s attributes are not. For example, if x is a

parameter of a called procedure, the assignment x = y within the

called procedure is not visible to the calling procedure. The

assignment x.f = 3, however, is visible if the calling procedure has

a pointer to the same object as x. Similarly, arrays are passed by

pointer, so that a pointer to the array is passed, rather than the

entire array, and changes to individual array elements are visible

to the calling procedure. Again, most contemporary programming

languages work this way.
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A return statement immediately transfers control back to the

point of call in the calling procedure. Most return statements also

take a value to pass back to the caller. Our pseudocode differs

from many programming languages in that we allow multiple

values to be returned in a single return statement without having

to create objects to package them together.8

The boolean operators “and” and “or” are short circuiting. That

is, evaluate the expression “x and y” by first evaluating x. If x

evaluates to FALSE, then the entire expression cannot evaluate to

TRUE, and therefore y is not evaluated. If, on the other hand, x

evaluates to TRUE, y must be evaluated to determine the value of

the entire expression. Similarly, in the expression “x or y” the

expression y is evaluated only if x evaluates to FALSE. Short-

circuiting operators allow us to write boolean expressions such as

“x ≠ NIL and x.f = y” without worrying about what happens

upon evaluating x.f when x is NIL.

The keyword error indicates that an error occurred because

conditions were wrong for the procedure to have been called, and

the procedure immediately terminates. The calling procedure is

responsible for handling the error, and so we do not specify what

action to take.

Exercises

2.1-1

Using Figure 2.2 as a model, illustrate the operation of INSERTION-

SORT on an array initially containing the sequence 〈31, 41, 59, 26, 41,

58〉.

2.1-2

Consider the procedure SUM-ARRAY on the facing page. It computes

the sum of the n numbers in array A[1 : n]. State a loop invariant for this

procedure, and use its initialization, maintenance, and termination

properties to show that the SUM-ARRAY procedure returns the sum of

the numbers in A[1 : n].
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SUM-ARRAY(A, n)

1 sum = 0

2 for i = 1 to n

3 sum = sum + A[i]

4 return sum

2.1-3

Rewrite the INSERTION-SORT procedure to sort into monotonically

decreasing instead of monotonically increasing order.

2.1-4

Consider the searching problem:

Input: A sequence of n numbers 〈a1, a2, … , an〉 stored in array A[1 : n]

and a value x.

Output: An index i such that x equals A[i] or the special value NIL if x

does not appear in A.

Write pseudocode for linear search, which scans through the array

from beginning to end, looking for x. Using a loop invariant, prove that

your algorithm is correct. Make sure that your loop invariant fulfills the

three necessary properties.

2.1-5

Consider the problem of adding two n-bit binary integers a and b,

stored in two n-element arrays A[0 : n – 1] and B[0 : n – 1], where each

element is either 0 or 1, , and . The

sum c = a + b of the two integers should be stored in binary form in an

(n + 1)-element array C [0 : n], where . Write a procedure

ADD-BINARY-INTEGERS that takes as input arrays A and B, along

with the length n, and returns array C holding the sum.

2.2      Analyzing algorithms
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Analyzing an algorithm has come to mean predicting the resources that

the algorithm requires. You might consider resources such as memory,

communication bandwidth, or energy consumption. Most often,

however, you’ll want to measure computational time. If you analyze

several candidate algorithms for a problem, you can identify the most

efficient one. There might be more than just one viable candidate, but

you can often rule out several inferior algorithms in the process.

Before you can analyze an algorithm, you need a model of the

technology that it runs on, including the resources of that technology

and a way to express their costs. Most of this book assumes a generic

one-processor, random-access machine (RAM) model of computation

as the implementation technology, with the understanding that

algorithms are implemented as computer programs. In the RAM model,

instructions execute one after another, with no concurrent operations.

The RAM model assumes that each instruction takes the same amount

of time as any other instruction and that each data access—using the

value of a variable or storing into a variable—takes the same amount of

time as any other data access. In other words, in the RAM model each

instruction or data access takes a constant amount of time—even

indexing into an array.9

Strictly speaking, we should precisely define the instructions of the

RAM model and their costs. To do so, however, would be tedious and

yield little insight into algorithm design and analysis. Yet we must be

careful not to abuse the RAM model. For example, what if a RAM had

an instruction that sorts? Then you could sort in just one step. Such a

RAM would be unrealistic, since such instructions do not appear in real

computers. Our guide, therefore, is how real computers are designed.

The RAM model contains instructions commonly found in real

computers: arithmetic (such as add, subtract, multiply, divide,

remainder, floor, ceiling), data movement (load, store, copy), and

control (conditional and unconditional branch, subroutine call and

return).

The data types in the RAM model are integer, floating point (for

storing real-number approximations), and character. Real computers do

not usually have a separate data type for the boolean values TRUE and
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FALSE. Instead, they often test whether an integer value is 0 (FALSE)

or nonzero (TRUE), as in C. Although we typically do not concern

ourselves with precision for floating-point values in this book (many

numbers cannot be represented exactly in floating point), precision is

crucial for most applications. We also assume that each word of data

has a limit on the number of bits. For example, when working with

inputs of size n, we typically assume that integers are represented by c

log2 n bits for some constant c ≥ 1. We require c ≥ 1 so that each word

can hold the value of n, enabling us to index the individual input

elements, and we restrict c to be a constant so that the word size does

not grow arbitrarily. (If the word size could grow arbitrarily, we could

store huge amounts of data in one word and operate on it all in

constant time—an unrealistic scenario.)

Real computers contain instructions not listed above, and such

instructions represent a gray area in the RAM model. For example, is

exponentiation a constant-time instruction? In the general case, no: to

compute xn when x and n are general integers typically takes time

logarithmic in n (see equation (31.34) on page 934), and you must worry

about whether the result fits into a computer word. If n is an exact

power of 2, however, exponentiation can usually be viewed as a

constant-time operation. Many computers have a “shift left”

instruction, which in constant time shifts the bits of an integer by n

positions to the left. In most computers, shifting the bits of an integer

by 1 position to the left is equivalent to multiplying by 2, so that shifting

the bits by n positions to the left is equivalent to multiplying by 2n.

Therefore, such computers can compute 2n in 1 constant-time

instruction by shifting the integer 1 by n positions to the left, as long as

n is no more than the number of bits in a computer word. We’ll try to

avoid such gray areas in the RAM model and treat computing 2n and

multiplying by 2n as constant-time operations when the result is small

enough to fit in a computer word.

The RAM model does not account for the memory hierarchy that is

common in contemporary computers. It models neither caches nor

virtual memory. Several other computational models attempt to
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account for memory-hierarchy effects, which are sometimes significant

in real programs on real machines. Section 11.5 and a handful of

problems in this book examine memory-hierarchy effects, but for the

most part, the analyses in this book do not consider them. Models that

include the memory hierarchy are quite a bit more complex than the

RAM model, and so they can be difficult to work with. Moreover,

RAM-model analyses are usually excellent predictors of performance

on actual machines.

Although it is often straightforward to analyze an algorithm in the

RAM model, sometimes it can be quite a challenge. You might need to

employ mathematical tools such as combinatorics, probability theory,

algebraic dexterity, and the ability to identify the most significant terms

in a formula. Because an algorithm might behave differently for each

possible input, we need a means for summarizing that behavior in

simple, easily understood formulas.

Analysis of insertion sort

How long does the INSERTION-SORT procedure take? One way to tell

would be for you to run it on your computer and time how long it takes

to run. Of course, you’d first have to implement it in a real programming

language, since you cannot run our pseudocode directly. What would

such a timing test tell you? You would find out how long insertion sort

takes to run on your particular computer, on that particular input,

under the particular implementation that you created, with the

particular compiler or interpreter that you ran, with the particular

libraries that you linked in, and with the particular background tasks

that were running on your computer concurrently with your timing test

(such as checking for incoming information over a network). If you run

insertion sort again on your computer with the same input, you might

even get a different timing result. From running just one

implementation of insertion sort on just one computer and on just one

input, what would you be able to determine about insertion sort’s

running time if you were to give it a different input, if you were to run it

on a different computer, or if you were to implement it in a different

www.konkur.in

Telegram: @uni_k



programming language? Not much. We need a way to predict, given a

new input, how long insertion sort will take.

Instead of timing a run, or even several runs, of insertion sort, we

can determine how long it takes by analyzing the algorithm itself. We’ll

examine how many times it executes each line of pseudocode and how

long each line of pseudocode takes to run. We’ll first come up with a

precise but complicated formula for the running time. Then, we’ll distill

the important part of the formula using a convenient notation that can

help us compare the running times of different algorithms for the same

problem.

How do we analyze insertion sort? First, let’s acknowledge that the

running time depends on the input. You shouldn’t be terribly surprised

that sorting a thousand numbers takes longer than sorting three

numbers. Moreover, insertion sort can take different amounts of time to

sort two input arrays of the same size, depending on how nearly sorted

they already are. Even though the running time can depend on many

features of the input, we’ll focus on the one that has been shown to have

the greatest effect, namely the size of the input, and describe the

running time of a program as a function of the size of its input. To do

so, we need to define the terms “running time” and “input size” more

carefully. We also need to be clear about whether we are discussing the

running time for an input that elicits the worst-case behavior, the best-

case behavior, or some other case.

The best notion for input size depends on the problem being studied.

For many problems, such as sorting or computing discrete Fourier

transforms, the most natural measure is the number of items in the input

—for example, the number n of items being sorted. For many other

problems, such as multiplying two integers, the best measure of input

size is the total number of bits needed to represent the input in ordinary

binary notation. Sometimes it is more appropriate to describe the size of

the input with more than just one number. For example, if the input to

an algorithm is a graph, we usually characterize the input size by both

the number of vertices and the number of edges in the graph. We’ll

indicate which input size measure is being used with each problem we

study.
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The running time of an algorithm on a particular input is the number

of instructions and data accesses executed. How we account for these

costs should be independent of any particular computer, but within the

framework of the RAM model. For the moment, let us adopt the

following view. A constant amount of time is required to execute each

line of our pseudocode. One line might take more or less time than

another line, but we’ll assume that each execution of the kth line takes

ck time, where ck is a constant. This viewpoint is in keeping with the

RAM model, and it also reflects how the pseudocode would be

implemented on most actual computers.10

Let’s analyze the INSERTION-SORT procedure. As promised, we’ll

start by devising a precise formula that uses the input size and all the

statement costs ck. This formula turns out to be messy, however. We’ll

then switch to a simpler notation that is more concise and easier to use.

This simpler notation makes clear how to compare the running times of

algorithms, especially as the size of the input increases.

To analyze the INSERTION-SORT procedure, let’s view it on the

following page with the time cost of each statement and the number of

times each statement is executed. For each i = 2, 3, … , n, let ti denote

the number of times the while loop test in line 5 is executed for that

value of i. When a for or while loop exits in the usual way—because the

test in the loop header comes up FALSE—the test is executed one time

more than the loop body. Because comments are not executable

statements, assume that they take no time.

The running time of the algorithm is the sum of running times for

each statement executed. A statement that takes ck steps to execute and

executes m times contributes ckm to the total running time.11 We

usually denote the running time of an algorithm on an input of size n by

T (n). To compute T (n), the running time of INSERTION-SORT on an

input of n values, we sum the products of the cost and times columns,

obtaining

INSERTION-SORT(A, n) costtimes
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1 for i = 2 to n c1 n

2 key = A[i] c2 n – 1

3 // Insert A[i] into the sorted subarray A[1 : i – 1]. 0 n – 1

4 j = i – 1 c4 n – 1

5 while j > 0 and A[j] > key c5

6 A[j + 1] = A[j] c6

7 j = j – 1 c7

8 A[j + 1] = key c8 n – 1

Even for inputs of a given size, an algorithm’s running time may

depend on which input of that size is given. For example, in

INSERTION-SORT, the best case occurs when the array is already

sorted. In this case, each time that line 5 executes, the value of key—the

value originally in A[i]—is already greater than or equal to all values in

A[1 : i – 1], so that the while loop of lines 5–7 always exits upon the first

test in line 5. Therefore, we have that ti = 1 for i = 2, 3, … , n, and the

best-case running time is given by

We can express this running time as an + b for constants a and b that

depend on the statement costs ck (where a = c1 + c2 + c4 + c5 + c8 and

b = c2 + c4 + c5 + c8). The running time is thus a linear function of n.

The worst case arises when the array is in reverse sorted order—that

is, it starts out in decreasing order. The procedure must compare each

element A[i] with each element in the entire sorted subarray A[1 : i – 1],

and so ti = i for i = 2, 3, … , n. (The procedure finds that A[j] > key
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every time in line 5, and the while loop exits only when j reaches 0.)

Noting that

and

we find that in the worst case, the running time of INSERTION-SORT

is

We can express this worst-case running time as an2 + bn + c for

constants a, b, and c that again depend on the statement costs ck (now,

a = c5/2 + c6/2 + c7/2, b = c1 + c2 + c4 + c5/2 – c6/2 – c7/2 + c8, and c

= –(c2 + c4 + c5 + c8)). The running time is thus a quadratic function of

n.

Typically, as in insertion sort, the running time of an algorithm is

fixed for a given input, although we’ll also see some interesting

“randomized” algorithms whose behavior can vary even for a fixed

input.

Worst-case and average-case analysis
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Our analysis of insertion sort looked at both the best case, in which the

input array was already sorted, and the worst case, in which the input

array was reverse sorted. For the remainder of this book, though, we’ll

usually (but not always) concentrate on finding only the worst-case

running time, that is, the longest running time for any input of size n.

Why? Here are three reasons:

The worst-case running time of an algorithm gives an upper

bound on the running time for any input. If you know it, then you

have a guarantee that the algorithm never takes any longer. You

need not make some educated guess about the running time and

hope that it never gets much worse. This feature is especially

important for real-time computing, in which operations must

complete by a deadline.

For some algorithms, the worst case occurs fairly often. For

example, in searching a database for a particular piece of

information, the searching algorithm’s worst case often occurs

when the information is not present in the database. In some

applications, searches for absent information may be frequent.

The “average case” is often roughly as bad as the worst case.

Suppose that you run insertion sort on an array of n randomly

chosen numbers. How long does it take to determine where in

subarray A[1 : i – 1] to insert element A[i]? On average, half the

elements in A[1 : i – 1] are less than A[i], and half the elements are

greater. On average, therefore, A[i] is compared with just half of

the subarray A[1 : i – 1], and so ti is about i/2. The resulting

average-case running time turns out to be a quadratic function of

the input size, just like the worst-case running time.

In some particular cases, we’ll be interested in the average-case

running time of an algorithm. We’ll see the technique of probabilistic

analysis applied to various algorithms throughout this book. The scope

of average-case analysis is limited, because it may not be apparent what

constitutes an “average” input for a particular problem. Often, we’ll

assume that all inputs of a given size are equally likely. In practice, this

assumption may be violated, but we can sometimes use a randomized

www.konkur.in

Telegram: @uni_k



algorithm, which makes random choices, to allow a probabilistic

analysis and yield an expected running time. We explore randomized

algorithms more in Chapter 5 and in several other subsequent chapters.

Order of growth

In order to ease our analysis of the INSERTION-SORT procedure, we

used some simplifying abstractions. First, we ignored the actual cost of

each statement, using the constants ck to represent these costs. Still, the

best-case and worst-case running times in equations (2.1) and (2.2) are

rather unwieldy. The constants in these expressions give us more detail

than we really need. That’s why we also expressed the best-case running

time as an + b for constants a and b that depend on the statement costs

ck and why we expressed the worst-case running time as an2 + bn + c

for constants a, b, and c that depend on the statement costs. We thus

ignored not only the actual statement costs, but also the abstract costs

ck.

Let’s now make one more simplifying abstraction: it is the rate of

growth, or order of growth, of the running time that really interests us.

We therefore consider only the leading term of a formula (e.g., an2),

since the lower-order terms are relatively insignificant for large values of

n. We also ignore the leading term’s constant coefficient, since constant

factors are less significant than the rate of growth in determining

computational efficiency for large inputs. For insertion sort’s worst-case

running time, when we ignore the lower-order terms and the leading

term’s constant coefficient, only the factor of n2 from the leading term

remains. That factor, n2, is by far the most important part of the

running time. For example, suppose that an algorithm implemented on

a particular machine takes n2/100 + 100n + 17 microseconds on an

input of size n. Although the coefficients of 1/100 for the n2 term and

100 for the n term differ by four orders of magnitude, the n2/100 term

dominates the 100n term once n exceeds 10,000. Although 10,000 might

seem large, it is smaller than the population of an average town. Many

real-world problems have much larger input sizes.
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To highlight the order of growth of the running time, we have a

special notation that uses the Greek letter Θ (theta). We write that

insertion sort has a worst-case running time of Θ(n2) (pronounced

“theta of n-squared” or just “theta n-squared”). We also write that

insertion sort has a best-case running time of Θ(n) (“theta of n” or

“theta n”). For now, think of Θ-notation as saying “roughly

proportional when n is large,” so that Θ(n2) means “roughly

proportional to n2 when n is large” and Θ(n) means “roughly

proportional to n when n is large” We’ll use Θ-notation informally in

this chapter and define it precisely in Chapter 3.

We usually consider one algorithm to be more efficient than another

if its worst-case running time has a lower order of growth. Due to

constant factors and lower-order terms, an algorithm whose running

time has a higher order of growth might take less time for small inputs

than an algorithm whose running time has a lower order of growth. But

on large enough inputs, an algorithm whose worst-case running time is

Θ(n2), for example, takes less time in the worst case than an algorithm

whose worst-case running time is Θ(n3). Regardless of the constants

hidden by the Θ-notation, there is always some number, say n0, such

that for all input sizes n ≥ n0, the Θ(n2) algorithm beats the Θ(n3)

algorithm in the worst case.

Exercises

2.2-1

Express the function n3/1000 + 100n2 – 100n + 3 in terms of Θ-

notation.

2.2-2

Consider sorting n numbers stored in array A[1 : n] by first finding the

smallest element of A[1 : n] and exchanging it with the element in A[1].

Then find the smallest element of A[2 : n], and exchange it with A[2].

Then find the smallest element of A[3 : n], and exchange it with A[3].

Continue in this manner for the first n – 1 elements of A. Write

www.konkur.in

Telegram: @uni_k



pseudocode for this algorithm, which is known as selection sort. What

loop invariant does this algorithm maintain? Why does it need to run

for only the first n – 1 elements, rather than for all n elements? Give the

worst-case running time of selection sort in Θ-notation. Is the best-case

running time any better?

2.2-3

Consider linear search again (see Exercise 2.1-4). How many elements of

the input array need to be checked on the average, assuming that the

element being searched for is equally likely to be any element in the

array? How about in the worst case? Using Θ-notation, give the average-

case and worst-case running times of linear search. Justify your answers.

2.2-4

How can you modify any sorting algorithm to have a good best-case

running time?

2.3      Designing algorithms

You can choose from a wide range of algorithm design techniques.

Insertion sort uses the incremental method: for each element A[i], insert

it into its proper place in the subarray A[1 : i], having already sorted the

subarray A[1 : i – 1].

This section examines another design method, known as “divide-

and-conquer,” which we explore in more detail in Chapter 4. We’ll use

divide-and-conquer to design a sorting algorithm whose worst-case

running time is much less than that of insertion sort. One advantage of

using an algorithm that follows the divide-and-conquer method is that

analyzing its running time is often straightforward, using techniques

that we’ll explore in Chapter 4.

2.3.1    The divide-and-conquer method

Many useful algorithms are recursive in structure: to solve a given

problem, they recurse (call themselves) one or more times to handle

closely related subproblems. These algorithms typically follow the
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divide-and-conquer method: they break the problem into several

subproblems that are similar to the original problem but smaller in size,

solve the subproblems recursively, and then combine these solutions to

create a solution to the original problem.

In the divide-and-conquer method, if the problem is small enough—

the base case—you just solve it directly without recursing. Otherwise—

the recursive case—you perform three characteristic steps:

Divide the problem into one or more subproblems that are smaller

instances of the same problem.

Conquer the subproblems by solving them recursively.

Combine the subproblem solutions to form a solution to the original

problem.

The merge sort algorithm closely follows the divide-and-conquer

method. In each step, it sorts a subarray A[p : r], starting with the entire

array A[1 : n] and recursing down to smaller and smaller subarrays.

Here is how merge sort operates:

Divide the subarray A[p : r] to be sorted into two adjacent subarrays,

each of half the size. To do so, compute the midpoint q of A[p : r]

(taking the average of p and r), and divide A[p : r] into subarrays A[p :

q] and A[q + 1 : r].

Conquer by sorting each of the two subarrays A[p : q] and A[q + 1 : r]

recursively using merge sort.

Combine by merging the two sorted subarrays A[p : q] and A[q + 1 : r]

back into A[p : r], producing the sorted answer.

The recursion “bottoms out”—it reaches the base case—when the

subarray A[p : r] to be sorted has just 1 element, that is, when p equals r.

As we noted in the initialization argument for INSERTION-SORT’s

loop invariant, a subarray comprising just a single element is always

sorted.

The key operation of the merge sort algorithm occurs in the

“combine” step, which merges two adjacent, sorted subarrays. The

merge operation is performed by the auxiliary procedure MERGE(A, p,
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q, r) on the following page, where A is an array and p, q, and r are

indices into the array such that p ≤ q < r. The procedure assumes that

the adjacent subarrays A[p : q] and A[q + 1 : r] were already recursively

sorted. It merges the two sorted subarrays to form a single sorted

subarray that replaces the current subarray A[p : r].

To understand how the MERGE procedure works, let’s return to our

card-playing motif. Suppose that you have two piles of cards face up on

a table. Each pile is sorted, with the smallest-value cards on top. You

wish to merge the two piles into a single sorted output pile, which is to

be face down on the table. The basic step consists of choosing the

smaller of the two cards on top of the face-up piles, removing it from its

pile—which exposes a new top card—and placing this card face down

onto the output pile. Repeat this step until one input pile is empty, at

which time you can just take the remaining input pile and flip over the

entire pile, placing it face down onto the output pile.

Let’s think about how long it takes to merge two sorted piles of

cards. Each basic step takes constant time, since you are comparing just

the two top cards. If the two sorted piles that you start with each have

n/2 cards, then the number of basic steps is at least n/2 (since in

whichever pile was emptied, every card was found to be smaller than

some card from the other pile) and at most n (actually, at most n – 1,

since after n – 1 basic steps, one of the piles must be empty). With each

basic step taking constant time and the total number of basic steps

being between n/2 and n, we can say that merging takes time roughly

proportional to n. That is, merging takes Θ(n) time.

In detail, the MERGE procedure works as follows. It copies the two

subarrays A[p : q] and A[q + 1 : r] into temporary arrays L and R (“left”

and “right”), and then it merges the values in L and R back into A[p : r].

Lines 1 and 2 compute the lengths nL and nR of the subarrays A[p : q]

and A[q + 1 : r], respectively. Then line 3 creates arrays L[0 : nL – 1] and

R[0 : nR – 1] with respective lengths nL and nR.12 The for loop of lines

4–5 copies the subarray A[p : q] into L, and the for loop of lines 6–7

copies the subarray A[q + 1 : r] into R.
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MERGE(A, p, q, r)

  1nL = q – p + 1 // length of A[p : q]

  2nR = r – q // length of A[q + 1 : r]

  3 let L[0 : nL – 1] and R[0 : nR – 1] be new arrays

  4 for i = 0 to nL – 1 // copy A[p : q] into L[0 : nL – 1]

  5 L[i] = A[p + i]

  6 for j = 0 to nR – 1 // copy A[q + 1 : r] into R[0 : nR – 1]

  7 R[j] = A[q + j + 1]

  8 i = 0 // i indexes the smallest remaining element in L

  9 j = 0 // j indexes the smallest remaining element in R

10k = p // k indexes the location in A to fill

11 // As long as each of the arrays L and R contains an unmerged

element,

//          copy the smallest unmerged element back into A[p : r].

12while i < nL and j < nR

13 if L[i] ≤ R[j]

14 A[k] = L[i]

15 i = i + 1

16 else A[k] = R[j]

17 j = j + 1

18 k = k + 1

19 // Having gone through one of L and R entirely, copy the

//          remainder of the other to the end of A[p : r].

20while i < nL

21 A[k] = L[i]

22 i = i + 1

23 k = k + 1

24while j < nR

25 A[k] = R[j]

26 j = j + 1

27 k = k + 1
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Lines 8–18, illustrated in Figure 2.3, perform the basic steps. The

while loop of lines 12–18 repeatedly identifies the smallest value in L

and R that has yet to be copied back into A[p : r] and copies it back in.

As the comments indicate, the index k gives the position of A that is

being filled in, and the indices i and j give the positions in L and R,

respectively, of the smallest remaining values. Eventually, either all of L

or all of R is copied back into A[p : r], and this loop terminates. If the

loop terminates because all of R has been copied back, that is, because j

equals nR, then i is still less than nL, so that some of L has yet to be

copied back, and these values are the greatest in both L and R. In this

case, the while loop of lines 20–23 copies these remaining values of L

into the last few positions of A[p : r]. Because j equals nR, the while loop

of lines 24–27 iterates 0 times. If instead the while loop of lines 12–18

terminates because i equals nL, then all of L has already been copied

back into A[p : r], and the while loop of lines 24–27 copies the remaining

values of R back into the end of A[p : r].
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Figure 2.3 The operation of the while loop in lines 8–18 in the call MERGE(A, 9, 12, 16), when

the subarray A[9 : 16] contains the values 〈2, 4, 6, 7, 1, 2, 3, 5〉. After allocating and copying into

the arrays L and R, the array L contains 〈2, 4, 6, 7〉, and the array R contains 〈1, 2, 3, 5〉. Tan

positions in A contain their final values, and tan positions in L and R contain values that have

yet to be copied back into A. Taken together, the tan positions always comprise the values

originally in A[9 : 16]. Blue positions in A contain values that will be copied over, and dark

positions in L and R contain values that have already been copied back into A. (a)–(g) The

arrays A, L, and R, and their respective indices k, i, and j prior to each iteration of the loop of

lines 12–18. At the point in part (g), all values in R have been copied back into A (indicated by j

equaling the length of R), and so the while loop in lines 12–18 terminates. (h) The arrays and

indices at termination. The while loops of lines 20–23 and 24–27 copied back into A the

remaining values in L and R, which are the largest values originally in A[9 : 16]. Here, lines 20–

23 copied L[2 : 3] into A[15 : 16], and because all values in R had already been copied back into

A, the while loop of lines 24–27 iterated 0 times. At this point, the subarray in A[9 : 16] is sorted.

To see that the MERGE procedure runs in Θ(n) time, where n = r – p

+ 1,13 observe that each of lines 1–3 and 8–10 takes constant time, and

the for loops of lines 4–7 take Θ(nL + nR) = Θ(n) time.14 To account for

the three while loops of lines 12–18, 20–23, and 24–27, observe that each

iteration of these loops copies exactly one value from L or R back into

A and that every value is copied back into A exactly once. Therefore,

these three loops together make a total of n iterations. Since each

iteration of each of the three loops takes constant time, the total time

spent in these three loops is Θ(n).

We can now use the MERGE procedure as a subroutine in the merge

sort algorithm. The procedure MERGE-SORT(A, p, r) on the facing

page sorts the elements in the subarray A[p : r]. If p equals r, the

subarray has just 1 element and is therefore already sorted. Otherwise,

we must have p < r, and MERGE-SORT runs the divide, conquer, and

combine steps. The divide step simply computes an index q that

partitions A[p : r] into two adjacent subarrays: A[p : q], containing ⌈n/2⌉
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elements, and A[q + 1 : r], containing ⌊n/2⌋ elements.15 The initial call

MERGE-SORT(A, 1, n) sorts the entire array A[1 : n].

Figure 2.4 illustrates the operation of the procedure for n = 8,

showing also the sequence of divide and merge steps. The algorithm

recursively divides the array down to 1-element subarrays. The combine

steps merge pairs of 1-element subarrays to form sorted subarrays of

length 2, merges those to form sorted subarrays of length 4, and merges

those to form the final sorted subarray of length 8. If n is not an exact

power of 2, then some divide steps create subarrays whose lengths differ

by 1. (For example, when dividing a subarray of length 7, one subarray

has length 4 and the other has length 3.) Regardless of the lengths of the

two subarrays being merged, the time to merge a total of n items is Θ(n).

MERGE-SORT(A, p, r)

1 if p ≥ r // zero or one element?

2 return

3 q = ⌊(p + r)/2⌋ // midpoint of A[p : r]

4 MERGE-SORT(A, p, q) // recursively sort A[p : q]

5 MERGE-SORT(A, q + 1, r) // recursively sort A[q + 1 : r]

6 // Merge A[p : q] and A[q + 1 : r] into A[p : r].

7 MERGE(A, p, q, r)

2.3.2    Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call, you can often describe its

running time by a recurrence equation or recurrence, which describes the

overall running time on a problem of size n in terms of the running time

of the same algorithm on smaller inputs. You can then use mathematical

tools to solve the recurrence and provide bounds on the performance of

the algorithm.

A recurrence for the running time of a divide-and-conquer algorithm

falls out from the three steps of the basic method. As we did for

insertion sort, let T (n) be the worst-case running time on a problem of

size n. If the problem size is small enough, say n < n0 for some constant

n0 > 0, the straightforward solution takes constant time, which we write
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as Θ(1).16 Suppose that the division of the problem yields a

subproblems, each with size n/b, that is, 1/b the size of the original. For

merge sort, both a and b are 2, but we’ll see other divide-and-conquer

algorithms in which a ≠ b. It takes T (n/b) time to solve one subproblem

of size n/b, and so it takes aT (n/b) time to solve all a of them. If it takes

D(n) time to divide the problem into subproblems and C(n) time to

combine the solutions to the subproblems into the solution to the

original problem, we get the recurrence

Chapter 4 shows how to solve common recurrences of this form.
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Figure 2.4 The operation of merge sort on the array A with length 8 that initially contains the

sequence 〈12, 3, 7, 9, 14, 6, 11, 2〉. The indices p, q, and r into each subarray appear above their

values. Numbers in italics indicate the order in which the MERGE-SORT and MERGE

procedures are called following the initial call of MERGE-SORT(A, 1, 8).

Sometimes, the n/b size of the divide step isn’t an integer. For

example, the MERGE-SORT procedure divides a problem of size n into

subproblems of sizes ⌈n/2⌉ and ⌊n/2⌋. Since the difference between ⌈n/2⌉

and ⌊n/2⌋ is at most 1, which for large n is much smaller than the effect

of dividing n by 2, we’ll squint a little and just call them both size n/2.

As Chapter 4 will discuss, this simplification of ignoring floors and
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ceilings does not generally affect the order of growth of a solution to a

divide-and-conquer recurrence.

Another convention we’ll adopt is to omit a statement of the base

cases of the recurrence, which we’ll also discuss in more detail in

Chapter 4. The reason is that the base cases are pretty much always T

(n) = Θ(1) if n < n0 for some constant n0 > 0. That’s because the

running time of an algorithm on an input of constant size is constant.

We save ourselves a lot of extra writing by adopting this convention.

Analysis of merge sort

Here’s how to set up the recurrence for T (n), the worst-case running

time of merge sort on n numbers.

Divide: The divide step just computes the middle of the subarray, which

takes constant time. Thus, D(n) = Θ(1).

Conquer: Recursively solving two subproblems, each of size n/2,

contributes 2T (n/2) to the running time (ignoring the floors and

ceilings, as we discussed).

Combine: Since the MERGE procedure on an n-element subarray takes

Θ(n) time, we have C(n) = Θ(n).

When we add the functions D(n) and C(n) for the merge sort

analysis, we are adding a function that is Θ(n) and a function that is

Θ(1). This sum is a linear function of n. That is, it is roughly

proportional to n when n is large, and so merge sort’s dividing and

combining times together are Θ(n). Adding Θ(n) to the 2T (n/2) term

from the conquer step gives the recurrence for the worst-case running

time T (n) of merge sort:

Chapter 4 presents the “master theorem,” which shows that T (n) = Θ(n

lg n).17 Compared with insertion sort, whose worst-case running time is

Θ(n2), merge sort trades away a factor of n for a factor of lg n. Because

the logarithm function grows more slowly than any linear function,

that’s a good trade. For large enough inputs, merge sort, with its Θ(n lg
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n) worst-case running time, outperforms insertion sort, whose worst-

case running time is Θ(n2).

We do not need the master theorem, however, to understand

intuitively why the solution to recurrence (2.3) is T (n) = Θ(n lg n). For

simplicity, assume that n is an exact power of 2 and that the implicit

base case is n = 1. Then recurrence (2.3) is essentially

where the constant c1 > 0 represents the time required to solve a

problem of size 1, and c2 > 0 is the time per array element of the divide

and combine steps.18

Figure 2.5 illustrates one way of figuring out the solution to

recurrence (2.4). Part (a) of the figure shows T (n), which part (b)

expands into an equivalent tree representing the recurrence. The c2n

term denotes the cost of dividing and combining at the top level of

recursion, and the two subtrees of the root are the two smaller

recurrences T (n/2). Part (c) shows this process carried one step further

by expanding T (n/2). The cost for dividing and combining at each of

the two nodes at the second level of recursion is c2n/2. Continue to

expand each node in the tree by breaking it into its constituent parts as

determined by the recurrence, until the problem sizes get down to 1,

each with a cost of c1. Part (d) shows the resulting recursion tree.

Next, add the costs across each level of the tree. The top level has

total cost c2n, the next level down has total cost c2(n/2) + c2(n/2) = c2n,

the level after that has total cost c2(n/4) + c2(n/4) + c2(n/4) + c2(n/4) =

c2n, and so on. Each level has twice as many nodes as the level above,

but each node contributes only half the cost of a node from the level

above. From one level to the next, doubling and halving cancel each

other out, so that the cost across each level is the same: c2n. In general,

the level that is i levels below the top has 2i nodes, each contributing a

cost of c2(n/2i), so that the ith level below the top has total cost 2i ·
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c2(n/2i) = c2n. The bottom level has n nodes, each contributing a cost of

c1, for a total cost of c1n.

The total number of levels of the recursion tree in Figure 2.5 is lg n +

1, where n is the number of leaves, corresponding to the input size. An

informal inductive argument justifies this claim. The base case occurs

when n = 1, in which case the tree has only 1 level. Since lg 1 = 0, we

have that lg n + 1 gives the correct number of levels. Now assume as an

inductive hypothesis that the number of levels of a recursion tree with 2i

leaves is lg 2i + 1 = i + 1 (since for any value of i, we have that lg 2i = i).

Because we assume that the input size is an exact power of 2, the next

input size to consider is 2i + 1. A tree with n = 2i + 1 leaves has 1 more

level than a tree with 2i leaves, and so the total number of levels is (i + 1)

+ 1 = lg 2i + 1 + 1.
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Figure 2.5 How to construct a recursion tree for the recurrence (2.4). Part (a) shows T (n), which

progressively expands in (b)–(d) to form the recursion tree. The fully expanded tree in part (d)

has lg n + 1 levels. Each level above the leaves contributes a total cost of c2n, and the leaf level

contributes c1n. The total cost, therefore, is c2n lg n + c1n = Θ(n lg n).
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To compute the total cost represented by the recurrence (2.4), simply

add up the costs of all the levels. The recursion tree has lg n + 1 levels.

The levels above the leaves each cost c2n, and the leaf level costs c1n, for

a total cost of c2n lg n + c1n = Θ(n lg n).

Exercises

2.3-1

Using Figure 2.4 as a model, illustrate the operation of merge sort on an

array initially containing the sequence 〈3, 41, 52, 26, 38, 57, 9, 49〉.

2.3-2

The test in line 1 of the MERGE-SORT procedure reads “if  p ≥ r”

rather than “if p ≠ r.” If MERGE-SORT is called with p > r, then the

subarray A[p : r] is empty. Argue that as long as the initial call of

MERGE-SORT(A, 1, n) has n ≥ 1, the test “if p ≠ r” suffices to ensure

that no recursive call has p > r.

2.3-3

State a loop invariant for the while loop of lines 12–18 of the MERGE

procedure. Show how to use it, along with the while loops of lines 20–23

and 24–27, to prove that the MERGE procedure is correct.

2.3-4

Use mathematical induction to show that when n ≥ 2 is an exact power

of 2, the solution of the recurrence

is T(n) = n lg n.

2.3-5

You can also think of insertion sort as a recursive algorithm. In order to

sort A[1 : n], recursively sort the subarray A[1 : n – 1] and then insert

A[n] into the sorted subarray A[1 : n – 1]. Write pseudocode for this
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recursive version of insertion sort. Give a recurrence for its worst-case

running time.

2.3-6

Referring back to the searching problem (see Exercise 2.1-4), observe

that if the subarray being searched is already sorted, the searching

algorithm can check the midpoint of the subarray against v and

eliminate half of the subarray from further consideration. The binary

search algorithm repeats this procedure, halving the size of the

remaining portion of the subarray each time. Write pseudocode, either

iterative or recursive, for binary search. Argue that the worst-case

running time of binary search is Θ(lg n).

2.3-7

The while loop of lines 5–7 of the INSERTION-SORT procedure in

Section 2.1 uses a linear search to scan (backward) through the sorted

subarray A[1 : j – 1]. What if insertion sort used a binary search (see

Exercise 2.3-6) instead of a linear search? Would that improve the

overall worst-case running time of insertion sort to Θ(n lg n)?

2.3-8

Describe an algorithm that, given a set S of n integers and another

integer x, determines whether S contains two elements that sum to

exactly x. Your algorithm should take Θ(n lg n) time in the worst case.

Problems

2-1     Insertion sort on small arrays in merge sort

Although merge sort runs in Θ(n lg n) worst-case time and insertion sort

runs in Θ(n2) worst-case time, the constant factors in insertion sort can

make it faster in practice for small problem sizes on many machines.

Thus it makes sense to coarsen the leaves of the recursion by using

insertion sort within merge sort when subproblems become sufficiently

small. Consider a modification to merge sort in which n/k sublists of
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length k are sorted using insertion sort and then merged using the

standard merging mechanism, where k is a value to be determined.

a. Show that insertion sort can sort the n/k sublists, each of length k, in

Θ(nk) worst-case time.

b. Show how to merge the sublists in Θ(n lg(n/k)) worst-case time.

c. Given that the modified algorithm runs in Θ(nk + n lg(n/k)) worst-

case time, what is the largest value of k as a function of n for which

the modified algorithm has the same running time as standard merge

sort, in terms of Θ-notation?

d. How should you choose k in practice?

2-2     Correctness of bubblesort

Bubblesort is a popular, but inefficient, sorting algorithm. It works by

repeatedly swapping adjacent elements that are out of order. The

procedure BUBBLESORT sorts array A[1 : n].

BUBBLESORT(A, n)

1 for i = 1 to n – 1

2 for j = n downto i + 1

3 if A[j] < A[j – 1]

4 exchange A[j] with A[j – 1]

a. Let A′ denote the array A after BUBBLESORT(A, n) is executed. To

prove that

In order to show that BUBBLESORT actually sorts, what else do you

need to prove?

The next two parts prove inequality (2.5).

b. State precisely a loop invariant for the for loop in lines 2–4, and prove

that this loop invariant holds. Your proof should use the structure of

the loop-invariant proof presented in this chapter.
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c. Using the termination condition of the loop invariant proved in part

(b), state a loop invariant for the for loop in lines 1–4 that allows you

to prove inequality (2.5). Your proof should use the structure of the

loop-invariant proof presented in this chapter.

d. What is the worst-case running time of BUBBLESORT? How does it

compare with the running time of INSERTION-SORT?

2-3     Correctness of Horner’s rule

You are given the coefficents a0, a1, a2, … , an of a polynomial

and you want to evaluate this polynomial for a given value of x.

Horner’s rule says to evaluate the polynomial according to this

parenthesization:

The procedure HORNER implements Horner’s rule to evaluate P(x),

given the coefficients a0, a1, a2, … , an in an array A[0 : n] and the value

of x.

HORNER(A, n, x)

1 p = 0

2 for i = n downto 0

3 p = A[i] + x · p

4 return p

a. In terms of Θ-notation, what is the running time of this procedure?

b. Write pseudocode to implement the naive polynomial-evaluation

algorithm that computes each term of the polynomial from scratch.

What is the running time of this algorithm? How does it compare with

HORNER?
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c. Consider the following loop invariant for the procedure HORNER:

At the start of each iteration of the for loop of lines 2–3,

Interpret a summation with no terms as equaling 0. Following the

structure of the loop-invariant proof presented in this chapter, use this

loop invariant to show that, at termination, .

2-4     Inversions

Let A[1 : n] be an array of n distinct numbers. If i < j and A[i] > A[j],

then the pair (i, j) is called an inversion of A.

a. List the five inversions of the array 〈2, 3, 8, 6, 1〉.

b. What array with elements from the set {1, 2, … , n} has the most

inversions? How many does it have?

c. What is the relationship between the running time of insertion sort

and the number of inversions in the input array? Justify your answer.

d. Give an algorithm that determines the number of inversions in any

permutation on n elements in Θ(n lg n) worst-case time. (Hint: Modify

merge sort.)

Chapter notes

In 1968, Knuth published the first of three volumes with the general title

The Art of Computer Programming [259, 260, 261]. The first volume

ushered in the modern study of computer algorithms with a focus on

the analysis of running time. The full series remains an engaging and

worthwhile reference for many of the topics presented here. According

to Knuth, the word “algorithm” is derived from the name “al-

Khowârizmî,” a ninth-century Persian mathematician.

Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of

algorithms—using notations that Chapter 3 introduces, including Θ-

notation—as a means of comparing relative performance. They also
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popularized the use of recurrence relations to describe the running times

of recursive algorithms.

Knuth [261] provides an encyclopedic treatment of many sorting

algorithms. His comparison of sorting algorithms (page 381) includes

exact step-counting analyses, like the one we performed here for

insertion sort. Knuth’s discussion of insertion sort encompasses several

variations of the algorithm. The most important of these is Shell’s sort,

introduced by D. L. Shell, which uses insertion sort on periodic

subarrays of the input to produce a faster sorting algorithm.

Merge sort is also described by Knuth. He mentions that a

mechanical collator capable of merging two decks of punched cards in a

single pass was invented in 1938. J. von Neumann, one of the pioneers

of computer science, apparently wrote a program for merge sort on the

EDVAC computer in 1945.

The early history of proving programs correct is described by Gries

[200], who credits P. Naur with the first article in this field. Gries

attributes loop invariants to R. W. Floyd. The textbook by Mitchell

[329] is a good reference on how to prove programs correct.

1 If you’re familiar with only Python, you can think of arrays as similar to Python lists.

2 When the loop is a for loop, the loop-invariant check just prior to the first iteration occurs

immediately after the initial assignment to the loop-counter variable and just before the first test

in the loop header. In the case of INSERTION-SORT, this time is after assigning 2 to the

variable i but before the first test of whether i ≤ n.

3 In an if-else statement, we indent else at the same level as its matching if. The first executable

line of an else clause appears on the same line as the keyword else. For multiway tests, we use

elseif for tests after the first one. When it is the first line in an else clause, an if statement appears

on the line following else so that you do not misconstrue it as elseif.

4 Each pseudocode procedure in this book appears on one page so that you do not need to

discern levels of indentation in pseudocode that is split across pages.

5 Most block-structured languages have equivalent constructs, though the exact syntax may

differ. Python lacks repeat-until loops, and its for loops operate differently from the for loops in

this book. Think of the pseudocode line “for i = 1 to n” as equivalent to “for i in range(1, n+1)”

in Python.

6 In Python, the loop counter retains its value after the loop is exited, but the value it retains is

the value it had during the final iteration of the for loop, rather than the value that exceeded the
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loop bound. That is because a Python for loop iterates through a list, which may contain

nonnumeric values.

7 If you’re used to programming in Python, bear in mind that in this book, the subarray A[i : j]

includes the element A[j]. In Python, the last element of A[i : j] is A[j – 1]. Python allows negative

indices, which count from the back end of the list. This book does not use negative array indices.

8 Python’s tuple notation allows return statements to return multiple values without creating

objects from a programmer-defined class.

9 We assume that each element of a given array occupies the same number of bytes and that the

elements of a given array are stored in contiguous memory locations. For example, if array A[1 :

n] starts at memory address 1000 and each element occupies four bytes, then element A[i] is at

address 1000 + 4(i – 1). In general, computing the address in memory of a particular array

element requires at most one subtraction (no subtraction for a 0-origin array), one

multiplication (often implemented as a shift operation if the element size is an exact power of 2),

and one addition. Furthermore, for code that iterates through the elements of an array in order,

an optimizing compiler can generate the address of each element using just one addition, by

adding the element size to the address of the preceding element.

10 There are some subtleties here. Computational steps that we specify in English are often

variants of a procedure that requires more than just a constant amount of time. For example, in

the RADIX-SORT procedure on page 213, one line reads “use a stable sort to sort array A on

digit i,” which, as we shall see, takes more than a constant amount of time. Also, although a

statement that calls a subroutine takes only constant time, the subroutine itself, once invoked,

may take more. That is, we separate the process of calling the subroutine—passing parameters to

it, etc.—from the process of executing the subroutine.

11 This characteristic does not necessarily hold for a resource such as memory. A statement that

references m words of memory and is executed n times does not necessarily reference mn distinct

words of memory.

12 This procedure is the rare case that uses both 1-origin indexing (for array A) and 0-origin

indexing (for arrays L and R). Using 0-origin indexing for L and R makes for a simpler loop

invariant in Exercise 2.3-3.

13 If you’re wondering where the “+1” comes from, imagine that r = p + 1. Then the subarray

A[p : r] consists of two elements, and r – p + 1 = 2.

14 Chapter 3 shows how to formally interpret equations containing Θ-notation.

15 The expression ⌈x⌉ denotes the least integer greater than or equal to x, and ⌊x⌋ denotes the

greatest integer less than or equal to x. These notations are defined in Section 3.3. The easiest

way to verify that setting q to ⌊(p + r)/2⌋ yields subarrays A[p : q] and A[q + 1 : r] of sizes ⌈n/2⌉

and ⌊n/2⌋, respectively, is to examine the four cases that arise depending on whether each of p

and r is odd or even.

16 If you’re wondering where Θ(1) comes from, think of it this way. When we say that n2/100 is

Θ(n2), we are ignoring the coefficient 1/100 of the factor n2. Likewise, when we say that a
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constant c is Θ(1), we are ignoring the coefficient c of the factor 1 (which you can also think of

as n0).

17 The notation lg n stands for log2 n, although the base of the logarithm doesn’t matter here,

but as computer scientists, we like logarithms base 2. Section 3.3 discusses other standard

notation.

18 It is unlikely that c1 is exactly the time to solve problems of size 1 and that c2n is exactly the

time of the divide and combine steps. We’ll look more closely at bounding recurrences in

Chapter 4, where we’ll be more careful about this kind of detail.
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3          Characterizing Running Times

The order of growth of the running time of an algorithm, defined in

Chapter 2, gives a simple way to characterize the algorithm’s efficiency

and also allows us to compare it with alternative algorithms. Once the

input size n becomes large enough, merge sort, with its Θ(n lg n) worst-

case running time, beats insertion sort, whose worst-case running time is

Θ(n2). Although we can sometimes determine the exact running time of

an algorithm, as we did for insertion sort in Chapter 2, the extra

precision is rarely worth the effort of computing it. For large enough

inputs, the multiplicative constants and lower-order terms of an exact

running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make relevant only the

order of growth of the running time, we are studying the asymptotic

efficiency of algorithms. That is, we are concerned with how the running

time of an algorithm increases with the size of the input in the limit, as

the size of the input increases without bound. Usually, an algorithm

that is asymptotically more efficient is the best choice for all but very

small inputs.

This chapter gives several standard methods for simplifying the

asymptotic analysis of algorithms. The next section presents informally

the three most commonly used types of “asymptotic notation,” of which

we have already seen an example in Θ-notation. It also shows one way

to use these asymptotic notations to reason about the worst-case

running time of insertion sort. Then we look at asymptotic notations

more formally and present several notational conventions used
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throughout this book. The last section reviews the behavior of functions

that commonly arise when analyzing algorithms.

3.1      O-notation, Ω-notation, and Θ-notation

When we analyzed the worst-case running time of insertion sort in

Chapter 2, we started with the complicated expression

We then discarded the lower-order terms (c1 + c2 + c4 + c5/2 – c6/2 –

c7/2 + c8)n and c2 + c4 + c5 + c8, and we also ignored the coefficient

c5/2 + c6/2 + c7/2 of n2. That left just the factor n2, which we put into

Θ-notation as Θ(n2). We use this style to characterize running times of

algorithms: discard the lower-order terms and the coefficient of the

leading term, and use a notation that focuses on the rate of growth of

the running time.

Θ-notation is not the only such “asymptotic notation.” In this

section, we’ll see other forms of asymptotic notation as well. We start

with intuitive looks at these notations, revisiting insertion sort to see

how we can apply them. In the next section, we’ll see the formal

definitions of our asymptotic notations, along with conventions for

using them.

Before we get into specifics, bear in mind that the asymptotic

notations we’ll see are designed so that they characterize functions in

general. It so happens that the functions we are most interested in

denote the running times of algorithms. But asymptotic notation can

apply to functions that characterize some other aspect of algorithms

(the amount of space they use, for example), or even to functions that

have nothing whatsoever to do with algorithms.

O-notation
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O-notation characterizes an upper bound on the asymptotic behavior of

a function. In other words, it says that a function grows no faster than a

certain rate, based on the highest-order term. Consider, for example, the

function 7n3 + 100n2 – 20n + 6. Its highest-order term is 7n3, and so we

say that this function’s rate of growth is n3. Because this function grows

no faster than n3, we can write that it is O(n3). You might be surprised

that we can also write that the function 7n3 + 100n2 – 20n + 6 is O(n4).

Why? Because the function grows more slowly than n4, we are correct in

saying that it grows no faster. As you might have guessed, this function

is also O(n5), O(n6), and so on. More generally, it is O(nc) for any

constant c ≥ 3.

Ω-notation

Ω-notation characterizes a lower bound on the asymptotic behavior of a

function. In other words, it says that a function grows at least as fast as

a certain rate, based — as in O-notation—on the highest-order term.

Because the highest-order term in the function 7n3 + 100n2 – 20n + 6

grows at least as fast as n3, this function is Ω(n3). This function is also

Ω(n2) and Ω(n). More generally, it is Ω(nc) for any constant c ≤ 3.

Θ-notation

Θ-notation characterizes a tight bound on the asymptotic behavior of a

function. It says that a function grows precisely at a certain rate, based

—once again—on the highest-order term. Put another way, Θ-notation

characterizes the rate of growth of the function to within a constant

factor from above and to within a constant factor from below. These

two constant factors need not be equal.

If you can show that a function is both O(f (n)) and Ω(f (n)) for some

function f (n), then you have shown that the function is Θ(f (n)). (The

next section states this fact as a theorem.) For example, since the

function 7n3 + 100n2 – 20n + 6 is both O(n3) and Ω(n3), it is also Θ(n3).
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Example: Insertion sort

Let’s revisit insertion sort and see how to work with asymptotic

notation to characterize its Θ(n2) worst-case running time without

evaluating summations as we did in Chapter 2. Here is the

INSERTION-SORT procedure once again:

INSERTION-SORT(A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1 : i – 1].

4 j = i – 1

5 while j > 0 and A[j] > key

6 A[j + 1] = A[j]

7 j = j – 1

8 A[j + 1] = key

What can we observe about how the pseudocode operates? The

procedure has nested loops. The outer loop is a for loop that runs n – 1

times, regardless of the values being sorted. The inner loop is a while

loop, but the number of iterations it makes depends on the values being

sorted. The loop variable j starts at i – 1 and decreases by 1 in each

iteration until either it reaches 0 or A[j] ≤ key. For a given value of i, the

while loop might iterate 0 times, i – 1 times, or anywhere in between.

The body of the while loop (lines 6–7) takes constant time per iteration

of the while loop.

www.konkur.in

Telegram: @uni_k



Figure 3.1 The Ω(n2) lower bound for insertion sort. If the first n/3 positions contain the n/3

largest values, each of these values must move through each of the middle n/3 positions, one

position at a time, to end up somewhere in the last n/3 positions. Since each of n/3 values moves

through at least each of n/3 positions, the time taken in this case is at least proportional to (n/3)

(n/3) = n2/9, or Ω(n2).

These observations suffice to deduce an O(n2) running time for any

case of INSERTION-SORT, giving us a blanket statement that covers

all inputs. The running time is dominated by the inner loop. Because

each of the n – 1 iterations of the outer loop causes the inner loop to

iterate at most i – 1 times, and because i is at most n, the total number of

iterations of the inner loop is at most (n – 1)(n – 1), which is less than

n2. Since each iteration of the inner loop takes constant time, the total

time spent in the inner loop is at most a constant times n2, or O(n2).

With a little creativity, we can also see that the worst-case running

time of INSERTION-SORT is Ω(n2). By saying that the worst-case

running time of an algorithm is Ω(n2), we mean that for every input size

n above a certain threshold, there is at least one input of size n for which

the algorithm takes at least cn2 time, for some positive constant c. It

does not necessarily mean that the algorithm takes at least cn2 time for

all inputs.

Let’s now see why the worst-case running time of INSERTION-

SORT is Ω(n2). For a value to end up to the right of where it started, it

must have been moved in line 6. In fact, for a value to end up k

positions to the right of where it started, line 6 must have executed k

times. As Figure 3.1 shows, let’s assume that n is a multiple of 3 so that

we can divide the array A into groups of n/3 positions. Suppose that in

the input to INSERTION-SORT, the n/3 largest values occupy the first
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n/3 array positions A[1 : n/3]. (It does not matter what relative order

they have within the first n/3 positions.) Once the array has been sorted,

each of these n/3 values ends up somewhere in the last n/3 positions

A[2n/3 + 1 : n]. For that to happen, each of these n/3 values must pass

through each of the middle n/3 positions A[n/3 + 1 : 2n/3]. Each of these

n/3 values passes through these middle n/3 positions one position at a

time, by at least n/3 executions of line 6. Because at least n/3 values have

to pass through at least n/3 positions, the time taken by INSERTION-

SORT in the worst case is at least proportional to (n/3)(n/3) = n2/9,

which is Ω(n2).

Because we have shown that INSERTION-SORT runs in O(n2) time

in all cases and that there is an input that makes it take Ω(n2) time, we

can conclude that the worst-case running time of INSERTION-SORT is

Θ(n2). It does not matter that the constant factors for upper and lower

bounds might differ. What matters is that we have characterized the

worst-case running time to within constant factors (discounting lower-

order terms). This argument does not show that INSERTION-SORT

runs in Θ(n2) time in all cases. Indeed, we saw in Chapter 2 that the

best-case running time is Θ(n).

Exercises

3.1-1

Modify the lower-bound argument for insertion sort to handle input

sizes that are not necessarily a multiple of 3.

3.1-2

Using reasoning similar to what we used for insertion sort, analyze the

running time of the selection sort algorithm from Exercise 2.2-2.

3.1-3

Suppose that α is a fraction in the range 0 < α < 1. Show how to

generalize the lower-bound argument for insertion sort to consider an

input in which the αn largest values start in the first αn positions. What

additional restriction do you need to put on α? What value of α
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maximizes the number of times that the αn largest values must pass

through each of the middle (1 – 2α)n array positions?

3.2      Asymptotic notation: formal definitions

Having seen asymptotic notation informally, let’s get more formal. The

notations we use to describe the asymptotic running time of an

algorithm are defined in terms of functions whose domains are typically

the set N of natural numbers or the set R of real numbers. Such

notations are convenient for describing a running-time function T (n).

This section defines the basic asymptotic notations and also introduces

some common “proper” notational abuses.

Figure 3.2 Graphic examples of the O, Ω, and Θ notations. In each part, the value of n0 shown is

the minimum possible value, but any greater value also works. (a)  O-notation gives an upper

bound for a function to within a constant factor. We write f (n) = O(g(n)) if there are positive

constants n0 and c such that at and to the right of n0, the value of f (n) always lies on or below

cg(n). (b) Ω-notation gives a lower bound for a function to within a constant factor. We write f

(n) = Ω(g(n)) if there are positive constants n0 and c such that at and to the right of n0, the value

of f (n) always lies on or above cg(n). (c) Θ-notation bounds a function to within constant

factors. We write f (n) = Θ(g(n)) if there exist positive constants n0, c1, and c2 such that at and

to the right of n0, the value of f (n) always lies between c1g(n) and c2g(n) inclusive.

O-notation

As we saw in Section 3.1, O-notation describes an asymptotic upper

bound. We use O-notation to give an upper bound on a function, to
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within a constant factor.

Here is the formal definition of O-notation. For a given function

g(n), we denote by O(g(n)) (pronounced “big-oh of g of n” or sometimes

just “oh of g of n”) the set of functions

O(g(n))

= {f (n)

 : there exist positive constants c and n0 such

that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}.1

A function f (n) belongs to the set O(g(n)) if there exists a positive

constant c such that f (n) ≤ cg(n) for sufficiently large n. Figure 3.2(a)

shows the intuition behind O-notation. For all values n at and to the

right of n0, the value of the function f (n) is on or below cg(n).

The definition of O(g(n)) requires that every function f (n) in the set

O(g(n)) be asymptotically nonnegative: f (n) must be nonnegative

whenever n is sufficiently large. (An asymptotically positive function is

one that is positive for all sufficiently large n.) Consequently, the

function g(n) itself must be asymptotically nonnegative, or else the set

O(g(n)) is empty. We therefore assume that every function used within

O-notation is asymptotically nonnegative. This assumption holds for

the other asymptotic notations defined in this chapter as well.

You might be surprised that we define O-notation in terms of sets.

Indeed, you might expect that we would write “f (n) ∈ O(g(n))” to

indicate that f (n) belongs to the set O(g(n)). Instead, we usually write “f

(n) = O(g(n))” and say “f (n) is big-oh of g(n)” to express the same

notion. Although it may seem confusing at first to abuse equality in this

way, we’ll see later in this section that doing so has its advantages.

Let’s explore an example of how to use the formal definition of O-

notation to justify our practice of discarding lower-order terms and

ignoring the constant coefficient of the highest-order term. We’ll show

that 4n2 + 100n + 500 = O(n2), even though the lower-order terms have

much larger coefficients than the leading term. We need to find positive

constants c and n0 such that 4n2 + 100n + 500 ≤ cn2 for all n ≥ n0.

Dividing both sides by n2 gives 4 + 100/n + 500/n2 ≤ c. This inequality is

satisfied for many choices of c and n0. For example, if we choose n0 = 1,
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then this inequality holds for c = 604. If we choose n0 = 10, then c = 19

works, and choosing n0 = 100 allows us to use c = 5.05.

We can also use the formal definition of O-notation to show that the

function n3 – 100n2 does not belong to the set O(n2), even though the

coefficient of n2 is a large negative number. If we had n3 – 100n2 =

O(n2), then there would be positive constants c and n0 such that n3 –

100n2 ≤ cn2 for all n ≥ n0. Again, we divide both sides by n2, giving n –

100 ≤ c. Regardless of what value we choose for the constant c, this

inequality does not hold for any value of n > c + 100.

Ω-notation

Just as O-notation provides an asymptotic upper bound on a function,

Ω-notation provides an asymptotic lower bound. For a given function

g(n), we denote by Ω(g(n)) (pronounced “big-omega of g of n” or

sometimes just “omega of g of n”) the set of functions

Ω(g(n))

= {f (n)

 : there exist positive constants c and n0 such

that 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}.

Figure 3.2(b) shows the intuition behind Ω-notation. For all values n at

or to the right of n0, the value of f (n) is on or above cg(n).

We’ve already shown that 4n2 + 100n + 500 = O(n2). Now let’s show

that 4n2 + 100n + 500 = Ω(n2). We need to find positive constants c and

n0 such that 4n2 + 100n + 500 ≥ cn2 for all n ≥ n0. As before, we divide

both sides by n2, giving 4 + 100/n + 500/n2 ≥ c. This inequality holds

when n0 is any positive integer and c = 4.

What if we had subtracted the lower-order terms from the 4n2 term

instead of adding them? What if we had a small coefficient for the n2

term? The function would still be Ω(n2). For example, let’s show that

n2/100 – 100n – 500 = Ω(n2). Dividing by n2 gives 1/100 – 100/n – 500/n2
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≥ c. We can choose any value for n0 that is at least 10,005 and find a

positive value for c. For example, when n0 = 10,005, we can choose c =

2.49 × 10–9. Yes, that’s a tiny value for c, but it is positive. If we select a

larger value for n0, we can also increase c. For example, if n0 = 100,000,

then we can choose c = 0.0089. The higher the value of n0, the closer to

the coefficient 1/100 we can choose c.

Θ-notation

We use Θ-notation for asymptotically tight bounds. For a given function

g(n), we denote by Θ(g(n)) (“theta of g of n”) the set of functions

Θ(g(n))

= {f (n)

 : there exist positive constants c1, c2, and n0

such that 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥

n0}.

Figure 3.2(c) shows the intuition behind Θ-notation. For all values of n

at and to the right of n0, the value of f (n) lies at or above c1g(n) and at

or below c2g(n). In other words, for all n ≥ n0, the function f (n) is equal

to g(n) to within constant factors.

The definitions of O-, Ω-, and Θ-notations lead to the following

theorem, whose proof we leave as Exercise 3.2-4.

Theorem 3.1

For any two functions f (n) and g(n), we have f (n) = Θ(g(n)) if and only

if f (n) = O(g(n)) and f (n) = Ω(g(n)).

▪

We typically apply Theorem 3.1 to prove asymptotically tight bounds

from asymptotic upper and lower bounds.

Asymptotic notation and running times

When you use asymptotic notation to characterize an algorithm’s

running time, make sure that the asymptotic notation you use is as

precise as possible without overstating which running time it applies to.
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Here are some examples of using asymptotic notation properly and

improperly to characterize running times.

Let’s start with insertion sort. We can correctly say that insertion

sort’s worst-case running time is O(n2), Ω(n2), and—due to Theorem 3.1

—Θ(n2). Although all three ways to characterize the worst-case running

times are correct, the Θ(n2) bound is the most precise and hence the

most preferred. We can also correctly say that insertion sort’s best-case

running time is O(n), Ω(n), and Θ(n), again with Θ(n) the most precise

and therefore the most preferred.

Here is what we cannot correctly say: insertion sort’s running time is

Θ(n2). That is an overstatement because by omitting “worst-case” from

the statement, we’re left with a blanket statement covering all cases. The

error here is that insertion sort does not run in Θ(n2) time in all cases

since, as we’ve seen, it runs in Θ(n) time in the best case. We can

correctly say that insertion sort’s running time is O(n2), however,

because in all cases, its running time grows no faster than n2. When we

say O(n2) instead of Θ(n2), there is no problem in having cases whose

running time grows more slowly than n2. Likewise, we cannot correctly

say that insertion sort’s running time is Θ(n), but we can say that its

running time is Ω(n).

How about merge sort? Since merge sort runs in Θ(n lg n) time in all

cases, we can just say that its running time is Θ(n lg n) without

specifying worst-case, best-case, or any other case.

People occasionally conflate O-notation with Θ-notation by

mistakenly using O-notation to indicate an asymptotically tight bound.

They say things like “an O(n lg n)-time algorithm runs faster than an

O(n2)-time algorithm.” Maybe it does, maybe it doesn’t. Since O-

notation denotes only an asymptotic upper bound, that so-called O(n2)-

time algorithm might actually run in Θ(n) time. You should be careful to

choose the appropriate asymptotic notation. If you want to indicate an

asymptotically tight bound, use Θ-notation.
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We typically use asymptotic notation to provide the simplest and

most precise bounds possible. For example, if an algorithm has a

running time of 3n2 + 20n in all cases, we use asymptotic notation to

write that its running time is Θ(n2). Strictly speaking, we are also

correct in writing that the running time is O(n3) or Θ(3n2 + 20n).

Neither of these expressions is as useful as writing Θ(n2) in this case,

however: O(n3) is less precise than Θ(n2) if the running time is 3n2 +

20n, and Θ(3n2 + 20n) introduces complexity that obscures the order of

growth. By writing the simplest and most precise bound, such as Θ(n2),

we can categorize and compare different algorithms. Throughout the

book, you will see asymptotic running times that are almost always

based on polynomials and logarithms: functions such as n, n lg2 n, n2 lg

n, or n1/2. You will also see some other functions, such as exponentials,

lg lg n, and lg*n (see Section 3.3). It is usually fairly easy to compare the

rates of growth of these functions. Problem 3-3 gives you good practice.

Asymptotic notation in equations and inequalities

Although we formally define asymptotic notation in terms of sets, we

use the equal sign (=) instead of the set membership sign (∈) within

formulas. For example, we wrote that 4n2 + 100n + 500 = O(n2). We

might also write 2n2 + 3n + 1 = 2n2 + Θ(n). How do we interpret such

formulas?

When the asymptotic notation stands alone (that is, not within a

larger formula) on the right-hand side of an equation (or inequality), as

in 4n2 + 100n + 500 = O(n2), the equal sign means set membership: 4n2

+ 100n + 500 ∈ O(n2). In general, however, when asymptotic notation

appears in a formula, we interpret it as standing for some anonymous

function that we do not care to name. For example, the formula 2n2 +

3n + 1 = 2n2 + Θ(n) means that 2n2 + 3n + 1 = 2n2 + f (n), where f (n)

∈ Θ(n). In this case, we let f (n) = 3n + 1, which indeed belongs to Θ(n).
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Using asymptotic notation in this manner can help eliminate

inessential detail and clutter in an equation. For example, in Chapter 2

we expressed the worst-case running time of merge sort as the

recurrence

T (n) = 2T (n/2) + Θ(n).

If we are interested only in the asymptotic behavior of T (n), there is no

point in specifying all the lower-order terms exactly, because they are all

understood to be included in the anonymous function denoted by the

term Θ(n).

The number of anonymous functions in an expression is understood

to be equal to the number of times the asymptotic notation appears. For

example, in the expression

there is only a single anonymous function (a function of i). This

expression is thus not the same as O(1) + O(2) + ⋯ + O(n), which

doesn’t really have a clean interpretation.

In some cases, asymptotic notation appears on the left-hand side of

an equation, as in

2n2 + Θ(n) = Θ(n2).

Interpret such equations using the following rule: No matter how the

anonymous functions are chosen on the left of the equal sign, there is a

way to choose the anonymous functions on the right of the equal sign to

make the equation valid. Thus, our example means that for any function

f (n) ∈ Θ(n), there is some function g(n) ∈ Θ(n2) such that 2n2 + f (n) =

g(n) for all n. In other words, the right-hand side of an equation

provides a coarser level of detail than the left-hand side.

We can chain together a number of such relationships, as in

2n2 + 3n + 1 = 2n2 + Θ(n)

 = Θ(n2).
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By the rules above, interpret each equation separately. The first equation

says that there is some function f (n) ∈ Θ(n) such that 2n2 + 3n + 1 =

2n2 + f (n) for all n. The second equation says that for any function g(n)

∈ Θ(n) (such as the f (n) just mentioned), there is some function h(n) ∈

Θ(n2) such that 2n2 + g(n) = h(n) for all n. This interpretation implies

that 2n2 + 3n + 1 = Θ(n2), which is what the chaining of equations

intuitively says.

Proper abuses of asymptotic notation

Besides the abuse of equality to mean set membership, which we now

see has a precise mathematical interpretation, another abuse of

asymptotic notation occurs when the variable tending toward ∞ must be

inferred from context. For example, when we say O(g(n)), we can

assume that we’re interested in the growth of g(n) as n grows, and if we

say O(g(m)) we’re talking about the growth of g(m) as m grows. The free

variable in the expression indicates what variable is going to ∞.

The most common situation requiring contextual knowledge of

which variable tends to ∞ occurs when the function inside the

asymptotic notation is a constant, as in the expression O(1). We cannot

infer from the expression which variable is going to ∞, because no

variable appears there. The context must disambiguate. For example, if

the equation using asymptotic notation is f (n) = O(1), it’s apparent that

the variable we’re interested in is n. Knowing from context that the

variable of interest is n, however, allows us to make perfect sense of the

expression by using the formal definition of O-notation: the expression f

(n) = O(1) means that the function f (n) is bounded from above by a

constant as n goes to ∞. Technically, it might be less ambiguous if we

explicitly indicated the variable tending to ∞ in the asymptotic notation

itself, but that would clutter the notation. Instead, we simply ensure that

the context makes it clear which variable (or variables) tend to ∞.

When the function inside the asymptotic notation is bounded by a

positive constant, as in T (n) = O(1), we often abuse asymptotic

notation in yet another way, especially when stating recurrences. We

may write something like T (n) = O(1) for n < 3. According to the
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formal definition of O-notation, this statement is meaningless, because

the definition only says that T (n) is bounded above by a positive

constant c for n ≥ n0 for some n0 > 0. The value of T (n) for n < n0 need

not be so bounded. Thus, in the example T (n) = O(1) for n < 3, we

cannot infer any constraint on T (n) when n < 3, because it might be

that n0 > 3.

What is conventionally meant when we say T (n) = O(1) for n < 3 is

that there exists a positive constant c such that T (n) ≤ c for n < 3. This

convention saves us the trouble of naming the bounding constant,

allowing it to remain anonymous while we focus on more important

variables in an analysis. Similar abuses occur with the other asymptotic

notations. For example, T (n) = Θ(1) for n < 3 means that T (n) is

bounded above and below by positive constants when n < 3.

Occasionally, the function describing an algorithm’s running time

may not be defined for certain input sizes, for example, when an

algorithm assumes that the input size is an exact power of 2. We still use

asymptotic notation to describe the growth of the running time,

understanding that any constraints apply only when the function is

defined. For example, suppose that f (n) is defined only on a subset of

the natural or nonnegative real numbers. Then f (n) = O(g(n)) means

that the bound 0 ≤ T (n) ≤ cg(n) in the definition of O-notation holds for

all n ≥ n0 over the domain of f (n), that is, where f (n) is defined. This

abuse is rarely pointed out, since what is meant is generally clear from

context.

In mathematics, it’s okay — and often desirable — to abuse a

notation, as long as we don’t misuse it. If we understand precisely what

is meant by the abuse and don’t draw incorrect conclusions, it can

simplify our mathematical language, contribute to our higher-level

understanding, and help us focus on what really matters.

o-notation

The asymptotic upper bound provided by O-notation may or may not

be asymptotically tight. The bound 2n2 = O(n2) is asymptotically tight,

but the bound 2n = O(n2) is not. We use o-notation to denote an upper
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bound that is not asymptotically tight. We formally define o(g(n))

(“little-oh of g of n”) as the set

o(g(n)) =

{f (n)

 : for any positive constant c > 0, there exists a constant n0 > 0

such that 0 ≤ f (n) < cg(n) for all n ≥ n0}.

For example, 2n = o(n2), but 2n2 ≠ o(n2).

The definitions of O-notation and o-notation are similar. The main

difference is that in f (n) = O(g(n)), the bound 0 ≤ f (n) ≤ cg(n) holds for

some constant c > 0, but in f (n) = o(g(n)), the bound 0 ≤ f (n) < cg(n)

holds for all constants c > 0. Intuitively, in o-notation, the function f (n)

becomes insignificant relative to g(n) as n gets large:

Some authors use this limit as a definition of the o-notation, but the

definition in this book also restricts the anonymous functions to be

asymptotically nonnegative.

ω-notation

By analogy, ω-notation is to Ω-notation as o-notation is to O-notation.

We use ω-notation to denote a lower bound that is not asymptotically

tight. One way to define it is by

f (n) ∈ ω(g(n)) if and only if g(n) ∈ o(f (n)).

Formally, however, we define ω(g(n)) (“little-omega of g of n”) as the set

ω(g(n))

= {f (n)

 : for any positive constant c > 0, there exists a constant n0 > 0

such that 0 ≤ cg(n) < f (n) for all n ≥ n0}.

Where the definition of o-notation says that f (n) < cg(n), the definition

of ω-notation says the opposite: that cg(n) < f (n). For examples of ω-

notation, we have n2/2 = ω(n), but n2/2 ≠ ω(n2). The relation f (n) =

ω(g(n)) implies that
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if the limit exists. That is, f (n) becomes arbitrarily large relative to g(n)

as n gets large.

Comparing functions

Many of the relational properties of real numbers apply to asymptotic

comparisons as well. For the following, assume that f (n) and g(n) are

asymptotically positive.

Transitivity:

f (n) =

Θ(g(n))

and g(n) =

Θ(h(n))

imply f (n) =

Θ(h(n)),

f (n) =

O(g(n))

and g(n) =

O(h(n))

imply f (n) =

O(h(n)),

f (n) =

Ω(g(n))

and g(n) =

Ω(h(n))

imply f (n) =

Ω(h(n)),

f (n) =

o(g(n))

and g(n) =

o(h(n))

imply f (n) =

o(h(n)),

f (n) =

ω(g(n))

and g(n) =

ω(h(n))

imply f (n) =

ω(h(n)).

Reflexivity:

f (n) = Θ(f (n)),

f (n) = O(f (n)),

f (n) = Ω(f (n)).

Symmetry:

f (n) = Θ(g(n)) if and only if g(n) = Θ(f (n)).

Transpose symmetry:

f (n) = if and only g(n) = Ω(f (n)),

www.konkur.in

Telegram: @uni_k



O(g(n)) if

f (n) = o(g(n)) if and only

if

g(n) = ω(f

(n)).

Because these properties hold for asymptotic notations, we can draw

an analogy between the asymptotic comparison of two functions f and g

and the comparison of two real numbers a and b:

f (n) = O(g(n)) is like a ≤ b,

f (n) = Ω(g(n)) is like a ≥ b,

f (n) = Θ(g(n)) is like a = b,

f (n) = o(g(n)) is like a < b,

f (n) = ω(g(n)) is like a > b.

We say that f (n) is asymptotically smaller than g(n) if f (n) = o(g(n)), and

f (n) is asymptotically larger than g(n) if f (n) = ω(g(n)).

One property of real numbers, however, does not carry over to

asymptotic notation:

Trichotomy: For any two real numbers a and b, exactly one of the

following must hold: a < b, a = b, or a > b.

Although any two real numbers can be compared, not all functions are

asymptotically comparable. That is, for two functions f (n) and g(n), it

may be the case that neither f (n) = O(g(n)) nor f (n) = Ω(g(n)) holds. For

example, we cannot compare the functions n and n1 + sin n using

asymptotic notation, since the value of the exponent in n1 + sin n

oscillates between 0 and 2, taking on all values in between.

Exercises

3.2-1

Let f (n) and g(n) be asymptotically nonnegative functions. Using the

basic definition of Θ-notation, prove that max {f (n), g(n)} = Θ(f (n) +

g(n)).

3.2-2
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Explain why the statement, “The running time of algorithm A is at least

O(n2),” is meaningless.

3.2-3

Is 2n + 1 = O(2n)? Is 22n = O(2n)?

3.2-4

Prove Theorem 3.1.

3.2-5

Prove that the running time of an algorithm is Θ(g(n)) if and only if its

worst-case running time is O(g(n)) and its best-case running time is

Ω(g(n)).

3.2-6

Prove that o(g(n)) ∩ ω(g(n)) is the empty set.

3.2-7

We can extend our notation to the case of two parameters n and m that

can go to ∞ independently at different rates. For a given function g(n,

m), we denote by O(g(n, m)) the set of functions

O(g(n,

m)) = {f

(n, m)

 : there exist positive constants c, n0, and m0

such that 0 ≤ f (n, m) ≤ cg(n, m) for all n ≥ n0

or m ≥ m0}.

Give corresponding definitions for Ω(g(n, m)) and Θ(g(n, m)).

3.3      Standard notations and common functions

This section reviews some standard mathematical functions and

notations and explores the relationships among them. It also illustrates

the use of the asymptotic notations.

Monotonicity
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A function f (n) is monotonically increasing if m ≤ n implies f (m) ≤ f (n).

Similarly, it is monotonically decreasing if m ≤ n implies f (m) ≥ f (n). A

function f (n) is strictly increasing if m < n implies f (m) < f (n) and

strictly decreasing if m < n implies f (m) > f (n).

Floors and ceilings

For any real number x, we denote the greatest integer less than or equal

to x by ⌊x⌋ (read “the floor of x”) and the least integer greater than or

equal to x by ⌈x⌉ (read “the ceiling of x”). The floor function is

monotonically increasing, as is the ceiling function.

Floors and ceilings obey the following properties. For any integer n,

we have

For all real x, we have

We also have

or equivalently,

For any real number x ≥ 0 and integers a, b > 0, we have

For any integer n and real number x, we have
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Modular arithmetic

For any integer a and any positive integer n, the value a mod n is the

remainder (or residue) of the quotient a/n:

It follows that

even when a is negative.

Given a well-defined notion of the remainder of one integer when

divided by another, it is convenient to provide special notation to

indicate equality of remainders. If (a mod n) = (b mod n), we write a = b

(mod n) and say that a is equivalent to b, modulo n. In other words, a =

b (mod n) if a and b have the same remainder when divided by n.

Equivalently, a = b (mod n) if and only if n is a divisor of b – a. We write

a ≠ b (mod n) if a is not equivalent to b, modulo n.

Polynomials

Given a nonnegative integer d, a polynomial in n of degree d is a function

p(n) of the form

where the constants a0, a1, … , ad are the coefficients of the polynomial

and ad ≠ 0. A polynomial is asymptotically positive if and only if ad > 0.

For an asymptotically positive polynomial p(n) of degree d, we have p(n)

= Θ(nd). For any real constant a ≥ 0, the function na is monotonically

increasing, and for any real constant a ≤ 0, the function na is

monotonically decreasing. We say that a function f (n) is polynomially

bounded if f (n) = O(nk) for some constant k.

www.konkur.in

Telegram: @uni_k



Exponentials

For all real a > 0, m, and n, we have the following identities:

a0 = 1,

a1 = a,

a–1 = 1/a,

(am)n = amn,

(am)n = (an)m,

aman = am+n.

For all n and a ≥ 1, the function an is monotonically increasing in n.

When convenient, we assume that 00 = 1.

We can relate the rates of growth of polynomials and exponentials by

the following fact. For all real constants a > 1 and b, we have

from which we can conclude that

Thus, any exponential function with a base strictly greater than 1 grows

faster than any polynomial function.

Using e to denote 2.71828 …, the base of the natural-logarithm

function, we have for all real x,

where “!” denotes the factorial function defined later in this section. For

all real x, we have the inequality
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where equality holds only when x = 0. When |x| ≤ 1, we have the

approximation

When x → 0, the approximation of ex by 1 + x is quite good:

ex = 1 + x + Θ(x2).

(In this equation, the asymptotic notation is used to describe the

limiting behavior as x → 0 rather than as x → ∞.) We have for all x,

Logarithms

We use the following notations:

lg n = log2 n (binary logarithm),

ln n = loge n (natural logarithm),

lgk n = (lg n)k (exponentiation),

lg lg n = lg(lg n) (composition).

We adopt the following notational convention: in the absence of

parentheses, a logarithm function applies only to the next term in the

formula, so that lg n + 1 means (lg n) + 1 and not lg(n + 1).

For any constant b > 1, the function logb n is undefined if n ≤ 0,

strictly increasing if n > 0, negative if 0 < n < 1, positive if n > 1, and 0 if

n = 1. For all real a > 0, b > 0, c > 0, and n, we have
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where, in each equation above, logarithm bases are not 1.

By equation (3.19), changing the base of a logarithm from one

constant to another changes the value of the logarithm by only a

constant factor. Consequently, we often use the notation “lg n” when we

don’t care about constant factors, such as in O-notation. Computer

scientists find 2 to be the most natural base for logarithms because so

many algorithms and data structures involve splitting a problem into

two parts.

There is a simple series expansion for ln(1 + x) when |x| < 1:

We also have the following inequalities for x > – 1:

where equality holds only for x = 0.

We say that a function f (n) is polylogarithmically bounded if f (n) =

O(lgk n) for some constant k. We can relate the growth of polynomials

and polylogarithms by substituting lg n for n and 2a for a in equation

(3.13). For all real constants a > 0 and b, we have

Thus, any positive polynomial function grows faster than any

polylogarithmic function.
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Factorials

The notation n! (read “n factorial”) is defined for integers n ≥ 0 as

Thus, n! = 1 · 2 · 3 ⋯ n.

A weak upper bound on the factorial function is n! ≤ nn, since each

of the n terms in the factorial product is at most n. Stirling’s

approximation,

where e is the base of the natural logarithm, gives us a tighter upper

bound, and a lower bound as well. Exercise 3.3-4 asks you to prove the

three facts

where Stirling’s approximation is helpful in proving equation (3.28). The

following equation also holds for all n ≥ 1:

where

Functional iteration

We use the notation f(i) (n) to denote the function f (n) iteratively

applied i times to an initial value of n. Formally, let f (n) be a function

over the reals. For nonnegative integers i, we recursively define
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For example, if f (n) = 2n, then f(i) (n) = 2in.

The iterated logarithm function

We use the notation lg*n (read “log star of n”) to denote the iterated

logarithm, defined as follows. Let lg(i) n be as defined above, with f (n) =

lg n. Because the logarithm of a nonpositive number is undefined, lg(i)

n is defined only if lg(i–1)  n > 0. Be sure to distinguish lg(i)  n (the

logarithm function applied i times in succession, starting with argument

n) from lgi n (the logarithm of n raised to the ith power). Then we define

the iterated logarithm function as

lg*n = min {i ≥ 0 : lg(i) n ≤ 1}.

The iterated logarithm is a very slowly growing function:

lg* 2 = 1,

lg* 4 = 2,

lg* 16 = 3,

lg* 65536 = 4,

lg* (265536) = 5.

Since the number of atoms in the observable universe is estimated to be

about 1080, which is much less than 265536 = 1065536/lg 10 ≈ 1019,728,

we rarely encounter an input size n for which lg* n > 5.

Fibonacci numbers

We define the Fibonacci numbers Fi, for i ≥ 0, as follows:
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Thus, after the first two, each Fibonacci number is the sum of the two

previous ones, yielding the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ….

Fibonacci numbers are related to the golden ratio ϕ and its conjugate ,

which are the two roots of the equation

x2 = x + 1.

As Exercise 3.3-7 asks you to prove, the golden ratio is given by

and its conjugate, by

Specifically, we have

which can be proved by induction (Exercise 3.3-8). Since , we have

which implies that
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which is to say that the ith Fibonacci number Fi is equal to 

rounded to the nearest integer. Thus, Fibonacci numbers grow

exponentially.

Exercises

3.3-1

Show that if f (n) and g(n) are monotonically increasing functions, then

so are the functions f (n) + g(n) and f (g(n)), and if f (n) and g(n) are in

addition nonnegative, then f (n) · g(n) is monotonically increasing.

3.3-2

Prove that ⌊αn⌋ + ⌈(1 – α)n⌉ = n for any integer n and real number α in

the range 0 ≤ α ≤ 1.

3.3-3

Use equation (3.14) or other means to show that (n + o(n))k = Θ(nk) for

any real constant k. Conclude that ⌈n⌉k = Θ(nk) and ⌊n⌋k = Θ(nk).

3.3-4

Prove the following:

a. Equation (3.21).

b. Equations (3.26)–(3.28).

c. lg(Θ(n)) = Θ(lg n).

★ 3.3-5

Is the function ⌈lg n⌉! polynomially bounded? Is the function ⌈lg lg n⌉!

polynomially bounded?

★ 3.3-6

Which is asymptotically larger: lg(lg* n) or lg*(lg n)?
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3.3-7

Show that the golden ratio ϕ and its conjugate  both satisfy the

equation x2 = x + 1.

3.3-8

Prove by induction that the ith Fibonacci number satisfies the equation

where ϕ is the golden ratio and  is its conjugate.

3.3-9

Show that k lg k = Θ(n) implies k = Θ(n/lg n).

Problems

3-1     Asymptotic behavior of polynomials

Let

where ad > 0, be a degree-d polynomial in n, and let k be a constant.

Use the definitions of the asymptotic notations to prove the following

properties.

a. If k ≥ d, then p(n) = O(nk).

b. If k ≤ d, then p(n) = Ω(nk).

c. If k = d, then p(n) = Θ(nk).

d. If k > d, then p(n) = o(nk).

e. If k < d, then p(n) = ω(nk).

3-2     Relative asymptotic growths
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Indicate, for each pair of expressions (A, B) in the table below whether

A is O, o, Ω, ω, or Θ of B. Assume that k ≥ 1, ϵ > 0, and c > 1 are

constants. Write your answer in the form of the table with “yes” or “no”

written in each box.

3-3     Ordering by asymptotic growth rates

a. Rank the following functions by order of growth. That is, find an

arrangement g1, g2, … , g30 of the functions satisfying g1 = Ω(g2), g2

= Ω(g3), … , g29 = Ω(g30). Partition your list into equivalence classes

such that functions f (n) and g(n) belong to the same class if and only

if f (n) = Θ(g(n)).

lg(lg* n) 2lg* n n2 n! (lg

n)!

(3/2)n n3 lg2 n lg(n!) n1/lg

n

ln ln n lg* n n · 2n nlg lg

n

ln n 1

2lg n (lg n)lg

n

en 4lg n (n +

1)!

lg*(lg n) n 2n n lg n

b. Give an example of a single nonnegative function f (n) such that for

all functions gi(n) in part (a), f (n) is neither O(gi(n)) nor Ω(gi(n)).
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3-4     Asymptotic notation properties

Let f (n) and g(n) be asymptotically positive functions. Prove or disprove

each of the following conjectures.

a. f (n) = O(g(n)) implies g(n) = O(f (n)).

b. f (n) + g(n) = Θ(min {f (n), g(n)}).

c. f (n) = O(g(n)) implies lg f (n) = O(lg g(n)), where lg g(n) ≥ 1 and f (n)

≥ 1 for all sufficiently large n.

d. f (n) = O(g(n)) implies 2f(n) = O (2g(n)).

e. f (n) = O ((f (n))2).

f. f (n) = O(g(n)) implies g(n) = Ω(f (n)).

g. f (n) = Θ(f (n/2)).

h. f (n) + o(f (n)) = Θ(f (n)).

3-5     Manipulating asymptotic notation

Let f (n) and g(n) be asymptotically positive functions. Prove the

following identities:

a. Θ(Θ(f (n))) = Θ(f (n)).

b. Θ(f (n)) + O(f (n)) = Θ(f (n)).

c. Θ(f (n)) + Θ(g(n)) = Θ(f (n) + g(n)).

d. Θ(f (n)) · Θ(g(n)) = Θ(f (n) · g(n)).

e. Argue that for any real constants a1, b1 > 0 and integer constants k1,

k2, the following asymptotic bound holds:

★ f. Prove that for S ⊆ Z, we have
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assuming that both sums converge.

★ g. Show that for S ⊆ Z, the following asymptotic bound does not

necessarily hold, even assuming that both products converge, by

giving a counterexample:

3-6     Variations on O and Ω

Some authors define Ω-notation in a slightly different way than this

textbook does. We’ll use the nomenclature  (read “omega infinity”) for

this alternative definition. We say that  if there exists a

positive constant c such that f (n) ≥ cg(n) ≥ 0 for infinitely many integers

n.

a. Show that for any two asymptotically nonnegative functions f (n) and

g(n), we have f (n) = O(g(n)) or  (or both).

b. Show that there exist two asymptotically nonnegative functions f (n)

and g(n) for which neither f (n) = O(g(n)) nor f (n) = Ω(g(n)) holds.

c. Describe the potential advantages and disadvantages of using -

notation instead of Ω-notation to characterize the running times of

programs.

Some authors also define O in a slightly different manner. We’ll use O′

for the alternative definition: f (n) = O′(g(n)) if and only if |f (n)| =

O(g(n)).

d. What happens to each direction of the “if and only if” in Theorem

3.1 on page 56 if we substitute O′ for O but still use Ω?

Some authors define  (read “soft-oh”) to mean O with logarithmic

factors ignored:

 : there exist positive constants c, k, and n0

www.konkur.in

Telegram: @uni_k



such that 0 ≤ f (n) ≤ cg(n) lgk(n) for all n

≥ n0}.

e. Define  and  in a similar manner. Prove the corresponding analog

to Theorem 3.1.

3-7     Iterated functions

We can apply the iteration operator * used in the lg* function to any

monotonically increasing function f (n) over the reals. For a given

constant c ∈ R, we define the iterated function  by

which need not be well defined in all cases. In other words, the quantity 

 is the minimum number of iterated applications of the function f

required to reduce its argument down to c or less.

For each of the functions f (n) and constants c in the table below,

give as tight a bound as possible on . If there is no i such that f(i)(n)

≤ c, write “undefined” as your answer.

f (n) c

a. n – 1 0

b. lg n 1

c. n/2 1

d. n/2 2

e. 2

f. 1

g. n1/3 2

Chapter notes

Knuth [259] traces the origin of the O-notation to a number-theory text

by P. Bachmann in 1892. The o-notation was invented by E. Landau in
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1909 for his discussion of the distribution of prime numbers. The Ω and

Θ notations were advocated by Knuth [265] to correct the popular, but

technically sloppy, practice in the literature of using O-notation for both

upper and lower bounds. As noted earlier in this chapter, many people

continue to use the O-notation where the Θ-notation is more technically

precise. The soft-oh notation  in Problem 3-6 was introduced by Babai,

Luks, and Seress [31], although it was originally written as O~. Some

authors now define  as ignoring factors that are logarithmic in

g(n), rather than in n. With this definition, we can say that ,

but with the definition in Problem 3-6, this statement is not true.

Further discussion of the history and development of asymptotic

notations appears in works by Knuth [259, 265] and Brassard and

Bratley [70].

Not all authors define the asymptotic notations in the same way,

although the various definitions agree in most common situations. Some

of the alternative definitions encompass functions that are not

asymptotically nonnegative, as long as their absolute values are

appropriately bounded.

Equation (3.29) is due to Robbins [381]. Other properties of

elementary mathematical functions can be found in any good

mathematical reference, such as Abramowitz and Stegun [1] or

Zwillinger [468], or in a calculus book, such as Apostol [19] or Thomas

et al. [433]. Knuth [259] and Graham, Knuth, and Patashnik [199]

contain a wealth of material on discrete mathematics as used in

computer science.

1 Within set notation, a colon means “such that.”
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4          Divide-and-Conquer

The divide-and-conquer method is a powerful strategy for designing
asymptotically efficient algorithms. We saw an example of divide-and-
conquer in Section 2.3.1 when learning about merge sort. In this
chapter, we’ll explore applications of the divide-and-conquer method
and acquire valuable mathematical tools that you can use to solve the
recurrences that arise when analyzing divide-and-conquer algorithms.

Recall that for divide-and-conquer, you solve a given problem
(instance) recursively. If the problem is small enough—the base case—
you just solve it directly without recursing. Otherwise—the recursive

case—you perform three characteristic steps:

Divide the problem into one or more subproblems that are smaller
instances of the same problem.

Conquer the subproblems by solving them recursively.

Combine the subproblem solutions to form a solution to the original
problem.

A divide-and-conquer algorithm breaks down a large problem into
smaller subproblems, which themselves may be broken down into even
smaller subproblems, and so forth. The recursion bottoms out when it
reaches a base case and the subproblem is small enough to solve directly
without further recursing.

Recurrences
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To analyze recursive divide-and-conquer algorithms, we’ll need some
mathematical tools. A recurrence is an equation that describes a
function in terms of its value on other, typically smaller, arguments.
Recurrences go hand in hand with the divide-and-conquer method
because they give us a natural way to characterize the running times of
recursive algorithms mathematically. You saw an example of a
recurrence in Section 2.3.2 when we analyzed the worst-case running
time of merge sort.

For the divide-and-conquer matrix-multiplication algorithms
presented in Sections 4.1 and 4.2, we’ll derive recurrences that describe
their worst-case running times. To understand why these two divide-
and-conquer algorithms perform the way they do, you’ll need to learn
how to solve the recurrences that describe their running times. Sections
4.3–4.7 teach several methods for solving recurrences. These sections
also explore the mathematics behind recurrences, which can give you
stronger intuition for designing your own divide-and-conquer
algorithms.

We want to get to the algorithms as soon as possible. So, let’s just
cover a few recurrence basics now, and then we’ll look more deeply at
recurrences, especially how to solve them, after we see the matrix-
multiplication examples.

The general form of a recurrence is an equation or inequality that
describes a function over the integers or reals using the function itself. It
contains two or more cases, depending on the argument. If a case
involves the recursive invocation of the function on different (usually
smaller) inputs, it is a recursive case. If a case does not involve a
recursive invocation, it is a base case. There may be zero, one, or many
functions that satisfy the statement of the recurrence. The recurrence is
well defined if there is at least one function that satisfies it, and ill defined

otherwise.

Algorithmic recurrences

We’ll be particularly interested in recurrences that describe the running
times of divide-and-conquer algorithms. A recurrence T (n) is
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algorithmic if, for every sufficiently large threshold constant n0 > 0, the

following two properties hold:

1. For all n < n0, we have T (n) = Θ(1).

2. For all n ≥ n0, every path of recursion terminates in a defined base

case within a finite number of recursive invocations.

Similar to how we sometimes abuse asymptotic notation (see page 60),
when a function is not defined for all arguments, we understand that
this definition is constrained to values of n for which T (n) is defined.

Why would a recurrence T (n) that represents a (correct) divide-and-
conquer algorithm’s worst-case running time satisfy these properties for
all sufficiently large threshold constants? The first property says that
there exist constants c1, c2 such that 0 < c1 ≤ T (n) ≤ c2 for n < n0. For

every legal input, the algorithm must output the solution to the problem
it’s solving in finite time (see Section 1.1). Thus we can let c1 be the

minimum amount of time to call and return from a procedure, which
must be positive, because machine instructions need to be executed to
invoke a procedure. The running time of the algorithm may not be
defined for some values of n if there are no legal inputs of that size, but
it must be defined for at least one, or else the “algorithm” doesn’t solve
any problem. Thus we can let c2 be the algorithm’s maximum running

time on any input of size n < n0, where n0 is sufficiently large that the

algorithm solves at least one problem of size less than n0. The

maximum is well defined, since there are at most a finite number of
inputs of size less than n0, and there is at least one if n0 is sufficiently

large. Consequently, T (n) satisfies the first property. If the second
property fails to hold for T (n), then the algorithm isn’t correct, because
it would end up in an infinite recursive loop or otherwise fail to
compute a solution. Thus, it stands to reason that a recurrence for the
worst-case running time of a correct divide-and-conquer algorithm
would be algorithmic.

Conventions for recurrences
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We adopt the following convention:

Whenever a recurrence is stated without an explicit base case, we

assume that the recurrence is algorithmic.

That means you’re free to pick any sufficiently large threshold constant
n0 for the range of base cases where T (n) = Θ(1). Interestingly, the

asymptotic solutions of most algorithmic recurrences you’re likely to see
when analyzing algorithms don’t depend on the choice of threshold
constant, as long as it’s large enough to make the recurrence well
defined.

Asymptotic solutions of algorithmic divide-and-conquer recurrences
also don’t tend to change when we drop any floors or ceilings in a
recurrence defined on the integers to convert it to a recurrence defined
on the reals. Section 4.7 gives a sufficient condition for ignoring floors
and ceilings that applies to most of the divide-and-conquer recurrences
you’re likely to see. Consequently, we’ll frequently state algorithmic
recurrences without floors and ceilings. Doing so generally simplifies the
statement of the recurrences, as well as any math that we do with them.

You may sometimes see recurrences that are not equations, but
rather inequalities, such as T (n) ≤ 2T (n/2) + Θ(n). Because such a
recurrence states only an upper bound on T (n), we express its solution
using O-notation rather than Θ-notation. Similarly, if the inequality is
reversed to T (n) ≥ 2T (n/2) + Θ(n), then, because the recurrence gives
only a lower bound on T (n), we use Ω-notation in its solution.

Divide-and-conquer and recurrences

This chapter illustrates the divide-and-conquer method by presenting
and using recurrences to analyze two divide-and-conquer algorithms for
multiplying n × n matrices. Section 4.1 presents a simple divide-and-
conquer algorithm that solves a matrix-multiplication problem of size n
by breaking it into four subproblems of size n/2, which it then solves
recursively. The running time of the algorithm can be characterized by
the recurrence

T (n) = 8T (n/2) + Θ(1),
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which turns out to have the solution T (n) = Θ(n3). Although this
divide-and-conquer algorithm is no faster than the straightforward
method that uses a triply nested loop, it leads to an asymptotically
faster divide-and-conquer algorithm due to V. Strassen, which we’ll
explore in Section 4.2. Strassen’s remarkable algorithm divides a
problem of size n into seven subproblems of size n/2 which it solves
recursively. The running time of Strassen’s algorithm can be described
by the recurrence

T (n) = 7T (n/2) + Θ(n2),

which has the solution T (n) = Θ(nlg 7) = O(n2.81). Strassen’s algorithm
beats the straightforward looping method asymptotically.

These two divide-and-conquer algorithms both break a problem of
size n into several subproblems of size n/2. Although it is common when
using divide-and-conquer for all the subproblems to have the same size,
that isn’t always the case. Sometimes it’s productive to divide a problem
of size n into subproblems of different sizes, and then the recurrence
describing the running time reflects the irregularity. For example,
consider a divide-and-conquer algorithm that divides a problem of size
n into one subproblem of size n/3 and another of size 2n/3, taking Θ(n)
time to divide the problem and combine the solutions to the
subproblems. Then the algorithm’s running time can be described by the
recurrence

T (n) = T (n/3) + T (2n/3) + Θ(n),

which turns out to have solution T (n) = Θ(n lg n). We’ll even see an
algorithm in Chapter 9 that solves a problem of size n by recursively
solving a subproblem of size n/5 and another of size 7n/10, taking Θ(n)
time for the divide and combine steps. Its performance satisfies the
recurrence

T (n) = T (n/5) + T (7n/10) + Θ(n),

which has solution T (n) = Θ(n).
Although divide-and-conquer algorithms usually create subproblems

with sizes a constant fraction of the original problem size, that’s not
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always the case. For example, a recursive version of linear search (see
Exercise 2.1-4) creates just one subproblem, with one element less than
the original problem. Each recursive call takes constant time plus the
time to recursively solve a subproblem with one less element, leading to
the recurrence

T (n) = T (n – 1) + Θ(1),

which has solution T (n) = Θ(n). Nevertheless, the vast majority of
efficient divide-and-conquer algorithms solve subproblems that are a
constant fraction of the size of the original problem, which is where
we’ll focus our efforts.

Solving recurrences

After learning about divide-and-conquer algorithms for matrix
multiplication in Sections 4.1 and 4.2, we’ll explore several
mathematical tools for solving recurrences—that is, for obtaining
asymptotic Θ-, O-, or Ω-bounds on their solutions. We want simple-to-
use tools that can handle the most commonly occurring situations. But
we also want general tools that work, perhaps with a little more effort,
for less common cases. This chapter offers four methods for solving
recurrences:

In the substitution method (Section 4.3), you guess the form of a
bound and then use mathematical induction to prove your guess
correct and solve for constants. This method is perhaps the most
robust method for solving recurrences, but it also requires you to
make a good guess and to produce an inductive proof.

The recursion-tree method (Section 4.4) models the recurrence as a
tree whose nodes represent the costs incurred at various levels of
the recursion. To solve the recurrence, you determine the costs at
each level and add them up, perhaps using techniques for
bounding summations from Section A.2. Even if you don’t use
this method to formally prove a bound, it can be helpful in
guessing the form of the bound for use in the substitution
method.
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The master method (Sections 4.5 and 4.6) is the easiest method,
when it applies. It provides bounds for recurrences of the form

T (n) = aT (n/b) + f (n),

where a > 0 and b > 1 are constants and f (n) is a given “driving”
function. This type of recurrence tends to arise more frequently in
the study of algorithms than any other. It characterizes a divide-
and-conquer algorithm that creates a subproblems, each of which
is 1/b times the size of the original problem, using f (n) time for
the divide and combine steps. To apply the master method, you
need to memorize three cases, but once you do, you can easily
determine asymptotic bounds on running times for many divide-
and-conquer algorithms.

The Akra-Bazzi method (Section 4.7) is a general method for
solving divide-and-conquer recurrences. Although it involves
calculus, it can be used to attack more complicated recurrences
than those addressed by the master method.

4.1      Multiplying square matrices

We can use the divide-and-conquer method to multiply square matrices.
If you’ve seen matrices before, then you probably know how to multiply
them. (Otherwise, you should read Section D.1.) Let A = (aik) and B =

(bjk) be square n × n matrices. The matrix product C = A · B is also an n

× n matrix, where for i, j = 1, 2, … , n, the (i, j) entry of C is given by

Generally, we’ll assume that the matrices are dense, meaning that most

of the n2 entries are not 0, as opposed to sparse, where most of the n2

entries are 0 and the nonzero entries can be stored more compactly than
in an n × n array.
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Computing the matrix C requires computing n2 matrix entries, each
of which is the sum of n pairwise products of input elements from A and
B. The MATRIX-MULTIPLY procedure implements this strategy in a
straightforward manner, and it generalizes the problem slightly. It takes
as input three n × n matrices A, B, and C, and it adds the matrix
product A · B to C, storing the result in C. Thus, it computes C = C + A
· B, instead of just C = A · B. If only the product A · B is needed, just

initialize all n2 entries of C to 0 before calling the procedure, which

takes an additional Θ(n2) time. We’ll see that the cost of matrix
multiplication asymptotically dominates this initialization cost.

MATRIX-MULTIPLY(A, B, C, n)

1 for i = 1 to n // compute entries in each of n rows
2 for j = 1 to n // compute n entries in row i
3 for k = 1 to n
4 cij = cij + aik · bkj // add in another term of equation

(4.1)

The pseudocode for MATRIX-MULTIPLY works as follows. The
for loop of lines 1–4 computes the entries of each row i, and within a
given row i, the for loop of lines 2–4 computes each of the entries cij for

each column j. Each iteration of the for loop of lines 3–4 adds in one
more term of equation (4.1).

Because each of the triply nested for loops runs for exactly n

iterations, and each execution of line 4 takes constant time, the

MATRIX-MULTIPLY procedure operates in Θ(n3) time. Even if we

add in the Θ(n2) time for initializing C to 0, the running time is still

Θ(n3).

A simple divide-and-conquer algorithm

Let’s see how to compute the matrix product A · B using divide-and-
conquer. For n > 1, the divide step partitions the n × n matrices into
four n/2 × n/2 submatrices. We’ll assume that n is an exact power of 2, so
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that as the algorithm recurses, we are guaranteed that the submatrix
dimensions are integer. (Exercise 4.1-1 asks you to relax this
assumption.) As with MATRIX-MULTIPLY, we’ll actually compute C
= C + A · B. But to simplify the math behind the algorithm, let’s assume
that C has been initialized to the zero matrix, so that we are indeed
computing C = A · B.

The divide step views each of the n × n matrices A, B, and C as four
n/2 × n/2 submatrices:

Then we can write the matrix product as

which corresponds to the equations

Equations (4.5)–(4.8) involve eight n/2 × n/2 multiplications and four
additions of n/2 × n/2 submatrices.

As we look to transform these equations to an algorithm that can be
described with pseudocode, or even implemented for real, there are two
common approaches for implementing the matrix partitioning.

One strategy is to allocate temporary storage to hold A’s four
submatrices A11, A12, A21, and A22 and B’s four submatrices B11,

B12, B21, and B22. Then copy each element in A and B to its

corresponding location in the appropriate submatrix. After the recursive
conquer step, copy the elements in each of C’s four submatrices C11,
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C12, C21, and C22 to their corresponding locations in C. This approach

takes Θ(n2) time, since 3n2 elements are copied.
The second approach uses index calculations and is faster and more

practical. A submatrix can be specified within a matrix by indicating
where within the matrix the submatrix lies without touching any matrix
elements. Partitioning a matrix (or recursively, a submatrix) only
involves arithmetic on this location information, which has constant
size independent of the size of the matrix. Changes to the submatrix
elements update the original matrix, since they occupy the same storage.

Going forward, we’ll assume that index calculations are used and
that partitioning can be performed in Θ(1) time. Exercise 4.1-3 asks you
to show that it makes no difference to the overall asymptotic running
time of matrix multiplication, however, whether the partitioning of
matrices uses the first method of copying or the second method of index
calculation. But for other divide-and-conquer matrix calculations, such
as matrix addition, it can make a difference, as Exercise 4.1-4 asks you
to show.

The procedure MATRIX-MULTIPLY-RECURSIVE uses equations
(4.5)–(4.8) to implement a divide-and-conquer strategy for square-
matrix multiplication. Like MATRIX-MULTIPLY, the procedure
MATRIX-MULTIPLY-RECURSIVE computes C = C + A · B since, if
necessary, C can be initialized to 0 before the procedure is called in
order to compute only C = A · B.

MATRIX-MULTIPLY-RECURSIVE(A, B, C, n)

  1 if n == 1
  2 // Base case.
  3 c11 = c11 + a11 · b11
  4 return

  5 // Divide.
  6partition A, B, and C into n/2 × n/2 submatrices

A11, A12, A21, A22; B11, B12, B21, B22;

and C11, C12, C21, C22; respectively

  7 // Conquer.
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  8MATRIX-MULTIPLY-RECURSIVE(A11, B11, C11, n/2)

  9MATRIX-MULTIPLY-RECURSIVE(A11, B12, C12, n/2)

10MATRIX-MULTIPLY-RECURSIVE(A21, B11, C21, n/2)

11MATRIX-MULTIPLY-RECURSIVE(A21, B12, C22, n/2)

12MATRIX-MULTIPLY-RECURSIVE(A12, B21, C11, n/2)

13MATRIX-MULTIPLY-RECURSIVE(A12, B22, C12, n/2)

14MATRIX-MULTIPLY-RECURSIVE(A22, B21, C21, n/2)

15MATRIX-MULTIPLY-RECURSIVE(A22, B22, C22, n/2)

As we walk through the pseudocode, we’ll derive a recurrence to
characterize its running time. Let T (n) be the worst-case time to
multiply two n × n matrices using this procedure.

In the base case, when n = 1, line 3 performs just the one scalar
multiplication and one addition, which means that T (1) = Θ(1). As is
our convention for constant base cases, we can omit this base case in the
statement of the recurrence.

The recursive case occurs when n > 1. As discussed, we’ll use index
calculations to partition the matrices in line 6, taking Θ(1) time. Lines
8–15 recursively call MATRIX-MULTIPLY-RECURSIVE a total of
eight times. The first four recursive calls compute the first terms of
equations (4.5)–(4.8), and the subsequent four recursive calls compute
and add in the second terms. Each recursive call adds the product of a
submatrix of A and a submatrix of B to the appropriate submatrix of C
in place, thanks to index calculations. Because each recursive call
multiplies two n/2 × n/2 matrices, thereby contributing T (n/2) to the
overall running time, the time taken by all eight recursive calls is 8T

(n/2). There is no combine step, because the matrix C is updated in
place. The total time for the recursive case, therefore, is the sum of the
partitioning time and the time for all the recursive calls, or Θ(1) + 8T

(n/2).
Thus, omitting the statement of the base case, our recurrence for the

running time of MATRIX-MULTIPLY-RECURSIVE is
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As we’ll see from the master method in Section 4.5, recurrence (4.9) has

the solution T (n) = Θ(n3), which means that it has the same asymptotic
running time as the straightforward MATRIX-MULTIPLY procedure.

Why is the Θ(n3) solution to this recurrence so much larger than the
Θ(n lg n) solution to the merge-sort recurrence (2.3) on page 41? After
all, the recurrence for merge sort contains a Θ(n) term, whereas the
recurrence for recursive matrix multiplication contains only a Θ(1) term.

Let’s think about what the recursion tree for recurrence (4.9) would
look like as compared with the recursion tree for merge sort, illustrated
in Figure 2.5 on page 43. The factor of 2 in the merge-sort recurrence
determines how many children each tree node has, which in turn
determines how many terms contribute to the sum at each level of the
tree. In comparison, for the recurrence (4.9) for MATRIX-MULTIPLY-
RECURSIVE, each internal node in the recursion tree has eight
children, not two, leading to a “bushier” recursion tree with many more
leaves, despite the fact that the internal nodes are each much smaller.
Consequently, the solution to recurrence (4.9) grows much more quickly
than the solution to recurrence (2.3), which is borne out in the actual

solutions: Θ(n3) versus Θ(n lg n).

Exercises

Note: You may wish to read Section 4.5 before attempting some of these
exercises.

4.1-1

Generalize MATRIX-MULTIPLY-RECURSIVE to multiply n × n

matrices for which n is not necessarily an exact power of 2. Give a

recurrence describing its running time. Argue that it runs in Θ(n3) time
in the worst case.

4.1-2

How quickly can you multiply a k n × n matrix (k n rows and n

columns) by an n × k n matrix, where k ≥ 1, using MATRIX-
MULTIPLY-RECURSIVE as a subroutine? Answer the same question

www.konkur.in

Telegram: @uni_k



for multiplying an n × k n matrix by a k n × n matrix. Which is
asymptotically faster, and by how much?

4.1-3

Suppose that instead of partitioning matrices by index calculation in
MATRIX-MULTIPLY-RECURSIVE, you copy the appropriate
elements of A, B, and C into separate n/2 × n/2 submatrices A11, A12,

A21, A22; B11, B12, B21, B22; and C11, C12, C21, C22, respectively.

After the recursive calls, you copy the results from C11, C12, C21, and

C22 back into the appropriate places in C. How does recurrence (4.9)

change, and what is its solution?

4.1-4

Write pseudocode for a divide-and-conquer algorithm MATRIX-ADD-
RECURSIVE that sums two n × n matrices A and B by partitioning
each of them into four n/2 × n/2 submatrices and then recursively
summing corresponding pairs of submatrices. Assume that matrix
partitioning uses Θ(1)-time index calculations. Write a recurrence for
the worst-case running time of MATRIX-ADD-RECURSIVE, and

solve your recurrence. What happens if you use Θ(n2)-time copying to
implement the partitioning instead of index calculations?

4.2      Strassen’s algorithm for matrix multiplication

You might find it hard to imagine that any matrix multiplication

algorithm could take less than Θ(n3) time, since the natural definition of

matrix multiplication requires n3 scalar multiplications. Indeed, many
mathematicians presumed that it was not possible to multiply matrices

in o(n3) time until 1969, when V. Strassen [424] published a remarkable
recursive algorithm for multiplying n × n matrices. Strassen’s algorithm

runs in Θ(nlg 7) time. Since lg 7 = 2.8073549 …, Strassen’s algorithm

runs in O(n2.81) time, which is asymptotically better than the Θ(n3)
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MATRIX-MULTIPLY and MATRIX-MULTIPLY-RECURSIVE
procedures.

The key to Strassen’s method is to use the divide-and-conquer idea
from the MATRIX-MULTIPLY-RECURSIVE procedure, but make
the recursion tree less bushy. We’ll actually increase the work for each
divide and combine step by a constant factor, but the reduction in
bushiness will pay off. We won’t reduce the bushiness from the eight-way
branching of recurrence (4.9) all the way down to the two-way
branching of recurrence (2.3), but we’ll improve it just a little, and that
will make a big difference. Instead of performing eight recursive
multiplications of n/2 × n/2 matrices, Strassen’s algorithm performs only
seven. The cost of eliminating one matrix multiplication is several new
additions and subtractions of n/2 × n/2 matrices, but still only a
constant number. Rather than saying “additions and subtractions”
everywhere, we’ll adopt the common terminology of calling them both
“additions” because subtraction is structurally the same computation as
addition, except for a change of sign.

To get an inkling how the number of multiplications might be
reduced, as well as why reducing the number of multiplications might be
desirable for matrix calculations, suppose that you have two numbers x

and y, and you want to calculate the quantity x2 – y2. The
straightforward calculation requires two multiplications to square x and
y, followed by one subtraction (which you can think of as a “negative

addition”). But let’s recall the old algebra trick x2 – y2 = x2 – xy + xy –

y2 = x(x – y) + y(x – y) = (x + y)(x – y). Using this formulation of the
desired quantity, you could instead compute the sum x + y and the
difference x – y and then multiply them, requiring only a single
multiplication and two additions. At the cost of an extra addition, only
one multiplication is needed to compute an expression that looks as if it
requires two. If x and y are scalars, there’s not much difference: both
approaches require three scalar operations. If x and y are large matrices,
however, the cost of multiplying outweighs the cost of adding, in which
case the second method outperforms the first, although not
asymptotically.
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Strassen’s strategy for reducing the number of matrix multiplications
at the expense of more matrix additions is not at all obvious—perhaps
the biggest understatement in this book! As with MATRIX-
MULTIPLY-RECURSIVE, Strassen’s algorithm uses the divide-and-
conquer method to compute C = C + A · B, where A, B, and C are all n
× n matrices and n is an exact power of 2. Strassen’s algorithm
computes the four submatrices C11, C12, C21, and C22 of C from

equations (4.5)–(4.8) on page 82 in four steps. We’ll analyze costs as we
go along to develop a recurrence T (n) for the overall running time. Let’s
see how it works:

1. If n = 1, the matrices each contain a single element. Perform a
single scalar multiplication and a single scalar addition, as in line
3 of MATRIX-MULTIPLY-RECURSIVE, taking Θ(1) time,
and return. Otherwise, partition the input matrices A and B and
output matrix C into n/2 × n/2 submatrices, as in equation (4.2).
This step takes Θ(1) time by index calculation, just as in
MATRIX-MULTIPLY-RECURSIVE.

2. Create n/2 × n/2 matrices S1, S2, … , S10, each of which is the

sum or difference of two submatrices from step 1. Create and
zero the entries of seven n/2 × n/2 matrices P1, P2, … , P7 to

hold seven n/2 × n/2 matrix products. All 17 matrices can be

created, and the Pi initialized, in Θ(n2) time.

3. Using the submatrices from step 1 and the matrices S1, S2, … ,

S10 created in step 2, recursively compute each of the seven

matrix products P1, P2, … , P7, taking 7T (n/2) time.

4. Update the four submatrices C11, C12, C21, C22 of the result

matrix C by adding or subtracting various Pi matrices, which

takes Θ(n2) time.

We’ll see the details of steps 2–4 in a moment, but we already have
enough information to set up a recurrence for the running time of
Strassen’s method. As is common, the base case in step 1 takes Θ(1)
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time, which we’ll omit when stating the recurrence. When n > 1, steps 1,

2, and 4 take a total of Θ(n2) time, and step 3 requires seven
multiplications of n/2 × n/2 matrices. Hence, we obtain the following
recurrence for the running time of Strassen’s algorithm:

Compared with MATRIX-MULTIPLY-RECURSIVE, we have traded
off one recursive submatrix multiplication for a constant number of
submatrix additions. Once you understand recurrences and their
solutions, you’ll be able to see why this trade-off actually leads to a
lower asymptotic running time. By the master method in Section 4.5,

recurrence (4.10) has the solution T (n) = Θ(nlg 7) = O(n2.81), beating

the Θ(n3)-time algorithms.
Now, let’s delve into the details. Step 2 creates the following 10

matrices:

S1 = B12 – B22,

S2 = A11 + A12,

S3 = A21 + A22,

S4 = B21 – B11,

S5 = A11 + A22,

S6 = B11 + B22,

S7 = A12 – A22,

S8 = B21 + B22,

S9 = A11 – A21,

S10 = B11 + B12.

This step adds or subtracts n/2 × n/2 matrices 10 times, taking Θ(n2)
time.

Step 3 recursively multiplies n/2 × n/2 matrices 7 times to compute
the following n/2 × n/2 matrices, each of which is the sum or difference
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of products of A and B submatrices:

P1 = A11 · S1 (= A11 · B12 – A11 · B22),

P2 = S2 · B22 (= A11 · B22 + A12 · B22),

P3 = S3 · B11 (= A21 · B11 + A22 · B11),

P4 = A22 · S4 (= A22 · B21 – A22 · B11),

P5 = S5 · S6 (= A11 · B11 + A11 · B22 + A22 · B11 + A22 · B22),

P6 = S7 · S8 (= A12 · B21 + A12 · B22 – A22 · B21 – A22 · B22),

P7 = S9 · S10 (= A11 · B11 + A11 · B12 – A21 · B11 – A21 · B12).

The only multiplications that the algorithm performs are those in the
middle column of these equations. The right-hand column just shows
what these products equal in terms of the original submatrices created
in step 1, but the terms are never explicitly calculated by the algorithm.

Step 4 adds to and subtracts from the four n/2 × n/2 submatrices of
the product C the various Pi matrices created in step 3. We start with

C11 = C11 + P5 + P4 – P2 + P6.

Expanding the calculation on the right-hand side, with the expansion of
each Pi on its own line and vertically aligning terms that cancel out, we

see that the update to C11 equals

which corresponds to equation (4.5). Similarly, setting

C12 = C12 + P1 + P2

means that the update to C12 equals
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corresponding to equation (4.6). Setting

C21 = C21 + P3 + P4

means that the update to C21 equals

corresponding to equation (4.7). Finally, setting

C22 = C22 + P5 + P1 – P3 – P7

means that the update to C22 equals

which corresponds to equation (4.8). Altogether, since we add or

subtract n/2×n/2 matrices 12 times in step 4, this step indeed takes Θ(n2)
time.

We can see that Strassen’s remarkable algorithm, comprising steps 1–
4, produces the correct matrix product using 7 submatrix
multiplications and 18 submatrix additions. We can also see that
recurrence (4.10) characterizes its running time. Since Section 4.5 shows

that this recurrence has the solution T (n) = Θ(nlg 7) = o(n3), Strassen’s

method asymptotically beats the Θ(n3) MATRIX-MULTIPLY and
MATRIX-MULTIPLY-RECURSIVE procedures.

Exercises
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Note: You may wish to read Section 4.5 before attempting some of these
exercises.

4.2-1

Use Strassen’s algorithm to compute the matrix product

Show your work.

4.2-2

Write pseudocode for Strassen’s algorithm.

4.2-3

What is the largest k such that if you can multiply 3 × 3 matrices using k
multiplications (not assuming commutativity of multiplication), then

you can multiply n × n matrices in o(nlg 7) time? What is the running
time of this algorithm?

4.2-4

V. Pan discovered a way of multiplying 68 × 68 matrices using 132,464
multiplications, a way of multiplying 70 × 70 matrices using 143,640
multiplications, and a way of multiplying 72 × 72 matrices using
155,424 multiplications. Which method yields the best asymptotic
running time when used in a divide-and-conquer matrix-multiplication
algorithm? How does it compare with Strassen’s algorithm?

4.2-5

Show how to multiply the complex numbers a + bi and c + d i using
only three multiplications of real numbers. The algorithm should take a,
b, c, and d as input and produce the real component ac – bd and the
imaginary component ad + bc separately.

4.2-6

Suppose that you have a Θ(nα)-time algorithm for squaring n × n

matrices, where α ≥ 2. Show how to use that algorithm to multiply two

different n × n matrices in Θ(nα) time.
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4.3      The substitution method for solving recurrences

Now that you have seen how recurrences characterize the running times
of divide-and-conquer algorithms, let’s learn how to solve them. We
start in this section with the substitution method, which is the most
general of the four methods in this chapter. The substitution method
comprises two steps:

1. Guess the form of the solution using symbolic constants.

2. Use mathematical induction to show that the solution works,
and find the constants.

To apply the inductive hypothesis, you substitute the guessed solution
for the function on smaller values—hence the name “substitution
method.” This method is powerful, but you must guess the form of the
answer. Although generating a good guess might seem difficult, a little
practice can quickly improve your intuition.

You can use the substitution method to establish either an upper or a
lower bound on a recurrence. It’s usually best not to try to do both at
the same time. That is, rather than trying to prove a Θ-bound directly,
first prove an O-bound, and then prove an Ω-bound. Together, they give
you a Θ-bound (Theorem 3.1 on page 56).

As an example of the substitution method, let’s determine an
asymptotic upper bound on the recurrence:

This recurrence is similar to recurrence (2.3) on page 41 for merge sort,
except for the floor function, which ensures that T (n) is defined over the
integers. Let’s guess that the asymptotic upper bound is the same—T (n)
= O(n lg n)—and use the substitution method to prove it.

We’ll adopt the inductive hypothesis that T (n) ≤ c n lg n for all n ≥
n0, where we’ll choose the specific constants c > 0 and n0 > 0 later, after

we see what constraints they need to obey. If we can establish this
inductive hypothesis, we can conclude that T (n) = O(n lg n). It would be
dangerous to use T (n) = O(n lg n) as the inductive hypothesis because
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the constants matter, as we’ll see in a moment in our discussion of
pitfalls.

Assume by induction that this bound holds for all numbers at least
as big as n0 and less than n. In particular, therefore, if n ≥ 2n0, it holds

for ⌊n/2⌋, yielding T (⌊n/2 ⌋) ≤ c ⌊n/2⌋ lg(⌊n/2⌋). Substituting into
recurrence (4.11)—hence the name “substitution” method—yields

T (n) ≤ 2(c ⌊n/2⌋ lg(⌊n/2⌋)) + Θ(n)

≤ 2(c(n/2) lg(n/2)) + Θ(n)

= cn lg(n/2) + Θ(n)

= cn lg n – cn lg 2 + Θ(n)

= cn lg n – cn + Θ(n)

≤ cn lg n,

where the last step holds if we constrain the constants n0 and c to be

sufficiently large that for n ≥ 2n0, the quantity cn dominates the

anonymous function hidden by the Θ(n) term.
We’ve shown that the inductive hypothesis holds for the inductive

case, but we also need to prove that the inductive hypothesis holds for
the base cases of the induction, that is, that T (n) ≤ cn lg n when n0 ≤ n <

2n0. As long as n0 > 1 (a new constraint on n0), we have lg n > 0, which

implies that n lg n > 0. So let’s pick n0 = 2. Since the base case of

recurrence (4.11) is not stated explicitly, by our convention, T (n) is
algorithmic, which means that T (2) and T (3) are constant (as they
should be if they describe the worst-case running time of any real
program on inputs of size 2 or 3). Picking c = max {T (2), T (3)} yields
T (2) ≤ c < (2 lg 2)c and T (3) ≤ c < (3 lg 3)c, establishing the inductive
hypothesis for the base cases.

Thus, we have T (n) ≤ cn lg n for all n ≥ 2, which implies that the
solution to recurrence (4.11) is T (n) = O(n lg n).

In the algorithms literature, people rarely carry out their substitution
proofs to this level of detail, especially in their treatment of base cases.
The reason is that for most algorithmic divide-and-conquer recurrences,
the base cases are all handled in pretty much the same way. You ground
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the induction on a range of values from a convenient positive constant
n0 up to some constant  such that for , the recurrence

always bottoms out in a constant-sized base case between n0 and .

(This example used .) Then, it’s usually apparent, without
spelling out the details, that with a suitably large choice of the leading
constant (such as c for this example), the inductive hypothesis can be
made to hold for all the values in the range from n0 to .

Making a good guess

Unfortunately, there is no general way to correctly guess the tightest
asymptotic solution to an arbitrary recurrence. Making a good guess
takes experience and, occasionally, creativity. Fortunately, learning some
recurrence-solving heuristics, as well as playing around with recurrences
to gain experience, can help you become a good guesser. You can also
use recursion trees, which we’ll see in Section 4.4, to help generate good
guesses.

If a recurrence is similar to one you’ve seen before, then guessing a
similar solution is reasonable. As an example, consider the recurrence

T (n) = 2T (n/2 + 17) + Θ(n),

defined on the reals. This recurrence looks somewhat like the merge-sort
recurrence (2.3), but it’s more complicated because of the added “17” in
the argument to T on the right-hand side. Intuitively, however, this
additional term shouldn’t substantially affect the solution to the
recurrence. When n is large, the relative difference between n/2 and n/2 +
17 is not that large: both cut n nearly in half. Consequently, it makes
sense to guess that T (n) = O(n lg n), which you can verify is correct
using the substitution method (see Exercise 4.3-1).

Another way to make a good guess is to determine loose upper and
lower bounds on the recurrence and then reduce your range of
uncertainty. For example, you might start with a lower bound of T (n) =
Ω(n) for recurrence (4.11), since the recurrence includes the term Θ(n),

and you can prove an initial upper bound of T (n) = O(n2). Then split
your time between trying to lower the upper bound and trying to raise
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the lower bound until you converge on the correct, asymptotically tight
solution, which in this case is T (n) = Θ(n lg n).

A trick of the trade: subtracting a low-order term

Sometimes, you might correctly guess a tight asymptotic bound on the
solution of a recurrence, but somehow the math fails to work out in the
induction proof. The problem frequently turns out to be that the
inductive assumption is not strong enough. The trick to resolving this
problem is to revise your guess by subtracting a lower-order term when
you hit such a snag. The math then often goes through.

Consider the recurrence

defined on the reals. Let’s guess that the solution is T (n) = O(n) and try
to show that T (n) ≤ cn for n ≥ n0, where we choose the constants c, n0 >

0 suitably. Substituting our guess into the recurrence, we obtain

T (n) ≤ 2(c(n/2)) + Θ(1)

= cn + Θ(1),

which, unfortunately, does not imply that T (n) ≤ cn for any choice of c.

We might be tempted to try a larger guess, say T (n) = O(n2). Although
this larger guess works, it provides only a loose upper bound. It turns
out that our original guess of T (n) = O(n) is correct and tight. In order
to show that it is correct, however, we must strengthen our inductive
hypothesis.

Intuitively, our guess is nearly right: we are off only by Θ(1), a lower-
order term. Nevertheless, mathematical induction requires us to prove
the exact form of the inductive hypothesis. Let’s try our trick of
subtracting a lower-order term from our previous guess: T (n) ≤ cn – d,
where d ≥ 0 is a constant. We now have

T (n) ≤ 2(c(n/2) – d) + Θ(1)

= cn – 2d + Θ(1)

≤ cn – d – (d – Θ(1))
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≤ cn – d

as long as we choose d to be larger than the anonymous upper-bound
constant hidden by the Θ-notation. Subtracting a lower-order term
works! Of course, we must not forget to handle the base case, which is to
choose the constant c large enough that cn – d dominates the implicit
base cases.

You might find the idea of subtracting a lower-order term to be
counterintuitive. After all, if the math doesn’t work out, shouldn’t you
increase your guess? Not necessarily! When the recurrence contains
more than one recursive invocation (recurrence (4.12) contains two), if
you add a lower-order term to the guess, then you end up adding it once
for each of the recursive invocations. Doing so takes you even further
away from the inductive hypothesis. On the other hand, if you subtract a
lower-order term from the guess, then you get to subtract it once for
each of the recursive invocations. In the above example, we subtracted
the constant d twice because the coefficient of T (n/2) is 2. We ended up
with the inequality T (n) ≤ cn – d – (d – Θ(1)), and we readily found a
suitable value for d.

Avoiding pitfalls

Avoid using asymptotic notation in the inductive hypothesis for the
substitution method because it’s error prone. For example, for
recurrence (4.11), we can falsely “prove” that T (n) = O(n) if we
unwisely adopt T (n) = O(n) as our inductive hypothesis:

T (n) ≤ 2 · O(⌊n/2⌋) + Θ(n)

= 2 · O(n) + Θ(n)

= O(n).  wrong!

The problem with this reasoning is that the constant hidden by the O-
notation changes. We can expose the fallacy by repeating the “proof”
using an explicit constant. For the inductive hypothesis, assume that T
(n) ≤ cn for all n ≥ n0, where c, n0 > 0 are constants. Repeating the first

two steps in the inequality chain yields
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T (n) ≤ 2(c ⌊n/2⌋) + Θ(n)

≤ cn + Θ(n).

Now, indeed cn + Θ(n) = O(n), but the constant hidden by the O-
notation must be larger than c because the anonymous function hidden
by the Θ(n) is asymptotically positive. We cannot take the third step to
conclude that cn + Θ(n) ≤ cn, thus exposing the fallacy.

When using the substitution method, or more generally
mathematical induction, you must be careful that the constants hidden
by any asymptotic notation are the same constants throughout the
proof. Consequently, it’s best to avoid asymptotic notation in your
inductive hypothesis and to name constants explicitly.

Here’s another fallacious use of the substitution method to show that
the solution to recurrence (4.11) is T (n) = O(n). We guess T (n) ≤ cn and
then argue

T (n) ≤ 2(c ⌊n/2⌋) + Θ(n)

≤ cn + Θ(n)

= O(n),  wrong!

since c is a positive constant. The mistake stems from the difference
between our goal—to prove that T (n) = O(n)—and our inductive
hypothesis—to prove that T (n) ≤ cn. When using the substitution
method, or in any inductive proof, you must prove the exact statement
of the inductive hypothesis. In this case, we must explicitly prove that T
(n) ≤ cn to show that T (n) = O(n).

Exercises

4.3-1

Use the substitution method to show that each of the following
recurrences defined on the reals has the asymptotic solution specified:

a. T (n) = T (n – 1) + n has solution T (n) = O(n2).

b. T (n) = T (n/2) + Θ(1) has solution T (n) = O(lg n).

c. T (n) = 2T (n/2) + n has solution T (n) = Θ(n lg n).
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d. T (n) = 2T (n/2 + 17) + n has solution T (n) = O(n lg n).

e. T (n) = 2T (n/3) + Θ(n) has solution T (n) = Θ(n).

f. T (n) = 4T (n/2) + Θ(n) has solution T (n) = Θ(n2).

4.3-2

The solution to the recurrence T (n) = 4T (n/2)+n turns out to be T (n)

= Θ(n2). Show that a substitution proof with the assumption T (n) ≤ cn2

fails. Then show how to subtract a lower-order term to make a
substitution proof work.

4.3-3

The recurrence T (n) = 2T (n – 1) + 1 has the solution T (n) = O(2n).

Show that a substitution proof fails with the assumption T (n) ≤ c 2n,
where c > 0 is constant. Then show how to subtract a lower-order term
to make a substitution proof work.

4.4      The recursion-tree method for solving recurrences

Although you can use the substitution method to prove that a solution
to a recurrence is correct, you might have trouble coming up with a
good guess. Drawing out a recursion tree, as we did in our analysis of
the merge-sort recurrence in Section 2.3.2, can help. In a recursion tree,
each node represents the cost of a single subproblem somewhere in the
set of recursive function invocations. You typically sum the costs within
each level of the tree to obtain the per-level costs, and then you sum all
the per-level costs to determine the total cost of all levels of the
recursion. Sometimes, however, adding up the total cost takes more
creativity.

A recursion tree is best used to generate intuition for a good guess,
which you can then verify by the substitution method. If you are
meticulous when drawing out a recursion tree and summing the costs,
however, you can use a recursion tree as a direct proof of a solution to a
recurrence. But if you use it only to generate a good guess, you can often
tolerate a small amount of “sloppiness,” which can simplify the math.
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When you verify your guess with the substitution method later on, your
math should be precise. This section demonstrates how you can use
recursion trees to solve recurrences, generate good guesses, and gain
intuition for recurrences.

An illustrative example

Let’s see how a recursion tree can provide a good guess for an upper-
bound solution to the recurrence

Figure 4.1 shows how to derive the recursion tree for T (n) = 3T (n/4) +

cn2, where the constant c > 0 is the upper-bound constant in the Θ(n2)
term. Part (a) of the figure shows T (n), which part (b) expands into an

equivalent tree representing the recurrence. The cn2 term at the root
represents the cost at the top level of recursion, and the three subtrees of
the root represent the costs incurred by the subproblems of size n/4. Part
(c) shows this process carried one step further by expanding each node
with cost T (n/4) from part (b). The cost for each of the three children of

the root is c(n/4)2. We continue expanding each node in the tree by
breaking it into its constituent parts as determined by the recurrence.
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Figure 4.1 Constructing a recursion tree for the recurrence T (n) = 3T (n/4) + cn2. Part (a) shows
T (n), which progressively expands in (b)–(d) to form the recursion tree. The fully expanded tree
in (d) has height log4 n.

Because subproblem sizes decrease by a factor of 4 every time we go
down one level, the recursion must eventually bottom out in a base case
where n < n0. By convention, the base case is T (n) = Θ(1) for n < n0,

where n0 > 0 is any threshold constant sufficiently large that the
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recurrence is well defined. For the purpose of intuition, however, let’s
simplify the math a little. Let’s assume that n is an exact power of 4 and
that the base case is T (1) = Θ(1). As it turns out, these assumptions
don’t affect the asymptotic solution.

What’s the height of the recursion tree? The subproblem size for a

node at depth i is n/4i. As we descend the tree from the root, the

subproblem size hits n = 1 when n/4i = 1 or, equivalently, when i =
log4 n. Thus, the tree has internal nodes at depths 0, 1, 2, … , log4 n – 1

and leaves at depth log4 n.

Part (d) of Figure 4.1 shows the cost at each level of the tree. Each
level has three times as many nodes as the level above, and so the

number of nodes at depth i is 3i. Because subproblem sizes reduce by a
factor of 4 for each level further from the root, each internal node at

depth i = 0, 1, 2, … , log4 n – 1 has a cost of c(n/4i)2. Multiplying, we

see that the total cost of all nodes at a given depth i is 3ic(n/4i)2 =

(3/16)icn2. The bottom level, at depth log4  n, contains 

leaves (using equation (3.21) on page 66). Each leaf contributes Θ(1),

leading to a total leaf cost of .
Now we add up the costs over all levels to determine the cost for the

entire tree:
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We’ve derived the guess of T (n) = O(n2) for the original recurrence. In

this example, the coefficients of cn2 form a decreasing geometric series.
By equation (A.7), the sum of these coefficients is bounded from above
by the constant 16/13. Since the root’s contribution to the total cost is

cn2, the cost of the root dominates the total cost of the tree.

In fact, if O(n2) is indeed an upper bound for the recurrence (as we’ll
verify in a moment), then it must be a tight bound. Why? The first

recursive call contributes a cost of Θ(n2), and so Ω(n2) must be a lower
bound for the recurrence.

Let’s now use the substitution method to verify that our guess is

correct, namely, that T (n) = O(n2) is an upper bound for the recurrence

T (n) = 3T (n/4)+Θ(n2). We want to show that T (n) ≤ dn2 for some
constant d > 0. Using the same constant c > 0 as before, we have

T (n) ≤ 3T (n/4) + cn2

≤ 3d(n/4)2 + cn2

=

≤ dn2,

where the last step holds if we choose d ≥ (16/13)c.
For the base case of the induction, let n0 > 0 be a sufficiently large

threshold constant that the recurrence is well defined when T (n) = Θ(1)
for n < n0. We can pick d large enough that d dominates the constant

hidden by the Θ, in which case dn2 ≥ d ≥ T (n) for 1 ≤ n < n0, completing

the proof of the base case.
The substitution proof we just saw involves two named constants, c

and d. We named c and used it to stand for the upper-bound constant
hidden and guaranteed to exist by the Θ-notation. We cannot pick c

arbitrarily—it’s given to us—although, for any such c, any constant c′ ≥
c also suffices. We also named d, but we were free to choose any value
for it that fit our needs. In this example, the value of d happened to
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depend on the value of c, which is fine, since d is constant if c is
constant.

An irregular example

Let’s find an asymptotic upper bound for another, more irregular,
example. Figure 4.2 shows the recursion tree for the recurrence

This recursion tree is unbalanced, with different root-to-leaf paths
having different lengths. Going left at any node produces a subproblem
of one-third the size, and going right produces a subproblem of two-
thirds the size. Let n0 > 0 be the implicit threshold constant such that T

(n) = Θ(1) for 0 < n < n0, and let c represent the upper-bound constant

hidden by the Θ(n) term for n ≥ n0. There are actually two n0 constants

here—one for the threshold in the recurrence, and the other for the
threshold in the Θ-notation, so we’ll let n0 be the larger of the two

constants.
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Figure 4.2 A recursion tree for the recurrence T (n) = T (n/3) + T (2n/3) + cn.

The height of the tree runs down the right edge of the tree,
corresponding to subproblems of sizes n, (2/3)n, (4/9)n, … , Θ(1) with
costs bounded by cn, c(2n/3), c(4n/9), … , Θ(1), respectively. We hit the

rightmost leaf when (2/3)hn < n0 ≤ (2/3)h–1n, which happens when h =

⌊log3/2(n/n0)⌋ + 1 since, applying the floor bounds in equation (3.2) on

page 64 with x = log3/2 (n/n0), we have (2/3)hn = (2/3)⌊x⌋+1n < (2/3)xn

= (n0/n)n = n0 and (2/3)h–1n = (2/3)⌊x⌋n > (2/3)xn = (n0/n)n = n0. Thus,

the height of the tree is h = Θ(lg n).
We’re now in a position to understand the upper bound. Let’s

postpone dealing with the leaves for a moment. Summing the costs of
internal nodes across each level, we have at most cn per level times the
Θ(lg n) tree height for a total cost of O(n lg n) for all internal nodes.
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It remains to deal with the leaves of the recursion tree, which
represent base cases, each costing Θ(1). How many leaves are there? It’s
tempting to upper-bound their number by the number of leaves in a

complete binary tree of height h = ⌊log3/2(n/n0)⌋ + 1, since the recursion

tree is contained within such a complete binary tree. But this approach
turns out to give us a poor bound. The complete binary tree has 1 node

at the root, 2 nodes at depth 1, and generally 2k nodes at depth k. Since

the height is h = ⌊log3/2  n⌋ + 1, there are 

leaves in the complete binary tree, which is an upper bound on the
number of leaves in the recursion tree. Because the cost of each leaf is
Θ(1), this analysis says that the total cost of all leaves in the recursion

tree is , which is an asymptotically greater bound
than the O(n lg n) cost of all internal nodes. In fact, as we’re about to
see, this bound is not tight. The cost of all leaves in the recursion tree is
O(n)—asymptotically less than O(n lg n). In other words, the cost of the
internal nodes dominates the cost of the leaves, not vice versa.

Rather than analyzing the leaves, we could quit right now and prove
by substitution that T (n) = Θ(n lg n). This approach works (see Exercise
4.4-3), but it’s instructive to understand how many leaves this recursion
tree has. You may see recurrences for which the cost of leaves dominates
the cost of internal nodes, and then you’ll be in better shape if you’ve
had some experience analyzing the number of leaves.

To figure out how many leaves there really are, let’s write a
recurrence L(n) for the number of leaves in the recursion tree for T (n).
Since all the leaves in T (n) belong either to the left subtree or the right
subtree of the root, we have

This recurrence is similar to recurrence (4.14), but it’s missing the Θ(n)
term, and it contains an explicit base case. Because this recurrence omits
the Θ(n) term, it is much easier to solve. Let’s apply the substitution
method to show that it has solution L(n) = O(n). Using the inductive
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hypothesis L(n) ≤ dn for some constant d > 0, and assuming that the
inductive hypothesis holds for all values less than n, we have

L(n) = L(n/3) + L(2n/3)

≤ dn/3 + 2(dn)/3

≤ dn,

which holds for any d > 0. We can now choose d large enough to handle
the base case L(n) = 1 for 0 < n < n0, for which d = 1 suffices, thereby

completing the substitution method for the upper bound on leaves.
(Exercise 4.4-2 asks you to prove that L(n) = Θ(n).)

Returning to recurrence (4.14) for T (n), it now becomes apparent
that the total cost of leaves over all levels must be L(n) · Θ(1) = Θ(n).
Since we have derived the bound of O(n lg n) on the cost of the internal
nodes, it follows that the solution to recurrence (4.14) is T (n) = O(n lg
n) + Θ(n) = O(n lg n). (Exercise 4.4-3 asks you to prove that T (n) = Θ(n
lg n).)

It’s wise to verify any bound obtained with a recursion tree by using
the substitution method, especially if you’ve made simplifying
assumptions. But another strategy altogether is to use more-powerful
mathematics, typically in the form of the master method in the next
section (which unfortunately doesn’t apply to recurrence (4.14)) or the
Akra-Bazzi method (which does, but requires calculus). Even if you use
a powerful method, a recursion tree can improve your intuition for
what’s going on beneath the heavy math.

Exercises

4.4-1

For each of the following recurrences, sketch its recursion tree, and
guess a good asymptotic upper bound on its solution. Then use the
substitution method to verify your answer.

a. T (n) = T (n/2) + n3.

b. T (n) = 4T (n/3) + n.

c. T (n) = 4T (n/2) + n.
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d. T (n) = 3T (n – 1) + 1.

4.4-2

Use the substitution method to prove that recurrence (4.15) has the
asymptotic lower bound L(n) = Ω(n). Conclude that L(n) = Θ(n).

4.4-3

Use the substitution method to prove that recurrence (4.14) has the
solution T (n) = Ω(n lg n). Conclude that T (n) = Θ(n lg n).

4.4-4

Use a recursion tree to justify a good guess for the solution to the
recurrence T (n) = T (αn)+T ((1–α)n)+Θ(n), where α is a constant in the
range 0 < α < 1.

4.5      The master method for solving recurrences

The master method provides a “cookbook” method for solving
algorithmic recurrences of the form

where a > 0 and b > 1 are constants. We call f (n) a driving function, and
we call a recurrence of this general form a master recurrence. To use the
master method, you need to memorize three cases, but then you’ll be
able to solve many master recurrences quite easily.

A master recurrence describes the running time of a divide-and-
conquer algorithm that divides a problem of size n into a subproblems,
each of size n/b < n. The algorithm solves the a subproblems recursively,
each in T (n/b) time. The driving function f (n) encompasses the cost of
dividing the problem before the recursion, as well as the cost of
combining the results of the recursive solutions to subproblems. For
example, the recurrence arising from Strassen’s algorithm is a master

recurrence with a = 7, b = 2, and driving function f (n) = Θ(n2).
As we have mentioned, in solving a recurrence that describes the

running time of an algorithm, one technicality that we’d often prefer to
ignore is the requirement that the input size n be an integer. For
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example, we saw that the running time of merge sort can be described by
recurrence (2.3), T (n) = 2T (n/2) + Θ(n), on page 41. But if n is an odd
number, we really don’t have two problems of exactly half the size.
Rather, to ensure that the problem sizes are integers, we round one

subproblem down to size ⌊n/2⌋ and the other up to size ⌈n/2⌉, so the true

recurrence is T (n) = T (⌈n/2⌉ + T (⌊n/2⌋) + Θ(n). But this floors-and-
ceilings recurrence is longer to write and messier to deal with than
recurrence (2.3), which is defined on the reals. We’d rather not worry
about floors and ceilings, if we don’t have to, especially since the two
recurrences have the same Θ(n lg n) solution.

The master method allows you to state a master recurrence without
floors and ceilings and implicitly infer them. No matter how the
arguments are rounded up or down to the nearest integer, the
asymptotic bounds that it provides remain the same. Moreover, as we’ll
see in Section 4.6, if you define your master recurrence on the reals,
without implicit floors and ceilings, the asymptotic bounds still don’t
change. Thus you can ignore floors and ceilings for master recurrences.
Section 4.7 gives sufficient conditions for ignoring floors and ceilings in
more general divide-and-conquer recurrences.

The master theorem

The master method depends upon the following theorem.

Theorem 4.1 (Master theorem)

Let a > 0 and b > 1 be constants, and let f (n) be a driving function that
is defined and nonnegative on all sufficiently large reals. Define the
recurrence T (n) on n ∈ N by

where aT (n/b) actually means a′T (⌊n/b⌋) + a″T (⌈n/b⌉) for some

constants a′ ≥ 0 and a″ ≥ 0 satisfying a = a′ + a″. Then the asymptotic
behavior of T (n) can be characterized as follows:

1. If there exists a constant ϵ > 0 such that , then 
.
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2. If there exists a constant k ≥ 0 such that ,

then .

3. If there exists a constant ϵ > 0 such that , and if
f (n) additionally satisfies the regularity condition af (n/b) ≤ cf (n)
for some constant c < 1 and all sufficiently large n, then T (n) =
Θ(f (n)).

▪

Before applying the master theorem to some examples, let’s spend a
few moments to understand broadly what it says. The function  is
called the watershed function. In each of the three cases, we compare the
driving function f (n) to the watershed function . Intuitively, if the
watershed function grows asymptotically faster than the driving
function, then case 1 applies. Case 2 applies if the two functions grow at
nearly the same asymptotic rate. Case 3 is the “opposite” of case 1,
where the driving function grows asymptotically faster than the
watershed function. But the technical details matter.

In case 1, not only must the watershed function grow asymptotically
faster than the driving function, it must grow polynomially faster. That
is, the watershed function  must be asymptotically larger than the

driving function f (n) by at least a factor of Θ(nϵ) for some constant ϵ >

0. The master theorem then says that the solution is . In
this case, if we look at the recursion tree for the recurrence, the cost per
level grows at least geometrically from root to leaves, and the total cost
of leaves dominates the total cost of the internal nodes.

In case 2, the watershed and driving functions grow at nearly the
same asymptotic rate. But more specifically, the driving function grows

faster than the watershed function by a factor of Θ(lgk n), where k ≥ 0.
The master theorem says that we tack on an extra lg n factor to f (n),

yielding the solution . In this case, each level of

the recursion tree costs approximately the same— —and
there are Θ(lg n) levels. In practice, the most common situation for case
2 occurs when k = 0, in which case the watershed and driving functions
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have the same asymptotic growth, and the solution is 
.

Case 3 mirrors case 1. Not only must the driving function grow
asymptotically faster than the watershed function, it must grow
polynomially faster. That is, the driving function f (n) must be
asymptotically larger than the watershed function  by at least a

factor of Θ(nϵ) for some constant ϵ > 0. Moreover, the driving function
must satisfy the regularity condition that af (n/b) ≤ cf (n). This condition
is satisfied by most of the polynomially bounded functions that you’re
likely to encounter when applying case 3. The regularity condition
might not be satisfied if the driving function grows slowly in local areas,
yet relatively quickly overall. (Exercise 4.5-5 gives an example of such a
function.) For case 3, the master theorem says that the solution is T (n)
= Θ(f (n)). If we look at the recursion tree, the cost per level drops at
least geometrically from the root to the leaves, and the root cost
dominates the cost of all other nodes.

It’s worth looking again at the requirement that there be polynomial
separation between the watershed function and the driving function for
either case 1 or case 3 to apply. The separation doesn’t need to be much,
but it must be there, and it must grow polynomially. For example, for

the recurrence T (n) = 4T (n/2) + n1.99 (admittedly not a recurrence
you’re likely to see when analyzing an algorithm), the watershed

function is . Hence the driving function f (n) = n1.99 is

polynomially smaller by a factor of n0.01. Thus case 1 applies with ϵ =
0.01.

Using the master method

To use the master method, you determine which case (if any) of the
master theorem applies and write down the answer.

As a first example, consider the recurrence T (n) = 9T (n/3) + n. For
this recurrence, we have a = 9 and b = 3, which implies that 

. Since f (n) = n = O(n2–ϵ) for any constant ϵ ≤ 1,
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we can apply case 1 of the master theorem to conclude that the solution

is T (n) = Θ(n2).
Now consider the recurrence T (n) = T (2n/3) + 1, which has a = 1

and b = 3/2, which means that the watershed function is 
. Case 2 applies since 

. The solution to the recurrence is T (n)
= Θ(lg n).

For the recurrence T (n) = 3T (n/4) + n lg n, we have a = 3 and b = 4,
which means that . Since 

, where ϵ can be as large as approximately 0.2,
case 3 applies as long as the regularity condition holds for f (n). It does,
because for sufficiently large n, we have that af (n/b) = 3(n/4) lg(n/4) ≤
(3/4)n lg n = cf (n) for c = 3/4. By case 3, the solution to the recurrence is
T (n) = Θ(n lg n).

Next, let’s look at the recurrence T (n) = 2T (n/2) + n lg n, where we
have a = 2, b = 2, and . Case 2 applies since 

. We conclude that the solution is T (n) = Θ(n

lg2 n).
We can use the master method to solve the recurrences we saw in

Sections 2.3.2, 4.1, and 4.2.
Recurrence (2.3), T (n) = 2T (n/2) + Θ(n), on page 41, characterizes

the running time of merge sort. Since a = 2 and b = 2, the watershed
function is . Case 2 applies because f (n) = Θ(n), and
the solution is T (n) = Θ(n lg n).

Recurrence (4.9), T (n) = 8T (n/2) + Θ(1), on page 84, describes the
running time of the simple recursive algorithm for matrix
multiplication. We have a = 8 and b = 2, which means that the

watershed function is . Since n3 is polynomially
larger than the driving function f (n) = Θ(1)—indeed, we have f (n) =

O(n3–ϵ) for any positive ϵ < 3—case 1 applies. We conclude that T (n)

= Θ(n3).

Finally, recurrence (4.10), T (n) = 7T (n/2) + Θ(n2), on page 87, arose
from the analysis of Strassen’s algorithm for matrix multiplication. For
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this recurrence, we have a = 7 and b = 2, and the watershed function is 

. Observing that lg 7 = 2.807355 …, we can let ϵ = 0.8 and

bound the driving function f (n) = Θ(n2) = O(nlg 7–ϵ). Case 1 applies

with solution T (n) = Θ(nlg 7).

When the master method doesn’t apply

There are situations where you can’t use the master theorem. For
example, it can be that the watershed function and the driving function
cannot be asymptotically compared. We might have that 

for an infinite number of values of n but also that  for an
infinite number of different values of n. As a practical matter, however,
most of the driving functions that arise in the study of algorithms can
be meaningfully compared with the watershed function. If you
encounter a master recurrence for which that’s not the case, you’ll have
to resort to substitution or other methods.

Even when the relative growths of the driving and watershed
functions can be compared, the master theorem does not cover all the
possibilities. There is a gap between cases 1 and 2 when ,
yet the watershed function does not grow polynomially faster than the
driving function. Similarly, there is a gap between cases 2 and 3 when 

 and the driving function grows more than
polylogarithmically faster than the watershed function, but it does not
grow polynomially faster. If the driving function falls into one of these
gaps, or if the regularity condition in case 3 fails to hold, you’ll need to
use something other than the master method to solve the recurrence.

As an example of a driving function falling into a gap, consider the
recurrence T (n) = 2T (n/2) + n/lg n. Since a = 2 and b = 2, the
watershed function is . The driving function is
n/lg n = o(n), which means that it grows asymptotically more slowly
than the watershed function n. But n/lg n grows only logarithmically

slower than n, not polynomially slower. More precisely, equation (3.24)

on page 67 says that lg n = o(nϵ) for any constant ϵ > 0, which means

that 1/lg n = ω(n–ϵ) and . Thus no constant
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ϵ > 0 exists such that , which is required for case 1 to

apply. Case 2 fails to apply as well, since , where k
= –1, but k must be nonnegative for case 2 to apply.

To solve this kind of recurrence, you must use another method, such
as the substitution method (Section 4.3) or the Akra-Bazzi method
(Section 4.7). (Exercise 4.6-3 asks you to show that the answer is Θ(n lg
lg n).) Although the master theorem doesn’t handle this particular
recurrence, it does handle the overwhelming majority of recurrences
that tend to arise in practice.

Exercises

4.5-1

Use the master method to give tight asymptotic bounds for the
following recurrences.

a. T (n) = 2T (n/4) + 1.

b. T (n) = 2T (n/4) + .

c. T (n) = 2T (n/4) + .

d. T (n) = 2T (n/4) + n.

e. T (n) = 2T (n/4) + n2.

4.5-2

Professor Caesar wants to develop a matrix-multiplication algorithm
that is asymptotically faster than Strassen’s algorithm. His algorithm
will use the divide-and-conquer method, dividing each matrix into n/4 ×
n/4 submatrices, and the divide and combine steps together will take

Θ(n2) time. Suppose that the professor’s algorithm creates a recursive
subproblems of size n/4. What is the largest integer value of a for which
his algorithm could possibly run asymptotically faster than Strassen’s?

4.5-3

Use the master method to show that the solution to the binary-search
recurrence T (n) = T (n/2) + Θ(1) is T (n) = Θ(lg n). (See Exercise 2.3-6
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for a description of binary search.)

4.5-4

Consider the function f (n) = lg n. Argue that although f (n/2) < f (n),
the regularity condition af (n/b) ≤ cf (n) with a = 1 and b = 2 does not

hold for any constant c < 1. Argue further that for any ϵ > 0, the
condition in case 3 that  does not hold.

4.5-5

Show that for suitable constants a, b, and ϵ, the function f (n) = 2⌈lg n⌉

satisfies all the conditions in case 3 of the master theorem except the
regularity condition.

★ 4.6      Proof of the continuous master theorem

Proving the master theorem (Theorem 4.1) in its full generality,
especially dealing with the knotty technical issue of floors and ceilings,
is beyond the scope of this book. This section, however, states and
proves a variant of the master theorem, called the continuous master

theorem1 in which the master recurrence (4.17) is defined over
sufficiently large positive real numbers. The proof of this version,
uncomplicated by floors and ceilings, contains the main ideas needed to
understand how master recurrences behave. Section 4.7 discusses floors
and ceilings in divide-and-conquer recurrences at greater length,
presenting sufficient conditions for them not to affect the asymptotic
solutions.

Of course, since you need not understand the proof of the master
theorem in order to apply the master method, you may choose to skip
this section. But if you wish to study more-advanced algorithms beyond
the scope of this textbook, you may appreciate a better understanding
of the underlying mathematics, which the proof of the continuous
master theorem provides.

Although we usually assume that recurrences are algorithmic and
don’t require an explicit statement of a base case, we must be much
more careful for proofs that justify the practice. The lemmas and
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theorem in this section explicitly state the base cases, because the
inductive proofs require mathematical grounding. It is common in the
world of mathematics to be extraordinarily careful proving theorems
that justify acting more casually in practice.

The proof of the continuous master theorem involves two lemmas.
Lemma 4.2 uses a slightly simplified master recurrence with a threshold
constant of n0 = 1, rather than the more general n0 > 0 threshold

constant implied by the unstated base case. The lemma employs a
recursion tree to reduce the solution of the simplified master recurrence
to that of evaluating a summation. Lemma 4.3 then provides asymptotic
bounds for the summation, mirroring the three cases of the master
theorem. Finally, the continuous master theorem itself (Theorem 4.4)
gives asymptotic bounds for master recurrences, while generalizing to
an arbitrary threshold constant n0 > 0 as implied by the unstated base

case.
Some of the proofs use the properties described in Problem 3-5 on

pages 72–73 to combine and simplify complicated asymptotic
expressions. Although Problem 3-5 addresses only Θ-notation, the
properties enumerated there can be extended to O-notation and Ω-
notation as well.

Here’s the first lemma.

Lemma 4.2

Let a > 0 and b > 1 be constants, and let f (n) be a function defined over
real numbers n ≥ 1. Then the recurrence

has solution

Proof     Consider the recursion tree in Figure 4.3. Let’s look first at its
internal nodes. The root of the tree has cost f (n), and it has a children,
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each with cost f (n/b). (It is convenient to think of a as being an integer,
especially when visualizing the recursion tree, but the mathematics does

not require it.) Each of these children has a children, making a2 nodes

at depth 2, and each of the a children has cost f (n/b2). In general, there

are aj nodes at depth j, and each node has cost f (n/bj).
Now, let’s move on to understanding the leaves. The tree grows

downward until n/bj becomes less than 1. Thus, the tree has height ⌊logb

n⌋ + 1, because  and .

Since, as we have observed, the number of nodes at depth j is aj and all

the leaves are at depth ⌊logb  n⌋ + 1, the tree contains  leaves.

Using the identity (3.21) on page 66, we have 

, since a is constant, and 

. Consequently, the total number of

leaves is —asymptotically, the watershed function.
We are now in a position to derive equation (4.18) by summing the

costs of the nodes at each depth in the tree, as shown in the figure. The
first term in the equation is the total costs of the leaves. Since each leaf

is at depth ⌊logbn⌋ + 1 and , the base case of the

recurrence gives the cost of a leaf: . Hence the cost of all 
leaves is  by Problem 3-5(d). The second term
in equation (4.18) is the cost of the internal nodes, which, in the
underlying divide-and-conquer algorithm, represents the costs of
dividing problems into subproblems and then recombining the

subproblems. Since the cost for all the internal nodes at depth j is aj f

(n/bj), the total cost of all internal nodes is

▪
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Figure 4.3 The recursion tree generated by T (n) = aT (n/b) + f (n). The tree is a complete a-ary

tree with  leaves and height ⌊logb n⌋ + 1. The cost of the nodes at each depth is shown

at the right, and their sum is given in equation (4.18).

As we’ll see, the three cases of the master theorem depend on the
distribution of the total cost across levels of the recursion tree:

Case 1: The costs increase geometrically from the root to the leaves,
growing by a constant factor with each level.

Case 2: The costs depend on the value of k in the theorem. With k = 0,
the costs are equal for each level; with k = 1, the costs grow linearly
from the root to the leaves; with k = 2, the growth is quadratic; and in
general, the costs grow polynomially in k.

Case 3: The costs decrease geometrically from the root to the leaves,
shrinking by a constant factor with each level.

The summation in equation (4.18) describes the cost of the dividing
and combining steps in the underlying divide-and-conquer algorithm.
The next lemma provides asymptotic bounds on the summation’s
growth.
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Lemma 4.3

Let a > 0 and b > 1 be constants, and let f (n) be a function defined over
real numbers n ≥ 1. Then the asymptotic behavior of the function

defined for n ≥ 1, can be characterized as follows:

1. If there exists a constant ϵ > 0 such that , then 

.

2. If there exists a constant k ≥ 0 such that , then

.

3. If there exists a constant c in the range 0 < c < 1 such that 0 < af

(n/b) ≤ cf (n) for all n ≥ 1, then g(n) = Θ(f (n)).

Proof      For case 1, we have , which implies that 

. Substituting into equation (4.19) yields

the last series being geometric. Since b and ϵ are constants, the bϵ – 1
denominator doesn’t affect the asymptotic growth of g(n), and neither
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does the –1 in the numerator. Since 

, we obtain 
, thereby proving case 1.

Case 2 assumes that , from which we can

conclude that . Substituting into
equation (4.19) and repeatedly applying Problem 3-5(c) yields

The summation within the Θ-notation can be bounded from above as
follows:
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Exercise 4.6-1 asks you to show that the summation can similarly be

bounded from below by . Since we have tight upper and lower

bounds, the summation is , from which we can conclude that 

, thereby completing the proof of case 2.
For case 3, observe that f (n) appears in the definition (4.19) of g(n)

(when j = 0) and that all terms of g(n) are positive. Therefore, we must
have g(n) = Ω(f (n)), and it only remains to prove that g(n) = O(f (n)).

Performing j iterations of the inequality af (n/b) ≤ cf (n) yields aj f (n/bj)

≤ cj f (n). Substituting into equation (4.19), we obtain

Thus, we can conclude that g(n) = Θ(f (n)). With case 3 proved, the
entire proof of the lemma is complete.

▪

We can now state and prove the continuous master theorem.
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Theorem 4.4 (Continuous master theorem)

Let a > 0 and b > 1 be constants, and let f (n) be a driving function that
is defined and nonnegative on all sufficiently large reals. Define the
algorithmic recurrence T (n) on the positive real numbers by

T (n) = aT (n/b) + f (n).

Then the asymptotic behavior of T (n) can be characterized as follows:

1. If there exists a constant ϵ > 0 such that , then 

.

2. If there exists a constant k ≥ 0 such that , then 
.

3. If there exists a constant ϵ > 0 such that , and if
f (n) additionally satisfies the regularity condition af (n/b) ≤ cf (n)
for some constant c < 1 and all sufficiently large n, then T (n) =
Θ(f (n)).

Proof   The idea is to bound the summation (4.18) from Lemma 4.2 by
applying Lemma 4.3. But we must account for Lemma 4.2 using a base
case for 0 < n < 1, whereas this theorem uses an implicit base case for 0
< n < n0, where n0 > 0 is an arbitrary threshold constant. Since the

recurrence is algorithmic, we can assume that f (n) is defined for n ≥ n0.

For n > 0, let us define two auxiliary functions T′(n) = T (n0 n) and

f ′(n) = f (n0 n). We have

We have obtained a recurrence for T ′(n) that satisfies the conditions of
Lemma 4.2, and by that lemma, the solution is
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To solve T  ′(n), we first need to bound f  ′(n). Let’s examine the
individual cases in the theorem.

The condition for case 1 is  for some constant ϵ > 0.
We have

since a, b, n0, and ϵ are all constant. The function f  ′(n) satisfies the

conditions of case 1 of Lemma 4.3, and the summation in equation
(4.18) of Lemma 4.2 evaluates to . Because a, b and n0 are all

constants, we have

thereby completing case 1 of the theorem.

The condition for case 2 is  for some constant k ≥
0. We have

Similar to the proof of case 1, the function f′(n) satisfies the conditions
of case 2 of Lemma 4.3. The summation in equation (4.18) of Lemma

4.2 is therefore , which implies that
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which proves case 2 of the theorem.

Finally, the condition for case 3 is  for some

constant ϵ > 0 and f (n) additionally satisfies the regularity condition af

(n/b) ≤ cf (n) for all n ≥ n0 and some constants c < 1 and n0 > 1. The first

part of case 3 is like case 1:

Using the definition of f ′(n) and the fact that n0 n ≥ n0 for all n ≥ 1, we

have for n ≥ 1 that

af ′(n/b) = af (n0 n/b)

≤ cf (n0 n)

= cf ′(n).

Thus f ′(n) satisfies the requirements for case 3 of Lemma 4.3, and the

summation in equation (4.18) of Lemma 4.2 evaluates to Θ(f  ′(n)),
yielding

T (n) = T ′(n/n0)

=

= Θ(f ′(n/n0))

= Θ(f (n)),

which completes the proof of case 3 of the theorem and thus the whole
theorem.

▪
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Exercises

4.6-1

Show that .

★ 4.6-2

Show that case 3 of the master theorem is overstated (which is also why
case 3 of Lemma 4.3 does not require that  in the
sense that the regularity condition af (n/b) ≤ cf (n) for some constant c <

1 implies that there exists a constant ϵ > 0 such that .

★ 4.6-3

For , prove that the summation in equation (4.19)
has solution . Conclude that a master recurrence T

(n) using f (n) as its driving function has solution .

★ 4.7      Akra-Bazzi recurrences

This section provides an overview of two advanced topics related to
divide-and-conquer recurrences. The first deals with technicalities
arising from the use of floors and ceilings, and the second discusses the
Akra-Bazzi method, which involves a little calculus, for solving
complicated divide-and-conquer recurrences.

In particular, we’ll look at the class of algorithmic divide-and-
conquer recurrences originally studied by M. Akra and L. Bazzi [13].
These Akra-Bazzi recurrences take the form

where k is a positive integer; all the constants a1, a2, … , ak ∈ R are

strictly positive; all the constants b1, b2, … , bk ∈ R are strictly greater

than 1; and the driving function f (n) is defined on sufficiently large
nonnegative reals and is itself nonnegative.
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Akra-Bazzi recurrences generalize the class of recurrences addressed
by the master theorem. Whereas master recurrences characterize the
running times of divide-and-conquer algorithms that break a problem
into equal-sized subproblems (modulo floors and ceilings), Akra-Bazzi
recurrences can describe the running time of divide-and-conquer
algorithms that break a problem into different-sized subproblems. The
master theorem, however, allows you to ignore floors and ceilings, but
the Akra-Bazzi method for solving Akra-Bazzi recurrences needs an
additional requirement to deal with floors and ceilings.

But before diving into the Akra-Bazzi method itself, let’s understand
the limitations involved in ignoring floors and ceilings in Akra-Bazzi
recurrences. As you’re aware, algorithms generally deal with integer-
sized inputs. The mathematics for recurrences is often easier with real
numbers, however, than with integers, where we must cope with floors
and ceilings to ensure that terms are well defined. The difference may
not seem to be much—especially because that’s often the truth with
recurrences—but to be mathematically correct, we must be careful with
our assumptions. Since our end goal is to understand algorithms and
not the vagaries of mathematical corner cases, we’d like to be casual yet
rigorous. How can we treat floors and ceilings casually while still
ensuring rigor?

From a mathematical point of view, the difficulty in dealing with
floors and ceilings is that some driving functions can be really, really
weird. So it’s not okay in general to ignore floors and ceilings in Akra-
Bazzi recurrences. Fortunately, most of the driving functions we
encounter in the study of algorithms behave nicely, and floors and
ceilings don’t make a difference.

The polynomial-growth condition

If the driving function f (n) in equation (4.22) is well behaved in the
following sense, it’s okay to drop floors and ceilings.

A function f (n) defined on all sufficiently large positive reals
satisfies the polynomial-growth condition if there exists a
constant  such that the following holds: for every constant
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ϕ ≥ 1, there exists a constant d > 1 (depending on ϕ) such that f

(n)/d ≤ f (ψ n) ≤ df (n) for all 1 ≤ ψ ≤ ϕ and .

This definition may be one of the hardest in this textbook to get your
head around. To a first order, it says that f (n) satisfies the property that
f (Θ(n)) = Θ(f (n)), although the polynomial-growth condition is
actually somewhat stronger (see Exercise 4.7-4). The definition also
implies that f (n) is asymptotically positive (see Exercise 4.7-3).

Examples of functions that satisfy the polynomial-growth condition

include any function of the form f (n) = Θ(nα lgβ n lg lgγn), where α, β,
and γ are constants. Most of the polynomially bounded functions used
in this book satisfy the condition. Exponentials and superexponentials
do not (see Exercise 4.7-2, for example), and there also exist
polynomially bounded functions that do not.

Floors and ceilings in “nice” recurrences

When the driving function in an Akra-Bazzi recurrence satisfies the
polynomial-growth condition, floors and ceilings don’t change the
asymptotic behavior of the solution. The following theorem, which is
presented without proof, formalizes this notion.

Theorem 4.5

Let T (n) be a function defined on the nonnegative reals that satisfies
recurrence (4.22), where f (n) satisfies the polynomial-growth condition.

Let T  ′(n) be another function defined on the natural numbers also
satisfying recurrence (4.22), except that each T (n/bi) is replaced either

with T (⌈n/bi⌉) or with T (⌊n/bi⌋). Then we have T ′(n) = Θ(T (n)).

▪

Floors and ceilings represent a minor perturbation to the arguments
in the recursion. By inequality (3.2) on page 64, they perturb an
argument by at most 1. But much larger perturbations are tolerable. As
long as the driving function f (n) in recurrence (4.22) satisfies the
polynomial-growth condition, it turns out that replacing any term T
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(n/bi) with T (n/bi + hi(n)), where |hi(n)| = O(n/lg1+ϵ  n) for some

constant ϵ > 0 and sufficiently large n, leaves the asymptotic solution
unaffected. Thus, the divide step in a divide-and-conquer algorithm can
be moderately coarse without affecting the solution to its running-time
recurrence.

The Akra-Bazzi method

The Akra-Bazzi method, not surprisingly, was developed to solve Akra-
Bazzi recurrences (4.22), which by dint of Theorem 4.5, applies in the
presence of floors and ceilings or even larger perturbations, as just
discussed. The method involves first determining the unique real

number p such that . Such a p always exists, because when
p → –∞, the sum goes to ∞; it decreases as p increases; and when p → ∞,
it goes to 0. The Akra-Bazzi method then gives the solution to the
recurrence as

As an example, consider the recurrence

We’ll see the similar recurrence (9.1) on page 240 when we study an
algorithm for selecting the ith smallest element from a set of n numbers.
This recurrence has the form of equation (4.22), where a1 = a2 = 1, b1 =

5, b2 = 10/7, and f (n) = n. To solve it, the Akra-Bazzi method says that

we should determine the unique p satisfying

Solving for p is kind of messy—it turns out that p = 0.83978 …—but we
can solve the recurrence without actually knowing the exact value for p.

Observe that (1/5)0 + (7/10)0 = 2 and (1/5)1 + (7/10)1 = 9/10, and thus p
lies in the range 0 < p < 1. That turns out to be sufficient for the Akra-
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Bazzi method to give us the solution. We’ll use the fact from calculus

that if k ≠ –1, then ∫ xkdx = xk + 1/(k + 1), which we’ll apply with k = –
p ≠ –1. The Akra-Bazzi solution (4.23) gives us

Although the Akra-Bazzi method is more general than the master
theorem, it requires calculus and sometimes a bit more reasoning. You
also must ensure that your driving function satisfies the polynomial-
growth condition if you want to ignore floors and ceilings, although
that’s rarely a problem. When it applies, the master method is much
simpler to use, but only when subproblem sizes are more or less equal.
They are both good tools for your algorithmic toolkit.

Exercises

★ 4.7-1

Consider an Akra-Bazzi recurrence T (n) on the reals as given in

recurrence (4.22), and define T ′(n) as

where c > 0 is constant. Prove that whatever the implicit initial

conditions for T (n) might be, there exist initial conditions for T  ′(n)

such that T  ′(n) = cT (n) for all n > 0. Conclude that we can drop the

www.konkur.in

Telegram: @uni_k



asymptotics on a driving function in any Akra-Bazzi recurrence without
affecting its asymptotic solution.

4.7-2

Show that f (n) = n2 satisfies the polynomial-growth condition but that f

(n) = 2n does not.

4.7-3

Let f (n) be a function that satisfies the polynomial-growth condition.
Prove that f (n) is asymptotically positive, that is, there exists a constant
n0 ≥ 0 such that f (n) ≥ 0 for all n ≥ n0.

★ 4.7-4

Give an example of a function f (n) that does not satisfy the polynomial-
growth condition but for which f (Θ(n)) = Θ(f (n)).

4.7-5

Use the Akra-Bazzi method to solve the following recurrences.

a. T (n) = T (n/2) + T (n/3) + T (n/6) + n lg n.

b. T (n) = 3T (n/3) + 8T (n/4) + n2/lg n.

c. T (n) = (2/3)T (n/3) + (1/3)T (2n/3) + lg n.

d. T (n) = (1/3)T (n/3) + 1/n.

e. T (n) = 3T (n/3) + 3T (2n/3) + n2.

★ 4.7-6

Use the Akra-Bazzi method to prove the continuous master theorem.

Problems

4-1     Recurrence examples

Give asymptotically tight upper and lower bounds for T (n) in each of
the following algorithmic recurrences. Justify your answers.
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a. T (n) = 2T (n/2) + n3.

b. T (n) = T (8n/11) + n.

c. T (n) = 16T (n/4) + n2.

d. T (n) = 4T (n/2) + n2 lg n.

e. T (n) = 8T (n/3) + n2.

f. T (n) = 7T (n/2) + n2 lg n.

g.  .

h. T (n) = T (n –2) + n2.

4-2     Parameter-passing costs

Throughout this book, we assume that parameter passing during
procedure calls takes constant time, even if an N-element array is being
passed. This assumption is valid in most systems because a pointer to
the array is passed, not the array itself. This problem examines the
implications of three parameter-passing strategies:

1. Arrays are passed by pointer. Time = Θ(1).

2. Arrays are passed by copying. Time = Θ(N), where N is the size
of the array.

3. Arrays are passed by copying only the subrange that might be
accessed by the called procedure. Time = Θ(n) if the subarray
contains n elements.

Consider the following three algorithms:

a. The recursive binary-search algorithm for finding a number in a
sorted array (see Exercise 2.3-6).

b. The MERGE-SORT procedure from Section 2.3.1.

c. The MATRIX-MULTIPLY-RECURSIVE procedure from Section
4.1.
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Give nine recurrences Ta1(N, n), Ta2(N, n), … , Tc3(N, n) for the worst-

case running times of each of the three algorithms above when arrays
and matrices are passed using each of the three parameter-passing
strategies above. Solve your recurrences, giving tight asymptotic bounds.

4-3     Solving recurrences with a change of variables

Sometimes, a little algebraic manipulation can make an unknown
recurrence similar to one you have seen before. Let’s solve the recurrence

by using the change-of-variables method.

a. Define m = lg n and S(m) = T (2m). Rewrite recurrence (4.25) in
terms of m and S(m).

b. Solve your recurrence for S(m).

c. Use your solution for S(m) to conclude that T (n) = Θ(lg n lg lg n).

d. Sketch the recursion tree for recurrence (4.25), and use it to explain
intuitively why the solution is T (n) = Θ(lg n lg lg n).

Solve the following recurrences by changing variables:

e.  .

f.  .

4-4     More recurrence examples

Give asymptotically tight upper and lower bounds for T (n) in each of
the following recurrences. Justify your answers.

a. T (n) = 5T (n/3) + n lg n.

b. T (n) = 3T (n/3) + n/lg n.

c.  .

d. T (n) = 2T (n/2 –2) + n/2.

e. T (n) = 2T (n/2) + n/lg n.
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f. T (n) = T (n/2) + T (n/4) + T (n/8) + n.

g. T (n) = T (n – 1) + 1/n.

h. T (n) = T (n – 1) + lg n.

i. T (n) = T (n – 2) + 1/lg n.

j.  .

4-5     Fibonacci numbers

This problem develops properties of the Fibonacci numbers, which are
defined by recurrence (3.31) on page 69. We’ll explore the technique of
generating functions to solve the Fibonacci recurrence. Define the
generating function (or formal power series) F as

where Fi is the ith Fibonacci number.

a. Show that F (z) = z + zF (z) + z2F (z).

b. Show that

where ϕ is the golden ratio, and  is its conjugate (see page 69).

c. Show that

You may use without proof the generating-function version of

equation (A.7) on page 1142, . Because this
equation involves a generating function, x is a formal variable, not a
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real-valued variable, so that you don’t have to worry about
convergence of the summation or about the requirement in equation
(A.7) that |x| < 1, which doesn’t make sense here.

d. Use part (c) to prove that  for i > 0, rounded to the nearest

integer. (Hint: Observe that .)

e. Prove that Fi+2 ≥ ϕi for i ≥ 0.

4-6     Chip testing

Professor Diogenes has n supposedly identical integrated-circuit chips
that in principle are capable of testing each other. The professor’s test jig
accommodates two chips at a time. When the jig is loaded, each chip
tests the other and reports whether it is good or bad. A good chip
always reports accurately whether the other chip is good or bad, but the
professor cannot trust the answer of a bad chip. Thus, the four possible
outcomes of a test are as follows:

Chip A says Chip B says Conclusion

B is good A is good both are good, or both are bad

B is good A is bad at least one is bad

B is bad A is good at least one is bad

B is bad A is bad at least one is bad

a. Show that if at least n/2 chips are bad, the professor cannot
necessarily determine which chips are good using any strategy based
on this kind of pairwise test. Assume that the bad chips can conspire
to fool the professor.

Now you will design an algorithm to identify which chips are good and
which are bad, assuming that more than n/2 of the chips are good. First,
you will determine how to identify one good chip.

b. Show that ⌊n/2⌋ pairwise tests are sufficient to reduce the problem to

one of nearly half the size. That is, show how to use ⌊n/2⌋ pairwise
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tests to obtain a set with at most ⌈n/2⌉ chips that still has the property
that more than half of the chips are good.

c. Show how to apply the solution to part (b) recursively to identify one
good chip. Give and solve the recurrence that describes the number of
tests needed to identify one good chip.

You have now determined how to identify one good chip.

d. Show how to identify all the good chips with an additional Θ(n)
pairwise tests.

4-7     Monge arrays

An m × n array A of real numbers is a Monge array if for all i, j, k, and l
such that 1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n, we have

A[i, j] + A[k, l] ≤ A[i, l] + A[k, j].

In other words, whenever we pick two rows and two columns of a
Monge array and consider the four elements at the intersections of the
rows and the columns, the sum of the upper-left and lower-right
elements is less than or equal to the sum of the lower-left and upper-
right elements. For example, the following array is Monge:

10 17 13 28 23
17 22 16 29 23
24 28 22 34 24
11 13 6 17 7
45 44 32 37 23
36 33 19 21 6
75 66 51 53 34

a. Prove that an array is Monge if and only if for all i = 1, 2, …, m – 1
and j = 1, 2, …, n – 1, we have

A[i, j] + A[i + 1, j + 1] ≤ A[i, j + 1] + A[i + 1, j].

(Hint: For the “if” part, use induction separately on rows and
columns.)
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b. The following array is not Monge. Change one element in order to
make it Monge. (Hint: Use part (a).)

37 23 22 32
21 6 7 10
53 34 30 31
32 13 9 6
43 21 15 8

c. Let f (i) be the index of the column containing the leftmost minimum

element of row i. Prove that f (1) ≤ f (2) ≤ ⋯ ≤ f (m) for any m × n
Monge array.

d. Here is a description of a divide-and-conquer algorithm that
computes the leftmost minimum element in each row of an m × n
Monge array A:

Construct a submatrix A′ of A consisting of the even-numbered
rows of A. Recursively determine the leftmost minimum for

each row of A′. Then compute the leftmost minimum in the
odd-numbered rows of A.

Explain how to compute the leftmost minimum in the odd-numbered
rows of A (given that the leftmost minimum of the even-numbered
rows is known) in O(m + n) time.

e. Write the recurrence for the running time of the algorithm in part (d).
Show that its solution is O(m + n log m).

Chapter notes

Divide-and-conquer as a technique for designing algorithms dates back
at least to 1962 in an article by Karatsuba and Ofman [242], but it might
have been used well before then. According to Heideman, Johnson, and
Burrus [211], C. F. Gauss devised the first fast Fourier transform
algorithm in 1805, and Gauss’s formulation breaks the problem into
smaller subproblems whose solutions are combined.
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Strassen’s algorithm [424] caused much excitement when it appeared
in 1969. Before then, few imagined the possibility of an algorithm
asymptotically faster than the basic MATRIX-MULTIPLY procedure.
Shortly thereafter, S. Winograd reduced the number of submatrix
additions from 18 to 15 while still using seven submatrix multiplications.
This improvement, which Winograd apparently never published (and
which is frequently miscited in the literature), may enhance the
practicality of the method, but it does not affect its asymptotic
performance. Probert [368] described Winograd’s algorithm and showed
that with seven multiplications, 15 additions is the minimum possible.

Strassen’s Θ(nlg 7) = O(n2.81) bound for matrix multiplication held
until 1987, when Coppersmith and Winograd [103] made a significant

advance, improving the bound to O(n2.376) time with a mathematically
sophisticated but wildly impractical algorithm based on tensor
products. It took approximately 25 years before the asymptotic upper
bound was again improved. In 2012 Vassilevska Williams [445]

improved it to O(n2.37287), and two years later Le Gall [278] achieved

O(n2.37286), both of them using mathematically fascinating but
impractical algorithms. The best lower bound to date is just the obvious

Ω(n2) bound (obvious because any algorithm for matrix multiplication

must fill in the n2 elements of the product matrix).
The performance of MATRIX-MULTIPLY-RECURSIVE can be

improved in practice by coarsening the leaves of the recursion. It also
exhibits better cache behavior than MATRIX-MULTIPLY, although
MATRIX-MULTIPLY can be improved by “tiling.” Leiserson et al.
[293] conducted a performance-engineering study of matrix
multiplication in which a parallel and vectorized divide-and-conquer
algorithm achieved the highest performance. Strassen’s algorithm can be
practical for large dense matrices, although large matrices tend to be
sparse, and sparse methods can be much faster. When using limited-
precision floating-point values, Strassen’s algorithm produces larger

numerical errors than the Θ(n3) algorithms do, although Higham [215]
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demonstrated that Strassen’s algorithm is amply accurate for some
applications.

Recurrences were studied as early as 1202 by Leonardo Bonacci [66],
also known as Fibonacci, for whom the Fibonacci numbers are named,
although Indian mathematicians had discovered Fibonacci numbers
centuries before. The French mathematician De Moivre [108]
introduced the method of generating functions with which he studied
Fibonacci numbers (see Problem 4-5). Knuth [259] and Liu [302] are
good resources for learning the method of generating functions.

Aho, Hopcroft, and Ullman [5, 6] offered one of the first general
methods for solving recurrences arising from the analysis of divide-and-
conquer algorithms. The master method was adapted from Bentley,
Haken, and Saxe [52]. The Akra-Bazzi method is due (unsurprisingly)
to Akra and Bazzi [13]. Divide-and-conquer recurrences have been
studied by many researchers, including Campbell [79], Graham, Knuth,
and Patashnik [199], Kuszmaul and Leiserson [274], Leighton [287],
Purdom and Brown [371], Roura [389], Verma [447], and Yap [462].

The issue of floors and ceilings in divide-and-conquer recurrences,
including a theorem similar to Theorem 4.5, was studied by Leighton
[287]. Leighton proposed a version of the polynomial-growth condition.
Campbell [79] removed several limitations in Leighton’s statement of it
and showed that there were polynomially bounded functions that do
not satisfy Leighton’s condition. Campbell also carefully studied many
other technical issues, including the well-definedness of divide-and-
conquer recurrences. Kuszmaul and Leiserson [274] provided a proof of
Theorem 4.5 that does not involve calculus or other higher math. Both
Campbell and Leighton explored the perturbations of arguments
beyond simple floors and ceilings.

1 This terminology does not mean that either T (n) or f (n) need be continuous, only that the
domain of T (n) is the real numbers, as opposed to integers.
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5                    Probabilistic Analysis and Randomized

Algorithms

This chapter introduces probabilistic analysis and randomized

algorithms. If you are unfamiliar with the basics of probability theory,

you should read Sections C.1–C.4 of Appendix C, which review this

material. We’ll revisit probabilistic analysis and randomized algorithms

several times throughout this book.

5.1      The hiring problem

Suppose that you need to hire a new office assistant. Your previous

attempts at hiring have been unsuccessful, and you decide to use an

employment agency. The employment agency sends you one candidate

each day. You interview that person and then decide either to hire that

person or not. You must pay the employment agency a small fee to

interview an applicant. To actually hire an applicant is more costly,

however, since you must fire your current office assistant and also pay a

substantial hiring fee to the employment agency. You are committed to

having, at all times, the best possible person for the job. Therefore, you

decide that, after interviewing each applicant, if that applicant is better

qualified than the current office assistant, you will fire the current office

assistant and hire the new applicant. You are willing to pay the resulting

price of this strategy, but you wish to estimate what that price will be.

The procedure HIRE-ASSISTANT on the facing page expresses this

strategy for hiring in pseudocode. The candidates for the office assistant
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job are numbered 1 through n and interviewed in that order. The

procedure assumes that after interviewing candidate i, you can

determine whether candidate i is the best candidate you have seen so far.

It starts by creating a dummy candidate, numbered 0, who is less

qualified than each of the other candidates.

The cost model for this problem differs from the model described in

Chapter 2. We focus not on the running time of HIRE-ASSISTANT,

but instead on the fees paid for interviewing and hiring. On the surface,

analyzing the cost of this algorithm may seem very different from

analyzing the running time of, say, merge sort. The analytical

techniques used, however, are identical whether we are analyzing cost or

running time. In either case, we are counting the number of times

certain basic operations are executed.

HIRE-ASSISTANT(n)

1 best = 0 // candidate 0 is a least-qualified dummy candidate

2 for i = 1 to n

3 interview candidate i

4 if candidate i is better than candidate best

5 best = i

6 hire candidate i

Interviewing has a low cost, say ci, whereas hiring is expensive,

costing ch. Letting m be the number of people hired, the total cost

associated with this algorithm is O(cin + chm). No matter how many

people you hire, you always interview n candidates and thus always

incur the cost cin associated with interviewing. We therefore concentrate

on analyzing chm, the hiring cost. This quantity depends on the order in

which you interview candidates.

This scenario serves as a model for a common computational

paradigm. Algorithms often need to find the maximum or minimum

value in a sequence by examining each element of the sequence and

maintaining a current “winner.” The hiring problem models how often

a procedure updates its notion of which element is currently winning.
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Worst-case analysis

In the worst case, you actually hire every candidate that you interview.

This situation occurs if the candidates come in strictly increasing order

of quality, in which case you hire n times, for a total hiring cost of

O(chn).

Of course, the candidates do not always come in increasing order of

quality. In fact, you have no idea about the order in which they arrive,

nor do you have any control over this order. Therefore, it is natural to

ask what we expect to happen in a typical or average case.

Probabilistic analysis

Probabilistic analysis is the use of probability in the analysis of

problems. Most commonly, we use probabilistic analysis to analyze the

running time of an algorithm. Sometimes we use it to analyze other

quantities, such as the hiring cost in procedure HIRE-ASSISTANT. In

order to perform a probabilistic analysis, we must use knowledge of, or

make assumptions about, the distribution of the inputs. Then we

analyze our algorithm, computing an average-case running time, where

we take the average, or expected value, over the distribution of the

possible inputs. When reporting such a running time, we refer to it as

the average-case running time.

You must be careful in deciding on the distribution of inputs. For

some problems, you may reasonably assume something about the set of

all possible inputs, and then you can use probabilistic analysis as a

technique for designing an efficient algorithm and as a means for

gaining insight into a problem. For other problems, you cannot

characterize a reasonable input distribution, and in these cases you

cannot use probabilistic analysis.

For the hiring problem, we can assume that the applicants come in a

random order. What does that mean for this problem? We assume that

you can compare any two candidates and decide which one is better

qualified, which is to say that there is a total order on the candidates.

(See Section B.2 for the definition of a total order.) Thus, you can rank

each candidate with a unique number from 1 through n, using rank(i) to

denote the rank of applicant i, and adopt the convention that a higher
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rank corresponds to a better qualified applicant. The ordered list

〈rank(1), rank(2), … , rank(n)〉 is a permutation of the list 〈1, 2, … , n〉.

Saying that the applicants come in a random order is equivalent to

saying that this list of ranks is equally likely to be any one of the n!

permutations of the numbers 1 through n. Alternatively, we say that the

ranks form a uniform random permutation, that is, each of the possible n!

permutations appears with equal probability.

Section 5.2 contains a probabilistic analysis of the hiring problem.

Randomized algorithms

In order to use probabilistic analysis, you need to know something

about the distribution of the inputs. In many cases, you know little

about the input distribution. Even if you do know something about the

distribution, you might not be able to model this knowledge

computationally. Yet, probability and randomness often serve as tools

for algorithm design and analysis, by making part of the algorithm

behave randomly.

In the hiring problem, it may seem as if the candidates are being

presented to you in a random order, but you have no way of knowing

whether they really are. Thus, in order to develop a randomized

algorithm for the hiring problem, you need greater control over the

order in which you’ll interview the candidates. We will, therefore,

change the model slightly. The employment agency sends you a list of

the n candidates in advance. On each day, you choose, randomly, which

candidate to interview. Although you know nothing about the

candidates (besides their names), we have made a significant change.

Instead of accepting the order given to you by the employment agency

and hoping that it’s random, you have instead gained control of the

process and enforced a random order.

More generally, we call an algorithm randomized if its behavior is

determined not only by its input but also by values produced by a

random-number generator. We assume that we have at our disposal a

random-number generator RANDOM. A call to RANDOM(a, b)

returns an integer between a and b, inclusive, with each such integer

being equally likely. For example, RANDOM(0, 1) produces 0 with
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probability 1/2, and it produces 1 with probability 1/2. A call to

RANDOM(3, 7) returns any one of 3, 4, 5, 6, or 7, each with

probability 1/5. Each integer returned by RANDOM is independent of

the integers returned on previous calls. You may imagine RANDOM as

rolling a (b – a + 1)-sided die to obtain its output. (In practice, most

programming environments offer a pseudorandom-number generator: a

deterministic algorithm returning numbers that “look” statistically

random.)

When analyzing the running time of a randomized algorithm, we

take the expectation of the running time over the distribution of values

returned by the random number generator. We distinguish these

algorithms from those in which the input is random by referring to the

running time of a randomized algorithm as an expected running time. In

general, we discuss the average-case running time when the probability

distribution is over the inputs to the algorithm, and we discuss the

expected running time when the algorithm itself makes random choices.

Exercises

5.1-1

Show that the assumption that you are always able to determine which

candidate is best, in line 4 of procedure HIRE-ASSISTANT, implies

that you know a total order on the ranks of the candidates.

★ 5.1-2

Describe an implementation of the procedure RANDOM(a, b) that

makes calls only to RANDOM(0, 1). What is the expected running time

of your procedure, as a function of a and b?

★ 5.1-3

You wish to implement a program that outputs 0 with probability 1/2

and 1 with probability 1/2. At your disposal is a procedure BIASED-

RANDOM that outputs either 0 or 1, but it outputs 1 with some

probability p and 0 with probability 1 – p, where 0 < p < 1. You do not

know what p is. Give an algorithm that uses BIASED-RANDOM as a

subroutine, and returns an unbiased answer, returning 0 with
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probability 1/2 and 1 with probability 1/2. What is the expected running

time of your algorithm as a function of p?

5.2      Indicator random variables

In order to analyze many algorithms, including the hiring problem, we

use indicator random variables. Indicator random variables provide a

convenient method for converting between probabilities and

expectations. Given a sample space S and an event A, the indicator

random variable I {A} associated with event A is defined as

As a simple example, let us determine the expected number of heads

obtained when flipping a fair coin. The sample space for a single coin

flip is S = {H, T}, with Pr {H} = Pr {T} = 1/2. We can then define an

indicator random variable XH, associated with the coin coming up

heads, which is the event H. This variable counts the number of heads

obtained in this flip, and it is 1 if the coin comes up heads and 0

otherwise. We write

The expected number of heads obtained in one flip of the coin is simply

the expected value of our indicator variable XH:

E [XH] = E [I {H}]

= 1 · Pr {H} + 0 · Pr {T}

= 1 · (1/2) + 0 · (1/2)

= 1/2.

Thus the expected number of heads obtained by one flip of a fair coin is

1/2. As the following lemma shows, the expected value of an indicator
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random variable associated with an event A is equal to the probability

that A occurs.

Lemma 5.1

Given a sample space S and an event A in the sample space S, let XA =

I {A}. Then E [XA] = Pr {A}.

Proof   By the definition of an indicator random variable from equation

(5.1) and the definition of expected value, we have

E [XA] = E [I {A}]

= 1 · Pr {A} + 0 · Pr {A}

= Pr {A},

where A denotes S – A, the complement of A.

▪

Although indicator random variables may seem cumbersome for an

application such as counting the expected number of heads on a flip of a

single coin, they are useful for analyzing situations that perform

repeated random trials. In Appendix C, for example, indicator random

variables provide a simple way to determine the expected number of

heads in n coin flips. One option is to consider separately the probability

of obtaining 0 heads, 1 head, 2 heads, etc. to arrive at the result of

equation (C.41) on page 1199. Alternatively, we can employ the simpler

method proposed in equation (C.42), which uses indicator random

variables implicitly. Making this argument more explicit, let Xi be the

indicator random variable associated with the event in which the ith flip

comes up heads: Xi = I {the ith flip results in the event H}. Let X be the

random variable denoting the total number of heads in the n coin flips,

so that
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In order to compute the expected number of heads, take the expectation

of both sides of the above equation to obtain

By Lemma 5.1, the expectation of each of the random variables is E [Xi]

= 1/2 for i = 1, 2, … , n. Then we can compute the sum of the

expectations: . But equation (5.2) calls for the

expectation of the sum, not the sum of the expectations. How can we

resolve this conundrum? Linearity of expectation, equation (C.24) on

page 1192, to the rescue: the expectation of the sum always equals the

sum of the expectations. Linearity of expectation applies even when

there is dependence among the random variables. Combining indicator

random variables with linearity of expectation gives us a powerful

technique to compute expected values when multiple events occur. We

now can compute the expected number of heads:

Thus, compared with the method used in equation (C.41), indicator

random variables greatly simplify the calculation. We use indicator

random variables throughout this book.

Analysis of the hiring problem using indicator random variables

Returning to the hiring problem, we now wish to compute the expected

number of times that you hire a new office assistant. In order to use a

probabilistic analysis, let’s assume that the candidates arrive in a

random order, as discussed in Section 5.1. (We’ll see in Section 5.3 how
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to remove this assumption.) Let X be the random variable whose value

equals the number of times you hire a new office assistant. We could

then apply the definition of expected value from equation (C.23) on

page 1192 to obtain

but this calculation would be cumbersome. Instead, let’s simplify the

calculation by using indicator random variables.

To use indicator random variables, instead of computing E [X] by

defining just one variable denoting the number of times you hire a new

office assistant, think of the process of hiring as repeated random trials

and define n variables indicating whether each particular candidate is

hired. In particular, let Xi be the indicator random variable associated

with the event in which the ith candidate is hired. Thus,

and

Lemma 5.1 gives

E [Xi] = Pr {candidate i is hired},

and we must therefore compute the probability that lines 5–6 of HIRE-

ASSISTANT are executed.

Candidate i is hired, in line 6, exactly when candidate i is better than

each of candidates 1 through i – 1. Because we have assumed that the

candidates arrive in a random order, the first i candidates have appeared

in a random order. Any one of these first i candidates is equally likely to

be the best qualified so far. Candidate i has a probability of 1/i of being

better qualified than candidates 1 through i – 1 and thus a probability of

1/i of being hired. By Lemma 5.1, we conclude that
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Now we can compute E [X]:

Even though you interview n people, you actually hire only

approximately ln n of them, on average. We summarize this result in the

following lemma.

Lemma 5.2

Assuming that the candidates are presented in a random order,

algorithm HIRE-ASSISTANT has an average-case total hiring cost of

O(ch ln n).

Proof   The bound follows immediately from our definition of the hiring

cost and equation (5.6), which shows that the expected number of hires

is approximately ln n.

▪

The average-case hiring cost is a significant improvement over the

worst-case hiring cost of O(chn).

Exercises

5.2-1

In HIRE-ASSISTANT, assuming that the candidates are presented in a

random order, what is the probability that you hire exactly one time?

What is the probability that you hire exactly n times?
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5.2-2

In HIRE-ASSISTANT, assuming that the candidates are presented in a

random order, what is the probability that you hire exactly twice?

5.2-3

Use indicator random variables to compute the expected value of the

sum of n dice.

5.2-4

This exercise asks you to (partly) verify that linearity of expectation

holds even if the random variables are not independent. Consider two 6-

sided dice that are rolled independently. What is the expected value of

the sum? Now consider the case where the first die is rolled normally

and then the second die is set equal to the value shown on the first die.

What is the expected value of the sum? Now consider the case where the

first die is rolled normally and the second die is set equal to 7 minus the

value of the first die. What is the expected value of the sum?

5.2-5

Use indicator random variables to solve the following problem, which is

known as the hat-check problem. Each of n customers gives a hat to a

hat-check person at a restaurant. The hat-check person gives the hats

back to the customers in a random order. What is the expected number

of customers who get back their own hat?

5.2-6

Let A[1 : n] be an array of n distinct numbers. If i < j and A[i] > A[j],

then the pair (i, j) is called an inversion of A. (See Problem 2-4 on page

47 for more on inversions.) Suppose that the elements of A form a

uniform random permutation of 〈1, 2, … , n〉. Use indicator random

variables to compute the expected number of inversions.

5.3      Randomized algorithms

In the previous section, we showed how knowing a distribution on the

inputs can help us to analyze the average-case behavior of an algorithm.
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What if you do not know the distribution? Then you cannot perform an

average-case analysis. As mentioned in Section 5.1, however, you might

be able to use a randomized algorithm.

For a problem such as the hiring problem, in which it is helpful to

assume that all permutations of the input are equally likely, a

probabilistic analysis can guide us when developing a randomized

algorithm. Instead of assuming a distribution of inputs, we impose a

distribution. In particular, before running the algorithm, let’s randomly

permute the candidates in order to enforce the property that every

permutation is equally likely. Although we have modified the algorithm,

we still expect to hire a new office assistant approximately ln n times.

But now we expect this to be the case for any input, rather than for

inputs drawn from a particular distribution.

Let us further explore the distinction between probabilistic analysis

and randomized algorithms. In Section 5.2, we claimed that, assuming

that the candidates arrive in a random order, the expected number of

times you hire a new office assistant is about ln n. This algorithm is

deterministic: for any particular input, the number of times a new office

assistant is hired is always the same. Furthermore, the number of times

you hire a new office assistant differs for different inputs, and it depends

on the ranks of the various candidates. Since this number depends only

on the ranks of the candidates, to represent a particular input, we can

just list, in order, the ranks 〈rank(1), rank(2), … , rank(n)〉 of the

candidates. Given the rank list A1 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉, a new

office assistant is always hired 10 times, since each successive candidate

is better than the previous one, and lines 5–6 of HIRE-ASSISTANT are

executed in each iteration. Given the list of ranks A2 = 〈10, 9, 8, 7, 6, 5,

4, 3, 2, 1〉, a new office assistant is hired only once, in the first iteration.

Given a list of ranks A3 = 〈5, 2, 1, 8, 4, 7, 10, 9, 3, 6〉, a new office

assistant is hired three times, upon interviewing the candidates with

ranks 5, 8, and 10. Recalling that the cost of our algorithm depends on

how many times you hire a new office assistant, we see that there are

expensive inputs such as A1, inexpensive inputs such as A2, and

moderately expensive inputs such as A3.
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Consider, on the other hand, the randomized algorithm that first

permutes the list of candidates and then determines the best candidate.

In this case, we randomize in the algorithm, not in the input

distribution. Given a particular input, say A3 above, we cannot say how

many times the maximum is updated, because this quantity differs with

each run of the algorithm. The first time you run the algorithm on A3, it

might produce the permutation A1 and perform 10 updates. But the

second time you run the algorithm, it might produce the permutation

A2 and perform only one update. The third time you run the algorithm,

it might perform some other number of updates. Each time you run the

algorithm, its execution depends on the random choices made and is

likely to differ from the previous execution of the algorithm. For this

algorithm and many other randomized algorithms, no particular input

elicits its worst-case behavior. Even your worst enemy cannot produce a

bad input array, since the random permutation makes the input order

irrelevant. The randomized algorithm performs badly only if the

random-number generator produces an “unlucky” permutation.

For the hiring problem, the only change needed in the code is to

randomly permute the array, as done in the RANDOMIZED-HIRE-

ASSISTANT procedure. This simple change creates a randomized

algorithm whose performance matches that obtained by assuming that

the candidates were presented in a random order.

RANDOMIZED-HIRE-ASSISTANT(n)

1randomly permute the list

of candidates

2HIRE-ASSISTANT(n)

Lemma 5.3

The expected hiring cost of the procedure RANDOMIZED-HIRE-

ASSISTANT is O(ch ln n).

Proof     Permuting the input array achieves a situation identical to that

of the probabilistic analysis of HIRE-ASSISTANT in Secetion 5.2.
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▪

By carefully comparing Lemmas 5.2 and 5.3, you can see the

difference between probabilistic analysis and randomized algorithms.

Lemma 5.2 makes an assumption about the input. Lemma 5.3 makes no

such assumption, although randomizing the input takes some

additional time. To remain consistent with our terminology, we couched

Lemma 5.2 in terms of the average-case hiring cost and Lemma 5.3 in

terms of the expected hiring cost. In the remainder of this section, we

discuss some issues involved in randomly permuting inputs.

Randomly permuting arrays

Many randomized algorithms randomize the input by permuting a

given input array. We’ll see elsewhere in this book other ways to

randomize an algorithm, but now, let’s see how we can randomly

permute an array of n elements. The goal is to produce a uniform

random permutation, that is, a permutation that is as likely as any other

permutation. Since there are n! possible permutations, we want the

probability that any particular permutation is produced to be 1/n!.

You might think that to prove that a permutation is a uniform

random permutation, it suffices to show that, for each element A[i], the

probability that the element winds up in position j is 1/n. Exercise 5.3-4

shows that this weaker condition is, in fact, insufficient.

Our method to generate a random permutation permutes the array

in place: at most a constant number of elements of the input array are

ever stored outside the array. The procedure RANDOMLY-

PERMUTE permutes an array A[1 : n] in place in Θ(n) time. In its ith

iteration, it chooses the element A[i] randomly from among elements

A[i] through A[n]. After the ith iteration, A[i] is never altered.

RANDOMLY-PERMUTE(A, n)

1 for i = 1 to n

2 swap A[i] with A[RANDOM(i, n)]
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We use a loop invariant to show that procedure RANDOMLY-

PERMUTE produces a uniform random permutation. A k-permutation

on a set of n elements is a sequence containing k of the n elements, with

no repetitions. (See page 1180 in Appendix C.) There are n!/(n – k)! such

possible k-permutations.

Lemma 5.4

Procedure RANDOMLY-PERMUTE computes a uniform random

permutation.

Proof   We use the following loop invariant:

Just prior to the ith iteration of the for loop of lines 1–2, for

each possible (i – 1)-permutation of the n elements, the subarray

A[1 : i – 1] contains this (i – 1)-permutation with probability (n

– i + 1)!/n!.

We need to show that this invariant is true prior to the first loop

iteration, that each iteration of the loop maintains the invariant, that

the loop terminates, and that the invariant provides a useful property to

show correctness when the loop terminates.

Initialization: Consider the situation just before the first loop iteration,

so that i = 1. The loop invariant says that for each possible 0-

permutation, the subarray A[1 : 0] contains this 0-permutation with

probability (n – i + 1)!/n! = n!/n! = 1. The subarray A[1 : 0] is an empty

subarray, and a 0-permutation has no elements. Thus, A[1 : 0]

contains any 0-permutation with probability 1, and the loop invariant

holds prior to the first iteration.

Maintenance: By the loop invariant, we assume that just before the ith

iteration, each possible (i – 1)-permutation appears in the subarray

A[1 : i – 1] with probability (n – i + 1)!/n!. We shall show that after the

ith iteration, each possible i-permutation appears in the subarray A[1 :

i] with probability (n – i)!/n!. Incrementing i for the next iteration then

maintains the loop invariant.
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Let us examine the ith iteration. Consider a particular i-permutation,

and denote the elements in it by 〈x1, x2, … , xi〉. This permutation

consists of an (i – 1)-permutation 〈x1, … , xi–1〉 followed by the value

xi that the algorithm places in A[i]. Let E1 denote the event in which

the first i – 1 iterations have created the particular (i – 1)-permutation

〈x1, … , xi–1〉 in A[1 : i – 1]. By the loop invariant, Pr {E1} = (n – i +

1)!/n!. Let E2 be the event that the ith iteration puts xi in position A[i].

The i-permutation 〈x1, … , xi〉 appears in A[1 : i] precisely when both

E1 and E2 occur, and so we wish to compute Pr {E2 ∩ E1}. Using

equation (C.16) on page 1187, we have

Pr {E2 ∩ E1} = Pr {E2 | E1} Pr {E1}.

The probability Pr {E2 | E1} equals 1/(n – i + 1) because in line 2 the

algorithm chooses xi randomly from the n – i + 1 values in positions

A[i : n]. Thus, we have

Termination: The loop terminates, since it is a for loop iterating n times.

At termination, i = n + 1, and we have that the subarray A[1 : n] is a

given n-permutation with probability (n – (n + 1) + 1)!/n! = 0!/n! =

1/n!.

Thus, RANDOMLY-PERMUTE produces a uniform random

permutation.

▪

A randomized algorithm is often the simplest and most efficient way

to solve a problem.

Exercises
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5.3-1

Professor Marceau objects to the loop invariant used in the proof of

Lemma 5.4. He questions whether it holds prior to the first iteration. He

reasons that we could just as easily declare that an empty subarray

contains no 0-permutations. Therefore, the probability that an empty

subarray contains a 0-permutation should be 0, thus invalidating the

loop invariant prior to the first iteration. Rewrite the procedure

RANDOMLY-PERMUTE so that its associated loop invariant applies

to a nonempty subarray prior to the first iteration, and modify the

proof of Lemma 5.4 for your procedure.

5.3-2

Professor Kelp decides to write a procedure that produces at random

any permutation except the identity permutation, in which every element

ends up where it started. He proposes the procedure PERMUTE-

WITHOUT-IDENTITY. Does this procedure do what Professor Kelp

intends?

PERMUTE-WITHOUT-IDENTITY(A, n)

1 for i = 1 to n – 1

2 swap A[i] with A[RANDOM(i + 1, n)]

5.3-3

Consider the PERMUTE-WITH-ALL procedure on the facing page,

which instead of swapping element A[i] with a random element from the

subarray A[i : n], swaps it with a random element from anywhere in the

array. Does PERMUTE-WITH-ALL produce a uniform random

permutation? Why or why not?

PERMUTE-WITH-ALL(A, n)

1 for i = 1 to n

2 swap A[i] with A[RANDOM(1, n)]

5.3-4
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Professor Knievel suggests the procedure PERMUTE-BY-CYCLE to

generate a uniform random permutation. Show that each element A[i]

has a 1/n probability of winding up in any particular position in B. Then

show that Professor Knievel is mistaken by showing that the resulting

permutation is not uniformly random.

PERMUTE-BY-CYCLE(A, n)

1 let B[1 : n] be a new array

2 offset = RANDOM(1, n)

3 for i = 1 to n

4 dest = i + offset

5 if dest > n

6 dest = dest – n

7 B[dest] = A[i]

8 return B

5.3-5

Professor Gallup wants to create a random sample of the set {1, 2, 3, … ,

n}, that is, an m-element subset S, where 0 ≤ m ≤ n, such that each m-

subset is equally likely to be created. One way is to set A[i] = i, for i = 1,

2, 3, … , n, call RANDOMLY-PERMUTE(A), and then take just the

first m array elements. This method makes n calls to the RANDOM

procedure. In Professor Gallup’s application, n is much larger than m,

and so the professor wants to create a random sample with fewer calls

to RANDOM.

RANDOM-SAMPLE(m, n)

1 S = ∅

2 for k = n – m + 1 to n // iterates m times

3 i = RANDOM(1, k)

4 if i ∈ S

5 S = S ⋃ {k}

6 else S = S ⋃ {i}

7 return S
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Show that the procedure RANDOM-SAMPLE on the previous page

returns a random m-subset S of {1, 2, 3, … , n}, in which each m-subset

is equally likely, while making only m calls to RANDOM.

★ 5.4      Probabilistic analysis and further uses of indicator

random variables

This advanced section further illustrates probabilistic analysis by way of

four examples. The first determines the probability that in a room of k

people, two of them share the same birthday. The second example

examines what happens when randomly tossing balls into bins. The

third investigates “streaks” of consecutive heads when flipping coins.

The final example analyzes a variant of the hiring problem in which you

have to make decisions without actually interviewing all the candidates.

5.4.1    The birthday paradox

Our first example is the birthday paradox. How many people must there

be in a room before there is a 50% chance that two of them were born

on the same day of the year? The answer is surprisingly few. The

paradox is that it is in fact far fewer than the number of days in a year,

or even half the number of days in a year, as we shall see.

To answer this question, we index the people in the room with the

integers 1, 2, … , k, where k is the number of people in the room. We

ignore the issue of leap years and assume that all years have n = 365

days. For i = 1, 2, … , k, let bi be the day of the year on which person i’s

birthday falls, where 1 ≤ bi ≤ n. We also assume that birthdays are

uniformly distributed across the n days of the year, so that Pr {bi = r} =

1/n for i = 1, 2, … , k and r = 1, 2, … , n.

The probability that two given people, say i and j, have matching

birthdays depends on whether the random selection of birthdays is

independent. We assume from now on that birthdays are independent,

so that the probability that i’s birthday and j’s birthday both fall on day

r is
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Thus, the probability that they both fall on the same day is

More intuitively, once bi is chosen, the probability that bj is chosen to be

the same day is 1/n. As long as the birthdays are independent, the

probability that i and j have the same birthday is the same as the

probability that the birthday of one of them falls on a given day.

We can analyze the probability of at least 2 out of k people having

matching birthdays by looking at the complementary event. The

probability that at least two of the birthdays match is 1 minus the

probability that all the birthdays are different. The event Bk that k

people have distinct birthdays is

where Ai is the event that person i’s birthday is different from person j’s

for all j < i. Since we can write Bk = Ak ∩ Bk–1, we obtain from

equation (C.18) on page 1189 the recurrence

where we take Pr {B1} = Pr {A1} = 1 as an initial condition. In other

words, the probability that b1, b2, … , bk are distinct birthdays equals

the probability that b1, b2, … , bk–1 are distinct birthdays multiplied by
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the probability that bk ≠ bi for i = 1, 2, … , k – 1, given that b1, b2, … ,

bk–1 are distinct.

If b1, b2, … , bk–1 are distinct, the conditional probability that bk ≠

bi for i = 1, 2, … , k – 1 is Pr {Ak | Bk–1} = (n – k + 1)/n, since out of

the n days, n – (k – 1) days are not taken. We iteratively apply the

recurrence (5.8) to obtain

Inequality (3.14) on page 66, 1 + x ≤ ex, gives us

when –k(k – 1)/2n ≤ ln(1/2). The probability that all k birthdays are

distinct is at most 1/2 when k(k – 1) ≥ 2n ln 2 or, solving the quadratic

equation, when . For n = 365, we must have k ≥

23. Thus, if at least 23 people are in a room, the probability is at least

1/2 that at least two people have the same birthday. Since a year on

Mars is 669 Martian days long, it takes 31 Martians to get the same

effect.

An analysis using indicator random variables

Indicator random variables afford a simpler but approximate analysis of

the birthday paradox. For each pair (i, j) of the k people in the room,
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define the indicator random variable Xij, for 1 ≤ i < j ≤ k, by

By equation (5.7), the probability that two people have matching

birthdays is 1/n, and thus by Lemma 5.1 on page 130, we have

E [Xij] = Pr {person i and person j have the same birthday}

= 1/n.

Letting X be the random variable that counts the number of pairs of

individuals having the same birthday, we have

Taking expectations of both sides and applying linearity of expectation,

we obtain

When k(k – 1) ≥ 2n, therefore, the expected number of pairs of people

with the same birthday is at least 1. Thus, if we have at least 

individuals in a room, we can expect at least two to have the same

birthday. For n = 365, if k = 28, the expected number of pairs with the

same birthday is (28 · 27)/(2 · 365) ≈ 1.0356. Thus, with at least 28

www.konkur.in

Telegram: @uni_k



people, we expect to find at least one matching pair of birthdays. On

Mars, with 669 days per year, we need at least 38 Martians.

The first analysis, which used only probabilities, determined the

number of people required for the probability to exceed 1/2 that a

matching pair of birthdays exists, and the second analysis, which used

indicator random variables, determined the number such that the

expected number of matching birthdays is 1. Although the exact

numbers of people differ for the two situations, they are the same

asymptotically: .

5.4.2    Balls and bins

Consider a process in which you randomly toss identical balls into b

bins, numbered 1, 2, … , b. The tosses are independent, and on each

toss the ball is equally likely to end up in any bin. The probability that a

tossed ball lands in any given bin is 1/b. If we view the ball-tossing

process as a sequence of Bernoulli trials (see Appendix C.4), where

success means that the ball falls in the given bin, then each trial has a

probability 1/b of success. This model is particularly useful for analyzing

hashing (see Chapter 11), and we can answer a variety of interesting

questions about the ball-tossing process. (Problem C-2 asks additional

questions about balls and bins.)

How many balls fall in a given bin? The number of balls that fall in

a given bin follows the binomial distribution b(k;n, 1/b). If you

toss n balls, equation (C.41) on page 1199 tells us that the

expected number of balls that fall in the given bin is n/b.

How many balls must you toss, on the average, until a given bin

contains a ball? The number of tosses until the given bin receives a

ball follows the geometric distribution with probability 1/b and,

by equation (C.36) on page 1197, the expected number of tosses

until success is 1/(1/b) = b.

How many balls must you toss until every bin contains at least one

ball? Let us call a toss in which a ball falls into an empty bin a

“hit.” We want to know the expected number n of tosses required

to get b hits.
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Using the hits, we can partition the n tosses into stages. The ith

stage consists of the tosses after the (i – 1)st hit up to and

including the ith hit. The first stage consists of the first toss, since

you are guaranteed to have a hit when all bins are empty. For each

toss during the ith stage, i – 1 bins contain balls and b – i + 1 bins

are empty. Thus, for each toss in the ith stage, the probability of

obtaining a hit is (b – i + 1)/b.

Let ni denote the number of tosses in the ith stage. The number of

tosses required to get b hits is . Each random variable

ni has a geometric distribution with probability of success (b – i +

1)/b and thus, by equation (C.36), we have

By linearity of expectation, we have

It therefore takes approximately b ln b tosses before we can expect

that every bin has a ball. This problem is also known as the

coupon collector’s problem, which says that if you are trying to

collect each of b different coupons, then you should expect to

acquire approximately b ln b randomly obtained coupons in order

to succeed.

www.konkur.in

Telegram: @uni_k



5.4.3    Streaks

Suppose that you flip a fair coin n times. What is the longest streak of

consecutive heads that you expect to see? We’ll prove upper and lower

bounds separately to show that the answer is Θ(lg n).

We first prove that the expected length of the longest streak of heads

is O(lg n). The probability that each coin flip is a head is 1/2. Let Aik be

the event that a streak of heads of length at least k begins with the ith

coin flip or, more precisely, the event that the k consecutive coin flips i, i

+ 1, … , i + k – 1 yield only heads, where 1 ≤ k ≤ n and 1 ≤ i ≤ n – k + 1.

Since coin flips are mutually independent, for any given event Aik, the

probability that all k flips are heads is

and thus the probability that a streak of heads of length at least 2 ⌈lg n⌉

begins in position i is quite small. There are at most n – 2 ⌈lg n⌉ + 1

positions where such a streak can begin. The probability that a streak of

heads of length at least 2 ⌈lg n⌉ begins anywhere is therefore
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We can use inequality (5.10) to bound the length of the longest

streak. For j = 0, 1, 2, … , n, let Lj be the event that the longest streak of

heads has length exactly j, and let L be the length of the longest streak.

By the definition of expected value, we have

We could try to evaluate this sum using upper bounds on each Pr {Lj}

similar to those computed in inequality (5.10). Unfortunately, this

method yields weak bounds. We can use some intuition gained by the

above analysis to obtain a good bound, however. For no individual term

in the summation in equation (5.11) are both the factors j and Pr {Lj}

large. Why? When j ≥ 2 ⌈lg n⌉, then Pr {Lj} is very small, and when j < 2

⌈lg n⌉, then j is fairly small. More precisely, since the events Lj for j = 0,

1, … , n are disjoint, the probability that a streak of heads of length at

least 2 ⌈lg n⌉ begins anywhere is . Inequality (5.10) tells us

that the probability that a streak of heads of length at least 2 ⌈lg n⌉

begins anywhere is less than 1/n, which means that .

Also, noting that , we have that . Thus,

we obtain
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The probability that a streak of heads exceeds r ⌈lg n⌉ flips

diminishes quickly with r. Let’s get a rough bound on the probability

that a streak of at least r ⌈lg n⌉ heads occurs, for r ≥ 1. The probability

that a streak of at least r ⌈lg n⌉ heads starts in position i is

A streak of at least r ⌈lg n⌉ heads cannot start in the last n – r ⌈lg n⌉ + 1

flips, but let’s overestimate the probability of such a streak by allowing it

to start anywhere within the n coin flips. Then the probability that a

streak of at least r ⌈lg n⌉ heads occurs is at most
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Equivalently, the probability is at least 1 – 1/nr–1 that the longest streak

has length less than r ⌈lg n⌉.

As an example, during n = 1000 coin flips, the probability of

encountering a streak of at least 2 ⌈lg n⌉ = 20 heads is at most 1/n =

1/1000. The chance of a streak of at least 3 ⌈lg n⌉ = 30 heads is at most

1/n2 = 1/1,000,000.

Let’s now prove a complementary lower bound: the expected length

of the longest streak of heads in n coin flips is Ω(lg n). To prove this

bound, we look for streaks of length s by partitioning the n flips into

approximately n/s groups of s flips each. If we choose s = ⌊(lg n)/2⌋, we’ll

see that it is likely that at least one of these groups comes up all heads,

which means that it’s likely that the longest streak has length at least s =

Ω(lg n). We’ll then show that the longest streak has expected length Ω(lg

n).

Let’s partition the n coin flips into at least ⌊n/ ⌊(lg n)/2⌋⌋ groups of

⌊(lg n)/2⌋ consecutive flips and bound the probability that no group

comes up all heads. By equation (5.9), the probability that the group

starting in position i comes up all heads is

The probability that a streak of heads of length at least ⌊(lg n)/2⌋ does

not begin in position i is therefore at most . Since the ⌊n/ ⌊(lg

n)/2⌋⌋ groups are formed from mutually exclusive, independent coin

flips, the probability that every one of these groups fails to be a streak of

length ⌊(lg n)/2⌋ is at most
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For this argument, we used inequality (3.14), 1 + x ≤ ex, on page 66 and

the fact, which you may verify, that  for sufficiently

large n.

We want to bound the probability that the longest streak equals or

exceeds ⌊(lg n)/2⌋. To do so, let L be the event that the longest streak of

heads equals or exceeds s = ⌊(lg n)/2⌋. Let L be the complementary

event, that the longest streak of heads is strictly less than s, so that Pr

{L} + Pr {L} = 1. Let F be the event that every group of s flips fails to

be a streak of s heads. By inequality (5.12), we have Pr {F} = O(1/n). If

the longest streak of heads is less than s, then certainly every group of s

flips fails to be a streak of s heads, which means that event L implies

event F. Of course, event F could occur even if event L does not (for

example, if a streak of s or more heads crosses over the boundary

between two groups), and so we have Pr {L} ≤ Pr {F} = O(1/n). Since Pr

{L} + Pr {L} = 1, we have that

Pr {L} = 1 – Pr {L}

≥ 1 – Pr {F}

= 1 – O(1/n).

That is, the probability that the longest streak equals or exceeds ⌊(lg

n)/2⌋ is

We can now calculate a lower bound on the expected length of the

longest streak, beginning with equation (5.11) and proceeding in a

manner similar to our analysis of the upper bound:
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As with the birthday paradox, we can obtain a simpler, but

approximate, analysis using indicator random variables. Instead of

determining the expected length of the longest streak, we’ll find the

expected number of streaks with at least a given length. Let Xik = I

{Aik} be the indicator random variable associated with a streak of

heads of length at least k beginning with the ith coin flip. To count the

total number of such streaks, define

Taking expectations and using linearity of expectation, we have
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By plugging in various values for k, we can calculate the expected

number of streaks of length at least k. If this expected number is large

(much greater than 1), then we expect many streaks of length k to occur,

and the probability that one occurs is high. If this expected number is

small (much less than 1), then we expect to see few streaks of length k,

and the probability that one occurs is low. If k = c lg n, for some positive

constant c, we obtain

If c is large, the expected number of streaks of length c lg n is small, and

we conclude that they are unlikely to occur. On the other hand, if c =

1/2, then we obtain E [X(1/2) lg n] = Θ(1/n1/2–1) = Θ(n1/2), and we

expect there to be numerous streaks of length (1/2) lg n. Therefore, one

streak of such a length is likely to occur. We can conclude that the

expected length of the longest streak is Θ(lg n).

5.4.4    The online hiring problem
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As a final example, let’s consider a variant of the hiring problem.

Suppose now that you do not wish to interview all the candidates in

order to find the best one. You also want to avoid hiring and firing as

you find better and better applicants. Instead, you are willing to settle

for a candidate who is close to the best, in exchange for hiring exactly

once. You must obey one company requirement: after each interview

you must either immediately offer the position to the applicant or

immediately reject the applicant. What is the trade-off between

minimizing the amount of interviewing and maximizing the quality of

the candidate hired?

We can model this problem in the following way. After meeting an

applicant, you are able to give each one a score. Let score(i) denote the

score you give to the ith applicant, and assume that no two applicants

receive the same score. After you have seen j applicants, you know which

of the j has the highest score, but you do not know whether any of the

remaining n – j applicants will receive a higher score. You decide to

adopt the strategy of selecting a positive integer k < n, interviewing and

then rejecting the first k applicants, and hiring the first applicant

thereafter who has a higher score than all preceding applicants. If it

turns out that the best-qualified applicant was among the first k

interviewed, then you hire the nth applicant—the last one interviewed.

We formalize this strategy in the procedure ONLINE-MAXIMUM(k,

n), which returns the index of the candidate you wish to hire.

ONLINE-MAXIMUM(k, n)

1 best-score = –∞

2 for i = 1 to k

3 if score(i) > best-score

4 best-score = score(i)

5 for i = k + 1 to n

6 if score(i) > best-score

7 return i

8 return n
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If we determine, for each possible value of k, the probability that you

hire the most qualified applicant, then you can choose the best possible

k and implement the strategy with that value. For the moment, assume

that k is fixed. Let M(j) = max {score(i) : 1 ≤ i ≤ j} denote the maximum

score among applicants 1 through j. Let S be the event that you succeed

in choosing the best-qualified applicant, and let Si be the event that you

succeed when the best-qualified applicant is the ith one interviewed.

Since the various Si are disjoint, we have that .

Noting that you never succeed when the best-qualified applicant is one

of the first k, we have that Pr {Si} = 0 for i = 1, 2, … , k. Thus, we

obtain

We now compute Pr {Si}. In order to succeed when the best-

qualified applicant is the ith one, two things must happen. First, the

best-qualified applicant must be in position i, an event which we denote

by Bi. Second, the algorithm must not select any of the applicants in

positions k + 1 through i – 1, which happens only if, for each j such that

k + 1 ≤ j ≤ i – 1, line 6 finds that score(j) < best-score. (Because scores are

unique, we can ignore the possibility of score(j) = best-score.) In other

words, all of the values score(k + 1) through score(i – 1) must be less

than M(k). If any are greater than M(k), the algorithm instead returns

the index of the first one that is greater. We use Oi to denote the event

that none of the applicants in position k + 1 through i – 1 are chosen.

Fortunately, the two events Bi and Oi are independent. The event Oi

depends only on the relative ordering of the values in positions 1

through i – 1, whereas Bi depends only on whether the value in position

i is greater than the values in all other positions. The ordering of the

values in positions 1 through i – 1 does not affect whether the value in

position i is greater than all of them, and the value in position i does not

affect the ordering of the values in positions 1 through i – 1. Thus, we

can apply equation (C.17) on page 1188 to obtain
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Pr {Si} = Pr {Bi ∩ Oi} = Pr {Bi} Pr {Oi}.

We have Pr {Bi} = 1/n since the maximum is equally likely to be in any

one of the n positions. For event Oi to occur, the maximum value in

positions 1 through i –1, which is equally likely to be in any of these i – 1

positions, must be in one of the first k positions. Consequently, Pr {Oi}

= k/(i – 1) and Pr {Si} = k/(n(i – 1)). Using equation (5.14), we have

We approximate by integrals to bound this summation from above and

below. By the inequalities (A.19) on page 1150, we have

Evaluating these definite integrals gives us the bounds

which provide a rather tight bound for Pr {S}. Because you wish to

maximize your probability of success, let us focus on choosing the value

of k that maximizes the lower bound on Pr {S}. (Besides, the lower-

bound expression is easier to maximize than the upper-bound

expression.) Differentiating the expression (k/n)(ln n – ln k) with respect

to k, we obtain
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Setting this derivative equal to 0, we see that you maximize the lower

bound on the probability when ln k = ln n – 1 = ln(n/e) or, equivalently,

when k = n/e. Thus, if you implement our strategy with k = n/e, you

succeed in hiring the best-qualified applicant with probability at least

1/e.

Exercises

5.4-1

How many people must there be in a room before the probability that

someone has the same birthday as you do is at least 1/2? How many

people must there be before the probability that at least two people have

a birthday on July 4 is greater than 1/2?

5.4-2

How many people must there be in a room before the probability that

two people have the same birthday is at least 0.99? For that many

people, what is the expected number of pairs of people who have the

same birthday?

5.4-3

You toss balls into b bins until some bin contains two balls. Each toss is

independent, and each ball is equally likely to end up in any bin. What

is the expected number of ball tosses?

★ 5.4-4

For the analysis of the birthday paradox, is it important that the

birthdays be mutually independent, or is pairwise independence

sufficient? Justify your answer.

★ 5.4-5

How many people should be invited to a party in order to make it likely

that there are three people with the same birthday?

★ 5.4-6

What is the probability that a k-string (defined on page 1179) over a set

of size n forms a k-permutation? How does this question relate to the
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birthday paradox?

★ 5.4-7

You toss n balls into n bins, where each toss is independent and the ball

is equally likely to end up in any bin. What is the expected number of

empty bins? What is the expected number of bins with exactly one ball?

★ 5.4-8

Sharpen the lower bound on streak length by showing that in n flips of a

fair coin, the probability is at least 1 – 1/n that a streak of length lg n – 2

lg lg n consecutive heads occurs.

Problems

5-1     Probabilistic counting

With a b-bit counter, we can ordinarily only count up to 2b – 1. With R.

Morris’s probabilistic counting, we can count up to a much larger value

at the expense of some loss of precision.

We let a counter value of i represent a count of ni for i = 0, 1, … , 2b

– 1, where the ni form an increasing sequence of nonnegative values. We

assume that the initial value of the counter is 0, representing a count of

n0 = 0. The INCREMENT operation works on a counter containing

the value i in a probabilistic manner. If i = 2b – 1, then the operation

reports an overflow error. Otherwise, the INCREMENT operation

increases the counter by 1 with probability 1/(ni + 1 – ni), and it leaves

the counter unchanged with probability 1 – 1/(ni + 1 – ni).

If we select ni = i for all i ≥ 0, then the counter is an ordinary one.

More interesting situations arise if we select, say, ni = 2i – 1 for i > 0 or

ni = Fi (the ith Fibonacci number—see equation (3.31) on page 69).

For this problem, assume that  is large enough that the

probability of an overflow error is negligible.
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a. Show that the expected value represented by the counter after n

INCREMENT operations have been performed is exactly n.

b. The analysis of the variance of the count represented by the counter

depends on the sequence of the ni. Let us consider a simple case: ni =

100i for all i ≥ 0. Estimate the variance in the value represented by the

register after n INCREMENT operations have been performed.

5-2     Searching an unsorted array

This problem examines three algorithms for searching for a value x in

an unsorted array A consisting of n elements.

Consider the following randomized strategy: pick a random index i

into A. If A[i] = x, then terminate; otherwise, continue the search by

picking a new random index into A. Continue picking random indices

into A until you find an index j such that A[j] = x or until every element

of A has been checked. This strategy may examine a given element more

than once, because it picks from the whole set of indices each time.

a. Write pseudocode for a procedure RANDOM-SEARCH to

implement the strategy above. Be sure that your algorithm terminates

when all indices into A have been picked.

b. Suppose that there is exactly one index i such that A[i] = x. What is

the expected number of indices into A that must be picked before x is

found and RANDOM-SEARCH terminates?

c. Generalizing your solution to part (b), suppose that there are k ≥ 1

indices i such that A[i] = x. What is the expected number of indices

into A that must be picked before x is found and RANDOM-

SEARCH terminates? Your answer should be a function of n and k.

d. Suppose that there are no indices i such that A[i] = x. What is the

expected number of indices into A that must be picked before all

elements of A have been checked and RANDOM-SEARCH

terminates?

Now consider a deterministic linear search algorithm. The algorithm,

which we call DETERMINISTIC-SEARCH, searches A for x in order,
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considering A[1], A[2], A[3], … , A[n] until either it finds A[i] = x or it

reaches the end of the array. Assume that all possible permutations of

the input array are equally likely.

e. Suppose that there is exactly one index i such that A[i] = x. What is

the average-case running time of DETERMINISTIC-SEARCH?

What is the worst-case running time of DETERMINISTIC-

SEARCH?

f. Generalizing your solution to part (e), suppose that there are k ≥ 1

indices i such that A[i] = x. What is the average-case running time of

DETERMINISTIC-SEARCH? What is the worst-case running time

of DETERMINISTIC-SEARCH? Your answer should be a function

of n and k.

g. Suppose that there are no indices i such that A[i] = x. What is the

average-case running time of DETERMINISTIC-SEARCH? What is

the worst-case running time of DETERMINISTIC-SEARCH?

Finally, consider a randomized algorithm SCRAMBLE-SEARCH that

first randomly permutes the input array and then runs the deterministic

linear search given above on the resulting permuted array.

h. Letting k be the number of indices i such that A[i] = x, give the worst-

case and expected running times of SCRAMBLE-SEARCH for the

cases in which k = 0 and k = 1. Generalize your solution to handle the

case in which k ≥ 1.

i. Which of the three searching algorithms would you use? Explain your

answer.

Chapter notes

Bollobás [65], Hofri [223], and Spencer [420] contain a wealth of

advanced probabilistic techniques. The advantages of randomized

algorithms are discussed and surveyed by Karp [249] and Rabin [372].

The textbook by Motwani and Raghavan [336] gives an extensive

treatment of randomized algorithms.
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The RANDOMLY-PERMUTE procedure is by Durstenfeld [128],

based on an earlier procedure by Fisher and Yates [143, p. 34].

Several variants of the hiring problem have been widely studied.

These problems are more commonly referred to as “secretary

problems.” Examples of work in this area are the paper by Ajtai,

Meggido, and Waarts [11] and another by Kleinberg [258], which ties

the secretary problem to online ad auctions.
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Part II    Sorting and Order Statistics
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Introduction

This part presents several algorithms that solve the following sorting

problem:

Input: A sequence of n numbers 〈a1, a2, … , an〉.

Output: A permutation (reordering)  of the input sequence

such that .

The input sequence is usually an n-element array, although it may be

represented in some other fashion, such as a linked list.

The structure of the data

In practice, the numbers to be sorted are rarely isolated values. Each is

usually part of a collection of data called a record. Each record contains

a key, which is the value to be sorted. The remainder of the record

consists of satellite data, which are usually carried around with the key.

In practice, when a sorting algorithm permutes the keys, it must

permute the satellite data as well. If each record includes a large amount

of satellite data, it often pays to permute an array of pointers to the

records rather than the records themselves in order to minimize data

movement.

In a sense, it is these implementation details that distinguish an

algorithm from a full-blown program. A sorting algorithm describes the

method to determine the sorted order, regardless of whether what’s

being sorted are individual numbers or large records containing many
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bytes of satellite data. Thus, when focusing on the problem of sorting,

we typically assume that the input consists only of numbers. Translating

an algorithm for sorting numbers into a program for sorting records is

conceptually straightforward, although in a given engineering situation

other subtleties may make the actual programming task a challenge.

Why sorting?

Many computer scientists consider sorting to be the most fundamental

problem in the study of algorithms. There are several reasons:

Sometimes an application inherently needs to sort information.

For example, in order to prepare customer statements, banks need

to sort checks by check number.

Algorithms often use sorting as a key subroutine. For example, a

program that renders graphical objects which are layered on top

of each other might have to sort the objects according to an

“above” relation so that it can draw these objects from bottom to

top. We will see numerous algorithms in this text that use sorting

as a subroutine.

We can draw from among a wide variety of sorting algorithms,

and they employ a rich set of techniques. In fact, many important

techniques used throughout algorithm design appear in sorting

algorithms that have been developed over the years. In this way,

sorting is also a problem of historical interest.

We can prove a nontrivial lower bound for sorting (as we’ll do in

Chapter 8). Since the best upper bounds match the lower bound

asymptotically, we can conclude that certain of our sorting

algorithms are asymptotically optimal. Moreover, we can use the

lower bound for sorting to prove lower bounds for various other

problems.

Many engineering issues come to the fore when implementing

sorting algorithms. The fastest sorting program for a particular

situation may depend on many factors, such as prior knowledge

about the keys and satellite data, the memory hierarchy (caches

and virtual memory) of the host computer, and the software
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environment. Many of these issues are best dealt with at the

algorithmic level, rather than by “tweaking” the code.

Sorting algorithms

We introduced two algorithms that sort n real numbers in Chapter 2.

Insertion sort takes Θ(n2) time in the worst case. Because its inner loops

are tight, however, it is a fast sorting algorithm for small input sizes.

Moreover, unlike merge sort, it sorts in place, meaning that at most a

constant number of elements of the input array are ever stored outside

the array, which can be advantageous for space efficiency. Merge sort

has a better asymptotic running time, Θ(n lg n), but the MERGE

procedure it uses does not operate in place. (We’ll see a parallelized

version of merge sort in Section 26.3.)

This part introduces two more algorithms that sort arbitrary real

numbers. Heapsort, presented in Chapter 6, sorts n numbers in place in

O(n lg n) time. It uses an important data structure, called a heap, which

can also implement a priority queue.

Quicksort, in Chapter 7, also sorts n numbers in place, but its worst-

case running time is Θ(n2). Its expected running time is Θ(n lg n),

however, and it generally outperforms heapsort in practice. Like

insertion sort, quicksort has tight code, and so the hidden constant

factor in its running time is small. It is a popular algorithm for sorting

large arrays.

Insertion sort, merge sort, heapsort, and quicksort are all

comparison sorts: they determine the sorted order of an input array by

comparing elements. Chapter 8 begins by introducing the decision-tree

model in order to study the performance limitations of comparison

sorts. Using this model, we prove a lower bound of Ω(n lg n) on the

worst-case running time of any comparison sort on n inputs, thus

showing that heapsort and merge sort are asymptotically optimal

comparison sorts.

Chapter 8 then goes on to show that we might be able to beat this

lower bound of Ω(n lg n) if an algorithm can gather information about

the sorted order of the input by means other than comparing elements.

The counting sort algorithm, for example, assumes that the input
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numbers belong to the set {0, 1, … , k}. By using array indexing as a

tool for determining relative order, counting sort can sort n numbers in

Θ(k + n) time. Thus, when k = O(n), counting sort runs in time that is

linear in the size of the input array. A related algorithm, radix sort, can

be used to extend the range of counting sort. If there are n integers to

sort, each integer has d digits, and each digit can take on up to k

possible values, then radix sort can sort the numbers in Θ(d(n + k)) time.

When d is a constant and k is O(n), radix sort runs in linear time. A

third algorithm, bucket sort, requires knowledge of the probabilistic

distribution of numbers in the input array. It can sort n real numbers

uniformly distributed in the half-open interval [0, 1) in average-case

O(n) time.

The table on the following page summarizes the running times of the

sorting algorithms from Chapters 2 and 6–8. As usual, n denotes the

number of items to sort. For counting sort, the items to sort are integers

in the set {0, 1, … , k}. For radix sort, each item is a d-digit number,

where each digit takes on k possible values. For bucket sort, we assume

that the keys are real numbers uniformly distributed in the half-open

interval [0, 1). The rightmost column gives the average-case or expected

running time, indicating which one it gives when it differs from the

worst-case running time. We omit the average-case running time of

heapsort because we do not analyze it in this book.

Algorithm

Worst-case

running time

Average-case/expected

running time

Insertion

sort
Θ(n2) Θ(n2)

Merge

sort
Θ(n lg n) Θ(n lg n)

Heapsort O(n lg n) —

Quicksort Θ(n2) Θ(n lg n) (expected)

Counting

sort
Θ(k + n) Θ(k + n)

Radix Θ(d(n + k)) Θ(d(n + k))
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sort

Bucket

sort
Θ(n2) Θ(n) (average-case)

Order statistics

The ith order statistic of a set of n numbers is the ith smallest number in

the set. You can, of course, select the ith order statistic by sorting the

input and indexing the ith element of the output. With no assumptions

about the input distribution, this method runs in Ω(n lg n) time, as the

lower bound proved in Chapter 8 shows.

Chapter 9 shows how to find the ith smallest element in O(n) time,

even when the elements are arbitrary real numbers. We present a

randomized algorithm with tight pseudocode that runs in Θ(n2) time in

the worst case, but whose expected running time is O(n). We also give a

more complicated algorithm that runs in O(n) worst-case time.

Background

Although most of this part does not rely on difficult mathematics, some

sections do require mathematical sophistication. In particular, analyses

of quicksort, bucket sort, and the order-statistic algorithm use

probability, which is reviewed in Appendix C, and the material on

probabilistic analysis and randomized algorithms in Chapter 5.
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6          Heapsort

This chapter introduces another sorting algorithm: heapsort. Like

merge sort, but unlike insertion sort, heapsort’s running time is O(n lg

n). Like insertion sort, but unlike merge sort, heapsort sorts in place:

only a constant number of array elements are stored outside the input

array at any time. Thus, heapsort combines the better attributes of the

two sorting algorithms we have already discussed.

Heapsort also introduces another algorithm design technique: using

a data structure, in this case one we call a “heap,” to manage

information. Not only is the heap data structure useful for heapsort, but

it also makes an efficient priority queue. The heap data structure will

reappear in algorithms in later chapters.

The term “heap” was originally coined in the context of heapsort,

but it has since come to refer to “garbage-collected storage,” such as the

programming languages Java and Python provide. Please don’t be

confused. The heap data structure is not garbage-collected storage. This

book is consistent in using the term “heap” to refer to the data

structure, not the storage class.

6.1      Heaps

The (binary) heap data structure is an array object that we can view as a

nearly complete binary tree (see Section B.5.3), as shown in Figure 6.1.

Each node of the tree corresponds to an element of the array. The tree is

completely filled on all levels except possibly the lowest, which is filled
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from the left up to a point. An array A[1 : n] that represents a heap is an

object with an attribute A.heap-size, which represents how many

elements in the heap are stored within array A. That is, although A[1 : n]

may contain numbers, only the elements in A[1 : A.heap-size], where 0 ≤

A.heap-size ≤ n, are valid elements of the heap. If A.heap-size = 0, then

the heap is empty. The root of the tree is A[1], and given the index i of a

node, there’s a simple way to compute the indices of its parent, left

child, and right child with the one-line procedures PARENT, LEFT,

and RIGHT.

Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle

at each node in the tree is the value stored at that node. The number above a node is the

corresponding index in the array. Above and below the array are lines showing parent-child

relationships, with parents always to the left of their children. The tree has height 3, and the

node at index 4 (with value 8) has height 1.

PARENT(i)

1return ⌊i/2⌋

LEFT(i)

1return 2i

RIGHT(i)

1return 2i + 1

On most computers, the LEFT procedure can compute 2i in one

instruction by simply shifting the binary representation of i left by one
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bit position. Similarly, the RIGHT procedure can quickly compute 2i +

1 by shifting the binary representation of i left by one bit position and

then adding 1. The PARENT procedure can compute ⌊i/2⌋ by shifting i

right one bit position. Good implementations of heapsort often

implement these procedures as macros or inline procedures.

There are two kinds of binary heaps: max-heaps and min-heaps. In

both kinds, the values in the nodes satisfy a heap property, the specifics

of which depend on the kind of heap. In a max-heap, the max-heap

property is that for every node i other than the root,

A[PARENT(i)] ≥ A[i],

that is, the value of a node is at most the value of its parent. Thus, the

largest element in a max-heap is stored at the root, and the subtree

rooted at a node contains values no larger than that contained at the

node itself. A min-heap is organized in the opposite way: the min-heap

property is that for every node i other than the root,

A[PARENT(i)] ≤ A[i].

The smallest element in a min-heap is at the root.

The heapsort algorithm uses max-heaps. Min-heaps commonly

implement priority queues, which we discuss in Section 6.5. We’ll be

precise in specifying whether we need a max-heap or a min-heap for any

particular application, and when properties apply to either max-heaps

or min-heaps, we just use the term “heap.”

Viewing a heap as a tree, we define the height of a node in a heap to

be the number of edges on the longest simple downward path from the

node to a leaf, and we define the height of the heap to be the height of

its root. Since a heap of n elements is based on a complete binary tree,

its height is Θ(lg n) (see Exercise 6.1-2). As we’ll see, the basic

operations on heaps run in time at most proportional to the height of

the tree and thus take O(lg n) time. The remainder of this chapter

presents some basic procedures and shows how they are used in a

sorting algorithm and a priority-queue data structure.

The MAX-HEAPIFY procedure, which runs in O(lg n) time, is

the key to maintaining the max-heap property.
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The BUILD-MAX-HEAP procedure, which runs in linear time,

produces a max-heap from an unordered input array.

The HEAPSORT procedure, which runs in O(n lg n) time, sorts

an array in place.

The procedures MAX-HEAP-INSERT, MAX-HEAP-

EXTRACT-MAX, MAX-HEAP-INCREASE-KEY, and MAX-

HEAP-MAXIMUM allow the heap data structure to implement

a priority queue. They run in O(lg n) time plus the time for

mapping between objects being inserted into the priority queue

and indices in the heap.

Exercises

6.1-1

What are the minimum and maximum numbers of elements in a heap of

height h?

6.1-2

Show that an n-element heap has height ⌊lg n⌋.

6.1-3

Show that in any subtree of a max-heap, the root of the subtree contains

the largest value occurring anywhere in that subtree.

6.1-4

Where in a max-heap might the smallest element reside, assuming that

all elements are distinct?

6.1-5

At which levels in a max-heap might the kth largest element reside, for 2

≤ k ≤ ⌊n/2⌋, assuming that all elements are distinct?

6.1-6

Is an array that is in sorted order a min-heap?

6.1-7

Is the array with values 〈33, 19, 20, 15, 13, 10, 2, 13, 16, 12〉 a max-heap?
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6.1-8

Show that, with the array representation for storing an n-element heap,

the leaves are the nodes indexed by ⌊n/2⌋ + 1, ⌊n/2⌋ + 2, … , n.

6.2      Maintaining the heap property

The procedure MAX-HEAPIFY on the facing page maintains the max-

heap property. Its inputs are an array A with the heap-size attribute and

an index i into the array. When it is called, MAX-HEAPIFY assumes

that the binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps,

but that A[i] might be smaller than its children, thus violating the max-

heap property. MAX-HEAPIFY lets the value at A[i] “float down” in

the max-heap so that the subtree rooted at index i obeys the max-heap

property.

Figure 6.2 illustrates the action of MAX-HEAPIFY. Each step

determines the largest of the elements A[i], A[LEFT(i)], and

A[RIGHT(i)] and stores the index of the largest element in largest. If

A[i] is largest, then the subtree rooted at node i is already a max-heap

and nothing else needs to be done. Otherwise, one of the two children

contains the largest element. Positions i and largest swap their contents,

which causes node i and its children to satisfy the max-heap property.

The node indexed by largest, however, just had its value decreased, and

thus the subtree rooted at largest might violate the max-heap property.

Consequently, MAX-HEAPIFY calls itself recursively on that subtree.
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Figure 6.2 The action of MAX-HEAPIFY(A, 2), where A.heap-size = 10. The node that

potentially violates the max-heap property is shown in blue. (a) The initial configuration, with

A[2] at node i = 2 violating the max-heap property since it is not larger than both children. The

max-heap property is restored for node 2 in (b) by exchanging A[2] with A[4], which destroys the

max-heap property for node 4. The recursive call MAX-HEAPIFY(A, 4) now has i = 4. After

A[4] and A[9] are swapped, as shown in (c), node 4 is fixed up, and the recursive call MAX-

HEAPIFY(A, 9) yields no further change to the data structure.

MAX-HEAPIFY(A, i)

  1 l = LEFT(i)

  2r = RIGHT(i)

  3 if l ≤ A.heap-size and A[l] > A[i]

  4 largest = l

  5else largest = i

  6 if r ≤ A.heap-size and A[r] > A[largest]

  7 largest = r
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  8 if largest ≠ i

  9 exchange A[i] with A[largest]

10 MAX-HEAPIFY(A, largest)

To analyze MAX-HEAPIFY, let T (n) be the worst-case running

time that the procedure takes on a subtree of size at most n. For a tree

rooted at a given node i, the running time is the Θ(1) time to fix up the

relationships among the elements A[i], A[LEFT(i)], and A[RIGHT(i)],

plus the time to run MAX-HEAPIFY on a subtree rooted at one of the

children of node i (assuming that the recursive call occurs). The

children’s subtrees each have size at most 2n/3 (see Exercise 6.2-2), and

therefore we can describe the running time of MAX-HEAPIFY by the

recurrence

The solution to this recurrence, by case 2 of the master theorem

(Theorem 4.1 on page 102), is T (n) = O(lg n). Alternatively, we can

characterize the running time of MAX-HEAPIFY on a node of height

h as O(h).

Exercises

6.2-1

Using Figure 6.2 as a model, illustrate the operation of MAX-

HEAPIFY(A, 3) on the array A = 〈27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8,

9, 0〉.

6.2-2

Show that each child of the root of an n-node heap is the root of a

subtree containing at most 2n/3 nodes. What is the smallest constant α
such that each subtree has at most α n nodes? How does that affect the

recurrence (6.1) and its solution?

6.2-3

Starting with the procedure MAX-HEAPIFY, write pseudocode for the

procedure MIN-HEAPIFY(A, i), which performs the corresponding
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manipulation on a min-heap. How does the running time of MIN-

HEAPIFY compare with that of MAX-HEAPIFY?

6.2-4

What is the effect of calling MAX-HEAPIFY(A, i) when the element

A[i] is larger than its children?

6.2-5

What is the effect of calling MAX-HEAPIFY(A, i) for i > A.heap-

size/2?

6.2-6

The code for MAX-HEAPIFY is quite efficient in terms of constant

factors, except possibly for the recursive call in line 10, for which some

compilers might produce inefficient code. Write an efficient MAX-

HEAPIFY that uses an iterative control construct (a loop) instead of

recursion.

6.2-7

Show that the worst-case running time of MAX-HEAPIFY on a heap

of size n is Ω(lg n). (Hint: For a heap with n nodes, give node values that

cause MAX-HEAPIFY to be called recursively at every node on a

simple path from the root down to a leaf.)

6.3      Building a heap

The procedure BUILD-MAX-HEAP converts an array A[1 : n] into a

max-heap by calling MAX-HEAPIFY in a bottom-up manner. Exercise

6.1-8 says that the elements in the subarray A[⌊n/2⌋ + 1 : n] are all leaves

of the tree, and so each is a 1-element heap to begin with. BUILD-

MAX-HEAP goes through the remaining nodes of the tree and runs

MAX-HEAPIFY on each one. Figure 6.3 shows an example of the

action of BUILD-MAX-HEAP.

BUILD-MAX-HEAP(A, n)

1 A.heap-size = n
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2 for i = ⌊n/2⌋ downto 1

3 MAX-HEAPIFY(A, i)

To show why BUILD-MAX-HEAP works correctly, we use the

following loop invariant:

At the start of each iteration of the for loop of lines 2–3, each

node i + 1, i + 2, … , n is the root of a max-heap.

We need to show that this invariant is true prior to the first loop

iteration, that each iteration of the loop maintains the invariant, that

the loop terminates, and that the invariant provides a useful property to

show correctness when the loop terminates.

Initialization: Prior to the first iteration of the loop, i = ⌊n/2⌋. Each node

⌊n/2⌋ + 1, ⌊n/2⌋ + 2, … , n is a leaf and is thus the root of a trivial max-

heap.

Maintenance: To see that each iteration maintains the loop invariant,

observe that the children of node i are numbered higher than i. By the

loop invariant, therefore, they are both roots of max-heaps. This is

precisely the condition required for the call MAX-HEAPIFY(A, i) to

make node i a max-heap root. Moreover, the MAX-HEAPIFY call

preserves the property that nodes i + 1, i + 2, … , n are all roots of

max-heaps. Decrementing i in the for loop update reestablishes the

loop invariant for the next iteration.
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Figure 6.3 The operation of BUILD-MAX-HEAP, showing the data structure before the call to

MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. The node indexed by i in each iteration is

shown in blue. (a) A 10-element input array A and the binary tree it represents. The loop index i

refers to node 5 before the call MAX-HEAPIFY(A, i). (b) The data structure that results. The

loop index i for the next iteration refers to node 4. (c)–(e) Subsequent iterations of the for loop

in BUILD-MAX-HEAP. Observe that whenever MAX-HEAPIFY is called on a node, the two

subtrees of that node are both max-heaps. (f) The max-heap after BUILD-MAX-HEAP

finishes.

Termination: The loop makes exactly ⌊n/2⌋ iterations, and so it

terminates. At termination, i = 0. By the loop invariant, each node 1,

2, … , n is the root of a max-heap. In particular, node 1 is.

We can compute a simple upper bound on the running time of

BUILD-MAX-HEAP as follows. Each call to MAX-HEAPIFY costs

O(lg n) time, and BUILD-MAX-HEAP makes O(n) such calls. Thus,

the running time is O(n lg n). This upper bound, though correct, is not

as tight as it can be.
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We can derive a tighter asymptotic bound by observing that the time

for MAX-HEAPIFY to run at a node varies with the height of the node

in the tree, and that the heights of most nodes are small. Our tighter

analysis relies on the properties that an n-element heap has height ⌊lg n⌋

(see Exercise 6.1-2) and at most ⌈n/2h + 1⌉ nodes of any height h (see

Exercise 6.3-4).

The time required by MAX-HEAPIFY when called on a node of

height h is O(h). Letting c be the constant implicit in the asymptotic

notation, we can express the total cost of BUILD-MAX-HEAP as

being bounded from above by . As Exercise 6.3-2 shows,

we have ⌈n/2h + 1⌉ ≥ 1/2 for 0 ≤ h ≤ ⌊lg n⌋. Since ⌈x⌉ ≤ 2x for any x ≥ 1/2,

we have ⌈n/2h + 1⌉ ≤ n/2h. We thus obtain

Hence, we can build a max-heap from an unordered array in linear time.

To build a min-heap, use the procedure BUILD-MIN-HEAP, which

is the same as BUILD-MAX-HEAP but with the call to MAX-

HEAPIFY in line 3 replaced by a call to MIN-HEAPIFY (see Exercise

6.2-3). BUILD-MIN-HEAP produces a min-heap from an unordered

linear array in linear time.
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Exercises

6.3-1

Using Figure 6.3 as a model, illustrate the operation of BUILD-MAX-

HEAP on the array A = 〈5, 3, 17, 10, 84, 19, 6, 22, 9〉.

6.3-2

Show that ⌈n/2h + 1⌉ ≥ 1/2 for 0 ≤ h ≤ ⌊lg n⌋.

6.3-3

Why does the loop index i in line 2 of BUILD-MAX-HEAP decrease

from ⌊n/2⌋ to 1 rather than increase from 1 to ⌊n/2⌋?

6.3-4

Show that there are at most ⌈n/2h + 1⌉ nodes of height h in any n-

element heap.

6.4      The heapsort algorithm

The heapsort algorithm, given by the procedure HEAPSORT, starts by

calling the BUILD-MAX-HEAP procedure to build a max-heap on the

input array A[1 : n]. Since the maximum element of the array is stored at

the root A[1], HEAPSORT can place it into its correct final position by

exchanging it with A[n]. If the procedure then discards node n from the

heap—and it can do so by simply decrementing A.heap-size—the

children of the root remain max-heaps, but the new root element might

violate the max-heap property. To restore the max-heap property, the

procedure just calls MAX-HEAPIFY(A, 1), which leaves a max-heap in

A[1 : n – 1]. The HEAPSORT procedure then repeats this process for

the max-heap of size n – 1 down to a heap of size 2. (See Exercise 6.4-2

for a precise loop invariant.)

HEAPSORT(A, n)

1 BUILD-MAX-HEAP(A, n)

2 for i = n downto 2
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3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size – 1

5 MAX-HEAPIFY(A, 1)

Figure 6.4 shows an example of the operation of HEAPSORT after

line 1 has built the initial max-heap. The figure shows the max-heap

before the first iteration of the for loop of lines 2–5 and after each

iteration.
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Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after BUILD-

MAX-HEAP has built it in line 1. (b)–(j) The max-heap just after each call of MAX-HEAPIFY

in line 5, showing the value of i at that time. Only blue nodes remain in the heap. Tan nodes

contain the largest values in the array, in sorted order. (k) The resulting sorted array A.

The HEAPSORT procedure takes O(n lg n) time, since the call to

BUILD-MAX-HEAP takes O(n) time and each of the n – 1 calls to

MAX-HEAPIFY takes O(lg n) time.

Exercises

6.4-1
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Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on

the array A = 〈5, 13, 2, 25, 7, 17, 20, 8, 4〉.

6.4-2

Argue the correctness of HEAPSORT using the following loop

invariant:

At the start of each iteration of the for loop of lines 2–5, the

subarray A[1 : i] is a max-heap containing the i smallest

elements of A[1 : n], and the subarray A[i + 1 : n] contains the n

– i largest elements of A[1 : n], sorted.

6.4-3

What is the running time of HEAPSORT on an array A of length n that

is already sorted in increasing order? How about if the array is already

sorted in decreasing order?

6.4-4

Show that the worst-case running time of HEAPSORT is Ω(n lg n).

★ 6.4-5

Show that when all the elements of A are distinct, the best-case running

time of HEAPSORT is Ω(n lg n).

6.5      Priority queues

In Chapter 8, we will see that any comparison-based sorting algorithm

requires Ω(n lg n) comparisons and hence Ω(n lg n) time. Therefore,

heapsort is asymptotically optimal among comparison-based sorting

algorithms. Yet, a good implementation of quicksort, presented in

Chapter 7, usually beats it in practice. Nevertheless, the heap data

structure itself has many uses. In this section, we present one of the

most popular applications of a heap: as an efficient priority queue. As

with heaps, priority queues come in two forms: max-priority queues and

min-priority queues. We’ll focus here on how to implement max-priority
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queues, which are in turn based on max-heaps. Exercise 6.5-3 asks you

to write the procedures for min-priority queues.

A priority queue is a data structure for maintaining a set S of

elements, each with an associated value called a key. A max-priority

queue supports the following operations:

INSERT(S, x, k) inserts the element x with key k into the set S, which is

equivalent to the operation S = S ⋃ {x}.

MAXIMUM(S) returns the element of S with the largest key.

EXTRACT-MAX(S) removes and returns the element of S with the

largest key.

INCREASE-KEY(S, x, k) increases the value of element x’s key to the

new value k, which is assumed to be at least as large as x’s current key

value.

Among their other applications, you can use max-priority queues to

schedule jobs on a computer shared among multiple users. The max-

priority queue keeps track of the jobs to be performed and their relative

priorities. When a job is finished or interrupted, the scheduler selects the

highest-priority job from among those pending by calling EXTRACT-

MAX. The scheduler can add a new job to the queue at any time by

calling INSERT.

Alternatively, a min-priority queue supports the operations INSERT,

MINIMUM, EXTRACT-MIN, and DECREASE-KEY. A min-

priority queue can be used in an event-driven simulator. The items in

the queue are events to be simulated, each with an associated time of

occurrence that serves as its key. The events must be simulated in order

of their time of occurrence, because the simulation of an event can cause

other events to be simulated in the future. The simulation program calls

EXTRACT-MIN at each step to choose the next event to simulate. As

new events are produced, the simulator inserts them into the min-

priority queue by calling INSERT. We’ll see other uses for min-priority

queues, highlighting the DECREASE-KEY operation, in Chapters 21

and 22.
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When you use a heap to implement a priority queue within a given

application, elements of the priority queue correspond to objects in the

application. Each object contains a key. If the priority queue is

implemented by a heap, you need to determine which application object

corresponds to a given heap element, and vice versa. Because the heap

elements are stored in an array, you need a way to map application

objects to and from array indices.

One way to map between application objects and heap elements uses

handles, which are additional information stored in the objects and heap

elements that give enough information to perform the mapping.

Handles are often implemented to be opaque to the surrounding code,

thereby maintaining an abstraction barrier between the application and

the priority queue. For example, the handle within an application object

might contain the corresponding index into the heap array. But since

only the code for the priority queue accesses this index, the index is

entirely hidden from the application code. Because heap elements

change locations within the array during heap operations, an actual

implementation of the priority queue, upon relocating a heap element,

must also update the array indices in the corresponding handles.

Conversely, each element in the heap might contain a pointer to the

corresponding application object, but the heap element knows this

pointer as only an opaque handle and the application maps this handle

to an application object. Typically, the worst-case overhead for

maintaining handles is O(1) per access.

As an alternative to incorporating handles in application objects, you

can store within the priority queue a mapping from application objects

to array indices in the heap. The advantage of doing so is that the

mapping is contained entirely within the priority queue, so that the

application objects need no further embellishment. The disadvantage

lies in the additional cost of establishing and maintaining the mapping.

One option for the mapping is a hash table (see Chapter 11).1 The

added expected time for a hash table to map an object to an array index

is just O(1), though the worst-case time can be as bad as Θ(n).

Let’s see how to implement the operations of a max-priority queue

using a max-heap. In the previous sections, we treated the array
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elements as the keys to be sorted, implicitly assuming that any satellite

data moved with the corresponding keys. When a heap implements a

priority queue, we instead treat each array element as a pointer to an

object in the priority queue, so that the object is analogous to the

satellite data when sorting. We further assume that each such object has

an attribute key, which determines where in the heap the object belongs.

For a heap implemented by an array A, we refer to A[i].key.

The procedure MAX-HEAP-MAXIMUM on the facing page

implements the MAXIMUM operation in Θ(1) time, and MAX-HEAP-

EXTRACT-MAX implements the operation EXTRACT-MAX. MAX-

HEAP-EXTRACT-MAX is similar to the for loop body (lines 3–5) of

the HEAPSORT procedure. We implicitly assume that MAX-

HEAPIFY compares priority-queue objects based on their key

attributes. We also assume that when MAX-HEAPIFY exchanges

elements in the array, it is exchanging pointers and also that it updates

the mapping between objects and array indices. The running time of

MAX-HEAP-EXTRACT-MAX is O(lg n), since it performs only a

constant amount of work on top of the O(lg n) time for MAX-

HEAPIFY, plus whatever overhead is incurred within MAX-

HEAPIFY for mapping priority-queue objects to array indices.

The procedure MAX-HEAP-INCREASE-KEY on page 176

implements the INCREASE-KEY operation. It first verifies that the

new key k will not cause the key in the object x to decrease, and if there

is no problem, it gives x the new key value. The procedure then finds the

index i in the array corresponding to object x, so that A[i] is x. Because

increasing the key of A[i] might violate the max-heap property, the

procedure then, in a manner reminiscent of the insertion loop (lines 5–

7) of INSERTION-SORT on page 19, traverses a simple path from this

node toward the root to find a proper place for the newly increased key.

As MAX-HEAP-INCREASE-KEY traverses this path, it repeatedly

compares an element’s key to that of its parent, exchanging pointers and

continuing if the element’s key is larger, and terminating if the element’s

key is smaller, since the max-heap property now holds. (See Exercise

6.5-7 for a precise loop invariant.) Like MAX-HEAPIFY when used in

a priority queue, MAX-HEAP-INCREASE-KEY updates the

information that maps objects to array indices when array elements are
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exchanged. Figure 6.5 shows an example of a MAX-HEAP-

INCREASE-KEY operation. In addition to the overhead for mapping

priority queue objects to array indices, the running time of MAX-

HEAP-INCREASE-KEY on an n-element heap is O(lg n), since the

path traced from the node updated in line 3 to the root has length O(lg

n).

MAX-HEAP-MAXIMUM(A)

1 if A.heap-size < 1

2 error “heap underflow”

3 return A[1]

MAX-HEAP-EXTRACT-MAX(A)

1 max = MAX-HEAP-MAXIMUM(A)

2 A[1] = A[A.heap-size]

3 A.heap-size = A.heap-size – 1

4 MAX-HEAPIFY(A, 1)

5 return max

The procedure MAX-HEAP-INSERT on the next page implements

the INSERT operation. It takes as inputs the array A implementing the

max-heap, the new object x to be inserted into the max-heap, and the

size n of array A. The procedure first verifies that the array has room for

the new element. It then expands the max-heap by adding to the tree a

new leaf whose key is –∞. Then it calls MAX-HEAP-INCREASE-KEY

to set the key of this new element to its correct value and maintain the

max-heap property. The running time of MAX-HEAP-INSERT on an

n-element heap is O(lg n) plus the overhead for mapping priority queue

objects to indices.

In summary, a heap can support any priority-queue operation on a

set of size n in O(lg n) time, plus the overhead for mapping priority

queue objects to array indices.

MAX-HEAP-INCREASE-KEY(A, x, k)

1 if k < x.key

www.konkur.in

Telegram: @uni_k



2 error “new key is smaller than current key”

3 x.key = k

4 find the index i in array A where object x occurs

5 while i > 1 and A[PARENT(i)].key < A[i].key

6 exchange A[i] with A[PARENT(i)], updating the information

that maps priority queue objects to array indices

7 i = PARENT(i)

MAX-HEAP-INSERT(A, x, n)

1 if A.heap-size == n

2 error “heap overflow”

3 A.heap-size = A.heap-size + 1

4 k = x.key

5 x.key = –∞

6 A[A.heap-size] = x

7 map x to index heap-size in the array

8 MAX-HEAP-INCREASE-KEY(A, x, k)

Exercises

6.5-1

Suppose that the objects in a max-priority queue are just keys. Illustrate

the operation of MAX-HEAP-EXTRACT-MAX on the heap A = 〈15,

13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1〉.

6.5-2

Suppose that the objects in a max-priority queue are just keys. Illustrate

the operation of MAX-HEAP-INSERT(A, 10) on the heap A = 〈15, 13,

9, 5, 12, 8, 7, 4, 0, 6, 2, 1〉.

6.5-3

Write pseudocode to implement a min-priority queue with a min-heap

by writing the procedures MIN-HEAP-MINIMUM, MIN-HEAP-

EXTRACT-MIN, MIN-HEAP-DECREASE-KEY, and MIN-HEAP-

INSERT.
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6.5-4

Write pseudocode for the procedure MAX-HEAP-DECREASE-

KEY(A, x, k) in a max-heap. What is the running time of your

procedure?

Figure 6.5 The operation of MAX-HEAP-INCREASE-KEY. Only the key of each element in

the priority queue is shown. The node indexed by i in each iteration is shown in blue. (a) The

max-heap of Figure 6.4(a) with i indexing the node whose key is about to be increased. (b) This

node has its key increased to 15. (c) After one iteration of the while loop of lines 5–7, the node

and its parent have exchanged keys, and the index i moves up to the parent. (d) The max-heap

after one more iteration of the while loop. At this point, A[PARENT(i)] ≥ A[i]. The max-heap

property now holds and the procedure terminates.

6.5-5

Why does MAX-HEAP-INSERT bother setting the key of the inserted

object to –∞ in line 5 given that line 8 will set the object’s key to the

desired value?
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6.5-6

Professor Uriah suggests replacing the while loop of lines 5–7 in MAX-

HEAP-INCREASE-KEY by a call to MAX-HEAPIFY. Explain the

flaw in the professor’s idea.

6.5-7

Argue the correctness of MAX-HEAP-INCREASE-KEY using the

following loop invariant:

At the start of each iteration of the while loop of lines 5–7:

a. If both nodes PARENT(i) and LEFT(i) exist, then

A[PARENT(i)].key ≥ A[LEFT(i)].key.

b. If both nodes PARENT(i) and RIGHT(i) exist, then

A[PARENT(i)].key ≥ A[RIGHT(i)].key.

c. The subarray A[1 : A.heap-size] satisfies the max-heap property,

except that there may be one violation, which is that A[i].key may

be greater than A[PARENT(i)].key.

You may assume that the subarray A[1 : A.heap-size] satisfies the max-

heap property at the time MAX-HEAP-INCREASE-KEY is called.

6.5-8

Each exchange operation on line 6 of MAX-HEAP-INCREASE-KEY

typically requires three assignments, not counting the updating of the

mapping from objects to array indices. Show how to use the idea of the

inner loop of INSERTION-SORT to reduce the three assignments to

just one assignment.

6.5-9

Show how to implement a first-in, first-out queue with a priority queue.

Show how to implement a stack with a priority queue. (Queues and

stacks are defined in Section 10.1.3.)

6.5-10

The operation MAX-HEAP-DELETE(A, x) deletes the object x from

max-heap A. Give an implementation of MAX-HEAP-DELETE for an

n-element max-heap that runs in O(lg n) time plus the overhead for

mapping priority queue objects to array indices.
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6.5-11

Give an O(n lg k)-time algorithm to merge k sorted lists into one sorted

list, where n is the total number of elements in all the input lists. (Hint:

Use a min-heap for k-way merging.)

Problems

6-1     Building a heap using insertion

One way to build a heap is by repeatedly calling MAX-HEAP-INSERT

to insert the elements into the heap. Consider the procedure BUILD-

MAX-HEAP′ on the facing page. It assumes that the objects being

inserted are just the heap elements.

BUILD-MAX-HEAP′ (A, n)

1 A.heap-size = 1

2 for i = 2 to n

3 MAX-HEAP-INSERT(A, A[i], n)

a. Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP′
always create the same heap when run on the same input array? Prove

that they do, or provide a counterexample.

b. Show that in the worst case, BUILD-MAX-HEAP′ requires Θ(n lg n)

time to build an n-element heap.

6-2     Analysis of d-ary heaps

A d-ary heap is like a binary heap, but (with one possible exception)

nonleaf nodes have d children instead of two children. In all parts of

this problem, assume that the time to maintain the mapping between

objects and heap elements is O(1) per operation.

a. Describe how to represent a d-ary heap in an array.

b. Using Θ-notation, express the height of a d-ary heap of n elements in

terms of n and d.
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c. Give an efficient implementation of EXTRACT-MAX in a d-ary

max-heap. Analyze its running time in terms of d and n.

d. Give an efficient implementation of INCREASE-KEY in a d-ary

max-heap. Analyze its running time in terms of d and n.

e. Give an efficient implementation of INSERT in a d-ary max-heap.

Analyze its running time in terms of d and n.

6-3 Young tableaus

An m × n Young tableau is an m × n matrix such that the entries of each

row are in sorted order from left to right and the entries of each column

are in sorted order from top to bottom. Some of the entries of a Young

tableau may be ∞, which we treat as nonexistent elements. Thus, a

Young tableau can be used to hold r ≤ mn finite numbers.

a. Draw a 4 × 4 Young tableau containing the elements {9, 16, 3, 2, 4, 8,

5, 14, 12}.

b. Argue that an m × n Young tableau Y is empty if Y [1, 1] = ∞. Argue

that Y is full (contains mn elements) if Y [m, n] < ∞.

c. Give an algorithm to implement EXTRACT-MIN on a nonempty m

× n Young tableau that runs in O(m + n) time. Your algorithm should

use a recursive subroutine that solves an m × n problem by recursively

solving either an (m – 1) × n or an m × (n – 1) subproblem. (Hint:

Think about MAX-HEAPIFY.) Explain why your implementation of

EXTRACT-MIN runs in O(m + n) time.

d. Show how to insert a new element into a nonfull m × n Young tableau

in O(m + n) time.

e. Using no other sorting method as a subroutine, show how to use an n

× n Young tableau to sort n2 numbers in O(n3) time.

f. Give an O(m + n)-time algorithm to determine whether a given

number is stored in a given m × n Young tableau.

Chapter notes
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The heapsort algorithm was invented by Williams [456], who also

described how to implement a priority queue with a heap. The BUILD-

MAX-HEAP procedure was suggested by Floyd [145]. Schaffer and

Sedgewick [395] showed that in the best case, the number of times

elements move in the heap during heapsort is approximately (n/2) lg n

and that the average number of moves is approximately n lg n.

We use min-heaps to implement min-priority queues in Chapters 15,

21, and 22. Other, more complicated, data structures give better time

bounds for certain min-priority queue operations. Fredman and Tarjan

[156] developed Fibonacci heaps, which support INSERT and

DECREASE-KEY in O(1) amortized time (see Chapter 16). That is,

the average worst-case running time for these operations is O(1). Brodal,

Lagogiannis, and Tarjan [73] subsequently devised strict Fibonacci

heaps, which make these time bounds the actual running times. If the

keys are unique and drawn from the set {0, 1, … , n – 1} of nonnegative

integers, van Emde Boas trees [440, 441] support the operations

INSERT, DELETE, SEARCH, MINIMUM, MAXIMUM,

PREDECESSOR, and SUCCESSOR in O(lg lg n) time.

If the data are b-bit integers, and the computer memory consists of

addressable b-bit words, Fredman and Willard [157] showed how to

implement MINIMUM in O(1) time and INSERT and EXTRACT-

MIN in  time. Thorup [436] has improved the  bound to

O(lg lg n) time by using randomized hashing, requiring only linear

space.

An important special case of priority queues occurs when the

sequence of EXTRACT-MIN operations is monotone, that is, the values

returned by successive EXTRACT-MIN operations are monotonically

increasing over time. This case arises in several important applications,

such as Dijkstra’s single-source shortest-paths algorithm, which we

discuss in Chapter 22, and in discrete-event simulation. For Dijkstra’s

algorithm it is particularly important that the DECREASE-KEY

operation be implemented efficiently. For the monotone case, if the data

are integers in the range 1, 2, … , C, Ahuja, Mehlhorn, Orlin, and

Tarjan [8] describe how to implement EXTRACT-MIN and INSERT in

O(lg C) amortized time (Chapter 16 presents amortized analysis) and
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DECREASE-KEY in O(1) time, using a data structure called a radix

heap. The O(lg C) bound can be improved to  using Fibonacci

heaps in conjunction with radix heaps. Cherkassky, Goldberg, and

Silverstein [90] further improved the bound to O(lg1/3+ϵ  C) expected

time by combining the multilevel bucketing structure of Denardo and

Fox [112] with the heap of Thorup mentioned earlier. Raman [375]

further improved these results to obtain a bound of O(min {lg1/4+ϵ C,

lg1/3+ϵ n}), for any fixed ϵ > 0.

Many other variants of heaps have been proposed. Brodal [72]

surveys some of these developments.

1 In Python, dictionaries are implemented with hash tables.
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7          Quicksort

The quicksort algorithm has a worst-case running time of Θ(n2) on an

input array of n numbers. Despite this slow worst-case running time,

quicksort is often the best practical choice for sorting because it is

remarkably efficient on average: its expected running time is Θ(n lg n)

when all numbers are distinct, and the constant factors hidden in the

Θ(n lg n) notation are small. Unlike merge sort, it also has the

advantage of sorting in place (see page 158), and it works well even in

virtual-memory environments.

Our study of quicksort is broken into four sections. Section 7.1

describes the algorithm and an important subroutine used by quicksort

for partitioning. Because the behavior of quicksort is complex, we’ll

start with an intuitive discussion of its performance in Section 7.2 and

analyze it precisely at the end of the chapter. Section 7.3 presents a

randomized version of quicksort. When all elements are distinct,1 this

randomized algorithm has a good expected running time and no

particular input elicits its worst-case behavior. (See Problem 7-2 for the

case in which elements may be equal.) Section 7.4 analyzes the

randomized algorithm, showing that it runs in Θ(n2) time in the worst

case and, assuming distinct elements, in expected O(n lg n) time.

7.1      Description of quicksort
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Quicksort, like merge sort, applies the divide-and-conquer method

introduced in Section 2.3.1. Here is the three-step divide-and-conquer

process for sorting a subarray A[p : r]:

Divide by partitioning (rearranging) the array A[p : r] into two (possibly

empty) subarrays A[p : q – 1] (the low side) and A[q + 1 : r] (the high

side) such that each element in the low side of the partition is less than

or equal to the pivot A[q], which is, in turn, less than or equal to each

element in the high side. Compute the index q of the pivot as part of

this partitioning procedure.

Conquer by calling quicksort recursively to sort each of the subarrays

A[p : q – 1] and A[q + 1 : r].

Combine by doing nothing: because the two subarrays are already

sorted, no work is needed to combine them. All elements in A[p : q –

1] are sorted and less than or equal to A[q], and all elements in A[q + 1

: r] are sorted and greater than or equal to the pivot A[q]. The entire

subarray A[p : r] cannot help but be sorted!

The QUICKSORT procedure implements quicksort. To sort an

entire n-element array A[1 : n], the initial call is QUICKSORT (A, 1, n).

QUICKSORT(A, p, r)

1 if p < r

2 // Partition the subarray around the pivot, which ends up in A[q].

3 q = PARTITION(A, p, r)

4 QUICKSORT(A, p, q – 1) // recursively sort the low side

5 QUICKSORT(A, q + 1, r) // recursively sort the high side

Partitioning the array

The key to the algorithm is the PARTITION procedure on the next

page, which rearranges the subarray A[p : r] in place, returning the index

of the dividing point between the two sides of the partition.

Figure 7.1 shows how PARTITION works on an 8-element array.

PARTITION always selects the element x = A[r] as the pivot. As the
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procedure runs, each element falls into exactly one of four regions, some

of which may be empty. At the start of each iteration of the for loop in

lines 3–6, the regions satisfy certain properties, shown in Figure 7.2. We

state these properties as a loop invariant:

PARTITION(A, p, r)

1 x = A[r] // the pivot

2 i = p – 1 // highest index into the low side

3 for j = p to r – 1 // process each element other than the

pivot

4 if A[j] ≤ x // does this element belong on the low

side?

5 i = i + 1 // index of a new slot in the low side

6 exchange A[i] with

A[j]

// put this element there

7 exchange A[i + 1] with

A[r]

// pivot goes just to the right of the low

side

8 return i + 1 // new index of the pivot

At the beginning of each iteration of the loop of lines 3–6, for

any array index k, the following conditions hold:

1. if p ≤ k ≤ i, then A[k] ≤ x (the tan region of Figure 7.2);

2. if i + 1 ≤ k ≤ j – 1, then A[k] > x (the blue region);

3. if k = r, then A[k] = x (the yellow region).

We need to show that this loop invariant is true prior to the first

iteration, that each iteration of the loop maintains the invariant, that

the loop terminates, and that correctness follows from the invariant

when the loop terminates.

Initialization: Prior to the first iteration of the loop, we have i = p – 1

and j = p. Because no values lie between p and i and no values lie

between i + 1 and j – 1, the first two conditions of the loop invariant

are trivially satisfied. The assignment in line 1 satisfies the third

condition.
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Maintenance: As Figure 7.3 shows, we consider two cases, depending on

the outcome of the test in line 4. Figure 7.3(a) shows what happens

when A[j] > x: the only action in the loop is to increment j. After j has

been incremented, the second condition holds for A[j – 1] and all

other entries remain unchanged. Figure 7.3(b) shows what happens

when A[j] ≤ x: the loop increments i, swaps A[i] and A[j], and then

increments j. Because of the swap, we now have that A[i] ≤ x, and

condition 1 is satisfied. Similarly, we also have that A[j – 1] > x, since

the item that was swapped into A[j – 1] is, by the loop invariant,

greater than x.

Termination: Since the loop makes exactly r – p iterations, it terminates,

whereupon j = r. At that point, the unexamined subarray A[j : r – 1] is

empty, and every entry in the array belongs to one of the other three

sets described by the invariant. Thus, the values in the array have been

partitioned into three sets: those less than or equal to x (the low side),

those greater than x (the high side), and a singleton set containing x

(the pivot).
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Figure 7.1 The operation of PARTITION on a sample array. Array entry A[r] becomes the pivot

element x. Tan array elements all belong to the low side of the partition, with values at most x.

Blue elements belong to the high side, with values greater than x. White elements have not yet

been put into either side of the partition, and the yellow element is the pivot x. (a) The initial

array and variable settings. None of the elements have been placed into either side of the

partition. (b) The value 2 is “swapped with itself” and put into the low side. (c)–(d) The values 8

and 7 are placed into to high side. (e) The values 1 and 8 are swapped, and the low side grows. (f)

The values 3 and 7 are swapped, and the low side grows. (g)–(h) The high side of the partition

grows to include 5 and 6, and the loop terminates. (i) Line 7 swaps the pivot element so that it

lies between the two sides of the partition, and line 8 returns the pivot’s new index.

The final two lines of PARTITION finish up by swapping the pivot

with the leftmost element greater than x, thereby moving the pivot into

its correct place in the partitioned array, and then returning the pivot’s

new index. The output of PARTITION now satisfies the specifications

given for the divide step. In fact, it satisfies a slightly stronger condition:
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after line 3 of QUICKSORT, A[q] is strictly less than every element of

A[q + 1 : r].

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p : r].

The tan values in A[p : i] are all less than or equal to x, the blue values in A[i + 1 : j – 1] are all

greater than x, the white values in A[j : r – 1] have unknown relationships to x, and A[r] = x.

Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If A[j] > x, the only

action is to increment j, which maintains the loop invariant. (b) If A[j] ≤ x, index i is

incremented, A[i] and A[j] are swapped, and then j is incremented. Again, the loop invariant is

maintained.

Exercise 7.1-3 asks you to show that the running time of

PARTITION on a subarray A[p : r] of n = r – p + 1 elements is Θ(n).

Exercises

7.1-1
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Using Figure 7.1 as a model, illustrate the operation of PARTITION on

the array A = 〈13, 19, 9, 5, 12, 8, 7, 4, 21, 2, 6, 11〉.

7.1-2

What value of q does PARTITION return when all elements in the

subarray A[p : r] have the same value? Modify PARTITION so that q =

⌊(p + r)/2⌋ when all elements in the subarray A[p : r] have the same

value.

7.1-3

Give a brief argument that the running time of PARTITION on a

subarray of size n is Θ(n).

7.1-4

Modify QUICKSORT to sort into monotonically decreasing order.

7.2      Performance of quicksort

The running time of quicksort depends on how balanced each

partitioning is, which in turn depends on which elements are used as

pivots. If the two sides of a partition are about the same size—the

partitioning is balanced—then the algorithm runs asymptotically as fast

as merge sort. If the partitioning is unbalanced, however, it can run

asymptotically as slowly as insertion sort. To allow you to gain some

intuition before diving into a formal analysis, this section informally

investigates how quicksort performs under the assumptions of balanced

versus unbalanced partitioning.

But first, let’s briefly look at the maximum amount of memory that

quicksort requires. Although quicksort sorts in place according to the

definition on page 158, the amount of memory it uses—aside from the

array being sorted—is not constant. Since each recursive call requires a

constant amount of space on the runtime stack, outside of the array

being sorted, quicksort requires space proportional to the maximum

depth of the recursion. As we’ll see now, that could be as bad as Θ(n) in

the worst case.
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Worst-case partitioning

The worst-case behavior for quicksort occurs when the partitioning

produces one subproblem with n – 1 elements and one with 0 elements.

(See Section 7.4.1.) Let us assume that this unbalanced partitioning

arises in each recursive call. The partitioning costs Θ(n) time. Since the

recursive call on an array of size 0 just returns without doing anything,

T (0) = Θ(1), and the recurrence for the running time is

T (n) = T (n – 1) + T (0) + Θ(n)

= T (n – 1) + Θ(n).

By summing the costs incurred at each level of the recursion, we obtain

an arithmetic series (equation (A.3) on page 1141), which evaluates to

Θ(n2). Indeed, the substitution method can be used to prove that the

recurrence T (n) = T (n – 1) + Θ(n) has the solution T (n) = Θ(n2). (See

Exercise 7.2-1.)

Thus, if the partitioning is maximally unbalanced at every recursive

level of the algorithm, the running time is Θ(n2). The worst-case

running time of quicksort is therefore no better than that of insertion

sort. Moreover, the Θ(n2) running time occurs when the input array is

already completely sorted—a situation in which insertion sort runs in

O(n) time.

Best-case partitioning

In the most even possible split, PARTITION produces two

subproblems, each of size no more than n/2, since one is of size ⌊(n –

1)/2⌋ ≤ n/2 and one of size ⌈(n – 1)/2⌉ – 1 ≤ n/2. In this case, quicksort

runs much faster. An upper bound on the running time can then be

described by the recurrence

T (n) = 2T (n/2) + Θ(n).

By case 2 of the master theorem (Theorem 4.1 on page 102), this

recurrence has the solution T (n) = Θ(n lg n). Thus, if the partitioning is
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equally balanced at every level of the recursion, an asymptotically faster

algorithm results.

Balanced partitioning

As the analyses in Section 7.4 will show, the average-case running time

of quicksort is much closer to the best case than to the worst case. By

appreciating how the balance of the partitioning affects the recurrence

describing the running time, we can gain an understanding of why.

Suppose, for example, that the partitioning algorithm always

produces a 9-to-1 proportional split, which at first blush seems quite

unbalanced. We then obtain the recurrence

T (n) = T (9n/10) + T (n/10) + Θ(n),

on the running time of quicksort. Figure 7.4 shows the recursion tree

for this recurrence, where for simplicity the Θ(n) driving function has

been replaced by n, which won’t affect the asymptotic solution of the

recurrence (as Exercise 4.7-1 on page 118 justifies). Every level of the

tree has cost n, until the recursion bottoms out in a base case at depth

log10 n = Θ(lg n), and then the levels have cost at most n. The recursion

terminates at depth log10/9  n = Θ(lg n). Thus, with a 9-to-1

proportional split at every level of recursion, which intuitively seems

highly unbalanced, quicksort runs in O(n lg n) time—asymptotically the

same as if the split were right down the middle. Indeed, even a 99-to-1

split yields an O(n lg n) running time. In fact, any split of constant

proportionality yields a recursion tree of depth Θ(lg n), where the cost

at each level is O(n). The running time is therefore O(n lg n) whenever

the split has constant proportionality. The ratio of the split affects only

the constant hidden in the O-notation.
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Figure 7.4 A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1

split, yielding a running time of O(n lg n). Nodes show subproblem sizes, with per-level costs on

the right.

Intuition for the average case

To develop a clear notion of the expected behavior of quicksort, we

must assume something about how its inputs are distributed. Because

quicksort determines the sorted order using only comparisons between

input elements, its behavior depends on the relative ordering of the

values in the array elements given as the input, not on the particular

values in the array. As in the probabilistic analysis of the hiring problem

in Section 5.2, assume that all permutations of the input numbers are

equally likely and that the elements are distinct.

When quicksort runs on a random input array, the partitioning is

highly unlikely to happen in the same way at every level, as our informal

analysis has assumed. We expect that some of the splits will be

reasonably well balanced and that some will be fairly unbalanced. For

example, Exercise 7.2-6 asks you to show that about 80% of the time

PARTITION produces a split that is at least as balanced as 9 to 1, and
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about 20% of the time it produces a split that is less balanced than 9 to

1.

Figure 7.5 (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n

and produces a “bad” split: two subarrays of sizes 0 and n – 1. The partitioning of the subarray

of size n – 1 costs n – 1 and produces a “good” split: subarrays of size (n – 1)/2 – 1 and (n – 1)/2.

(b) A single level of a recursion tree that is well balanced. In both parts, the partitioning cost for

the subproblems shown with blue shading is Θ(n). Yet the subproblems remaining to be solved

in (a), shown with tan shading, are no larger than the corresponding subproblems remaining to

be solved in (b).

In the average case, PARTITION produces a mix of “good” and

“bad” splits. In a recursion tree for an average-case execution of

PARTITION, the good and bad splits are distributed randomly

throughout the tree. Suppose for the sake of intuition that the good and

bad splits alternate levels in the tree, and that the good splits are best-

case splits and the bad splits are worst-case splits. Figure 7.5(a) shows

the splits at two consecutive levels in the recursion tree. At the root of

the tree, the cost is n for partitioning, and the subarrays produced have

sizes n – 1 and 0: the worst case. At the next level, the subarray of size n

– 1 undergoes best-case partitioning into subarrays of size (n – 1)/2 – 1

and (n – 1)/2. Let’s assume that the base-case cost is 1 for the subarray

of size 0.

The combination of the bad split followed by the good split produces

three subarrays of sizes 0, (n – 1)/2 – 1, and (n – 1)/2 at a combined

partitioning cost of Θ(n) + Θ(n – 1) = Θ(n). This situation is at most a

constant factor worse than that in Figure 7.5(b), namely, where a single

level of partitioning produces two subarrays of size (n – 1)/2, at a cost of

Θ(n). Yet this latter situation is balanced! Intuitively, the Θ(n – 1) cost of

the bad split in Figure 7.5(a) can be absorbed into the Θ(n) cost of the

good split, and the resulting split is good. Thus, the running time of
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quicksort, when levels alternate between good and bad splits, is like the

running time for good splits alone: still O(n lg n), but with a slightly

larger constant hidden by the O-notation. We’ll analyze the expected

running time of a randomized version of quicksort rigorously in Section

7.4.2.

Exercises

7.2-1

Use the substitution method to prove that the recurrence T (n) = T (n –

1) + Θ(n) has the solution T (n) = Θ(n2), as claimed at the beginning of

Section 7.2.

7.2-2

What is the running time of QUICKSORT when all elements of array A

have the same value?

7.2-3

Show that the running time of QUICKSORT is Θ(n2) when the array A

contains distinct elements and is sorted in decreasing order.

7.2-4

Banks often record transactions on an account in order of the times of

the transactions, but many people like to receive their bank statements

with checks listed in order by check number. People usually write checks

in order by check number, and merchants usually cash them with

reasonable dispatch. The problem of converting time-of-transaction

ordering to check-number ordering is therefore the problem of sorting

almost-sorted input. Explain persuasively why the procedure

INSERTION-SORT might tend to beat the procedure QUICKSORT

on this problem.

7.2-5

Suppose that the splits at every level of quicksort are in the constant

proportion α to β, where α + β = 1 and 0 < α ≤ β < 1. Show that the

minimum depth of a leaf in the recursion tree is approximately log1/α n
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and that the maximum depth is approximately log1/β n. (Don’t worry

about integer round-off.)

7.2-6

Consider an array with distinct elements and for which all permutations

of the elements are equally likely. Argue that for any constant 0 < α ≤

1/2, the probability is approximately 1 – 2α that PARTITION produces

a split at least as balanced as 1 – α to α.

7.3      A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have assumed

that all permutations of the input numbers are equally likely. This

assumption does not always hold, however, as, for example, in the

situation laid out in the premise for Exercise 7.2-4. Section 5.3 showed

that judicious randomization can sometimes be added to an algorithm

to obtain good expected performance over all inputs. For quicksort,

randomization yields a fast and practical algorithm. Many software

libraries provide a randomized version of quicksort as their algorithm

of choice for sorting large data sets.

In Section 5.3, the RANDOMIZED-HIRE-ASSISTANT procedure

explicitly permutes its input and then runs the deterministic HIRE-

ASSISTANT procedure. We could do the same for quicksort as well,

but a different randomization technique yields a simpler analysis.

Instead of always using A[r] as the pivot, a randomized version

randomly chooses the pivot from the subarray A[p : r], where each

element in A[p : r] has an equal probability of being chosen. It then

exchanges that element with A[r] before partitioning. Because the pivot

is chosen randomly, we expect the split of the input array to be

reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. The new

partitioning procedure, RANDOMIZED-PARTITION, simply swaps

before performing the partitioning. The new quicksort procedure,

RANDOMIZED-QUICKSORT, calls RANDOMIZED-PARTITION
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instead of PARTITION. We’ll analyze this algorithm in the next

section.

RANDOMIZED-PARTITION(A, p, r)

1 i = RANDOM(p, r)

2 exchange A[r] with A[i]

3 return PARTITION(A, p, r)

RANDOMIZED-QUICKSORT(A, p, r)

1 if p < r

2 q = RANDOMIZED-PARTITION(A, p, r)

3 RANDOMIZED-QUICKSORT(A, p, q – 1)

4 RANDOMIZED-QUICKSORT(A, q + 1, r)

Exercises

7.3-1

Why do we analyze the expected running time of a randomized

algorithm and not its worst-case running time?

7.3-2

When RANDOMIZED-QUICKSORT runs, how many calls are made

to the random-number generator RANDOM in the worst case? How

about in the best case? Give your answer in terms of Θ-notation.

7.4      Analysis of quicksort

Section 7.2 gave some intuition for the worst-case behavior of quicksort

and for why we expect the algorithm to run quickly. This section

analyzes the behavior of quicksort more rigorously. We begin with a

worst-case analysis, which applies to either QUICKSORT or

RANDOMIZED-QUICKSORT, and conclude with an analysis of the

expected running time of RANDOMIZED-QUICKSORT.

7.4.1    Worst-case analysis
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We saw in Section 7.2 that a worst-case split at every level of recursion

in quicksort produces a Θ(n2) running time, which, intuitively, is the

worst-case running time of the algorithm. We now prove this assertion.

We’ll use the substitution method (see Section 4.3) to show that the

running time of quicksort is O(n2). Let T (n) be the worst-case time for

the procedure QUICKSORT on an input of size n. Because the

procedure PARTITION produces two subproblems with total size n – 1,

we obtain the recurrence

We guess that T (n) ≤ cn2 for some constant c > 0. Substituting this

guess into recurrence (7.1) yields

T (n) ≤ max {cq2 + c(n – 1 – q)2 : 0 ≤ q ≤ n – 1} + Θ(n)

= c · max {q2 + (n – 1 – q)2 : 0 ≤ q ≤ n – 1} + Θ(n).

Let’s focus our attention on the maximization. For q = 0, 1, … , n –

1, we have

q2 + (n – 1 – q)2 = q2 + (n – 1)2 – 2q(n – 1) + q2

= (n – 1)2 + 2q(q – (n – 1))

≤ (n – 1)2

because q ≤ n – 1 implies that 2q(q – (n – 1)) ≤ 0. Thus every term in the

maximization is bounded by (n – 1)2.

Continuing with our analysis of T (n), we obtain

T (n) ≤ c(n – 1)2 + Θ(n)

≤ cn2 – c(2n – 1) + Θ(n)

≤ cn2,

by picking the constant c large enough that the c(2n – 1) term dominates

the Θ(n) term. Thus T (n) = O(n2). Section 7.2 showed a specific case
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where quicksort takes Ω(n2) time: when partitioning is maximally

unbalanced. Thus, the worst-case running time of quicksort is Θ(n2).

7.4.2    Expected running time

We have already seen the intuition behind why the expected running

time of RANDOMIZED-QUICKSORT is O(n lg n): if, in each level of

recursion, the split induced by RANDOMIZED-PARTITION puts any

constant fraction of the elements on one side of the partition, then the

recursion tree has depth Θ(lg n) and O(n) work is performed at each

level. Even if we add a few new levels with the most unbalanced split

possible between these levels, the total time remains O(n lg n). We can

analyze the expected running time of RANDOMIZED-QUICKSORT

precisely by first understanding how the partitioning procedure operates

and then using this understanding to derive an O(n lg n) bound on the

expected running time. This upper bound on the expected running time,

combined with the Θ(n lg n) best-case bound we saw in Section 7.2,

yields a Θ(n lg n) expected running time. We assume throughout that the

values of the elements being sorted are distinct.

Running time and comparisons

The QUICKSORT and RANDOMIZED-QUICKSORT procedures

differ only in how they select pivot elements. They are the same in all

other respects. We can therefore analyze RANDOMIZED-

QUICKSORT by considering the QUICKSORT and PARTITION

procedures, but with the assumption that pivot elements are selected

randomly from the subarray passed to RANDOMIZED-PARTITION.

Let’s start by relating the asymptotic running time of QUICKSORT to

the number of times elements are compared (all in line 4 of

PARTITION), understanding that this analysis also applies to

RANDOMIZED-QUICKSORT. Note that we are counting the

number of times that array elements are compared, not comparisons of

indices.

Lemma 7.1
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The running time of QUICKSORT on an n-element array is O(n + X),

where X is the number of element comparisons performed.

Proof      The running time of QUICKSORT is dominated by the time

spent in the PARTITION procedure. Each time PARTITION is called,

it selects a pivot element, which is never included in any future recursive

calls to QUICKSORT and PARTITION. Thus, there can be at most n

calls to PARTITION over the entire execution of the quicksort

algorithm. Each time QUICKSORT calls PARTITION, it also

recursively calls itself twice, so there are at most 2n calls to the

QUICKSORT procedure itself.

One call to PARTITION takes O(1) time plus an amount of time

that is proportional to the number of iterations of the for loop in lines

3–6. Each iteration of this for loop performs one comparison in line 4,

comparing the pivot element to another element of the array A.

Therefore, the total time spent in the for loop across all executions is

proportional to X. Since there are at most n calls to PARTITION and

the time spent outside the for loop is O(1) for each call, the total time

spent in PARTITION outside of the for loop is O(n). Thus the total

time for quicksort is O(n + X).

▪

Our goal for analyzing RANDOMIZED-QUICKSORT, therefore,

is to compute the expected value E [X] of the random variable X

denoting the total number of comparisons performed in all calls to

PARTITION. To do so, we must understand when the quicksort

algorithm compares two elements of the array and when it does not. For

ease of analysis, let’s index the elements of the array A by their position

in the sorted output, rather than their position in the input. That is,

although the elements in A may start out in any order, we’ll refer to

them by z1, z2, … , zn, where z1 < z2 < ⋯ < zn, with strict inequality

because we assume that all elements are distinct. We denote the set {zi,

zi + 1, … , zj} by Zij.

The next lemma characterizes when two elements are compared.

Lemma 7.2
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During the execution of RANDOMIZED-QUICKSORT on an array

of n distinct elements z1 < z2 < ⋯ < zn, an element zi is compared with

an element zj, where i < j, if and only if one of them is chosen as a pivot

before any other element in the set Zij. Moreover, no two elements are

ever compared twice.

Proof   Let’s look at the first time that an element x ∈ Zij is chosen as a

pivot during the execution of the algorithm. There are three cases to

consider. If x is neither zi nor zj—that is, zi < x < zj—then zi and zj are

not compared at any subsequent time, because they fall into different

sides of the partition around x. If x = zi, then PARTITION compares zi

with every other item in Zij. Similarly, if x = zj, then PARTITION

compares zj with every other item in Zij. Thus, zi and zj are compared if

and only if the first element to be chosen as a pivot from Zij is either zi

or zj. In the latter two cases, where one of zi and zj is chosen as a pivot,

since the pivot is removed from future comparisons, it is never

compared again with the other element.

▪

As an example of this lemma, consider an input to quicksort of the

numbers 1 through 10 in some arbitrary order. Suppose that the first

pivot element is 7. Then the first call to PARTITION separates the

numbers into two sets: {1, 2, 3, 4, 5, 6} and {8, 9, 10}. In the process,

the pivot element 7 is compared with all other elements, but no number

from the first set (e.g., 2) is or ever will be compared with any number

from the second set (e.g., 9). The values 7 and 9 are compared because 7

is the first item from Z7,9 to be chosen as a pivot. In contrast, 2 and 9

are never compared because the first pivot element chosen from Z2,9 is

7.

The next lemma gives the probability that two elements are

compared.

Lemma 7.3
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Consider an execution of the procedure RANDOMIZED-

QUICKSORT on an array of n distinct elements z1 < z2 < ⋯ < zn.

Given two arbitrary elements zi and zj where i < j, the probability that

they are compared is 2/(j – i + 1).

Proof     Let’s look at the tree of recursive calls that RANDOMIZED-

QUICKSORT makes, and consider the sets of elements provided as

input to each call. Initially, the root set contains all the elements of Zij,

since the root set contains every element in A. The elements belonging

to Zij all stay together for each recursive call of RANDOMIZED-

QUICKSORT until PARTITION chooses some element x ∈ Zij as a

pivot. From that point on, the pivot x appears in no subsequent input

set. The first time that RANDOMIZED-SELECT chooses a pivot x ∈

Zij from a set containing all the elements of Zij, each element in Zij is

equally likely to be x because the pivot is chosen uniformly at random.

Since |Zij| = j – i + 1, the probability is 1/(j – i + 1) that any given

element in Zij is the first pivot chosen from Zij. Thus, by Lemma 7.2, we

have

Pr {zi is compared with

zj}
=

Pr {zi or zj is the first pivot chosen from

Zij}

= Pr {zi is the first pivot chosen from Zij}

+ Pr {zj is the first pivot chosen from

Zij}

=
,

where the second line follows from the first because the two events are

mutually exclusive.

▪

We can now complete the analysis of randomized quicksort.

Theorem 7.4
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The expected running time of RANDOMIZED-QUICKSORT on an

input of n distinct elements is O(n lg n).

Proof     The analysis uses indicator random variables (see Section 5.2).

Let the n distinct elements be z1 < z2 < ⋯ < zn, and for 1 ≤ i < j ≤ n,

define the indicator random variable Xij = I {zi is compared with zj}.

From Lemma 7.2, each pair is compared at most once, and so we can

express X as follows:

By taking expectations of both sides and using linearity of expectation

(equation (C.24) on page 1192) and Lemma 5.1 on page 130, we obtain

We can evaluate this sum using a change of variables (k = j – i) and the

bound on the harmonic series in equation (A.9) on page 1142:
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This bound and Lemma 7.1 allow us to conclude that the expected

running time of RANDOMIZED-QUICKSORT is O(n lg n) (assuming

that the element values are distinct).

▪

Exercises

7.4-1

Show that the recurrence

T (n) = max {T (q) + T (n – q – 1) : 0 ≤ q ≤ n – 1} + Θ(n)

has a lower bound of T (n) = Ω (n2).

7.4-2

Show that quicksort’s best-case running time is Ω(n lg n).

7.4-3

Show that the expression q2 + (n – q – 1)2 achieves its maximum value

over q = 0, 1, … , n – 1 when q = 0 or q = n – 1.

7.4-4

Show that RANDOMIZED-QUICKSORT’s expected running time is

Ω(n lg n).

7.4-5
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Coarsening the recursion, as we did in Problem 2-1 for merge sort, is a

common way to improve the running time of quicksort in practice. We

modify the base case of the recursion so that if the array has fewer than

k elements, the subarray is sorted by insertion sort, rather than by

continued recursive calls to quicksort. Argue that the randomized

version of this sorting algorithm runs in O(nk + n lg(n/k)) expected time.

How should you pick k, both in theory and in practice?

★ 7.4-6

Consider modifying the PARTITION procedure by randomly picking

three elements from subarray A[p : r] and partitioning about their

median (the middle value of the three elements). Approximate the

probability of getting worse than an α-to-(1–α) split, as a function of α
in the range 0 < α < 1/2.

Problems

7-1     Hoare partition correctness

The version of PARTITION given in this chapter is not the original

partitioning algorithm. Here is the original partitioning algorithm,

which is due to C. A. R. Hoare.

HOARE-PARTITION(A, p, r)

  1 x = A[p]

  2 i = p – 1

  3 j = r + 1

  4 while TRUE

  5 repeat

  6 j = j – 1

  7 until A[j] ≤ x

  8 repeat

  9 i = i + 1

10 until A[i] ≥ x

11 if i < j

12 exchange A[i] with A[j]
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13 else return j

a. Demonstrate the operation of HOARE-PARTITION on the array A

= 〈13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21〉, showing the values of the array

and the indices i and j after each iteration of the while loop in lines 4–

13.

b. Describe how the PARTITION procedure in Section 7.1 differs from

HOARE-PARTITION when all elements in A[p : r] are equal.

Describe a practical advantage of HOARE-PARTITION over

PARTITION for use in quicksort.

The next three questions ask you to give a careful argument that the

procedure HOARE-PARTITION is correct. Assuming that the

subarray A[p : r] contains at least two elements, prove the following:

c. The indices i and j are such that the procedure never accesses an

element of A outside the subarray A[p : r].

d. When HOARE-PARTITION terminates, it returns a value j such

that p ≤ j < r.

e. Every element of A[p : j] is less than or equal to every element of A[j +

1 : r] when HOARE-PARTITION terminates.

The PARTITION procedure in Section 7.1 separates the pivot value

(originally in A[r]) from the two partitions it forms. The HOARE-

PARTITION procedure, on the other hand, always places the pivot

value (originally in A[p]) into one of the two partitions A[p : j] and A[j +

1 : r]. Since p ≤ j < r, neither partition is empty.

f. Rewrite the QUICKSORT procedure to use HOARE-PARTITION.

7-2     Quicksort with equal element values

The analysis of the expected running time of randomized quicksort in

Section 7.4.2 assumes that all element values are distinct. This problem

examines what happens when they are not.
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a. Suppose that all element values are equal. What is randomized

quicksort’s running time in this case?

b. The PARTITION procedure returns an index q such that each

element of A[p : q – 1] is less than or equal to A[q] and each element of

A[q + 1 : r] is greater than A[q]. Modify the PARTITION procedure

to produce a procedure PARTITION′ (A, p, r), which permutes the

elements of A[p : r] and returns two indices q and t, where p ≤ q ≤ t ≤ r,

such that

all elements of A[q : t] are equal,

each element of A[p : q – 1] is less than A[q], and

each element of A[t + 1 : r] is greater than A[q].

Like PARTITION, your PARTITION′ procedure should take Θ(r –

p) time.

c. Modify the RANDOMIZED-PARTITION procedure to call

PARTITION′, and name the new procedure RANDOMIZED-

PARTITION′. Then modify the QUICKSORT procedure to produce

a procedure QUICKSORT′ (A, p, r) that calls RANDOMIZED-

PARTITION′ and recurses only on partitions where elements are not

known to be equal to each other.

d. Using QUICKSORT′, adjust the analysis in Section 7.4.2 to avoid the

assumption that all elements are distinct.

7-3     Alternative quicksort analysis

An alternative analysis of the running time of randomized quicksort

focuses on the expected running time of each individual recursive call to

RANDOMIZED-QUICKSORT, rather than on the number of

comparisons performed. As in the analysis of Section 7.4.2, assume that

the values of the elements are distinct.

a. Argue that, given an array of size n, the probability that any

particular element is chosen as the pivot is 1/n. Use this probability to

define indicator random variables Xi = I {ith smallest element is

chosen as the pivot}. What is E [Xi]?
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b. Let T (n) be a random variable denoting the running time of

quicksort on an array of size n. Argue that

c. Show how to rewrite equation (7.2) as

d. Show that

for n ≥ 2. (Hint: Split the summation into two parts, one summation

for q = 1, 2, … , ⌈n/2⌉ – 1 and one summation for q = ⌈n/2⌉ , … , n –

1.)

e. Using the bound from equation (7.4), show that the recurrence in

equation (7.3) has the solution E [T (n)] = O(n lg n). (Hint: Show, by

substitution, that E [T (n)] ≤ an lg n for sufficiently large n and for

some positive constant a.)

7-4     Stooge sort

Professors Howard, Fine, and Howard have proposed a deceptively

simple sorting algorithm, named stooge sort in their honor, appearing

on the following page.

a. Argue that the call STOOGE-SORT(A, 1, n) correctly sorts the array

A[1 : n].

b. Give a recurrence for the worst-case running time of STOOGE-SORT

and a tight asymptotic (Θ-notation) bound on the worst-case running

time.
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c. Compare the worst-case running time of STOOGE-SORT with that

of insertion sort, merge sort, heapsort, and quicksort. Do the

professors deserve tenure?

STOOGE-SORT(A, p, r)

1 if A[p] > A[r]

2 exchange A[p] with A[r]

3 if p + 1 < r

4 k = ⌊(r – p + 1)/3⌋ // round down

5 STOOGE-SORT(A, p,

r – k)

// first two-thirds

6 STOOGE-SORT(A, p

+ k, r)

// last two-thirds

7 STOOGE-SORT(A, p,

r – k)

// first two-thirds

again

7-5 Stack depth for quicksort

The QUICKSORT procedure of Section 7.1 makes two recursive calls

to itself. After QUICKSORT calls PARTITION, it recursively sorts the

low side of the partition and then it recursively sorts the high side of the

partition. The second recursive call in QUICKSORT is not really

necessary, because the procedure can instead use an iterative control

structure. This transformation technique, called tail-recursion

elimination, is provided automatically by good compilers. Applying tail-

recursion elimination transforms QUICKSORT into the TRE-

QUICKSORT procedure.

TRE-QUICKSORT(A, p, r)

1 while p < r

2 // Partition and then sort the low side.

3 q = PARTITION(A, p, r)

4 TRE-QUICKSORT(A, p, q – 1)

5 p = q + 1
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a. Argue that TRE-QUICKSORT(A, 1, n) correctly sorts the array A[1 :

n].

Compilers usually execute recursive procedures by using a stack that

contains pertinent information, including the parameter values, for each

recursive call. The information for the most recent call is at the top of

the stack, and the information for the initial call is at the bottom. When

a procedure is called, its information is pushed onto the stack, and when

it terminates, its information is popped. Since we assume that array

parameters are represented by pointers, the information for each

procedure call on the stack requires O(1) stack space. The stack depth is

the maximum amount of stack space used at any time during a

computation.

b. Describe a scenario in which TRE-QUICKSORT’s stack depth is

Θ(n) on an n-element input array.

c. Modify TRE-QUICKSORT so that the worst-case stack depth is Θ(lg

n). Maintain the O(n lg n) expected running time of the algorithm.

7-6     Median-of-3 partition

One way to improve the RANDOMIZED-QUICKSORT procedure is

to partition around a pivot that is chosen more carefully than by

picking a random element from the subarray. A common approach is

the median-of-3 method: choose the pivot as the median (middle

element) of a set of 3 elements randomly selected from the subarray.

(See Exercise 7.4-6.) For this problem, assume that the n elements in the

input subarray A[p : r] are distinct and that n ≥ 3. Denote the sorted

version of A[p : r] by z1, z2, … , zn. Using the median-of-3 method to

choose the pivot element x, define pi = Pr {x = zi}.

a. Give an exact formula for pi as a function of n and i for i = 2, 3, … , n

– 1. (Observe that p1 = pn = 0.)

b. By what amount does the median-of-3 method increase the likelihood

of choosing the pivot to be x = z⌊(n + 1)/2⌋, the median of A[p : r],
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compared with the ordinary implementation? Assume that n → ∞,

and give the limiting ratio of these probabilities.

c. Suppose that we define a “good” split to mean choosing the pivot as

x = zi, where n/3 ≤ i ≤ 2n/3. By what amount does the median-of-3

method increase the likelihood of getting a good split compared with

the ordinary implementation? (Hint: Approximate the sum by an

integral.)

d. Argue that in the Ω(n lg n) running time of quicksort, the median-of-3

method affects only the constant factor.

7-7     Fuzzy sorting of intervals

Consider a sorting problem in which you do not know the numbers

exactly. Instead, for each number, you know an interval on the real line

to which it belongs. That is, you are given n closed intervals of the form

[ai, bi], where ai ≤ bi. The goal is to fuzzy-sort these intervals: to produce

a permutation 〈i1, i2, … , in〉 of the intervals such that for j = 1, 2, … , n,

there exist  satisfying c1 ≤ c2 ≤ ⋯ ≤ cn.

a. Design a randomized algorithm for fuzzy-sorting n intervals. Your

algorithm should have the general structure of an algorithm that

quicksorts the left endpoints (the ai values), but it should take

advantage of overlapping intervals to improve the running time. (As

the intervals overlap more and more, the problem of fuzzy-sorting the

intervals becomes progressively easier. Your algorithm should take

advantage of such overlapping, to the extent that it exists.)

b. Argue that your algorithm runs in Θ(n lg n) expected time in general,

but runs in Θ(n) expected time when all of the intervals overlap (i.e.,

when there exists a value x such that x ∈ [ai, bi] for all i). Your

algorithm should not be checking for this case explicitly, but rather, its

performance should naturally improve as the amount of overlap

increases.
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Chapter notes

Quicksort was invented by Hoare [219], and his version of PARTITION

appears in Problem 7-1. Bentley [51, p. 117] attributes the PARTITION

procedure given in Section 7.1 to N. Lomuto. The analysis in Section 7.4

based on an analysis due to Motwani and Raghavan [336]. Sedgewick

[401] and Bentley [51] provide good references on the details of

implementation and how they matter.

McIlroy [323] shows how to engineer a “killer adversary” that

produces an array on which virtually any implementation of quicksort

takes Θ(n2) time.

1 You can enforce the assumption that the values in an array A are distinct at the cost of Θ(n)

additional space and only constant overhead in running time by converting each input value A[i]

to an ordered pair (A[i], i) with (A[i], i) < (A[j], j) if A[i] < A[j] or if A[i] = A[j] and i < j. There are

also more practical variants of quicksort that work well when elements are not distinct.
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8          Sorting in Linear Time

We have now seen a handful of algorithms that can sort n numbers in

O(n lg n) time. Whereas merge sort and heapsort achieve this upper

bound in the worst case, quicksort achieves it on average. Moreover, for

each of these algorithms, we can produce a sequence of n input numbers

that causes the algorithm to run in Ω(n lg n) time.

These algorithms share an interesting property: the sorted order they

determine is based only on comparisons between the input elements. We

call such sorting algorithms comparison sorts. All the sorting algorithms

introduced thus far are comparison sorts.

In Section 8.1, we’ll prove that any comparison sort must make Ω(n

lg n) comparisons in the worst case to sort n elements. Thus, merge sort

and heapsort are asymptotically optimal, and no comparison sort exists

that is faster by more than a constant factor.

Sections 8.2, 8.3, and 8.4 examine three sorting algorithms—

counting sort, radix sort, and bucket sort—that run in linear time on

certain types of inputs. Of course, these algorithms use operations other

than comparisons to determine the sorted order. Consequently, the Ω(n

lg n) lower bound does not apply to them.

8.1      Lower bounds for sorting

A comparison sort uses only comparisons between elements to gain

order information about an input sequence 〈a1, a2, … , an〉. That is,

given two elements ai and aj, it performs one of the tests ai < aj, ai ≤ aj,
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ai = aj, ai ≥ aj, or ai > aj to determine their relative order. It may not

inspect the values of the elements or gain order information about them

in any other way.

Since we are proving a lower bound, we assume without loss of

generality in this section that all the input elements are distinct. After

all, a lower bound for distinct elements applies when elements may or

may not be distinct. Consequently, comparisons of the form ai = aj are

useless, which means that we can assume that no comparisons for exact

equality occur. Moreover, the comparisons ai ≤ aj, ai ≥ aj, ai > aj, and ai

< aj are all equivalent in that they yield identical information about the

relative order of ai and aj. We therefore assume that all comparisons

have the form ai ≤ aj.

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node

(shown in blue) annotated by i : j indicates a comparison between ai and aj. A leaf annotated by

the permutation 〈π(1), π(2), … , π(n)〉 indicates the ordering aπ(1) ≤ aπ(2) ≤ ⋯ ≤ aπ(n). The

highlighted path indicates the decisions made when sorting the input sequence 〈a1 = 6, a2 = 8,

a3 = 5〉. Going left from the root node, labeled 1:2, indicates that a1 ≤ a2. Going right from the

node labeled 2:3 indicates that a2 > a3. Going right from the node labeled 1:3 indicates that a1

> a3. Therefore, we have the ordering a3 ≤ a1 ≤ a2, as indicated in the leaf labeled 〈3, 1, 2〉.

Because the three input elements have 3! = 6 possible permutations, the decision tree must have

at least 6 leaves.

The decision-tree model

We can view comparison sorts abstractly in terms of decision trees. A

decision tree is a full binary tree (each node is either a leaf or has both

children) that represents the comparisons between elements that are
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performed by a particular sorting algorithm operating on an input of a

given size. Control, data movement, and all other aspects of the

algorithm are ignored. Figure 8.1 shows the decision tree corresponding

to the insertion sort algorithm from Section 2.1 operating on an input

sequence of three elements.

A decision tree has each internal node annotated by i : j for some i

and j in the range 1 ≤ i, j ≤ n, where n is the number of elements in the

input sequence. We also annotate each leaf by a permutation 〈π(1), π(2),

… , π(n)〉. (See Section C.1 for background on permutations.) Indices in

the internal nodes and the leaves always refer to the original positions of

the array elements at the start of the sorting algorithm. The execution of

the comparison sorting algorithm corresponds to tracing a simple path

from the root of the decision tree down to a leaf. Each internal node

indicates a comparison ai ≤ aj. The left subtree then dictates subsequent

comparisons once we know that ai ≤ aj, and the right subtree dictates

subsequent comparisons when ai > aj. Arriving at a leaf, the sorting

algorithm has established the ordering aπ(1) ≤ aπ(2) ≤ ⋯ ≤ aπ(n).

Because any correct sorting algorithm must be able to produce each

permutation of its input, each of the n! permutations on n elements

must appear as at least one of the leaves of the decision tree for a

comparison sort to be correct. Furthermore, each of these leaves must

be reachable from the root by a downward path corresponding to an

actual execution of the comparison sort. (We call such leaves

“reachable.”) Thus, we consider only decision trees in which each

permutation appears as a reachable leaf.

A lower bound for the worst case

The length of the longest simple path from the root of a decision tree to

any of its reachable leaves represents the worst-case number of

comparisons that the corresponding sorting algorithm performs.

Consequently, the worst-case number of comparisons for a given

comparison sort algorithm equals the height of its decision tree. A lower

bound on the heights of all decision trees in which each permutation

appears as a reachable leaf is therefore a lower bound on the running
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time of any comparison sort algorithm. The following theorem

establishes such a lower bound.

Theorem 8.1

Any comparison sort algorithm requires Ω(n lg n) comparisons in the

worst case.

Proof   From the preceding discussion, it suffices to determine the height

of a decision tree in which each permutation appears as a reachable leaf.

Consider a decision tree of height h with l reachable leaves

corresponding to a comparison sort on n elements. Because each of the

n! permutations of the input appears as one or more leaves, we have n! ≤

l. Since a binary tree of height h has no more than 2h leaves, we have

n! ≤ l ≤ 2h,

which, by taking logarithms, implies

h ≥ lg(n!) (since the lg function is monotonically increasing)

= Ω (n lg n) (by equation (3.28) on page 67).

▪

Corollary 8.2

Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof     The O(n lg n) upper bounds on the running times for heapsort

and merge sort match the Ω(n lg n) worst-case lower bound from

Theorem 8.1.

▪

Exercises

8.1-1

What is the smallest possible depth of a leaf in a decision tree for a

comparison sort?

8.1-2
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Obtain asymptotically tight bounds on lg(n!) without using Stirling’s

approximation. Instead, evaluate the summation  using

techniques from Section A.2.

8.1-3

Show that there is no comparison sort whose running time is linear for

at least half of the n! inputs of length n. What about a fraction of 1/n of

the inputs of length n? What about a fraction 1/2n?

8.1-4

You are given an n-element input sequence, and you know in advance

that it is partly sorted in the following sense. Each element initially in

position i such that i mod 4 = 0 is either already in its correct position,

or it is one place away from its correct position. For example, you know

that after sorting, the element initially in position 12 belongs in position

11, 12, or 13. You have no advance information about the other

elements, in positions i where i mod 4 ≠ 0. Show that an Ω(n lg n) lower

bound on comparison-based sorting still holds in this case.

8.2      Counting sort

Counting sort assumes that each of the n input elements is an integer in

the range 0 to k, for some integer k. It runs in Θ(n + k) time, so that

when k = O(n), counting sort runs in Θ(n) time.

Counting sort first determines, for each input element x, the number

of elements less than or equal to x. It then uses this information to place

element x directly into its position in the output array. For example, if

17 elements are less than or equal to x, then x belongs in output

position 17. We must modify this scheme slightly to handle the situation

in which several elements have the same value, since we do not want

them all to end up in the same position.

The COUNTING-SORT procedure on the facing page takes as

input an array A[1 : n], the size n of this array, and the limit k on the

nonnegative integer values in A. It returns its sorted output in the array

B[1 : n] and uses an array C [0 : k] for temporary working storage.
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COUNTING-SORT(A, n, k)

  1let B[1 : n] and C [0 : k] be new

arrays

  2for i = 0 to k

  3 C [i] = 0

  4for j = 1 to n

  5 C [A[j]] = C [A[j]] + 1

  6// C [i] now contains the number of elements equal to i.

  7for i = 1 to k

  8 C [i] = C [i] + C [i – 1]

  9//  C [i] now contains the number of elements less than or

equal to i.

10// Copy A to B, starting from the end of A.

11for j = n downto 1

12 B[C [A[j]]] = A[j]

13 C [A[j]] = C [A[j]] – 1 // to handle duplicate

values

14return B

Figure 8.2 illustrates counting sort. After the for loop of lines 2–3

initializes the array C to all zeros, the for loop of lines 4–5 makes a pass

over the array A to inspect each input element. Each time it finds an

input element whose value is i, it increments C [i]. Thus, after line 5, C

[i] holds the number of input elements equal to i for each integer i = 0,

1, … , k. Lines 7–8 determine for each i = 0, 1, … , k how many input

elements are less than or equal to i by keeping a running sum of the

array C.

Finally, the for loop of lines 11–13 makes another pass over A, but in

reverse, to place each element A[j] into its correct sorted position in the

output array B. If all n elements are distinct, then when line 11 is first

entered, for each A[j], the value C [A[j]] is the correct final position of

A[j] in the output array, since there are C [A[j]] elements less than or

equal to A[j]. Because the elements might not be distinct, the loop

decrements C [A[j]] each time it places a value A[j] into B. Decrementing

C [A[j]] causes the previous element in A with a value equal to A[j], if
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one exists, to go to the position immediately before A[j] in the output

array B.

How much time does counting sort require? The for loop of lines 2–3

takes Θ(k) time, the for loop of lines 4–5 takes Θ(n) time, the for loop of

lines 7–8 takes Θ(k) time, and the for loop of lines 11–13 takes Θ(n)

time. Thus, the overall time is Θ(k + n). In practice, we usually use

counting sort when we have k = O(n), in which case the running time is

Θ(n).

Counting sort can beat the lower bound of Ω(n lg n) proved in

Section 8.1 because it is not a comparison sort. In fact, no comparisons

between input elements occur anywhere in the code. Instead, counting

sort uses the actual values of the elements to index into an array. The

Ω(n lg n) lower bound for sorting does not apply when we depart from

the comparison sort model.

Figure 8.2 The operation of COUNTING-SORT on an input array A[1 : 8], where each element

of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C

after line 5. (b) The array C after line 8. (c)–(e) The output array B and the auxiliary array C

after one, two, and three iterations of the loop in lines 11–13, respectively. Only the tan elements

of array B have been filled in. (f) The final sorted output array B.

An important property of counting sort is that it is stable: elements

with the same value appear in the output array in the same order as they

do in the input array. That is, it breaks ties between two elements by the

rule that whichever element appears first in the input array appears first
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in the output array. Normally, the property of stability is important only

when satellite data are carried around with the element being sorted.

Counting sort’s stability is important for another reason: counting sort

is often used as a subroutine in radix sort. As we shall see in the next

section, in order for radix sort to work correctly, counting sort must be

stable.

Exercises

8.2-1

Using Figure 8.2 as a model, illustrate the operation of COUNTING-

SORT on the array A = 〈6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2〉.

8.2-2

Prove that COUNTING-SORT is stable.

8.2-3

Suppose that we were to rewrite the for loop header in line 11 of the

COUNTING-SORT as

11for j = 1 to n

Show that the algorithm still works properly, but that it is not stable.

Then rewrite the pseudocode for counting sort so that elements with the

same value are written into the output array in order of increasing index

and the algorithm is stable.

8.2-4

Prove the following loop invariant for COUNTING-SORT:

At the start of each iteration of the for loop of lines 11–13, the

last element in A with value i that has not yet been copied into

B belongs in B[C [i]].

8.2-5

Suppose that the array being sorted contains only integers in the range 0

to k and that there are no satellite data to move with those keys. Modify
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counting sort to use just the arrays A and C, putting the sorted result

back into array A instead of into a new array B.

8.2-6

Describe an algorithm that, given n integers in the range 0 to k,

preprocesses its input and then answers any query about how many of

the n integers fall into a range [a : b] in O(1) time. Your algorithm

should use Θ(n + k) preprocessing time.

8.2-7

Counting sort can also work efficiently if the input values have

fractional parts, but the number of digits in the fractional part is small.

Suppose that you are given n numbers in the range 0 to k, each with at

most d decimal (base 10) digits to the right of the decimal point. Modify

counting sort to run in Θ(n + 10d k) time.

8.3      Radix sort

Radix sort is the algorithm used by the card-sorting machines you now

find only in computer museums. The cards have 80 columns, and in each

column a machine can punch a hole in one of 12 places. The sorter can

be mechanically “programmed” to examine a given column of each card

in a deck and distribute the card into one of 12 bins depending on

which place has been punched. An operator can then gather the cards

bin by bin, so that cards with the first place punched are on top of cards

with the second place punched, and so on.
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Figure 8.3 The operation of radix sort on seven 3-digit numbers. The leftmost column is the

input. The remaining columns show the numbers after successive sorts on increasingly

significant digit positions. Tan shading indicates the digit position sorted on to produce each list

from the previous one.

For decimal digits, each column uses only 10 places. (The other two

places are reserved for encoding nonnumeric characters.) A d-digit

number occupies a field of d columns. Since the card sorter can look at

only one column at a time, the problem of sorting n cards on a d-digit

number requires a sorting algorithm.

Intuitively, you might sort numbers on their most significant

(leftmost) digit, sort each of the resulting bins recursively, and then

combine the decks in order. Unfortunately, since the cards in 9 of the 10

bins must be put aside to sort each of the bins, this procedure generates

many intermediate piles of cards that you would have to keep track of.

(See Exercise 8.3-6.)

Radix sort solves the problem of card sorting—counterintuitively—

by sorting on the least significant digit first. The algorithm then

combines the cards into a single deck, with the cards in the 0 bin

preceding the cards in the 1 bin preceding the cards in the 2 bin, and so

on. Then it sorts the entire deck again on the second-least significant

digit and recombines the deck in a like manner. The process continues

until the cards have been sorted on all d digits. Remarkably, at that

point the cards are fully sorted on the d-digit number. Thus, only d

passes through the deck are required to sort. Figure 8.3 shows how

radix sort operates on a “deck” of seven 3-digit numbers.

In order for radix sort to work correctly, the digit sorts must be

stable. The sort performed by a card sorter is stable, but the operator

must be careful not to change the order of the cards as they come out of
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a bin, even though all the cards in a bin have the same digit in the

chosen column.

In a typical computer, which is a sequential random-access machine,

we sometimes use radix sort to sort records of information that are

keyed by multiple fields. For example, we might wish to sort dates by

three keys: year, month, and day. We could run a sorting algorithm with

a comparison function that, given two dates, compares years, and if

there is a tie, compares months, and if another tie occurs, compares

days. Alternatively, we could sort the information three times with a

stable sort: first on day (the “least significant” part), next on month, and

finally on year.

The code for radix sort is straightforward. The RADIX-SORT

procedure assumes that each element in array A[1 : n] has d digits, where

digit 1 is the lowest-order digit and digit d is the highest-order digit.

RADIX-SORT(A, n, d)

1 for i = 1 to d

2 use a stable sort to sort array A[1 : n] on

digit i

Although the pseudocode for RADIX-SORT does not specify which

stable sort to use, COUNTING-SORT is commonly used. If you use

COUNTING-SORT as the stable sort, you can make RADIX-SORT a

little more efficient by revising COUNTING-SORT to take a pointer to

the output array as a parameter, having RADIX-SORT preallocate this

array, and alternating input and output between the two arrays in

successive iterations of the for loop in RADIX-SORT.

Lemma 8.3

Given n d-digit numbers in which each digit can take on up to k possible

values, RADIX-SORT correctly sorts these numbers in Θ(d(n + k)) time

if the stable sort it uses takes Θ(n + k) time.

Proof   The correctness of radix sort follows by induction on the column

being sorted (see Exercise 8.3-3). The analysis of the running time
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depends on the stable sort used as the intermediate sorting algorithm.

When each digit lies in the range 0 to k – 1 (so that it can take on k

possible values), and k is not too large, counting sort is the obvious

choice. Each pass over n d-digit numbers then takes Θ(n + k) time.

There are d passes, and so the total time for radix sort is Θ(d(n + k)).

▪

When d is constant and k = O(n), we can make radix sort run in

linear time. More generally, we have some flexibility in how to break

each key into digits.

Lemma 8.4

Given n b-bit numbers and any positive integer r ≤ b, RADIX-SORT

correctly sorts these numbers in Θ((b/r)(n + 2r)) time if the stable sort it

uses takes Θ(n + k) time for inputs in the range 0 to k.

Proof   For a value r ≤ b, view each key as having d = ⌈b/r⌉ digits of r bits

each. Each digit is an integer in the range 0 to 2r – 1, so that we can use

counting sort with k = 2r – 1. (For example, we can view a 32-bit word

as having four 8-bit digits, so that b = 32, r = 8, k = 2r – 1 = 255, and d

= b/r = 4.) Each pass of counting sort takes Θ(n + k) = Θ(n + 2r) time

and there are d passes, for a total running time of Θ(d(n + 2r)) = Θ((b/r)

(n + 2r)).

▪

Given n and b, what value of r ≤ b minimizes the expression (b/r)(n +

2r)? As r decreases, the factor b/r increases, but as r increases so does 2r.

The answer depends on whether b < ⌊lg n⌋. If b < ⌊lg n⌋, then r ≤ b

implies (n + 2r) = Θ(n). Thus, choosing r = b yields a running time of

(b/b)(n + 2b) = Θ(n), which is asymptotically optimal. If b ≥ ⌊lg n⌋, then

choosing r = ⌊lg n⌋ gives the best running time to within a constant

factor, which we can see as follows.1 Choosing r = ⌊lg n⌋ yields a

running time of Θ(bn/lg n). As r increases above ⌊lg n⌋, the 2r term in the
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numerator increases faster than the r term in the denominator, and so

increasing r above ⌊lg n⌋ yields a running time of Ω(bn / lg n). If instead r

were to decrease below ⌊lg n⌋, then the b/r term increases and the n + 2r

term remains at Θ(n).

Is radix sort preferable to a comparison-based sorting algorithm,

such as quicksort? If b = O(lg n), as is often the case, and r ≈ lg n, then

radix sort’s running time is Θ(n), which appears to be better than

quicksort’s expected running time of Θ(n lg n). The constant factors

hidden in the Θ-notation differ, however. Although radix sort may make

fewer passes than quicksort over the n keys, each pass of radix sort may

take significantly longer. Which sorting algorithm to prefer depends on

the characteristics of the implementations, of the underlying machine

(e.g., quicksort often uses hardware caches more effectively than radix

sort), and of the input data. Moreover, the version of radix sort that

uses counting sort as the intermediate stable sort does not sort in place,

which many of the Θ(n lg n)-time comparison sorts do. Thus, when

primary memory storage is at a premium, an in-place algorithm such as

quicksort could be the better choice.

Exercises

8.3-1

Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT

on the following list of English words: COW, DOG, SEA, RUG, ROW,

MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

8.3-2

Which of the following sorting algorithms are stable: insertion sort,

merge sort, heapsort, and quicksort? Give a simple scheme that makes

any comparison sort stable. How much additional time and space does

your scheme entail?

8.3-3

Use induction to prove that radix sort works. Where does your proof

need the assumption that the intermediate sort is stable?

8.3-4
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Suppose that COUNTING-SORT is used as the stable sort within

RADIX-SORT. If RADIX-SORT calls COUNTING-SORT  d times,

then since each call of COUNTING-SORT makes two passes over the

data (lines 4–5 and 11–13), altogether 2d passes over the data occur.

Describe how to reduce the total number of passes to d + 1.

8.3-5

Show how to sort n integers in the range 0 to n3 – 1 in O(n) time.

★ 8.3-6

In the first card-sorting algorithm in this section, which sorts on the

most significant digit first, exactly how many sorting passes are needed

to sort d-digit decimal numbers in the worst case? How many piles of

cards does an operator need to keep track of in the worst case?

8.4      Bucket sort

Bucket sort assumes that the input is drawn from a uniform distribution

and has an average-case running time of O(n). Like counting sort,

bucket sort is fast because it assumes something about the input.

Whereas counting sort assumes that the input consists of integers in a

small range, bucket sort assumes that the input is generated by a

random process that distributes elements uniformly and independently

over the interval [0, 1). (See Section C.2 for a definition of a uniform

distribution.)

Bucket sort divides the interval [0, 1) into n equal-sized subintervals,

or buckets, and then distributes the n input numbers into the buckets.

Since the inputs are uniformly and independently distributed over [0, 1),

we do not expect many numbers to fall into each bucket. To produce the

output, we simply sort the numbers in each bucket and then go through

the buckets in order, listing the elements in each.

The BUCKET-SORT procedure on the next page assumes that the

input is an array A[1 : n] and that each element A[i] in the array satisfies

0 ≤ A[i] < 1. The code requires an auxiliary array B[0 : n – 1] of linked

lists (buckets) and assumes that there is a mechanism for maintaining
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such lists. (Section 10.2 describes how to implement basic operations on

linked lists.) Figure 8.4 shows the operation of bucket sort on an input

array of 10 numbers.

Figure 8.4 The operation of BUCKET-SORT for n = 10. (a) The input array A[1 : 10]. (b) The

array B[0 : 9] of sorted lists (buckets) after line 7 of the algorithm, with slashes indicating the

end of each bucket. Bucket i holds values in the half-open interval [i/10, (i + 1)/10). The sorted

output consists of a concatenation of the lists B[0], B[1], … , B[9] in order.

BUCKET-SORT(A, n)

1 let B[0 : n – 1] be a new array

2 for i = 0 to n – 1

3 make B[i] an empty list

4 for i = 1 to n

5 insert A[i] into list B[⌊n · A[i]⌋]

6 for i = 0 to n – 1

7 sort list B[i] with insertion sort

8 concatenate the lists B[0], B[1], … , B[n – 1] together in order

9 return the concatenated lists

To see that this algorithm works, consider two elements A[i] and A[j].

Assume without loss of generality that A[i] ≤ A[j]. Since ⌊n · A[i]⌋ ≤ ⌊n ·

A[j]⌋, either element A[i] goes into the same bucket as A[j] or it goes into
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a bucket with a lower index. If A[i] and A[j] go into the same bucket,

then the for loop of lines 6–7 puts them into the proper order. If A[i]

and A[j] go into different buckets, then line 8 puts them into the proper

order. Therefore, bucket sort works correctly.

To analyze the running time, observe that, together, all lines except

line 7 take O(n) time in the worst case. We need to analyze the total time

taken by the n calls to insertion sort in line 7.

To analyze the cost of the calls to insertion sort, let ni be the random

variable denoting the number of elements placed in bucket B[i]. Since

insertion sort runs in quadratic time (see Section 2.2), the running time

of bucket sort is

We now analyze the average-case running time of bucket sort, by

computing the expected value of the running time, where we take the

expectation over the input distribution. Taking expectations of both

sides and using linearity of expectation (equation (C.24) on page 1192),

we have

We claim that

for i = 0, 1, … , n – 1. It is no surprise that each bucket i has the same

value of , since each value in the input array A is equally likely to

fall in any bucket.
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To prove equation (8.3), view each random variable ni as the number

of successes in n Bernoulli trials (see Section C.4). Success in a trial

occurs when an element goes into bucket B[i], with a probability p = 1/n

of success and q = 1 – 1/n of failure. A binomial distribution counts ni,

the number of successes, in the n trials. By equations (C.41) and (C.44)

on pages 1199–1200, we have E [ni] = np = n(1/n) = 1 and Var [ni] = npq

= 1 – 1/n. Equation (C.31) on page 1194 gives

= Var [ni] + E2 [ni]

= (1 – 1/n) + 12

= 2 – 1/n,

which proves equation (8.3). Using this expected value in equation (8.2),

we get that the average-case running time for bucket sort is Θ(n) + n ·

O(2 – 1/n) = Θ(n).

Even if the input is not drawn from a uniform distribution, bucket

sort may still run in linear time. As long as the input has the property

that the sum of the squares of the bucket sizes is linear in the total

number of elements, equation (8.1) tells us that bucket sort runs in

linear time.

Exercises

8.4-1

Using Figure 8.4 as a model, illustrate the operation of BUCKET-

SORT on the array A = 〈.79, .13, .16, .64, .39, .20, .89, .53, .71, .42〉.

8.4-2

Explain why the worst-case running time for bucket sort is Θ(n2). What

simple change to the algorithm preserves its linear average-case running

time and makes its worst-case running time O(n lg n)?

8.4-3

Let X be a random variable that is equal to the number of heads in two

flips of a fair coin. What is E [X2]? What is E2 [X]?
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8.4-4

An array A of size n > 10 is filled in the following way. For each element

A[i], choose two random variables xi and yi uniformly and

independently from [0, 1). Then set

Modify bucket sort so that it sorts the array A in O(n) expected time.

★ 8.4-5

You are given n points in the unit disk, pi = (xi, yi), such that 

 for i = 1, 2, … , n. Suppose that the points are uniformly

distributed, that is, the probability of finding a point in any region of the

disk is proportional to the area of that region. Design an algorithm with

an average-case running time of Θ(n) to sort the n points by their

distances  from the origin. (Hint: Design the bucket sizes

in BUCKET-SORT to reflect the uniform distribution of the points in

the unit disk.)

★ 8.4-6

A probability distribution function  P(x) for a random variable X is

defined by P(x) = Pr {X ≤ x}. Suppose that you draw a list of n random

variables X1, X2, … , Xn from a continuous probability distribution

function P that is computable in O(1) time (given y you can find x such

that P(x) = y in O(1) time). Give an algorithm that sorts these numbers

in linear average-case time.

Problems

8-1     Probabilistic lower bounds on comparison sorting

In this problem, you will prove a probabilistic Ω(n lg n) lower bound on

the running time of any deterministic or randomized comparison sort

on n distinct input elements. You’ll begin by examining a deterministic
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comparison sort A with decision tree TA. Assume that every

permutation of A’s inputs is equally likely.

a. Suppose that each leaf of TA is labeled with the probability that it is

reached given a random input. Prove that exactly n! leaves are labeled

1/n! and that the rest are labeled 0.

b. Let D(T) denote the external path length of a decision tree T—the

sum of the depths of all the leaves of T. Let T be a decision tree with k

> 1 leaves, and let LT and RT be the left and right subtrees of T. Show

that D(T) = D(LT) + D(RT) + k.

c. Let d(k) be the minimum value of D(T) over all decision trees T with

k > 1 leaves. Show that d(k) = min {d(i) + d(k – i) + k : 1 ≤ i ≤ k – 1}.

(Hint: Consider a decision tree T with k leaves that achieves the

minimum. Let i0 be the number of leaves in LT and k – i0 the number

of leaves in RT.)

d. Prove that for a given value of k > 1 and i in the range 1 ≤ i ≤ k – 1,

the function i lg i + (k – i) lg(k – i) is minimized at i = k/2. Conclude

that d(k) = Ω (k lg k).

e. Prove that D(TA) = Ω (n! lg(n!)), and conclude that the average-case

time to sort n elements is Ω(n lg n).

Now consider a randomized comparison sort B. We can extend the

decision-tree model to handle randomization by incorporating two

kinds of nodes: ordinary comparison nodes and “randomization”

nodes. A randomization node models a random choice of the form

RANDOM(1, r) made by algorithm B. The node has r children, each of

which is equally likely to be chosen during an execution of the

algorithm.

f. Show that for any randomized comparison sort B, there exists a

deterministic comparison sort A whose expected number of

comparisons is no more than those made by B.

8-2     Sorting in place in linear time
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You have an array of n data records to sort, each with a key of 0 or 1.

An algorithm for sorting such a set of records might possess some

subset of the following three desirable characteristics:

1. The algorithm runs in O(n) time.

2. The algorithm is stable.

3. The algorithm sorts in place, using no more than a constant

amount of storage space in addition to the original array.

a. Give an algorithm that satisfies criteria 1 and 2 above.

b. Give an algorithm that satisfies criteria 1 and 3 above.

c. Give an algorithm that satisfies criteria 2 and 3 above.

d. Can you use any of your sorting algorithms from parts (a)–(c) as the

sorting method used in line 2 of RADIX-SORT, so that RADIX-

SORT sorts n records with b-bit keys in O(bn) time? Explain how or

why not.

e. Suppose that the n records have keys in the range from 1 to k. Show

how to modify counting sort so that it sorts the records in place in

O(n + k) time. You may use O(k) storage outside the input array. Is

your algorithm stable?

8-3     Sorting variable-length items

a. You are given an array of integers, where different integers may have

different numbers of digits, but the total number of digits over all the

integers in the array is n. Show how to sort the array in O(n) time.

b. You are given an array of strings, where different strings may have

different numbers of characters, but the total number of characters

over all the strings is n. Show how to sort the strings in O(n) time.

(The desired order is the standard alphabetical order: for example, a

< ab < b.)

8-4     Water jugs
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You are given n red and n blue water jugs, all of different shapes and

sizes. All the red jugs hold different amounts of water, as do all the blue

jugs, and you cannot tell from the size of a jug how much water it holds.

Moreover, for every jug of one color, there is a jug of the other color

that holds the same amount of water.

Your task is to group the jugs into pairs of red and blue jugs that

hold the same amount of water. To do so, you may perform the

following operation: pick a pair of jugs in which one is red and one is

blue, fill the red jug with water, and then pour the water into the blue

jug. This operation tells you whether the red jug or the blue jug can hold

more water, or that they have the same volume. Assume that such a

comparison takes one time unit. Your goal is to find an algorithm that

makes a minimum number of comparisons to determine the grouping.

Remember that you may not directly compare two red jugs or two blue

jugs.

a. Describe a deterministic algorithm that uses Θ(n2) comparisons to

group the jugs into pairs.

b. Prove a lower bound of Ω(n lg n) for the number of comparisons that

an algorithm solving this problem must make.

c. Give a randomized algorithm whose expected number of

comparisons is O(n lg n), and prove that this bound is correct. What is

the worst-case number of comparisons for your algorithm?

8-5     Average sorting

Suppose that, instead of sorting an array, we just require that the

elements increase on average. More precisely, we call an n-element array

A k-sorted if, for all i = 1, 2, … , n – k, the following holds:

a. What does it mean for an array to be 1-sorted?

b. Give a permutation of the numbers 1, 2, … , 10 that is 2-sorted, but

not sorted.
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c. Prove that an n-element array is k-sorted if and only if A[i] ≤ A[i + k]

for all i = 1, 2, … , n – k.

d. Give an algorithm that k-sorts an n-element array in O(n lg(n/k))

time.

We can also show a lower bound on the time to produce a k-sorted

array, when k is a constant.

e. Show how to sort a k-sorted array of length n in O(n lg k) time. (Hint:

Use the solution to Exercise 6.5-11.)

f. Show that when k is a constant, k-sorting an n-element array requires

Ω(n lg n) time. (Hint: Use the solution to part (e) along with the lower

bound on comparison sorts.)

8-6     Lower bound on merging sorted lists

The problem of merging two sorted lists arises frequently. We have seen

a procedure for it as the subroutine MERGE in Section 2.3.1. In this

problem, you will prove a lower bound of 2n – 1 on the worst-case

number of comparisons required to merge two sorted lists, each

containing n items. First, you will show a lower bound of 2n – o(n)

comparisons by using a decision tree.

a. Given 2n numbers, compute the number of possible ways to divide

them into two sorted lists, each with n numbers.

b. Using a decision tree and your answer to part (a), show that any

algorithm that correctly merges two sorted lists must perform at least

2n – o(n) comparisons.

Now you will show a slightly tighter 2n – 1 bound.

c. Show that if two elements are consecutive in the sorted order and

from different lists, then they must be compared.

d. Use your answer to part (c) to show a lower bound of 2n – 1

comparisons for merging two sorted lists.

8-7     The 0-1 sorting lemma and columnsort
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A compare-exchange operation on two array elements A[i] and A[j],

where i < j, has the form

COMPARE-EXCHANGE(A, i, j)

1 if A[i] > A[j]

2 exchange A[i] with A[j]

After the compare-exchange operation, we know that A[i] ≤ A[j].

An oblivious compare-exchange algorithm operates solely by a

sequence of prespecified compare-exchange operations. The indices of

the positions compared in the sequence must be determined in advance,

and although they can depend on the number of elements being sorted,

they cannot depend on the values being sorted, nor can they depend on

the result of any prior compare-exchange operation. For example, the

COMPARE-EXCHANGE-INSERTION-SORT procedure on the

facing page shows a variation of insertion sort as an oblivious compare-

exchange algorithm. (Unlike the INSERTION-SORT procedure on

page 19, the oblivious version runs in Θ(n2) time in all cases.)

The 0-1 sorting lemma provides a powerful way to prove that an

oblivious compare-exchange algorithm produces a sorted result. It

states that if an oblivious compare-exchange algorithm correctly sorts

all input sequences consisting of only 0s and 1s, then it correctly sorts

all inputs containing arbitrary values.

COMPARE-EXCHANGE-INSERTION-SORT(A, n)

1 for i = 2 to n

2 for j = i – 1 downto 1

3 COMPARE-EXCHANGE(A, j, j + 1)

You will prove the 0-1 sorting lemma by proving its contrapositive: if

an oblivious compare-exchange algorithm fails to sort an input

containing arbitrary values, then it fails to sort some 0-1 input. Assume

that an oblivious compare-exchange algorithm X fails to correctly sort

the array A[1 : n]. Let A[p] be the smallest value in A that algorithm X
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puts into the wrong location, and let A[q] be the value that algorithm X

moves to the location into which A[p] should have gone. Define an array

B[1 : n] of 0s and 1s as follows:

a. Argue that A[q] > A[p], so that B[p] = 0 and B[q] = 1.

b. To complete the proof of the 0-1 sorting lemma, prove that algorithm

X fails to sort array B correctly.

Now you will use the 0-1 sorting lemma to prove that a particular

sorting algorithm works correctly. The algorithm, columnsort, works on

a rectangular array of n elements. The array has r rows and s columns

(so that n = rs), subject to three restrictions:

r must be even,

s must be a divisor of r, and

r ≥ 2s2.

When columnsort completes, the array is sorted in column-major order:

reading down each column in turn, from left to right, the elements

monotonically increase.

Columnsort operates in eight steps, regardless of the value of n. The

odd steps are all the same: sort each column individually. Each even

step is a fixed permutation. Here are the steps:

1. Sort each column.

2. Transpose the array, but reshape it back to r rows and s columns.

In other words, turn the leftmost column into the top r/s rows, in

order; turn the next column into the next r/s rows, in order; and

so on.

3. Sort each column.

4. Perform the inverse of the permutation performed in step 2.

5. Sort each column.
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6. Shift the top half of each column into the bottom half of the

same column, and shift the bottom half of each column into the

top half of the next column to the right. Leave the top half of the

leftmost column empty. Shift the bottom half of the last column

into the top half of a new rightmost column, and leave the

bottom half of this new column empty.

7. Sort each column.

8. Perform the inverse of the permutation performed in step 6.

Figure 8.5 The steps of columnsort. (a) The input array with 6 rows and 3 columns. (This

example does not obey the r ≥ 2s2 requirement, but it works.) (b) After sorting each column in

step 1. (c) After transposing and reshaping in step 2. (d) After sorting each column in step 3. (e)

After performing step 4, which inverts the permutation from step 2. (f) After sorting each

column in step 5. (g) After shifting by half a column in step 6. (h) After sorting each column in

step 7. (i) After performing step 8, which inverts the permutation from step 6. Steps 6–8 sort the

bottom half of each column with the top half of the next column. After step 8, the array is

sorted in column-major order.

You can think of steps 6–8 as a single step that sorts the bottom half of

each column and the top half of the next column. Figure 8.5 shows an

example of the steps of columnsort with r = 6 and s = 3. (Even though

this example violates the requirement that r ≥ 2s2, it happens to work.)
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c. Argue that we can treat columnsort as an oblivious compare-

exchange algorithm, even if we do not know what sorting method the

odd steps use.

Although it might seem hard to believe that columnsort actually

sorts, you will use the 0-1 sorting lemma to prove that it does. The 0-1

sorting lemma applies because we can treat columnsort as an oblivious

compare-exchange algorithm. A couple of definitions will help you

apply the 0-1 sorting lemma. We say that an area of an array is clean if

we know that it contains either all 0s or all 1s or if it is empty.

Otherwise, the area might contain mixed 0s and 1s, and it is dirty. From

here on, assume that the input array contains only 0s and 1s, and that

we can treat it as an array with r rows and s columns.

d. Prove that after steps 1–3, the array consists of clean rows of 0s at the

top, clean rows of 1s at the bottom, and at most s dirty rows between

them. (One of the clean rows could be empty.)

e. Prove that after step 4, the array, read in column-major order, starts

with a clean area of 0s, ends with a clean area of 1s, and has a dirty

area of at most s2 elements in the middle. (Again, one of the clean

areas could be empty.)

f. Prove that steps 5–8 produce a fully sorted 0-1 output. Conclude that

columnsort correctly sorts all inputs containing arbitrary values.

g. Now suppose that s does not divide r. Prove that after steps 1–3, the

array consists of clean rows of 0s at the top, clean rows of 1s at the

bottom, and at most 2s –1 dirty rows between them. (Once again, one

of the clean areas could be empty.) How large must r be, compared

with s, for columnsort to correctly sort when s does not divide r?

h. Suggest a simple change to step 1 that allows us to maintain the

requirement that r ≥ 2s2 even when s does not divide r, and prove that

with your change, columnsort correctly sorts.

Chapter notes
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The decision-tree model for studying comparison sorts was introduced

by Ford and Johnson [150]. Knuth’s comprehensive treatise on sorting

[261] covers many variations on the sorting problem, including the

information-theoretic lower bound on the complexity of sorting given

here. Ben-Or [46] studied lower bounds for sorting using generalizations

of the decision-tree model.

Knuth credits H. H. Seward with inventing counting sort in 1954, as

well as with the idea of combining counting sort with radix sort. Radix

sorting starting with the least significant digit appears to be a folk

algorithm widely used by operators of mechanical card-sorting

machines. According to Knuth, the first published reference to the

method is a 1929 document by L. J. Comrie describing punched-card

equipment. Bucket sorting has been in use since 1956, when the basic

idea was proposed by Isaac and Singleton [235].

Munro and Raman [338] give a stable sorting algorithm that

performs O(n1+ϵ) comparisons in the worst case, where 0 < ϵ ≤ 1 is any

fixed constant. Although any of the O(n lg n)-time algorithms make

fewer comparisons, the algorithm by Munro and Raman moves data

only O(n) times and operates in place.

The case of sorting n b-bit integers in o(n lg n) time has been

considered by many researchers. Several positive results have been

obtained, each under slightly different assumptions about the model of

computation and the restrictions placed on the algorithm. All the

results assume that the computer memory is divided into addressable b-

bit words. Fredman and Willard [157] introduced the fusion tree data

structure and used it to sort n integers in O(n lg n/lg lg n) time. This

bound was later improved to  time by Andersson [17]. These

algorithms require the use of multiplication and several precomputed

constants. Andersson, Hagerup, Nilsson, and Raman [18] have shown

how to sort n integers in O(n lg lg n) time without using multiplication,

but their method requires storage that can be unbounded in terms of n.

Using multiplicative hashing, we can reduce the storage needed to O(n),

but then the O(n lg lg n) worst-case bound on the running time becomes

an expected-time bound. Generalizing the exponential search trees of

Andersson [17], Thorup [434] gave an O(n(lg lg n)2)-time sorting

www.konkur.in

Telegram: @uni_k



algorithm that does not use multiplication or randomization, and it uses

linear space. Combining these techniques with some new ideas, Han

[207] improved the bound for sorting to O(n lg lg n lg lg lg n) time.

Although these algorithms are important theoretical breakthroughs,

they are all fairly complicated and at the present time seem unlikely to

compete with existing sorting algorithms in practice.

The columnsort algorithm in Problem 8-7 is by Leighton [286].

1 The choice of r = ⌊lg n⌋ assumes that n > 1. If n ≤ 1, there is nothing to sort.
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9          Medians and Order Statistics

The ith order statistic of a set of n elements is the ith smallest element.

For example, the minimum of a set of elements is the first order statistic

(i = 1), and the maximum is the nth order statistic (i = n). A median,

informally, is the “halfway point” of the set. When n is odd, the median

is unique, occurring at i = (n + 1)/2. When n is even, there are two

medians, the lower median occurring at i = n/2 and the upper median

occurring at i = n/2 + 1. Thus, regardless of the parity of n, medians

occur at i = ⌊(n + 1)/2⌋ and i = ⌈(n + 1)/2⌉. For simplicity in this text,

however, we consistently use the phrase “the median” to refer to the

lower median.

This chapter addresses the problem of selecting the ith order statistic

from a set of n distinct numbers. We assume for convenience that the set

contains distinct numbers, although virtually everything that we do

extends to the situation in which a set contains repeated values. We

formally specify the selection problem as follows:

Input: A set A of n distinct numbers1 and an integer i, with 1 ≤ i ≤ n.

Output: The element x ∈ A that is larger than exactly i – 1 other

elements of A.

We can solve the selection problem in O(n lg n) time simply by sorting

the numbers using heapsort or merge sort and then outputting the ith

element in the sorted array. This chapter presents asymptotically faster

algorithms.
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Section 9.1 examines the problem of selecting the minimum and

maximum of a set of elements. More interesting is the general selection

problem, which we investigate in the subsequent two sections. Section

9.2 analyzes a practical randomized algorithm that achieves an O(n)

expected running time, assuming distinct elements. Section 9.3 contains

an algorithm of more theoretical interest that achieves the O(n) running

time in the worst case.

9.1      Minimum and maximum

How many comparisons are necessary to determine the minimum of a

set of n elements? To obtain an upper bound of n – 1 comparisons, just

examine each element of the set in turn and keep track of the smallest

element seen so far. The MINIMUM procedure assumes that the set

resides in array A[1 : n].

MINIMUM(A, n)

1 min = A[1]

2 for i = 2 to n

3 if min > A[i]

4 min = A[i]

5 return min

It’s no more difficult to find the maximum with n – 1 comparisons.

Is this algorithm for minimum the best we can do? Yes, because it

turns out that there’s a lower bound of n – 1 comparisons for the

problem of determining the minimum. Think of any algorithm that

determines the minimum as a tournament among the elements. Each

comparison is a match in the tournament in which the smaller of the

two elements wins. Since every element except the winner must lose at

least one match, we can conclude that n – 1 comparisons are necessary

to determine the minimum. Hence the algorithm MINIMUM is

optimal with respect to the number of comparisons performed.
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Simultaneous minimum and maximum

Some applications need to find both the minimum and the maximum of

a set of n elements. For example, a graphics program may need to scale

a set of (x, y) data to fit onto a rectangular display screen or other

graphical output device. To do so, the program must first determine the

minimum and maximum value of each coordinate.

Of course, we can determine both the minimum and the maximum of

n elements using Θ(n) comparisons. We simply find the minimum and

maximum independently, using n – 1 comparisons for each, for a total

of 2n – 2 = Θ(n) comparisons.

Although 2n – 2 comparisons is asymptotically optimal, it is possible

to improve the leading constant. We can find both the minimum and the

maximum using at most 3 ⌊n/2⌋ comparisons. The trick is to maintain

both the minimum and maximum elements seen thus far. Rather than

processing each element of the input by comparing it against the current

minimum and maximum, at a cost of 2 comparisons per element,

process elements in pairs. Compare pairs of elements from the input

first with each other, and then compare the smaller with the current

minimum and the larger to the current maximum, at a cost of 3

comparisons for every 2 elements.

How you set up initial values for the current minimum and

maximum depends on whether n is odd or even. If n is odd, set both the

minimum and maximum to the value of the first element, and then

process the rest of the elements in pairs. If n is even, perform 1

comparison on the first 2 elements to determine the initial values of the

minimum and maximum, and then process the rest of the elements in

pairs as in the case for odd n.

Let’s count the total number of comparisons. If n is odd, then 3 ⌊n/2⌋

comparisons occur. If n is even, 1 initial comparison occurs, followed by

another 3(n – 2)/2 comparisons, for a total of 3n/2 – 2. Thus, in either

case, the total number of comparisons is at most 3 ⌊n/2⌋.

Exercises

9.1-1
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Show that the second smallest of n elements can be found with n + ⌈lg

n⌉ – 2 comparisons in the worst case. (Hint: Also find the smallest

element.)

9.1-2

Given n > 2 distinct numbers, you want to find a number that is neither

the minimum nor the maximum. What is the smallest number of

comparisons that you need to perform?

9.1-3

A racetrack can run races with five horses at a time to determine their

relative speeds. For 25 horses, it takes six races to determine the fastest

horse, assuming transitivity (see page 1159). What’s the minimum

number of races it takes to determine the fastest three horses out of 25?

★ 9.1-4

Prove the lower bound of ⌈3n/2⌉ – 2 comparisons in the worst case to

find both the maximum and minimum of n numbers. (Hint: Consider

how many numbers are potentially either the maximum or minimum,

and investigate how a comparison affects these counts.)

9.2      Selection in expected linear time

The general selection problem—finding the ith order statistic for any

value of i—appears more difficult than the simple problem of finding a

minimum. Yet, surprisingly, the asymptotic running time for both

problems is the same: Θ(n). This section presents a divide-and-conquer

algorithm for the selection problem. The algorithm RANDOMIZED-

SELECT is modeled after the quicksort algorithm of Chapter 7. Like

quicksort it partitions the input array recursively. But unlike quicksort,

which recursively processes both sides of the partition,

RANDOMIZED-SELECT works on only one side of the partition.

This difference shows up in the analysis: whereas quicksort has an

expected running time of Θ(n lg n), the expected running time of

RANDOMIZED-SELECT is Θ(n), assuming that the elements are

distinct.
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RANDOMIZED-SELECT uses the procedure RANDOMIZED-

PARTITION introduced in Section 7.3. Like RANDOMIZED-

QUICKSORT, it is a randomized algorithm, since its behavior is

determined in part by the output of a random-number generator. The

RANDOMIZED-SELECT procedure returns the ith smallest element

of the array A[p : r], where 1 ≤ i ≤ r – p + 1.

RANDOMIZED-SELECT(A, p, r, i)

1 if p == r

2 return A[p]// 1 ≤ i ≤ r – p + 1 when p == r means that i = 1

3 q = RANDOMIZED-PARTITION(A, p, r)

4 k = q – p + 1

5 if i == k

6 return A[q]// the pivot value is the answer

7 elseif i < k

8 return RANDOMIZED-SELECT(A, p, q – 1, i)

9 else return RANDOMIZED-SELECT(A, q + 1, r, i – k)

Figure 9.1 illustrates how the RANDOMIZED-SELECT procedure

works. Line 1 checks for the base case of the recursion, in which the

subarray A[p : r] consists of just one element. In this case, i must equal

1, and line 2 simply returns A[p] as the ith smallest element. Otherwise,

the call to RANDOMIZED-PARTITION in line 3 partitions the array

A[p : r] into two (possibly empty) subarrays A[p : q – 1] and A[q + 1 : r]

such that each element of A[p : q – 1] is less than or equal to A[q], which

in turn is less than each element of A[q + 1 : r]. (Although our analysis

assumes that the elements are distinct, the procedure still yields the

correct result even if equal elements are present.) As in quicksort, we’ll

refer to A[q] as the pivot element. Line 4 computes the number k of

elements in the subarray A[p : q], that is, the number of elements in the

low side of the partition, plus 1 for the pivot element. Line 5 then

checks whether A[q] is the ith smallest element. If it is, then line 6

returns A[q]. Otherwise, the algorithm determines in which of the two

subarrays A[p: q – 1] and A[q + 1 : r] the ith smallest element lies. If i <

k, then the desired element lies on the low side of the partition, and line
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8 recursively selects it from the subarray. If i > k, however, then the

desired element lies on the high side of the partition. Since we already

know k values that are smaller than the ith smallest element of A[p : r]—

namely, the elements of A[p : q]—the desired element is the (i – k)th

smallest element of A[q + 1 : r], which line 9 finds recursively. The code

appears to allow recursive calls to subarrays with 0 elements, but

Exercise 9.2-1 asks you to show that this situation cannot happen.

Figure 9.1 The action of RANDOMIZED-SELECT as successive partitionings narrow the

subarray A[p: r], showing the values of the parameters p, r, and i at each recursive call. The

subarray A[p : r] in each recursive step is shown in tan, with the dark tan element selected as the

pivot for the next partitioning. Blue elements are outside A[p : r]. The answer is the tan element

in the bottom array, where p = r = 5 and i = 1. The array designations A(0), A(1), … , A(5), the

partitioning numbers, and whether the partitioning is helpful are explained on the following

page.

The worst-case running time for RANDOMIZED-SELECT is

Θ(n2), even to find the minimum, because it could be extremely unlucky

and always partition around the largest remaining element before

identifying the ith smallest when only one element remains. In this worst

case, each recursive step removes only the pivot from consideration.

Because partitioning n elements takes Θ(n) time, the recurrence for the
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worst-case running time is the same as for QUICKSORT: T (n) = T (n –

1) + Θ(n), with the solution T (n) = Θ(n2). We’ll see that the algorithm

has a linear expected running time, however, and because it is

randomized, no particular input elicits the worst-case behavior.

To see the intuition behind the linear expected running time, suppose

that each time the algorithm randomly selects a pivot element, the pivot

lies somewhere within the second and third quartiles—the “middle

half”—of the remaining elements in sorted order. If the ith smallest

element is less than the pivot, then all the elements greater than the

pivot are ignored in all future recursive calls. These ignored elements

include at least the uppermost quartile, and possibly more. Likewise, if

the ith smallest element is greater than the pivot, then all the elements

less than the pivot—at least the first quartile—are ignored in all future

recursive calls. Either way, therefore, at least 1/4 of the remaining

elements are ignored in all future recursive calls, leaving at most 3/4 of

the remaining elements in play: residing in the subarray A[p : r]. Since

RANDOMIZED-PARTITION takes Θ(n) time on a subarray of n

elements, the recurrence for the worst-case running time is T (n) = T

(3n/4) + Θ(n). By case 3 of the master method (Theorem 4.1 on page

102), this recurrence has solution T (n) = Θ(n).

Of course, the pivot does not necessarily fall into the middle half

every time. Since the pivot is selected at random, the probability that it

falls into the middle half is about 1/2 each time. We can view the process

of selecting the pivot as a Bernoulli trial (see Section C.4) with success

equating to the pivot residing in the middle half. Thus the expected

number of trials needed for success is given by a geometric distribution:

just two trials on average (equation (C.36) on page 1197). In other

words, we expect that half of the partitionings reduce the number of

elements still in play by at least 3/4 and that half of the partitionings do

not help as much. Consequently, the expected number of partitionings

at most doubles from the case when the pivot always falls into the

middle half. The cost of each extra partitioning is less than the one that

preceded it, so that the expected running time is still Θ(n).

To make the above argument rigorous, we start by defining the

random variable A(j) as the set of elements of A that are still in play
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after j partitionings (that is, within the subarray A[p : r] after j calls of

RANDOMIZED-SELECT), so that A(0) consists of all the elements in

A. Since each partitioning removes at least one element—the pivot—

from being in play, the sequence |A(0)|, |A(1)|, |A(2)|, … strictly

decreases. Set A(j–1) is in play before the j th partitioning, and set A(j)

remains in play afterward. For convenience, assume that the initial set

A(0) is the result of a 0th “dummy” partitioning.

Let’s call the j th partitioning helpful if |A(j)| ≤ (3/4)|A(j–1)|. Figure

9.1 shows the sets A(j) and whether partitionings are helpful for an

example array. A helpful partitioning corresponds to a successful

Bernoulli trial. The following lemma shows that a partitioning is at least

as likely to be helpful as not.

Lemma 9.1

A partitioning is helpful with probability at least 1/2.

Proof      Whether a partitioning is helpful depends on the randomly

chosen pivot. We discussed the “middle half” in the informal argument

above. Let’s more precisely define the middle half of an n-element

subarray as all but the smallest ⌈n/4⌉ – 1 and greatest ⌈n/4⌉ – 1 elements

(that is, all but the first ⌈n/4⌉ – 1 and last ⌈n/4⌉ – 1 elements if the

subarray were sorted). We’ll prove that if the pivot falls into the middle

half, then the pivot leads to a helpful partitioning, and we’ll also prove

that the probability of the pivot falling into the middle half is at least

1/2.

Regardless of where the pivot falls, either all the elements greater

than it or all the elements less than it, along with the pivot itself, will no

longer be in play after partitioning. If the pivot falls into the middle

half, therefore, at least ⌈n/4⌉ – 1 elements less than the pivot or ⌈n/4⌉ – 1

elements greater than the pivot, plus the pivot, will no longer be in play

after partitioning. That is, at least ⌈n/4⌉ elements will no longer be in

play. The number of elements remaining in play will be at most n –

⌈n/4⌉, which equals ⌊3n/4⌋ by Exercise 3.3-2 on page 70. Since ⌊3n/4⌋ ≤

3n/4, the partitioning is helpful.
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To determine a lower bound on the probability that a randomly

chosen pivot falls into the middle half, we determine an upper bound on

the probability that it does not. That probability is

Thus, the pivot has a probability of at least 1/2 of falling into the middle

half, and so the probability is at least 1/2 that a partitioning is helpful.

▪

We can now bound the expected running time of RANDOMIZED-

SELECT.

Theorem 9.2

The procedure RANDOMIZED-SELECT on an input array of n

distinct elements has an expected running time of Θ(n).

Proof   Since not every partitioning is necessarily helpful, let’s give each

partitioning an index starting at 0 and denote by 〈h0, h1, h2, … , hm〉

the sequence of partitionings that are helpful, so that the hkth

partitioning is helpful for k = 0, 1, 2, … , m. Although the number m of

helpful partitionings is a random variable, we can bound it, since after

at most ⌈log4/3  n⌉ helpful partitionings, only one element remains in

play. Consider the dummy 0th partitioning as helpful, so that h0 = 0.

Denote  by nk, where n0 = |A(0)| is the original problem size. Since

the hkth partitioning is helpful and the sizes of the sets A(j) strictly

decrease, we have  for k = 1, 2, …

, m. By iterating nk ≤ (3/4) nk–1, we have that nk ≤ (3/4)kn0 for k = 0, 1,

2, … , m.
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Figure 9.2 The sets within each generation in the proof of Theorem 9.2. Vertical lines represent

the sets, with the height of each line indicating the size of the set, which equals the number of

elements in play. Each generation starts with a set , which is the result of a helpful

partitioning. These sets are drawn in black and are at most 3/4 the size of the sets to their

immediate left. Sets drawn in orange are not the first within a generation. A generation may

contain just one set. The sets in generation k are , . The sets 

 are defined so that . If the partitioning gets all the way to

generation hm, set  has at most one element in play.

As Figure 9.2 depicts, we break up the sequence of sets A(j) into

m generations consisting of consecutively partitioned sets, starting with

the result  of a helpful partitioning and ending with the last set 

 before the next helpful partitioning, so that the sets in

generation k are , . Then for each set of elements

A(j) in the kth generation, we have that .

Next, we define the random variable

Xk = hk + 1 – hk

for k = 0, 1, 2, … , m – 1. That is, Xk is the number of sets in the kth

generation, so that the sets in the kth generation are , 

.

By Lemma 9.1, the probability that a partitioning is helpful is at

least 1/2. The probability is actually even higher, since a partitioning is
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helpful even if the pivot does not fall into the middle half but the ith

smallest element happens to lie in the smaller side of the partitioning.

We’ll just use the lower bound of 1/2, however, and then equation (C.36)

gives that E [Xk] ≤ 2 for k = 0, 1, 2, … , m – 1.

Let’s derive an upper bound on how many comparisons are made

altogether during partitioning, since the running time is dominated by

the comparisons. Since we are calculating an upper bound, assume that

the recursion goes all the way until only one element remains in play.

The j th partitioning takes the set A(j–1) of elements in play, and it

compares the randomly chosen pivot with all the other |A(j–1)| – 1

elements, so that the jth partitioning makes fewer than |A(j–1)|

comparisons. The sets in the kth generation have sizes 

. Thus, the total number of comparisons

during partitioning is less than

Since E [Xk] ≤ 2, we have that the expected total number of comparisons

during partitioning is less than
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Since n0 is the size of the original array A, we conclude that the

expected number of comparisons, and thus the expected running time,

for RANDOMIZED-SELECT is O(n). All n elements are examined in

the first call of RANDOMIZED-PARTITION, giving a lower bound of

Ω(n). Hence the expected running time is Θ(n).

▪

Exercises

9.2-1

Show that RANDOMIZED-SELECT never makes a recursive call to a

0-length array.

9.2-2

Write an iterative version of RANDOMIZED-SELECT.

9.2-3

Suppose that RANDOMIZED-SELECT is used to select the minimum

element of the array A = 〈2, 3, 0, 5, 7, 9, 1, 8, 6, 4〉. Describe a sequence

of partitions that results in a worst-case performance of

RANDOMIZED-SELECT.

9.2-4
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Argue that the expected running time of RANDOMIZED-SELECT

does not depend on the order of the elements in its input array A[p : r].

That is, the expected running time is the same for any permutation of

the input array A[p : r]. (Hint: Argue by induction on the length n of the

input array.)

9.3      Selection in worst-case linear time

We’ll now examine a remarkable and theoretically interesting selection

algorithm whose running time is Θ(n) in the worst case. Although the

RANDOMIZED-SELECT algorithm from Section 9.2 achieves linear

expected time, we saw that its running time in the worst case was

quadratic. The selection algorithm presented in this section achieves

linear time in the worst case, but it is not nearly as practical as

RANDOMIZED-SELECT. It is mostly of theoretical interest.

Like the expected linear-time RANDOMIZED-SELECT, the worst-

case linear-time algorithm SELECT finds the desired element by

recursively partitioning the input array. Unlike RANDOMIZED-

SELECT, however, SELECT  guarantees a good split by choosing a

provably good pivot when partitioning the array. The cleverness in the

algorithm is that it finds the pivot recursively. Thus, there are two

invocations of SELECT: one to find a good pivot, and a second to

recursively find the desired order statistic.

The partitioning algorithm used by SELECT is like the deterministic

partitioning algorithm PARTITION from quicksort (see Section 7.1),

but modified to take the element to partition around as an additional

input parameter. Like PARTITION, the PARTITION-AROUND

algorithm returns the index of the pivot. Since it’s so similar to

PARTITION, the pseudocode for PARTITION-AROUND is omitted.

The SELECT procedure takes as input a subarray A[p : r] of n = r –

p + 1 elements and an integer i in the range 1 ≤ i ≤ n. It returns the ith

smallest element of A. The pseudocode is actually more understandable

than it might appear at first.

SELECT(A, p, r, i)

www.konkur.in

Telegram: @uni_k



  1while (r – p + 1) mod 5 ≠ 0

  2 for j = p + 1 to r // put the minimum into A[p]

  3 if A[p] > A[j]

  4 exchange A[p] with A[j]

  5 // If we want the minimum of A[p : r], we’re done.

  6 if i == 1

  7 return A[p]

  8 // Otherwise, we want the (i – 1)st element of A[p + 1 : r].

  9 p = p + 1

10 i = i – 1

11g = (r – p + 1)/5 // number of 5-element

groups

12 for j = p to p + g – 1 // sort each group

13 sort 〈A[j], A[j + g], A[j + 2g], A[j + 3g], A[j + 4g]〉 in place

14 // All group medians now lie in the middle fifth of A[p : r].

15 // Find the pivot x recursively as the median of the group medians.

16x = SELECT(A, p + 2g, p + 3g – 1, ⌈g/2⌉)

17q = PARTITION-AROUND(A, p, r,

x)

// partition around the pivot

18 // The rest is just like lines 3–9 of RANDOMIZED-SELECT.

19k = q – p + 1

20 if i == k

21 return A[q] // the pivot value is the

answer

22elseif i < k

23 return SELECT(A, p, q – 1, i)

24else return SELECT(A, q + 1, r, i – k)

The pseudocode starts by executing the while loop in lines 1–10 to

reduce the number r – p + 1 of elements in the subarray until it is

divisible by 5. The while loop executes 0 to 4 times, each time

rearranging the elements of A[p : r] so that A[p] contains the minimum

element. If i = 1, which means that we actually want the minimum

element, then the procedure simply returns it in line 7. Otherwise,

SELECT eliminates the minimum from the subarray A[p : r] and iterates

www.konkur.in

Telegram: @uni_k



to find the (i – 1)st element in A[p + 1 : r]. Lines 9–10 do so by

incrementing p and decrementing i. If the while loop completes all of its

iterations without returning a result, the procedure executes the core of

the algorithm in lines 11–24, assured that the number r – p + 1 of

elements in A[p : r] is evenly divisible by 5.

Figure 9.3 The relationships between elements (shown as circles) immediately after line 17 of the

selection algorithm SELECT. There are g = (r – p + 1)/5 groups of 5 elements, each of which

occupies a column. For example, the leftmost column contains elements A[p], A[p + g], A[p +

2g], A[p + 3g], A[p + 4g], and the next column contains A[p + 1], A[p + g + 1], A[p + 2g + 1], A[p

+ 3g + 1], A[p + 4g + 1]. The medians of the groups are red, and the pivot x is labeled. Arrows

go from smaller elements to larger. The elements on the blue background are all known to be

less than or equal to x and cannot fall into the high side of the partition around x. The elements

on the yellow background are known to be greater than or equal to x and cannot fall into the

low side of the partition around x. The pivot x belongs to both the blue and yellow regions and

is shown on a green background. The elements on the white background could lie on either side

of the partition.

The next part of the algorithm implements the following idea,

illustrated in Figure 9.3. Divide the elements in A[p : r] into g = (r – p +

1)/5 groups of 5 elements each. The first 5-element group is

〈A[p], A[p + g], A[p + 2g], A[p + 3g], A[p + 4g]〉,

the second is
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〈A[p + 1], A[p + g + 1], A[p + 2g + 1], A[p + 3g + 1], A[p + 4g + 1]〉,

and so forth until the last, which is

〈A[p + g – 1], A[p + 2g – 1], A[p + 3g – 1], A[p + 4g – 1], A[r]〉.

(Note that r = p + 5g – 1.) Line 13 puts each group in order using, for

example, insertion sort (Section 2.1), so that for j = p, p + 1, … , p + g –

1, we have

A[j] ≤ A[j + g] ≤ A[j + 2g] ≤ A[j + 3g] ≤ A[j + 4g].

Each vertical column in Figure 9.3 depicts a sorted group of 5 elements.

The median of each 5-element group is A[j + 2g], and thus all the 5-

element medians, shown in red, lie in the range A[p + 2g : p + 3g – 1].

Next, line 16 determines the pivot x by recursively calling SELECT

to find the median (specifically, the ⌈g/2⌉th smallest) of the g group

medians. Line 17 uses the modified PARTITION-AROUND algorithm

to partition the elements of A[p : r] around x, returning the index q of x,

so that A[q] = x, elements in A[p : q] are all at most x, and elements in

A[q : r] are greater than or equal to x.

The remainder of the code mirrors that of RANDOMIZED-

SELECT. If the pivot x is the ith largest, the procedure returns it.

Otherwise, the procedure recursively calls itself on either A[p : q – 1] or

A[q + 1 : r], depending on the value of i.

Let’s analyze the running time of SELECT and see how the judicious

choice of the pivot x plays into a guarantee on its worst-case running

time.

Theorem 9.3

The running time of SELECT on an input of n elements is Θ(n).

Proof   Define T (n) as the worst-case time to run SELECT on any input

subarray A[p : r] of size at most n, that is, for which r – p + 1 ≤ n. By this

definition, T (n) is monotonically increasing.

We first determine an upper bound on the time spent outside the

recursive calls in lines 16, 23, and 24. The while loop in lines 1–10

executes 0 to 4 times, which is O(1) times. Since the dominant time
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within the loop is the computation of the minimum in lines 2–4, which

takes Θ(n) time, lines 1–10 execute in O(1) · Θ(n) = O(n) time. The

sorting of the 5-element groups in lines 12–13 takes Θ(n) time because

each 5-element group takes Θ(1) time to sort (even using an

asymptotically inefficient sorting algorithm such as insertion sort), and

there are g elements to sort, where n/5 – 1 < g ≤ n/5. Finally, the time to

partition in line 17 is Θ(n), as Exercise 7.1-3 on page 187 asks you to

show. Because the remaining bookkeeping only costs Θ(1) time, the

total amount of time spent outside of the recursive calls is O(n) + Θ(n) +

Θ(n) + Θ(1) = Θ(n).

Now let’s determine the running time for the recursive calls. The

recursive call to find the pivot in line 16 takes T (g) ≤ T (n/5) time, since

g ≤ n/5 and T (n) monotonically increases. Of the two recursive calls in

lines 23 and 24, at most one is executed. But we’ll see that no matter

which of these two recursive calls to SELECT actually executes, the

number of elements in the recursive call turns out to be at most 7n/10,

and hence the worst-case cost for lines 23 and 24 is at most T (7n/10).

Let’s now show that the machinations with group medians and the

choice of the pivot x as the median of the group medians guarantees

this property.

Figure 9.3 helps to visualize what’s going on. There are g ≤ n/5

groups of 5 elements, with each group shown as a column sorted from

bottom to top. The arrows show the ordering of elements within the

columns. The columns are ordered from left to right with groups to the

left of x’s group having a group median less than x and those to the

right of x’s group having a group median greater than x. Although the

relative order within each group matters, the relative order among

groups to the left of x’s column doesn’t really matter, and neither does

the relative order among groups to the right of x’s column. The

important thing is that the groups to the left have group medians less

than x (shown by the horizontal arrows entering x), and that the groups

to the right have group medians greater than x (shown by the horizontal

arrows leaving x). Thus, the yellow region contains elements that we

know are greater than or equal to x, and the blue region contains

elements that we know are less than or equal to x.
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These two regions each contain at least 3g/2 elements. The number of

group medians in the yellow region is ⌊g/2⌋ + 1, and for each group

median, two additional elements are greater than it, making a total of

3(⌊g/2⌋ + 1) ≥ 3g/2 elements. Similarly, the number of group medians in

the blue region is ⌈g/2⌉, and for each group median, two additional

elements are less than it, making a total of 3 ⌈g/2 ⌉ ≥ 3g/2.

The elements in the yellow region cannot fall into the low side of the

partition around x, and those in the blue region cannot fall into the

high side. The elements in neither region—those lying on a white

background—could fall into either side of the partition. But since the

low side of the partition excludes the elements in the yellow region, and

there are a total of 5g elements, we know that the low side of the

partition can contain at most 5g – 3g/2 = 7g/2 ≤ 7n/10 elements.

Likewise, the high side of the partition excludes the elements in the blue

region, and a similar calculation shows that it also contains at most

7n/10 elements.

All of which leads to the following recurrence for the worst-case

running time of SELECT:

We can show that T (n) = O(n) by substitution.2 More specifically, we’ll

prove that T (n) ≤ cn for some suitably large constant c > 0 and all n > 0.

Substituting this inductive hypothesis into the right-hand side of

recurrence (9.1) and assuming that n ≥ 5 yields

T (n) ≤ c(n/5) + c(7n/10) + Θ(n)

≤ 9cn/10 + Θ(n)

= cn – cn/10 + Θ(n)

≤ cn

if c is chosen large enough that c/10 dominates the upper-bound

constant hidden by the Θ(n). In addition to this constraint, we can pick

c large enough that T (n) ≤ cn for all n ≤ 4, which is the base case of the

recursion within SELECT. The running time of SELECT is therefore
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O(n) in the worst case, and because line 13 alone takes Θ(n) time, the

total time is Θ(n).

▪

As in a comparison sort (see Section 8.1), SELECT and

RANDOMIZED-SELECT determine information about the relative

order of elements only by comparing elements. Recall from Chapter 8

that sorting requires Ω(n lg n) time in the comparison model, even on

average (see Problem 8-1). The linear-time sorting algorithms in

Chapter 8 make assumptions about the type of the input. In contrast,

the linear-time selection algorithms in this chapter do not require any

assumptions about the input’s type, only that the elements are distinct

and can be pairwise compared according to a linear order. The

algorithms in this chapter are not subject to the Ω(n lg n) lower bound,

because they manage to solve the selection problem without sorting all

the elements. Thus, solving the selection problem by sorting and

indexing, as presented in the introduction to this chapter, is

asymptotically inefficient in the comparison model.

Exercises

9.3-1

In the algorithm SELECT, the input elements are divided into groups

of 5. Show that the algorithm works in linear time if the input elements

are divided into groups of 7 instead of 5.

9.3-2

Suppose that the preprocessing in lines 1–10 of SELECT is replaced by

a base case for n ≥ n0, where n0 is a suitable constant; that g is chosen as

⌊r – p + 1)/5⌋; and that the elements in A[5g : n] belong to no group.

Show that although the recurrence for the running time becomes

messier, it still solves to Θ(n).

9.3-3

Show how to use SELECT as a subroutine to make quicksort run in

O(n lg n) time in the worst case, assuming that all elements are distinct.
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Figure 9.4 Professor Olay needs to determine the position of the east-west oil pipeline that

minimizes the total length of the north-south spurs.

★ 9.3-4

Suppose that an algorithm uses only comparisons to find the ith

smallest element in a set of n elements. Show that it can also find the i –

1 smaller elements and the n – i larger elements without performing any

additional comparisons.

9.3-5

Show how to determine the median of a 5-element set using only 6

comparisons.

9.3-6

You have a “black-box” worst-case linear-time median subroutine. Give

a simple, linear-time algorithm that solves the selection problem for an

arbitrary order statistic.

9.3-7

Professor Olay is consulting for an oil company, which is planning a

large pipeline running east to west through an oil field of n wells. The

company wants to connect a spur pipeline from each well directly to the

main pipeline along a shortest route (either north or south), as shown in

Figure 9.4. Given the x- and y-coordinates of the wells, how should the

professor pick an optimal location of the main pipeline to minimize the
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total length of the spurs? Show how to determine an optimal location in

linear time.

9.3-8

The kth quantiles of an n-element set are the k – 1 order statistics that

divide the sorted set into k equal-sized sets (to within 1). Give an O(n lg

k)-time algorithm to list the kth quantiles of a set.

9.3-9

Describe an O(n)-time algorithm that, given a set S of n distinct

numbers and a positive integer k ≤ n, determines the k numbers in S that

are closest to the median of S.

9.3-10

Let X[1 : n] and Y [1 : n] be two arrays, each containing n numbers

already in sorted order. Give an O(lg n)-time algorithm to find the

median of all 2n elements in arrays X and Y. Assume that all 2n

numbers are distinct.

Problems

9-1     Largest i numbers in sorted order

You are given a set of n numbers, and you wish to find the i largest in

sorted order using a comparison-based algorithm. Describe the

algorithm that implements each of the following methods with the best

asymptotic worst-case running time, and analyze the running times of

the algorithms in terms of n and i.

a. Sort the numbers, and list the i largest.

b. Build a max-priority queue from the numbers, and call EXTRACT-

MAX i times.

c. Use an order-statistic algorithm to find the ith largest number,

partition around that number, and sort the i largest numbers.

9-2     Variant of randomized selection
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Professor Mendel has proposed simplifying RANDOMIZED-SELECT

by eliminating the check for whether i and k are equal. The simplified

procedure is SIMPLER-RANDOMIZED-SELECT.

SIMPLER-RANDOMIZED-SELECT(A, p, r, i)

1 if p == r

2 return A[p]// 1 ≤ i ≤ r – p + 1 means that i = 1

3 q = RANDOMIZED-PARTITION(A, p, r)

4 k = q – p + 1

5 if i ≤ k

6 return SIMPLER-RANDOMIZED-

SELECT(A, p, q, i)

7 else return SIMPLER-RANDOMIZED-

SELECT(A, q + 1, r, i – k)

a. Argue that in the worst case, SIMPLER-RANDOMIZED-SELECT

never terminates.

b. Prove that the expected running time of SIMPLER-

RANDOMIZED-SELECT is still O(n).

9-3     Weighted median

Consider n elements x1, x2, … , xn with positive weights w1, w2, … , wn

such that . The weighted (lower) median is an element xk

satisfying

and

For example, consider the following elements xi and weights wi:

i
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1 2 3 4 5 6 7

xi 3 8 2 5 4 1 6

wi 0.12 0.35 0.025 0.08 0.15 0.075 0.2

For these elements, the median is x5 = 4, but the weighted median is x7

= 6. To see why the weighted median is x7, observe that the elements

less than x7 are x1, x3, x4, x5, and x6, and the sum w1 + w3 + w4 + w5

+ w6 = 0.45, which is less than 1/2. Furthermore, only element x2 is

greater than x7, and w2 = 0.35, which is no greater than 1/2.

a. Argue that the median of x1, x2, … , xn is the weighted median of the

xi with weights wi = 1/n for i = 1, 2, … , n.

b. Show how to compute the weighted median of n elements in O(n lg n)

worst-case time using sorting.

c. Show how to compute the weighted median in Θ(n) worst-case time

using a linear-time median algorithm such as SELECT from Section

9.3.

The post-office location problem is defined as follows. The input is n

points p1, p2, … , pn with associated weights w1, w2, … , wn. A solution

is a point p (not necessarily one of the input points) that minimizes the

sum , where d(a, b) is the distance between points a and b.

d. Argue that the weighted median is a best solution for the one-

dimensional post-office location problem, in which points are simply

real numbers and the distance between points a and b is d(a, b) = |a –

b|.

e. Find the best solution for the two-dimensional post-office location

problem, in which the points are (x, y) coordinate pairs and the

distance between points a = (x1, y1) and b = (x2, y2) is the Manhattan

distance given by d(a, b) = |x1 – x2| + |y1 – y2|.

9-4     Small order statistics
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Let’s denote by S(n) the worst-case number of comparisons used by

SELECT to select the ith order statistic from n numbers. Although S(n)

= Θ(n), the constant hidden by the Θ-notation is rather large. When i is

small relative to n, there is an algorithm that uses SELECT as a

subroutine but makes fewer comparisons in the worst case.

a. Describe an algorithm that uses Ui(n) comparisons to find the ith

smallest of n elements, where

(Hint: Begin with ⌊n/2⌋ disjoint pairwise comparisons, and recurse on

the set containing the smaller element from each pair.)

b. Show that, if i < n/2, then Ui(n) = n + O(S(2i) lg(n/i)).

c. Show that if i is a constant less than n/2, then Ui(n) = n + O(lg n).

d. Show that if i = n/k for k ≥ 2, then Ui(n) = n + O(S(2n/k) lg k).

9-5     Alternative analysis of randomized selection

In this problem, you will use indicator random variables to analyze the

procedure RANDOMIZED-SELECT in a manner akin to our analysis

of RANDOMIZED-QUICKSORT in Section 7.4.2.

As in the quicksort analysis, we assume that all elements are distinct,

and we rename the elements of the input array A as z1, z2, … , zn,

where zi is the ith smallest element. Thus the call RANDOMIZED-

SELECT(A, 1, n, i) returns zi.

For 1 ≤ j < k ≤ n, let

Xijk = I {zj is compared with zk sometime during the execution of the

algorithm to find zi}.

a. Give an exact expression for E [Xijk]. (Hint: Your expression may

have different values, depending on the values of i, j, and k.)
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b. Let Xi denote the total number of comparisons between elements of

array A when finding zi. Show that

c. Show that E [Xi] ≤ 4n.

d. Conclude that, assuming all elements of array A are distinct,

RANDOMIZED-SELECT runs in O(n) expected time.

9-6     Select with groups of 3

Exercise 9.3-1 asks you to show that the SELECT algorithm still runs in

linear time if the elements are divided into groups of 7. This problem

asks about dividing into groups of 3.

a. Show that SELECT runs in linear time if you divide the elements into

groups whose size is any odd constant greater than 3.

b. Show that SELECT runs in O(n lg n) time if you divide the elements

into groups of size 3.

Because the bound in part (b) is just an upper bound, we do not

know whether the groups-of-3 strategy actually runs in O(n) time. But

by repeating the groups-of-3 idea on the middle group of medians, we

can pick a pivot that guarantees O(n) time. The SELECT3 algorithm on

the next page determines the ith smallest of an input array of n > 1

distinct elements.

c. Describe in English how the SELECT3 algorithm works. Include in

your description one or more suitable diagrams.

d. Show that SELECT3 runs in O(n) time in the worst case.

Chapter notes

The worst-case linear-time median-finding algorithm was devised by

Blum, Floyd, Pratt, Rivest, and Tarjan [62]. The fast randomized
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version is due to Hoare [218]. Floyd and Rivest [147] have developed an

improved randomized version that partitions around an element

recursively selected from a small sample of the elements.

SELECT3(A, p, r, i)

  1while (r – p + 1) mod 9 ≠ 0

  2 for j = p + 1 to r // put the minimum into A[p]

  3 if A[p] > A[j]

  4 exchange A[p] with A[j]

  5 // If we want the minimum of A[p : r], we’re done.

  6 if i == 1

  7 return A[p]

  8 // Otherwise, we want the (i – 1)st element of A[p + 1 : r].

  9 p = p + 1

10 i = i – 1

11g = (r – p + 1)/3 // number of 3-element groups

12 for j = p to p + g – 1 // run through the groups

13 sort 〈A[j], A[j + g], A[j + 2g]〉 in place

14 // All group medians now lie in the middle third of A[p : r].

15g′ = g/3 // number of 3-element

subgroups

16 for j = p + g to p + g + g′ – 1 // sort the subgroups

17 sort 〈A[j], A[j + g′], A[j + 2g′]〉 in place

18 // All subgroup medians now lie in the middle ninth of A[p : r].

19 // Find the pivot x recursively as the median of the subgroup

medians.

20x = SELECT3(A, p + 4g′, p + 5g′ – 1, ⌈g′/2⌉)
21q = PARTITION-AROUND(A, p,

r, x)

// partition around the pivot

22 // The rest is just like lines 19–24 of SELECT.

23k = q – p + 1

24 if i == k

25 return A[q] // the pivot value is the answer

26elseif i < k

27 return SELECT3(A, p, q – 1, i)
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28else return SELECT3(A, q + 1, r, i – k)

It is still unknown exactly how many comparisons are needed to

determine the median. Bent and John [48] gave a lower bound of 2n

comparisons for median finding, and Schönhage, Paterson, and

Pippenger [397] gave an upper bound of 3n. Dor and Zwick have

improved on both of these bounds. Their upper bound [123] is slightly

less than 2.95n, and their lower bound [124] is (2 + ϵ)n, for a small

positive constant ϵ, thereby improving slightly on related work by Dor

et al. [122]. Paterson [354] describes some of these results along with

other related work.

Problem 9-6 was inspired by a paper by Chen and Dumitrescu [84].

1 As in the footnote on page 182, you can enforce the assumption that the numbers are distinct

by converting each input value A[i] to an ordered pair (A[i], i) with (A[i], i) < (A[j], j) if either

A[i] < A[j] or A[i] = A[j] and i < j.

2 We could also use the Akra-Bazzi method from Section 4.7, which involves calculus, to solve

this recurrence. Indeed, a similar recurrence (4.24) on page 117 was used to illustrate that

method.
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Part III    Data Structures
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Introduction

Sets are as fundamental to computer science as they are to mathematics.

Whereas mathematical sets are unchanging, the sets manipulated by

algorithms can grow, shrink, or otherwise change over time. We call

such sets dynamic. The next four chapters present some basic techniques

for representing finite dynamic sets and manipulating them on a

computer.

Algorithms may require several types of operations to be performed

on sets. For example, many algorithms need only the ability to insert

elements into, delete elements from, and test membership in a set. We

call a dynamic set that supports these operations a dictionary. Other

algorithms require more complicated operations. For example, min-

priority queues, which Chapter 6 introduced in the context of the heap

data structure, support the operations of inserting an element into and

extracting the smallest element from a set. The best way to implement a

dynamic set depends upon the operations that you need to support.

Elements of a dynamic set

In a typical implementation of a dynamic set, each element is

represented by an object whose attributes can be examined and

manipulated given a pointer to the object. Some kinds of dynamic sets

assume that one of the object’s attributes is an identifying key. If the

keys are all different, we can think of the dynamic set as being a set of

key values. The object may contain satellite data, which are carried

around in other object attributes but are otherwise unused by the set
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implementation. It may also have attributes that are manipulated by the

set operations. These attributes may contain data or pointers to other

objects in the set.

Some dynamic sets presuppose that the keys are drawn from a totally

ordered set, such as the real numbers, or the set of all words under the

usual alphabetic ordering. A total ordering allows us to define the

minimum element of the set, for example, or to speak of the next

element larger than a given element in a set.

Operations on dynamic sets

Operations on a dynamic set can be grouped into two categories:

queries, which simply return information about the set, and modifying

operations, which change the set. Here is a list of typical operations. Any

specific application will usually require only a few of these to be

implemented.

SEARCH(S, k)

A query that, given a set S and a key value k, returns a pointer x to

an element in S such that x.key = k, or NIL if no such element

belongs to S.

INSERT(S, x)

A modifying operation that adds the element pointed to by x to the

set S. We usually assume that any attributes in element x needed by

the set implementation have already been initialized.

DELETE(S, x)

A modifying operation that, given a pointer x to an element in the

set S, removes x from S. (Note that this operation takes a pointer to

an element x, not a key value.)

MINIMUM(S) and MAXIMUM(S)

Queries on a totally ordered set S that return a pointer to the

element of S with the smallest (for MINIMUM) or largest (for

MAXIMUM) key.

SUCCESSOR(S, x)
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A query that, given an element x whose key is from a totally ordered

set S, returns a pointer to the next larger element in S, or NIL if x is

the maximum element.

PREDECESSOR(S, x)

A query that, given an element x whose key is from a totally ordered

set S, returns a pointer to the next smaller element in S, or NIL if x

is the minimum element.

In some situations, we can extend the queries SUCCESSOR and

PREDECESSOR so that they apply to sets with nondistinct keys. For a

set on n keys, the normal presumption is that a call to MINIMUM

followed by n – 1 calls to SUCCESSOR enumerates the elements in the

set in sorted order.

We usually measure the time taken to execute a set operation in

terms of the size of the set. For example, Chapter 13 describes a data

structure that can support any of the operations listed above on a set of

size n in O(lg n) time.

Of course, you can always choose to implement a dynamic set with

an array. The advantage of doing so is that the algorithms for the

dynamic-set operations are simple. The downside, however, is that many

of these operations have a worst-case running time of Θ(n). If the array

is not sorted, INSERT and DELETE can take Θ(1) time, but the

remaining operations take Θ(n) time. If instead the array is maintained

in sorted order, then MINIMUM, MAXIMUM, SUCCESSOR, and

PREDECESSOR take Θ(1) time; SEARCH takes O(lg n) time if

implemented with binary search; but INSERT and DELETE take Θ(n)

time in the worst case. The data structures studied in this part improve

on the array implementation for many of the dynamic-set operations.

Overview of Part III

Chapters 10–13 describe several data structures that we can use to

implement dynamic sets. We’ll use many of these data structures later to

construct efficient algorithms for a variety of problems. We already saw

another important data structure—the heap—in Chapter 6.
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Chapter 10 presents the essentials of working with simple data

structures such as arrays, matrices, stacks, queues, linked lists, and

rooted trees. If you have taken an introductory programming course,

then much of this material should be familiar to you.

Chapter 11 introduces hash tables, a widely used data structure

supporting the dictionary operations INSERT, DELETE, and

SEARCH. In the worst case, hash tables require Θ(n) time to perform a

SEARCH operation, but the expected time for hash-table operations is

O(1). We rely on probability to analyze hash-table operations, but you

can understand how the operations work even without probability.

Binary search trees, which are covered in Chapter 12, support all the

dynamic-set operations listed above. In the worst case, each operation

takes Θ(n) time on a tree with n elements. Binary search trees serve as

the basis for many other data structures.

Chapter 13 introduces red-black trees, which are a variant of binary

search trees. Unlike ordinary binary search trees, red-black trees are

guaranteed to perform well: operations take O(lg n) time in the worst

case. A red-black tree is a balanced search tree. Chapter 18 in Part V

presents another kind of balanced search tree, called a B-tree. Although

the mechanics of red-black trees are somewhat intricate, you can glean

most of their properties from the chapter without studying the

mechanics in detail. Nevertheless, you probably will find walking

through the code to be instructive.
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10        Elementary Data Structures

In this chapter, we examine the representation of dynamic sets by simple

data structures that use pointers. Although you can construct many

complex data structures using pointers, we present only the rudimentary

ones: arrays, matrices, stacks, queues, linked lists, and rooted trees.

10.1    Simple array-based data structures: arrays, matrices,

stacks, queues

10.1.1    Arrays

We assume that, as in most programming languages, an array is stored

as a contiguous sequence of bytes in memory. If the first element of an

array has index s (for example, in an array with 1-origin indexing, s = 1),

the array starts at memory address a, and each array element occupies b

bytes, then the ith element occupies bytes a + b(i – s) through a + b(i – s

+ 1) – 1. Since most of the arrays in this book are indexed starting at 1,

and a few starting at 0, we can simplify these formulas a little. When s =

1, the ith element occupies bytes a + b(i – 1) through a + bi – 1, and

when s = 0, the ith element occupies bytes a + bi through a + b(i + 1) –

1. Assuming that the computer can access all memory locations in the

same amount of time (as in the RAM model described in Section 2.2), it

takes constant time to access any array element, regardless of the index.

Most programming languages require each element of a particular

array to be the same size. If the elements of a given array might occupy

different numbers of bytes, then the above formulas fail to apply, since
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the element size b is not a constant. In such cases, the array elements are

usually objects of varying sizes, and what actually appears in each array

element is a pointer to the object. The number of bytes occupied by a

pointer is typically the same, no matter what the pointer references, so

that to access an object in an array, the above formulas give the address

of the pointer to the object and then the pointer must be followed to

access the object itself.

Figure 10.1 Four ways to store the 2 × 3 matrix M from equation (10.1). (a) In row-major order,

in a single array. (b) In column-major order, in a single array. (c) In row-major order, with one

array per row (tan) and a single array (blue) of pointers to the row arrays. (d) In column-major

order, with one array per column (tan) and a single array (blue) of pointers to the column

arrays.

10.1.2    Matrices

We typically represent a matrix or two-dimensional array by one or

more one-dimensional arrays. The two most common ways to store a

matrix are row-major and column-major order. Let’s consider an m × n

matrix—a matrix with m rows and n columns. In row-major order, the

matrix is stored row by row, and in column-major order, the matrix is

stored column by column. For example, consider the 2 × 3 matrix

Row-major order stores the two rows 1 2 3 and 4 5 6, whereas column-

major order stores the three columns 1 4; 2 5; and 3 6.

Parts (a) and (b) of Figure 10.1 show how to store this matrix using a

single one-dimensional array. It’s stored in row-major order in part (a)

and in column-major order in part (b). If the rows, columns, and the

single array all are indexed starting at s, then M [i, j]—the element in

row i and column j—is at array index s + (n(i – s)) + (j – s) with row-
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major order and s + (m(j – s)) + (i – s) with column-major order. When

s = 1, the single-array indices are n(i – 1) + j with row-major order and i

+ m(j – 1) with column-major order. When s = 0, the single-array

indices are simpler: ni + j with row-major order and i + mj with column-

major order. For the example matrix M with 1-origin indexing, element

M [2, 1] is stored at index 3(2 – 1) + 1 = 4 in the single array using row-

major order and at index 2 + 2(1 – 1) = 2 using column-major order.

Parts (c) and (d) of Figure 10.1 show multiple-array strategies for

storing the example matrix. In part (c), each row is stored in its own

array of length n, shown in tan. Another array, with m elements, shown

in blue, points to the m row arrays. If we call the blue array A, then A[i]

points to the array storing the entries for row i of M, and array element

A[i] [j] stores matrix element M [i, j]. Part (d) shows the column-major

version of the multiple-array representation, with n arrays, each of

length m, representing the n columns. Matrix element M [i, j] is stored in

array element A[j] [i].

Single-array representations are typically more efficient on modern

machines than multiple-array representations. But multiple-array

representations can sometimes be more flexible, for example, allowing

for “ragged arrays,” in which the rows in the row-major version may

have different lengths, or symmetrically for the column-major version,

where columns may have different lengths.

Occasionally, other schemes are used to store matrices. In the block

representation, the matrix is divided into blocks, and each block is

stored contiguously. For example, a 4 × 4 matrix that is divided into 2 ×

2 blocks, such as

might be stored in a single array in the order 〈1, 2, 5, 6, 3, 4, 7, 8, 9, 10,

13, 14, 11, 12, 15, 16〉.

10.1.3    Stacks and queues
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Stacks and queues are dynamic sets in which the element removed from

the set by the DELETE operation is prespecified. In a stack, the

element deleted from the set is the one most recently inserted: the stack

implements a last-in, first-out, or LIFO, policy. Similarly, in a queue, the

element deleted is always the one that has been in the set for the longest

time: the queue implements a first-in, first-out, or FIFO, policy. There

are several efficient ways to implement stacks and queues on a

computer. Here, you will see how to use an array with attributes to store

them.

Stacks

The INSERT operation on a stack is often called PUSH, and the

DELETE operation, which does not take an element argument, is often

called POP. These names are allusions to physical stacks, such as the

spring-loaded stacks of plates used in cafeterias. The order in which

plates are popped from the stack is the reverse of the order in which

they were pushed onto the stack, since only the top plate is accessible.

Figure 10.2 shows how to implement a stack of at most n elements

with an array S[1 : n]. The stack has attributes S.top, indexing the most

recently inserted element, and S.size, equaling the size n of the array.

The stack consists of elements S[1 : S.top], where S[1] is the element at

the bottom of the stack and S[S.top] is the element at the top.

Figure 10.2 An array implementation of a stack S. Stack elements appear only in the tan

positions. (a) Stack S has 4 elements. The top element is 9. (b) Stack S after the calls PUSH(S,

17) and PUSH(S, 3). (c) Stack S after the call POP(S) has returned the element 3, which is the

one most recently pushed. Although element 3 still appears in the array, it is no longer in the

stack. The top is element 17.

When S.top = 0, the stack contains no elements and is empty. We can

test whether the stack is empty with the query operation STACK-
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EMPTY. Upon an attempt to pop an empty stack, the stack underflows,

which is normally an error. If S.top exceeds S.size, the stack overflows.

The procedures STACK-EMPTY, PUSH, and POP implement each

of the stack operations with just a few lines of code. Figure 10.2 shows

the effects of the modifying operations PUSH and POP. Each of the

three stack operations takes O(1) time.

STACK-EMPTY(S)

1 if S.top == 0

2 return TRUE

3 else return FALSE

PUSH(S, x)

1 if S.top == S.size

2 error “overflow”

3 else S.top = S.top + 1

4 S[S.top] = x

POP(S)

1 if STACK-EMPTY(S)

2 error “underflow”

3 else S.top = S.top – 1

4 return S[S.top + 1]
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Figure 10.3 A queue implemented using an array Q[1 : 12]. Queue elements appear only in the

tan positions. (a) The queue has 5 elements, in locations Q[7 : 11]. (b) The configuration of the

queue after the calls ENQUEUE(Q, 17), ENQUEUE(Q, 3), and ENQUEUE(Q, 5). (c) The

configuration of the queue after the call DEQUEUE(Q) returns the key value 15 formerly at the

head of the queue. The new head has key 6.

Queues

We call the INSERT operation on a queue ENQUEUE, and we call the

DELETE operation DEQUEUE. Like the stack operation POP,

DEQUEUE takes no element argument. The FIFO property of a queue

causes it to operate like a line of customers waiting for service. The

queue has a head and a tail. When an element is enqueued, it takes its

place at the tail of the queue, just as a newly arriving customer takes a

place at the end of the line. The element dequeued is always the one at

the head of the queue, like the customer at the head of the line, who has

waited the longest.

Figure 10.3 shows one way to implement a queue of at most n – 1

elements using an array Q[1 : n], with the attribute Q.size equaling the

size n of the array. The queue has an attribute Q.head that indexes, or

points to, its head. The attribute Q.tail indexes the next location at

which a newly arriving element will be inserted into the queue. The

www.konkur.in

Telegram: @uni_k



elements in the queue reside in locations Q.head, Q.head + 1, … , Q.tail

– 1, where we “wrap around” in the sense that location 1 immediately

follows location n in a circular order. When Q.head = Q.tail, the queue

is empty. Initially, we have Q.head = Q.tail = 1. An attempt to dequeue

an element from an empty queue causes the queue to underflow. When

Q.head = Q.tail + 1 or both Q.head = 1 and Q.tail = Q.size, the queue is

full, and an attempt to enqueue an element causes the queue to

overflow.

In the procedures ENQUEUE and DEQUEUE, we have omitted the

error checking for underflow and overflow. (Exercise 10.1-5 asks you to

supply these checks.) Figure 10.3 shows the effects of the ENQUEUE

and DEQUEUE operations. Each operation takes O(1) time.

ENQUEUE(Q, x)

1 Q[Q.tail] = x

2 if Q.tail == Q.size

3 Q.tail = 1

4 else Q.tail = Q.tail + 1

DEQUEUE(Q)

1 x = Q[Q.head]

2 if Q.head == Q.size

3 Q.head = 1

4 else Q.head = Q.head + 1

5 return x

Exercises

10.1-1

Consider an m × n matrix in row-major order, where both m and n are

powers of 2 and rows and columns are indexed from 0. We can represent

a row index i in binary by the lg m bits 〈ilg m – 1, ilg m – 2, … , i0〉 and a

column index j in binary by the lg n bits 〈jlg n – 1, jlg n – 2, … , j0〉.

Suppose that this matrix is a 2 × 2 block matrix, where each block has
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m/2 rows and n/2 columns, and it is to be represented by a single array

with 0-origin indexing. Show how to construct the binary representation

of the (lg m + lg n)-bit index into the single array from the binary

representations of i and j.

10.1-2

Using Figure 10.2 as a model, illustrate the result of each operation in

the sequence PUSH(S, 4), PUSH(S, 1), PUSH(S, 3), POP(S), PUSH(S,

8), and POP(S) on an initially empty stack S stored in array S[1 : 6]

10.1-3

Explain how to implement two stacks in one array A[1 : n] in such a way

that neither stack overflows unless the total number of elements in both

stacks together is n. The PUSH and POP operations should run in O(1)

time.

10.1-4

Using Figure 10.3 as a model, illustrate the result of each operation in

the sequence ENQUEUE(Q, 4), ENQUEUE(Q, 1), ENQUEUE(Q, 3),

DEQUEUE(Q), ENQUEUE(Q, 8), and DEQUEUE(Q) on an initially

empty queue Q stored in array Q[1 : 6].

10.1-5

Rewrite ENQUEUE and DEQUEUE to detect underflow and overflow

of a queue.

10.1-6

Whereas a stack allows insertion and deletion of elements at only one

end, and a queue allows insertion at one end and deletion at the other

end, a deque (double-ended queue, pronounced like “deck”) allows

insertion and deletion at both ends. Write four O(1)-time procedures to

insert elements into and delete elements from both ends of a deque

implemented by an array.

10.1-7

Show how to implement a queue using two stacks. Analyze the running

time of the queue operations.
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10.1-8

Show how to implement a stack using two queues. Analyze the running

time of the stack operations.

10.2    Linked lists

A linked list is a data structure in which the objects are arranged in a

linear order. Unlike an array, however, in which the linear order is

determined by the array indices, the order in a linked list is determined

by a pointer in each object. Since the elements of linked lists often

contain keys that can be searched for, linked lists are sometimes called

search lists. Linked lists provide a simple, flexible representation for

dynamic sets, supporting (though not necessarily efficiently) all the

operations listed on page 250.

As shown in Figure 10.4, each element of a doubly linked list L is an

object with an attribute key and two pointer attributes: next and prev.

The object may also contain other satellite data. Given an element x in

the list, x.next points to its successor in the linked list, and x.prev points

to its predecessor. If x.prev = NIL, the element x has no predecessor

and is therefore the first element, or head, of the list. If x.next = NIL,

the element x has no successor and is therefore the last element, or tail,

of the list. An attribute L.head points to the first element of the list. If

L.head = NIL, the list is empty.
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Figure 10.4 (a) A doubly linked list L representing the dynamic set {1, 4, 9, 16}. Each element in

the list is an object with attributes for the key and pointers (shown by arrows) to the next and

previous objects. The next attribute of the tail and the prev attribute of the head are NIL,

indicated by a diagonal slash. The attribute L.head points to the head. (b) Following the

execution of LIST-PREPEND(L, x), where x.key = 25, the linked list has an object with key 25

as the new head. This new object points to the old head with key 9. (c) The result of calling

LIST-INSERT(x, y), where x.key = 36 and y points to the object with key 9. (d) The result of

the subsequent call LIST-DELETE(L, x), where x points to the object with key 4.

A list may have one of several forms. It may be either singly linked or

doubly linked, it may be sorted or not, and it may be circular or not. If

a list is singly linked, each element has a next pointer but not a prev

pointer. If a list is sorted, the linear order of the list corresponds to the

linear order of keys stored in elements of the list. The minimum element

is then the head of the list, and the maximum element is the tail. If the

list is unsorted, the elements can appear in any order. In a circular list,

the prev pointer of the head of the list points to the tail, and the next

pointer of the tail of the list points to the head. You can think of a

circular list as a ring of elements. In the remainder of this section, we

assume that the lists we are working with are unsorted and doubly

linked.

Searching a linked list

The procedure LIST-SEARCH(L, k) finds the first element with key k

in list L by a simple linear search, returning a pointer to this element. If

no object with key k appears in the list, then the procedure returns NIL.

For the linked list in Figure 10.4(a), the call LIST-SEARCH(L, 4)
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returns a pointer to the third element, and the call LIST-SEARCH(L,

7) returns NIL. To search a list of n objects, the LIST-SEARCH

procedure takes Θ(n) time in the worst case, since it may have to search

the entire list.

LIST-SEARCH(L, k)

1 x = L.head

2 while x ≠ NIL and x.key ≠ k

3 x = x.next

4 return x

Inserting into a linked list

Given an element x whose key attribute has already been set, the LIST-

PREPEND procedure adds x to the front of the linked list, as shown in

Figure 10.4(b). (Recall that our attribute notation can cascade, so that

L.head.prev denotes the prev attribute of the object that L.head points

to.) The running time for LIST-PREPEND on a list of n elements is

O(1).

LIST-PREPEND(L, x)

1 x.next = L.head

2 x.prev = NIL

3 if L.head ≠ NIL

4 L.head.prev = x

5 L.head = x

You can insert anywhere within a linked list. As Figure 10.4(c)

shows, if you have a pointer y to an object in the list, the LIST-INSERT

procedure on the facing page “splices” a new element x into the list,

immediately following y, in O(1) time. Since LIST-INSERT never

references the list object L, it is not supplied as a parameter.

LIST-INSERT(x, y)
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1 x.next = y.next

2 x.prev = y

3 if y.next ≠ NIL

4 y.next.prev = x

5 y.next = x

Deleting from a linked list

The procedure LIST-DELETE removes an element x from a linked list

L. It must be given a pointer to x, and it then “‘splices” x out of the list

by updating pointers. To delete an element with a given key, first call

LIST-SEARCH to retrieve a pointer to the element. Figure 10.4(d)

shows how an element is deleted from a linked list. LIST-DELETE runs

in O(1) time, but to delete an element with a given key, the call to LIST-

SEARCH makes the worst-case running time be Θ(n).

LIST-DELETE(L, x)

1 if x.prev ≠ NIL

2 x.prev.next = x.next

3 else L.head = x.next

4 if x.next ≠ NIL

5 x.next.prev = x.prev

Insertion and deletion are faster operations on doubly linked lists

than on arrays. If you want to insert a new first element into an array or

delete the first element in an array, maintaining the relative order of all

the existing elements, then each of the existing elements needs to be

moved by one position. In the worst case, therefore, insertion and

deletion take Θ(n) time in an array, compared with O(1) time for a

doubly linked list. (Exercise 10.2-1 asks you to show that deleting an

element from a singly linked list takes Θ(n) time in the worst case.) If,

however, you want to find the kth element in the linear order, it takes

just O(1) time in an array regardless of k, but in a linked list, you’d have

to traverse k elements, taking Θ(k) time.
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Sentinels

The code for LIST-DELETE is simpler if you ignore the boundary

conditions at the head and tail of the list:

Figure 10.5 A circular, doubly linked list with a sentinel. The sentinel L.nil, in blue, appears

between the head and tail. The attribute L.head is no longer needed, since the head of the list is

L.nil.next. (a) An empty list. (b) The linked list from Figure 10.4(a), with key 9 at the head and

key 1 at the tail. (c) The list after executing LIST-INSERT′ (x, L.nil), where x.key = 25. The new

object becomes the head of the list. (d) The list after deleting the object with key 1. The new tail

is the object with key 4. (e) The list after executing LIST-INSERT′ (x, y), where x.key = 36 and

y points to the object with key 9.

LIST-DELETE′ (x)

1x.prev.next = x.next

2x.next.prev = x.prev

A sentinel is a dummy object that allows us to simplify boundary

conditions. In a linked list L, the sentinel is an object L.nil that

represents NIL but has all the attributes of the other objects in the list.

References to NIL are replaced by references to the sentinel L.nil. As

shown in Figure 10.5, this change turns a regular doubly linked list into

a circular, doubly linked list with a sentinel, in which the sentinel L.nil

lies between the head and tail. The attribute L.nil.next points to the

head of the list, and L.nil.prev points to the tail. Similarly, both the next
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attribute of the tail and the prev attribute of the head point to L.nil.

Since L.nil.next points to the head, the attribute L.head is eliminated

altogether, with references to it replaced by references to L.nil.next.

Figure 10.5(a) shows that an empty list consists of just the sentinel, and

both L.nil.next and L.nil.prev point to L.nil.

To delete an element from the list, just use the two-line procedure

LIST-DELETE′ from before. Just as LIST-INSERT never references

the list object L, neither does LIST-DELETE′. You should never delete

the sentinel L.nil unless you are deleting the entire list!

The LIST-INSERT′ procedure inserts an element x into the list

following object y. No separate procedure for prepending is necessary:

to insert at the head of the list, let y be L.nil; and to insert at the tail, let

y be L.nil.prev. Figure 10.5 shows the effects of LIST-INSERT′ and

LIST-DELETE′ on a sample list.

LIST-INSERT′ (x, y)

1x.next = y.next

2x.prev = y

3y.next.prev = x

4y.next = x

Searching a circular, doubly linked list with a sentinel has the same

asymptotic running time as without a sentinel, but it is possible to

decrease the constant factor. The test in line 2 of LIST-SEARCH makes

two comparisons: one to check whether the search has run off the end

of the list and, if not, one to check whether the key resides in the current

element x. Suppose that you know that the key is somewhere in the list.

Then you do not need to check whether the search runs off the end of

the list, thereby eliminating one comparison in each iteration of the

while loop.

The sentinel provides a place to put the key before starting the

search. The search starts at the head L.nil.next of list L, and it stops if it

finds the key somewhere in the list. Now the search is guaranteed to find

the key, either in the sentinel or before reaching the sentinel. If the key is

found before reaching the sentinel, then it really is in the element where
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the search stops. If, however, the search goes through all the elements in

the list and finds the key only in the sentinel, then the key is not really in

the list, and the search returns NIL. The procedure LIST-SEARCH′
embodies this idea. (If your sentinel requires its key attribute to be NIL,

then you might want to assign L.nil.key = NIL before line 5.)

LIST-SEARCH′ (L, k)

1 L.nil.key = k // store the key in the sentinel to guarantee it is in list

2 x = L.nil.next // start at the head of the list

3 while x.key ≠ k

4 x = x.next

5 if x == L.nil // found k in the sentinel

6 return NIL // k was not really in the list

7 else return x // found k in element x

Sentinels often simplify code and, as in searching a linked list, they

might speed up code by a small constant factor, but they don’t typically

improve the asymptotic running time. Use them judiciously. When there

are many small lists, the extra storage used by their sentinels can

represent significant wasted memory. In this book, we use sentinels only

when they significantly simplify the code.

Exercises

10.2-1

Explain why the dynamic-set operation INSERT on a singly linked list

can be implemented in O(1) time, but the worst-case time for DELETE

is Θ(n).

10.2-2

Implement a stack using a singly linked list. The operations PUSH and

POP should still take O(1) time. Do you need to add any attributes to

the list?

10.2-3
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Implement a queue using a singly linked list. The operations

ENQUEUE and DEQUEUE should still take O(1) time. Do you need

to add any attributes to the list?

10.2-4

The dynamic-set operation UNION takes two disjoint sets S1 and S2 as

input, and it returns a set S = S1 ⋃ S2 consisting of all the elements of

S1 and S2. The sets S1 and S2 are usually destroyed by the operation.

Show how to support UNION in O(1) time using a suitable list data

structure.

10.2-5

Give a Θ(n)-time nonrecursive procedure that reverses a singly linked

list of n elements. The procedure should use no more than constant

storage beyond that needed for the list itself.

★ 10.2-6

Explain how to implement doubly linked lists using only one pointer

value x.np per item instead of the usual two (next and prev). Assume

that all pointer values can be interpreted as k-bit integers, and define

x.np = x.next XOR x.prev, the k-bit “exclusive-or” of x.next and x.prev.

The value NIL is represented by 0. Be sure to describe what information

you need to access the head of the list. Show how to implement the

SEARCH, INSERT, and DELETE operations on such a list. Also show

how to reverse such a list in O(1) time.

10.3    Representing rooted trees

Linked lists work well for representing linear relationships, but not all

relationships are linear. In this section, we look specifically at the

problem of representing rooted trees by linked data structures. We first

look at binary trees, and then we present a method for rooted trees in

which nodes can have an arbitrary number of children.

We represent each node of a tree by an object. As with linked lists,

we assume that each node contains a key attribute. The remaining
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attributes of interest are pointers to other nodes, and they vary

according to the type of tree.

Binary trees

Figure 10.6 shows how to use the attributes p, left, and right to store

pointers to the parent, left child, and right child of each node in a

binary tree T. If x.p = NIL, then x is the root. If node x has no left

child, then x.left = NIL, and similarly for the right child. The root of

the entire tree T is pointed to by the attribute T.root. If T.root = NIL,

then the tree is empty.

Rooted trees with unbounded branching

It’s simple to extend the scheme for representing a binary tree to any

class of trees in which the number of children of each node is at most

some constant k: replace the left and right attributes by child1, child2, …

, childk. This scheme no longer works when the number of children of a

node is unbounded, however, since we do not know how many

attributes to allocate in advance. Moreover, if k, the number of children,

is bounded by a large constant but most nodes have a small number of

children, we may waste a lot of memory.

Fortunately, there is a clever scheme to represent trees with arbitrary

numbers of children. It has the advantage of using only O(n) space for

any n-node rooted tree. The left-child, right-sibling representation

appears in Figure 10.7. As before, each node contains a parent pointer

p, and T.root points to the root of tree T. Instead of having a pointer to

each of its children, however, each node x has only two pointers:

1. x.left-child points to the leftmost child of node x, and

2. x.right-sibling points to the sibling of x immediately to its right.

If node x has no children, then x.left-child = NIL, and if node x is the

rightmost child of its parent, then x.right-sibling = NIL.
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Figure 10.6 The representation of a binary tree T. Each node x has the attributes x.p (top), x.left

(lower left), and x.right (lower right). The key attributes are not shown.

Figure 10.7 The left-child, right-sibling representation of a tree T. Each node x has attributes x.p

(top), x.left-child (lower left), and x.right-sibling (lower right). The key attributes are not shown.

Other tree representations
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We sometimes represent rooted trees in other ways. In Chapter 6, for

example, we represented a heap, which is based on a complete binary

tree, by a single array along with an attribute giving the index of the last

node in the heap. The trees that appear in Chapter 19 are traversed only

toward the root, and so only the parent pointers are present: there are

no pointers to children. Many other schemes are possible. Which

scheme is best depends on the application.

Exercises

10.3-1

Draw the binary tree rooted at index 6 that is represented by the

following attributes:

index key left right

1 17 8 9

2 14 NIL NIL

3 12 NIL NIL

4 20 10 NIL

5 33 2 NIL

6 15 1 4

7 28 NIL NIL

8 22 NIL NIL

9 13 3 7

10 25 NIL 5

10.3-2

Write an O(n)-time recursive procedure that, given an n-node binary

tree, prints out the key of each node in the tree.

10.3-3

Write an O(n)-time nonrecursive procedure that, given an n-node binary

tree, prints out the key of each node in the tree. Use a stack as an

auxiliary data structure.

10.3-4

www.konkur.in

Telegram: @uni_k



Write an O(n)-time procedure that prints out all the keys of an arbitrary

rooted tree with n nodes, where the tree is stored using the left-child,

right-sibling representation.

★ 10.3-5

Write an O(n)-time nonrecursive procedure that, given an n-node binary

tree, prints out the key of each node. Use no more than constant extra

space outside of the tree itself and do not modify the tree, even

temporarily, during the procedure.

★ 10.3-6

The left-child, right-sibling representation of an arbitrary rooted tree

uses three pointers in each node: left-child, right-sibling, and parent.

From any node, its parent can be accessed in constant time and all its

children can be accessed in time linear in the number of children. Show

how to use only two pointers and one boolean value in each node x so

that x’s parent or all of x’s children can be accessed in time linear in the

number of x’s children.

Problems

10-1     Comparisons among lists

For each of the four types of lists in the following table, what is the

asymptotic worst-case running time for each dynamic-set operation

listed?

 
unsorted,

singly linked

sorted,

singly

linked

unsorted,

doubly linked

sorted,

doubly

linked

SEARCH

INSERT

DELETE

SUCCESSOR

PREDECESSOR
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MINIMUM

MAXIMUM

10-2     Mergeable heaps using linked lists

A mergeable heap supports the following operations: MAKE-HEAP

(which creates an empty mergeable heap), INSERT, MINIMUM,

EXTRACT-MIN, and UNION.1  Show how to implement mergeable

heaps using linked lists in each of the following cases. Try to make each

operation as efficient as possible. Analyze the running time of each

operation in terms of the size of the dynamic set(s) being operated on.

a. Lists are sorted.

b. Lists are unsorted.

c. Lists are unsorted, and dynamic sets to be merged are disjoint.

10-3     Searching a sorted compact list

We can represent a singly linked list with two arrays, key and next.

Given the index i of an element, its value is stored in key[i], and the

index of its successor is given by next[i], where next[i] = NIL for the last

element. We also need the index head of the first element in the list. An

n-element list stored in this way is compact if it is stored only in

positions 1 through n of the key and next arrays.

Let’s assume that all keys are distinct and that the compact list is

also sorted, that is, key[i] < key[next[i]] for all i = 1, 2, … , n such that

next[i] ≠ NIL. Under these assumptions, you will show that the

randomized algorithm COMPACT-LIST-SEARCH searches the list for

key k in  expected time.

COMPACT-LIST-SEARCH(key, next, head, n, k)

  1 i = head

  2while i ≠ NIL and key[i] < k

  3 j = RANDOM(1, n)

  4 if key[i] < key[j] and key[j] ≤ k

  5 i = j
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  6 if key[i] == k

  7 return i

  8 i = next[i]

  9 if i == NIL or key[i] > k

10 return NIL

11else return i

If you ignore lines 3–7 of the procedure, you can see that it’s an

ordinary algorithm for searching a sorted linked list, in which index i

points to each position of the list in turn. The search terminates once

the index i “falls off” the end of the list or once key[i] ≥ k. In the latter

case, if key[i] = k, the procedure has found a key with the value k. If,

however, key[i] > k, then the search will never find a key with the value

k, so that terminating the search was the correct action.

Lines 3–7 attempt to skip ahead to a randomly chosen position j.

Such a skip helps if key[j] is larger than key[i] and no larger than k. In

such a case, j marks a position in the list that i would reach during an

ordinary list search. Because the list is compact, we know that any

choice of j between 1 and n indexes some element in the list.

Instead of analyzing the performance of COMPACT-LIST-

SEARCH directly, you will analyze a related algorithm, COMPACT-

LIST-SEARCH, which executes two separate loops. This algorithm

takes an additional parameter t, which specifies an upper bound on the

number of iterations of the first loop.

COMPACT-LIST-SEARCH′ (key, next, head, n, k, t)

  1 i = head

  2 for q = 1 to t

  3 j = RANDOM(1, n)

  4 if key[i] < key[j] and key[j] ≤ k

  5 i = j

  6 if key[i] == k

  7 return i

  8while i ≠ NIL and key[i] < k

  9 i = next[i]
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10 if i == NIL or key[i] > k

11 return NIL

12else return i

To compare the execution of the two algorithms, assume that the

sequence of calls of RANDOM(1, n) yields the same sequence of

integers for both algorithms.

a. Argue that for any value of t, COMPACT-LIST-SEARCH(key, next,

head, n, k) and COMPACT-LIST-SEARCH′ (key, next, head, n, k, t)

return the same result and that the number of iterations of the while

loop of lines 2–8 in COMPACT-LIST-SEARCH is at most the total

number of iterations of both the for and while loops in COMPACT-

LIST-SEARCH′.

In the call COMPACT-LIST-SEARCH′ (key, next, head, n, k, t), let Xt

be the random variable that describes the distance in the linked list (that

is, through the chain of next pointers) from position i to the desired key

k after t iterations of the for loop of lines 2–7 have occurred.

b. Argue that COMPACT-LIST-SEARCH′ (key, next, head, n, k, t) has

an expected running time of O(t + E [Xt]).

c. Show that . (Hint: Use equation (C.28) on page

1193.)

d. Show that . (Hint: Use inequality (A.18) on page

1150.)

e. Prove that E [Xt] ≤ n/(t + 1).

f. Show that COMPACT-LIST-SEARCH′ (key, next, head, n, k, t) has

an expected running time of O(t + n/t).

g. Conclude that COMPACT-LIST-SEARCH runs in  expected

time.

h. Why do we assume that all keys are distinct in COMPACT-LIST-

SEARCH? Argue that random skips do not necessarily help
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asymptotically when the list contains repeated key values.

Chapter notes

Aho, Hopcroft, and Ullman [6] and Knuth [259] are excellent references

for elementary data structures. Many other texts cover both basic data

structures and their implementation in a particular programming

language. Examples of these types of textbooks include Goodrich and

Tamassia [196], Main [311], Shaffer [406], and Weiss [452, 453, 454]. The

book by Gonnet and Baeza-Yates [193] provides experimental data on

the performance of many data-structure operations.

The origin of stacks and queues as data structures in computer

science is unclear, since corresponding notions already existed in

mathematics and paper-based business practices before the introduction

of digital computers. Knuth [259] cites A. M. Turing for the

development of stacks for subroutine linkage in 1947.

Pointer-based data structures also seem to be a folk invention.

According to Knuth, pointers were apparently used in early computers

with drum memories. The A-1 language developed by G. M. Hopper in

1951 represented algebraic formulas as binary trees. Knuth credits the

IPL-II language, developed in 1956 by A. Newell, J. C. Shaw, and H. A.

Simon, for recognizing the importance and promoting the use of

pointers. Their IPL-III language, developed in 1957, included explicit

stack operations.

1 Because we have defined a mergeable heap to support MINIMUM and EXTRACT-MIN, we

can also refer to it as a mergeable min-heap. Alternatively, if it supports MAXIMUM and

EXTRACT-MAX, it is a mergeable max-heap.
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11        Hash Tables

Many applications require a dynamic set that supports only the

dictionary operations INSERT, SEARCH, and DELETE. For example,

a compiler that translates a programming language maintains a symbol

table, in which the keys of elements are arbitrary character strings

corresponding to identifiers in the language. A hash table is an effective

data structure for implementing dictionaries. Although searching for an

element in a hash table can take as long as searching for an element in a

linked list—Θ(n) time in the worst case—in practice, hashing performs

extremely well. Under reasonable assumptions, the average time to

search for an element in a hash table is O(1). Indeed, the built-in

dictionaries of Python are implemented with hash tables.

A hash table generalizes the simpler notion of an ordinary array.

Directly addressing into an ordinary array takes advantage of the O(1)

access time for any array element. Section 11.1 discusses direct

addressing in more detail. To use direct addressing, you must be able to

allocate an array that contains a position for every possible key.

When the number of keys actually stored is small relative to the total

number of possible keys, hash tables become an effective alternative to

directly addressing an array, since a hash table typically uses an array of

size proportional to the number of keys actually stored. Instead of using

the key as an array index directly, we compute the array index from the

key. Section 11.2 presents the main ideas, focusing on “chaining” as a

way to handle “collisions,” in which more than one key maps to the

same array index. Section 11.3 describes how to compute array indices

from keys using hash functions. We present and analyze several
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variations on the basic theme. Section 11.4 looks at “open addressing,”

which is another way to deal with collisions. The bottom line is that

hashing is an extremely effective and practical technique: the basic

dictionary operations require only O(1) time on the average. Section

11.5 discusses the hierarchical memory systems of modern computer

systems have and illustrates how to design hash tables that work well in

such systems.

11.1    Direct-address tables

Direct addressing is a simple technique that works well when the

universe U of keys is reasonably small. Suppose that an application

needs a dynamic set in which each element has a distinct key drawn

from the universe U = {0, 1, …, m − 1}, where m is not too large.

To represent the dynamic set, you can use an array, or direct-address

table, denoted by T[0 : m − 1], in which each position, or slot,

corresponds to a key in the universe U. Figure 11.1 illustrates this

approach. Slot k points to an element in the set with key k. If the set

contains no element with key k, then T[k] = NIL.

The dictionary operations DIRECT-ADDRESS-SEARCH,

DIRECT-ADDRESS-INSERT, and DIRECT-ADDRESS-DELETE

on the following page are trivial to implement. Each takes only O(1)

time.

For some applications, the direct-address table itself can hold the

elements in the dynamic set. That is, rather than storing an element’s

key and satellite data in an object external to the direct-address table,

with a pointer from a slot in the table to the object, save space by

storing the object directly in the slot. To indicate an empty slot, use a

special key. Then again, why store the key of the object at all? The index

of the object is its key! Of course, then you’d need some way to tell

whether slots are empty.
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Figure 11.1 How to implement a dynamic set by a direct-address table T. Each key in the

universe U = {0, 1, …, 9} corresponds to an index into the table. The set K = {2, 3, 5, 8} of

actual keys determines the slots in the table that contain pointers to elements. The other slots, in

blue, contain NIL.

DIRECT-ADDRESS-SEARCH(T, k)

1return T[k]

DIRECT-ADDRESS-INSERT(T, x)

1T[x.key] = x

DIRECT-ADDRESS-DELETE(T, x)

1T[x.key] = NIL

Exercises

11.1-1

A dynamic set S is represented by a direct-address table T of length m.

Describe a procedure that finds the maximum element of S. What is the

worst-case performance of your procedure?

11.1-2

A bit vector is simply an array of bits (each either 0 or 1). A bit vector of

length m takes much less space than an array of m pointers. Describe
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how to use a bit vector to represent a dynamic set of distinct elements

drawn from the set {0, 1, …, m − 1} and with no satellite data.

Dictionary operations should run in O(1) time.

11.1-3

Suggest how to implement a direct-address table in which the keys of

stored elements do not need to be distinct and the elements can have

satellite data. All three dictionary operations (INSERT, DELETE, and

SEARCH) should run in O(1) time. (Don’t forget that DELETE takes

as an argument a pointer to an object to be deleted, not a key.)

★ 11.1-4

Suppose that you want to implement a dictionary by using direct

addressing on a huge array. That is, if the array size is m and the

dictionary contains at most n elements at any one time, then m ≫ n. At

the start, the array entries may contain garbage, and initializing the

entire array is impractical because of its size. Describe a scheme for

implementing a direct-address dictionary on a huge array. Each stored

object should use O(1) space; the operations SEARCH, INSERT, and

DELETE should take O(1) time each; and initializing the data structure

should take O(1) time. (Hint: Use an additional array, treated somewhat

like a stack whose size is the number of keys actually stored in the

dictionary, to help determine whether a given entry in the huge array is

valid or not.)

11.2    Hash tables

The downside of direct addressing is apparent: if the universe U is large

or infinite, storing a table T of size |U| may be impractical, or even

impossible, given the memory available on a typical computer.

Furthermore, the set K of keys actually stored may be so small relative

to U that most of the space allocated for T would be wasted.

When the set K of keys stored in a dictionary is much smaller than

the universe U of all possible keys, a hash table requires much less

storage than a direct-address table. Specifically, the storage requirement
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reduces to Θ(|K|) while maintaining the benefit that searching for an

element in the hash table still requires only O(1) time. The catch is that

this bound is for the average-case time,1 whereas for direct addressing it

holds for the worst-case time.

With direct addressing, an element with key k is stored in slot k, but

with hashing, we use a hash function h to compute the slot number from

the key k, so that the element goes into slot h(k). The hash function h

maps the universe U of keys into the slots of a hash table T[0 : m − 1]:

h : U → {0, 1, …, m − 1},

where the size m of the hash table is typically much less than |U|. We say

that an element with key k hashes to slot h(k), and we also say that h(k)

is the hash value of key k. Figure 11.2 illustrates the basic idea. The hash

function reduces the range of array indices and hence the size of the

array. Instead of a size of |U|, the array can have size m. An example of a

simple, but not particularly good, hash function is h(k) = k mod m.

There is one hitch, namely that two keys may hash to the same slot.

We call this situation a collision. Fortunately, there are effective

techniques for resolving the conflict created by collisions.

Of course, the ideal solution is to avoid collisions altogether. We

might try to achieve this goal by choosing a suitable hash function h.

One idea is to make h appear to be “random,” thus avoiding collisions

or at least minimizing their number. The very term “to hash,” evoking

images of random mixing and chopping, captures the spirit of this

approach. (Of course, a hash function h must be deterministic in that a

given input k must always produce the same output h(k).) Because |U| >

m, however, there must be at least two keys that have the same hash

value, and avoiding collisions altogether is impossible. Thus, although a

well-designed, “random”-looking hash function can reduce the number

of collisions, we still need a method for resolving the collisions that do

occur.
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Figure 11.2 Using a hash function h to map keys to hash-table slots. Because keys k2 and k5

map to the same slot, they collide.

The remainder of this section first presents a definition of

“independent uniform hashing,” which captures the simplest notion of

what it means for a hash function to be “random.” It then presents and

analyzes the simplest collision resolution technique, called chaining.

Section 11.4 introduces an alternative method for resolving collisions,

called open addressing.

Independent uniform hashing

An “ideal” hashing function h would have, for each possible input k in

the domain U, an output h(k) that is an element randomly and

independently chosen uniformly from the range {0, 1, …, m − 1}. Once

a value h(k) is randomly chosen, each subsequent call to h with the same

input k yields the same output h(k).

We call such an ideal hash function an independent uniform hash

function. Such a function is also often called a random oracle [43]. When

hash tables are implemented with an independent uniform hash

function, we say we are using independent uniform hashing.

Independent uniform hashing is an ideal theoretical abstraction, but

it is not something that can reasonably be implemented in practice.

Nonetheless, we’ll analyze the efficiency of hashing under the
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assumption of independent uniform hashing and then present ways of

achieving useful practical approximations to this ideal.

Figure 11.3 Collision resolution by chaining. Each nonempty hash-table slot T[j] points to a

linked list of all the keys whose hash value is j. For example, h(k1) = h(k4) and h(k5) = h(k2) =

h(k7). The list can be either singly or doubly linked. We show it as doubly linked because

deletion may be faster that way when the deletion procedure knows which list element (not just

which key) is to be deleted.

Collision resolution by chaining

At a high level, you can think of hashing with chaining as a

nonrecursive form of divide-and-conquer: the input set of n elements is

divided randomly into m subsets, each of approximate size n/m. A hash

function determines which subset an element belongs to. Each subset is

managed independently as a list.

Figure 11.3 shows the idea behind chaining: each nonempty slot

points to a linked list, and all the elements that hash to the same slot go

into that slot’s linked list. Slot j contains a pointer to the head of the list

of all stored elements with hash value j. If there are no such elements,

then slot j contains NIL.

When collisions are resolved by chaining, the dictionary operations

are straightforward to implement. They appear on the next page and

use the linked-list procedures from Section 10.2. The worst-case running

time for insertion is O(1). The insertion procedure is fast in part because
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it assumes that the element x being inserted is not already present in the

table. To enforce this assumption, you can search (at additional cost) for

an element whose key is x.key before inserting. For searching, the worst-

case running time is proportional to the length of the list. (We’ll analyze

this operation more closely below.) Deletion takes O(1) time if the lists

are doubly linked, as in Figure 11.3. (Since CHAINED-HASH-

DELETE takes as input an element x and not its key k, no search is

needed. If the hash table supports deletion, then its linked lists should

be doubly linked in order to delete an item quickly. If the lists were only

singly linked, then by Exercise 10.2-1, deletion could take time

proportional to the length of the list. With singly linked lists, both

deletion and searching would have the same asymptotic running times.)

CHAINED-HASH-INSERT(T, x)

1 LIST-PREPEND(T[h(x.key)], x)

CHAINED-HASH-SEARCH(T, k)

1 return LIST-SEARCH(T[h(k)], k)

CHAINED-HASH-DELETE(T, x)

1 LIST-DELETE(T[h(x.key)], x)

Analysis of hashing with chaining

How well does hashing with chaining perform? In particular, how long

does it take to search for an element with a given key?

Given a hash table T with m slots that stores n elements, we define

the load factor α for T as n/m, that is, the average number of elements

stored in a chain. Our analysis will be in terms of α, which can be less

than, equal to, or greater than 1.

The worst-case behavior of hashing with chaining is terrible: all n

keys hash to the same slot, creating a list of length n. The worst-case

time for searching is thus Θ(n) plus the time to compute the hash

function—no better than using one linked list for all the elements. We

clearly don’t use hash tables for their worst-case performance.
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The average-case performance of hashing depends on how well the

hash function h distributes the set of keys to be stored among the m

slots, on the average (meaning with respect to the distribution of keys to

be hashed and with respect to the choice of hash function, if this choice

is randomized). Section 11.3 discusses these issues, but for now we

assume that any given element is equally likely to hash into any of the m

slots. That is, the hash function is uniform. We further assume that

where a given element hashes to is independent of where any other

elements hash to. In other words, we assume that we are using

independent uniform hashing.

Because hashes of distinct keys are assumed to be independent,

independent uniform hashing is universal: the chance that any two

distinct keys k1 and k2 collide is at most 1/m. Universality is important

in our analysis and also in the specification of universal families of hash

functions, which we’ll see in Section 11.3.2.

For j = 0, 1, …, m − 1, denote the length of the list T[j] by nj, so that

and the expected value of nj is E[nj] = α = n/m.

We assume that O(1) time suffices to compute the hash value h(k), so

that the time required to search for an element with key k depends

linearly on the length nh(k) of the list T[h(k)]. Setting aside the O(1)

time required to compute the hash function and to access slot h(k), we’ll

consider the expected number of elements examined by the search

algorithm, that is, the number of elements in the list T[h(k)] that the

algorithm checks to see whether any have a key equal to k. We consider

two cases. In the first, the search is unsuccessful: no element in the table

has key k. In the second, the search successfully finds an element with

key k.

Theorem 11.1

In a hash table in which collisions are resolved by chaining, an

unsuccessful search takes Θ(1 + α) time on average, under the

assumption of independent uniform hashing.
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Proof   Under the assumption of independent uniform hashing, any key

k not already stored in the table is equally likely to hash to any of the m

slots. The expected time to search unsuccessfully for a key k is the

expected time to search to the end of list T[h(k)], which has expected

length E[nh(k)] = α. Thus, the expected number of elements examined in

an unsuccessful search is α, and the total time required (including the

time for computing h(k)) is Θ(1 + α).

▪

The situation for a successful search is slightly different. An

unsuccessful search is equally likely to go to any slot of the hash table. A

successful search, however, cannot go to an empty slot, since it is for an

element that is present in one of the linked lists. We assume that the

element searched for is equally likely to be any one of the elements in

the table, so the longer the list, the more likely that the search is for one

of its elements. Even so, the expected search time still turns out to be

Θ(1 + α).

Theorem 11.2

In a hash table in which collisions are resolved by chaining, a successful

search takes Θ(1 + α) time on average, under the assumption of

independent uniform hashing.

Proof     We assume that the element being searched for is equally likely

to be any of the n elements stored in the table. The number of elements

examined during a successful search for an element x is 1 more than the

number of elements that appear before x in x’s list. Because new

elements are placed at the front of the list, elements before x in the list

were all inserted after x was inserted. Let xi denote the ith element

inserted into the table, for i = 1, 2, …, n, and let ki = xi.key.

Our analysis uses indicator random variables extensively. For each

slot q in the table and for each pair of distinct keys ki and kj, we define

the indicator random variable

Xijq = I {the search is for xi, h(ki) = q, and h(kj) = q}.
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That is, Xijq = 1 when keys ki and kj collide at slot q and the search is

for element xi. Because Pr{the search is for xi} = 1/n, Pr{h(ki) = q} =

1/m, Pr{h(kj) = q} = 1/m, and these events are all independent, we have

that Pr{Xijq = 1} = 1/nm2. Lemma 5.1 on page 130 gives E[Xijq] =

1/nm2.

Next, we define, for each element xj, the indicator random variable

Yj = I {xj appears in a list prior to the element being searched for}

=
,

since at most one of the Xijq equals 1, namely when the element xi being

searched for belongs to the same list as xj (pointed to by slot q), and i <

j (so that xi appears after xj in the list).

Our final random variable is Z, which counts how many elements

appear in the list prior to the element being searched for:

Because we must count the element being searched for as well as all

those preceding it in its list, we wish to compute E[Z + 1]. Using

linearity of expectation (equation (C.24) on page 1192), we have
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Thus, the total time required for a successful search (including the time

for computing the hash function) is Θ(2 + α/2 − α/2n) = Θ(1 + α).

▪

What does this analysis mean? If the number of elements in the table

is at most proportional to the number of hash-table slots, we have n =

O(m) and, consequently, α = n/m = O(m)/m = O(1). Thus, searching

takes constant time on average. Since insertion takes O(1) worst-case

time and deletion takes O(1) worst-case time when the lists are doubly

linked (assuming that the list element to be deleted is known, and not

just its key), we can support all dictionary operations in O(1) time on

average.

The analysis in the preceding two theorems depends only on two

essential properties of independent uniform hashing: uniformity (each

key is equally likely to hash to any one of the m slots), and

independence (so any two distinct keys collide with probability 1/m).

Exercises

11.2-1

You use a hash function h to hash n distinct keys into an array T of

length m. Assuming independent uniform hashing, what is the expected

number of collisions? More precisely, what is the expected cardinality of

{{k1, k2} : k1 ≠ k2 and h(k1) = h(k2)}?

11.2-2

Consider a hash table with 9 slots and the hash function h(k) = k mod 9.

Demonstrate what happens upon inserting the keys 5, 28, 19, 15, 20, 33,

12, 17, 10 with collisions resolved by chaining.

11.2-3

Professor Marley hypothesizes that he can obtain substantial

performance gains by modifying the chaining scheme to keep each list

in sorted order. How does the professor’s modification affect the

running time for successful searches, unsuccessful searches, insertions,

and deletions?
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11.2-4

Suggest how to allocate and deallocate storage for elements within the

hash table itself by creating a “free list”: a linked list of all the unused

slots. Assume that one slot can store a flag and either one element plus a

pointer or two pointers. All dictionary and free-list operations should

run in O(1) expected time. Does the free list need to be doubly linked, or

does a singly linked free list suffice?

11.2-5

You need to store a set of n keys in a hash table of size m. Show that if

the keys are drawn from a universe U with |U| > (n − 1)m, then U has a

subset of size n consisting of keys that all hash to the same slot, so that

the worst-case searching time for hashing with chaining is Θ(n).

11.2-6

You have stored n keys in a hash table of size m, with collisions resolved

by chaining, and you know the length of each chain, including the

length L of the longest chain. Describe a procedure that selects a key

uniformly at random from among the keys in the hash table and returns

it in expected time O(L · (1 + 1/α)).

11.3    Hash functions

For hashing to work well, it needs a good hash function. Along with

being efficiently computable, what properties does a good hash function

have? How do you design good hash functions?

This section first attempts to answer these questions based on two ad

hoc approaches for creating hash functions: hashing by division and

hashing by multiplication. Although these methods work well for some

sets of input keys, they are limited because they try to provide a single

fixed hash function that works well on any data—an approach called

static hashing.

We then see that provably good average-case performance for any

data can be obtained by designing a suitable family of hash functions

and choosing a hash function at random from this family at runtime,

independent of the data to be hashed. The approach we examine is
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called random hashing. A particular kind of random hashing, universal

hashing, works well. As we saw with quicksort in Chapter 7,

randomization is a powerful algorithmic design tool.

What makes a good hash function?

A good hash function satisfies (approximately) the assumption of

independent uniform hashing: each key is equally likely to hash to any

of the m slots, independently of where any other keys have hashed to.

What does “equally likely” mean here? If the hash function is fixed, any

probabilities would have to be based on the probability distribution of

the input keys.

Unfortunately, you typically have no way to check this condition,

unless you happen to know the probability distribution from which the

keys are drawn. Moreover, the keys might not be drawn independently.

Occasionally you might know the distribution. For example, if you

know that the keys are random real numbers k independently and

uniformly distributed in the range 0 ≤ k < 1, then the hash function

h(k) = ⌊km⌋

satisfies the condition of independent uniform hashing.

A good static hashing approach derives the hash value in a way that

you expect to be independent of any patterns that might exist in the

data. For example, the “division method” (discussed in Section 11.3.1)

computes the hash value as the remainder when the key is divided by a

specified prime number. This method may give good results, if you

(somehow) choose a prime number that is unrelated to any patterns in

the distribution of keys.

Random hashing, described in Section 11.3.2, picks the hash

function to be used at random from a suitable family of hashing

functions. This approach removes any need to know anything about the

probability distribution of the input keys, as the randomization

necessary for good average-case behavior then comes from the (known)

random process used to pick the hash function from the family of hash

functions, rather than from the (unknown) process used to create the

input keys. We recommend that you use random hashing.

www.konkur.in

Telegram: @uni_k



Keys are integers, vectors, or strings

In practice, a hash function is designed to handle keys that are one of

the following two types:

A short nonnegative integer that fits in a w-bit machine word.

Typical values for w would be 32 or 64.

A short vector of nonnegative integers, each of bounded size. For

example, each element might be an 8-bit byte, in which case the

vector is often called a (byte) string. The vector might be of

variable length.

To begin, we assume that keys are short nonnegative integers. Handling

vector keys is more complicated and discussed in Sections 11.3.5 and

11.5.2.

11.3.1    Static hashing

Static hashing uses a single, fixed hash function. The only

randomization available is through the (usually unknown) distribution

of input keys. This section discusses two standard approaches for static

hashing: the division method and the multiplication method. Although

static hashing is no longer recommended, the multiplication method

also provides a good foundation for “nonstatic” hashing—better known

as random hashing—where the hash function is chosen at random from

a suitable family of hash functions.

The division method

The division method for creating hash functions maps a key k into one of

m slots by taking the remainder of k divided by m. That is, the hash

function is

h(k) = k mod m.

For example, if the hash table has size m = 12 and the key is k = 100,

then h(k) = 4. Since it requires only a single division operation, hashing

by division is quite fast.
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The division method may work well when m is a prime not too close

to an exact power of 2. There is no guarantee that this method provides

good average-case performance, however, and it may complicate

applications since it constrains the size of the hash tables to be prime.

The multiplication method

The general multiplication method for creating hash functions operates

in two steps. First, multiply the key k by a constant A in the range 0 < A

< 1 and extract the fractional part of kA. Then, multiply this value by m

and take the floor of the result. That is, the hash function is

h(k) = ⌊m (kA mod 1)⌋,

where “kA mod 1” means the fractional part of kA, that is, kA − ⌊kA⌋.

The general multiplication method has the advantage that the value of

m is not critical and you can choose it independently of how you choose

the multiplicative constant A.

Figure 11.4 The multiply-shift method to compute a hash function. The w-bit representation of

the key k is multiplied by the w-bit value a = A · 2w. The ℓ highest-order bits of the lower w-bit

half of the product form the desired hash value ha(k).

The multiply-shift method

In practice, the multiplication method is best in the special case where

the number m of hash-table slots is an exact power of 2, so that m = 2ℓ

for some integer ℓ, where ℓ ≤ w and w is the number of bits in a machine
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word. If you choose a fixed w-bit positive integer a = A 2w, where 0 < A

< 1 as in the multiplication method so that a is in the range 0 < a < 2w,

you can implement the function on most computers as follows. We

assume that a key k fits into a single w-bit word.

Referring to Figure 11.4, first multiply k by the w-bit integer a. The

result is a 2w-bit value r12w + r0, where r1 is the high-order w-bit word

of the product and r0 is the low-order w-bit word of the product. The

desired ℓ -bit hash value consists of the ℓ  most significant bits of r0.

(Since r1 is ignored, the hash function can be implemented on a

computer that produces only a w-bit product given two w-bit inputs,

that is, where the multiplication operation computes modulo 2w.)

In other words, you define the hash function h = ha, where

for a fixed nonzero w-bit value a. Since the product ka of two w-bit

words occupies 2w bits, taking this product modulo 2w zeroes out the

high-order w bits (r1), leaving only the low-order w bits (r0). The ⋙

operator performs a logical right shift by w − ℓ bits, shifting zeros into

the vacated positions on the left, so that the ℓ most significant bits of r0

move into the ℓ rightmost positions. (It’s the same as dividing by 2w−ℓ

and taking the floor of the result.) The resulting value equals the ℓ most

significant bits of r0. The hash function ha can be implemented with

three machine instructions: multiplication, subtraction, and logical right

shift.

As an example, suppose that k = 123456, ℓ = 14, m = 214 = 16384,

and w = 32. Suppose further that we choose a = 2654435769 (following

a suggestion of Knuth [261]). Then ka = 327706022297664 = (76300 ·

232) + 17612864, and so r1 = 76300 and r0 = 17612864. The 14 most

significant bits of r0 yield the value ha(k) = 67.

Even though the multiply-shift method is fast, it doesn’t provide any

guarantee of good average-case performance. The universal hashing
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approach presented in the next section provides such a guarantee. A

simple randomized variant of the multiply-shift method works well on

the average, when the program begins by picking a as a randomly

chosen odd integer.

11.3.2    Random hashing

Suppose that a malicious adversary chooses the keys to be hashed by

some fixed hash function. Then the adversary can choose n keys that all

hash to the same slot, yielding an average retrieval time of Θ(n). Any

static hash function is vulnerable to such terrible worst-case behavior.

The only effective way to improve the situation is to choose the hash

function randomly in a way that is independent of the keys that are

actually going to be stored. This approach is called random hashing. A

special case of this approach, called universal hashing, can yield provably

good performance on average when collisions are handled by chaining,

no matter which keys the adversary chooses.

To use random hashing, at the beginning of program execution you

select the hash function at random from a suitable family of functions.

As in the case of quicksort, randomization guarantees that no single

input always evokes worst-case behavior. Because you randomly select

the hash function, the algorithm can behave differently on each

execution, even for the same set of keys to be hashed, guaranteeing

good average-case performance.

Let H be a finite family of hash functions that map a given universe

U of keys into the range {0, 1, …, m − 1}. Such a family is said to be

universal if for each pair of distinct keys k1, k2 ∈ U, the number of hash

functions h ∈ H for which h(k1) = h(k2) is at most |H|/m. In other

words, with a hash function randomly chosen from H, the chance of a

collision between distinct keys k1 and k2 is no more than the chance

1/m of a collision if h(k1) and h(k2) were randomly and independently

chosen from the set {0, 1, …, m − 1}.

Independent uniform hashing is the same as picking a hash function

uniformly at random from a family of mn hash functions, each member
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of that family mapping the n keys to the m hash values in a different

way.

Every independent uniform random family of hash function is

universal, but the converse need not be true: consider the case where U

= {0, 1, …, m − 1} and the only hash function in the family is the

identity function. The probability that two distinct keys collide is zero,

even though each key is hashes to a fixed value.

The following corollary to Theorem 11.2 on page 279 says that

universal hashing provides the desired payoff: it becomes impossible for

an adversary to pick a sequence of operations that forces the worst-case

running time.

Corollary 11.3

Using universal hashing and collision resolution by chaining in an

initially empty table with m slots, it takes Θ(s) expected time to handle

any sequence of s INSERT, SEARCH, and DELETE operations

containing n = O(m) INSERT operations.

Proof      The INSERT and DELETE operations take constant time.

Since the number n of insertions is O(m), we have that α = O(1).

Furthermore, the expected time for each SEARCH operation is O(1),

which can be seen by examining the proof of Theorem 11.2. That

analysis depends only on collision probabilities, which are 1/m for any

pair k1, k2 of keys by the choice of an independent uniform hash

function in that theorem. Using a universal family of hash functions

here instead of using independent uniform hashing changes the

probability of collision from 1/m to at most 1/m. By linearity of

expectation, therefore, the expected time for the entire sequence of s

operations is O(s). Since each operation takes Ω(1) time, the Θ(s) bound

follows.

▪

11.3.3    Achievable properties of random hashing

There is a rich literature on the properties a family H of hash functions

can have, and how they relate to the efficiency of hashing. We

summarize a few of the most interesting ones here.
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Let H be a family of hash functions, each with domain U and range

{0, 1, …, m − 1}, and let h be any hash function that is picked uniformly

at random from H. The probabilities mentioned are probabilities over

the picks of h.

The family H is uniform if for any key k in U and any slot q in the

range {0, 1, …, m − 1}, the probability that h(k) = q is 1/m.

The family H is universal if for any distinct keys k1 and k2 in U,

the probability that h(k1) = h(k2) is at most 1/m.

The family H of hash functions is ϵ-universal if for any distinct

keys k1 and k2 in U, the probability that h(k1) = h(k2) is at most

ϵ. Therefore, a universal family of hash functions is also 1/m-

universal.2

The family H is d-independent if for any distinct keys k1, k2, …,

kd in U and any slots q1, q2, …, qd, not necessarily distinct, in {0,

1, …, m − 1} the probability that h(ki) = qi for i = 1, 2, …, d is

1/md.

Universal hash-function families are of particular interest, as they are

the simplest type supporting provably efficient hash-table operations for

any input data set. Many other interesting and desirable properties, such

as those noted above, are also possible and allow for efficient specialized

hash-table operations.

11.3.4    Designing a universal family of hash functions

This section present two ways to design a universal (or ϵ-universal)

family of hash functions: one based on number theory and another

based on a randomized variant of the multiply-shift method presented

in Section 11.3.1. The first method is a bit easier to prove universal, but

the second method is newer and faster in practice.

A universal family of hash functions based on number theory
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We can design a universal family of hash functions using a little number

theory. You may wish to refer to Chapter 31 if you are unfamiliar with

basic concepts in number theory.

Begin by choosing a prime number p large enough so that every

possible key k lies in the range 0 to p − 1, inclusive. We assume here that

p has a “reasonable” length. (See Section 11.3.5 for a discussion of

methods for handling long input keys, such as variable-length strings.)

Let ℤp denote the set {0, 1, …, p − 1}, and let  denote the set {1, 2,

…, p − 1}. Since p is prime, we can solve equations modulo p with the

methods given in Chapter 31. Because the size of the universe of keys is

greater than the number of slots in the hash table (otherwise, just use

direct addressing), we have p > m.

Given any  and any b ∈ ℤp, define the hash function hab as a

linear transformation followed by reductions modulo p and then

modulo m:

For example, with p = 17 and m = 6, we have

h3,4(8) = ((3 · 8 + 4) mod 17) mod 6

= (28 mod 17) mod 6

= 11 mod 6

= 5.

Given p and m, the family of all such hash functions is

Each hash function hab maps ℤp to ℤm. This family of hash functions

has the nice property that the size m of the output range (which is the

size of the hash table) is arbitrary—it need not be prime. Since you can

choose from among p − 1 values for a and p values for b, the family

Hpm contains p(p − 1) hash functions.

Theorem 11.4
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The family Hpm of hash functions defined by equations (11.3) and

(11.4) is universal.

Proof   Consider two distinct keys k1 and k2 from ℤp, so that k1 ≠ k2.

For a given hash function hab, let

r1 = (ak1 + b) mod p,

r2 = (ak2 + b) mod p.

We first note that r1 ≠ r2. Why? Since we have r1 − r2 = a(k1 − k2) (mod

p), it follows that r1 ≠ r2 because p is prime and both a and (k1 − k2) are

nonzero modulo p. By Theorem 31.6 on page 908, their product must

also be nonzero modulo p. Therefore, when computing any hab ∈

Hpm, distinct inputs k1 and k2 map to distinct values r1 and r2

modulo p, and there are no collisions yet at the “mod p level.”

Moreover, each of the possible p(p − 1) choices for the pair (a, b) with a

≠ 0 yields a different resulting pair (r1, r2) with r1 ≠ r2, since we can

solve for a and b given r1 and r2:

a = ((r − r2)((k1 − k2)−1 mod p)) mod p,

b = (r1 − ak1) mod p,

where ((k1 − k2)−1 mod p) denotes the unique multiplicative inverse,

modulo p, of k1 − k2. For each of the p possible values of r1, there are

only p − 1 possible values of r2 that do not equal r1, making only p(p −

1) possible pairs (r1, r2) with r1 ≠ r2. Therefore, there is a one-to-one

correspondence between pairs (a, b) with a ≠ 0 and pairs (r1, r2) with r1

≠ r2. Thus, for any given pair of distinct inputs k1 and k2, if we pick (a,

b) uniformly at random from , the resulting pair (r1, r2) is

equally likely to be any pair of distinct values modulo p.

Therefore, the probability that distinct keys k1 and k2 collide is equal

to the probability that r1 = r2 (mod m) when r1 and r2 are randomly
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chosen as distinct values modulo p. For a given value of r1, of the p − 1

possible remaining values for r2, the number of values r2 such that r2 ≠

r1 and r2 = r1 (mod m) is at most

The probability that r2 collides with r1 when reduced modulo m is at

most ((p − 1)/m)/(p − 1) = 1/m, since r2 is equally likely to be any of the

p − 1 values in Zp that are different from r1, but at most (p − 1)/m of

those values are equivalent to r1 modulo m.

Therefore, for any pair of distinct values k1, k2 ∈ ℤp,

Pr{hab(k1) = hab(k2)} ≤ 1/m,

so that Hpm is indeed universal.

▪

A 2/m-universal family of hash functions based on the multiply-shift

method

We recommend that in practice you use the following hash-function

family based on the multiply-shift method. It is exceptionally efficient

and (although we omit the proof) provably 2/m-universal. Define H to

be the family of multiply-shift hash functions with odd constants a:

Theorem 11.5

The family of hash functions H given by equation (11.5) is 2/m-

universal.

▪

That is, the probability that any two distinct keys collide is at most

2/m. In many practical situations, the speed of computing the hash
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function more than compensates for the higher upper bound on the

probability that two distinct keys collide when compared with a

universal hash function.

11.3.5    Hashing long inputs such as vectors or strings

Sometimes hash function inputs are so long that they cannot be easily

encoded modulo a reasonably sized prime number p or encoded within

a single word of, say, 64 bits. As an example, consider the class of

vectors, such as vectors of 8-bit bytes (which is how strings in many

programming languages are stored). A vector might have an arbitrary

nonnegative length, in which case the length of the input to the hash

function may vary from input to input.

Number-theoretic approaches

One way to design good hash functions for variable-length inputs is to

extend the ideas used in Section 11.3.4 to design universal hash

functions. Exercise 11.3-6 explores one such approach.

Cryptographic hashing

Another way to design a good hash function for variable-length inputs

is to use a hash function designed for cryptographic applications.

Cryptographic hash functions are complex pseudorandom functions,

designed for applications requiring properties beyond those needed

here, but are robust, widely implemented, and usable as hash functions

for hash tables.

A cryptographic hash function takes as input an arbitrary byte string

and returns a fixed-length output. For example, the NIST standard

deterministic cryptographic hash function SHA-256 [346] produces a

256-bit (32-byte) output for any input.

Some chip manufacturers include instructions in their CPU

architectures to provide fast implementations of some cryptographic

functions. Of particular interest are instructions that efficiently

implement rounds of the Advanced Encryption Standard (AES), the

“AES-NI” instructions. These instructions execute in a few tens of

nanoseconds, which is generally fast enough for use with hash tables. A
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message authentication code such as CBC-MAC based on AES and the

use of the AES-NI instructions could be a useful and efficient hash

function. We don’t pursue the potential use of specialized instruction

sets further here.

Cryptographic hash functions are useful because they provide a way

of implementing an approximate version of a random oracle. As noted

earlier, a random oracle is equivalent to an independent uniform hash

function family. From a theoretical point of view, a random oracle is an

unachievable ideal: a deterministic function that provides a randomly

selected output for each input. Because it is deterministic, it provides

the same output if queried again for the same input. From a practical

point of view, constructions of hash function families based on

cryptographic hash functions are sensible substitutes for random

oracles.

There are many ways to use a cryptographic hash function as a hash

function. For example, we could define

h(k) = SHA-256(k) mod m.

To define a family of such hash functions one may prepend a “salt”

string a to the input before hashing it, as in

ha(k) = SHA-256(a ‖ k) mod m,

where a ‖ k denotes the string formed by concatenating the strings a and

k. The literature on message authentication codes (MACs) provides

additional approaches.

Cryptographic approaches to hash-function design are becoming

more practical as computers arrange their memories in hierarchies of

differing capacities and speeds. Section 11.5 discusses one hash-function

design based on the RC6 encryption method.

Exercises

11.3-1

You wish to search a linked list of length n, where each element contains

a key k along with a hash value h(k). Each key is a long character string.
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How might you take advantage of the hash values when searching the

list for an element with a given key?

11.3-2

You hash a string of r characters into m slots by treating it as a radix-

128 number and then using the division method. You can represent the

number m as a 32-bit computer word, but the string of r characters,

treated as a radix-128 number, takes many words. How can you apply

the division method to compute the hash value of the character string

without using more than a constant number of words of storage outside

the string itself ?

11.3-3

Consider a version of the division method in which h(k) = k mod m,

where m = 2p − 1 and k is a character string interpreted in radix 2p.

Show that if string x can be converted to string y by permuting its

characters, then x and y hash to the same value. Give an example of an

application in which this property would be undesirable in a hash

function.

11.3-4

Consider a hash table of size m = 1000 and a corresponding hash

function h(k) = ⌊m (kA mod 1)⌋ for . Compute the

locations to which the keys 61, 62, 63, 64, and 65 are mapped.

★ 11.3-5

Show that any ϵ-universal family H of hash functions from a finite set

U to a finite set Q has ϵ ≥ 1/|Q| − 1/|U|.

★ 11.3-6

Let U be the set of d-tuples of values drawn from ℤp, and let Q = ℤp,

where p is prime. Define the hash function hb : U → Q for b ∈ ℤp on an

input d-tuple 〈a0, a1, …, ad−1〉 from U as
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and let H = {hb : b ∈ ℤp}. Argue that H is ϵ-universal for ϵ = (d −

1)/p. (Hint: See Exercise 31.4-4.)

11.4    Open addressing

This section describes open addressing, a method for collision

resolution that, unlike chaining, does not make use of storage outside of

the hash table itself. In open addressing, all elements occupy the hash

table itself. That is, each table entry contains either an element of the

dynamic set or NIL. No lists or elements are stored outside the table,

unlike in chaining. Thus, in open addressing, the hash table can “fill up”

so that no further insertions can be made. One consequence is that the

load factor α can never exceed 1.

Collisions are handled as follows: when a new element is to be

inserted into the table, it is placed in its “first-choice” location if

possible. If that location is already occupied, the new element is placed

in its “second-choice” location. The process continues until an empty

slot is found in which to place the new element. Different elements have

different preference orders for the locations.

To search for an element, systematically examine the preferred table

slots for that element, in order of decreasing preference, until either you

find the desired element or you find an empty slot and thus verify that

the element is not in the table.

Of course, you could use chaining and store the linked lists inside the

hash table, in the otherwise unused hash-table slots (see Exercise 11.2-

4), but the advantage of open addressing is that it avoids pointers

altogether. Instead of following pointers, you compute the sequence of

slots to be examined. The memory freed by not storing pointers

provides the hash table with a larger number of slots in the same

amount of memory, potentially yielding fewer collisions and faster

retrieval.
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To perform insertion using open addressing, successively examine, or

probe, the hash table until you find an empty slot in which to put the

key. Instead of being fixed in the order 0, 1, …, m − 1 (which implies a

Θ(n) search time), the sequence of positions probed depends upon the

key being inserted. To determine which slots to probe, the hash function

includes the probe number (starting from 0) as a second input. Thus, the

hash function becomes

h : U × {0, 1, …, m − 1} → {0, 1, …, m − 1}.

Open addressing requires that for every key k, the probe sequence 〈h(k,

0), h(k, 1), …, h(k, m − 1)〉 be a permutation of 〈0, 1, …, m − 1〉, so that

every hash-table position is eventually considered as a slot for a new key

as the table fills up. The HASH-INSERT procedure on the following

page assumes that the elements in the hash table T are keys with no

satellite information: the key k is identical to the element containing key

k. Each slot contains either a key or NIL (if the slot is empty). The

HASH-INSERT procedure takes as input a hash table T and a key

k  that is assumed to be not already present in the hash table. It either

returns the slot number where it stores key k or flags an error because

the hash table is already full.

HASH-INSERT(T, k)

1 i = 0

2 repeat

3 q = h(k, i)

4 if T[q] == NIL

5 T[q] = k

6 return q

7 else i = i + 1

8 until i == m

9 error “hash table overflow”

HASH-SEARCH(T, k)

1 i = 0

2 repeat
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3 q = h(k, i)

4 if T[q] == k

5 return q

6 i = i + 1

7 until T[q] == NIL or i == m

8 return NIL

The algorithm for searching for key k probes the same sequence of

slots that the insertion algorithm examined when key k was inserted.

Therefore, the search can terminate (unsuccessfully) when it finds an

empty slot, since k would have been inserted there and not later in its

probe sequence. The procedure HASH-SEARCH takes as input a hash

table T and a key k, returning q if it finds that slot q contains key k, or

NIL if key k is not present in table T.

Deletion from an open-address hash table is tricky. When you delete

a key from slot q, it would be a mistake to mark that slot as empty by

simply storing NIL in it. If you did, you might be unable to retrieve any

key k for which slot q was probed and found occupied when k was

inserted. One way to solve this problem is by marking the slot, storing

in it the special value DELETED instead of NIL. The HASH-INSERT

procedure then has to treat such a slot as empty so that it can insert a

new key there. The HASH-SEARCH procedure passes over DELETED

values while searching, since slots containing DELETED were filled

when the key being searched for was inserted. Using the special value

DELETED, however, means that search times no longer depend on the

load factor α, and for this reason chaining is frequently selected as a

collision resolution technique when keys must be deleted. There is a

simple special case of open addressing, linear probing, that avoids the

need to mark slots with DELETED. Section 11.5.1 shows how to delete

from a hash table when using linear probing.

In our analysis, we assume independent uniform permutation hashing

(also confusingly known as uniform hashing in the literature): the probe

sequence of each key is equally likely to be any of the m! permutations

of 〈0, 1, …, m − 1〉. Independent uniform permutation hashing

generalizes the notion of independent uniform hashing defined earlier to
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a hash function that produces not just a single slot number, but a whole

probe sequence. True independent uniform permutation hashing is

difficult to implement, however, and in practice suitable approximations

(such as double hashing, defined below) are used.

We’ll examine both double hashing and its special case, linear

probing. These techniques guarantee that 〈h(k, 0), h(k, 1), …, h(k, m −

1)〉 is a permutation of 〈0, 1, …, m − 1〉 for each key k. (Recall that the

second parameter to the hash function h is the probe number.) Neither

double hashing nor linear probing meets the assumption of independent

uniform permutation hashing, however. Double hashing cannot

generate more than m2 different probe sequences (instead of the m! that

independent uniform permutation hashing requires). Nonetheless,

double hashing has a large number of possible probe sequences and, as

you might expect, seems to give good results. Linear probing is even

more restricted, capable of generating only m different probe sequences.

Double hashing

Double hashing offers one of the best methods available for open

addressing because the permutations produced have many of the

characteristics of randomly chosen permutations. Double hashing uses a

hash function of the form

h(k, i) = (h1(k) + ih2(k)) mod m,

where both h1 and h2 are auxiliary hash functions. The initial probe goes

to position T[h1(k)], and successive probe positions are offset from

previous positions by the amount h2(k), modulo m. Thus, the probe

sequence here depends in two ways upon the key k, since the initial

probe position h1(k), the step size h2(k), or both, may vary. Figure 11.5

gives an example of insertion by double hashing.

In order for the entire hash table to be searched, the value h2(k) must

be relatively prime to the hash-table size m. (See Exercise 11.4-5.) A

convenient way to ensure this condition is to let m be an exact power of

2 and to design h2 so that it always produces an odd number. Another
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way is to let m be prime and to design h2 so that it always returns a

positive integer less than m. For example, you could choose m prime

and let

Figure 11.5 Insertion by double hashing. The hash table has size 13 with h1(k) = k mod 13 and

h2(k) = 1 + (k mod 11). Since 14 = 1 (mod 13) and 14 = 3 (mod 11), the key 14 goes into empty

slot 9, after slots 1 and 5 are examined and found to be occupied.

h1(k) = k mod m,

h2(k) = 1 + (k mod m′),

where m′ is chosen to be slightly less than m (say, m − 1). For example, if

k = 123456, m = 701, and m′ = 700, then h1(k) = 80 and h2(k) = 257, so

that the first probe goes to position 80, and successive probes examine

every 257th slot (modulo m) until the key has been found or every slot

has been examined.

Although values of m other than primes or exact powers of 2 can in

principle be used with double hashing, in practice it becomes more

difficult to efficiently generate h2(k) (other than choosing h2(k) = 1,

which gives linear probing) in a way that ensures that it is relatively

prime to m, in part because the relative density ϕ(m)/m of such numbers

for general m may be small (see equation (31.25) on page 921).
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When m is prime or an exact power of 2, double hashing produces

Θ(m2) probe sequences, since each possible (h1(k), h2(k)) pair yields a

distinct probe sequence. As a result, for such values of m, double

hashing appears to perform close to the “ideal” scheme of independent

uniform permutation hashing.

Linear probing

Linear probing, a special case of double hashing, is the simplest open-

addressing approach to resolving collisions. As with double hashing, an

auxiliary hash function h1 determines the first probe position h1(k) for

inserting an element. If slot T[h1(k)] is already occupied, probe the next

position T[h1(k) + 1]. Keep going as necessary, on up to slot T[m − 1],

and then wrap around to slots T[0], T[1], and so on, but never going

past slot T[h1(k) − 1]. To view linear probing as a special case of double

hashing, just set the double-hashing step function h2 to be fixed at 1:

h2(k) = 1 for all k. That is, the hash function is

for i = 0, 1, …, m − 1. The value of h1(k) determines the entire probe

sequence, and so assuming that h1(k) can take on any value in {0, 1, …,

m − 1}, linear probing allows only m distinct probe sequences.

We’ll revisit linear probing in Section 11.5.1.

Analysis of open-address hashing

As in our analysis of chaining in Section 11.2, we analyze open

addressing in terms of the load factor α = n/m of the hash table. With

open addressing, at most one element occupies each slot, and thus n ≤

m, which implies α ≤ 1. The analysis below requires α to be strictly less

than 1, and so we assume that at least one slot is empty. Because

deleting from an open-address hash table does not really free up a slot,

we assume as well that no deletions occur.

For the hash function, we assume independent uniform permutation

hashing. In this idealized scheme, the probe sequence 〈h(k, 0), h(k, 1),
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…, h(k, m − 1)〉 used to insert or search for each key k is equally likely

to be any permutation of 〈0, 1, …, m − 1〉. Of course, any given key has

a unique fixed probe sequence associated with it. What we mean here is

that, considering the probability distribution on the space of keys and

the operation of the hash function on the keys, each possible probe

sequence is equally likely.

We now analyze the expected number of probes for hashing with

open addressing under the assumption of independent uniform

permutation hashing, beginning with the expected number of probes

made in an unsuccessful search (assuming, as stated above, that α < 1).

The bound proven, of 1/(1 − α) = 1 + α + α2 + α3 + ⋯, has an

intuitive interpretation. The first probe always occurs. With probability

approximately α, the first probe finds an occupied slot, so that a second

probe happens. With probability approximately α2, the first two slots

are occupied so that a third probe ensues, and so on.

Theorem 11.6

Given an open-address hash table with load factor α = n/m < 1, the

expected number of probes in an unsuccessful search is at most 1/(1 −

α), assuming independent uniform permutation hashing and no

deletions.

Proof      In an unsuccessful search, every probe but the last accesses an

occupied slot that does not contain the desired key, and the last slot

probed is empty. Let the random variable X denote the number of

probes made in an unsuccessful search, and define the event Ai, for i =

1, 2, …, as the event that an ith probe occurs and it is to an occupied

slot. Then the event {X ≥ i} is the intersection of events A1 ⋂ A2 ⋂ ⋯

⋂ Ai−1. We bound Pr{X ≥ i} by bounding Pr{A1 ⋂ A2 ⋂ ⋯ ⋂ Ai−1}.

By Exercise C.2-5 on page 1190,

Pr{A1 ⋂ A2 ⋂ ⋯ ⋂

Ai−1}

= Pr{A1} · Pr{A2 | A1} · Pr {A3 | A1 ⋂ A2}

⋯

Pr{Ai−1 | A1 ⋂ A2 ⋂ ⋯ ⋂ Ai−2}.
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Since there are n elements and m slots, Pr{A1} = n/m. For j > 1, the

probability that there is a jth probe and it is to an occupied slot, given

that the first j − 1 probes were to occupied slots, is (n − j + 1)/(m − j +

1). This probability follows because the jth probe would be finding one

of the remaining (n − (j − 1)) elements in one of the (m − (j − 1))

unexamined slots, and by the assumption of independent uniform

permutation hashing, the probability is the ratio of these quantities.

Since n < m implies that (n − j)/(m − j) ≤ n/m for all j in the range 0 ≤ j <

m, it follows that for all i in the range 1 ≤ i ≤ m, we have

The product in the first line has i − 1 factors. When i = 1, the product is

1, the identity for multiplication, and we get Pr{X ≥ 1} = 1, which

makes sense, since there must always be at least 1 probe. If each of the

first n probes is to an occupied slot, then all occupied slots have been

probed. Then, the (n + 1)st probe must be to an empty slot, which gives

Pr{X ≥ i} = 0 for i > n + 1. Now, we use equation (C.28) on page 1193 to

bound the expected number of probes:

▪
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If α is a constant, Theorem 11.6 predicts that an unsuccessful search

runs in O(1) time. For example, if the hash table is half full, the average

number of probes in an unsuccessful search is at most 1/(1 − .5) = 2. If it

is 90% full, the average number of probes is at most 1/(1 − .9) = 10.

Theorem 11.6 yields almost immediately how well the HASH-

INSERT procedure performs.

Corollary 11.7

Inserting an element into an open-address hash table with load factor α,

where α < 1, requires at most 1/(1 − α) probes on average, assuming

independent uniform permutation hashing and no deletions.

Proof   An element is inserted only if there is room in the table, and thus

α < 1. Inserting a key requires an unsuccessful search followed by

placing the key into the first empty slot found. Thus, the expected

number of probes is at most 1/(1 − α).

▪

It takes a little more work to compute the expected number of

probes for a successful search.

Theorem 11.8

Given an open-address hash table with load factor α < 1, the expected

number of probes in a successful search is at most

assuming independent uniform permutation hashing with no deletions

and assuming that each key in the table is equally likely to be searched

for.

Proof      A search for a key k reproduces the same probe sequence as

when the element with key k was inserted. If k was the (i + 1)st key

inserted into the hash table, then the load factor at the time it was

inserted was i/m, and so by Corollary 11.7, the expected number of

probes made in a search for k is at most 1/(1 − i/m) = m/(m − i).

Averaging over all n keys in the hash table gives us the expected number

of probes in a successful search:
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▪

If the hash table is half full, the expected number of probes in a

successful search is less than 1.387. If the hash table is 90% full, the

expected number of probes is less than 2.559. If α = 1, then in an

unsuccessful search, all m slots must be probed. Exercise 11.4-4 asks

you to analyze a successful search when α = 1.

Exercises

11.4-1

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash

table of length m = 11 using open addressing. Illustrate the result of

inserting these keys using linear probing with h(k, i) = (k + i) mod m

and using double hashing with h1(k) = k and h2(k) = 1 + (k mod (m −

1)).

11.4-2

Write pseudocode for HASH-DELETE that fills the deleted key’s slot

with the special value DELETED, and modify HASH-SEARCH and

HASH-INSERT as needed to handle DELETED.

11.4-3
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Consider an open-address hash table with independent uniform

permutation hashing and no deletions. Give upper bounds on the

expected number of probes in an unsuccessful search and on the

expected number of probes in a successful search when the load factor is

3/4 and when it is 7/8.

11.4-4

Show that the expected number of probes required for a successful

search when α = 1 (that is, when n = m), is Hm, the mth harmonic

number.

★ 11.4-5

Show that, with double hashing, if m and h2(k) have greatest common

divisor d ≥ 1 for some key k, then an unsuccessful search for key k

examines (1/d)th of the hash table before returning to slot h1(k). Thus,

when d = 1, so that m and h2(k) are relatively prime, the search may

examine the entire hash table. (Hint: See Chapter 31.)

★ 11.4-6

Consider an open-address hash table with a load factor α. Approximate

the nonzero value α for which the expected number of probes in an

unsuccessful search equals twice the expected number of probes in a

successful search. Use the upper bounds given by Theorems 11.6 and

11.8 for these expected numbers of probes.

11.5    Practical considerations

Efficient hash table algorithms are not only of theoretical interest, but

also of immense practical importance. Constant factors can matter. For

this reason, this section discusses two aspects of modern CPUs that are

not included in the standard RAM model presented in Section 2.2:

Memory hierarchies: The memory of modern CPUs has a number of

levels, from the fast registers, through one or more levels of cache

memory, to the main-memory level. Each successive level stores more
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data than the previous level, but access is slower. As a consequence, a

complex computation (such as a complicated hash function) that

works entirely within the fast registers can take less time than a single

read operation from main memory. Furthermore, cache memory is

organized in cache blocks of (say) 64 bytes each, which are always

fetched together from main memory. There is a substantial benefit for

ensuring that memory usage is local: reusing the same cache block is

much more efficient than fetching a different cache block from main

memory.

The standard RAM model measures efficiency of a hash-table

operation by counting the number of hash-table slots probed. In

practice, this metric is only a crude approximation to the truth, since

once a cache block is in the cache, successive probes to that cache

block are much faster than probes that must access main memory.

Advanced instruction sets: Modern CPUs may have sophisticated

instruction sets that implement advanced primitives useful for

encryption or other forms of cryptography. These instructions may be

useful in the design of exceptionally efficient hash functions.

Section 11.5.1 discusses linear probing, which becomes the collision-

resolution method of choice in the presence of a memory hierarchy.

Section 11.5.2 suggests how to construct “advanced” hash functions

based on cryptographic primitives, suitable for use on computers with

hierarchical memory models.

11.5.1    Linear probing

Linear probing is often disparaged because of its poor performance in

the standard RAM model. But linear probing excels for hierarchical

memory models, because successive probes are usually to the same

cache block of memory.

Deletion with linear probing

Another reason why linear probing is often not used in practice is that

deletion seems complicated or impossible without using the special

DELETED value. Yet we’ll now see that deletion from a hash table
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based on linear probing is not all that difficult, even without the

DELETED marker. The deletion procedure works for linear probing,

but not for open-address probing in general, because with linear

probing keys all follow the same simple cyclic probing sequence (albeit

with different starting points).

The deletion procedure relies on an “inverse” function to the linear-

probing hash function h(k, i) = (h1(k) + i) mod m, which maps a key k

and a probe number i to a slot number in the hash table. The inverse

function g maps a key k and a slot number q, where 0 ≤ q < m, to the

probe number that reaches slot q:

g(k, q) = (q − h1(k)) mod m.

If h(k, i) = q, then g(k, q) = i, and so h(k, g(k, q)) = q.

The procedure LINEAR-PROBING-HASH-DELETE on the facing

page deletes the key stored in position q from hash table T. Figure 11.6

shows how it works. The procedure first deletes the key in position q by

setting T[q] to NIL in line 2. It then searches for a slot q′ (if any) that

contains a key that should be moved to the slot q just vacated by key k.

Line 9 asks the critical question: does the key k′ in slot q′ need to be

moved to the vacated slot q in order to preserve the accessibility of k′? If

g(k′, q) < g(k′, q′), then during the insertion of k′ into the table, slot q

was examined but found to be already occupied. But now slot q, where a

search will look for k′, is empty. In this case, key k′ moves to slot q in

line 10, and the search continues, to see whether any later key also needs

to be moved to the slot q′ that was just freed up when k′ moved.
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Figure 11.6 Deletion in a hash table that uses linear probing. The hash table has size 10 with

h1(k) = k mod 10. (a) The hash table after inserting keys in the order 74, 43, 93, 18, 82, 38, 92.

(b) The hash table after deleting the key 43 from slot 3. Key 93 moves up to slot 3 to keep it

accessible, and then key 92 moves up to slot 5 just vacated by key 93. No other keys need to be

moved.

LINEAR-PROBING-HASH-DELETE(T, q)

  1while TRUE

  2 T[q] = NIL // make slot q empty

  3 q′ = q // starting point for search

  4 repeat

  5 q′ = (q′ + 1) mod m // next slot number with linear probing

  6 k′ = T[q′] // next key to try to move

  7 if k′ == NIL

  8 return // return when an empty slot is found

  9 until g(k′, q) < g(k′, q′) // was empty slot q probed before q′?
10 T[q] = k′ // move k′ into slot q

11 q = q′ // free up slot q′

Analysis of linear probing

Linear probing is popular to implement, but it exhibits a phenomenon

known as primary clustering. Long runs of occupied slots build up,
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increasing the average search time. Clusters arise because an empty slot

preceded by i full slots gets filled next with probability (i + 1)/m. Long

runs of occupied slots tend to get longer, and the average search time

increases.

In the standard RAM model, primary clustering is a problem, and

general double hashing usually performs better than linear probing. By

contrast, in a hierarchical memory model, primary clustering is a

beneficial property, as elements are often stored together in the same

cache block. Searching proceeds through one cache block before

advancing to search the next cache block. With linear probing, the

running time for a key k of HASH-INSERT, HASH-SEARCH, or

LINEAR-PROBING-HASH-DELETE is at most proportional to the

distance from h1(k) to the next empty slot.

The following theorem is due to Pagh et al. [351]. A more recent

proof is given by Thorup [438]. We omit the proof here. The need for 5-

independence is by no means obvious; see the cited proofs.

Theorem 11.9

If h1 is 5-independent and α ≤ 2/3, then it takes expected constant time

to search for, insert, or delete a key in a hash table using linear probing.

▪

(Indeed, the expected operation time is O(1/ϵ 2) for α = 1 − ϵ.)

★ 11.5.2 Hash functions for hierarchical memory models

This section illustrates an approach for designing efficient hash tables in

a modern computer system having a memory hierarchy.

Because of the memory hierarchy, linear probing is a good choice for

resolving collisions, as probe sequences are sequential and tend to stay

within cache blocks. But linear probing is most efficient when the hash

function is complex (for example, 5-independent as in Theorem 11.9).

Fortunately, having a memory hierarchy means that complex hash

functions can be implemented efficiently.

As noted in Section 11.3.5, one approach is to use a cryptographic

hash function such as SHA-256. Such functions are complex and
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sufficiently random for hash table applications. On machines with

specialized instructions, cryptographic functions can be quite efficient.

Instead, we present here a simple hash function based only on

addition, multiplication, and swapping the halves of a word. This

function can be implemented entirely within the fast registers, and on a

machine with a memory hierarchy, its latency is small compared with

the time taken to access a random slot of the hash table. It is related to

the RC6 encryption algorithm and can for practical purposes be

considered a “random oracle.”

The wee hash function

Let w denote the word size of the machine (e.g., w = 64), assumed to be

even, and let a and b be w-bit unsigned (nonnegative) integers such that

a is odd. Let swap(x) denote the w-bit result of swapping the two w/2-bit

halves of w-bit input x. That is,

swap(x) = (x ⋙ (w/2)) + (x ⋘ (w/2))

where “⋙” is “logical right shift” (as in equation (11.2)) and “⋘ is

“left shift.” Define

fa(k) = swap((2k2 + ak) mod 2w).

Thus, to compute fa(k), evaluate the quadratic function 2k2 + ak

modulo 2w and then swap the left and right halves of the result.

Let r denote a desired number of “rounds” for the computation of

the hash function. We’ll use r = 4, but the hash function is well defined

for any nonnegative r. Denote by  the result of iterating fa a total

of r times (that is, r rounds) starting with input value k. For any odd a

and any r ≥ 0, the function , although complicated, is one-to-one (see

Exercise 11.5-1). A cryptographer would view  as a simple block

cipher operating on w-bit input blocks, with r rounds and key a.

We first define the wee hash function h for short inputs, where by

“short” we means “whose length t is at most w-bits,” so that the input

fits within one computer word. We would like inputs of different lengths
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to be hashed differently. The wee hash function ha,b,t,r(k) for parameters

a, b, and r on t-bit input k is defined as

That is, the hash value for t-bit input k is obtained by applying  to k

+ b, then taking the final result modulo m. Adding the value b provides

hash-dependent randomization of the input, in a way that ensures that

for variable-length inputs the 0-length input does not have a fixed hash

value. Adding the value 2t to a ensures that the hash function acts

differently for inputs of different lengths. (We use 2t rather than t to

ensure that the key a + 2t is odd if a is odd.) We call this hash function

“wee” because it uses a tiny amount of memory—more precisely, it can

be implemented efficiently using only the computer’s fast registers. (This

hash function does not have a name in the literature; it is a variant we

developed for this textbook.)

Speed of the wee hash function

It is surprising how much efficiency can be bought with locality.

Experiments (unpublished, by the authors) suggest that evaluating the

wee hash function takes less time than probing a single randomly chosen

slot in a hash table. These experiments were run on a laptop (2019

MacBook Pro) with w = 64 and a = 123. For large hash tables,

evaluating the wee hash function was 2 to 10 times faster than

performing a single probe of the hash table.

The wee hash function for variable-length inputs

Sometimes inputs are long—more than one w-bit word in length—or

have variable length, as discussed in Section 11.3.5. We can extend the

wee hash function, defined above for inputs that are at most single w-bit

word in length, to handle long or variable-length inputs. Here is one

method for doing so.

Suppose that an input k has length t (measured in bits). Break k into

a sequence 〈k1, k2, …, ku〉 of w-bit words, where u = ⌈t/w⌉, k1 contains

the least-significant w bits of k, and ku contains the most significant
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bits. If t is not a multiple of w, then ku contains fewer than w bits, in

which case, pad out the unused high-order bits of ku with 0-bits. Define

the function chop to return a sequence of the w-bit words in k:

chop(k) = 〈k1, k2, …, ku〉.

The most important property of the chop operation is that it is one-to-

one, given t: for any two t-bit keys k and k′, if k ≠ k′ then chop(k) ≠

chop(k′), and k can be derived from chop(k) and t. The chop operation

also has the useful property that a single-word input key yields a single-

word output sequence: chop(k) = 〈k〉.

With the chop function in hand, we specify the wee hash function

ha,b,t,r(k) for an input k of length t bits as follows:

ha,b,t,r(k) = WEE(k, a, b, t, r, m),

where the procedure WEE defined on the facing page iterates through

the elements of the w-bit words returned by chop(k), applying  to the

sum of the current word ki and the previously computed hash value so

far, finally returning the result obtained modulo m. This definition for

variable-length and long (multiple-word) inputs is a consistent extension

of the definition in equation (11.7) for short (single-word) inputs. For

practical use, we recommend that a be a randomly chosen odd w-bit

word, b be a randomly chosen w-bit word, and that r = 4.

Note that the wee hash function is really a hash function family, with

individual hash functions determined by parameters a, b, t, r, and m.

The (approximate) 5-independence of the wee hash function family for

variable-length inputs can be argued based on the assumption that the

1-word wee hash function is a random oracle and on the security of the

cipher-block-chaining message authentication code (CBC-MAC), as

studied by Bellare et al. [42]. The case here is actually simpler than that

studied in the literature, since if two messages have different lengths t

and t′, then their “keys” are different: a + 2t ≠ a + 2t′. We omit the

details.

WEE(k, a, b, t, r, m)
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1 u = ⌈t/w⌉

2 〈k1, k2, …, ku〉 = chop(k)

3 q = b

4 for i = 1 to u

5

6 return q mod m

This definition of a cryptographically inspired hash-function family

is meant to be realistic, yet only illustrative, and many variations and

improvements are possible. See the chapter notes for suggestions.

In summary, we see that when the memory system is hierarchical, it

becomes advantageous to use linear probing (a special case of double

hashing), since successive probes tend to stay in the same cache block.

Furthermore, hash functions that can be implemented using only the

computer’s fast registers are exceptionally efficient, so they can be quite

complex and even cryptographically inspired, providing the high degree

of independence needed for linear probing to work most efficiently.

Exercises

★ 11.5-1

Complete the argument that for any odd positive integer a and any

integer r ≥ 0, the function  is one-to-one. Use a proof by

contradiction and make use of the fact that the function fa works

modulo 2w.

★ 11.5-2

Argue that a random oracle is 5-independent.

★ 11.5-3

Consider what happens to the value  as we flip a single bit ki of

the input value k, for various values of r. Let  and 

 define the bit values ki in the input (with k0 the least-
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significant bit) and the bit values bj in ga(k) = (2k2 + ak) mod 2w

(where ga(k) is the value that, when its halves are swapped, becomes

fa(k)). Suppose that flipping a single bit ki of the input k may cause any

bit bj of ga(k) to flip, for j ≥ i. What is the least value of r for which

flipping the value of any single bit ki may cause any bit of the output 

 to flip? Explain.

Problems

11-1     Longest-probe bound for hashing

Suppose you are using an open-addressed hash table of size m to store n

≤ m/2 items.

a. Assuming independent uniform permutation hashing, show that for i

= 1, 2, …, n, the probability is at most 2−p that the ith insertion

requires strictly more than p probes.

b. Show that for i = 1, 2, …, n, the probability is O(1/n2) that the ith

insertion requires more than 2 lg n probes.

Let the random variable Xi denote the number of probes required by the

ith insertion. You have shown in part (b) that Pr{Xi > 2 lg n} = O(1/n2).

Let the random variable X = max {Xi : 1 ≤ i ≤ n} denote the maximum

number of probes required by any of the n insertions.

c. Show that Pr{X > 2 lg n} = O(1/n).

d. Show that the expected length E[X] of the longest probe sequence is

O(lg n).

11-2     Searching a static set

You are asked to implement a searchable set of n elements in which the

keys are numbers. The set is static (no INSERT or DELETE

operations), and the only operation required is SEARCH. You are given
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an arbitrary amount of time to preprocess the n elements so that

SEARCH operations run quickly.

a. Show how to implement SEARCH in O(lg n) worst-case time using

no extra storage beyond what is needed to store the elements of the set

themselves.

b. Consider implementing the set by open-address hashing on m slots,

and assume independent uniform permutation hashing. What is the

minimum amount of extra storage m − n required to make the average

performance of an unsuccessful SEARCH operation be at least as

good as the bound in part (a)? Your answer should be an asymptotic

bound on m − n in terms of n.

11-3     Slot-size bound for chaining

Given a hash table with n slots, with collisions resolved by chaining,

suppose that n keys are inserted into the table. Each key is equally likely

to be hashed to each slot. Let M be the maximum number of keys in

any slot after all the keys have been inserted. Your mission is to prove

an O(lg n / lg lg n) upper bound on E[M], the expected value of M.

a. Argue that the probability Qk that exactly k keys hash to a particular

slot is given by

b. Let Pk be the probability that M = k, that is, the probability that the

slot containing the most keys contains k keys. Show that Pk ≤ nQk.

c. Show that Qk < ek/kk. Hint: Use Stirling’s approximation, equation

(3.25) on page 67.

d. Show that there exists a constant c > 1 such that  for k0 =

c lg n / lg lg n. Conclude that Pk < 1/n2 for k ≥ k0 = c lg n / lg lg n.

e. Argue that
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Conclude that E[M] = O(lg n / lg lg n).

11-4     Hashing and authentication

Let H be a family of hash functions in which each hash function h ∈

H maps the universe U of keys to {0, 1, …, m − 1}.

a. Show that if the family H of hash functions is 2-independent, then it

is universal.

b. Suppose that the universe U is the set of n-tuples of values drawn

from ℤp = {0, 1, …, p − 1}, where p is prime. Consider an element x =

〈x0, x1, …, xn−1〉 ∈ U. For any n-tuple a = 〈a0, a1, …, an−1〉 ∈ U,

define the hash function ha by

Let H = {ha : a ∈ U}. Show that H is universal, but not 2-

independent. (Hint: Find a key for which all hash functions in H

produce the same value.)

c. Suppose that we modify H slightly from part (b): for any a ∈ U and

for any b ∈ ℤp, define

and . Argue that H′ is 2-independent.

(Hint: Consider fixed n-tuples x ∈ U and y ∈ U, with xi ≠ yi for some

i. What happens to  and  as ai and b range over ℤp?)

d. Alice and Bob secretly agree on a hash function h from a 2-

independent family H of hash functions. Each h ∈ H maps from a
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universe of keys U to ℤp, where p is prime. Later, Alice sends a

message m to Bob over the internet, where m ∈ U. She authenticates

this message to Bob by also sending an authentication tag t = h(m),

and Bob checks that the pair (m, t) he receives indeed satisfies t =

h(m). Suppose that an adversary intercepts (m, t) en route and tries to

fool Bob by replacing the pair (m, t) with a different pair (m′, t′).
Argue that the probability that the adversary succeeds in fooling Bob

into accepting (m′, t′) is at most 1/p, no matter how much computing

power the adversary has, even if the adversary knows the family H of

hash functions used.

Chapter notes

The books by Knuth [261] and Gonnet and Baeza-Yates [193] are

excellent references for the analysis of hashing algorithms. Knuth

credits H. P. Luhn (1953) for inventing hash tables, along with the

chaining method for resolving collisions. At about the same time, G. M.

Amdahl originated the idea of open addressing. The notion of a

random oracle was introduced by Bellare et al. [43]. Carter and

Wegman [80] introduced the notion of universal families of hash

functions in 1979.

Dietzfelbinger et al. [113] invented the multiply-shift hash function

and gave a proof of Theorem 11.5. Thorup [437] provides extensions

and additional analysis. Thorup [438] gives a simple proof that linear

probing with 5-independent hashing takes constant expected time per

operation. Thorup also describes the method for deletion in a hash table

using linear probing.

Fredman, Komlós, and Szemerédi [154] developed a perfect hashing

scheme for static sets—“perfect” because all collisions are avoided. An

extension of their method to dynamic sets, handling insertions and

deletions in amortized expected time O(1), has been given by

Dietzfelbinger et al. [114].

The wee hash function is based on the RC6 encryption algorithm

[379]. Leiserson et al. [292] propose an “RC6MIX” function that is

essentially the same as the wee hash function. They give experimental
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evidence that it has good randomness, and they also give a “DOTMIX”

function for dealing with variable-length inputs. Bellare et al. [42]

provide an analysis of the security of the cipher-block-chaining message

authentication code. This analysis implies that the wee hash function

has the desired pseudorandomness properties.

1 The definition of “average-case” requires care—are we assuming an input distribution over the

keys, or are we randomizing the choice of hash function itself ? We’ll consider both approaches,

but with an emphasis on the use of a randomly chosen hash function.

2 In the literature, a (c/m)-universal hash function is sometimes called c-universal or c-

approximately universal. We’ll stick with the notation (c/m)-universal.
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12        Binary Search Trees

The search tree data structure supports each of the dynamic-set

operations listed on page 250: SEARCH, MINIMUM, MAXIMUM,

PREDECESSOR, SUCCESSOR, INSERT, and DELETE. Thus, you

can use a search tree both as a dictionary and as a priority queue.

Basic operations on a binary search tree take time proportional to

the height of the tree. For a complete binary tree with n nodes, such

operations run in Θ(lg n) worst-case time. If the tree is a linear chain of

n nodes, however, the same operations take Θ(n) worst-case time. In

Chapter 13, we’ll see a variation of binary search trees, red-black trees,

whose operations guarantee a height of O(lg n). We won’t prove it here,

but if you build a binary search tree on a random set of n keys, its

expected height is O(lg n) even if you don’t try to limit its height.

After presenting the basic properties of binary search trees, the

following sections show how to walk a binary search tree to print its

values in sorted order, how to search for a value in a binary search tree,

how to find the minimum or maximum element, how to find the

predecessor or successor of an element, and how to insert into or delete

from a binary search tree. The basic mathematical properties of trees

appear in Appendix B.

12.1    What is a binary search tree?

A binary search tree is organized, as the name suggests, in a binary tree,

as shown in Figure 12.1. You can represent such a tree with a linked
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data structure, as in Section 10.3. In addition to a key and satellite data,

each node object contains attributes left, right, and p that point to the

nodes corresponding to its left child, its right child, and its parent,

respectively. If a child or the parent is missing, the appropriate attribute

contains the value NIL. The tree itself has an attribute root that points

to the root node, or NIL if the tree is empty. The root node T.root is the

only node in a tree T whose parent is NIL.
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Figure 12.1 Binary search trees. For any node x, the keys in the left subtree of x are at most

x.key, and the keys in the right subtree of x are at least x.key. Different binary search trees can

represent the same set of values. The worst-case running time for most search-tree operations is

proportional to the height of the tree. (a) A binary search tree on 6 nodes with height 2. The top

figure shows how to view the tree conceptually, and the bottom figure shows the left, right, and p

attributes in each node, in the style of Figure 10.6 on page 266. (b) A less efficient binary search

tree, with height 4, that contains the same keys.

The keys in a binary search tree are always stored in such a way as to

satisfy the binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left

subtree of x, then y.key ≤ x.key. If y is a node in the right

subtree of x, then y.key ≥ x.key.
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Thus, in Figure 12.1(a), the key of the root is 6, the keys 2, 5, and 5

in its left subtree are no larger than 6, and the keys 7 and 8 in its right

subtree are no smaller than 6. The same property holds for every node

in the tree. For example, looking at the root’s left child as the root of a

subtree, this subtree root has the key 5, the key 2 in its left subtree is no

larger than 5, and the key 5 in its right subtree is no smaller than 5.

Because of the binary-search-tree property, you can print out all the

keys in a binary search tree in sorted order by a simple recursive

algorithm, called an inorder tree walk, given by the procedure

INORDER-TREE-WALK. This algorithm is so named because it

prints the key of the root of a subtree between printing the values in its

left subtree and printing those in its right subtree. (Similarly, a preorder

tree walk prints the root before the values in either subtree, and a

postorder tree walk prints the root after the values in its subtrees.) To

print all the elements in a binary search tree T, call INORDER-TREE-

WALK(T.root). For example, the inorder tree walk prints the keys in

each of the two binary search trees from Figure 12.1 in the order 2, 5, 5,

6, 7, 8. The correctness of the algorithm follows by induction directly

from the binary-search-tree property.

INORDER-TREE-WALK(x)

1 if x ≠ NIL

2 INORDER-TREE-WALK(x.left)

3 print x.key

4 INORDER-TREE-WALK(x.right)

It takes Θ(n) time to walk an n-node binary search tree, since after

the initial call, the procedure calls itself recursively exactly twice for

each node in the tree—once for its left child and once for its right child.

The following theorem gives a formal proof that it takes linear time to

perform an inorder tree walk.

Theorem 12.1

If x is the root of an n-node subtree, then the call INORDER-TREE-

WALK(x) takes Θ(n) time.
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Proof     Let T(n) denote the time taken by INORDER-TREE-WALK

when it is called on the root of an n-node subtree. Since INORDER-

TREE-WALK visits all n nodes of the subtree, we have T(n) = Ω(n). It

remains to show that T(n) = O(n).

Since INORDER-TREE-WALK takes a small, constant amount of

time on an empty subtree (for the test x ≠ NIL), we have T(0) = c for

some constant c > 0.

For n > 0, suppose that INORDER-TREE-WALK is called on a

node x whose left subtree has k nodes and whose right subtree has n − k

− 1 nodes. The time to perform INORDER-TREE-WALK(x) is

bounded by T(n) ≤ T(k) + T(n − k − 1) + d for some constant d > 0 that

reflects an upper bound on the time to execute the body of INORDER-

TREE-WALK(x), exclusive of the time spent in recursive calls.

We use the substitution method to show that T(n) = O(n) by proving

that T(n) ≤ (c + d)n + c. For n = 0, we have (c + d) · 0 + c = c = T(0). For

n > 0, we have

T(n) ≤ T(k) + T(n − k − 1) + d

≤ ((c + d)k + c) + ((c + d)(n − k − 1) + c) + d

= (c + d)n + c − (c + d) + c + d

= (c + d)n + c,

which completes the proof.

▪

Exercises

12.1-1

For the set {1, 4, 5, 10, 16, 17, 21} of keys, draw binary search trees of

heights 2, 3, 4, 5, and 6.

12.1-2

What is the difference between the binary-search-tree property and the

min-heap property on page 163? Can the min-heap property be used to

print out the keys of an n-node tree in sorted order in O(n) time? Show

how, or explain why not.
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12.1-3

Give a nonrecursive algorithm that performs an inorder tree walk.

(Hint: An easy solution uses a stack as an auxiliary data structure. A

more complicated, but elegant, solution uses no stack but assumes that

you can test two pointers for equality.)

12.1-4

Give recursive algorithms that perform preorder and postorder tree

walks in Θ(n) time on a tree of n nodes.

12.1-5

Argue that since sorting n elements takes Ω(n lg n) time in the worst case

in the comparison model, any comparison-based algorithm for

constructing a binary search tree from an arbitrary list of n elements

takes Ω(n lg n) time in the worst case.

12.2    Querying a binary search tree

Binary search trees can support the queries MINIMUM, MAXIMUM,

SUCCESSOR, and PREDECESSOR, as well as SEARCH. This

section examines these operations and shows how to support each one

in O(h) time on any binary search tree of height h.

Searching

To search for a node with a given key in a binary search tree, call the

TREE-SEARCH procedure. Given a pointer x to the root of a subtree

and a key k, TREE-SEARCH(x, k) returns a pointer to a node with key

k if one exists in the subtree; otherwise, it returns NIL. To search for key

k in the entire binary search tree T, call TREE-SEARCH(T.root, k).

TREE-SEARCH(x, k)

1 if x == NIL or k == x.key

2 return x

3 if k < x.key

4 return TREE-SEARCH(x.left, k)
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5 else return TREE-SEARCH(x.right, k)

ITERATIVE-TREE-SEARCH(x, k)

1 while x ≠ NIL and k ≠ x.key

2 if k < x.key

3 x = x.left

4 else x = x.right

5 return x

The TREE-SEARCH procedure begins its search at the root and

traces a simple path downward in the tree, as shown in Figure 12.2(a).

For each node x it encounters, it compares the key k with x.key. If the

two keys are equal, the search terminates. If k is smaller than x.key, the

search continues in the left subtree of x, since the binary-search-tree

property implies that k cannot reside in the right subtree. Symmetrically,

if k is larger than x.key, the search continues in the right subtree. The

nodes encountered during the recursion form a simple path downward

from the root of the tree, and thus the running time of TREE-SEARCH

is O(h), where h is the height of the tree.
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Figure 12.2 Queries on a binary search tree. Nodes and paths followed in each query are colored

blue. (a) A search for the key 13 in the tree follows the path 15 → 6 → 7 → 13 from the root. (b)

The minimum key in the tree is 2, which is found by following left pointers from the root. The

maximum key 20 is found by following right pointers from the root. (c) The successor of the

node with key 15 is the node with key 17, since it is the minimum key in the right subtree of 15.

(d) The node with key 13 has no right subtree, and thus its successor is its lowest ancestor whose

left child is also an ancestor. In this case, the node with key 15 is its successor.

Since the TREE-SEARCH procedure recurses on either the left

subtree or the right subtree, but not both, we can rewrite the algorithm

to “unroll” the recursion into a while loop. On most computers, the

ITERATIVE-TREE-SEARCH procedure on the facing page is more

efficient.

Minimum and maximum
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To find an element in a binary search tree whose key is a minimum, just

follow left child pointers from the root until you encounter a NIL, as

shown in Figure 12.2(b). The TREE-MINIMUM procedure returns a

pointer to the minimum element in the subtree rooted at a given node x,

which we assume to be non-NIL.

TREE-MINIMUM(x)

1while x.left ≠ NIL

2 x = x.left

3return x

TREE-MAXIMUM(x)

1while x.right ≠ NIL

2 x = x.right

3return x

The binary-search-tree property guarantees that TREE-MINIMUM

is correct. If node x has no left subtree, then since every key in the right

subtree of x is at least as large as x.key, the minimum key in the subtree

rooted at x is x.key. If node x has a left subtree, then since no key in the

right subtree is smaller than x.key and every key in the left subtree is not

larger than x.key, the minimum key in the subtree rooted at x resides in

the subtree rooted at x.left.

The pseudocode for TREE-MAXIMUM is symmetric. Both TREE-

MINIMUM and TREE-MAXIMUM run in O(h) time on a tree of

height h since, as in TREE-SEARCH, the sequence of nodes

encountered forms a simple path downward from the root.

Successor and predecessor

Given a node in a binary search tree, how can you find its successor in

the sorted order determined by an inorder tree walk? If all keys are

distinct, the successor of a node x is the node with the smallest key

greater than x.key. Regardless of whether the keys are distinct, we define

the successor of a node as the next node visited in an inorder tree walk.

The structure of a binary search tree allows you to determine the
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successor of a node without comparing keys. The TREE-SUCCESSOR

procedure on the facing page returns the successor of a node x in a

binary search tree if it exists, or NIL if x is the last node that would be

visited during an inorder walk.

The code for TREE-SUCCESSOR has two cases. If the right subtree

of node x is nonempty, then the successor of x is just the leftmost node

in x’s right subtree, which line 2 finds by calling TREE-

MINIMUM(x.right). For example, the successor of the node with key

15 in Figure 12.2(c) is the node with key 17.

On the other hand, as Exercise 12.2-6 asks you to show, if the right

subtree of node x is empty and x has a successor y, then y is the lowest

ancestor of x whose left child is also an ancestor of x. In Figure 12.2(d),

the successor of the node with key 13 is the node with key 15. To find y,

go up the tree from x until you encounter either the root or a node that

is the left child of its parent. Lines 4–8 of TREE-SUCCESSOR handle

this case.

TREE-SUCCESSOR(x)

1 if x.right ≠ NIL

2 return TREE-MINIMUM(x.right)    // leftmost node in right

subtree

3 else // find the lowest ancestor of x whose left child is an ancestor of

x

4 y = x.p

5 while y ≠ NIL and x == y.right

6 x = y

7 y = y.p

8 return y

The running time of TREE-SUCCESSOR on a tree of height h is

O(h), since it either follows a simple path up the tree or follows a simple

path down the tree. The procedure TREE-PREDECESSOR, which is

symmetric to TREE-SUCCESSOR, also runs in O(h) time.

In summary, we have proved the following theorem.
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Theorem 12.2

The dynamic-set operations SEARCH, MINIMUM, MAXIMUM,

SUCCESSOR, and PREDECESSOR can be implemented so that each

one runs in O(h) time on a binary search tree of height h.

▪

Exercises

12.2-1

You are searching for the number 363 in a binary search tree containing

numbers between 1 and 1000. Which of the following sequences cannot

be the sequence of nodes examined?

a. 2, 252, 401, 398, 330, 344, 397, 363.

b. 924, 220, 911, 244, 898, 258, 362, 363.

c. 925, 202, 911, 240, 912, 245, 363.

d. 2, 399, 387, 219, 266, 382, 381, 278, 363.

e. 935, 278, 347, 621, 299, 392, 358, 363.

12.2-2

Write recursive versions of TREE-MINIMUM and TREE-

MAXIMUM.

12.2-3

Write the TREE-PREDECESSOR procedure.

12.2-4

Professor Kilmer claims to have discovered a remarkable property of

binary search trees. Suppose that the search for key k in a binary search

tree ends up at a leaf. Consider three sets: A, the keys to the left of the

search path; B, the keys on the search path; and C, the keys to the right

of the search path. Professor Kilmer claims that any three keys a ∈ A, b

∈ B, and c ∈ C must satisfy a ≤ b ≤ c. Give a smallest possible

counterexample to the professor’s claim.

12.2-5
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Show that if a node in a binary search tree has two children, then its

successor has no left child and its predecessor has no right child.

12.2-6

Consider a binary search tree T whose keys are distinct. Show that if the

right subtree of a node x in T is empty and x has a successor y, then y is

the lowest ancestor of x whose left child is also an ancestor of x. (Recall

that every node is its own ancestor.)

12.2-7

An alternative method of performing an inorder tree walk of an n-node

binary search tree finds the minimum element in the tree by calling

TREE-MINIMUM and then making n − 1 calls to TREE-

SUCCESSOR. Prove that this algorithm runs in Θ(n) time.

12.2-8

Prove that no matter what node you start at in a height-h binary search

tree, k successive calls to TREE-SUCCESSOR take O(k + h) time.

12.2-9

Let T be a binary search tree whose keys are distinct, let x be a leaf

node, and let y be its parent. Show that y.key is either the smallest key in

T larger than x.key or the largest key in T smaller than x.key.

12.3    Insertion and deletion

The operations of insertion and deletion cause the dynamic set

represented by a binary search tree to change. The data structure must

be modified to reflect this change, but in such a way that the binary-

search-tree property continues to hold. We’ll see that modifying the tree

to insert a new element is relatively straightforward, but deleting a node

from a binary search tree is more complicated.

Insertion

The TREE-INSERT procedure inserts a new node into a binary search

tree. The procedure takes a binary search tree T and a node z for which
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z.key has already been filled in, z.left = NIL, and z.right = NIL. It

modifies T and some of the attributes of z so as to insert z into an

appropriate position in the tree.

TREE-INSERT(T, z)

  1x = T.root // node being compared with z

  2y = NIL // y will be parent of z

  3while x ≠ NIL // descend until reaching a leaf

  4 y = x

  5 if z.key < x.key

  6 x = x.left

  7 else x = x.right

  8z.p = y // found the location—insert z with parent y

  9 if y == NIL

10 T.root = z // tree T was empty

11elseif z.key < y.key

12 y.left = z

13else y.right = z

Figure 12.3 shows how TREE-INSERT works. Just like the

procedures TREE-SEARCH and ITERATIVE-TREE-SEARCH,

TREE-INSERT begins at the root of the tree and the pointer x traces a

simple path downward looking for a NIL to replace with the input node

z. The procedure maintains the trailing pointer  y as the parent of x.

After initialization, the while loop in lines 3–7 causes these two pointers

to move down the tree, going left or right depending on the comparison

of z.key with x.key, until x becomes NIL. This NIL occupies the

position where node z will go. More precisely, this NIL is a left or right

attribute of the node that will become z’s parent, or it is T.root if tree T

is currently empty. The procedure needs the trailing pointer y, because

by the time it finds the NIL where z belongs, the search has proceeded

one step beyond the node that needs to be changed. Lines 8–13 set the

pointers that cause z to be inserted.
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Figure 12.3 Inserting a node with key 13 into a binary search tree. The simple path from the root

down to the position where the node is inserted is shown in blue. The new node and the link to

its parent are highlighted in orange.

Like the other primitive operations on search trees, the procedure

TREE-INSERT runs in O(h) time on a tree of height h.

Deletion

The overall strategy for deleting a node z from a binary search tree T

has three basic cases and, as we’ll see, one of the cases is a bit tricky.

If z has no children, then simply remove it by modifying its parent

to replace z with NIL as its child.

If z has just one child, then elevate that child to take z’s position

in the tree by modifying z’s parent to replace z by z’s child.

If z has two children, find z’s successor y—which must belong to

z’s right subtree—and move y to take z’s position in the tree. The

rest of z’s original right subtree becomes y’s new right subtree, and

z’s left subtree becomes y’s new left subtree. Because y is z’s

successor, it cannot have a left child, and y’s original right child

moves into y’s original position, with the rest of y’s original right

subtree following automatically. This case is the tricky one

because, as we’ll see, it matters whether y is z’s right child.

The procedure for deleting a given node z from a binary search tree

T takes as arguments pointers to T and z. It organizes its cases a bit

differently from the three cases outlined previously by considering the

four cases shown in Figure 12.4.
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Figure 12.4 Deleting a node z, in blue, from a binary search tree. Node z may be the root, a left

child of node q, or a right child of q. The node that will replace node z in its position in the tree

is colored orange. (a) Node z has no left child. Replace z by its right child r, which may or may

not be NIL. (b) Node z has a left child l but no right child. Replace z by l. (c) Node z has two

children. Its left child is node l, its right child is its successor y (which has no left child), and y’s

right child is node x. Replace z by y, updating y’s left child to become l, but leaving x as y’s right

child. (d) Node z has two children (left child l and right child r), and its successor y ≠ r lies

within the subtree rooted at r. First replace y by its own right child x, and set y to be r’s parent.

Then set y to be q’s child and the parent of l.
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If z has no left child, then as in part (a) of the figure, replace z by

its right child, which may or may not be NIL. When z’s right child

is NIL, this case deals with the situation in which z has no

children. When z’s right child is non-NIL, this case handles the

situation in which z has just one child, which is its right child.

Otherwise, if z has just one child, then that child is a left child. As

in part (b) of the figure, replace z by its left child.

Otherwise, z has both a left and a right child. Find z’s successor y,

which lies in z’s right subtree and has no left child (see Exercise

12.2-5). Splice node y out of its current location and replace z by y

in the tree. How to do so depends on whether y is z’s right child:

If y is z’s right child, then as in part (c) of the figure, replace

z by y, leaving y’s right child alone.

Otherwise, y lies within z’s right subtree but is not z’s right

child. In this case, as in part (d) of the figure, first replace y

by its own right child, and then replace z by y.

As part of the process of deleting a node, subtrees need to move

around within the binary search tree. The subroutine TRANSPLANT

replaces one subtree as a child of its parent with another subtree. When

TRANSPLANT replaces the subtree rooted at node u with the subtree

rooted at node v, node u’s parent becomes node v’s parent, and u’s

parent ends up having v as its appropriate child. TRANSPLANT allows

v to be NIL instead of a pointer to a node.

TRANSPLANT(T, u, v)

1 if u.p == NIL

2 T.root = v

3 elseif u == u.p.left

4 u.p.left = v

5 else u.p.right = v

6 if v ≠ NIL

7 v.p = u.p
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Here is how TRANSPLANT works. Lines 1–2 handle the case in

which u is the root of T. Otherwise, u is either a left child or a right child

of its parent. Lines 3–4 take care of updating u.p.left if u is a left child,

and line 5 updates u.p.right if u is a right child. Because v may be NIL,

lines 6–7 update v.p only if v is non-NIL. The procedure

TRANSPLANT does not attempt to update v.left and v.right. Doing so,

or not doing so, is the responsibility of TRANSPLANT’s caller.

The procedure TREE-DELETE on the facing page uses

TRANSPLANT to delete node z from binary search tree T. It executes

the four cases as follows. Lines 1–2 handle the case in which node z has

no left child (Figure 12.4(a)), and lines 3–4 handle the case in which z

has a left child but no right child (Figure 12.4(b)). Lines 5–12 deal with

the remaining two cases, in which z has two children. Line 5 finds node

y, which is the successor of z. Because z has a nonempty right subtree,

its successor must be the node in that subtree with the smallest key;

hence the call to TREE-MINIMUM(z.right). As we noted before, y has

no left child. The procedure needs to splice y out of its current location

and replace z by y in the tree. If y is z’s right child (Figure 12.4(c)), then

lines 10–12 replace z as a child of its parent by y and replace y’s left

child by z’s left child. Node y retains its right child (x in Figure 12.4(c)),

and so no change to y.right needs to occur. If y is not z’s right child

(Figure 12.4(d)), then two nodes have to move. Lines 7–9 replace y as a

child of its parent by y’s right child (x in Figure 12.4(c)) and make z’s

right child (r in the figure) become y’s right child instead. Finally, lines

10–12 replace z as a child of its parent by y and replace y’s left child by

z’s left child.

TREE-DELETE(T, z)

  1 if z.left == NIL

  2 TRANSPLANT(T, z, z.right) // replace z by its right child

  3elseif z.right == NIL

  4 TRANSPLANT(T, z, z.left) // replace z by its left child

  5else y = TREE-MINIMUM(z.right) // y is z’s successor

  6 if y ≠ z.right // is y farther down the tree?

  7 TRANSPLANT(T, y, y.right) // replace y by its right child
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  8 y.right = z.right // z’s right child becomes

  9 y.right.p = y //      y’s right child

10 TRANSPLANT(T, z, y) // replace z by its successor y

11 y.left = z.left // and give z’s left child to y,

12 y.left.p = y //      which had no left child

Each line of TREE-DELETE, including the calls to

TRANSPLANT, takes constant time, except for the call to TREE-

MINIMUM in line 5. Thus, TREE-DELETE runs in O(h) time on a

tree of height h.

In summary, we have proved the following theorem.

Theorem 12.3

The dynamic-set operations INSERT and DELETE can be

implemented so that each one runs in O(h) time on a binary search tree

of height h.

▪

Exercises

12.3-1

Give a recursive version of the TREE-INSERT procedure.

12.3-2

Suppose that you construct a binary search tree by repeatedly inserting

distinct values into the tree. Argue that the number of nodes examined

in searching for a value in the tree is 1 plus the number of nodes

examined when the value was first inserted into the tree.

12.3-3

You can sort a given set of n numbers by first building a binary search

tree containing these numbers (using TREE-INSERT repeatedly to

insert the numbers one by one) and then printing the numbers by an

inorder tree walk. What are the worst-case and best-case running times

for this sorting algorithm?

12.3-4
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When TREE-DELETE calls TRANSPLANT, under what

circumstances can the parameter v of TRANSPLANT be NIL?

12.3-5

Is the operation of deletion “commutative” in the sense that deleting x

and then y from a binary search tree leaves the same tree as deleting y

and then x? Argue why it is or give a counterexample.

12.3-6

Suppose that instead of each node x keeping the attribute x.p, pointing

to x’s parent, it keeps x.succ, pointing to x’s successor. Give pseudocode

for TREE-SEARCH, TREE-INSERT, and TREE-DELETE on a

binary search tree T using this representation. These procedures should

operate in O(h) time, where h is the height of the tree T. You may

assume that all keys in the binary search tree are distinct. (Hint: You

might wish to implement a subroutine that returns the parent of a

node.)

12.3-7

When node z in TREE-DELETE has two children, you can choose

node y to be its predecessor rather than its successor. What other

changes to TREE-DELETE are necessary if you do so? Some have

argued that a fair strategy, giving equal priority to predecessor and

successor, yields better empirical performance. How might TREE-

DELETE be minimally changed to implement such a fair strategy?

Problems

12-1     Binary search trees with equal keys

Equal keys pose a problem for the implementation of binary search

trees.

a. What is the asymptotic performance of TREE-INSERT when used to

insert n items with identical keys into an initially empty binary search

tree?
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Consider changing TREE-INSERT to test whether z.key = x.key before

line 5 and to test whether z.key = y.key before line 11. If equality holds,

implement one of the following strategies. For each strategy, find the

asymptotic performance of inserting n items with identical keys into an

initially empty binary search tree. (The strategies are described for line

5, which compares the keys of z and x. Substitute y for x to arrive at the

strategies for line 11.)

b. Keep a boolean flag x.b at node x, and set x to either x.left or x.right

based on the value of x.b, which alternates between FALSE and

TRUE each time TREE-INSERT visits x while inserting a node with

the same key as x.

c. Keep a list of nodes with equal keys at x, and insert z into the list.

d. Randomly set x to either x.left or x.right. (Give the worst-case

performance and informally derive the expected running time.)

12-2     Radix trees

Given two strings a = a0a1 … ap and b = b0b1 … bq, where each ai and

each bj belongs to some ordered set of characters, we say that string a is

lexicographically less than string b if either

1. there exists an integer j, where 0 ≤ j ≤ min {p, q}, such that ai = bi

for all i = 0, 1, …, j − 1 and aj < bj, or

2. p < q and ai = bi for all i = 0, 1, …, p.

For example, if a and b are bit strings, then 10100 < 10110 by rule 1

(letting j = 3) and 10100 < 101000 by rule 2. This ordering is similar to

that used in English-language dictionaries.

The radix tree data structure shown in Figure 12.5 (also known as a

trie) stores the bit strings 1011, 10, 011, 100, and 0. When searching for

a key a = a0a1 … ap, go left at a node of depth i if ai = 0 and right if ai

= 1. Let S be a set of distinct bit strings whose lengths sum to n. Show

how to use a radix tree to sort S lexicographically in Θ(n) time. For the
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example in Figure 12.5, the output of the sort should be the sequence 0,

011, 10, 100, 1011.

Figure 12.5 A radix tree storing the bit strings 1011, 10, 011, 100, and 0. To determine each

node’s key, traverse the simple path from the root to that node. There is no need, therefore, to

store the keys in the nodes. The keys appear here for illustrative purposes only. Keys

corresponding to blue nodes are not in the tree. Such nodes are present only to establish a path

to other nodes.

12-3     Average node depth in a randomly built binary search tree

A randomly built binary search tree on n keys is a binary search tree

created by starting with an empty tree and inserting the keys in random

order, where each of the n! permutations of the keys is equally likely. In

this problem, you will prove that the average depth of a node in a

randomly built binary search tree with n nodes is O(lg n). The technique

reveals a surprising similarity between the building of a binary search

tree and the execution of RANDOMIZED-QUICKSORT from Section

7.3.

Denote the depth of any node x in tree T by d(x, T). Then the total

path length P(T) of a tree T is the sum, over all nodes x in T, of d(x, T).

a. Argue that the average depth of a node in T is

Thus, you need to show that the expected value of P(T) is O(n lg n).
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b. Let TL and TR denote the left and right subtrees of tree T,

respectively. Argue that if T has n nodes, then

P(T) = P(TL) + P(TR) + n − 1.

c. Let P(n) denote the average total path length of a randomly built

binary search tree with n nodes. Show that

d. Show how to rewrite P(n) as

e. Recalling the alternative analysis of the randomized version of

quicksort given in Problem 7-3, conclude that P(n) = O(n lg n).

Each recursive invocation of randomized quicksort chooses a random

pivot element to partition the set of elements being sorted. Each node of

a binary search tree partitions the set of elements that fall into the

subtree rooted at that node.

f. Describe an implementation of quicksort in which the comparisons to

sort a set of elements are exactly the same as the comparisons to insert

the elements into a binary search tree. (The order in which

comparisons are made may differ, but the same comparisons must

occur.)

12-4     Number of different binary trees

Let bn denote the number of different binary trees with n nodes. In this

problem, you will find a formula for bn, as well as an asymptotic

estimate.

a. Show that b0 = 1 and that, for n ≥ 1,
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b. Referring to Problem 4-5 on page 121 for the definition of a

generating function, let B(x) be the generating function

Show that B(x) = xB(x)2 + 1, and hence one way to express B(x) in

closed form is

The Taylor expansion of f(x) around the point x = a is given by

where f(k)(x) is the kth derivative of f evaluated at x.

c. Show that

(the nth Catalan number) by using the Taylor expansion of 

around x = 0. (If you wish, instead of using the Taylor expansion, you

may use the generalization of the binomial theorem, equation (C.4) on

page 1181, to noninteger exponents n, where for any real number n

and for any integer k, you can interpret  to be n(n − 1) … (n − k +

1)/k! if k ≥ 0, and 0 otherwise.)

d. Show that
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Chapter notes

Knuth [261] contains a good discussion of simple binary search trees as

well as many variations. Binary search trees seem to have been

independently discovered by a number of people in the late 1950s. Radix

trees are often called “tries,” which comes from the middle letters in the

word retrieval. Knuth [261] also discusses them.

Many texts, including the first two editions of this book, describe a

somewhat simpler method of deleting a node from a binary search tree

when both of its children are present. Instead of replacing node z by its

successor y, delete node y but copy its key and satellite data into node z.

The downside of this approach is that the node actually deleted might

not be the node passed to the delete procedure. If other components of

a program maintain pointers to nodes in the tree, they could mistakenly

end up with “stale” pointers to nodes that have been deleted. Although

the deletion method presented in this edition of this book is a bit more

complicated, it guarantees that a call to delete node z deletes node z and

only node z.

Section 14.5 will show how to construct an optimal binary search

tree when you know the search frequencies before constructing the tree.

That is, given the frequencies of searching for each key and the

frequencies of searching for values that fall between keys in the tree, a

set of searches in the constructed binary search tree examines the

minimum number of nodes.

www.konkur.in

Telegram: @uni_k



13        Red-Black Trees

Chapter 12 showed that a binary search tree of height h can support any

of the basic dynamic-set operations—such as SEARCH,

PREDECESSOR, SUCCESSOR, MINIMUM, MAXIMUM,

INSERT, and DELETE—in O(h) time. Thus, the set operations are fast

if the height of the search tree is small. If its height is large, however, the

set operations may run no faster than with a linked list. Red-black trees

are one of many search-tree schemes that are “balanced” in order to

guarantee that basic dynamic-set operations take O(lg n) time in the

worst case.

13.1    Properties of red-black trees

A red-black tree is a binary search tree with one extra bit of storage per

node: its color, which can be either RED or BLACK. By constraining

the node colors on any simple path from the root to a leaf, red-black

trees ensure that no such path is more than twice as long as any other, so

that the tree is approximately balanced. Indeed, as we’re about to see, the

height of a red-black tree with n keys is at most 2 lg(n + 1), which is O(lg

n).

Each node of the tree now contains the attributes color, key, left,

right, and p. If a child or the parent of a node does not exist, the

corresponding pointer attribute of the node contains the value NIL.

Think of these NILs as pointers to leaves (external nodes) of the binary
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search tree and the normal, key-bearing nodes as internal nodes of the

tree.

A red-black tree is a binary search tree that satisfies the following red-

black properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf (NIL) is black.

4. If a node is red, then both its children are black.

5. For each node, all simple paths from the node to descendant

leaves contain the same number of black nodes.

Figure 13.1(a) shows an example of a red-black tree.

As a matter of convenience in dealing with boundary conditions in

red-black tree code, we use a single sentinel to represent NIL (see page

262). For a red-black tree T, the sentinel T.nil is an object with the same

attributes as an ordinary node in the tree. Its color attribute is BLACK,

and its other attributes—p, left, right, and key—can take on arbitrary

values. As Figure 13.1(b) shows, all pointers to NIL are replaced by

pointers to the sentinel T.nil.

Why use the sentinel? The sentinel makes it possible to treat a NIL

child of a node x as an ordinary node whose parent is x. An alternative

design would use a distinct sentinel node for each NIL in the tree, so

that the parent of each NIL is well defined. That approach needlessly

wastes space, however. Instead, just the one sentinel T.nil represents all

the NILs—all leaves and the root’s parent. The values of the attributes p,

left, right, and key of the sentinel are immaterial. The red-black tree

procedures can place whatever values in the sentinel that yield simpler

code.

We generally confine our interest to the internal nodes of a red-black

tree, since they hold the key values. The remainder of this chapter omits

the leaves in drawings of red-black trees, as shown in Figure 13.1(c).

We call the number of black nodes on any simple path from, but not

including, a node x down to a leaf the black-height of the node, denoted

bh(x). By property 5, the notion of black-height is well defined, since all
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descending simple paths from the node have the same number of black

nodes. The black-height of a red-black tree is the black-height of its

root.

The following lemma shows why red-black trees make good search

trees.

Lemma 13.1

A red-black tree with n internal nodes has height at most 2 lg(n + 1).

Proof      We start by showing that the subtree rooted at any node x

contains at least 2bh(x) − 1 internal nodes. We prove this claim by

induction on the height of x. If the height of x is 0, then x must be a leaf

(T.nil), and the subtree rooted at x indeed contains at least 2bh(x) − 1 =

20 − 1 = 0 internal nodes. For the inductive step, consider a node x that

has positive height and is an internal node. Then node x has two

children, either or both of which may be a leaf. If a child is black, then it

contributes 1 to x’s black-height but not to its own. If a child is red, then

it contributes to neither x’s black-height nor its own. Therefore, each

child has a black-height of either bh(x) − 1 (if it’s black) or bh(x) (if it’s

red). Since the height of a child of x is less than the height of x itself, we

can apply the inductive hypothesis to conclude that each child has at

least 2bh(x)−1 − 1 internal nodes. Thus, the subtree rooted at x contains

at least (2bh(x)−1 − 1) + (2bh(x)−1 − 1) + 1 = 2bh(x) − 1 internal

nodes, which proves the claim.
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Figure 13.1 A red-black tree. Every node in a red-black tree is either red or black, the children of

a red node are both black, and every simple path from a node to a descendant leaf contains the

same number of black nodes. (a) Every leaf, shown as a NIL, is black. Each non-NIL node is

marked with its black-height, where NILs have black-height 0. (b) The same red-black tree but

with each NIL replaced by the single sentinel T.nil, which is always black, and with black-heights

omitted. The root’s parent is also the sentinel. (c) The same red-black tree but with leaves and the

root’s parent omitted entirely. The remainder of this chapter uses this drawing style.
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To complete the proof of the lemma, let h be the height of the tree.

According to property 4, at least half the nodes on any simple path from

the root to a leaf, not including the root, must be black. Consequently,

the black-height of the root must be at least h/2, and thus,

n ≥ 2h/2 − 1.

Moving the 1 to the left-hand side and taking logarithms on both sides

yields lg(n + 1) ≥ h/2, or h ≤ 2 lg(n + 1).

▪

As an immediate consequence of this lemma, each of the dynamic-set

operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and

PREDECESSOR runs in O(lg n) time on a red-black tree, since each

can run in O(h) time on a binary search tree of height h (as shown in

Chapter 12) and any red-black tree on n nodes is a binary search tree

with height O(lg n). (Of course, references to NIL in the algorithms of

Chapter 12 have to be replaced by T.nil.) Although the procedures

TREE-INSERT and TREE-DELETE from Chapter 12 run in O(lg n)

time when given a red-black tree as input, you cannot just use them to

implement the dynamic-set operations INSERT and DELETE. They do

not necessarily maintain the red-black properties, so you might not end

up with a legal red-black tree. The remainder of this chapter shows how

to insert into and delete from a red-black tree in O(lg n) time.

Exercises

13.1-1

In the style of Figure 13.1(a), draw the complete binary search tree of

height 3 on the keys {1, 2, …, 15}. Add the NIL leaves and color the

nodes in three different ways such that the black-heights of the resulting

red-black trees are 2, 3, and 4.

13.1-2

Draw the red-black tree that results after TREE-INSERT is called on

the tree in Figure 13.1 with key 36. If the inserted node is colored red, is

the resulting tree a red-black tree? What if it is colored black?
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13.1-3

Define a relaxed red-black tree as a binary search tree that satisfies red-

black properties 1, 3, 4, and 5, but whose root may be either red or

black. Consider a relaxed red-black tree T whose root is red. If the root

of T is changed to black but no other changes occur, is the resulting tree

a red-black tree?

13.1-4

Suppose that every black node in a red-black tree “absorbs” all of its red

children, so that the children of any red node become children of the

black parent. (Ignore what happens to the keys.) What are the possible

degrees of a black node after all its red children are absorbed? What can

you say about the depths of the leaves of the resulting tree?

13.1-5

Show that the longest simple path from a node x in a red-black tree to a

descendant leaf has length at most twice that of the shortest simple path

from node x to a descendant leaf.

13.1-6

What is the largest possible number of internal nodes in a red-black tree

with black-height k? What is the smallest possible number?

13.1-7

Describe a red-black tree on n keys that realizes the largest possible ratio

of red internal nodes to black internal nodes. What is this ratio? What

tree has the smallest possible ratio, and what is the ratio?

13.1-8

Argue that in a red-black tree, a red node cannot have exactly one non-

NIL child.

13.2    Rotations

The search-tree operations TREE-INSERT and TREE-DELETE, when

run on a red-black tree with n keys, take O(lg n) time. Because they

modify the tree, the result may violate the red-black properties
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enumerated in Section 13.1. To restore these properties, colors and

pointers within nodes need to change.

The pointer structure changes through rotation, which is a local

operation in a search tree that preserves the binary-search-tree property.

Figure 13.2 shows the two kinds of rotations: left rotations and right

rotations. Let’s look at a left rotation on a node x, which transforms the

structure on the right side of the figure to the structure on the left. Node

x has a right child y, which must not be T.nil. The left rotation changes

the subtree originally rooted at x by “twisting” the link between x and y

to the left. The new root of the subtree is node y, with x as y’s left child

and y’s original left child (the subtree represented by β in the figure) as

x’s right child.

The pseudocode for LEFT-ROTATE appearing on the following

page assumes that x.right ≠ T.nil and that the root’s parent is T.nil.

Figure 13.3 shows an example of how LEFT-ROTATE modifies a

binary search tree. The code for RIGHT-ROTATE is symmetric. Both

LEFT-ROTATE and RIGHT-ROTATE run in O(1) time. Only pointers

are changed by a rotation, and all other attributes in a node remain the

same.

Figure 13.2 The rotation operations on a binary search tree. The operation LEFT-ROTATE(T,

x) transforms the configuration of the two nodes on the right into the configuration on the left

by changing a constant number of pointers. The inverse operation RIGHT-ROTATE(T, y)

transforms the configuration on the left into the configuration on the right. The letters α, β, and γ
represent arbitrary subtrees. A rotation operation preserves the binary-search-tree property: the

keys in α precede x.key, which precedes the keys in β, which precede y.key, which precedes the

keys in γ.

LEFT-ROTATE(T, x)

  1y = x.right

  2x.right = y.left // turn y’s left subtree into x’s right subtree
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  3 if y.left ≠ T.nil // if y’s left subtree is not empty …

  4 y.left.p = x // … then x becomes the parent of the subtree’s

root

  5y.p = x.p // x’s parent becomes y’s parent

  6 if x.p == T.nil // if x was the root …

  7 T.root = y // … then y becomes the root

  8elseif  x ==

x.p.left

// otherwise, if x was a left child …

  9 x.p.left = y // … then y becomes a left child

10else x.p.right = y // otherwise, x was a right child, and now y is

11y.left = x // make x become y’s left child

12x.p = y

Exercises

13.2-1

Write pseudocode for RIGHT-ROTATE.
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Figure 13.3 An example of how the procedure LEFT-ROTATE(T, x) modifies a binary search

tree. Inorder tree walks of the input tree and the modified tree produce the same listing of key

values.

13.2-2

Argue that in every n-node binary search tree, there are exactly n − 1

possible rotations.

13.2-3

Let a, b, and c be arbitrary nodes in subtrees α, β, and γ, respectively, in

the right tree of Figure 13.2. How do the depths of a, b, and c change

when a left rotation is performed on node x in the figure?

13.2-4

Show that any arbitrary n-node binary search tree can be transformed

into any other arbitrary n-node binary search tree using O(n) rotations.

(Hint: First show that at most n − 1 right rotations suffice to transform

the tree into a right-going chain.)

★ 13.2-5
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We say that a binary search tree T1 can be right-converted to binary

search tree T2 if it is possible to obtain T2 from T1 via a series of calls to

RIGHT-ROTATE. Give an example of two trees T1 and T2 such that

T1 cannot be right-converted to T2. Then, show that if a tree T1 can be

right-converted to T2, it can be right-converted using O(n2) calls to

RIGHT-ROTATE.

13.3    Insertion

In order to insert a node into a red-black tree with n internal nodes in

O(lg n) time and maintain the red-black properties, we’ll need to slightly

modify the TREE-INSERT procedure on page 321. The procedure RB-

INSERT starts by inserting node z into the tree T as if it were an

ordinary binary search tree, and then it colors z red. (Exercise 13.3-1

asks you to explain why to make node z red rather than black.) To

guarantee that the red-black properties are preserved, an auxiliary

procedure RB-INSERT-FIXUP on the facing page recolors nodes and

performs rotations. The call RB-INSERT(T, z) inserts node z, whose key

is assumed to have already been filled in, into the red-black tree T.

RB-INSERT(T, z)

  1x = T.root // node being compared with z

  2y = T.nil // y will be parent of z

  3while x ≠ T.nil // descend until reaching the sentinel

  4 y = x

  5 if z.key < x.key

  6 x = x.left

  7 else x = x.right

  8z.p = y // found the location—insert z with parent

y

  9 if y == T.nil

10 T.root = z // tree T was empty

11elseif z.key < y.key

12 y.left = z
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13else y.right = z

14z.left = T.nil // both of z’s children are the sentinel

15z.right = T.nil

16z.color = RED // the new node starts out red

17RB-INSERT-FIXUP(T,

z)

// correct any violations of red-black

properties

The procedures TREE-INSERT and RB-INSERT differ in four

ways. First, all instances of NIL in TREE-INSERT are replaced by T.nil.

Second, lines 14–15 of RB-INSERT set z.left and z.right to T.nil, in

order to maintain the proper tree structure. (TREE-INSERT assumed

that z’s children were already NIL.) Third, line 16 colors z red. Fourth,

because coloring z red may cause a violation of one of the red-black

properties, line 17 of RB-INSERT calls RB-INSERT-FIXUP(T, z) in

order to restore the red-black properties.

RB-INSERT-FIXUP(T, z)

  1while z.p.color == RED

  2 if z.p == z.p.p.left // is z’s parent a left child?

  3 y = z.p.p.right // y is z’s uncle

  4 if y.color == RED // are z’s parent and uncle both

red?

  5 z.p.color = BLACK

  6 y.color = BLACK

  7 z.p.p.color = RED

  8 z = z.p.p

  9 else

10 if z == z.p.right

11 z = z.p

12 LEFT-ROTATE(T, z)

13 z.p.color = BLACK

14 z.p.p.color = RED

15 RIGHT-ROTATE(T,

z.p.p)

16 else // same as lines 3–15, but with “right” and “left” exchanged
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17 y = z.p.p.left

18 if y.color == RED

19 z.p.color = BLACK

20 y.color = BLACK

21 z.p.p.color = RED

22 z = z.p.p

23 else

24 if z == z.p.left

25 z = z.p

26 RIGHT-ROTATE(T,

z)

27 z.p.color = BLACK

28 z.p.p.color = RED

29 LEFT-ROTATE(T, z.p.p)

30T.root.color = BLACK

To understand how RB-INSERT-FIXUP works, let’s examine the

code in three major steps. First, we’ll determine which violations of the

red-black properties might arise in RB-INSERT upon inserting node z

and coloring it red. Second, we’ll consider the overall goal of the while

loop in lines 1–29. Finally, we’ll explore each of the three cases within

the while loop’s body (case 2 falls through into case 3, so these two cases

are not mutually exclusive) and see how they accomplish the goal.

In describing the structure of a red-black tree, we’ll often need to

refer to the sibling of a node’s parent. We use the term uncle for such a

node.1  Figure 13.4 shows how RB-INSERT-FIXUP operates on a

sample red-black tree, with cases depending in part on the colors of a

node, its parent, and its uncle.

What violations of the red-black properties might occur upon the call

to RB-INSERT-FIXUP? Property 1 certainly continues to hold (every

node is either red or black), as does property 3 (every leaf is black), since

both children of the newly inserted red node are the sentinel T.nil.

Property 5, which says that the number of black nodes is the same on

every simple path from a given node, is satisfied as well, because node z

replaces the (black) sentinel, and node z is red with sentinel children.
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Thus, the only properties that might be violated are property 2, which

requires the root to be black, and property 4, which says that a red node

cannot have a red child. Both possible violations may arise because z is

colored red. Property 2 is violated if z is the root, and property 4 is

violated if z’s parent is red. Figure 13.4(a) shows a violation of property

4 after the node z has been inserted.

The while loop of lines 1–29 has two symmetric possibilities: lines 3–

15 deal with the situation in which node z’s parent z.p is a left child of z’s

grandparent z.p.p, and lines 17–29 apply when z’s parent is a right child.

Our proof will focus only on lines 3–15, relying on the symmetry in lines

17–29.

We’ll show that the while loop maintains the following three-part

invariant at the start of each iteration of the loop:

a. Node z is red.

b. If z.p is the root, then z.p is black.

c. If the tree violates any of the red-black properties, then it violates

at most one of them, and the violation is of either property 2 or

property 4, but not both. If the tree violates property 2, it is

because z is the root and is red. If the tree violates property 4, it is

because both z and z.p are red.

Part (c), which deals with violations of red-black properties, is more

central to showing that RB-INSERT-FIXUP restores the red-black

properties than parts (a) and (b), which we’ll use along the way to

understand situations in the code. Because we’ll be focusing on node z

and nodes near it in the tree, it helps to know from part (a) that z is red.

Part (b) will help show that z’s grandparent z.p.p exists when it’s

referenced in lines 2, 3, 7, 8, 14, and 15 (recall that we’re focusing only

on lines 3–15).
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Figure 13.4 The operation of RB-INSERT-FIXUP. (a) A node z after insertion. Because both z

and its parent z.p are red, a violation of property 4 occurs. Since z’s uncle y is red, case 1 in the

code applies. Node z’s grandparent z.p.p must be black, and its blackness transfers down one

level to z’s parent and uncle. Once the pointer z moves up two levels in the tree, the tree shown in

(b) results. Once again, z and its parent are both red, but this time z’s uncle y is black. Since z is

the right child of z.p, case 2 applies. Performing a left rotation results in the tree in (c). Now z is

the left child of its parent, and case 3 applies. Recoloring and right rotation yield the tree in (d),

which is a legal red-black tree.
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Recall that to use a loop invariant, we need to show that the invariant

is true upon entering the first iteration of the loop, that each iteration

maintains it, that the loop terminates, and that the loop invariant gives

us a useful property at loop termination. We’ll see that each iteration of

the loop has two possible outcomes: either the pointer z moves up the

tree, or some rotations occur and then the loop terminates.

Initialization: Before RB-INSERT is called, the red-black tree has no

violations. RB-INSERT adds a red node z and calls RB-INSERT-

FIXUP. We’ll show that each part of the invariant holds at the time

RB-INSERT-FIXUP is called:

a. When RB-INSERT-FIXUP is called, z is the red node that was

added.

b. If z.p is the root, then z.p started out black and did not change

before the call of RB-INSERT-FIXUP.

c. We have already seen that properties 1, 3, and 5 hold when RB-

INSERTFIXUP is called.

If the tree violates property 2 (the root must be black), then the red

root must be the newly added node z, which is the only internal node

in the tree. Because the parent and both children of z are the

sentinel, which is black, the tree does not also violate property 4

(both children of a red node are black). Thus this violation of

property 2 is the only violation of red-black properties in the entire

tree.

If the tree violates property 4, then, because the children of node z

are black sentinels and the tree had no other violations prior to z

being added, the violation must be because both z and z.p are red.

Moreover, the tree violates no other red-black properties.

Maintenance: There are six cases within the while loop, but we’ll examine

only the three cases in lines 3–15, when node z’s parent z.p is a left

child of z’s grandparent z.p.p. The proof for lines 17–29 is symmetric.

The node z.p.p exists, since by part (b) of the loop invariant, if z.p is

the root, then z.p is black. Since RB-INSERT-FIXUP enters a loop
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iteration only if z.p is red, we know that z.p cannot be the root. Hence,

z.p.p exists.

Case 1 differs from cases 2 and 3 by the color of z’s uncle y. Line 3

makes y point to z’s uncle z.p.p.right, and line 4 tests y’s color. If y is

red, then case 1 executes. Otherwise, control passes to cases 2 and 3. In

all three cases, z’s grandparent z.p.p is black, since its parent z.p is red,

and property 4 is violated only between z and z.p.

Figure 13.5 Case 1 of the procedure RB-INSERT-FIXUP. Both z and its parent z.p are red,

violating property 4. In case 1, z’s uncle y is red. The same action occurs regardless of whether

(a) z is a right child or (b) z is a left child. Each of the subtrees α, β, γ, δ, and ϵ has a black root—

possibly the sentinel—and each has the same black-height. The code for case 1 moves the

blackness of z’s grandparent down to z’s parent and uncle, preserving property 5: all downward

simple paths from a node to a leaf have the same number of blacks. The while loop continues

with node z’s grandparent z.p.p as the new z. If the action of case 1 causes a new violation of

property 4 to occur, it must be only between the new z, which is red, and its parent, if it is red as

well.
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Figure 13.6 Cases 2 and 3 of the procedure RB-INSERT-FIXUP. As in case 1, property 4 is

violated in either case 2 or case 3 because z and its parent z.p are both red. Each of the subtrees

α, β, γ, and δ has a black root (α, β, and γ from property 4, and δ because otherwise case 1 would

apply), and each has the same black-height. Case 2 transforms into case 3 by a left rotation,

which preserves property 5: all downward simple paths from a node to a leaf have the same

number of blacks. Case 3 causes some color changes and a right rotation, which also preserve

property 5. The while loop then terminates, because property 4 is satisfied: there are no longer

two red nodes in a row.

Case 1. z’s uncle y is red

Figure 13.5 shows the situation for case 1 (lines 5–8), which

occurs when both z.p and y are red. Because z’s grandparent

z.p.p is black, its blackness can transfer down one level to both

z.p and y, thereby fixing the problem of z and z.p both being

red. Having had its blackness transferred down one level, z’s

grandparent becomes red, thereby maintaining property 5. The

while loop repeats with z.p.p as the new node z, so that the

pointer z moves up two levels in the tree.

Now, we show that case 1 maintains the loop invariant at the

start of the next iteration. We use z to denote node z in the

current iteration, and z′ = z.p.p to denote the node that will be

called node z at the test in line 1 upon the next iteration.

a. Because this iteration colors z.p.p red, node z′ is red at the

start of the next iteration.

b. The node z′.p is z.p.p.p in this iteration, and the color of this

node does not change. If this node is the root, it was black

prior to this iteration, and it remains black at the start of the

next iteration.
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c. We have already argued that case 1 maintains property 5, and

it does not introduce a violation of properties 1 or 3.

If node z′ is the root at the start of the next iteration, then case

1 corrected the lone violation of property 4 in this iteration.

Since z′ is red and it is the root, property 2 becomes the only

one that is violated, and this violation is due to z′.

If node z′ is not the root at the start of the next iteration, then

case 1 has not created a violation of property 2. Case 1

corrected the lone violation of property 4 that existed at the

start of this iteration. It then made z′ red and left z′.p alone. If

z′.p was black, there is no violation of property 4. If z′.p was

red, coloring z′ red created one violation of property 4,

between z′ and z′.p.

Case 2. z’s uncle y is black and z is a right child

Case 3. z’s uncle y is black and z is a left child

In cases 2 and 3, the color of z’s uncle y is black. We distinguish

the two cases, which assume that z’s parent z.p is red and a left

child, according to whether z is a right or left child of z.p. Lines

11–12 constitute case 2, which is shown in Figure 13.6 together

with case 3. In case 2, node z is a right child of its parent. A left

rotation immediately transforms the situation into case 3 (lines

13–15), in which node z is a left child. Because both z and z.p

are red, the rotation affects neither the black-heights of nodes

nor property 5. Whether case 3 executes directly or through case

2, z’s uncle y is black, since otherwise case 1 would have run.

Additionally, the node z.p.p exists, since we have argued that this

node existed at the time that lines 2 and 3 were executed, and

after moving z up one level in line 11 and then down one level in

line 12, the identity of z.p.p remains unchanged. Case 3

performs some color changes and a right rotation, which

preserve property 5. At this point, there are no longer two red

nodes in a row. The while loop terminates upon the next test in

line 1, since z.p is now black.
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We now show that cases 2 and 3 maintain the loop invariant.

(As we have just argued, z.p will be black upon the next test in

line 1, and the loop body will not execute again.)

a. Case 2 makes z point to z.p, which is red. No further change

to z or its color occurs in cases 2 and 3.

b. Case 3 makes z.p black, so that if z.p is the root at the start of

the next iteration, it is black.

c. As in case 1, properties 1, 3, and 5 are maintained in cases 2

and 3.

Since node z is not the root in cases 2 and 3, we know that

there is no violation of property 2. Cases 2 and 3 do not

introduce a violation of property 2, since the only node that is

made red becomes a child of a black node by the rotation in

case 3.

Cases 2 and 3 correct the lone violation of property 4, and

they do not introduce another violation.

Termination: To see that the loop terminates, observe that if only case 1

occurs, then the node pointer z moves toward the root in each

iteration, so that eventually z.p is black. (If z is the root, then z.p is the

sentinel T.nil, which is black.) If either case 2 or case 3 occurs, then

we’ve seen that the loop terminates. Since the loop terminates because

z.p is black, the tree does not violate property 4 at loop termination.

By the loop invariant, the only property that might fail to hold is

property 2. Line 30 restores this property by coloring the root black,

so that when RB-INSERT-FIXUP terminates, all the red-black

properties hold.

Thus, we have shown that RB-INSERT-FIXUP correctly restores the

red-black properties.

Analysis

What is the running time of RB-INSERT? Since the height of a red-

black tree on n nodes is O(lg n), lines 1–16 of RB-INSERT take O(lg n)
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time. In RB-INSERTFIXUP, the while loop repeats only if case 1

occurs, and then the pointer z moves two levels up the tree. The total

number of times the while loop can be executed is therefore O(lg n).

Thus, RB-INSERT takes a total of O(lg n) time. Moreover, it never

performs more than two rotations, since the while loop terminates if case

2 or case 3 is executed.

Exercises

13.3-1

Line 16 of RB-INSERT sets the color of the newly inserted node z to

red. If instead z’s color were set to black, then property 4 of a red-black

tree would not be violated. Why not set z’s color to black?

13.3-2

Show the red-black trees that result after successively inserting the keys

41, 38, 31, 12, 19, 8 into an initially empty red-black tree.

13.3-3

Suppose that the black-height of each of the subtrees α, β, γ, δ, ϵ in

Figures 13.5 and 13.6 is k. Label each node in each figure with its black-

height to verify that the indicated transformation preserves property 5.

13.3-4

Professor Teach is concerned that RB-INSERT-FIXUP might set

T.nil.color to RED, in which case the test in line 1 would not cause the

loop to terminate when z is the root. Show that the professor’s concern is

unfounded by arguing that RB-INSERT-FIXUP never sets T.nil.color to

RED.

13.3-5

Consider a red-black tree formed by inserting n nodes with RB-

INSERT. Argue that if n > 1, the tree has at least one red node.

13.3-6

Suggest how to implement RB-INSERT efficiently if the representation

for red-black trees includes no storage for parent pointers.
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13.4    Deletion

Like the other basic operations on an n-node red-black tree, deletion of

a node takes O(lg n) time. Deleting a node from a red-black tree is more

complicated than inserting a node.

The procedure for deleting a node from a red-black tree is based on

the TREE-DELETE procedure on page 325. First, we need to

customize the TRANSPLANT  subroutine on page 324 that TREE-

DELETE calls so that it applies to a red-black tree. Like

TRANSPLANT, the new procedure RB-TRANSPLANT replaces the

subtree rooted at node u by the subtree rooted at node v. The RB-

TRANSPLANT procedure differs from TRANSPLANT in two ways.

First, line 1 references the sentinel T.nil instead of NIL. Second, the

assignment to v.p in line 6 occurs unconditionally: the procedure can

assign to v.p even if v points to the sentinel. We’ll take advantage of the

ability to assign to v.p when v = T.nil.

RB-TRANSPLANT(T, u, v)

1 if u.p == T.nil

2 T.root = v

3 elseif u == u.p.left

4 u.p.left = v

5 else u.p.right = v

6 v.p = u.p

The procedure RB-DELETE on the next page is like the TREE-

DELETE procedure, but with additional lines of pseudocode. The

additional lines deal with nodes x and y that may be involved in

violations of the red-black properties. When the node z being deleted has

at most one child, then y will be z. When z has two children, then, as in

TREE-DELETE, y will be z’s successor, which has no left child and

moves into z’s position in the tree. Additionally, y takes on z’s color. In

either case, node y has at most one child: node x, which takes y’s place in

the tree. (Node x will be the sentinel T.nil if y has no children.) Since

node y will be either removed from the tree or moved within the tree, the
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procedure needs to keep track of y’s original color. If the red-black

properties might be violated after deleting node z, RB-DELETE calls

the auxiliary procedure RB-DELETE-FIXUP, which changes colors

and performs rotations to restore the red-black properties.

Although RB-DELETE contains almost twice as many lines of

pseudocode as TREE-DELETE, the two procedures have the same basic

structure. You can find each line of TREE-DELETE within RB-

DELETE (with the changes of replacing NIL by T.nil and replacing calls

to TRANSPLANT by calls to RB-TRANSPLANT), executed under

the same conditions.

In detail, here are the other differences between the two procedures:

Lines 1 and 9 set node y as described above: line 1 when node z

has at most one child and line 9 when z has two children.

Because node y’s color might change, the variable y-original-color

stores y’s color before any changes occur. Lines 2 and 10 set this

variable immediately after assignments to y. When node z has two

children, then nodes y and z are distinct. In this case, line 17

moves y into z’s original position in the tree (that is, z’s location in

the tree at the time RB-DELETE was called), and line 20 gives y

the same color as z. When node y was originally black, removing

or moving it could cause violations of the red-black properties,

which are corrected by the call of RB-DELETE-FIXUP in line 22.

RB-DELETE(T, z)

  1y = z  

  2y-original-color = y.color  

  3 if z.left == T.nil  

  4 x = z.right  

  5 RB-TRANSPLANT(T, z, z.right)// replace z by its right child

  6elseif z.right == T.nil  

  7 x = z.left  

  8 RB-TRANSPLANT(T, z, z.left) // replace z by its left child

  9else y = TREE-MINIMUM(z.right) // y is z’s successor

10 y-original-color = y.color  
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11 x = y.right  

12 if y ≠ z.right   // is y farther down the tree?

13 RB-TRANSPLANT(T, y,

y.right)

// replace y by its right child

14 y.right = z.right   // z’s right child becomes

15 y.right.p = y   //   y’s right child

16 else x.p = y   // in case x is T.nil

17 RB-TRANSPLANT(T, z, y)   // replace z by its successor y

18 y.left = z.left   // and give z’s left child to y,

19 y.left.p = y   //       which had no left child

20 y.color = z.color  

21 if y-original-color == BLACK // if any red-black violations

occurred,

22 RB-DELETE-FIXUP(T, x) //       correct them

As discussed, the procedure keeps track of the node x that moves

into node y’s original position at the time of call. The assignments

in lines 4, 7, and 11 set x to point to either y’s only child or, if y

has no children, the sentinel T.nil.

Since node x moves into node y’s original position, the attribute

x.p must be set correctly. If node z has two children and y is z’s

right child, then y just moves into z’s position, with x remaining a

child of y. Line 12 checks for this case. Although you might think

that setting x.p to y in line 16 is unnecessary since x is a child of y,

the call of RB-DELETE-FIXUP relies on x.p being y even if x is

T.nil. Thus, when z has two children and y is z’s right child,

executing line 16 is necessary if y’s right child is T.nil, and

otherwise it does not change anything.

Otherwise, node z is either the same as node y or it is a proper

ancestor of y’s original parent. In these cases, the calls of RB-

TRANSPLANT in lines 5, 8, and 13 set x.p correctly in line 6 of

RB-TRANSPLANT. (In these calls of RB-TRANSPLANT, the

third parameter passed is the same as x.)

Finally, if node y was black, one or more violations of the red-

black properties might arise. The call of RB-DELETE-FIXUP in
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line 22 restores the red-black properties. If y was red, the red-black

properties still hold when y is removed or moved, for the following

reasons:

1. No black-heights in the tree have changed. (See Exercise

13.4-1.)

2. No red nodes have been made adjacent. If z has at most

one child, then y and z are the same node. That node is

removed, with a child taking its place. If the removed node

was red, then neither its parent nor its children can also be

red, so moving a child to take its place cannot cause two

red nodes to become adjacent. If, on the other hand, z has

two children, then y takes z’s place in the tree, along with

z’s color, so there cannot be two adjacent red nodes at y’s

new position in the tree. In addition, if y was not z’s right

child, then y’s original right child x replaces y in the tree.

Since y is red, x must be black, and so replacing y by x

cannot cause two red nodes to become adjacent.

3. Because y could not have been the root if it was red, the

root remains black.

If node y was black, three problems may arise, which the call of RB-

DELETE-FIXUP will remedy. First, if y was the root and a red child of

y became the new root, property 2 is violated. Second, if both x and its

new parent are red, then a violation of property 4 occurs. Third, moving

y within the tree causes any simple path that previously contained y to

have one less black node. Thus, property 5 is now violated by any

ancestor of y in the tree. We can correct the violation of property 5 by

saying that when the black node y is removed or moved, its blackness

transfers to the node x that moves into y’s original position, giving x an

“extra” black. That is, if we add 1 to the count of black nodes on any

simple path that contains x, then under this interpretation, property 5

holds. But now another problem emerges: node x is neither red nor

black, thereby violating property 1. Instead, node x is either “doubly

black” or “red-and-black,” and it contributes either 2 or 1, respectively,

to the count of black nodes on simple paths containing x. The color
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attribute of x will still be either RED (if x is red-and-black) or BLACK

(if x is doubly black). In other words, the extra black on a node is

reflected in x’s pointing to the node rather than in the color attribute.

The procedure RB-DELETE-FIXUP on the next page restores

properties 1, 2, and 4. Exercises 13.4-2 and 13.4-3 ask you to show that

the procedure restores properties 2 and 4, and so in the remainder of this

section, we focus on property 1. The goal of the while loop in lines 1–43

is to move the extra black up the tree until

1. x points to a red-and-black node, in which case line 44 colors x

(singly) black;

2. x points to the root, in which case the extra black simply

vanishes; or

3. having performed suitable rotations and recolorings, the loop

exits.

Like RB-INSERT-FIXUP, the RB-DELETE-FIXUP procedure

handles two symmetric situations: lines 3–22 for when node x is a left

child, and lines 24–43 for when x is a right child. Our proof focuses on

the four cases shown in lines 3–22.

Within the while loop, x always points to a nonroot doubly black

node. Line 2 determines whether x is a left child or a right child of its

parent x.p so that either lines 3–22 or 24–43 will execute in a given

iteration. The sibling of x is always denoted by a pointer w. Since node x

is doubly black, node w cannot be T.nil, because otherwise, the number

of blacks on the simple path from x.p to the (singly black) leaf w would

be smaller than the number on the simple path from x.p to x.

Recall that the RB-DELETE procedure always assigns to x.p before

calling RB-DELETE-FIXUP (either within the call of RB-

TRANSPLANT in line 13 or the assignment in line 16), even when node

x is the sentinel T.nil. That is because RB-DELETE-FIXUP references

x’s parent x.p in several places, and this attribute must point to the node

that became x’s parent in RB-DELETE—even if x is T.nil.

Figure 13.7 demonstrates the four cases in the code when node x is a

left child. (As in RB-INSERT-FIXUP, the cases in RB-DELETE-

FIXUP are not mutually exclusive.) Before examining each case in
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detail, let’s look more generally at how we can verify that the

transformation in each of the cases preserves property 5. The key idea is

that in each case, the transformation applied preserves the number of

black nodes (including x’s extra black) from (and including) the root of

the subtree shown to the roots of each of the subtrees α, β, …, ζ. Thus, if

property 5 holds prior to the transformation, it continues to hold

afterward. For example, in Figure 13.7(a), which illustrates case 1, the

number of black nodes from the root to the root of either subtree α or β
is 3, both before and after the transformation. (Again, remember that

node x adds an extra black.) Similarly, the number of black nodes from

the root to the root of any of γ, δ, ϵ, and ζ is 2, both before and after the

transformation.2 In Figure 13.7(b), the counting must involve the value

c of the color attribute of the root of the subtree shown, which can be

either RED or BLACK.

RB-DELETE-FIXUP(T, x)

  1while x ≠ T.root and x.color == BLACK

  2 if x == x.p.left // is x a left

child?

  3 w = x.p.right //  w is x’s

sibling

  4 if w.color == RED

  5 w.color = BLACK

  6 x.p.color = RED

  7 LEFT-ROTATE(T, x.p)

  8 w = x.p.right

  9 if w.left.color == BLACK and w.right.color ==

BLACK

10 w.color = RED

11 x = x.p

12 else

13 if w.right.color == BLACK

14 w.left.color = BLACK

15 w.color = RED

16 RIGHT-ROTATE(T, w)
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17 w = x.p.right

18 w.color = x.p.color

19 x.p.color = BLACK

20 w.right.color = BLACK

21 LEFT-ROTATE(T, x.p)

22 x = T.root

23 else // same as lines 3–22, but with “right” and “left” exchanged

24 w = x.p.left

25 if w.color == RED

26 w.color = BLACK

27 x.p.color = RED

28 RIGHT-ROTATE(T, x.p)

29 w = x.p.left

30 if w.right.color == BLACK and w.left.color == BLACK

31 w.color = RED

32 x = x.p

33 else

34 if w.left.color == BLACK

35 w.right.color = BLACK

36 w.color = RED

37 LEFT-ROTATE(T, w)

38 w = x.p.left

39 w.color = x.p.color

40 x.p.color = BLACK

41 w.left.color = BLACK

42 RIGHT-ROTATE(T, x.p)

43 x = T.root

44x.color = BLACK
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Figure 13.7 The cases in lines 3–22 of the procedure RB-DELETE-FIXUP. Brown nodes have

color attributes represented by c and c′, which may be either RED or BLACK. The letters α, β,

…, ζ represent arbitrary subtrees. Each case transforms the configuration on the left into the

configuration on the right by changing some colors and/or performing a rotation. Any node

pointed to by x has an extra black and is either doubly black or red-and-black. Only case 2

causes the loop to repeat. (a) Case 1 is transformed into case 2, 3, or 4 by exchanging the colors

of nodes B and D and performing a left rotation. (b) In case 2, the extra black represented by the

pointer x moves up the tree by coloring node D red and setting x to point to node B. If case 2 is

entered through case 1, the while loop terminates because the new node x is red-and-black, and

therefore the value c of its color attribute is RED. (c) Case 3 is transformed to case 4 by

exchanging the colors of nodes C and D and performing a right rotation. (d) Case 4 removes the

extra black represented by x by changing some colors and performing a left rotation (without

violating the red-black properties), and then the loop terminates.
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If we define count(RED) = 0 and count(BLACK) = 1, then the number

of black nodes from the root to α is 2 + count(c), both before and after

the transformation. In this case, after the transformation, the new node

x has color attribute c, but this node is really either red-and-black (if c =

RED) or doubly black (if c = BLACK). You can verify the other cases

similarly (see Exercise 13.4-6).

Case 1. x’s sibling w is red

Case 1 (lines 5–8 and Figure 13.7(a)) occurs when node w, the sibling of

node x, is red. Because w is red, it must have black children. This case

switches the colors of w and x.p and then performs a left-rotation on x.p

without violating any of the red-black properties. The new sibling of x,

which is one of w’s children prior to the rotation, is now black, and thus

case 1 converts into one of cases 2, 3, or 4.

Cases 2, 3, and 4 occur when node w is black and are distinguished

by the colors of w’s children.

Case 2. x’s sibling w is black, and both of w’s children are black

In case 2 (lines 10–11 and Figure 13.7(b)), both of w’s children are black.

Since w is also black, this case removes one black from both x and w,

leaving x with only one black and leaving w red. To compensate for x

and w each losing one black, x’s parent x.p can take on an extra black.

Line 11 does so by moving x up one level, so that the while loop repeats

with x.p as the new node x. If case 2 enters through case 1, the new node

x is red-and-black, since the original x.p was red. Hence, the value c of

the color attribute of the new node x is RED, and the loop terminates

when it tests the loop condition. Line 44 then colors the new node x

(singly) black.

Case 3. x’s sibling w is black, w’s left child is red, and w’s right child is

black

Case 3 (lines 14–17 and Figure 13.7(c)) occurs when w is black, its left

child is red, and its right child is black. This case switches the colors of w

and its left child w.left and then performs a right rotation on w without

violating any of the red-black properties. The new sibling w of x is now a

www.konkur.in

Telegram: @uni_k



black node with a red right child, and thus case 3 falls through into case

4.

Case 4. x’s sibling w is black, and w’s right child is red

Case 4 (lines 18–22 and Figure 13.7(d)) occurs when node x’s sibling w is

black and w’s right child is red. Some color changes and a left rotation

on x.p allow the extra black on x to vanish, making it singly black,

without violating any of the red-black properties. Line 22 sets x to be the

root, and the while loop terminates when it next tests the loop condition.

Analysis

What is the running time of RB-DELETE? Since the height of a red-

black tree of n nodes is O(lg n), the total cost of the procedure without

the call to RB-DELETE-FIXUP takes O(lg n) time. Within RB-

DELETE-FIXUP, each of cases 1, 3, and 4 lead to termination after

performing a constant number of color changes and at most three

rotations. Case 2 is the only case in which the while loop can be repeated,

and then the pointer x moves up the tree at most O(lg n) times,

performing no rotations. Thus, the procedure RB-DELETE-FIXUP

takes O(lg n) time and performs at most three rotations, and the overall

time for RB-DELETE is therefore also O(lg n).

Exercises

13.4-1

Show that if node y in RB-DELETE is red, then no black-heights

change.

13.4-2

Argue that after RB-DELETE-FIXUP executes, the root of the tree

must be black.

13.4-3

Argue that if in RB-DELETE both x and x.p are red, then property 4 is

restored by the call to RB-DELETE-FIXUP(T, x).

13.4-4
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In Exercise 13.3-2 on page 346, you found the red-black tree that results

from successively inserting the keys 41, 38, 31, 12, 19, 8 into an initially

empty tree. Now show the red-black trees that result from the successive

deletion of the keys in the order 8, 12, 19, 31, 38, 41.

13.4-5

Which lines of the code for RB-DELETE-FIXUP might examine or

modify the sentinel T.nil?

13.4-6

In each of the cases of Figure 13.7, give the count of black nodes from

the root of the subtree shown to the roots of each of the subtrees α, β,

…, ζ, and verify that each count remains the same after the

transformation. When a node has a color attribute c or c′, use the

notation count(c) or count(c′) symbolically in your count.

13.4-7

Professors Skelton and Baron worry that at the start of case 1 of RB-

DELETE-FIXUP, the node x.p might not be black. If x.p is not black,

then lines 5–6 are wrong. Show that x.p must be black at the start of case

1, so that the professors need not be concerned.

13.4-8

A node x is inserted into a red-black tree with RB-INSERT and then is

immediately deleted with RB-DELETE. Is the resulting red-black tree

always the same as the initial red-black tree? Justify your answer.

★ 13.4-9

Consider the operation RB-ENUMERATE(T, r, a, b), which outputs all

the keys k such that a ≤ k ≤ b in a subtree rooted at node r in an n-node

red-black tree T. Describe how to implement RB-ENUMERATE in

Θ(m + lg n) time, where m is the number of keys that are output. Assume

that the keys in T are unique and that the values a and b appear as keys

in T. How does your solution change if a and b might not appear in T?

Problems

www.konkur.in

Telegram: @uni_k



13-1     Persistent dynamic sets

During the course of an algorithm, you sometimes find that you need to

maintain past versions of a dynamic set as it is updated. We call such a

set persistent. One way to implement a persistent set is to copy the entire

set whenever it is modified, but this approach can slow down a program

and also consume a lot of space. Sometimes, you can do much better.

Consider a persistent set S with the operations INSERT, DELETE,

and SEARCH, which you implement using binary search trees as shown

in Figure 13.8(a). Maintain a separate root for every version of the set.

In order to insert the key 5 into the set, create a new node with key 5.

This node becomes the left child of a new node with key 7, since you

cannot modify the existing node with key 7. Similarly, the new node with

key 7 becomes the left child of a new node with key 8 whose right child

is the existing node with key 10. The new node with key 8 becomes, in

turn, the right child of a new root r′ with key 4 whose left child is the

existing node with key 3. Thus, you copy only part of the tree and share

some of the nodes with the original tree, as shown in Figure 13.8(b).

Assume that each tree node has the attributes key, left, and right but

no parent. (See also Exercise 13.3-6 on page 346.)

a. For a persistent binary search tree (not a red-black tree, just a binary

search tree), identify the nodes that need to change to insert or delete a

node.

Figure 13.8 (a) A binary search tree with keys 2, 3, 4, 7, 8, 10. (b) The persistent binary search

tree that results from the insertion of key 5. The most recent version of the set consists of the

nodes reachable from the root r′, and the previous version consists of the nodes reachable from r.

Blue nodes are added when key 5 is inserted.
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b. Write a procedure PERSISTENT-TREE-INSERT(T, z) that, given a

persistent binary search tree T and a node z to insert, returns a new

persistent tree T′ that is the result of inserting z into T. Assume that

you have a procedure COPY-NODE(x) that makes a copy of node x,

including all of its attributes.

c. If the height of the persistent binary search tree T is h, what are the

time and space requirements of your implementation of

PERSISTENT-TREE-INSERT? (The space requirement is

proportional to the number of nodes that are copied.)

d. Suppose that you include the parent attribute in each node. In this

case, the PERSISTENT-TREE-INSERT procedure needs to perform

additional copying. Prove that PERSISTENT-TREE-INSERT then

requires Ω(n) time and space, where n is the number of nodes in the

tree.

e. Show how to use red-black trees to guarantee that the worst-case

running time and space are O(lg n) per insertion or deletion. You may

assume that all keys are distinct.

13-2     Join operation on red-black trees

The join operation takes two dynamic sets S1 and S2 and an element x

such that for any x1 ∈ S1 and x2 ∈ S2, we have x1.key ≤ x.key ≤ x2.key.

It returns a set S = S1 ⋃ {x} ⋃ S2. In this problem, we investigate how

to implement the join operation on red-black trees.

a. Suppose that you store the black-height of a red-black tree T as the

new attribute T.bh. Argue that RB-INSERT and RB-DELETE can

maintain the bh attribute without requiring extra storage in the nodes

of the tree and without increasing the asymptotic running times. Show

how to determine the black-height of each node visited while

descending through T, using O(1) time per node visited.

Let T1 and T2 be red-black trees and x be a key value such that for any

nodes x1 in T1 and x2 in T2, we have x1.key ≤ x.key ≤ x2.key. You will

show how to implement the operation RB-JOIN(T1, x, T2), which
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destroys T1 and T2 and returns a red-black tree T = T1 ⋃ {x} ⋃ T2. Let

n be the total number of nodes in T1 and T2.

b. Assume that T1.bh ≥ T2.bh. Describe an O(lg n)-time algorithm that

finds a black node y in T1 with the largest key from among those

nodes whose black-height is T2.bh.

c. Let Ty be the subtree rooted at y. Describe how Ty ⋃ {x} ⋃ T2 can

replace Ty in O(1) time without destroying the binary-search-tree

property.

d. What color should you make x so that red-black properties 1, 3, and 5

are maintained? Describe how to enforce properties 2 and 4 in O(lg n)

time.

e. Argue that no generality is lost by making the assumption in part (b).

Describe the symmetric situation that arises when T1.bh ≤ T2.bh.

f. Argue that the running time of RB-JOIN is O(lg n).

13-3     AVL trees

An AVL tree is a binary search tree that is height balanced: for each node

x, the heights of the left and right subtrees of x differ by at most 1. To

implement an AVL tree, maintain an extra attribute h in each node such

that x.h is the height of node x. As for any other binary search tree T,

assume that T.root points to the root node.

a. Prove that an AVL tree with n nodes has height O(lg n). (Hint: Prove

that an AVL tree of height h has at least Fh nodes, where Fh is the hth

Fibonacci number.)

b. To insert into an AVL tree, first place a node into the appropriate

place in binary search tree order. Afterward, the tree might no longer

be height balanced. Specifically, the heights of the left and right

children of some node might differ by 2. Describe a procedure

BALANCE(x), which takes a subtree rooted at x whose left and right

children are height balanced and have heights that differ by at most 2,
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so that |x.right.h − x.left.h| ≤ 2, and alters the subtree rooted at x to be

height balanced. The procedure should return a pointer to the node

that is the root of the subtree after alterations occur. (Hint: Use

rotations.)

c. Using part (b), describe a recursive procedure AVL-INSERT(T, z)

that takes an AVL tree T and a newly created node z (whose key has

already been filled in), and adds z into T, maintaining the property

that T is an AVL tree. As in TREE-INSERT from Section 12.3,

assume that z.key has already been filled in and that z.left = NIL and

z.right = NIL. Assume as well that z.h = 0.

d. Show that AVL-INSERT, run on an n-node AVL tree, takes O(lg n)

time and performs O(lg n) rotations.

Chapter notes

The idea of balancing a search tree is due to Adel’son-Vel’skiĭ and

Landis [2], who introduced a class of balanced search trees called “AVL

trees” in 1962, described in Problem 13-3. Another class of search trees,

called “2-3 trees,” was introduced by J. E. Hopcroft (unpublished) in

1970. A 2-3 tree maintains balance by manipulating the degrees of nodes

in the tree, where each node has either two or three children. Chapter 18

covers a generalization of 2-3 trees introduced by Bayer and McCreight

[39], called “B-trees.”

Red-black trees were invented by Bayer [38] under the name

“symmetric binary B-trees.” Guibas and Sedgewick [202] studied their

properties at length and introduced the red/black color convention.

Andersson [16] gives a simpler-to-code variant of red-black trees. Weiss

[451] calls this variant AA-trees. An AA-tree is similar to a red-black

tree except that left children can never be red.

Sedgewick and Wayne [402] present red-black trees as a modified

version of 2-3 trees in which a node with three children is split into two

nodes with two children each. One of these nodes becomes the left child

of the other, and only left children can be red. They call this structure a

“left-leaning red-black binary search tree.” Although the code for left-
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leaning red-black binary search trees is more concise than the red-black

tree pseudocode in this chapter, operations on left-leaning red-black

binary search trees do not limit the number of rotations per operation to

a constant. This distinction will matter in Chapter 17.

Treaps, a hybrid of binary search trees and heaps, were proposed by

Seidel and Aragon [404]. They are the default implementation of a

dictionary in LEDA [324], which is a well-implemented collection of

data structures and algorithms.

There are many other variations on balanced binary trees, including

weight-balanced trees [344], k-neighbor trees [318], and scapegoat trees

[174]. Perhaps the most intriguing are the “splay trees” introduced by

Sleator and Tarjan [418], which are “self-adjusting.” (See Tarjan [429]

for a good description of splay trees.) Splay trees maintain balance

without any explicit balance condition such as color. Instead, “splay

operations” (which involve rotations) are performed within the tree

every time an access is made. The amortized cost (see Chapter 16) of

each operation on an n-node tree is O(lg n). Splay trees have been

conjectured to perform within a constant factor of the best offline

rotation-based tree. The best known competitive ratio (see Chapter 27)

for a rotation-based tree is the Tango Tree of Demaine et al. [109].

Skip lists [369] provide an alternative to balanced binary trees. A skip

list is a linked list that is augmented with a number of additional

pointers. Each dictionary operation runs in O(lg n) expected time on a

skip list of n items.

1 Although we try to avoid gendered language in this book, the English language lacks a gender-

neutral word for a parent’s sibling.

2 If property 5 holds, we can assume that paths from the roots of γ, δ, ϵ, and ζ down to leaves

contain one more black than do paths from the roots of α and β down to leaves.
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Part IV        Advanced Design and Analysis

Techniques
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Introduction

This part covers three important techniques used in designing and

analyzing efficient algorithms: dynamic programming (Chapter 14),

greedy algorithms (Chapter 15), and amortized analysis (Chapter 16).

Earlier parts have presented other widely applicable techniques, such as

divide-and-conquer, randomization, and how to solve recurrences. The

techniques in this part are somewhat more sophisticated, but you will be

able to use them solve many computational problems. The themes

introduced in this part will recur later in this book.

Dynamic programming typically applies to optimization problems in

which you make a set of choices in order to arrive at an optimal

solution, each choice generates subproblems of the same form as the

original problem, and the same subproblems arise repeatedly. The key

strategy is to store the solution to each such subproblem rather than

recompute it. Chapter 14 shows how this simple idea can sometimes

transform exponential-time algorithms into polynomial-time

algorithms.

Like dynamic-programming algorithms, greedy algorithms typically

apply to optimization problems in which you make a set of choices in

order to arrive at an optimal solution. The idea of a greedy algorithm is

to make each choice in a locally optimal manner, resulting in a faster

algorithm than you get with dynamic programming. Chapter 15 will

help you determine when the greedy approach works.

The technique of amortized analysis applies to certain algorithms

that perform a sequence of similar operations. Instead of bounding the
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cost of the sequence of operations by bounding the actual cost of each

operation separately, an amortized analysis provides a worst-case bound

on the actual cost of the entire sequence. One advantage of this

approach is that although some operations might be expensive, many

others might be cheap. You can use amortized analysis when designing

algorithms, since the design of an algorithm and the analysis of its

running time are often closely intertwined. Chapter 16 introduces three

ways to perform an amortized analysis of an algorithm.
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14        Dynamic Programming

Dynamic programming, like the divide-and-conquer method, solves

problems by combining the solutions to subproblems. (“Programming”

in this context refers to a tabular method, not to writing computer

code.) As we saw in Chapters 2 and 4, divide-and-conquer algorithms

partition the problem into disjoint subproblems, solve the subproblems

recursively, and then combine their solutions to solve the original

problem. In contrast, dynamic programming applies when the

subproblems overlap—that is, when subproblems share

subsubproblems. In this context, a divide-and-conquer algorithm does

more work than necessary, repeatedly solving the common

subsubproblems. A dynamic-programming algorithm solves each

subsubproblem just once and then saves its answer in a table, thereby

avoiding the work of recomputing the answer every time it solves each

subsubproblem.

Dynamic programming typically applies to optimization problems.

Such problems can have many possible solutions. Each solution has a

value, and you want to find a solution with the optimal (minimum or

maximum) value. We call such a solution an optimal solution to the

problem, as opposed to the optimal solution, since there may be several

solutions that achieve the optimal value.

To develop a dynamic-programming algorithm, follow a sequence of

four steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.
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3. Compute the value of an optimal solution, typically in a bottom-

up fashion.

4. Construct an optimal solution from computed information.

Steps 1–3 form the basis of a dynamic-programming solution to a

problem. If you need only the value of an optimal solution, and not the

solution itself, then you can omit step 4. When you do perform step 4, it

often pays to maintain additional information during step 3 so that you

can easily construct an optimal solution.

The sections that follow use the dynamic-programming method to

solve some optimization problems. Section 14.1 examines the problem

of cutting a rod into rods of smaller length in a way that maximizes

their total value. Section 14.2 shows how to multiply a chain of matrices

while performing the fewest total scalar multiplications. Given these

examples of dynamic programming, Section 14.3 discusses two key

characteristics that a problem must have for dynamic programming to

be a viable solution technique. Section 14.4 then shows how to find the

longest common subsequence of two sequences via dynamic

programming. Finally, Section 14.5 uses dynamic programming to

construct binary search trees that are optimal, given a known

distribution of keys to be looked up.

14.1    Rod cutting

Our first example uses dynamic programming to solve a simple problem

in deciding where to cut steel rods. Serling Enterprises buys long steel

rods and cuts them into shorter rods, which it then sells. Each cut is free.

The management of Serling Enterprises wants to know the best way to

cut up the rods.

Serling Enterprises has a table giving, for i = 1, 2, …, the price pi in

dollars that they charge for a rod of length i inches. The length of each

rod in inches is always an integer. Figure 14.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n

inches and a table of prices pi for i = 1, 2, …, n, determine the maximum

revenue rn obtainable by cutting up the rod and selling the pieces. If the
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price pn for a rod of length n is large enough, an optimal solution might

require no cutting at all.

Consider the case when n = 4. Figure 14.2 shows all the ways to cut

up a rod of 4 inches in length, including the way with no cuts at all.

Cutting a 4-inch rod into two 2-inch pieces produces revenue p2 + p2 =

5 + 5 = 10, which is optimal.

Serling Enterprises can cut up a rod of length n in 2n−1 different

ways, since they have an independent option of cutting, or not cutting,

at distance i inches from the left end, for i = 1, 2, …, n − 1.1 We denote

a decomposition into pieces using ordinary additive notation, so that 7

= 2 + 2 + 3 indicates that a rod of length 7 is cut into three pieces—two

of length 2 and one of length 3. If an optimal solution cuts the rod into

k pieces, for some 1 ≤ k ≤ n, then an optimal decomposition

n = i1 + i2 + ⋯ + ik

Figure 14.1 A sample price table for rods. Each rod of length i inches earns the company pi

dollars of revenue.

Figure 14.2 The 8 possible ways of cutting up a rod of length 4. Above each piece is the value of

that piece, according to the sample price chart of Figure 14.1. The optimal strategy is part (c)—

cutting the rod into two pieces of length 2—which has total value 10.
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of the rod into pieces of lengths i1, i2, …, ik provides maximum

corresponding revenue

For the sample problem in Figure 14.1, you can determine the

optimal revenue figures ri, for i = 1, 2, …, 10, by inspection, with the

corresponding optimal decompositions

r1 = 1 from solution 1 = 1 (no cuts),

r2 = 5 from solution 2 = 2 (no cuts),

r3 = 8 from solution 3 = 3 (no cuts),

r4 = 10 from solution 4 = 2 + 2,

r5 = 13 from solution 5 = 2 + 3,

r6 = 17 from solution 6 = 6 (no cuts),

r7 = 18 from solution 7 = 1 + 6 or 7 = 2 + 2 + 3,

r8 = 22 from solution 8 = 2 + 6,

r9 = 25 from solution 9 = 3 + 6,

r10 = 30 from solution 10 = 10 (no cuts).

More generally, we can express the values rn for n ≥ 1 in terms of

optimal revenues from shorter rods:

The first argument, pn, corresponds to making no cuts at all and selling

the rod of length n as is. The other n − 1 arguments to max correspond

to the maximum revenue obtained by making an initial cut of the rod

into two pieces of size i and n − i, for each i = 1, 2, …, n − 1, and then

optimally cutting up those pieces further, obtaining revenues ri and rn−i

from those two pieces. Since you don’t know ahead of time which value

of i optimizes revenue, you have to consider all possible values for i and

pick the one that maximizes revenue. You also have the option of
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picking no i at all if the greatest revenue comes from selling the rod

uncut.

To solve the original problem of size n, you solve smaller problems of

the same type. Once you make the first cut, the two resulting pieces form

independent instances of the rod-cutting problem. The overall optimal

solution incorporates optimal solutions to the two resulting

subproblems, maximizing revenue from each of those two pieces. We say

that the rod-cutting problem exhibits optimal substructure: optimal

solutions to a problem incorporate optimal solutions to related

subproblems, which you may solve independently.

In a related, but slightly simpler, way to arrange a recursive structure

for the rod-cutting problem, let’s view a decomposition as consisting of

a first piece of length i cut off the left-hand end, and then a right-hand

remainder of length n − i. Only the remainder, and not the first piece,

may be further divided. Think of every decomposition of a length-n rod

in this way: as a first piece followed by some decomposition of the

remainder. Then we can express the solution with no cuts at all by

saying that the first piece has size i = n and revenue pn and that the

remainder has size 0 with corresponding revenue r0 = 0. We thus obtain

the following simpler version of equation (14.1):

In this formulation, an optimal solution embodies the solution to only

one related subproblem—the remainder—rather than two.

Recursive top-down implementation

The CUT-ROD procedure on the following page implements the

computation implicit in equation (14.2) in a straightforward, top-down,

recursive manner. It takes as input an array p[1 : n] of prices and an

integer n, and it returns the maximum revenue possible for a rod of

length n. For length n = 0, no revenue is possible, and so CUT-ROD

returns 0 in line 2. Line 3 initializes the maximum revenue q to −∞, so

that the for loop in lines 4–5 correctly computes q = max {pi + CUT-

ROD(p, n − i) : 1 ≤ i ≤ n}. Line 6 then returns this value. A simple
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induction on n proves that this answer is equal to the desired answer rn,

using equation (14.2).

CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = −∞

4 for i = 1 to n

5 q = max {q, p[i] + CUT-ROD(p, n − i)}

6 return q

If you code up CUT-ROD in your favorite programming language

and run it on your computer, you’ll find that once the input size

becomes moderately large, your program takes a long time to run. For n

= 40, your program may take several minutes and possibly more than an

hour. For large values of n, you’ll also discover that each time you

increase n by 1, your program’s running time approximately doubles.

Why is CUT-ROD so inefficient? The problem is that CUT-ROD

calls itself recursively over and over again with the same parameter

values, which means that it solves the same subproblems repeatedly.

Figure 14.3 shows a recursion tree demonstrating what happens for n =

4: CUT-ROD(p, n) calls CUT-ROD(p, n − i) for i = 1, 2, …, n.

Equivalently, CUT-ROD(p, n) calls CUT-ROD(p, j) for each j = 0, 1,

…, n − 1. When this process unfolds recursively, the amount of work

done, as a function of n, grows explosively.

To analyze the running time of CUT-ROD, let T(n) denote the total

number of calls made to CUT-ROD(p, n) for a particular value of n.

This expression equals the number of nodes in a subtree whose root is

labeled n in the recursion tree. The count includes the initial call at its

root. Thus, T(0) = 1 and

www.konkur.in

Telegram: @uni_k



The initial 1 is for the call at the root, and the term T(j) counts the

number of calls (including recursive calls) due to the call CUT-ROD(p,

n − i), where j = n − i. As Exercise 14.1-1 asks you to show,

and so the running time of CUT-ROD is exponential in n.

In retrospect, this exponential running time is not so surprising.

CUT-ROD explicitly considers all possible ways of cutting up a rod of

length n. How many ways are there? A rod of length n has n − 1

potential locations to cut. Each possible way to cut up the rod makes a

cut at some subset of these n − 1 locations, including the empty set,

which makes for no cuts. Viewing each cut location as a distinct member

of a set of n − 1 elements, you can see that there are 2n−1 subsets. Each

leaf in the recursion tree of Figure 14.3 corresponds to one possible way

to cut up the rod. Hence, the recursion tree has 2n−1 leaves. The labels

on the simple path from the root to a leaf give the sizes of each

remaining right-hand piece before making each cut. That is, the labels

give the corresponding cut points, measured from the right-hand end of

the rod.

Figure 14.3 The recursion tree showing recursive calls resulting from a call CUT-ROD(p, n) for

n = 4. Each node label gives the size n of the corresponding subproblem, so that an edge from a

parent with label s to a child with label t corresponds to cutting off an initial piece of size s − t

and leaving a remaining subproblem of size t. A path from the root to a leaf corresponds to one

of the 2n−1 ways of cutting up a rod of length n. In general, this recursion tree has 2n nodes and

2n−1 leaves.
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Using dynamic programming for optimal rod cutting

Now, let’s see how to use dynamic programming to convert CUT-ROD

into an efficient algorithm.

The dynamic-programming method works as follows. Instead of

solving the same subproblems repeatedly, as in the naive recursion

solution, arrange for each subproblem to be solved only once. There’s

actually an obvious way to do so: the first time you solve a subproblem,

save its solution. If you need to refer to this subproblem’s solution again

later, just look it up, rather than recomputing it.

Saving subproblem solutions comes with a cost: the additional

memory needed to store solutions. Dynamic programming thus serves

as an example of a time-memory trade-off. The savings may be dramatic.

For example, we’re about to use dynamic programming to go from the

exponential-time algorithm for rod cutting down to a Θ(n2)-time

algorithm. A dynamic-programming approach runs in polynomial time

when the number of distinct subproblems involved is polynomial in the

input size and you can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-

programming approach. Solutions to the rod-cutting problem illustrate

both of them.

The first approach is top-down with memoization.2 In this approach,

you write the procedure recursively in a natural manner, but modified to

save the result of each subproblem (usually in an array or hash table).

The procedure now first checks to see whether it has previously solved

this subproblem. If so, it returns the saved value, saving further

computation at this level. If not, the procedure computes the value in

the usual manner but also saves it. We say that the recursive procedure

has been memoized: it “remembers” what results it has computed

previously.

The second approach is the bottom-up method. This approach

typically depends on some natural notion of the “size” of a subproblem,

such that solving any particular subproblem depends only on solving

“smaller” subproblems. Solve the subproblems in size order, smallest

first, storing the solution to each subproblem when it is first solved. In
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this way, when solving a particular subproblem, there are already saved

solutions for all of the smaller subproblems its solution depends upon.

You need to solve each subproblem only once, and when you first see it,

you have already solved all of its prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic

running time, except in unusual circumstances where the top-down

approach does not actually recurse to examine all possible subproblems.

The bottom-up approach often has much better constant factors, since

it has lower overhead for procedure calls.

The procedures MEMOIZED-CUT-ROD and MEMOIZED-CUT-

ROD-AUX on the facing page demonstrate how to memoize the top-

down CUT-ROD procedure. The main procedure MEMOIZED-CUT-

ROD initializes a new auxiliary array r[0 : n] with the value −∞ which,

since known revenue values are always nonnegative, is a convenient

choice for denoting “unknown.” MEMOIZED-CUT-ROD then calls

its helper procedure, MEMOIZED-CUT-ROD-AUX, which is just the

memoized version of the exponential-time procedure, CUT-ROD. It

first checks in line 1 to see whether the desired value is already known

and, if it is, then line 2 returns it. Otherwise, lines 3–7 compute the

desired value q in the usual manner, line 8 saves it in r[n], and line 9

returns it.

The bottom-up version, BOTTOM-UP-CUT-ROD on the next

page, is even simpler. Using the bottom-up dynamic-programming

approach, BOTTOM-UP-CUT-ROD takes advantage of the natural

ordering of the subproblems: a subproblem of size i is “smaller” than a

subproblem of size j if i < j. Thus, the procedure solves subproblems of

sizes j = 0, 1, …, n, in that order.

MEMOIZED-CUT-ROD(p, n)

1 let r[0 : n] be a new array // will remember solution values in r

2 for i = 0 to n

3 r[i] = −∞

4 return MEMOIZED-CUT-ROD-AUX(p, n, r)

MEMOIZED-CUT-ROD-AUX(p, n, r)
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1 if r[n] ≥ 0 // already have a solution for length n?

2 return r[n]

3 if n == 0

4 q = 0

5 else q = −∞

6 for i = 1 to n // i is the position of the first cut

7 q = max {q, p[i] + MEMOIZED-CUT-ROD-AUX(p, n − i,

r)}

8 r[n] = q // remember the solution value for length n

9 return q

BOTTOM-UP-CUT-ROD(p, n)

1 let r[0 : n] be a new array // will remember solution values in r

2 r[0] = 0

3 for j = 1 to n // for increasing rod length j

4 q = −∞

5 for i = 1 to j // i is the position of the first cut

6 q = max {q, p[i] + r[j − i]}

7 r[j] = q // remember the solution value for length j

8 return r[n]

Line 1 of BOTTOM-UP-CUT-ROD creates a new array r[0 : n] in

which to save the results of the subproblems, and line 2 initializes r[0] to

0, since a rod of length 0 earns no revenue. Lines 3–6 solve each

subproblem of size j, for j = 1, 2, …, n, in order of increasing size. The

approach used to solve a problem of a particular size j is the same as

that used by CUT-ROD, except that line 6 now directly references array

entry r[j − i] instead of making a recursive call to solve the subproblem

of size j − i. Line 7 saves in r[j] the solution to the subproblem of size j.

Finally, line 8 returns r[n], which equals the optimal value rn.

The bottom-up and top-down versions have the same asymptotic

running time. The running time of BOTTOM-UP-CUT-ROD is Θ(n2),

due to its doubly nested loop structure. The number of iterations of its

inner for loop, in lines 5–6, forms an arithmetic series. The running time

of its top-down counterpart, MEMOIZEDCUT-ROD, is also Θ(n2),
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although this running time may be a little harder to see. Because a

recursive call to solve a previously solved subproblem returns

immediately, MEMOIZED-CUT-ROD solves each subproblem just

once. It solves subproblems for sizes 0, 1, …, n. To solve a subproblem

of size n, the for loop of lines 6–7 iterates n times. Thus, the total

number of iterations of this for loop, over all recursive calls of

MEMOIZED-CUT-ROD, forms an arithmetic series, giving a total of

Θ(n2) iterations, just like the inner for loop of BOTTOM-UP-CUT-

ROD. (We actually are using a form of aggregate analysis here. We’ll see

aggregate analysis in detail in Section 16.1.)

Figure 14.4 The subproblem graph for the rod-cutting problem with n = 4. The vertex labels give

the sizes of the corresponding subproblems. A directed edge (x, y) indicates that solving

subproblem x requires a solution to subproblem y. This graph is a reduced version of the

recursion tree of Figure 14.3, in which all nodes with the same label are collapsed into a single

vertex and all edges go from parent to child.

Subproblem graphs

When you think about a dynamic-programming problem, you need to

understand the set of subproblems involved and how subproblems

depend on one another.

The subproblem graph for the problem embodies exactly this

information. Figure 14.4 shows the subproblem graph for the rod-

cutting problem with n = 4. It is a directed graph, containing one vertex

for each distinct subproblem. The subproblem graph has a directed edge

from the vertex for subproblem x to the vertex for subproblem y if
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determining an optimal solution for subproblem x involves directly

considering an optimal solution for subproblem y. For example, the

subproblem graph contains an edge from x to y if a top-down recursive

procedure for solving x directly calls itself to solve y. You can think of

the subproblem graph as a “reduced” or “collapsed” version of the

recursion tree for the top-down recursive method, with all nodes for the

same subproblem coalesced into a single vertex and all edges directed

from parent to child.

The bottom-up method for dynamic programming considers the

vertices of the subproblem graph in such an order that you solve the

subproblems y adjacent to a given subproblem x before you solve

subproblem x. (As Section B.4 notes, the adjacency relation in a

directed graph is not necessarily symmetric.) Using terminology that

we’ll see in Section 20.4, in a bottom-up dynamic-programming

algorithm, you consider the vertices of the subproblem graph in an

order that is a “reverse topological sort,” or a “topological sort of the

transpose” of the subproblem graph. In other words, no subproblem is

considered until all of the subproblems it depends upon have been

solved. Similarly, using notions that we’ll visit in Section 20.3, you can

view the top-down method (with memoization) for dynamic

programming as a “depth-first search” of the subproblem graph.

The size of the subproblem graph G = (V, E) can help you determine

the running time of the dynamic-programming algorithm. Since you

solve each subproblem just once, the running time is the sum of the

times needed to solve each subproblem. Typically, the time to compute

the solution to a subproblem is proportional to the degree (number of

outgoing edges) of the corresponding vertex in the subproblem graph,

and the number of subproblems is equal to the number of vertices in the

subproblem graph. In this common case, the running time of dynamic

programming is linear in the number of vertices and edges.

Reconstructing a solution

The procedures MEMOIZED-CUT-ROD and BOTTOM-UP-CUT-

ROD return the value of an optimal solution to the rod-cutting

problem, but they do not return the solution itself: a list of piece sizes.
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Let’s see how to extend the dynamic-programming approach to

record not only the optimal value computed for each subproblem, but

also a choice that led to the optimal value. With this information, you

can readily print an optimal solution. The procedure EXTENDED-

BOTTOM-UP-CUT-ROD on the next page computes, for each rod size

j, not only the maximum revenue rj, but also sj, the optimal size of the

first piece to cut off. It’s similar to BOTTOM-UP-CUT-ROD, except

that it creates the array s in line 1, and it updates s[j] in line 8 to hold the

optimal size i of the first piece to cut off when solving a subproblem of

size j.

The procedure PRINT-CUT-ROD-SOLUTION on the following

page takes as input an array p[1 : n] of prices and a rod size n. It calls

EXTENDED-BOTTOM-UP-CUT-ROD to compute the array s[1 : n]

of optimal first-piece sizes. Then it prints out the complete list of piece

sizes in an optimal decomposition of a rod of length n. For the sample

price chart appearing in Figure 14.1, the call EXTENDED-BOTTOM-

UP-CUT-ROD(p, 10) returns the following arrays:

i 0 1 2 3 4 5 6 7 8 9 10

r[i] 0 1 5 8 10 13 17 18 22 25 30

s[i] 1 2 3 2 2 6 1 2 3 10

A call to PRINT-CUT-ROD-SOLUTION(p, 10) prints just 10, but a

call with n = 7 prints the cuts 1 and 6, which correspond to the first

optimal decomposition for r7 given earlier.

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

  1 let r[0 : n] and s[1 : n] be new arrays

  2r[0] = 0

  3 for j = 1 to n // for increasing rod length j

  4 q = −∞

  5 for i = 1 to j // i is the position of the first cut

  6 if q < p[i] + r[j − i]

  7 q = p[i] + r[j − i]

  8 s[j] = i // best cut location so far for length j

  9 r[j] = q // remember the solution value for length j
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10return r and s

PRINT-CUT-ROD-SOLUTION(p, n)

1 (r, s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

2 while n > 0

3 print s[n] // cut location for length n

4 n = n − s[n] // length of the remainder of the rod

Exercises

14.1-1

Show that equation (14.4) follows from equation (14.3) and the initial

condition T(0) = 1.

14.1-2

Show, by means of a counterexample, that the following “greedy”

strategy does not always determine an optimal way to cut rods. Define

the density of a rod of length i to be pi/i, that is, its value per inch. The

greedy strategy for a rod of length n cuts off a first piece of length i,

where 1 ≤ i ≤ n, having maximum density. It then continues by applying

the greedy strategy to the remaining piece of length n − i.

14.1-3

Consider a modification of the rod-cutting problem in which, in

addition to a price pi for each rod, each cut incurs a fixed cost of c. The

revenue associated with a solution is now the sum of the prices of the

pieces minus the costs of making the cuts. Give a dynamic-programming

algorithm to solve this modified problem.

14.1-4

Modify CUT-ROD and MEMOIZED-CUT-ROD-AUX so that their

for loops go up to only ⌊n/2⌋, rather than up to n. What other changes

to the procedures do you need to make? How are their running times

affected?

14.1-5
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Modify MEMOIZED-CUT-ROD to return not only the value but the

actual solution.

14.1-6

The Fibonacci numbers are defined by recurrence (3.31) on page 69.

Give an O(n)-time dynamic-programming algorithm to compute the nth

Fibonacci number. Draw the subproblem graph. How many vertices

and edges does the graph contain?

14.2    Matrix-chain multiplication

Our next example of dynamic programming is an algorithm that solves

the problem of matrix-chain multiplication. Given a sequence (chain)

〈A1, A2, …, An〉 of n matrices to be multiplied, where the matrices aren’t

necessarily square, the goal is to compute the product

using the standard algorithm3 for multiplying rectangular matrices,

which we’ll see in a moment, while minimizing the number of scalar

multiplications.

You can evaluate the expression (14.5) using the algorithm for

multiplying pairs of rectangular matrices as a subroutine once you have

parenthesized it to resolve all ambiguities in how the matrices are

multiplied together. Matrix multiplication is associative, and so all

parenthesizations yield the same product. A product of matrices is fully

parenthesized if it is either a single matrix or the product of two fully

parenthesized matrix products, surrounded by parentheses. For

example, if the chain of matrices is 〈A1, A2, A3, A4〉, then you can fully

parenthesize the product A1A2A3A4 in five distinct ways:

(A1(A2(A3A4))),

(A1((A2A3)A4)),

((A1A2)(A3A4)),

((A1(A2A3))A4),
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(((A1A2)A3)A4).

How you parenthesize a chain of matrices can have a dramatic

impact on the cost of evaluating the product. Consider first the cost of

multiplying two rectangular matrices. The standard algorithm is given

by the procedure RECTANGULAR-MATRIX-MULTIPLY, which

generalizes the square-matrix multiplication procedure MATRIX-

MULTIPLY on page 81. The RECTANGULAR-MATRIX-

MULTIPLY procedure computes C = C + A ·B for three matrices A =

(aij), B = (bij), and C = (cij), where A is p × q, B is q × r, and C is p × r.

RECTANGULAR-MATRIX-MULTIPLY(A, B, C, p, q, r)

1 for i = 1 to p

2 for j = 1 to r

3 for k = 1 to q

4 cij = cij + aik · bkj

The running time of RECTANGULAR-MATRIX-MULTIPLY is

dominated by the number of scalar multiplications in line 4, which is

pqr. Therefore, we’ll consider the cost of multiplying matrices to be the

number of scalar multiplications. (The number of scalar multiplications

dominates even if we consider initializing C = 0 to perform just C = A

·B.)

To illustrate the different costs incurred by different

parenthesizations of a matrix product, consider the problem of a chain

〈A1, A2, A3〉 of three matrices. Suppose that the dimensions of the

matrices are 10 × 100, 100 × 5, and 5 × 50, respectively. Multiplying

according to the parenthesization ((A1A2)A3) performs 10 · 100 · 5 =

5000 scalar multiplications to compute the 10 × 5 matrix product A1A2,

plus another 10 · 5 · 50 = 2500 scalar multiplications to multiply this

matrix by A3, for a total of 7500 scalar multiplications. Multiplying

according to the alternative parenthesization (A1(A2A3)) performs 100 ·

5 · 50 = 25,000 scalar multiplications to compute the 100 × 50 matrix
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product A2A3, plus another 10 · 100 · 50 = 50,000 scalar multiplications

to multiply A1 by this matrix, for a total of 75,000 scalar

multiplications. Thus, computing the product according to the first

parenthesization is 10 times faster.

We state the matrix-chain multiplication problem as follows: given a

chain 〈A1, A2, …, An〉 of n matrices, where for i = 1, 2, …, n, matrix Ai

has dimension pi−1 × pi, fully parenthesize the product A1A2 ⋯ An in

a way that minimizes the number of scalar multiplications. The input is

the sequence of dimensions 〈p0, p1, p2, …, pn〉.

The matrix-chain multiplication problem does not entail actually

multiplying matrices. The goal is only to determine an order for

multiplying matrices that has the lowest cost. Typically, the time

invested in determining this optimal order is more than paid for by the

time saved later on when actually performing the matrix multiplications

(such as performing only 7500 scalar multiplications instead of 75,000).

Counting the number of parenthesizations

Before solving the matrix-chain multiplication problem by dynamic

programming, let us convince ourselves that exhaustively checking all

possible parenthesizations is not an efficient algorithm. Denote the

number of alternative parenthesizations of a sequence of n matrices by

P(n). When n = 1, the sequence consists of just one matrix, and

therefore there is only one way to fully parenthesize the matrix product.

When n ≥ 2, a fully parenthesized matrix product is the product of two

fully parenthesized matrix subproducts, and the split between the two

subproducts may occur between the kth and (k + 1)st matrices for any k

= 1, 2, …, n − 1. Thus, we obtain the recurrence

Problem 12-4 on page 329 asked you to show that the solution to a

similar recurrence is the sequence of Catalan numbers, which grows as
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Ω(4n/n3/2). A simpler exercise (see Exercise 14.2-3) is to show that the

solution to the recurrence (14.6) is Ω(2n). The number of solutions is

thus exponential in n, and the brute-force method of exhaustive search

makes for a poor strategy when determining how to optimally

parenthesize a matrix chain.

Applying dynamic programming

Let’s use the dynamic-programming method to determine how to

optimally parenthesize a matrix chain, by following the four-step

sequence that we stated at the beginning of this chapter:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution.

4. Construct an optimal solution from computed information.

We’ll go through these steps in order, demonstrating how to apply each

step to the problem.

Step 1: The structure of an optimal parenthesization

In the first step of the dynamic-programming method, you find the

optimal substructure and then use it to construct an optimal solution to

the problem from optimal solutions to subproblems. To perform this

step for the matrix-chain multiplication problem, it’s convenient to first

introduce some notation. Let Ai:j, where i ≤ j, denote the matrix that

results from evaluating the product AiAi+1 ⋯ Aj. If the problem is

nontrivial, that is, i < j, then to parenthesize the product AiAi+1 ⋯ Aj,

the product must split between Ak and Ak+1 for some integer k in the

range i ≤ k < j. That is, for some value of k, first compute the matrices

Ai:k and Ak+1:j, and then multiply them together to produce the final

product Ai:j. The cost of parenthesizing this way is the cost of
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computing the matrix Ai:k, plus the cost of computing Ak+1:j, plus the

cost of multiplying them together.

The optimal substructure of this problem is as follows. Suppose that

to optimally parenthesize AiAi+1 ⋯ Aj, you split the product between

Ak and Ak+1. Then the way you parenthesize the “prefix” subchain

AiAi+1 ⋯ Ak within this optimal parenthesization of AiAi+1 ⋯ Aj

must be an optimal parenthesization of AiAi+1 ⋯ Ak. Why? If there

were a less costly way to parenthesize AiAi+1 ⋯ Ak, then you could

substitute that parenthesization in the optimal parenthesization of

AiAi+1 ⋯ Aj to produce another way to parenthesize AiAi+1 ⋯ Aj

whose cost is lower than the optimum: a contradiction. A similar

observation holds for how to parenthesize the subchain Ak+1Ak+2 ⋯

Aj in the optimal parenthesization of AiAi+1 ⋯ Aj: it must be an

optimal parenthesization of Ak+1Ak+2 ⋯ Aj.

Now let’s use the optimal substructure to show how to construct an

optimal solution to the problem from optimal solutions to subproblems.

Any solution to a nontrivial instance of the matrix-chain multiplication

problem requires splitting the product, and any optimal solution

contains within it optimal solutions to subproblem instances. Thus, to

build an optimal solution to an instance of the matrix-chain

multiplication problem, split the problem into two subproblems

(optimally parenthesizing AiAi+1 ⋯ Ak and Ak+1Ak+2 ⋯ Aj), find

optimal solutions to the two subproblem instances, and then combine

these optimal subproblem solutions. To ensure that you’ve examined the

optimal split, you must consider all possible splits.

Step 2: A recursive solution

The next step is to define the cost of an optimal solution recursively in

terms of the optimal solutions to subproblems. For the matrix-chain

multiplication problem, a subproblem is to determine the minimum cost

of parenthesizing AiAi+1 ⋯ Aj for 1 ≤ i ≤ j ≤ n. Given the input
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dimensions 〈p0, p1, p2, …, pn〉, an index pair i, j specifies a subproblem.

Let m[i, j] be the minimum number of scalar multiplications needed to

compute the matrix Ai:j. For the full problem, the lowest-cost way to

compute A1:n is thus m[1, n].

We can define m[i, j] recursively as follows. If i = j, the problem is

trivial: the chain consists of just one matrix Ai:i = Ai, so that no scalar

multiplications are necessary to compute the product. Thus, m[i, i] = 0

for i = 1, 2, …, n. To compute m[i, j] when i < j, we take advantage of

the structure of an optimal solution from step 1. Suppose that an

optimal parenthesization splits the product AiAi+1 ⋯ Aj between Ak

and Ak+1, where i ≤ k < j. Then, m[i, j] equals the minimum cost m[i, k]

for computing the subproduct Ai:k, plus the minimum cost m[k+1, j] for

computing the subproduct, Ak+1:j, plus the cost of multiplying these

two matrices together. Because each matrix Ai is pi−1 × pi, computing

the matrix product Ai:kAk+1:j takes pi−1 pk pj scalar multiplications.

Thus, we obtain

m[i, j] = m[i, k] + m[k + 1, j] + pi−1 pk pj.

This recursive equation assumes that you know the value of k. But

you don’t, at least not yet. You have to try all possible values of k. How

many are there? Just j − i, namely k = i, i + 1, …, j − 1. Since the

optimal parenthesization must use one of these values for k, you need

only check them all to find the best. Thus, the recursive definition for

the minimum cost of parenthesizing the product AiAi+1 ⋯ Aj becomes

The m[i, j] values give the costs of optimal solutions to subproblems,

but they do not provide all the information you need to construct an

optimal solution. To help you do so, let’s define s[i, j] to be a value of k

at which you split the product AiAi+1 ⋯ Aj in an optimal
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parenthesization. That is, s[i, j] equals a value k such that m[i, j] = m[i, k]

+ m[k + 1, j] + pi−1 pk pj.

Step 3: Computing the optimal costs

At this point, you could write a recursive algorithm based on recurrence

(14.7) to compute the minimum cost m[1, n] for multiplying A1A2 ⋯

An. But as we saw for the rod-cutting problem, and as we shall see in

Section 14.3, this recursive algorithm takes exponential time. That’s no

better than the brute-force method of checking each way of

parenthesizing the product.

Fortunately, there aren’t all that many distinct subproblems: just one

subproblem for each choice of i and j satisfying 1 ≤ i ≤ j ≤ n, or 

 in all.4 A recursive algorithm may encounter each

subproblem many times in different branches of its recursion tree. This

property of overlapping subproblems is the second hallmark of when

dynamic programming applies (the first hallmark being optimal

substructure).

Instead of computing the solution to recurrence (14.7) recursively,

let’s compute the optimal cost by using a tabular, bottom-up approach,

as in the procedure MATRIX-CHAIN-ORDER. (The corresponding

top-down approach using memoization appears in Section 14.3.) The

input is a sequence p = 〈p0, p1, …, pn〉 of matrix dimensions, along with

n, so that for i = 1, 2, …, n, matrix Ai has dimensions pi−1 × pi. The

procedure uses an auxiliary table m[1 : n, 1 : n] to store the m[i, j] costs

and another auxiliary table s[1 : n − 1, 2 : n] that records which index k

achieved the optimal cost in computing m[i, j]. The table s will help in

constructing an optimal solution.

MATRIX-CHAIN-ORDER(p, n)

  1 let m[1 : n, 1 : n] and s[1 : n − 1, 2 : n] be new tables

  2 for i = 1 to n // chain length 1

  3 m[i, i] = 0

  4 for l = 2 to n // l is the chain length
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  5 for i = 1 to n − l + 1 // chain begins at Ai

  6 j = i + l − 1 // chain ends at Aj

  7 m[i, j] = ∞

  8 for k = i to j − 1 // try Ai:kAk+1:j

  9 q = m[i, k] + m[k + 1, j] + pi−1pk pj

10 if q < m[i, j]

11 m[i, j] = q // remember this cost

12 s[i, j] = k // remember this index

13return m and s

In what order should the algorithm fill in the table entries? To answer

this question, let’s see which entries of the table need to be accessed

when computing the cost m[i, j]. Equation (14.7) tells us that to compute

the cost of matrix product Ai:j, first the costs of the products Ai:k and

Ak+1:j need to have been computed for all k = i, i + 1, …, j − 1. The

chain AiAi+1 ⋯ Aj consists of j − i + 1 matrices, and the chains AiAi+1

… Ak and Ak+1 Ak+2 … Aj consist of k − i + 1 and j − k matrices,

respectively. Since k < j, a chain of k − i + 1 matrices consists of fewer

than j − i + 1 matrices. Likewise, since k ≥ i, a chain of j − k matrices

consists of fewer than j − i + 1 matrices. Thus, the algorithm should fill

in the table m from shorter matrix chains to longer matrix chains. That

is, for the subproblem of optimally parenthesizing the chain AiAi+1 ⋯

Aj, it makes sense to consider the subproblem size as the length j − i + 1

of the chain.

Now, let’s see how the MATRIX-CHAIN-ORDER procedure fills in

the m[i, j] entries in order of increasing chain length. Lines 2–3 initialize

m[i, i] = 0 for i = 1, 2, …, n, since any matrix chain with just one matrix

requires no scalar multiplications. In the for loop of lines 4–12, the loop

variable l denotes the length of matrix chains whose minimum costs are

being computed. Each iteration of this loop uses recurrence (14.7) to

compute m[i, i + l − 1] for i = 1, 2, …, n − l + 1. In the first iteration, l =

2, and so the loop computes m[i, i + 1] for i = 1, 2, …, n − 1: the

minimum costs for chains of length l = 2. The second time through the
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loop, it computes m[i, i + 2] for i = 1, 2, …, n − 2: the minimum costs

for chains of length l = 3. And so on, ending with a single matrix chain

of length l = n and computing m[1, n]. When lines 7–12 compute an m[i,

j] cost, this cost depends only on table entries m[i, k] and m[k + 1, j],

which have already been computed.

Figure 14.5 illustrates the m and s tables, as filled in by the

MATRIX-CHAIN-ORDER procedure on a chain of n = 6 matrices.

Since m[i, j] is defined only for i ≤ j, only the portion of the table m on or

above the main diagonal is used. The figure shows the table rotated to

make the main diagonal run horizontally. The matrix chain is listed

along the bottom. Using this layout, the minimum cost m[i, j] for

multiplying a subchain AiAi+1 ⋯ Aj of matrices appears at the

intersection of lines running northeast from Ai and northwest from Aj.

Reading across, each diagonal in the table contains the entries for

matrix chains of the same length. MATRIX-CHAIN-ORDER

computes the rows from bottom to top and from left to right within

each row. It computes each entry m[i, j] using the products pi−1 pk pj for

k = i, i + 1, …, j − 1 and all entries southwest and southeast from m[i, j].

A simple inspection of the nested loop structure of MATRIX-

CHAIN-ORDER yields a running time of O(n3) for the algorithm. The

loops are nested three deep, and each loop index (l, i, and k) takes on at

most n − 1 values. Exercise 14.2-5 asks you to show that the running

time of this algorithm is in fact also Ω(n3). The algorithm requires Θ(n2)

space to store the m and s tables. Thus, MATRIX-CHAIN-ORDER is

much more efficient than the exponential-time method of enumerating

all possible parenthesizations and checking each one.
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Figure 14.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n = 6 and the

following matrix dimensions:

matrix A1 A2 A3 A4 A5 A6

dimension 30 × 35 35 × 15 15 × 5 5 × 10 10 × 20 20 × 25

The tables are rotated so that the main diagonal runs horizontally. The m table uses only the

main diagonal and upper triangle, and the s table uses only the upper triangle. The minimum

number of scalar multiplications to multiply the 6 matrices is m[1, 6] = 15,125. Of the entries

that are not tan, the pairs that have the same color are taken together in line 9 when computing

Step 4: Constructing an optimal solution

Although MATRIX-CHAIN-ORDER determines the optimal number

of scalar multiplications needed to compute a matrix-chain product, it

does not directly show how to multiply the matrices. The table s[1 : n −

1, 2 : n] provides the information needed to do so. Each entry s[i, j]

records a value of k such that an optimal parenthesization of AiAi+1 ⋯

Aj splits the product between Ak and Ak+1. The final matrix

multiplication in computing A1:n optimally is A1:s[1,n]As[1,n]+1:n. The

s table contains the information needed to determine the earlier matrix
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multiplications as well, using recursion: s[1, s[1, n]] determines the last

matrix multiplication when computing A1:s[1,n] and s[s[1,n] + 1, n]

determines the last matrix multiplication when computing As[1,n]+1:n.

The recursive procedure PRINT-OPTIMAL-PARENS on the facing

page prints an optimal parenthesization of the matrix chain product

AiAi+1 ⋯ Aj, given the s table computed by MATRIX-CHAIN-

ORDER and the indices i and j. The initial call PRINT-OPTIMAL-

PARENS(s, 1, n) prints an optimal parenthesization of the full matrix

chain product A1A2 ⋯ An. In the example of Figure 14.5, the call

PRINT-OPTIMAL-PARENS(s, 1, 6) prints the optimal

parenthesization ((A1(A2A3))((A4A5)A6)).

PRINT-OPTIMAL-PARENS(s, i, j)

1 if i == j

2 print “A”i

3 else print “(”

4 PRINT-OPTIMAL-PARENS(s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)

6 print “)”

Exercises

14.2-1

Find an optimal parenthesization of a matrix-chain product whose

sequence of dimensions is 〈5, 10, 3, 12, 5, 50, 6〉.

14.2-2

Give a recursive algorithm MATRIX-CHAIN-MULTIPLY(A, s, i, j)

that actually performs the optimal matrix-chain multiplication, given

the sequence of matrices 〈A1, A2, …, An〉, the s table computed by

MATRIX-CHAIN-ORDER, and the indices i and j. (The initial call is

MATRIX-CHAIN-MULTIPLY(A, s, 1, n).) Assume that the call

RECTANGULAR-MATRIX-MULTIPLY(A, B) returns the product

of matrices A and B.
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14.2-3

Use the substitution method to show that the solution to the recurrence

(14.6) is Ω(2n).

14.2-4

Describe the subproblem graph for matrix-chain multiplication with an

input chain of length n. How many vertices does it have? How many

edges does it have, and which edges are they?

14.2-5

Let R(i, j) be the number of times that table entry m[i, j] is referenced

while computing other table entries in a call of MATRIX-CHAIN-

ORDER. Show that the total number of references for the entire table is

(Hint: You may find equation (A.4) on page 1141 useful.)

14.2-6

Show that a full parenthesization of an n-element expression has exactly

n − 1 pairs of parentheses.

14.3    Elements of dynamic programming

Although you have just seen two complete examples of the dynamic-

programming method, you might still be wondering just when the

method applies. From an engineering perspective, when should you look

for a dynamic-programming solution to a problem? In this section, we’ll

examine the two key ingredients that an optimization problem must

have in order for dynamic programming to apply: optimal substructure

and overlapping subproblems. We’ll also revisit and discuss more fully

how memoization might help you take advantage of the overlapping-

subproblems property in a top-down recursive approach.

Optimal substructure
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The first step in solving an optimization problem by dynamic

programming is to characterize the structure of an optimal solution.

Recall that a problem exhibits optimal substructure if an optimal

solution to the problem contains within it optimal solutions to

subproblems. When a problem exhibits optimal substructure, that gives

you a good clue that dynamic programming might apply. (As Chapter

15 discusses, it also might mean that a greedy strategy applies, however.)

Dynamic programming builds an optimal solution to the problem from

optimal solutions to subproblems. Consequently, you must take care to

ensure that the range of subproblems you consider includes those used

in an optimal solution.

Optimal substructure was key to solving both of the previous

problems in this chapter. In Section 14.1, we observed that the optimal

way of cutting up a rod of length n (if Serling Enterprises makes any

cuts at all) involves optimally cutting up the two pieces resulting from

the first cut. In Section 14.2, we noted that an optimal parenthesization

of the matrix chain product AiAi+1 ⋯ Aj that splits the product

between Ak and Ak+1 contains within it optimal solutions to the

problems of parenthesizing AiAi+1 ⋯ Ak and Ak+1Ak+2 ⋯ Aj.

You will find yourself following a common pattern in discovering

optimal substructure:

1. You show that a solution to the problem consists of making a

choice, such as choosing an initial cut in a rod or choosing an

index at which to split the matrix chain. Making this choice

leaves one or more subproblems to be solved.

2. You suppose that for a given problem, you are given the choice

that leads to an optimal solution. You do not concern yourself

yet with how to determine this choice. You just assume that it

has been given to you.

3. Given this choice, you determine which subproblems ensue and

how to best characterize the resulting space of subproblems.

4. You show that the solutions to the subproblems used within an

optimal solution to the problem must themselves be optimal by
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using a “cut-and-paste” technique. You do so by supposing that

each of the subproblem solutions is not optimal and then

deriving a contradiction. In particular, by “cutting out” the

nonoptimal solution to each subproblem and “pasting in” the

optimal one, you show that you can get a better solution to the

original problem, thus contradicting your supposition that you

already had an optimal solution. If an optimal solution gives rise

to more than one subproblem, they are typically so similar that

you can modify the cut-and-paste argument for one to apply to

the others with little effort.

To characterize the space of subproblems, a good rule of thumb says

to try to keep the space as simple as possible and then expand it as

necessary. For example, the space of subproblems for the rod-cutting

problem contained the problems of optimally cutting up a rod of length

i for each size i. This subproblem space worked well, and it was not

necessary to try a more general space of subproblems.

Conversely, suppose that you tried to constrain the subproblem

space for matrix-chain multiplication to matrix products of the form

A1A2 ⋯ Aj. As before, an optimal parenthesization must split this

product between Ak and Ak+1 for some 1 ≤ k < j. Unless you can

guarantee that k always equals j − 1, you will find that you have

subproblems of the form A1A2 ⋯ Ak and Ak+1Ak+2 ⋯ Aj. Moreover,

the latter subproblem does not have the form A1A2 ⋯ Aj. To solve this

problem by dynamic programming, you need to allow the subproblems

to vary at “both ends.” That is, both i and j need to vary in the

subproblem of parenthesizing the product AiAi+1 ⋯ Aj.

Optimal substructure varies across problem domains in two ways:

1. how many subproblems an optimal solution to the original

problem uses, and

2. how many choices you have in determining which subproblem(s)

to use in an optimal solution.
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In the rod-cutting problem, an optimal solution for cutting up a rod of

size n uses just one subproblem (of size n − i), but we have to consider n

choices for i in order to determine which one yields an optimal solution.

Matrix-chain multiplication for the subchain AiAi+1 ⋯ Aj serves an

example with two subproblems and j − i choices. For a given matrix Ak

where the product splits, two subproblems arise—parenthesizing

AiAi+1 ⋯ Ak and parenthesizing Ak+1Ak+2 ⋯ Aj—and we have to

solve both of them optimally. Once we determine the optimal solutions

to subproblems, we choose from among j − i candidates for the index k.

Informally, the running time of a dynamic-programming algorithm

depends on the product of two factors: the number of subproblems

overall and how many choices you look at for each subproblem. In rod

cutting, we had Θ(n) subproblems overall, and at most n choices to

examine for each, yielding an O(n2) running time. Matrix-chain

multiplication had Θ(n2) subproblems overall, and each had at most n −

1 choices, giving an O(n3) running time (actually, a Θ(n3) running time,

by Exercise 14.2-5).

Usually, the subproblem graph gives an alternative way to perform

the same analysis. Each vertex corresponds to a subproblem, and the

choices for a subproblem are the edges incident from that subproblem.

Recall that in rod cutting, the subproblem graph has n vertices and at

most n edges per vertex, yielding an O(n2) running time. For matrix-

chain multiplication, if you were to draw the subproblem graph, it

would have Θ(n2) vertices and each vertex would have degree at most n

− 1, giving a total of O(n3) vertices and edges.

Dynamic programming often uses optimal substructure in a bottom-

up fashion. That is, you first find optimal solutions to subproblems and,

having solved the subproblems, you find an optimal solution to the

problem. Finding an optimal solution to the problem entails making a

choice among subproblems as to which you will use in solving the

problem. The cost of the problem solution is usually the subproblem

costs plus a cost that is directly attributable to the choice itself. In rod

cutting, for example, first we solved the subproblems of determining
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optimal ways to cut up rods of length i for i = 0, 1, …, n − 1, and then

we determined which of these subproblems yielded an optimal solution

for a rod of length n, using equation (14.2). The cost attributable to the

choice itself is the term pi in equation (14.2). In matrix-chain

multiplication, we determined optimal parenthesizations of subchains

of AiAi+1 ⋯ Aj, and then we chose the matrix Ak at which to split the

product. The cost attributable to the choice itself is the term pi−1 pk pj.

Chapter 15 explores “greedy algorithms,” which have many

similarities to dynamic programming. In particular, problems to which

greedy algorithms apply have optimal substructure. One major

difference between greedy algorithms and dynamic programming is that

instead of first finding optimal solutions to subproblems and then

making an informed choice, greedy algorithms first make a “greedy”

choice—the choice that looks best at the time—and then solve a

resulting subproblem, without bothering to solve all possible related

smaller subproblems. Surprisingly, in some cases this strategy works!

Subtleties

You should be careful not to assume that optimal substructure applies

when it does not. Consider the following two problems whose input

consists of a directed graph G = (V, E) and vertices u, v ∈ V.

Unweighted shortest path:5 Find a path from u to v consisting of the

fewest edges. Such a path must be simple, since removing a cycle from

a path produces a path with fewer edges.

Unweighted longest simple path: Find a simple path from u to v

consisting of the most edges. (Without the requirement that the path

must be simple, the problem is undefined, since repeatedly traversing a

cycle creates paths with an arbitrarily large number of edges.)

The unweighted shortest-path problem exhibits optimal

substructure. Here’s how. Suppose that u ≠ v, so that the problem is

nontrivial. Then, any path p from u to v must contain an intermediate

vertex, say w. (Note that w may be u or v.) Then, we can decompose the
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path  into subpaths . The number of edges in p equals

the number of edges in p1 plus the number of edges in p2. We claim that

if p is an optimal (i.e., shortest) path from u to v, then p1 must be a

shortest path from u to w. Why? As suggested earlier, use a “cut-and-

paste” argument: if there were another path, say , from u to w with

fewer edges than p1, then we could cut out p1 and paste in  to produce

a path  with fewer edges than p, thus contradicting p’s

optimality. Likewise, p2 must be a shortest path from w to v. Thus, to

find a shortest path from u to v, consider all intermediate vertices w,

find a shortest path from u to w and a shortest path from w to v, and

choose an intermediate vertex w that yields the overall shortest path.

Section 23.2 uses a variant of this observation of optimal substructure

to find a shortest path between every pair of vertices on a weighted,

directed graph.

You might be tempted to assume that the problem of finding an

unweighted longest simple path exhibits optimal substructure as well.

After all, if we decompose a longest simple path  into subpaths 

, then mustn’t p1 be a longest simple path from u to w, and

mustn’t p2 be a longest simple path from w to v? The answer is no!

Figure 14.6 supplies an example. Consider the path q → r → t, which is

a longest simple path from q to t. Is q → r a longest simple path from q

to r? No, for the path q → s → t → r is a simple path that is longer. Is r

→ t a longest simple path from r to t? No again, for the path r → q → s

→ t is a simple path that is longer.

Figure 14.6 A directed graph showing that the problem of finding a longest simple path in an

unweighted directed graph does not have optimal substructure. The path q → r → t is a longest

simple path from q to t, but the subpath q → r is not a longest simple path from q to r, nor is the

subpath r → t a longest simple path from r to t.
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This example shows that for longest simple paths, not only does the

problem lack optimal substructure, but you cannot necessarily assemble

a “legal” solution to the problem from solutions to subproblems. If you

combine the longest simple paths q → s → t → r and r → q → s → t,

you get the path q → s → t → r → q → s → t, which is not simple.

Indeed, the problem of finding an unweighted longest simple path does

not appear to have any sort of optimal substructure. No efficient

dynamic-programming algorithm for this problem has ever been found.

In fact, this problem is NP-complete, which—as we shall see in Chapter

34—means that we are unlikely to find a way to solve it in polynomial

time.

Why is the substructure of a longest simple path so different from

that of a shortest path? Although a solution to a problem for both

longest and shortest paths uses two subproblems, the subproblems in

finding the longest simple path are not independent, whereas for shortest

paths they are. What do we mean by subproblems being independent?

We mean that the solution to one subproblem does not affect the

solution to another subproblem of the same problem. For the example

of Figure 14.6, we have the problem of finding a longest simple path

from q to t with two subproblems: finding longest simple paths from q

to r and from r to t. For the first of these subproblems, we chose the

path q → s → t → r, which used the vertices s and t. These vertices

cannot appear in a solution to the second subproblem, since the

combination of the two solutions to subproblems yields a path that is

not simple. If vertex t cannot be in the solution to the second problem,

then there is no way to solve it, since t is required to be on the path that

forms the solution, and it is not the vertex where the subproblem

solutions are “spliced” together (that vertex being r). Because vertices s

and t appear in one subproblem solution, they cannot appear in the

other subproblem solution. One of them must be in the solution to the

other subproblem, however, and an optimal solution requires both.

Thus, we say that these subproblems are not independent. Looked at

another way, using resources in solving one subproblem (those resources

being vertices) renders them unavailable for the other subproblem.

Why, then, are the subproblems independent for finding a shortest

path? The answer is that by nature, the subproblems do not share
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resources. We claim that if a vertex w is on a shortest path p from u to v,

then we can splice together any shortest path  and any shortest

path  to produce a shortest path from u to v. We are assured that,

other than w, no vertex can appear in both paths p1 and p2. Why?

Suppose that some vertex x ≠ w appears in both p1 and p2, so that we

can decompose p1 as  and p2 as . By the optimal

substructure of this problem, path p has as many edges as p1 and p2

together. Let’s say that p has e edges. Now let us construct a path 

 from u to v. Because we have excised the paths from x to

w and from w to x, each of which contains at least one edge, path p′
contains at most e − 2 edges, which contradicts the assumption that p is

a shortest path. Thus, we are assured that the subproblems for the

shortest-path problem are independent.

The two problems examined in Sections 14.1 and 14.2 have

independent subproblems. In matrix-chain multiplication, the

subproblems are multiplying subchains AiAi+1 ⋯ Ak and Ak+1Ak+2

⋯ Aj. These subchains are disjoint, so that no matrix could possibly be

included in both of them. In rod cutting, to determine the best way to

cut up a rod of length n, we looked at the best ways of cutting up rods of

length i for i = 0, 1, …, n − 1. Because an optimal solution to the length-

n problem includes just one of these subproblem solutions (after cutting

off the first piece), independence of subproblems is not an issue.

Overlapping subproblems

The second ingredient that an optimization problem must have for

dynamic programming to apply is that the space of subproblems must

be “small” in the sense that a recursive algorithm for the problem solves

the same subproblems over and over, rather than always generating new

subproblems. Typically, the total number of distinct subproblems is a

polynomial in the input size. When a recursive algorithm revisits the

same problem repeatedly, we say that the optimization problem has

overlapping subproblems.6 In contrast, a problem for which a divide-

and-conquer approach is suitable usually generates brand-new problems
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at each step of the recursion. Dynamic-programming algorithms

typically take advantage of overlapping subproblems by solving each

subproblem once and then storing the solution in a table where it can be

looked up when needed, using constant time per lookup.

Figure 14.7 The recursion tree for the computation of RECURSIVE-MATRIX-CHAIN(p, 1,

4). Each node contains the parameters i and j. The computations performed in a subtree shaded

blue are replaced by a single table lookup in MEMOIZED-MATRIX-CHAIN.

In Section 14.1, we briefly examined how a recursive solution to rod

cutting makes exponentially many calls to find solutions of smaller

subproblems. The dynamic-programming solution reduces the running

time from the exponential time of the recursive algorithm down to

quadratic time.

To illustrate the overlapping-subproblems property in greater detail,

let’s revisit the matrix-chain multiplication problem. Referring back to

Figure 14.5, observe that MATRIX-CHAIN-ORDER repeatedly looks

up the solution to subproblems in lower rows when solving subproblems

in higher rows. For example, it references entry m[3, 4] four times:

during the computations of m[2, 4], m[1, 4], m[3, 5], and m[3, 6]. If the

algorithm were to recompute m[3, 4] each time, rather than just looking

it up, the running time would increase dramatically. To see how,

consider the inefficient recursive procedure RECURSIVE-MATRIX-

CHAIN on the facing page, which determines m[i, j], the minimum

number of scalar multiplications needed to compute the matrix-chain

product Ai:j = AiAi+1 ⋯ Aj. The procedure is based directly on the
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recurrence (14.7). Figure 14.7 shows the recursion tree produced by the

call RECURSIVE-MATRIX-CHAIN(p, 1, 4). Each node is labeled by

the values of the parameters i and j. Observe that some pairs of values

occur many times.

In fact, the time to compute m[1, n] by this recursive procedure is at

least exponential in n. To see why, let T(n) denote the time taken by

RECURSIVE-MATRIX-CHAIN  to compute an optimal

parenthesization of a chain of n matrices. Because the execution of lines

1–2 and of lines 6–7 each take at least unit time, as does the

multiplication in line 5, inspection of the procedure yields the recurrence

RECURSIVE-MATRIX-CHAIN(p, i, j)

1 if i == j

2 return 0

3 m[i, j] = ∞

4 for k = i to j − 1

5 q = RECURSIVE-MATRIX-CHAIN(p, i, k)

+ RECURSIVE-MATRIX-CHAIN(p, k + 1, j)

+ pi−1 pk pj

6 if q < m[i, j]

7 m[i, j] = q

8 return m[i, j]

Noting that for i = 1, 2, …, n − 1, each term T(i) appears once as T(k)

and once as T(n − k), and collecting the n − 1 1s in the summation

together with the 1 out front, we can rewrite the recurrence as
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Let’s prove that T(n) = Ω(2n) using the substitution method.

Specifically, we’ll show that T(n) ≥ 2n−1 for all n ≥ 1. For the base case n

= 1, the summation is empty, and we get T(1) ≥ 1 = 20. Inductively, for n

≥ 2 we have

which completes the proof. Thus, the total amount of work performed

by the call RECURSIVE-MATRIX-CHAIN(p, 1, n) is at least

exponential in n.

Compare this top-down, recursive algorithm (without memoization)

with the bottom-up dynamic-programming algorithm. The latter is

more efficient because it takes advantage of the overlapping-

subproblems property. Matrix-chain multiplication has only Θ(n2)

distinct subproblems, and the dynamic-programming algorithm solves

each exactly once. The recursive algorithm, on the other hand, must

solve each subproblem every time it reappears in the recursion tree.

Whenever a recursion tree for the natural recursive solution to a

problem contains the same subproblem repeatedly, and the total

number of distinct subproblems is small, dynamic programming can

improve efficiency, sometimes dramatically.

Reconstructing an optimal solution

As a practical matter, you’ll often want to store in a separate table

which choice you made in each subproblem so that you do not have to

reconstruct this information from the table of costs.

For matrix-chain multiplication, the table s[i, j] saves a significant

amount of work when we need to reconstruct an optimal solution.
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Suppose that the MATRIX-CHAIN-ORDER procedure on page 378

did not maintain the s[i, j] table, so that it filled in only the table m[i, j]

containing optimal subproblem costs. The procedure chooses from

among j − i possibilities when determining which subproblems to use in

an optimal solution to parenthesizing AiAi+1 ⋯ Aj, and j − i is not a

constant. Therefore, it would take Θ(j −i) = ω(1) time to reconstruct

which subproblems it chose for a solution to a given problem. Because

MATRIX-CHAIN-ORDER stores in s[i, j] the index of the matrix at

which it split the product AiAi+1 ⋯ Aj, the PRINT-OPTIMAL-

PARENS procedure on page 381 can look up each choice in O(1) time.

Memoization

As we saw for the rod-cutting problem, there is an alternative approach

to dynamic programming that often offers the efficiency of the bottom-

up dynamic-programming approach while maintaining a top-down

strategy. The idea is to memoize the natural, but inefficient, recursive

algorithm. As in the bottom-up approach, you maintain a table with

subproblem solutions, but the control structure for filling in the table is

more like the recursive algorithm.

A memoized recursive algorithm maintains an entry in a table for the

solution to each subproblem. Each table entry initially contains a

special value to indicate that the entry has yet to be filled in. When the

subproblem is first encountered as the recursive algorithm unfolds, its

solution is computed and then stored in the table. Each subsequent

encounter of this subproblem simply looks up the value stored in the

table and returns it.7

The procedure MEMOIZED-MATRIX-CHAIN is a memoized

version of the procedure RECURSIVE-MATRIX-CHAIN on page

389. Note where it resembles the memoized top-down method on page

369 for the rod-cutting problem.

MEMOIZED-MATRIX-CHAIN(p, n)

1 let m[1 : n, 1 : n] be a new table

2 for i = 1 to n
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3 for j = i to n

4 m[i, j] = ∞

5 return LOOKUP-CHAIN(m, p, 1, n)

LOOKUP-CHAIN(m, p, i, j)

1 if m[i, j] < ∞

2 return m[i, j]

3 if i == j

4 m[i, j] = 0

5 else for k = i to j − 1

6 q = LOOKUP-CHAIN(m, p, i, k)

+ LOOKUP-CHAIN(m, p, k + 1, j) + pi−1 pk pj

7 if q < m[i, j]

8 m[i, j] = q

9 return m[i, j]

The MEMOIZED-MATRIX-CHAIN procedure, like the bottom-

up MATRIX-CHAIN-ORDER procedure on page 378, maintains a

table m[1 : n, 1 : n] of computed values of m[i, j], the minimum number

of scalar multiplications needed to compute the matrix Ai:j. Each table

entry initially contains the value ∞ to indicate that the entry has yet to

be filled in. Upon calling LOOKUP-CHAIN(m, p, i, j), if line 1 finds

that m[i, j] < ∞, then the procedure simply returns the previously

computed cost m[i, j] in line 2. Otherwise, the cost is computed as in

RECURSIVE-MATRIX-CHAIN, stored in m[i, j], and returned. Thus,

LOOKUP-CHAIN(m, p, i, j) always returns the value of m[i, j], but it

computes it only upon the first call of LOOKUP-CHAIN with these

specific values of i and j. Figure 14.7 illustrates how MEMOIZED-

MATRIX-CHAIN saves time compared with RECURSIVE-MATRIX-

CHAIN. Subtrees shaded blue represent values that are looked up

rather than recomputed.

Like the bottom-up procedure MATRIX-CHAIN-ORDER, the

memoized procedure MEMOIZED-MATRIX-CHAIN runs in O(n3)

time. To begin with, line 4 of MEMOIZED-MATRIX-CHAIN executes

Θ(n2) times, which dominates the running time outside of the call to
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LOOKUP-CHAIN in line 5. We can categorize the calls of LOOKUP-

CHAIN into two types:

1. calls in which m[i, j] = ∞, so that lines 3–9 execute, and

2. calls in which m[i, j] < ∞, so that LOOKUP-CHAIN simply

returns in line 2.

There are Θ(n2) calls of the first type, one per table entry. All calls of the

second type are made as recursive calls by calls of the first type.

Whenever a given call of LOOKUP-CHAIN makes recursive calls, it

makes O(n) of them. Therefore, there are O(n3) calls of the second type

in all. Each call of the second type takes O(1) time, and each call of the

first type takes O(n) time plus the time spent in its recursive calls. The

total time, therefore, is O(n3). Memoization thus turns an Ω(2n)-time

algorithm into an O(n3)-time algorithm.

We have seen how to solve the matrix-chain multiplication problem

by either a top-down, memoized dynamic-programming algorithm or a

bottom-up dynamic-programming algorithm in O(n3) time. Both the

bottom-up and memoized methods take advantage of the overlapping-

subproblems property. There are only Θ(n2) distinct subproblems in

total, and either of these methods computes the solution to each

subproblem only once. Without memoization, the natural recursive

algorithm runs in exponential time, since solved subproblems are

repeatedly solved.

In general practice, if all subproblems must be solved at least once, a

bottom-up dynamic-programming algorithm usually outperforms the

corresponding top-down memoized algorithm by a constant factor,

because the bottom-up algorithm has no overhead for recursion and

less overhead for maintaining the table. Moreover, for some problems

you can exploit the regular pattern of table accesses in the dynamic-

programming algorithm to reduce time or space requirements even

further. On the other hand, in certain situations, some of the

subproblems in the subproblem space might not need to be solved at all.

www.konkur.in

Telegram: @uni_k



In that case, the memoized solution has the advantage of solving only

those subproblems that are definitely required.

Exercises

14.3-1

Which is a more efficient way to determine the optimal number of

multiplications in a matrix-chain multiplication problem: enumerating

all the ways of parenthesizing the product and computing the number of

multiplications for each, or running RECURSIVE-MATRIX-CHAIN?

Justify your answer.

14.3-2

Draw the recursion tree for the MERGE-SORT procedure from Section

2.3.1 on an array of 16 elements. Explain why memoization fails to

speed up a good divide-and-conquer algorithm such as MERGE-

SORT.

14.3-3

Consider the antithetical variant of the matrix-chain multiplication

problem where the goal is to parenthesize the sequence of matrices so as

to maximize, rather than minimize, the number of scalar multiplications.

Does this problem exhibit optimal substructure?

14.3-4

As stated, in dynamic programming, you first solve the subproblems

and then choose which of them to use in an optimal solution to the

problem. Professor Capulet claims that she does not always need to

solve all the subproblems in order to find an optimal solution. She

suggests that she can find an optimal solution to the matrix-chain

multiplication problem by always choosing the matrix Ak at which to

split the subproduct AiAi+1 ⋯ Aj (by selecting k to minimize the

quantity pi−1 pk pj) before solving the subproblems. Find an instance of

the matrix-chain multiplication problem for which this greedy approach

yields a suboptimal solution.

14.3-5
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Suppose that the rod-cutting problem of Section 14.1 also had a limit li

on the number of pieces of length i allowed to be produced, for i = 1, 2,

…, n. Show that the optimal-substructure property described in Section

14.1 no longer holds.

14.4    Longest common subsequence

Biological applications often need to compare the DNA of two (or

more) different organisms. A strand of DNA consists of a string of

molecules called bases, where the possible bases are adenine, cytosine,

guanine, and thymine. Representing each of these bases by its initial

letter, we can express a strand of DNA as a string over the 4-element set

{A, C, G, T}. (See Section C.1 for the definition of a string.) For

example, the DNA of one organism may be S1 =

ACCGGTCGAGTGCGCGGAAGCCGGCCGAA, and the DNA of another

organism may be S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA. One

reason to compare two strands of DNA is to determine how “similar”

the two strands are, as some measure of how closely related the two

organisms are. We can, and do, define similarity in many different ways.

For example, we can say that two DNA strands are similar if one is a

substring of the other. (Chapter 32 explores algorithms to solve this

problem.) In our example, neither S1 nor S2 is a substring of the other.

Alternatively, we could say that two strands are similar if the number of

changes needed to turn one into the other is small. (Problem 14-5 looks

at this notion.) Yet another way to measure the similarity of strands S1

and S2 is by finding a third strand S3 in which the bases in S3 appear in

each of S1 and S2. These bases must appear in the same order, but not

necessarily consecutively. The longer the strand S3 we can find, the

more similar S1 and S2 are. In our example, the longest strand S3 is

GTCGTCGGAAGCCGGCCGAA.

We formalize this last notion of similarity as the longest-common-

subsequence problem. A subsequence of a given sequence is just the

given sequence with 0 or more elements left out. Formally, given a
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sequence X = 〈x1, x2, …, xm〉, another sequence Z = 〈z1, z2, …, zk〉 is a

subsequence of X if there exists a strictly increasing sequence 〈i1, i2, …,

ik〉 of indices of X such that for all j = 1, 2, …, k, we have . For

example, Z = 〈B, C, D, B〉 is a subsequence of X = 〈A, B, C, B, D, A, B〉

with corresponding index sequence 〈2, 3, 5, 7〉.

Given two sequences X and Y, we say that a sequence Z is a common

subsequence of X and Y if Z is a subsequence of both X and Y. For

example, if X = 〈A, B, C, B, D, A, B〉 and Y = 〈B, D, C, A, B, A〉, the

sequence 〈B, C, A〉 is a common subsequence of both X and Y. The

sequence 〈B, C, A〉 is not a longest common subsequence (LCS) of X

and Y, however, since it has length 3 and the sequence 〈B, C, B, A〉,

which is also common to both sequences X and Y, has length 4. The

sequence 〈B, C, B, A〉 is an LCS of X and Y, as is the sequence 〈B, D, A,

B〉, since X and Y have no common subsequence of length 5 or greater.

In the longest-common-subsequence problem, the input is two

sequences X = 〈x1, x2, …, xm〉 and Y = 〈y1, y2, …, yn〉, and the goal is

to find a maximum-length common subsequence of X and Y. This

section shows how to efficiently solve the LCS problem using dynamic

programming.

Step 1: Characterizing a longest common subsequence

You can solve the LCS problem with a brute-force approach: enumerate

all subsequences of X and check each subsequence to see whether it is

also a subsequence of Y, keeping track of the longest subsequence you

find. Each subsequence of X corresponds to a subset of the indices {1,

2, …, m} of X. Because X has 2m subsequences, this approach requires

exponential time, making it impractical for long sequences.

The LCS problem has an optimal-substructure property, however, as

the following theorem shows. As we’ll see, the natural classes of

subproblems correspond to pairs of “prefixes” of the two input

sequences. To be precise, given a sequence X = 〈x1, x2, …, xm〉, we

define the ith prefix of X, for i = 0, 1, …, m, as Xi = 〈x1, x2, …, xi〉. For
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example, if X = 〈A, B, C, B, D, A, B〉, then X4 = 〈A, B, C, B〉 and X0 is

the empty sequence.

Theorem 14.1 (Optimal substructure of an LCS)

Let X = 〈x1, x2, …, xm〉 and Y = 〈y1, y2, …, yn〉 be sequences, and let Z

= 〈z1, z2, …, zk〉 be any LCS of X and Y.

1. If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1

and Yn−1.

2. If xm ≠ yn and zk ≠ xm, then Z is an LCS of Xm−1 and Y.

3. If xm ≠ yn and zk ≠ yn, then Z is an LCS of X and Yn−1.

Proof   (1) If zk ≠ xm, then we could append xm = yn to Z to obtain a

common subsequence of X and Y of length k + 1, contradicting the

supposition that Z is a longest common subsequence of X and Y. Thus,

we must have zk = xm = yn. Now, the prefix Zk−1 is a length-(k − 1)

common subsequence of Xm−1 and Yn−1. We wish to show that it is an

LCS. Suppose for the purpose of contradiction that there exists a

common subsequence W of Xm−1 and Yn−1 with length greater than k

− 1. Then, appending xm = yn to W produces a common subsequence

of X and Y whose length is greater than k, which is a contradiction.

(2) If zk ≠ xm, then Z is a common subsequence of Xm−1 and Y. If

there were a common subsequence W of Xm−1 and Y with length

greater than k, then W would also be a common subsequence of Xm

and Y, contradicting the assumption that Z is an LCS of X and Y.

(3) The proof is symmetric to (2).

▪

The way that Theorem 14.1 characterizes longest common

subsequences says that an LCS of two sequences contains within it an

LCS of prefixes of the two sequences. Thus, the LCS problem has an

optimal-substructure property. A recursive solution also has the

overlapping-subproblems property, as we’ll see in a moment.
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Step 2: A recursive solution

Theorem 14.1 implies that you should examine either one or two

subproblems when finding an LCS of X = 〈x1, x2, …, xm〉 and Y = 〈y1,

y2, …, yn〉. If xm = yn, you need to find an LCS of Xm−1 and Yn−1.

Appending xm = yn to this LCS yields an LCS of X and Y. If xm ≠ yn,

then you have to solve two subproblems: finding an LCS of Xm−1 and

Y and finding an LCS of X and Yn−1. Whichever of these two LCSs is

longer is an LCS of X and Y. Because these cases exhaust all

possibilities, one of the optimal subproblem solutions must appear

within an LCS of X and Y.

The LCS problem has the overlapping-subproblems property. Here’s

how. To find an LCS of X and Y, you might need to find the LCSs of X

and Yn−1 and of Xm−1 and Y. But each of these subproblems has the

subsubproblem of finding an LCS of Xm−1 and Yn−1. Many other

subproblems share subsubproblems.

As in the matrix-chain multiplication problem, solving the LCS

problem recursively involves establishing a recurrence for the value of an

optimal solution. Let’s define c[i, j] to be the length of an LCS of the

sequences Xi and Yj. If either i = 0 or j = 0, one of the sequences has

length 0, and so the LCS has length 0. The optimal substructure of the

LCS problem gives the recursive formula

In this recursive formulation, a condition in the problem restricts

which subproblems to consider. When xi = yj, you can and should

consider the subproblem of finding an LCS of Xi−1 and Yj−1.

Otherwise, you instead consider the two subproblems of finding an LCS

of Xi and Yj−1 and of Xi−1 and Yj. In the previous dynamic-

programming algorithms we have examined—for rod cutting and

matrix-chain multiplication—we didn’t rule out any subproblems due to
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conditions in the problem. Finding an LCS is not the only dynamic-

programming algorithm that rules out subproblems based on conditions

in the problem. For example, the edit-distance problem (see Problem 14-

5) has this characteristic.

Step 3: Computing the length of an LCS

Based on equation (14.9), you could write an exponential-time recursive

algorithm to compute the length of an LCS of two sequences. Since the

LCS problem has only Θ(mn) distinct subproblems (computing c[i, j] for

0 ≤ i ≤ m and 0 ≤ j ≤ n), dynamic programming can compute the

solutions bottom up.

The procedure LCS-LENGTH on the next page takes two sequences

X = 〈x1, x2, …, xm〉 and Y = 〈y1, y2, …, yn〉 as inputs, along with their

lengths. It stores the c[i, j] values in a table c[0 : m, 0 : n], and it

computes the entries in row-major order. That is, the procedure fills in

the first row of c from left to right, then the second row, and so on. The

procedure also maintains the table b[1 : m, 1 : n] to help in constructing

an optimal solution. Intuitively, b[i, j] points to the table entry

corresponding to the optimal subproblem solution chosen when

computing c[i, j]. The procedure returns the b and c tables, where c[m, n]

contains the length of an LCS of X and Y. Figure 14.8 shows the tables

produced by LCS-LENGTH on the sequences X = 〈A, B, C, B, D, A, B〉

and Y = 〈B, D, C, A, B, A〉. The running time of the procedure is Θ(mn),

since each table entry takes Θ(1) time to compute.

LCS-LENGTH(X, Y, m, n)

  1 let b[1 : m, 1 : n] and c[0 : m, 0 : n] be new tables

  2 for i = 1 to m

  3 c[i, 0] = 0

  4 for j = 0 to n

  5 c[0, j] = 0

  6 for i = 1 to m // compute table entries in row-major order

  7 for j = 1 to n

  8 if xi == yj
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  9 c[i, j] = c[i − 1, j − 1] + 1

10 b[i, j] = “↖”

11 elseif c[i − 1, j] ≥ c[i, j − 1]

12 c[i, j] = c[i − 1, j]

13 b[i, j] = “↑”

14 else c[i, j] = c[i, j − 1]

15 b[i, j] = “←”

16return c and b

PRINT-LCS(b, X, i, j)

  1 if i == 0 or j == 0

  2 return // the LCS has length 0

  3 if b[i, j] == “↖”

  4 PRINT-LCS(b, X, i − 1, j − 1)

  5 print xi // same as yj

  6elseif b[i, j] == “↑”

  7 PRINT-LCS(b, X, i − 1, j)

  8else PRINT-LCS(b, X, i, j − 1)

Step 4: Constructing an LCS

With the b table returned by LCS-LENGTH, you can quickly construct

an LCS of X = 〈x1, x2, …, xm〉 and Y = 〈y1, y2, …, yn〉. Begin at b[m, n]

and trace through the table by following the arrows. Each “↖”

encountered in an entry b[i, j] implies that xi = yj is an element of the

LCS that LCS-LENGTH found. This method gives you the elements of

this LCS in reverse order. The recursive procedure PRINT-LCS prints

out an LCS of X and Y in the proper, forward order.
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Figure 14.8 The c and b tables computed by LCS-LENGTH on the sequences X = 〈A, B, C, B,

D, A, B〉 and Y = 〈B, D, C, A, B, A〉. The square in row i and column j contains the value of c[i,

j] and the appropriate arrow for the value of b[i, j]. The entry 4 in c[7, 6]—the lower right-hand

corner of the table—is the length of an LCS 〈B, C, B, A〉 of X and Y. For i, j > 0, entry c[i, j]

depends only on whether xi = yj and the values in entries c[i − 1, j], c[i, j − 1], and c[i − 1, j − 1],

which are computed before c[i, j]. To reconstruct the elements of an LCS, follow the b[i, j] arrows

from the lower right-hand corner, as shown by the sequence shaded blue. Each “↖” on the

shaded-blue sequence corresponds to an entry (highlighted) for which xi = yj is a member of an

LCS.

The initial call is PRINT-LCS(b, X, m, n). For the b table in Figure

14.8, this procedure prints BCBA. The procedure takes O(m + n) time,

since it decrements at least one of i and j in each recursive call.

Improving the code

Once you have developed an algorithm, you will often find that you can

improve on the time or space it uses. Some changes can simplify the

code and improve constant factors but otherwise yield no asymptotic

improvement in performance. Others can yield substantial asymptotic

savings in time and space.

In the LCS algorithm, for example, you can eliminate the b table

altogether. Each c[i, j] entry depends on only three other c table entries:

c[i − 1, j − 1], c[i − 1, j], and c[i, j − 1]. Given the value of c[i, j], you can
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determine in O(1) time which of these three values was used to compute

c[i, j], without inspecting table b. Thus, you can reconstruct an LCS in

O(m+n) time using a procedure similar to PRINT-LCS. (Exercise 14.4-2

asks you to give the pseudocode.) Although this method saves Θ(mn)

space, the auxiliary space requirement for computing an LCS does not

asymptotically decrease, since the c table takes Θ(mn) space anyway.

You can, however, reduce the asymptotic space requirements for

LCS-LENGTH, since it needs only two rows of table c at a time: the

row being computed and the previous row. (In fact, as Exercise 14.4-4

asks you to show, you can use only slightly more than the space for one

row of c to compute the length of an LCS.) This improvement works if

you need only the length of an LCS. If you need to reconstruct the

elements of an LCS, the smaller table does not keep enough information

to retrace the algorithm’s steps in O(m + n) time.

Exercises

14.4-1

Determine an LCS of 〈1, 0, 0, 1, 0, 1, 0, 1〉 and 〈0, 1, 0, 1, 1, 0, 1, 1, 0〉.

14.4-2

Give pseudocode to reconstruct an LCS from the completed c table and

the original sequences X = 〈x1, x2, …, xm〉 and Y = 〈y1, y2, …, yn〉 in

O(m + n) time, without using the b table.

14.4-3

Give a memoized version of LCS-LENGTH that runs in O(mn) time.

14.4-4

Show how to compute the length of an LCS using only 2 · min {m, n}

entries in the c table plus O(1) additional space. Then show how to do

the same thing, but using min {m, n} entries plus O(1) additional space.

14.4-5

Give an O(n2)-time algorithm to find the longest monotonically

increasing subsequence of a sequence of n numbers.
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★ 14.4-6

Give an O(n lg n)-time algorithm to find the longest monotonically

increasing subsequence of a sequence of n numbers. (Hint: The last

element of a candidate subsequence of length i is at least as large as the

last element of a candidate subsequence of length i −1. Maintain

candidate subsequences by linking them through the input sequence.)

14.5    Optimal binary search trees

Suppose that you are designing a program to translate text from English

to Latvian. For each occurrence of each English word in the text, you

need to look up its Latvian equivalent. You can perform these lookup

operations by building a binary search tree with n English words as keys

and their Latvian equivalents as satellite data. Because you will search

the tree for each individual word in the text, you want the total time

spent searching to be as low as possible. You can ensure an O(lg n)

search time per occurrence by using a red-black tree or any other

balanced binary search tree. Words appear with different frequencies,

however, and a frequently used word such as the can end up appearing

far from the root while a rarely used word such as naumachia appears

near the root. Such an organization would slow down the translation,

since the number of nodes visited when searching for a key in a binary

search tree equals 1 plus the depth of the node containing the key. You

want words that occur frequently in the text to be placed nearer the

root.8 Moreover, some words in the text might have no Latvian

translation,9 and such words would not appear in the binary search tree

at all. How can you organize a binary search tree so as to minimize the

number of nodes visited in all searches, given that you know how often

each word occurs?

What you need is an optimal binary search tree. Formally, given a

sequence K = 〈k1, k2, …, kn〉 of n distinct keys such that k1 < k2 < … <

kn, build a binary search tree containing them. For each key ki, you are

given the probability pi that any given search is for key ki. Since some

searches may be for values not in K, you also have n + 1 “dummy” keys
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d0, d1, d2, …, dn representing those values. In particular, d0 represents

all values less than k1, dn represents all values greater than kn, and for i

= 1, 2, …, n − 1, the dummy key di represents all values between ki and

ki+1. For each dummy key di, you have the probability qi that a search

corresponds to di. Figure 14.9 shows two binary search trees for a set of

n = 5 keys. Each key ki is an internal node, and each dummy key di is a

leaf. Since every search is either successful (finding some key ki) or

unsuccessful (finding some dummy key di), we have
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Figure 14.9 Two binary search trees for a set of n = 5 keys with the following probabilities:

i 0 1 2 3 4 5

pi 0.15 0.10 0.05 0.10 0.20

qi 0.05 0.10 0.05 0.05 0.05 0.10

(a) A binary search tree with expected search cost 2.80. (b) A binary search tree with expected

search cost 2.75. This tree is optimal.

Knowing the probabilities of searches for each key and each dummy

key allows us to determine the expected cost of a search in a given

binary search tree T. Let us assume that the actual cost of a search

equals the number of nodes examined, which is the depth of the node

found by the search in T, plus 1. Then the expected cost of a search in T

is
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where depthT denotes a node’s depth in the tree T. The last equation

follows from equation (14.10). Figure 14.9 shows how to calculate the

expected search cost node by node.

For a given set of probabilities, your goal is to construct a binary

search tree whose expected search cost is smallest. We call such a tree an

optimal binary search tree. Figure 14.9(a) shows one binary search tree,

with expected cost 2.80, for the probabilities given in the figure caption.

Part (b) of the figure displays an optimal binary search tree, with

expected cost 2.75. This example demonstrates that an optimal binary

search tree is not necessarily a tree whose overall height is smallest. Nor

does an optimal binary search tree always have the key with the greatest

probability at the root. Here, key k5 has the greatest search probability

of any key, yet the root of the optimal binary search tree shown is k2.

(The lowest expected cost of any binary search tree with k5 at the root is

2.85.)

As with matrix-chain multiplication, exhaustive checking of all

possibilities fails to yield an efficient algorithm. You can label the nodes

of any n-node binary tree with the keys k1, k2, …, kn to construct a

binary search tree, and then add in the dummy keys as leaves. In

Problem 12-4 on page 329, we saw that the number of binary trees with

n nodes is Ω(4n/n3/2). Thus you would need to examine an exponential

number of binary search trees to perform an exhaustive search. We’ll see

how to solve this problem more efficiently with dynamic programming.

Step 1: The structure of an optimal binary search tree

To characterize the optimal substructure of optimal binary search trees,

we start with an observation about subtrees. Consider any subtree of a

binary search tree. It must contain keys in a contiguous range ki, …, kj,
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for some 1 ≤ i ≤ j ≤ n. In addition, a subtree that contains keys ki, …, kj

must also have as its leaves the dummy keys di−1, …, dj.

Now we can state the optimal substructure: if an optimal binary

search tree T has a subtree T′ containing keys ki, …, kj, then this

subtree T′ must be optimal as well for the subproblem with keys ki, …,

kj and dummy keys di−1, …, dj. The usual cut-and-paste argument

applies. If there were a subtree T″ whose expected cost is lower than that

of T′, then cutting T′ out of T and pasting in T″ would result in a binary

search tree of lower expected cost than T, thus contradicting the

optimality of T.

With the optimal substructure in hand, here is how to construct an

optimal solution to the problem from optimal solutions to subproblems.

Given keys ki, …, kj, one of these keys, say kr (i ≤ r ≤ j), is the root of an

optimal subtree containing these keys. The left subtree of the root kr

contains the keys ki, …, kr−1 (and dummy keys di−1, …, dr−1), and the

right subtree contains the keys kr+1, …, kj (and dummy keys dr, …, dj).

As long as you examine all candidate roots kr, where i ≤ r ≤ j, and you

determine all optimal binary search trees containing ki, …, kr−1 and

those containing kr+1, …, kj, you are guaranteed to find an optimal

binary search tree.

There is one technical detail worth understanding about “empty”

subtrees. Suppose that in a subtree with keys ki, …, kj, you select ki as

the root. By the above argument, ki’s left subtree contains the keys ki,

…, ki−1: no keys at all. Bear in mind, however, that subtrees also

contain dummy keys. We adopt the convention that a subtree

containing keys ki, …, ki−1 has no actual keys but does contain the

single dummy key di−1. Symmetrically, if you select kj as the root, then

kj’s right subtree contains the keys kj+1, …, kj. This right subtree

contains no actual keys, but it does contain the dummy key dj.

Step 2: A recursive solution
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To define the value of an optimal solution recursively, the subproblem

domain is finding an optimal binary search tree containing the keys ki,

…, kj, where i ≥ 1, j ≤ n, and j ≥ i − 1. (When j = i − 1, there is just the

dummy key di−1, but no actual keys.) Let e[i, j] denote the expected cost

of searching an optimal binary search tree containing the keys ki, …, kj.

Your goal is to compute e[1, n], the expected cost of searching an

optimal binary search tree for all the actual and dummy keys.

The easy case occurs when j = i − 1. Then the subproblem consists of

just the dummy key di−1. The expected search cost is e[i, i − 1] = qi−1.

When j ≥ i, you need to select a root kr from among ki, …, kj and

then make an optimal binary search tree with keys ki, …, kr−1 as its left

subtree and an optimal binary search tree with keys kr+1, …, kj as its

right subtree. What happens to the expected search cost of a subtree

when it becomes a subtree of a node? The depth of each node in the

subtree increases by 1. By equation (14.11), the expected search cost of

this subtree increases by the sum of all the probabilities in the subtree.

For a subtree with keys ki, …, kj, denote this sum of probabilities as

Thus, if kr is the root of an optimal subtree containing keys ki, …, kj,

we have

e[i, j] = pr + (e[i, r − 1] + w(i, r − 1)) + (e[r + 1, j] + w(r + 1, j)).

Noting that

w(i, j) = w(i, r − 1) + pr + w(r + 1, j),

we rewrite e[i, j] as

The recursive equation (14.13) assumes that you know which node kr

to use as the root. Of course, you choose the root that gives the lowest

expected search cost, giving the final recursive formulation:
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The e[i, j] values give the expected search costs in optimal binary

search trees. To help keep track of the structure of optimal binary

search trees, define root[i, j], for 1 ≤ i ≤ j ≤ n, to be the index r for which

kr is the root of an optimal binary search tree containing keys ki, …, kj.

Although we’ll see how to compute the values of root[i, j], the

construction of an optimal binary search tree from these values is left as

Exercise 14.5-1.

Step 3: Computing the expected search cost of an optimal binary search

tree

At this point, you may have noticed some similarities between our

characterizations of optimal binary search trees and matrix-chain

multiplication. For both problem domains, the subproblems consist of

contiguous index subranges. A direct, recursive implementation of

equation (14.14) would be just as inefficient as a direct, recursive matrix-

chain multiplication algorithm. Instead, you can store the e[i, j] values

in a table e[1 : n + 1, 0 : n]. The first index needs to run to n + 1 rather

than n because in order to have a subtree containing only the dummy

key dn, you need to compute and store e[n + 1, n]. The second index

needs to start from 0 because in order to have a subtree containing only

the dummy key d0, you need to compute and store e[1, 0]. Only the

entries e[i, j] for which j ≥ i − 1 are filled in. The table root[i, j] records

the root of the subtree containing keys ki, …, kj and uses only the

entries for which 1 ≤ i ≤ j ≤ n.

One other table makes the dynamic-programming algorithm a little

faster. Instead of computing the value of w(i, j) from scratch every time

you compute e[i, j], which would take Θ(j − i) additions, store these

values in a table w[1 : n + 1, 0 : n]. For the base case, compute w[i, i − 1]

= qi−1 for 1 ≤ i ≤ n + 1. For j ≥ i, compute
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Thus, you can compute the Θ(n2) values of w[i, j] in Θ(1) time each.

The OPTIMAL-BST procedure on the next page takes as inputs the

probabilities p1, …, pn and q0, …, qn and the size n, and it returns the

tables e and root. From the description above and the similarity to the

MATRIX-CHAIN-ORDER procedure in Section 14.2, you should find

the operation of this procedure to be fairly straightforward. The for

loop of lines 2–4 initializes the values of e[i, i − 1]and w[i, i − 1]. Then

the for loop of lines 5–14 uses the recurrences (14.14) and (14.15) to

compute e[i, j] and w[i, j] for all 1 ≤ i ≤ j ≤ n. In the first iteration, when l

= 1, the loop computes e[i, i] and w[i, i] for i = 1, 2, …, n. The second

iteration, with l = 2, computes e[i, i + 1] and w[i, i + 1] for i = 1, 2, …, n

− 1, and so on. The innermost for loop, in lines 10–14, tries each

candidate index r to determine which key kr to use as the root of an

optimal binary search tree containing keys ki, …, kj. This for loop saves

the current value of the index r in root[i, j] whenever it finds a better key

to use as the root.

OPTIMAL-BST(p, q, n)

  1let e[1 : n + 1, 0 : n], w[1 : n + 1, 0 : n],

and root[1 : n, 1 : n] be new tables

  2for i = 1 to n + 1 // base cases

  3 e[i, i − 1] = qi−1 // equation (14.14)

  4 w[i, i − 1] = qi−1

  5for l = 1 to n

  6 for i = 1 to n − l + 1

  7 j = i + l − 1

  8 e[i, j] = ∞

  9 w[i, j] = w[i, j − 1] + pj + qj // equation (14.15)

10 for r = i to j // try all possible roots r

11 t = e[i, r − 1] + e[r + 1, j] + w[i, j] // equation (14.14)

12 if t < e[i, j] // new minimum?

13 e[i, j] = t
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14 root[i, j] = r

15return e and root

Figure 14.10 shows the tables e[i, j], w[i, j], and root[i, j] computed by

the procedure OPTIMAL-BST on the key distribution shown in Figure

14.9. As in the matrix-chain multiplication example of Figure 14.5, the

tables are rotated to make the diagonals run horizontally. OPTIMAL-

BST computes the rows from bottom to top and from left to right

within each row.

The OPTIMAL-BST procedure takes Θ(n3) time, just like

MATRIX-CHAIN-ORDER. Its running time is O(n3), since its for

loops are nested three deep and each loop index takes on at most n

values. The loop indices in OPTIMAL-BST do not have exactly the

same bounds as those in MATRIX-CHAIN-ORDER, but they are

within at most 1 in all directions. Thus, like MATRIX-CHAIN-

ORDER, the OPTIMAL-BST procedure takes Ω(n3) time.
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Figure 14.10 The tables e[i, j], w[i, j], and root[i, j] computed by OPTIMAL-BST on the key

distribution shown in Figure 14.9. The tables are rotated so that the diagonals run horizontally.

Exercises

14.5-1

Write pseudocode for the procedure CONSTRUCT-OPTIMAL-

BST(root, n) which, given the table root[1 : n, 1 : n], outputs the

structure of an optimal binary search tree. For the example in Figure

14.10, your procedure should print out the structure

k2 is the root

k1 is the left child of k2

d0 is the left child of k1

d1 is the right child of k1

k5 is the right child of k2
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k4 is the left child of k5

k3 is the left child of k4

d2 is the left child of k3

d3 is the right child of k3

d4 is the right child of k4

d5 is the right child of k5

corresponding to the optimal binary search tree shown in Figure

14.9(b).

14.5-2

Determine the cost and structure of an optimal binary search tree for a

set of n = 7 keys with the following probabilities:

i 0 1 2 3 4 5 6 7

pi 0.04 0.06 0.08 0.02 0.10 0.12 0.14

qi 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05

14.5-3

Suppose that instead of maintaining the table w[i, j], you computed the

value of w(i, j) directly from equation (14.12) in line 9 of OPTIMAL-

BST and used this computed value in line 11. How would this change

affect the asymptotic running time of OPTIMAL-BST?

★ 14.5-4

Knuth [264] has shown that there are always roots of optimal subtrees

such that root[i, j − 1] ≤ root[i, j] ≤ root[i + 1, j] for all 1 ≤ i < j ≤ n. Use

this fact to modify the OPTIMAL-BST procedure to run in Θ(n2) time.

Problems

14-1     Longest simple path in a directed acyclic graph

You are given a directed acyclic graph G = (V, E) with real-valued edge

weights and two distinguished vertices s and t. The weight of a path is

the sum of the weights of the edges in the path. Describe a dynamic-
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programming approach for finding a longest weighted simple path from

s to t. What is the running time of your algorithm?

14-2     Longest palindrome subsequence

A palindrome is a nonempty string over some alphabet that reads the

same forward and backward. Examples of palindromes are all strings of

length 1, civic, racecar, and aibohphobia (fear of palindromes).

Give an efficient algorithm to find the longest palindrome that is a

subsequence of a given input string. For example, given the input

character, your algorithm should return carac. What is the running

time of your algorithm?

14-3     Bitonic euclidean traveling-salesperson problem

In the euclidean traveling-salesperson problem, you are given a set of n

points in the plane, and your goal is to find the shortest closed tour that

connects all n points.

Figure 14.11 Seven points in the plane, shown on a unit grid. (a) The shortest closed tour, with

length approximately 24.89. This tour is not bitonic. (b) The shortest bitonic tour for the same

set of points. Its length is approximately 25.58.

Figure 14.11(a) shows the solution to a 7-point problem. The general

problem is NP-hard, and its solution is therefore believed to require

more than polynomial time (see Chapter 34).

J. L. Bentley has suggested simplifying the problem by considering

only bitonic tours, that is, tours that start at the leftmost point, go

strictly rightward to the rightmost point, and then go strictly leftward

back to the starting point. Figure 14.11(b) shows the shortest bitonic

www.konkur.in

Telegram: @uni_k



tour of the same 7 points. In this case, a polynomial-time algorithm is

possible.

Describe an O(n2)-time algorithm for determining an optimal

bitonic tour. You may assume that no two points have the same x-

coordinate and that all operations on real numbers take unit time.

(Hint: Scan left to right, maintaining optimal possibilities for the two

parts of the tour.)

14-4     Printing neatly

Consider the problem of neatly printing a paragraph with a

monospaced font (all characters having the same width). The input text

is a sequence of n words of lengths l1, l2, …, ln, measured in characters,

which are to be printed neatly on a number of lines that hold a

maximum of M characters each. No word exceeds the line length, so

that li ≤ M for i = 1, 2, …, n. The criterion of “neatness” is as follows. If

a given line contains words i through j, where i ≤ j, and exactly one

space appears between words, then the number of extra space characters

at the end of the line is , which must be nonnegative

so that the words fit on the line. The goal is to minimize the sum, over

all lines except the last, of the cubes of the numbers of extra space

characters at the ends of lines. Give a dynamic-programming algorithm

to print a paragraph of n words neatly. Analyze the running time and

space requirements of your algorithm.

14-5     Edit distance

In order to transform a source string of text x[1 : m] to a target string

y[1 : n], you can perform various transformation operations. The goal is,

given x and y, to produce a series of transformations that changes x to

y. An array z—assumed to be large enough to hold all the characters it

needs—holds the intermediate results. Initially, z is empty, and at

termination, you should have z[j] = y[j] for j = 1, 2, …, n. The procedure

for solving this problem maintains current indices i into x and j into z,

and the operations are allowed to alter z and these indices. Initially, i = j

= 1. Every character in x must be examined during the transformation,
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which means that at the end of the sequence of transformation

operations, i = m + 1.

You may choose from among six transformation operations, each of

which has a constant cost that depends on the operation:

Copy a character from x to z by setting z[j] = x[i] and then incrementing

both i and j. This operation examines x[i] and has cost QC.

Replace a character from x by another character c, by setting z[j] = c,

and then incrementing both i and j. This operation examines x[i] and

has cost QR.

Delete a character from x by incrementing i but leaving j alone. This

operation examines x[i] and has cost QD.

Insert the character c into z by setting z[j] = c and then incrementing j,

but leaving i alone. This operation examines no characters of x and

has cost QI.

Twiddle (i.e., exchange) the next two characters by copying them from x

to z but in the opposite order: setting z[j] = x[i + 1] and z[j + 1] = x[i],

and then setting i = i + 2 and j = j + 2. This operation examines x[i]

and x[i + 1] and has cost QT.

Kill the remainder of x by setting i = m + 1. This operation examines all

characters in x that have not yet been examined. This operation, if

performed, must be the final operation. It has cost QK.

Figure 14.12 gives one way to transform the source string

algorithm to the target string altruistic. Several other sequences

of transformation operations can transform algorithm to

altruistic.

Assume that QC < QD + QI and QR < QD + QI, since otherwise,

the copy and replace operations would not be used. The cost of a given

sequence of transformation operations is the sum of the costs of the

individual operations in the sequence. For the sequence above, the cost

of transforming algorithm to altruistic is 3QC + QR + QD +

4QI + QT + QK.
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a. Given two sequences x[1 : m] and y[1 : n] and the costs of the

transformation operations, the edit distance from x to y is the cost of

the least expensive operation sequence that transforms x to y.

Describe a dynamic-programming algorithm that finds the edit

distance from x[1 : m] to y[1 : n] and prints an optimal operation

sequence. Analyze the running time and space requirements of your

algorithm.

Figure 14.12 A sequence of operations that transforms the source algorithm to the target

string altruistic. The underlined characters are x[i] and z[j] after the operation.

The edit-distance problem generalizes the problem of aligning two

DNA sequences (see, for example, Setubal and Meidanis [405, Section

3.2]). There are several methods for measuring the similarity of two

DNA sequences by aligning them. One such method to align two

sequences x and y consists of inserting spaces at arbitrary locations in

the two sequences (including at either end) so that the resulting

sequences x′ and y′ have the same length but do not have a space in the

same position (i.e., for no position j are both x′[j] and y′[j] a space).

Then we assign a “score” to each position. Position j receives a score as

follows:

+1 if x′[j] = y′[j] and neither is a space,

−1 if x′[j] ≠ y′[j] and neither is a space,

−2 if either x′[j] or y′[j] is a space.
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The score for the alignment is the sum of the scores of the individual

positions. For example, given the sequences x = GATCGGCAT and y =

CAATGTGAATC, one alignment is

G ATCG GCAT

CAAT GTGAATC

-*++*+*+-++*

A + under a position indicates a score of +1 for that position, a -

indicates a score of −1, and a * indicates a score of −2, so that this

alignment has a total score of 6 · 1 − 2 · 1 − 4 · 2 = −4.

b. Explain how to cast the problem of finding an optimal alignment as

an edit-distance problem using a subset of the transformation

operations copy, replace, delete, insert, twiddle, and kill.

14-6     Planning a company party

Professor Blutarsky is consulting for the president of a corporation that

is planning a company party. The company has a hierarchical structure,

that is, the supervisor relation forms a tree rooted at the president. The

human resources department has ranked each employee with a

conviviality rating, which is a real number. In order to make the party

fun for all attendees, the president does not want both an employee and

his or her immediate supervisor to attend.

Professor Blutarsky is given the tree that describes the structure of

the corporation, using the left-child, right-sibling representation

described in Section 10.3. Each node of the tree holds, in addition to the

pointers, the name of an employee and that employee’s conviviality

ranking. Describe an algorithm to make up a guest list that maximizes

the sum of the conviviality ratings of the guests. Analyze the running

time of your algorithm.

14-7     Viterbi algorithm

Dynamic programming on a directed graph can play a part in speech

recognition. A directed graph G = (V, E) with labeled edges forms a

formal model of a person speaking a restricted language. Each edge (u,

v) ∈ E is labeled with a sound σ(u, v) from a finite set Σ of sounds. Each
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directed path in the graph starting from a distinguished vertex v0 ∈ V

corresponds to a possible sequence of sounds produced by the model,

with the label of a path being the concatenation of the labels of the

edges on that path.

a. Describe an efficient algorithm that, given an edge-labeled directed

graph G with distinguished vertex v0 and a sequence s = 〈σ1, σ2, …,

σk〉 of sounds from Σ, returns a path in G that begins at v0 and has s

as its label, if any such path exists. Otherwise, the algorithm should

return NO-SUCH-PATH. Analyze the running time of your

algorithm. (Hint: You may find concepts from Chapter 20 useful.)

Now suppose that every edge (u, v) ∈ E has an associated nonnegative

probability p(u, v) of being traversed, so that the corresponding sound is

produced. The sum of the probabilities of the edges leaving any vertex

equals 1. The probability of a path is defined to be the product of the

probabilities of its edges. Think of the probability of a path beginning at

vertex v0 as the probability that a “random walk” beginning at v0

follows the specified path, where the edge leaving a vertex u is taken

randomly, according to the probabilities of the available edges leaving u.

b. Extend your answer to part (a) so that if a path is returned, it is a

most probable path starting at vertex v0 and having label s. Analyze

the running time of your algorithm.

14-8     Image compression by seam carving

Suppose that you are given a color picture consisting of an m×n array

A[1 : m, 1 : n] of pixels, where each pixel specifies a triple of red, green,

and blue (RGB) intensities. You want to compress this picture slightly,

by removing one pixel from each of the m rows, so that the whole

picture becomes one pixel narrower. To avoid incongruous visual effects,

however, the pixels removed in two adjacent rows must lie in either the

same column or adjacent columns. In this way, the pixels removed form

a “seam” from the top row to the bottom row, where successive pixels in

the seam are adjacent vertically or diagonally.
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a. Show that the number of such possible seams grows at least

exponentially in m, assuming that n > 1.

b. Suppose now that along with each pixel A[i, j], you are given a real-

valued disruption measure d[i, j], indicating how disruptive it would

be to remove pixel A[i, j]. Intuitively, the lower a pixel’s disruption

measure, the more similar the pixel is to its neighbors. Define the

disruption measure of a seam as the sum of the disruption measures

of its pixels.

Give an algorithm to find a seam with the lowest disruption measure.

How efficient is your algorithm?

14-9     Breaking a string

A certain string-processing programming language allows you to break

a string into two pieces. Because this operation copies the string, it costs

n time units to break a string of n characters into two pieces. Suppose

that you want to break a string into many pieces. The order in which the

breaks occur can affect the total amount of time used. For example,

suppose that you want to break a 20-character string after characters 2,

8, and 10 (numbering the characters in ascending order from the left-

hand end, starting from 1). If you program the breaks to occur in left-

to-right order, then the first break costs 20 time units, the second break

costs 18 time units (breaking the string from characters 3 to 20 at

character 8), and the third break costs 12 time units, totaling 50 time

units. If you program the breaks to occur in right-to-left order, however,

then the first break costs 20 time units, the second break costs 10 time

units, and the third break costs 8 time units, totaling 38 time units. In

yet another order, you could break first at 8 (costing 20), then break the

left piece at 2 (costing another 8), and finally the right piece at 10

(costing 12), for a total cost of 40.

Design an algorithm that, given the numbers of characters after

which to break, determines a least-cost way to sequence those breaks.

More formally, given an array L[1 : m] containing the break points for a

string of n characters, compute the lowest cost for a sequence of breaks,

along with a sequence of breaks that achieves this cost.
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14-10     Planning an investment strategy

Your knowledge of algorithms helps you obtain an exciting job with a

hot startup, along with a $10,000 signing bonus. You decide to invest

this money with the goal of maximizing your return at the end of 10

years. You decide to use your investment manager, G. I. Luvcache, to

manage your signing bonus. The company that Luvcache works with

requires you to observe the following rules. It offers n different

investments, numbered 1 through n. In each year j, investment i provides

a return rate of rij. In other words, if you invest d dollars in investment i

in year j, then at the end of year j, you have drij dollars. The return rates

are guaranteed, that is, you are given all the return rates for the next 10

years for each investment. You make investment decisions only once per

year. At the end of each year, you can leave the money made in the

previous year in the same investments, or you can shift money to other

investments, by either shifting money between existing investments or

moving money to a new investment. If you do not move your money

between two consecutive years, you pay a fee of f1 dollars, whereas if

you switch your money, you pay a fee of f2 dollars, where f2 > f1. You

pay the fee once per year at the end of the year, and it is the same

amount, f2, whether you move money in and out of only one

investment, or in and out of many investments.

a. The problem, as stated, allows you to invest your money in multiple

investments in each year. Prove that there exists an optimal investment

strategy that, in each year, puts all the money into a single investment.

(Recall that an optimal investment strategy maximizes the amount of

money after 10 years and is not concerned with any other objectives,

such as minimizing risk.)

b. Prove that the problem of planning your optimal investment strategy

exhibits optimal substructure.

c. Design an algorithm that plans your optimal investment strategy.

What is the running time of your algorithm?
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d. Suppose that Luvcache’s company imposes the additional restriction

that, at any point, you can have no more than $15,000 in any one

investment. Show that the problem of maximizing your income at the

end of 10 years no longer exhibits optimal substructure.

14-11     Inventory planning

The Rinky Dink Company makes machines that resurface ice rinks. The

demand for such products varies from month to month, and so the

company needs to develop a strategy to plan its manufacturing given

the fluctuating, but predictable, demand. The company wishes to design

a plan for the next n months. For each month i, the company knows the

demand di, that is, the number of machines that it will sell. Let 

be the total demand over the next n months. The company keeps a full-

time staff who provide labor to manufacture up to m machines per

month. If the company needs to make more than m machines in a given

month, it can hire additional, part-time labor, at a cost that works out

to c dollars per machine. Furthermore, if the company is holding any

unsold machines at the end of a month, it must pay inventory costs. The

company can hold up to D machines, with the cost for holding j

machines given as a function h(j) for j = 1, 2, …, D that monotonically

increases with j.

Give an algorithm that calculates a plan for the company that

minimizes its costs while fulfilling all the demand. The running time

should be polynomial in n and D.

14-12     Signing free-agent baseball players

Suppose that you are the general manager for a major-league baseball

team. During the off-season, you need to sign some free-agent players

for your team. The team owner has given you a budget of $X to spend

on free agents. You are allowed to spend less than $X, but the owner

will fire you if you spend any more than $X.

You are considering N different positions, and for each position, P

free-agent players who play that position are available.10 Because you

do not want to overload your roster with too many players at any

position, for each position you may sign at most one free agent who
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plays that position. (If you do not sign any players at a particular

position, then you plan to stick with the players you already have at that

position.)

To determine how valuable a player is going to be, you decide to use

a sabermetric statistic11 known as “WAR,” or “wins above

replacement.” A player with a higher WAR is more valuable than a

player with a lower WAR. It is not necessarily more expensive to sign a

player with a higher WAR than a player with a lower WAR, because

factors other than a player’s value determine how much it costs to sign

them.

For each available free-agent player p, you have three pieces of

information:

the player’s position,

p.cost, the amount of money it costs to sign the player, and

p.war, the player’s WAR.

Devise an algorithm that maximizes the total WAR of the players

you sign while spending no more than $X. You may assume that each

player signs for a multiple of $100,000. Your algorithm should output

the total WAR of the players you sign, the total amount of money you

spend, and a list of which players you sign. Analyze the running time

and space requirement of your algorithm.

Chapter notes

Bellman [44] began the systematic study of dynamic programming in

1955, publishing a book about it in 1957. The word “programming,”

both here and in linear programming, refers to using a tabular solution

method. Although optimization techniques incorporating elements of

dynamic programming were known earlier, Bellman provided the area

with a solid mathematical basis.

Galil and Park [172] classify dynamic-programming algorithms

according to the size of the table and the number of other table entries

each entry depends on. They call a dynamic-programming algorithm

www.konkur.in

Telegram: @uni_k



tD/eD if its table size is O(nt) and each entry depends on O(ne) other

entries. For example, the matrix-chain multiplication algorithm in

Section 14.2 is 2D/1D, and the longest-common-subsequence algorithm

in Section 14.4 is 2D/0D.

The MATRIX-CHAIN-ORDER algorithm on page 378 is by

Muraoka and Kuck [339]. Hu and Shing [230, 231] give an O(n lg n)-

time algorithm for the matrix-chain multiplication problem.

The O(mn)-time algorithm for the longest-common-subsequence

problem appears to be a folk algorithm. Knuth [95] posed the question

of whether subquadratic algorithms for the LCS problem exist. Masek

and Paterson [316] answered this question in the affirmative by giving

an algorithm that runs in O(mn/lg n) time, where n ≤ m and the

sequences are drawn from a set of bounded size. For the special case in

which no element appears more than once in an input sequence,

Szymanski [425] shows how to solve the problem in O((n + m) lg(n +

m)) time. Many of these results extend to the problem of computing

string edit distances (Problem 14-5).

An early paper on variable-length binary encodings by Gilbert and

Moore [181], which had applications to constructing optimal binary

search trees for the case in which all probabilities pi are 0, contains an

O(n3)-time algorithm. Aho, Hopcroft, and Ullman [5] present the

algorithm from Section 14.5. Splay trees [418], which modify the tree in

response to the search queries, come within a constant factor of the

optimal bounds without being initialized with the frequencies. Exercise

14.5-4 is due to Knuth [264]. Hu and Tucker [232] devised an algorithm

for the case in which all probabilities pi are 0 that uses O(n2) time and

O(n) space. Subsequently, Knuth [261] reduced the time to O(n lg n).

Problem 14-8 is due to Avidan and Shamir [30], who have posted on

the web a wonderful video illustrating this image-compression

technique.

1 If pieces are required to be cut in order of monotonically increasing size, there are fewer ways

to consider. For n = 4, only 5 such ways are possible: parts (a), (b), (c), (e), and (h) in Figure
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14.2. The number of ways is called the partition function, which is approximately equal to 

. This quantity is less than 2n−1, but still much greater than any polynomial in n.

We won’t pursue this line of inquiry further, however.

2 The technical term “memoization” is not a misspelling of “memorization.” The word

“memoization” comes from “memo,” since the technique consists of recording a value to be

looked up later.

3 None of the three methods from Sections 4.1 and Section 4.2 can be used directly, because

they apply only to square matrices.

4 The  term counts all pairs in which i < j. Because i and j may be equal, we need to add in

the n term.

5 We use the term “unweighted” to distinguish this problem from that of finding shortest paths

with weighted edges, which we shall see in Chapters 22 and 23. You can use the breadth-first

search technique of Chapter 20 to solve the unweighted problem.

6 It may seem strange that dynamic programming relies on subproblems being both independent

and overlapping. Although these requirements may sound contradictory, they describe two

different notions, rather than two points on the same axis. Two subproblems of the same

problem are independent if they do not share resources. Two subproblems are overlapping if

they are really the same subproblem that occurs as a subproblem of different problems.

7 This approach presupposes that you know the set of all possible subproblem parameters and

that you have established the relationship between table positions and subproblems. Another,

more general, approach is to memoize by using hashing with the subproblem parameters as

keys.

8 If the subject of the text is ancient Rome, you might want naumachia to appear near the root.

9 Yes, naumachia has a Latvian counterpart: nomačija.

10 Although there are nine positions on a baseball team, N is not necessarily equal to 9 because

some general managers have particular ways of thinking about positions. For example, a general

manager might consider right-handed pitchers and left-handed pitchers to be separate

“positions,” as well as starting pitchers, long relief pitchers (relief pitchers who can pitch several

innings), and short relief pitchers (relief pitchers who normally pitch at most only one inning).

11 Sabermetrics is the application of statistical analysis to baseball records. It provides several

ways to compare the relative values of individual players.
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15        Greedy Algorithms

Algorithms for optimization problems typically go through a sequence

of steps, with a set of choices at each step. For many optimization

problems, using dynamic programming to determine the best choices is

overkill, and simpler, more efficient algorithms will do. A greedy

algorithm always makes the choice that looks best at the moment. That

is, it makes a locally optimal choice in the hope that this choice leads to

a globally optimal solution. This chapter explores optimization

problems for which greedy algorithms provide optimal solutions. Before

reading this chapter, you should read about dynamic programming in

Chapter 14, particularly Section 14.3.

Greedy algorithms do not always yield optimal solutions, but for

many problems they do. We first examine, in Section 15.1, a simple but

nontrivial problem, the activity-selection problem, for which a greedy

algorithm efficiently computes an optimal solution. We’ll arrive at the

greedy algorithm by first considering a dynamic-programming approach

and then showing that an optimal solution can result from always

making greedy choices. Section 15.2 reviews the basic elements of the

greedy approach, giving a direct approach for proving greedy

algorithms correct. Section 15.3 presents an important application of

greedy techniques: designing data-compression (Huffman) codes.

Finally, Section 15.4 shows that in order to decide which blocks to

replace when a miss occurs in a cache, the “furthest-in-future” strategy

is optimal if the sequence of block accesses is known in advance.

The greedy method is quite powerful and works well for a wide range

of problems. Later chapters will present many algorithms that you can
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view as applications of the greedy method, including minimum-

spanning-tree algorithms (Chapter 21), Dijkstra’s algorithm for shortest

paths from a single source (Section 22.3), and a greedy set-covering

heuristic (Section 35.3). Minimum-spanning-tree algorithms furnish a

classic example of the greedy method. Although you can read this

chapter and Chapter 21 independently of each other, you might find it

useful to read them together.

15.1    An activity-selection problem

Our first example is the problem of scheduling several competing

activities that require exclusive use of a common resource, with a goal of

selecting a maximum-size set of mutually compatible activities. Imagine

that you are in charge of scheduling a conference room. You are

presented with a set S = {a1, a2, … , an} of n proposed activities that

wish to reserve the conference room, and the room can serve only one

activity at a time. Each activity ai has a start time si and a finish time fi,

where 0 ≤ si < fi < ∞. If selected, activity ai takes place during the half-

open time interval [si, fi). Activities ai and aj are compatible if the

intervals [si, fi) and [sj, fj) do not overlap. That is, ai and aj are

compatible if si ≥ fj or sj ≥ fi. (Assume that if your staff needs time to

change over the room from one activity to the next, the changeover time

is built into the intervals.) In the activity-selection problem, your goal is

to select a maximum-size subset of mutually compatible activities.

Assume that the activities are sorted in monotonically increasing order

of finish time:

(We’ll see later the advantage that this assumption provides.) For

example, consider the set of activities in Figure 15.1. The subset {a3, a9,

a11} consists of mutually compatible activities. It is not a maximum

subset, however, since the subset {a1, a4, a8, a11} is larger. In fact, {a1,
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a4, a8, a11} is a largest subset of mutually compatible activities, and

another largest subset is {a2, a4, a9, a11}.

We’ll see how to solve this problem, proceeding in several steps. First

we’ll explore a dynamic-programming solution, in which you consider

several choices when determining which subproblems to use in an

optimal solution. We’ll then observe that you need to consider only one

choice—the greedy choice—and that when you make the greedy choice,

only one subproblem remains. Based on these observations, we’ll

develop a recursive greedy algorithm to solve the activity-selection

problem. Finally, we’ll complete the process of developing a greedy

solution by converting the recursive algorithm to an iterative one.

Although the steps we go through in this section are slightly more

involved than is typical when developing a greedy algorithm, they

illustrate the relationship between greedy algorithms and dynamic

programming.

Figure 15.1 A set {a1, a2, … , a11} of activities. Activity ai has start time si and finish time fi.

The optimal substructure of the activity-selection problem

Let’s verify that the activity-selection problem exhibits optimal

substructure. Denote by Sij the set of activities that start after activity ai

finishes and that finish before activity aj starts. Suppose that you want

to find a maximum set of mutually compatible activities in Sij, and

suppose further that such a maximum set is Aij, which includes some

activity ak. By including ak in an optimal solution, you are left with two

subproblems: finding mutually compatible activities in the set Sik

(activities that start after activity ai finishes and that finish before

activity ak starts) and finding mutually compatible activities in the set

Skj (activities that start after activity ak finishes and that finish before
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activity aj starts). Let Aik = Aij ∩ Sik and Akj = Aij ∩ Skj, so that Aik

contains the activities in Aij that finish before ak starts and Akj contains

the activities in Aij that start after ak finishes. Thus, we have Aij = Aik ∪

{ak} ∪ Akj, and so the maximum-size set Aij of mutually compatible

activities in Sij consists of |Aij | = |Aik| + |Akj | + 1 activities.

The usual cut-and-paste argument shows that an optimal solution

Aij must also include optimal solutions to the two subproblems for Sik

and Skj. If you could find a set  of mutually compatible activities in

Skj where , then you could use , rather than Akj, in a

solution to the subproblem for Sij. You would have constructed a set of 

 mutually compatible activities,

which contradicts the assumption that Aij is an optimal solution. A

symmetric argument applies to the activities in Sik.

This way of characterizing optimal substructure suggests that you

can solve the activity-selection problem by dynamic programming. Let’s

denote the size of an optimal solution for the set Sij by c[i, j]. Then, the

dynamic-programming approach gives the recurrence

c[i, j] = c[i, k] + c[k, j] + 1.

Of course, if you do not know that an optimal solution for the set Sij

includes activity ak, you must examine all activities in Sij to find which

one to choose, so that

You can then develop a recursive algorithm and memoize it, or you can

work bottom-up and fill in table entries as you go along. But you would

be overlooking another important characteristic of the activity-selection

problem that you can use to great advantage.

Making the greedy choice

www.konkur.in

Telegram: @uni_k



What if you could choose an activity to add to an optimal solution

without having to first solve all the subproblems? That could save you

from having to consider all the choices inherent in recurrence (15.2). In

fact, for the activity-selection problem, you need to consider only one

choice: the greedy choice.

What is the greedy choice for the activity-selection problem?

Intuition suggests that you should choose an activity that leaves the

resource available for as many other activities as possible. Of the

activities you end up choosing, one of them must be the first one to

finish. Intuition says, therefore, choose the activity in S with the earliest

finish time, since that leaves the resource available for as many of the

activities that follow it as possible. (If more than one activity in S has

the earliest finish time, then choose any such activity.) In other words,

since the activities are sorted in monotonically increasing order by finish

time, the greedy choice is activity a1. Choosing the first activity to finish

is not the only way to think of making a greedy choice for this problem.

Exercise 15.1-3 asks you to explore other possibilities.

Once you make the greedy choice, you have only one remaining

subproblem to solve: finding activities that start after a1 finishes. Why

don’t you have to consider activities that finish before a1 starts? Because

s1 < f1, and because f1 is the earliest finish time of any activity, no

activity can have a finish time less than or equal to s1. Thus, all

activities that are compatible with activity a1 must start after a1 finishes.

Furthermore, we have already established that the activity-selection

problem exhibits optimal substructure. Let Sk = {ai ∈ S : si ≥ fk} be the

set of activities that start after activity ak finishes. If you make the

greedy choice of activity a1, then S1 remains as the only subproblem to

solve.1 Optimal substructure says that if a1 belongs to an optimal

solution, then an optimal solution to the original problem consists of

activity a1 and all the activities in an optimal solution to the

subproblem S1.

One big question remains: Is this intuition correct? Is the greedy

choice—in which you choose the first activity to finish—always part of
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some optimal solution? The following theorem shows that it is.

Theorem 15.1

Consider any nonempty subproblem Sk, and let am be an activity in Sk

with the earliest finish time. Then am is included in some maximum-size

subset of mutually compatible activities of Sk.

Proof      Let Ak be a maximum-size subset of mutually compatible

activities in Sk, and let aj be the activity in Ak with the earliest finish

time. If aj = am, we are done, since we have shown that am belongs to

some maximum-size subset of mutually compatible activities of Sk. If aj

≠ am, let the set  be Ak but substituting am for aj.

The activities in  are compatible, which follows because the activities

in Ak are compatible, aj is the first activity in Ak to finish, and fm ≤ fj.

Since , we conclude that  is a maximum-size subset of

mutually compatible activities of Sk, and it includes am.

▪

Although you might be able to solve the activity-selection problem

with dynamic programming, Theorem 15.1 says that you don’t need to.

Instead, you can repeatedly choose the activity that finishes first, keep

only the activities compatible with this activity, and repeat until no

activities remain. Moreover, because you always choose the activity with

the earliest finish time, the finish times of the activities that you choose

must strictly increase. You can consider each activity just once overall,

in monotonically increasing order of finish times.

An algorithm to solve the activity-selection problem does not need

to work bottom-up, like a table-based dynamic-programming

algorithm. Instead, it can work top-down, choosing an activity to put

into the optimal solution that it constructs and then solving the

subproblem of choosing activities from those that are compatible with

those already chosen. Greedy algorithms typically have this top-down

design: make a choice and then solve a subproblem, rather than the

bottom-up technique of solving subproblems before making a choice.
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A recursive greedy algorithm

Now that you know you can bypass the dynamic-programming

approach and instead use a top-down, greedy algorithm, let’s see a

straightforward, recursive procedure to solve the activity-selection

problem. The procedure RECURSIVE-ACTIVITY-SELECTOR on

the following page takes the start and finish times of the activities,

represented as arrays s and f,2 the index k that defines the subproblem

Sk it is to solve, and the size n of the original problem. It returns a

maximum-size set of mutually compatible activities in Sk. The

procedure assumes that the n input activities are already ordered by

monotonically increasing finish time, according to equation (15.1). If

not, you can first sort them into this order in O(n lg n) time, breaking

ties arbitrarily. In order to start, add the fictitious activity a0 with f0 =

0, so that subproblem S0 is the entire set of activities S. The initial call,

which solves the entire problem, is RECURSIVE-ACTIVITY-

SELECTOR (s, f, 0, n).

RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)

1 m = k + 1

2 while m ≤ n and s[m] < f [k] // find the first activity in Sk to finish

3 m = m + 1

4 if m ≤ n

5 return {am} ∪ RECURSIVE-ACTIVITY-SELECTOR (s, f, m,

n)

6 else return ∅

Figure 15.2 shows how the algorithm operates on the activities in

Figure 15.1. In a given recursive call RECURSIVE-ACTIVITY-

SELECTOR (s, f, k, n), the while loop of lines 2–3 looks for the first

activity in Sk to finish. The loop examines ak+1, ak+2, … , an, until it

finds the first activity am that is compatible with ak, which means that

sm ≥ fk. If the loop terminates because it finds such an activity, line 5
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returns the union of {am} and the maximum-size subset of Sm returned

by the recursive call RECURSIVE-ACTIVITY-SELECTOR (s, f, m,

n). Alternatively, the loop may terminate because m > n, in which case

the procedure has examined all activities in Sk without finding one that

is compatible with ak. In this case, Sk = ∅, and so line 6 returns ∅.

Assuming that the activities have already been sorted by finish times,

the running time of the call RECURSIVE-ACTIVITY-SELECTOR (s,

f, 0, n) is Θ(n). To see why, observe that over all recursive calls, each

activity is examined exactly once in the while loop test of line 2. In

particular, activity ai is examined in the last call made in which k < i.

An iterative greedy algorithm

The recursive procedure can be converted to an iterative one because the

procedure RECURSIVE-ACTIVITY-SELECTOR is almost “tail

recursive” (see Problem 7-5): it ends with a recursive call to itself

followed by a union operation. It is usually a straightforward task to

transform a tail-recursive procedure to an iterative form. In fact, some

compilers for certain programming languages perform this task

automatically.
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Figure 15.2 The operation of RECURSIVE-ACTIVITY-SELECTOR on the 11 activities from

Figure 15.1. Activities considered in each recursive call appear between horizontal lines. The

fictitious activity a0 finishes at time 0, and the initial call RECURSIVE-ACTIVITY-

SELECTOR (s, f, 0, 11), selects activity a1. In each recursive call, the activities that have already

been selected are blue, and the activity shown in tan is being considered. If the starting time of

an activity occurs before the finish time of the most recently added activity (the arrow between

them points left), it is rejected. Otherwise (the arrow points directly up or to the right), it is

selected. The last recursive call, RECURSIVE-ACTIVITY-SELECTOR (s, f, 11, 11), returns

∅. The resulting set of selected activities is {a1, a4, a8, a11}.
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The procedure GREEDY-ACTIVITY-SELECTOR is an iterative

version of the procedure RECURSIVE-ACTIVITY-SELECTOR. It,

too, assumes that the input activities are ordered by monotonically

increasing finish time. It collects selected activities into a set A and

returns this set when it is done.

GREEDY-ACTIVITY-SELECTOR (s, f, n)

1 A = {a1}

2 k = 1

3 for m = 2 to n

4 if s[m] ≥ f [k] // is am in Sk?

5 A = A ∪ {am} // yes, so choose it

6 k = m // and continue from there

7 return A

The procedure works as follows. The variable k indexes the most

recent addition to A, corresponding to the activity ak in the recursive

version. Since the procedure considers the activities in order of

monotonically increasing finish time, fk is always the maximum finish

time of any activity in A. That is,

Lines 1–2 select activity a1, initialize A to contain just this activity, and

initialize k to index this activity. The for loop of lines 3–6 finds the

earliest activity in Sk to finish. The loop considers each activity am in

turn and adds am to A if it is compatible with all previously selected

activities. Such an activity is the earliest in Sk to finish. To see whether

activity am is compatible with every activity currently in A, it suffices by

equation (15.3) to check (in line 4) that its start time sm is not earlier

than the finish time fk of the activity most recently added to A. If

activity am is compatible, then lines 5–6 add activity am to A and set k

to m. The set A returned by the call GREEDY-ACTIVITY-
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SELECTOR (s, f) is precisely the set returned by the initial call

RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, n).

Like the recursive version, GREEDY-ACTIVITY-SELECTOR

schedules a set of n activities in Θ(n) time, assuming that the activities

were already sorted initially by their finish times.

Exercises

15.1-1

Give a dynamic-programming algorithm for the activity-selection

problem, based on recurrence (15.2). Have your algorithm compute the

sizes c[i, j] as defined above and also produce the maximum-size subset

of mutually compatible activities. Assume that the inputs have been

sorted as in equation (15.1). Compare the running time of your solution

to the running time of GREEDY-ACTIVITY-SELECTOR.

15.1-2

Suppose that instead of always selecting the first activity to finish, you

instead select the last activity to start that is compatible with all

previously selected activities. Describe how this approach is a greedy

algorithm, and prove that it yields an optimal solution.

15.1-3

Not just any greedy approach to the activity-selection problem produces

a maximum-size set of mutually compatible activities. Give an example

to show that the approach of selecting the activity of least duration

from among those that are compatible with previously selected activities

does not work. Do the same for the approaches of always selecting the

compatible activity that overlaps the fewest other remaining activities

and always selecting the compatible remaining activity with the earliest

start time.

15.1-4

You are given a set of activities to schedule among a large number of

lecture halls, where any activity can take place in any lecture hall. You

wish to schedule all the activities using as few lecture halls as possible.
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Give an efficient greedy algorithm to determine which activity should

use which lecture hall.

(This problem is also known as the interval-graph coloring problem.

It is modeled by an interval graph whose vertices are the given activities

and whose edges connect incompatible activities. The smallest number

of colors required to color every vertex so that no two adjacent vertices

have the same color corresponds to finding the fewest lecture halls

needed to schedule all of the given activities.)

15.1-5

Consider a modification to the activity-selection problem in which each

activity ai has, in addition to a start and finish time, a value vi. The

objective is no longer to maximize the number of activities scheduled,

but instead to maximize the total value of the activities scheduled. That

is, the goal is to choose a set A of compatible activities such that 

 is maximized. Give a polynomial-time algorithm for this

problem.

15.2    Elements of the greedy strategy

A greedy algorithm obtains an optimal solution to a problem by

making a sequence of choices. At each decision point, the algorithm

makes the choice that seems best at the moment. This heuristic strategy

does not always produce an optimal solution, but as in the activity-

selection problem, sometimes it does. This section discusses some of the

general properties of greedy methods.

The process that we followed in Section 15.1 to develop a greedy

algorithm was a bit more involved than is typical. It consisted of the

following steps:

1. Determine the optimal substructure of the problem.

2. Develop a recursive solution. (For the activity-selection problem,

we formulated recurrence (15.2), but bypassed developing a

recursive algorithm based solely on this recurrence.)
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3. Show that if you make the greedy choice, then only one

subproblem remains.

4. Prove that it is always safe to make the greedy choice. (Steps 3

and 4 can occur in either order.)

5. Develop a recursive algorithm that implements the greedy

strategy.

6. Convert the recursive algorithm to an iterative algorithm.

These steps highlighted in great detail the dynamic-programming

underpinnings of a greedy algorithm. For example, the first cut at the

activity-selection problem defined the subproblems Sij, where both i and

j varied. We then found that if you always make the greedy choice, you

can restrict the subproblems to be of the form Sk.

An alternative approach is to fashion optimal substructure with a

greedy choice in mind, so that the choice leaves just one subproblem to

solve. In the activity-selection problem, start by dropping the second

subscript and defining subproblems of the form Sk. Then prove that a

greedy choice (the first activity am to finish in Sk), combined with an

optimal solution to the remaining set Sm of compatible activities, yields

an optimal solution to Sk. More generally, you can design greedy

algorithms according to the following sequence of steps:

1. Cast the optimization problem as one in which you make a

choice and are left with one subproblem to solve.

2. Prove that there is always an optimal solution to the original

problem that makes the greedy choice, so that the greedy choice

is always safe.

3. Demonstrate optimal substructure by showing that, having made

the greedy choice, what remains is a subproblem with the

property that if you combine an optimal solution to the

subproblem with the greedy choice you have made, you arrive at

an optimal solution to the original problem.
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Later sections of this chapter will use this more direct process.

Nevertheless, beneath every greedy algorithm, there is almost always a

more cumbersome dynamic-programming solution.

How can you tell whether a greedy algorithm will solve a particular

optimization problem? No way works all the time, but the greedy-choice

property and optimal substructure are the two key ingredients. If you

can demonstrate that the problem has these properties, then you are well

on the way to developing a greedy algorithm for it.

Greedy-choice property

The first key ingredient is the greedy-choice property: you can assemble

a globally optimal solution by making locally optimal (greedy) choices.

In other words, when you are considering which choice to make, you

make the choice that looks best in the current problem, without

considering results from subproblems.

Here is where greedy algorithms differ from dynamic programming.

In dynamic programming, you make a choice at each step, but the

choice usually depends on the solutions to subproblems. Consequently,

you typically solve dynamic-programming problems in a bottom-up

manner, progressing from smaller subproblems to larger subproblems.

(Alternatively, you can solve them top down, but memoizing. Of course,

even though the code works top down, you still must solve the

subproblems before making a choice.) In a greedy algorithm, you make

whatever choice seems best at the moment and then solve the

subproblem that remains. The choice made by a greedy algorithm may

depend on choices so far, but it cannot depend on any future choices or

on the solutions to subproblems. Thus, unlike dynamic programming,

which solves the subproblems before making the first choice, a greedy

algorithm makes its first choice before solving any subproblems. A

dynamic-programming algorithm proceeds bottom up, whereas a greedy

strategy usually progresses top down, making one greedy choice after

another, reducing each given problem instance to a smaller one.

Of course, you need to prove that a greedy choice at each step yields

a globally optimal solution. Typically, as in the case of Theorem 15.1,

the proof examines a globally optimal solution to some subproblem. It
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then shows how to modify the solution to substitute the greedy choice

for some other choice, resulting in one similar, but smaller, subproblem.

You can usually make the greedy choice more efficiently than when

you have to consider a wider set of choices. For example, in the activity-

selection problem, assuming that the activities were already sorted in

monotonically increasing order by finish times, each activity needed to

be examined just once. By preprocessing the input or by using an

appropriate data structure (often a priority queue), you often can make

greedy choices quickly, thus yielding an efficient algorithm.

Optimal substructure

As we saw in Chapter 14, a problem exhibits optimal substructure if an

optimal solution to the problem contains within it optimal solutions to

subproblems. This property is a key ingredient of assessing whether

dynamic programming applies, and it’s also essential for greedy

algorithms. As an example of optimal substructure, recall how Section

15.1 demonstrated that if an optimal solution to subproblem Sij

includes an activity ak, then it must also contain optimal solutions to

the subproblems Sik and Skj. Given this optimal substructure, we

argued that if you know which activity to use as ak, you can construct

an optimal solution to Sij by selecting ak along with all activities in

optimal solutions to the subproblems Sik and Skj. This observation of

optimal substructure gave rise to the recurrence (15.2) that describes the

value of an optimal solution.

You will usually use a more direct approach regarding optimal

substructure when applying it to greedy algorithms. As mentioned

above, you have the luxury of assuming that you arrived at a

subproblem by having made the greedy choice in the original problem.

All you really need to do is argue that an optimal solution to the

subproblem, combined with the greedy choice already made, yields an

optimal solution to the original problem. This scheme implicitly uses

induction on the subproblems to prove that making the greedy choice at

every step produces an optimal solution.
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Greedy versus dynamic programming

Because both the greedy and dynamic-programming strategies exploit

optimal substructure, you might be tempted to generate a dynamic-

programming solution to a problem when a greedy solution suffices or,

conversely, you might mistakenly think that a greedy solution works

when in fact a dynamic-programming solution is required. To illustrate

the subtle differences between the two techniques, let’s investigate two

variants of a classical optimization problem.

The 0-1 knapsack problem is the following. A thief robbing a store

wants to take the most valuable load that can be carried in a knapsack

capable of carrying at most W pounds of loot. The thief can choose to

take any subset of n items in the store. The ith item is worth vi dollars

and weighs wi pounds, where vi and wi are integers. Which items should

the thief take? (We call this the 0-1 knapsack problem because for each

item, the thief must either take it or leave it behind. The thief cannot

take a fractional amount of an item or take an item more than once.)

In the fractional knapsack problem, the setup is the same, but the

thief can take fractions of items, rather than having to make a binary (0-

1) choice for each item. You can think of an item in the 0-1 knapsack

problem as being like a gold ingot and an item in the fractional

knapsack problem as more like gold dust.

Both knapsack problems exhibit the optimal-substructure property.

For the 0-1 problem, if the most valuable load weighing at most W

pounds includes item j, then the remaining load must be the most

valuable load weighing at most W − wj pounds that the thief can take

from the n − 1 original items excluding item j. For the comparable

fractional problem, if if the most valuable load weighing at most W

pounds includes weight w of item j, then the remaining load must be the

most valuable load weighing at most W − w pounds that the thief can

take from the n − 1 original items plus wj − w pounds of item j.

Although the problems are similar, a greedy strategy works to solve

the fractional knapsack problem, but not the 0-1 problem. To solve the

fractional problem, first compute the value per pound vi/wi for each

item. Obeying a greedy strategy, the thief begins by taking as much as
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possible of the item with the greatest value per pound. If the supply of

that item is exhausted and the thief can still carry more, then the thief

takes as much as possible of the item with the next greatest value per

pound, and so forth, until reaching the weight limit W. Thus, by sorting

the items by value per pound, the greedy algorithm runs in O(n lg n)

time. You are asked to prove that the fractional knapsack problem has

the greedy-choice property in Exercise 15.2-1.

To see that this greedy strategy does not work for the 0-1 knapsack

problem, consider the problem instance illustrated in Figure 15.3(a).

This example has three items and a knapsack that can hold 50 pounds.

Item 1 weighs 10 pounds and is worth $60. Item 2 weighs 20 pounds

and is worth $100. Item 3 weighs 30 pounds and is worth $120. Thus,

the value per pound of item 1 is $6 per pound, which is greater than the

value per pound of either item 2 ($5 per pound) or item 3 ($4 per

pound). The greedy strategy, therefore, would take item 1 first. As you

can see from the case analysis in Figure 15.3(b), however, the optimal

solution takes items 2 and 3, leaving item 1 behind. The two possible

solutions that take item 1 are both suboptimal.

For the comparable fractional problem, however, the greedy strategy,

which takes item 1 first, does yield an optimal solution, as shown in

Figure 15.3(c). Taking item 1 doesn’t work in the 0-1 problem, because

the thief is unable to fill the knapsack to capacity, and the empty space

lowers the effective value per pound of the load. In the 0-1 problem,

when you consider whether to include an item in the knapsack, you

must compare the solution to the subproblem that includes the item

with the solution to the subproblem that excludes the item before you

can make the choice. The problem formulated in this way gives rise to

many overlapping subproblems—a hallmark of dynamic programming,

and indeed, as Exercise 15.2-2 asks you to show, you can use dynamic

programming to solve the 0-1 problem.
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Figure 15.3 An example showing that the greedy strategy does not work for the 0-1 knapsack

problem. (a) The thief must select a subset of the three items shown whose weight must not

exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is

suboptimal, even though item 1 has the greatest value per pound. (c) For the fractional

knapsack problem, taking the items in order of greatest value per pound yields an optimal

solution.

Exercises

15.2-1

Prove that the fractional knapsack problem has the greedy-choice

property.

15.2-2

Give a dynamic-programming solution to the 0-1 knapsack problem

that runs in O(n W) time, where n is the number of items and W is the

maximum weight of items that the thief can put in the knapsack.

15.2-3

Suppose that in a 0-1 knapsack problem, the order of the items when

sorted by increasing weight is the same as their order when sorted by

decreasing value. Give an efficient algorithm to find an optimal solution

to this variant of the knapsack problem, and argue that your algorithm

is correct.

15.2-4

Professor Gekko has always dreamed of inline skating across North

Dakota. The professor plans to cross the state on highway U.S. 2, which
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runs from Grand Forks, on the eastern border with Minnesota, to

Williston, near the western border with Montana. The professor can

carry two liters of water and can skate m miles before running out of

water. (Because North Dakota is relatively flat, the professor does not

have to worry about drinking water at a greater rate on uphill sections

than on flat or downhill sections.) The professor will start in Grand

Forks with two full liters of water. The professor has an official North

Dakota state map, which shows all the places along U.S. 2 to refill water

and the distances between these locations.

The professor’s goal is to minimize the number of water stops along

the route across the state. Give an efficient method by which the

professor can determine which water stops to make. Prove that your

strategy yields an optimal solution, and give its running time.

15.2-5

Describe an efficient algorithm that, given a set {x1, x2, … , xn} of

points on the real line, determines the smallest set of unit-length closed

intervals that contains all of the given points. Argue that your algorithm

is correct.

★ 15.2-6

Show how to solve the fractional knapsack problem in O(n) time.

15.2-7

You are given two sets A and B, each containing n positive integers. You

can choose to reorder each set however you like. After reordering, let ai

be the ith element of set A, and let bi be the ith element of set B. You

then receive a payoff of . Give an algorithm that maximizes your

payoff. Prove that your algorithm maximizes the payoff, and state its

running time, omitting the time for reordering the sets.

15.3    Huffman codes

Huffman codes compress data well: savings of 20% to 90% are typical,

depending on the characteristics of the data being compressed. The data
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arrive as a sequence of characters. Huffman’s greedy algorithm uses a

table giving how often each character occurs (its frequency) to build up

an optimal way of representing each character as a binary string.

Suppose that you have a 100,000-character data file that you wish to

store compactly and you know that the 6 distinct characters in the file

occur with the frequencies given by Figure 15.4. The character a occurs

45,000 times, the character b occurs 13,000 times, and so on.

You have many options for how to represent such a file of

information. Here, we consider the problem of designing a binary

character code (or code for short) in which each character is represented

by a unique binary string, which we call a codeword. If you use a fixed-

length code, you need ⌈lg n⌉ bits to represent n ≥ 2 characters. For 6

characters, therefore, you need 3 bits: a = 000, b = 001, c = 010, d =

011, e = 100, and f = 101. This method requires 300,000 bits to encode

the entire file. Can you do better?

Figure 15.4 A character-coding problem. A data file of 100,000 characters contains only the

characters a–f, with the frequencies indicated. With each character represented by a 3-bit

codeword, encoding the file requires 300,000 bits. With the variable-length code shown, the

encoding requires only 224,000 bits.

A variable-length code can do considerably better than a fixed-length

code. The idea is simple: give frequent characters short codewords and

infrequent characters long codewords. Figure 15.4 shows such a code.

Here, the 1-bit string 0 represents a, and the 4-bit string 1100 represents

f. This code requires

(45 · 1 + 13 · 3 + 12 · 3 + 16 · 3 + 9 · 4 + 5 · 4) · 1,000 = 224,000 bits

to represent the file, a savings of approximately 25%. In fact, this is an

optimal character code for this file, as we shall see.

Prefix-free codes
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We consider here only codes in which no codeword is also a prefix of

some other codeword. Such codes are called prefix-free codes. Although

we won’t prove it here, a prefix-free code can always achieve the optimal

data compression among any character code, and so we suffer no loss of

generality by restricting our attention to prefix-free codes.

Encoding is always simple for any binary character code: just

concatenate the codewords representing each character of the file. For

example, with the variable-length prefix-free code of Figure 15.4, the 4-

character file face has the encoding 1100 · 0 · 100 · 1101 =

110001001101, where “·” denotes concatenation.

Prefix-free codes are desirable because they simplify decoding. Since

no codeword is a prefix of any other, the codeword that begins an

encoded file is unambiguous. You can simply identify the initial

codeword, translate it back to the original character, and repeat the

decoding process on the remainder of the encoded file. In our example,

the string 100011001101 parses uniquely as 100 · 0 · 1100 · 1101, which

decodes to cafe.

Figure 15.5 Trees corresponding to the coding schemes in Figure 15.4. Each leaf is labeled with a

character and its frequency of occurrence. Each internal node is labeled with the sum of the

frequencies of the leaves in its subtree. All frequencies are in thousands. (a) The tree

corresponding to the fixed-length code a = 000, b = 001, c = 010, d = 011, e = 100, f = 101. (b)

The tree corresponding to the optimal prefix-free code a = 0, b = 101, c = 100, d = 111, e =

1101, f = 1100.

The decoding process needs a convenient representation for the

prefix-free code so that you can easily pick off the initial codeword. A
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binary tree whose leaves are the given characters provides one such

representation. Interpret the binary codeword for a character as the

simple path from the root to that character, where 0 means “go to the

left child” and 1 means “go to the right child.” Figure 15.5 shows the

trees for the two codes of our example. Note that these are not binary

search trees, since the leaves need not appear in sorted order and

internal nodes do not contain character keys.

An optimal code for a file is always represented by a full binary tree,

in which every nonleaf node has two children (see Exercise 15.3-2). The

fixed-length code in our example is not optimal since its tree, shown in

Figure 15.5(a), is not a full binary tree: it contains codewords beginning

with 10, but none beginning with 11. Since we can now restrict our

attention to full binary trees, we can say that if C is the alphabet from

which the characters are drawn and all character frequencies are

positive, then the tree for an optimal prefix-free code has exactly |C |

leaves, one for each letter of the alphabet, and exactly |C | − 1 internal

nodes (see Exercise B.5-3 on page 1175).

Given a tree T corresponding to a prefix-free code, we can compute

the number of bits required to encode a file. For each character c in the

alphabet C, let the attribute c.freq denote the frequency of c in the file

and let dT(c) denote the depth of c’s leaf in the tree. Note that dT (c) is

also the length of the codeword for character c. The number of bits

required to encode a file is thus

which we define as the cost of the tree T.

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an optimal prefix-

free code, called a Huffman code in his honor. In line with our

observations in Section 15.2, its proof of correctness relies on the

greedy-choice property and optimal substructure. Rather than

demonstrating that these properties hold and then developing
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pseudocode, we present the pseudocode first. Doing so will help clarify

how the algorithm makes greedy choices.

The procedure HUFFMAN assumes that C is a set of n characters

and that each character c ∈ C is an object with an attribute c.freq giving

its frequency. The algorithm builds the tree T corresponding to an

optimal code in a bottom-up manner. It begins with a set of |C | leaves

and performs a sequence of |C | − 1 “merging” operations to create the

final tree. The algorithm uses a min-priority queue Q, keyed on the freq

attribute, to identify the two least-frequent objects to merge together.

The result of merging two objects is a new object whose frequency is the

sum of the frequencies of the two objects that were merged.

HUFFMAN(C)

  1n = |C |  

  2Q = C  

  3 for i = 1 to n − 1  

  4 allocate a new node z  

  5 x = EXTRACT-MIN(Q)  

  6 y = EXTRACT-MIN(Q)  

  7 z.left = x  

  8 z.right = y  

  9 z.freq = x.freq + y.freq  

10 INSERT(Q, z)  

11return EXTRACT-MIN(Q) // the root of the tree is the only node

left

For our example, Huffman’s algorithm proceeds as shown in Figure

15.6. Since the alphabet contains 6 letters, the initial queue size is n = 6,

and 5 merge steps build the tree. The final tree represents the optimal

prefix-free code. The codeword for a letter is the sequence of edge labels

on the simple path from the root to the letter.
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Figure 15.6 The steps of Huffman’s algorithm for the frequencies given in Figure 15.4. Each part

shows the contents of the queue sorted into increasing order by frequency. Each step merges the

two trees with the lowest frequencies. Leaves are shown as rectangles containing a character and

its frequency. Internal nodes are shown as circles containing the sum of the frequencies of their

children. An edge connecting an internal node with its children is labeled 0 if it is an edge to a

left child and 1 if it is an edge to a right child. The codeword for a letter is the sequence of labels

on the edges connecting the root to the leaf for that letter. (a) The initial set of n = 6 nodes, one

for each letter. (b)–(e) Intermediate stages. (f) The final tree.

The HUFFMAN procedure works as follows. Line 2 initializes the

min-priority queue Q with the characters in C. The for loop in lines 3–

10 repeatedly extracts the two nodes x and y of lowest frequency from

the queue and replaces them in the queue with a new node z

representing their merger. The frequency of z is computed as the sum of

the frequencies of x and y in line 9. The node z has x as its left child and

y as its right child. (This order is arbitrary. Switching the left and right

child of any node yields a different code of the same cost.) After n − 1
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mergers, line 11 returns the one node left in the queue, which is the root

of the code tree.

The algorithm produces the same result without the variables x and

y, assigning the values returned by the EXTRACT-MIN calls directly

to z.left and z.right in lines 7 and 8, and changing line 9 to z.freq =

z.left.freq+z.right.freq. We’ll use the node names x and y in the proof of

correctness, however, so we leave them in.

The running time of Huffman’s algorithm depends on how the min-

priority queue Q is implemented. Let’s assume that it’s implemented as

a binary min-heap (see Chapter 6). For a set C of n characters, the

BUILD-MIN-HEAP procedure discussed in Section 6.3 can initialize Q

in line 2 in O(n) time. The for loop in lines 3–10 executes exactly n − 1

times, and since each heap operation runs in O(lg n) time, the loop

contributes O(n lg n) to the running time. Thus, the total running time

of HUFFMAN on a set of n characters is O(n lg n).

Correctness of Huffman’s algorithm

To prove that the greedy algorithm HUFFMAN is correct, we’ll show

that the problem of determining an optimal prefix-free code exhibits the

greedy-choice and optimal-substructure properties. The next lemma

shows that the greedy-choice property holds.

Lemma 15.2 (Optimal prefix-free codes have the greedy-choice property)

Let C be an alphabet in which each character c ∈ C has frequency

c.freq. Let x and y be two characters in C having the lowest frequencies.

Then there exists an optimal prefix-free code for C in which the

codewords for x and y have the same length and differ only in the last

bit.

Proof      The idea of the proof is to take the tree T representing an

arbitrary optimal prefix-free code and modify it to make a tree

representing another optimal prefix-free code such that the characters x

and y appear as sibling leaves of maximum depth in the new tree. In

such a tree, the codewords for x and y have the same length and differ

only in the last bit.
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Let a and b be any two characters that are sibling leaves of maximum

depth in T. Without loss of generality, assume that a.freq ≤ b.freq and

x.freq ≤ y.freq. Since x.freq and y.freq are the two lowest leaf

frequencies, in order, and a.freq and b.freq are two arbitrary frequencies,

in order, we have x.freq ≤ a.freq and y.freq ≤ b.freq.

In the remainder of the proof, it is possible that we could have x.freq

= a.freq or y.freq = b.freq, but x.freq = b.freq implies that a.freq = b.freq

= x.freq = y.freq (see Exercise 15.3-1), and the lemma would be trivially

true. Therefore, assume that x.freq ≠ b.freq, which means that x ≠ b.

Figure 15.7 An illustration of the key step in the proof of Lemma 15.2. In the optimal tree T,

leaves a and b are two siblings of maximum depth. Leaves x and y are the two characters with

the lowest frequencies. They appear in arbitrary positions in T. Assuming that x ≠ b, swapping

leaves a and x produces tree T′, and then swapping leaves b and y produces tree T ″. Since each

swap does not increase the cost, the resulting tree T ″ is also an optimal tree.

As Figure 15.7 shows, imagine exchanging the positions in T of a

and x to produce a tree T′, and then exchanging the positions in T′ of b

and y to produce a tree T″ in which x and y are sibling leaves of

maximum depth. (Note that if x = b but y ≠ a, then tree T ″ does not

have x and y as sibling leaves of maximum depth. Because we assume

that x ≠ b, this situation cannot occur.) By equation (15.4), the

difference in cost between T and T′ is
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because both a.freq − x.freq and dT (a) − dT (x) are nonnegative. More

specifically, a.freq − x.freq is nonnegative because x is a minimum-

frequency leaf, and dT (a) − dT (x) is nonnegative because a is a leaf of

maximum depth in T. Similarly, exchanging y and b does not increase

the cost, and so B(T′) − B(T ″) is nonnegative. Therefore, B(T ″) ≤ B(T′)
≤ B(T), and since T is optimal, we have B(T) ≤ B(T ″), which implies B(T

″) = B(T). Thus, T ″ is an optimal tree in which x and y appear as

sibling leaves of maximum depth, from which the lemma follows.

▪

Lemma 15.2 implies that the process of building up an optimal tree

by mergers can, without loss of generality, begin with the greedy choice

of merging together those two characters of lowest frequency. Why is

this a greedy choice? We can view the cost of a single merger as being

the sum of the frequencies of the two items being merged. Exercise 15.3-

4 shows that the total cost of the tree constructed equals the sum of the

costs of its mergers. Of all possible mergers at each step, HUFFMAN

chooses the one that incurs the least cost.

The next lemma shows that the problem of constructing optimal

prefix-free codes has the optimal-substructure property.

Lemma 15.3 (Optimal prefix-free codes have the optimal-substructure

property)

Let C be a given alphabet with frequency c.freq defined for each

character c ∈ C. Let x and y be two characters in C with minimum

frequency. Let C′ be the alphabet C with the characters x and y removed

and a new character z added, so that C′ = (C − {x, y}) ∪ {z}. Define

freq for all characters in C′ with the same values as in C, along with

z.freq = x.freq + y.freq. Let T′ be any tree representing an optimal

prefix-free code for alphabet C′. Then the tree T, obtained from T′ by

replacing the leaf node for z with an internal node having x and y as

children, represents an optimal prefix-free code for the alphabet C.

Proof   We first show how to express the cost B(T) of tree T in terms of

the cost B(T′) of tree T′, by considering the component costs in

equation (15.4). For each character c ∈ C − {x, y}, we have that dT (c)
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= dT′ (c), and hence c.freq · dT (c) = c.freq · dT′ (c). Since dT (x) = dT

(y) = dT′ (z) + 1, we have

x.freq · dT (x) + y.freq · dT (y) = (x.freq + y.freq)(dT′ (z) + 1)

= z.freq · dT′(z)+ (x.freq + y.freq),

from which we conclude that

B(T) = B(T′) + x.freq + y.freq

or, equivalently,

B(T′) = B(T) − x.freq − y.freq.

We now prove the lemma by contradiction. Suppose that T does not

represent an optimal prefix-free code for C. Then there exists an optimal

tree T″ such that B(T″) < B(T). Without loss of generality (by Lemma

15.2), T″ has x and y as siblings. Let T″′ be the tree T″ with the common

parent of x and y replaced by a leaf z with frequency z.freq = x.freq +

y.freq. Then

B(T‴) = B(T″) − x.freq − y.freq

< B(T) − x.freq − y.freq

= B(T′),

yielding a contradiction to the assumption that T′ represents an optimal

prefix-free code for C′. Thus, T must represent an optimal prefix-free

code for the alphabet C.

▪

Theorem 15.4

Procedure HUFFMAN produces an optimal prefix-free code.

Proof   Immediate from Lemmas 15.2 and 15.3.

Exercises

15.3-1
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Explain why, in the proof of Lemma 15.2, if x.freq = b.freq, then we

must have a.freq = b.freq = x.freq = y.freq.

15.3-2

Prove that a non-full binary tree cannot correspond to an optimal

prefix-free code.

15.3-3

What is an optimal Huffman code for the following set of frequencies,

based on the first 8 Fibonacci numbers?

a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

Can you generalize your answer to find the optimal code when the

frequencies are the first n Fibonacci numbers?

15.3-4

Prove that the total cost B(T) of a full binary tree T for a code equals

the sum, over all internal nodes, of the combined frequencies of the two

children of the node.

15.3-5

Given an optimal prefix-free code on a set C of n characters, you wish to

transmit the code itself using as few bits as possible. Show how to

represent any optimal prefix-free code on C using only 2n − 1 + n ⌈lg n⌉

bits. (Hint: Use 2n − 1 bits to specify the structure of the tree, as

discovered by a walk of the tree.)

15.3-6

Generalize Huffman’s algorithm to ternary codewords (i.e., codewords

using the symbols 0, 1, and 2), and prove that it yields optimal ternary

codes.

15.3-7

A data file contains a sequence of 8-bit characters such that all 256

characters are about equally common: the maximum character

frequency is less than twice the minimum character frequency. Prove
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that Huffman coding in this case is no more efficient than using an

ordinary 8-bit fixed-length code.

15.3-8

Show that no lossless (invertible) compression scheme can guarantee

that for every input file, the corresponding output file is shorter. (Hint:

Compare the number of possible files with the number of possible

encoded files.)

15.4    Offline caching

Computer systems can decrease the time to access data by storing a

subset of the main memory in the cache: a small but faster memory. A

cache organizes data into cache blocks typically comprising 32, 64, or

128 bytes. You can also think of main memory as a cache for disk-

resident data in a virtual-memory system. Here, the blocks are called

pages, and 4096 bytes is a typical size.

As a computer program executes, it makes a sequence of memory

requests. Say that there are n memory requests, to data in blocks b1, b2,

… , bn, in that order. The blocks in the access sequence might not be

distinct, and indeed, any given block is usually accessed multiple times.

For example, a program that accesses four distinct blocks p, q, r, s might

make a sequence of requests to blocks s, q, s, q, q, s, p, p, r, s, s, q, p, r,

q. The cache can hold up to some fixed number k of cache blocks. It

starts out empty before the first request. Each request causes at most

one block to enter the cache and at most one block to be evicted from

the cache. Upon a request for block bi, any one of three scenarios may

occur:

1. Block bi is already in the cache, due to a previous request for the

same block. The cache remains unchanged. This situation is

known as a cache hit.

2. Block bi is not in the cache at that time, but the cache contains

fewer than k blocks. In this case, block bi is placed into the
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cache, so that the cache contains one more block than it did

before the request.

3. Block bi is not in the cache at that time and the cache is full: it

contains k blocks. Block bi is placed into the cache, but before

that happens, some other block in the cache must be evicted

from the cache in order to make room.

The latter two situations, in which the requested block is not already

in the cache, are called cache misses. The goal is to minimize the number

of cache misses or, equivalently, to maximize the number of cache hits,

over the entire sequence of n requests. A cache miss that occurs while

the cache holds fewer than k blocks—that is, as the cache is first being

filled up—is known as a compulsory miss, since no prior decision could

have kept the requested block in the cache. When a cache miss occurs

and the cache is full, ideally the choice of which block to evict should

allow for the smallest possible number of cache misses over the entire

sequence of future requests.

Typically, caching is an online problem. That is, the computer has to

decide which blocks to keep in the cache without knowing the future

requests. Here, however, let’s consider the offline version of this

problem, in which the computer knows in advance the entire sequence

of n requests and the cache size k, with a goal of minimizing the total

number of cache misses.

To solve this offline problem, you can use a greedy strategy called

furthest-in-future, which chooses to evict the block in the cache whose

next access in the request sequence comes furthest in the future.

Intuitively, this strategy makes sense: if you’re not going to need

something for a while, why keep it around? We’ll show that the furthest-

in-future strategy is indeed optimal by showing that the offline caching

problem exhibits optimal substructure and that furthest-in-future has

the greedy-choice property.

Now, you might be thinking that since the computer usually doesn’t

know the sequence of requests in advance, there is no point in studying

the offline problem. Actually, there is. In some situations, you do know

the sequence of requests in advance. For example, if you view the main
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memory as the cache and the full set of data as residing on disk (or a

solid-state drive), there are algorithms that plan out the entire set of

reads and writes in advance. Furthermore, we can use the number of

cache misses produced by an optimal algorithm as a baseline for

comparing how well online algorithms perform. We’ll do just that in

Section 27.3.

Offline caching can even model real-world problems. For example,

consider a scenario where you know in advance a fixed schedule of n

events at known locations. Events may occur at a location multiple

times, not necessarily consecutively. You are managing a group of k

agents, you need to ensure that you have one agent at each location

when an event occurs, and you want to minimize the number of times

that agents have to move. Here, the agents are like the blocks, the events

are like the requests, and moving an agent is akin to a cache miss.

Optimal substructure of offline caching

To show that the offline problem exhibits optimal substructure, let’s

define the subproblem (C, i) as processing requests for blocks bi, bi+1,

… , bn with cache configuration C at the time that the request for block

bi occurs, that is, C is a subset of the set of blocks such that |C | ≤ k. A

solution to subproblem (C, i) is a sequence of decisions that specifies

which block to evict (if any) upon each request for blocks bi, bi+1, … ,

bn. An optimal solution to subproblem (C, i) minimizes the number of

cache misses.

Consider an optimal solution S to subproblem (C, i), and let C′ be

the contents of the cache after processing the request for block bi in

solution S. Let S′ be the subsolution of S for the resulting subproblem

(C′, i + 1). If the request for bi results in a cache hit, then the cache

remains unchanged, so that C′ = C. If the request for block bi results in

a cache miss, then the contents of the cache change, so that C′ ≠ C. We

claim that in either case, S′ is an optimal solution to subproblem (C′, i +
1). Why? If S′ is not an optimal solution to subproblem (C′, i + 1), then

there exists another solution S″ to subproblem (C′, i + 1) that makes

fewer cache misses than S′. Combining S″ with the decision of S at the
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request for block bi yields another solution that makes fewer cache

misses than S, which contradicts the assumption that S is an optimal

solution to subproblem (C, i).

To quantify a recursive solution, we need a little more notation. Let

RC,i be the set of all cache configurations that can immediately follow

configuration C after processing a request for block bi. If the request

results in a cache hit, then the cache remains unchanged, so that RC,i =

{C }. If the request for bi results in a cache miss, then there are two

possibilities. If the cache is not full (|C | < k), then the cache is filling up

and the only choice is to insert bi into the cache, so that RC,i= {C ∪

{bi}}. If the cache is full (|C | = k) upon a cache miss, then RC,i

contains k potential configurations: one for each candidate block in C

that could be evicted and replaced by block bi. In this case, RC,i = {(C

− {x}) ∪ {bi} : x ∈ C }. For example, if C = {p, q, r}, k = 3, and block s

is requested, then RC,i = {{p, q, s},{p, r, s},{q, r, s}}.

Let miss(C, i) denote the minimum number of cache misses in a

solution for subproblem (C, i). Here is a recurrence for miss(C, i):

Greedy-choice property

To prove that the furthest-in-future strategy yields an optimal solution,

we need to show that optimal offline caching exhibits the greedy-choice

property. Combined with the optimal-substructure property, the greedy-

choice property will prove that furthest-in-future produces the

minimum possible number of cache misses.

Theorem 15.5 (Optimal offline caching has the greedy-choice property)

Consider a subproblem (C, i) when the cache C contains k blocks, so

that it is full, and a cache miss occurs. When block bi is requested, let z
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= bm be the block in C whose next access is furthest in the future. (If

some block in the cache will never again be referenced, then consider

any such block to be block z, and add a dummy request for block z =

bm = bn+1.) Then evicting block z upon a request for block bi is

included in some optimal solution for the subproblem (C, i).

Proof     Let S be an optimal solution to subproblem (C, i). If S evicts

block z upon the request for block bi, then we are done, since we have

shown that some optimal solution includes evicting z.

So now suppose that optimal solution S evicts some other block x

when block bi is requested. We’ll construct another solution S′ to

subproblem (C, i) which, upon the request for bi, evicts block z instead

of x and induces no more cache misses than S does, so that S′ is also

optimal. Because different solutions may yield different cache

configurations, denote by CS,j the configuration of the cache under

solution S just before the request for some block bj, and likewise for

solution S′ and CS′,j. We’ll show how to construct S′ with the following

properties:

1. For j = i + 1, … , m, let Dj = CS,j ∩ CS′,j. Then, |Dj | ≥ k − 1, so

that the cache configurations CS,j and CS′,j differ by at most

one block. If they differ, then CS,j = Dj ∪ {z} and CS′,j = Dj ∪

{y} for some block y ≠ z.

2. For each request of blocks bi, … , bm−1, if solution S has a

cache hit, then solution S′ also has a cache hit.

3. For all j > m, the cache configurations CS,j and CS′,j are

identical.

4. Over the sequence of requests for blocks bi, … , bm, the number

of cache misses produced by solution S′ is at most the number of

cache misses produced by solution S.

We’ll prove inductively that these properties hold for each request.
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1. We proceed by induction on j, for j = i +1, … , m. For the base

case, the initial caches CS,i and CS′,i are identical. Upon the

request for block bi, solution S evicts x and solution S′ evicts z.

Thus, cache configurations CS,i+1 and CS′,i+1 differ by just one

block, CS,i+1 = Di+1 ∪ {z}, CS′,i+1 = Di+1 ∪ {x}, and x ≠ z.

The inductive step defines how solution S′ behaves upon a

request for block bj for i + 1 ≤ j ≤ m − 1. The inductive

hypothesis is that property 1 holds when bj is requested. Because

z = bm is the block in CS,i whose next reference is furthest in the

future, we know that bj ≠ z. We consider several scenarios:

If CS,j = CS′,j (so that |Dj | = k), then solution S′ makes

the same decision upon the request for bj as S makes, so

that CS,j+1 = CS′,j+1.

If |Dj| = k − 1 and bj ∈ Dj, then both caches already

contain block bj, and both solutions S and S′ have cache

hits. Therefore, CS,j+1 = CS,j and CS′,j+1 = CS′,j.
If |Dj | = k − 1 and bj ∉ Dj, then because CS,j = Dj ∪ {z}

and bj ≠ z, solution S has a cache miss. It evicts either

block z or some block w ∈ Dj.

If solution S evicts block z, then CS,j+1 = Dj ∪ {bj}.

There are two cases, depending on whether bj = y:

If bj = y, then solution S′ has a cache hit, so

that CS′,j+1 = CS′,j = Dj ∪ {bj}. Thus, CS,j+1

= CS′,j +1.

If bj ≠ y, then solution S′ has a cache miss. It

evicts block y, so that CS′,j+1 = Dj ∪ {bj },

and again CS,j+1 = CS′,j+1.

If solution S evicts some block w ∈ Dj, then CS,j+1

= (Dj − {w}) ∪ {bj, z}. Once again, there are two
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cases, depending on whether bj = y:

If bj = y, then solution S′ has a cache hit, so

that CS′,j+1 = CS′,j = Dj ∪ {bj}. Since w ∈ Dj

and w was not evicted by solution S′, we have

w ∈ CS′,j +1. Therefore, w ∉ Dj+1 and bj ∈

Dj+1, so that Dj+1 = (Dj − {w}) ∪ {bj }. Thus,

CS,j+1 = Dj+1 ∪ {z},CS′,j+1 = Dj +1 ∪ {w},

and because w ≠ z, property 1 holds when

block bj+1 is requested. (In other words, block

w replaces block y in property 1.)

If bj ≠ y, then solution S′ has a cache miss. It

evicts block w, so that CS′,j +1 = (Dj − {w}) ∪

{bj, y}. Therefore, we have that Dj+1 = (Dj −

{w}) ∪ {bj } and so CS,j+1 = Dj+1 ∪ {z} and

CS′,j+1 = Dj +1 ∪ {y}.

2. In the above discussion about maintaining property 1, solution S

may have a cache hit in only the first two cases, and solution S′
has a cache hit in these cases if and only if S does.

3. If CS,m = CS′,m, then solution S′ makes the same decision upon

the request for block z = bm as S makes, so that CS,m+1 =

CS′,m+1. If CS,m ≠ CS′,m, then by property 1, CS,m = Dm∪{z}

and CS′,m = Dm∪{y}, where y ≠ z. In this case, solution S has a

cache hit, so that CS,m+1 = CS,m = Dm ∪ {z}. Solution S′
evicts block y and brings in block z, so that CS′,m+1 = Dm ∪

{z} = CS,m+1. Thus, regardless of whether or not CS,m =

CS′,m, we have CS,m+1 = CS′,m+1, and starting with the

request for block bm+1, solution S′ simply makes the same

decisions as S.

4. By property 2, upon the requests for blocks bi, … , bm−1,

whenever solution S has a cache hit, so does S′. Only the request
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for block bm = z remains to be considered. If S has a cache miss

upon the request for bm, then regardless of whether S′ has a

cache hit or a cache miss, we are done: S′ has at most the same

number of cache misses as S.

So now suppose that S has a cache hit and S′ has a cache miss

upon the request for bm. We’ll show that there exists a request

for at least one of blocks bi+1, … , bm−1 in which the request

results in a cache miss for S and a cache hit for S′, thereby

compensating for what happens upon the request for block bm.

The proof is by contradiction. Assume that no request for blocks

bi+1, … , bm−1 results in a cache miss for S and a cache hit for

S′.
We start by observing that once the caches CS,j and CS′j are

equal for some j > i, they remain equal thereafter. Observe also

that if bm ∈ CS,m and bm ∉ CS′,m, then CS,m ≠ CS′,m.

Therefore, solution S cannot have evicted block z upon the

requests for blocks bi, … , bm−1, for if it had, then these two

cache configurations would be equal. The remaining possibility

is that upon each of these requests, we had CS,j = Dj ∪ {z},

CS′,j = Dj ∪ {y} for some block y ≠ z, and solution S evicted

some block w ∈ Dj. Moreover, since none of these requests

resulted in a cache miss for S and a cache hit for S′, the case of bj

= y never occurred. That is, for every request of blocks bi+1, … ,

bm−1, the requested block bj was never the block y ∈ CS′,j −

CS,j. In these cases, after processing the request, we had CS′,j +1

= Dj +1 ∪ {y}: the difference between the two caches did not

change. Now, let’s go back to the request for block bi, where

afterward, we had CS′,i+1 = Di+1 ∪ {x}. Because every

succeeding request until requesting block bm did not change the
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difference between the caches, we had CS′,j = Dj ∪ {x} for j = i

+ 1, … , m.

By definition, block z = bm is requested after block x. That

means at least one of blocks bi+1, … , bm−1 is block x. But for j

= i + 1, … , m, we have x ∈ CS′,j and x ∉ CS,j, so that at least

one of these requests had a cache hit for S′ and a cache miss for

S, a contradiction. We conclude that if solution S has a cache hit

and solution S′ has a cache miss upon the request for block bm,

then some earlier request had the opposite result, and so

solution S′ produces no more cache misses than solution S.

Since S is assumed to be optimal, S′ is optimal as well.

▪

Along with the optimal-substructure property, Theorem 15.5 tells us

that the furthest-in-future strategy yields the minimum number of cache

misses.

Exercises

15.4-1

Write pseudocode for a cache manager that uses the furthest-in-future

strategy. It should take as input a set C of blocks in the cache, the

number of blocks k that the cache can hold, a sequence b1, b2, … , bn of

requested blocks, and the index i into the sequence for the block bi

being requested. For each request, it should print out whether a cache

hit or cache miss occurs, and for each cache miss, it should also print

out which block, if any, is evicted.

15.4-2

Real cache managers do not know the future requests, and so they often

use the past to decide which block to evict. The least-recently-used, or

LRU, strategy evicts the block that, of all blocks currently in the cache,

was the least recently requested. (You can think of LRU as “furthest-in-

past.”) Give an example of a request sequence in which the LRU
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strategy is not optimal, by showing that it induces more cache misses

than the furthest-in-future strategy does on the same request sequence.

15.4-3

Professor Croesus suggests that in the proof of Theorem 15.5, the last

clause in property 1 can change to CS′,j = Dj ∪ {x} or, equivalently,

require the block y given in property 1 to always be the block x evicted

by solution S upon the request for block bi. Show where the proof

breaks down with this requirement.

15.4-4

This section has assumed that at most one block is placed into the cache

whenever a block is requested. You can imagine, however, a strategy in

which multiple blocks may enter the cache upon a single request. Show

that for every solution that allows multiple blocks to enter the cache

upon each request, there is another solution that brings in only one

block upon each request and is at least as good.

Problems

15-1     Coin changing

Consider the problem of making change for n cents using the smallest

number of coins. Assume that each coin’s value is an integer.

a. Describe a greedy algorithm to make change consisting of quarters,

dimes, nickels, and pennies. Prove that your algorithm yields an

optimal solution.

b. Suppose that the available coins are in denominations that are powers

of c: the denominations are c0, c1, … , ck for some integers c > 1 and

k ≥ 1. Show that the greedy algorithm always yields an optimal

solution.

c. Give a set of coin denominations for which the greedy algorithm does

not yield an optimal solution. Your set should include a penny so that

there is a solution for every value of n.

www.konkur.in

Telegram: @uni_k



d. Give an O(nk)-time algorithm that makes change for any set of k

different coin denominations using the smallest number of coins,

assuming that one of the coins is a penny.

15-2     Scheduling to minimize average completion time

You are given a set S = {a1, a2, … , an} of tasks, where task ai requires

pi units of processing time to complete. Let Ci be the completion time of

task ai, that is, the time at which task ai completes processing. Your

goal is to minimize the average completion time, that is, to minimize 

. For example, suppose that there are two tasks a1 and a2

with p1 = 3 and p2 = 5, and consider the schedule in which a2 runs first,

followed by a1. Then we have C2 = 5, C1 = 8, and the average

completion time is (5 + 8)/2 = 6.5. If task a1 runs first, however, then we

have C1 = 3, C2 = 8, and the average completion time is (3 + 8)/2 = 5.5.

a. Give an algorithm that schedules the tasks so as to minimize the

average completion time. Each task must run nonpreemptively, that is,

once task ai starts, it must run continuously for pi units of time until it

is done. Prove that your algorithm minimizes the average completion

time, and analyze the running time of your algorithm.

b. Suppose now that the tasks are not all available at once. That is, each

task cannot start until its release time bi. Suppose also that tasks may

be preempted, so that a task can be suspended and restarted at a later

time. For example, a task ai with processing time pi = 6 and release

time bi = 1 might start running at time 1 and be preempted at time 4.

It might then resume at time 10 but be preempted at time 11, and it

might finally resume at time 13 and complete at time 15. Task ai has

run for a total of 6 time units, but its running time has been divided

into three pieces. Give an algorithm that schedules the tasks so as to

minimize the average completion time in this new scenario. Prove that

your algorithm minimizes the average completion time, and analyze

the running time of your algorithm.
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Chapter notes

Much more material on greedy algorithms can be found in Lawler [276]

and Papadimitriou and Steiglitz [353]. The greedy algorithm first

appeared in the combinatorial optimization literature in a 1971 article

by Edmonds [131].

The proof of correctness of the greedy algorithm for the activity-

selection problem is based on that of Gavril [179].

Huffman codes were invented in 1952 [233]. Lelewer and Hirschberg

[294] surveys data-compression techniques known as of 1987.

The furthest-in-future strategy was proposed by Belady [41], who

suggested it for virtual-memory systems. Alternative proofs that

furthest-in-future is optimal appear in articles by Lee et al. [284] and

Van Roy [443].

1 We sometimes refer to the sets Sk as subproblems rather than as just sets of activities. The

context will make it clear whether we are referring to Sk as a set of activities or as a subproblem

whose input is that set.

2 Because the pseudocode takes s and f as arrays, it indexes into them with square brackets

rather than with subscripts.

www.konkur.in

Telegram: @uni_k



16        Amortized Analysis

Imagine that you join Buff’s Gym. Buff charges a membership fee of

$60 per month, plus $3 for every time you use the gym. Because you are

disciplined, you visit Buff’s Gym every day during the month of

November. On top of the $60 monthly charge for November, you pay

another 3 × $30 = $90 that month. Although you can think of your fees

as a flat fee of $60 and another $90 in daily fees, you can think about it

in another way. All together, you pay $150 over 30 days, or an average of

$5 per day. When you look at your fees in this way, you are amortizing

the monthly fee over the 30 days of the month, spreading it out at $2 per

day.

You can do the same thing when you analyze running times. In an

amortized analysis, you average the time required to perform a sequence

of data-structure operations over all the operations performed. With

amortized analysis, you show that if you average over a sequence of

operations, then the average cost of an operation is small, even though a

single operation within the sequence might be expensive. Amortized

analysis differs from average-case analysis in that probability is not

involved. An amortized analysis guarantees the average performance of

each operation in the worst case.

The first three sections of this chapter cover the three most common

techniques used in amortized analysis. Section 16.1 starts with aggregate

analysis, in which you determine an upper bound T (n) on the total cost

of a sequence of n operations. The average cost per operation is then T

(n)/n. You take the average cost as the amortized cost of each operation,

so that all operations have the same amortized cost.
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Section 16.2 covers the accounting method, in which you determine

an amortized cost of each operation. When there is more than one type

of operation, each type of operation may have a different amortized

cost. The accounting method overcharges some operations early in the

sequence, storing the overcharge as “prepaid credit” on specific objects

in the data structure. Later in the sequence, the credit pays for

operations that are charged less than they actually cost.

Section 16.3 discusses the potential method, which is like the

accounting method in that you determine the amortized cost of each

operation and may overcharge operations early on to compensate for

undercharges later. The potential method maintains the credit as the

“potential energy” of the data structure as a whole instead of

associating the credit with individual objects within the data structure.

We’ll use use two examples in this chapter to examine each of these

three methods. One is a stack with the additional operation

MULTIPOP, which pops several objects at once. The other is a binary

counter that counts up from 0 by means of the single operation

INCREMENT.

While reading this chapter, bear in mind that the charges assigned

during an amortized analysis are for analysis purposes only. They need

not—and should not—appear in the code. If, for example, you assign a

credit to an object x when using the accounting method, you have no

need to assign an appropriate amount to some attribute, such as

x.credit, in the code.

When you perform an amortized analysis, you often gain insight into

a particular data structure, and this insight can help you optimize the

design. For example, Section 16.4 will use the potential method to

analyze a dynamically expanding and contracting table.

16.1    Aggregate analysis

In aggregate analysis, you show that for all n, a sequence of n operations

takes T (n) worst-case time in total. In the worst case, the average cost,

or amortized cost, per operation is therefore T (n)/n. This amortized cost

applies to each operation, even when there are several types of
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operations in the sequence. The other two methods we shall study in

this chapter, the accounting method and the potential method, may

assign different amortized costs to different types of operations.

Stack operations

As the first example of aggregate analysis, let’s analyze stacks that have

been augmented with a new operation. Section 10.1.3 presented the two

fundamental stack operations, each of which takes O(1) time:

PUSH(S, x) pushes object x onto stack S.

POP(S) pops the top of stack S and returns the popped object. Calling

POP on an empty stack generates an error.

Figure 16.1 The action of MULTIPOP on a stack S, shown initially in (a). The top 4 objects are

popped by MULTIPOP(S, 4), whose result is shown in (b). The next operation is

MULTIPOP(S, 7), which empties the stack—shown in (c)—since fewer than 7 objects remained.

Since each of these operations runs in O(1) time, let us consider the cost

of each to be 1. The total cost of a sequence of n PUSH and POP

operations is therefore n, and the actual running time for n operations is

therefore Θ(n).

Now let’s add the stack operation MULTIPOP(S, k), which removes

the k top objects of stack S, popping the entire stack if the stack

contains fewer than k objects. Of course, the procedure assumes that k is

positive, and otherwise, the MULTIPOP operation leaves the stack

unchanged. In the pseudocode for MULTIPOP, the operation STACK-

EMPTY returns TRUE if there are no objects currently on the stack,

and FALSE otherwise. Figure 16.1 shows an example of MULTIPOP.
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MULTIPOP(S, k)

1 while not STACK-EMPTY(S) and k > 0

2 POP(S)

3 k = k − 1

What is the running time of MULTIPOP(S, k) on a stack of s

objects? The actual running time is linear in the number of POP

operations actually executed, and thus we can analyze MULTIPOP in

terms of the abstract costs of 1 each for PUSH and POP. The number

of iterations of the while loop is the number min {s, k} of objects

popped off the stack. Each iteration of the loop makes one call to POP

in line 2. Thus, the total cost of MULTIPOP is min {s, k}, and the

actual running time is a linear function of this cost.

Now let’s analyze a sequence of n PUSH, POP, and MULTIPOP

operations on an initially empty stack. The worst-case cost of a

MULTIPOP operation in the sequence is O(n), since the stack size is at

most n. The worst-case time of any stack operation is therefore O(n),

and hence a sequence of n operations costs O(n2), since the sequence

contains at most n MULTIPOP operations costing O(n) each. Although

this analysis is correct, the O(n2) result, which came from considering

the worst-case cost of each operation individually, is not tight.

Yes, a single MULTIPOP might be expensive, but an aggregate

analysis shows that any sequence of n PUSH, POP, and MULTIPOP

operations on an initially empty stack has an upper bound on its cost of

O(n). Why? An object cannot be popped from the stack unless it was

first pushed. Therefore, the number of times that POP can be called on a

nonempty stack, including calls within MULTIPOP, is at most the

number of PUSH operations, which is at most n. For any value of n, any

sequence of n PUSH, POP, and MULTIPOP operations takes a total of

O(n) time. Averaging over the n operations gives an average cost per

operation of O(n)/n = O(1). Aggregate analysis assigns the amortized

cost of each operation to be the average cost. In this example, therefore,

all three stack operations have an amortized cost of O(1).
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To recap: although the average cost, and hence the running time, of a

stack operation is O(1), the analysis did not rely on probabilistic

reasoning. Instead, the analysis yielded a worst-case bound of O(n) on a

sequence of n operations. Dividing this total cost by n yielded that the

average cost per operation—that is, the amortized cost—is O(1).

Incrementing a binary counter

As another example of aggregate analysis, consider the problem of

implementing a k-bit binary counter that counts upward from 0. An

array A[0 : k − 1] of bits represents the counter. A binary number x that

is stored in the counter has its lowest-order bit in A[0] and its highest-

order bit in A[k − 1], so that . Initially, x = 0, and thus

A[i] = 0 for i = 0, 1, … , k − 1. To add 1 (modulo 2k) to the value in the

counter, call the INCREMENT procedure.

INCREMENT(A, k)

1 i = 0

2 while i < k and A[i] == 1

3 A[i] = 0

4 i = i + 1

5 if i < k

6 A[i] = 1

Figure 16.2 shows what happens to a binary counter when

INCREMENT is called 16 times, starting with the initial value 0 and

ending with the value 16. Each iteration of the while loop in lines 2–4

adds a 1 into position i. If A[i] = 1, then adding 1 flips the bit to 0 in

position i and yields a carry of 1, to be added into position i + 1 during

the next iteration of the loop. Otherwise, the loop ends, and then, if i <

k, A[i] must be 0, so that line 6 adds a 1 into position i, flipping the 0 to

a 1. If the loop ends with i = k, then the call of INCREMENT flipped

all k bits from 1 to 0. The cost of each INCREMENT operation is

linear in the number of bits flipped.
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Figure 16.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16

INCREMENT operations. Bits that flip to achieve the next value are shaded in blue. The

running cost for flipping bits is shown at the right. The total cost is always less than twice the

total number of INCREMENT operations.

As with the stack example, a cursory analysis yields a bound that is

correct but not tight. A single execution of INCREMENT takes Θ(k)

time in the worst case, in which all the bits in array A are 1. Thus, a

sequence of n INCREMENT operations on an initially zero counter

takes O(nk) time in the worst case.

Although a single call of INCREMENT might flip all k bits, not all

bits flip upon each call. (Note the similarity to MULTIPOP, where a

single call might pop many objects, but not every call pops many

objects.) As Figure 16.2 shows, A[0] does flip each time INCREMENT

is called. The next bit up, A[1], flips only every other time: a sequence of

n INCREMENT operations on an initially zero counter causes A[1] to

flip ⌊n/2⌋ times. Similarly, bit A[2] flips only every fourth time, or ⌊n/4⌋

times in a sequence of n INCREMENT operations. In general, for i = 0,

1, … , k − 1, bit A[i] flips ⌊n/2i⌋ times in a sequence of n INCREMENT

operations on an initially zero counter. For i ≥ k, bit A[i] does not exist,

and so it cannot flip. The total number of flips in the sequence is thus
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by equation (A.7) on page 1142. Thus, a sequence of n INCREMENT

operations on an initially zero counter takes O(n) time in the worst case.

The average cost of each operation, and therefore the amortized cost

per operation, is O(n)/n = O(1).

Exercises

16.1-1

If the set of stack operations includes a MULTIPUSH operation, which

pushes k items onto the stack, does the O(1) bound on the amortized

cost of stack operations continue to hold?

16.1-2

Show that if a DECREMENT operation is included in the k-bit counter

example, n operations can cost as much as Θ(nk) time.

16.1-3

Use aggregate analysis to determine the amortized cost per operation

for a sequence of n operations on a data structure in which the ith

operation costs i if i is an exact power of 2, and 1 otherwise.

16.2    The accounting method

In the accounting method of amortized analysis, you assign differing

charges to different operations, with some operations charged more or

less than they actually cost. The amount that you charge an operation is

its amortized cost. When an operation’s amortized cost exceeds its actual

cost, you assign the difference to specific objects in the data structure as

credit. Credit can help pay for later operations whose amortized cost is

less than their actual cost. Thus, you can view the amortized cost of an

operation as being split between its actual cost and credit that is either

deposited or used up. Different operations may have different amortized
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costs. This method differs from aggregate analysis, in which all

operations have the same amortized cost.

You must choose the amortized costs of operations carefully. If you

want to use amortized costs to show that in the worst case the average

cost per operation is small, you must ensure that the total amortized

cost of a sequence of operations provides an upper bound on the total

actual cost of the sequence. Moreover, as in aggregate analysis, the

upper bound must apply to all sequences of operations. Let’s denote the

actual cost of the ith operation by ci and the amortized cost of the ith

operation by ĉi. Then you need to have

for all sequences of n operations. The total credit stored in the data

structure is the difference between the total amortized cost and the total

actual cost, or . By inequality (16.1), the total credit

associated with the data structure must be nonnegative at all times. If

you ever allowed the total credit to become negative (the result of

undercharging early operations with the promise of repaying the

account later on), then the total amortized costs incurred at that time

would be below the total actual costs incurred. In that case, for the

sequence of operations up to that time, the total amortized cost would

not be an upper bound on the total actual cost. Thus, you must take

care that the total credit in the data structure never becomes negative.

Stack operations

To illustrate the accounting method of amortized analysis, we return to

the stack example. Recall that the actual costs of the operations were

PUSH 1,

POP 1,

MULTIPOPmin {s,

k},
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where k is the argument supplied to MULTIPOP and s is the stack size

when it is called. Let us assign the following amortized costs:

PUSH 2,

POP 0,

MULTIPOP0.

The amortized cost of MULTIPOP is a constant (0), whereas the actual

cost is variable, and thus all three amortized costs are constant. In

general, the amortized costs of the operations under consideration may

differ from each other, and they may even differ asymptotically.

Now let’s see how to pay for any sequence of stack operations by

charging the amortized costs. Let $1 represent each unit of cost. At first,

the stack is empty. Recall the analogy of Section 10.1.3 between the

stack data structure and a stack of plates in a cafeteria. Upon pushing a

plate onto the stack, use $1 to pay the actual cost of the push, leaving a

credit of $1 (out of the $2 charged). Place that $1 of credit on top of the

plate. At any point in time, every plate on the stack has $1 of credit on

it.

The $1 stored on the plate serves to prepay the cost of popping the

plate from the stack. A POP operation incurs no charge: pay the actual

cost of popping a plate by taking the $1 of credit off the plate. Thus, by

charging the PUSH operation a little bit more, we can view the POP

operation as free.

Moreover, the MULTIPOP operation also incurs no charge, since it’s

just repeated POP operations, each of which is free. If a MULTIPOP

operation pops k plates, then the actual cost is paid by the k dollars

stored on the k plates. Because each plate on the stack has $1 of credit

on it, and the stack always has a nonnegative number of plates, the

amount of credit is always nonnegative. Thus, for any sequence of n

PUSH, POP, and MULTIPOP operations, the total amortized cost is

an upper bound on the total actual cost. Since the total amortized cost

is O(n), so is the total actual cost.

Incrementing a binary counter
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As another illustration of the accounting method, let’s analyze the

INCREMENT operation on a binary counter that starts at 0. Recall

that the running time of this operation is proportional to the number of

bits flipped, which serves as the cost for this example. Again, we’ll use

$1 to represent each unit of cost (the flipping of a bit in this example).

For the amortized analysis, the amortized cost to set a 0-bit to 1 is

$2. When a bit is set to 1, $1 of the $2 pays to actually set the bit. The

second $1 resides on the bit as credit to be used later if and when the bit

is reset to 0. At any point in time, every 1-bit in the counter has $1 of

credit on it, and thus resetting a bit to 0 can be viewed as costing

nothing, and the $1 on the bit prepays for the reset.

Here is how to determine the amortized cost of INCREMENT. The

cost of resetting the bits to 0 within the while loop is paid for by the

dollars on the bits that are reset. The INCREMENT procedure sets at

most one bit to 1, in line 6, and therefore the amortized cost of an

INCREMENT operation is at most $2. The number of 1-bits in the

counter never becomes negative, and thus the amount of credit stays

nonnegative at all times. Thus, for n INCREMENT operations, the

total amortized cost is O(n), which bounds the total actual cost.

Exercises

16.2-1

You perform a sequence of PUSH and POP operations on a stack

whose size never exceeds k. After every k operations, a copy of the entire

stack is made automatically, for backup purposes. Show that the cost of

n stack operations, including copying the stack, is O(n) by assigning

suitable amortized costs to the various stack operations.

16.2-2

Redo Exercise 16.1-3 using an accounting method of analysis.

16.2-3

You wish not only to increment a counter but also to reset it to 0 (i.e.,

make all bits in it 0). Counting the time to examine or modify a bit as

Θ(1), show how to implement a counter as an array of bits so that any
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sequence of n INCREMENT and RESET operations takes O(n) time

on an initially zero counter. (Hint: Keep a pointer to the high-order 1.)

16.3    The potential method

Instead of representing prepaid work as credit stored with specific

objects in the data structure, the potential method of amortized analysis

represents the prepaid work as “potential energy,” or just “potential,”

which can be released to pay for future operations. The potential applies

to the data structure as a whole rather than to specific objects within the

data structure.

The potential method works as follows. Starting with an initial data

structure D0, a sequence of n operations occurs. For each i = 1, 2, … , n,

let ci be the actual cost of the ith operation and Di be the data structure

that results after applying the ith operation to data structure Di−1. A

potential function Φ maps each data structure Di to a real number

Φ(Di), which is the potential associated with Di. The amortized cost ĉi of

the ith operation with respect to potential function Φ is defined by

The amortized cost of each operation is therefore its actual cost plus the

change in potential due to the operation. By equation (16.2), the total

amortized cost of the n operations is

The second equation follows from equation (A.12) on page 1143

because the Φ(Di) terms telescope.

If you can define a potential function Φ so that Φ(Dn) ≥ Φ(D0), then

the total amortized cost  gives an upper bound on the total actual
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cost . In practice, you don’t always know how many operations

might be performed. Therefore, if you require that Φ(Di) ≥ Φ(D0) for all

i, then you guarantee, as in the accounting method, that you’ve paid in

advance. It’s usually simplest to just define Φ(D0) to be 0 and then show

that Φ(Di) ≥ 0 for all i. (See Exercise 16.3-1 for an easy way to handle

cases in which Φ(D0) ≠ 0.)

Intuitively, if the potential difference Φ(Di) − Φ(Di−1) of the ith

operation is positive, then the amortized cost ĉi represents an

overcharge to the ith operation, and the potential of the data structure

increases. If the potential difference is negative, then the amortized cost

represents an undercharge to the ith operation, and the decrease in the

potential pays for the actual cost of the operation.

The amortized costs defined by equations (16.2) and (16.3) depend

on the choice of the potential function Φ. Different potential functions

may yield different amortized costs, yet still be upper bounds on the

actual costs. You will often find trade-offs that you can make in

choosing a potential function. The best potential function to use

depends on the desired time bounds.

Stack operations

To illustrate the potential method, we return once again to the example

of the stack operations PUSH, POP, and MULTIPOP. We define the

potential function Φ on a stack to be the number of objects in the stack.

The potential of the empty initial stack D0 is Φ(D0) = 0. Since the

number of objects in the stack is never negative, the stack Di that results

after the ith operation has nonnegative potential, and thus

Φ(Di) ≥ 0

= Φ(D0).

The total amortized cost of n operations with respect to Φ therefore

represents an upper bound on the actual cost.
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Now let’s compute the amortized costs of the various stack

operations. If the ith operation on a stack containing s objects is a

PUSH operation, then the potential difference is

Φ(Di) − Φ(Di−1) = (s + 1) − s

= 1.

By equation (16.2), the amortized cost of this PUSH operation is

ĉi = ci + Φ(Di) − Φ(Di−1)

= 1 + 1

= 2.

Suppose that the ith operation on the stack of s objects is

MULTIPOP(S, k), which causes k′ = min {s, k} objects to be popped

off the stack. The actual cost of the operation is k′, and the potential

difference is

Φ(Di) − Φ(Di−1) = −k′.

Thus, the amortized cost of the MULTIPOP operation is

ĉi = ci + Φ(Di) − Φ(Di−1)

= k′ − k′
= 0.

Similarly, the amortized cost of an ordinary POP operation is 0.

The amortized cost of each of the three operations is O(1), and thus

the total amortized cost of a sequence of n operations is O(n). Since

Φ(Di) ≥ Φ(D0), the total amortized cost of n operations is an upper

bound on the total actual cost. The worst-case cost of n operations is

therefore O(n).

Incrementing a binary counter

As another example of the potential method, we revisit incrementing a

k-bit binary counter. This time, the potential of the counter after the ith
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INCREMENT operation is defined to be the number of 1-bits in the

counter after the ith operation, which we’ll denote by bi.

Here is how to compute the amortized cost of an INCREMENT

operation. Suppose that the ith INCREMENT operation resets ti bits

to 0. The actual cost ci of the operation is therefore at most ti + 1, since

in addition to resetting ti bits, it sets at most one bit to 1. If bi = 0, then

the ith operation had reset all k bits to 0, and so bi−1 = ti = k. If bi > 0,

then bi = bi−1 −ti +1. In either case, bi ≤ bi−1 − ti + 1, and the potential

difference is

Φ(Di) − Φ(Di−1) ≤ (bi−1 − ti + 1) − bi−1

= 1 − ti.

The amortized cost is therefore

ĉi = ci + Φ(Di) − Φ(Di−1)

≤ (ti + 1) + (1 − ti)

= 2.

If the counter starts at 0, then Φ(D0) = 0. Since Φ(Di) ≥ 0 for all i, the

total amortized cost of a sequence of n INCREMENT operations is an

upper bound on the total actual cost, and so the worst-case cost of n

INCREMENT operations is O(n).

The potential method provides a simple and clever way to analyze

the counter even when it does not start at 0. The counter starts with b0

1-bits, and after n INCREMENT operations it has bn 1-bits, where 0 ≤

b0, bn ≤ k. Rewrite equation (16.3) as

Since Φ(D0) = b0, Φ(Dn) = bn, and ĉi ≤ 2 for all 1 ≤ i ≤ n, the total

actual cost of n INCREMENT operations is
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In particular, b0 ≤ k means that as long as k = O(n), the total actual cost

is O(n). In other words, if at least n = Ω(k) INCREMENT operations

occur, the total actual cost is O(n), no matter what initial value the

counter contains.

Exercises

16.3-1

Suppose you have a potential function Φ such that Φ(Di) ≥ Φ(D0) for all

i, but Φ(D0) ≠ 0. Show that there exists a potential function Φ′ such that

Φ′(D0) = 0, Φ′(Di) ≥ 0 for all i ≥ 1, and the amortized costs using Φ′ are

the same as the amortized costs using Φ.

16.3-2

Redo Exercise 16.1-3 using a potential method of analysis.

16.3-3

Consider an ordinary binary min-heap data structure supporting the

instructions INSERT and EXTRACT-MIN that, when there are n

items in the heap, implements each operation in O(lg n) worst-case time.

Give a potential function Φ such that the amortized cost of INSERT is

O(lg n) and the amortized cost of EXTRACT-MIN is O(1), and show

that your potential function yields these amortized time bounds. Note

that in the analysis, n is the number of items currently in the heap, and

you do not know a bound on the maximum number of items that can

ever be stored in the heap.

16.3-4

What is the total cost of executing n of the stack operations PUSH,

POP, and MULTIPOP, assuming that the stack begins with s0 objects

and finishes with sn objects?
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16.3-5

Show how to implement a queue with two ordinary stacks (Exercise

10.1-7) so that the amortized cost of each ENQUEUE and each

DEQUEUE operation is O(1).

16.3-6

Design a data structure to support the following two operations for a

dynamic multiset S of integers, which allows duplicate values:

INSERT(S, x) inserts x into S.

DELETE-LARGER-HALF(S) deletes the largest ⌈|S|/2⌉ elements from

S.

Explain how to implement this data structure so that any sequence of m

INSERT and DELETE-LARGER-HALF operations runs in O(m)

time. Your implementation should also include a way to output the

elements of S in O(|S|) time.

16.4    Dynamic tables

When you design an application that uses a table, you do not always

know in advance how many items the table will hold. You might

allocate space for the table, only to find out later that it is not enough.

The program must then reallocate the table with a larger size and copy

all items stored in the original table over into the new, larger table.

Similarly, if many items have been deleted from the table, it might be

worthwhile to reallocate the table with a smaller size. This section

studies this problem of dynamically expanding and contracting a table.

Amortized analyses will show that the amortized cost of insertion and

deletion is only O(1), even though the actual cost of an operation is

large when it triggers an expansion or a contraction. Moreover, you’ll

see how to guarantee that the unused space in a dynamic table never

exceeds a constant fraction of the total space.

Let’s assume that the dynamic table supports the operations

TABLE-INSERT and TABLE-DELETE. TABLE-INSERT inserts

into the table an item that occupies a single slot, that is, a space for one
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item. Likewise, TABLE-DELETE removes an item from the table,

thereby freeing a slot. The details of the data-structuring method used

to organize the table are unimportant: it could be a stack (Section

10.1.3), a heap (Chapter 6), a hash table (Chapter 11), or something

else.

It is convenient to use a concept introduced in Section 11.2, where

we analyzed hashing. The load factor α(T) of a nonempty table T is

defined as the number of items stored in the table divided by the size

(number of slots) of the table. An empty table (one with no slots) has

size 0, and its load factor is defined to be 1. If the load factor of a

dynamic table is bounded below by a constant, the unused space in the

table is never more than a constant fraction of the total amount of

space.

We start by analyzing a dynamic table that allows only insertion and

then move on to the more general case that supports both insertion and

deletion.

16.4.1    Table expansion

Let’s assume that storage for a table is allocated as an array of slots. A

table fills up when all slots have been used or, equivalently, when its load

factor is 1.1 In some software environments, upon an attempt to insert

an item into a full table, the only alternative is to abort with an error.

The scenario in this section assumes, however, that the software

environment, like many modern ones, provides a memory-management

system that can allocate and free blocks of storage on request. Thus,

upon inserting an item into a full table, the system can expand the table

by allocating a new table with more slots than the old table had.

Because the table must always reside in contiguous memory, the system

must allocate a new array for the larger table and then copy items from

the old table into the new table.

A common heuristic allocates a new table with twice as many slots as

the old one. If the only table operations are insertions, then the load

factor of the table is always at least 1/2, and thus the amount of wasted

space never exceeds half the total space in the table.
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The TABLE-INSERT procedure on the following page assumes that

T is an object representing the table. The attribute T.table contains a

pointer to the block of storage representing the table, T.num contains

the number of items in the table, and T.size gives the total number of

slots in the table. Initially, the table is empty: T.num = T.size = 0.

There are two types of insertion here: the TABLE-INSERT

procedure itself and the elementary insertion into a table in lines 6 and

10. We can analyze the running time of TABLE-INSERT in terms of

the number of elementary insertions by assigning a cost of 1 to each

elementary insertion. In most computing environments, the overhead

for allocating an initial table in line 2 is constant and the overhead for

allocating and freeing storage in lines 5 and 7 is dominated by the cost

of transfer-ring items in line 6. Thus, the actual running time of

TABLE-INSERT is linear in the number of elementary insertions. An

expansion occurs when lines 5–9 execute.

TABLE-INSERT(T, x)

  1 if T.size == 0

  2 allocate T.table with 1 slot

  3 T.size = 1

  4 if T.num == T.size

  5 allocate new-table with 2 · T.size slots

  6 insert all items in T.table into new-table

  7 free T.table

  8 T.table = new-table

  9 T.size = 2 · T.size

10 insert x into T.table

11T.num = T.num + 1

Now, we’ll use all three amortized analysis techniques to analyze a

sequence of n TABLE-INSERT operations on an initially empty table.

First, we need to determine the actual cost ci of the ith operation. If the

current table has room for the new item (or if this is the first operation),

then ci = 1, since the only elementary insertion performed is the one in

line 10. If the current table is full, however, and an expansion occurs,
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then ci = i: the cost is 1 for the elementary insertion in line 10 plus i − 1

for the items copied from the old table to the new table in line 6. For n

operations, the worst-case cost of an operation is O(n), which leads to

an upper bound of O(n2) on the total running time for n operations.

This bound is not tight, because the table rarely expands in the

course of n TABLE-INSERT operations. Specifically, the ith operation

causes an expansion only when i − 1 is an exact power of 2. The

amortized cost of an operation is in fact O(1), as an aggregate analysis

shows. The cost of the ith operation is

The total cost of n TABLE-INSERT operations is therefore

because at most n operations cost 1 each and the costs of the remaining

operations form a geometric series. Since the total cost of n TABLE-

INSERT operations is bounded by 3n, the amortized cost of a single

operation is at most 3.
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Figure 16.3 Analysis of table expansion by the accounting method. Each call of TABLE-

INSERT charges $3 as follows: $1 to pay for the elementary insertion, $1 on the item inserted as

prepayment for it to be reinserted later, and $1 on an item that was already in the table, also as

prepayment for reinsertion. (a) The table immediately after an expansion, with 8 slots, 4 items

(tan slots), and no stored credit. (b)–(e) After each of 4 calls to TABLE-INSERT, the table has

one more item, with $1 stored on the new item and $1 stored on one of the 4 items that were

present immediately after the expansion. Slots with these new items are blue. (f) Upon the next

call to TABLE-INSERT, the table is full, and so it expands again. Each item had $1 to pay for it

to be reinserted. Now the table looks as it did in part (a), with no stored credit but 16 slots and 8

items.

The accounting method can provide some intuition for why the

amortized cost of a TABLE-INSERT operation should be 3. You can

think of each item paying for three elementary insertions: inserting itself

into the current table, moving itself the next time that the table expands,

and moving some other item that was already in the table the next time

that the table expands. For example, suppose that the size of the table is

m immediately after an expansion, as shown in Figure 16.3 for m = 8.

Then the table holds m/2 items, and it contains no credit. Each call of

TABLE-INSERT charges $3. The elementary insertion that occurs

immediately costs $1. Another $1 resides on the item inserted as credit.

The third $1 resides as credit on one of the m/2 items already in the

table. The table will not fill again until another m/2 − 1 items have been

inserted, and thus, by the time the table contains m items and is full,

each item has $1 on it to pay for it to be reinserted it during the

expansion.
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Now, let’s see how to use the potential method. We’ll use it again in

Section 16.4.2 to design a TABLE-DELETE operation that has an O(1)

amortized cost as well. Just as the accounting method had no stored

credit immediately after an expansion—that is, when T.num = T.size/2

—let’s define the potential to be 0 when T.num = T.size/2. As

elementary insertions occur, the potential needs to increase enough to

pay for all the reinsertions that will happen when the table next expands.

The table fills after another T.size/2 calls of TABLE-INSERT, when

T.num = T.size. The next call of TABLE-INSERT after these T.size/2

calls triggers an expansion with a cost of T.size to reinsert all the items.

Therefore, over the course of T.size/2 calls of TABLE-INSERT, the

potential must increase from 0 to T.size. To achieve this increase, let’s

design the potential so that each call of TABLE-INSERT increases it by

until the table expands. You can see that the potential function

equals 0 immediately after the table expands, when T.num = T.size/2,

and it increases by 2 upon each insertion until the table fills. Once the

table fills, that is, when T.num = T.size, the potential Φ(T) equals T.size.

The initial value of the potential is 0, and since the table is always at

least half full, T.num ≥ T.size/2, which implies that Φ(T) is always

nonnegative. Thus, the sum of the amortized costs of n TABLE-

INSERT operations gives an upper bound on the sum of the actual

costs.

To analyze the amortized costs of table operations, it is convenient to

think in terms of the change in potential due to each operation. Letting

Φi denote the potential after the ith operation, we can rewrite equation

(16.2) as

ĉi = ci + Φi − Φi−1

= ci + ΔΦi,
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where ΔΦi is the change in potential due to the ith operation. First,

consider the case when the ith insertion does not cause the table to

expand. In this case, ΔΦi is 2. Since the actual cost ci is 1, the amortized

cost is

ĉi = ci + ΔΦi

= 1 + 2

= 3.

Now, consider the change in potential when the table does expand

during the ith insertion because it was full immediately before the

insertion. Let numi denote the number of items stored in the table after

the ith operation and sizei denote the total size of the table after the ith

operation, so that sizei−1 = numi−1 = i − 1 and therefore Φi−1 =

2(sizei−1 − sizei−1/2) = sizei−1 = i − 1. Immediately after the

expansion, the potential goes down to 0, and then the new item is

inserted, causing the potential to increase to Φi = 2. Thus, when the ith

insertion triggers an expansion, ΔΦi = 2 − (i − 1) = 3 − i. When the

table expands in the ith TABLE-INSERT operation, the actual cost ci

equals i (to reinsert i − 1 items and insert the ith item), giving an

amortized cost of

ĉi = ci + ΔΦi

= i + (3 − i)

= 3.

Figure 16.4 plots the values of numi, sizei, and Φi against i. Notice how

the potential builds to pay for expanding the table.
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Figure 16.4 The effect of a sequence of n TABLE-INSERT operations on the number numi of

items in the table (the brown line), the number sizei of slots in the table (the blue line), and the

potential Φi = 2(numi − sizei/2) (the red line), each being measured after the ith operation.

Immediately before an expansion, the potential has built up to the number of items in the table,

and therefore it can pay for moving all the items to the new table. Afterward, the potential drops

to 0, but it immediately increases by 2 upon insertion of the item that caused the expansion.

16.4.2    Table expansion and contraction

To implement a TABLE-DELETE operation, it is simple enough to

remove the specified item from the table. In order to limit the amount of

wasted space, however, you might want to contract the table when the

load factor becomes too small. Table contraction is analogous to table

expansion: when the number of items in the table drops too low, allocate

a new, smaller table and then copy the items from the old table into the

new one. You can then free the storage for the old table by returning it

to the memory-management system. In order to not waste space, yet

keep the amortized costs low, the insertion and deletion procedures

should preserve two properties:

the load factor of the dynamic table is bounded below by a

positive constant, as well as above by 1, and
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the amortized cost of a table operation is bounded above by a

constant.

The actual cost of each operation equals the number of elementary

insertions or deletions.

You might think that if you double the table size upon inserting an

item into a full table, then you should halve the size when deleting an

item that would cause the table to become less than half full. This

strategy does indeed guarantee that the load factor of the table never

drops below 1/2. Unfortunately, it can also cause the amortized cost of

an operation to be quite large. Consider the following scenario. Perform

n operations on a table T of size n/2, where n is an exact power of 2. The

first n/2 operations are insertions, which by our previous analysis cost a

total of Θ(n). At the end of this sequence of insertions, T.num = T.size =

n/2. For the second n/2 operations, perform the following sequence:

insert, delete, delete, insert, insert, delete, delete, insert, insert,

….

The first insertion causes the table to expand to size n. The two

deletions that follow cause the table to contract back to size n/2. Two

further insertions cause another expansion, and so forth. The cost of

each expansion and contraction is Θ(n), and there are Θ(n) of them.

Thus, the total cost of the n operations is Θ(n2), making the amortized

cost of an operation Θ(n).

The problem with this strategy is that after the table expands, not

enough deletions occur to pay for a contraction. Likewise, after the

table contracts, not enough insertions take place to pay for an

expansion.

How can we solve this problem? Allow the load factor of the table to

drop below 1/2. Specifically, continue to double the table size upon

inserting an item into a full table, but halve the table size when deleting

an item causes the table to become less than 1/4 full, rather than 1/2 full

as before. The load factor of the table is therefore bounded below by the

constant 1/4, and the load factor is 1/2 immediately after a contraction.
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An expansion or contraction should exhaust all the built-up

potential, so that immediately after expansion or contraction, when the

load factor is 1/2, the table’s potential is 0. Figure 16.5 shows the idea.

As the load factor deviates from 1/2, the potential increases so that by

the time an expansion or contraction occurs, the table has garnered

sufficient potential to pay for copying all the items into the newly

allocated table. Thus, the potential function should grow to T.num by

the time that the load factor has either increased to 1 or decreased to

1/4. Immediately after either expanding or contracting the table, the

load factor goes back to 1/2 and the table’s potential reduces back to 0.

Figure 16.5 How to think about the potential function Φ for table insertion and deletion. When

the load factor α is 1/2, the potential is 0. In order to accumulate sufficient potential to pay for

reinserting all T.size items when the table fills, the potential needs to increase by 2 upon each

insertion when α ≥ 1/2. Correspondingly, the potential decreases by 2 upon each deletion that

leaves α ≥ 1/2. In order to accrue enough potential to cover the cost of reinserting all T.size/4

items when the table contracts, the potential needs to increase by 1 upon each deletion when α <

1/2, and correspondingly the potential decreases by 1 upon each insertion that leaves α < 1/2.

The red area represents load factors less than 1/4, which are not allowed.

We omit the code for TABLE-DELETE, since it is analogous to

TABLE-INSERT. We assume that if a contraction occurs during

TABLE-DELETE, it occurs after the item is deleted from the table. The

analysis assumes that whenever the number of items in the table drops

to 0, the table occupies no storage. That is, if T.num = 0, then T.size = 0.

How do we design a potential function that gives constant amortized

time for both insertion and deletion? When the load factor is at least

1/2, the same potential function, Φ(T) = 2(T.num − T.size/2), that we
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used for insertion still works. When the table is at least half full, each

insertion increases the potential by 2 if the table does not expand, and

each deletion reduces the potential by 2 if it does not cause the load

factor to drop below 1/2.

What about when the load factor is less than 1/2, that is, when 1/4 ≤

α(T) < 1/2? As before, when α(T) = 1/2, so that T.num = T.size/2, the

potential Φ(T) should be 0. To get the load factor from 1/2 down to 1/4,

T.size/4 deletions need to occur, at which time T.num = T.size/4. To pay

for all the reinsertions, the potential must increase from 0 to T.size/4

over these T.size/4 deletions. Therefore, for each call of TABLE-

DELETE until the table contracts, the potential should increase by

Likewise, when α < 1/2, each call of TABLE-INSERT should decrease

the potential by 1. When 1/4 ≤ α(T) < 1/2, the potential function

Φ(T) = T.size/2 − T.num

produces this desired behavior.

Putting the two cases together, we get the potential function

The potential of an empty table is 0 and the potential is never negative.

Thus, the total amortized cost of a sequence of operations with respect

to Φ provides an upper bound on the actual cost of the sequence. Figure

16.6 illustrates how the potential function behaves over a sequence of

insertions and deletions.

Now, let’s determine the amortized costs of each operation. As

before, let numi denote the number of items stored in the table after the

ith operation, sizei denote the total size of the table after the ith

operation, αi = numi/sizei denote the load factor after the ith operation,

Φi denote the potential after the ith operation, and ΔΦi denote the
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change in potential due to the ith operation. Initially, num0 = 0, size0 =

0, and Φ0 = 0.

The cases in which the table does not expand or contract and the

load factor does not cross α = 1/2 are straightforward. As we have seen,

if αi−1 ≥ 1/2 and the ith operation is an insertion that does not cause the

table to expand, then ΔΦi = 2. Likewise, if the ith operation is a deletion

and αi ≥ 1/2, then ΔΦi = −2. Furthermore, if αi−1 < 1/2 and the ith

operation is a deletion that does not trigger a contraction, then ΔΦi = 1,

and if the ith operation is an insertion and αi < 1/2, then ΔΦi = −1. In

other words, if no expansion or contraction occurs and the load factor

does not cross α = 1/2, then

if the load factor stays at or above 1/2, then the potential increases

by 2 for an insertion and decreases by 2 for a deletion, and

if the load factor stays below 1/2, then the potential increases by 1

for a deletion and decreases by 1 for an insertion.

In each of these cases, the actual cost ci of the ith operation is just 1,

and so
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Figure 16.6 The effect of a sequence of n TABLE-INSERT and TABLE-DELETE operations

on the number numi of items in the table (the brown line), the number sizei of slots in the table

(the blue line), and the potential (the red line)

where αi = numi/sizei, each measured after the ith operation. Immediately before an expansion

or contraction, the potential has built up to the number of items in the table, and therefore it

can pay for moving all the items to the new table.

if the ith operation is an insertion, its amortized cost ĉi is ci +

ΔΦi, which is 1 + 2 = 3 if the load factor stays at or above 1/2, and

1 + (−1) = 0 if the load factor stays below 1/2, and

if the ith operation is a deletion, its amortized cost ĉi is ci + ΔΦi,

which is 1 + (−2) = −1 if the load factor stays at or above 1/2, and

1 + 1 = 2 if the load factor stays below 1/2.

Four cases remain: an insertion that takes the load factor from below

1/2 to 1/2, a deletion that takes the load factor from 1/2 to below 1/2, a

deletion that causes the table to contract, and an insertion that causes

the table to expand. We analyzed that last case at the end of Section

16.4.1 to show that its amortized cost is 3.

www.konkur.in

Telegram: @uni_k



When the ith operation is a deletion that causes the table to contract,

we have numi−1 = sizei−1/4 before the contraction, then the item is

deleted, and finally numi = sizei/2 − 1 after the contraction. Thus, by

equation (16.5) we have

Φi−1 = sizei−1/2 − numi−1

= sizei−1/2 − sizei−1/4

= sizei−1/4,

which also equals the actual cost ci of deleting one item and copying

sizei−1/4 − 1 items into the new, smaller table. Since numi = sizei/2 − 1

after the operation has completed, αi < 1/2, and so

Φi = sizei/2 − numi

= 1,

giving ΔΦi = 1 − sizei−1/4. Therefore, when the ith operation is a

deletion that triggers a contraction, its amortized cost is

ĉi = ci + ΔΦi

= sizei−1/4 + (1 − sizei−1/4)

= 1.

Finally, we handle the cases where the load factor fits one case of

equation (16.5) before the operation and the other case afterward. We

start with deletion, where we have numi−1 = sizei−1/2, so that αi−1 =

1/2, beforehand, and numi = sizei/2−1, so that αi < 1/2 afterward.

Because αi−1 = 1/2, we have Φi−1 = 0, and because αi < 1/2, we have Φi

= sizei/2 − numi = 1. Thus we get that ΔΦi = 1 − 0 = 1. Since the ith

operation is a deletion that does not cause a contraction, the actual cost

ci equals 1, and the amortized cost ĉi is ci + ΔΦi = 1 + 1 = 2.

Conversely, if the ith operation is an insertion that takes the load

factor from below 1/2 to equaling 1/2, the change in potential ΔΦi
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equals −1. Again, the actual cost ci is 1, and now the amortized cost ĉi

is ci + ΔΦi = 1 + (−1) = 0.

In summary, since the amortized cost of each operation is bounded

above by a constant, the actual time for any sequence of n operations on

a dynamic table is O(n).

Exercises

16.4-1

Using the potential method, analyze the amortized cost of the first table

insertion.

16.4-2

You wish to implement a dynamic, open-address hash table. Why might

you consider the table to be full when its load factor reaches some value

α that is strictly less than 1? Describe briefly how to make insertion into

a dynamic, open-address hash table run in such a way that the expected

value of the amortized cost per insertion is O(1). Why is the expected

value of the actual cost per insertion not necessarily O(1) for all

insertions?

16.4-3

Discuss how to use the accounting method to analyze both the insertion

and deletion operations, assuming that the table doubles in size when its

load factor exceeds 1 and the table halves in size when its load factor

goes below 1/4.

16.4-4

Suppose that instead of contracting a table by halving its size when its

load factor drops below 1/4, you contract the table by multiplying its

size by 2/3 when its load factor drops below 1/3. Using the potential

function

Φ(T) = |2(T.num − T.size/2)|,

show that the amortized cost of a TABLE-DELETE that uses this

strategy is bounded above by a constant.
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Problems

16-1     Binary reflected Gray code

A binary Gray code represents a sequence of nonnegative integers in

binary such that to go from one integer to the next, exactly one bit flips

every time. The binary reflected Gray code represents a sequence of the

integers 0 to 2k − 1 for some positive integer k according to the

following recursive method:

For k = 1, the binary reflected Gray code is 〈0, 1〉.

For k ≥ 2, first form the binary reflected Gray code for k − 1,

giving the 2k−1 integers 0 to 2k−1 − 1. Then form the reflection

of this sequence, which is just the sequence in reverse. (That is, the

j th integer in the sequence becomes the (2k−1 − j − 1)st integer in

the reflection). Next, add 2k−1 to each of the 2k−1 integers in the

reflected sequence. Finally, concatenate the two sequences.

For example, for k = 2, first form the binary reflected Gray code 〈0,

1〉 for k = 1. Its reflection is the sequence 〈1, 0〉. Adding 2k−1 = 2 to

each integer in the reflection gives the sequence 〈3, 2〉. Concatenating

the two sequences gives 〈0, 1, 3, 2〉 or, in binary, 〈00, 01, 11, 10〉, so that

each integer differs from its predecessor by exactly one bit. For k = 3,

the reflection of the binary reflected Gray code for k = 2 is 〈2, 3, 1, 0〉

and adding 2k−1 = 4 gives 〈6, 7, 5, 4〉. Concatenating produces the

sequence 〈0, 1, 3, 2, 6, 7, 5, 4〉, which in binary is 〈000, 001, 011, 010,

110, 111, 101,100〉. In the binary reflected Gray code, only one bit flips

even when wrapping around from the last integer to the first.

a. Index the integers in a binary reflected Gray code from 0 to 2k − 1,

and consider the ith integer in the binary reflected Gray code. To go

from the (i −1)st integer to the ith integer in the binary reflected Gray

code, exactly one bit flips. Show how to determine which bit flips,

given the index i.
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b. Assuming that given a bit number j, you can flip bit j of an integer in

constant time, show how to compute the entire binary reflected Gray

code sequence of 2k numbers in Θ(2k) time.

16-2     Making binary search dynamic

Binary search of a sorted array takes logarithmic search time, but the

time to insert a new element is linear in the size of the array. You can

improve the time for insertion by keeping several sorted arrays.

Specifically, suppose that you wish to support SEARCH and

INSERT on a set of n elements. Let k = ⌈lg(n + 1)⌉, and let the binary

representation of n be 〈nk−1, nk−2, … , n0〉. Maintain k sorted arrays

A0, A1, … , Ak−1, where for i = 0, 1, … , k − 1, the length of array Ai is

2i. Each array is either full or empty, depending on whether ni = 1 or ni

= 0, respectively. The total number of elements held in all k arrays is

therefore . Although each individual array is sorted,

elements in different arrays bear no particular relationship to each

other.

a. Describe how to perform the SEARCH operation for this data

structure. Analyze its worst-case running time.

b. Describe how to perform the INSERT operation. Analyze its worst-

case and amortized running times, assuming that the only operations

are INSERT and SEARCH.

c. Describe how to implement DELETE. Analyze its worst-case and

amortized running times, assuming that there can be DELETE,

INSERT, and SEARCH operations.

16-3     Amortized weight-balanced trees

Consider an ordinary binary search tree augmented by adding to each

node x the attribute x.size, which gives the number of keys stored in the

subtree rooted at x. Let α be a constant in the range 1/2 ≤ α < 1. We say

that a given node x is α-balanced if x.left.size ≤ α · x.size and x.right.size

≤ α · x.size. The tree as a whole is α-balanced if every node in the tree is
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α-balanced. The following amortized approach to maintaining weight-

balanced trees was suggested by G. Varghese.

a. A 1/2-balanced tree is, in a sense, as balanced as it can be. Given a

node x in an arbitrary binary search tree, show how to rebuild the

subtree rooted at x so that it becomes 1/2-balanced. Your algorithm

should run in Θ(x.size) time, and it can use O(x.size) auxiliary storage.

b. Show that performing a search in an n-node α-balanced binary search

tree takes O(lg n) worst-case time.

For the remainder of this problem, assume that the constant α is strictly

greater than 1/2. Suppose that you implement INSERT and DELETE

as usual for an n-node binary search tree, except that after every such

operation, if any node in the tree is no longer α-balanced, then you

“rebuild” the subtree rooted at the highest such node in the tree so that

it becomes 1/2-balanced.

We’ll analyze this rebuilding scheme using the potential method. For

a node x in a binary search tree T, define

Δ(x) = |x.left.size − x.right.size|.

Define the potential of T as

where c is a sufficiently large constant that depends on α.

c. Argue that any binary search tree has nonnegative potential and also

that a 1/2-balanced tree has potential 0.

d. Suppose that m units of potential can pay for rebuilding an m-node

subtree. How large must c be in terms of α in order for it to take O(1)

amortized time to rebuild a subtree that is not α-balanced?

e. Show that inserting a node into or deleting a node from an n-node α-

balanced tree costs O(lg n) amortized time.

16-4     The cost of restructuring red-black trees
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There are four basic operations on red-black trees that perform

structural modifications: node insertions, node deletions, rotations, and

color changes. We have seen that RB-INSERT and RB-DELETE use

only O(1) rotations, node insertions, and node deletions to maintain the

red-black properties, but they may make many more color changes.

a. Describe a legal red-black tree with n nodes such that calling RB-

INSERT to add the (n + 1)st node causes Ω(lg n) color changes. Then

describe a legal red-black tree with n nodes for which calling RB-

DELETE on a particular node causes Ω(lg n) color changes.

Although the worst-case number of color changes per operation can be

logarithmic, you will prove that any sequence of m RB-INSERT and

RB-DELETE operations on an initially empty red-black tree causes

O(m) structural modifications in the worst case.

b. Some of the cases handled by the main loop of the code of both RB-

INSERT-FIXUP and RB-DELETE-FIXUP are terminating: once

encountered, they cause the loop to terminate after a constant number

of additional operations. For each of the cases of RB-INSERT-

FIXUP and RB-DELETE-FIXUP, specify which are terminating and

which are not. (Hint: Look at Figures 13.5, 13.6, and 13.7 in Sections

13.3 and 13.4.)

You will first analyze the structural modifications when only insertions

are performed. Let T be a red-black tree, and define Φ(T) to be the

number of red nodes in T. Assume that one unit of potential can pay for

the structural modifications performed by any of the three cases of RB-

INSERT-FIXUP.

c. Let T′ be the result of applying Case 1 of RB-INSERT-FIXUP to T.

Argue that Φ(T′) = Φ(T) − 1.

d. We can break the operation of the RB-INSERT procedure into three

parts. List the structural modifications and potential changes resulting

from lines 1–16 of RB-INSERT, from nonterminating cases of RB-

INSERT-FIXUP, and from terminating cases of RB-INSERT-

FIXUP.
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e. Using part (d), argue that the amortized number of structural

modifications performed by any call of RB-INSERT is O(1).

Next you will prove that there are O(m) structural modifications when

both insertions and deletions occur. Define, for each node x,

Now redefine the potential of a red-black tree T as

and let T′ be the tree that results from applying any nonterminating case

of RB-INSERT-FIXUP or RB-DELETE-FIXUP to T.

f. Show that Φ(T′) ≤ Φ(T) − 1 for all nonterminating cases of RB-

INSERT-FIXUP. Argue that the amortized number of structural

modifications performed by any call of RB-INSERT-FIXUP is O(1).

g. Show that Φ(T′) ≤ Φ(T) − 1 for all nonterminating cases of RB-

DELETE-FIXUP. Argue that the amortized number of structural

modifications performed by any call of RB-DELETE-FIXUP is O(1).

h. Complete the proof that in the worst case, any sequence of m RB-

INSERT and RB-DELETE operations performs O(m) structural

modifications.

Chapter notes

Aho, Hopcroft, and Ullman [5] used aggregate analysis to determine the

running time of operations on a disjoint-set forest. We’ll analyze this

data structure using the potential method in Chapter 19. Tarjan [430]

surveys the accounting and potential methods of amortized analysis

and presents several applications. He attributes the accounting method

to several authors, including M. R. Brown, R. E. Tarjan, S. Huddleston,
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and K. Mehlhorn. He attributes the potential method to D. D. Sleator.

The term “amortized” is due to D. D. Sleator and R. E. Tarjan.

Potential functions are also useful for proving lower bounds for

certain types of problems. For each configuration of the problem, define

a potential function that maps the configuration to a real number. Then

determine the potential Φinit of the initial configuration, the potential

Φfinal of the final configuration, and the maximum change in potential

ΔΦmax due to any step. The number of steps must therefore be at least |

Φfinal − Φinit| / | ΔΦmax|. Examples of potential functions to prove

lower bounds in I/O complexity appear in works by Cormen, Sundquist,

and Wisniewski [105], Floyd [146], and Aggarwal and Vitter [3].

Krumme, Cybenko, and Venkataraman [271] applied potential

functions to prove lower bounds on gossiping: communicating a unique

item from each vertex in a graph to every other vertex.

1 In some situations, such as an open-address hash table, it’s better to consider a table to be full

if its load factor equals some constant strictly less than 1. (See Exercise 16.4-2.)
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Part V    Advanced Data Structures
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Introduction

This part returns to studying data structures that support operations on

dynamic sets, but at a more advanced level than Part III. One of the

chapters, for example, makes extensive use of the amortized analysis

techniques from Chapter 16.

Chapter 17 shows how to augment red-black trees—adding

additional information in each node—to support dynamic-set

operations in addition to those covered in Chapters 12 and 13. The first

example augments red-black trees to dynamically maintain order

statistics for a set of keys. Another example augments them in a

different way to maintain intervals of real numbers. Chapter 17 includes

a theorem giving sufficient conditions for when a red-black tree can be

augmented while maintaining the O(lg n) running times for insertion

and deletion.

Chapter 18 presents B-trees, which are balanced search trees

specifically designed to be stored on disks. Since disks operate much

more slowly than random-access memory, B-tree performance depends

not only on how much computing time the dynamic-set operations

consume but also on how many disk accesses they perform. For each B-

tree operation, the number of disk accesses increases with the height of

the B-tree, but B-tree operations keep the height low.

Chapter 19 examines data structures for disjoint sets. Starting with a

universe of n elements, each initially in its own singleton set, the

operation UNION unites two sets. At all times, the n elements are

partitioned into disjoint sets, even as calls to the UNION operation
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change the members of a set dynamically. The query FIND-SET

identifies the unique set that contains a given element at the moment.

Representing each set as a simple rooted tree yields surprisingly fast

operations: a sequence of m operations runs in O(mα(n)) time, where

α(n) is an incredibly slowly growing function—α(n) is at most 4 in any

conceivable application. The amortized analysis that proves this time

bound is as complex as the data structure is simple.

The topics covered in this part are by no means the only examples of

“advanced” data structures. Other advanced data structures include the

following:

Fibonacci heaps [156] implement mergeable heaps (see Problem

10-2 on page 268) with the operations INSERT, MINIMUM, and

UNION taking only O(1) actual and amortized time, and the

operations EXTRACT-MIN and DELETE taking O(lg n)

amortized time. The most significant advantage of these data

structures, however, is that DECREASE-KEY takes only O(1)

amortized time. Strict Fibonacci heaps [73], developed later, made

all of these time bounds actual. Because the DECREASE-KEY

operation takes constant amortized time, (strict) Fibonacci heaps

constitute key components of some of the asymptotically fastest

algorithms to date for graph problems.

Dynamic trees [415, 429] maintain a forest of disjoint rooted trees.

Each edge in each tree has a real-valued cost. Dynamic trees

support queries to find parents, roots, edge costs, and the

minimum edge cost on a simple path from a node up to a root.

Trees may be manipulated by cutting edges, updating all edge

costs on a simple path from a node up to a root, linking a root

into another tree, and making a node the root of the tree it

appears in. One implementation of dynamic trees gives an O(lg n)

amortized time bound for each operation, while a more

complicated implementation yields O(lg n) worst-case time

bounds. Dynamic trees are used in some of the asymptotically

fastest network-flow algorithms.
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Splay trees [418, 429] are a form of binary search tree on which

the standard search-tree operations run in O(lg n) amortized time.

One application of splay trees simplifies dynamic trees.

Persistent data structures allow queries, and sometimes updates as

well, on past versions of a data structure. For example, linked data

structures can be made persistent with only a small time and

space cost [126]. Problem 13-1 gives a simple example of a

persistent dynamic set.

Several data structures allow a faster implementation of

dictionary operations (INSERT, DELETE, and SEARCH) for a

restricted universe of keys. By taking advantage of these

restrictions, they are able to achieve better worst-case asymptotic

running times than comparison-based data structures. If the keys

are unique integers drawn from the set {0, 1, 2, … , u − 1}, where

u is an exact power of 2, then a recursive data structure known as

a van Emde Boas tree [440, 441] supports each of the operations

SEARCH, INSERT, DELETE, MINIMUM, MAXIMUM,

SUCCESSOR, and PREDECESSOR in O(lg lg u) time. Fusion

trees [157] were the first data structure to allow faster dictionary

operations when the universe is restricted to integers,

implementing these operations in O(lg n/lg lg n) time. Several

subsequent data structures, including exponential search trees [17],

have also given improved bounds on some or all of the dictionary

operations and are mentioned in the chapter notes throughout

this book.

Dynamic graph data structures support various queries while

allowing the structure of a graph to change through operations

that insert or delete vertices or edges. Examples of the queries that

they support include vertex connectivity [214], edge connectivity,

minimum spanning trees [213], biconnectivity, and transitive

closure [212].

Chapter notes throughout this book mention additional data structures.
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17        Augmenting Data Structures

Some solutions require no more than a “textbook” data structure—

such as a doubly linked list, a hash table, or a binary search tree—but

many others require a dash of creativity. Rarely will you need to create

an entirely new type of data structure, though. More often, you can

augment a textbook data structure by storing additional information in

it. You can then program new operations for the data structure to

support your application. Augmenting a data structure is not always

straightforward, however, since the added information must be updated

and maintained by the ordinary operations on the data structure.

This chapter discusses two data structures based on red-black trees

that are augmented with additional information. Section 17.1 describes

a data structure that supports general order-statistic operations on a

dynamic set: quickly finding the ith smallest number or the rank of a

given element. Section 17.2 abstracts the process of augmenting a data

structure and provides a theorem that you can use when augmenting

red-black trees. Section 17.3 uses this theorem to help design a data

structure for maintaining a dynamic set of intervals, such as time

intervals. You can use this data structure to quickly find an interval that

overlaps a given query interval.

17.1    Dynamic order statistics

Chapter 9 introduced the notion of an order statistic. Specifically, the

ith order statistic of a set of n elements, where i ∈ {1, 2, … , n}, is
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simply the element in the set with the ith smallest key. In Chapter 9, you

saw how to determine any order statistic in O(n) time from an

unordered set. This section shows how to modify red-black trees so that

you can determine any order statistic for a dynamic set in O(lg n) time

and also compute the rank of an element—its position in the linear

order of the set—in O(lg n) time.

Figure 17.1 An order-statistic tree, which is an augmented red-black tree. In addition to its usual

attributes, each node x has an attribute x.size, which is the number of nodes, other than the

sentinel, in the subtree rooted at x.

Figure 17.1 shows a data structure that can support fast order-

statistic operations. An order-statistic tree T is simply a red-black tree

with additional information stored in each node. Each node x contains

the usual red-black tree attributes x.key, x.color, x.p, x.left, and x.right,

along with a new attribute, x.size. This attribute contains the number of

internal nodes in the subtree rooted at x (including x itself, but not

including any sentinels), that is, the size of the subtree. If we define the

sentinel’s size to be 0—that is, we set T.nil.size to be 0—then we have the

identity

x.size = x.left.size + x.right.size + 1.

Keys need not be distinct in an order-statistic tree. For example, the

tree in Figure 17.1 has two keys with value 14 and two keys with value

21. When equal keys are present, the above notion of rank is not well

defined. We remove this ambiguity for an order-statistic tree by defining

the rank of an element as the position at which it would be printed in an

inorder walk of the tree. In Figure 17.1, for example, the key 14 stored
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in a black node has rank 5, and the key 14 stored in a red node has rank

6.

Retrieving the element with a given rank

Before we show how to maintain the size information during insertion

and deletion, let’s see how to implement two order-statistic queries that

use this additional information. We begin with an operation that

retrieves the element with a given rank. The procedure OS-SELECT(x,

i) on the following page returns a pointer to the node containing the ith

smallest key in the subtree rooted at x. To find the node with the ith

smallest key in an order-statistic tree T, call OS-SELECT(T.root, i).

Here is how OS-SELECT works. Line 1 computes r, the rank of

node x within the subtree rooted at x. The value of x.left.size is the

number of nodes that come before x in an inorder tree walk of the

subtree rooted at x. Thus, x.left.size + 1 is the rank of x within the

subtree rooted at x. If i = r, then node x is the ith smallest element, and

so line 3 returns x. If i < r, then the ith smallest element resides in x’s

left subtree, and therefore, line 5 recurses on x.left. If i > r, then the ith

smallest element resides in x’s right subtree. Since the subtree rooted at

x contains r elements that come before x’s right subtree in an inorder

tree walk, the ith smallest element in the subtree rooted at x is the (i −

r)th smallest element in the subtree rooted at x.right. Line 6 determines

this element recursively.

OS-SELECT(x, i)

1 r = x.left.size + 1 // rank of x within the subtree rooted at x

2 if i == r

3 return x

4 elseif i < r

5 return OS-SELECT(x.left, i)

6 else return OS-SELECT(x.right, i − r)

As an example of how OS-SELECT operates, consider a search for

the 17th smallest element in the order-statistic tree of Figure 17.1. The

search starts with x as the root, whose key is 26, and with i = 17. Since
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the size of 26’s left subtree is 12, its rank is 13. Thus, the node with rank

17 is the 17 − 13 = 4th smallest element in 26’s right subtree. In the

recursive call, x is the node with key 41, and i = 4. Since the size of 41’s

left subtree is 5, its rank within its subtree is 6. Therefore, the node with

rank 4 is the 4th smallest element in 41’s left subtree. In the recursive

call, x is the node with key 30, and its rank within its subtree is 2. The

procedure recurses once again to find the 4 − 2 = 2nd smallest element

in the subtree rooted at the node with key 38. Its left subtree has size 1,

which means it is the second smallest element. Thus, the procedure

returns a pointer to the node with key 38.

Because each recursive call goes down one level in the order-statistic

tree, the total time for OS-SELECT is at worst proportional to the

height of the tree. Since the tree is a red-black tree, its height is O(lg n),

where n is the number of nodes. Thus, the running time of OS-SELECT

is O(lg n) for a dynamic set of n elements.

Determining the rank of an element

Given a pointer to a node x in an order-statistic tree T, the procedure

OS-RANK on the facing page returns the position of x in the linear

order determined by an inorder tree walk of T.

OS-RANK(T, x)

1 r = x.left.size + 1 // rank of x within the subtree

rooted at x

2 y = x // root of subtree being examined

3 while y ≠ T.root

4 if y == y.p.right  // if root of a right subtree …

5 r = r + y.p.left.size

+ 1

 // … add in parent and its left

subtree

6 y = y.p  // move y toward the root

7 return r

The OS-RANK procedure works as follows. You can think of node

x’s rank as the number of nodes preceding x in an inorder tree walk,

plus 1 for x itself. OS-RANK maintains the following loop invariant:
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At the start of each iteration of the while loop of lines 3–6, r is

the rank of x.key in the subtree rooted at node y.

We use this loop invariant to show that OS-RANK works correctly as

follows:

Initialization: Prior to the first iteration, line 1 sets r to be the rank of

x.key within the subtree rooted at x. Setting y = x in line 2 makes the

invariant true the first time the test in line 3 executes.

Maintenance: At the end of each iteration of the while loop, line 6 sets y

= y.p. Thus, we must show that if r is the rank of x.key in the subtree

rooted at y at the start of the loop body, then r is the rank of x.key in

the subtree rooted at y.p at the end of the loop body. In each iteration

of the while loop, consider the subtree rooted at y.p. The value of r

already includes the number of nodes in the subtree rooted at node y

that precede x in an inorder walk, and so the procedure must add the

nodes in the subtree rooted at y’s sibling that precede x in an inorder

walk, plus 1 for y.p if it, too, precedes x. If y is a left child, then

neither y.p nor any node in y.p’s right subtree precedes x, and so OS-

RANK leaves r alone. Otherwise, y is a right child and all the nodes in

y.p’s left subtree precede x, as does y.p itself. In this case, line 5 adds

y.p.left.size + 1 to the current value of r.

Termination: Because each iteration of the loop moves y toward the root

and the loop terminates when y = T.root, the loop eventually

terminates. Moreover, the subtree rooted at y is the entire tree. Thus,

the value of r is the rank of x.key in the entire tree.

As an example, when OS-RANK runs on the order-statistic tree of

Figure 17.1 to find the rank of the node with key 38, the following

sequence of values of y.key and r occurs at the top of the while loop:

iteration y.key r

1 38 2

2 30 4

3 41 4

4 26 17
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The procedure returns the rank 17.

Since each iteration of the while loop takes O(1) time, and y goes up

one level in the tree with each iteration, the running time of OS-RANK

is at worst proportional to the height of the tree: O(lg n) on an n-node

order-statistic tree.

Maintaining subtree sizes

Given the size attribute in each node, OS-SELECT and OS-RANK can

quickly compute order-statistic information. But if the basic modifying

operations on red-black trees cannot efficiently maintain the size

attribute, our work will have been for naught. Let’s see how to maintain

subtree sizes for both insertion and deletion without affecting the

asymptotic running time of either operation.

Recall from Section 13.3 that insertion into a red-black tree consists

of two phases. The first phase goes down the tree from the root,

inserting the new node as a child of an existing node. The second phase

goes up the tree, changing colors and performing rotations to maintain

the red-black properties.

To maintain the subtree sizes in the first phase, simply increment

x.size for each node x on the simple path traversed from the root down

toward the leaves. The new node added gets a size of 1. Since there are

O(lg n) nodes on the traversed path, the additional cost of maintaining

the size attributes is O(lg n).

In the second phase, the only structural changes to the underlying

red-black tree are caused by rotations, of which there are at most two.

Moreover, a rotation is a local operation: only two nodes have their size

attributes invalidated. The link around which the rotation is performed

is incident on these two nodes. Referring to the code for LEFT-

ROTATE(T, x) on page 336, add the following lines:

13y.size = x.size

14 x.size = x.left.size + x.right.size + 1

Figure 17.2 illustrates how the attributes are updated. The change to

RIGHT-ROTATE is symmetric.
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Since inserting into a red-black tree requires at most two rotations,

updating the size attributes in the second phase costs only O(1)

additional time. Thus, the total time for insertion into an n-node order-

statistic tree is O(lg n), which is asymptotically the same as for an

ordinary red-black tree.

Figure 17.2 Updating subtree sizes during rotations. The updates are local, requiring only the

size information stored in x, y, and the roots of the subtrees shown as triangles.

Deletion from a red-black tree also consists of two phases: the first

operates on the underlying search tree, and the second causes at most

three rotations and otherwise performs no structural changes. (See

Section 13.4.) The first phase removes one node z from the tree and

could move at most two other nodes within the tree (nodes y and x in

Figure 12.4 on page 323). To update the subtree sizes, simply traverse a

simple path from the lowest node that moves (starting from its original

position within the tree) up to the root, decrementing the size attribute

of each node on the path. Since this path has length O(lg n) in an n-

node red-black tree, the additional time spent maintaining size

attributes in the first phase is O(lg n). For the O(1) rotations in the

second phase of deletion, handle them in the same manner as for

insertion. Thus, both insertion and deletion, including maintaining the

size attributes, take O(lg n) time for an n-node order-statistic tree.

Exercises

17.1-1

Show how OS-SELECT(T.root, 10) operates on the red-black tree T

shown in Figure 17.1.

17.1-2
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Show how OS-RANK(T, x) operates on the red-black tree T shown in

Figure 17.1 and the node x with x.key = 35.

17.1-3

Write a nonrecursive version of OS-SELECT.

17.1-4

Write a procedure OS-KEY-RANK(T, k) that takes an order-statistic

tree T and a key k and returns the rank of k in the dynamic set

represented by T. Assume that the keys of T are distinct.

17.1-5

Given an element x in an n-node order-statistic tree and a natural

number i, show how to determine the ith successor of x in the linear

order of the tree in O(lg n) time.

17.1-6

The procedures OS-SELECT and OS-RANK use the size attribute of a

node only to compute a rank. Suppose that you store in each node its

rank in the subtree of which it is the root instead of the size attribute.

Show how to maintain this information during insertion and deletion.

(Remember that these two operations can cause rotations.)

17.1-7

Show how to use an order-statistic tree to count the number of

inversions (see Problem 2-4 on page 47) in an array of n distinct

elements in O(n lg n) time.

★ 17.1-8

Consider n chords on a circle, each defined by its endpoints. Describe an

O(n lg n)-time algorithm to determine the number of pairs of chords

that intersect inside the circle. (For example, if the n chords are all

diameters that meet at the center, then the answer is .) Assume that

no two chords share an endpoint.

17.2    How to augment a data structure
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The process of augmenting a basic data structure to support additional

functionality occurs quite frequently in algorithm design. We’ll use it

again in the next section to design a data structure that supports

operations on intervals. This section examines the steps involved in such

augmentation. It includes a useful theorem that allows you to augment

red-black trees easily in many cases.

You can break the process of augmenting a data structure into four

steps:

1. Choose an underlying data structure.

2. Determine additional information to maintain in the underlying

data structure.

3. Verify that you can maintain the additional information for the

basic modifying operations on the underlying data structure.

4. Develop new operations.

As with any prescriptive design method, you’ll rarely be able to follow

the steps precisely in the order given. Most design work contains an

element of trial and error, and progress on all steps usually proceeds in

parallel. There is no point, for example, in determining additional

information and developing new operations (steps 2 and 4) if you

cannot maintain the additional information efficiently. Nevertheless,

this four-step method provides a good focus for your efforts in

augmenting a data structure, and it is also a good framework for

documenting an augmented data structure.

We followed these four steps in Section 17.1 to design order-statistic

trees. For step 1, we chose red-black trees as the underlying data

structure. Red-black trees seemed like a good starting point because

they efficiently support other dynamic-set operations on a total order,

such as MINIMUM, MAXIMUM, SUCCESSOR, and

PREDECESSOR.

In Step 2, we added the size attribute, so that each node x stores the

size of the subtree rooted at x. Generally, the additional information

makes operations more efficient. For example, it is possible to

implement OS-SELECT and OS-RANK using just the keys stored in
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the tree, but then they would not run in O(lg n) time. Sometimes, the

additional information is pointer information rather than data, as in

Exercise 17.2-1.

For step 3, we ensured that insertion and deletion can maintain the

size attributes while still running in O(lg n) time. Ideally, you would like

to update only a few elements of the data structure in order to maintain

the additional information. For example, if each node simply stores its

rank in the tree, the OS-SELECT and OS-RANK procedures run

quickly, but inserting a new minimum element might cause a change to

this information in every node of the tree. Because we chose to store

subtree sizes instead, inserting a new element causes information to

change in only O(lg n) nodes.

In Step 4, we developed the operations OS-SELECT and OS-

RANK. After all, the need for new operations is why anyone bothers to

augment a data structure in the first place. Occasionally, rather than

developing new operations, you can use the additional information to

expedite existing ones, as in Exercise 17.2-1.

Augmenting red-black trees

When red-black trees underlie an augmented data structure, we can

prove that insertion and deletion can always efficiently maintain certain

kinds of additional information, thereby simplifying step 3. The proof

of the following theorem is similar to the argument from Section 17.1

that we can maintain the size attribute for order-statistic trees.

Theorem 17.1 (Augmenting a red-black tree)

Let f be an attribute that augments a red-black tree T of n nodes, and

suppose that the value of f for each node x depends only the

information in nodes x, x.left, and x.right (possibly including x.left.f

and x.right.f), and that the value of x.f can be computed from this

information in O(1) time. Then, the insertion and deletion operations

can maintain the values of f in all nodes of T without asymptotically

affecting the O(lg n) running times of these operations.

Proof   The main idea of the proof is that a change to an f attribute in a

node x propagates only to ancestors of x in the tree. That is, changing
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x.f may require x.p.f to be updated, but nothing else; updating x.p.f may

require x.p.p.f to be updated, but nothing else; and so on up the tree.

After updating T.root.f, no other node depends on the new value, and

so the process terminates. Since the height of a red-black tree is O(lg n),

changing an f attribute in a node costs O(lg n) time in updating all

nodes that depend on the change.

As we saw in Section 13.3, insertion of a node x into red-black tree T

consists of two phases. If the tree T is empty, then the first phase simply

makes x be the root of T. If T is not empty, then the first phase inserts x

as a child of an existing node. Because we assume that the value of x.f

depends only on information in the other attributes of x itself and the

information in x’s children, and because x’s children are both the

sentinel T.nil, it takes only O(1) time to compute the value of x.f.

Having computed x.f, the change propagates up the tree. Thus, the total

time for the first phase of insertion is O(lg n). During the second phase,

the only structural changes to the tree come from rotations. Since only

two nodes change in a rotation, but a change to an attribute might need

to propagate up to the root, the total time for updating the f attributes is

O(lg n) per rotation. Since the number of rotations during insertion is at

most two, the total time for insertion is O(lg n).

Like insertion, deletion has two phases, as Section 13.4 discusses. In

the first phase, changes to the tree occur when a node is deleted, and at

most two other nodes could move within the tree. Propagating the

updates to f caused by these changes costs at most O(lg n), since the

changes modify the tree locally along a simple path from the lowest

changed node to the root. Fixing up the red-black tree during the

second phase requires at most three rotations, and each rotation

requires at most O(lg n) time to propagate the updates to f. Thus, like

insertion, the total time for deletion is O(lg n).

▪

In many cases, such as maintaining the size attributes in order-

statistic trees, the cost of updating after a rotation is O(1), rather than

the O(lg n) derived in the proof of Theorem 17.1. Exercise 17.2-3 gives

an example.
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On the other hand, when an update after a rotation requires a

traversal all the way up to the root, it is important that insertion into

and deletion from a red-black tree require a constant number of

rotations. The chapter notes for Chapter 13 list other schemes for

balancing search trees that do not bound the number of rotations per

insertion or deletion by a constant. If each operation might require Θ(lg

n) rotations and each rotation traverses a path up to the root, then a

single operation could require Θ(lg2n) time, rather than the O(lg n) time

bound given by Theorem 17.1.

Exercises

17.2-1

Show, by adding pointers to the nodes, how to support each of the

dynamic-set queries MINIMUM, MAXIMUM, SUCCESSOR, and

PREDECESSOR in O(1) worst-case time on an augmented order-

statistic tree. The asymptotic performance of other operations on order-

statistic trees should not be affected.

17.2-2

Can you maintain the black-heights of nodes in a red-black tree as

attributes in the nodes of the tree without affecting the asymptotic

performance of any of the red-black tree operations? Show how, or

argue why not. How about maintaining the depths of nodes?

17.2-3

Let ⊗ be an associative binary operator, and let a be an attribute

maintained in each node of a red-black tree. Suppose that you want to

include in each node x an additional attribute f such that x.f = x1.a ⊗

x2.a ⊗ … ⊗ xm.a, where x1, x2, … , xm is the inorder listing of nodes

in the subtree rooted at x. Show how to update the f attributes in O(1)

time after a rotation. Modify your argument slightly to apply it to the

size attributes in order-statistic trees.

17.3    Interval trees
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This section shows how to augment red-black trees to support

operations on dynamic sets of intervals. In this section, we’ll assume

that intervals are closed. Extending the results to open and half-open

intervals is conceptually straightforward. (See page 1157 for definitions

of closed, open, and half-open intervals.)

Intervals are convenient for representing events that each occupy a

continuous period of time. For example, you could query a database of

time intervals to find out which events occurred during a given interval.

The data structure in this section provides an efficient means for

maintaining such an interval database.

A simple way to represent an interval [t1, t2] is as an object i with

attributes i.low = t1 (the low endpoint) and i.high = t2 (the high

endpoint). We say that intervals i and i′ overlap if i ∩i′ ≠ ∅, that is, if

i.low ≤ i′.high and i′.low ≤ i.high.

Figure 17.3 The interval trichotomy for two closed intervals i and i′. (a) If i and i′ overlap, there

are four situations, and in each, i.low ≤ i′.high and i′.low ≤ i.high. (b) The intervals do not

overlap, and i.high < i′.low. (c) The intervals do not overlap, and i′.high < i.low.

As Figure 17.3 shows, any two intervals i and i′ satisfy the interval

trichotomy, that is, exactly one of the following three properties holds:

a. i and i′ overlap,

b. i is to the left of i′ (i.e., i.high < i′.low),

c. i is to the right of i′ (i.e., i′.high < i.low).

An interval tree is a red-black tree that maintains a dynamic set of

elements, with each element x containing an interval x.int. Interval trees
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support the following operations:

INTERVAL-INSERT(T, x) adds the element x, whose int attribute is

assumed to contain an interval, to the interval tree T.

INTERVAL-DELETE(T, x) removes the element x from the interval

tree T.

INTERVAL-SEARCH(T, i) returns a pointer to an element x in the

interval tree T such that x.int overlaps interval i, or a pointer to the

sentinel T.nil if no such element belongs to the set.

Figure 17.4 shows how an interval tree represents a set of intervals. The

four-step method from Section 17.2 will guide our design of an interval

tree and the operations that run on it.

Step 1: Underlying data structure

A red-black tree serves as the underlying data structure. Each node x

contains an interval x.int. The key of x is the low endpoint, x.int.low, of

the interval. Thus, an inorder tree walk of the data structure lists the

intervals in sorted order by low endpoint.
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Figure 17.4 An interval tree. (a) A set of 10 intervals, shown sorted bottom to top by left

endpoint. (b) The interval tree that represents them. Each node x contains an interval, shown

above the dashed line, and the maximum value of any interval endpoint in the subtree rooted at

x, shown below the dashed line. An inorder tree walk of the tree lists the nodes in sorted order

by left endpoint.

Step 2: Additional information

In addition to the intervals themselves, each node x contains a value

x.max, which is the maximum value of any interval endpoint stored in

the subtree rooted at x.

Step 3: Maintaining the information

We must verify that insertion and deletion take O(lg n) time on an

interval tree of n nodes. It is simple enough to determine x.max in O(1)
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time, given interval x.int and the max values of node x’s children:

x.max = max {x.int.high, x.left.max, x.right.max}.

Thus, by Theorem 17.1, insertion and deletion run in O(lg n) time. In

fact, you can use either Exercise 17.2-3 or 17.3-1 to show how to update

all the max attributes that change after a rotation in just O(1) time.

Step 4: Developing new operations

The only new operation is INTERVAL-SEARCH(T, i), which finds a

node in tree T whose interval overlaps interval i. If there is no interval in

the tree that overlaps i, the procedure returns a pointer to the sentinel

T.nil.

INTERVAL-SEARCH(T, i)

1 x = T.root

2 while x ≠ T.nil and i does not overlap x.int

3 if x.left ≠ T.nil and x.left.max ≥ i.low

4 x = x.left // overlap in left subtree or no overlap in right

subtree

5 else x =

x.right

// no overlap in left subtree

6 return x

The search for an interval that overlaps i starts at the root of the tree

and proceeds downward. It terminates when either it finds an

overlapping interval or it reaches the sentinel T.nil. Since each iteration

of the basic loop takes O(1) time, and since the height of an n-node red-

black tree is O(lg n), the INTERVAL-SEARCH procedure takes O(lg n)

time.

Before we see why INTERVAL-SEARCH is correct, let’s examine

how it works on the interval tree in Figure 17.4. Let’s look for an

interval that overlaps the interval i = [22, 25]. Begin with x as the root,

which contains [16, 21] and does not overlap i. Since x.left.max = 23 is

greater than i.low = 22, the loop continues with x as the left child of the

root—the node containing [8, 9], which also does not overlap i. This
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time, x.left.max = 10 is less than i.low = 22, and so the loop continues

with the right child of x as the new x. Because the interval [15, 23]

stored in this node overlaps i, the procedure returns this node.

Now let’s try an unsuccessful search, for an interval that overlaps i =

[11, 14] in the interval tree of Figure 17.4. Again, begin with x as the

root. Since the root’s interval [16, 21] does not overlap i, and since

x.left.max = 23 is greater than i.low = 11, go left to the node containing

[8, 9]. Interval [8, 9] does not overlap i, and x.left.max = 10 is less than

i.low = 11, and so the search goes right. (No interval in the left subtree

overlaps i.) Interval [15, 23] does not overlap i, and its left child is T.nil,

so again the search goes right, the loop terminates, and INTERVAL-

SEARCH returns the sentinel T.nil.

To see why INTERVAL-SEARCH is correct, we must understand

why it suffices to examine a single path from the root. The basic idea is

that at any node x, if x.int does not overlap i, the search always proceeds

in a safe direction: the search will definitely find an overlapping interval

if the tree contains one. The following theorem states this property more

precisely.

Theorem 17.2

Any execution of INTERVAL-SEARCH(T, i) either returns a node

whose interval overlaps i, or it returns T.nil and the tree T contains no

node whose interval overlaps i.

Proof   The while loop of lines 2–5 terminates when either x = T.nil or i

overlaps x.int. In the latter case, it is certainly correct to return x.

Therefore, we focus on the former case, in which the while loop

terminates because x = T.nil, which is the node that INTERVAL-

SEARCH returns.

We’ll prove that if the procedure returns T.nil, then it did not miss

any intervals in T that overlap i. The idea is to show that whether the

search goes left in line 4 or right in line 5, it always heads toward a node

containing an interval overlapping i, if any such interval exists. In

particular, we’ll prove that

1. If the search goes left in line 4, then the left subtree of node x

contains an interval that overlaps i or the right subtree of x
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contains no interval that overlaps i. Therefore, even if x’s left

subtree contains no interval that overlaps i but the search goes

left, it does not make a mistake, because x’s right subtree does

not contain an interval overlapping i, either.

2. If the search goes right in line 5, then the left subtree of x

contains no interval that overlaps i. Thus, if the search goes

right, it does not make a mistake.

For both cases, we rely on the interval trichotomy. Let’s start with

the case where the search goes right, whose proof is simpler. By the tests

in line 3, we know that x.left = T.nil or x.left.max < i.low. If x.left =

T.nil, then x’s left subtree contains no interval that overlaps i, since it

contains no intervals at all. Now suppose that x.left ≠ T.nil, so that we

must have x.left.max < i.low. Consider any interval i′ in x’s left subtree.

Because x.left.max is the maximum endpoint in x’s left subtree, we have

i′.high ≤ x.left.max. Thus, as Figure 17.5(a) shows,

i′.high ≤ x.left.max

< i.low.

By the interval trichotomy, therefore, intervals i and i′ do not overlap,

and so x’s left subtree contains no interval that overlaps i.

Figure 17.5 Intervals in the proof of Theorem 17.2. The value of x.left.max is shown in each case

as a dashed line. (a) The search goes right. No interval i′ in x’s left subtree can overlap i. (b) The

search goes left. The left subtree of x contains an interval that overlaps i (situation not shown),

or x’s left subtree contains an interval i′ such that i′.high = x.left.max. Since i does not overlap i′,
neither does it overlap any interval i″ in x’s right subtree, since i′.low ≤ i″.low.

Now we examine the case in which the search goes left. If the left

subtree of node x contains an interval that overlaps i, we’re done, so let’s
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assume that no node in x’s left subtree overlaps i. We need to show that

in this case, no node in x’s right subtree overlaps i, so that going left will

not miss any overlaps in x’s right subtree. By the tests in line 3, the left

subtree of x is not empty and x.left.max ≥ i.low. By the definition of the

max attribute, x’s left subtree contains some interval i′ such that

i′.high = x.left.max

≥ i.low,

as illustrated in Figure 17.5(b). Since i′ is in x’s left subtree, it does not

overlap i, and since i′.high ≥ i.low, the interval trichotomy tells us that

i.high < i′.low. Now we bring in the property that interval trees are

keyed on the low endpoints of intervals. Because i′ is in x’s left subtree,

we have i′.low ≤ x.int.low. Now consider any interval i″ in x’s right

subtree, so that x.int.low ≤ i″.low. Putting inequalities together, we get

i.high < i′.low

≤ x.int.low

≤ i″.low.

Because i.high < i″.low, the interval trichotomy tells us that i and i″ do

not overlap. Since we chose i″ as any interval in x’s right subtree, no

node in x’s right subtree overlaps i.

▪

Thus, the INTERVAL-SEARCH procedure works correctly.

Exercises

17.3-1

Write pseudocode for LEFT-ROTATE that operates on nodes in an

interval tree and updates all the max attributes that change in O(1) time.

17.3-2

Describe an efficient algorithm that, given an interval i, returns an

interval overlapping i that has the minimum low endpoint, or T.nil if no

such interval exists.

www.konkur.in

Telegram: @uni_k



17.3-3

Given an interval tree T and an interval i, describe how to list all

intervals in T that overlap i in O(min {n, k lg n}) time, where k is the

number of intervals in the output list. (Hint: One simple method makes

several queries, modifying the tree between queries. A slightly more

complicated method does not modify the tree.)

17.3-4

Suggest modifications to the interval-tree procedures to support the new

operation INTERVAL-SEARCH-EXACTLY(T, i), where T is an

interval tree and i is an interval. The operation should return a pointer

to a node x in T such that x.int.low = i.low and x.int.high = i.high, or

T.nil if T contains no such node. All operations, including INTERVAL-

SEARCH-EXACTLY, should run in O(lg n) time on an n-node interval

tree.

17.3-5

Show how to maintain a dynamic set Q of numbers that supports the

operation MIN-GAP, which gives the absolute value of the difference of

the two closest numbers in Q. For example, if we have Q = {1, 5, 9, 15,

18, 22}, then MIN-GAP(Q) returns 3, since 15 and 18 are the two

closest numbers in Q. Make the operations INSERT, DELETE,

SEARCH, and MIN-GAP as efficient as possible, and analyze their

running times.

★ 17.3-6

VLSI databases commonly represent an integrated circuit as a list of

rectangles. Assume that each rectangle is rectilinearly oriented (sides

parallel to the x- and y-axes), so that each rectangle is represented by

four values: its minimum and maximum x- and y-coordinates. Give an

O(n lg n)-time algorithm to decide whether a set of n rectangles so

represented contains two rectangles that overlap. Your algorithm need

not report all intersecting pairs, but it must report that an overlap exists

if one rectangle entirely covers another, even if the boundary lines do

not intersect. (Hint: Move a “sweep” line across the set of rectangles.)
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Problems

17-1     Point of maximum overlap

You wish to keep track of a point of maximum overlap in a set of

intervals—a point with the largest number of intervals in the set that

overlap it.

a. Show that there is always a point of maximum overlap that is an

endpoint of one of the intervals.

b. Design a data structure that efficiently supports the operations

INTERVAL-INSERT, INTERVAL-DELETE, and FIND-POM,

which returns a point of maximum overlap. (Hint: Keep a red-black

tree of all the endpoints. Associate a value of +1 with each left

endpoint, and associate a value of −1 with each right endpoint.

Augment each node of the tree with some extra information to

maintain the point of maximum overlap.)

17-2     Josephus permutation

We define the Josephus problem as follows. A group of n people form a

circle, and we are given a positive integer m ≤ n. Beginning with a

designated first person, proceed around the circle, removing every mth

person. After each person is removed, counting continues around the

circle that remains. This process continues until nobody remains in the

circle. The order in which the people are removed from the circle defines

the (n, m)-Josephus permutation of the integers 1, 2, … , n. For example,

the (7, 3)-Josephus permutation is 〈3, 6, 2, 7, 5, 1, 4〉.

a. Suppose that m is a constant. Describe an O(n)-time algorithm that,

given an integer n, outputs the (n, m)-Josephus permutation.

b. Suppose that m is not necessarily a constant. Describe an O(n lg n)-

time algorithm that, given integers n and m, outputs the (n, m)-

Josephus permutation.

Chapter notes
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In their book, Preparata and Shamos [364] describe several of the

interval trees that appear in the literature, citing work by H.

Edelsbrunner (1980) and E. M. McCreight (1981). The book details an

interval tree that, given a static database of n intervals, allows us to

enumerate all k intervals that overlap a given query interval in O(k + lg

n) time.
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18        B-Trees

B-trees are balanced search trees designed to work well on disk drives or

other direct-access secondary storage devices. B-trees are similar to red-

black trees (Chapter 13), but they are better at minimizing the number

of operations that access disks. (We often say just “disk” instead of

“disk drive.”) Many database systems use B-trees, or variants of B-trees,

to store information.

B-trees differ from red-black trees in that B-tree nodes may have

many children, from a few to thousands. That is, the “branching factor”

of a B-tree can be quite large, although it usually depends on

characteristics of the disk drive used. B-trees are similar to red-black

trees in that every n-node B-tree has height O(lg n), so that B-trees can

implement many dynamic-set operations in O(lg n) time. But a B-tree

has a larger branching factor than a red-black tree, so the base of the

logarithm that expresses its height is larger, and hence its height can be

considerably lower.

B-trees generalize binary search trees in a natural manner. Figure

18.1 shows a simple B-tree. If an internal B-tree node x contains x.n

keys, then x has x.n + 1 children. The keys in node x serve as dividing

points separating the range of keys handled by x into x.n + 1 subranges,

each handled by one child of x. A search for a key in a B-tree makes an

(x.n + 1)-way decision based on comparisons with the x.n keys stored at

node x. An internal node contains pointers to its children, but a leaf

node does not.

Section 18.1 gives a precise definition of B-trees and proves that the

height of a B-tree grows only logarithmically with the number of nodes
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it contains. Section 18.2 describes how to search for a key and insert a

key into a B-tree, and Section 18.3 discusses deletion. Before

proceeding, however, we need to ask why we evaluate data structures

designed to work on a disk drive differently from data structures

designed to work in main random-access memory.

Figure 18.1 A B-tree whose keys are the consonants of English. An internal node x containing

x.n keys has x.n + 1 children. All leaves are at the same depth in the tree. The blue nodes are

examined in a search for the letter R.

Data structures on secondary storage

Computer systems take advantage of various technologies that provide

memory capacity. The main memory of a computer system normally

consists of silicon memory chips. This technology is typically more than

an order of magnitude more expensive per bit stored than magnetic

storage technology, such as tapes or disk drives. Most computer systems

also have secondary storage based on solid-state drives (SSDs) or

magnetic disk drives. The amount of such secondary storage often

exceeds the amount of primary memory by one to two orders of

magnitude. SSDs have faster access times than magnetic disk drives,

which are mechanical devices. In recent years, SSD capacities have

increased while their prices have decreased. Magnetic disk drives

typically have much higher capacities than SSDs, and they remain a

more cost-effective means for storing massive amounts of information.

Disk drives that store several terabytes1 can be found for under $100.

Figure 18.2 shows a typical disk drive. The drive consists of one or

more platters, which rotate at a constant speed around a common

spindle. A magnetizable material covers the surface of each platter. The
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drive reads and writes each platter by a head at the end of an arm. The

arms can move their heads toward or away from the spindle. The

surface that passes underneath a given head when it is stationary is

called a track.

Although disk drives are cheaper and have higher capacity than

main memory, they are much, much slower because they have moving

mechanical parts. The mechanical motion has two components: platter

rotation and arm movement. As of this writing, commodity disk drives

rotate at speeds of 5400–15,000 revolutions per minute (RPM). Typical

speeds are 15,000 RPM in server-grade drives, 7200 RPM in drives for

desktops, and 5400 RPM in drives for laptops. Although 7200 RPM

may seem fast, one rotation takes 8.33 milliseconds, which is over 5

orders of magnitude longer than the 50 nanosecond access times (more

or less) commonly found for main memory. In other words, if a

computer waits a full rotation for a particular item to come under the

read/write head, it could access main memory more than 100,000 times

during that span. The average wait is only half a rotation, but still, the

difference in access times for main memory compared with disk drives is

enormous. Moving the arms also takes some time. As of this writing,

average access times for commodity disk drives are around 4

milliseconds.
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Figure 18.2 A typical magnetic disk drive. It consists of one or more platters covered with a

magnetizable material (two platters are shown here) that rotate around a spindle. Each platter is

read and written with a head, shown in red, at the end of an arm. Arms rotate around a

common pivot axis. A track, drawn in blue, is the surface that passes beneath the read/write

head when the head is stationary.

In order to amortize the time spent waiting for mechanical

movements, also known as latency, disk drives access not just one item

but several at a time. Information is divided into a number of equal-

sized blocks of bits that appear consecutively within tracks, and each

disk read or write is of one or more entire blocks.2 Typical disk drives

have block sizes running from 512 to 4096 bytes. Once the read/write

head is positioned correctly and the platter has rotated to the beginning

of the desired block, reading or writing a magnetic disk drive is entirely

electronic (aside from the rotation of the platter), and the disk drive can

quickly read or write large amounts of data.

Often, accessing a block of information and reading it from a disk

drive takes longer than processing all the information read. For this

reason, in this chapter we’ll look separately at the two principal

components of the running time:

the number of disk accesses, and

the CPU (computing) time.

We measure the number of disk accesses in terms of the number of

blocks of information that need to be read from or written to the disk
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drive. Although disk-access time is not constant—it depends on the

distance between the current track and the desired track and also on the

initial rotational position of the platters—the number of blocks read or

written provides a good first-order approximation of the total time

spent accessing the disk drive.

In a typical B-tree application, the amount of data handled is so

large that all the data do not fit into main memory at once. The B-tree

algorithms copy selected blocks from disk into main memory as needed

and write back onto disk the blocks that have changed. B-tree

algorithms keep only a constant number of blocks in main memory at

any time, and thus the size of main memory does not limit the size of B-

trees that can be handled.

B-tree procedures need to be able to read information from disk into

main memory and write information from main memory to disk.

Consider some object x. If x is currently in the computer’s main

memory, then the code can refer to the attributes of x as usual: x.key,

for example. If x resides on disk, however, then the procedure must

perform the operation DISK-READ(x) to read the block containing

object x into main memory before it can refer to x’s attributes. (Assume

that if x is already in main memory, then DISK-READ(x) requires no

disk accesses: it is a “no-op.”) Similarly, procedures call DISK-

WRITE(x) to save any changes that have been made to the attributes of

object x by writing to disk the block containing x. Thus, the typical

pattern for working with an object is as follows:

x = a pointer to some object

DISK-READ(x)

operations that access and/or modify the attributes of x

DISK-WRITE(x) // omitted if no attributes of x were changed

other operations that access but do not modify attributes of x

The system can keep only a limited number of blocks in main memory

at any one time. Our B-tree algorithms assume that the system

automatically flushes from main memory blocks that are no longer in

use.
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Since in most systems the running time of a B-tree algorithm

depends primarily on the number of DISK-READ and DISK-WRITE

operations it performs, we typically want each of these operations to

read or write as much information as possible. Thus, a B-tree node is

usually as large as a whole disk block, and this size limits the number of

children a B-tree node can have.

Figure 18.3 A B-tree of height 2 containing over one billion keys. Shown inside each node x is

x.n, the number of keys in x. Each internal node and leaf contains 1000 keys. This B-tree has

1001 nodes at depth 1 and over one million leaves at depth 2.

Large B-trees stored on disk drives often have branching factors

between 50 and 2000, depending on the size of a key relative to the size

of a block. A large branching factor dramatically reduces both the

height of the tree and the number of disk accesses required to find any

key. Figure 18.3 shows a B-tree with a branching factor of 1001 and

height 2 that can store over one billion keys. Nevertheless, if the root

node is kept permanently in main memory, at most two disk accesses

suffice to find any key in this tree.

18.1    Definition of B-trees

To keep things simple, let’s assume, as we have for binary search trees

and red-black trees, that any satellite information associated with a key

resides in the same node as the key. In practice, you might actually store

with each key just a pointer to another disk block containing the

satellite information for that key. The pseudocode in this chapter

implicitly assumes that the satellite information associated with a key, or
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the pointer to such satellite information, travels with the key whenever

the key is moved from node to node. A common variant on a B-tree,

known as a B+-tree, stores all the satellite information in the leaves and

stores only keys and child pointers in the internal nodes, thus

maximizing the branching factor of the internal nodes.

A B-tree T is a rooted tree with root T.root having the following

properties:

1. Every node x has the following attributes:

a. x.n, the number of keys currently stored in node x,

b. the x.n keys themselves, x.key1, x.key2, … , x.keyx.n, stored in

monotonically increasing order, so that x.key1 ≤ x.key2 ≤ ⋯ ≤

x.keyx.n,

c. x.leaf, a boolean value that is TRUE if x is a leaf and FALSE

if x is an internal node.

2. Each internal node x also contains x.n + 1 pointers x.c1, x.c2, …

, x.cx.n+1 to its children. Leaf nodes have no children, and so

their ci attributes are undefined.

3. The keys x.keyi separate the ranges of keys stored in each

subtree: if ki is any key stored in the subtree with root x.ci, then

k1 ≤ x.key1 ≤ k2 ≤ x.key2 ≤ ⋯ ≤ x.keyx.n ≤ kx.n+1.

4. All leaves have the same depth, which is the tree’s height h.

5. Nodes have lower and upper bounds on the number of keys they

can contain, expressed in terms of a fixed integer t ≥ 2 called the

minimum degree of the B-tree:

a. Every node other than the root must have at least t − 1 keys.

Every internal node other than the root thus has at least t

children. If the tree is nonempty, the root must have at least

one key.
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b. Every node may contain at most 2t − 1 keys. Therefore, an

internal node may have at most 2t children. We say that a node

is full if it contains exactly 2t − 1 keys.3

The simplest B-tree occurs when t = 2. Every internal node then has

either 2, 3, or 4 children, and it is a 2-3-4 tree. In practice, however,

much larger values of t yield B-trees with smaller height.

The height of a B-tree

The number of disk accesses required for most operations on a B-tree is

proportional to the height of the B-tree. The following theorem bounds

the worst-case height of a B-tree.

Figure 18.4 A B-tree of height 3 containing a minimum possible number of keys. Shown inside

each node x is x.n.

Theorem 18.1

If n ≥ 1, then for any n-key B-tree T of height h and minimum degree t ≥

2,

Proof   By definition, the root of a nonempty B-tree T contains at least

one key, and all other nodes contain at least t − 1 keys. Let h be the

height of T. Then T contains at least 2 nodes at depth 1, at least 2t
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nodes at depth 2, at least 2t2 nodes at depth 3, and so on, until at depth

h, it has at least 2th−1 nodes. Figure 18.4 illustrates such a tree for h =

3. The number n of keys therefore satisfies the inequality

so that th ≤ (n + 1)/2. Taking base-t logarithms of both sides proves the

theorem.

▪

You can see the power of B-trees as compared with red-black trees.

Although the height of the tree grows as O(log n) in both cases (recall

that t is a constant), for B-trees the base of the logarithm can be many

times larger. Thus, B-trees save a factor of about lg t over red-black trees

in the number of nodes examined for most tree operations. Because

examining an arbitrary node in a tree usually entails accessing the disk,

B-trees avoid a substantial number of disk accesses.

Exercises

18.1-1

Why isn’t a minimum degree of t = 1 allowed?

18.1-2

For what values of t is the tree of Figure 18.1 a legal B-tree?

18.1-3

Show all legal B-trees of minimum degree 2 that store the keys 1, 2, 3, 4,

5.

18.1-4

As a function of the minimum degree t, what is the maximum number

of keys that can be stored in a B-tree of height h?
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18.1-5

Describe the data structure that results if each black node in a red-black

tree absorbs its red children, incorporating their children with its own.

18.2    Basic operations on B-trees

This section presents the details of the operations B-TREE-SEARCH,

B-TREE-CREATE, and B-TREE-INSERT. These procedures observe

two conventions:

The root of the B-tree is always in main memory, so that no

procedure ever needs to perform a DISK-READ on the root. If

any changes to the root node occur, however, then DISK-WRITE

must be called on the root.

Any nodes that are passed as parameters must already have had a

DISK-READ operation performed on them.

The procedures are all “one-pass” algorithms that proceed downward

from the root of the tree, without having to back up.

Searching a B-tree

Searching a B-tree is much like searching a binary search tree, except

that instead of making a binary, or “two-way,” branching decision at

each node, the search makes a multiway branching decision according

to the number of the node’s children. More precisely, at each internal

node x, the search makes an (x.n + 1)-way branching decision.

The procedure B-TREE-SEARCH generalizes the TREE-SEARCH

procedure defined for binary search trees on page 316. It takes as input

a pointer to the root node x of a subtree and a key k to be searched for

in that subtree. The top-level call is thus of the form B-TREE-

SEARCH(T.root, k). If k is in the B-tree, then B-TREE-SEARCH

returns the ordered pair (y, i) consisting of a node y and an index i such

that y.keyi = k. Otherwise, the procedure returns NIL.

B-TREE-SEARCH(x, k)
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1 i = 1

2 while i ≤ x.n and k > x.keyi

3 i = i + 1

4 if i ≤ x.n and k == x.keyi

5 return (x, i)

6 elseif x.leaf

7 returnNIL

8 else DISK-READ(x.ci)

9 return B-TREE-SEARCH(x.ci, k)

Using a linear-search procedure, lines 1–3 of B-TREE-SEARCH find

the smallest index i such that k ≤ x.keyi, or else they set i to x.n + 1.

Lines 4–5 check to see whether the search has discovered the key,

returning if it has. Otherwise, if x is a leaf, then line 7 terminates the

search unsuccessfully, and if x is an internal node, lines 8–9 recurse to

search the appropriate subtree of x, after performing the necessary

DISK-READ on that child. Figure 18.1 illustrates the operation of B-

TREE-SEARCH. The blue nodes are those examined during a search

for the key R.

As in the TREE-SEARCH procedure for binary search trees, the

nodes encountered during the recursion form a simple path downward

from the root of the tree. The B-TREE-SEARCH procedure therefore

accesses O(h) = O(logt n) disk blocks, where h is the height of the B-tree

and n is the number of keys in the B-tree. Since x.n < 2t, the while loop

of lines 2–3 takes O(t) time within each node, and the total CPU time is

O(th) = O(t logtn).

Creating an empty B-tree

To build a B-tree T, first use the B-TREE-CREATE procedure on the

next page to create an empty root node and then call the B-TREE-

INSERT procedure on page 508 to add new keys. Both of these

procedures use an auxiliary procedure ALLOCATE-NODE, whose

pseudocode we omit and which allocates one disk block to be used as a

new node in O(1) time. A node created by ALLOCATE-NODE requires
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no DISK-READ, since there is as yet no useful information stored on

the disk for that node. B-TREE-CREATE requires O(1) disk operations

and O(1) CPU time.

B-TREE-CREATE(T)

1 x = ALLOCATE-NODE()

2 x.leaf = TRUE

3 x.n = 0

4 DISK-WRITE(x)

5 T.root = x

Inserting a key into a B-tree

Inserting a key into a B-tree is significantly more complicated than

inserting a key into a binary search tree. As with binary search trees,

you search for the leaf position at which to insert the new key. With a B-

tree, however, you cannot simply create a new leaf node and insert it, as

the resulting tree would fail to be a valid B-tree. Instead, you insert the

new key into an existing leaf node. Since you cannot insert a key into a

leaf node that is full, you need an operation that splits a full node y

(having 2t − 1 keys) around its median key y.keyt into two nodes having

only t − 1 keys each. The median key moves up into y’s parent to

identify the dividing point between the two new trees. But if y’s parent is

also full, you must split it before you can insert the new key, and thus

you could end up splitting full nodes all the way up the tree.

To avoid having to go back up the tree, just split every full node you

encounter as you go down the tree. In this way, whenever you need to

split a full node, you are assured that its parent is not full. Inserting a

key into a B-tree then requires only a single pass down the tree from the

root to a leaf.

Splitting a node in a B-tree

The procedure B-TREE-SPLIT-CHILD on the facing page takes as

input a nonfull internal node x (assumed to reside in main memory) and
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an index i such that x.ci (also assumed to reside in main memory) is a

full child of x. The procedure splits this child in two and adjusts x so

that it has an additional child. To split a full root, you first need to make

the root a child of a new empty root node, so that you can use B-TREE-

SPLIT-CHILD. The tree thus grows in height by 1: splitting is the only

means by which the tree grows taller.

B-TREE-SPLIT-CHILD(x, i)

  1y = x.ci // full node to split

  2z = ALLOCATE-NODE() // z will take half of y

  3z.leaf = y.leaf

  4z.n = t − 1

  5 for j = 1 to t − 1 // z gets y’s greatest keys …

  6 z.keyj = y.keyj+t

  7 if not y.leaf

  8 for j = 1 to t // … and its corresponding children

  9 z.cj = y.cj+t

10y.n = t − 1 // y keeps t − 1 keys

11 for j = x.n + 1 downto i + 1 // shift x’s children to the right …

12 x.cj+1 = x.cj

13x.ci+1 = z // … to make room for z as a child

14 for j = x.ndownto i // shift the corresponding keys in x

15 x.keyj+1 = x.keyj

16x.keyi = y.keyt // insert y’s median key

17x.n = x.n + 1 // x has gained a child

18DISK-WRITE(y)

19DISK-WRITE(z)

20DISK-WRITE(x)

Figure 18.5 illustrates how a node splits. B-TREE-SPLIT-CHILD

splits the full node y = x.ci about its median key (S in the figure), which

moves up into y’s parent node x. Those keys in y that are greater than
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the median key move into a new node z, which becomes a new child of

x.

B-TREE-SPLIT-CHILD works by straightforward cutting and

pasting. Node x is the parent of the node y being split, which is x’s ith

child (set in line 1). Node y originally has 2t children and 2t − 1 keys,

but splitting reduces y to t children and t − 1 keys. The t largest children

and t − 1 keys of node y move over to node z, which becomes a new

child of x, positioned just after y in x’s table of children. The median

key of y moves up to become the key in node x that separates the

pointers to nodes y and z.

Lines 2–9 create node z and give it the largest t − 1 keys and, if y and

z are internal nodes, the corresponding t children of y. Line 10 adjusts

the key count for y. Then, lines 11–17 shift keys and child pointers in x

to the right in order to make room for x’s new child, insert z as a new

child of x, move the median key from y up to x in order to separate y

from z, and adjust x’s key count. Lines 18–20 write out all modified disk

blocks. The CPU time used by B-TREE-SPLIT-CHILD is Θ(t), due to

the for loops in lines 5–6 and 8–9. (The for loops in lines 11–12 and 14–

15 also run for O(t) iterations.) The procedure performs O(1) disk

operations.

Figure 18.5 Splitting a node with t = 4. Node y = x.ci splits into two nodes, y and z, and the

median key S of y moves up into y’s parent.

Inserting a key into a B-tree in a single pass down the tree
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Inserting a key k into a B-tree T of height h requires just a single pass

down the tree and O(h) disk accesses. The CPU time required is O(th) =

O(t logt n). The B-TREE-INSERT procedure uses B-TREE-SPLIT-

CHILD to guarantee that the recursion never descends to a full node. If

the root is full, B-TREE-INSERT splits it by calling the procedure B-

TREE-SPLIT-ROOT on the facing page.

B-TREE-INSERT(T, k)

1 r = T.root

2 if r.n == 2t − 1

3 s = B-TREE-SPLIT-ROOT(T)

4 B-TREE-INSERT-NONFULL(s, k)

5 else B-TREE-INSERT-NONFULL(r, k)

B-TREE-INSERT works as follows. If the root is full, then line 3

calls B-TREE-SPLIT-ROOT in line 3 to split it. A new node s (with

two children) becomes the root and is returned by B-TREE-SPLIT-

ROOT. Splitting the root, illustrated in Figure 18.6, is the only way to

increase the height of a B-tree. Unlike a binary search tree, a B-tree

increases in height at the top instead of at the bottom. Regardless of

whether the root split, B-TREE-INSERT finishes by calling B-TREE-

INSERT-NONFULL to insert key k into the tree rooted at the nonfull

root node, which is either the new root (the call in line 4) or the original

root (the call in line 5).
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Figure 18.6 Splitting the root with t = 4. Root node r splits in two, and a new root node s is

created. The new root contains the median key of r and has the two halves of r as children. The

B-tree grows in height by one when the root is split. A B-tree’s height increases only when the

root splits.

B-TREE-SPLIT-ROOT(T)

1 s = ALLOCATE-NODE()

2 s.leaf = FALSE

3 s.n = 0

4 s.c1 = T.root

5 T.root = s

6 B-TREE-SPLIT-CHILD(s, 1)

7 return s

The auxiliary procedure B-TREE-INSERT-NONFULL on page 511

inserts key k into node x, which is assumed to be nonfull when the

procedure is called. B-TREEINSERT-NONFULL recurses as

necessary down the tree, at all times guaranteeing that the node to

which it recurses is not full by calling B-TREE-SPLIT-CHILD as

necessary. The operation of B-TREE-INSERT and the recursive

operation of B-TREE-INSERT-NONFULL guarantee that this

assumption is true.

Figure 18.7 illustrates the various cases of how B-TREE-INSERT-

NONFULL inserts a key into a B-tree. Lines 3–8 handle the case in

which x is a leaf node by inserting key k into x, shifting to the right all
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keys in x that are greater than k. If x is not a leaf node, then k should go

into the appropriate leaf node in the subtree rooted at internal node x.

Lines 9–11 determine the child x.ci to which the recursion descends.

Line 13 detects whether the recursion would descend to a full child, in

which case line 14 calls B-TREE-SPLIT-CHILD to split that child into

two nonfull children, and lines 15–16 determine which of the two

children is the correct one to descend to. (Note that DISK-READ(x.ci)

is not needed after line 16 increments i, since the recursion descends in

this case to a child that was just created by B-TREE-SPLIT-CHILD.)

The net effect of lines 13–16 is thus to guarantee that the procedure

never recurses to a full node. Line 17 then recurses to insert k into the

appropriate subtree.
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Figure 18.7 Inserting keys into a B-tree. The minimum degree t for this B-tree is 3, so that a node

can hold at most 5 keys. Blue nodes are modified by the insertion process. (a) The initial tree for

this example. (b) The result of inserting B into the initial tree. This case is a simple insertion into

a leaf node. (c) The result of inserting Q into the previous tree. The node RST U V splits into

two nodes containing RS and U V, the key T moves up to the root, and Q is inserted in the

leftmost of the two halves (the RS node). (d) The result of inserting L into the previous tree. The

root splits right away, since it is full, and the B-tree grows in height by one. Then L is inserted

into the leaf containing JK. (e) The result of inserting F into the previous tree. The node

ABCDE splits before F is inserted into the rightmost of the two halves (the DE node).

B-TREE-INSERT-NONFULL(x, k)
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  1 i = x.n

  2 if x.leaf // inserting into a leaf?

  3 while i ≥ 1 and k < x.keyi // shift keys in x to make room for k

  4 x.keyi+1 = x.keyi

  5 i = i − 1

  6 x.keyi+1 = k // insert key k in x

  7 x.n = x.n + 1 // now x has 1 more key

  8 DISK-WRITE(x)

  9else while i ≥ 1 and k < x.keyi // find the child where k belongs

10 i = i − 1

11 i = i + 1

12 DISK-READ(x.ci)

13 if x.ci.n == 2t − 1 // split the child if it’s full

14 B-TREE-SPLIT-CHILD(x, i)

15 if k > x.keyi // does k go into x.ci or x.ci+1?

16 i = i + 1

17 B-TREE-INSERT-NONFULL(x.ci, k)

For a B-tree of height h, B-TREE-INSERT performs O(h) disk

accesses, since only O(1) DISK-READ and DISK-WRITE operations

occur at each level of the tree. The total CPU time used is O(t) in each

level of the tree, or O(th) = O(t logt n) overall. Since B-TREE-INSERT-

NONFULL is tail-recursive, you can instead implement it with a while

loop, thereby demonstrating that the number of blocks that need to be

in main memory at any time is O(1).

Exercises

18.2-1

Show the results of inserting the keys

F, S, Q, K, C, L, H, T, V, W, M, R, N, P, A, B, X, Y, D, Z, E

in order into an empty B-tree with minimum degree 2. Draw only the

configurations of the tree just before some node must split, and also
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draw the final configuration.

18.2-2

Explain under what circumstances, if any, redundant DISK-READ or

DISK-WRITE operations occur during the course of executing a call to

B-TREE-INSERT. (A redundant DISK-READ is a DISK-READ for a

block that is already in memory. A redundant DISK-WRITE writes to

disk a block of information that is identical to what is already stored

there.)

18.2-3

Professor Bunyan asserts that the B-TREE-INSERT procedure always

results in a B-tree with the minimum possible height. Show that the

professor is mistaken by proving that with t = 2 and the set of keys {1,

2, … , 15}, there is no insertion sequence that results in a B-tree with the

minimum possible height.

★ 18.2-4

If you insert the keys {1, 2, … , n} into an empty B-tree with minimum

degree 2, how many nodes does the final B-tree have?

18.2-5

Since leaf nodes require no pointers to children, they could conceivably

use a different (larger) t value than internal nodes for the same disk

block size. Show how to modify the procedures for creating and

inserting into a B-tree to handle this variation.

18.2-6

Suppose that you implement B-TREE-SEARCH to use binary search

rather than linear search within each node. Show that this change makes

the required CPU time O(lg n), independent of how t might be chosen

as a function of n.

18.2-7

Suppose that disk hardware allows you to choose the size of a disk

block arbitrarily, but that the time it takes to read the disk block is

a+bt, where a and b are specified constants and t is the minimum degree
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for a B-tree using blocks of the selected size. Describe how to choose t

so as to minimize (approximately) the B-tree search time. Suggest an

optimal value of t for the case in which a = 5 milliseconds and b = 10

microseconds.

18.3    Deleting a key from a B-tree

Deletion from a B-tree is analogous to insertion but a little more

complicated, because you can delete a key from any node—not just a

leaf—and when you delete a key from an internal node, you must

rearrange the node’s children. As in insertion, you must guard against

deletion producing a tree whose structure violates the B-tree properties.

Just as a node should not get too big due to insertion, a node must not

get too small during deletion (except that the root is allowed to have

fewer than the minimum number t − 1 of keys). And just as a simple

insertion algorithm might have to back up if a node on the path to

where the key is to be inserted is full, a simple approach to deletion

might have to back up if a node (other than the root) along the path to

where the key is to be deleted has the minimum number of keys.

The procedure B-TREE-DELETE deletes the key k from the subtree

rooted at x. Unlike the procedures TREE-DELETE on page 325 and

RB-DELETE on page 348, which are given the node to delete—

presumably as the result of a prior search—B-TREE-DELETE

combines the search for key k with the deletion process. Why do we

combine search and deletion in B-TREE-DELETE? Just as B-TREE-

INSERT prevents any node from becoming overfull (having more than

2t − 1 keys) while making a single pass down the tree, B-TREE-

DELETE prevents any node from becoming underfull (having fewer

than t − 1 keys) while also making a single pass down the tree, searching

for and ultimately deleting the key.

To prevent any node from becoming underfull, the design of B-

TREE-DELETE guarantees that whenever it calls itself recursively on a

node x, the number of keys in x is at least the minimum degree t at the

time of the call. (Although the root may have fewer than t keys and a

recursive call may be made from the root, no recursive call is made on
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the root.) This condition requires one more key than the minimum

required by the usual B-tree conditions, and so a key might have to be

moved from x into one of its child nodes (still leaving x with at least the

minimum t − 1 keys) before a recursive call is made on that child, thus

allowing deletion to occur in one downward pass without having to

traverse back up the tree.

We describe how the procedure B-TREE-DELETE(T, k) deletes a

key k from a B-tree T instead of presenting detailed pseudocode. We

examine three cases, illustrated in Figure 18.8. The cases are for when

the search arrives at a leaf, at an internal node containing key k, and at

an internal node not containing key k. As mentioned above, in all three

cases node x has at least t keys (with the possible exception of when x is

the root). Cases 2 and 3—when x is an internal node—guarantee this

property as the recursion descends through the B-tree.

www.konkur.in

Telegram: @uni_k



Figure 18.8 Deleting keys from a B-tree. The minimum degree for this B-tree is t = 3, so that,

other than the root, every node must have at least 2 keys. Blue nodes are those that are modified

by the deletion process. (a) The B-tree of Figure 18.7(e). (b) Deletion of F, which is case 1:

simple deletion from a leaf when all nodes visited during the search (other than the root) have at

least t = 3 keys. (c) Deletion of M, which is case 2a: the predecessor L of M moves up to take

M’s position. (d) Deletion of G, which is case 2c: push G down to make node DEGJK and then

delete G from this leaf (case 1). (e) Deletion of D, which is case 3b: since the recursion cannot

descend to node CL because it has only 2 keys, push P down and merge it with CL and TX to

form CLP TX. Then delete D from a leaf (case 1). (e0) After (e), delete the empty root. The tree

shrinks in height by 1. (f) Deletion of B, which is case 3a: C moves to fill B’s position and E

moves to fill C’s position.

Case 1: The search arrives at a leaf node x. If x contains key k, then

delete k from x. If x does not contain key k, then k was not in the B-

tree and nothing else needs to be done.

Case 2: The search arrives at an internal node x that contains key k. Let k

= x.keyi. One of the following three cases applies, depending on the

number of keys in x.ci (the child of x that precedes k) and x.ci+1 (the

child of x that follows k).

Case 2a: x.ci has at least t keys. Find the predecessor k′ of k in the

subtree rooted at x.ci. Recursively delete k′ from x.ci, and replace k by

k′ in x. (Key k′ can be found and deleted in a single downward pass.)
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Case 2b: x.ci has t − 1 keys and x.ci+1has at least t keys. This case is

symmetric to case 2a. Find the successor k′ of k in the subtree rooted

at x.ci+1. Recursively delete k′ from x.ci+1, and replace k by k′ in x.

(Again, finding and deleting k′ can be done in a single downward

pass.)

Case 2c: Both x.ci and x.ci+1have t − 1 keys. Merge k and all of x.ci+1

into x.ci, so that x loses both k and the pointer to x.ci+1, and x.ci now

contains 2t − 1 keys. Then free x.ci+1 and recursively delete k from

x.ci.

Case 3: The search arrives at an internal node x that does not contain key

k. Continue searching down the tree while ensuring that each node

visited has at least t keys. To do so, determine the root x.ci of the

appropriate subtree that must contain k, if k is in the tree at all. If x.ci

has only t − 1 keys, execute case 3a or 3b as necessary to guarantee

descending to a node containing at least t keys. Then finish by

recursing on the appropriate child of x.

Case 3a: x.ci has only t − 1 keys but has an immediate sibling with at

least t keys. Give x.ci an extra key by moving a key from x down into

x.ci, moving a key from x.ci’s immediate left or right sibling up into x,

and moving the appropriate child pointer from the sibling into x.ci.

Case 3b: x.ci and each of x.ci’s immediate siblings have t − 1 keys. (It is

possible for x.ci to have either one or two siblings.) Merge x.ci with

one sibling, which involves moving a key from x down into the new

merged node to become the median key for that node.

In cases 2c and 3b, if node x is the root, it could end up having no

keys. When this situation occurs, then x is deleted, and x’s only child

x.c1 becomes the new root of the tree. This action decreases the height

of the tree by one and preserves the property that the root of the tree

contains at least one key (unless the tree is empty).

Since most of the keys in a B-tree are in the leaves, deletion

operations often end up deleting keys from leaves. The B-TREE-
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DELETE procedure then acts in one downward pass through the tree,

without having to back up. When deleting a key in an internal node x,

however, the procedure might make a downward pass through the tree

to find the key’s predecessor or successor and then return to node x to

replace the key with its predecessor or successor (cases 2a and 2b).

Returning to node x does not require a traversal through all the levels

between x and the node containing the predecessor or successor,

however, since the procedure can just keep a pointer to x and the key

position within x and put the predecessor or successor key directly

there.

Although this procedure seems complicated, it involves only O(h)

disk operations for a B-tree of height h, since only O(1) calls to DISK-

READ and DISK-WRITE are made between recursive invocations of

the procedure. The CPU time required is O(th) = O(t logtn).

Exercises

18.3-1

Show the results of deleting C, P, and V, in order, from the tree of

Figure 18.8(f).

18.3-2

Write pseudocode for B-TREE-DELETE.

Problems

18-1     Stacks on secondary storage

Consider implementing a stack in a computer that has a relatively small

amount of fast primary memory and a relatively large amount of slower

disk storage. The operations PUSH and POP work on single-word

values. The stack can grow to be much larger than can fit in memory,

and thus most of it must be stored on disk.

A simple, but inefficient, stack implementation keeps the entire stack

on disk. Maintain in memory a stack pointer, which is the disk address

of the top element on the stack. Indexing block numbers and word
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offsets within blocks from 0, if the pointer has value p, the top element

is the (p mod m)th word on block ⌊p/m⌋ of the disk, where m is the

number of words per block.

To implement the PUSH operation, increment the stack pointer,

read the appropriate block into memory from disk, copy the element to

be pushed to the appropriate word on the block, and write the block

back to disk. A POP operation is similar. Read in the appropriate block

from disk, save the top of the stack, decrement the stack pointer, and

return the saved value. You need not write back the block, since it was

not modified, and the word in the block that contained the popped

value is ignored.

As in the analyses of B-tree operations, two costs matter: the total

number of disk accesses and the total CPU time. A disk access also

incurs a cost in CPU time. In particular, any disk access to a block of m

words incurs charges of one disk access and Θ(m) CPU time.

a. Asymptotically, what is the worst-case number of disk accesses for n

stack operations using this simple implementation? What is the CPU

time for n stack operations? Express your answer in terms of m and n

for this and subsequent parts.

Now consider a stack implementation in which you keep one block of

the stack in memory. (You also maintain a small amount of memory to

record which block is currently in memory.) You can perform a stack

operation only if the relevant disk block resides in memory. If necessary,

you can write the block currently in memory to the disk and read the

new block from the disk into memory. If the relevant disk block is

already in memory, then no disk accesses are required.

b. What is the worst-case number of disk accesses required for n PUSH

operations? What is the CPU time?

c. What is the worst-case number of disk accesses required for n stack

operations? What is the CPU time?

Suppose that you now implement the stack by keeping two blocks in

memory (in addition to a small number of words for bookkeeping).
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d. Describe how to manage the stack blocks so that the amortized

number of disk accesses for any stack operation is O(1/m) and the

amortized CPU time for any stack operation is O(1).

18-2     Joining and splitting 2-3-4 trees

The join operation takes two dynamic sets S′ and S″ and an element x

such that x′.key < x.key < x″.key for any x′ ∈ S′ and x″ ∈ S″. It returns

a set S = S′ ∪ {x} ∪ S″. The split operation is like an “inverse” join:

given a dynamic set S and an element x ∈ S, it creates a set S′ that

consists of all elements in S − {x} whose keys are less than x.key and

another set S″ that consists of all elements in S − {x} whose keys are

greater than x.key. This problem investigates how to implement these

operations on 2-3-4 trees (B-trees with t = 2). Assume for convenience

that elements consist only of keys and that all key values are distinct.

a. Show how to maintain, for every node x of a 2-3-4 tree, the height of

the subtree rooted at x as an attribute x.height. Make sure that your

implementation does not affect the asymptotic running times of

searching, insertion, and deletion.

b. Show how to implement the join operation. Given two 2-3-4 trees T′
and T″ and a key k, the join operation should run in O(1 + |h′ − h″|)

time, where h′ and h″ are the heights of T′ and T″, respectively.

c. Consider the simple path p from the root of a 2-3-4 tree T to a given

key k, the set S′ of keys in T that are less than k, and the set S″ of keys

in T that are greater than k. Show that p breaks S′ into a set of trees 

 and a set of keys  such that  for i

= 1, 2, … , m and any keys  and . What is the relationship

between the heights of  and ? Describe how p breaks S″ into sets

of trees and keys.

d. Show how to implement the split operation on T. Use the join

operation to assemble the keys in S′ into a single 2-3-4 tree T′ and the

keys in S″ into a single 2-3-4 tree T″. The running time of the split

operation should be O(lg n), where n is the number of keys in T. (Hint:

The costs for joining should telescope.)
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Chapter notes

Knuth [261], Aho, Hopcroft, and Ullman [5], and Sedgewick and

Wayne [402] give further discussions of balanced-tree schemes and B-

trees. Comer [99] provides a comprehensive survey of B-trees. Guibas

and Sedgewick [202] discuss the relationships among various kinds of

balanced-tree schemes, including red-black trees and 2-3-4 trees.

In 1970, J. E. Hopcroft invented 2-3 trees, a precursor to B-trees and

2-3-4 trees, in which every internal node has either two or three children.

Bayer and McCreight [39] introduced B-trees in 1972 with no

explanation of their choice of name.

Bender, Demaine, and Farach-Colton [47] studied how to make B-

trees perform well in the presence of memory-hierarchy effects. Their

cache-oblivious algorithms work efficiently without explicitly knowing

the data transfer sizes within the memory hierarchy.

1 When specifying disk capacities, one terabyte is one trillion bytes, rather than 240 bytes.

2 SSDs also exhibit greater latency than main memory and access data in blocks.

3 Another common variant on a B-tree, known as a B*-tree, requires each internal node to be at

least 2/3 full, rather than at least half full, as a B-tree requires.
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19        Data Structures for Disjoint Sets

Some applications involve grouping n distinct elements into a collection

of disjoint sets—sets with no elements in common. These applications

often need to perform two operations in particular: finding the unique

set that contains a given element and uniting two sets. This chapter

explores methods for maintaining a data structure that supports these

operations.

Section 19.1 describes the operations supported by a disjoint-set data

structure and presents a simple application. Section 19.2 looks at a

simple linked-list implementation for disjoint sets. Section 19.3 presents

a more efficient representation using rooted trees. The running time

using the tree representation is theoretically superlinear, but for all

practical purposes it is linear. Section 19.4 defines and discusses a very

quickly growing function and its very slowly growing inverse, which

appears in the running time of operations on the tree-based

implementation, and then, by a complex amortized analysis, proves an

upper bound on the running time that is just barely superlinear.

19.1    Disjoint-set operations

A disjoint-set data structure maintains a collection S = {S1, S2, … , Sk}

of disjoint dynamic sets. To identify each set, choose a representative,

which is some member of the set. In some applications, it doesn’t matter

which member is used as the representative; it matters only that if you

ask for the representative of a dynamic set twice without modifying the
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set between the requests, you get the same answer both times. Other

applications may require a prespecified rule for choosing the

representative, such as choosing the smallest member in the set (for a set

whose elements can be ordered).

As in the other dynamic-set implementations we have studied, each

element of a set is represented by an object. Letting x denote an object,

we’ll see how to support the following operations:

MAKE-SET(x), where x does not already belong to some other set,

creates a new set whose only member (and thus representative) is x.

UNION(x, y) unites two disjoint, dynamic sets that contain x and y, say

Sx and Sy, into a new set that is the union of these two sets. The

representative of the resulting set is any member of Sx ∪ Sy, although

many implementations of UNION specifically choose the

representative of either Sx or Sy as the new representative. Since the

sets in the collection must at all times be disjoint, the UNION

operation destroys sets Sx and Sy, removing them from the collection

S. In practice, implementations often absorb the elements of one of

the sets into the other set.

FIND-SET(x) returns a pointer to the representative of the unique set

containing x.

Throughout this chapter, we’ll analyze the running times of disjoint-

set data structures in terms of two parameters: n, the number of MAKE-

SET operations, and m, the total number of MAKE-SET, UNION, and

FIND-SET operations. Because the total number of operations m

includes the n MAKE-SET operations, m ≥ n. The first n operations are

always MAKE-SET operations, so that after the first n operations, the

collection consists of n singleton sets. Since the sets are disjoint at all

times, each UNION operation reduces the number of sets by 1. After n −

1 UNION operations, therefore, only one set remains, and so at most n −

1 UNION operations can occur.

An application of disjoint-set data structures
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One of the many applications of disjoint-set data structures arises in

determining the connected components of an undirected graph (see

Section B.4). Figure 19.1(a), for example, shows a graph with four

connected components.

The procedure CONNECTED-COMPONENTS on the following

page uses the disjoint-set operations to compute the connected

components of a graph. Once the CONNECTED-COMPONENTS

procedure has preprocessed the graph, the procedure SAME-

COMPONENT answers queries about whether two vertices belong to

the same connected component. In pseudocode, we denote the set of

vertices of a graph G by G.V and the set of edges by G.E.

The procedure CONNECTED-COMPONENTS initially places each

vertex v in its own set. Then, for each edge (u, v), it unites the sets

containing u and v. By Exercise 19.1-2, after all the edges are processed,

two vertices belong to the same connected component if and only if the

objects corresponding to the vertices belong to the same set. Thus

CONNECTED-COMPONENTS computes sets in such a way that the

procedure SAME-COMPONENT can determine whether two vertices

are in the same connected component. Figure 19.1(b) illustrates how

CONNECTED-COMPONENTS computes the disjoint sets.

Figure 19.1 (a) A graph with four connected components: {a, b, c, d}, {e, f, g}, {h, i}, and {j }. (b)

The collection of disjoint sets after processing each edge.

CONNECTED-COMPONENTS(G)
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1 for each vertex v ∈ G.V

2 MAKE-SET(v)

3 for each edge (u, v) ∈ G.E

4 if FIND-SET(u) ≠ FIND-SET(v)

5 UNION(u, v)

SAME-COMPONENT(u, v)

1 if FIND-SET(u) == FIND-SET(v)

2 return TRUE

3 else returnFALSE

In an actual implementation of this connected-components

algorithm, the representations of the graph and the disjoint-set data

structure would need to reference each other. That is, an object

representing a vertex would contain a pointer to the corresponding

disjoint-set object, and vice versa. Since these programming details

depend on the implementation language, we do not address them further

here.

When the edges of the graph are static—not changing over time—

depth-first search can compute the connected components faster (see

Exercise 20.3-12 on page 572). Sometimes, however, the edges are added

dynamically, with the connected components updated as each edge is

added. In this case, the implementation given here can be more efficient

than running a new depth-first search for each new edge.

Exercises

19.1-1

The CONNECTED-COMPONENTS procedure is run on the

undirected graph G = (V, E), where V = {a, b, c, d, e, f, g, h, i, j, k}, and

the edges of E are processed in the order (d, i), (f, k), (g, i), (b, g), (a, h),

(i, j), (d, k), (b, j), (d, f), (g, j), (a, e). List the vertices in each connected

component after each iteration of lines 3–5.

19.1-2

Show that after all edges are processed by CONNECTED-

COMPONENTS, two vertices belong to the same connected component
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if and only if they belong to the same set.

19.1-3

During the execution of CONNECTED-COMPONENTS on an

undirected graph G = (V, E) with k connected components, how many

times is FIND-SET called? How many times is UNION called? Express

your answers in terms of |V |, |E|, and k.

19.2    Linked-list representation of disjoint sets

Figure 19.2(a) shows a simple way to implement a disjoint-set data

structure: each set is represented by its own linked list. The object for

each set has attributes head, pointing to the first object in the list, and

tail, pointing to the last object. Each object in the list contains a set

member, a pointer to the next object in the list, and a pointer back to the

set object. Within each linked list, the objects may appear in any order.

The representative is the set member in the first object in the list.

With this linked-list representation, both MAKE-SET and FIND-

SET require only O(1) time. To carry out MAKE-SET(x), create a new

linked list whose only object is x. For FIND-SET(x), just follow the

pointer from x back to its set object and then return the member in the

object that head points to. For example, in Figure 19.2(a), the call FIND-

SET(g) returns f.
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Figure 19.2 (a) Linked-list representations of two sets. Set S1 contains members d, f, and g, with

representative f, and set S2 contains members b, c, e, and h, with representative c. Each object in

the list contains a set member, a pointer to the next object in the list, and a pointer back to the set

object. Each set object has pointers head and tail to the first and last objects, respectively. (b) The

result of UNION(g, e), which appends the linked list containing e to the linked list containing g.

The representative of the resulting set is f. The set object for e’s list, S2, is destroyed.

A simple implementation of union

The simplest implementation of the UNION operation using the linked-

list set representation takes significantly more time than MAKE-SET or

FIND-SET. As Figure 19.2(b) shows, the operation UNION(x, y)

appends y’s list onto the end of x’s list. The representative of x’s list

becomes the representative of the resulting set. To quickly find where to

append y’s list, use the tail pointer for x’s list. Because all members of y’s

list join x’s list, the UNION operation destroys the set object for y’s list.

The UNION operation is where this implementation pays the price for

FIND-SET taking constant time: UNION must also update the pointer

to the set object for each object originally on y’s list, which takes time

linear in the length of y’s list. In Figure 19.2, for example, the operation

UNION(g, e) causes pointers to be updated in the objects for b, c, e, and

h.
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In fact, we can construct a sequence of m operations on n objects that

requires Θ(n2) time. Starting with objects x1, x2, … , xn, execute the

sequence of n MAKE-SET operations followed by n − 1 UNION

operations shown in Figure 19.3, so that m = 2n−1. The n MAKE-SET

operations take Θ(n) time. Because the ith UNION operation updates i

objects, the total number of objects updated by all n−1 UNION

operations forms an arithmetic series:

Figure 19.3 A sequence of 2n − 1 operations on n objects that takes Θ(n2) time, or Θ(n) time per

operation on average, using the linked-list set representation and the simple implementation of

UNION.

The total number of operations is 2n−1, and so each operation on

average requires Θ(n) time. That is, the amortized time of an operation is

Θ(n).

A weighted-union heuristic

In the worst case, the above implementation of UNION requires an

average of Θ(n) time per call, because it might be appending a longer list

onto a shorter list, and the procedure must update the pointer to the set

object for each member of the longer list. Suppose instead that each list

also includes the length of the list (which can be maintained

straightforwardly with constant overhead) and that the UNION
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procedure always appends the shorter list onto the longer, breaking ties

arbitrarily. With this simple weighted-union heuristic, a single UNION

operation can still take Ω(n) time if both sets have Ω(n) members. As the

following theorem shows, however, a sequence of m MAKE-SET,

UNION, and FIND-SET operations, n of which are MAKE-SET

operations, takes O(m + n lg n) time.

Theorem 19.1

Using the linked-list representation of disjoint sets and the weighted-

union heuristic, a sequence of m MAKE-SET, UNION, and FIND-SET

operations, n of which are MAKE-SET operations, takes O(m + n lg n)

time.

Proof   Because each UNION operation unites two disjoint sets, at most

n − 1 UNION operations occur over all. We now bound the total time

taken by these UNION operations. We start by determining, for each

object, an upper bound on the number of times the object’s pointer back

to its set object is updated. Consider a particular object x. Each time x’s

pointer is updated, x must have started in the smaller set. The first time

x’s pointer is updated, therefore, the resulting set must have at least 2

members. Similarly, the next time x’s pointer is updated, the resulting set

must have had at least 4 members. Continuing on, for any k ≤ n, after x’s

pointer has been updated ⌈lg k⌉ times, the resulting set must have at least

k members. Since the largest set has at most n members, each object’s

pointer is updated at most ⌈lg n⌉ times over all the UNION operations.

Thus the total time spent updating object pointers over all UNION

operations is O(n lg n). We must also account for updating the tail

pointers and the list lengths, which take only Θ(1) time per UNION

operation. The total time spent in all UNION operations is thus O(n lg

n).

The time for the entire sequence of m operations follows. Each

MAKE-SET and FIND-SET operation takes O(1) time, and there are

O(m) of them. The total time for the entire sequence is thus O(m + n lg

n).

▪
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Exercises

19.2-1

Write pseudocode for MAKE-SET, FIND-SET, and UNION using the

linked-list representation and the weighted-union heuristic. Make sure to

specify the attributes that you assume for set objects and list objects.

19.2-2

Show the data structure that results and the answers returned by the

FIND-SET operations in the following program. Use the linked-list

representation with the weighted-union heuristic. Assume that if the sets

containing xi and xj have the same size, then the operation UNION(xi,

xj) appends xj’s list onto xi’s list.

  1for i = 1 to 16

  2 MAKE-SET(xi)

  3for i = 1 to 15 by 2

  4 UNION(xi, xi+1)

  5for i = 1 to 13 by 4

  6 UNION(xi, xi+2)

  7UNION(x1, x5)

  8UNION(x11, x13)

  9UNION(x1, x10)

10FIND-SET(x2)

11FIND-SET(x9)

19.2-3

Adapt the aggregate proof of Theorem 19.1 to obtain amortized time

bounds of O(1) for MAKE-SET and FIND-SET and O(lg n) for

UNION using the linked-list representation and the weighted-union

heuristic.

19.2-4

Give a tight asymptotic bound on the running time of the sequence of

operations in Figure 19.3 assuming the linked-list representation and the

weighted-union heuristic.
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19.2-5

Professor Gompers suspects that it might be possible to keep just one

pointer in each set object, rather than two (head and tail), while keeping

the number of pointers in each list element at two. Show that the

professor’s suspicion is well founded by describing how to represent each

set by a linked list such that each operation has the same running time as

the operations described in this section. Describe also how the

operations work. Your scheme should allow for the weighted-union

heuristic, with the same effect as described in this section. (Hint: Use the

tail of a linked list as its set’s representative.)

19.2-6

Suggest a simple change to the UNION procedure for the linked-list

representation that removes the need to keep the tail pointer to the last

object in each list. Regardless of whether the weighted-union heuristic is

used, your change should not change the asymptotic running time of the

UNION procedure. (Hint: Rather than appending one list to another,

splice them together.)

19.3    Disjoint-set forests

A faster implementation of disjoint sets represents sets by rooted trees,

with each node containing one member and each tree representing one

set. In a disjoint-set forest, illustrated in Figure 19.4(a), each member

points only to its parent. The root of each tree contains the

representative and is its own parent. As we’ll see, although the

straightforward algorithms that use this representation are no faster than

ones that use the linked-list representation, two heuristics—“union by

rank” and “path compression”—yield an asymptotically optimal

disjoint-set data structure.

The three disjoint-set operations have simple implementations. A

MAKE-SET operation simply creates a tree with just one node. A

FIND-SET operation follows parent pointers until it reaches the root of

the tree. The nodes visited on this simple path toward the root constitute

the find path. A UNION operation, shown in Figure 19.4(b), simply

causes the root of one tree to point to the root of the other.
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Figure 19.4 A disjoint-set forest. (a) Trees representing the two sets of Figure 19.2. The tree on

the left represents the set {b, c, e, h}, with c as the representative, and the tree on the right

represents the set {d, f, g}, with f as the representative. (b) The result of UNION (e, g).

Heuristics to improve the running time

So far, disjoint-set forests have not improved on the linked-list

implementation. A sequence of n − 1 UNION operations could create a

tree that is just a linear chain of n nodes. By using two heuristics,

however, we can achieve a running time that is almost linear in the total

number m of operations.

The first heuristic, union by rank, is similar to the weighted-union

heuristic we used with the linked-list representation. The common-sense

approach is to make the root of the tree with fewer nodes point to the

root of the tree with more nodes. Rather than explicitly keeping track of

the size of the subtree rooted at each node, however, we’ll adopt an

approach that eases the analysis. For each node, maintain a rank, which

is an upper bound on the height of the node. Union by rank makes the

root with smaller rank point to the root with larger rank during a

UNION operation.

The second heuristic, path compression, is also quite simple and

highly effective. As shown in Figure 19.5, FIND-SET operations use it to

make each node on the find path point directly to the root. Path

compression does not change any ranks.

Pseudocode for disjoint-set forests
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The union-by-rank heuristic requires its implementation to keep track of

ranks. With each node x, maintain the integer value x.rank, which is an

upper bound on the height of x (the number of edges in the longest

simple path from a descendant leaf to x). When MAKE-SET creates a

singleton set, the single node in the corresponding tree has an initial rank

of 0. Each FIND-SET operation leaves all ranks unchanged. The

UNION operation has two cases, depending on whether the roots of the

trees have equal rank. If the roots have unequal ranks, make the root

with higher rank the parent of the root with lower rank, but don’t

change the ranks themselves. If the roots have equal ranks, arbitrarily

choose one of the roots as the parent and increment its rank.

Figure 19.5 Path compression during the operation FIND-SET. Arrows and self-loops at roots

are omitted. (a) A tree representing a set prior to executing FIND-SET(a). Triangles represent

subtrees whose roots are the nodes shown. Each node has a pointer to its parent. (b) The same set

after executing FIND-SET(a). Each node on the find path now points directly to the root.

Let’s put this method into pseudocode, appearing on the next page.

The parent of node x is denoted by x.p. The LINK procedure, a

subroutine called by UNION, takes pointers to two roots as inputs. The

FIND-SET procedure with path compression, implemented recursively,

turns out to be quite simple.
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The FIND-SET procedure is a two-pass method: as it recurses, it

makes one pass up the find path to find the root, and as the recursion

unwinds, it makes a second pass back down the find path to update each

node to point directly to the root. Each call of FIND-SET(x) returns x.p

in line 3. If x is the root, then FIND-SET skips line 2 and just returns

x.p, which is x. In this case the recursion bottoms out. Otherwise, line 2

executes, and the recursive call with parameter x.p returns a pointer to

the root. Line 2 updates node x to point directly to the root, and line 3

returns this pointer.

MAKE-SET(x)

1 x.p = x

2 x.rank = 0

UNION(x, y)

1 LINK(FIND-SET(x), FIND-SET(y))

LINK(x, y)

1 if x.rank > y.rank

2 y.p = x

3 else x.p = y

4 if x.rank == y.rank

5 y.rank = y.rank + 1

FIND-SET(x)

1 if x ≠ x.p // not the root?

2 x.p = FIND-SET(x.p) // the root becomes the parent

3 return x.p // return the root

Effect of the heuristics on the running time

Separately, either union by rank or path compression improves the

running time of the operations on disjoint-set forests, and combining the

two heuristics yields an even greater improvement. Alone, union by rank

yields a running time of O(m lg n) for a sequence of m operations, n of

which are MAKE-SET (see Exercise 19.4-4), and this bound is tight (see
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Exercise 19.3-3). Although we won’t prove it here, for a sequence of n

MAKE-SET operations (and hence at most n − 1 UNION operations)

and f FIND-SET operations, the worst-case running time using only the

path-compression heuristic is Θ(n + f · (1 + log2+f/nn)).

Combining union by rank and path compression gives a worst-case

running time of O(m α(n)), where α(n) is a very slowly growing function,

defined in Section 19.4. In any conceivable application of a disjoint-set

data structure, α(n) ≤ 4, and thus, its running time is as good as linear in

m for all practical purposes. Mathematically speaking, however, it is

superlinear. Section 19.4 proves this O(mα(n)) upper bound.

Exercises

19.3-1

Redo Exercise 19.2-2 using a disjoint-set forest with union by rank and

path compression. Show the resulting forest with each node including its

xi and rank.

19.3-2

Write a nonrecursive version of FIND-SET with path compression.

19.3-3

Give a sequence of m MAKE-SET, UNION, and FIND-SET

operations, n of which are MAKE-SET operations, that takes Ω(m lg n)

time when using only union by rank and not path compression.

19.3-4

Consider the operation PRINT-SET(x), which is given a node x and

prints all the members of x’s set, in any order. Show how to add just a

single attribute to each node in a disjoint-set forest so that PRINT-

SET(x) takes time linear in the number of members of x’s set and the

asymptotic running times of the other operations are unchanged.

Assume that you can print each member of the set in O(1) time.

★ 19.3-5

Show that any sequence of m MAKE-SET, FIND-SET, and LINK

operations, where all the LINK operations appear before any of the

www.konkur.in

Telegram: @uni_k



FIND-SET operations, takes only O(m) time when using both path

compression and union by rank. You may assume that the arguments to

LINK are roots within the disjoint-set forest. What happens in the same

situation when using only path compression and not union by rank?

★ 19.4 Analysis of union by rank with path compression

As noted in Section 19.3, the combined union-by-rank and path-

compression heuristic runs in O(m α(n)) time for m disjoint-set

operations on n elements. In this section, we’ll explore the function α to

see just how slowly it grows. Then we’ll analyze the running time using

the potential method of amortized analysis.

A very quickly growing function and its very slowly growing inverse

For integers j, k ≥ 0, we define the function Ak(j) as

where the expression  uses the functional-iteration notation

defined in equation (3.30) on page 68. Specifically, equation (3.30) gives 

 and  for i ≥ 1. We call the parameter

k the level of the function A.

The function Ak(j) strictly increases with both j and k. To see just

how quickly this function grows, we first obtain closed-form expressions

for A1(j) and A2(j).

Lemma 19.2

For any integer j ≥ 1, we have A1(j) = 2j + 1.

Proof      We first use induction on i to show that . For the

base case, . For the inductive step, assume that 
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. Then .

Finally, we note that .

▪

Lemma 19.3

For any integer j ≥ 1, we have A2 (j) = 2j+1(j + 1) − 1.

Proof      We first use induction on i to show that .

For the base case, we have . For the inductive

step, assume that . Then 

. Finally, we note that .

Now we can see how quickly Ak(j) grows by simply examining Ak(1)

for levels k = 0, 1, 2, 3, 4. From the definition of A0(j) and the above

lemmas, we have A0(1) = 1 + 1 = 2, A1(1) = 2 · 1 + 1 = 3, and A2(1) =

21+1 · (1 + 1) − 1 = 7. We also have

A3(1) =

= A2(A2(1))

= A2(7)

= 28 · 8 − 1

= 211 − 1

= 2047

and

A4(1) =

= A3(A3(1))

= A3(2047)

=
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≫ A2(2047)

= 22048 · 2048 − 1

= 22059 − 1

> 22056

= (24)514

= 16514

≫ 1080,

which is the estimated number of atoms in the observable universe. (The

symbol “≫” denotes the “much-greater-than” relation.)

We define the inverse of the function Ak(n), for integer n ≥ 0, by

In words, α(n) is the lowest level k for which Ak(1) is at least n. From the

above values of Ak(1), we see that

It is only for values of n so large that the term “astronomical”

understates them (greater than A4(1), a huge number) that α(n) > 4, and

so α(n) ≤ 4 for all practical purposes.

Properties of ranks

In the remainder of this section, we prove an O(mα(n)) bound on the

running time of the disjoint-set operations with union by rank and path

compression. In order to prove this bound, we first prove some simple

properties of ranks.

Lemma 19.4
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For all nodes x, we have x.rank ≤ x.p.rank, with strict inequality if x ≠ x.p

(x is not a root). The value of x.rank is initially 0, increases through time

until x ≠ x.p, and from then on, x.rank does not change. The value of

x.p.rank monotonically increases over time.

Proof      The proof is a straightforward induction on the number of

operations, using the implementations of MAKE-SET, UNION, and

FIND-SET that appear on page 530, and is left as Exercise 19.4-1.

▪

Corollary 19.5

On the simple path from any node going up toward a root, node ranks

strictly increase.

▪

Lemma 19.6

Every node has rank at most n − 1.

Proof     Each node’s rank starts at 0, and it increases only upon LINK

operations. Because there are at most n − 1 UNION operations, there

are also at most n − 1 LINK operations. Because each LINK operation

either leaves all ranks alone or increases some node’s rank by 1, all ranks

are at most n − 1.

▪

Lemma 19.6 provides a weak bound on ranks. In fact, every node has

rank at most ⌊lg n⌋ (see Exercise 19.4-2). The looser bound of Lemma

19.6 suffices for our purposes, however.

Proving the time bound

In order to prove the O(mα(n)) time bound, we’ll use the potential

method of amortized analysis from Section 16.3. In performing the

amortized analysis, it will be convenient to assume that we invoke the

LINK operation rather than the UNION operation. That is, since the

parameters of the LINK procedure are pointers to two roots, we act as

though we perform the appropriate FIND-SET operations separately.

The following lemma shows that even if we count the extra FIND-SET
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operations induced by UNION calls, the asymptotic running time

remains unchanged.

Lemma 19.7

Suppose that we convert a sequence S′ of m′ MAKE-SET, UNION, and

FIND-SET operations into a sequence S of m MAKE-SET, LINK, and

FIND-SET operations by turning each UNION into two FIND-SET

operations followed by one LINK. Then, if sequence S runs in O(mα(n))

time, sequence S′ runs in O(m′ α(n)) time.

Proof      Since each UNION operation in sequence S′ is converted into

three operations in S, we have m′ ≤ m ≤ 3m′, so that m = Θ(m′), Thus, an

O(m α(n)) time bound for the converted sequence S implies an O(m′ α(n))

time bound for the original sequence S′.
▪

From now on, we assume that the initial sequence of m′ MAKE-SET,

UNION, and FIND-SET operations has been converted to a sequence

of m MAKE-SET, LINK, and FIND-SET operations. We now prove an

O(m α(n)) time bound for the converted sequence and appeal to Lemma

19.7 to prove the O(m′ α(n)) running time of the original sequence of m′
operations.

Potential function

The potential function we use assigns a potential ϕq(x) to each node x in

the disjoint-set forest after q operations. For the potential Φq of the

entire forest after q operations, sum the individual node potentials: 

. Because the forest is empty before the first operation, the

sum is taken over an empty set, and so Φ0 = 0. No potential Φq is ever

negative.

The value of ϕq(x) depends on whether x is a tree root after the qth

operation. If it is, or if x.rank = 0, then ϕq(x) = α(n) · x.rank.

Now suppose that after the qth operation, x is not a root and that

x.rank ≥ 1. We need to define two auxiliary functions on x before we can
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define ϕq(x). First we define

That is, level(x) is the greatest level k for which Ak, applied to x’s rank, is

no greater than x’s parent’s rank.

We claim that

which we see as follows. We have

x.p.rank ≥ x.rank + 1 (by Lemma 19.4 because x is not a root)

= A0(x.rank) (by the definition (19.1) of A0(j)),

which implies that level(x) ≥ 0, and

Aα(n)(x.rank) ≥ Aα(n)(1) (because Ak(j) is strictly increasing)

≥ n (by the definition (19.2) of α(n))

> x.p.rank (by Lemma 19.6),

which implies that level(x) < α(n).

For a given nonroot node x, the value of level(x) monotonically

increases over time. Why? Because x is not a root, its rank does not

change. The rank of x.p monotonically increases over time, since if x.p is

not a root then its rank does not change, and if x.p is a root then its rank

can never decrease. Thus, the difference between x.rank and x.p.rank

monotonically increases over time. Therefore, the value of k needed for

Ak(x.rank) to overtake x.p.rank monotonically increases over time as

well.

The second auxiliary function applies when x.rank ≥ 1: iter(x) = max

That is, iter(x) is the largest number of times we can iteratively apply

Alevel(x), applied initially to x’s rank, before exceeding x’s parent’s rank.

We claim that when x.rank ≥ 1, we have

www.konkur.in

Telegram: @uni_k



which we see as follows. We have

x.p.rank ≥ Alevel(x)(x.rank) (by the definition (19.3) of level(x))

= (by the definition (3.30) of functional

iteration),

which implies that iter(x) ≥ 1. We also have

= Alevel(x)+1(x.rank) (by the definition (19.1) of Ak(j))

> x.p.rank (by the definition (19.3) of

level(x)),

which implies that iter(x) ≤ x.rank. Note that because x.p.rank

monotonically increases over time, in order for iter(x) to decrease,

level(x) must increase. As long as level(x) remains unchanged, iter(x)

must either increase or remain unchanged.

With these auxiliary functions in place, we are ready to define the

potential of node x after q operations:

We next investigate some useful properties of node potentials.

Lemma 19.8

For every node x, and for all operation counts q, we have

0 ≤ ϕq(x) ≤ α(n) · x.rank.

Proof      If x is a root or x.rank = 0, then ϕq(x) = α(n) · x.rank by

definition. Now suppose that x is not a root and that x.rank ≥ 1. We can

obtain a lower bound on ϕq(x) by maximizing level(x) and iter(x). The

bounds (19.4) and (19.6) give α(n) − level(x) ≥ 1 and iter(x) ≤ x.rank.

Thus, we have

ϕq(x) = (α(n) − level(x)) · x.rank − iter(x)
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≥ x.rank − x.rank

= 0.

Similarly, minimizing level(x) and iter(x) provides an upper bound on

ϕq(x). By the bound (19.4), level(x) ≥ 0, and by the bound (19.6), iter(x)

≥ 1. Thus, we have

ϕq(x) ≤ (α(n) − 0) · x.rank − 1

= α(n) · x.rank − 1

< α(n) · x.rank.

▪

Corollary 19.9

If node x is not a root and x.rank > 0, then ϕq(x) < α(n) · x.rank.

Potential changes and amortized costs of operations

We are now ready to examine how the disjoint-set operations affect node

potentials. Once we understand how each operation can change the

potential, we can determine the amortized costs.

Lemma 19.10

Let x be a node that is not a root, and suppose that the qth operation is

either a LINK or a FIND-SET. Then after the qth operation, ϕq(x) ≤

ϕq−1(x). Moreover, if x.rank ≥ 1 and either level(x) or iter(x) changes

due to the qth operation, then ϕq(x) ≤ ϕq−1(x) − 1. That is, x’s potential

cannot increase, and if it has positive rank and either level(x) or iter(x)

changes, then x’s potential drops by at least 1.

Proof   Because x is not a root, the qth operation does not change x.rank,

and because n does not change after the initial n MAKE-SET

operations, α(n) remains unchanged as well. Hence, these components of

the formula for x’s potential remain the same after the qth operation. If

x.rank = 0, then ϕq(x) = ϕq−1(x) = 0.
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Now assume that x.rank ≥ 1. Recall that level(x) monotonically

increases over time. If the qth operation leaves level(x) unchanged, then

iter(x) either increases or remains unchanged. If both level(x) and iter(x)

are unchanged, then ϕq(x) = ϕq−1(x). If level(x) is unchanged and

iter(x) increases, then it increases by at least 1, and so ϕq(x) ≤ ϕq−1(x) −

1.

Finally, if the qth operation increases level(x), it increases by at least

1, so that the value of the term (α(n) − level(x)) · x.rank drops by at least

x.rank. Because level(x) increased, the value of iter(x) might drop, but

according to the bound (19.6), the drop is by at most x.rank − 1. Thus,

the increase in potential due to the change in iter(x) is less than the

decrease in potential due to the change in level(x), yielding ϕq(x) ≤

ϕq−1(x) − 1.

▪

Our final three lemmas show that the amortized cost of each MAKE-

SET, LINK, and FIND-SET operation is O(α(n)). Recall from equation

(16.2) on page 456 that the amortized cost of each operation is its actual

cost plus the change in potential due to the operation.

Lemma 19.11

The amortized cost of each MAKE-SET operation is O(1).

Proof   Suppose that the qth operation is MAKE-SET(x). This operation

creates node x with rank 0, so that ϕq(x) = 0. No other ranks or

potentials change, and so Φq = Φq−1. Noting that the actual cost of the

MAKE-SET operation is O(1) completes the proof.

▪

Lemma 19.12

The amortized cost of each LINK operation is O(α(n)).

Proof   Suppose that the qth operation is LINK(x, y). The actual cost of

the LINK operation is O(1). Without loss of generality, suppose that the

LINK makes y the parent of x.
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To determine the change in potential due to the LINK, note that the

only nodes whose potentials may change are x, y, and the children of y

just prior to the operation. We’ll show that the only node whose

potential can increase due to the LINK is y, and that its increase is at

most α(n):

By Lemma 19.10, any node that is y’s child just before the LINK

cannot have its potential increase due to the LINK.

From the definition (19.7) of ϕq(x), note that, since x was a root

just before the qth operation, ϕq−1(x) = α(n) · x.rank at that time.

If x.rank = 0, then ϕq(x) = ϕq−1(x) = 0. Otherwise,

ϕq(x) < α(n) · x.rank (by Corollary 19.9)

= ϕq−1(x),

and so x’s potential decreases.

Because y is a root prior to the LINK, ϕq−1(y) = α(n) · y.rank.

After the LINK operation, y remains a root, so that y’s potential

still equals α(n) times its rank after the operation. The LINK

operation either leaves y’s rank alone or increases y’s rank by 1.

Therefore, either ϕq(y) = ϕq−1(y) or ϕq(y) = ϕq−1(y) + α(n).

The increase in potential due to the LINK operation, therefore, is at

most α(n). The amortized cost of the LINK operation is O(1) + α(n) =

O(α(n)).

▪

Lemma 19.13

The amortized cost of each FIND-SET operation is O(α(n)).

Proof   Suppose that the qth operation is a FIND-SET and that the find

path contains s nodes. The actual cost of the FIND-SET operation is

O(s). We will show that no node’s potential increases due to the FIND-

SET and that at least max {0, s − (α(n) + 2)} nodes on the find path have

their potential decrease by at least 1.
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We first show that no node’s potential increases. Lemma 19.10 takes

care of all nodes other than the root. If x is the root, then its potential is

α(n) · x.rank, which does not change due to the FIND-SET operation.

Now we show that at least max {0, s − (α(n) + 2)} nodes have their

potential decrease by at least 1. Let x be a node on the find path such

that x.rank > 0 and x is followed somewhere on the find path by another

node y that is not a root, where level(y) = level(x) just before the FIND-

SET operation. (Node y need not immediately follow x on the find path.)

All but at most α(n) + 2 nodes on the find path satisfy these constraints

on x. Those that do not satisfy them are the first node on the find path

(if it has rank 0), the last node on the path (i.e., the root), and the last

node w on the path for which level(w) = k, for each k = 0, 1, 2, … , α(n)

−1.

Consider such a node x. It has positive rank and is followed

somewhere on the find path by nonroot node y such that level(y) =

level(x) before the path compression occurs. We claim that the path

compression decreases x’s potential by at least 1. To prove this claim, let

k = level(x) = level(y) and i = iter(x) before the path compression occurs.

Just prior to the path compression caused by the FIND-SET, we have

x.p.rank ≥ (by the definition (19.5) of iter(x)),

y.p.rank ≥ Ak(y.rank) (by the definition (19.3) of level(y)),

y.rank ≥ x.p.rank (by Corollary 19.5 and because y follows x on the

find path).

Putting these inequalities together gives

y.p.rank ≥ Ak(y.rank)

≥ Ak(x.p.rank) (because Ak(j) is strictly increasing)

≥

= (by the definition (3.30) of functional iteration).

Because path compression makes x and y have the same parent, after

path compression we have x.p.rank = y.p.rank. The parent of y might

change due to the path compression, but if it does, the rank of y’s new
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parent compared with the rank of y’s parent before path compression is

either the same or greater. Since x.rank does not change, 

 after path compression. By the

definition (19.5) of the iter function, the value of iter(x) increases from i

to at least i + 1. By Lemma 19.10, ϕq(x) ≤ ϕq−1(x) − 1, so that x’s

potential decreases by at least 1.

The amortized cost of the FIND-SET operation is the actual cost

plus the change in potential. The actual cost is O(s), and we have shown

that the total potential decreases by at least max {0, s − (α(n) + 2)}. The

amortized cost, therefore, is at most O(s) − (s − (α(n) + 2)) = O(s) − s +

O(α(n)) = O(α(n)), since we can scale up the units of potential to

dominate the constant hidden in O(s). (See Exercise 19.4-6.)

▪

Putting the preceding lemmas together yields the following theorem.

Theorem 19.14

A sequence of m MAKE-SET, UNION, and FIND-SET operations, n

of which are MAKE-SET operations, can be performed on a disjoint-set

forest with union by rank and path compression in O(m α(n)) time.

Proof   Immediate from Lemmas 19.7, 19.11, 19.12, and 19.13.

▪

Exercises

19.4-1

Prove Lemma 19.4.

19.4-2

Prove that every node has rank at most ⌊lg n⌋.

19.4-3

In light of Exercise 19.4-2, how many bits are necessary to store x.rank

for each node x?

19.4-4
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Using Exercise 19.4-2, give a simple proof that operations on a disjoint-

set forest with union by rank but without path compression run in O(m

lg n) time.

19.4-5

Professor Dante reasons that because node ranks increase strictly along

a simple path to the root, node levels must monotonically increase along

the path. In other words, if x.rank > 0 and x.p is not a root, then level(x)

≤ level(x.p). Is the professor correct?

19.4-6

The proof of Lemma 19.13 ends with scaling the units of potential to

dominate the constant hidden in the O(s) term. To be more precise in the

proof, you need to change the definition (19.7) of the potential function

to multiply each of the two cases by a constant, say c, that dominates the

constant in the O(s) term. How must the rest of the analysis change to

accommodate this updated potential function?

★ 19.4-7

Consider the function α′(n) = min {k : Ak(1) ≥ lg(n + 1)}. Show that α′(n)

≤ 3 for all practical values of n and, using Exercise 19.4-2, show how to

modify the potential-function argument to prove that performing a

sequence of m MAKE-SET, UNION, and FIND-SET operations, n of

which are MAKE-SET operations, on a disjoint-set forest with union by

rank and path compression takes O(mα′(n)) time.

Problems

19-1     Offline minimum

In the offline minimum problem, you maintain a dynamic set T of

elements from the domain {1, 2, … , n} under the operations INSERT

and EXTRACT-MIN. The input is a sequence S of n INSERT and m

EXTRACT-MIN calls, where each key in {1, 2, … , n} is inserted exactly

once. Your goal is to determine which key is returned by each

EXTRACT-MIN call. Specifically, you must fill in an array extracted[1:

m], where for i = 1, 2, … , m, extracted[i] is the key returned by the ith
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EXTRACT-MIN call. The problem is “offline” in the sense that you are

allowed to process the entire sequence S before determining any of the

returned keys.

a. Consider the following instance of the offline minimum problem, in

which each operation INSERT(i) is represented by the value of i and

each EXTRACT-MIN is represented by the letter E:

4, 8, E, 3, E, 9, 2, 6, E, E, E, 1, 7, E, 5.

Fill in the correct values in the extracted array.

To develop an algorithm for this problem, break the sequence S into

homogeneous subsequences. That is, represent S by

I1, E, I2, E, I3, … , Im, E, Im+1,

where each E represents a single EXTRACT-MIN call and each Ij

represents a (possibly empty) sequence of INSERT calls. For each

subsequence Ij, initially place the keys inserted by these operations into a

set Kj, which is empty if Ij is empty. Then execute the OFFLINE-

MINIMUM procedure.

OFFLINE-MINIMUM(m, n)

1 for i = 1 to n

2 determine j such that i ∈ Kj

3 if j ≠ m + 1

4 extracted[j] = i

5 let l be the smallest value greater than j for which set Kl exists

6 Kl = Kj ∪ Kl, destroying Kj

7 return extracted

b. Argue that the array extracted returned by OFFLINE-MINIMUM is

correct.

c. Describe how to implement OFFLINE-MINIMUM efficiently with a

disjoint-set data structure. Give as tight a bound as you can on the

worst-case running time of your implementation.
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19-2     Depth determination

In the depth-determination problem, you maintain a forest ℱ = {Ti} of

rooted trees under three operations:

MAKE-TREE(v) creates a tree whose only node is v.

FIND-DEPTH(v) returns the depth of node v within its tree.

GRAFT(r, v) makes node r, which is assumed to be the root of a tree,

become the child of node v, which is assumed to be in a different tree

from r but may or may not itself be a root.

a. Suppose that you use a tree representation similar to a disjoint-set

forest: v.p is the parent of node v, except that v.p = v if v is a root.

Suppose further that you implement GRAFT(r, v) by setting r.p = v

and FIND-DEPTH(v) by following the find path from v up to the root,

returning a count of all nodes other than v encountered. Show that the

worst-case running time of a sequence of m MAKE-TREE, FIND-

DEPTH, and GRAFT operations is Θ(m2).

By using the union-by-rank and path-compression heuristics, you can

reduce the worst-case running time. Use the disjoint-set forest S = {Si},

where each set Si (which is itself a tree) corresponds to a tree Ti in the

forest ℱ. The tree structure within a set Si, however, does not necessarily

correspond to that of Ti. In fact, the implementation of Si does not

record the exact parent-child relationships but nevertheless allows you to

determine any node’s depth in Ti.

The key idea is to maintain in each node v a “pseudodistance” v.d,

which is defined so that the sum of the pseudodistances along the simple

path from v to the root of its set Si equals the depth of v in Ti. That is, if

the simple path from v to its root in Si is v0, v1, … , vk, where v0 = v and

vk is Si’s root, then the depth of v in Ti is .

b. Give an implementation of MAKE-TREE.

c. Show how to modify FIND-SET to implement FIND-DEPTH. Your

implementation should perform path compression, and its running
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time should be linear in the length of the find path. Make sure that

your implementation updates pseudodistances correctly.

d. Show how to implement GRAFT(r, v), which combines the sets

containing r and v, by modifying the UNION and LINK procedures.

Make sure that your implementation updates pseudodistances

correctly. Note that the root of a set Si is not necessarily the root of the

corresponding tree Ti.

e. Give a tight bound on the worst-case running time of a sequence of m

MAKE-TREE, FIND-DEPTH, and GRAFT operations, n of which

are MAKE-TREE operations.

19-3     Tarjan’s offline lowest-common-ancestors algorithm

The lowest common ancestor of two nodes u and v in a rooted tree T is

the node w that is an ancestor of both u and v and that has the greatest

depth in T. In the offline lowest-common-ancestors problem, you are given

a rooted tree T and an arbitrary set P = {{u, v}} of unordered pairs of

nodes in T, and you wish to determine the lowest common ancestor of

each pair in P.

To solve the offline lowest-common-ancestors problem, the LCA

procedure on the following page performs a tree walk of T with the

initial call LCA(T.root). Assume that each node is colored WHITE prior

to the walk.

a. Argue that line 10 executes exactly once for each pair {u, v} ∈ P.

b. Argue that at the time of the call LCA(u), the number of sets in the

disjoint-set data structure equals the depth of u in T.

LCA(u)

  1 MAKE-SET(u)

  2 FIND-SET(u).ancestor = u

  3 for each child v of u in T

  4 LCA(v)

  5 UNION(u, v)

  6 FIND-SET(u).ancestor = u
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  7 u.color = BLACK

  8 for each node v such that {u, v} ∈ P

  9 if v.color == BLACK

10 print “The lowest common ancestor of”

u “and” v “is” FIND-SET(v).ancestor

c. Prove that LCA correctly prints the lowest common ancestor of u and

v for each pair {u, v} ∈ P.

d. Analyze the running time of LCA, assuming that you use the

implementation of the disjoint-set data structure in Section 19.3.

Chapter notes

Many of the important results for disjoint-set data structures are due at

least in part to R. E. Tarjan. Using aggregate analysis, Tarjan [427, 429]

gave the first tight upper bound in terms of the very slowly growing

inverse  of Ackermann’s function. (The function Ak(j) given in

Section 19.4 is similar to Ackermann’s function, and the function α(n) is

similar to . Both α(n) and  are at most 4 for all conceivable

values of m and n.) An upper bound of O(m lg* n) was proven earlier by

Hopcroft and Ullman [5, 227]. The treatment in Section 19.4 is adapted

from a later analysis by Tarjan [431], which is based on an analysis by

Kozen [270]. Harfst and Reingold [209] give a potential-based version of

Tarjan’s earlier bound.

Tarjan and van Leeuwen [432] discuss variants on the path-

compression heuristic, including “one-pass methods,” which sometimes

offer better constant factors in their performance than do two-pass

methods. As with Tarjan’s earlier analyses of the basic path-compression

heuristic, the analyses by Tarjan and van Leeuwen are aggregate. Harfst

and Reingold [209] later showed how to make a small change to the

potential function to adapt their path-compression analysis to these one-

pass variants. Goel et al. [182] prove that linking disjoint-set trees

randomly yields the same asymptotic running time as union by rank.

Gabow and Tarjan [166] show that in certain applications, the disjoint-

set operations can be made to run in O(m) time.
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Tarjan [428] showed that a lower bound of  time is

required for operations on any disjoint-set data structure satisfying

certain technical conditions. This lower bound was later generalized by

Fredman and Saks [155], who showed that in the worst case, 

 (lg n)-bit words of memory must be accessed.
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Part VI    Graph Algorithms
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Introduction

Graph problems pervade computer science, and algorithms for working

with them are fundamental to the field. Hundreds of interesting

computational problems are couched in terms of graphs. This part

touches on a few of the more significant ones.

Chapter 20 shows how to represent a graph in a computer and then

discusses algorithms based on searching a graph using either breadth-

first search or depth-first search. The chapter gives two applications of

depth-first search: topologically sorting a directed acyclic graph and

decomposing a directed graph into its strongly connected components.

Chapter 21 describes how to compute a minimum-weight spanning

tree of a graph: the least-weight way of connecting all of the vertices

together when each edge has an associated weight. The algorithms for

computing minimum spanning trees serve as good examples of greedy

algorithms (see Chapter 15).

Chapters 22 and 23 consider how to compute shortest paths between

vertices when each edge has an associated length or “weight.” Chapter

22 shows how to find shortest paths from a given source vertex to all

other vertices, and Chapter 23 examines methods to compute shortest

paths between every pair of vertices.

Chapter 24 shows how to compute a maximum flow of material in a

flow network, which is a directed graph having a specified source vertex

of material, a specified sink vertex, and specified capacities for the

amount of material that can traverse each directed edge. This general
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problem arises in many forms, and a good algorithm for computing

maximum flows can help solve a variety of related problems efficiently.

Finally, Chapter 25 explores matchings in bipartite graphs: methods

for pairing up vertices that are partitioned into two sets by selecting

edges that go between the sets. Bipartite-matching problems model

several situations that arise in the real world. The chapter examines how

to find a matching of maximum cardinality; the “stable-marriage

problem,” which has the highly practical application of matching

medical residents to hospitals; and assignment problems, which

maximize the total weight of a bipartite matching.

When we characterize the running time of a graph algorithm on a

given graph G = (V, E), we usually measure the size of the input in

terms of the number of vertices |V| and the number of edges |E| of the

graph. That is, we denote the size of the input with two parameters, not

just one. We adopt a common notational convention for these

parameters. Inside asymptotic notation (such as O-notation or Θ-

notation), and only inside such notation, the symbol V denotes |V | and

the symbol E denotes |E|. For example, we might say, “the algorithm

runs in O(VE) time,” meaning that the algorithm runs in O(|V| |E|) time.

This convention makes the running-time formulas easier to read,

without risk of ambiguity.

Another convention we adopt appears in pseudocode. We denote the

vertex set of a graph G by G.V and its edge set by G.E. That is, the

pseudocode views vertex and edge sets as attributes of a graph.
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20        Elementary Graph Algorithms

This chapter presents methods for representing a graph and for

searching a graph. Searching a graph means systematically following the

edges of the graph so as to visit the vertices of the graph. A graph-

searching algorithm can discover much about the structure of a graph.

Many algorithms begin by searching their input graph to obtain this

structural information. Several other graph algorithms elaborate on

basic graph searching. Techniques for searching a graph lie at the heart

of the field of graph algorithms.

Section 20.1 discusses the two most common computational

representations of graphs: as adjacency lists and as adjacency matrices.

Section 20.2 presents a simple graph-searching algorithm called

breadth-first search and shows how to create a breadth-first tree. Section

20.3 presents depth-first search and proves some standard results about

the order in which depth-first search visits vertices. Section 20.4

provides our first real application of depth-first search: topologically

sorting a directed acyclic graph. A second application of depth-first

search, finding the strongly connected components of a directed graph,

is the topic of Section 20.5.

20.1    Representations of graphs

You can choose between two standard ways to represent a graph G = (V,

E): as a collection of adjacency lists or as an adjacency matrix. Either

way applies to both directed and undirected graphs. Because the
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adjacency-list representation provides a compact way to represent

sparse graphs—those for which |E| is much less than |V|2—it is usually

the method of choice. Most of the graph algorithms presented in this

book assume that an input graph is represented in adjacency-list form.

You might prefer an adjacency-matrix representation, however, when

the graph is dense—|E| is close to |V|2—or when you need to be able to

tell quickly whether there is an edge connecting two given vertices. For

example, two of the all-pairs shortest-paths algorithms presented in

Chapter 23 assume that their input graphs are represented by adjacency

matrices.

Figure 20.1 Two representations of an undirected graph. (a) An undirected graph G with 5

vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix

representation of G.

Figure 20.2 Two representations of a directed graph. (a) A directed graph G with 6 vertices and 8

edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

The adjacency-list representation of a graph G = (V, E) consists of an

array Adj of |V| lists, one for each vertex in V. For each u ∈ V, the

adjacency list Adj[u] contains all the vertices v such that there is an edge

(u, v) ∈ E. That is, Adj[u] consists of all the vertices adjacent to u in G.

(Alternatively, it can contain pointers to these vertices.) Since the
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adjacency lists represent the edges of a graph, our pseudocode treats the

array Adj as an attribute of the graph, just like the edge set E. In

pseudocode, therefore, you will see notation such as G.Adj[u]. Figure

20.1(b) is an adjacency-list representation of the undirected graph in

Figure 20.1(a). Similarly, Figure 20.2(b) is an adjacency-list

representation of the directed graph in Figure 20.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency

lists is |E|, since an edge of the form (u, v) is represented by having v

appear in Adj[u]. If G is an undirected graph, the sum of the lengths of

all the adjacency lists is 2 |E|, since if (u, v) is an undirected edge, then u

appears in v’s adjacency list and vice versa. For both directed and

undirected graphs, the adjacency-list representation has the desirable

property that the amount of memory it requires is Θ(V + E). Finding

each edge in the graph also takes Θ(V + E) time, rather than just Θ(E),

since each of the |V| adjacency lists must be examined. Of course, if |E| =

Ω(V)—such as in a connected, undirected graph or a strongly

connected, directed graph—we can say that finding each edge takes

Θ(E) time.

Adjacency lists can also represent weighted graphs, that is, graphs for

which each edge has an associated weight given by a weight function w :

E → ℝ. For example, let G = (V, E) be a weighted graph with weight

function w. Then you can simply store the weight w(u, v) of the edge (u,

v) ∈ E with vertex v in u’s adjacency list. The adjacency-list

representation is quite robust in that you can modify it to support many

other graph variants.

A potential disadvantage of the adjacency-list representation is that

it provides no quicker way to determine whether a given edge (u, v) is

present in the graph than to search for v in the adjacency list Adj[u]. An

adjacency-matrix representation of the graph remedies this

disadvantage, but at the cost of using asymptotically more memory. (See

Exercise 20.1-8 for suggestions of variations on adjacency lists that

permit faster edge lookup.)

The adjacency-matrix representation of a graph G = (V, E) assumes

that the vertices are numbered 1, 2, … , |V| in some arbitrary manner.
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Then the adjacency-matrix representation of a graph G consists of a |V|

× |V| matrix A = (aij) such that

Figures 20.1(c) and 20.2(c) are the adjacency matrices of the undirected

and directed graphs in Figures 20.1(a) and 20.2(a), respectively. The

adjacency matrix of a graph requires Θ(V2) memory, independent of the

number of edges in the graph. Because finding each edge in the graph

requires examining the entire adjacency matrix, doing so takes Θ(V2)

time.

Observe the symmetry along the main diagonal of the adjacency

matrix in Figure 20.1(c). Since in an undirected graph, (u, v) and (v, u)

represent the same edge, the adjacency matrix A of an undirected graph

is its own transpose: A = AT. In some applications, it pays to store only

the entries on and above the diagonal of the adjacency matrix, thereby

cutting the memory needed to store the graph almost in half.

Like the adjacency-list representation of a graph, an adjacency

matrix can represent a weighted graph. For example, if G = (V, E) is a

weighted graph with edge-weight function w, you can store the weight

w(u, v) of the edge (u, v) ∈ E as the entry in row u and column v of the

adjacency matrix. If an edge does not exist, you can store a NIL value

as its corresponding matrix entry, though for many problems it is

convenient to use a value such as 0 or ∞.

Although the adjacency-list representation is asymptotically at least

as space-efficient as the adjacency-matrix representation, adjacency

matrices are simpler, and so you might prefer them when graphs are

reasonably small. Moreover, adjacency matrices carry a further

advantage for unweighted graphs: they require only one bit per entry.

Representing attributes

Most algorithms that operate on graphs need to maintain attributes for

vertices and/or edges. We indicate these attributes using our usual

notation, such as v.d for an attribute d of a vertex v. When we indicate
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edges as pairs of vertices, we use the same style of notation. For

example, if edges have an attribute f, then we denote this attribute for

edge (u, v) by (u, v).f. For the purpose of presenting and understanding

algorithms, our attribute notation suffices.

Implementing vertex and edge attributes in real programs can be

another story entirely. There is no one best way to store and access

vertex and edge attributes. For a given situation, your decision will likely

depend on the programming language you are using, the algorithm you

are implementing, and how the rest of your program uses the graph. If

you represent a graph using adjacency lists, one design choice is to

represent vertex attributes in additional arrays, such as an array d[1 : |V|]

that parallels the Adj array. If the vertices adjacent to u belong to Adj[u],

then the attribute u.d can actually be stored in the array entry d[u].

Many other ways of implementing attributes are possible. For example,

in an object-oriented programming language, vertex attributes might be

represented as instance variables within a subclass of a Vertex class.

Exercises

20.1-1

Given an adjacency-list representation of a directed graph, how long

does it take to compute the out-degree of every vertex? How long does it

take to compute the in-degrees?

20.1-2

Give an adjacency-list representation for a complete binary tree on 7

vertices. Give an equivalent adjacency-matrix representation. Assume

that the edges are undirected and that the vertices are numbered from 1

to 7 as in a binary heap.

20.1-3

The transpose of a directed graph G = (V, E) is the graph GT = (V, ET),

where ET = {(v, u) ∈ V × V : (u, v) ∈ E}. That is, GT is G with all its

edges reversed. Describe efficient algorithms for computing GT from G,

for both the adjacency-list and adjacency-matrix representations of G.

Analyze the running times of your algorithms.
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20.1-4

Given an adjacency-list representation of a multigraph G = (V, E),

describe an O(V + E)-time algorithm to compute the adjacency-list

representation of the “equivalent” undirected graph G′ = (V, E′), where

E′ consists of the edges in E with all multiple edges between two vertices

replaced by a single edge and with all self-loops removed.

20.1-5

The square of a directed graph G = (V, E) is the graph G2 = (V, E2)

such that (u, v) ∈ E2 if and only if G contains a path with at most two

edges between u and v. Describe efficient algorithms for computing G2

from G for both the adjacency-list and adjacency-matrix representations

of G. Analyze the running times of your algorithms.

20.1-6

Most graph algorithms that take an adjacency-matrix representation as

input require Ω(V2) time, but there are some exceptions. Show how to

determine whether a directed graph G contains a universal sink—a

vertex with in-degree |V| – 1 and out-degree 0—in O(V) time, given an

adjacency matrix for G.

20.1-7

The incidence matrix of a directed graph G = (V, E) with no self-loops is

a |V| × |E| matrix B = (bij) such that

Describe what the entries of the matrix product BBT represent, where

BT is the transpose of B.

20.1-8

Suppose that instead of a linked list, each array entry Adj[u] is a hash

table containing the vertices v for which (u, v) ∈ E, with collisions

resolved by chaining. Under the assumption of uniform independent
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hashing, if all edge lookups are equally likely, what is the expected time

to determine whether an edge is in the graph? What disadvantages does

this scheme have? Suggest an alternate data structure for each edge list

that solves these problems. Does your alternative have disadvantages

compared with the hash table?

20.2    Breadth-first search

Breadth-first search is one of the simplest algorithms for searching a

graph and the archetype for many important graph algorithms. Prim’s

minimum-spanning-tree algorithm (Section 21.2) and Dijkstra’s single-

source shortest-paths algorithm (Section 22.3) use ideas similar to those

in breadth-first search.

Given a graph G = (V, E) and a distinguished source vertex s,

breadth-first search systematically explores the edges of G to “discover”

every vertex that is reachable from s. It computes the distance from s to

each reachable vertex, where the distance to a vertex v equals the

smallest number of edges needed to go from s to v. Breadth-first search

also produces a “breadth-first tree” with root s that contains all

reachable vertices. For any vertex v reachable from s, the simple path in

the breadth-first tree from s to v corresponds to a shortest path from s

to v in G, that is, a path containing the smallest number of edges. The

algorithm works on both directed and undirected graphs.

Breadth-first search is so named because it expands the frontier

between discovered and undiscovered vertices uniformly across the

breadth of the frontier. You can think of it as discovering vertices in

waves emanating from the source vertex. That is, starting from s, the

algorithm first discovers all neighbors of s, which have distance 1. Then

it discovers all vertices with distance 2, then all vertices with distance 3,

and so on, until it has discovered every vertex reachable from s.

In order to keep track of the waves of vertices, breadth-first search

could maintain separate arrays or lists of the vertices at each distance

from the source vertex. Instead, it uses a single first-in, first-out queue

(see Section 10.1.3) containing some vertices at a distance k, possibly
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followed by some vertices at distance k + 1. The queue, therefore,

contains portions of two consecutive waves at any time.

To keep track of progress, breadth-first search colors each vertex

white, gray, or black. All vertices start out white, and vertices not

reachable from the source vertex s stay white the entire time. A vertex

that is reachable from s is discovered the first time it is encountered

during the search, at which time it becomes gray, indicating that is now

on the frontier of the search: the boundary between discovered and

undiscovered vertices. The queue contains all the gray vertices.

Eventually, all the edges of a gray vertex will be explored, so that all of

its neighbors will be discovered. Once all of a vertex’s edges have been

explored, the vertex is behind the frontier of the search, and it goes from

gray to black.1

Breadth-first search constructs a breadth-first tree, initially

containing only its root, which is the source vertex s. Whenever the

search discovers a white vertex v in the course of scanning the adjacency

list of a gray vertex u, the vertex v and the edge (u, v) are added to the

tree. We say that u is the predecessor or parent of v in the breadth-first

tree. Since every vertex reachable from s is discovered at most once, each

vertex reachable from s has exactly one parent. (There is one exception:

because s is the root of the breadth-first tree, it has no parent.) Ancestor

and descendant relationships in the breadth-first tree are defined relative

to the root s as usual: if u is on the simple path in the tree from the root

s to vertex v, then u is an ancestor of v and v is a descendant of u.

The breadth-first-search procedure BFS on the following page

assumes that the graph G = (V, E) is represented using adjacency lists. It

denotes the queue by Q, and it attaches three additional attributes to

each vertex v in the graph:

v.color is the color of v: WHITE, GRAY, or BLACK.

v.d holds the distance from the source vertex s to v, as computed

by the algorithm.

v.π is v’s predecessor in the breadth-first tree. If v has no

predecessor because it is the source vertex or is undiscovered, then

v.π NIL.
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Figure 20.3 illustrates the progress of BFS on an undirected graph.

The procedure BFS works as follows. With the exception of the

source vertex s, lines 1–4 paint every vertex white, set u.d = ∞ for each

vertex u, and set the parent of every vertex to be NIL. Because the

source vertex s is always the first vertex discovered, lines 5–7 paint s

gray, set s.d to 0, and set the predecessor of s to NIL. Lines 8–9 create

the queue Q, initially containing just the source vertex.

The while loop of lines 10–18 iterates as long as there remain gray

vertices, which are on the frontier: discovered vertices that have not yet

had their adjacency lists fully examined. This while loop maintains the

following invariant:

At the test in line 10, the queue Q consists of the set of gray

vertices.

Although we won’t use this loop invariant to prove correctness, it is easy

to see that it holds prior to the first iteration and that each iteration of

the loop maintains the invariant. Prior to the first iteration, the only

gray vertex, and the only vertex in Q, is the source vertex s. Line 11

determines the gray vertex u at the head of the queue Q and removes it

from Q. The for loop of lines 12–17 considers each vertex v in the

adjacency list of u. If v is white, then it has not yet been discovered, and

the procedure discovers it by executing lines 14–17. These lines paint

vertex v gray, set v’s distance v.d to u.d + 1, record u as v’s parent v.π,

and place v at the tail of the queue Q. Once the procedure has examined

all the vertices on u’s adjacency list, it blackens u in line 18, indicating

that u is now behind the frontier. The loop invariant is maintained

because whenever a vertex is painted gray (in line 14) it is also enqueued

(in line 17), and whenever a vertex is dequeued (in line 11) it is also

painted black (in line 18).

BFS(G, s)

  1 for each vertex u ∈ G.V – {s}

  2 u.color = WHITE

  3 u.d = ∞

  4 u.π NIL
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  5s.color = GRAY

  6s.d = 0

  7s.π NIL

  8Q = Ø

  9ENQUEUE(Q, s)

10while Q ≠ Ø

11 u = DEQUEUE(Q)

12 for each vertex v in G.Adj[u] // search the neighbors of u

13 if v.color == WHITE // is v being discovered now?

14 v.color = GRAY

15 v.d = u.d + 1

16 v.π = u

17 ENQUEUEd(Q, v) // v is now on the frontier

18 u.color = BLACK // u is now behind the frontier

The results of breadth-first search may depend upon the order in

which the neighbors of a given vertex are visited in line 12: the breadth-

first tree may vary, but the distances d computed by the algorithm do

not. (See Exercise 20.2-5.)

A simple change allows the BFS procedure to terminate in many

cases before the queue Q becomes empty. Because each vertex is

discovered at most once and receives a finite d value only when it is

discovered, the algorithm can terminate once every vertex has a finite d

value. If BFS keeps count of how many vertices have been discovered, it

can terminate once either the queue Q is empty or all |V| vertices are

discovered.
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Figure 20.3 The operation of BFS on an undirected graph. Each part shows the graph and the

queue Q at the beginning of each iteration of the while loop of lines 10–18. Vertex distances

appear within each vertex and below vertices in the queue. The tan region surrounds the frontier

of the search, consisting of the vertices in the queue. The light blue region surrounds the vertices

behind the frontier, which have been dequeued. Each part highlights in orange the vertex

dequeued and the breadth-first tree edges added, if any, in the previous iteration. Blue edges

belong to the breadth-first tree constructed so far.

Analysis

Before proving the various properties of breadth-first search, let’s take

on the easier job of analyzing its running time on an input graph G =

(V, E). We use aggregate analysis, as we saw in Section 16.1. After

initialization, breadth-first search never whitens a vertex, and thus the
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test in line 13 ensures that each vertex is enqueued at most once, and

hence dequeued at most once. The operations of enqueuing and

dequeuing take O(1) time, and so the total time devoted to queue

operations is O(V). Because the procedure scans the adjacency list of

each vertex only when the vertex is dequeued, it scans each adjacency

list at most once. Since the sum of the lengths of all |V| adjacency lists is

Θ(E), the total time spent in scanning adjacency lists is O(V + E). The

overhead for initialization is O(V), and thus the total running time of

the BFS procedure is O(V + E). Thus, breadth-first search runs in time

linear in the size of the adjacency-list representation of G.

Shortest paths

Now, let’s see why breadth-first search finds the shortest distance from a

given source vertex s to each vertex in a graph. Define the shortest-path

distance δ(s, v) from s to v as the minimum number of edges in any path

from vertex s to vertex v. If there is no path from s to v, then δ(s, v) = ∞.

We call a path of length δ(s, v) from s to v a shortest path2 from s to v.

Before showing that breadth-first search correctly computes shortest-

path distances, we investigate an important property of shortest-path

distances.

Lemma 20.1

Let G = (V, E) be a directed or undirected graph, and let s ∈ V be an

arbitrary vertex. Then, for any edge (u, v) ∈ E,

δ(s, v) ≤ δ(s, u) + 1.

Proof      If u is reachable from s, then so is v. In this case, the shortest

path from s to v cannot be longer than the shortest path from s to u

followed by the edge (u, v), and thus the inequality holds. If u is not

reachable from s, then δ(s, u) = ∞, and again, the inequality holds.

▪

Our goal is to show that the BFS procedure properly computes v.d =

δ(s, v) for each vertex v ∈ V. We first show that v.d bounds δ(s, v) from

above.
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Lemma 20.2

Let G = (V, E) be a directed or undirected graph, and suppose that BFS

is run on G from a given source vertex s ∈ V. Then, for each vertex v ∈

V, the value v.d computed by BFS satisfies v.d ≥ δ(s, v) at all times,

including at termination.

Proof     The lemma is true intuitively, because any finite value assigned

to v.d equals the number of edges on some path from s to v. The formal

proof is by induction on the number of ENQUEUE operations. The

inductive hypothesis is that v.d ≥ δ(s, v) for all v ∈ V.

The base case of the induction is the situation immediately after

enqueuing s in line 9 of BFS. The inductive hypothesis holds here,

because s.d = 0 = δ(s, s) and v.d = 1 ∞ δ(s, v) for all v ∈ V – {s}.

For the inductive step, consider a white vertex v that is discovered

during the search from a vertex u. The inductive hypothesis implies that

u.d ≥ δ(s, u). The assignment performed by line 15 and Lemma 20.1 give

v.d = u.d + 1

≥ δ(s, u) + 1

≥ δ(s, v).

Vertex v is then enqueued, and it is never enqueued again because it is

also grayed and lines 14–17 execute only for white vertices. Thus, the

value of v.d never changes again, and the inductive hypothesis is

maintained.

▪

To prove that v.d = δ(s, v), we first show more precisely how the

queue Q operates during the course of BFS. The next lemma shows that

at all times, the d values of vertices in the queue either are all the same

or form a sequence 〈k, k, … , k, k + 1, k + 1, … , k + 1〉 for some integer

k ≥ 0.

Lemma 20.3

Suppose that during the execution of BFS on a graph G = (V, E), the

queue Q contains the vertices 〈v1, v2, … , vr〉, where v1 is the head of Q
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and vr is the tail. Then, vr.d ≤ v1.d + 1 and vi.d ≤ vi+1.d for i = 1, 2, … ,

r – 1.

Proof     The proof is by induction on the number of queue operations.

Initially, when the queue contains only s, the lemma trivially holds.

For the inductive step, we must prove that the lemma holds after

both dequeuing and enqueuing a vertex. First, we examine dequeuing.

When the head v1 of the queue is dequeued, v2 becomes the new head.

(If the queue becomes empty, then the lemma holds vacuously.) By the

inductive hypothesis, v1.d ≤ v2.d. But then we have vr.d ≤ v1.d+1 ≤ v2.d

+ 1, and the remaining inequalities are unaffected. Thus, the lemma

follows with v2 as the new head.

Now, we examine enqueuing. When line 17 of BFS enqueues a vertex

v onto a queue containing vertices 〈v1, v2, … , vr〉, the enqueued vertex

becomes vr+1. If the queue was empty before v was enqueued, then

after enqueuing v, we have r = 1 and the lemma trivially holds. Now

suppose that the queue was nonempty when v was enqueued. At that

time, the procedure has most recently removed vertex u, whose

adjacency list is currently being scanned, from the queue Q. Just before

u was removed, we had u = v1 and the inductive hypothesis held, so that

u.d ≤ v2.d and vr.d ≤ u.d + 1. After u is removed from the queue, the

vertex that had been v2 becomes the new head v1 of the queue, so that

now u.d ≤ v1.d. Thus, vr+1.d = v.d = u.d + 1 ≤ v1.d + 1. Since vr.d ≤ u.d +

1, we have vr.d ≤ u.d + 1 = v.d = vr+1.d, and the remaining inequalities

are unaffected. Thus, the lemma follows when v is enqueued.

▪

The following corollary shows that the d values at the time that

vertices are enqueued monotonically increase over time.

Corollary 20.4

Suppose that vertices vi and vj are enqueued during the execution of

BFS, and that vi is enqueued before vj. Then vi.d ≤ vj.d at the time that vj

is enqueued.
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Proof   Immediate from Lemma 20.3 and the property that each vertex

receives a finite d value at most once during the course of BFS.

▪

We can now prove that breadth-first search correctly finds shortest-

path distances.

Theorem 20.5 (Correctness of breadth-first search)

Let G = (V, E) be a directed or undirected graph, and suppose that BFS

is run on G from a given source vertex s ∈ V. Then, during its

execution, BFS discovers every vertex v ∈ V that is reachable from the

source s, and upon termination, v.d = δ(s, v) for all v ∈ V. Moreover, for

any vertex v ≠ s that is reachable from s, one of the shortest paths from s

to v is a shortest path from s to v.π followed by the edge (v.π, v).

Proof      Assume for the purpose of contradiction that some vertex

receives a d value not equal to its shortest-path distance. Of all such

vertices, let v be a vertex that has the minimum δ(s, v). By Lemma 20.2,

we have v.d ≥ δ(s, v), and thus v.d > δ(s, v). We cannot have v = s,

because s.d = 0 and δ(s, s) = 0. Vertex v must be reachable from s, for

otherwise we would have δ(s, v) = ∞ ≥ v.d. Let u be the vertex

immediately preceding v on some shortest path from s to v (since v ≠ s,

vertex u must exist), so that δ(s, v) = δ(s, u)+1. Because δ(s, u) < δ(s, v),

and because of how we chose v, we have u.d = δ(s, u). Putting these

properties together gives

Now consider the time when BFS chooses to dequeue vertex u from

Q in line 11. At this time, vertex v is either white, gray, or black. We

shall show that each of these cases leads to a contradiction of inequality

(20.1). If v is white, then line 15 sets v.d = u.d + 1, contradicting

inequality (20.1). If v is black, then it was already removed from the

queue and, by Corollary 20.4, we have v.d ≤ u.d, again contradicting

inequality (20.1). If v is gray, then it was painted gray upon dequeuing

some vertex w, which was removed from Q earlier than u and for which

v.d = w.d + 1. By Corollary 20.4, however, w.d ≤ u.d, and so v.d = w.d + 1

≤ u.d + 1, once again contradicting inequality (20.1).
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Thus we conclude that v.d = δ(s, v) for all v ∈ V. All vertices v

reachable from s must be discovered, for otherwise they would have ∞ =

v.d > δ(s, v). To conclude the proof of the theorem, observe from lines

15–16 that if v.π = u, then v.d = u.d + 1. Thus, to form a shortest path

from s to v, take a shortest path from s to v.π and then traverse the edge

(v.π v).

▪

Breadth-first trees

The blue edges in Figure 20.3 show the breadth-first tree built by the

BFS procedure as it searches the graph. The tree corresponds to the π

attributes. More formally, for a graph G = (V, E) with source s, we

define the predecessor subgraph of G as Gπ = (Vπ, Eπ), where

and

The predecessor subgraph Gπ is a breadth-first tree if Vπ consists of the

vertices reachable from s and, for all v ∈ Vπ, the subgraph Gπ contains

a unique simple path from s to v that is also a shortest path from s to v

in G. A breadth-first tree is in fact a tree, since it is connected and |Eπ| =

|Vπ| − 1 (see Theorem B.2 on page 1169). We call the edges in Eπtree

edges.

The following lemma shows that the predecessor subgraph produced

by the BFS procedure is a breadth-first tree.

Lemma 20.6

When applied to a directed or undirected graph G = (V, E), procedure

BFS constructs π so that the predecessor subgraph Gπ = (Vπ, Eπ) is a

breadth-first tree.

Proof   Line 16 of BFS sets v.π = u if and only if (u, v) = E and δ(s, v) <

∞—that is, if v is reachable from s—and thus Vπ consists of the vertices
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in V reachable from s. Since the predecessor subgraph Gπ forms a tree,

by Theorem B.2, it contains a unique simple path from s to each vertex

in Vπ. Applying Theorem 20.5 inductively yields that every such path is

a shortest path in G.

The PRINT-PATH procedure prints out the vertices on a shortest

path from s to v, assuming that BFS has already computed a breadth-

first tree. This procedure runs in time linear in the number of vertices in

the path printed, since each recursive call is for a path one vertex

shorter.

PRINT-PATH(G, s, v)

  1 if v == s

  2 print s

  3elseif v.π == NIL

  4 print “no path from” s “to” v “exists”

  5else PRINT-PATH(G, s, v.π)

  6 print v

Exercises

20.2-1

Show the d and π values that result from running breadth-first search on

the directed graph of Figure 20.2(a), using vertex 3 as the source.

20.2-2

Show the d and π values that result from running breadth-first search on

the undirected graph of Figure 20.3, using vertex u as the source.

Assume that neighbors of a vertex are visited in alphabetical order.

20.2-3

Show that using a single bit to store each vertex color suffices by

arguing that the BFS procedure produces the same result if line 18 is

removed. Then show how to obviate the need for vertex colors

altogether.
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20.2-4

What is the running time of BFS if we represent its input graph by an

adjacency matrix and modify the algorithm to handle this form of

input?

20.2-5

Argue that in a breadth-first search, the value u.d assigned to a vertex u

is independent of the order in which the vertices appear in each

adjacency list. Using Figure 20.3 as an example, show that the breadth-

first tree computed by BFS can depend on the ordering within

adjacency lists.

20.2-6

Give an example of a directed graph G = (V, E), a source vertex s ∈ V,

and a set of tree edges Eπ ⊆ E such that for each vertex v ∈ V, the

unique simple path in the graph (V, Eπ) from s to v is a shortest path in

G, yet the set of edges Eπ cannot be produced by running BFS on G, no

matter how the vertices are ordered in each adjacency list.

20.2-7

There are two types of professional wrestlers: “faces” (short for

“babyfaces,” i.e., “good guys”) and “heels” (“bad guys”). Between any

pair of professional wrestlers, there may or may not be a rivalry. You are

given the names of n professional wrestlers and a list of r pairs of

wrestlers for which there are rivalries. Give an O(n + r)-time algorithm

that determines whether it is possible to designate some of the wrestlers

as faces and the remainder as heels such that each rivalry is between a

face and a heel. If it is possible to perform such a designation, your

algorithm should produce it.

★ 20.2-8

The diameter of a tree T = (V, E) is defined as max {δ(u, v) : u, v ∈ V},

that is, the largest of all shortest-path distances in the tree. Give an

efficient algorithm to compute the diameter of a tree, and analyze the

running time of your algorithm.
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20.3    Depth-first search

As its name implies, depth-first search searches “deeper” in the graph

whenever possible. Depth-first search explores edges out of the most

recently discovered vertex v that still has unexplored edges leaving it.

Once all of v’s edges have been explored, the search “backtracks” to

explore edges leaving the vertex from which v was discovered. This

process continues until all vertices that are reachable from the original

source vertex have been discovered. If any undiscovered vertices remain,

then depth-first search selects one of them as a new source, repeating the

search from that source. The algorithm repeats this entire process until

it has discovered every vertex.3

As in breadth-first search, whenever depth-first search discovers a

vertex v during a scan of the adjacency list of an already discovered

vertex u, it records this event by setting v’s predecessor attribute v.π to u.

Unlike breadth-first search, whose predecessor subgraph forms a tree,

depth-first search produces a predecessor subgraph that might contain

several trees, because the search may repeat from multiple sources.

Therefore, we define the predecessor subgraph of a depth-first search

slightly differently from that of a breadth-first search: it always includes

all vertices, and it accounts for multiple sources. Specifically, for a

depth-first search the predecessor subgraph is Gπ = (V, Eπ), where

Eπ = {(v.π, v) : v ∈ V and v.π ≠ NIL}.

The predecessor subgraph of a depth-first search forms a depth-first

forest comprising several depth-first trees. The edges in Eπ are tree

edges.

Like breadth-first search, depth-first search colors vertices during the

search to indicate their state. Each vertex is initially white, is grayed

when it is discovered in the search, and is blackened when it is finished,

that is, when its adjacency list has been examined completely. This

technique guarantees that each vertex ends up in exactly one depth-first

tree, so that these trees are disjoint.

Besides creating a depth-first forest, depth-first search also

timestamps each vertex. Each vertex v has two timestamps: the first
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timestamp v.d records when v is first discovered (and grayed), and the

second timestamp v.f records when the search finishes examining v’s

adjacency list (and blackens v). These timestamps provide important

information about the structure of the graph and are generally helpful

in reasoning about the behavior of depth-first search.

The procedure DFS on the facing page records when it discovers

vertex u in the attribute u.d and when it finishes vertex u in the attribute

u.f. These timestamps are integers between 1 and 2 |V|, since there is one

discovery event and one finishing event for each of the |V| vertices. For

every vertex u,

Vertex u is WHITE before time u.d, GRAY between time u.d and time

u.f, and BLACK thereafter. In the DFS procedure, the input graph G

may be undirected or directed. The variable time is a global variable

used for timestamping. Figure 20.4 illustrates the progress of DFS on

the graph shown in Figure 20.2 (but with vertices labeled by letters

rather than numbers).

DFS(G)

  1 for each vertex u ∈ G.V

  2 u.color = WHITE

  3 u.π = NIL

  4 time = 0

  5 for each vertex u ∈ G.V

  6 if u.color == WHITE

  7 DFS-VISIT(G, u)

DFS-VISIT(G, u)

  1 time = time + 1 // white vertex u has just been discovered

  2u.d = time

  3u.color = GRAY

  4 for each vertex v in G.Adj[u]// explore each edge (u, v)

  5 if v.color == WHITE

  6 v.π = u
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  7 DFS-VISIT(G, v)

  8 time = time + 1

  9u.f = time

10u.color = BLACK // blacken u; it is finished

The DFS procedure works as follows. Lines 1–3 paint all vertices

white and initialize their π attributes to NIL. Line 4 resets the global

time counter. Lines 5–7 check each vertex in V in turn and, when a

white vertex is found, visit it by calling DFS-VISIT. Upon every call of

DFS-VISIT(G, u) in line 7, vertex u becomes the root of a new tree in

the depth-first forest. When DFS returns, every vertex u has been

assigned a discovery time u.d and a finish time u.f.

In each call DFS-VISIT(G, u), vertex u is initially white. Lines 1–3

increment the global variable time, record the new value of time as the

discovery time u.d, and paint u gray. Lines 4–7 examine each vertex v

adjacent to u and recursively visit v if it is white. As line 4 considers each

vertex v ∈ Adj[u], the depth-first search explores edge (u, v). Finally,

after every edge leaving u has been explored, lines 8–10 increment time,

record the finish time in u.f, and paint u black.

The results of depth-first search may depend upon the order in which

line 5 of DFS examines the vertices and upon the order in which line 4

of DFS-VISIT visits the neighbors of a vertex. These different visitation

orders tend not to cause problems in practice, because many

applications of depth-first search can use the result from any depth-first

search.
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Figure 20.4 The progress of the depth-first-search algorithm DFS on a directed graph. Edges are

classified as they are explored: tree edges are labeled T, back edges B, forward edges F, and cross

edges C. Timestamps within vertices indicate discovery time/finish times. Tree edges are

highlighted in blue. Orange highlights indicate vertices whose discovery or finish times change

and edges that are explored in each step.

What is the running time of DFS? The loops on lines 1–3 and lines

5–7 of DFS take Θ(V) time, exclusive of the time to execute the calls to

DFS-VISIT. As we did for breadth-first search, we use aggregate

analysis. The procedure DFS-VISIT is called exactly once for each

vertex v ∈ V, since the vertex u on which DFS-VISIT is invoked must

be white and the first thing DFS-VISIT does is paint vertex u gray.

During an execution of DFS-VISIT(G, v), the loop in lines 4–7 executes

|Adj[v]| times. Since Σv∈V |Adj[v]| = Θ(E) and DFS-VISIT is called once

per vertex, the total cost of executing lines 4–7 of DFS-VISIT is Θ(V +

E). The running time of DFS is therefore Θ(V + E).

Properties of depth-first search
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Depth-first search yields valuable information about the structure of a

graph. Perhaps the most basic property of depth-first search is that the

predecessor subgraph Gπ does indeed form a forest of trees, since the

structure of the depth-first trees exactly mirrors the structure of

recursive calls of DFS-VISIT. That is, u = v.π if and only if DFS-

VISIT(G, v) was called during a search of u’s adjacency list.

Additionally, vertex v is a descendant of vertex u in the depth-first forest

if and only if v is discovered during the time in which u is gray.

Another important property of depth-first search is that discovery

and finish times have parenthesis structure. If the DFS-VISIT procedure

were to print a left parenthesis “(u” when it discovers vertex u and to

print a right parenthesis “u)” when it finishes u, then the printed

expression would be well formed in the sense that the parentheses are

properly nested. For example, the depth-first search of Figure 20.5(a)

corresponds to the parenthesization shown in Figure 20.5(b). The

following theorem provides another way to characterize the parenthesis

structure.

Theorem 20.7 (Parenthesis theorem)

In any depth-first search of a (directed or undirected) graph G = (V, E),

for any two vertices u and v, exactly one of the following three

conditions holds:

the intervals [u.d, u.f] and [v.d, v.f] are entirely disjoint, and neither

u nor v is a descendant of the other in the depth-first forest,

the interval [u.d, u.f] is contained entirely within the interval [v.d,

v.f], and u is a descendant of v in a depth-first tree, or

the interval [v.d, v.f] is contained entirely within the interval [u.d,

u.f], and v is a descendant of u in a depth-first tree.

Proof      We begin with the case in which u.d < v.d. We consider two

subcases, according to whether v.d < u.f. The first subcase occurs when

v.d < u.f, so that v was discovered while u was still gray, which implies

that v is a descendant of u. Moreover, since v was discovered after u, all

of its outgoing edges are explored, and v is finished, before the search

returns to and finishes u. In this case, therefore, the interval [v.d, v.f] is
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entirely contained within the interval [u.d, u.f]. In the other subcase, u.f

< v.d, and by inequality (20.4), u.d < u.f < v.d < v.f, and thus the

intervals [u.d, u.f] and [v.d, v.f] are disjoint. Because the intervals are

disjoint, neither vertex was discovered while the other was gray, and so

neither vertex is a descendant of the other.

Figure 20.5 Properties of depth-first search. (a) The result of a depth-first search of a directed

graph. Vertices are timestamped and edge types are indicated as in Figure 20.4. (b) Intervals for

the discovery time and finish time of each vertex correspond to the parenthesization shown.

Each rectangle spans the interval given by the discovery and finish times of the corresponding

vertex. Only tree edges are shown. If two intervals overlap, then one is nested within the other,

and the vertex corresponding to the smaller interval is a descendant of the vertex corresponding

to the larger. (c) The graph of part (a) redrawn with all tree and forward edges going down

within a depth-first tree and all back edges going up from a descendant to an ancestor.

The case in which v.d < u.d is similar, with the roles of u and v

reversed in the above argument.

▪

Corollary 20.8 (Nesting of descendants’ intervals)

Vertex v is a proper descendant of vertex u in the depth-first forest for a

(directed or undirected) graph G if and only if u.d < v.d < v.f < u.f.

Proof   Immediate from Theorem 20.7.

▪
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The next theorem gives another important characterization of when

one vertex is a descendant of another in the depth-first forest.

Theorem 20.9 (White-path theorem)

In a depth-first forest of a (directed or undirected) graph G = (V, E),

vertex v is a descendant of vertex u if and only if at the time u.d that the

search discovers u, there is a path from u to v consisting entirely of white

vertices.

Proof     ⇒: If v = u, then the path from u to v contains just vertex u,

which is still white when u.d receives a value. Now, suppose that v is a

proper descendant of u in the depth-first forest. By Corollary 20.8, u.d <

v.d, and so v is white at time u.d. Since v can be any descendant of u, all

vertices on the unique simple path from u to v in the depth-first forest

are white at time u.d.

⇐: Suppose that there is a path of white vertices from u to v at time

u.d, but v does not become a descendant of u in the depth-first tree.

Without loss of generality, assume that every vertex other than v along

the path becomes a descendant of u. (Otherwise, let v be the closest

vertex to u along the path that doesn’t become a descendant of u.) Let w

be the predecessor of v in the path, so that w is a descendant of u (w and

u may in fact be the same vertex). By Corollary 20.8, w.f ≤ u.f. Because v

must be discovered after u is discovered, but before w is finished, u.d <

v.d < w.f ≤ u.f. Theorem 20.7 then implies that the interval [v.d, v.f] is

contained entirely within the interval [u.d, u.f]. By Corollary 20.8, v

must after all be a descendant of u.

▪

Classification of edges

You can obtain important information about a graph by classifying its

edges during a depth-first search. For example, Section 20.4 will show

that a directed graph is acyclic if and only if a depth-first search yields

no “back” edges (Lemma 20.11).

The depth-first forest Gπ produced by a depth-first search on graph

G can contain four types of edges:
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1. Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is a

tree edge if v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an

ancestor v in a depth-first tree. We consider self-loops, which

may occur in directed graphs, to be back edges.

3. Forward edges are those nontree edges (u, v) connecting a vertex

u to a proper descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in

the same depth-first tree, as long as one vertex is not an ancestor

of the other, or they can go between vertices in different depth-

first trees.

In Figures 20.4 and 20.5, edge labels indicate edge types. Figure 20.5(c)

also shows how to redraw the graph of Figure 20.5(a) so that all tree

and forward edges head downward in a depth-first tree and all back

edges go up. You can redraw any graph in this fashion.

The DFS algorithm has enough information to classify some edges

as it encounters them. The key idea is that when an edge (u, v) is first

explored, the color of vertex v says something about the edge:

1. WHITE indicates a tree edge,

2. GRAY indicates a back edge, and

3. BLACK indicates a forward or cross edge.

The first case is immediate from the specification of the algorithm. For

the second case, observe that the gray vertices always form a linear

chain of descendants corresponding to the stack of active DFS-VISIT

invocations. The number of gray vertices is 1 more than the depth in the

depth-first forest of the vertex most recently discovered. Depth-first

search always explores from the deepest gray vertex, so that an edge that

reaches another gray vertex has reached an ancestor. The third case

handles the remaining possibility. Exercise 20.3-5 asks you to show that

such an edge (u, v) is a forward edge if u.d < v.d and a cross edge if u.d >

v.d.
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According to the following theorem, forward and cross edges never

occur in a depth-first search of an undirected graph.

Theorem 20.10

In a depth-first search of an undirected graph G, every edge of G is

either a tree edge or a back edge.

Proof   Let (u, v) be an arbitrary edge of G, and suppose without loss of

generality that u.d < v.d. Then, while u is gray, the search must discover

and finish v before it finishes u, since v is on u’s adjacency list. If the first

time that the search explores edge (u, v), it is in the direction from u to v,

then v is undiscovered (white) until that time, for otherwise the search

would have explored this edge already in the direction from v to u. Thus,

(u, v) becomes a tree edge. If the search explores (u, v) first in the

direction from v to u, then (u, v) is a back edge, since there must be a

path of tree edges from u to v.

▪

Since (u, v) and (v, u) are really the same edge in an undirected

graph, the proof of Theorem 20.10 says how to classify the edge. When

searching from a vertex, which must be gray, if the adjacent vertex is

white, then the edge is a tree edge. Otherwise, the edge is a back edge.

The next two sections apply the above theorems about depth-first

search.

Figure 20.6 A directed graph for use in Exercises 20.3-2 and 20.5-2.

Exercises

20.3-1
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Make a 3-by-3 chart with row and column labels WHITE, GRAY, and

BLACK. In each cell (i, j), indicate whether, at any point during a

depth-first search of a directed graph, there can be an edge from a

vertex of color i to a vertex of color j. For each possible edge, indicate

what edge types it can be. Make a second such chart for depth-first

search of an undirected graph.

20.3-2

Show how depth-first search works on the graph of Figure 20.6. Assume

that the for loop of lines 5–7 of the DFS procedure considers the

vertices in alphabetical order, and assume that each adjacency list is

ordered alphabetically. Show the discovery and finish times for each

vertex, and show the classification of each edge.

20.3-3

Show the parenthesis structure of the depth-first search of Figure 20.4.

20.3-4

Show that using a single bit to store each vertex color suffices by

arguing that the DFS procedure produces the same result if line 10 of

DFS-VISIT is removed.

20.3-5

Show that in a directed graph, edge (u, v) is

a. a tree edge or forward edge if and only if u.d < v.d < v.f < u.f,

b. a back edge if and only if v.d ≤ u.d < u.f ≤ v.f, and

c. a cross edge if and only if v.d < v.f < u.d < u.f.

20.3-6

Rewrite the procedure DFS, using a stack to eliminate recursion.

20.3-7

Give a counterexample to the conjecture that if a directed graph G

contains a path from u to v, and if u.d < v.d in a depth-first search of G,

then v is a descendant of u in the depth-first forest produced.

20.3-8
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Give a counterexample to the conjecture that if a directed graph G

contains a path from u to v, then any depth-first search must result in v.d

≤ u.f.

20.3-9

Modify the pseudocode for depth-first search so that it prints out every

edge in the directed graph G, together with its type. Show what

modifications, if any, you need to make if G is undirected.

20.3-10

Explain how a vertex u of a directed graph can end up in a depth-first

tree containing only u, even though u has both incoming and outgoing

edges in G.

20.3-11

Let G = (V, E) be a connected, undirected graph. Give an O(V + E)-

time algorithm to compute a path in G that traverses each edge in E

exactly once in each direction. Describe how you can find your way out

of a maze if you are given a large supply of pennies.

20.3-12

Show how to use a depth-first search of an undirected graph G to

identify the connected components of G, so that the depth-first forest

contains as many trees as G has connected components. More precisely,

show how to modify depth-first search so that it assigns to each vertex v

an integer label v.cc between 1 and k, where k is the number of

connected components of G, such that u.cc = v.cc if and only if u and v

belong to the same connected component.

★ 20.3-13

A directed graph G = (V, E) is singly connected if u ⇝ v implies that G

contains at most one simple path from u to v for all vertices u, v ∈ V.

Give an efficient algorithm to determine whether a directed graph is

singly connected.

20.4    Topological sort
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This section shows how to use depth-first search to perform a

topological sort of a directed acyclic graph, or a “dag” as it is

sometimes called. A topological sort of a dag G = (V, E) is a linear

ordering of all its vertices such that if G contains an edge (u, v), then u

appears before v in the ordering. Topological sorting is defined only on

directed graphs that are acyclic; no linear ordering is possible when a

directed graph contains a cycle. Think of a topological sort of a graph

as an ordering of its vertices along a horizontal line so that all directed

edges go from left to right. Topological sorting is thus different from the

usual kind of “sorting” studied in Part II.

Many applications use directed acyclic graphs to indicate

precedences among events. Figure 20.7 gives an example that arises

when Professor Bumstead gets dressed in the morning. The professor

must don certain garments before others (e.g., socks before shoes).

Other items may be put on in any order (e.g., socks and pants). A

directed edge (u, v) in the dag of Figure 20.7(a) indicates that garment u

must be donned before garment v. A topological sort of this dag

therefore gives a possible order for getting dressed. Figure 20.7(b) shows

the topologically sorted dag as an ordering of vertices along a

horizontal line such that all directed edges go from left to right.

The procedure TOPOLOGICAL-SORT topologically sorts a dag.

Figure 20.7(b) shows how the topologically sorted vertices appear in

reverse order of their finish times.

TOPOLOGICAL-SORT(G)

1 call DFS(G) to compute finish times v.f for each vertex v

2 as each vertex is finished, insert it onto the front of a linked list

3 return the linked list of vertices

The TOPOLOGICAL-SORT procedure runs in Θ(V + E) time, since

depth-first search takes Θ(V + E) time and it takes O(1) time to insert

each of the |V| vertices onto the front of the linked list.

To prove the correctness of this remarkably simple and efficient

algorithm, we start with the following key lemma characterizing

directed acyclic graphs.
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Lemma 20.11

A directed graph G is acyclic if and only if a depth-first search of G

yields no back edges.

Figure 20.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each

directed edge (u, v) means that garment u must be put on before garment v. The discovery and

finish times from a depth-first search are shown next to each vertex. (b) The same graph shown

topologically sorted, with its vertices arranged from left to right in order of decreasing finish

time. All directed edges go from left to right.

Proof   ⇒: Suppose that a depth-first search produces a back edge (u, v).

Then vertex v is an ancestor of vertex u in the depth-first forest. Thus, G

contains a path from v to u, and the back edge (u, v) completes a cycle.

⇐: Suppose that G contains a cycle c. We show that a depth-first

search of G yields a back edge. Let v be the first vertex to be discovered

in c, and let (u, v) be the preceding edge in c. At time v.d, the vertices of

c form a path of white vertices from v to u. By the white-path theorem,

vertex u becomes a descendant of v in the depth-first forest. Therefore,

(u, v) is a back edge.

▪

Theorem 20.12

TOPOLOGICAL-SORT produces a topological sort of the directed

acyclic graph provided as its input.
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Proof   Suppose that DFS is run on a given dag G = (V, E) to determine

finish times for its vertices. It suffices to show that for any pair of

distinct vertices u, v ∈ V, if G contains an edge from u to v, then v.f <

u.f. Consider any edge (u, v) explored by DFS(G). When this edge is

explored, v cannot be gray, since then v would be an ancestor of u and

(u, v) would be a back edge, contradicting Lemma 20.11. Therefore, v

must be either white or black. If v is white, it becomes a descendant of u,

and so v.f < u.f. If v is black, it has already been finished, so that v.f has

already been set. Because the search is still exploring from u, it has yet

to assign a timestamp to u.f, so that the timestamp eventually assigned

to u.f is greater than v.f. Thus, v.f < u.f for any edge (u, v) in the dag,

proving the theorem.

▪

Figure 20.8 A dag for topological sorting.

Exercises

20.4-1

Show the ordering of vertices produced by TOPOLOGICAL-SORT

when it is run on the dag of Figure 20.8. Assume that the for loop of

lines 5–7 of the DFS procedure considers the vertices in alphabetical

order, and assume that each adjacency list is ordered alphabetically.

20.4-2

Give a linear-time algorithm that, given a directed acyclic graph G = (V,

E) and two vertices a, b ∈ V, returns the number of simple paths from a

to b in G. For example, the directed acyclic graph of Figure 20.8

contains exactly four simple paths from vertex p to vertex v: 〈p, o, v〉, 〈p,
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o, r, y, v〉, 〈p, o, s, r, y, v〉, and 〈p, s, r, y, v〉. Your algorithm needs only to

count the simple paths, not list them.

20.4-3

Give an algorithm that determines whether an undirected graph G = (V,

E) contains a simple cycle. Your algorithm should run in O(V) time,

independent of |E|.

20.4-4

Prove or disprove: If a directed graph G contains cycles, then the vertex

ordering produced by TOPOLOGICAL-SORT(G) minimizes the

number of “bad” edges that are inconsistent with the ordering

produced.

20.4-5

Another way to topologically sort a directed acyclic graph G = (V, E) is

to repeatedly find a vertex of in-degree 0, output it, and remove it and

all of its outgoing edges from the graph. Explain how to implement this

idea so that it runs in time O(V + E). What happens to this algorithm if

G has cycles?

20.5    Strongly connected components

We now consider a classic application of depth-first search:

decomposing a directed graph into its strongly connected components.

This section shows how to do so using two depth-first searches. Many

algorithms that work with directed graphs begin with such a

decomposition. After decomposing the graph into strongly connected

components, such algorithms run separately on each one and then

combine the solutions according to the structure of connections among

components.

Recall from Appendix B that a strongly connected component of a

directed graph G = (V, E) is a maximal set of vertices C ⊆ V such that

for every pair of vertices u, v ∈ C, both u ⇝ v and v ⇝ u, that is, vertices

u and v are reachable from each other. Figure 20.9 shows an example.
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The algorithm for finding the strongly connected components of a

directed graph G = (V, E) uses the transpose of G, which we defined in

Exercise 20.1-3 to be the graph GT = (V, ET), where ET = {(u, v) : (v, u)

∈ E}. That is, ET consists of the edges of G with their directions

reversed. Given an adjacency-list representation of G, the time to create

GT is Θ(V + E). The graphs G and GT have exactly the same strongly

connected components: u and v are reachable from each other in G if

and only if they are reachable from each other in GT. Figure 20.9(b)

shows the transpose of the graph in Figure 20.9(a), with the strongly

connected components shaded blue in both parts.

The linear-time (i.e., Θ(V + E)-time) procedure STRONGLY-

CONNECTED-COMPONENTS on the next page computes the

strongly connected components of a directed graph G = (V, E) using

two depth-first searches, one on G and one on GT.

The idea behind this algorithm comes from a key property of the

component graph GSCC = (VSCC, ESCC), defined as follows. Suppose

that G has strongly connected components C1, C2, … , Ck. The vertex

set VSCC is {v1, v2, … , vk}, and it contains one vertex vi for each

strongly connected component Ci of G. There is an edge (vi, vj) ∈

ESCC if G contains a directed edge (x, y) for some x ∈ Ci and some y

∈ Cj. Looked at another way, if we contract all edges whose incident

vertices are within the same strongly connected component of G so that

only a single vertex remains, the resulting graph is GSCC. Figure 20.9(c)

shows the component graph of the graph in Figure 20.9(a).
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Figure 20.9 (a) A directed graph G. Each region shaded light blue is a strongly connected

component of G. Each vertex is labeled with its discovery and finish times in a depth-first

search, and tree edges are dark blue. (b) The graph GT, the transpose of G, with the depth-first

forest computed in line 3 of STRONGLY-CONNECTED-COMPONENTS shown and tree

edges shaded dark blue. Each strongly connected component corresponds to one depth-first

tree. Orange vertices b, c, g, and h are the roots of the depth-first trees produced by the depth-

first search of GT. (c) The acyclic component graph GSCC obtained by contracting all edges

within each strongly connected component of G so that only a single vertex remains in each

component.

STRONGLY-CONNECTED-COMPONENTS(G)

1 call DFS(G) to compute finish times u.f for each vertex u

2 create GT

3 call DFS(GT), but in the main loop of DFS, consider the vertices in

order of decreasing u.f (as computed in line 1)

4 output the vertices of each tree in the depth-first forest formed in

line 3 as a separate strongly connected component

The following lemma gives the key property that the component

graph is acyclic. We’ll see that the algorithm uses this property to visit

the vertices of the component graph in topologically sorted order, by

considering vertices in the second depth-first search in decreasing order

of the finish times that were computed in the first depth-first search.
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Lemma 20.13

Let C and C′ be distinct strongly connected components in directed

graph G = (V, E), let u, v ∈ C, let u′, v′ ∈ C′, and suppose that G

contains a path u ⇝ u′. Then G cannot also contain a path v′ ⇝ v.

Proof   If G contains a path v′ ⇝ v, then it contains paths u ⇝ u′ ⇝ v′ and

v′ ⇝ v ⇝ u. Thus, u and v′ are reachable from each other, thereby

contradicting the assumption that C and C′ are distinct strongly

connected components.

▪

Because the STRONGLY-CONNECTED-COMPONENTS

procedure performs two depth-first searches, there are two distinct sets

of discovery and finish times. In this section, discovery and finish times

always refer to those computed by the first call of DFS, in line 1.

The notation for discovery and finish times extends to sets of

vertices. For a subset U of vertices, d(U) and f(U) are the earliest

discovery time and latest finish time, respectively, of any vertex in U:

d(U) = min {u.d : u ∈ U} and f(U) = max {u.f : u ∈ U}.

The following lemma and its corollary give a key property relating

strongly connected components and finish times in the first depth-first

search.

Lemma 20.14

Let C and C′ be distinct strongly connected components in directed

graph G = (V, E). Suppose that there is an edge (u, v) ∈ E, where u ∈ C′
and v ∈ C. Then f(C′) > f(C).

Proof   We consider two cases, depending on which strongly connected

component, C or C′, had the first discovered vertex during the first

depth-first search.

If d(C′) < d(C), let x be the first vertex discovered in C′. At time x.d,

all vertices in C and C′ are white. At that time, G contains a path from x

to each vertex in C′ consisting only of white vertices. Because (u, v) ∈ E,

for any vertex w ∈ C, there is also a path in G at time x.d from x to w

consisting only of white vertices: x ⇝ u → v ⇝ w. By the white-path
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theorem, all vertices in C and C′ become descendants of x in the depth-

first tree. By Corollary 20.8, x has the latest finish time of any of its

descendants, and so x.f = f(C′) > f(C).

Otherwise, d(C′) > d(C). Let y be the first vertex discovered in C, so

that y.d = d(C). At time y.d, all vertices in C are white and G contains a

path from y to each vertex in C consisting only of white vertices. By the

white-path theorem, all vertices in C become descendants of y in the

depth-first tree, and by Corollary 20.8, y.f = f(C). Because d(C′) > d(C)

= y.d, all vertices in C′ are white at time y.d. Since there is an edge (u, v)

from C′ to C, Lemma 20.13 implies that there cannot be a path from C

to C′. Hence, no vertex in C′ is reachable from y. At time y.f, therefore,

all vertices in C′ are still white. Thus, for any vertex w ∈ C′, we have w.f

> y.f, which implies that f(C′) > f(C).

▪

Corollary 20.15

Let C and C′ be distinct strongly connected components in directed

graph G = (V, E), and suppose that f(C) > f(C′). Then ET contains no

edge (v, u) such that u = C′ and v ∈ C.

Proof   The contrapositive of Lemma 20.14 says that if f(C′) < f(C), then

there is no edge (u, v) ∈ E such that u ∈ C′ and v ∈ C. Because the

strongly connected components of G and GT are the same, if there is no

such edge (u, v) ∈ E, then there is no edge (v, u) ∈ ET such that u ∈ C′
and v ∈ C.

▪

Corollary 20.15 provides the key to understanding why the strongly

connected components algorithm works. Let’s examine what happens

during the second depth-first search, which is on GT. The search starts

from the vertex x whose finish time from the first depth-first search is

maximum. This vertex belongs to some strongly connected component

C, and since x.f is maximum, f(C) is maximum over all strongly

connected components. When the search starts from x, it visits all

vertices in C. By Corollary 20.15, GT contains no edges from C to any
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other strongly connected component, and so the search from x never

visits vertices in any other component. Thus, the tree rooted at x

contains exactly the vertices of C. Having completed visiting all vertices

in C, the second depth-first search selects as a new root a vertex from

some other strongly connected component C′ whose finish time f(C′) is
maximum over all components other than C. Again, the search visits all

vertices in C′. But by Corollary 20.15, if any edges in GT go from C′ to
any other component, they must go to C, which the second depth-first

search has already visited. In general, when the depth-first search of GT

in line 3 visits any strongly connected component, any edges out of that

component must be to components that the search has already visited.

Each depth-first tree, therefore, corresponds to exactly one strongly

connected component. The following theorem formalizes this argument.

Theorem 20.16

The STRONGLY-CONNECTED-COMPONENTS procedure

correctly computes the strongly connected components of the directed

graph G provided as its input.

Proof   We argue by induction on the number of depth-first trees found

in the depth-first search of GT in line 3 that the vertices of each tree

form a strongly connected component. The inductive hypothesis is that

the first k trees produced in line 3 are strongly connected components.

The basis for the induction, when k = 0, is trivial.

In the inductive step, we assume that each of the first k depth-first

trees produced in line 3 is a strongly connected component, and we

consider the (k + 1)st tree produced. Let the root of this tree be vertex u,

and let u be in strongly connected component C. Because of how the

depth-first search chooses roots in line 3, u.f = f(C) > f(C′) for any

strongly connected component C′ other than C that has yet to be

visited. By the inductive hypothesis, at the time that the search visits u,

all other vertices of C are white. By the white-path theorem, therefore,

all other vertices of C are descendants of u in its depth-first tree.

Moreover, by the inductive hypothesis and by Corollary 20.15, any

edges in GT that leave C must be to strongly connected components that

www.konkur.in

Telegram: @uni_k



have already been visited. Thus, no vertex in any strongly connected

component other than C is a descendant of u during the depth-first

search of GT. The vertices of the depth-first tree in GT that is rooted at

u form exactly one strongly connected component, which completes the

inductive step and the proof.

▪

Here is another way to look at how the second depth-first search

operates. Consider the component graph (GT)SCC of GT. If you map

each strongly connected component visited in the second depth-first

search to a vertex of (GT)SCC, the second depth-first search visits

vertices of (GT)SCC in the reverse of a topologically sorted order. If you

reverse the edges of (GT)SCC, you get the graph ((GT)SCC)T. Because

((GT)SCC)T = GSCC (see Exercise 20.5-4), the second depth-first

search visits the vertices of GSCC in topologically sorted order.

Exercises

20.5-1

How can the number of strongly connected components of a graph

change if a new edge is added?

20.5-2

Show how the procedure STRONGLY-CONNECTED-

COMPONENTS works on the graph of Figure 20.6. Specifically, show

the finish times computed in line 1 and the forest produced in line 3.

Assume that the loop of lines 5–7 of DFS considers vertices in

alphabetical order and that the adjacency lists are in alphabetical order.

20.5-3

Professor Bacon rewrites the algorithm for strongly connected

components to use the original (instead of the transpose) graph in the

second depth-first search and scan the vertices in order of increasing

finish times. Does this modified algorithm always produce correct

results?
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20.5-4

Prove that for any directed graph G, the transpose of the component

graph of GT is the same as the component graph of G. That is,

((GT)SCC)T = GSCC.

20.5-5

Give an O(V + E)-time algorithm to compute the component graph of a

directed graph G = (V, E). Make sure that there is at most one edge

between two vertices in the component graph your algorithm produces.

20.5-6

Give an O(V + E)-time algorithm that, given a directed graph G = (V,

E), constructs another graph G′ = (V, E′) such that G and G′ have the

same strongly connected components, G′ has the same component

graph as G, and |E′| is as small as possible.

20.5-7

A directed graph G = (V, E) is semiconnected if, for all pairs of vertices

u, v ∈ V, we have u ⇝ v or v ⇝ u. Give an efficient algorithm to

determine whether G is semiconnected. Prove that your algorithm is

correct, and analyze its running time.

20.5-8

Let G = (V, E) be a directed graph, and let l : V → ℝ be a function that

assigns a real-valued label l to each vertex. For vertices s, t ∈ V, define

Give an O(V + E)-time algorithm to find vertices s and t such that Δl(s,

t) is maximum over all pairs of vertices. (Hint: Use Exercise 20.5-5.)

Problems

20-1     Classifying edges by breadth-first search
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A depth-first forest classifies the edges of a graph into tree, back,

forward, and cross edges. A breadth-first tree can also be used to

classify the edges reachable from the source of the search into the same

four categories.

Figure 20.10 The articulation points, bridges, and biconnected components of a connected,

undirected graph for use in Problem 20-2. The articulation points are the orange vertices, the

bridges are the dark blue edges, and the biconnected components are the edges in the light blue

regions, with a bcc numbering shown.

a. Prove that in a breadth-first search of an undirected graph, the

following properties hold:

1. There are no back edges and no forward edges.

2. If (u, v) is a tree edge, then v.d = u.d + 1.

3. If (u, v) is a cross edge, then v.d = u.d or v.d = u.d + 1.

b. Prove that in a breadth-first search of a directed graph, the following

properties hold:

1. There are no forward edges.

2. If (u, v) is a tree edge, then v.d = u.d + 1.

3. If (u, v) is a cross edge, then v.d ≤ u.d + 1.

4. If (u, v) is a back edge, then 0 ≤ v.d ≤ u.d.

20-2     Articulation points, bridges, and biconnected components

Let G = (V, E) be a connected, undirected graph. An articulation point

of G is a vertex whose removal disconnects G. A bridge of G is an edge

whose removal disconnects G. A biconnected component of G is a

maximal set of edges such that any two edges in the set lie on a common

simple cycle. Figure 20.10 illustrates these definitions. You can

www.konkur.in

Telegram: @uni_k



determine articulation points, bridges, and biconnected components

using depth-first search. Let Gπ = (V, Eπ) be a depth-first tree of G.

a. Prove that the root of Gπ is an articulation point of G if and only if it

has at least two children in Gπ.

b. Let v be a nonroot vertex of Gπ. Prove that v is an articulation point

of G if and only if v has a child s such that there is no back edge from

s or any descendant of s to a proper ancestor of v.

c. Let

Show how to compute v.low for all vertices v ∈ V in O(E) time.

d. Show how to compute all articulation points in O(E) time.

e. Prove that an edge of G is a bridge if and only if it does not lie on any

simple cycle of G.

f. Show how to compute all the bridges of G in O(E) time.

g. Prove that the biconnected components of G partition the nonbridge

edges of G.

h. Give an O(E)-time algorithm to label each edge e of G with a positive

integer e.bcc such that e.bcc = e′.bcc if and only if e and e′ belong to

the same biconnected component.

20-3     Euler tour

An Euler tour of a strongly connected, directed graph G = (V, E) is a

cycle that traverses each edge of G exactly once, although it may visit a

vertex more than once.

a. Show that G has an Euler tour if and only if in-degree(v) = out-

degree(v) for each vertex v ∈ V.

b. Describe an O(E)-time algorithm to find an Euler tour of G if one

exists. (Hint: Merge edge-disjoint cycles.)
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20-4     Reachability

Let G = (V, E) be a directed graph in which each vertex u ∈ V is labeled

with a unique integer L(u) from the set {1, 2, … , |V|}. For each vertex u

∈ V, let R(u) = {v ∈ V : u ⇝ v} be the set of vertices that are reachable

from u. Define min(u) to be the vertex in R(u) whose label is minimum,

that is, min(u) is the vertex v such that L(v) = min {L(w) : w ∈ R(u)}.

Give an O(V + E)-time algorithm that computes min(u) for all vertices u

∈ V.

20-5 Inserting and querying vertices in planar graphs

A planar graph is an undirected graph that can be drawn in the plane

with no edges crossing. Euler proved that every planar graph has |E| < 3

|V|.

Consider the following two operations on a planar graph G:

INSERT(G, v, neighbors) inserts a new vertex v into G, where

neighbors is an array (possibly empty) of vertices that have already

been inserted into G and will become all the neighbors of v in G

when v is inserted.

NEWEST-NEIGHBOR(G, v) returns the neighbor of vertex v

that was most recently inserted into G, or NIL if v has no

neighbors.

Design a data structure that supports these two operations such that

NEWEST-NEIGHBOR takes O(1) worst-case time and INSERT takes

O(1) amortized time. Note that the length of the array neighbors given

to INSERT may vary. (Hint: Use a potential function for the amortized

analysis.)

Chapter notes

Even [137] and Tarjan [429] are excellent references for graph

algorithms.

Breadth-first search was discovered by Moore [334] in the context of

finding paths through mazes. Lee [280] independently discovered the
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same algorithm in the context of routing wires on circuit boards.

Hopcroft and Tarjan [226] advocated the use of the adjacency-list

representation over the adjacency-matrix representation for sparse

graphs and were the first to recognize the algorithmic importance of

depth-first search. Depth-first search has been widely used since the late

1950s, especially in artificial intelligence programs.

Tarjan [426] gave a linear-time algorithm for finding strongly

connected components. The algorithm for strongly connected

components in Section 20.5 is adapted from Aho, Hopcroft, and

Ullman [6], who credit it to S. R. Kosaraju (unpublished) and Sharir

[408]. Dijkstra [117, Chapter 25] also developed an algorithm for

strongly connected components that is based on contracting cycles.

Subsequently, Gabow [163] rediscovered this algorithm. Knuth [259]

was the first to give a linear-time algorithm for topological sorting.

1 We distinguish between gray and black vertices to help us understand how breadth-first search

operates. In fact, as Exercise 20.2-3 shows, we get the same result even if we do not distinguish

between gray and black vertices.

2 Chapters 22 and 23 generalize shortest paths to weighted graphs, in which every edge has a

real-valued weight and the weight of a path is the sum of the weights of its constituent edges.

The graphs considered in the present chapter are unweighted or, equivalently, all edges have unit

weight.

3 It may seem arbitrary that breadth-first search is limited to only one source whereas depth-

first search may search from multiple sources. Although conceptually, breadth-first search could

proceed from multiple sources and depth-first search could be limited to one source, our

approach reflects how the results of these searches are typically used. Breadth-first search

usually serves to find shortest-path distances and the associated predecessor subgraph from a

given source. Depth-first search is often a subroutine in another algorithm, as we’ll see later in

this chapter.
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21        Minimum Spanning Trees

Electronic circuit designs often need to make the pins of several

components electrically equivalent by wiring them together. To

interconnect a set of n pins, the designer can use an arrangement of n −

1 wires, each connecting two pins. Of all such arrangements, the one

that uses the least amount of wire is usually the most desirable.

To model this wiring problem, use a connected, undirected graph G

= (V, E), where V is the set of pins, E is the set of possible

interconnections between pairs of pins, and for each edge (u, v) ∈ E, a

weight w(u, v) specifies the cost (amount of wire needed) to connect u

and v. The goal is to find an acyclic subset T ⊆ E that connects all of

the vertices and whose total weight

is minimized. Since T is acyclic and connects all of the vertices, it must

form a tree, which we call a spanning tree since it “spans” the graph G.

We call the problem of determining the tree T the minimum-spanning-

tree problem.1 Figure 21.1 shows an example of a connected graph and

a minimum spanning tree.

This chapter studies two ways to solve the minimum-spanning-tree

problem. Kruskal’s algorithm and Prim’s algorithm both run in O(E lg

V) time. Prim’s algorithm achieves this bound by using a binary heap as

a priority queue. By using Fibonacci heaps instead (see page 478),

Prim’s algorithm runs in O(E + V lg V) time. This bound is better than

O(E lg V) whenever |E| grows asymptotically faster than |V|.
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Figure 21.1 A minimum spanning tree for a connected graph. The weights on edges are shown,

and the blue edges form a minimum spanning tree. The total weight of the tree shown is 37. This

minimum spanning tree is not unique: removing the edge (b, c) and replacing it with the edge (a,

h) yields another spanning tree with weight 37.

The two algorithms are greedy algorithms, as described in Chapter

15. Each step of a greedy algorithm must make one of several possible

choices. The greedy strategy advocates making the choice that is the best

at the moment. Such a strategy does not generally guarantee that it

always finds globally optimal solutions to problems. For the minimum-

spanning-tree problem, however, we can prove that certain greedy

strategies do yield a spanning tree with minimum weight. Although you

can read this chapter independently of Chapter 15, the greedy methods

presented here are a classic application of the theoretical notions

introduced there.

Section 21.1 introduces a “generic” minimum-spanning-tree method

that grows a spanning tree by adding one edge at a time. Section 21.2

gives two algorithms that implement the generic method. The first

algorithm, due to Kruskal, is similar to the connected-components

algorithm from Section 19.1. The second, due to Prim, resembles

Dijkstra’s shortest-paths algorithm (Section 22.3).

Because a tree is a type of graph, in order to be precise we must

define a tree in terms of not just its edges, but its vertices as well.

Because this chapter focuses on trees in terms of their edges, we’ll

implicitly understand that the vertices of a tree T are those that some

edge of T is incident on.

21.1    Growing a minimum spanning tree
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The input to the minumum-spanning-tree problem is a connected,

undirected graph G = (V, E) with a weight function w : E → ℝ. The

goal is to find a minimum spanning tree for G. The two algorithms

considered in this chapter use a greedy approach to the problem,

although they differ in how they apply this approach.

This greedy strategy is captured by the procedure GENERIC-MST

on the facing page, which grows the minimum spanning tree one edge at

a time. The generic method manages a set A of edges, maintaining the

following loop invariant:

Prior to each iteration, A is a subset of some minimum

spanning tree.

GENERIC-MST(G, w)

1 A = Ø

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A

4 A = A ∪ {(u, v)}

5 return A

Each step determines an edge (u, v) that the procedure can add to A

without violating this invariant, in the sense that A ∪ {(u, v)} is also a

subset of a minimum spanning tree. We call such an edge a safe edge for

A, since it can be added safely to A while maintaining the invariant.

This generic algorithm uses the loop invariant as follows:

Initialization: After line 1, the set A trivially satisfies the loop invariant.

Maintenance: The loop in lines 2–4 maintains the invariant by adding

only safe edges.

Termination: All edges added to A belong to a minimum spanning tree,

and the loop must terminate by the time it has considered all edges.

Therefore, the set A returned in line 5 must be a minimum spanning

tree.

The tricky part is, of course, finding a safe edge in line 3. One must

exist, since when line 3 is executed, the invariant dictates that there is a
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spanning tree T such that A ⊆ T. Within the while loop body, A must be

a proper subset of T, and therefore there must be an edge (u, v) ∈ T

such that (u, v) ∉ A and (u, v) is safe for A.

The remainder of this section provides a rule (Theorem 21.1) for

recognizing safe edges. The next section describes two algorithms that

use this rule to find safe edges efficiently.

We first need some definitions. Acut (S, V – S) of an undirected graph

G = (V, E) is a partition of V. Figure 21.2 illustrates this notion. We say

that an edge (u, v) ∈ Ecrosses the cut (S, V – S) if one of its endpoints

belongs to S and the other belongs to V – S. A cut respects a set A of

edges if no edge in A crosses the cut. An edge is a light edge crossing a

cut if its weight is the minimum of any edge crossing the cut. There can

be more than one light edge crossing a cut in the case of ties. More

generally, we say that an edge is a light edge satisfying a given property

if its weight is the minimum of any edge satisfying the property.

The following theorem gives the rule for recognizing safe edges.

Theorem 21.1

Let G = (V, E) be a connected, undirected graph with a real-valued

weight function w defined on E. Let A be a subset of E that is included

in some minimum spanning tree for G, let (S, V – S) be any cut of G

that respects A, and let (u, v) be a light edge crossing (S, V – S). Then,

edge (u, v) is safe for A.

Figure 21.2 A cut (S, V – S) of the graph from Figure 21.1. Orange vertices belong to the set S,

and tan vertices belong to V – S. The edges crossing the cut are those connecting tan vertices

with orange vertices. The edge (d, c) is the unique light edge crossing the cut. Blue edges form a

subset A of the edges. The cut (S, V – S) respects A, since no edge of A crosses the cut.

Proof   Let T be a minimum spanning tree that includes A, and assume

that T does not contain the light edge (u, v), since if it does, we are done.
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We’ll construct another minimum spanning tree T′ that includes A ∪

{(u, v)} by using a cut-and-paste technique, thereby showing that (u, v)

is a safe edge for A.

The edge (u, v) forms a cycle with the edges on the simple path p

from u to v in T, as Figure 21.3 illustrates. Since u and v are on opposite

sides of the cut (S, V – S), at least one edge in T lies on the simple path

p and also crosses the cut. Let (x, y) be any such edge. The edge (x, y) is

not in A, because the cut respects A. Since (x, y) is on the unique simple

path from u to v in T, removing (x, y) breaks T into two components.

Adding (u, v) reconnects them to form a new spanning tree T′ = (T –

{(x, y)}) ∪ {(u, v)}.

We next show that T′ is a minimum spanning tree. Since (u, v) is a

light edge crossing (S, V – S) and (x, y) also crosses this cut, w(u, v) ≤

w(x, y). Therefore,

w(T′) = w(T) − w(x, y) + w(u, v)

≤ w(T).

But T is a minimum spanning tree, so that w(T) ≤ w(T′), and thus, T′
must be a minimum spanning tree as well.

It remains to show that (u, v) is actually a safe edge for A. We have A

⊆ T′, since A ⊆ T and (x, y) ∉ A, and thus, A ∪ {(u, v)} ⊆ T′.
Consequently, since T′ is a minimum spanning tree, (u, v) is safe for A.

▪

Theorem 21.1 provides insight into how the GENERIC-MST

method works on a connected graph G = (V, E). As the method

proceeds, the set A is always acyclic, since it is a subset of a minimum

spanning tree and a tree may not contain a cycle. At any point in the

execution, the graph GA = (V, A) is a forest, and each of the connected

components of GA is a tree. (Some of the trees may contain just one

vertex, as is the case, for example, when the method begins: A is empty

and the forest contains |V| trees, one for each vertex.) Moreover, any

safe edge (u, v) for A connects distinct components of GA, since A ∪

{(u, v)} must be acyclic.
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Figure 21.3 The proof of Theorem 21.1. Orange vertices belong to S, and tan vertices belong to

V – S. Only edges in the minimum spanning tree T are shown, along with edge (u, v), which does

not lie in T. The edges in A are blue, and (u, v) is a light edge crossing the cut (S, V – S). The

edge (x, y) is an edge on the unique simple path p from u to v in T. To form a minimum

spanning tree T′ that contains (u, v), remove the edge (x, y) from T and add the edge (u, v).

The while loop in lines 2–4 of GENERIC-MST executes |V| – 1 times

because it finds one of the |V| – 1 edges of a minimum spanning tree in

each iteration. Initially, when A = Ø, there are |V| trees in GA, and each

iteration reduces that number by 1. When the forest contains only a

single tree, the method terminates.

The two algorithms in Section 21.2 use the following corollary to

Theorem 21.1.

Corollary 21.2

Let G = (V, E) be a connected, undirected graph with a real-valued

weight function w defined on E. Let A be a subset of E that is included

in some minimum spanning tree for G, and let C = (VC, EC) be a

connected component (tree) in the forest GA = (V, A). If (u, v) is a light

edge connecting C to some other component in GA, then (u, v) is safe

for A.

Proof     The cut (VC, V – VC) respects A, and (u, v) is a light edge for

this cut. Therefore, (u, v) is safe for A.

▪

Exercises
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21.1-1

Let (u, v) be a minimum-weight edge in a connected graph G. Show that

(u, v) belongs to some minimum spanning tree of G.

21.1-2

Professor Sabatier conjectures the following converse of Theorem 21.1.

Let G = (V, E) be a connected, undirected graph with a real-valued

weight function w defined on E. Let A be a subset of E that is included

in some minimum spanning tree for G, let (S, V – S) be any cut of G

that respects A, and let (u, v) be a safe edge for A crossing (S, V – S).

Then, (u, v) is a light edge for the cut. Show that the professor’s

conjecture is incorrect by giving a counterexample.

21.1-3

Show that if an edge (u, v) is contained in some minimum spanning tree,

then it is a light edge crossing some cut of the graph.

21.1-4

Give a simple example of a connected graph such that the set of edges

{(u, v) : there exists a cut (S, V – S) such that (u, v) is a light edge

crossing (S, V – S)} does not form a minimum spanning tree.

21.1-5

Let e be a maximum-weight edge on some cycle of connected graph G =

(V, E). Prove that there is a minimum spanning tree of G′ = (V, E – {e})

that is also a minimum spanning tree of G. That is, there is a minimum

spanning tree of G that does not include e.

21.1-6

Show that a graph has a unique minimum spanning tree if, for every cut

of the graph, there is a unique light edge crossing the cut. Show that the

converse is not true by giving a counterexample.

21.1-7

Argue that if all edge weights of a graph are positive, then any subset of

edges that connects all vertices and has minimum total weight must be a

tree. Give an example to show that the same conclusion does not follow

if we allow some weights to be nonpositive.
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21.1-8

Let T be a minimum spanning tree of a graph G, and let L be the sorted

list of the edge weights of T. Show that for any other minimum

spanning tree T′ of G, the list L is also the sorted list of edge weights of

T′.

21.1-9

Let T be a minimum spanning tree of a graph G = (V, E), and let V′ be

a subset of V. Let T′ be the subgraph of T induced by V′, and let G′ be

the subgraph of G induced by V′. Show that if T′ is connected, then T′ is
a minimum spanning tree of G′.

21.1-10

Given a graph G and a minimum spanning tree T, suppose that the

weight of one of the edges in T decreases. Show that T is still a

minimum spanning tree for G. More formally, let T be a minimum

spanning tree for G with edge weights given by weight function w.

Choose one edge (x, y) ∈ T and a positive number k, and define the

weight function w′ by

Show that T is a minimum spanning tree for G with edge weights given

by w′.

★ 21.1-11

Given a graph G and a minimum spanning tree T, suppose that the

weight of one of the edges not in T decreases. Give an algorithm for

finding the minimum spanning tree in the modified graph.

21.2    The algorithms of Kruskal and Prim

The two minimum-spanning-tree algorithms described in this section

elaborate on the generic method. They each use a specific rule to

determine a safe edge in line 3 of GENERIC-MST. In Kruskal’s

algorithm, the set A is a forest whose vertices are all those of the given
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graph. The safe edge added to A is always a lowest-weight edge in the

graph that connects two distinct components. In Prim’s algorithm, the

set A forms a single tree. The safe edge added to A is always a lowest-

weight edge connecting the tree to a vertex not in the tree. Both

algorithms assume that the input graph is connected and represented by

adjacency lists.

Figure 21.4 The execution of Kruskal’s algorithm on the graph from Figure 21.1. Blue edges

belong to the forest A being grown. The algorithm considers each edge in sorted order by

weight. A red arrow points to the edge under consideration at each step of the algorithm. If the

edge joins two distinct trees in the forest, it is added to the forest, thereby merging the two trees.

Kruskal’s algorithm

Kruskal’s algorithm finds a safe edge to add to the growing forest by

finding, of all the edges that connect any two trees in the forest, an edge
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(u, v) with the lowest weight. Let C1 and C2 denote the two trees that

are connected by (u, v). Since (u, v) must be a light edge connecting C1

to some other tree, Corollary 21.2 implies that (u, v) is a safe edge for

C1. Kruskal’s algorithm qualifies as a greedy algorithm because at each

step it adds to the forest an edge with the lowest possible weight.

Figure 21.4, continued Further steps in the execution of Kruskal’s algorithm.

Like the algorithm to compute connected components from Section

19.1, the procedure MST-KRUSKAL on the following page uses a

disjoint-set data structure to maintain several disjoint sets of elements.

Each set contains the vertices in one tree of the current forest. The

operation FIND-SET(u) returns a representative element from the set

that contains u. Thus, to determine whether two vertices u and v belong

to the same tree, just test whether FIND-SET(u) equals FIND-SET(v).

To combine trees, Kruskal’s algorithm calls the UNION procedure.

Figure 21.4 shows how Kruskal’s algorithm works. Lines 1–3

initialize the set A to the empty set and create |V| trees, one containing

each vertex. The for loop in lines 6–9 examines edges in order of weight,

www.konkur.in

Telegram: @uni_k



from lowest to highest. The loop checks, for each edge (u, v), whether

the endpoints u and v belong to the same tree. If they do, then the edge

(u, v) cannot be added to the forest without creating a cycle, and the

edge is ignored. Otherwise, the two vertices belong to different trees. In

this case, line 8 adds the edge (u, v) to A, and line 9 merges the vertices

in the two trees.

MST-KRUSKAL(G, w)

  1A = Ø

  2 for each vertex v ∈ G.V

  3 MAKE-SET(v)

  4create a single list of the edges in G.E

  5sort the list of edges into monotonically increasing order by weight

w

  6 for each edge (u, v) taken from the sorted list in order

  7 if FIND-SET(u) ≠ FIND-SET(v)

  8 A = A ∪ {(u, v)}

  9 UNION(u, v)

10return A

The running time of Kruskal’s algorithm for a graph G = (V, E)

depends on the specific implementation of the disjoint-set data

structure. Let’s assume that it uses the disjoint-set-forest

implementation of Section 19.3 with the union-by-rank and path-

compression heuristics, since that is the asymptotically fastest

implementation known. Initializing the set A in line 1 takes O(1) time,

creating a single list of edges in line 4 takes O(V + E) time (which is

O(E) because G is connected), and the time to sort the edges in line 5 is

O(E lg E). (We’ll account for the cost of the |V| MAKE-SET operations

in the for loop of lines 2–3 in a moment.) The for loop of lines 6–9

performs O(E) FIND-SET and UNION operations on the disjoint-set

forest. Along with the |V| MAKE-SET operations, these disjoint-set

operations take a total of O((V + E) α(V)) time, where α is the very

slowly growing function defined in Section 19.4. Because we assume

that G is connected, we have |E| ≥ |V| – 1, and so the disjoint-set
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operations take O(E α(V)) time. Moreover, since α(|V|) = O(lg V) = O(lg

E), the total running time of Kruskal’s algorithm is O(E lg E).

Observing that |E| < |V|2, we have lg |E| = O(lg V), and so we can restate

the running time of Kruskal’s algorithm as O(E lg V).

Prim’s algorithm

Like Kruskal’s algorithm, Prim’s algorithm is a special case of the

generic minimum-spanning-tree method from Section 21.1. Prim’s

algorithm operates much like Dijkstra’s algorithm for finding shortest

paths in a graph, which we’ll see in Section 22.3. Prim’s algorithm has

the property that the edges in the set A always form a single tree. As

Figure 21.5 shows, the tree starts from an arbitrary root vertex r and

grows until it spans all the vertices in V. Each step adds to the tree A a

light edge that connects A to an isolated vertex—one on which no edge

of A is incident. By Corollary 21.2, this rule adds only edges that are

safe for A. Therefore, when the algorithm terminates, the edges in A

form a minimum spanning tree. This strategy qualifies as greedy since at

each step it adds to the tree an edge that contributes the minimum

amount possible to the tree’s weight.
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Figure 21.5 The execution of Prim’s algorithm on the graph from Figure 21.1. The root vertex is

a. Blue vertices and edges belong to the tree being grown, and tan vertices have yet to be added

to the tree. At each step of the algorithm, the vertices in the tree determine a cut of the graph,

and a light edge crossing the cut is added to the tree. The edge and vertex added to the tree are

highlighted in orange. In the second step (part (c)), for example, the algorithm has a choice of

adding either edge (b, c) or edge (a, h) to the tree since both are light edges crossing the cut.

In the procedure MST-PRIM below, the connected graph G and the

root r of the minimum spanning tree to be grown are inputs to the

algorithm. In order to efficiently select a new edge to add into tree A,

the algorithm maintains a min-priority queue Q of all vertices that are

not in the tree, based on a key attribute. For each vertex v, the attribute
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v.key is the minimum weight of any edge connecting v to a vertex in the

tree, where by convention, v.key = ∞ if there is no such edge. The

attribute v.π names the parent of v in the tree. The algorithm implicitly

maintains the set A from GENERIC-MST as

A = {(v, v.π) : v ∈ V – {r} – Q},

where we interpret the vertices in Q as forming a set. When the

algorithm terminates, the min-priority queue Q is empty, and thus the

minimum spanning tree A for G is

A = {(v, v.π) : v ∈ V – {r}}.

MST-PRIM(G, w, r)

  1 for each vertex u ∈ G.V

  2 u.key = ∞

  3 u.π = NIL

  4r.key = 0

  5Q = Ø

  6 for each vertex u ∈ G.V

  7 INSERT(Q, u)

  8while Q ≠ Ø

  9 u = EXTRACT-MIN(Q) // add u to the tree

10 for each vertex v in

G.Adj[u]

// update keys of u’s non-tree

neighbors

11 if v ∈ Q and w(u, v) < v.key

12 v.π = u

13 v.key = w(u, v)

14 DECREASE-KEY(Q, v, w(u, v))

Figure 21.5 shows how Prim’s algorithm works. Lines 1–7 set the key

of each vertex to ∞ (except for the root r, whose key is set to 0 to make it

the first vertex processed), set the parent of each vertex to NIL, and

insert each vertex into the min-priority queue Q. The algorithm

maintains the following three-part loop invariant:

Prior to each iteration of the while loop of lines 8–14,
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1. A = {(v, v.π) : v ∈ V – {r} – Q}.

2. The vertices already placed into the minimum spanning

tree are those in V − Q.

3. For all vertices v ∈ Q, if v.π ≠ NIL, then v.key < ∞ and

v.key is the weight of a light edge (v, v.π) connecting v to

some vertex already placed into the minimum spanning

tree.

Line 9 identifies a vertex u ∈ Q incident on a light edge that crosses the

cut (V – Q, Q) (with the exception of the first iteration, in which u = r

due to lines 4–7). Removing u from the set Q adds it to the set V – Q of

vertices in the tree, thus adding the edge (u, u.π) to A. The for loop of

lines 10–14 updates the key and attributes of every vertex v adjacent to u

but not in the tree, thereby maintaining the third part of the loop

invariant. Whenever line 13 updates v.key, line 14 calls DECREASE-

KEY to inform the min-priority queue that v’s key has changed.

The running time of Prim’s algorithm depends on the specific

implementation of the min-priority queue Q. You can implement Q

with a binary min-heap (see Chapter 6), including a way to map

between vertices and their corresponding heap elements. The BUILD-

MIN-HEAP procedure can perform lines 5–7 in O(V) time. In fact,

there is no need to call BUILD-MIN-HEAP. You can just put the key

of r at the root of the min-heap, and because all other keys are ∞, they

can go anywhere else in the min-heap. The body of the while loop

executes |V| times, and since each EXTRACT-MIN operation takes

O(lg V) time, the total time for all calls to EXTRACT-MIN is O(V lg

V). The for loop in lines 10–14 executes O(E) times altogether, since the

sum of the lengths of all adjacency lists is 2 |E|. Within the for loop, the

test for membership in Q in line 11 can take constant time if you keep a

bit for each vertex that indicates whether it belongs to Q and update the

bit when the vertex is removed from Q. Each call to DECREASE-KEY

in line 14 takes O(lg V) time. Thus, the total time for Prim’s algorithm is

O(V lg V + E lg V) = O(E lg V), which is asymptotically the same as for

our implementation of Kruskal’s algorithm.
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You can further improve the asymptotic running time of Prim’s

algorithm by implementing the min-priority queue with a Fibonacci

heap (see page 478). If a Fibonacci heap holds |V| elements, an

EXTRACT-MIN operation takes O(lg V) amortized time and each

INSERT and DECREASE-KEY operation takes only O(1) amortized

time. Therefore, by using a Fibonacci heap to implement the min-

priority queue Q, the running time of Prim’s algorithm improves to

O(E+V lg V).

Exercises

21.2-1

Kruskal’s algorithm can return different spanning trees for the same

input graph G, depending on how it breaks ties when the edges are

sorted. Show that for each minimum spanning tree T of G, there is a

way to sort the edges of G in Kruskal’s algorithm so that the algorithm

returns T.

21.2-2

Give a simple implementation of Prim’s algorithm that runs in O(V2)

time when the graph G = (V, E) is represented as an adjacency matrix.

21.2-3

For a sparse graph G = (V, E), where |E| = Θ(V), is the implementation

of Prim’s algorithm with a Fibonacci heap asymptotically faster than

the binary-heap implementation? What about for a dense graph, where

|E| = Θ(V2)? How must the sizes |E| and |V| be related for the Fibonacci-

heap implementation to be asymptotically faster than the binary-heap

implementation?

21.2-4

Suppose that all edge weights in a graph are integers in the range from 1

to |V|. How fast can you make Kruskal’s algorithm run? What if the

edge weights are integers in the range from 1 to W for some constant

W?

21.2-5
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Suppose that all edge weights in a graph are integers in the range from 1

to |V|. How fast can you make Prim’s algorithm run? What if the edge

weights are integers in the range from 1 to W for some constant W?

21.2-6

Professor Borden proposes a new divide-and-conquer algorithm for

computing minimum spanning trees, which goes as follows. Given a

graph G = (V, E), partition the set V of vertices into two sets V1 and V2

such that |V1| and |V2| differ by at most 1. Let E1 be the set of edges

that are incident only on vertices in V1, and let E2 be the set of edges

that are incident only on vertices in V2. Recursively solve a minimum-

spanning-tree problem on each of the two subgraphs G1 = (V1, E1) and

G2 = (V2, E2). Finally, select the minimum-weight edge in E that

crosses the cut V1, V2), and use this edge to unite the resulting two

minimum spanning trees into a single spanning tree.

Either argue that the algorithm correctly computes a minimum

spanning tree of G, or provide an example for which the algorithm fails.

★ 21.2-7

Suppose that the edge weights in a graph are uniformly distributed over

the half-open interval [0, 1). Which algorithm, Kruskal’s or Prim’s, can

you make run faster?

★ 21.2-8

Suppose that a graph G has a minimum spanning tree already

computed. How quickly can you update the minimum spanning tree

upon adding a new vertex and incident edges to G?

Problems

21-1     Second-best minimum spanning tree

Let G = (V, E) be an undirected, connected graph whose weight

function is w : E → ℝ, and suppose that |E| ≥ |V| and all edge weights

are distinct.
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We define a second-best minimum spanning tree as follows. Let T be

the set of all spanning trees of G, and let T be a minimum spanning tree

of G. Then a second-best minimum spanning tree is a spanning tree T′
such that w(T′) = min {w(T″) : T″ ∈ T − {T}}.

a. Show that the minimum spanning tree is unique, but that the second-

best minimum spanning tree need not be unique.

b. Let T be the minimum spanning tree of G. Prove that G contains

some edge (u, v) ∈ T and some edge (x, y) ∉ T such that (T – {(u, v)})

∪ {(x, y)} is a second-best minimum spanning tree of G.

c. Now let T be any spanning tree of G and, for any two vertices u, v ∈

V, let max[u, v] denote an edge of maximum weight on the unique

simple path between u and v in T. Describe an O(V2)-time algorithm

that, given T, computes max[u, v] for all u, v ∈ V.

d. Give an efficient algorithm to compute the second-best minimum

spanning tree of G.

21-2     Minimum spanning tree in sparse graphs

For a very sparse connected graph G = (V, E), it is possible to further

improve upon the O(E + V lg V) running time of Prim’s algorithm with

a Fibonacci heap by preprocessing G to decrease the number of vertices

before running Prim’s algorithm. In particular, for each vertex u, choose

the minimum-weight edge (u, v) incident on u, and put (u, v) into the

minimum spanning tree under construction. Then, contract all chosen

edges (see Section B.4). Rather than contracting these edges one at a

time, first identify sets of vertices that are united into the same new

vertex. Then create the graph that would have resulted from contracting

these edges one at a time, but do so by “renaming” edges according to

the sets into which their endpoints were placed. Several edges from the

original graph might be renamed the same as each other. In such a case,

only one edge results, and its weight is the minimum of the weights of

the corresponding original edges.

Initially, set the minimum spanning tree T being constructed to be

empty, and for each edge (u, v) ∈ E, initialize the two attributes (u,
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v).orig = (u, v) and (u, v).c = w(u, v). Use the orig attribute to reference

the edge from the initial graph that is associated with an edge in the

contracted graph. The c attribute holds the weight of an edge, and as

edges are contracted, it is updated according to the above scheme for

choosing edge weights. The procedure MST-REDUCE on the facing

page takes inputs G and T, and it returns a contracted graph G′ with

updated attributes orig′ and c′. The procedure also accumulates edges of

G into the minimum spanning tree T.

a. Let T be the set of edges returned by MST-REDUCE, and let A be

the minimum spanning tree of the graph G′ formed by the call MST-

PRIM(G′, c′, r), where c′ is the weight attribute on the edges of G′.E
and r is any vertex in G′:V. Prove that T ∪ {(x, y).orig′ : (x, y) ∈ A} is

a minimum spanning tree of G.

b. Argue that |G′.V| ≤ |V| /2.

c. Show how to implement MST-REDUCE so that it runs in O(E) time.

(Hint: Use simple data structures.)

d. Suppose that you run k phases of MST-REDUCE, using the output

G′ produced by one phase as the input G to the next phase and

accumulating edges in T. Argue that the overall running time of the k

phases is O(kE).

e. Suppose that after running k phases of MST-REDUCE, as in part

(d), you run Prim’s algorithm by calling MST-PRIM(G′, c′, r), where

G′, with weight attribute c′, is returned by the last phase and r is any

vertex in G′.V. Show how to pick k so that the overall running time is

O(E lg lg V). Argue that your choice of k minimizes the overall

asymptotic running time.

f. For what values of |E| (in terms of |V|) does Prim’s algorithm with

preprocessing asymptotically beat Prim’s algorithm without

preprocessing?

MST-REDUCE(G, T)

  1 for each vertex v ∈ G.V

  2 v.mark = FALSE
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  3 MAKE-SET(v)

  4 for each vertex u ∈ G.V

  5 if u.mark == FALSE

  6 choose v ∈ G.Adj[u] such that (u, v).c is minimized

  7 UNION(u, v)

  8 T = T ∪ {(u, v).orig}

  9 u.mark = TRUE

10 v.mark = TRUE

11G′.V = {FIND-SET(v) : v ∈ G.V}

12G′.E = Ø

13 for each edge (x, y) ∈ G.E

14 u = FIND-SET(x)

15 v = FIND-SET(y)

16 if u ≠ v

17 if (u, v) ∉ G′.E
18 G′.E = G′.E ∪ {(u, v)}

19 (u, v).orig′ = (x, y).orig

20 (u, v).c′ = (x, y).c

21 elseif (x, y).c < (u, v).c′
22 (u, v).orig′ = (x, y).orig

23 (u, v).c′ = (x, y).c

24construct adjacency lists G′.Adj for G′
25return G′ and T

21-3     Alternative minimum-spanning-tree algorithms

Consider the three algorithms MAYBE-MST-A, MAYBE-MST-B, and

MAYBE-MST-C on the next page. Each one takes a connected graph

and a weight function as input and returns a set of edges T. For each

algorithm, either prove that T is a minimum spanning tree or prove that

T is not necessarily a minimum spanning tree. Also describe the most

efficient implementation of each algorithm, regardless of whether it

computes a minimum spanning tree.

21-4     Bottleneck spanning tree
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A bottleneck spanning tree T of an undirected graph G is a spanning tree

of G whose largest edge weight is minimum over all spanning trees of G.

The value of the bottleneck spanning tree is the weight of the

maximum-weight edge in T.

MAYBE-MST-A(G, w)

1 sort the edges into monotonically decreasing order of edge weights

w

2 T = E

3 for each edge e, taken in monotonically decreasing order by weight

4 if T – {e} is a connected graph

5 T = T – {e}

6 return T

MAYBE-MST-B(G, w)

1 T = Ø

2 for each edge e, taken in arbitrary order

3 if T ∪ {e} has no cycles

4 T = T ∪ {e}

5 return T

MAYBE-MST-C(G, w)

1 T = Ø

2 for each edge e, taken in arbitrary order

3 T = T ∪ {e}

4 if T has a cycle c

5 let e′ be a maximum-weight edge on c

6 T = T – {e′}
7 return T

a. Argue that a minimum spanning tree is a bottleneck spanning tree.

Part (a) shows that finding a bottleneck spanning tree is no harder than

finding a minimum spanning tree. In the remaining parts, you will show

how to find a bottleneck spanning tree in linear time.
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b. Give a linear-time algorithm that, given a graph G and an integer b,

determines whether the value of the bottleneck spanning tree is at

most b.

c. Use your algorithm for part (b) as a subroutine in a linear-time

algorithm for the bottleneck-spanning-tree problem. (Hint: You might

want to use a subroutine that contracts sets of edges, as in the MST-

REDUCE procedure described in Problem 21-2.)

Chapter notes

Tarjan [429] surveys the minimum-spanning-tree problem and provides

excellent advanced material. Graham and Hell [198] compiled a history

of the minimum-spanning-tree problem.

Tarjan attributes the first minimum-spanning-tree algorithm to a

1926 paper by O. Borůvka. Borůvka’s algorithm consists of running

O(lg V) iterations of the procedure MST-REDUCE described in

Problem 21-2. Kruskal’s algorithm was reported by Kruskal [272] in

1956. The algorithm commonly known as Prim’s algorithm was indeed

invented by Prim [367], but it was also invented earlier by V. Jarník in

1930.

When |E| = Ω(V lg V), Prim’s algorithm, implemented with a

Fibonacci heap, runs in O(E) time. For sparser graphs, using a

combination of the ideas from Prim’s algorithm, Kruskal’s algorithm,

and Borůvka’s algorithm, together with advanced data structures,

Fredman and Tarjan [156] give an algorithm that runs in O(E lg* V)

time. Gabow, Galil, Spencer, and Tarjan [165] improved this algorithm

to run in O(E lg lg* V) time. Chazelle [83] gives an algorithm that runs

in O(E (E, V)) time, where (E, V) is the functional inverse of

Ackermann’s function. (See the chapter notes for Chapter 19 for a brief

discussion of Ackermann’s function and its inverse.) Unlike previous

minimum-spanning-tree algorithms, Chazelle’s algorithm does not

follow the greedy method. Pettie and Ramachandran [356] give an

algorithm based on precomputed “MST decision trees” that also runs

in O(E (E, V)) time.
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A related problem is spanning-tree verification: given a graph G = (V,

E) and a tree T ⊆ E, determine whether T is a minimum spanning tree

of G. King [254] gives a linear-time algorithm to verify a spanning tree,

building on earlier work of Komlós [269] and Dixon, Rauch, and Tarjan

[120].

The above algorithms are all deterministic and fall into the

comparison-based model described in Chapter 8. Karger, Klein, and

Tarjan [243] give a randomized minimum-spanning-tree algorithm that

runs in O(V + E) expected time. This algorithm uses recursion in a

manner similar to the linear-time selection algorithm in Section 9.3: a

recursive call on an auxiliary problem identifies a subset of the edges E′
that cannot be in any minimum spanning tree. Another recursive call on

E – E′ then finds the minimum spanning tree. The algorithm also uses

ideas from Borůvka’s algorithm and King’s algorithm for spanning-tree

verification.

Fredman and Willard [158] showed how to find a minimum spanning

tree in O(V + E) time using a deterministic algorithm that is not

comparison based. Their algorithm assumes that the data are b-bit

integers and that the computer memory consists of addressable b-bit

words.

1 The phrase “minimum spanning tree” is a shortened form of the phrase “minimum-weight

spanning tree.” There is no point in minimizing the number of edges in T, since all spanning

trees have exactly |V| − 1 edges by Theorem B.2 on page 1169.
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22        Single-Source Shortest Paths

Suppose that you need to drive from Oceanside, New York, to

Oceanside, California, by the shortest possible route. Your GPS

contains information about the entire road network of the United

States, including the road distance between each pair of adjacent

intersections. How can your GPS determine this shortest route?

One possible way is to enumerate all the routes from Oceanside, New

York, to Oceanside, California, add up the distances on each route, and

select the shortest. But even disallowing routes that contain cycles, your

GPS would need to examine an enormous number of possibilities, most

of which are simply not worth considering. For example, a route that

passes through Miami, Florida, is a poor choice, because Miami is

several hundred miles out of the way.

This chapter and Chapter 23 show how to solve such problems

efficiently. The input to a shortest-paths problem is a weighted, directed

graph G = (V, E), with a weight function w : E → ℝ mapping edges to

real-valued weights. The weight w(p) of path p = 〈v0, v1, … , vk〉 is the

sum of the weights of its constituent edges:

We define the shortest-path weight δ(u, v) from u to v by
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A shortest path from vertex u to vertex v is then defined as any path p
with weight w(p) = δ(u, v).

In the example of going from Oceanside, New York, to Oceanside,

California, your GPS models the road network as a graph: vertices

represent intersections, edges represent road segments between

intersections, and edge weights represent road distances. The goal is to

find a shortest path from a given intersection in Oceanside, New York

(say, Brower Avenue and Skillman Avenue) to a given intersection in

Oceanside, California (say, Topeka Street and South Horne Street).

Edge weights can represent metrics other than distances, such as

time, cost, penalties, loss, or any other quantity that accumulates

linearly along a path and that you want to minimize.

The breadth-first-search algorithm from Section 20.2 is a shortest-

paths algorithm that works on unweighted graphs, that is, graphs in

which each edge has unit weight. Because many of the concepts from

breadth-first search arise in the study of shortest paths in weighted

graphs, you might want to review Section 20.2 before proceeding.

Variants

This chapter focuses on the single-source shortest-paths problem: given a

graph G = (V, E), find a shortest path from a given source vertex s ∈ V
to every vertex v ∈ V. The algorithm for the single-source problem can

solve many other problems, including the following variants.

Single-destination shortest-paths problem: Find a shortest path to a

given destination vertex t from each vertex v. By reversing the direction

of each edge in the graph, you can reduce this problem to a single-

source problem.

Single-pair shortest-path problem: Find a shortest path from u to v for

given vertices u and v. If you solve the single-source problem with

source vertex u, you solve this problem also. Moreover, all known

algorithms for this problem have the same worst-case asymptotic

running time as the best single-source algorithms.

All-pairs shortest-paths problem: Find a shortest path from u to v for

every pair of vertices u and v. Although you can solve this problem by
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running a single-source algorithm once from each vertex, you often

can solve it faster. Additionally, its structure is interesting in its own

right. Chapter 23 addresses the all-pairs problem in detail.

Optimal substructure of a shortest path

Shortest-paths algorithms typically rely on the property that a shortest

path between two vertices contains other shortest paths within it. (The

Edmonds-Karp maximum-flow algorithm in Chapter 24 also relies on

this property.) Recall that optimal substructure is one of the key

indicators that dynamic programming (Chapter 14) and the greedy

method (Chapter 15) might apply. Dijkstra’s algorithm, which we shall

see in Section 22.3, is a greedy algorithm, and the Floyd-Warshall

algorithm, which finds a shortest path between every pair of vertices

(see Section 23.2), is a dynamic-programming algorithm. The following

lemma states the optimal-substructure property of shortest paths more

precisely.

Lemma 22.1 (Subpaths of shortest paths are shortest paths)

Given a weighted, directed graph G = (V, E) with weight function w : E
→ ℝ let p = 〈v0, v1, … , vk〉 be a shortest path from vertex v0 to vertex

vk and, for any i and j such that 0 ≤ i ≤ j ≤ k, let pij = 〈vi, vi+1, … , vj〉 be

the subpath of p from vertex vi to vertex vj. Then, pij is a shortest path

from vi to vj.

Proof     Decompose path p into , so that w(p) = w(p0i) +

w(pij) + w(pjk). Now, assume that there is a path  from vi to vj with

weight . Then,  is a path from v0 to vk whose

weight  is less than w(p), which contradicts the

assumption that p is a shortest path from v0 to vk.

▪

Negative-weight edges
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Some instances of the single-source shortest-paths problem may include

edges whose weights are negative. If the graph G = (V, E) contains no

negative-weight cycles reachable from the source s, then for all v ∈ V,

the shortest-path weight δ(s, v) remains well defined, even if it has a

negative value. If the graph contains a negative-weight cycle reachable

from s, however, shortest-path weights are not well defined. No path

from s to a vertex on the cycle can be a shortest path—you can always

find a path with lower weight by following the proposed “shortest” path

and then traversing the negative-weight cycle. If there is a negative-

weight cycle on some path from s to v, we define δ(s, v) = −∞.

Figure 22.1 illustrates the effect of negative weights and negative-

weight cycles on shortest-path weights. Because there is only one path

from s to a (the path 〈s, a〉), we have δ(s, a) = w(s, a) = 3. Similarly, there

is only one path from s to b, and so δ(s, b) = w(s, a) + w(a, b) = 3 + (−4)

= −1. There are infinitely many paths from s to c: 〈s, c〉, 〈s, c, d, c〉, 〈s, c,

d, c, d, c〉, and so on. Because the cycle 〈c, d, c〉 has weight 6 + (−3) = 3

> 0, the shortest path from s to c is 〈s, c〉, with weight δ(s, c) = w(s, c) =

5, and the shortest path from s to d is 〈s, c, d〉, with weight δ(s, d) = w(s,

c) + w(c, d) = 11. Analogously, there are infinitely many paths from s to

e: 〈s, e〉, 〈s, e, f, e〉, 〈s, e, f, e, f, e〉, and so on. Because the cycle 〈e, f, e〉

has weight 3 + (−6) = −3 < 0, however, there is no shortest path from s
to e. By traversing the negative-weight cycle 〈e, f, e〉 arbitrarily many

times, you can find paths from s to e with arbitrarily large negative

weights, and so δ(s, e) = −∞. Similarly, δ(s, f) = −∞. Because g is

reachable from f, you can also find paths with arbitrarily large negative

weights from s to g, and so δ(s, g) = −∞. Vertices h, i, and j also form a

negative-weight cycle. They are not reachable from s, however, and so

δ(s, h) = δ(s, i) = δ(s, j) = ∞.
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Figure 22.1 Negative edge weights in a directed graph. The shortest-path weight from source s
appears within each vertex. Because vertices e and f form a negative-weight cycle reachable from

s, they have shortest-path weights of −∞. Because vertex g is reachable from a vertex whose

shortest-path weight is −∞, it, too, has a shortest-path weight of −∞. Vertices such as h, i, and j
are not reachable from s, and so their shortest-path weights are ∞, even though they lie on a

negative-weight cycle.

Some shortest-paths algorithms, such as Dijkstra’s algorithm,

assume that all edge weights in the input graph are nonnegative, as in a

road network. Others, such as the Bellman-Ford algorithm, allow

negative-weight edges in the input graph and produce a correct answer

as long as no negative-weight cycles are reachable from the source.

Typically, if there is such a negative-weight cycle, the algorithm can

detect and report its existence.

Cycles

Can a shortest path contain a cycle? As we have just seen, it cannot

contain a negative-weight cycle. Nor can it contain a positive-weight

cycle, since removing the cycle from the path produces a path with the

same source and destination vertices and a lower path weight. That is, if

p = 〈v0, v1, … , vk〉 is a path and c = 〈vi, vi+1, … , vj〉 is a positive-

weight cycle on this path (so that vi = vj and w(c) > 0), then the path p′
= 〈v0, v1, … , vi, vj+1, vj+2, … , vk〉 has weight w(p′) = w(p) − w(c) <

w(p), and so p cannot be a shortest path from v0 to vk.

That leaves only 0-weight cycles. You can remove a 0-weight cycle

from any path to produce another path whose weight is the same. Thus,

if there is a shortest path from a source vertex s to a destination vertex v
that contains a 0-weight cycle, then there is another shortest path from s
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to v without this cycle. As long as a shortest path has 0-weight cycles,

you can repeatedly remove these cycles from the path until you have a

shortest path that is cycle-free. Therefore, without loss of generality,

assume that shortest paths have no cycles, that is, they are simple paths.

Since any acyclic path in a graph G = (V, E) contains at most |V| distinct

vertices, it also contains at most |V| − 1 edges. Assume, therefore, that

any shortest path contains at most |V| − 1 edges.

Representing shortest paths

It is usually not enough to compute only shortest-path weights. Most

applications of shortest paths need to know the vertices on shortest

paths as well. For example, if your GPS told you the distance to your

destination but not how to get there, it would not be terribly useful. We

represent shortest paths similarly to how we represented breadth-first

trees in Section 20.2. Given a graph G = (V, E), maintain for each vertex

v ∈ V a predecessor v.π that is either another vertex or NIL. The

shortest-paths algorithms in this chapter set the π attributes so that the

chain of predecessors originating at a vertex v runs backward along a

shortest path from s to v. Thus, given a vertex v for which v.π ≠ NIL, the

procedure PRINT-PATH(G, s, v) from Section 20.2 prints a shortest

path from s to v.

In the midst of executing a shortest-paths algorithm, however, the π

values might not indicate shortest paths. The predecessor subgraph Gπ =

(Vπ, Eπ) induced by the π values is defined the same for single-source

shortest paths as for breadth-first search in equations (20.2) and (20.3)

on page 561:

Vπ = {v ∈ V : v.π ≠ NIL} ∪ {s},

Eπ = {(v.π, v) ∈ E : v ∈ Vπ − {s}}.

We’ll prove that the π values produced by the algorithms in this

chapter have the property that at termination Gπ is a “shortest-paths

tree”—informally, a rooted tree containing a shortest path from the

source s to every vertex that is reachable from s. A shortest-paths tree is

like the breadth-first tree from Section 20.2, but it contains shortest
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paths from the source defined in terms of edge weights instead of

numbers of edges. To be precise, let G = (V, E) be a weighted, directed

graph with weight function w : E → ℝ, and assume that G contains no

negative-weight cycles reachable from the source vertex s ∈ V, so that

shortest paths are well defined. Ashortest-paths tree rooted at s is a

directed subgraph G′ = (V′, E′), where V′ ⊆ V and E′ ⊆ E, such that

1. V′ is the set of vertices reachable from s in G,

2. G′ forms a rooted tree with root s, and

3. for all v ∈ V′, the unique simple path from s to v in G′ is a

shortest path from s to v in G.

Figure 22.2 (a) A weighted, directed graph with shortest-path weights from source s. (b) The

blue edges form a shortest-paths tree rooted at the source s. (c) Another shortest-paths tree with

the same root.

Shortest paths are not necessarily unique, and neither are shortest-

paths trees. For example, Figure 22.2 shows a weighted, directed graph

and two shortest-paths trees with the same root.

Relaxation

The algorithms in this chapter use the technique of relaxation. For each

vertex v ∈ V, the single-source shortest paths algorithms maintain an

attribute v.d, which is an upper bound on the weight of a shortest path

from source s to v. We call v.d a shortest-path estimate. To initialize the

shortest-path estimates and predecessors, call the Θ(V)-time procedure

INITIALIZE-SINGLE-SOURCE. After initialization, we have v.π =

NIL for all v ∈ V, s.d = 0 and v.d = ∞ for v ∈ V − {s}.
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INITIALIZE-SINGLE-SOURCE(G, s)

1 for each vertex v ∈ G.V
2 v.d = ∞

3 v.π = NIL

4 s.d = 0

The process of relaxing an edge (u, v) consists of testing whether

going through vertex u improves the shortest path to vertex v found so

far and, if so, updating v.d and v.π. A relaxation step might decrease the

value of the shortest-path estimate v.d and update v’s predecessor

attribute v.π. The RELAX procedure on the following page performs a

relaxation step on edge (u, v) in O(1) time. Figure 22.3 shows two

examples of relaxing an edge, one in which a shortest-path estimate

decreases and one in which no estimate changes.

Figure 22.3 Relaxing an edge (u, v) with weight w(u, v) = 2. The shortest-path estimate of each

vertex appears within the vertex. (a) Because v.d > u.d + w(u, v) prior to relaxation, the value of

v.d decreases. (b) Since we have v.d ≤ u.d + w(u, v) before relaxing the edge, the relaxation step

leaves v.d unchanged.

RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.π = u

Each algorithm in this chapter calls INITIALIZE-SINGLE-

SOURCE and then repeatedly relaxes edges.1 Moreover, relaxation is

the only means by which shortest-path estimates and predecessors
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change. The algorithms in this chapter differ in how many times they

relax each edge and the order in which they relax edges. Dijkstra’s

algorithm and the shortest-paths algorithm for directed acyclic graphs

relax each edge exactly once. The Bellman-Ford algorithm relaxes each

edge |V| − 1 times.

Properties of shortest paths and relaxation

To prove the algorithms in this chapter correct, we’ll appeal to several

properties of shortest paths and relaxation. We state these properties

here, and Section 22.5 proves them formally. For your reference, each

property stated here includes the appropriate lemma or corollary

number from Section 22.5. The latter five of these properties, which

refer to shortest-path estimates or the predecessor subgraph, implicitly

assume that the graph is initialized with a call to INITIALIZE-

SINGLE-SOURCE(G, s) and that the only way that shortest-path

estimates and the predecessor subgraph change are by some sequence of

relaxation steps.

Triangle inequality (Lemma 22.10)

For any edge (u, v) ∈ E, we have δ(s, v) ≤ δ(s, u) + w(u, v).

Upper-bound property (Lemma 22.11)

We always have v.d ≥ δ(s, v) for all vertices v ∈ V, and once v.d
achieves the value δ(s, v), it never changes.

No-path property (Corollary 22.12)

If there is no path from s to v, then we always have v.d = δ(s, v) = ∞.

Convergence property (Lemma 22.14)

If s ⇝ u → v is a shortest path in G for some u, v ∈ V, and if u.d =

δ(s, u) at any time prior to relaxing edge (u, v), then v.d = δ(s, v) at

all times afterward.

Path-relaxation property (Lemma 22.15)

If p = 〈v0, v1, … , vk〉 is a shortest path from s = v0 to vk, and the

edges of p are relaxed in the order (v0, v1), (v1, v2), … , (vk−1, vk),

then vk.d = δ(s, vk). This property holds regardless of any other
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relaxation steps that occur, even if they are intermixed with

relaxations of the edges of p.

Predecessor-subgraph property (Lemma 22.17)

Once v.d = δ(s, v) for all v ∈ V, the predecessor subgraph is a

shortest-paths tree rooted at s.

Chapter outline

Section 22.1 presents the Bellman-Ford algorithm, which solves the

single-source shortest-paths problem in the general case in which edges

can have negative weight. The Bellman-Ford algorithm is remarkably

simple, and it has the further benefit of detecting whether a negative-

weight cycle is reachable from the source. Section 22.2 gives a linear-

time algorithm for computing shortest paths from a single source in a

directed acyclic graph. Section 22.3 covers Dijkstra’s algorithm, which

has a lower running time than the Bellman-Ford algorithm but requires

the edge weights to be nonnegative. Section 22.4 shows how to use the

Bellman-Ford algorithm to solve a special case of linear programming.

Finally, Section 22.5 proves the properties of shortest paths and

relaxation stated above.

This chapter does arithmetic with infinities, and so we need some

conventions for when ∞ or −∞ appears in an arithmetic expression. We

assume that for any real number a ≠ −∞, we have a + ∞ = ∞ + a = ∞.

Also, to make our proofs hold in the presence of negative-weight cycles,

we assume that for any real number a ≠ ∞, we have a + (−∞) = (−∞) + a
= −∞.

All algorithms in this chapter assume that the directed graph G is

stored in the adjacency-list representation. Additionally, stored with

each edge is its weight, so that as each algorithm traverses an adjacency

list, it can find edge weights in O(1) time per edge.

22.1    The Bellman-Ford algorithm

The Bellman-Ford algorithm solves the single-source shortest-paths

problem in the general case in which edge weights may be negative.
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Given a weighted, directed graph G = (V, E) with source vertex s and

weight function w : E → ℝ, the Bellman-Ford algorithm returns a

boolean value indicating whether there is a negative-weight cycle that is

reachable from the source. If there is such a cycle, the algorithm

indicates that no solution exists. If there is no such cycle, the algorithm

produces the shortest paths and their weights.

The procedure BELLMAN-FORD relaxes edges, progressively

decreasing an estimate v.d on the weight of a shortest path from the

source s to each vertex v ∈ V until it achieves the actual shortest-path

weight δ(s, v). The algorithm returns TRUE if and only if the graph

contains no negative-weight cycles that are reachable from the source.

BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i = 1 to |G.V| − 1

3 for each edge (u, v) ∈ G.E
4 RELAX(u, v, w)

5 for each edge (u, v) = G.E
6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE

Figure 22.4 shows the execution of the Bellman-Ford algorithm on a

graph with 5 vertices. After initializing the d and π values of all vertices

in line 1, the algorithm makes |V| − 1 passes over the edges of the graph.

Each pass is one iteration of the for loop of lines 2–4 and consists of

relaxing each edge of the graph once. Figures 22.4(b)–(e) show the state

of the algorithm after each of the four passes over the edges. After

making |V| − 1 passes, lines 5–8 check for a negative-weight cycle and

return the appropriate boolean value. (We’ll see a little later why this

check works.)
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Figure 22.4 The execution of the Bellman-Ford algorithm. The source is vertex s. The d values

appear within the vertices, and blue edges indicate predecessor values: if edge (u, v) is blue, then

v.π = u. In this particular example, each pass relaxes the edges in the order (t, x), (t, y), (t, z), (x,

t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y). (a) The situation just before the first pass over the edges.

(b)–(e) The situation after each successive pass over the edges. Vertices whose shortest-path

estimates and predecessors have changed due to a pass are highlighted in orange. The d and π

values in part (e) are the final values. The Bellman-Ford algorithm returns TRUE in this

example.

The Bellman-Ford algorithm runs in O(V2 + VE) time when the

graph is represented by adjacency lists, since the initialization in line 1

takes Θ(V) time, each of the |V| − 1 passes over the edges in lines 2–4

takes Θ(V + E) time (examining |V| adjacency lists to find the |E| edges),

and the for loop of lines 5–7 takes O(V + E) time. Fewer than |V| − 1

passes over the edges sometimes suffice (see Exercise 22.1-3), which is

why we say O(V2+VE) time, rather than Θ(V2+VE) time. In the

frequent case where |E| = Ω(V), we can express this running time as

O(VE). Exercise 22.1-5 asks you to make the Bellman-Ford algorithm

run in O(VE) time even when |E| = o(V).

To prove the correctness of the Bellman-Ford algorithm, we start by

showing that if there are no negative-weight cycles, the algorithm

computes correct shortest-path weights for all vertices reachable from

the source.
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Lemma 22.2

Let G = (V, E) be a weighted, directed graph with source vertex s and

weight function w : E → ℝ, and assume that G contains no negative-

weight cycles that are reachable from s. Then, after the |V| − 1 iterations

of the for loop of lines 2–4 of BELLMAN-FORD, v.d = δ(s, v) for all

vertices v that are reachable from s.

Proof      We prove the lemma by appealing to the path-relaxation

property. Consider any vertex v that is reachable from s, and let p = 〈v0,

v1, … , vk〉, where v0 = s and vk = v, be any shortest path from s to v.

Because shortest paths are simple, p has at most |V| − 1 edges, and so k
≤ |V| − 1. Each of the |V| − 1 iterations of the for loop of lines 2–4

relaxes all |E| edges. Among the edges relaxed in the ith iteration, for i =
1, 2, … , k, is (vi−1, vi). By the path-relaxation property, therefore, v.d =

vk.d = δ(s, vk) = δ(s, v).

▪

Corollary 22.3

Let G = (V, E) be a weighted, directed graph with source vertex s and

weight function w : E → ℝ. Then, for each vertex v ∈ V, there is a path

from s to v if and only if BELLMAN-FORD terminates with v.d < ∞

when it is run on G.

Proof   The proof is left as Exercise 22.1-2.

▪

Theorem 22.4 (Correctness of the Bellman-Ford algorithm)

Let BELLMAN-FORD be run on a weighted, directed graph G = (V,

E) with source vertex s and weight function w : E → ℝ. If G contains no

negative-weight cycles that are reachable from s, then the algorithm

returns TRUE, v.d = δ(s, v) for all vertices v ∈ V, and the predecessor

subgraph Gπ is a shortest-paths tree rooted at s. If G does contain a

negative-weight cycle reachable from s, then the algorithm returns

FALSE.
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Proof      Suppose that graph G contains no negative-weight cycles that

are reachable from the source s. We first prove the claim that at

termination, v.d = δ(s, v) for all vertices v ∈ V. If vertex v is reachable

from s, then Lemma 22.2 proves this claim. If v is not reachable from s,

then the claim follows from the no-path property. Thus, the claim is

proven. The predecessor-subgraph property, along with the claim,

implies that Gπ is a shortest-paths tree. Now we use the claim to show

that BELLMAN-FORD returns TRUE. At termination, for all edges

(u, v) ∈ E we have

v.d = δ(s, v)

≤ δ(s, u) + w(u, v) (by the triangle inequality)

= u.d + w(u, v),

and so none of the tests in line 6 causes BELLMAN-FORD to return

FALSE. Therefore, it returns TRUE.

Now, suppose that graph G contains a negative-weight cycle

reachable from the source s. Let this cycle be c = 〈v0, v1, … , vk〉, where

v0 = vk, in which case we have

Assume for the purpose of contradiction that the Bellman-Ford

algorithm returns TRUE. Thus, vi.d ≤ vi−1.d + w(vi−1, vi) for i = 1, 2,

… , k. Summing the inequalities around cycle c gives

Since v0 = vk, each vertex in c appears exactly once in each of the

summations  and , and so
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Moreover, by Corollary 22.3, vi.d is finite for i = 1, 2, … , k. Thus,

which contradicts inequality (22.1). We conclude that the Bellman-Ford

algorithm returns TRUE if graph G contains no negative-weight cycles

reachable from the source, and FALSE otherwise.

▪

Exercises

22.1-1

Run the Bellman-Ford algorithm on the directed graph of Figure 22.4,

using vertex z as the source. In each pass, relax edges in the same order

as in the figure, and show the d and π values after each pass. Now,

change the weight of edge (z, x) to 4 and run the algorithm again, using

s as the source.

22.1-2

Prove Corollary 22.3.

22.1-3

Given a weighted, directed graph G = (V, E) with no negative-weight

cycles, let m be the maximum over all vertices v ∈ V of the minimum

number of edges in a shortest path from the source s to v. (Here, the

shortest path is by weight, not the number of edges.) Suggest a simple

change to the Bellman-Ford algorithm that allows it to terminate in m +

1 passes, even if m is not known in advance.

22.1-4

Modify the Bellman-Ford algorithm so that it sets v.d to −∞ for all

vertices v for which there is a negative-weight cycle on some path from

the source to v.

22.1-5

Suppose that the graph given as input to the Bellman-Ford algorithm is

represented with a list of |E| edges, where each edge indicates the
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vertices it leaves and enters, along with its weight. Argue that the

Bellman-Ford algorithm runs in O(VE) time without the constraint that

|E| = Ω(V). Modify the Bellman-Ford algorithm so that it runs in O(VE)

time in all cases when the input graph is represented with adjacency

lists.

22.1-6

Let G = (V, E) be a weighted, directed graph with weight function w : E
→ ℝ. Give an O(VE)-time algorithm to find, for all vertices v ∈ V, the

value δ*(v) = min {δ(u, v) : u ∈ V}.

22.1-7

Suppose that a weighted, directed graph G = (V, E) contains a negative-

weight cycle. Give an efficient algorithm to list the vertices of one such

cycle. Prove that your algorithm is correct.

22.2    Single-source shortest paths in directed acyclic graphs

In this section, we introduce one further restriction on weighted,

directed graphs: they are acyclic. That is, we are concerned with

weighted dags. Shortest paths are always well defined in a dag, since

even if there are negative-weight edges, no negative-weight cycles can

exist. We’ll see that if the edges of a weighted dag G = (V, E) are relaxed

according to a topological sort of its vertices, it takes only Θ(V + E)

time to compute shortest paths from a single source.

The algorithm starts by topologically sorting the dag (see Section

20.4) to impose a linear ordering on the vertices. If the dag contains a

path from vertex u to vertex v, then u precedes v in the topological sort.

The DAG-SHORTEST-PATHS procedure makes just one pass over the

vertices in the topologically sorted order. As it processes each vertex, it

relaxes each edge that leaves the vertex. Figure 22.5 shows the execution

of this algorithm.

DAG-SHORTEST-PATHS(G, w, s)

1 topologically sort the vertices of G
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2 INITIALIZE-SINGLE-SOURCE(G, s)

3 for each vertex u ∈ G.V, taken in topologically sorted order

4 for each vertex v in G.Adj[u]

5 RELAX(u, v, w)

Let’s analyze the running time of this algorithm. As shown in

Section 20.4, the topological sort of line 1 takes Θ(V + E) time. The call

of INITIALIZE-SINGLE-SOURCE in line 2 takes Θ(V) time. The for

loop of lines 3–5 makes one iteration per vertex. Altogether, the for loop

of lines 4–5 relaxes each edge exactly once. (We have used an aggregate

analysis here.) Because each iteration of the inner for loop takes Θ(1)

time, the total running time is Θ(V + E), which is linear in the size of an

adjacency-list representation of the graph.

The following theorem shows that the DAG-SHORTEST-PATHS

procedure correctly computes the shortest paths.

Theorem 22.5

If a weighted, directed graph G = (V, E) has source vertex s and no

cycles, then at the termination of the DAG-SHORTEST-PATHS

procedure, v.d = δ(s, v) for all vertices v ∈ V, and the predecessor

subgraph Gπ is a shortest-paths tree.

Proof      We first show that v.d = δ(s, v) for all vertices v ∈ V at

termination. If v is not reachable from s, then v.d = δ(s, v) = 1 by the no-

path property. Now, suppose that v is reachable from s, so that there is a

shortest path p = 〈v0, v1, … , vk〉, where v0 = s and vk = v. Because

DAG-SHORTEST-PATHS processes the vertices in topologically

sorted order, it relaxes the edges on p in the order (v0, v1), (v1, v2), … ,

(vk−1, vk). The path-relaxation property implies that vi.d = δ(s, vi) at

termination for i = 0, 1, … , k. Finally, by the predecessor-subgraph

property, Gπ is a shortest-paths tree.

▪

A useful application of this algorithm arises in determining critical

paths in PERT chart2 analysis. A job consists of several tasks. Each task
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takes a certain amount of time, and some tasks must be completed

before others can be started. For example, if the job is to build a house,

then the foundation must be completed before starting to frame the

exterior walls, which must be completed before starting on the roof.

Some tasks require more than one other task to be completed before

they can be started: before the drywall can be installed over the wall

framing, both the electrical system and plumbing must be installed. A

dag models the tasks and dependencies. Edges represent tasks, with the

weight of an edge indicating the time required to perform the task.

Vertices represent “milestones,” which are achieved when all the tasks

represented by the edges entering the vertex have been completed. If

edge (u, v) enters vertex v and edge (v, x) leaves v, then task (u, v) must

be completed before task (v, x) is started. A path through this dag

represents a sequence of tasks that must be performed in a particular

order. A critical path is a longest path through the dag, corresponding to

the longest time to perform any sequence of tasks. Thus, the weight of a

critical path provides a lower bound on the total time to perform all the

tasks, even if as many tasks as possible are performed simultaneously.

You can find a critical path by either

negating the edge weights and running DAG-SHORTEST-

PATHS, or

running DAG-SHORTEST-PATHS, but replacing “∞” by “−∞”

in line 2 of INITIALIZE-SINGLE-SOURCE and “>” by “<” in

the RELAX procedure.
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Figure 22.5 The execution of the algorithm for shortest paths in a directed acyclic graph. The

vertices are topologically sorted from left to right. The source vertex is s. The d values appear

within the vertices, and blue edges indicate the π values. (a) The situation before the first

iteration of the for loop of lines 3–5. (b)–(g) The situation after each iteration of the for loop of

lines 3–5. Blue vertices have had their outgoing edges relaxed. The vertex highlighted in orange

was used as u in that iteration. Each edge highlighted in orange caused a d value to change when

it was relaxed in that iteration. The values shown in part (g) are the final values.

Exercises

22.2-1

Show the result of running DAG-SHORTEST-PATHS on the directed

acyclic graph of Figure 22.5, using vertex r as the source.

22.2-2

Suppose that you change line 3 of DAG-SHORTEST-PATHS to read

3 for the first |V| − 1 vertices, taken in topologically sorted order

Show that the procedure remains correct.
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22.2-3

An alternative way to represent a PERT chart looks more like the dag of

Figure 20.7 on page 574. Vertices represent tasks and edges represent

sequencing constraints, that is, edge (u, v) indicates that task u must be

performed before task v. Vertices, not edges, have weights. Modify the

DAG-SHORTEST-PATHS procedure so that it finds a longest path in

a directed acyclic graph with weighted vertices in linear time.

★ 22.2-4

Give an efficient algorithm to count the total number of paths in a

directed acyclic graph. The count should include all paths between all

pairs of vertices and all paths with 0 edges. Analyze your algorithm.

22.3    Dijkstra’s algorithm

Dijkstra’s algorithm solves the single-source shortest-paths problem on

a weighted, directed graph G = (V, E), but it requires nonnegative

weights on all edges: w(u, v) ≥ 0 for each edge (u, v) ∈ E. As we shall see,

with a good implementation, the running time of Dijkstra’s algorithm is

lower than that of the Bellman-Ford algorithm.

You can think of Dijkstra’s algorithm as generalizing breadth-first

search to weighted graphs. A wave emanates from the source, and the

first time that a wave arrives at a vertex, a new wave emanates from that

vertex. Whereas breadth-first search operates as if each wave takes unit

time to traverse an edge, in a weighted graph, the time for a wave to

traverse an edge is given by the edge’s weight. Because a shortest path in

a weighted graph might not have the fewest edges, a simple, first-in,

first-out queue won’t suffice for choosing the next vertex from which to

send out a wave.

Instead, Dijkstra’s algorithm maintains a set S of vertices whose final

shortest-path weights from the source s have already been determined.

The algorithm repeatedly selects the vertex u ∈ V – S with the minimum

shortest-path estimate, adds u into S, and relaxes all edges leaving u.

The procedure DIJKSTRA replaces the first-in, first-out queue of
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breadth-first search by a min-priority queue Q of vertices, keyed by their

d values.

DIJKSTRA(G, w, s)

  1INITIALIZE-SINGLE-SOURCE(G, s)

  2S = Ø

  3Q = Ø

  4 for each vertex u ∈ G.V
  5 INSERT(Q, u)

  6while Q ≠ Ø

  7 u = EXTRACT-MIN(Q)

  8 S = S ∪ {u}

  9 for each vertex v in G.Adj[u]

10 RELAX(u, v, w)

11 if the call of RELAX decreased v.d
12 DECREASE-KEY(Q, v, v.d)

Dijkstra’s algorithm relaxes edges as shown in Figure 22.6. Line 1

initializes the d and π values in the usual way, and line 2 initializes the

set S to the empty set. The algorithm maintains the invariant that Q =

V − S at the start of each iteration of the while loop of lines 6–12. Lines

3–5 initialize the min-priority queue Q to contain all the vertices in V.

Since S = Ø at that time, the invariant is true upon first reaching line 6.

Each time through the while loop of lines 6–12, line 7 extracts a vertex u
from Q = V − S and line 8 adds it to set S, thereby maintaining the

invariant. (The first time through this loop, u = s.) Vertex u, therefore,

has the smallest shortest-path estimate of any vertex in V − S. Then,

lines 9–12 relax each edge (u, v) leaving u, thus updating the estimate v.d
and the predecessor v.π if the shortest path to v found so far improves

by going through u. Whenever a relaxation step changes the d and π

values, the call to DECREASE-KEY in line 12 updates the min-priority

queue. The algorithm never inserts vertices into Q after the for loop of

lines 4–5, and each vertex is extracted from Q and added to S exactly

once, so that the while loop of lines 6–12 iterates exactly |V| times.
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Figure 22.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The

shortest-path estimates appear within the vertices, and blue edges indicate predecessor values.

Blue vertices belong to the set S, and tan vertices are in the min-priority queue Q = V − S. (a)

The situation just before the first iteration of the while loop of lines 6–12. (b)–(f) The situation

after each successive iteration of the while loop. In each part, the vertex highlighted in orange

was chosen as vertex u in line 7, and each edge highlighted in orange caused a d value and a

predecessor to change when the edge was relaxed. The d values and predecessors shown in part

(f) are the final values.

Because Dijkstra’s algorithm always chooses the “lightest” or

“closest” vertex in V − S to add to set S, you can think of it as using a

greedy strategy. Chapter 15 explains greedy strategies in detail, but you

need not have read that chapter to understand Dijkstra’s algorithm.

Greedy strategies do not always yield optimal results in general, but as

the following theorem and its corollary show, Dijkstra’s algorithm does

indeed compute shortest paths. The key is to show that u.d = δ(s, u)

each time it adds a vertex u to set S.
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Figure 22.7 The proof of Theorem 22.6. Vertex u is selected to be added into set S in line 7 of

DIJKSTRA. Vertex y is the first vertex on a shortest path from the source s to vertex u that is

not in set S, and x ∈ S is y’s predecessor on that shortest path. The subpath from y to u may or

may not re-enter set S.

Theorem 22.6 (Correctness of Dijkstra’s algorithm)

Dijkstra’s algorithm, run on a weighted, directed graph G = (V, E) with

nonnegative weight function w and source vertex s, terminates with u.d
= δ(s, u) for all vertices u ∈ V.

Proof   We will show that at the start of each iteration of the while loop

of lines 6–12, we have v.d = δ(s, v) for all v ∈ S. The algorithm

terminates when S = V, so that v.d = δ(s, v) for all v ∈ V.

The proof is by induction on the number of iterations of the while

loop, which equals |S| at the start of each iteration. There are two bases:

for |S| = 0, so that S = Ø and the claim is trivially true, and for |S| = 1,

so that S = {s} and s.d = δ(s, s) = 0.

For the inductive step, the inductive hypothesis is that v.d = δ(s, v)

for all v ∈ S. The algorithm extracts vertex u from V − S. Because the

algorithm adds u into S, we need to show that u.d = δ(s, u) at that time.

If there is no path from s to u, then we are done, by the no-path

property. If there is a path from s to u, then, as Figure 22.7 shows, let y
be the first vertex on a shortest path from s to u that is not in S, and let

x ∈ S be the predecessor of y on that shortest path. (We could have y =

u or x = s.) Because y appears no later than u on the shortest path and

all edge weights are nonnegative, we have δ(s, y) ≤ δ(s, u). Because the

call of EXTRACT-MIN in line 7 returned u as having the minimum d
value in V − S, we also have u.d ≤ y.d, and the upper-bound property

gives δ(s, u) ≤ u.d.
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Since x ∈ S, the inductive hypothesis implies that x.d = δ(s, x).

During the iteration of the while loop that added x into S, edge (x, y)

was relaxed. By the convergence property, y.d received the value of δ(s,

y) at that time. Thus, we have

δ(s, y) ≤ δ(s, u) ≤ u.d ≤ y.d and y.d = δ(s, y),

so that

δ(s, y) = δ(s, u) = u.d = y.d.

Hence, u.d = δ(s, u), and by the upper-bound property, this value never

changes again.

▪

Corollary 22.7

After Dijkstra’s algorithm is run on a weighted, directed graph G = (V,

E) with nonnegative weight function w and source vertex s, the

predecessor subgraph Gπ is a shortest-paths tree rooted at s.

Proof      Immediate from Theorem 22.6 and the predecessor-subgraph

property.

▪

Analysis

How fast is Dijkstra’s algorithm? It maintains the min-priority queue Q
by calling three priority-queue operations: INSERT (in line 5),

EXTRACT-MIN (in line 7), and DECREASE-KEY (in line 12). The

algorithm calls both INSERT and EXTRACT-MIN once per vertex.

Because each vertex u ∈ V is added to set S exactly once, each edge in

the adjacency list Adj[u] is examined in the for loop of lines 9–12 exactly

once during the course of the algorithm. Since the total number of

edges in all the adjacency lists is |E|, this for loop iterates a total of |E|

times, and thus the algorithm calls DECREASE-KEY at most |E| times

overall. (Observe once again that we are using aggregate analysis.)

Just as in Prim’s algorithm, the running time of Dijkstra’s algorithm

depends on the specific implementation of the min-priority queue Q. A

simple implementation takes advantage of the vertices being numbered
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1 to |V|: simply store v.d in the vth entry of an array. Each INSERT and

DECREASE-KEY operation takes O(1) time, and each EXTRACT-

MIN operation takes O(V) time (since it has to search through the

entire array), for a total time of O(V2 + E) = O(V2).

If the graph is sufficiently sparse—in particular, E = o(V2/lg V)—you

can improve the running time by implementing the min-priority queue

with a binary min-heap that includes a way to map between vertices and

their corresponding heap elements. Each EXTRACT-MIN operation

then takes O(lg V) time. As before, there are |V| such operations. The

time to build the binary min-heap is O(V). (As noted in Section 21.2,

you don’t even need to call BUILD-MIN-HEAP.) Each DECREASE-

KEY operation takes O(lg V) time, and there are still at most |E| such

operations. The total running time is therefore O((V + E) lg V), which is

O(E lg V) in the typical case that |E| = Ω(V). This running time improves

upon the straightforward O(V2)-time implementation if E = o(V2/lg V).

By implementing the min-priority queue with a Fibonacci heap (see

page 478), you can improve the running time to O(V lg V + E). The

amortized cost of each of the |V| EXTRACT-MIN operations is O(lg

V), and each DECREASE-KEY call, of which there are at most |E|,

takes only O(1) amortized time. Historically, the development of

Fibonacci heaps was motivated by the observation that Dijkstra’s

algorithm typically makes many more DECREASE-KEY calls than

EXTRACT-MIN calls, so that any method of reducing the amortized

time of each DECREASE-KEY operation to o(lg V) without increasing

the amortized time of EXTRACT-MIN would yield an asymptotically

faster implementation than with binary heaps.

Dijkstra’s algorithm resembles both breadth-first search (see Section

20.2) and Prim’s algorithm for computing minimum spanning trees (see

Section 21.2). It is like breadth-first search in that set S corresponds to

the set of black vertices in a breadth-first search. Just as vertices in S
have their final shortest-path weights, so do black vertices in a breadth-

first search have their correct breadth-first distances. Dijkstra’s

algorithm is like Prim’s algorithm in that both algorithms use a min-

priority queue to find the “lightest” vertex outside a given set (the set S
in Dijkstra’s algorithm and the tree being grown in Prim’s algorithm),
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add this vertex into the set, and adjust the weights of the remaining

vertices outside the set accordingly.

Exercises

22.3-1

Run Dijkstra’s algorithm on the directed graph of Figure 22.2, first

using vertex s as the source and then using vertex z as the source. In the

style of Figure 22.6, show the d and π values and the vertices in set S
after each iteration of the while loop.

22.3-2

Give a simple example of a directed graph with negative-weight edges

for which Dijkstra’s algorithm produces an incorrect answer. Why

doesn’t the proof of Theorem 22.6 go through when negative-weight

edges are allowed?

22.3-3

Suppose that you change line 6 of Dijkstra’s algorithm to read

6   while |Q| > 1

This change causes the while loop to execute |V| − 1 times instead of |V|

times. Is this proposed algorithm correct?

22.3-4

Modify the DIJKSTRA procedure so that the priority queue Q is more

like the queue in the BFS procedure in that it contains only vertices that

have been reached from source s so far: Q ⊆ V − S and v ∈ Q implies

v.d ≠ ∞.

22.3-5

Professor Gaedel has written a program that he claims implements

Dijkstra’s algorithm. The program produces v.d and v.π for each vertex

v ∈ V. Give an O(V + E)-time algorithm to check the output of the

professor’s program. It should determine whether the d and π attributes

match those of some shortest-paths tree. You may assume that all edge

weights are nonnegative.
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22.3-6

Professor Newman thinks that he has worked out a simpler proof of

correctness for Dijkstra’s algorithm. He claims that Dijkstra’s algorithm

relaxes the edges of every shortest path in the graph in the order in

which they appear on the path, and therefore the path-relaxation

property applies to every vertex reachable from the source. Show that

the professor is mistaken by constructing a directed graph for which

Dijkstra’s algorithm relaxes the edges of a shortest path out of order.

22.3-7

Consider a directed graph G = (V, E) on which each edge (u, v) ∈ E has

an associated value r(u, v), which is a real number in the range 0 ≤ r(u, v)

≤ 1 that represents the reliability of a communication channel from

vertex u to vertex v. Interpret r(u, v) as the probability that the channel

from u to v will not fail, and assume that these probabilities are

independent. Give an efficient algorithm to find the most reliable path

between two given vertices.

22.3-8

Let G = (V, E) be a weighted, directed graph with positive weight

function w : E → {1, 2, … , W} for some positive integer W, and assume

that no two vertices have the same shortest-path weights from source

vertex s. Now define an unweighted, directed graph G′ = (V ∪ V′, E′) by

replacing each edge (u, v) ∈ E with w(u, v) unit-weight edges in series.

How many vertices does G′ have? Now suppose that you run a breadth-

first search on G′. Show that the order in which the breadth-first search

of G′ colors vertices in V black is the same as the order in which

Dijkstra’s algorithm extracts the vertices of V from the priority queue

when it runs on G.

22.3-9

Let G = (V, E) be a weighted, directed graph with nonnegative weight

function w : E → {0, 1, … , W} for some nonnegative integer W.

Modify Dijkstra’s algorithm to compute the shortest paths from a given

source vertex s in O(W V + E) time.

22.3-10
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Modify your algorithm from Exercise 22.3-9 to run in O((V + E) lg W)

time. (Hint: How many distinct shortest-path estimates can V − S
contain at any point in time?)

22.3-11

Suppose that you are given a weighted, directed graph G = (V, E) in

which edges that leave the source vertex s may have negative weights, all

other edge weights are nonnegative, and there are no negative-weight

cycles. Argue that Dijkstra’s algorithm correctly finds shortest paths

from s in this graph.

22.3-12

Suppose that you have a weighted directed graph G = (V, E) in which all

edge weights are positive real values in the range [C, 2C] for some

positive constant C. Modify Dijkstra’s algorithm so that it runs in O(V
+ E) time.

22.4    Difference constraints and shortest paths

Chapter 29 studies the general linear-programming problem, showing

how to optimize a linear function subject to a set of linear inequalities.

This section investigates a special case of linear programming that

reduces to finding shortest paths from a single source. The Bellman-

Ford algorithm then solves the resulting single-source shortest-paths

problem, thereby also solving the linear-programming problem.

Linear programming

In the general linear-programming problem, the input is an m × n matrix

A, an m-vector b, and an n-vector c. The goal is to find a vector x of n
elements that maximizes the objective function  subject to the m
constraints given by Ax ≤ b.

The most popular method for solving linear programs is the simplex

algorithm, which Section 29.1 discusses. Although the simplex

algorithm does not always run in time polynomial in the size of its

input, there are other linear-programming algorithms that do run in
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polynomial time. We offer here two reasons to understand the setup of

linear-programming problems. First, if you know that you can cast a

given problem as a polynomial-sized linear-programming problem, then

you immediately have a polynomial-time algorithm to solve the

problem. Second, faster algorithms exist for many special cases of linear

programming. For example, the single-pair shortest-path problem

(Exercise 22.4-4) and the maximum-flow problem (Exercise 24.1-5) are

special cases of linear programming.

Sometimes the objective function does not matter: it’s enough just to

find any feasible solution, that is, any vector x that satisfies Ax ≤ b, or to

determine that no feasible solution exists. This section focuses on one

such feasibility problem.

Systems of difference constraints

In a system of difference constraints, each row of the linear-

programming matrix A contains one 1 and one −1, and all other entries

of A are 0. Thus, the constraints given by Ax ≤ b are a set of mdifference

constraints involving n unknowns, in which each constraint is a simple

linear inequality of the form

xj − xi ≤ bk,

where 1 ≤ i, j ≤ n, i ≠ j, and 1 ≤ k ≤ m.

For example, consider the problem of finding a 5-vector x = (xi) that

satisfies

This problem is equivalent to finding values for the unknowns x1, x2,

x3, x4, x5, satisfying the following 8 difference constraints:

www.konkur.in

Telegram: @uni_k



One solution to this problem is x = (−5, −3, 0, −1, −4), which you can

verify directly by checking each inequality. In fact, this problem has

more than one solution. Another is x′ = (0, 2, 5, 4, 1). These two

solutions are related: each component of x′ is 5 larger than the

corresponding component of x. This fact is not mere coincidence.

Lemma 22.8

Let x = (x1, x2, … , xn) be a solution to a system Ax ≤ b of difference

constraints, and let d be any constant. Then x + d = (x1 + d, x2 + d, … ,

xn + d) is a solution to Ax ≤ b as well.

Proof   For each xi and xj, we have (xj + d) − (xi + d) = xj − xi. Thus, if

x satisfies Ax ≤ b, so does x + d.

▪

Systems of difference constraints occur in various applications. For

example, the unknowns xi might be times at which events are to occur.

Each constraint states that at least a certain amount of time, or at most

a certain amount of time, must elapse between two events. Perhaps the

events are jobs to be performed during the assembly of a product. If the

manufacturer applies an adhesive that takes 2 hours to set at time x1

and has to wait until it sets to install a part at time x2, then there is a

constraint that x2 ≥ x1 + 2 or, equivalently, that x1 − x2 ≤ −2.

Alternatively, the manufacturer might require the part to be installed

after the adhesive has been applied but no later than the time that the

adhesive has set halfway. In this case, there is a pair of constraints x2 ≥

x1 and x2 ≤ x1 + 1 or, equivalently, x1 − x2 ≤ 0 and x2 − x1 ≤ 1.
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If all the constraints have nonnegative numbers on the right-hand

side—that is, if bi ≥ 0 for i = 1, 2, … , m—then finding a feasible

solution is trivial: just set all the unknowns xi equal to each other. Then

all the differences are 0, and every constraint is satisfied. The problem of

finding a feasible solution to a system of difference constraints is

interesting only if at least one constraint has bi < 0.

Constraint graphs

We can interpret systems of difference constraints from a graph-

theoretic point of view. For a system Ax ≤ b of difference constraints,

let’s view the m × n linear-programming matrix A as the transpose of an

incidence matrix (see Exercise 20.1-7) for a graph with n vertices and m
edges. Each vertex vi in the graph, for i = 1, 2, … , n, corresponds to one

of the n unknown variables xi. Each directed edge in the graph

corresponds to one of the m inequalities involving two unknowns.

More formally, given a system Ax ≤ b of difference constraints, the

corresponding constraint graph is a weighted, directed graph G = (V, E),

where

V = {v0, v1, … , vn}

and

E = {(vi, vj) : xj − xi ≤ bk is a constraint}

   ∪ {(v0, v1), (v0, v2), (v0, v3), … , (v0, vn)}.

The constraint graph includes the additional vertex v0, as we shall see

shortly, to guarantee that the graph has some vertex that can reach all

other vertices. Thus, the vertex set V consists of a vertex vi for each

unknown xi, plus an additional vertex v0. The edge set E contains an

edge for each difference constraint, plus an edge (v0, vi) for each

unknown xi. If xj − xi ≤ bk is a difference constraint, then the weight of

edge (vi, vj) is w(vi, vj) = bk. The weight of each edge leaving v0 is 0.
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Figure 22.8 shows the constraint graph for the system (22.2)–(22.9) of

difference constraints.

Figure 22.8 The constraint graph corresponding to the system (22.2)–(22.9) of difference

constraints. The value of δ(v0, vi) appears in each vertex vi. One feasible solution to the system is

x = (−5, −3, 0, −1, −4).

The following theorem shows how to solve a system of difference

constraints by finding shortest-path weights in the corresponding

constraint graph.

Theorem 22.9

Given a system Ax ≤ b of difference constraints, let G = (V, E) be the

corresponding constraint graph. If G contains no negative-weight cycles,

then

is a feasible solution for the system. If G contains a negative-weight

cycle, then there is no feasible solution for the system.

Proof   We first show that if the constraint graph contains no negative-

weight cycles, then equation (22.10) gives a feasible solution. Consider

any edge (vi, vj) ∈ E. The triangle inequality implies that δ(v0, vj) ≤ δ(v0,

vi) + w(vi, vj), which is equivalent to δ(v0, vj)−δ(v0, vi) ≤ w(vi, vj). Thus,

letting xi = δ(v0, vi) and xj = δ(v0, vj) satisfies the difference constraint

xj − xi ≤ w(vi, vj) that corresponds to edge (vi, vj).

Now we show that if the constraint graph contains a negative-weight

cycle, then the system of difference constraints has no feasible solution.
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Without loss of generality, let the negative-weight cycle be c = 〈v1, v2,

… , vk〉, where v1 = vk. (The vertex v0 cannot be on cycle c, because it

has no entering edges.) Cycle c corresponds to the following difference

constraints:

x2 − x1 ≤ w(v1, v2),

x3 − x2 ≤ w(v2, v3),

⋮

xk−1 − xk−2 ≤ w(vk−2, vk−1),

xk − xk−1 ≤ w(vk−1, vk).

We’ll assume that x has a solution satisfying each of these k inequalities

and then derive a contradiction. The solution must also satisfy the

inequality that results from summing the k inequalities together. In

summing the left-hand sides, each unknown xi is added in once and

subtracted out once (remember that v1 = vk implies x1 = xk), so that

the left-hand side sums to 0. The right-hand side sums to the weight

w(c) of the cycle, giving 0 ≤ w(c). But since c is a negative-weight cycle,

w(c) < 0, and we obtain the contradiction that 0 ≤ w(c) < 0.

▪

Solving systems of difference constraints

Theorem 22.9 suggests how to use the Bellman-Ford algorithm to solve

a system of difference constraints. Because the constraint graph

contains edges from the source vertex v0 to all other vertices, any

negative-weight cycle in the constraint graph is reachable from v0. If the

Bellman-Ford algorithm returns TRUE, then the shortest-path weights

give a feasible solution to the system. In Figure 22.8, for example, the

shortest-path weights provide the feasible solution x = (−5, −3, 0, −1,

−4), and by Lemma 22.8, x = (d − 5, d − 3, d, d − 1, d − 4) is also a

feasible solution for any constant d. If the Bellman-Ford algorithm

returns FALSE, there is no feasible solution to the system of difference

constraints.

www.konkur.in

Telegram: @uni_k



A system of difference constraints with m constraints on n unknowns

produces a graph with n + 1 vertices and n + m edges. Thus, the

Bellman-Ford algorithm provides a way to solve the system in O((n + 1)

(n + m)) = O(n2 + nm) time. Exercise 22.4-5 asks you to modify the

algorithm to run in O(nm) time, even if m is much less than n.

Exercises

22.4-1

Find a feasible solution or determine that no feasible solution exists for

the following system of difference constraints:

x1 − x2 ≤ 1,

x1 − x4 ≤ −4,

x2 − x3 ≤ 2,

x2 − x5 ≤ 7,

x2 − x6 ≤ 5,

x3 − x6 ≤ 10,

x4 − x2 ≤ 2,

x5 − x1 ≤ −1,

x5 − x4 ≤ 3,

x6 − x3 ≤ −8.

22.4-2

Find a feasible solution or determine that no feasible solution exists for

the following system of difference constraints:

x1 − x2 ≤ 4,

x1 − x5 ≤ 5,

x2 − x4 ≤ −6,

x3 − x2 ≤ 1,

≤ 3,
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x4 − x1

x4 − x3 ≤ 5,

x4 − x5 ≤ 10,

x5 − x3 ≤ −4,

x5 − x4 ≤ −8.

22.4-3

Can any shortest-path weight from the new vertex v0 in a constraint

graph be positive? Explain.

22.4-4

Express the single-pair shortest-path problem as a linear program.

22.4-5

Show how to modify the Bellman-Ford algorithm slightly so that when

using it to solve a system of difference constraints with m inequalities on

n unknowns, the running time is O(nm).

22.4-6

Consider adding equality constraints of the form xi = xj + bk to a

system of difference constraints. Show how to solve this variety of

constraint system.

22.4-7

Show how to solve a system of difference constraints by a Bellman-

Ford-like algorithm that runs on a constraint graph without the extra

vertex v0.

★ 22.4-8

Let Ax ≤ b be a system of m difference constraints in n unknowns. Show

that the Bellman-Ford algorithm, when run on the corresponding

constraint graph, maximizes  subject to Ax ≤ b and xi ≤ 0 for all xi.

★ 22.4-9
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Show that the Bellman-Ford algorithm, when run on the constraint

graph for a system Ax ≤ b of difference constraints, minimizes the

quantity (max {xi}−min {xi}) subject to Ax ≤ b. Explain how this fact

might come in handy if the algorithm is used to schedule construction

jobs.

22.4-10

Suppose that every row in the matrix A of a linear program Ax ≤ b
corresponds to a difference constraint, a single-variable constraint of

the form xi ≤ bk, or a single-variable constraint of the form −xi ≤ bk.

Show how to adapt the Bellman-Ford algorithm to solve this variety of

constraint system.

22.4-11

Give an efficient algorithm to solve a system Ax ≤ b of difference

constraints when all of the elements of b are real-valued and all of the

unknowns xi must be integers.

★ 22.4-12

Give an efficient algorithm to solve a system Ax ≤ b of difference

constraints when all of the elements of b are real-valued and a specified

subset of some, but not necessarily all, of the unknowns xi must be

integers.

22.5    Proofs of shortest-paths properties

Throughout this chapter, our correctness arguments have relied on the

triangle inequality, upper-bound property, no-path property,

convergence property, path-relaxation property, and predecessor-

subgraph property. We stated these properties without proof on page

611. In this section, we prove them.

The triangle inequality

In studying breadth-first search (Section 20.2), we proved as Lemma

20.1 a simple property of shortest distances in unweighted graphs. The

www.konkur.in

Telegram: @uni_k



triangle inequality generalizes the property to weighted graphs.

Lemma 22.10 (Triangle inequality)

Let G = (V, E) be a weighted, directed graph with weight function w : E
→ ℝ and source vertex s. Then, for all edges (u, v) ∈ E,

δ(s, v) ≤ δ(s, u) + w(u, v).

Proof   Suppose that p is a shortest path from source s to vertex v. Then

p has no more weight than any other path from s to v. Specifically, path

p has no more weight than the particular path that takes a shortest path

from source s to vertex u and then takes edge (u, v).

Exercise 22.5-3 asks you to handle the case in which there is no

shortest path from s to v.

▪

Effects of relaxation on shortest-path estimates

The next group of lemmas describes how shortest-path estimates are

affected by executing a sequence of relaxation steps on the edges of a

weighted, directed graph that has been initialized by INITIALIZE-

SINGLE-SOURCE.

Lemma 22.11 (Upper-bound property)

Let G = (V, E) be a weighted, directed graph with weight function w : E
→ ℝ. Let s ∈ V be the source vertex, and let the graph be initialized by

INITIALIZE-SINGLE-SOURCE(G, s). Then, v.d ≥ δ(s, v) for all v ∈

V, and this invariant is maintained over any sequence of relaxation steps

on the edges of G. Moreover, once v.d achieves its lower bound δ(s, v), it

never changes.

Proof      We prove the invariant v.d ≥ δ(s, v) for all vertices v ∈ V by

induction over the number of relaxation steps.

For the base case, v.d ≥ δ(s, v) holds after initialization, since if v.d =

∞, then v.d ≥ δ(s, v) for all v ∈ V − {s}, and since s.d = 0 ≥ δ(s, s). (Note

that δ(s, s) = −∞ if s is on a negative-weight cycle and that δ(s, s) = 0

otherwise.)
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For the inductive step, consider the relaxation of an edge (u, v). By

the inductive hypothesis, x.d ≥ δ(s, x) for all x ∈ V prior to the

relaxation. The only d value that may change is v.d. If it changes, we

have

v.d = u.d + w(u, v)

≥ δ(s, u) + w(u, v) (by the inductive hypothesis)

≥ δ(s, v) (by the triangle inequality),

and so the invariant is maintained.

The value of v.d never changes once v.d = δ(s, v) because, having

achieved its lower bound, v.d cannot decrease since we have just shown

that v.d ≥ δ(s, v), and it cannot increase because relaxation steps do not

increase d values.

▪

Corollary 22.12 (No-path property)

Suppose that in a weighted, directed graph G = (V, E) with weight

function w : E → ℝ, no path connects a source vertex s ∈ V to a given

vertex v ∈ V. Then, after the graph is initialized by INITIALIZE-

SINGLE-SOURCE(G, s), we have v.d = δ(s, v) = ∞, and this equation is

maintained as an invariant over any sequence of relaxation steps on the

edges of G.

Proof   By the upper-bound property, we always have ∞ = δ(s, v) ≤ v.d,

and thus v.d = ∞ = δ(s, v).

▪

Lemma 22.13

Let G = (V, E) be a weighted, directed graph with weight function w : E
→ ℝ, and let (u, v) ∈ E. Then, immediately after edge (u, v) is relaxed

by a call of RELAX(u, v, w), we have v.d ≤ u.d + w(u, v).

Proof   If, just prior to relaxing edge (u, v), we have v.d > u.d + w(u, v),

then v.d = u.d + w(u, v) afterward. If, instead, v.d ≤ u.d + w(u, v) just

before the relaxation, then neither u.d nor v.d changes, and so v.d ≤ u.d +

w(u, v) afterward.
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▪

Lemma 22.14 (Convergence property)

Let G = (V, E) be a weighted, directed graph with weight function w : E
→ ℝ, let s ∈ V be a source vertex, and let s ⇝ u → v be a shortest path

in G for some vertices u, v ∈ V. Suppose that G is initialized by

INITIALIZE-SINGLE-SOURCE(G, s) and then a sequence of

relaxation steps that includes the call RELAX(u, v, w) is executed on the

edges of G. If u.d = δ(s, u) at any time prior to the call, then v.d = δ(s, v)

at all times after the call.

Proof   By the upper-bound property, if u.d = δ(s, u) at some point prior

to relaxing edge (u, v), then this equation holds thereafter. In particular,

after edge (u, v) is relaxed, we have

v.d ≤ u.d + w(u, v) (by Lemma 22.13)

= δ(s, u) + w(u, v)

= δ(s, u) (by Lemma 22.1 on page 606).

The upper-bound property gives v.d ≥ δ(s, v), from which we conclude

that v.d = δ(s, v), and this equation is maintained thereafter.

▪

Lemma 22.15 (Path-relaxation property)

Let G = (V, E) be a weighted, directed graph with weight function w : E
→ ℝ, and let s ∈ V be a source vertex. Consider any shortest path p =

〈v0, v1, … , vk〉 from s = v0 to vk. If G is initialized by INITIALIZE-

SINGLE-SOURCE(G, s) and then a sequence of relaxation steps occurs

that includes, in order, relaxing the edges (v0, v1), (v1, v2), … , (vk−1,

vk), then vk.d = δ(s, vk) after these relaxations and at all times

afterward. This property holds no matter what other edge relaxations

occur, including relaxations that are intermixed with relaxations of the

edges of p.

Proof   We show by induction that after the ith edge of path p is relaxed,

we have vi.d = δ(s, vi). For the base case, i = 0, and before any edges of p
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have been relaxed, we have from the initialization that v0.d = s.d = 0 =

δ(s, s). By the upper-bound property, the value of s.d never changes

after initialization.

For the inductive step, assume that vi−1.d = δ(s, vi−1). What

happens when edge (vi−1, vi) is relaxed? By the convergence property,

after this relaxation, we have vi.d = δ(s, vi), and this equation is

maintained at all times thereafter.

▪

Relaxation and shortest-paths trees

We now show that once a sequence of relaxations has caused the

shortest-path estimates to converge to shortest-path weights, the

predecessor subgraph Gπ induced by the resulting π values is a shortest-

paths tree for G. We start with the following lemma, which shows that

the predecessor subgraph always forms a rooted tree whose root is the

source.

Lemma 22.16

Let G = (V, E) be a weighted, directed graph with weight function w : E
→ ℝ let s ∈ V be a source vertex, and assume that G contains no

negative-weight cycles that are reachable from s. Then, after the graph is

initialized by INITIALIZE-SINGLE-SOURCE(G, s), the predecessor

subgraph Gπ forms a rooted tree with root s, and any sequence of

relaxation steps on edges of G maintains this property as an invariant.

Proof      Initially, the only vertex in Gπ is the source vertex, and the

lemma is trivially true. Consider a predecessor subgraph Gπ that arises

after a sequence of relaxation steps. We first prove that Gπ is acyclic.

Suppose for the sake of contradiction that some relaxation step creates

a cycle in the graph Gπ. Let the cycle be c = 〈v0, v1, … , vk〉, where vk =

v0. Then, vi.π = vi−1 for i = 1, 2, … , k and, without loss of generality,

assume that relaxing edge (vk−1, vk) created the cycle in Gπ.
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We claim that all vertices on cycle c are reachable from the source

vertex s. Why? Each vertex on c has a non-NIL predecessor, and so each

vertex on c was assigned a finite shortest-path estimate when it was

assigned its non-NIL π value. By the upper-bound property, each vertex

on cycle c has a finite shortest-path weight, which means that it is

reachable from s.

We’ll examine the shortest-path estimates on cycle c immediately

before the call RELAX(vk−1, vk, w) and show that c is a negative-

weight cycle, thereby contradicting the assumption that G contains no

negative-weight cycles that are reachable from the source. Just before

the call, we have vi.π = vi−1 for i = 1, 2, … , k − 1. Thus, for i = 1, 2, … ,

k − 1, the last update to vi.d was by the assignment vi.d =

vi−1.d+w(vi−1, vi). If vi−1.d changed since then, it decreased. Therefore,

just before the call RELAX(vk−1, vk, w), we have

Because vk.π is changed by the call RELAX(vk−1, vk, w), immediately

beforehand we also have the strict inequality

vk.d > vk−1.d + wvk−1, vk):

Summing this strict inequality with the k − 1 inequalities (22.11), we

obtain the sum of the shortest-path estimates around cycle c:

But
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Figure 22.9 Showing that a simple path in Gπ from source vertex s to vertex v is unique. If Gπ

contains two paths p1 (s ⇝ u ⇝ x → z ⇝ v) and p2 (s ⇝ u ⇝ y → z ⇝ v), where x ≠ y, then z.π = x

and z.π = y, a contradiction.

since each vertex in the cycle c appears exactly once in each summation.

This equation implies

Thus, the sum of weights around the cycle c is negative, which provides

the desired contradiction.

We have now proven that Gπ is a directed, acyclic graph. To show

that it forms a rooted tree with root s, it suffices (see Exercise B.5-2 on

page 1175) to prove that for each vertex v ∈ Vπ, there is a unique simple

path from s to v in Gπ.

The vertices in Vπ are those with non-NIL values, plus s. Exercise

22.5-6 asks you to prove that a path from s exists to each vertex in Vπ.

To complete the proof of the lemma, we now show that for any

vertex v ∈ Vπ, the graph Gπ contains at most one simple path from s to

v. Suppose otherwise. That is, suppose that, as Figure 22.9 illustrates,

Gπ contains two simple paths from s to some vertex v: p1, which we

decompose into s ⇝ u ⇝ x → z ⇝ v, and p2, which we decompose into s

⇝ u ⇝ y → z ⇝ v, where x ≠ y (though u could be s and z could be v).

But then, z.π = x and z.π = y, which implies the contradiction that x =

y. We conclude that Gπ contains a unique simple path from s to v, and

thus Gπ forms a rooted tree with root s.

▪

We can now show that if all vertices have been assigned their true

shortest-path weights after a sequence of relaxation steps, then the
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predecessor subgraph Gπ is a shortest-paths tree.

Lemma 22.17 (Predecessor-subgraph property)

Let G = (V, E) be a weighted, directed graph with weight function w : E
→ ℝ, let s ∈ V be a source vertex, and assume that G contains no

negative-weight cycles that are reachable from s. Then, after a call to

INITIALIZE-SINGLE-SOURCE(G, s) followed by any sequence of

relaxation steps on edges of G that produces v.d = δ(s, v) for all v ∈ V,

the predecessor subgraph Gπ is a shortest-paths tree rooted at s.

Proof     We must prove that the three properties of shortest-paths trees

given on page 608 hold for Gπ. To show the first property, we must show

that Vπ is the set of vertices reachable from s. By definition, a shortest-

path weight δ(s, v) is finite if and only if v is reachable from s, and thus

the vertices that are reachable from s are exactly those with finite d
values. But a vertex v ∈ V − {s} has been assigned a finite value for v.d
if and only if v.π ≠ NIL, since both assignments occur in RELAX. Thus,

the vertices in Vπ are exactly those reachable from s.

The second property, that Gπ forms a rooted tree with root s, follows

directly from Lemma 22.16.

It remains, therefore, to prove the last property of shortest-paths

trees: for each vertex v ∈ Vπ, the unique simple path  in Gπ is a

shortest path from s to v in G. Let p = 〈v0, v1, … , vk〉, where v0 = s and

vk = v. Consider an edge (vi−1, vi) in path p. Because this edge belongs

to Gπ, the last relaxation that changed vi.d must have been of this edge.

After that relaxation, we had vi.d = vi−1.d + (vi−1, vi). Subsequently, an

edge entering vi−1 could have been relaxed, causing vi−1.d to decrease

further, but without changing vi.d. Therefore, we have vi.d ≥ vi−1.d +

w(vi−1, vi). Thus, for i = 1, 2, … , k, we have both vi.d = δ(s, vi) and vi.d

≥ vi−1.d + w(vi−1, vi), which together imply w(vi−1, vi) ≤ δ(s, vi) − δ(s,

vi−1). Summing the weights along path p yields
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Thus, we have w(p) ≤ δ(s, vk). Since δ(s, vk) is a lower bound on the

weight of any path from s to vk, we conclude that w(p) = δ(s, vk), and p

is a shortest path from s to v = vk.

▪

Exercises

22.5-1

Give two shortest-paths trees for the directed graph of Figure 22.2 on

page 609 other than the two shown.

22.5-2

Give an example of a weighted, directed graph G = (V, E) with weight

function w : E → ℝ and source vertex s such that G satisfies the

following property: For every edge (u, v) ∈ E, there is a shortest-paths

tree rooted at s that contains (u, v) and another shortest-paths tree

rooted at s that does not contain (u, v).

22.5-3

Modify the proof of Lemma 22.10 to handle cases in which shortest-

path weights are ∞ or −∞.

22.5-4

Let G = (V, E) be a weighted, directed graph with source vertex s, and

let G be initialized by INITIALIZE-SINGLE-SOURCE(G, s). Prove

that if a sequence of relaxation steps sets s.π to a non-NIL value, then G
contains a negative-weight cycle.

22.5-5

www.konkur.in

Telegram: @uni_k



Let G = (V, E) be a weighted, directed graph with no negative-weight

edges. Let s ∈ V be the source vertex, and suppose that v.π is allowed to

be the predecessor of v on any shortest path to v from source s if v ∈ V
− {s} is reachable from s, and NIL otherwise. Give an example of such a

graph G and an assignment of π values that produces a cycle in Gπ. (By

Lemma 22.16, such an assignment cannot be produced by a sequence of

relaxation steps.)

22.5-6

Let G = (V, E) be a weighted, directed graph with weight function w : E
→ ℝ and no negative-weight cycles. Let s ∈ V be the source vertex, and

let G be initialized by INITIALIZE-SINGLE-SOURCE(G, s). Use

induction to prove that for every vertex v ∈ Vπ, there exists a path from

s to v in Gπ and that this property is maintained as an invariant over

any sequence of relaxations.

22.5-7

Let G = (V, E) be a weighted, directed graph that contains no negative-

weight cycles. Let s ∈ V be the source vertex, and let G be initialized by

INITIALIZESINGLE-SOURCE(G, s). Prove that there exists a

sequence of |V| − 1 relaxation steps that produces v.d = δ(s, v) for all v ∈

V.

22.5-8

Let G be an arbitrary weighted, directed graph with a negative-weight

cycle reachable from the source vertex s. Show how to construct an

infinite sequence of relaxations of the edges of G such that every

relaxation causes a shortest-path estimate to change.

Problems

22-1     Yen’s improvement to Bellman-Ford

The Bellman-Ford algorithm does not specify the order in which to

relax edges in each pass. Consider the following method for deciding

upon the order. Before the first pass, assign an arbitrary linear order v1,
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v2, … , v|V| to the vertices of the input graph G = (V, E). Then partition

the edge set E into Ef ∪ Eb, where Ef = {(vi, vj) ∈ E : i < j} and Eb =

{(vi, vj) ∈ E : i > j}. (Assume that G contains no self-loops, so that

every edge belongs to either Ef or Eb.) Define Gf = (V, Ef) and Gb = (V,

Eb).

a. Prove that Gf is acyclic with topological sort 〈v1, v2, … , v|V|〉 and

that Gb is acyclic with topological sort 〈v|V|, v|V|−1, … , v1〉.

Suppose that each pass of the Bellman-Ford algorithm relaxes edges in

the following way. First, visit each vertex in the order v1, v2, … , v|V|,

relaxing edges of Ef that leave the vertex. Then visit each vertex in the

order v|V|, v|V|−1, …, v1, relaxing edges of Eb that leave the vertex.

b. Prove that with this scheme, if G contains no negative-weight cycles

that are reachable from the source vertex s, then after only ⌈|V| / 2⌉

passes over the edges, v.d = δ(s, v) for all vertices v ∈ V.

c. Does this scheme improve the asymptotic running time of the

Bellman-Ford algorithm?

22-2     Nesting boxes

A d-dimensional box with dimensions (x1, x2, … , xd) nests within

another box with dimensions (y1, y2, … , yd) if there exists a

permutation π on {1, 2, … , d} such that xπ(1) < y1, xπ(2) < y2, … ,

xπ(d) < yd.

a. Argue that the nesting relation is transitive.

b. Describe an efficient method to determine whether one d-dimensional

box nests inside another.

c. You are given a set of n d-dimensional boxes {B1, B2, … , Bn}. Give

an efficient algorithm to find the longest sequence  of

boxes such that  nests within  for j = 1, 2, … , k − 1. Express the

running time of your algorithm in terms of n and d.
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22-3     Arbitrage

Arbitrage is the use of discrepancies in currency exchange rates to

transform one unit of a currency into more than one unit of the same

currency. For example, suppose that one U.S. dollar buys 64 Indian

rupees, one Indian rupee buys 1:8 Japanese yen, and one Japanese yen

buys 0:009 U.S. dollars. Then, by converting currencies, a trader can

start with 1 U.S. dollar and buy 64 × 1.8 × 0.009 = 1.0368 U.S. dollars,

thus turning a profit of 3.68%.

Suppose that you are given n currencies c1, c2, … , cn and an n × n

table R of exchange rates, such that 1 unit of currency ci buys R[i, j]

units of currency cj.

a. Give an efficient algorithm to determine whether there exists a

sequence of currencies  such that

R[i1, i2] · R[i2, i3] … R[ik−1, ik] · R[ik, i1] > 1.

Analyze the running time of your algorithm.

b. Give an efficient algorithm to print out such a sequence if one exists.

Analyze the running time of your algorithm.

22-4     Gabow’s scaling algorithm for single-source shortest paths

A scaling algorithm solves a problem by initially considering only the

highest-order bit of each relevant input value, such as an edge weight,

assuming that these values are nonnegative integers. The algorithm then

refines the initial solution by looking at the two highest-order bits. It

progressively looks at more and more high-order bits, refining the

solution each time, until it has examined all bits and computed the

correct solution.

This problem examines an algorithm for computing the shortest

paths from a single source by scaling edge weights. The input is a

directed graph G = (V, E) with nonnegative integer edge weights w. Let

W = max {w(u, v) : (u, v) = E} be the maximum weight of any edge. In

this problem, you will develop an algorithm that runs in O(E lg W) time.

Assume that all vertices are reachable from the source.
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The scaling algorithm uncovers the bits in the binary representation

of the edge weights one at a time, from the most significant bit to the

least significant bit. Specifically, let k = ⌈lg(W + 1)⌉ be the number of

bits in the binary representation of W, and for i = 1, 2, … , k, let wi(u,v)

= ⌊w(u,v)/2k–i⌋. That is, wi (u, v) is the “scaled-down” version of w(u, v)

given by the i most significant bits of w(u, v). (Thus, wk(u, v) = w(u, v)

for all (u, v) ∈ E.) For example, if k = 5 and w(u, v) = 25, which has the

binary representation 〈11001〉, then w3(u, v) = 〈110〉 = 6. Also with k =

5, if w(u, v) = 〈00100〉 = 4, then w4(u, v) = 〈0010〉 = 2. Define δi(u, v) as

the shortest-path weight from vertex u to vertex v using weight function

wi, so that δk(u, v) = δ(u, v) for all u, v ∈ V. For a given source vertex s,

the scaling algorithm first computes the shortest-path weights δ1(s, v)

for all v ∈ V, then computes δ2(s, v) for all v ∈ V, and so on, until it

computes δk(s, v) for all v ∈ V. Assume throughout that |E| ≥ |V| − 1.

You will show how to compute δi from δi−1 in O(E) time, so that the

entire algorithm takes O(kE) = O(E lg W) time.

a. Suppose that for all vertices v ∈ V, we have δ(s, v) ≤ |E|. Show how to

compute δ(s, v) for all v ∈ V in O(E) time.

b. Show how to compute δ1(s, v) for all v ∈ V in O(E) time.

Now focus on computing δi from δi−1.

c. Prove that for i = 2, 3, … , k, either wi(u, v) = 2wi−1(u, v) or wi(u, v) =

2wi−1(u, v) + 1. Then prove that

2δi−1(s, v) ≤ δi(s, v) ≤ 2δi−1(s, v) + |V| − 1

for all v ∈ V.

d. Define, for i = 2, 3, … , k and all (u, v) ∈ E,

ŵi(u, v) = wi(u, v) + 2δi−1(s, u) − 2δi−1(s, v).
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Prove that for i = 2, 3, … , k and all u, v ∈ V, the “reweighted” value

ŵi(u, v) of edge (u, v) is a nonnegative integer.

e. Now define  as the shortest-path weight from s to v using the

weight function ŵi. Prove that for i = 2, 3, … , k and all v ∈ V,

and that .

f. Show how to compute δi(s, v) from δi−1(s, v) for all v ∈ V in O(E)

time. Conclude that you can compute δ(s, v) for all v ∈ V in O(E lg

W) time.

22-5     Karp’s minimum mean-weight cycle algorithm

Let G = (V, E) be a directed graph with weight function w : E → ℝ, and

let n = |V|. We define the mean weight of a cycle c = 〈e1, e2, … , ek〉 of

edges in E to be

Let μ* = min {μ(c) : c is a directed cycle in G}. We call a cycle c for

which μ(c) = μ* a minimum mean-weight cycle. This problem investigates

an efficient algorithm for computing μ*.

Assume without loss of generality that every vertex v ∈ V is

reachable from a source vertex s ∈ V. Let δ(s, v) be the weight of a

shortest path from s to v, and let δk(s, v) be the weight of a shortest path

from s to v consisting of exactly k edges. If there is no path from s to v
with exactly k edges, then δk(s, v) = ∞.

a. Show that if μ* = 0, then G contains no negative-weight cycles and

δ(s, v) = min {δk(s, v) : 0 ≤ k ≤ n − 1} for all vertices v ∈ V.

b. Show that if μ* = 0, then
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for all vertices v ∈ V. (Hint: Use both properties from part (a).)

c. Let c be a 0-weight cycle, and let u and v be any two vertices on c.

Suppose that μ* = 0 and that the weight of the simple path from u to v
along the cycle is x. Prove that δ(s, v) = δ(s, u) + x. (Hint: The weight

of the simple path from v to u along the cycle is −x.)

d. Show that if μ* = 0, then on each minimum mean-weight cycle there

exists a vertex v such that

(Hint: Show how to extend a shortest path to any vertex on a

minimum mean-weight cycle along the cycle to make a shortest path

to the next vertex on the cycle.)

e. Show that if μ* = 0, then the minimum value of

taken over all vertices v ∈ V, equals 0.

f. Show that if you add a constant t to the weight of each edge of G,

then μ* increases by t. Use this fact to show that μ* equals the

minimum value of

taken over all vertices v ∈ V.

g. Give an O(VE)-time algorithm to compute μ*.

22-6     Bitonic shortest paths

A sequence is bitonic if it monotonically increases and then

monotonically decreases, or if by a circular shift it monotonically

increases and then monotonically decreases. For example the sequences

〈1, 4, 6, 8, 3, −2〉, 〈9, 2, −4, −10, −5〉, and 〈1, 2, 3, 4〉 are bitonic, but 〈1,
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3, 12, 4, 2, 10〉 is not bitonic. (See Problem 14-3 on page 407 for the

bitonic euclidean traveling-salesperson problem.)

Suppose that you are given a directed graph G = (V, E) with weight

function w : E → ℝ, where all edge weights are unique, and you wish to

find single-source shortest paths from a source vertex s. You are given

one additional piece of information: for each vertex v ∈ V, the weights

of the edges along any shortest path from s to v form a bitonic sequence.

Give the most efficient algorithm you can to solve this problem, and

analyze its running time.

Chapter notes

The shortest-path problem has a long history that is nicely desribed in

an article by Schrijver [400]. He credits the general idea of repeatedly

executing edge relaxations to Ford [148]. Dijkstra’s algorithm [116]

appeared in 1959, but it contained no mention of a priority queue. The

Bellman-Ford algorithm is based on separate algorithms by Bellman

[45] and Ford [149]. The same algorithm is also attributed to Moore

[334]. Bellman describes the relation of shortest paths to difference

constraints. Lawler [276] describes the linear-time algorithm for shortest

paths in a dag, which he considers part of the folklore.

When edge weights are relatively small nonnegative integers, more

efficient algorithms result from using min-priority queues that require

integer keys and rely on the sequence of values returned by the

EXTRACT-MIN calls in Dijkstra’s algorithm monotonically increasing

over time. Ahuja, Mehlhorn, Orlin, and Tarjan [8] give an algorithm

that runs in  time on graphs with nonnegative edge weights,

where W is the largest weight of any edge in the graph. The best bounds

are by Thorup [436], who gives an algorithm that runs in O(E lg lg V)

time, and by Raman [375], who gives an algorithm that runs in O(E + V

min {(lg V)1/3+ε, (lg W)1/4+ε}) time. These two algorithms use an

amount of space that depends on the word size of the underlying

machine. Although the amount of space used can be unbounded in the
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size of the input, it can be reduced to be linear in the size of the input

using randomized hashing.

For undirected graphs with integer weights, Thorup [435] gives an

algorithm that runs in O(V + E) time for single-source shortest paths. In

contrast to the algorithms mentioned in the previous paragraph, the

sequence of values returned by EXTRACT-MIN calls does not

monotonically increase over time, and so this algorithm is not an

implementation of Dijkstra’s algorithm. Pettie and Ramachandran [357]

remove the restriction of integer weights on undirected graphs. Their

algorithm entails a preprocessing phase, followed by queries for specific

source vertices. Preprocessing takes O(MST(V, E) + min {V lg V, V lg

lg r}) time, where MST(V, E) is the time to compute a minimum

spanning tree and r is the ratio of the maximum edge weight to the

minimum edge weight. After preprocessing, each query takes 

 time, where  is the inverse of Ackermann’s function.

(See the chapter notes for Chapter 19 for a brief discussion of

Ackermann’s function and its inverse.)

For graphs with negative edge weights, an algorithm due to Gabow

and Tarjan [167] runs in  time, and one by Goldberg [186]

runs in  time, where W = max {|w(u, v)| : (u, v) ∈ E}. There

has also been some progress based on methods that use continuous

optimization and electrical flows. Cohen et al. [98] give such an

algorithm, which is randomized and runs in Õ(E10/7 lg W) expected

time (see Problem 3-6 on page 73 for the defintion of Õ-notation). There

is also a pseudopolyomial-time algorithm based on fast matrix

multiplication. Sankowski [394] and Yuster and Zwick [465] designed an

algorithm for shortest paths that runs in Õ(W Vω) time, where two n ×

n matrices can be multiplied in O(nω) time, giving a faster algorithm

than the previously mentioned algorithms for small values of W on

dense graphs.

Cherkassky, Goldberg, and Radzik [89] conducted extensive

experiments comparing various shortest-path algorithms. Shortest-path

algorithms are widely used in real-time navigation and route-planning

applications. Typically based on Dijkstra’s algorithm, these algorithms

use many clever ideas to be able to compute shortest paths on networks
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with many millions of vertices and edges in fractions of a second. Bast

et al. [36] survey many of these developments.

1 It may seem strange that the term “relaxation” is used for an operation that tightens an upper

bound. The use of the term is historical. The outcome of a relaxation step can be viewed as a

relaxation of the constraint v.d ≤ u.d + w(u, v), which, by the triangle inequality (Lemma 22.10

on page 633), must be satisfied if u.d = δ(s, u) and v.d = δ(s, v). That is, if v.d ≤ u.d + w(u, v), there

is no “pressure” to satisfy this constraint, so the constraint is “relaxed.”

2 “PERT” is an acronym for “program evaluation and review technique.”
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23        All-Pairs Shortest Paths

In this chapter, we turn to the problem of finding shortest paths between

all pairs of vertices in a graph. A classic application of this problem

occurs in computing a table of distances between all pairs of cities for a

road atlas. Classic perhaps, but not a true application of finding shortest

paths between all pairs of vertices. After all, a road map modeled as a

graph has one vertex for every road intersection and one edge wherever

a road connects intersections. A table of intercity distances in an atlas

might include distances for 100 cities, but the United States has

approximately 300,000 signal-controlled intersections1 and many more

uncontrolled intersections.

A legitimate application of all-pairs shortest paths is to determine

the diameter of a network: the longest of all shortest paths. If a directed

graph models a communication network, with the weight of an edge

indicating the time required for a message to traverse a communication

link, then the diameter gives the longest possible transit time for a

message in the network.

As in Chapter 22, the input is a weighted, directed graph G = (V, E)

with a weight function w : E → ℝ that maps edges to real-valued

weights. Now the goal is to find, for every pair of vertices u, v ∈ V, a

shortest (least-weight) path from u to v, where the weight of a path is

the sum of the weights of its constituent edges. For the all-pairs

problem, the output typically takes a tabular form in which the entry in

u’s row and v’s column is the weight of a shortest path from u to v.
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You can solve an all-pairs shortest-paths problem by running a

single-source shortest-paths algorithm |V| times, once with each vertex

as the source. If all edge weights are nonnegative, you can use Dijkstra’s

algorithm. If you implement the min-priority queue with a linear array,

the running time is O(V3 + VE) which is O(V3). The binary min-heap

implementation of the min-priority queue yields a running time of

O(V(V + E) lg V). If |E| = Ω(V), the running time becomes O(VE lg V),

which is faster than O(V3) if the graph is sparse. Alternatively, you can

implement the min-priority queue with a Fibonacci heap, yielding a

running time of O(V2 lg V + VE).

If the graph contains negative-weight edges, Dijkstra’s algorithm

doesn’t work, but you can run the slower Bellman-Ford algorithm once

from each vertex. The resulting running time is O(V2E), which on a

dense graph is O(V4). This chapter shows how to guarantee a much

better asymptotic running time. It also investigates the relation of the

all-pairs shortest-paths problem to matrix multiplication.

Unlike the single-source algorithms, which assume an adjacency-list

representation of the graph, most of the algorithms in this chapter

represent the graph by an adjacency matrix. (Johnson’s algorithm for

sparse graphs, in Section 23.3, uses adjacency lists.) For convenience, we

assume that the vertices are numbered 1, 2, … , |V|, so that the input is

an n × n matrix W = (wij) representing the edge weights of an n-vertex

directed graph G = (V, E), where

The graph may contain negative-weight edges, but we assume for the

time being that the input graph contains no negative-weight cycles.

The tabular output of each of the all-pairs shortest-paths algorithms

presented in this chapter is an n × n matrix. The (i, j) entry of the output

matrix contains δ(i, j), the shortest-path weight from vertex i to vertex j,
as in Chapter 22.
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A full solution to the all-pairs shortest-paths problem includes not

only the shortest-path weights but also a predecessor matrix Π = (πij),

where πij is NIL if either i = j or there is no path from i to j, and

otherwise πij is the predecessor of j on some shortest path from i. Just as

the predecessor subgraph Gπ from Chapter 22 is a shortest-paths tree

for a given source vertex, the subgraph induced by the ith row of the Π
matrix should be a shortest-paths tree with root i. For each vertex i ∈
V, the predecessor subgraph of G for i is Gπ,i = (Vπ,i, Eπ,i), where

Vπ,i = {j ∈ V : πij ≠ NIL} ∪ {i},

Eπ,i = {(πij, j) : j ∈ Vπ,i − {i}}.

If Gπ,i is a shortest-paths tree, then PRINT-ALL-PAIRS-SHORTEST-

PATH on the following page, which is a modified version of the

PRINT-PATH procedure from Chapter 20, prints a shortest path from

vertex i to vertex j.
In order to highlight the essential features of the all-pairs algorithms

in this chapter, we won’t cover how to compute predecessor matrices

and their properties as extensively as we dealt with predecessor

subgraphs in Chapter 22. Some of the exercises cover the basics.

PRINT-ALL-PAIRS-SHORTEST-PATH(Π, i, j)

1 if i == j
2 print i
3 elseif πij == NIL

4 print “no path from” i “to” j “exists”

5 else PRINT-ALL-PAIRS-SHORTEST-PATH(Π, i, πij)

6 print j

Chapter outline

Section 23.1 presents a dynamic-programming algorithm based on

matrix multiplication to solve the all-pairs shortest-paths problem. The

technique of “repeated squaring” yields a running time of Θ(V3 lg V).
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Section 23.2 gives another dynamic-programming algorithm, the Floyd-

Warshall algorithm, which runs in Θ(V3) time. Section 23.2 also covers

the problem of finding the transitive closure of a directed graph, which

is related to the all-pairs shortest-paths problem. Finally, Section 23.3

presents Johnson’s algorithm, which solves the all-pairs shortest-paths

problem in O(V2 lg V + VE) time and is a good choice for large, sparse

graphs.

Before proceeding, we need to establish some conventions for

adjacency-matrix representations. First, we generally assume that the

input graph G = (V, E) has n vertices, so that n = |V|. Second, we use the

convention of denoting matrices by uppercase letters, such as W, L, or

D, and their individual elements by subscripted lowercase letters, such

as wij, lij, or dij. Finally, some matrices have parenthesized superscripts,

as in  or , to indicate iterates.

23.1    Shortest paths and matrix multiplication

This section presents a dynamic-programming algorithm for the all-

pairs shortest-paths problem on a directed graph G = (V, E). Each

major loop of the dynamic program invokes an operation similar to

matrix multiplication, so that the algorithm looks like repeated matrix

multiplication. We’ll start by developing a Θ(V4)-time algorithm for the

all-pairs shortest-paths problem, and then we’ll improve its running

time to Θ(V3 lg V).

Before proceeding, let’s briefly recap the steps given in Chapter 14 for

developing a dynamic-programming algorithm:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up

fashion.

We reserve the fourth step—constructing an optimal solution from

computed information—for the exercises.
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The structure of a shortest path

Let’s start by characterizing the structure of an optimal solution.

Lemma 22.1 tells us that all subpaths of a shortest path are shortest

paths. Consider a shortest path p from vertex i to vertex j, and suppose

that p contains at most r edges. Assuming that there are no negative-

weight cycles, r is finite. If i = j, then p has weight 0 and no edges. If

vertices i and j are distinct, then decompose path p into , where

path p′ now contains at most r − 1 edges. Lemma 22.1 says that p′ is a

shortest path from i to k, and so δ(i, j) = δ(i, k) + wkj.

A recursive solution to the all-pairs shortest-paths problem

Now, let  be the minimum weight of any path from vertex i to vertex j
that contains at most r edges. When r = 0, there is a shortest path from i
to j with no edges if and only if i = j, yielding

For r ≥ 1, one way to achieve a minimum-weight path from i to j with at

most r edges is by taking a path containing at most r − 1 edges, so that 

. Another way is by taking a path of at most r − 1 edges from i

to some vertex k and then taking the edge (k, j), so that .

Therefore, to examine paths from i to j consisting of at most r edges, try

all possible predecessors k of j, giving the recursive definition

The last equality follows from the observation that wjj = 0 for all j.

What are the actual shortest-path weights δ(i, j)? If the graph

contains no negative-weight cycles, then whenever δ(i, j) < ∞, there is a

shortest path from vertex i to vertex j that is simple. (A path p from i to j
that is not simple contains a cycle. Since each cycle’s weight is

nonnegative, removing all cycles from the path leaves a simple path with

weight no greater than p’s weight.) Because any simple path contains at
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most n − 1 edges, a path from vertex i to vertex j with more than n − 1

edges cannot have lower weight than a shortest path from i to j. The

actual shortest-path weights are therefore given by

Computing the shortest-path weights bottom up

Taking as input the matrix W = (wij), let’s see how to compute a series

of matrices L(0), L(1), … , L(n−1), where  for r = 0, 1, … , n −

1. The initial matrix is L(0) given by equation (23.2). The final matrix

L(n−1) contains the actual shortest-path weights.

The heart of the algorithm is the procedure EXTEND-SHORTEST-

PATHS, which implements equation (23.3) for all i and j. The four

inputs are the matrix L(r−1) computed so far; the edge-weight matrix

W; the output matrix L(r), which will hold the computed result and

whose elements are all initialized to ∞ before invoking the procedure;

and the number n of vertices. The superscripts r and r − 1 help to make

the correspondence of the pseudocode with equation (23.3) plain, but

they play no actual role in the pseudocode. The procedure extends the

shortest paths computed so far by one more edge, producing the matrix

L(r) of shortest-path weights from the matrix L(r−1) computed so far.

Its running time is Θ(n3) due to the three nested for loops.

EXTEND-SHORTEST-PATHS(L(r−1), W, L(r), n)

1 // Assume that the elements of L(r) are initialized to ∞.

2 for i = 1 to n
3 for j = 1 to n
4 for k = 1 to n
5

Let’s now understand the relation of this computation to matrix

multiplication. Consider how to compute the matrix product C = A · B
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of two n × n matrices A and B. The straightforward method used by

MATRIX-MULTIPLY on page 81 uses a triply nested loop to

implement equation (4.1), which we repeat here for convenience:

for i, j = 1, 2, … , n. Now make the substitutions

l(r−1) → a,

w → b,

l(r) → c,

min → +,

+ → .

in equation (23.3). You get equation (23.5)! Making these changes to

EXTEND-SHORTEST-PATHS, and also replacing ∞ (the identity for

min) by 0 (the identity for +), yields the procedure MATRIX-

MULTIPLY. We can see that the procedure EXTEND-SHORTEST-

PATHS(L(r−1), W, L(r), n) computes the matrix “product” L(r) =

L(r−1). W using this unusual definition of matrix multiplication.2

Thus, we can solve the all-pairs shortest-paths problem by repeatedly

multiplying matrices. Each step extends the shortest-path weights

computed so far by one more edge using EXTEND-SHORTEST-

PATHS(L(r−1), W, L(r), n) to perform the matrix multiplication.

Starting with the matrix L(0), we produce the following sequence of n −

1 matrices corresponding to powers of W:

L(1) = L(0) · W = W1,

L(2) = L(1) · W = W2,

L(3) = L(2) · W = W3,

⋮

L(n−1) = L(n−2) · W = Wn−1.
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At the end, the matrix L(n−1) = Wn−1 contains the shortest-path

weights.

The procedure SLOW-APSP on the next page computes this

sequence in Θ(n4) time. The procedure takes the n × n matrices W and

L(0) as inputs, along with n. Figure 23.1 illustrates its operation. The

pseudocode uses two n × n matrices L and M to store powers of W,

computing M = L · W on each iteration. Line 2 initializes L = L(0). For

each iteration r, line 4 initializes M = ∞, where ∞ in this context is a

matrix of scalar ∞ values. The rth iteration starts with the invariant L =

L(r−1) = Wr−1. Line 6 computes M = L · W = L(r−1) · W = Wr−1 · W

= Wr = L(r) so that the invariant can be restored for the next iteration

by line 7, which sets L = M. At the end, the matrix L = L(n−1) = Wn−1

of shortest-path weights is returned. The assignments to n × n matrices

in lines 2, 4, and 7 implicitly run doubly nested loops that take Θ(n2)

time for each assignment. The n − 1 invocations of EXTEND-

SHORTEST-PATHS, each of which takes Θ(n3) time, dominate the

computation, yielding a total running time of Θ(n4).

Figure 23.1 A directed graph and the sequence of matrices L(r) computed by SLOW-APSP. You

might want to verify that L(5), defined as L(4) · W, equals L(4), and thus L(r) = L(4) for all r ≥

4.

SLOW-APSP(W, L(0), n)

1 let L = (lij) and M = (mij) be new n × n matrices
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2 L = L(0)

3 for r = 1 to n − 1

4 M = ∞       // initialize M
5 // Compute the matrix “product” M = L · W.

6 EXTEND-SHORTEST-PATHS(L, W, M, n)

7 L = M
8 return L

Improving the running time

Bear in mind that the goal is not to compute all the L(r) matrices: only

the matrix L(n−1) matters. Recall that in the absence of negative-weight

cycles, equation (23.4) implies L(r) = L(n−1) for all integers r ≥ n − 1.

Just as traditional matrix multiplication is associative, so is matrix

multiplication defined by the EXTEND-SHORTEST-PATHS

procedure (see Exercise 23.1-4). In fact, we can compute L(n−1) with

only ⌈lg(n – 1)⌉ matrix products by using the technique of repeated

squaring:

Since 2⌈lg(n – 1)⌉ ≥ n – 1, the final product is .

The procedure FASTER-APSP implements this idea. It takes just

the n × n matrix W and the size n as inputs. Each iteration of the while

loop of lines 4–8 starts with the invariant L = Wr, which it squares

using EXTEND-SHORTEST-PATHS to obtain the matrix M = L2 =

(Wr)2 = W2r. At the end of each iteration, the value of r doubles, and L
for the next iteration becomes M, restoring the invariant. Upon exiting

the loop when r ≥ n − 1, the procedure returns L = Wr = L(r) = L(n−1)

by equation (23.4). As in SLOW-APSP, the assignments to n × n
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matrices in lines 2, 5, and 8 implicitly run doubly nested loops, taking

Θ(n2) time for each assignment.

FASTER-APSP(W, n)

1 let L and M be new n × n matrices

2 L = W
3 r = 1

4 while r < n − 1

5 M = ∞ // initialize M

6 EXTEND-SHORTEST-

PATHS(L, L, M, n)
// compute M = L2

7 r = 2r
8 L = M // ready for the next

iteration

9 return L

Because each of the ⌈lg(n – 1)⌉ matrix products takes Θ(n3) time,

FASTER-APSP runs in Θ(n3 lg n) time. The code is tight, containing

no elaborate data structures, and the constant hidden in the Θ-notation

is therefore small.

Exercises

23.1-1

Run SLOW-APSP on the weighted, directed graph of Figure 23.2,

showing the matrices that result for each iteration of the loop. Then do

the same for FASTER-APSP.

Figure 23.2 A weighted, directed graph for use in Exercises 23.1-1, 23.2-1, and 23.3-1.
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23.1-2

Why is it convenient for both SLOW-APSP and FASTER-APSP that

wii = 0 for i = 1, 2, … , n?

23.1-3

What does the matrix

used in the shortest-paths algorithms correspond to in regular matrix

multiplication?

23.1-4

Show that matrix multiplication defined by EXTEND-SHORTEST-

PATHS is associative.

23.1-5

Show how to express the single-source shortest-paths problem as a

product of matrices and a vector. Describe how evaluating this product

corresponds to a Bellman-Ford-like algorithm (see Section 22.1).

23.1-6

Argue that we don’t need the matrix M in SLOW-APSP because by

substituting L for M and leaving out the initialization of M, the code

still works correctly. (Hint: Relate line 5 of EXTEND-SHORTEST-

PATHS to RELAX on page 610.) Do we need the matrix M in

FASTER-APSP?

23.1-7

Suppose that you also want to compute the vertices on shortest paths in

the algorithms of this section. Show how to compute the predecessor

matrix Π from the completed matrix L of shortest-path weights in O(n3)

time.

23.1-8
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You can also compute the vertices on shortest paths along with

computing the shortest-path weights. Define  as the predecessor of

vertex j on any minimum-weight path from vertex i to vertex j that

contains at most r edges. Modify the EXTEND-SHORTEST-PATHS

and SLOW-APSP procedures to compute the matrices Π(1), Π(2), … ,

Π(n−1) as they compute the matrices L(1), L(2), … , L(n−1).

23.1-9

Modify FASTER-APSP so that it can determine whether the graph

contains a negative-weight cycle.

23.1-10

Give an efficient algorithm to find the length (number of edges) of a

minimum-length negative-weight cycle in a graph.

23.2    The Floyd-Warshall algorithm

Having already seen one dynamic-programming solution to the all-pairs

shortest-paths problem, in this section we’ll see another: the Floyd-

Warshall algorithm, which runs in Θ(V3) time. As before, negative-

weight edges may be present, but not negative-weight cycles. As in

Section 23.1, we develop the algorithm by following the dynamic-

programming process. After studying the resulting algorithm, we

present a similar method for finding the transitive closure of a directed

graph.

The structure of a shortest path

In the Floyd-Warshall algorithm, we characterize the structure of a

shortest path differently from how we characterized it in Section 23.1.

The Floyd-Warshall algorithm considers the intermediate vertices of a

shortest path, where an intermediate vertex of a simple path p = 〈v1, v2,

… , vl〉 is any vertex of p other than v1 or vl, that is, any vertex in the set

{v2, v3, … , vl−1}.
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The Floyd-Warshall algorithm relies on the following observation.

Numbering the vertices of G by V = {1, 2, … , n}, take a subset {1, 2, …

, k} of vertices for some 1 ≤ k ≤ n. For any pair of vertices i, j ∈ V,

consider all paths from i to j whose intermediate vertices are all drawn

from {1, 2, … , k}, and let p be a minimum-weight path from among

them. (Path p is simple.) The Floyd-Warshall algorithm exploits a

relationship between path p and shortest paths from i to j with all

intermediate vertices in the set {1, 2, … , k − 1}. The details of the

relationship depend on whether k is an intermediate vertex of path p or

not.

Figure 23.3 Optimal substructure used by the Floyd-Warshall algorithm. Path p is a shortest

path from vertex i to vertex j, and k is the highest-numbered intermediate vertex of p. Path p1,

the portion of path p from vertex i to vertex k, has all intermediate vertices in the set {1, 2, … , k
− 1}. The same holds for path p2 from vertex k to vertex j.

If k is not an intermediate vertex of path p, then all intermediate

vertices of path p belong to the set {1, 2, … , k − 1}. Thus a

shortest path from vertex i to vertex j with all intermediate

vertices in the set {1, 2, … , k − 1} is also a shortest path from i to
j with all intermediate vertices in the set {1, 2, … , k}.

If k is an intermediate vertex of path p, then decompose p into 

, as Figure 23.3 illustrates. By Lemma 22.1, p1 is a

shortest path from i to k with all intermediate vertices in the set

{1, 2, … , k}. In fact, we can make a slightly stronger statement.

Because vertex k is not an intermediate vertex of path p1, all

intermediate vertices of p1 belong to the set {1, 2, … , k − 1}.

Therefore p1 is a shortest path from i to k with all intermediate

vertices in the set {1, 2, … , k − 1}. Likewise, p2 is a shortest path
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from vertex k to vertex j with all intermediate vertices in the set

{1, 2, … , k − 1}.

A recursive solution to the all-pairs shortest-paths problem

The above observations suggest a recursive formulation of shortest-path

estimates that differs from the one in Section 23.1. Let  be the weight

of a shortest path from vertex i to vertex j for which all intermediate

vertices belong to the set {1, 2, … , k}. When k = 0, a path from vertex i
to vertex j with no intermediate vertex numbered higher than 0 has no

intermediate vertices at all. Such a path has at most one edge, and hence

. Following the above discussion, define  recursively by

Because for any path, all intermediate vertices belong to the set {1, 2, …

, n}, the matrix  gives the final answer:  for all i, j ∈ V.

Computing the shortest-path weights bottom up

Based on recurrence (23.6), the bottom-up procedure FLOYD-

WARSHALL computes the values  in order of increasing values of k.

Its input is an n × n matrix W defined as in equation (23.1). The

procedure returns the matrix D(n) of shortest-path weights. Figure 23.4

shows the matrices D(k) computed by the Floyd-Warshall algorithm for

the graph in Figure 23.1.

FLOYD-WARSHALL(W, n)

1 D(0) = W
2 for k = 1 to n
3 let  be a new n × n matrix

4 for i = 1 to n

5 for j = 1 to n
6

7 return D(n)
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The running time of the Floyd-Warshall algorithm is determined by

the triply nested for loops of lines 2–6. Because each execution of line 6

takes O(1) time, the algorithm runs in Θ(n3) time. As in the final

algorithm in Section 23.1, the code is tight, with no elaborate data

structures, and so the constant hidden in the Θ-notation is small. Thus,

the Floyd-Warshall algorithm is quite practical for even moderate-sized

input graphs.

Constructing a shortest path

There are a variety of different methods for constructing shortest paths

in the Floyd-Warshall algorithm. One way is to compute the matrix D
of shortest-path weights and then construct the predecessor matrix Π
from the D matrix. Exercise 23.1-7 asks you to implement this method

so that it runs in O(n3) time. Given the predecessor matrix Π, the

PRINT-ALL-PAIRS-SHORTEST-PATH procedure prints the vertices

on a given shortest path.

Alternatively, the predecessor matrix … can be computed while the

algorithm computes the matrices D(0), D(1), … , D(n). Specifically,

compute a sequence of matrices Π(0), Π(1), … , Π(n), where Π = Π(n)

and  is the predecessor of vertex j on a shortest path from vertex i
with all intermediate vertices in the set {1, 2, … , k}.
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Figure 23.4 The sequence of matrices D(k) and Π(k) computed by the Floyd-Warshall algorithm

for the graph in Figure 23.1.

Here’s a recursive formulation of . When k = 0, a shortest path

from i to j has no intermediate vertices at all, and so

For k ≥ 1, if the path has k as an intermediate vertex, so that it is i ⇝ k
⇝ j where k ≠ j, then choose as the predecessor of j on this path the

same vertex as the predecessor of j chosen on a shortest path from k
with all intermediate vertices in the set {1, 2, … , k − 1}. Otherwise,

when the path from i to j does not have k as an intermediate vertex,
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choose the same predecessor of j as on a shortest path from i with all

intermediate vertices in the set {1, 2, … , k − 1}. Formally, for k ≥ 1,

Exercise 23.2-3 asks you to show how to incorporate the Π(k) matrix

computations into the FLOYD-WARSHALL procedure. Figure 23.4

shows the sequence of Π(k) matrices that the resulting algorithm

computes for the graph of Figure 23.1. The exercise also asks for the

more difficult task of proving that the predecessor subgraph Gπ,i is a

shortest-paths tree with root i. Exercise 23.2-7 asks for yet another way

to reconstruct shortest paths.

Transitive closure of a directed graph

Given a directed graph G = (V, E) with vertex set V = {1, 2, … , n}, you

might wish to determine simply whether G contains a path from i to j
for all vertex pairs i, j ∈ V, without regard to edge weights. We define

the transitive closure of G as the graph G* = (V, E*), where

E* = {(i, j) : there is a path from vertex i to vertex j in G}.

One way to compute the transitive closure of a graph in Θ(n3) time is

to assign a weight of 1 to each edge of E and run the Floyd-Warshall

algorithm. If there is a path from vertex i to vertex j, you get dij < n.

Otherwise, you get dij = ∞.

There is another, similar way to compute the transitive closure of G

in Θ(n3) time, which can save time and space in practice. This method

substitutes the logical operations ∨ (logical OR) and ∧ (logical AND)

for the arithmetic operations min and + in the Floyd-Warshall

algorithm. For i, j, k = 1, 2, … , n, define  to be 1 if there exists a path

in graph G from vertex i to vertex j with all intermediate vertices in the

set {1, 2, … , k}, and 0 otherwise. To construct the transitive closure G*
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= (V, E*), put edge (i, j) into E* if and only if . A recursive

definition of , analogous to recurrence (23.6), is

Figure 23.5 A directed graph and the matrices T(k) computed by the transitive-closure

algorithm.

and for k ≥ 1,

As in the Floyd-Warshall algorithm, the TRANSITIVE-CLOSURE

procedure computes the matrices  in order of increasing k.

TRANSITIVE-CLOSURE(G, n)

  1 let  be a new n × n matrix

  2 for i = 1 to n
  3 for j = 1 to n
  4 if i == j or (i, j) ∈ G.E
  5

  6 else 

  7 for k = 1 to n
  8 let  be a new n × n matrix

  9 for i = 1 to n
10 for j = 1 to n
11

12return T(n)
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Figure 23.5 shows the matrices T(k) computed by the

TRANSITIVE-CLOSURE procedure on a sample graph. The

TRANSITIVE-CLOSURE procedure, like the Floyd-Warshall

algorithm, runs in Θ(n3) time. On some computers, though, logical

operations on single-bit values execute faster than arithmetic operations

on integer words of data. Moreover, because the direct transitive-closure

algorithm uses only boolean values rather than integer values, its space

requirement is less than the Floyd-Warshall algorithm’s by a factor

corresponding to the size of a word of computer storage.

Exercises

23.2-1

Run the Floyd-Warshall algorithm on the weighted, directed graph of

Figure 23.2. Show the matrix D(k) that results for each iteration of the

outer loop.

23.2-2

Show how to compute the transitive closure using the technique of

Section 23.1.

23.2-3

Modify the FLOYD-WARSHALL procedure to compute the Π(k)

matrices according to equations (23.7) and (23.8). Prove rigorously that

for all i ∈ V, the predecessor subgraph Gπ,i is a shortest-paths tree with

root i. (Hint: To show that Gπ,i is acyclic, first show that  implies 

, according to the definition of . Then adapt the proof of

Lemma 22.16.)

23.2-4

As it appears on page 657, the Floyd-Warshall algorithm requires Θ(n3)

space, since it creates  for i, j, k = 1, 2, … , n. Show that the procedure
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FLOYD-WARSHALL′, which simply drops all the superscripts, is

correct, and thus only Θ(n2) space is required.

FLOYD-WARSHALL′(W, n)

1 D = W
2 for k = 1 to n
3 for i = 1 to n
4 for j = 1 to n
5 dij = min {dij, dik + dkj}

6 return D

23.2-5

Consider the following change to how equation (23.8) handles equality:

Is this alternative definition of the predecessor matrix Π correct?

23.2-6

Show how to use the output of the Floyd-Warshall algorithm to detect

the presence of a negative-weight cycle.

23.2-7

Another way to reconstruct shortest paths in the Floyd-Warshall

algorithm uses values  for i,j,k = 1, 2, … , n, where  is the highest-

numbered intermediate vertex of a shortest path from i to j in which all

intermediate vertices lie in the set {1, 2, … , k}. Give a recursive

formulation for , modify the FLOYD-WARSHALL procedure to

compute the  values, and rewrite the PRINT-ALL-PAIRS-

SHORTEST-PATH procedure to take the matrix  as an input.

How is the matrix Φ like the s table in the matrix-chain multiplication

problem of Section 14.2?

23.2-8
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Give an O(VE)-time algorithm for computing the transitive closure of a

directed graph G = (V, E). Assume that |V| = O(E) and that the graph is

represented with adjacency lists.

23.2-9

Suppose that it takes f(|V|, |E|) time to compute the transitive closure of

a directed acyclic graph, where f is a monotonically increasing function

of both |V| and |E|. Show that the time to compute the transitive closure

G* = (V, E*) of a general directed graph G = (V, E) is then f(|V|, |E|) +

O(V + E*).

23.3    Johnson’s algorithm for sparse graphs

Johnson’s algorithm finds shortest paths between all pairs in O(V2 lg V
+ VE) time. For sparse graphs, it is asymptotically faster than either

repeated squaring of matrices or the Floyd-Warshall algorithm. The

algorithm either returns a matrix of shortest-path weights for all pairs

of vertices or reports that the input graph contains a negative-weight

cycle. Johnson’s algorithm uses as subroutines both Dijkstra’s algorithm

and the Bellman-Ford algorithm, which Chapter 22 describes.

Johnson’s algorithm uses the technique of reweighting, which works

as follows. If all edge weights w in a graph G = (V, E) are nonnegative,

Dijkstra’s algorithm can find shortest paths between all pairs of vertices

by running it once from each vertex. With the Fibonacci-heap min-

priority queue, the running time of this all-pairs algorithm is O(V2 lg V
+ VE). If G has negative-weight edges but no negative-weight cycles,

first compute a new set of nonnegative edge weights so that Dijkstra’s

algorithm applies. The new set of edge weights ŵ must satisfy two

important properties:

1. For all pairs of vertices u, v ∈ V, a path p is a shortest path from

u to v using weight function w if and only if p is also a shortest

path from u to v using weight function ŵ.

2. For all edges (u, v), the new weight ŵ(u, v) is nonnegative.
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As we’ll see in a moment, preprocessing G to determine the new weight

function ŵ takes O(VE) time.

Preserving shortest paths by reweighting

The following lemma shows how to reweight the edges to satisfy the first

property above. We use δ to denote shortest-path weights derived from

weight function w and  to denote shortest-path weights derived from

weight function ŵ.

Lemma 23.1 (Reweighting does not change shortest paths)

Given a weighted, directed graph G = (V, E) with weight function w : E
→ ℝ, let h : V → ℝ be any function mapping vertices to real numbers.

For each edge (u, v) ∈ E, define

Let p = 〈v0, v1, … , vk〉 be any path from vertex v0 to vertex vk. Then p

is a shortest path from v0 to vk with weight function w if and only if it is

a shortest path with weight function ŵ. That is, w(p) = δ(v0, vk) if and

only if . Furthermore, G has a negative-weight cycle using

weight function w if and only if G has a negative-weight cycle using

weight function ŵ.

Proof   We start by showing that

We have
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Therefore, any path p from v0 to vk has ŵ(p) = w(p) + h(v0) − h(vk).

Because h(v0) and h(vk) do not depend on the path, if one path from v0

to vk is shorter than another using weight function w, then it is also

shorter using ŵ. Thus, w(p) = δ(v0, vk) if and only if .

Finally, we show that G has a negative-weight cycle using weight

function w if and only if G has a negative-weight cycle using weight

function ŵ. Consider any cycle c = 〈v0, v1, … , vk〉, where v0 = vk. By

equation (23.11),

ŵ(c) = w(c) + h(v0) + h(vk)

= w(c),

and thus c has negative weight using w if and only if it has negative

weight using ŵ.

▪

Producing nonnegative weights by reweighting

Our next goal is to ensure that the second property holds: ŵ(u, v) must

be nonnegative for all edges (u, v) = E. Given a weighted, directed graph

G = (V, E) with weight function w : E → ℝ, we’ll see how to make a new

graph G′ = (V′, E′), where V′ = V ∪ {s} for some new vertex s ∉ V and

E′ = E ∪ {(s, v) : v = V }. To incorporate the new vertex s, extend the

weight function w so that w(s, v) = 0 for all v ∈ V. Since no edges enter

s, no shortest paths in G′, other than those with source s, contain s.

Moreover, G′ has no negative-weight cycles if and only if G has no

negative-weight cycles. Figure 23.6(a) shows the graph G′ corresponding

to the graph G of Figure 23.1.

Now suppose that G and G′ have no negative-weight cycles. Define

the function h(v) = δ(s, v) for all v ∈ V′. By the triangle inequality

(Lemma 22.10 on page 633), we have h(v) ≤ h(u) + w(u, v) for all edges

(u, v) ∈ E′. Thus, by defining reweighted edge weights ŵ according to

equation (23.10), we have ŵ(u, v) = w(u, v) + h(u) − h(v) ≥ 0, thereby
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satisfying the second property. Figure 23.6(b) shows the graph G′ from

Figure 23.6(a) with reweighted edges.

Computing all-pairs shortest paths

Johnson’s algorithm to compute all-pairs shortest paths uses the

Bellman-Ford algorithm (Section 22.1) and Dijkstra’s algorithm

(Section 22.3) as subroutines. The pseudocode appears in the procedure

JOHNSON on page 666. It assumes implicitly that the edges are stored

in adjacency lists. The algorithm returns the usual |V| × |V| matrix D =

(dij), where dij = δ(i, j), or it reports that the input graph contains a

negative-weight cycle. As is typical for an all-pairs shortest-paths

algorithm, it assumes that the vertices are numbered from 1 to |V|.
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Figure 23.6 Johnson’s all-pairs shortest-paths algorithm run on the graph of Figure 23.1. Vertex

numbers appear outside the vertices. (a) The graph G′ with the original weight function w. The

new vertex s is blue. Within each vertex v is h(v) = δ(s, v). (b) After reweighting each edge (u, v)

with weight function ŵ(u, v) = w(u, v) + h(u) − h(v). (c)–(g) The result of running Dijkstra’s

algorithm on each vertex of G using weight function ŵ. In each part, the source vertex u is blue,

and blue edges belong to the shortest-paths tree computed by the algorithm. Within each vertex

v are the values  and δ(u, v), separated by a slash. The value duv = δ(u, v) is equal to 

.

JOHNSON(G, w)

  1compute G′, where G′.V = G.V ∪ {s},

G′.E = G.E ∪ {(s, v) : v ∈ G.V}, and
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w(s, v) = 0 for all v ∈ G.V
  2 if BELLMAN-FORD(G′, w, s) == FALSE

  3 print “the input graph contains a negative-weight cycle”

  4else for each vertex v ∈ G′.V
  5 set h(v) to the value of δ(s, v)

computed by the Bellman-Ford algorithm

  6 for each edge (u, v) ∈ G′.E
  7 ŵ(u, v) = w(u, v) + h(u) − h(v)

  8 let D = (duv) be a new n × n matrix

  9 for each vertex u ∈ G.V
10 run DIJKSTRA(G, ŵ, u) to compute  for all v ∈ G.V
11 for each vertex v ∈ G.V
12

13return D

The JOHNSON procedure simply performs the actions specified

earlier. Line 1 produces G′. Line 2 runs the Bellman-Ford algorithm on

G′ with weight function w and source vertex s. If G′, and hence G,

contains a negative-weight cycle, line 3 reports the problem. Lines 4–12

assume that G′ contains no negative-weight cycles. Lines 4–5 set h(v) to

the shortest-path weight δ(s, v) computed by the Bellman-Ford

algorithm for all v ∈ V′. Lines 6–7 compute the new weights ŵ. For

each pair of vertices u, v ∈ V, the for loop of lines 9–12 computes the

shortest-path weight  by calling Dijkstra’s algorithm once from

each vertex in V. Line 12 stores in matrix entry duv the correct shortest-

path weight δ(u, v), calculated using equation (23.11). Finally, line 13

returns the completed D matrix. Figure 23.6 depicts the execution of

Johnson’s algorithm.

If the min-priority queue in Dijkstra’s algorithm is implemented by a

Fibonacci heap, Johnson’s algorithm runs in O(V2 lg V + VE) time. The

simpler binary min-heap implementation yields a running time of O(VE
lg V), which is still asymptotically faster than the Floyd-Warshall

algorithm if the graph is sparse.
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Exercises

23.3-1

Use Johnson’s algorithm to find the shortest paths between all pairs of

vertices in the graph of Figure 23.2. Show the values of h and ŵ

computed by the algorithm.

23.3-2

What is the purpose of adding the new vertex s to V, yielding V′?

23.3-3

Suppose that w(u, v) ≥ 0 for all edges (u, v) ∈ E. What is the relationship

between the weight functions w and ŵ?

23.3-4

Professor Greenstreet claims that there is a simpler way to reweight

edges than the method used in Johnson’s algorithm. Letting w* = min

{w(u, v) : (u, v) ∈ E}, just define ŵ(u, v) = w(u, v) − w* for all edges (u,

v) ∈ E. What is wrong with the professor’s method of reweighting?

23.3-5

Show that if G contains a 0-weight cycle c, then ŵ(u, v) = 0 for every

edge (u, v) in c.

23.3-6

Professor Michener claims that there is no need to create a new source

vertex in line 1 of JOHNSON. He suggests using G′ = G instead and

letting s be any vertex. Give an example of a weighted, directed graph G
for which incorporating the professor’s idea into JOHNSON causes

incorrect answers. Assume that ∞ − ∞ is undefined, and in particular, it

is not 0. Then show that if G is strongly connected (every vertex is

reachable from every other vertex), the results returned by JOHNSON

with the professor’s modification are correct.

Problems
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23-1     Transitive closure of a dynamic graph

You wish to maintain the transitive closure of a directed graph G = (V,

E) as you insert edges into E. That is, after inserting an edge, you update

the transitive closure of the edges inserted so far. Start with G having no

edges initially, and represent the transitive closure by a boolean matrix.

a. Show how to update the transitive closure G* = (V, E*) of a graph G

= (V, E) in O(V2) time when a new edge is added to G.

b. Give an example of a graph G and an edge e such that Ω(V2) time is

required to update the transitive closure after inserting e into G, no

matter what algorithm is used.

c. Give an algorithm for updating the transitive closure as edges are

inserted into the graph. For any sequence of r insertions, your

algorithm should run in time , where ti is the time to

update the transitive closure upon inserting the ith edge. Prove that

your algorithm attains this time bound.

23-2     Shortest paths in ϵ-dense graphs

A graph G = (V, E) is ϵ-dense if |E| = Θ(V1+ϵ) for some constant in the

range 0 < ϵ ≤ 1. d-ary min-heaps (see Problem 6-2 on page 179) provide

a way to match the running times of Fibonacci-heap-based shortest-

path algorithms on ϵ-dense graphs without using as complicated a data

structure.

a. What are the asymptotic running times for the operations INSERT,

EXTRACT-MIN, and DECREASE-KEY, as a function of d and the

number n of elements in a d-ary min-heap? What are these running

times if you choose d = Θ(nπ) for some constant 0 < α ≤ 1? Compare

these running times to the amortized costs of these operations for a

Fibonacci heap.

b. Show how to compute shortest paths from a single source on an ϵ-

dense directed graph G = (V, E) with no negative-weight edges in

O(E) time. (Hint: Pick d as a function of ϵ.)
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c. Show how to solve the all-pairs shortest-paths problem on an ϵ-dense

directed graph G = (V, E) with no negative-weight edges in O(VE)

time.

d. Show how to solve the all-pairs shortest-paths problem in O(VE) time

on an ϵ-dense directed graph G = (V, E) that may have negative-

weight edges but has no negative-weight cycles.

Chapter notes

Lawler [276] has a good discussion of the all-pairs shortest-paths

problem. He attributes the matrix-multiplication algorithm to the

folklore. The Floyd-Warshall algorithm is due to Floyd [144], who

based it on a theorem of Warshall [450] that describes how to compute

the transitive closure of boolean matrices. Johnson’s algorithm is taken

from [238].

Several researchers have given improved algorithms for computing

shortest paths via matrix multiplication. Fredman [153] shows how to

solve the all-pairs shortest paths problem using O(V5/2) comparisons

between sums of edge weights and obtains an algorithm that runs in

O(V3lg lg V/lg V/1/3) time, which is slightly better than the running

time of the Floyd-Warshall algorithm. This bound has been improved

several times, and the fastest algorithm is now by Williams [457], with a

running time of .

Another line of research demonstrates how to apply algorithms for

fast matrix multiplication (see the chapter notes for Chapter 4) to the

all-pairs shortest paths problem. Let O(nω) be the running time of the

fastest algorithm for multiplying two n × n matrices. Galil and Margalit

[170, 171] and Seidel [403] designed algorithms that solve the all-pairs

shortest paths problem in undirected, unweighted graphs in (Vωp(V))

time, where p(n) denotes a particular function that is

polylogarithmically bounded in n. In dense graphs, these algorithms are

faster than the O(VE) time needed to perform |V| breadth-first searches.

Several researchers have extended these results to give algorithms for
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solving the all-pairs shortest paths problem in undirected graphs in

which the edge weights are integers in the range {1, 2, … , W}. The

asymptotically fastest such algorithm, by Shoshan and Zwick [410],

runs in O(W Vωp(V W)) time. In directed graphs, the best algorithm to

date is due to Zwick [467] and runs in Õ(W1/(4−ω)V2+1/(4−ω)) time.

Karger, Koller, and Phillips [244] and independently McGeoch [320]

have given a time bound that depends on E*, the set of edges in E that

participate in some shortest path. Given a graph with nonnegative edge

weights, their algorithms run in O(VE* + V2 lg V) time and improve

upon running Dijkstra’s algorithm |V| times when |E*| = o(E). Pettie

[355] uses an approach based on component hierarchies to achieve a

running time of O(VE + V2 lg lg V), and the same running time is also

achieved by Hagerup [205].

Baswana, Hariharan, and Sen [37] examined decremental

algorithms, which allow a sequence of intermixed edge deletions and

queries, for maintaining all-pairs shortest paths and transitive-closure

information. When a path exists, their randomized transitive-closure

algorithm can fail to report it with probability 1/nc for an arbitrary c >

0. The query times are O(1) with high probability. For transitive closure,

the amortized time for each update is O(V4/3 lg1/3V). By comparison,

Problem 23-1, in which edges are inserted, asks for an incremental

algorithm. For all-pairs shortest paths, the update times depend on the

queries. For queries just giving the shortest-path weights, the amortized

time per update is O(V3/E lg2V). To report the actual shortest path, the

amortized update time is min . Demetrescu and

Italiano [111] showed how to handle update and query operations when

edges are both inserted and deleted, as long as the range of edge weights

is bounded.

Aho, Hopcroft, and Ullman [5] defined an algebraic structure known

as a “closed semiring,” which serves as a general framework for solving

path problems in directed graphs. Both the Floyd-Warshall algorithm

and the transitive-closure algorithm from Section 23.2 are instantiations

of an all-pairs algorithm based on closed semirings. Maggs and Plotkin
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[309] showed how to find minimum spanning trees using a closed

semiring.

1 According to a report cited by U.S. Department of Transportation Federal Highway

Administration, “a reasonable ‘rule of thumb’ is one signalized intersection per 1,000

population.”

2 An algebraic semiring contains operations ⊕, which is commutative with identity I⊕, and ⊕,

with identity I⊕, where ⊕ distributes over ⊕ on both the left and right, and where I⊕⊕x =

x⊕I⊕ = I⊕ for all x. Standard matrix multiplication, as in MATRIX-MULTIPLY, uses the

semiring with + for ⊕, ⊕ for ⊕, 0 for I⊕, and 1 for I⊕. The procedure EXTEND-SHORTEST-

PATHS uses another semiring, known as the tropical semiring, with min for ⊕, + for ⊕, ∞ for

I⊕, and 0 for I⊕.
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24        Maximum Flow

Just as you can model a road map as a directed graph in order to find

the shortest path from one point to another, you can also interpret a

directed graph as a “flow network” and use it to answer questions about

material flows. Imagine a material coursing through a system from a

source, where the material is produced, to a sink, where it is consumed.

The source produces the material at some steady rate, and the sink

consumes the material at the same rate. The “flow” of the material at

any point in the system is intuitively the rate at which the material

moves. Flow networks can model many problems, including liquids

flowing through pipes, parts through assembly lines, current through

electrical networks, and information through communication networks.

You can think of each directed edge in a flow network as a conduit

for the material. Each conduit has a stated capacity, given as a

maximum rate at which the material can flow through the conduit, such

as 200 gallons of liquid per hour through a pipe or 20 amperes of

electrical current through a wire. Vertices are conduit junctions, and

other than the source and sink, material flows through the vertices

without collecting in them. In other words, the rate at which material

enters a vertex must equal the rate at which it leaves the vertex. We call

this property “flow conservation,” and it is equivalent to Kirchhoff’s

current law when the material is electrical current.

The goal of the maximum-flow problem is to compute the greatest

rate for shipping material from the source to the sink without violating

any capacity constraints. It is one of the simplest problems concerning

flow networks and, as we shall see in this chapter, this problem can be
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solved by efficient algorithms. Moreover, other network-flow problems

are solvable by adapting the basic techniques used in maximum-flow

algorithms.

This chapter presents two general methods for solving the

maximum-flow problem. Section 24.1 formalizes the notions of flow

networks and flows, formally defining the maximum-flow problem.

Section 24.2 describes the classical method of Ford and Fulkerson for

finding maximum flows. We finish up with a simple application of this

method, finding a maximum matching in an undirected bipartite graph,

in Section 24.3. (Section 25.1 will give a more efficient algorithm that is

specifically designed to find a maximum matching in a bipartite graph.)

24.1    Flow networks

This section gives a graph-theoretic definition of flow networks,

discusses their properties, and defines the maximum-flow problem

precisely. It also introduces some helpful notation.

Flow networks and flows

A flow network G = (V, E) is a directed graph in which each edge (u, v)
∈ E has a nonnegative capacity c(u, v) ≥ 0. We further require that if E
contains an edge (u, v), then there is no edge (v, u) in the reverse

direction. (We’ll see shortly how to work around this restriction.) If (u,

v) ∉ E, then for convenience we define c(u, v) = 0, and we disallow self-

loops. Each flow network contains two distinguished vertices: a source s
and a sink t. For convenience, we assume that each vertex lies on some

path from the source to the sink. That is, for each vertex v ∈ V, the flow

network contains a path s ⇝ v ⇝ t. Because each vertex other than s has

at least one entering edge, we have |E| ≥ |V | − 1. Figure 24.1 shows an

example of a flow network.
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Figure 24.1 (a) A flow network G = (V, E) for the Lucky Puck Company’s trucking problem.

The Vancouver factory is the source s, and the Winnipeg warehouse is the sink t. The company

ships pucks through intermediate cities, but only c(u, v) crates per day can go from city u to city

v. Each edge is labeled with its capacity. (b) A flow f in G with value |f | = 19. Each edge (u, v) is
labeled by f (u, v)/c(u, v). The slash notation merely separates the flow and capacity and does not

indicate division.

We are now ready to define flows more formally. Let G = (V, E) be a

flow network with a capacity function c. Let s be the source of the

network, and let t be the sink. A flow in G is a real-valued function f : V
× V → ℝ that satisfies the following two properties:

Capacity constraint: For all u, v ∈ V, we require

0 ≤ f(u, v) ≤ c(u, v).

The flow from one vertex to another must be nonnegative and must

not exceed the given capacity.

Flow conservation: For all u ∈ V − {s, t}, we require

The total flow into a vertex other than the source or sink must equal

the total flow out of that vertex—informally, “flow in equals flow

out.”

When (u, v) ∉ E, there can be no flow from u to v, and f (u, v) = 0.

We call the nonnegative quantity f (u, v) the flow from vertex u to

vertex v. The value |f | of a flow f is defined as
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that is, the total flow out of the source minus the flow into the source.

(Here, the |·| notation denotes flow value, not absolute value or

cardinality.) Typically, a flow network does not have any edges into the

source, and the flow into the source, given by the summation Σv∈V f(v,

s), is 0. We include it, however, because when we introduce residual

networks later in this chapter, the flow into the source can be positive. In

the maximum-flow problem, the input is a flow network G with source s
and sink t, and the goal is to find a flow of maximum value.

An example of flow

A flow network can model the trucking problem shown in Figure

24.1(a). The Lucky Puck Company has a factory (source s) in

Vancouver that manufactures hockey pucks, and it has a warehouse

(sink t) in Winnipeg that stocks them. Lucky Puck leases space on

trucks from another firm to ship the pucks from the factory to the

warehouse. Because the trucks travel over specified routes (edges)

between cities (vertices) and have a limited capacity, Lucky Puck can

ship at most c(u, v) crates per day between each pair of cities u and v in
Figure 24.1(a). Lucky Puck has no control over these routes and

capacities, and so the company cannot alter the flow network shown in

Figure 24.1(a). They need to determine the largest number p of crates

per day that they can ship and then to produce this amount, since there

is no point in producing more pucks than they can ship to their

warehouse. Lucky Puck is not concerned with how long it takes for a

given puck to get from the factory to the warehouse. They care only that

p crates per day leave the factory and p crates per day arrive at the

warehouse.
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Figure 24.2 Converting a network with antiparallel edges to an equivalent one with no

antiparallel edges. (a) A flow network containing both the edges (v1, v2) and (v2, v1). (b) An

equivalent network with no antiparallel edges. A new vertex v′ was added, and edge (v1, v2) was

replaced by the pair of edges (v1, v′) and (v′, v2), both with the same capacity as (v1, v2).

A flow in this network models the “flow” of shipments because the

number of crates shipped per day from one city to another is subject to

a capacity constraint. Additionally, the model must obey flow

conservation, for in a steady state, the rate at which pucks enter an

intermediate city must equal the rate at which they leave. Otherwise,

crates would accumulate at intermediate cities.

Modeling problems with antiparallel edges

Suppose that the trucking firm offers Lucky Puck the opportunity to

lease space for 10 crates in trucks going from Edmonton to Calgary. It

might seem natural to add this opportunity to our example and form

the network shown in Figure 24.2(a). This network suffers from one

problem, however: it violates the original assumption that if edge (v1,

v2) ∈ E, then (v2, v1) ∉ E. We call the two edges (v1, v2) and (v2, v1)

antiparallel. Thus, to model a flow problem with antiparallel edges, the

network must be transformed into an equivalent one containing no

antiparallel edges. Figure 24.2(b) displays this equivalent network. To

transform the network, choose one of the two antiparallel edges, in this

case (v1, v2), and split it by adding a new vertex v′ and replacing edge

(v1, v2) with the pair of edges (v1, v′) and (v′, v2). Also set the capacity

of both new edges to the capacity of the original edge. The resulting

network satisfies the property that if an edge belongs to the network, the
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reverse edge does not. As Exercise 24.1-1 asks you to prove, the

resulting network is equivalent to the original one.

Figure 24.3 Converting a multiple-source, multiple-sink maximum-flow problem into a problem

with a single source and a single sink. (a) A flow network with three sources S = {s1, s2, s3} and

two sinks T = {t1, t2}. (b) An equivalent single-source, single-sink flow network. Add a

supersource s and an edge with infinite capacity from s to each of the multiple sources. Also add

a supersink t and an edge with infinite capacity from each of the multiple sinks to t.

Networks with multiple sources and sinks

A maximum-flow problem may have several sources and sinks, rather

than just one of each. The Lucky Puck Company, for example, might

actually have a set of m factories {s1, s2, …, sm} and a set of n

warehouses {t1, t2, …, tn}, as shown in Figure 24.3(a). Fortunately, this

problem is no harder than ordinary maximum flow.

The problem of determining a maximum flow in a network with

multiple sources and multiple sinks reduces to an ordinary maximum-

flow problem. Figure 24.3(b) shows how to convert the network from (a)

to an ordinary flow network with only a single source and a single sink.

Add a supersource s and add a directed edge (s, si) with capacity c(s, si)

= ∞ for each i = 1, 2, …, m. Similarly, create a new supersink t and add a

directed edge (ti, t) with capacity c(ti, t) = ∞ for each i = 1, 2, …, n.

Intuitively, any flow in the network in (a) corresponds to a flow in the

network in (b), and vice versa. The single supersource s provides as

much flow as desired for the multiple sources si, and the single supersink
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t likewise consumes as much flow as desired for the multiple sinks ti.

Exercise 24.1-2 asks you to prove formally that the two problems are

equivalent.

Exercises

24.1-1

Show that splitting an edge in a flow network yields an equivalent

network. More formally, suppose that flow network G contains edge (u,

v), and define a new flow network G′ by creating a new vertex x and

replacing (u, v) by new edges (u, x) and (x, v) with c(u, x) = c(x, v) = c(u,

v). Show that a maximum flow in G′ has the same value as a maximum

flow in G.

24.1-2

Extend the flow properties and definitions to the multiple-source,

multiple-sink problem. Show that any flow in a multiple-source,

multiple-sink flow network corresponds to a flow of identical value in

the single-source, single-sink network obtained by adding a supersource

and a supersink, and vice versa.

24.1-3

Suppose that a flow network G = (V, E) violates the assumption that the

network contains a path s ⇝ v ⇝ t for all vertices v ∈ V. Let u be a

vertex for which there is no path s ⇝ u ⇝ t. Show that there must exist a

maximum flow f in G such that f (u, v) = f (v, u) = 0 for all vertices v ∈
V.

24.1-4

Let f be a flow in a network, and let α be a real number. The scalar flow

product, denoted αf, is a function from V × V to ℝ defined by

(αf)(u, v) = α · f (u, v).

Prove that the flows in a network form a convex set. That is, show that if

f1 and f2 are flows, then so is αf1 + (1 − α) f2 for all α in the range 0 ≤ α
≤ 1.
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24.1-5

State the maximum-flow problem as a linear-programming problem.

24.1-6

Professor Adam has two children who, unfortunately, dislike each other.

The problem is so severe that not only do they refuse to walk to school

together, but in fact each one refuses to walk on any block that the

other child has stepped on that day. The children have no problem with

their paths crossing at a corner. Fortunately both the professor’s house

and the school are on corners, but beyond that he is not sure if it is

going to be possible to send both of his children to the same school. The

professor has a map of his town. Show how to formulate the problem of

determining whether both his children can go to the same school as a

maximum-flow problem.

24.1-7

Suppose that, in addition to edge capacities, a flow network has vertex

capacities. That is each vertex v has a limit l(v) on how much flow can

pass through v. Show how to transform a flow network G = (V, E) with

vertex capacities into an equivalent flow network G′ = (V′, E′) without

vertex capacities, such that a maximum flow in G′ has the same value as

a maximum flow in G. How many vertices and edges does G′ have?

24.2    The Ford-Fulkerson method

This section presents the Ford-Fulkerson method for solving the

maximum-flow problem. We call it a “method” rather than an

“algorithm” because it encompasses several implementations with

differing running times. The Ford-Fulkerson method depends on three

important ideas that transcend the method and are relevant to many

flow algorithms and problems: residual networks, augmenting paths,

and cuts. These ideas are essential to the important max-flow min-cut

theorem (Theorem 24.6), which characterizes the value of a maximum

flow in terms of cuts of the flow network. We end this section by

presenting one specific implementation of the Ford-Fulkerson method

and analyzing its running time.

www.konkur.in

Telegram: @uni_k



The Ford-Fulkerson method iteratively increases the value of the

flow. It starts with f (u, v) = 0 for all u, v ∈ V, giving an initial flow of

value 0. Each iteration increases the flow value in G by finding an

“augmenting path” in an associated “residual network” Gf. The edges

of the augmenting path in Gf indicate on which edges in G to update the

flow in order to increase the flow value. Although each iteration of the

Ford-Fulkerson method increases the value of the flow, we’ll see that the

flow on any particular edge of G may increase or decrease. Although it

might seem counterintuitive to decrease the flow on an edge, doing so

may enable flow to increase on other edges, allowing more flow to travel

from the source to the sink. The Ford-Fulkerson method, given in the

procedure FORD-FULKERSON-METHOD, repeatedly augments the

flow until the residual network has no more augmenting paths. The

max-flow min-cut theorem shows that upon termination, this process

yields a maximum flow.

FORD-FULKERSON-METHOD (G, s, t)

1 initialize flow f to 0

2 while there exists an augmenting path p in the residual network Gf
3 augment flow f along p
4 return f

In order to implement and analyze the Ford-Fulkerson method, we

need to introduce several additional concepts.

Residual networks

Intuitively, given a flow network G and a flow f, the residual network Gf
consists of edges whose capacities represent how the flow can change on

edges of G. An edge of the flow network can admit an amount of

additional flow equal to the edge’s capacity minus the flow on that edge.

If that value is positive, that edge goes into Gf with a “residual capacity”

of cf (u, v) = c(u, v) − f (u, v). The only edges of G that belong to Gf are
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those that can admit more flow. Those edges (u, v) whose flow equals

their capacity have cf (u, v) = 0, and they do not belong to Gf.

You might be surprised that the residual network Gf can also contain

edges that are not in G. As an algorithm manipulates the flow, with the

goal of increasing the total flow, it might need to decrease the flow on a

particular edge in order to increase the flow elsewhere. In order to

represent a possible decrease in the positive flow f (u, v) on an edge in G,

the residual network Gf contains an edge (v, u) with residual capacity cf
(v, u) = f (u, v)—that is, an edge that can admit flow in the opposite

direction to (u, v), at most canceling out the flow on (u, v). These reverse

edges in the residual network allow an algorithm to send back flow it

has already sent along an edge. Sending flow back along an edge is

equivalent to decreasing the flow on the edge, which is a necessary

operation in many algorithms.

More formally, for a flow network G = (V, E) with source s, sink t,
and a flow f, consider a pair of vertices u, v ∈ V. We define the residual

capacity cf (u, v) by

In a flow network, (u, v) ∈ E implies (v, u) ∉ E, and so exactly one case

in equation (24.2) applies to each ordered pair of vertices.

As an example of equation (24.2), if c(u, v) = 16 and f (u, v) = 11,

then f (u, v) can increase by up to cf (u, v) = 5 units before exceeding the

capacity constraint on edge (u, v). Alternatively, up to 11 units of flow

can return from v to u, so that cf (v, u) = 11.

Given a flow network G = (V, E) and a flow f, the residual network of

G induced by f is Gf = (V, Ef), where
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Figure 24.4 (a) The flow network G and flow f of Figure 24.1(b). (b) The residual network Gf
with augmenting path p, having residual capacity cf (p) = cf (v2, v3) = 4, in blue. Edges with

residual capacity equal to 0, such as (v1, v3), are not shown, a convention we follow in the

remainder of this section. (c) The flow in G that results from augmenting along path p by its

residual capacity 4. Edges carrying no flow, such as (v3, v2), are labeled only by their capacity,

another convention we follow throughout. (d) The residual network induced by the flow in (c).

That is, as promised above, each edge of the residual network, or

residual edge, can admit a flow that is greater than 0. Figure 24.4(a)

repeats the flow network G and flow f of Figure 24.1(b), and Figure

24.4(b) shows the corresponding residual network Gf. The edges in Ef
are either edges in E or their reversals, and thus

|Ef| ≤ 2 |E|.

Observe that the residual network Gf is similar to a flow network

with capacities given by cf. It does not satisfy the definition of a flow

network, however, because it could contain antiparallel edges. Other

than this difference, a residual network has the same properties as a flow

network, and we can define a flow in the residual network as one that

satisfies the definition of a flow, but with respect to capacities cf in the

residual network Gf.

A flow in a residual network provides a roadmap for adding flow to

the original flow network. If f is a flow in G and f′ is a flow in the
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corresponding residual network Gf, we define f ↑ f′, the augmentation of

flow f by f ′, to be a function from V × V to ℝ, defined by

The intuition behind this definition follows the definition of the

residual network. The flow on (u, v) increases by f ′(u, v), but decreases

by f ′(v, u) because pushing flow on the reverse edge in the residual

network signifies decreasing the flow in the original network. Pushing

flow on the reverse edge in the residual network is also known as

cancellation. For example, suppose that 5 crates of hockey pucks go

from u to v and 2 crates go from v to u. That is equivalent (from the

perspective of the final result) to sending 3 crates from u to v and none

from v to u. Cancellation of this type is crucial for any maximum-flow

algorithm.

The following lemma shows that augmenting a flow in G by a flow in

Gf yields a new flow in G with a greater flow value.

Lemma 24.1

Let G = (V, E) be a flow network with source s and sink t, and let f be a

flow in G. Let Gf be the residual network of G induced by f, and let f ′ be

a flow in Gf. Then the function f ↑ f ′ defined in equation (24.4) is a flow

in G with value |f ↑ f ′| = |f | + |f ′|.

Proof   We first verify that f ↑ f ′ obeys the capacity constraint for each

edge in E and flow conservation at each vertex in V − {s, t}.

For the capacity constraint, first observe that if (u, v) ∈ E, then cf (v,

u) = f (u, v). Because f ′ is a flow in Gf, we have f ′(v, u) ≤ cf (v, u), which

gives f ′(v, u) ≤ f (u, v). Therefore,

(f ↑ f′)(u, v) = f (u, v) + f ′(u, v) − f ′(v, u) (by equation (24.4))

≥ f (u, v) + f ′(u, v) − f (u, v) (because f ′(v, u) ≤ f (u, v))

= f ′(u, v)

≥ 0.
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In addition,

(f ↑ f′)(u, v)

= f (u, v) + f ′(u, v) − f ′(v, u) (by equation (24.4))

≤ f (u, v) + f ′(u, v) (because flows are nonnegative)

≤ f (u, v) + cf (u, v) (capacity constraint)

= f (u, v) + c(u, v) − f (u, v) (definition of cf)

= c(u, v).

To show that flow conservation holds and that |f ↑ f ′| = |f | + |f ′|, we

first prove the claim that for all u ∈ V, we have

Because we disallow antiparallel edges in G (but not in Gf), we know

that for each vertex u, there can be an edge (u, v) or (v, u) in G, but never

both. For a fixed vertex u, define Vl(u) = {v : (u, v) ∈ E} to be the set of

vertices with edges in G leaving u, and define Ve(u) = {v : (v, u) ∈ E} to

be the set of vertices with edges in G entering u. We have Vl(u) ∪ Ve(u)

⊆ V and, because G contains no antiparallel edges, Vl(u) ∩ Ve(u) = ∅.

By the definition of flow augmentation in equation (24.4), only vertices

v in Vl(u) can have positive (f ↑ f′)(u, v), and only vertices v in Ve(u) can

have positive (f ↑ f ′)(v, u). Starting from the left-hand side of equation

(24.5), we use this fact and then reorder and group terms, giving
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In equation (24.6), all four summations can extend to sum over V, since

each additional term has value 0. (Exercise 24.2-1 asks you to prove this

formally.) Taking all four summations over V, instead of just subsets of

V, proves the claim in equation (24.5).

Now we are ready to prove flow conservation for f ↑ f ′ and that |f ↑ f′|
= | f | + |f ′|. For the latter property, let u = s in equation (24.5). Then, we

have

For flow conservation, observe that for any vertex u that is neither s nor

t, flow conservation for f and f ′ means that the right-hand side of

equation (24.5) is 0, and thus Σv∈V (f ↑ f′)(u, v) = Σv∈V (f ↑ f′)(v, u).

▪

Augmenting paths

Given a flow network G = (V, E) and a flow f, an augmenting path p is a

simple path from s to t in the residual network Gf. By the definition of

the residual network, the flow on an edge (u, v) of an augmenting path
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may increase by up to cf (u, v) without violating the capacity constraint

on whichever of (u, v) and (v, u) belongs to the original flow network G.

The blue path in Figure 24.4(b) is an augmenting path. Treating the

residual network Gf in the figure as a flow network, the flow through

each edge of this path can increase by up to 4 units without violating a

capacity constraint, since the smallest residual capacity on this path is cf
(v2, v3) = 4. We call the maximum amount by which we can increase the

flow on each edge in an augmenting path p the residual capacity of p,

given by

cf (p) = min {cf (u, v) : (u, v) is in p}.

The following lemma, which Exercise 24.2-7 asks you to prove, makes

the above argument more precise.

Lemma 24.2

Let G = (V, E) be a flow network, let f be a flow in G, and let p be an

augmenting path in Gf. Define a function fp : V × V → ℝ by

Then, fp is a flow in Gf with value |fp| = cf (p) > 0.

▪

The following corollary shows that augmenting f by fp produces

another flow in G whose value is closer to the maximum. Figure 24.4(c)

shows the result of augmenting the flow f from Figure 24.4(a) by the

flow fp in Figure 24.4(b), and Figure 24.4(d) shows the ensuing residual

network.

Corollary 24.3

Let G = (V, E) be a flow network, let f be a flow in G, and let p be an

augmenting path in Gf. Let fp be defined as in equation (24.7), and

suppose that f is augmented by fp. Then the function f ↑ fp is a flow in G

with value |f ↑ fp| = |f| + |fp| > |f|.
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Proof   Immediate from Lemmas 24.1 and 24.2.

▪

Cuts of flow networks

The Ford-Fulkerson method repeatedly augments the flow along

augmenting paths until it has found a maximum flow. How do we know

that when the algorithm terminates, it has actually found a maximum

flow? The max-flow min-cut theorem, which we will prove shortly, tells

us that a flow is maximum if and only if its residual network contains no

augmenting path. To prove this theorem, though, we must first explore

the notion of a cut of a flow network.

A cut (S, T) of flow network G = (V, E) is a partition of V into S and

T = V − S such that s ∈ S and t ∈ T. (This definition is similar to the

definition of “cut” that we used for minimum spanning trees in Chapter

21, except that here we are cutting a directed graph rather than an

undirected graph, and we insist that s ∈ S and t ∈ T.) If f is a flow, then

the net flow f(S, T) across the cut (S, T) is defined to be

The capacity of the cut (S, T) is

A minimum cut of a network is a cut whose capacity is minimum over all

cuts of the network.

You probably noticed that the definitions of flow across a cut and

capacity of a cut differ in that flow counts edges going in both directions

across the cut, but capacity counts only edges going from the source

side of the cut toward the sink side. This asymmetry is intentional and

important. The reason for this difference will become apparent later in

this section.

Figure 24.5 shows the cut ({s, v1, v2}, {v3, v4, t}) in the flow network

of Figure 24.1(b). The net flow across this cut is

f (v1, v3) + f (v2, v4) − f (v3, v2) = 12 + 11 − 4
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= 19,

and the capacity of this cut is

Figure 24.5 A cut (S, T) in the flow network of Figure 24.1(b), where S = {s, v1, v2} and T =

{v3, v4, t}. The vertices in S are orange, and the vertices in T are tan. The net flow across (S, T)

is f (S, T) = 19, and the capacity is c(S, T) = 26.

c(v1, v3) + c(v2, v4) = 12 + 14

= 26.

The following lemma shows that, for a given flow f, the net flow

across any cut is the same, and it equals |f|, the value of the flow.

Lemma 24.4

Let f be a flow in a flow network G with source s and sink t, and let (S,

T) be any cut of G. Then the net flow across (S, T) is f (S, T) =| f|.

Proof      For any vertex u ∈ V − {s, t}, rewrite the flow-conservation

condition as

Taking the definition of| f| from equation (24.1) and adding the left-

hand side of equation (24.10), which equals 0, summed over all vertices

in S − {s}, gives

Expanding the right-hand summation and regrouping terms yields
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Because V = S ∪ T and S ∩ T = ∅, splitting each summation over V
into summations over S and T gives

The two summations within the parentheses are actually the same, since

for all vertices x, y ∈ S, the term f (x, y) appears once in each

summation. Hence, these summations cancel, yielding

▪

A corollary to Lemma 24.4 shows how cut capacities bound the

value of a flow.

Corollary 24.5

The value of any flow f in a flow network G is bounded from above by

the capacity of any cut of G.

Proof   Let (S, T) be any cut of G and let f be any flow. By Lemma 24.4

and the capacity constraint,
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▪

Corollary 24.5 yields the immediate consequence that the value of a

maximum flow in a network is bounded from above by the capacity of a

minimum cut of the network. The important max-flow min-cut

theorem, which we now state and prove, says that the value of a

maximum flow is in fact equal to the capacity of a minimum cut.

Theorem 24.6 (Max-flow min-cut theorem)

If f is a flow in a flow network G = (V, E) with source s and sink t, then

the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. |f| = c(S, T) for some cut (S, T) of G.

Proof      (1) ⇒ (2): Suppose for the sake of contradiction that f is a

maximum flow in G but that Gf has an augmenting path p. Then, by

Corollary 24.3, the flow found by augmenting f by fp, where fp is given

by equation (24.7), is a flow in G with value strictly greater than |f|,
contradicting the assumption that f is a maximum flow.

(2) ⇒ (3): Suppose that Gf has no augmenting path, that is, that Gf
contains no path from s to t. Define

S = {v ∈ V : there exists a path from s to v in Gf }

and T = V − S. The partition (S, T) is a cut: we have s ∈ S trivially and

t ∉ S because there is no path from s to t in Gf. Now consider a pair of

vertices u ∈ S and v ∈ T. If (u, v) ∈ E, we must have f (u, v) = c(u, v),
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since otherwise (u, v) ∈ Ef, which would place v in set S. If (v, u) ∈ E,

we must have f (v, u) = 0, because otherwise cf (u, v) = f (v, u) would be

positive and we would have (u, v) ∈ Ef, which again would place v in S.

Of course, if neither (u, v) nor (v, u) belongs to E, then f (u, v) = f (v, u)

= 0. We thus have

By Lemma 24.4, therefore, |f| = f (S, T) = c(S, T).

(3) ⇒ (1): By Corollary 24.5, |f| ≤ c(S, T) for all cuts (S, T). The

condition |f| = c(S, T) thus implies that f is a maximum flow.

▪

The basic Ford-Fulkerson algorithm

Each iteration of the Ford-Fulkerson method finds some augmenting

path p and uses p to modify the flow f. As Lemma 24.2 and Corollary

24.3 suggest, replacing f by f ↑ fp produces a new flow whose value is |f|

+ |fp|. The procedure FORD-FULKERSON on the next page

implements the method by updating the flow attribute (u, v).f for each

edge (u, v) ∈ E.1 It assumes implicitly that (u, v).f = 0 if (u, v) ∉ E. The

procedure also assumes that the capacities c(u, v) come with the flow

network, and that c(u, v) = 0 if (u, v) ∉ E. The procedure computes the

residual capacity cf (u, v) in accordance with the formula (24.2). The

expression cf (p) in the code is just a temporary variable that stores the

residual capacity of the path p.

FORD-FULKERSON (G, s, t)

1 for each edge (u, v) ∈ G.E
2 (u, v).f = 0

3 while there exists a path p from s to t in the residual network Gf
4 cf (p) = min {cf (u, v) : (u, v) is in p}
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5 for each edge (u, v) in p
6 if (u, v) ∈ G.E
7 (u, v).f = (u, v).f + cf (p)

8 else (v, u).f = (v, u).f − cf (p)

9 return f

The FORD-FULKERSON procedure simply expands on the

FORD-FULKERSON-METHOD pseudocode given earlier. Figure

24.6 shows the result of each iteration in a sample run. Lines 1–2

initialize the flow f to 0. The while loop of lines 3–8 repeatedly finds an

augmenting path p in Gf and augments flow f along p by the residual

capacity cf (p). Each residual edge in path p is either an edge in the

original network or the reversal of an edge in the original network.

Lines 6–8 update the flow in each case appropriately, adding flow when

the residual edge is an original edge and subtracting it otherwise. When

no augmenting paths exist, the flow f is a maximum flow.

Analysis of Ford-Fulkerson

The running time of FORD-FULKERSON depends on the

augmenting path p and how it’s found in line 3. If the edge capacities are

irrational numbers, it’s possible to choose the augmenting path so that

the algorithm never terminates: the value of the flow increases with

successive augmentations, but never converges to the maximum flow

value. The good news is that if the algorithm finds the augmenting path

by using a breadth-first search (which we saw in Section 20.2), it runs in

polynomial time. Before proving this result, we obtain a simple bound

for the case in which all capacities are integers and the algorithm finds

any augmenting path.
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Figure 24.6 The execution of the basic Ford-Fulkerson algorithm. (a)–(e) Successive iterations of

the while loop. The left side of each part shows the residual network Gf from line 3 with a blue

augmenting path p. The right side of each part shows the new flow f that results from

augmenting f by fp. The residual network in (a) is the input flow network G. (f) The residual

network at the last while loop test. It has no augmenting paths, and the flow f shown in (e) is

therefore a maximum flow. The value of the maximum flow found is 23.
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Figure 24.7 (a) A flow network for which FORD-FULKERSON can take Θ(E | f*|) time, where

f* is a maximum flow, shown here with |f*| = 2,000,000. The blue path is an augmenting path

with residual capacity 1. (b) The resulting residual network, with another augmenting path

whose residual capacity is 1. (c) The resulting residual network.

In practice, the maximum-flow problem often arises with integer

capacities. If the capacities are rational numbers, an appropriate scaling

transformation can make them all integers. If f* denotes a maximum

flow in the transformed network, then a straightforward implementation

of FORD-FULKERSON executes the while loop of lines 3–8 at most

|f*| times, since the flow value increases by at least 1 unit in each

iteration.

A good implementation should perform the work done within the

while loop efficiently. It should represent the flow network G = (V, E)

with the right data structure and find an augmenting path by a linear-

time algorithm. Let’s assume that the implementation keeps a data

structure corresponding to a directed graph G′ = (V, E′), where E′ = {(u,

v) : (u, v) ∈ E or (v, u) ∈ E}. Edges in the network G are also edges in

G′, making it straightforward to maintain capacities and flows in this

data structure. Given a flow f on G, the edges in the residual network Gf
consist of all edges (u, v) of G′ such that cf (u, v) > 0, where cf conforms

to equation (24.2). The time to find a path in a residual network is

therefore O(V + E′) = O(E) using either depth-first search or breadth-

first search. Each iteration of the while loop thus takes O(E) time, as

does the initialization in lines 1–2, making the total running time of the

FORD-FULKERSON algorithm O(E |f*|).

When the capacities are integers and the optimal flow value |f*| is

small, the running time of the Ford-Fulkerson algorithm is good.

Figure 24.7(a) shows an example of what can happen on a simple flow
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network for which |f*| is large. A maximum flow in this network has

value 2,000,000: 1,000,000 units of flow traverse the path s → u → t, and

another 1,000,000 units traverse the path s → v → t. If the first

augmenting path found by FORD-FULKERSON is s → u → v → t,
shown in Figure 24.7(a), the flow has value 1 after the first iteration.

The resulting residual network appears in Figure 24.7(b). If the second

iteration finds the augmenting path s → v → u → t, as shown in Figure

24.7(b), the flow then has value 2. Figure 24.7(c) shows the resulting

residual network. If the algorithm continues alternately choosing the

augmenting paths s → u → v → t and s → v → u → t, it performs a total

of 2,000,000 augmentations, increasing the flow value by only 1 unit in

each.

The Edmonds-Karp algorithm

In the example of Figure 24.7, the algorithm never chooses the

augmenting path with the fewest edges. It should have. By using

breadth-first search to find an augmenting path in the residual network,

the algorithm runs in polynomial time, independent of the maximum

flow value. We call the Ford-Fulkerson method so implemented the

Edmonds-Karp algorithm.

Let’s now prove that the Edmonds-Karp algorithm runs in O(VE2)

time. The analysis depends on the distances to vertices in the residual

network Gf. The notation δf (u, v) denotes the shortest-path distance

from u to v in Gf, where each edge has unit distance.

Lemma 24.7

If the Edmonds-Karp algorithm is run on a flow network G = (V, E)

with source s and sink t, then for all vertices v ∈ V − {s, t}, the shortest-

path distance δf (s, v) in the residual network Gf increases

monotonically with each flow augmentation.

Proof     We’ll suppose that a flow augmentation occurs that causes the

shortest-path distance from s to some vertex v ∈ V − {s, t} to decrease

and then derive a contradiction. Let f be the flow just before an

augmentation that decreases some shortest-path distance, and let f′ be
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the flow just afterward. Let v be a vertex with the minimum δf′ (s, v)

whose distance was decreased by the augmentation, so that δf′ (s, v) < δf
(s, v). Let p = s ⇝ u → v be a shortest path from s to v in Gf′, so that (u,

v) ∈ Ef′ and

Because of how we chose v, we know that the distance of vertex u from

the source s did not decrease, that is,

We claim that (u, v) ∉ Ef. Why? If we have (u, v) ∈ Ef, then we also

have

δf (s, v) ≤ δf (s, u) + 1 (by Lemma 22.10, the triangle inequality)

≤ δf′ (s, u) + 1 (by inequality (24.12))

= δf′ (s, v) (by equation (24.11)),

which contradicts our assumption that δf′ (s, v) < δf (s, v).
How can we have (u, v) ∉ Ef and (u, v) ∈ Ef′? The augmentation

must have increased the flow from v to u, so that edge (v, u) was in the

augmenting path. The augmenting path was a shortest path from s to t
in Gf, and since any subpath of a shortest path is itself a shortest path,

this augmenting path includes a shortest path from s to u in Gf that has

(v, u) as its last edge. Therefore,

δf (s, v) = δf (s, u) − 1

≤ δf′ (s, u) − 1 (by inequality (24.12))

= δf′ (s, v) − 2 (by equation (24.11)),

so that δf′ (s, v) > δf (s, v), contradicting our assumption that δf′ (s, v) <
δf (s, v). We conclude that our assumption that such a vertex v exists is

incorrect.

▪
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The next theorem bounds the number of iterations of the Edmonds-

Karp algorithm.

Theorem 24.8

If the Edmonds-Karp algorithm is run on a flow network G = (V, E)

with source s and sink t, then the total number of flow augmentations

performed by the algorithm is O(VE).

Proof   We say that an edge (u, v) in a residual network Gf is critical on

an augmenting path p if the residual capacity of p is the residual

capacity of (u, v), that is, if cf (p) = cf (u, v). After flow is augmented

along an augmenting path, any critical edge on the path disappears

from the residual network. Moreover, at least one edge on any

augmenting path must be critical. We’ll show that each of the |E| edges

can become critical at most |V|/2 times.

Let u and v be vertices in V that are connected by an edge in E. Since

augmenting paths are shortest paths, when (u, v) is critical for the first

time, we have

δf (s, v) = δf (s, u) + 1.

Once the flow is augmented, the edge (u, v) disappears from the residual

network. It cannot reappear later on another augmenting path until

after the flow from u to v is decreased, which occurs only if (v, u)

appears on an augmenting path. If f ′ is the flow in G when this event

occurs, then we have

δf′ (s, u) = δf′ (s, v) + 1.

Since δf (s, v) ≤ δf′ (s, v) by Lemma 24.7, we have

δf′ (s, u) = δf′ (s, v) + 1

≥ δf (s, v) + 1

= δf (s, u) + 2.

Consequently, from the time (u, v) becomes critical to the time when

it next becomes critical, the distance of u from the source increases by at
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least 2. The distance of u from the source is initially at least 0. Because

edge (u, v) is on an augmenting path, and augmenting paths end at t, we

know that u cannot be t, so that in any residual network that has a path

from s to u, the shortest such path has at most |V| − 2 edges. Thus, after

the first time that (u, v) becomes critical, it can become critical at most

(|V| − 2)/2 = |V|/2 − 1 times more, for a total of at most |V|/2 times. Since

there are O(E) pairs of vertices that can have an edge between them in a

residual network, the total number of critical edges during the entire

execution of the Edmonds-Karp algorithm is O(VE). Each augmenting

path has at least one critical edge, and hence the theorem follows.

▪

Because each iteration of FORD-FULKERSON takes O(E) time

when it uses breadth-first search to find the augmenting path, the total

running time of the Edmonds-Karp algorithm is O(VE2).

Exercises

24.2-1

Prove that the summations in equation (24.6) equal the summations on

the right-hand side of equation (24.5).

24.2-2

In Figure 24.1(b), what is the net flow across the cut ({s, v2, v4}, {v1, v3,

t})? What is the capacity of this cut?

24.2-3

Show the execution of the Edmonds-Karp algorithm on the flow

network of Figure 24.1(a).

24.2-4

In the example of Figure 24.6, what is the minimum cut corresponding

to the maximum flow shown? Of the augmenting paths appearing in the

example, which one cancels flow?

24.2-5
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The construction in Section 24.1 to convert a flow network with

multiple sources and sinks into a single-source, single-sink network adds

edges with infinite capacity. Prove that any flow in the resulting network

has a finite value if the edges of the original network with multiple

sources and sinks have finite capacity.

24.2-6

Suppose that each source si in a flow network with multiple sources and

sinks produces exactly pi units of flow, so that Σv∈V  f (si, v) = pi.

Suppose also that each sink tj consumes exactly qj units, so that Σv∈V f

(v, tj) = qj, where Σi pi = Σj qj. Show how to convert the problem of

finding a flow f that obeys these additional constraints into the problem

of finding a maximum flow in a single-source, single-sink flow network.

24.2-7

Prove Lemma 24.2.

24.2-8

Suppose that we redefine the residual network to disallow edges into s.
Argue that the procedure FORD-FULKERSON still correctly

computes a maximum flow.

24.2-9

Suppose that both f and f ′ are flows in a flow network. Does the

augmented flow f ↑ f ′ satisfy the flow conservation property? Does it

satisfy the capacity constraint?

24.2-10

Show how to find a maximum flow in a flow network G = (V, E) by a

sequence of at most |E| augmenting paths. (Hint: Determine the paths

after finding the maximum flow.)

24.2-11

The edge connectivity of an undirected graph is the minimum number k
of edges that must be removed to disconnect the graph. For example,

the edge connectivity of a tree is 1, and the edge connectivity of a cyclic

chain of vertices is 2. Show how to determine the edge connectivity of
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an undirected graph G = (V, E) by running a maximum-flow algorithm

on at most |V| flow networks, each having O(V + E) vertices and O(E)

edges.

24.2-12

You are given a flow network G, where G contains edges entering the

source s. Let f be a flow in G with |f| ≥ 0 in which one of the edges (v, s)
entering the source has f (v, s) = 1. Prove that there must exist another

flow f ′ with f ′(v, s) = 0 such that |f| = |f′|. Give an O(E)-time algorithm

to compute f′, given f and assuming that all edge capacities are integers.

24.2-13

Suppose that you wish to find, among all minimum cuts in a flow

network G with integer capacities, one that contains the smallest

number of edges. Show how to modify the capacities of G to create a

new flow network G′ in which any minimum cut in G′ is a minimum cut

with the smallest number of edges in G.

24.3    Maximum bipartite matching

Some combinatorial problems can be cast as maximum-flow problems,

such as the multiple-source, multiple-sink maximum-flow problem from

Section 24.1. Other combinatorial problems seem on the surface to have

little to do with flow networks, but they can in fact be reduced to

maximum-flow problems. This section presents one such problem:

finding a maximum matching in a bipartite graph. In order to solve this

problem, we’ll take advantage of an integrality property provided by the

Ford-Fulkerson method. We’ll also see how to use the Ford-Fulkerson

method to solve the maximum-bipartite-matching problem on a graph

G = (V, E) in O(VE) time. Section 25.1 will present an algorithm

specifically designed to solve this problem.

The maximum-bipartite-matching problem

Given an undirected graph G = (V, E), a matching is a subset of edges

M ⊆ E such that for all vertices v ∈ V, at most one edge of M is
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incident on v. We say that a vertex v ∈ V is matched by the matching M
if some edge in M is incident on v, and otherwise, v is unmatched. A

maximum matching is a matching of maximum cardinality, that is, a

matching M such that for any matching M′, we have |M| ≥ |M′|. In this

section, we restrict our attention to finding maximum matchings in

bipartite graphs: graphs in which the vertex set can be partitioned into

V = L ∪ R, where L and R are disjoint and all edges in E go between L
and R. We further assume that every vertex in V has at least one

incident edge. Figure 24.8 illustrates the notion of a matching in a

bipartite graph.

The problem of finding a maximum matching in a bipartite graph

has many practical applications. As an example, consider matching a set

L of machines with a set R of tasks to be performed simultaneously. An

edge (u, v) in E signifies that a particular machine u ∈ L is capable of

performing a particular task v ∈ R. A maximum matching provides

work for as many machines as possible.

Figure 24.8 A bipartite graph G = (V, E) with vertex partition V = L ∪ R. (a) A matching with

cardinality 2, indicated by blue edges. (b) A maximum matching with cardinality 3. (c) The

corresponding flow network G′ with a maximum flow shown. Each edge has unit capacity. Blue

edges have a flow of 1, and all other edges carry no flow. The blue edges from L to R correspond

to those in the maximum matching from (b).

Finding a maximum bipartite matching

The Ford-Fulkerson method provides a basis for finding a maximum

matching in an undirected bipartite graph G = (V, E) in time

www.konkur.in

Telegram: @uni_k



polynomial in |V| and |E|. The trick is to construct a flow network in

which flows correspond to matchings, as shown in Figure 24.8(c). We

define the corresponding flow network G′ = (V′, E′) for the bipartite

graph G as follows. Let the source s and sink t be new vertices not in V,

and let V′ = V ∪ {s, t}. If the vertex partition of G is V = L ∪ R, the

directed edges of G′ are the edges of E, directed from L to R, along with

|V | new directed edges:

E′ = {(s, u) : u ∈ L}

∪ {(u, v) : u ∈ L, v ∈ R, and (u, v) ∈ E}

∪ {(v, t) : v ∈ R}.

To complete the construction, assign unit capacity to each edge in E′.
Since each vertex in V has at least one incident edge, |E| ≥ |V|/2. Thus, |E|

≤ |E′| = |E| + |V| ≤ 3 |E|, and so |E′| = Θ(E).

The following lemma shows that a matching in G corresponds

directly to a flow in G’s corresponding flow network G′. We say that a

flow f on a flow network G = (V, E) is integer-valued if f (u, v) is an

integer for all (u, v) ∈ V × V.

Lemma 24.9

Let G = (V, E) be a bipartite graph with vertex partition V = L ∪ R,

and let G′ = (V′, E′) be its corresponding flow network. If M is a

matching in G, then there is an integer-valued flow f in G′ with value |f|
= |M|. Conversely, if f is an integer-valued flow in G′, then there is a

matching M in G with cardinality |M| = |f| consisting of edges (u, v) ∈ E
such that f (u, v) > 0.

Proof   We first show that a matching M in G corresponds to an integer-

valued flow f in G′. Define f as follows. If (u, v) ∈ M, then f (s, u) = f (u,

v) = f (v, t) = 1. For all other edges (u, v) ∈ E′, define f (u, v) = 0. It is

simple to verify that f satisfies the capacity constraint and flow

conservation.

Intuitively, each edge (u, v) ∈ M corresponds to 1 unit of flow in G′
that traverses the path s → u → v → t. Moreover, the paths induced by

edges in M are vertex-disjoint, except for s and t. The net flow across cut
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(L ∪ {s}, R ∪ {t}) is equal to |M|, and thus, by Lemma 24.4, the value

of the flow is |f| = |M|.

To prove the converse, let f be an integer-valued flow in G′ and, as in

the statement of the lemma, let

M = {(u, v) : u ∈ L, v ∈ R, and f (u, v) > 0}.

Each vertex u ∈ L has only one entering edge, namely (s, u), and its

capacity is 1. Thus, each u ∈ L has at most 1 unit of flow entering it,

and if 1 unit of flow does enter, by flow conservation, 1 unit of flow must

leave. Furthermore, since the flow f is integer-valued, for each u ∈ L, the

1 unit of flow can enter on at most one edge and can leave on at most

one edge. Thus, 1 unit of flow enters u if and only if there is exactly one

vertex v ∈ R such that f (u, v) = 1, and at most one edge leaving each u
∈ L carries positive flow. A symmetric argument applies to each v ∈ R.

The set M is therefore a matching.

To see that |M| = |f|, observe that of the edges (u, v) ∈ E′ such that u
∈ L and v ∈ R,

Consequently, f (L ∪ {s}, R ∪ {t}), the net flow across cut (L ∪ {s}, R ∪

{t}), is equal to |M|. Lemma 24.4 gives that |f| = f (L ∪ {s}, R ∪ {t}) =

|M|.

▪

Based on Lemma 24.9, we would like to conclude that a maximum

matching in a bipartite graph G corresponds to a maximum flow in its

corresponding flow network G′, and therefore running a maximum-flow

algorithm on G′ provides a maximum matching in G. The only hitch in

this reasoning is that the maximum-flow algorithm might return a flow

in G′ for which some f (u, v) is not an integer, even though the flow value

|f| must be an integer. The following theorem shows that the Ford-

Fulkerson method cannot produce a solution with this problem.

Theorem 24.10 (Integrality theorem)
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If the capacity function c takes on only integer values, then the

maximum flow f produced by the Ford-Fulkerson method has the

property that |f| is an integer. Moreover, for all vertices u and v, the

value of f (u, v) is an integer.

Proof     Exercise 24.3-2 asks you to provide the proof by induction on

the number of iterations.

▪

We can now prove the following corollary to Lemma 24.9.

Corollary 24.11

The cardinality of a maximum matching M in a bipartite graph G
equals the value of a maximum flow f in its corresponding flow network

G′.

Proof   We use the nomenclature from Lemma 24.9. Suppose that M is a

maximum matching in G and that the corresponding flow f in G′ is not

maximum. Then there is a maximum flow f′ in G′ such that |f′| > |f|.
Since the capacities in G′ are integer-valued, by Theorem 24.10, we can

assume that f′ is integer-valued. Thus, f′ corresponds to a matching M′
in G with cardinality |M′| = |f′| > |f| = |M|, contradicting our assumption

that M is a maximum matching. In a similar manner, we can show that

if f is a maximum flow in G′, its corresponding matching is a maximum

matching on G.

▪

Thus, to find a maximum matching in a bipartite undirected graph

G, create the flow network G′, run the Ford-Fulkerson method on G′,
and convert the integer-valued maximum flow found into a maximum

matching for G. Since any matching in a bipartite graph has cardinality

at most min {|L|, |R|} = O(V), the value of the maximum flow in G′ is
O(V). Therefore, finding a maximum matching in a bipartite graph

takes O(VE′) = O(VE) time, since |E′| = Θ(E).

Exercises

24.3-1
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Run the Ford-Fulkerson algorithm on the flow network in Figure

24.8(c) and show the residual network after each flow augmentation.

Number the vertices in L top to bottom from 1 to 5 and in R top to

bottom from 6 to 9. For each iteration, pick the augmenting path that is

lexicographically smallest.

24.3-2

Prove Theorem 24.10. Use induction on the number of iterations of the

Ford-Fulkerson method.

24.3-3

Let G = (V, E) be a bipartite graph with vertex partition V = L ∪ R,

and let G′ be its corresponding flow network. Give a good upper bound

on the length of any augmenting path found in G′ during the execution

of FORD-FULKERSON.

Problems

24-1     Escape problem

An n×n grid is an undirected graph consisting of n rows and n columns

of vertices, as shown in Figure 24.9. We denote the vertex in the ith row

and the j th column by (i, j). All vertices in a grid have exactly four

neighbors, except for the boundary vertices, which are the points (i, j)
for which i = 1, i = n, j = 1, or j = n.

Given m ≤ n2 starting points (x1, y1), (x2, y2), …, (xm, ym) in the

grid, the escape problem is to determine whether there are m vertex-

disjoint paths from the starting points to any m different points on the

boundary. For example, the grid in Figure 24.9(a) has an escape, but the

grid in Figure 24.9(b) does not.
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Figure 24.9 Grids for the escape problem. Starting points are blue, and other grid vertices are

tan. (a) A grid with an escape, shown by blue paths. (b) A grid with no escape.

a. Consider a flow network in which vertices, as well as edges, have

capacities. That is, the total positive flow entering any given vertex is

subject to a capacity constraint. Show how to reduce the problem of

determining the maximum flow in a network with edge and vertex

capacities to an ordinary maximum-flow problem on a flow network

of comparable size.

b. Describe an efficient algorithm to solve the escape problem, and

analyze its running time.

24-2     Minimum path cover

A path cover of a directed graph G = (V, E) is a set P of vertex-disjoint

paths such that every vertex in V is included in exactly one path in P.

Paths may start and end anywhere, and they may be of any length,

including 0. A minimum path cover of G is a path cover containing the

fewest possible paths.

a. Give an efficient algorithm to find a minimum path cover of a

directed acyclic graph G = (V, E). (Hint: Assuming that V = {1, 2, …,

n}, construct a flow network based on the graph G′ = (V′, E′), where

V′ = {x0, x1, …, xn} ∪ {y0, y1, …, yn},

E′ = {(x0, xi) : i ∈ V } ∪ {(yi, y0) : i ∈ V } ∪ {(xi, yj) : (i, j) ∈ E},

and run a maximum-flow algorithm.)
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b. Does your algorithm work for directed graphs that contain cycles?

Explain.

24-3     Hiring consulting experts

Professor Fieri wants to open a consulting company for the food

industry. He has identified n important food categories, which he

represents by the set C = {C1, C2, …, Cn}. In each category Ck, he can

hire an expert in that category for ek > 0 dollars. The consulting

company has lined up a set J = {J1, J2, …, Jm} of potential jobs. In

order to perform job Ji, the company needs to have hired experts in a

subset Ri ⊆ C of categories. Each expert can work on multiple jobs

simultaneously. If the company chooses to accept job Ji, it must have

hired experts in all categories in Ri, and it takes in revenue of pi > 0

dollars.

Professor Fieri’s job is to determine which categories to hire experts

in and which jobs to accept in order to maximize the net revenue, which

is the total income from jobs accepted minus the total cost of employing

the experts.

Consider the following flow network G. It contains a source vertex s,
vertices C1, C2, …, Cn, vertices J1, J2, …, Jm, and a sink vertex t. For

k = 1, 2 …, n, the flow network contains an edge (s, Ck) with capacity

c(s, Ck) = ek, and for i = 1, 2, …, m, the flow network contains an edge

(Ji, t) with capacity c(Ji, t) = pi. For k = 1, 2, …, n and i = 1, 2, …, m, if

Ck ∈ Ri, then G contains an edge (Ck, Ji) with capacity c(Ck, Ji) = ∞.

a. Show that if Ji ∈ T for a finite-capacity cut (S, T) of G, then Ck ∈ T

for each Ck ∈ Ri.

b. Show how to determine the maximum net revenue from the capacity

of a minimum cut of G and the given pi values.

c. Give an efficient algorithm to determine which jobs to accept and

which experts to hire. Analyze the running time of your algorithm in

terms of m, n, and .
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24-4     Updating maximum flow

Let G = (V, E) be a flow network with source s, sink t, and integer

capacities. Suppose that you are given a maximum flow in G.

a. Suppose that the capacity of a single edge (u, v) ∈ E increases by 1.

Give an O(V + E)-time algorithm to update the maximum flow.

b. Suppose that the capacity of a single edge (u, v) ∈ E decreases by 1.

Give an O(V + E)-time algorithm to update the maximum flow.

24-5     Maximum flow by scaling

Let G = (V, E) be a flow network with source s, sink t, and an integer

capacity c(u, v) on each edge (u, v) ∈ E. Let C = max {c(u, v) : (u, v) ∈
E}.

a. Argue that a minimum cut of G has capacity at most C |E|.

b. For a given number K, show how to find an augmenting path of

capacity at least K in O(E) time, if such a path exists.

The procedure MAX-FLOW-BY-SCALING appearing on the

following page modifies the basic FORD-FULKERSON-METHOD

procedure to compute a maximum flow in G.

c. Argue that MAX-FLOW-BY-SCALING returns a maximum flow.

d. Show that the capacity of a minimum cut of the residual network Gf
is less than 2K |E| each time line 4 executes.

e. Argue that the inner while loop of lines 5–6 executes O(E) times for

each value of K.

MAX-FLOW-BY-SCALING (G, s, t)

1 C = max {c(u, v) : (u, v) ∈ E}

2 initialize flow f to 0

3 K = 2⌊lg C⌋

4 while K ≥ 1

5 while there exists an augmenting path p of capacity at least K
6 augment flow f along p
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7 K = K/2

8 return f

f. Conclude that MAX-FLOW-BY-SCALING can be implemented so

that it runs in O(E2 lg C) time.

24-6     Widest augmenting path

The Edmonds-Karp algorithm implements the Ford-Fulkerson

algorithm by always choosing a shortest augmenting path in the

residual network. Suppose instead that the Ford-Fulkerson algorithm

chooses a widest augmenting path: an augmenting path with the greatest

residual capacity. Assume that G = (V, E) is a flow network with source

s and sink t, that all capacities are integer, and that the largest capacity

is C. In this problem, you will show that choosing a widest augmenting

path results in at most |E| ln |f*| augmentations to find a maximum flow

f*.

a. Show how to adjust Dijkstra’s algorithm to find the widest

augmenting path in the residual network.

b. Show that a maximum flow in G can be formed by successive flow

augmentations along at most |E| paths from s to t.

c. Given a flow f, argue that the residual network Gf has an augmenting

path p with residual capacity cf (p) ≥ (|f*| − |f|)/|E|.

d. Assuming that each augmenting path is a widest augmenting path, let

fi be the flow after augmenting the flow by the ith augmenting path,

where f0 has f (u, v) = 0 for all edges (u, v). Show that |f*| − |fi| ≤ |f*| (1

− 1/|E|)i.

e. Show that |f* | − |fi| < |f*| e−i/|E|.

f. Conclude that after the flow is augmented at most |E| ln |f*| times, the

flow is a maximum flow.

24-7     Global minimum cut
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A global cut in an undirected graph G = (V, E) is a partition (see page

1156) of V into two nonempty sets V1 and V2. This definition is like the

definition of cut that we have used in this chapter, except that we no

longer have distinguished vertices s and t. Any edge (u, v) with u ∈ V1

and v ∈ V2 is said to cross the cut.

We can extend this definition of a cut to a multigraph G = (V, E) (see

page 1167), and we denote by c(u, v) the number of edges in the

multigraph with endpoints u and v. A global cut in a multigraph is still a

partition of the vertices, and the value of a global cut (V1, V2) is 

. A solution to the global-minimum-cut

problem is a cut (V1, V2) such that c(V1, V2) is minimum. Let μ(G)

denote the value of a global minimum cut in a graph or multigraph G.

a. Show how to find a global minimum cut of a graph G = (V, E) by

solving  maximum-flow problems, each with a different pair of

vertices as the source and sink, and taking the mininum value of the

cuts found.

b. Give an algorithm to find a global minimum cut by solving only Θ(V)

maximum-flow problems. What is the running time of your algorithm?

The remainder of this problem develops an algorithm for the global-

minimum-cut problem that does not use any maximum-flow

computations. It uses the notion of an edge contraction, defined on

page 1168, with one crucial difference. The algorithm maintains a

multigraph, so that upon contracting an edge (u, v), it creates a new

vertex x, and for any other vertex y ∈ V, the number of edges between x
and y is c(u, y) + c(v, y). The algorithm does not maintain self-loops,

and so it sets c(x, x) to 0. Denote by G/(u, v) the multigraph that results

from contracting edge (u, v) in multigraph G.

Consider what can happen to the minimum cut when an edge is

contracted. Assume that, at all points, the minimum cut in a multigraph

G is unique. We’ll remove this assumption later.

c. Show that for any edge (u, v), we have μ(G/(u, v)) ≤ μ(G). Under what

conditions is μ(G/(u, v)) < μ(G)?
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Next, you will show that if you pick an edge uniformly at random,

the probability that it belongs to the minimum cut is small.

d. Show that for any multigraph G = (V, E), the value of the global

minimum cut is at most the average degree of a vertex: that μ(G) ≤ 2

|E|/|V|, where |E| denotes the total number of edges in the multigraph.

e. Using the results from parts (c) and (d), show that, if we pick an edge

(u, v) uniformly at random, then the probability that (u, v) belongs to

the minimum cut is at most 2/V.

Consider the algorithm that repeatedly chooses an edge at random

and contracts it until the multigraph has exactly two vertices, say u and

v. At that point, the multigraph corresponds to a cut in the original

graph, with vertex u representing all the nodes in one side of the original

graph, and v representing all the vertices on the other side. The number

of edges given by c(u, v) corresponds exactly to the number of edges

crossing the corresponding cut in the original graph. We call this

algorithm the contraction algorithm.

f. Suppose that the contraction algorithm terminates with a multigraph

whose only vertices are u and v. Show that .

g. Prove that if the contraction algorithm repeats  times, then the

probability that at least one of the runs returns the minimum cut is at

least 1 − 1/|V|.

h. Give a detailed implementation of the contraction algorithm that

runs in O(V2) time.

i. Combine the previous parts and remove the assumption that the

minimum cut must be unique, to conclude that running the

contraction algorithm  times yields an algorithm that runs in

O(V4 lg V) time and returns a minimum cut with probability at least 1

− 1/V.

Chapter notes
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Ahuja, Magnanti, and Orlin [7], Even [137], Lawler [276],

Papadimitriou and Steiglitz [353], Tarjan [429], and Williamson [458]

are good references for network flows and related algorithms. Schrijver

[399] has written an interesting review of historical developments in the

field of network flows.

The Ford-Fulkerson method is due to Ford and Fulkerson [149],

who originated the formal study of many of the problems in the area of

network flow, including the maximum-flow and bipartite-matching

problems. Many early implementations of the Ford-Fulkerson method

found augmenting paths using breadth-first search. Edmonds and Karp

[132], and independently Dinic [119], proved that this strategy yields a

polynomial-time algorithm. A related idea, that of using “blocking

flows,” was also first developed by Dinic [119].

A class of algorithms known as push-relabel algorithms, due to

Goldberg [185] and Goldberg and Tarjan [188], takes a different

approach from the Ford-Fulkerson method. Push-relabel algorithms

allow flow conservation to be violated at vertices other than the source

and sink as they execute. Using an idea first developed by Karzonov

[251], they allow a preflow in which the flow into a vertex may exceed the

flow out of the vertex. Such a vertex is said to be overflowing. Initially,

every edge leaving the source is filled to capacity, so that all neighbors of

the source are overflowing. In a push-relabel algorithm, each vertex is

assigned an integer height. An overflowing vertex may push flow to a

neighboring vertex to which it has a residual edge provided that it is

higher than the neighbor. If all residual edges from an overflowing

vertex go to neighbors with equal or greater heights, then the vertex

may increase its height. Once all vertices other than the sink are no

longer overflowing, the preflow is not only a legal flow, but also a

maximum flow.

Goldberg and Tarjan [188] gave an O(V3)-time algorithm that uses a

queue to maintain the set of overflowing vertices, as well as an

algorithm that uses dynamic trees to achieve a running time of O(VE

lg(V2/E + 2)). Several other researchers developed improved variants

and implementations [9, 10, 15, 86, 87, 255, 358], the fastest of which,

by King, Rao, and Tarjan [255], runs in O(VE logE/(V lg V) V) time.
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Another efficient algorithm for maximum flow, by Goldberg and

Rao [187], runs in O (min{V2/3, E1/2} E lg (V2/E + 2) lg C) time, where

C is the maximum capacity any edge. Orlin [350] gave an algorithm in

the same spirit as this algorithm that runs in O(VE + E31/16 lg2 V)

time. Combining it with the algorithm of King, Rao, and Tarjan results

in an O(VE)-time algorithm.

A different approach to maximum flows and related problems is to

use techniques from continuous optimization including electrical flows

and interior-point methods. The first breakthrough in this line of work

is due to Madry [308], who gave an Õ(E10/7)-time algorithm for unit-

capacity maximum flow and bipartite maximum matching. (See

Problem 3-6 on page 73 for a definition of Õ.) There has been a series of

papers in this area for matchings, maximum flows, and minimum-cost

flows. The fastest algorithm to date in this line of work for maximum

flow is due to Lee and Sidford [285], taking  time. If the

capacities are not too large, this algorithm is faster than the O(VE)-time

algorithm mentioned above. Another algorithm, due to Liu and Sidford

[303] runs in Õ(E11/8C1/4) time, where C is the maximum capacity of

any edge. This algorithm does not run in polynomial time, but for small

enough capacities, it is faster than the previous ones.

In practice, push-relabel algorithms currently dominate algorithms

based on augmenting paths, continuous-optimization, and linear

programming for the maximum-flow problem [88].

1 Recall from Section 20.1 that we represent an attribute f for edge (u, v) with the same style of

notation—(u, v).f—that we use for an attribute of any other object.
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25        Matchings in Bipartite Graphs

Many real-world problems can be modeled as finding matchings in an

undirected graph. For an undirected graph G = (V, E), a matching is a

subset of edges M ⊆ E such that every vertex in V has at most one

incident edge in M.

For example, consider the following scenario. You have one or more

positions to fill and several candidates to interview. According to your

schedule, you are able to interview candidates at certain time slots. You

ask the candidates to indicate the subsets of time slots at which they are

available. How can you schedule the interviews so that each time slot

has at most one candidate scheduled, while maximizing the number of

candidates that you can interview? You can model this scenario as a

matching problem on a bipartite graph in which each vertex represents

either a candidate or a time slot, with an edge between a candidate and

a time slot if the candidate is available then. If an edge is included in the

matching, that means you are scheduling a particular candidate for a

particular time slot. Your goal is to find a maximum matching: a

matching of maximum cardinality. One of the authors of this book was

faced with exactly this situation when hiring teaching assistants for a

large class. He used the Hopcroft-Karp algorithm in Section 25.1 to

schedule the interviews.

Another application of matching is the U.S. National Resident

Matching Program, in which medical students are matched to hospitals

where they will be stationed as medical residents. Each student ranks

the hospitals by preference, and each hospital ranks the students. The

goal is to assign students to hospitals so that there is never a student
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and a hospital that both have regrets because the student was not

assigned to the hospital, yet each ranked the other higher than who or

where they were assigned. This scenario is perhaps the best-known real-

world example of the “stable-marriage problem,” which Section 25.2

examines.

Yet another instance where matching comes into play occurs when

workers must be assigned to tasks in order to maximize the overall

effectiveness of the assignment. For each worker and each task, the

worker has some quantified effectiveness for that task. Assuming that

there are equal numbers of workers and tasks, the goal is to find a

matching with the maximum total effectiveness. Such a situation is an

example of an assignment problem, which Section 25.3 shows how to

solve.

The algorithms in this chapter find matchings in bipartite graphs. As

in Section 24.3, the input is an undirected graph G = (V, E), where V =

L ∪ R, the vertex sets L and R are disjoint, and every edge in E is

incident on one vertex in L and one vertex in R. A matching, therefore,

matches vertices in L with vertices in R. In some applications, the sets L
and R have equal cardinality, and in other applications they need not be

the same size.

An undirected graph need not be bipartite for the concept of

matching to apply. Matching in general undirected graphs has

applications in areas such as scheduling and computational chemistry. It

models problems in which you want to pair up entities, represented by

vertices. Two vertices are adjacent if they represent compatible entities,

and you need to find a large set of compatible pairs. Maximum-

matching and maximum-weight matching problems on general graphs

can be solved by polynomial-time algorithms whose running times are

similar to those for bipartite matching, but the algorithms are

significantly more complicated. Exercise 25.2-5 discusses the general

version of the stable-marriage problem, known as the “stable-

roommates problem.” Although matching applies to general undirected

graphs, this chapter deals only with bipartite graphs.

25.1    Maximum bipartite matching (revisited)
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Section 24.3 demonstrated one way to find a maximum matching in a

bipartite graph, by finding a maximum flow. This section provides a

more efficient method, the Hopcroft-Karp algorithm, which runs in 

 time. Figure 25.1(a) shows a matching in an undirected

bipartite graph. A vertex that has an incident edge in matching M is

matched under M, and otherwise, it is unmatched. A maximal matching

is a matching M to which no other edges can be added, that is, for every

edge e ∈ E − M, the edge set M ∪ {e} fails to be a matching. A

maximum matching is always maximal, but the reverse does not always

hold.

Many algorithms to find maximum matchings, the Hopcroft-Karp

algorithm included, work by incrementally increasing the size of a

matching. Given a matching M in an undirected graph G = (V, E), an

M-alternating path is a simple path whose edges alternate between being

in M and being in E − M. Figure 25.1(b) depicts an M-augmenting path

(sometimes called an augmenting path with respect to M): an M-

alternating path whose first and last edges belong to E − M. Since an

M-augmenting path contains one more edge in E − M than in M, it

must consist of an odd number of edges.
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Figure 25.1 A bipartite graph, where V = L ∪ R, L = {l1, l2, … , l7}, and R = {r1, r2, … , r8}.

(a) A matching M with cardinality 4, highlighted in blue. Matched vertices are blue, and

unmatched vertices are tan. (b) The five edges highlighted in orange form an M-augmenting

path P going between vertices l6 and r8. (c) The set of edges M′ = M ⊕ P highlighted in blue is a

matching containing one more edge than M and adding l6 and r8 to the matched vertices. This

matching is not a maximum matching (see Exercise 25.1-1).

Figure 25.1(c) demonstrates the following lemma, which shows that

by removing from matching M the edges in an M-augmenting path that

belong to M and adding to M the edges in the M-augmenting path that

are not in M, the result is a new matching with one more edge than M.

Since a matching is a set of edges, the lemma relies on the notion of the

symmetric difference of two sets: X ⊕ Y = (X − Y) ∪ (Y − X), that is, the

elements that belong to X or Y, but not both. Alternatively, you can

think of X ⊕ Y as (X ∪ Y)−(X ∩ Y). The operator ⊕ is commutative

and associative. Furthermore, X ⊕ X = Ø and X ⊕ Ø = Ø ⊕ X = X for

any set X, so that the empty set is the identity for ⊕.

Lemma 25.1

Let M be a matching in any undirected graph G = (V, E), and let P be

an M-augmenting path. Then the set of edges M′ = M ⊕ P is also a
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matching in G with |M′| = |M| + 1.

Proof   Let P contain q edges, so that ⌈q/2⌉ edges belong to E − M and

⌊q/2⌋ edges belong to M, and let these q edges be (v1, v2), (v2, v3), … ,

(vq, vq+1). Because P is an M-augmenting path, vertices v1 and vq+1

are unmatched under M and all other vertices in P are matched. Edges

(v1, v2), (v3, v4), … , (vq, vq+1) belong to E − M, and edges (v2, v3),

(v4, v5), … , (vq−1, vq) belong to M. The symmetric difference M′ = M

⊕ P reverses these roles, so that edges (v1, v2), (v3, v4), … , (vq, vq+1)

belong to M′ and (v2, v3), (v4, v5), … , (vq−1, vq) belong to E − M′.
Each vertex v1, v2, … , vq, vq+1 is matched under M′, which gains one

additional edge relative to M, and no other vertices or edges in G are

affected by the change from M to M′. Hence, M′ is a matching in G, and

|M′| = |M| + 1.

▪

Since taking the symmetric difference of a matching M with an M-

augmenting path increases the size of the matching by 1, the following

corollary shows that taking the symmetric difference of M with k
vertex-disjoint M-augmenting paths increases the size of the matching

by k.

Corollary 25.2

Let M be a matching in any undirected graph G = (V, E) and P1, P2, …

, Pk be vertex-disjoint M-augmenting paths. Then the set of edges M′ =
M ⊕ (P1 ∪ P2 ∪ … ∪ Pk) is a matching in G with |M′| = |M| + k.

Proof      Since the M-augmenting paths P1, P2, … , Pk are vertex-

disjoint, we have that P1 ∪ P2 ∪⋯∪ Pk = P1⊕ P2 ⊕⋯⊕ Pk. Because

the operator ⊕ is associative, we have

M ⊕ (P1 ∪ P2 ∪ ⋯ ∪

Pk)

= M ⊕ (P1 ⊕ P2 ⊕ ⋯ ⊕ Pk)

=
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(⋯ ((M ⊕ P1) ⊕ P2) ⊕ ⋯ ⊕ Pk−1) ⊕

Pk.

A simple induction on i using Lemma 25.1 shows that M ⊕ (P1 ∪ P2 ∪

⋯ ∪ Pi−1) is a matching in G containing |M| + i − 1 edges and that

path Pi is an augmenting path with respect to M ⊕ (P1 ∪ P2 ∪ ⋯ ∪

Pi−1). Each of these augmenting paths increases the size of the

matching by 1, and so |M′| = |M| + k.

▪

As the Hopcroft-Karp algorithm goes from matching to matching, it

will be useful to consider the symmetric difference between two

matchings.

Lemma 25.3

Let M and M* be matchings in graph G = (V, E), and consider the

graph G′ = (V, E′), where E′ = M ⊕ M*. Then, G′ is a disjoint union of

simple paths, simple cycles, and/or isolated vertices. The edges in each

such simple path or simple cycle alternate between M and M*. If |M*| >

|M|, then G′ contains at least |M*|−|M| vertex-disjoint M-augmenting

paths.

Proof   Each vertex in G′ has degree 0, 1, or 2, since at most two edges of

E′ can be incident on a vertex: at most one edge from M and at most

one edge from M*. Therefore, each connected component of G′ is either

a singleton vertex, an even-length simple cycle with edges alternately in

M and M*, or a simple path with edges alternately in M and M*. Since

E′ = M ⊕ M*

= (M ∪ M*) − (M ∩ M*)

and |M*| > |M|, the edge set E′ must contain |M*| − |M| more edges

from M* than from M. Because each cycle in G′ has an even number of

edges drawn alternately from M and M*, each cycle has an equal

number of edges from M and M*. Therefore, the simple paths in G′
account for there being |M*| − |M| more edges from M* than M. Each
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path containing a different number of edges from M and M* either

starts and ends with edges from M, containing one more edge from M
than from M*, or starts and ends with edges from M*, containing one

more edge from M* than from M. Because E′ contains |M*| − |M| more

edges from M* than from M, there are at least |M*| − |M| paths of the

latter type, and each one is an M-augmenting path. Because each vertex

has at most two incident edges from E′, these paths must be vertex-

disjoint.

▪

If an algorithm finds a maximum matching by incrementally

increasing the size of the matching, how does it determine when to stop?

The following corollary gives the answer: when there are no augmenting

paths.

Corollary 25.4

Matching M in graph G = (V, E) is a maximum matching if and only if

G contains no M-augmenting path.

Proof      We prove the contrapositive of both directions of the lemma

statement. The contrapositive of the forward direction is

straightforward. If there is an M-augmenting path P in G, then by

Lemma 25.1, the matching M ⊕ P contains one more edge than M,

meaning that M could not be a maximum matching.

To show the contrapositive of the backward direction—if M is not a

maximum matching, then G contains an M-augmenting path—let M*

be a maximum matching in Lemma 25.3, so that |M*| > |M|. Then G
contains at least |M*| − |M| > 0 vertex-disjoint M-augmenting paths.

▪

We already have learned enough to create a maximum-matching

algorithm that runs in O(VE) time. Start with the matching M empty.

Then repeatedly run a variant of either breadth-first search or depth-

first search from an unmatched vertex that takes alternating paths until

you find another unmatched vertex. Use the resulting M-augmenting

path to increase the size of M by 1.

The Hopcroft-Karp algorithm
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The Hopcroft-Karp algorithm improves the running time to .

The procedure HOPCROFT-KARP is given an undirected bipartite

graph, and it uses Corollary 25.2 to repeatedly increase the size of the

matching M it finds. Corollary 25.4 proves that the algorithm is correct,

since it terminates once there are no M-augmenting paths. It remains to

show that the algorithm does run in  time. We’ll see that the

repeat loop of lines 2–5 iterates  times and how to implement line

3 so that it runs in O(E) time in each iteration.

HOPCROFT-KARP (G)

1 M = Ø

2 repeat

3 let P = {P1, P2, … , Pk} be a maximal set of vertex-disjoint

shortest M-augmenting paths

4 M = M ⊕ (P1 ∪ P2 ∪ ⋯ ∪ Pk)

5 until P == Ø

6 return M

Let’s first see how to find a maximal set of vertex-disjoint shortest

M-augmenting paths in O(E) time. There are three phases. The first

phase forms a directed version GM of the undirected bipartite graph G.

The second phase creates a directed acyclic graph H from GM via a

variant of breadth-first search. The third phase finds a maximal set of

vertex-disjoint shortest M-augmenting paths by running a variant of

depth-first search on the transpose HT of H. (Recall that the transpose

of a directed graph reverses the direction of each edge. Since H is

acyclic, so is HT.)

Given a matching M, you can think of an M-augmenting path P as

starting at an unmatched vertex in L, traversing an odd number of

edges, and ending at an unmatched vertex in R. The edges in P traversed

from L to R must belong to E − M, and the edges in P traversed from R
to L must belong to M. The first phase, therefore, creates the directed

graph GM by directing the edges accordingly: GM = (V, EM), where
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Figure 25.2 (a) The directed graph GM created in the first phase for the undirected bipartite

graph G and matching M in Figure 25.1(a). Breadth-first distances from any unmatched vertex

in L appear next to each vertex. (b) The dag H created from GM in the second phase. Because

the smallest distance to an unmatched vertex in R is 3, vertices l7 and r8, with distances greater

than 3, are not in H.

EM = {(l, r) : l ∈ L, r ∈ R, and (l, r) ∈ E − M } (edges from L to R)

∪ {(r, l) : r ∈ R, l ∈ L, and (l, r) ∈ M } (edges from R to L).

Figure 25.2(a) shows the graph GM for the graph G and matching M in

Figure 25.1(a).

The dag H = (VH, EH) created by the second phase has layers of

vertices. Figure 25.2(b) shows the dag H corresponding to the directed

graph GM in part (a) of the figure. Each layer contains only vertices

from L or only vertices from R, alternating from layer to layer. The

layer that a vertex resides in is given by that vertex’s minimum breadth-
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first distance in GM from any unmatched vertex in L. Vertices in L

appear in even-numbered layers, and vertices in R appear in odd-

numbered layers. Let q denote the smallest distance in GM of any

unmatched vertex in R. Then, the last layer in H contains the vertices in

R with distance q. Vertices whose distance exceeds q do not appear in

VH. (The graph H in Figure 25.2(b) omits vertices l7 and r8 because

their distances from any unmatched vertex in L exceed q = 3.) The edges

in EH form a subset of EM:

EH = {(l, r) ∈ EM : r.d ≤ q and r.d = l.d + 1} ∪ {(r, l) ∈ EM : l.d ≤ q},

where the attribute d of a vertex gives the vertex’s breadth-first distance

in GM from any unmatched vertex in L. Edges that do not go between

two consecutive layers are omitted from EH.

To determine the breadth-first distances of vertices, run breadth-first

search on the graph GM, but starting from all the unmatched vertices in

L. (In the BFS procedure on page 556, replace the root vertex s by the

set of unmatched vertices in L.) The predecessor attributes π computed

by the BFS procedure are not needed here, since H is a dag and not

necessarily a tree.

Every path in H from a vertex in layer 0 to an unmatched vertex in

layer q corresponds to a shortest M-augmenting path in the original

bipartite graph G. Just use the undirected versions of the directed edges

in H. Moreover, every shortest M-augmenting path in G is present in H.

The third phase identifies a maximal set of vertex-disjoint shortest

M-augmenting paths. As Figure 25.3 shows, it starts by creating the

transpose HT of H. Then, for each unmatched vertex r in layer q, it

performs a depth-first search starting from r until it either reaches a

vertex in layer 0 or has exhausted all possible paths without reaching a

vertex in layer 0. Instead of maintaining discovery and finish times, the

depth-first search just needs to keep track of the predecessor attributes π
in the depth-first tree of each search. Upon reaching a vertex in layer 0,

tracing back along the predecessors identifies an M-augmenting path.

Each vertex is searched from only when it is first discovered in any

search. If the search from a vertex r in layer q cannot find a path of

www.konkur.in

Telegram: @uni_k



undiscovered vertices to an undiscovered vertex in layer 0, then no M-

augmenting path including r goes into the maximal set.

Figure 25.3 shows the result of the third phase. The first depth-first

search starts from vertex r1. It identifies the M-augmenting path 〈(r1,

l3), (l3, r3), (r3, l1)〉, which is highlighted in orange, and discovers

vertices r1, l3, r3, and l1. The next depth-first search starts from vertex

r4. This search first examines the edge (r4, l3), but because l3 was

already discovered, it backtracks and examines edge (r4, l5). From

there, it continues and identifies the M-augmenting path 〈(r4, l5), (l5,

r7), (r7, l6)〉, which is highlighted in yellow, and discovers vertices r4, l5,

r7, and l6. The depth-first search from vertex r6 gets stuck at vertices l3
and l5, which have already been discovered, and so this search fails to

find a path of undiscovered vertices to a vertex in layer 0. There is no

depth-first search from vertex r5 because it is matched, and depth-first

searches start from unmatched vertices. Therefore, the maximal set of

vertex-disjoint shortest M-augmenting paths found contains just the

two M-augmenting paths (〈r1, l3), (l3, r3), (r3, l1)〉 and 〈(r4, l5), (l5, r7),

(r7, l6)〉.

You might have noticed that in this example, this maximal set of two

vertex-disjoint shortest M-augmenting paths is not a maximum set. The

graph contains three vertex-disjoint shortest M-augmenting paths: 〈(r1,

l2), (l2, r2), (r2, l1)〉, 〈(r4, l3), (l3, r3), (r3, l4)〉, and 〈(r6, l5), (l5, r7), (r7,

l6)〉. No matter: the algorithm requires the set of vertex-disjoint shortest

M-augmenting paths found in line 3 of HOPCROFT-KARP to be only

maximal, not necessarily maximum.
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Figure 25.3 The transpose HT of the dag H created in the third phase. The first depth-first

search, starting from vertex r1, identifies the M-augmenting path 〈(r1, l3), (l3, r3), (r3, l1)〉

highlighted in orange, and it discovers vertices r1, l3, r3, l1. The second depth-first search,

starting from vertex r4, identifies the M-augmenting path 〈(r4, l5), (l5, r7), (r7, l6)〉 highlighted

in yellow, discovering vertices r4, l5, r7, l6.

It remains to show that all three phases of line 3 take O(E) time. We

assume that in the original bipartite graph G, each vertex has at least

one incident edge so that |V| = O(E), which in turn implies that |V| + |E|

= O(E). The first phase creates the directed graph GM by simply

directing each edge of G, so that |VM| = |V| and |EM = |E|. The second

phase performs a breadth-first search on GM, taking O(VM + EM) =

O(EM) = O(E) time. In fact, it can stop once the first distance in the

queue within the breadth-first search exceeds the shortest distance q to

an unmatched vertex in R. The dag H has |VH| ≤ |VM| and |EH| ≤ |EM|,

so that it takes O(VH + EH) = O(E) time to construct. Finally, the third

phase performs depth-first searches from the unmatched vertices in

layer q. Once a vertex is discovered, it is not searched from again, and so

the analysis of depth-first search from Section 20.3 applies here: O(VH
+ EH) = O(E). Hence, all three phases take just O(E) time.
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Once the maximal set of vertex-disjoint shortest M-augmenting

paths have been found in line 3, updating the matching in line 4 takes

O(E) time, as it is just a matter of going through the edges of the M-

augmenting paths and adding edges to and removing edges from the

matching M. Thus, each iteration of the repeat loop of lines 2–5 can run

in O(E) time.

It remains to show that the repeat loop iterates  times. We

start with the following lemma, which shows that after each iteration of

the repeat loop, the length of an augmenting path increases.

Lemma 25.5

Let G = (V, E) be an undirected bipartite graph with matching M, and

let q be the length of a shortest M-augmenting path. Let P = {P1, P2,

… , Pk} be a maximal set of vertex-disjoint M-augmenting paths of

length q. Let M′ = M ⊕ (P1 ∪ P2 ∪ ⋯ ∪ Pk), and suppose that P is a

shortest M′-augmenting path. Then P has more than q edges.

Proof      We consider separately the cases in which P is vertex-disjoint

from the augmenting paths in P and in which it is not vertex-disjoint.

First, assume that P is vertex-disjoint from the augmenting paths in

P. Then, P contains edges that are in M but are not in any of P1, P2, …

, Pk, so that P is also an M-augmenting path. Since P is disjoint from

P1, P2, … , Pk but is also an M-augmenting path, and since P is a

maximal set of shortest M-augmenting paths, P must be longer than

any of the augmenting paths in P, each of which has length q.

Therefore, P has more than q edges.

Now, assume that P visits at least one vertex from the M-augmenting

paths in P. By Corollary 25.2, M ′ is a matching in G with |M′| = |M| +

k. Since P is an M′-augmenting path, by Lemma 25.1, M′ ⊕ P is a

matching with |M′ ⊕ P| = |M′| + 1 = |M| + k + 1. Now let A = M ⊕ M′
⊕ P. We claim that A = (P1 ∪ P2 ∪ ⋯ ∪ Pk) ⊕ P:

A = M ⊕ M′ ⊕ P

=
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M ⊕ (M ⊕ (P1 ∪ P2 ∪ ⋯ ∪ Pk)) ⊕ P

= (M ⊕ M) ⊕ (P1 ∪ P2 ∪ ⋯ ∪ Pk) ⊕ P (associativity of ⊕)

= Ø ⊕ (P1 ∪ P2 ∪ ⋯ ∪ Pk) ⊕ P (X ⊕ X = Ø for all X)

= (P1 ∪ P2 ∪ ⋯ ∪ Pk) ⊕ P (Ø ⊕ X = X for all X).

Lemma 25.3 with M* = M′ ⊕ P gives that A contains at least |M′ ⊕ P|

− |M| = k + 1 vertex-disjoint M-augmenting paths. Since each such M-

augmenting path has at least q edges, we have |A| ≥ (k + 1)q = kq + q.

Now we claim that P shares at least one edge with some M-

augmenting path in P. Under the matching M′, every vertex in each M-

augmenting path in P is matched. (Only the first and last vertex in each

M-augmenting path Pi is unmatched under M, and under M ⊕ Pi, all

vertices in Pi are matched. Because the M-augmenting paths in P are

vertex-disjoint, no other path in P can affect whether the vertices in Pi
are matched. That is, the vertices in Pi are matched under (M ⊕ Pi) ⊕

Pj if and only if they are matched under M ⊕ Pi, for any other path Pj
∈ P.) Suppose that P shares a vertex v with some path Pi ∈ P. Vertex v

cannot be an endpoint of P, because the endpoints of P are unmatched

under M′. Therefore, v has an incident edge in P that belongs to M′.
Since any vertex has at most one incident edge in a matching, this edge

must also belong to Pi, thus proving the claim.

Because A = (P1 ∪ P2 ∪ ⋯ ∪ Pk) ⊕ P and P shares at least one

edge with some Pi ∈ P, we have that |A| < |P1 ∪ P2 ∪ ⋯ ∪ Pk| + |P|.

Thus, we have

kq + q ≤ |A|

< |P1 ∪ P2 ∪ ⋯ ∪ Pk| + |P|

= kq + |P|,

so that q < |P|. We conclude that P contains more than q edges.

▪
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The next lemma bounds the size of a maximum matching, based on

the length of a shortest augmenting path.

Lemma 25.6

Let M be a matching in graph G = (V, E), and let a shortest M-

augmenting path in G contain q edges. Then the size of a maximum

matching in G is at most |M| + |V| / (q + 1).

Proof      Let M* be a maximum matching in G. By Lemma 25.3, G
contains at least |M*| − |M| vertex-disjoint M-augmenting paths. Each

of these paths contains at least q edges, and hence at least q + 1 vertices.

Because these paths are vertex-disjoint, we have (|M*|−|M|)(q+1) ≤ |V|,

so that |M*| ≤ |M| + |V|/(q+1).

▪

The final lemma bounds the number of iterations of the repeat loop

of lines 2–5.

Lemma 25.7

When the HOPCROFT-KARP procedure runs on an undirected

bipartite graph G = (V, E), the repeat loop of lines 2–5 iterates 

times.

Proof      By Lemma 25.5, the length q of the shortest M-augmenting

paths found in line 3 increases from iteration to iteration. After 

iterations, therefore, we must have . Consider the situation

after the first time line 4 executes with M-augmenting paths whose

length is at least . Since the size of a matching increases by at

least one edge per iteration, Lemma 25.6 implies that the number of

additional iterations before achieving a maximum matching is at most

Hence, the total number of loop iterations is less than .

▪
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Thus, we have the following bound on the running time of the

HOPCROFT-KARP procedure.

Theorem 25.8

The procedure HOPCROFT-KARP runs in  time on an

undirected bipartite graph G = (V, E).

Proof      By Lemma 25.7 the repeat loop iterates  times, and we

have seen how to implement each iteration in O(E) time.

▪

Exercises

25.1-1

Use the Hopcroft-Karp algorithm to find a maximum matching for the

graph in Figure 25.1.

25.1-2

How are M-augmenting paths and augmenting paths in flow networks

similar? How do they differ?

25.1-3

What is the advantage of searching in the transpose HT from

unmatched vertices in layer q (the first layer that contains an unmatched

vertex in R) to layer 0 versus searching in the dag H from layer 0 to

layer q?

25.1-4

Show how to bound the number of iterations of the the repeat loop of

lines 2–5 of HOPCROFT-KARP by .

★ 25.1-5

A perfect matching is a matching under which every vertex is matched.

Let G = (V, E) be an undirected bipartite graph with vertex partition V
= L ∪ R, where |L| = |R|. For any X ⊆ V, define the neighborhood of X
as
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N(X) = {y ∈ V : (x, y) ∈ E for some x ∈ X},

that is, the set of vertices adjacent to some member of X. Prove Hall’s

theorem: there exists a perfect matching in G if and only if |A| ≤ |N(A)|

for every subset A ⊆ L.

25.1-6

In a d-regular graph, every vertex has degree d. If G = (V, E) is bipartite

with vertex partition V = L ∪ R and also d-regular, then |L| = |R|. Use

Hall’s theorem (see Exercise 25.1-5) to prove that every d-regular

bipartite graph contains a perfect matching. Then use that result to

prove that every d-regular bipartite graph contains d disjoint perfect

matchings.

25.2    The stable-marriage problem

In Section 25.1, the goal was to find a maximum matching in an

undirected bipartite graph. If you know that the graph G = (V, E) with

vertex partition V = L ∪ R is a complete bipartite graph1—containing

an edge from every vertex in L to every vertex in R—then you can find a

maximum matching by a simple greedy algorithm.

When a graph can have several matchings, you might want to decide

which matchings are most desirable. In Section 25.3, we’ll add weights

to the edges and find a matching of maximum weight. In this section,

we will instead add some information to each vertex in a complete

bipartite graph: a ranking of the vertices in the other side. That is, each

vertex in L has an ordered list of all the vertices in R, and vice-versa. To

keep things simple, let’s assume that L and R each contain n vertices.

The goal here is to match each vertex in L with a vertex in R in a

“stable” way.

This problem derives its name, the stable-marriage problem, from the

notion of heterosexual marriage, viewing L as a set of women and R as

a set of men.2 Each woman ranks all the men in terms of desirability,

and each man does the same with all the women. The goal is to pair up

women and men (a matching) so that if a woman and a man are not
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matched to each other, then at least one of them prefers their assigned

partner.

If a woman and a man are not matched to each other but each

prefers the other over their assigned partner, they form a blocking pair.

A blocking pair has incentive to opt out of the assigned pairing and get

together on their own. If that were to occur, then this pair would block

the matching from being “stable.” A stable matching, therefore, is a

matching that has no blocking pair. If there is a blocking pair, then the

matching is unstable.

Let’s look at an example with four women—Wanda, Emma, Lacey,

and Karen—and four men—Oscar, Davis, Brent, and Hank—having

the following preferences:

Wanda:Brent, Hank, Oscar, Davis

Emma: Davis, Hank, Oscar, Brent

Lacey: Brent, Davis, Hank, Oscar

Karen: Brent, Hank, Davis, Oscar

Oscar: Wanda, Karen, Lacey, Emma

Davis: Wanda, Lacey, Karen, Emma

Brent: Lacey, Karen, Wanda, Emma

Hank: Lacey, Wanda, Emma, Karen

A stable matching comprises the following pairs:

Lacey and Brent

Wanda and Hank

Karen and Davis

Emma and Oscar

You can verify that this matching has no blocking pair. For example,

even though Karen prefers Brent and Hank to her partner Davis, Brent

prefers his partner Lacey to Karen, and Hank prefers his partner

Wanda to Karen, so that neither Karen and Brent nor Karen and Hank

form a blocking pair. In fact, this stable matching is unique. Suppose

instead that the last two pairs were

Emma and Davis
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Karen and Oscar

Then Karen and Davis would be a blocking pair, because they were not

paired together, Karen prefers Davis to Oscar, and Davis prefers Karen

to Emma. Therefore, this matching is not stable.

Stable matchings need not be unique. For example, suppose that

there are three women—Monica, Phoebe, and Rachel—and three men

—Chandler, Joey, and Ross—with these preferences:

Monica: Chandler, Joey, Ross

Phoebe: Joey, Ross, Chandler

Rachel: Ross, Chandler, Joey

Chandler: Phoebe, Rachel, Monica

Joey: Rachel, Monica, Phoebe

Ross: Monica, Phoebe, Rachel

In this case, there are three stable matchings:

Matching 1 Matching 2 Matching 3

Monica and Chandler Phoebe and Chandler Rachel and Chandler

Phoebe and Joey Rachel and Joey Monica and Joey

Rachel and Ross Monica and Ross Phoebe and Ross

In matching 1, all women get their first choice and all men get their last

choice. Matching 2 is the opposite, with all men getting their first choice

and all women getting their last choice. When all the women or all the

men get their first choice, there plainly cannot be a blocking pair. In

matching 3, everyone gets their second choice. You can verify that there

are no blocking pairs.

You might wonder whether it is always possible to come up with a

stable matching no matter what rankings each participant provides. The

answer is yes. (Exercise 25.2-3 asks you to show that even in the scenario

of the National Resident Matching Program, where each hospital takes

on multiple students, it is always possible to devise a stable assignment.)

A simple algorithm known as the Gale-Shapley algorithm always finds

a stable matching. The algorithm has two variants, which mirror each
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other: “woman-oriented” and “man-oriented.” Let’s examine the

woman-oriented version. Each participant is either “free” or “engaged.”

Everyone starts out free. Engagements occur when a free woman

proposes to a man. When a man is first proposed to, he goes from free

to engaged, and he always stays engaged, though not necessarily to the

same woman. If an engaged man receives a proposal from a woman

whom he prefers to the woman he’s currently engaged to, that

engagement is broken, the woman to whom he had been engaged

becomes free, and the man and the woman whom he prefers become

engaged. Each woman proposes to the men in her preference list, in

order, until the last time she becomes engaged. When a woman is

engaged, she temporarily stops proposing, but if she becomes free again,

she continues down her list. Once everyone is engaged, the algorithm

terminates. The procedure GALE-SHAPLEY on the next page makes

this process more concrete. The procedure allows for some choice: any

free woman may be selected in line 2. We’ll see that the procedure

produces a stable matching regardless of the order in which line 2

chooses free women. For the man-oriented version, just reverse the roles

of men and women in the procedure.

Let’s see how the GALE-SHAPLEY procedure executes on the

example with Wanda, Emma, Lacey, Karen, Oscar, Davis, Brent, and

Hank. After everyone is initialized to free, here is one possible version

of what can occur in successive iterations of the while loop of lines 2–9:

1. Wanda proposes to Brent. Brent is free, so that Wanda and

Brent become engaged and no longer free.

2. Emma proposes to Davis. Davis is free, so that Emma and Davis

become engaged and no longer free.

3. Lacey proposes to Brent. Brent is engaged to Wanda, but he

prefers Lacey. Brent breaks the engagement to Wanda, who

becomes free. Lacey and Brent become engaged, with Lacey no

longer free.

4. Karen proposes to Brent. Brent is engaged to Lacey, whom he

prefers to Karen. Brent rejects Karen, who remains free.
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5. Karen proposes to Hank. Hank is free, so that Karen and Hank

become engaged and no longer free.

6. Wanda proposes to Hank. Hank is engaged to Karen, but he

prefers Wanda. Hank breaks the engagement with Karen, who

becomes free. Wanda and Hank become engaged, with Wanda

no longer free.

7. Karen proposes to Davis. Davis is engaged to Emma, but he

prefers Karen. Davis breaks the engagement to Emma, who

becomes free. Karen and Davis become engaged, with Karen no

longer free.

8. Emma proposes to Hank. Hank is engaged to Wanda, whom he

prefers to Emma. Hank rejects Emma, who remains free.

9. Emma proposes to Oscar. Oscar is free, so that Emma and Oscar

become engaged and no longer free.

GALE-SHAPLEY (men, women, rankings)

  1assign each woman and man as free

  2while some woman w is free

  3 let m be the first man on w’s ranked list to whom she has not

proposed

  4 if m is free

  5 w and m become engaged to each other (and not free)

  6 elseif  m ranks w higher than the woman w′ he is currently

engaged to

  7 m breaks the engagement to w′, who becomes free

  8 w and m become engaged to each other (and not free)

  9 else m rejects w, with w remaining free

10return the stable matching consisting of the engaged pairs

At this point, everyone is engaged and nobody is free, so the while loop

terminates. The procedure returns the stable matching we saw earlier.

The following theorem shows that not only does GALE-SHAPLEY

terminate, but that it always returns a stable matching, thereby proving

that a stable matching always exists.

www.konkur.in

Telegram: @uni_k



Theorem 25.9

The procedure GALE-SHAPLEY always terminates and returns a

stable matching.

Proof      Let’s first show that the while loop of lines 2–9 always

terminates, so that the procedure terminates. The proof is by

contradiction. If the loop fails to terminate, it is because some woman

remains free. In order for a woman to remain free, she must have

proposed to all the men and been rejected by each one. In order for a

man to reject a woman, he must be already engaged. Therefore, all the

men are engaged. Once engaged, a man stays engaged (though not

necessarily to the same woman). There are an equal number n of women

and men, however, which means that every woman is engaged, leading

to the contradiction that no women are free. We must also show that the

while loop makes a bounded number of iterations. Since each of the n
women goes through her ranking of the n men in order, possibly not

reaching the end of her list, the total number of iterations is at most n2.

Therefore, the while loop always terminates, and the procedure returns a

matching.

We need to show that there are no blocking pairs. We first observe

that once a man m is engaged to a woman w, all subsequent actions for

m occur in lines 6–8. Therefore, once a man is engaged, he stays

engaged, and any time he breaks an engagement to a woman w, it’s for a

woman whom he prefers to w. Suppose that a woman w is matched with

a man m, but she prefers man m′. We’ll show that w and m′ is not a

blocking pair, because m′ does not prefer w to his partner. Because w
ranks m′ higher than m, she must have proposed to m′ before proposing

to m, and m′ either rejected her proposal or accepted it and later broke

the engagement. If m′ rejected the proposal from w, it is because he was

already engaged to some woman he prefers to w. If m′ accepted and

later broke the engagement, he was at some point engaged to w but later

accepted a proposal from a woman he prefers to w. In either case, he

ultimately ends up with a partner whom he prefers to w. We conclude

that even though w might prefer m′ to her partner m, it is not also the

case that m′ prefers w to his partner. Therefore, the procedure returns a

matching containing no blocking pairs.
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▪

Exercise 25.2-1 asks you to provide the proof of the following

corollary.

Corollary 25.10

Given preference rankings for n women and n men, the Gale-Shapley

algorithm can be implemented to run in O(n2) time.

▪

Because line 2 can choose any free woman, you might wonder

whether different choices can produce different stable matchings. The

answer is no: as the following theorem shows, every execution of the

GALE-SHAPLEY produces exactly the same result. Moreover, the

stable matching returned is optimal for the women.

Theorem 25.11

Regardless of how women are chosen in line 2 of GALE-SHAPLEY,

the procedure always returns the same stable matching, and in this

stable matching, each woman has the best partner possible in any stable

matching.

Proof   The proof that each woman has the best partner possible in any

stable matching is by contradiction. Suppose that the GALE-

SHAPLEY procedure returns a stable matching M, but that there is a

different stable matching M′ in which some woman w prefers her

partner m′ to the partner m she has in M. Because w ranks m′ higher

than m, she must have proposed to m′ before proposing to m. Then

there is a woman w′ whom m′ prefers to w, and m′ was already engaged

to w′ when w proposed or m′ accepted the proposal from w and later

broke the engagement in favor of w′. Either way, there is a moment

when m′ decided against w in favor of w′. Now suppose, without loss of

generality, that this moment was the first time that any man rejected a

partner who belongs to some stable matching.

We claim that w′ cannot have a partner m″ in a stable matching

whom she prefers to m′. If there were such a man m″, then in order for

w′ to propose to m′, she would have proposed to m″ and been rejected at
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some point before proposing to m′. If m′ accepted the proposal from w
and later broke it to accept w′, then since this was the first rejection in a

stable matching, we get the contradiction that m″ could not have

rejected w′ beforehand. If m″ was already engaged to w′ when w
proposed, then again, m″ could not have rejected w′ beforehand, thus

proving the claim.

Since w′ does not prefer anyone to m′ in a stable matching and w′ is
not matched with m′ in M′ (because m′ is matched with w in M′), w′
prefers m′ to her partner in M′. Since w′ prefers m′ over her partner in

M′ and m′ prefers w′ over his partner w in M′, the pair w′ and m′ is a

blocking pair in M′. Because M′ has a blocking pair, it cannot be a

stable matching, thereby contradicting the assumption that there exists

some stable matching in which each woman has the best partner

possible other than the matching M returned by GALE-SHAPLEY.

We put no condition on the execution of the procedure, which means

that all possible orders in which line 2 selects women result in the same

stable matching being returned.

▪

Corollary 25.12

There can be stable matchings that the GALE-SHAPLEY procedure

does not return.

Proof      Theorem 25.11 says that for a given set of rankings, GALE-

SHAPLEY returns just one matching, no matter how it chooses women

in line 2. The earlier example of three women and three men with three

different stable matchings shows that there can be multiple stable

matchings for a given set of rankings. A call of GALE-SHAPLEY is

capable of returning only one of these stable matchings.

▪

Although the GALE-SHAPLEY procedure gives the best possible

outcome for the women, the following corollary shows that it also

produces the worst possible outcome for the men.

Corollary 25.13
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In the stable matching returned by the procedure GALE-SHAPLEY,

each man has the worst partner possible in any stable matching.

Proof   Let M be the matching returned by a call to GALE-SHAPLEY.

Suppose that there is another stable matching M′ and a man m who

prefers his partner w in M to his partner w′ in M′. Let the partner of w
in M′ be m′. By Theorem 25.11, m is the best partner that w can have in

any stable matching, which means that w prefers m to m′. Since m
prefers w to w′, the pair w and m is a blocking pair in M′, contradicting

the assumption that M′ is a stable matching.

▪

Exercises

25.2-1

Describe how to implement the Gale-Shapley algorithm so that it runs

in O(n2) time.

25.2-2

Is it possible to have an unstable matching with just two women and two

men? If so, provide and justify an example. If not, argue why not.

25.2-3

The National Resident Matching Program differs from the scenario for

the stable-marriage problem set out in this section in two ways. First, a

hospital may be matched with more than one student, so that hospital h
takes rh ≥ 1 students. Second, the number of students might not equal

the number of hospitals. Describe how to modify the Gale-Shapley

algorithm to fit the requirements of the National Resident Matching

Program.

25.2-4

Prove the following property, which is known as weak Pareto optimality:

Let M be the stable matching produced by the GALE-

SHAPLEY procedure, with women proposing to men. Then,

for a given instance of the stable-marriage problem there is no
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matching—stable or unstable—such that every woman has a

partner whom she prefers to her partner in the stable matching

M.

25.2-5

The stable-roommates problem is similar to the stable-marriage problem,

except that the graph is a complete graph, not bipartite, with an even

number of vertices. Each vertex represents a person, and each person

ranks all the other people. The definitions of blocking pairs and stable

matching extend in the natural way: a blocking pair comprises two

people who both prefer each other to their current partner, and a

matching is stable if there are no blocking pairs. For example, consider

four people—Wendy, Xenia, Yolanda, and Zelda—with the following

preference lists:

Wendy: Xenia, Yolanda, Zelda

Xenia: Wendy, Zelda, Yolanda

Yolanda: Wendy, Zelda, Xenia

Zelda: Xenia, Yolanda, Wendy

You can verify that the following matching is stable:

Wendy and Xenia

Yolanda and Zelda

Unlike the stable-marriage problem, the stable-roommates problem can

have inputs for which no stable matching exists. Find such an input and

explain why no stable matching exists.

25.3    The Hungarian algorithm for the assignment problem

Let us once again add some information to a complete bipartite graph

G = (V, E), where V = L ∪ R. This time, instead of having the vertices

of each side rank the vertices on the other side, we assign a weight to

each edge. Again, let’s assume that the vertex sets L and R each contain

n vertices, so that the graph contains n2 edges. For l ∈ L and r ∈ R,
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denote the weight of edge (l, r) by w(l, r), which represents the utility

gained by matching vertex l with vertex r.

The goal is to find a perfect matching M* (see Exercises 25.1-5 and

25.1-6) whose edges have the maximum total weight over all perfect

matchings. That is, letting w(M) = ∑(l,r)∈M  w(l, r) denote the total

weight of the edges in matching M, we want to find a perfect matching

M* such that

w(M*) = max {w(M) : M is a perfect matching}.

We call finding such a maximum-weight perfect matching the

assignment problem. A solution to the assignment problem is a perfect

matching that maximizes the total utility. Like the stable-marriage

problem, the assignment problem finds a matching that is “good,” but

with a different definition of good: maximizing total value rather than

achieving stability.

Although you could enumerate all n! perfect matchings to solve the

assignment problem, an algorithm known as the Hungarian algorithm

solves it much faster. This section will prove an O(n4) time bound, and

Problem 25-2 asks you to refine the algorithm to reduce the running

time to O(n3). Instead of working with the complete bipartite graph G,

the Hungarian algorithm works with a subgraph of G called the

“equality subgraph.” The equality subgraph, which is defined below,

changes over time and has the beneficial property that any perfect

matching in the equality subgraph is also an optimal solution to the

assignment problem.

The equality subgraph depends on assigning an attribute h to each

vertex. We call h the label of a vertex, and we say that h is a feasible

vertex labeling of G if

l.h + r.h ≥ w(l, r) for all l ∈ L and r ∈ R.

A feasible vertex labeling always exists, such as the default vertex

labeling given by
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Given a feasible vertex labeling h, the equality subgraph Gh = (V, Eh) of

G consists of the same vertices as G and the subset of edges

Eh = {(l, r) ∈ E : l.h + r.h = w(l, r)}.

The following theorem ties together a perfect matching in an

equality subgraph and an optimal solution to the assignment problem.

Theorem 25.14

Let G = (V, E), where V = L ∪ R, be a complete bipartite graph where

each edge (l, r) ∈ E has weight w(l, r). Let h be a feasible vertex labeling

of G and Gh be the equality subgraph of G. If Gh contains a perfect

matching M*, then M* is an optimal solution to the assignment

problem on G.

Proof     If Gh contains a perfect matching M*, then because Gh and G

have the same sets of vertices, M* is also a perfect matching in G.

Because each edge of M* belongs to Gh and each vertex has exactly one

incident edge from any perfect matching, we have

Letting M be any perfect matching in G, we have

Thus, we have
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so that M* is a maximum-weight perfect matching in G.

▪

The goal now becomes finding a perfect matching in an equality

subgraph. Which equality subgraph? It does not matter! We have free

rein to not only choose an equality subgraph, but to change which

equality subgraph we choose as we go along. We just need to find some
perfect matching in some equality subgraph.

To understand the equality subgraph better, consider again the proof

of Theorem 25.14 and, in the second half, let M be any matching. The

proof is still valid, in particular, inequality (25.3): the weight of any

matching is always at most the sum of the vertex labels. If we choose any

set of vertex labels that define an equality subgraph, then a maximum-

cardinality matching in this equality subgraph has total value at most

the sum of the vertex labels. If the set of vertex labels is the “right” one,

then it will have total value equal to w(M*), and a maximum-cardinality

matching in the equality subgraph is also a maximum-weight perfect

matching. The Hungarian algorithm repeatedly modifies the matching

and the vertex labels in order to achieve this goal.

The Hungarian algorithm starts with any feasible vertex labeling h
and any matching M in the equality subgraph Gh. It repeatedly finds an

M-augmenting path P in Gh and, using Lemma 25.1, updates the

matching to be M ⊕ P, thereby incrementing the size of the matching.

As long as there is some equality subgraph that contains an M-

augmenting path, the size of the matching can increase, until a perfect

matching is achieved.

Four questions arise:

1. What initial feasible vertex labeling should the algorithm start

with? Answer: the default vertex labeling given by equations

(25.1) and (25.2).

2. What initial matching in Gh should the algorithm start with?

Short answer: any matching, even an empty matching, but a
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greedy maximal matching works well.

3. If an M-augmenting path exists in Gh, how to find it? Short

answer: use a variant of breadth-first search similar to the

second phase of the procedure used in the Hopcroft-Karp

algorithm to find a maximal set of shortest M-augmenting paths.

4. What if the search for an M-augmenting path fails? Short

answer: update the feasible vertex labeling to bring in at least one

new edge.

We’ll elaborate on the short answers using the example that starts in

Figure 25.4. Here, L = {l1, l2, … , l7} and R = {r1, r2, … , r7}. The

edge weights appear in the matrix shown in part (a), where the weight

w(li, rj) appears in row i and column j. The feasible vertex labels, given

by the default vertex labeling, appear to the left of and above the

matrix. Matrix entries in red indicate edges (li, rj) for which li.h + rj.h =

w(li, rj), that is, edges in the equality subgraph Gh appearing in part (b)

of the figure.

Greedy maximal bipartite matching

There are several ways to implement a greedy method to find a maximal

bipartite matching. The procedure GREEDY-BIPARTITE-

MATCHING shows one. Edges in Figure 25.4(b) highlighted in blue

indicate the initial greedy maximal matching in Gh. Exercise 25.3-2 asks

you to show that the GREEDY-BIPARTITE-MATCHING procedure

returns a matching that is at least half the size of a maximum matching.

GREEDY-BIPARTITE-MATCHING (G)

1 M = Ø

2 for each vertex l ∈ L
3 if l has an unmatched neighbor in R
4 choose any such unmatched neighbor r ∈ R
5 M = M ∪ {(l, r)}

6 return M
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Figure 25.4 The start of the Hungarian algorithm. (a) The matrix of edge weights for a bipartite

graph with L = {l1, l2, … , l7}. The value in row i and column j indicates w(li, rj). Feasible

vertex labels appear above and next to the matrix. Red entries correspond to edges in the

equality subgraph. (b) The equality subgraph Gh. Edges highlighted in blue belong to the initial

greedy maximal matching M. Blue vertices are matched, and tan vertices are unmatched. (c) The

directed equality subgraph GM,h created from Gh by directing edges in M from R to L and all

other edges from L to R.

Finding an M-augmenting path in Gh

To find an M-augmenting path in the equality subgraph Gh with a

matching M, the Hungarian algorithm first creates the directed equality

subgraph GM,h from Gh, just as the Hopcroft-Karp algorithm creates

GM from G. As in the Hopcroft-Karp algorithm, you can think of an

M-augmenting path as starting from an unmatched vertex in L, ending

at an unmatched vertex in R, taking unmatched edges from L to R, and

taking matched edges from R to L. Thus, GM,h = (V, EM,h), where

EM,h={(l, r) : l ∈ L, r ∈ R, and (l, r) ∈ Eh − M }(edges from L to R)
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∪ {(r, l) : r ∈ R, l ∈ L, and (l, r) ∈ M } (edges from R to L).

Because an M-augmenting path in the directed equality subgraph GM.h
is also an M-augmenting path in the equality subgraph Gh, it suffices to

find M-augmenting paths in GM.h. Figure 25.4(c) shows the directed

equality subgraph GM,h corresponding to the equality subgraph Gh
and matching M from part (b) of the figure.

With the directed equality subgraph GM,h in hand, the Hungarian

algorithm searches for an M-augmenting path from any unmatched

vertex in L to any unmatched vertex in R. Any exhaustive graph-search

method suffices. Here, we’ll use breadth-first search, starting from all

the unmatched vertices in L (just as the Hopcroft-Karp algorithm does

when creating the dag H), but stopping upon first discovering some

unmatched vertex in R. Figure 25.5 shows the idea. To start from all the

unmatched vertices in L, initialize the first-in, first-out queue with all

the unmatched vertices in L, rather than just one source vertex. Unlike

the dag H in the Hopcroft-Karp algorithm, here each vertex needs just

one predecessor, so that the breadth-first search creates a breadth-first

forest F = (VF, EF). Each unmatched vertex in L is a root in F.

In Figure 25.5(g), the breadth-first search has found the M-

augmenting path 〈(l4, r2), (r2, l1), (l1, r3), (r3, l6), (l6, r5)〉. Figure

25.6(a) shows the new matching created by taking the symmetric

difference of the matching M in Figure 25.5(a) with this M-augmenting

path.

When the search for an M-augmenting path fails

Having updated the matching M from an M-augmenting path, the

Hungarian algorithm updates the directed equality subgraph GM,h
according to the new matching and then starts a new breadth-first

search from all the unmatched vertices in L. Figure 25.6 shows the start

of this process, picking up from Figure 25.5.

In Figure 25.6(d), the queue contains vertices l4 and l3. Neither of

these vertices has an edge that leaves it, however, so that once these

vertices are removed from the queue, the queue becomes empty. The
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search terminates at this point, before discovering an unmatched vertex

in R to yield an M-augmenting path. Whenever this situation occurs,

the most recently discovered vertices must belong to L. Why? Whenever

an unmatched vertex in R is discovered, the search has found an M-

augmenting path, and when a matched vertex in R is discovered, it has

an unvisited neighbor in L, which the search can then discover.

Recall that we have the freedom to work with any equality subgraph.

We can change the directed equality subgraph “on the fly,” as long we

do not counteract the work already done. The Hungarian algorithm

updates the feasible vertex labeling h to fulfill the following criteria:

1. No edge in the breadth-first forest F leaves the directed equality

subgraph.

2. No edge in the matching M leaves the directed equality

subgraph.

3. At least one edge (l, r), where l ∈ L ∩ VF and r ∈ R − VF goes

into Eh, and hence into EM,h. Therefore, at least one vertex in R

will be newly discovered.

Thus, at least one new edge enters the directed equality subgraph, and

any edge that leaves the directed equality subgraph belongs to neither

the matching M nor the breadth-first forest F. Newly discovered vertices

in R are enqueued, but their distances are not necessarily 1 greater than

the distances of the most recently discovered vertices in L.
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Figure 25.5 Finding an M-augmenting path in GM,h by breadth-first search. (a) The directed

equality subgraph GM,h from Figure 25.4(c). (b)–(g) Successive versions of the breadth-first

forest F, shown as the vertices at each distance from the roots—the unmatched vertices in L—

are discovered. In parts (b)–(f), the layer of vertices closest to the bottom of the figure are those

in the first-in, first-out queue. For example, in part (b), the queue contains the roots 〈l4, l5, l7〉,

and in part (e), the queue contains 〈r3, r4〉, at distance 3 from the roots. In part (g), the

unmatched vertex r5 is discovered, so the breadth-first search terminates. The path 〈(l4, r2), (r2,

l1), (l1, r3), (r3, l6), (l6, r5)〉, highlighted in orange in parts (a) and (g), is an M-augmenting

path. Taking its symmetric difference with the matching M yields a new matching with one more

edge than M.
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Figure 25.6 (a) The new matching M and the new directed equality subgraph GM.h after

updating the matching in Figure 25.5(a) with the M-augmenting path in Figure 25.5(g). (b)–(d)

Successive versions of the breadth-first forest F in a new breadth-first search with roots l5 and

l7. After the vertices l4 and l3 in part (d) have been removed from the queue, the queue becomes

empty before the search can discover an unmatched vertex in R.

To update the feasible vertex labeling, the Hungarian algorithm first

computes the value

where FL = L ∩ VF and FR = R ∩ VF denote the vertices in the

breadth-first forest F that belong to L and R, respectively. That is, δ is

the smallest difference by which an edge incident on a vertex in FL
missed being in the current equality subgraph Gh. The Hungarian

algorithm then creates a new feasible vertex labeling, say h′, by

subtracting δ from l.h for all vertices l ∈ FL and adding δ to r.h for all

vertices r ∈ FR:

www.konkur.in

Telegram: @uni_k



The following lemma shows that these changes achieve the three criteria

above.

Lemma 25.15

Let h be a feasible vertex labeling for the complete bipartite graph G
with equality subgraph Gh, and let M be a matching for Gh and F be a

breadth-first forest being constructed for the directed equality subgraph

GM,h. Then, the labeling h′ in equation (25.5) is a feasible vertex

labeling for G with the following properties:

1. If (u, v) is an edge in the breadth-first forest F for GM,h, then (u,

v) ∈ EM,h′.

2. If (l, r) belongs to the matching M for Gh, then (r, l) ∈ EM,h′.

3. There exist vertices l ∈ FL and r ∈ R − FR such that (l, r) ∉

EM,h but (l, r) ∈ EM,h′.

Proof   We first show that h′ is a feasible vertex labeling for G. Because h
is a feasible vertex labeling, we have l.h + r.h ≥ w(l, r) for all l ∈ L and r
∈ R. In order for h′ to not be a feasible vertex labeling, we would need

l.h′ + r.h′ < l.h + r.h for some l ∈ L and r ∈ R. The only way this could

occur would be for some l ∈ FL and r ∈ R − FR. In this instance, the

amount of the decrease equals δ, so that l.h′ + r.h′ = l.h − δ + r.h. By

equation (25.4), we have that l.h−δ+r.h ≥ w(l, r) for any l ∈ FL and r ∈

R−FR, so that l.h′+r.h′ ≥ w(l, r). For all other edges, we have l.h′ + r.h′ ≥
l.h+r.h ≥ w(l, r). Thus, h′ is a feasible vertex labeling.

Now we show that each of the three desired properties holds:

1. If l ∈ FL and r ∈ FR, then we have l.h′+r.h′ = l.h+r.h because δ
is added to the label of l and subtracted from the label of r.
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Therefore, if an edge belongs to F for the directed graph GM,h, it

also belongs to GM,h′.

2. We claim that at the time the Hungarian algorithm computes the

new feasible vertex labeling h′, for every edge (l, r) ∈ M, we have

l ∈ FL if and only if r ∈ FR. To see why, consider a matched

vertex r and let (l, r) ∈ M. First suppose that r ∈ FR, so that the

search discovered r and enqueued it. When r was removed from

the queue, l was discovered, so l ∈ FL. Now suppose that r ∉

FR, so r is undiscovered. We will show that l ∉ FL. The only

edge in GM,h that enters l is (r, l), and since r is undiscovered,

the search has not taken this edge; if l ∈ FL, it is not because of

the edge (r, l). The only other way that a vertex in L can be in FL
is if it is a root of the search, but only unmatched vertices in L
are roots and l is matched. Thus, l ∉ FL, and the claim is

proved.

We already saw that l ∈ FL and r ∈ FR implies l.h′ + r.h′ = l.h +

r.h. For the opposite case, when l ∈ L − FL and R ∈ R − FR, we

have that l.h′ = l.h and r.h′ = r.h, so that again l.h′ + r.h′ = l.h +

r.h. Thus, if edge (l, r) is in the matching M for the equality

graph Gh, then (r, l) ∈ EM,h′.

3. Let (l, r) be an edge not in Eh such that l ∈ FL, r ∈ R − FR, and

δ = l.h + r.h − w(l, r). By the definition of δ, there is at least one

such edge. Then, we have

l.h′ + r.h′=l.h − δ + r.h
=l.h − (l.h + r.h − w(l, r)) + r.h
=w(l, r),

and thus (l, r) ∈ Eh′. Since (l, r) is not in Eh, it is not in the

matching M, so that in EM,h′ it must be directed from L to R.

Thus, (l, r) ∈ EM,h′.
▪
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It is possible for an edge to belong to EM,h but not to EM,h′. By

Lemma 25.15, any such edge belongs neither to the matching M nor to

the breadth-first forest F at the time that the new feasible vertex labeling

h′ is computed. (See Exercise 25.3-3.)

Going back to Figure 25.6(d), the queue became empty before an M-

augmenting path was found. Figure 25.7 shows the next steps taken by

the algorithm. The value of δ = 1 is achieved by the edge (l5, r3) because

in Figure 25.4(a), l5.h + r3.h − w(l5, r3) = 6 + 0 − 5 = 1. In Figure

25.7(a), the values of l3.h, l4.h, l5.h, and l7.h have decreased by 1 and

the values of r2.h and r7.h have increased by 1 because these vertices are

in F. As a result, the edges (l1, r2) and (l6, r7) leave GM,h and the edge

(l5, r3) enters. Figure 25.7(b) shows the new directed equality subgraph

GM,h. With edge (l5, r3) now in GM,h, Figure 25.7(c) shows that this

edge is added to the breadth-first forest F, and r3 is added to the queue.

Parts (c)–(f) show the breadth-first forest continuing to be built until in

part (f), the queue once again becomes empty after vertex l2, which has

no edges leaving, is removed. Again, the algorithm must update the

feasible vertex labeling and the directed equality subgraph. Now the

value of δ = 1 is achieved by three edges: (l1, r6), (l5, r6), and (l7, r6).

As Figure 25.8 shows in parts (a) and (b), these edges enter GM,h,

and edge (l6, r3) leaves. Part (c) shows that edge (l1, r6) is added to the

breadth-first forest. (Either of edges (l5, r6) or (l7, r6) could have been

added instead.) Because r6 is unmatched, the search has found the M-

augmenting path 〈(l5, r3), (r3, l1), (l1, r6)〉, highlighted in orange.

Figure 25.9(a) shows GM,h after the matching M has been updated

by taking its symmetric difference with the M-augmenting path. The

Hungarian algorithm starts its last breadth-first search, with vertex l7 as

the only root. The search proceeds as shown in parts (b)–(h) of the

figure, until the queue becomes empty after removing l4. This time, we

find that δ = 2, achieved by the five edges (l2, r5), (l3, r1), (l4, r5), (l5,

r1), and (l5, r5), each of which enters GM,h. Figure 25.10(a) shows the
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results of decreasing the feasible vertex label of each vertex in FL by 2

and increasing the feasible vertex label of each vertex in FR by 2, and

Figure 25.10(b) shows the resulting directed equality subgraph GM,h.

Part (c) shows that edge (l3, r1) is added to the breadth-first forest.

Since r1 is an unmatched vertex, the search terminates, having found the

M-augmenting path 〈(l7, r7), (r7, l3), (l3, r1)〉, highlighted in orange. If

r1 had been matched, vertex r5 would also have been added to the

breadth-first forest, with any of l2, l4, or l5 as its parent.

Figure 25.7 Updating the feasible vertex labeling and the directed equality subgraph GM,h when

the queue becomes empty before finding an M-augmenting path. (a) With δ = 1, the values of

l3.h, l4.h, l5.h, and l7.h decreased by 1 and r2.h and r7.h increased by 1. Edges (l1, r2) and (l6,

r7) leave GM,h, and edge (l5, r3) enters. These changes are highlighted in yellow. (b) The

resulting directed equality subgraph GM,h. (c)–(f) With edge (l5, r3) added to the breadth-first

forest and r3 added to the queue, the breadth-first search continues until the queue once again

becomes empty in part (f).

After updating the matching M, the algorithm arrives at the perfect

matching shown for the equality subgraph Gh in Figure 25.11. By
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Theorem 25.14, the edges in M form an optimal solution to the original

assignment problem given in the matrix. Here, the weights of edges (l1,

r6), (l2, r4), (l3, r1), (l4, r2), (l5, r3), (l6, r5), and (l7, r7) sum to 65,

which is the maximum weight of any matching.

The weight of the maximum-weight matching equals the sum of all

the feasible vertex labels. These problems—maximizing the weight of a

matching and minimizing the sum of the feasible vertex labels—are

“duals” of each other, in a similar vein to how the value of a maximum

flow equals the capacity of a minimum cut. Section 29.3 explores duality

in more depth.

Figure 25.8 Another update to the feasible vertex labeling and directed equality subgraph GM,h
because the queue became empty before finding an M-augmenting path. (a) With δ = 1, the

values of l1.h, l2.h, l3.h, l4.h, l5.h, and l7.h decrease by 1, and r2.h, r3.h, r4.h, and r7.h increase

by 1. Edge (l6, r3) leaves GM,h, and edges (l1, r6), (l5, r6) and (l7, r6) enter. (b) The resulting

directed equality subgraph GM,h. (c) With edge (l1, r6) added to the breadth-first forest and r6

unmatched, the search terminates, having found the M-augmenting path 〈(l5, r3), (r3, l1), (l1,

r6)〉, highlighted in orange in parts (b) and (c).
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The Hungarian algorithm

The procedure HUNGARIAN on page 737 and its subroutine FIND-

AUGMENTING-PATH on page 738 follow the steps we have just seen.

The third property in Lemma 25.15 ensures that in line 23 of FIND-

AUGMENTING-PATH the queue Q is nonempty. The pseudocode

uses the attribute π to indicate predecessor vertices in the breadth-first

forest. Instead of coloring vertices, as in the BFS procedure on page

556, the search puts the discovered vertices into the sets FL and FR.

Because the Hungarian algorithm does not need breadth-first distances,

the pseudocode omits the d attribute computed by the BFS procedure.
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Figure 25.9 (a) The new matching M and the new directed equality subgraph GM,h after

updating the matching in Figure 25.8 with the M-augmenting path in Figure 25.8 parts (b) and

(c). (b)–(h) Successive versions of the breadth-first forest F in a new breadth-first search with

root l7. After the vertex l4 in part (h) has been removed from the queue, the queue becomes

empty before the search discovers an unmatched vertex in R.

Now, let’s see why the Hungarian algorithm runs in O(n4) time,

where |V| = n/2 and |E| = n2 in the original graph G. (Below we outline

how to reduce the running time to O(n3).) You can go through the

pseudocode of HUNGARIAN to verify that lines 1–6 and 11 take

O(n2) time. The while loop of lines 7–10 iterates at most n times, since

each iteration increases the size of the matching M by 1. Each test in
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line 7 can take constant time by just checking whether |M| < n, each

update of M in line 9 takes O(n) time, and the updates in line 10 take

O(n2) time.

To achieve the O(n4) time bound, it remains to show that each call of

FIND-AUGMENTING-PATH runs in O(n3) time. Let’s call each

execution of lines 10–22 a growth step. Ignoring the growth steps, you

can verify that FIND-AUGMENTING-PATH is a breadth-first search.

With the sets FL and FR represented appropriately, the breadth-first

search takes O(V + E) = O(n2) time. Within a call of FIND-

AUGMENTING-PATH, at most n growth steps can occur, since each

growth step is guaranteed to discover at least one vertex in R. Since

there are at most n2 edges in GM,h, the for loop of lines 16–22 iterates

at most n2 times per call of FIND-AUGMENTING-PATH. The

bottleneck is lines 10 and 15, which take O(n2) time, so that FIND-

AUGMENTING-PATH takes O(n3) time.
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Figure 25.10 Updating the feasible vertex labeling and directed equality subgraph GM,h. (a)

Here, δ = 2, so the values of l1.h, l2.h, l3.h, l4.h, l5.h, and l7.h decreased by 2, and the values of

r2.h, r3.h, r4.h, r6.h, and r7.h increased by 2. Edges (l2, r5), (l3, r1), (l4, r5), (l5, r1), and (l5, r5)

enter GM,h. (b) The resulting directed graph GM,h. (c) With edge (l3, r1) added to the breadth-

first forest and r1 unmatched, the search terminates, having found the M-augmenting path 〈(l7,

r7), (r7, l3), (l3, r1)〉, highlighted in orange in parts (b) and (c).

Exercise 25.3-5 asks you to show that reconstructing the directed

equality subgraph GM,h in line 15 is actually unnecessary, so that its

cost can be eliminated. Reducing the cost of computing δ in line 10 to

O(n) takes a little more effort and is the subject of Problem 25-2. With

these changes, each call of FIND-AUGMENTING-PATH takes O(n2)

time, so that the Hungarian algorithm runs in O(n3) time.
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Figure 25.11 The final matching, shown for the equality subgraph Gh with blue edges and blue

entries in the matrix. The weights of the edges in the matching sum to 65, which is the maximum

for any matching in the original complete bipartite graph G, as well as the sum of all the final

feasible vertex labels.

HUNGARIAN (G)

  1 for each vertex l ∈ L
  2 l.h = max {w(l, r) : r ∈ R} // from equation (25.1)

  3 for each vertex r ∈ R
  4 r.h = 0 // from equation (25.2)

  5 let M be any matching in Gh (such as the matching returned by

GREEDY-BIPARTITE-MATCHING)

  6 from G, M, and h, form the equality subgraph Gh
and the directed equality subgraph GM,h

  7while M is not a perfect matching in Gh
  8 P = FIND-AUGMENTING-PATH (GM,h)

  9 M = M ⊕ P
10
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update the equality subgraph Gh
and the directed equality subgraph GM,h

11return M

FIND-AUGMENTING-PATH (GM,h)

  1Q = Ø

  2FL = Ø

  3FR = Ø

  4 for each unmatched vertex l ∈ L
  5 l.π = NIL

  6 ENQUEUE (Q, l)
  7 FL = FL ∪ {l} // forest F starts with unmatched

vertices in L
  8repeat

  9 if Q is empty // ran out of vertices to search from?

10 δ = min {l.h + r.h − w(l, r) : l ∈ FL and r ∈ R − FR}

11 for each vertex l ∈ FL
12 l.h = l.h − δ // relabel according to equation

(25.5)

13 for each vertex r ∈ FR
14 r.h = r.h + δ // relabel according to equation

(25.5)

15 from G, M, and h, form a new directed equality graph GM,h
16 for each new edge (l, r)

in GM,h

// continue search with

new edges

17 if r ∉ FR
18 r.π = l // discover r, add it to

F

19 if r is unmatched

20 an M-augmenting path has been found

20 (exit the repeat loop)

21 else ENQUEUE // can search from r
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(Q, r) later

22 FR = FR ∪ {r}

23 u = DEQUEUE (Q) // search from u
24 for each neighbor v of u in GM,h
25 if v ∈ L
26 v.π = u
27 FL = FL ∪ {v} // discover v, add it to

F
28 ENQUEUE (Q, v) // can search from v

later

29 elseif v ∉ FR //  v ∈ R, do same as

lines 18–22

30 v.π = u
31 if v is unmatched

32 an M-augmenting path has been found

(exit the repeat loop)

33 else ENQUEUE (Q, v)

34 FR = FR ∪ {v}

35until an M-augmenting path has been found

36using the predecessor attributes π, construct an M-augmenting path

P by tracing back from the unmatched vertex in R
37return P

Exercises

25.3-1

The FIND-AUGMENTING-PATH procedure checks in two places

(lines 19 and 31) whether a vertex it discovers in R is unmatched. Show

how to rewrite the pseudocode so that it checks for an unmatched

vertex in R in only one place. What is the downside of doing so?

25.3-2

Show that for any bipartite graph, the GREEDY-BIPARTITE-

MATCHING procedure on page 726 returns a matching at least half

the size of a maximum matching.
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25.3-3

Show that if an edge (l, r) belongs to the directed equality subgraph

GM,h but is not a member of GM,h′, where h′ is given by equation

(25.5), then l ∈ L − FL and r ∈ FR at the time that h′ is computed.

25.3-4

At line 29 in the FIND-AUGMENTING-PATH procedure, it has

already been established that v ∈ R. This line checks to see whether v is

already discovered by testing whether v ∈ FR. Why doesn’t the

procedure need to check whether v is already discovered for the case

when v ∈ L, in lines 26–28?

25.3-5

Professor Hrabosky asserts that the directed equality subgraph GM,h
must be constructed and maintained by the Hungarian algorithm, so

that line 6 of HUNGARIAN and line 15 of FIND-AUGMENTING-

PATH are required. Argue that the professor is incorrect by showing

how to determine whether an edge belongs to EM,h without explicitly

constructing GM,h.

25.3-6

How can you modify the Hungarian algorithm to find a matching of

vertices in L to vertices in R that minimizes, rather than maximizes, the

sum of the edge weights in the matching?

25.3-7

How can an assignment problem with |L| ≠ |R| be modified so that the

Hungarian algorithm solves it?

Problems

25-1     Perfect matchings in a regular bipartite graph

a. Problem 20-3 asked about Euler tours in directed graphs. Prove that a

connected, undirected graph G = (V, E) has an Euler tour—a cycle
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traversing each edge exactly once, though it may visit a vertex multiple

times—if and only if the degree of every vertex in V is even.

b. Assuming that G is connected, undirected, and every vertex in V has

even degree, give an O(E)-time algorithm to find an Euler tour of G,

as in Problem 20-3(b).

c. Exercise 25.1-6 states that if G = (V, E) is a d-regular bipartite graph,

then it contains d disjoint perfect matchings. Suppose that d is an

exact power of 2. Give an algorithm to find all d disjoint perfect

matchings in a d-regular bipartite graph in Θ(E lg d) time.

25-2     Reducing the running time of the Hungarian algorithm to O(n3)

In this problem, you will show how to reduce the running time of the

Hungarian algorithm from O(n4) to O(n3) by showing how to reduce

the running time of the FIND-AUGMENTING-PATH procedure

from O(n3) to O(n2). Exercise 25.3-5 demonstrates that line 6 of

HUNGARIAN and line 15 of FIND-AUGMENTING-PATH are

unnecessary. Now you will show how to reduce the running time of each

execution of line 10 in FIND-AUGMENTING-PATH to O(n).

For each vertex r ∈ R − FR, define a new attribute r.σ where

r.σ = min {l.h + r.h − w(l, r) : l ∈ FL}.

That is, r.σ indicates how close r is to being adjacent to some vertex l ∈
FL in the directed equality subgraph Gm,h. Initially, before placing any

vertices into FL, set r.σ to ∞ for all r ∈ R.

a. Show how to compute δ in line 10 in O(n) time, based on the σ
attribute.

b. Show how to update all the σ attributes in O(n) time after δ has been

computed.

c. Show that updating all the σ attributes when FL changes takes O(n2)

time per call of FIND-AUGMENTING-PATH.
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d. Conclude that the HUNGARIAN procedure can be implemented to

run in O(n3) time.

25-3     Other matching problems

The Hungarian algorithm finds a maximum-weight perfect matching in

a complete bipartite graph. It is possible to use the Hungarian

algorithm to solve problems in other graphs by modifying the input

graph, running the Hungarian algorithm, and then possibly modifying

the output. Show how to solve the following matching problems in this

manner.

a. Give an algorithm to find a maximum-weight matching in a weighted

bipartite graph that is not necessarily complete and with all edge

weights positive.

b. Redo part (a), but with edge weights allowed to also be 0 or negative.

c. A cycle cover in a directed graph, not necessarily bipartite, is a set of

edge-disjoint directed cycles such that each vertex lies on at most one

cycle. Given nonnegative edge weights w(u, v), let C be the set of edges

in a cycle cover, and define w(C) = ∑(u,v)∈C w(u, v) to be the weight

of the cycle cover. Give an algorithm to find a maximum-weight cycle

cover.

25-4     Fractional matchings

It is possible to define a fractional matching. Given a graph G = (V, E),

we define a fractional matching x as a function x : E → [0, 1] (real

numbers between 0 and 1, inclusive) such that for every vertex u ∈ V,

we have ∑(u,v)∈E x(u, v) ≤ 1. The value of a fractional matching is ∑(u,

v)∈E x(u, v). The definition of a fractional matching is identical to that

of a matching, except that a matching has the additional constraint that

x(u, v) ∈ {0, 1} for all edges (u, v) ∈ E. Given a graph, we let M*

denote a maximum matching and x* denote a fractional matching with

maximum value.
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a. Argue that, for any bipartite graph, we must have ∑(u, v)∈E x*(u, v) ≥

|M*|.

b. Prove that, for any bipartite graph, we must have ∑(u, v)∈E x*(e) ≤

|M*|. (Hint: Give an algorithm that converts a fractional matching

with an integer value to a matching.) Conclude that the maximum

value of a fractional matching in a bipartite graph is the same as the

size of the maximum cardinality matching.

c. We can define a fractional matching in a weighted graph in the same

manner: the value of the matching is now ∑(u, v)∈E w(u, v) x(u, v).

Extend the results of the previous parts to show that in a weighted

bipartite graph, the maximum value of a weighted fractional matching

is equal to the value of a maximum weighted matching.

d. In a general graph, the analogous results do not necessarily hold.

Give an example of a small graph that is not bipartite for which the

fractional matching with maximum value is not a maximum

matching.

25-5     Computing vertex labels

You are given a complete bipartite graph G = (V, E) with edge weights

w(l, r) for all (l, r) ∈ E. You are also given a maximum-weight perfect

matching M* for G. You wish to compute a feasible vertex labeling h
such that M* is a perfect matching in the equality subgraph Gh. That is,

you want to compute a labeling h of vertices such that

(Requirement (25.6) holds for all edges, and the stronger requirement

(25.7) holds for all edges in M*.) Give an algorithm to compute the

feasible vertex labeling h, and prove that it is correct. (Hint: Use the

similarity between conditions (25.6) and (25.7) and some of the

properties of shortest paths proved in Chapter 22, in particular the

triangle inequality (Lemma 22.10) and the convergence property

(Lemma 22.14.))
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Chapter notes

Matching algorithms have a long history and have been central to many

breakthroughs in algorithm design and analysis. The book by Lovász

and Plummer [306] is an excellent reference on matching problems, and

the chapter on matching in the book by Ahuja, Magnanti and Orlin [10]

also has extensive references.

The Hopcroft-Karp algorithm is by Hopcroft and Karp [224].

Madry [308] gave an Õ(E10/7)-time algorithm, which is asymptotically

faster than Hopcroft-Karp for sparse graphs.

Corollary 25.4 is due to Berge [53], and it also holds in graphs that

are not bipartite. Matching in general graphs requires more complicated

algorithms. The first polynomial-time algorithm, running in O(V  4)

time, is due to Edmonds [130] (in a paper that also introduced the

notion of a polynomial-time algorithm). Like the bipartite case, this

algorithm also uses augmenting paths, although the algorithm for

finding augmenting paths in general graphs is more involved than the

one for bipartite graphs. Subsequently, several -time algorithms

appeared, including ones by Gabow and Tarjan [168] as part of an

algorithm for weighted matching and a simpler one by Gabow [164].

The Hungarian algorithm is described in the book by Bondy and

Murty [67] and is based on work by Kuhn [273] and Munkres [337].

Kuhn adopted the name “Hungarian algorithm” because the algorithm

derived from work by the Hungarian mathematicians D. Kőnig and J.

Egervéry. The algorithm is an early example of a primal-dual algorithm.

A faster algorithm that runs in  time, where the edge

weights are integers from 0 to W, was given by Gabow and Tarjan [167],

and an algorithm with the same time bound for maximum-weight

matching in general graphs was given by Duan, Pettie, and Su [127].

The stable-marriage problem was first defined and analyzed by Gale

and Shapley [169]. The stable-marriage problem has numerous variants.

The books by Gusfield and Irving [203], Knuth [266], and Manlove

[313] serve as excellent sources for cataloging and solving them.
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1 The definition of a complete bipartite graph differs from the definition of complete graph

given on page 1167 because in a bipartite graph, there are no edges between vertices in L and no

edges between vertices in R.

2 Although marriage norms are changing, it’s traditional to view the stable-marriage problem

through the lens of heterosexual marriage.
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Part VII    Selected Topics
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Introduction

This part contains a selection of algorithmic topics that extend and

complement earlier material in this book. Some chapters introduce new

models of computation such as circuits or parallel computers. Others

cover specialized domains such as matrices or number theory. The last

two chapters discuss some of the known limitations to the design of

efficient algorithms and introduce techniques for coping with those

limitations.

Chapter 26 presents an algorithmic model for parallel computing

based on task-parallel computing, and more specifically, fork-join

parallelism. The chapter introduces the basics of the model, showing

how to quantify parallelism in terms of the measures of work and span.

It then investigates several interesting fork-join algorithms, including

algorithms for matrix multiplication and merge sorting.

An algorithm that receives its input over time, rather than having the

entire input available at the start, is called an “online” algorithm.

Chapter 27 examines techniques used in online algorithms, starting with

the “toy” problem of how long to wait for an elevator before taking the

stairs. It then studies the “move-to-front” heuristic for maintaining a

linked list and finishes with the online version of the caching problem

we saw back in Section 15.4. The analyses of these online algorithms are

remarkable in that they prove that these algorithms, which do not know

their future inputs, perform within a constant factor of optimal

algorithms that know the future inputs.
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Chapter 28 studies efficient algorithms for operating on matrices. It

presents two general methods—LU decomposition and LUP

decomposition—for solving linear equations by Gaussian elimination in

O(n3) time. It also shows that matrix inversion and matrix

multiplication can be performed equally fast. The chapter concludes by

showing how to compute a least-squares approximate solution when a

set of linear equations has no exact solution.

Chapter 29 studies how to model problems as linear programs, where

the goal is to maximize or minimize an objective, given limited resources

and competing constraints. Linear programming arises in a variety of

practical application areas. The chapter also addresses the concept of

“duality” which, by establishing that a maximization problem and

minimization problem have the same objective value, helps to show that

solutions to each are optimal.

Chapter 30 studies operations on polynomials and shows how to use

a well-known signal-processing technique—the fast Fourier transform

(FFT)—to multiply two degree-n polynomials in O(n lg n) time. It also

derives a parallel circuit to compute the FFT.

Chapter 31 presents number-theoretic algorithms. After reviewing

elementary number theory, it presents Euclid’s algorithm for computing

greatest common divisors. Next, it studies algorithms for solving

modular linear equations and for raising one number to a power

modulo another number. Then, it explores an important application of

number-theoretic algorithms: the RSA public-key cryptosystem. This

cryptosystem can be used not only to encrypt messages so that an

adversary cannot read them, but also to provide digital signatures. The

chapter finishes with the Miller-Rabin randomized primality test, which

enables finding large primes efficiently—an essential requirement for the

RSA system.

Chapter 32 studies the problem of finding all occurrences of a given

pattern string in a given text string, a problem that arises frequently in

text-editing programs. After examining the naive approach, the chapter

presents an elegant approach due to Rabin and Karp. Then, after

showing an efficient solution based on finite automata, the chapter

presents the Knuth-Morris-Pratt algorithm, which modifies the
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automaton-based algorithm to save space by cleverly preprocessing the

pattern. The chapter finishes by studying suffix arrays, which can not

only find a pattern in a text string, but can do quite a bit more, such as

finding the longest repeated substring in a text and finding the longest

common substring appearing in two texts.

Chapter 33 examines three algorithms within the expansive field of

machine learning. Machine-learning algorithms are designed to take in

vast amounts of data, devise hypotheses about patterns in the data, and

test these hypotheses. The chapter starts with k-means clustering, which

groups data elements into k classes based on how similar they are to

each other. It then shows how to use the technique of multiplicative

weights to make predictions accurately based on a set of “experts” of

varying quality. Perhaps surprisingly, even without knowing which

experts are reliable and which are not, you can predict almost as

accurately as the most reliable expert. The chapter finishes with gradient

descent, an optimization technique that finds a local minimum value for

a function. Gradient descent has many applications, including finding

parameter settings for many machine-learning models.

Chapter 34 concerns NP-complete problems. Many interesting

computational problems are NP-complete, but no polynomial-time

algorithm is known for solving any of them. This chapter presents

techniques for determining when a problem is NP-complete, using them

to prove several classic problems NP-complete: determining whether a

graph has a hamiltonian cycle (a cycle that includes every vertex),

determining whether a boolean formula is satisfiable (whether there

exists an assignment of boolean values to its variables that causes the

formula to evaluate to TRUE), and determining whether a given set of

numbers has a subset that adds up to a given target value. The chapter

also proves that the famous traveling-salesperson problem (find a

shortest route that starts and ends at the same location and visits each

of a set of locations once) is NP-complete.

Chapter 35 shows how to find approximate solutions to NP-

complete problems efficiently by using approximation algorithms. For

some NP-complete problems, approximate solutions that are near

optimal are quite easy to produce, but for others even the best

approximation algorithms known work progressively more poorly as the
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problem size increases. Then, there are some problems for which

investing increasing amounts of computation time yields increasingly

better approximate solutions. This chapter illustrates these possibilities

with the vertex-cover problem (unweighted and weighted versions), an

optimization version of 3-CNF satisfiability, the traveling-salesperson

problem, the set-covering problem, and the subset-sum problem.
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26        Parallel Algorithms

The vast majority of algorithms in this book are serial algorithms

suitable for running on a uniprocessor computer that executes only one

instruction at a time. This chapter extends our algorithmic model to

encompass parallel algorithms, where multiple instructions can execute

simultaneously. Specifically, we’ll explore the elegant model of task-

parallel algorithms, which are amenable to algorithmic design and

analysis. Our study focuses on fork-join parallel algorithms, the most

basic and best understood kind of task-parallel algorithm. Fork-join

parallel algorithms can be expressed cleanly using simple linguistic

extensions to ordinary serial code. Moreover, they can be implemented

efficiently in practice.

Parallel computers—computers with multiple processing units—are

ubiquitous. Handheld, laptop, desktop, and cloud machines are all

multicore computers, or simply, multicores, containing multiple

processing “cores.” Each processing core is a full-fledged processor that

can directly access any location in a common shared memory.

Multicores can be aggregated into larger systems, such as clusters, by

using a network to interconnect them. These multicore clusters usually

have a distributed memory, where one multicore’s memory cannot be

accessed directly by a processor in another multicore. Instead, the

processor must explicitly send a message over the cluster network to a

processor in the remote multicore to request any data it requires. The

most powerful clusters are supercomputers, comprising many thousands

of multicores. But since shared-memory programming tends to be

conceptually easier than distributed-memory programming, and
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multicore machines are widely available, this chapter focuses on parallel

algorithms for multicores.

One approach to programming multicores is thread parallelism. This

processor-centric parallel-programming model employs a software

abstraction of “virtual processors,” or threads that share a common

memory. Each thread maintains its own program counter and can

execute code independently of the other threads. The operating system

loads a thread onto a processing core for execution and switches it out

when another thread needs to run.

Unfortunately, programming a shared-memory parallel computer

using threads tends to be difficult and error-prone. One reason is that it

can be complicated to dynamically partition the work among the

threads so that each thread receives approximately the same load. For

any but the simplest of applications, the programmer must use complex

communication protocols to implement a scheduler that load-balances

the work.

Task-parallel programming

The difficulty of thread programming has led to the creation of task-

parallel platforms, which provide a layer of software on top of threads

to coordinate, schedule, and manage the processors of a multicore.

Some task-parallel platforms are built as runtime libraries, but others

provide full-fledged parallel languages with compiler and runtime

support.

Task-parallel programming allows parallelism to be specified in a

“processor-oblivious” fashion, where the programmer identifies what

computational tasks may run in parallel but does not indicate which

thread or processor performs the task. Thus, the programmer is freed

from worrying about communication protocols, load balancing, and

other vagaries of thread programming. The task-parallel platform

contains a scheduler, which automatically load-balances the tasks across

the processors, thereby greatly simplifying the programmer’s chore.

Task-parallel algorithms provide a natural extension to ordinary serial

algorithms, allowing performance to be reasoned about mathematically

using “work/span analysis.”
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Fork-join parallelism

Although the functionality of task-parallel environments is still evolving

and increasing, almost all support fork-join parallelism, which is

typically embodied in two linguistic features: spawning and parallel

loops. Spawning allows a subroutine to be “forked”: executed like a

subroutine call, except that the caller can continue to execute while the

spawned subroutine computes its result. A parallel loop is like an

ordinary for loop, except that multiple iterations of the loop can execute

at the same time.

Fork-join parallel algorithms employ spawning and parallel loops to

describe parallelism. A key aspect of this parallel model, inherited from

the task-parallel model but different from the thread model, is that the

programmer does not specify which tasks in a computation must run in

parallel, only which tasks may run in parallel. The underlying runtime

system uses threads to load-balance the tasks across the processors. This

chapter investigates parallel algorithms described in the fork-join

model, as well as how the underlying runtime system can schedule task-

parallel computations (which include fork-join computations)

efficiently.

Fork-join parallelism offers several important advantages:

The fork-join programming model is a simple extension of the

familiar serial programming model used in most of this book. To

describe a fork-join parallel algorithm, the pseudocode in this

book needs just three added keywords: parallel, spawn, and sync.

Deleting these parallel keywords from the parallel pseudocode

results in ordinary serial pseudocode for the same problem, which

we call the “serial projection” of the parallel algorithm.

The underlying task-parallel model provides a theoretically clean

way to quantify parallelism based on the notions of “work” and

“span.”

Spawning allows many divide-and-conquer algorithms to be

parallelized naturally. Moreover, just as serial divide-and-conquer

algorithms lend themselves to analysis using recurrences, so do

parallel algorithms in the fork-join model.
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The fork-join programming model is faithful to how multicore

programming has been evolving in practice. A growing number of

multicore environments support one variant or another of fork-

join parallel programming, including Cilk [290, 291, 383, 396],

Habanero-Java [466], the Java Fork-Join Framework [279],

OpenMP [81], Task Parallel Library [289], Threading Building

Blocks [376], and X10 [82].

Section 26.1 introduces parallel pseudocode, shows how the

execution of a task-parallel computation can be modeled as a directed

acyclic graph, and presents the metrics of work, span, and parallelism,

which you can use to analyze parallel algorithms. Section 26.2

investigates how to multiply matrices in parallel, and Section 26.3

tackles the tougher problem of designing an efficient parallel merge sort.

26.1    The basics of fork-join parallelism

Our exploration of parallel programming begins with the problem of

computing Fibonacci numbers recursively in parallel. We’ll look at a

straightforward serial Fibonacci calculation, which, although inefficient,

serves as a good illustration of how to express parallelism in

pseudocode.

Recall that the Fibonacci numbers are defined by equation (3.31) on

page 69:

To calculate the nth Fibonacci number recursively, you could use the

ordinary serial algorithm in the procedure FIB on the facing page. You

would not really want to compute large Fibonacci numbers this way,

because this computation does needless repeated work, but parallelizing

it can be instructive.

FIB (n)
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1if n ≤ 1

2 return n

3else x = FIB (n − 1)

4 y = FIB (n − 2)

5 return x + y

To analyze this algorithm, let T (n) denote the running time of FIB

(n). Since FIB (n) contains two recursive calls plus a constant amount of

extra work, we obtain the recurrence

T (n) = T (n − 1) + T (n − 2) + Θ(1).

This recurrence has solution T (n) = Θ(Fn), which we can establish by

using the substitution method (see Section 4.3). To show that T (n) =

O(Fn), we’ll adopt the inductive hypothesis that T (n) ≤ aFn − b, where a

> 1 and b > 0 are constants. Substituting, we obtain

T (n) ≤ (aFn−1 − b) + (aFn−2 − b) + Θ(1)

= a(Fn−1 + Fn−2) − 2b + Θ(1)

≤ aFn − b,

if we choose b large enough to dominate the upper-bound constant in

the Θ(1) term. We can then choose a large enough to upper-bound the

Θ(1) base case for small n. To show that T (n) = Ω(Fn), we use the

inductive hypothesis T (n) ≥ aFn − b. Substituting and following

reasoning similar to the asymptotic upper-bound argument, we

establish this hypothesis by choosing b smaller than the lower-bound

constant in the Θ(1) term and a small enough to lower-bound the Θ(1)

base case for small n. Theorem 3.1 on page 56 then establishes that T (n)

= Θ(Fn), as desired. Since Fn = Θ(ϕn), where  is the

golden ratio, by equation (3.34) on page 69, it follows that

Thus this procedure is a particularly slow way to compute Fibonacci

numbers, since it runs in exponential time. (See Problem 31-3 on page
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954 for faster ways.)

Let’s see why the algorithm is inefficient. Figure 26.1 shows the tree

of recursive procedure instances created when computing F6 with the

FIB procedure. The call to FIB(6) recursively calls FIB(5) and then

FIB(4). But, the call to FIB(5) also results in a call to FIB(4). Both

instances of FIB(4) return the same result (F4 = 3). Since the FIB

procedure does not memoize (recall the definition of “memoize” from

page 368), the second call to FIB(4) replicates the work that the first call

performs, which is wasteful.

Figure 26.1 The invocation tree for FIB(6). Each node in the tree represents a procedure instance

whose children are the procedure instances it calls during its execution. Since each instance of

FIB with the same argument does the same work to produce the same result, the inefficiency of

this algorithm for computing the Fibonacci numbers can be seen by the vast number of repeated

calls to compute the same thing. The portion of the tree shaded blue appears in task-parallel

form in Figure 26.2.

Although the FIB procedure is a poor way to compute Fibonacci

numbers, it can help us warm up to parallelism concepts. Perhaps the

most basic concept is to understand is that if two parallel tasks operate

on entirely different data, then—absent other interference—they each

produce the same outcomes when executed at the same time as when

they run serially one after the other. Within FIB (n), for example, the

two recursive calls in line 3 to FIB (n − 1) and in line 4 to FIB (n − 2)
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can safely execute in parallel because the computation performed by

one in no way affects the other.

Parallel keywords

The P-FIB procedure on the next page computes Fibonacci numbers,

but using the parallel keywords spawn and sync to indicate parallelism in

the pseudocode.

If the keywords spawn and sync are deleted from P-FIB, the resulting

pseudocode text is identical to FIB (other than renaming the procedure

in the header and in the two recursive calls). We define the serial

projection1 of a parallel algorithm to be the serial algorithm that results

from ignoring the parallel directives, which in this case can be done by

omitting the keywords spawn and sync. For parallel for loops, which

we’ll see later on, we omit the keyword parallel. Indeed, our parallel

pseudocode possesses the elegant property that its serial projection is

always ordinary serial pseudocode to solve the same problem.

P-FIB (n)

1 if n ≤ 1

2 return n

3 else x = spawn P-FIB (n − 1) // don’t wait for subroutine to return

4 y = P-FIB (n − 2) // in parallel with spawned subroutine

5 sync // wait for spawned subroutine to finish

6 return x + y

Semantics of parallel keywords

Spawning occurs when the keyword spawn precedes a procedure call, as

in line 3 of P-FIB. The semantics of a spawn differs from an ordinary

procedure call in that the procedure instance that executes the spawn—

the parent—may continue to execute in parallel with the spawned

subroutine—its child—instead of waiting for the child to finish, as

would happen in a serial execution. In this case, while the spawned child

is computing P-FIB (n − 1), the parent may go on to compute P-FIB

(n−2) in line 4 in parallel with the spawned child. Since the P-FIB
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procedure is recursive, these two subroutine calls themselves create

nested parallelism, as do their children, thereby creating a potentially

vast tree of subcomputations, all executing in parallel.

The keyword spawn does not say, however, that a procedure must

execute in parallel with its spawned children, only that it may. The

parallel keywords express the logical parallelism of the computation,

indicating which parts of the computation may proceed in parallel. At

runtime, it is up to a scheduler to determine which subcomputations

actually run in parallel by assigning them to available processors as the

computation unfolds. We’ll discuss the theory behind task-parallel

schedulers shortly (on page 759).

A procedure cannot safely use the values returned by its spawned

children until after it executes a sync statement, as in line 5. The

keyword sync indicates that the procedure must wait as necessary for all

its spawned children to finish before proceeding to the statement after

the sync—the “join” of a fork-join parallel computation. The P-FIB

procedure requires a sync before the return statement in line 6 to avoid

the anomaly that would occur if x and y were summed before P-FIB (n

− 1) had finished and its return value had been assigned to x. In

addition to explicit join synchronization provided by the sync statement,

it is convenient to assume that every procedure executes a sync implicitly

before it returns, thus ensuring that all children finish before their

parent finishes.

A graph model for parallel execution

It helps to view the execution of a parallel computation—the dynamic

stream of runtime instructions executed by processors under the

direction of a parallel program—as a directed acyclic graph G = (V, E),

called a (parallel) trace.2 Conceptually, the vertices in V are executed

instructions, and the edges in E represent dependencies between

instructions, where (u, v) ∈ E means that the parallel program required

instruction u to execute before instruction v.

It’s sometimes inconvenient, especially if we want to focus on the

parallel structure of a computation, for a vertex of a trace to represent

only one executed instruction. Consequently, if a chain of instructions
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contains no parallel or procedural control (no spawn, sync, procedure

call, or return—via either an explicit return statement or the return that

happens implicitly upon reaching the end of a procedure), we group the

entire chain into a single strand. As an example, Figure 26.2 shows the

trace that results from computing P-FIB(4) in the portion of Figure 26.1

shaded blue. Strands do not include instructions that involve parallel or

procedural control. These control dependencies must be represented as

edges in the trace.

When a parent procedure calls a child, the trace contains an edge (u,

v) from the strand u in the parent that executes the call to the first

strand v of the spawned child, as illustrated in Figure 26.2 by the edge

from the orange strand in P-FIB(4) to the blue strand in P-FIB(2).

When the last strand v′ in the child returns, the trace contains an edge

(v′, u′) to the strand u′, where u′ is the successor strand of u in the

parent, as with the edge from the white strand in P-FIB(2) to the white

strand in P-FIB(4).
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Figure 26.2 The trace of P-FIB(4) corresponding to the shaded portion of Figure 26.1. Each

circle represents one strand, with blue circles representing any instructions executed in the part

of the procedure (instance) up to the spawn of P-FIB (n − 1) in line 3; orange circles

representing the instructions executed in the part of the procedure that calls P-FIB (n − 2) in

line 4 up to the sync in line 5, where it suspends until the spawn of P-FIB (n − 1) returns; and

white circles representing the instructions executed in the part of the procedure after the sync,

where it sums x and y, up to the point where it returns the result. Strands belonging to the same

procedure are grouped into a rounded rectangle, blue for spawned procedures and tan for called

procedures. Assuming that each strand takes unit time, the work is 17 time units, since there are

17 strands, and the span is 8 time units, since the critical path—shown with blue edges—

contains 8 strands.

When the parent spawns a child, however, the trace is a little

different. The edge (u, v) goes from parent to child as with a call, such

as the edge from the blue strand in P-FIB(4) to the blue strand in P-

FIB(3), but the trace contains another edge (u, u′) as well, indicating

that u’s successor strand u′ can continue to execute while v is executing.

The edge from the blue strand in P-FIB(4) to the orange strand in P-

FIB(4) illustrates one such edge. As with a call, there is an edge from the

last strand v′ in the child, but with a spawn, it no longer goes to u’s

successor. Instead, the edge is (v′, x), where x is the strand immediately

following the sync in the parent that ensures that the child has finished,

as with the edge from the white strand in P-FIB(3) to the white strand

in P-FIB(4).
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You can figure out what parallel control created a particular trace. If

a strand has two successors, one of them must have been spawned, and

if a strand has multiple predecessors, the predecessors joined because of

a sync statement. Thus, in the general case, the set V forms the set of

strands, and the set E of directed edges represents dependencies between

strands induced by parallel and procedural control. If G contains a

directed path from strand u to strand v, we say that the two strands are

(logically) in series. If there is no path in G either from u to v or from v

to u, the strands are (logically) in parallel.

A fork-join parallel trace can be pictured as a dag of strands

embedded in an invocation tree of procedure instances. For example,

Figure 26.1 shows the invocation tree for FIB(6), which also serves as

the invocation tree for P-FIB(6), the edges between procedure instances

now representing either calls or spawns. Figure 26.2 zooms in on the

subtree that is shaded blue, showing the strands that constitute each

procedure instance in P-FIB(4). All directed edges connecting strands

run either within a procedure or along undirected edges of the

invocation tree in Figure 26.1. (More general task-parallel traces that

are not fork-join traces may contain some directed edges that do not

run along the undirected tree edges.)

Our analyses generally assume that parallel algorithms execute on an

ideal parallel computer, which consists of a set of processors and a

sequentially consistent shared memory. To understand sequential

consistency, you first need to know that memory is accessed by load

instructions, which copy data from a location in the memory to a

register within a processor, and by store instructions, which copy data

from a processor register to a location in the memory. A single line of

pseudocode can entail several such instructions. For example, the line x

= y + z could result in load instructions to fetch each of y and z from

memory into a processor, an instruction to add them together inside the

processor, and a store instruction to place the result x back into

memory. In a parallel computer, several processors might need to load

or store at the same time. Sequential consistency means that even if

multiple processors attempt to access the memory simultaneously, the

shared memory behaves as if exactly one instruction from one of the

processors is executed at a time, even though the actual transfer of data
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may happen at the same time. It is as if the instructions were executed

one at a time sequentially according to some global linear order among

all the processors that preserves the individual orders in which each

processor executes its own instructions.

For task-parallel computations, which are scheduled onto processors

automatically by a runtime system, the sequentially consistent shared

memory behaves as if a parallel computation’s executed instructions

were executed one by one in the order of a topological sort (see Section

20.4) of its trace. That is, you can reason about the execution by

imagining that the individual instructions (not generally the strands,

which may aggregate many instructions) are interleaved in some linear

order that preserves the partial order of the trace. Depending on

scheduling, the linear order could vary from one run of the program to

the next, but the behavior of any execution is always as if the

instructions executed serially in a linear order consistent with the

dependencies within the trace.

In addition to making assumptions about semantics, the ideal

parallel-computer model makes some performance assumptions.

Specifically, it assumes that each processor in the machine has equal

computing power, and it ignores the cost of scheduling. Although this

last assumption may sound optimistic, it turns out that for algorithms

with sufficient “parallelism” (a term we’ll define precisely a little later),

the overhead of scheduling is generally minimal in practice.

Performance measures

We can gauge the theoretical efficiency of a task-parallel algorithm

using work/span analysis, which is based on two metrics: “work” and

“span.” The work of a task-parallel computation is the total time to

execute the entire computation on one processor. In other words, the

work is the sum of the times taken by each of the strands. If each strand

takes unit time, the work is just the number of vertices in the trace. The

span is the fastest possible time to execute the computation on an

unlimited number of processors, which corresponds to the sum of the

times taken by the strands along a longest path in the trace, where

“longest” means that each strand is weighted by its execution time. Such
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a longest path is called the critical path of the trace, and thus the span is

the weight of the longest (weighted) path in the trace. (Section 22.2,

pages 617–619 shows how to find a critical path in a dag G = (V, E) in

Θ(V + E) time.) For a trace in which each strand takes unit time, the

span equals the number of strands on the critical path. For example, the

trace of Figure 26.2 has 17 vertices in all and 8 vertices on its critical

path, so that if each strand takes unit time, its work is 17 time units and

its span is 8 time units.

The actual running time of a task-parallel computation depends not

only on its work and its span, but also on how many processors are

available and how the scheduler allocates strands to processors. To

denote the running time of a task-parallel computation on P processors,

we subscript by P. For example, we might denote the running time of an

algorithm on P processors by TP. The work is the running time on a

single processor, or T1. The span is the running time if we could run

each strand on its own processor—in other words, if we had an

unlimited number of processors—and so we denote the span by T∞.

The work and span provide lower bounds on the running time TP of

a task-parallel computation on P processors:

In one step, an ideal parallel computer with P processors can do

at most P units of work, and thus in TP time, it can perform at

most P TP work. Since the total work to do is T1, we have P TP ≥

T1. Dividing by P yields the work law:

A P-processor ideal parallel computer cannot run any faster than

a machine with an unlimited number of processors. Looked at

another way, a machine with an unlimited number of processors

can emulate a P-processor machine by using just P of its

processors. Thus, the span law follows:
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We define the speedup of a computation on P processors by the ratio

T1/TP, which says how many times faster the computation runs on P

processors than on one processor. By the work law, we have TP ≥ T1/P,

which implies that T1/TP ≤ P. Thus, the speedup on a P-processor ideal

parallel computer can be at most P. When the speedup is linear in the

number of processors, that is, when T1/TP = Θ(P), the computation

exhibits linear speedup. Perfect linear speedup occurs when T1/TP = P.

The ratio T1/T∞ of the work to the span gives the parallelism of the

parallel computation. We can view the parallelism from three

perspectives. As a ratio, the parallelism denotes the average amount of

work that can be performed in parallel for each step along the critical

path. As an upper bound, the parallelism gives the maximum possible

speedup that can be achieved on any number of processors. Perhaps

most important, the parallelism provides a limit on the possibility of

attaining perfect linear speedup. Specifically, once the number of

processors exceeds the parallelism, the computation cannot possibly

achieve perfect linear speedup. To see this last point, suppose that P >

T1/T∞, in which case the span law implies that the speedup satisfies

T1/TP ≤ T1/T∞ < P. Moreover, if the number P of processors in the

ideal parallel computer greatly exceeds the parallelism—that is, if P ≫

T1/T∞—then T1/TP ≪ P, so that the speedup is much less than the

number of processors. In other words, if the number of processors

exceeds the parallelism, adding even more processors makes the

speedup less perfect.

As an example, consider the computation P-FIB(4) in Figure 26.2,

and assume that each strand takes unit time. Since the work is T1 = 17

and the span is T∞ = 8, the parallelism is T1/T∞ = 17/8 = 2.125.

Consequently, achieving much more than double the performance is

impossible, no matter how many processors execute the computation.

For larger input sizes, however, we’ll see that P-FIB (n) exhibits

substantial parallelism.

We define the (parallel) slackness of a task-parallel computation

executed on an ideal parallel computer with P processors to be the ratio
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(T1/T∞)/P = T1/(P T∞), which is the factor by which the parallelism of

the computation exceeds the number of processors in the machine.

Restating the bounds on speedup, if the slackness is less than 1, perfect

linear speedup is impossible, because T1/(P T∞) < 1 and the span law

imply that T1/TP ≤ T1/T∞ < P. Indeed, as the slackness decreases from

1 and approaches 0, the speedup of the computation diverges further

and further from perfect linear speedup. If the slackness is less than 1,

additional parallelism in an algorithm can have a great impact on its

execution efficiency. If the slackness is greater than 1, however, the work

per processor is the limiting constraint. We’ll see that as the slackness

increases from 1, a good scheduler can achieve closer and closer to

perfect linear speedup. But once the slackness is much greater than 1,

the advantage of additional parallelism shows diminishing returns.

Scheduling

Good performance depends on more than just minimizing the work and

span. The strands must also be scheduled efficiently onto the processors

of the parallel machine. Our fork-join parallel-programming model

provides no way for a programmer to specify which strands to execute

on which processors. Instead, we rely on the runtime system’s scheduler

to map the dynamically unfolding computation to individual processors.

In practice, the scheduler maps the strands to static threads, and the

operating system schedules the threads on the processors themselves.

But this extra level of indirection is unnecessary for our understanding

of scheduling. We can just imagine that the scheduler maps strands to

processors directly.

A task-parallel scheduler must schedule the computation without

knowing in advance when procedures will be spawned or when they will

finish—that is, it must operate online. Moreover, a good scheduler

operates in a distributed fashion, where the threads implementing the

scheduler cooperate to load-balance the computation. Provably good

online, distributed schedulers exist, but analyzing them is complicated.

Instead, to keep our analysis simple, we’ll consider an online centralized

scheduler that knows the global state of the computation at any

moment.
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In particular, we’ll analyze greedy schedulers, which assign as many

strands to processors as possible in each time step, never leaving a

processor idle if there is work that can be done. We’ll classify each step

of a greedy scheduler as follows:

Complete step: At least P strands are ready to execute, meaning

that all strands on which they depend have finished execution. A

greedy scheduler assigns any P of the ready strands to the

processors, completely utilizing all the processor resources.

Incomplete step: Fewer than P strands are ready to execute. A

greedy scheduler assigns each ready strand to its own processor,

leaving some processors idle for the step, but executing all the

ready strands.

The work law tells us that the fastest running time TP that we can

hope for on P processors must be at least T1/P. The span law tells us

that the fastest possible running time must be at least T∞. The following

theorem shows that greedy scheduling is provably good in that it

achieves the sum of these two lower bounds as an upper bound.

Theorem 26.1

On an ideal parallel computer with P processors, a greedy scheduler

executes a task-parallel computation with work T1 and span T∞ in time

Proof     Without loss of generality, assume that each strand takes unit

time. (If necessary, replace each longer strand by a chain of unit-time

strands.) We’ll consider complete and incomplete steps separately.

In each complete step, the P processors together perform a total of P

work. Thus, if the number of complete steps is k, the total work

executing all the complete steps is kP. Since the greedy scheduler

doesn’t execute any strand more than once and only T1 work needs to

be performed, it follows that kP ≤ T1, from which we can conclude that

the number k of complete steps is at most T1/P.
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Now, let’s consider an incomplete step. Let G be the trace for the

entire computation, let G′ be the subtrace of G that has yet to be

executed at the start of the incomplete step, and let G″ be the subtrace

remaining to be executed after the incomplete step. Consider the set R

of strands that are ready at the beginning of the incomplete step, where

|R| < P. By definition, if a strand is ready, all its predecessors in trace G

have executed. Thus the predecessors of strands in R do not belong to

G′. A longest path in G′ must necessarily start at a strand in R, since

every other strand in G′ has a predecessor and thus could not start a

longest path. Because the greedy scheduler executes all ready strands

during the incomplete step, the strands of G″ are exactly those in G′
minus the strands in R. Consequently, the length of a longest path in G″
must be 1 less than the length of a longest path in G′. In other words,

every incomplete step decreases the span of the trace remaining to be

executed by 1. Hence, the number of incomplete steps can be at most

T∞.

Since each step is either complete or incomplete, the theorem follows.

▪

The following corollary shows that a greedy scheduler always

performs well.

Corollary 26.2

The running time TP of any task-parallel computation scheduled by a

greedy scheduler on a P-processor ideal parallel computer is within a

factor of 2 of optimal.

Proof   Let T*P be the running time produced by an optimal scheduler

on a machine with P processors, and let T1 and T∞ be the work and

span of the computation, respectively. Since the work and span laws—

inequalities (26.2) and (26.3)—give , Theorem 26.1

implies that
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▪

The next corollary shows that, in fact, a greedy scheduler achieves

near-perfect linear speedup on any task-parallel computation as the

slackness grows.

Corollary 26.3

Let TP be the running time of a task-parallel computation produced by

a greedy scheduler on an ideal parallel computer with P processors, and

let T1 and T∞be the work and span of the computation, respectively.

Then, if P ≪ T1/T∞, or equivalently, the parallel slackness is much

greater than 1, we have TP ≈ T1/P, a speedup of approximately P.

Proof   If we suppose that P ≪ T1/T∞, then it follows that T∞ ≪ T1/P,

and hence Theorem 26.1 gives TP ≤ T1/P + T∞ ≈ T1/P. Since the work

law (26.2) dictates that TP ≥ T1/P, we conclude that TP ≈ T1/P, which is

a speedup of T1/TP ≈ P.

▪

The ≪ symbol denotes “much less,” but how much is “much less”?

As a rule of thumb, a slackness of at least 10—that is, 10 times more

parallelism than processors—generally suffices to achieve good speedup.

Then, the span term in the greedy bound, inequality (26.4), is less than

10% of the work-per-processor term, which is good enough for most

engineering situations. For example, if a computation runs on only 10 or

100 processors, it doesn’t make sense to value parallelism of, say

1,000,000, over parallelism of 10,000, even with the factor of 100

difference. As Problem 26-2 shows, sometimes reducing extreme

parallelism yields algorithms that are better with respect to other

concerns and which still scale up well on reasonable numbers of

processors.

Analyzing parallel algorithms

We now have all the tools we need to analyze parallel algorithms using

work/span analysis, allowing us to bound an algorithm’s running time
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on any number of processors. Analyzing the work is relatively

straightforward, since it amounts to nothing more than analyzing the

running time of an ordinary serial algorithm, namely, the serial

projection of the parallel algorithm. You should already be familiar

with analyzing work, since that is what most of this textbook is about!

Analyzing the span is the new thing that parallelism engenders, but it’s

generally no harder once you get the hang of it. Let’s investigate the

basic ideas using the P-FIB program.

Analyzing the work T1(n) of P-FIB (n) poses no hurdles, because

we’ve already done it. The serial projection of P-FIB is effectively the

original FIB procedure, and hence, we have T1(n) = T (n) = Θ(ϕn) from

equation (26.1).

Figure 26.3 illustrates how to analyze the span. If two traces are

joined in series, their spans add to form the span of their composition,

whereas if they are joined in parallel, the span of their composition is

the maximum of the spans of the two traces. As it turns out, the trace of

any fork-join parallel computation can be built up from single strands

by series-parallel composition.

Figure 26.3 Series-parallel composition of parallel traces. (a) When two traces are joined in

series, the work of the composition is the sum of their work, and the span of the composition is

the sum of their spans. (b) When two traces are joined in parallel, the work of the composition

remains the sum of their work, but the span of the composition is only the maximum of their

spans.

Armed with an understanding of series-parallel composition, we can

analyze the span of P-FIB (n). The spawned call to P-FIB (n − 1) in line
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3 runs in parallel with the call to P-FIB (n − 2) in line 4. Hence, we can

express the span of P-FIB (n) as the recurrence

T∞(n) = max {T∞(n − 1), T∞(n − 2)} + Θ(1)

= T∞(n − 1) + Θ(1),

which has solution T∞(n) = Θ(n). (The second equality above follows

from the first because P-FIB (n − 1) uses P-FIB (n − 2) in its

computation, so that the span of P-FIB (n − 1) must be at least as large

as the span of P-FIB (n − 2).)

The parallelism of P-FIB (n) is T1(n)/T∞(n) = Θ(ϕn/n), which grows

dramatically as n gets large. Thus, Corollary 26.3 tells us that on even

the largest parallel computers, a modest value for n suffices to achieve

near perfect linear speedup for P-FIB (n), because this procedure

exhibits considerable parallel slackness.

Parallel loops

Many algorithms contain loops for which all the iterations can operate

in parallel. Although the spawn and sync keywords can be used to

parallelize such loops, it is more convenient to specify directly that the

iterations of such loops can run in parallel. Our pseudocode provides

this functionality via the parallel keyword, which precedes the for

keyword in a for loop statement.

As an example, consider the problem of multiplying a square n × n

matrix A = (aij) by an n-vector x = (xj). The resulting n-vector y = (yi) is

given by the equation

for i = 1, 2, … , n. The P-MAT-VEC procedure performs matrix-vector

multiplication (actually, y = y + Ax) by computing all the entries of y in

parallel. The parallel for keywords in line 1 of P-MAT-VEC indicate

that the n iterations of the loop body, which includes a serial for loop,

may be run in parallel. The initialization y = 0, if desired, should be

www.konkur.in

Telegram: @uni_k



performed before calling the procedure (and can be done with a parallel

for loop).

P-MAT-VEC (A, x, y, n)

1 parallel for i = 1 to n // parallel loop

2 for j = 1 to n // serial loop

3 yi = yi + aij xj

Compilers for fork-join parallel programs can implement parallel for

loops in terms of spawn and sync by using recursive spawning. For

example, for the parallel for loop in lines 1–3, a compiler can generate

the auxiliary subroutine P-MAT-VEC-RECURSIVE and call P-MAT-

VEC-RECURSIVE (A, x, y, n, 1, n) in the place where the loop would

be in the compiled code. As Figure 26.4 illustrates, this procedure

recursively spawns the first half of the iterations of the loop to execute

in parallel (line 5) with the second half of the iterations (line 6) and then

executes a sync (line 7), thereby creating a binary tree of parallel

execution. Each leaf represents a base case, which is the serial for loop

of lines 2–3.

P-MAT-VEC-RECURSIVE (A, x, y, n, i, i′)
1 if i == i′ // just one iteration to do?

2 for j = 1 to n // mimic P-MAT-VEC serial loop

3 yi = yi + aij xj

4 else mid = ⌊(i + i′)/2⌋ // parallel divide-and-conquer

5 spawn P-MAT-VEC-RECURSIVE (A, x, y, n, i, mid)

6 P-MAT-VEC-RECURSIVE (A, x, y, n, mid + 1, i′)
7 sync

To calculate the work T1(n) of P-MAT-VEC on an n×n matrix,

simply compute the running time of its serial projection, which comes

from replacing the parallel for loop in line 1 with an ordinary for loop.

The running time of the resulting serial pseudocode is Θ(n2), which
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means that T1(n) = Θ(n2). This analysis seems to ignore the overhead

for recursive spawning in implementing the parallel loops, however.

Indeed, the overhead of recursive spawning does increase the work of a

parallel loop compared with that of its serial projection, but not

asymptotically. To see why, observe that since the tree of recursive

procedure instances is a full binary tree, the number of internal nodes is

one less than the number of leaves (see Exercise B.5-3 on page 1175).

Each internal node performs constant work to divide the iteration

range, and each leaf corresponds to a base case, which takes at least

constant time (Θ(n) time in this case). Thus, by amortizing the overhead

of recursive spawning over the work of the iterations in the leaves, we

see that the overall work increases by at most a constant factor.

Figure 26.4 A trace for the computation of P-MAT-VEC-RECURSIVE (A, x, y, 8, 1, 8). The

two numbers within each rounded rectangle give the values of the last two parameters (i and i′ in
the procedure header) in the invocation (spawn, in blue, or call, in tan) of the procedure. The

blue circles represent strands corresponding to the part of the procedure up to the spawn of P-

MAT-VEC-RECURSIVE in line 5. The orange circles represent strands corresponding to the

part of the procedure that calls P-MAT-VEC-RECURSIVE in line 6 up to the sync in line 7,

where it suspends until the spawned subroutine in line 5 returns. The white circles represent

strands corresponding to the (negligible) part of the procedure after the sync up to the point

where it returns.

To reduce the overhead of recursive spawning, task-parallel

platforms sometimes coarsen the leaves of the recursion by executing

several iterations in a single leaf, either automatically or under
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programmer control. This optimization comes at the expense of

reducing the parallelism. If the computation has sufficient parallel

slackness, however, near-perfect linear speedup won’t be sacrificed.

Although recursive spawning doesn’t affect the work of a parallel

loop asymptotically, we must take it into account when analyzing the

span. Consider a parallel loop with n iterations in which the ith iteration

has span iter∞(i). Since the depth of recursion is logarithmic in the

number of iterations, the parallel loop’s span is

T∞(n) = Θ(lg n) + max {iter∞(i) : 1 ≤ i ≤ n}.

For example, let’s compute the span of the doubly nested loops in

lines 1–3 of P-MAT-VEC. The span for the parallel for loop control is

Θ(lg n). For each iteration of the outer parallel loop, the inner serial for

loop contains n iterations of line 3. Since each iteration takes constant

time, the total span for the inner serial for loop is Θ(n), no matter which

iteration of the outer parallel for loop it’s in. Thus, taking the maximum

over all iterations of the outer loop and adding in the Θ(lg n) for loop

control yields an overall span of T∞n = Θ(n) + Θ(lg n) = Θ(n) for the

procedure. Since the work is Θ(n2), the parallelism is Θ(n2)/Θ(n) = Θ(n).

(Exercise 26.1-7 asks you to provide an implementation with even more

parallelism.)

Race conditions

A parallel algorithm is deterministic if it always does the same thing on

the same input, no matter how the instructions are scheduled on the

multicore computer. It is nondeterministic if its behavior might vary

from run to run when the input is the same. A parallel algorithm that is

intended to be deterministic may nevertheless act nondeterministically,

however, if it contains a difficult-to-diagnose bug called a “determinacy

race.”

Famous race bugs include the Therac-25 radiation therapy machine,

which killed three people and injured several others, and the Northeast

Blackout of 2003, which left over 50 million people in the United States

without power. These pernicious bugs are notoriously hard to find. You
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can run tests in the lab for days without a failure, only to discover that

your software sporadically crashes in the field, sometimes with dire

consequences.

A determinacy race occurs when two logically parallel instructions

access the same memory location and at least one of the instructions

modifies the value stored in the location. The toy procedure RACE-

EXAMPLE on the following page illustrates a determinacy race. After

initializing x to 0 in line 1, RACE-EXAMPLE creates two parallel

strands, each of which increments x in line 3. Although it might seem

that a call of RACE-EXAMPLE should always print the value 2 (its

serial projection certainly does), it could instead print the value 1. Let’s

see how this anomaly might occur.

When a processor increments x, the operation is not indivisible, but

is composed of a sequence of instructions:

Figure 26.5 Illustration of the determinacy race in RACE-EXAMPLE. (a) A trace showing the

dependencies among individual instructions. The processor registers are r1 and r2. Instructions

unrelated to the race, such as the implementation of loop control, are omitted. (b) An execution

sequence that elicits the bug, showing the values of x in memory and registers r1 and r2 for each

step in the execution sequence.

RACE-EXAMPLE ( )

1 x = 0

2 parallel for i = 1 to 2

3 x = x + 1 // determinacy race
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4 print x

Load x from memory into one of the processor’s registers.

Increment the value in the register.

Store the value in the register back into x in memory.

Figure 26.5(a) illustrates a trace representing the execution of RACE-

EXAMPLE, with the strands broken down to individual instructions.

Recall that since an ideal parallel computer supports sequential

consistency, you can view the parallel execution of a parallel algorithm

as an interleaving of instructions that respects the dependencies in the

trace. Part (b) of the figure shows the values in an execution of the

computation that elicits the anomaly. The value x is kept in memory,

and r1 and r2 are processor registers. In step 1, one of the processors

sets x to 0. In steps 2 and 3, processor 1 loads x from memory into its

register r1 and increments it, producing the value 1 in r1. At that point,

processor 2 comes into the picture, executing instructions 4–6. Processor

2 loads x from memory into register r2; increments it, producing the

value 1 in r2; and then stores this value into x, setting x to 1. Now,

processor 1 resumes with step 7, storing the value 1 in r1 into x, which

leaves the value of x unchanged. Therefore, step 8 prints the value 1,

rather than the value 2 that the serial projection would print.

Let’s recap what happened. By sequential consistency, the effect of

the parallel execution is as if the executed instructions of the two

processors are interleaved. If processor 1 executes all its instructions

before processor 2, a trivial interleaving, the value 2 is printed.

Conversely, if processor 2 executes all its instructions before processor 1,

the value 2 is still printed. When the instructions of the two processors

interleave nontrivially, however, it is possible, as in this example

execution, that one of the updates to x is lost, resulting in the value 1

being printed.

Of course, many executions do not elicit the bug. That’s the problem

with determinacy races. Generally, most instruction orderings produce

correct results, such as any where the instructions on the left branch
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execute before the instructions on the right branch, or vice versa. But

some orderings generate improper results when the instructions

interleave. Consequently, races can be extremely hard to test for. Your

program may fail, but you may be unable to reliably reproduce the

failure in subsequent tests, confounding your attempts to locate the bug

in your code and fix it. Task-parallel programming environments often

provide race-detection productivity tools to help you isolate race bugs.

Many parallel programs in the real world are intentionally

nondeterministic. They contain determinacy races, but they mitigate the

dangers of nondeterminism through the use of mutual-exclusion locks

and other methods of synchronization. For our purposes, however, we’ll

insist on an absence of determinacy races in the algorithms we develop.

Nondeterministic programs are indeed interesting, but nondeterministic

programming is a more advanced topic and unnecessary for a wide

swath of interesting parallel algorithms.

To ensure that algorithms are deterministic, any two strands that

operate in parallel should be mutually noninterfering: they only read,

and do not modify, any memory locations accessed by both of them.

Consequently, in a parallel for construct, such as the outer loop of P-

MAT-VEC, we want all the iterations of the body, including any code

an iteration executes in subroutines, to be mutually noninterfering. And

between a spawn and its corresponding sync, we want the code executed

by the spawned child and the code executed by the parent to be

mutually noninterfering, once again including invoked subroutines.

As an example of how easy it is to write code with unintentional

races, the P-MAT-VEC-WRONG procedure on the next page is a faulty

parallel implementation of matrix-vector multiplication that achieves a

span of Θ(lg n) by parallelizing the inner for loop. This procedure is

incorrect, unfortunately, due to determinacy races when updating yi in

line 3, which executes in parallel for all n values of j.

Index variables of parallel for loops, such as i in line 1 and j in line 2,

do not cause races between iterations. Conceptually, each iteration of

the loop creates an independent variable to hold the index of that

iteration during that iteration’s execution of the loop body. Even if two

parallel iterations both access the same index variable, they really are
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accessing different variable instances—hence different memory

locations—and no race occurs.

P-MAT-VEC-WRONG (A, x, y, n)

1 parallel for i = 1 to n

2 parallel for j = 1 to n

3 yi = yi + aijxj // determinacy race

A parallel algorithm with races can sometimes be deterministic. As

an example, two parallel threads might store the same value into a

shared variable, and it wouldn’t matter which stored the value first. For

simplicity, however, we generally prefer code without determinacy races,

even if the races are benign. And good parallel programmers frown on

code with determinacy races that cause nondeterministic behavior, if

deterministic code that performs comparably is an option.

But nondeterministic code does have its place. For example, you

can’t implement a parallel hash table, a highly practical data structure,

without writing code containing determinacy races. Much research has

centered around how to extend the fork-join model to incorporate

limited “structured” nondeterminism while avoiding the full measure of

complications that arise when nondeterminism is completely

unrestricted.

A chess lesson

To illustrate the power of work/span analysis, this section closes with a

true story that occurred during the development of one of the first

world-class parallel chess-playing programs [106] many years ago. The

timings below have been simplified for exposition.

The chess program was developed and tested on a 32-processor

computer, but it was designed to run on a supercomputer with 512

processors. Since the supercomputer availability was limited and

expensive, the developers ran benchmarks on the small computer and

extrapolated performance to the large computer.

At one point, the developers incorporated an optimization into the

program that reduced its running time on an important benchmark on
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the small machine from T32 = 65 seconds to  seconds. Yet, the

developers used the work and span performance measures to conclude

that the optimized version, which was faster on 32 processors, would

actually be slower than the original version on the 512 processors of the

large machine. As a result, they abandoned the “optimization.”

Here is their work/span analysis. The original version of the program

had work T1 = 2048 seconds and span T∞= 1 second. Let’s treat

inequality (26.4) on page 760 as the equation TP = T1/P + T∞, which

we can use as an approximation to the running time on P processors.

Then indeed we have T32 = 2048/32 + 1 = 65. With the optimization,

the work becomes T′1 = 1024 seconds, and the span becomes T′∞ = 8

seconds. Our approximation gives T′32 = 1024/32 + 8 = 40.

The relative speeds of the two versions switch when we estimate their

running times on 512 processors, however. The first version has a

running time of T512 = 2048/512+1 = 5 seconds, and the second version

runs in  seconds. The optimization that speeds up

the program on 32 processors makes the program run for twice as long

on 512 processors! The optimized version’s span of 8, which is not the

dominant term in the running time on 32 processors, becomes the

dominant term on 512 processors, nullifying the advantage from using

more processors. The optimization does not scale up.

The moral of the story is that work/span analysis, and measurements

of work and span, can be superior to measured running times alone in

extrapolating an algorithm’s scalability.

Exercises

26.1-1

What does a trace for the execution of a serial algorithm look like?

26.1-2

Suppose that line 4 of P-FIB spawns P-FIB (n − 2), rather than calling

it as is done in the pseudocode. How would the trace of P-FIB(4) in

Figure 26.2 change? What is the impact on the asymptotic work, span,

and parallelism?
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26.1-3

Draw the trace that results from executing P-FIB(5). Assuming that

each strand in the computation takes unit time, what are the work,

span, and parallelism of the computation? Show how to schedule the

trace on 3 processors using greedy scheduling by labeling each strand

with the time step in which it is executed.

26.1-4

Prove that a greedy scheduler achieves the following time bound, which

is slightly stronger than the bound proved in Theorem 26.1:

26.1-5

Construct a trace for which one execution by a greedy scheduler can

take nearly twice the time of another execution by a greedy scheduler on

the same number of processors. Describe how the two executions would

proceed.

26.1-6

Professor Karan measures her deterministic task-parallel algorithm on

4, 10, and 64 processors of an ideal parallel computer using a greedy

scheduler. She claims that the three runs yielded T4 = 80 seconds, T10 =

42 seconds, and T64 = 10 seconds. Argue that the professor is either

lying or incompetent. (Hint: Use the work law (26.2), the span law

(26.3), and inequality (26.5) from Exercise 26.1-4.)

26.1-7

Give a parallel algorithm to multiply an n × n matrix by an n-vector that

achieves Θ(n2/lg n) parallelism while maintaining Θ(n2) work.

26.1-8

Analyze the work, span, and parallelism of the procedure P-

TRANSPOSE, which transposes an n × n matrix A in place.

P-TRANSPOSE (A, n)
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1 parallel for j = 2 to n

2 parallel for i = 1 to j − 1

3 exchange aij with aji

26.1-9

Suppose that instead of a parallel for loop in line 2, the P-TRANSPOSE

procedure in Exercise 26.1-8 had an ordinary for loop. Analyze the

work, span, and parallelism of the resulting algorithm.

26.1-10

For what number of processors do the two versions of the chess

program run equally fast, assuming that TP = T1/P + T∞?

26.2    Parallel matrix multiplication

In this section, we’ll explore how to parallelize the three matrix-

multiplication algorithms from Sections 4.1 and 4.2. We’ll see that each

algorithm can be parallelized in a straightforward fashion using either

parallel loops or recursive spawning. We’ll analyze them using

work/span analysis, and we’ll see that each parallel algorithm attains the

same performance on one processor as its corresponding serial

algorithm, while scaling up to large numbers of processors.

A parallel algorithm for matrix multiplication using parallel loops

The first algorithm we’ll study is P-MATRIX-MULTIPLY, which

simply parallelizes the two outer loops in the procedure MATRIX-

MULTIPLY on page 81.

P-MATRIX-MULTIPLY (A, B, C, n)

1 parallel for i = 1 to n // compute entries in each of n rows

2 parallel for j = 1 to n // compute n entries in row i

3 for k = 1 to n

4 cij = cij + aik · bkj // add in another term of equation

(4.1)
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Let’s analyze P-MATRIX-MULTIPLY. Since the serial projection of

the algorithm is just MATRIX-MULTIPLY, the work is the same as the

running time of MATRIX-MULTIPLY: T1(n) = Θ(n3). The span is

T∞(n) = Θ(n), because it follows a path down the tree of recursion for

the parallel for loop starting in line 1, then down the tree of recursion

for the parallel for loop starting in line 2, and then executes all n

iterations of the ordinary for loop starting in line 3, resulting in a total

span of Θ(lg n) + Θ(lg n) + Θ(n) = Θ(n). Thus the parallelism is Θ(n3)/

Θ(n) = Θ(n2). (Exercise 26.2-3 asks you to parallelize the inner loop to

obtain a parallelism of Θ(n3/lg n), which you cannot do

straightforwardly using parallel for, because you would create races.)

A parallel divide-and-conquer algorithm for matrix multiplication

Section 4.1 shows how to multiply n × n matrices serially in Θ(n3) time

using a divide-and-conquer strategy. Let’s see how to parallelize that

algorithm using recursive spawning instead of calls.

The serial MATRIX-MULTIPLY-RECURSIVE procedure on page

83 takes as input three n × n matrices A, B, and C and performs the

matrix calculation C = C + A · B by recursively performing eight

multiplications of n/2 × n/2 submatrices of A and B. The P-MATRIX-

MULTIPLY-RECURSIVE procedure on the following page

implements the same divide-and-conquer strategy, but it uses spawning

to perform the eight multiplications in parallel. To avoid determinacy

races in updating the elements of C, it creates a temporary matrix D to

store four of the submatrix products. At the end, it adds C and D

together to produce the final result. (Problem 26-2 asks you to eliminate

the temporary matrix D at the expense of some parallelism.)

Lines 2–3 of P-MATRIX-MULTIPLY-RECURSIVE handle the

base case of multiplying 1 × 1 matrices. The remainder of the procedure

deals with the recursive case. Line 4 allocates a temporary matrix D,

and lines 5–7 zero it. Line 8 partitions each of the four matrices A, B, C,

and D into n/2 × n/2 submatrices. (As with MATRIX-MULTIPLY-

RECURSIVE on page 83, we’re glossing over the subtle issue of how to
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use index calculations to represent submatrix sections of a matrix.) The

spawned recursive call in line 9 sets C11 = C11 + A11 · B11, so that C11

accumulates the first of the two terms in equation (4.5) on page 82.

Similarly, lines 10–12 cause each of C12, C21, and C22 in parallel to

accumulate the first of the two terms in equations (4.6)–(4.8),

respectively. Line 13 sets the submatrix D11 to the submatrix product

A12 · B21, so that D11 equals the second of the two terms in equation

(4.5). Lines 14–16 set each of D12, D21, and D22 in parallel to the

second of the two terms in equations (4.6)–(4.8), respectively. The sync

statement in line 17 ensures that all the spawned submatrix products in

lines 9–16 have been computed, after which the doubly nested parallel

for loops in lines 18–20 add the elements of D to the corresponding

elements of C.

P-MATRIX-MULTIPLY-RECURSIVE (A, B, C, n)

  1 if n == 1 // just one element in each matrix?

  2 c11 = c11 + a11 · b11

  3 return

  4 let D be a new n × n matrix // temporary matrix

  5 parallel for i = 1 to n // set D = 0

  6 parallel for j = 1 to n

  7 dij = 0

  8 partition A, B, C, and D into n/2 × n/2 submatrices A11, A12, A21,

A22; B11, B12, B21, B22; C11, C12, C21, C22; and D11, D12,

D21, D22; respectively

  9 spawn P-MATRIX-MULTIPLY-RECURSIVE (A11, B11, C11,

n/2)

10 spawn P-MATRIX-MULTIPLY-RECURSIVE (A11, B12, C12,

n/2)

11 spawn P-MATRIX-MULTIPLY-RECURSIVE (A21, B11, C21,

n/2)

12 spawn P-MATRIX-MULTIPLY-RECURSIVE (A21, B12, C22,
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n/2)

13 spawn P-MATRIX-MULTIPLY-RECURSIVE (A12, B21, D11,

n/2)

14 spawn P-MATRIX-MULTIPLY-RECURSIVE (A12, B22, D12,

n/2)

15 spawn P-MATRIX-MULTIPLY-RECURSIVE (A22, B21, D21,

n/2)

16 spawn P-MATRIX-MULTIPLY-RECURSIVE (A22, B22, D22,

n/2)

17 sync // wait for spawned submatrix products

18 parallel for i = 1 to n // update C = C + D

19 parallel for j = 1 to n

20 cij = cij + dij

Let’s analyze the P-MATRIX-MULTIPLY-RECURSIVE

procedure. We start by analyzing the work M1(n), echoing the serial

running-time analysis of its progenitor MATRIX-MULTIPLY-

RECURSIVE. The recursive case allocates and zeros the temporary

matrix D in Θ(n2) time, partitions in Θ(1) time, performs eight recursive

multiplications of n/2 × n/2 matrices, and finishes up with the Θ(n2)

work from adding two n×n matrices. Thus the work outside the

spawned recursive calls is Θ(n2), and the recurrence for the work M1(n)

becomes

M1(n) = 8M1(n/2) + Θ(n2)

= Θ(n3)

by case 1 of the master theorem (Theorem 4.1). Not surprisingly, the

work of this parallel algorithm is asymptotically the same as the

running time of the procedure MATRIX-MULTIPLY on page 81, with

its triply nested loops.

Let’s determine the span M∞(n) of P-MATRIX-MULTIPLY-

RECURSIVE. Because the eight parallel recursive spawns all execute
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on matrices of the same size, the maximum span for any recursive spawn

is just the span of a single one of them, or M∞(n/2). The span for the

doubly nested parallel for loops in lines 5–7 is Θ(lg n) because each loop

control adds Θ(lg n) to the constant span of line 7. Similarly, the doubly

nested parallel for loops in lines 18–20 add another Θ(lg n). Matrix

partitioning by index calculation has Θ(1) span, which is dominated by

the Θ(lg n) span of the nested loops. We obtain the recurrence

Since this recurrence falls under case 2 of the master theorem with k =

1, the solution is M∞(n) = Θ(lg2 n).

The parallelism of P-MATRIX-MULTIPLY-RECURSIVE is

M1(n)/M∞(n) = Θ(n3/lg2n), which is huge. (Problem 26-2 asks you to

simplify this parallel algorithm at the expense of just a little less

parallelism.)

Parallelizing Strassen’s method

To parallelize Strassen’s algorithm, we can follow the same general

outline as on pages 86–87, but use spawning. You may find it helpful to

compare each step below with the corresponding step there. We’ll

analyze costs as we go along to develop recurrences T1(n) and T∞(n) for

the overall work and span, respectively.

1. If n = 1, the matrices each contain a single element. Perform a

single scalar multiplication and a single scalar addition, and

return. Otherwise, partition the input matrices A and B and

output matrix C into n/2 × n/2 submatrices, as in equation (4.2)

on page 82. This step takes Θ(1) work and Θ(1) span by index

calculation.

2. Create n/2 × n/2 matrices S1, S2, … , S10, each of which is the

sum or difference of two submatrices from step 1. Create and

zero the entries of seven n/2×n/2 matrices P1, P2, … , P7 to hold

seven n/2×n/2 matrix products. All 17 matrices can be created,
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and the Pi initialized, with doubly nested parallel for loops using

Θ(n2) work and Θ(lg n) span.

3. Using the submatrices from step 1 and the matrices S1, S2, … ,

S10 created in step 2, recursively spawn computations of each of

the seven n/2 × n/2 matrix products P1, P2, … , P7, taking

7T1(n/2) work and T∞(n/2) span.

4. Update the four submatrices C11, C12, C21, C22 of the result

matrix C by adding or subtracting various Pi matrices. Using

doubly nested parallel for loops, computing all four submatrices

takes Θ(n2) work and Θ(lg n) span.

Let’s analyze this algorithm. Since the serial projection is the same as

the original serial algorithm, the work is just the running time of the

serial projection, namely, Θ(nlg 7). As we did with P-MATRIX-

MULTIPLY-RECURSIVE, we can devise a recurrence for the span. In

this case, seven recursive calls execute in parallel, but since they all

operate on matrices of the same size, we obtain the same recurrence

(26.6) as we did for P-MATRIX-MULTIPLY-RECURSIVE, with

solution Θ(lg2 n). Thus the parallel version of Strassen’s method has

parallelism Θ(nlg 7/lg2 n), which is large. Although the parallelism is

slightly less than that of P-MATRIX-MULTIPLY-RECURSIVE, that’s

just because the work is also less.

Exercises

26.2-1

Draw the trace for computing P-MATRIX-MULTIPLY on 2 × 2

matrices, labeling how the vertices in your diagram correspond to

strands in the execution of the algorithm. Assuming that each strand

executes in unit time, analyze the work, span, and parallelism of this

computation.

26.2-2
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Repeat Exercise 26.2-1 for P-MATRIX-MULTIPLY-RECURSIVE.

26.2-3

Give pseudocode for a parallel algorithm that multiplies two n × n

matrices with work Θ(n3) but span only Θ(lg n). Analyze your

algorithm.

26.2-4

Give pseudocode for an efficient parallel algorithm that multiplies a p ×

q matrix by a q × r matrix. Your algorithm should be highly parallel

even if any of p, q, and r equal 1. Analyze your algorithm.

26.2-5

Give pseudocode for an efficient parallel version of the Floyd-Warshall

algorithm (see Section 23.2), which computes shortest paths between all

pairs of vertices in an edge-weighted graph. Analyze your algorithm.

26.3    Parallel merge sort

We first saw serial merge sort in Section 2.3.1, and in Section 2.3.2 we

analyzed its running time and showed it to be Θ(n lg n). Because merge

sort already uses the divide-and-conquer method, it seems like a terrific

candidate for implementing using fork-join parallelism.

The procedure P-MERGE-SORT modifies merge sort to spawn the

first recursive call. Like its serial counterpart MERGE-SORT on page

39, the P-MERGE-SORT procedure sorts the subarray A[p : r]. After

the sync statement in line 8 ensures that the two recursive spawns in

lines 5 and 7 have finished, P-MERGE-SORT calls the P-MERGE

procedure, a parallel merging algorithm, which is on page 779, but you

don’t need to bother looking at it right now.

P-MERGE-SORT (A, p, r)

  1 if p ≥ r // zero or one element?

  2 return

  3q = ⌊(p + r)/2⌋ // midpoint of A[p : r]
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  4 // Recursively sort A[p : q] in parallel.

  5spawn P-MERGE-SORT (A, p, q)

  6 // Recursively sort A[q + 1 : r] in parallel.

  7spawn P-MERGE-SORT (A, q + 1, r)

  8sync // wait for spawns

  9 // Merge A[p : q] and A[q + 1 : r] into A[p : r].

10P-MERGE (A, p, q, r)

First, let’s use work/span analysis to get some intuition for why we

need a parallel merge procedure. After all, it may seem as though there

should be plenty of parallelism just by parallelizing MERGE-SORT

without worrying about parallelizing the merge. But what would happen

if the call to P-MERGE in line 10 of P-MERGE-SORT were replaced

by a call to the serial MERGE procedure on page 36? Let’s call the

pseudocode so modified P-NAIVE-MERGE-SORT.

Let T1(n) be the (worst-case) work of P-NAIVE-MERGE-SORT on

an n-element subarray, where n = r −p + 1 is the number of elements in

A[p : r], and let T∞(n) be the span. Because MERGE is serial with

running time Θ(n), both its work and span are Θ(n). Since the serial

projection of P-NAIVE-MERGE-SORT is exactly MERGE-SORT, its

work is T1(n) = Θ(n lg n). The two recursive calls in lines 5 and 7 run in

parallel, and so its span is given by the recurrence

T∞(n) = T∞(n/2) + Θ(n)

= Θ(n),

by case 1 of the master theorem. Thus the parallelism of P-NAIVE-

MERGE-SORT is T1(n)/T∞(n) = Θ(lg n), which is an unimpressive

amount of parallelism. To sort a million elements, for example, since lg

106 ≈ 20, it might achieve linear speedup on a few processors, but it

would not scale up to dozens of processors.

The parallelism bottleneck in P-NAIVE-MERGE-SORT is plainly

the MERGE procedure. If we asymptotically reduce the span of

merging, the master theorem dictates that the span of parallel merge

sort will also get smaller. When you look at the pseudocode for
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MERGE, it may seem that merging is inherently serial, but it’s not. We

can fashion a parallel merging algorithm. The goal is to reduce the span

of parallel merging asymptotically, but if we want an efficient parallel

algorithm, we must ensure that the Θ(n) bound on work doesn’t

increase.

Figure 26.6 depicts the divide-and-conquer strategy that we’ll use in

P-MERGE. The heart of the algorithm is a recursive auxiliary

procedure P-MERGE-AUX that merges two sorted subarrays of an

array A into a subarray of another array B in parallel. Specifically, P-

MERGE-AUX merges A[p1 : r1] and A[p2 : r2] into subarray B[p3 : r3],

where r3 = p3 + (r1 − p1 + 1) + (r2 − p2 + 1) − 1 = p3 + (r1 − p1) + (r2

− p2) + 1.

The key idea of the recursive merging algorithm in P-MERGE-AUX

is to split each of the two sorted subarrays of A around a pivot x, such

that all the elements in the lower part of each subarray are at most x

and all the elements in the upper part of each subarray are at least x.

The procedure can then recurse in parallel on two subtasks: merging the

two lower parts, and merging the two upper parts. The trick is to find a

pivot x so that the recursion is not too lopsided. We don’t want a

situation such as that in QUICKSORT on page 183, where bad

partitioning elements lead to a dramatic loss of asymptotic efficiency.

We could opt to partition around a random element, as

RANDOMIZED-QUICKSORT on page 192 does, but because the

input subarrays are sorted, P-MERGE-AUX can quickly determine a

pivot that always works well.

Specifically, the recursive merging algorithm picks the pivot x as the

middle element of the larger of the two input subarrays, which we can

assume without loss of generality is A[p1 : r1], since otherwise, the two

subarrays can just switch roles. That is, x = A[q1], where q1 = ⌊(p1 +

r1)/2⌋. Because A[p1 : r1] is sorted, x is a median of the subarray

elements: every element in A[p1 : q1 − 1] is no more than x, and every

element in A[q1 + 1 : r1] is no less than x. Then the algorithm finds the

“split point” q2 in the smaller subarray A[p2 : r2] such that all the
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elements in A[p2 : q2−1] (if any) are at most x and all the elements in

A[q2 : r2] (if any) are at least x. Intuitively, the subarray A[p2 : r2] would

still be sorted if x were inserted between A[q2−1] and A[q2] (although

the algorithm doesn’t do that). Since A[p2 : r2] is sorted, a minor variant

of binary search (see Exercise 2.3-6) with x as the search key can find

the split point q2 in Θ(lg n) time in the worst case. As we’ll see when we

get to the analysis, even if x splits A[p2 : r2] badly—x is either smaller

than all the subarray elements or larger—we’ll still have at least 1/4 of

the elements in each of the two recursive merges. Thus the larger of the

recursive merges operates on at most 3/4 elements, and the recursion is

guaranteed to bottom out after Θ(lg n) recursive calls.

Figure 26.6 The idea behind P-MERGE-AUX, which merges two sorted subarrays A[p1 : r1]

and A[p2 : r2] into the subarray B[p3 : r3] in parallel. Letting x = A[q1] (shown in yellow) be a

median of A[p1 : r1] and q2 be a place in A[p2 : r2] such that x would fall between A[q2 − 1] and

A[q2], every element in the subarrays A[p1 : q1 − 1] and A[p2 : q2 − 1] (shown in orange) is at

most x, and every element in the subarrays A[q1 + 1 : r1] and A[q2 + 1 : r2] (shown in blue) is at

least x. To merge, compute the index q3 where x belongs in B[p3 : r3], copy x into B[q3], and

then recursively merge A[p1 : q1 − 1] with A[p2 : q2 − 1] into B[p3 : q3 − 1] and A[q1 + 1 : r1]

with A[q2 : r2] into B[q3 + 1 : r3].

Now let’s put these ideas into pseudocode. We start with the serial

procedure FIND-SPLIT-POINT (A, p, r, x) on the next page, which

takes as input a sorted subarray A[p : r] and a key x. The procedure

returns a split point of A[p : r]: an index q in the range p ≤ q ≤ r + 1 such
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that all the elements in A[p : q − 1] (if any) are at most x and all the

elements in A[q : r] (if any) are at least x.

The FIND-SPLIT-POINT procedure uses binary search to find the

split point. Lines 1 and 2 establish the range of indices for the search.

Each time through the while loop, line 5 compares the middle element of

the range with the search key x, and lines 6 and 7 narrow the search

range to either the lower half or the upper half of the subarray,

depending on the result of the test. In the end, after the range has been

narrowed to a single index, line 8 returns that index as the split point.

FIND-SPLIT-POINT (A, p, r, x)

1 low = p // low end of search range

2 high = r + 1 // high end of search range

3 while low < high // more than one element?

4 mid = ⌊(low + high)/2⌋ // midpoint of range

5 if x ≤ A[mid] // is answer q ≤ mid?

6 high = mid // narrow search to A[low : mid]

7 else low = mid + 1 // narrow search to A[mid + 1 : high]

8 return low

Because FIND-SPLIT-POINT contains no parallelism, its span is

just its serial running time, which is also its work. On a subarray A[p : r]

of size n = r − p + 1, each iteration of the while loop halves the search

range, which means that the loop terminates after Θ(lg n) iterations.

Since each iteration takes constant time, the algorithm runs in Θ(lg n)

(worst-case) time. Thus the procedure has work and span Θ(lg n).

Let’s now look at the pseudocode for the parallel merging procedure

P-MERGE on the next page. Most of the pseudocode is devoted to the

recursive procedure P-MERGE-AUX. The procedure P-MERGE itself

is just a “wrapper” that sets up for P-MERGE-AUX. It allocates a new

array B[p : r] to hold the output of P-MERGE-AUX in line 1. It then

calls P-MERGE-AUX in line 2, passing the indices of the two subarrays

to be merged and providing B as the output destination of the merged

result, starting at index p. After P-MERGE-AUX returns, lines 3–4
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perform a parallel copy of the output B[p : r] into the subarray A[p : r],

which is where P-MERGE-SORT expects it.

The P-MERGE-AUX procedure is the interesting part of the

algorithm. Let’s start by understanding the parameters of this recursive

parallel procedure. The input array A and the four indices p1, r1, p2, r2

specify the subarrays A[p1 : r1] and A[p2 : r2] to be merged. The array B

and the index p3 indicate that the merged result should be stored into

B[p3 : r3], where r3 = p3 + (r1 − p1)+ (r2 − p2)+ 1, as we saw earlier.

The end index r3 of the output subarray is not needed by the

pseudocode, but it helps conceptually to name the end index, as in the

comment in line 13.

The procedure begins by checking the base case of the recursion and

doing some bookkeeping to simplify the rest of the pseudocode. Lines 1

and 2 test whether the two subarrays are both empty, in which case the

procedure returns. Line 3 checks whether the first subarray contains

fewer elements than the second subarray. Since the number of elements

in the first subarray is r1 − p1 + 1 and the number in the second

subarray is r2 − p2 + 1, the test omits the two “+1’s.” If the first

subarray is the smaller of the two, lines 4 and 5 switch the roles of the

subarrays so that A[p1, r1] refers to the larger subarray for the balance

of the procedure.

P-MERGE (A, p, q, r)

  1 let B[p : r] be a new array // allocate scratch array

  2 P-MERGE-AUX (A, p, q, q + 1, r, B,

p)

// merge from A into B

  3 parallel for i = p to r // copy B back to A in

parallel

  4 A[i] = B[i]

P-MERGE-AUX (A, p1, r1, p2, r2, B, p3)

  1 if p1 > r1 and p2 > r2 // are both subarrays empty?

  2 return
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  3 if r1 − p1 < r2 − p2 // second subarray bigger?

  4 exchange p1 with p2 // swap subarray roles

  5 exchange r1 with r2

  6 q1 = ⌊(p1 + r1)/2⌋ // midpoint of A[p1 : r1]

  7 x = A[q1] // median of A[p1 : r1] is

pivot x

  8 q2 = FIND-SPLIT-POINT (A, p2,

r2, x)

// split A[p2 : r2] around x

  9 q3 = p3 + (q1 − p1) + (q2 − p2) // where x belongs in B …

10 B[q3] = x // … put it there

11 // Recursively merge A[p1 : q1 − 1] and A[p2 : q2 − 1] into B[p3 : q3

− 1].

12 spawn P-MERGE-AUX (A, p1, q1 − 1, p2, q2 − 1, B, p3)

13 // Recursively merge A[q1 + 1 : r1] and A[q2 : r2] into B[q3 + 1 :

r3].

14 spawn P-MERGE-AUX (A, q1 + 1, r1, q2, r2, B, q3 + 1)

15 sync // wait for spawns

We’re now at the crux of P-MERGE-AUX: implementing the

parallel divide-and-conquer strategy. As we continue our pseudocode

walk, you may find it helpful to refer again to Figure 26.6.

First the divide step. Line 6 computes the midpoint q1 of A[p1 : r1],

which indexes a median x = A[q1] of this subarray to be used as the

pivot, and line 7 determines x itself. Next, line 8 uses the FIND-SPLIT-

POINT procedure to find the index q2 in A[p2 : r2] such that all

elements in A[p2 : q2 − 1] are at most x and all the elements in A[q2 : r2]

are at least x. Line 9 computes the index q3 of the element that divides

the output subarray B[p3 : r3] into B[p3 : q3 − 1] and B[q3 + 1 : r3], and

then line 10 puts x directly into B[q3], which is where it belongs in the

output.
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Next is the conquer step, which is where the parallel recursion

occurs. Lines 12 and 14 each spawn P-MERGE-AUX to recursively

merge from A into B, the first to merge the smaller elements and the

second to merge the larger elements. The sync statement in line 15

ensures that the subproblems finish before the procedure returns.

There is no combine step, as B[p : r] already contains the correct

sorted output.

Work/span analysis of parallel merging

Let’s first analyze the worst-case span T∞(n) of P-MERGE-AUX on

input subarrays that together contain a total of n elements. The call to

FIND-SPLIT-POINT in line 8 contributes Θ(lg n) to the span in the

worst case, and the procedure performs at most a constant amount of

additional serial work outside of the two recursive spawns in lines 12

and 14.

Because the two recursive spawns operate logically in parallel, only

one of them contributes to the overall worst-case span. We claimed

earlier that neither recursive invocation ever operates on more than 3n/4

elements. Let’s see why. Let n1 = r1 − p1 + 1 and n2 = r2 − p2 + 1,

where n = n1 + n2, be the sizes of the two subarrays when line 6 starts

executing, that is, after we have established that n2 ≤ n1 by swapping the

roles of the two subarrays, if necessary. Since the pivot x is a median of

of A[p1 : r1], in the worst case, a recursive merge involves at most n1/2

elements of A[p1 : r1], but it might involve all n2 of the elements of A[p2

: r2]. Thus we can bound the number of elements involved in a recursive

invocation of P-MERGE-AUX by

n1/2 + n2 = (2n1 + 4n2)/4

≤ (3n1 + 3n2)/4 (since n2 ≤ n1)

= 3n/4,

proving the claim.

The worst-case span of P-MERGE-AUX can therefore be described

by the following recurrence:
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Because this recurrence falls under case 2 of the master theorem with k

= 1, its solution is T∞(n) = Θ(lg 2 n).

Now let’s verify that the work T1(n) of P-MERGE-AUX on n

elements is linear. A lower bound of Ω(n) is straightforward, since each

of the n elements is copied from array A to array B. We’ll show that

T1(n) = O(n) by deriving a recurrence for the worst-case work. The

binary search in line 8 costs Θ(lg n) in the worst case, which dominates

the other work outside of the recursive spawns. For the recursive

spawns, observe that although lines 12 and 14 might merge different

numbers of elements, the two recursive spawns together merge at most n

− 1 elements (since x = A[q] is not merged). Moreover, as we saw when

analyzing the span, a recursive spawn operates on at most 3n/4 elements.

We therefore obtain the recurrence

where α lies in the range 1/4 ≤ α ≤ 3/4. The value of α can vary from one

recursive invocation to another.

We’ll use the substitution method (see Section 4.3) to prove that the

above recurrence (26.8) has solution T1(n) = O(n). (You could also use

the Akra-Bazzi method from Section 4.7.) Assume that T1(n) ≤ c1n − c2

lg n for some positive constants c1 and c2. Using the properties of

logarithms on pages 66–67—in particular, to deduce that lg α + lg(1 −

α) = −Θ(1)—substitution yields

T1(n) ≤ (c1αn − c2 lg(αn)) + (c1(1 − α)n − c2 lg((1 − α)n)) + Θ(lg n)

= c1(α + (1 − α))n − c2(lg(αn) + lg((1 − α)n)) + Θ(lg n)

= c1n − c2(lg α + lg n + lg(1 − α) + lg n) + Θ(lg n)

= c1n − c2 lg n − c2(lg n + lg α + lg(1 − α)) + Θ(lg n)

= c1n − c2 lg n − c2(lg n − Θ(1)) + Θ(lg n)

≤ c1n − c2 lg n,
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if we choose c2 large enough that the c2(lg n − Θ(1)) term dominates the

Θ(lg n) term for sufficiently large n. Furthermore, we can choose c1

large enough to satisfy the implied Θ(1) base cases of the recurrence,

completing the induction. The lower and upper bounds of Ω(n) and

O(n) give T1(n) = Θ(n), asymptotically the same work as for serial

merging.

The execution of the pseudocode in the P-MERGE procedure itself

does not add asymptotically to the work and span of P-MERGE-AUX.

The parallel for loop in lines 3–4 has Θ(lg n) span due to the loop

control, and each iteration runs in constant time. Thus the Θ(lg2n) span

of P-MERGE-AUX dominates, yielding Θ(lg2n) span overall for P-

MERGE. The parallel for loop contains Θ(n) work, matching the

asymptotic work of P-MERGE-AUX and yielding Θ(n) work overall

for P-MERGE.

Analysis of parallel merge sort

The “heavy lifting” is done. Now that we have determined the work and

span of P-MERGE, we can analyze P-MERGE-SORT. Let T1(n) and

T∞(n) be the work and span, respectively, of P-MERGE-SORT on an

array of n elements. The call to P-MERGE in line 10 of P-MERGE-

SORT dominates the costs of lines 1–3, for both work and span. Thus

we obtain the recurrence

T1(n) = 2T1(n/2) + Θ(n)

for the work of P-MERGE-SORT, and we obtain the recurrence

T∞(n) = T∞(n/2) + Θ(lg2 n)

for its span. The work recurrence has solution T1(n) = Θ(n lg n) by case

2 of the master theorem with k = 0. The span recurrence has solution

T∞ (n) = Θ(lg3 n), also by case 2 of the master theorem, but with k = 2.

Parallel merging gives P-MERGE-SORT a parallelism advantage

over P-NAIVE-MERGE-SORT. The parallelism of P-NAIVE-
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MERGE-SORT, which calls the serial MERGE procedure, is only Θ(lg

n). For P-MERGE-SORT, the parallelism is

T1(n)/T∞(n) = Θ(n lg n)/Θ(lg3 n)

= Θ(n/lg2 n),

which is much better, both in theory and in practice. A good

implementation in practice would sacrifice some parallelism by

coarsening the base case in order to reduce the constants hidden by the

asymptotic notation. For example, you could switch to an efficient serial

sort, perhaps quicksort, when the number of elements to be sorted is

sufficiently small.

Exercises

26.3-1

Explain how to coarsen the base case of P-MERGE.

26.3-2

Instead of finding a median element in the larger subarray, as P-

MERGE does, suppose that the merge procedure finds a median of all

the elements in the two sorted subarrays using the result of Exercise 9.3-

10. Give pseudocode for an efficient parallel merging procedure that

uses this median-finding procedure. Analyze your algorithm.

26.3-3

Give an efficient parallel algorithm for partitioning an array around a

pivot, as is done by the PARTITION procedure on page 184. You need

not partition the array in place. Make your algorithm as parallel as

possible. Analyze your algorithm. (Hint: You might need an auxiliary

array and might need to make more than one pass over the input

elements.)

26.3-4

Give a parallel version of FFT on page 890. Make your implementation

as parallel as possible. Analyze your algorithm.
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★ 26.3-5

Show how to parallelize SELECT from Section 9.3. Make your

implementation as parallel as possible. Analyze your algorithm.

Problems

26-1     Implementing parallel loops using recursive spawning

Consider the parallel procedure SUM-ARRAYS for performing

pairwise addition on n-element arrays A[1 : n] and B[1 : n], storing the

sums in C [1 : n].

SUM-ARRAYS (A, B, C, n)

1 parallel for i = 1 to n

2 C [i] = A[i] + B[i]

a. Rewrite the parallel loop in SUM-ARRAYS using recursive spawning

in the manner of P-MAT-VEC-RECURSIVE. Analyze the

parallelism.

Consider another implementation of the parallel loop in SUM-

ARRAYS given by the procedure SUM-ARRAYS′, where the value

grain-size must be specified.

SUM-ARRAYS′(A, B, C, n)

1 grain-size = ? // to be determined

2 r = ⌈n/grain-size⌉

3 for k = 0 to r − 1

4 spawn ADD-SUBARRAY (A, B, C, k · grain-size + 1,

min {(k + 1) · grain-size, n})

5 sync

ADD-SUBARRAY (A, B, C, i, j)

1 for k = i to j

2 C [k] = A[k] + B[k]
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b. Suppose that you set grain-size = 1. What is the resulting parallelism?

c. Give a formula for the span of SUM-ARRAYS′ in terms of n and

grain-size. Derive the best value for grain-size to maximize parallelism.

26-2     Avoiding a temporary matrix in recursive matrix multiplication

The P-MATRIX-MULTIPLY-RECURSIVE procedure on page 772

must allocate a temporary matrix D of size n × n, which can adversely

affect the constants hidden by the Θ-notation. The procedure has high

parallelism, however: Θ(n3/log2 n). For example, ignoring the constants

in the Θ-notation, the parallelism for multiplying 1000 × 1000 matrices

comes to approximately 10003/102 = 107, since lg 1000 ≈ 10. Most

parallel computers have far fewer than 10 million processors.

a. Parallelize MATRIX-MULTIPLY-RECURSIVE without using

temporary matrices so that it retains its Θ(n3) work. (Hint: Spawn the

recursive calls, but insert a sync in a judicious location to avoid races.)

b. Give and solve recurrences for the work and span of your

implementation.

c. Analyze the parallelism of your implementation. Ignoring the

constants in the Θ-notation, estimate the parallelism on 1000 × 1000

matrices. Compare with the parallelism of P-MATRIX-MULTIPLY-

RECURSIVE, and discuss whether the trade-off would be

worthwhile.

26-3     Parallel matrix algorithms

Before attempting this problem, it may be helpful to read Chapter 28.

a. Parallelize the LU-DECOMPOSITION procedure on page 827 by

giving pseudocode for a parallel version of this algorithm. Make your

implementation as parallel as possible, and analyze its work, span,

and parallelism.

b. Do the same for LUP-DECOMPOSITION on page 830.

c. Do the same for LUP-SOLVE on page 824.
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d. Using equation (28.14) on page 835, write pseudocode for a parallel

algorithm to invert a symmetric positive-definite matrix. Make your

implementation as parallel as possible, and analyze its work, span,

and parallelism.

26-4     Parallel reductions and scan (prefix) computations

A ⊗-reduction of an array x[1 : n], where ⊗ is an associative operator, is

the value y = x[1] ⊗ x[2] ⊗ ⋯ ⊗ x[n]. The REDUCE procedure

computes the ⊗-reduction of a subarray x[i : j] serially.

REDUCE (x, i, j)

1y = x[i]

2for k = i + 1 to j

3 y = y ⊗ x[k]

4return y

a. Design and analyze a parallel algorithm P-REDUCE that uses

recursive spawning to perform the same function with Θ(n) work and

Θ(lg n) span.

A related problem is that of computing a ⊗-scan, sometimes called a

⊗-prefix computation, on an array x[1 : n], where ⊗ is once again an

associative operator. The ⊗-scan, implemented by the serial procedure

SCAN, produces the array y[1 : n] given by

y[1] = x[1],

y[2] = x[1] ⊗ x[2],

y[3] = x[1] ⊗ x[2] ⊗ x[3],

⋮

y[n] = x[1] ⊗ x[2] ⊗ x[3] ⊗ ⋯ ⊗ x[n],

that is, all prefixes of the array x “summed” using the ⊗ operator.

SCAN (x, n)

1 let y[1 : n] be a new array
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2 y[1] = x[1]

3 for i = 2 to n

4 y[i] = y[i − 1] ⊗ 1 ⊗ x[i]

5 return y

Parallelizing SCAN is not straightforward. For example, simply

changing the for loop to a parallel for loop would create races, since

each iteration of the loop body depends on the previous iteration. The

procedures P-SCAN-1 and P-SCAN-1-AUX perform the ⊗-scan in

parallel, albeit inefficiently.

P-SCAN-1(x, n)

1 let y[1] : n be a new array

2 P-SCAN-1-AUX (x, y, 1, n)

3 return y

P-SCAN-1-AUX (x, y, i, j)

1 parallel for l = i to j

2 y[l] = P-REDUCE (x, 1, l)

b. Analyze the work, span, and parallelism of P-SCAN-1.

The procedures P-SCAN-2 and P-SCAN-2-AUX use recursive

spawning to perform a more efficient ⊗-scan.

P-SCAN-2(x, n)

1 let y[1] : n be a new array

2 P-SCAN-2-AUX (x, y, 1, n)

3 return y

P-SCAN-2-AUX (x, y, i, j)

1 if i == j

2 y[i] = x[i]

3 else k = ⌊(i + j)/2⌋

4 spawn P-SCAN-2-AUX (x, y, i, k)

5 P-SCAN-2-AUX (x, y, k + 1, j)
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6 sync

7 parallel for l = k + 1 to j

8 y[l] = y[k] ⊗ y[l]

c. Argue that P-SCAN-2 is correct, and analyze its work, span, and

parallelism.

To improve on both P-SCAN-1 and P-SCAN-2, perform the ⊗-scan

in two distinct passes over the data. The first pass gathers the terms for

various contiguous subarrays of x into a temporary array t, and the

second pass uses the terms in t to compute the final result y. The

pseudocode in the procedures P-SCAN-3, P-SCAN-UP, and P-SCAN-

DOWN on the facing page implements this strategy, but certain

expressions have been omitted.

d. Fill in the three missing expressions in line 8 of P-SCAN-UP and

lines 5 and 6 of P-SCAN-DOWN. Argue that with the expressions

you supplied, P-SCAN-3 is correct. (Hint: Prove that the value v

passed to P-SCAN-DOWN (v, x, t, y, i, j) satisfies v = x[1] ⊗ x[2] ⊗

⋯ ⊗ x[i − 1].)

e. Analyze the work, span, and parallelism of P-SCAN-3.

f. Describe how to rewrite P-SCAN-3 so that it doesn’t require the use

of the temporary array t.

★ g. Give an algorithm P-SCAN-4(x, n) for a scan that operates in

place. It should place its output in x and require only constant

auxiliary storage.

h. Describe an efficient parallel algorithm that uses a +-scan to

determine whether a string of parentheses is well formed. For

example, the string ( ( ) ( ) ) ( ) is well formed, but the string ( ( ) ) ) ( ( )

is not. (Hint: Interpret ( as a 1 and ) as a −1, and then perform a +-

scan.)

P-SCAN-3(x, n)

1 let y[1] : n and t[1 : n] be new arrays

www.konkur.in

Telegram: @uni_k



2 y[1] = x[1]

3 if n > 1

4 P-SCAN-UP (x, t, 2, n)

5 P-SCAN-DOWN (x[1], x, t, y, 2, n)

6 return y

P-SCAN-UP (x, t, i, j)

1 if i == j

2 return x[i]

3 else

4 k = ⌊(i + j)/2⌋

5 t[k] = spawn P-SCAN-UP (x, t, i, k)

6 right = P-SCAN-UP (x, t, k + 1, j)

7 sync

8 return ____ // fill in the blank

P-SCAN-DOWN (v, x, t, y, i, j)

1 if i == j

2 y[i] = v ⊗ x[i]

3 else

4 k = ⌊(i + j)/2⌋

5 spawn P-SCAN-DOWN (____, x, t, y, i,

k)

// fill in the

blank

6 P-SCAN-DOWN (____, x, t, y, k + 1, j) // fill in the

blank

7 sync

26-5     Parallelizing a simple stencil calculation

Computational science is replete with algorithms that require the entries

of an array to be filled in with values that depend on the values of

certain already computed neighboring entries, along with other

information that does not change over the course of the computation.

The pattern of neighboring entries does not change during the

computation and is called a stencil. For example, Section 14.4 presents a

stencil algorithm to compute a longest common subsequence, where the
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value in entry c[i, j] depends only on the values in c[i − 1, j], c[i, j − 1],

and c[i − 1, j − 1], as well as the elements xi and yj within the two

sequences given as inputs. The input sequences are fixed, but the

algorithm fills in the two-dimensional array c so that it computes entry

c[i, j] after computing all three entries c[i − 1, j], c[i, j − 1], and c[i − 1, j

− 1].

This problem examines how to use recursive spawning to parallelize

a simple stencil calculation on an n × n array A in which the value

placed into entry A[i, j] depends only on values in A[i′, j′], where i′ ≤ i

and j′ ≤ j (and of course, i′ ≠ i or j′ ≠ j). In other words, the value in an

entry depends only on values in entries that are above it and/or to its

left, along with static information outside of the array. Furthermore, we

assume throughout this problem that once the entries upon which A[i, j]

depends have been filled in, the entry A[i, j] can be computed in Θ(1)

time (as in the LCS-LENGTH procedure of Section 14.4).

Partition the n × n array A into four n/2 × n/2 subarrays as follows:

You can immediately fill in subarray A11 recursively, since it does not

depend on the entries in the other three subarrays. Once the

computation of A11 finishes, you can fill in A12 and A21 recursively in

parallel, because although they both depend on A11, they do not

depend on each other. Finally, you can fill in A22 recursively.

a. Give parallel pseudocode that performs this simple stencil calculation

using a divide-and-conquer algorithm SIMPLE-STENCIL based on

the decomposition (26.9) and the discussion above. (Don’t worry

about the details of the base case, which depends on the specific

stencil.) Give and solve recurrences for the work and span of this

algorithm in terms of n. What is the parallelism?

b. Modify your solution to part (a) to divide an n × n array into nine n/3

× n/3 subarrays, again recursing with as much parallelism as possible.
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Analyze this algorithm. How much more or less parallelism does this

algorithm have compared with the algorithm from part (a)?

c. Generalize your solutions to parts (a) and (b) as follows. Choose an

integer b ≥ 2. Divide an n × n array into b2 subarrays, each of size n/b

× n/b, recursing with as much parallelism as possible. In terms of n

and b, what are the work, span, and parallelism of your algorithm?

Argue that, using this approach, the parallelism must be o(n) for any

choice of b ≥ 2. (Hint: For this argument, show that the exponent of n

in the parallelism is strictly less than 1 for any choice of b ≥ 2.)

d. Give pseudocode for a parallel algorithm for this simple stencil

calculation that achieves Θ(n/lg n) parallelism. Argue using notions of

work and span that the problem has Θ(n) inherent parallelism.

Unfortunately, simple fork-join parallelism does not let you achieve

this maximal parallelism.

26-6     Randomized parallel algorithms

Like serial algorithms, parallel algorithms can employ random-number

generators. This problem explores how to adapt the measures of work,

span, and parallelism to handle the expected behavior of randomized

task-parallel algorithms. It also asks you to design and analyze a

parallel algorithm for randomized quicksort.

a. Explain how to modify the work law (26.2), span law (26.3), and

greedy scheduler bound (26.4) to work with expectations when TP,

T1, and T∞are all random variables.

b. Consider a randomized parallel algorithm for which 1% of the time,

T1 = 104 and T10,000 = 1, but for the remaining 99% of the time, T1

= T10,000 = 109. Argue that the speedup of a randomized parallel

algorithm should be defined as E[T1]/E[TP], rather than E[T1/TP].

c. Argue that the parallelism of a randomized task-parallel algorithm

should be defined as the ratio E[T1]/E[T∞].

www.konkur.in

Telegram: @uni_k



d. Parallelize the RANDOMIZED-QUICKSORT algorithm on page

192 by using recursive spawning to produce P-RANDOMIZED-

QUICKSORT. (Do not parallelize RANDOMIZED-PARTITION.)

e. Analyze your parallel algorithm for randomized quicksort. (Hint:

Review the analysis of RANDOMIZED-SELECT on page 230.)

f. Parallelize RANDOMIZED-SELECT on page 230. Make your

implementation as parallel as possible. Analyze your algorithm. (Hint:

Use the partitioning algorithm from Exercise 26.3-3.)

Chapter notes

Parallel computers and algorithmic models for parallel programming

have been around in various forms for years. Prior editions of this book

included material on sorting networks and the PRAM (Parallel

Random-Access Machine) model. The data-parallel model [58, 217] is

another popular algorithmic programming model, which features

operations on vectors and matrices as primitives. The notion of

sequential consistency is due to Lamport [275].

Graham [197] and Brent [71] showed that there exist schedulers

achieving the bound of Theorem 26.1. Eager, Zahorjan, and Lazowska

[129] showed that any greedy scheduler achieves this bound and

proposed the methodology of using work and span (although not by

those names) to analyze parallel algorithms. Blelloch [57] developed an

algorithmic programming model based on work and span (which he

called “depth”) for data-parallel programming. Blumofe and Leiserson

[63] gave a distributed scheduling algorithm for task-parallel

computations based on randomized “work-stealing” and showed that it

achieves the bound E[TP] ≤ T1/P + O(T∞). Arora, Blumofe, and

Plaxton [20] and Blelloch, Gibbons, and Matias [61] also provided

provably good algorithms for scheduling task-parallel computations.

The recent literature contains many algorithms and strategies for

scheduling parallel programs.

The parallel pseudocode and programming model were influenced by

Cilk [290, 291, 383, 396]. The open-source project OpenCilk
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(www.opencilk.org) provides Cilk programming as an extension to the

C and C++ programming languages. All of the parallel algorithms in

this chapter can be coded straightforwardly in Cilk.

Concerns about nondeterministic parallel programs were expressed

by Lee [281] and Bocchino, Adve, Adve, and Snir [64]. The algorithms

literature contains many algorithmic strategies (see, for example, [60, 85,

118, 140, 160, 282, 283, 412, 461]) for detecting races and extending the

fork-join model to avoid or safely embrace various kinds of

nondeterminism. Blelloch, Fineman, Gibbons, and Shun [59] showed

that deterministic parallel algorithms can often be as fast as, or even

faster than, their nondeterministic counterparts.

Several of the parallel algorithms in this chapter appeared in

unpublished lecture notes by C. E. Leiserson and H. Prokop and were

originally implemented in Cilk. The parallel merge-sorting algorithm

was inspired by an algorithm due to Akl [12].

1 In mathematics, a projection is an idempotent function, that is, a function f such that f ○ f = f.

In this case, the function f maps the set P of fork-join programs to the set PS ⊂ P of serial

programs, which are themselves fork-join programs with no parallelism. For a fork-join program

x ∈ P, since we have f (f (x)) = f (x), the serial projection, as we have defined it, is indeed a

mathematical projection.

2 Also called a computation dag in the literature.
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27        Online Algorithms

Most problems described in this book have assumed that the entire

input was available before the algorithm executes. In many situations,

however, the input becomes available not in advance, but only as the

algorithm executes. This idea was implicit in much of the discussion of

data structures in Part III. The reason that you want to design, for

example, a data structure that can handle n INSERT, DELETE, and

SEARCH operations in O(lg n) time per operation is most likely

because you are going to receive n such operation requests without

knowing in advance what operations will be coming. This idea was also

implicit in amortized analysis in Chapter 16, where we saw how to

maintain a table that can grow or shrink in response to a sequence of

insertion and deletion operations, yet with a constant amortized cost

per operation.

An online algorithm receives its input progressively over time, rather

than having the entire input available at the start, as in an offline

algorithm. Online algorithms pertain to many situations in which

information arrives gradually. A stock trader must make decisions

today, without knowing what the prices will be tomorrow, yet wants to

achieve good returns. A computer system must schedule arriving jobs

without knowing what work will need to be done in the future. A store

must decide when to order more inventory without knowing what the

future demand will be. A driver for a ride-hailing service must decide

whether to pick up a fare without knowing who will request rides in the

future. In each of these situations, and many more, algorithmic

decisions must be made without knowledge of the future.
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There are several approaches for dealing with unknown future

inputs. One approach is to form a probabilistic model of future inputs

and design an algorithm that assumes future inputs conform to the

model. This technique is common, for example, in the field of queuing

theory, and it is also related to machine learning. Of course, you might

not be able to develop a workable probabilistic model, or even if you

can, some inputs might not conform to it. This chapter takes a different

approach. Instead of assuming anything about the future input, we

employ a conservative strategy of limiting how poor a solution any

input can entail.

This chapter, therefore, adopts a worst-case approach, designing

online algorithms that guarantee the quality of the solution for all

possible future inputs. We’ll analyze online algorithms by comparing

the solution produced by the online algorithm with a solution produced

by an optimal algorithm that knows the future inputs, and taking a

worst-case ratio over all possible instances. We call this methodology

competitive analysis. We’ll use a similar approach when we study

approximation algorithms in Chapter 35, where we’ll compare the

solution returned by an algorithm that might be suboptimal with the

value of the optimal solution, and determine a worst-case ratio over all

possible instances.

We start with a “toy” problem: deciding between whether to take the

elevator or the stairs. This problem will introduce the basic

methodology of thinking about online algorithms and how to analyze

them via competitive analysis. We will then look at two problems that

use competitive analysis. The first is how to maintain a search list so

that the access time is not too large, and the second is about strategies

for deciding which cache blocks to evict from a cache or other kind of

fast computer memory.

27.1    Waiting for an elevator

Our first example of an online algorithm models a problem that you

likely have encountered yourself: whether you should wait for an

elevator to arrive or just take the stairs. Suppose that you enter a
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building and wish to visit an office that is k floors up. You have two

choices: walk up the stairs or take the elevator. Let’s assume, for

convenience, that you can climb the stairs at the rate of one floor per

minute. The elevator travels much faster than you can climb the stairs: it

can ascend all k floors in just one minute. Your dilemma is that you do

not know how long it will take for the elevator to arrive at the ground

floor and pick you up. Should you take the elevator or the stairs? How

do you decide?

Let’s analyze the problem. Taking the stairs takes k minutes, no

matter what. Suppose you know that the elevator takes at most B − 1

minutes to arrive for some value of B that is considerably higher than k.

(The elevator could be going up when you call for it and then stop at

several floors on its way down.) To keep things simple, let’s also assume

that the number of minutes for the elevator to arrive is an integer.

Therefore, waiting for the elevator and taking it k floors up takes

anywhere from one minute (if the elevator is already at the ground floor)

to (B − 1) + 1 = B minutes (the worst case). Although you know B and

k, you don’t know how long the elevator will take to arrive this time.

You can use competitive analysis to inform your decision regarding

whether to take the stairs or elevator. In the spirit of competitive

analysis, you want to be sure that, no matter what the future brings (i.e.,

how long the elevator takes to arrive), you will not wait much longer

than a seer who knows when the elevator will arrive.

Let us first consider what the seer would do. If the seer knows that

the elevator is going to arrive in at most k − 1 minutes, the seer waits for

the elevator, and otherwise, the seer takes the stairs. Letting m denote

the number of minutes it takes for the elevator to arrive at the ground

floor, we can express the time that the seer spends as the function

We typically evaluate online algorithms by their competitive ratio.

Let U denote the set (universe) of all possible inputs, and consider some

input I ∈ U. For a minimization problem, such as the stairs-versus-

elevator problem, if an online algorithm A produces a solution with
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value A(I) on input I and the solution from an algorithm F that knows

the future has value F(I) on the same input, then the competitive ratio

of algorithm A is

max {A(I)/F(I) : I ∈ U}.

If an online algorithm has a competitive ratio of c, we say that it is c-

competitive. The competitive ratio is always at least 1, so that we want

an online algorithm with a competitive ratio as close to 1 as possible.

In the stairs-versus-elevator problem, the only input is the time for

the elevator to arrive. Algorithm F knows this information, but an

online algorithm has to make a decision without knowing when the

elevator will arrive. Consider the algorithm “always take the stairs,”

which always takes exactly k minutes. Using equation (27.1), the

competitive ratio is

Enumerating the terms in equation (27.2) gives the competitive ratio as

so that the competitive ratio is k. The maximum is achieved when the

elevator arrives immediately. In this case, taking the stairs requires k

minutes, but the optimal solution takes just 1 minute.

Now let’s consider the opposite approach: “always take the elevator.”

If it takes m minutes for the elevator to arrive at the ground floor, then

this algorithm will always take m + 1 minutes. Thus the competitive

ratio becomes

max {(m + 1)/t(m) : 0 ≤ m ≤ B − 1},

which we can again enumerate as

Now the maximum is achieved when the elevator takes B − 1 minutes to

arrive, compared with the optimal approach of taking the stairs, which

requires k minutes.
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Hence, the algorithm “always take the stairs” has competitive ratio

k, and the algorithm “always take the elevator” has competitive ratio

B/k. Because we prefer the algorithm with smaller competitive ratio, if k

= 10 and B = 300, we prefer “always take the stairs,” with competitive

ratio 10, over “always take the elevator,” with competitive ratio 30.

Taking the stairs is not always better, or necessarily more often better.

It’s just that taking the stairs guards better against the worst-case future.

These two approaches of always taking the stairs and always taking

the elevator are extreme solutions, however. Instead, you can “hedge

your bets” and guard even better against a worst-case future. In

particular, you can wait for the elevator for a while, and then if it doesn’t

arrive, take the stairs. How long is “a while”? Let’s say that “a while” is

k minutes. Then the time h(m) required by this hedging strategy, as a

function of the number m of minutes before the elevator arrives, is

In the second case, h(m) = 2k because you wait for k minutes and then

climb the stairs for k minutes. The competitive ratio is now

max {h(m)/t(m) : 0 ≤ m ≤ B − 1}.

Enumerating this ratio yields

The competitive ratio is now independent of k and B.

This example illustrates a common philosophy in online algorithms:

we want an algorithm that guards against any possible worst case.

Initially, waiting for the elevator guards against the case when the

elevator arrives quickly, but eventually switching to the stairs guards

against the case when the elevator takes a long time to arrive.

Exercises

27.1-1

www.konkur.in

Telegram: @uni_k



Suppose that when hedging your bets, you wait for p minutes, instead of

for k minutes, before taking the stairs. What is the competitive ratio as a

function of p and k? How should you choose p to minimize the

competitive ratio?

27.1-2

Imagine that you decide to take up downhill skiing. Suppose that a pair

of skis costs r dollars to rent for a day and b dollars to buy, where b > r.

If you knew in advance how many days you would ever ski, your

decision whether to rent or buy would be easy. If you’ll ski for at least

⌈b/r⌉ days, then you should buy skis, and otherwise you should rent.

This strategy minimizes the total that you ever spend. In reality, you

don’t know in advance how many days you’ll eventually ski. Even after

you have skied several times, you still don’t know how many more times

you’ll ever ski. Yet you don’t want to waste your money. Give and

analyze an algorithm that has a competitive ratio of 2, that is, an

algorithm guaranteeing that, no matter how many times you ski, you

never spend more than twice what you would have spent if you knew

from the outset how many times you’ll ski.

27.1-3

In “concentration solitaire,” a game for one person, you have n pairs of

matching cards. The backs of the cards are all the same, but the fronts

contain pictures of animals. One pair has pictures of aardvarks, one pair

has pictures of bears, one pair has pictures of camels, and so on. At the

start of the game, the cards are all placed face down. In each round, you

can turn two cards face up to reveal their pictures. If the pictures match,

then you remove that pair from the game. If they don’t match, then you

turn both of them over, hiding their pictures once again. The game ends

when you have removed all n pairs, and your score is how many rounds

you needed to do so. Suppose that you can remember the picture on

every card that you have seen. Give an algorithm to play concentration

solitaire that has a competitive ratio of 2.

27.2    Maintaining a search list
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The next example of an online algorithm pertains to maintaining the

order of elements in a linked list, as in Section 10.2. This problem often

arises in practice for hash tables when collisions are resolved by

chaining (see Section 11.2), since each slot contains a linked list.

Reordering the linked list of elements in each slot of the hash table can

boost the performance of searches measurably.

The list-maintenance problem can be set up as follows. You are given

a list L of n elements {x1, x2, … , xn}. We’ll assume that the list is

doubly linked, although the algorithms and analysis work just as well

for singly linked lists. Denote the position of element xi in the list L by

rL(xi), where 1 ≤ rL(xi) ≤ n. Calling LIST-SEARCH(L, xi) on page 260

thus takes Θ(rL(xi)) time.

If you know in advance something about the distribution of search

requests, then it makes sense to arrange the list ahead of time to put the

more frequently searched elements closer to the front, which minimizes

the total cost (see Exercise 27.2-1). If instead you don’t know anything

about the search sequence, then no matter how you arrange the list, it is

possible that every search is for whatever element appears at the tail of

the list. The total searching time would then be Θ(nm), where m is the

number of searches.

If you notice patterns in the access sequence or you observe

differences in the frequencies in which elements are accessed, then you

might want to rearrange the list as you perform searches. For example,

if you discover that every search is for a particular element, you could

move that element to the front of the list. In general, you could

rearrange the list after each call to LIST-SEARCH. But how would you

do so without knowing the future? After all, no matter how you move

elements around, every search could be for the last element.

But it turns out that some search sequences are “easier” than others.

Rather than just evaluate performance on the worst-case sequence, let’s

compare a reorganization scheme with whatever an optimal offline

algorithm would do if it knew the search sequence in advance. That way,

if the sequence is fundamentally hard, the optimal offline algorithm will

also find it hard, but if the sequence is easy, we can hope to do

reasonably well.
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To ease analysis, we’ll drop the asymptotic notation and say that the

cost is just i to search for the ith element in the list. Let’s also assume

that the only way to reorder the elements in the list is by swapping two

adjacent elements in the list. Because the list is doubly linked, each swap

incurs a cost of 1. Thus, for example, a search for the sixth element

followed by moving it forward two places (entailing two swaps) incurs a

total cost 8. The goal is to minimize the total cost of calls to LIST-

SEARCH plus the total number of swaps performed.

The online algorithm that we’ll explore is MOVE-TO-FRONT(L, x).

This procedure first searches for x in the doubly linked list L, and then

it moves x to the front of the list.1 If x is located at position r = rL(x)

before the call, MOVE-TO-FRONT swaps x with the element in

position r − 1, then with the element in position r − 2, and so on, until it

finally swaps x with the element in position 1. Thus if the call MOVE-

TO-FRONT(L, 8) executes on the list L = 〈5, 3, 12, 4, 8, 9, 22〉, the list

becomes 〈8, 5, 3, 12, 4, 9, 22〉. The call MOVE-TO-FRONT(L, k) costs

2rL(k) − 1: it costs rL(k) to search for k, and it costs 1 for each of the

rL(k) − 1 swaps that move k to the front of the list.

Figure 27.1 The costs incurred by the procedures FORESEE and MOVE-TO-FRONT when

searching for the elements 5, 3, 4, and 4, starting with the list L = 〈1, 2, 3, 4, 5〉. If FORESEE

instead moved 3 to the front after the search for 5, the cumulative cost would not change, nor

would the cumulative cost change if 4 moved to the second position after the search for 5.

We’ll see that MOVE-TO-FRONT has a competitive ratio of 4. Let’s

think about what this means. MOVE-TO-FRONT performs a series of

operations on a doubly linked list, accumulating cost. For comparison,

suppose that there is an algorithm FORESEE that knows the future.

Like MOVE-TO-FRONT, it also searches the list and moves elements

around, but after each call it optimally rearranges the list for the future.
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(There may be more than one optimal order.) Thus FORESEE and

MOVE-TO-FRONT maintain different lists of the same elements.

Consider the example shown in Figure 27.1. Starting with the list 〈1,

2, 3, 4, 5〉, four searches occur, for the elements 5, 3, 4, and 4. The

hypothetical procedure FORESEE, after searching for 3, moves 4 to the

front of the list, knowing that a search for 4 is imminent. It thus incurs a

swap cost of 3 upon its second call, after which no further swap costs

accrue. MOVE-TO-FRONT incurs swap costs in each step, moving the

found element to the front. In this example, MOVE-TO-FRONT has a

higher cost in each step, but that is not necessarily always the case.

The key to proving the competitive bound is to show that at any

point, the total cost of MOVE-TO-FRONT is not much higher than

that of FORESEE. Surprisingly, we can determine a bound on the costs

incurred by MOVE-TO-FRONT relative to FORESEE even though

MOVE-TO-FRONT cannot see the future.

If we compare any particular step, MOVE-TO-FRONT and

FORESEE may be operating on very different lists and do very

different things. If we focus on the search for 4 above, we observe that

FORESEE actually moves it to the front of the list early, paying to

move the element to the front before it is accessed. To capture this

concept, we use the idea of an inversion: a pair of elements, say a and b,

in which a appears before b in one list, but b appears before a in another

list. For two lists L and L′, let I(L, L′), called the inversion count, denote

the number of inversions between the two lists, that is, the number of

pairs of elements whose order differs in the two lists. For example, with

lists L = 〈5,3,1,4,2〉 and L′ = 〈3,1,2,4,5〉, then out of the  pairs,

exactly five of them—(1, 5), (2, 4), (2, 5), (3, 5), (4, 5)—are inversions,

since these pairs, and only these pairs, appear in different orders in the

two lists. Thus the inversion count is I(L, L′) = 5.

In order to analyze the algorithm, we define the following notation.

Let  be the list maintained by MOVE-TO-FRONT immediately after

the ith search, and similarly, let  be FORESEE’s list immediately after

the ith search. Let  and  be the costs incurred by MOVE-TO-

FRONT and FORESEE on their ith calls, respectively. We don’t know

how many swaps FORESEE performs in its ith call, but we’ll denote
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that number by ti. Therefore, if the ith operation is a search for element

x, then

In order to compare these costs more carefully, let’s break down the

elements into subsets, depending on their positions in the two lists

before the ith search, relative to the element x being searched for in the

ith search. We define three sets:

BB = {elements before x in both  and },

BA = {elements before x in  but after x in },

AB = {elements after x in  but before x in }.

We can now relate the position of element x in  and  to the sizes of

these sets:

When a swap occurs in one of the lists, it changes the relative

positions of the two elements involved, which in turn changes the

inversion count. Suppose that elements x and y are swapped in some

list. Then the only possible difference in the inversion count between

this list and any other list depends on whether (x, y) is an inversion. In

fact, the inversion count of (x, y) with respect to any other list must

change. If (x, y) is an inversion before the swap, it no longer is

afterward, and vice versa. Therefore, if two consecutive elements x and

y swap positions in a list L, then for any other list L′, the value of the

inversion count I(L, L′) either increases by 1 or decreases by 1.

As we compare MOVE-TO-FRONT and FORESEE searching and

modifying their lists, we’ll think about MOVE-TO-FRONT executing

on its list for the ith time and then FORESEE executing on its list for

the ith time. After MOVE-TO-FRONT has executed for the ith time

and before FORESEE has executed for the ith time, we’ll compare 

 (the inversion count immediately before the ith call of MOVE-

TO-FRONT) with  (the inversion count after the ith call of
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MOVE-TO-FRONT but before the ith call of FORESEE). We’ll

concern ourselves later with what FORESEE does.

Let us analyze what happens to the inversion count after executing

the ith call of MOVE-TO-FRONT, and suppose that it searches for

element x. More precisely, we’ll compute , the

change in the inversion count, which gives a rough idea of how much

MOVE-TO-FRONT’s list becomes more or less like FORESEE’s list.

After searching, MOVE-TO-FRONT performs a series of swaps with

each of the elements on the list  that precedes x. Using the notation

above, the number of such swaps is |BB| + |BA|. Bearing in mind that the

list  has yet to be changed by the ith call of FORESEE, let’s see how

the inversion count changes.

Consider a swap with an element y ∈ BB. Before the swap, y

precedes x in both  and . After the swap, x precedes y in , and 

 does not change. Therefore, the inversion count increases by 1 for

each element in BB. Now consider a swap with an element z ∈ BA.

Before the swap, z precedes x in  but x precedes z in . After the

swap, x precedes z in both lists. Therefore, the inversion count decreases

by 1 for each element in BA. Thus altogether, the inversion count

increases by

We have laid the groundwork needed to analyze MOVE-TO-

FRONT.

Theorem 27.1

Algorithm MOVE-TO-FRONT has a competitive ratio of 4.

Proof   The proof uses a potential function, as described in Chapter 16

on amortized analysis. The value Φi of the potential function after the

ith calls of MOVE-TO-FRONT and FORESEE depends on the

inversion count:

(Intuitively, the factor of 2 embodies the notion that each inversion

represents a cost of 2 for MOVE-TO-FRONT relative to FORESEE: 1
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for searching and 1 for swapping.) By equation (27.7), after the ith call

of MOVE-TO-FRONT, but before the ith call of FORESEE, the

potential increases by 2(|BB| − |BA|). Since the inversion count of the

two lists is nonnegative, we have Φi ≥ 0 for all i ≥ 0. Assuming that

MOVE-TO-FRONT and FORESEE start with the same list, the initial

potential Φ0 is 0, so that Φi ≥ Φ0 for all i.

Drawing from equation (16.2) on page 456, the amortized cost  of

the ith MOVE-TO-FRONT operation is

where , the actual cost of the ith MOVE-TO-FRONT operation, is

given by equation (27.3):

Now, let’s consider the potential change Φi − Φi−1. Since both LM and

LF change, let’s consider the changes to one list at a time. Recall that

when MOVE-TO-FRONT moves element x to the front, it increases the

potential by exactly 2(|BB| − |BA|). We now consider how the optimal

algorithm FORESEE changes its list LF: it performs ti swaps. Each

swap performed by FORESEE either increases or decreases the

potential by 2, and thus the increase in potential by FORESEE in the

ith call can be at most 2ti. We therefore have

We now finish the proof as in Chapter 16 by showing that the total

amortized cost provides an upper bound on the total actual cost,

because the initial potential function is 0 and the potential function is
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always nonnegative. By equation (16.3) on page 456, for any sequence of

m MOVE-TO-FRONT operations, we have

Therefore, we have

Thus the total cost of the m MOVE-TO-FRONT operations is at most 4

times the total cost of the m FORESEE operations, so MOVE-TO-

FRONT is 4-competitive.

▪

Isn’t it amazing that we can compare MOVE-TO-FRONT with the

optimal algorithm FORESEE when we have no idea of the swaps that

FORESEE makes? We were able to relate the performance of MOVE-

TO-FRONT to the optimal algorithm by capturing how particular

properties (swaps in this case) must evolve relative to the optimal

algorithm, without actually knowing the optimal algorithm.

The online algorithm MOVE-TO-FRONT has a competitive ratio of

4: on any input sequence, it incurs a cost at most 4 times that of any

other algorithm. On a particular input sequence, it could cost much less

than 4 times the optimal algorithm, perhaps even matching the optimal

algorithm.

Exercises

27.2-1

You are given a set S = {x1, x2, … , xn} of n elements, and you wish to

make a static list L (no rearranging once the list is created) containing
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the elements of S that is good for searching. Suppose that you have a

probability distribution, where p(xi) is the probability that a given

search searches for element xi. Argue that the expected cost for m

searches is

Prove that this sum is minimized when the elements of L are sorted in

decreasing order with respect to p(xi).

27.2-2

Professor Carnac claims that since FORESEE is an optimal algorithm

that knows the future, then at each step it must incur no more cost than

MOVE-TO-FRONT. Either prove that Professor Carnac is correct or

provide a counterexample.

27.2-3

Another way to maintain a linked list for efficient searching is for each

element to maintain a frequency count: the number of times that the

element has been searched for. The idea is to rearrange list elements

after searches so that the list is always sorted by decreasing frequency

count, from largest to smallest. Either show that this algorithm is O(1)-

competitive, or prove that it is not.

27.2-4

The model in this section charged a cost of 1 for each swap. We can

consider an alternative cost model in which, after accessing x, you can

move x anywhere earlier in the list, and there is no cost for doing so.

The only cost is the cost of the actual accesses. Show that MOVE-TO-

FRONT is 2-competitive in this cost model, assuming that the number

requests is sufficiently large. (Hint: Use the potential function 

.)

27.3    Online caching
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In Section 15.4, we studied the caching problem, in which blocks of data

from the main memory of a computer are stored in the cache: a small

but faster memory. In that section, we studied the offline version of the

problem, in which we assumed that we knew the sequence of memory

requests in advance, and we designed an algorithm to minimize the

number of cache misses. In almost all computer systems, caching is, in

fact, an online problem. We do not generally know the series of cache

requests in advance; they are presented to the algorithm only as the

requests for blocks are actually made. To gain a better understanding of

this more realistic scenario, we analyze online algorithms for caching.

We will first see that all deterministic online algorithms for caching have

a lower bound of Ω(k) for the competitive ratio, where k is the size of

the cache. We will then present an algorithm with a competitive ratio of

Θ(n), where the input size is n, and one with a competitive ratio of O(k),

which matches the lower bound. We will end by showing how to use

randomization to design an algorithm with a much better competitive

ratio of Θ(lg k). We will also discuss the assumptions that underlie

randomized online algorithms, via the notion of an adversary, such as

we saw in Chapter 11 and will see in Chapter 31.

You can find the terminology used to describe the caching problem

in Section 15.4, which you might wish to review before proceeding.

27.3.1    Deterministic caching algorithms

In the caching problem, the input comprises a sequence of n memory

requests, for data in blocks b1, b2, … , bn, in that order. The blocks

requested are not necessarily distinct: each block may appear multiple

times within the request sequence. After block bi is requested, it resides

in a cache that can hold up to k blocks, where k is a fixed cache size. We

assume that n > k, since otherwise we are assured that the cache can

hold all the requested blocks at once. When a block bi is requested, if it

is already in the cache, then a cache hit occurs and the cache remains

unchanged. If bi is not in the cache, then a cache miss occurs. If the

cache contains fewer than k blocks upon a cache miss, block bi is placed

into the cache, which now contains one block more than before. If a
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cache miss occurs with an already full cache, however, some block must

be evicted from the cache before bi can enter. Thus, a caching algorithm

must decide which block to evict from the cache upon a cache miss

when the cache is full. The goal is to minimize the number of cache

misses over the entire request sequence. The caching algorithms

considered in this chapter differ only in which block they decide to evict

upon a cache miss. We do not consider abilities such as prefetching, in

which a block is brought into the cache before an upcoming request in

order to avert a future cache miss.

There are many online caching policies to determine which block to

evict, including the following:

First-in, first-out (FIFO): evict the block that has been in the

cache the longest time.

Last-in, first-out (LIFO): evict the block that has been in the

cache the shortest time.

Least Recently Used (LRU): evict the block whose last use is

furthest in the past.

Least Frequently Used (LFU): evict the block that has been

accessed the fewest times, breaking ties by choosing the block that

has been in the cache the longest.

To analyze these algorithms, we assume that the cache starts out

empty, so that no evictions occur during the first k requests. We wish to

compare the performance of an online algorithm to an optimal offline

algorithm that knows the future requests. As we will soon see, all these

deterministic online algorithms have a lower bound of Ω(k) for their

competitive ratio. Some deterministic algorithms also have a

competitive ratio with an O(k) upper bound, but some other

deterministic algorithms are considerably worse, having a competitive

ratio of Θ(n/k).

We now proceed to analyze the LIFO and LRU policies. In addition

to assuming that n > k, we will assume that at least k distinct blocks are

requested. Otherwise, the cache never fills up and no blocks are evicted,
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so that all algorithms exhibit the same behavior. We begin by showing

that LIFO has a large competitive ratio.

Theorem 27.2

LIFO has a competitive ratio of Θ(n/k) for the online caching problem

with n requests and a cache of size k.

Proof     We first show a lower bound of Ω(n/k). Suppose that the input

consists of k + 1 blocks, numbered 1, 2, … , k + 1, and the request

sequence is

1, 2, 3, 4, … , k, k + 1, k, k + 1, k, k + 1, … ,

where after the initial 1, 2, … , k, k + 1, the remainder of the sequence

alternates between k and k + 1, with a total of n requests. The sequence

ends on block k if n and k are either both even or both odd, and

otherwise, the sequence ends on block k+1. That is, bi = i for i = 1, 2, …

k−1, bi = k+1 for i = k+1, k+3, … and bi = k for i = k, k + 2, …. How

many blocks does LIFO evict? After the first k requests (which are

considered to be cache misses), the cache is filled with blocks 1, 2, … , k.

The (k + 1)st request, which is for block k + 1, causes block k to be

evicted. The (k + 2)nd request, which is for block k, forces block k + 1

to be evicted, since that block was just placed into the cache. This

behavior continues, alternately evicting blocks k and k+1 for the

remaining requests. LIFO, therefore, suffers a cache miss on every one

of the n requests.

The optimal offline algorithm knows the entire sequence of requests

in advance. Upon the first request of block k + 1, it just evicts any block

except block k, and then it never evicts another block. Thus, the optimal

offline algorithm evicts only once. Since the first k requests are

considered cache misses, the total number of cache misses is k + 1. The

competitive ratio, therefore, is n/(k + 1), or Ω(n/k).

For the upper bound, observe that on any input of size n, any

caching algorithm incurs at most n cache misses. Because the input

contains at least k distinct blocks, any caching algorithm, including the

optimal offline algorithm, must incur at least k cache misses. Therefore,

LIFO has a competitive ratio of O(n/k).
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▪

We call such a competitive ratio unbounded, because it grows with

the input size. Exercise 27.3-2 asks you to show that LFU also has an

unbounded competitive ratio.

FIFO and LRU have a much better competitive ratio of Θ(k). There

is a big difference between competitive ratios of Θ(n/k) and Θ(k). The

cache size k is independent of the input sequence and does not grow as

more requests arrive over time. A competitive ratio that depends on n,

on the other hand, does grow with the size of the input sequence and

thus can get quite large. It is preferable to use an algorithm with a

competitive ratio that does not grow with the input sequence’s size,

when possible.

We now show that LRU has a competitive ratio of Θ(k), first

showing the upper bound.

Theorem 27.3

LRU has a competitive ratio of O(k) for the online caching problem

with n requests and a cache of size k.

Proof      To analyze LRU, we will divide the sequence of requests into

epochs. Epoch 1 begins with the first request. Epoch i, for i > 1, begins

upon encountering the (k + 1)st distinct request since the beginning of

epoch i − 1. Consider the following example of requests with k = 3:

The first k = 3 distinct requests are for blocks 1, 2 and 5, so epoch 2

begins with the first request for block 4. In epoch 2, the first 3 distinct

requests are for blocks 4, 1, and 2. Requests for these blocks recur until

the request for block 3, and with this request epoch 3 begins. Thus, this

example has four epochs:

Now we consider the behavior of LRU. In each epoch, the first time

a request for a particular block appears, it may cause a cache miss, but

subsequent requests for that block within the epoch cannot cause a

cache miss, since the block is now one of the k most recently used. For
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example, in epoch 2, the first request for block 4 causes a cache miss,

but the subsequent requests for block 4 do not. (Exercise 27.3-1 asks

you to show the contents of the cache after each request.) In epoch 3,

requests for blocks 3 and 5 cause cache misses, but the request for block

4 does not, because it was recently accessed in epoch 2. Since only the

first request for a block within an epoch can cause a cache miss and the

cache holds k blocks, each epoch incurs at most k cache misses.

Now consider the behavior of the optimal algorithm. The first

request in each epoch must cause a cache miss, even for an optimal

algorithm. The miss occurs because, by the definition of an epoch, there

must have been k other blocks accessed since the last access to this

block.

Since, for each epoch, the optimal algorithm incurs at least one miss

and LRU incurs at most k, the competitive ratio is at most k/1 = O(k).

▪

Exercise 27.3-3 asks you to show that FIFO also has a competitive

ratio of O(k).

We could show lower bounds of Ω(k) on LRU and FIFO, but in fact,

we can make a much stronger statement: any deterministic online

caching algorithm must have a competitive ratio of Ω(k). The proof

relies on an adversary who knows the online algorithm being used and

can tailor the future requests to cause the online algorithm to incur

more cache misses than the optimal offline algorithm.

Consider a scenario in which the cache has size k and the set of

possible blocks to request is {1, 2, … , k + 1}. The first k requests are

for blocks 1, 2, … , k, so that both the adversary and the deterministic

online algorithm place these blocks into the cache. The next request is

for block k + 1. In order to make room in the cache for block k + 1, the

online algorithm evicts some block b1 from the cache. The adversary,

knowing that the online algorithm has just evicted block b1, makes the

next request be for b1, so that the online algorithm must evict some

other block b2 to clear room in the cache for b1. As you might have

guessed, the adversary makes the next request be for block b2, so that

the online algorithm evicts some other block b3 to make room for b2.
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The online algorithm and the adversary continue in this manner. The

online algorithm incurs a cache miss on every request and therefore

incurs n cache misses over the n requests.

Now let’s consider an optimal offline algorithm, which knows the

future. As discussed in Section 15.4, this algorithm is known as furthest-

in-future, and it always evicts the block whose next request is furthest in

the future. Since there are only k + 1 unique blocks, when furthest-in-

future evicts a block, we know that it will not be accessed during at least

the next k requests. Thus, after the first k cache misses, the optimal

algorithm incurs a cache miss at most once every k requests. Therefore,

the number of cache misses over n requests is at most k + n/k.

Since the deterministic online algorithm incurs n cache misses and

the optimal offline algorithm incurs at most k + n/k cache misses, the

competitive ratio is at least

For n ≥ k2, the above expression is at least

Thus, for sufficiently long request sequences, we have shown the

following:

Theorem 27.4

Any deterministic online algorithm for caching with a cache size of k

has competitive ratio Ω(k).

▪

Although we can analyze the common caching strategies from the

point of view of competitive analysis, the results are somewhat

unsatisfying. Yes, we can distinguish between algorithms with a

competitive ratio of Θ(k) and those with unbounded competitive ratios.

In the end, however, all of these competitive ratios are rather high. The

online algorithms we have seen so far are deterministic, and it is this

property that the adversary is able to exploit.
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27.3.2    Randomized caching algorithms

If we don’t limit ourselves to deterministic online algorithms, we can use

randomization to develop an online caching algorithm with a

significantly smaller competitive ratio. Before describing the algorithm,

let’s discuss randomization in online algorithms in general. Recall that

we analyze online algorithms with respect to an adversary who knows

the online algorithm and can design requests knowing the decisions

made by the online algorithm. With randomization, we must ask

whether the adversary also knows the random choices made by the

online algorithm. An adversary who does not know the random choices

is oblivious, and an adversary who knows the random choices is

nonoblivious. Ideally, we prefer to design algorithms against a

nonoblivious adversary, as this adversary is stronger than an oblivious

one. Unfortunately, a nonoblivious adversary mitigates much of the

power of randomness, as an adversary who knows the outcome of

random choices typically can act as if the online algorithm is

deterministic. The oblivious adversary, on the other hand, does not

know the random choices of the online algorithm, and that is the

adversary we typically use.

As a simple illustration of the difference between an oblivious and

nonoblivious adversary, imagine that you are flipping a fair coin n times,

and the adversary wants to know how many heads you flipped. A

nonoblivious adversary knows, after each flip, whether the coin came up

heads or tails, and hence knows how many heads you flipped. An

oblivious adversary, on the other hand, knows only that you are flipping

a fair coin n times. The oblivious adversary, therefore, can reason that

the number of heads follows a binomial distribution, so that the

expected number of heads is n/2 (by equation (C.41) on page 1199) and

the variance is n/4 (by equation (C.44) on page 1200). But the oblivious

adversary has no way of knowing exactly how many heads you actually

flipped.

Let’s return to caching. We’ll start with a deterministic algorithm

and then randomize it. The algorithm we’ll use is an approximation of

LRU called MARKING. Rather than “least recently used,” think of

MARKING as simply “recently used.” MARKING maintains a 1-bit
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attribute mark for each block in the cache. Initially, all blocks in the

cache are unmarked. When a block is requested, if it is already in the

cache, it is marked. If the request is a cache miss, MARKING checks to

see whether there are any unmarked blocks in the cache. If all blocks are

marked, then they are all changed to unmarked. Now, regardless of

whether all blocks in the cache were marked when the request occurred,

there is at least one unmarked block in the cache, and so an arbitrary

unmarked block is evicted, and the requested block is placed into the

cache and marked.

How should the block to evict from among the unmarked blocks in

the cache be chosen? The procedure RANDOMIZED-MARKING on

the next page shows the process when the block is chosen randomly. The

procedure takes as input a block b being requested.

RANDOMIZED-MARKING(b)

1if block b resides in the cache,

2 b.mark = 1

3else

4 if all blocks b′ in the cache have b′.mark = 1

5 unmark all blocks b′ in the cache, setting b′.mark = 0

6 select an unmarked block u with u.mark = 0 uniformly at random

7 evict block u

8 place block b into the cache

9 b.mark = 1

For the purpose of analysis, we say that a new epoch begins

immediately after each time line 5 executes. An epoch starts with no

marked blocks in the cache. The first time a block is requested during an

epoch, the number of marked blocks increases by 1, and any subsequent

requests to that block do not change the number of marked blocks.

Therefore, the number of marked blocks monotonically increases within

an epoch. Under this view, epochs are the same as in the proof of

Theorem 27.3: with a cache that holds k blocks, an epoch comprises

requests for k distinct blocks (possibly fewer for the final epoch), and

the next epoch begins upon a request for a block not in those k.
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Because we are going to analyze a randomized algorithm, we will

compute the expected competitive ratio. Recall that for an input I, we

denote the solution value of an online algorithm A by A(I) and the

solution value of an optimal algorithm F by F(I). Online algorithm A

has an expected competitive ratio c if for all inputs I, we have

where the expectation is taken over the random choices made by A.

Although the deterministic MARKING algorithm has a competitive

ratio of Θ(k) (Theorem 27.4 provides the lower bound and see Exercise

27.3-4 for the upper bound), RANDOMIZED-MARKING has a much

smaller expected competitive ratio, namely O(lg k). The key to the

improved competitive ratio is that the adversary cannot always make a

request for a block that is not in the cache, since an oblivious adversary

does not know which blocks are in the cache.

Theorem 27.5

RANDOMIZED-MARKING has an expected competitive ratio of

O(lg k) for the online caching problem with n requests and a cache of

size k, against an oblivious adversary.

Before proving Theorem 27.5, we prove a basic probabilistic fact.

Lemma 27.6

Suppose that a bag contains x + y balls: x − 1 blue balls, y white balls,

and 1 red ball. You repeatedly choose a ball at random and remove it

from the bag until you have chosen a total of m balls that are either blue

or red, where m ≤ x. You set aside each white ball you choose. Then, one

of the balls chosen is the red ball with probability m/x.

Proof   Choosing a white ball does not affect how many blue or red balls

are chosen in any way. Therefore, we can continue the analysis as if

there were no white balls and the bag contains just x − 1 blue balls and

1 red ball.

Let A be the event that the red ball is not chosen, and let Ai be the

event that the ith draw does not choose the red ball. By equation (C.22)

on page 1190, we have

www.konkur.in

Telegram: @uni_k



The probability Pr{A1} that the first ball is blue equals (x − 1)/x, since

initially there are x − 1 blue balls and 1 red ball. More generally, we

have

since the ith draw is from x − i blue balls and 1 red ball. Equations

(27.13) and (27.14) give

The right-hand side of equation (27.15) is a telescoping product, similar

to the telescoping series in equation (A.12) on page 1143. The

numerator of one term equals the denominator of the next, so that

everything except the first denominator and last numerator cancel, and

we obtain Pr{A} = (x − m)/x. Since we actually want to compute Pr{Ā}

= 1 − Pr{A}, that is, the probability that the red ball is chosen, we get

Pr{Ā} = 1 − (x − m)/x = m/x.

▪

Now we can prove Theorem 27.5.

Proof      We’ll analyze RANDOMIZED-MARKING one epoch at a

time. Within epoch i, any request for a block b that is not the first

request for block b in epoch i must result in a cache hit, since after the

first request in epoch i, block b resides in the cache and is marked, so

that it cannot be evicted during the epoch. Therefore, since we are

counting cache misses, we’ll consider only the first request for each

block within each epoch, disregarding all other requests.

We can classify the requests in an epoch as either old or new. If block

b resides in the cache at the start of epoch i, each request for block b

during epoch i is an old request. Old requests in epoch i are for blocks

requested in epoch i − 1. If a request in epoch i is not old, it is a new
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request, and it is for a block not requested in epoch i − 1. All requests in

epoch 1 are new. For example, let’s look again at the request sequence in

example (27.11):

1, 2, 1, 5 4, 4, 1, 2, 4, 2 3, 4, 5 2, 2, 1, 2, 2.

Since we can disregard all requests for a block within an epoch other

than the first request, to analyze the cache behavior, we can view this

request sequence as just

1, 2, 5 4, 1, 2 3, 4, 5 2, 1.

All three requests in epoch 1 are new. In epoch 2, the requests for blocks

1 and 2 are old, but the request for block 4 is new. In epoch 3, the

request for block 4 is old, and the requests for blocks 3 and 5 are new.

Both requests in epoch 4 are new.

Within an epoch, each new request must cause a cache miss since, by

definition, the block is not already in the cache. An old request, on the

other hand, may or may not cause a cache miss. The old block is in the

cache at the beginning of the epoch, but other requests might cause it to

be evicted. Returning to our example, in epoch 2, the request for block 4

must cause a cache miss, as this request is new. The request for block 1,

which is old, may or may not cause a cache miss. If block 1 was evicted

when block 4 was requested, then a cache miss occurs and block 1 must

be brought back into the cache. If instead block 1 was not evicted when

block 4 was requested, then the request for block 1 results in a cache hit.

The request for block 2 could incur a cache miss under two scenarios.

One is if block 2 was evicted when block 4 was requested. The other is if

block 1 was evicted when block 4 was requested, and then block 2 was

evicted when block 1 was requested. We see that, within an epoch, each

ensuing old request has an increasing chance of causing a cache miss.

Because we consider only the first request for each block within an

epoch, we assume that each epoch contains exactly k requests, and each

request within an epoch is for a unique block. (The last epoch might

contain fewer than k requests. If it does, just add dummy requests to fill

it out to k requests.) In epoch i, denote the number of new requests by ri

≥ 1 (an epoch must contain at least one new request), so that the
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number of old requests is k − ri. As mentioned above, a new request

always incurs a cache miss.

Let us now focus on an arbitrary epoch i to obtain a bound on the

expected number of cache misses within that epoch. In particular, let’s

think about the jth old request within the epoch, where 1 ≤ j < k.

Denote by bij the block requested in the jth old request of epoch i, and

denote by nij and oij the number of new and old requests, respectively,

that occur within epoch i but before the jth old request. Because j − 1

old requests occur before the jth old request, we have oij = j − 1. We will

show that the probability of a cache miss upon the j th old request is

nij/(k − oij), or nij/(k − j + 1).

Start by considering the first old request, for block bi,1. What is the

probability that this request causes a cache miss? It causes a cache miss

precisely when one of the ni,1 previous requests resulted in bi,1 being

evicted. We can determine the probability that bi,1 was chosen for

eviction by using Lemma 27.6: consider the k blocks in the cache to be k

balls, with block bi,1 as the red ball, the other k − 1 blocks as the k − 1

blue balls, and no white balls. Each of the ni,1 requests chooses a block

to evict with equal probability, corresponding to drawing balls ni,1

times. Thus, we can apply Lemma 27.6 with x = k, y = 0, and m = ni,1,

deriving the probability of a cache miss upon the first old request as

ni,1/k, which equals nij/(k − j + 1) since j = 1.

In order to determine the probability of a cache miss for subsequent

old requests, we’ll need an additional observation. Let’s consider the

second old request, which is for block bi,2. This request causes a cache

miss precisely when one of the previous requests evicts bi,2. Let’s

consider two cases, based on the request for bi,1. In the first case,

suppose that the request for bi,1 did not cause an eviction, because bi,1

was already in the cache. Then, the only way that bi,2 could have been

evicted is by one of the ni,2 new requests that precedes it. What is the

probability that this eviction happens? There are ni,2 chances for bi,2 to
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be evicted, but we also know that there is one block in the cache, namely

bi,1, that is not evicted. Thus, we can again apply Lemma 27.6, but with

bi,1 as the white ball, bi,2 as the red ball, the remaining blocks as the

blue balls, and drawing balls ni,2 times. Applying Lemma 27.6, with x =

k − 1, y = 1, and m = ni,2, we find that the probability of a cache miss is

ni,2/(k − 1). In the second case, the request for bi,1 does cause an

eviction, which can happen only if one of the new requests preceding the

request for bi,1 evicts bi,1. Then, the request for bi,1 brings bi,1 back

into the cache and evicts some other block. In this case, we know that of

the new requests, one of them did not result in bi,2 being evicted, since

bi,1 was evicted. Therefore, ni,2 − 1 new requests could evict bi,2, as

could the request for bi,1, so that the number of requests that could

evict bi,2 is ni,2. Each such request evicts a block chosen from among k

− 1 blocks, since the request that resulted in evicting bi,1 did not also

cause bi,2 to be evicted. Therefore, we can apply Lemma 27.6, with x =

k − 1, y = 1, and m = ni,2, and get that the probability of a miss is

ni,2/(k − 1). In both cases the probability is the same, and it equals nij/(k

− j + 1) since j = 2.

More generally, oij old requests occur before the jth old request.

Each of these prior old requests either caused an eviction or did not.

For those that caused an eviction, it is because they were evicted by a

previous request, and for those that did not cause an eviction, it is

because they were not evicted by any previous request. In either case, we

can decrease the number of blocks that the random process is choosing

from by 1 for each old request, and thus oij requests cannot cause bij to

be evicted. Therefore, we can use Lemma 27.6 to determine the

probability that bij was evicted by a previous request, with x = k − oij, y

= oij and m = nij. Thus, we have proven our claim that the probability of

a cache miss on the jth request for an old block is nij/(k − oij), or nij/(k

− j + 1). Since nij ≤ ri (recall that ri is the number of new requests during
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epoch i), we have an upper bound of ri/(k − j + 1) on the probability

that the jth old request incurs a cache miss.

We can now compute the expected number of misses during epoch i

using indicator random variables, as introduced in Section 5.2. We

define indicator random variables

Yij = I{the jth old request in epoch i incurs a cache miss},

Zij = I{the j th new request in epoch i incurs a cache miss}.

We have Zij = 1 for j = 1, 2, … , ri, since every new request results in a

cache miss. Let Xi be the random variable denoting the number of cache

misses during epoch i, so that

and so

where Hk is the kth harmonic number.

To compute the expected total number of cache misses, we sum over

all epochs. Let p denote the number of epochs and X be the random

variable denoting the number of cache misses. Then, we have ,

so that
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To complete the analysis, we need to understand the behavior of the

optimal offline algorithm. It could make a completely different set of

decisions from those made by RANDOMIZED-MARKING, and at

any point its cache may look nothing like the cache of the randomized

algorithm. Yet, we want to relate the number of cache misses of the

optimal offline algorithm to the value in inequality (27.17), in order to

have a competitive ratio that does not depend on . Focusing on

individual epochs won’t suffice. At the beginning of any epoch, the

offline algorithm might have loaded the cache with exactly the blocks

that will be requested in that epoch. Therefore, we cannot take any one

epoch in isolation and claim that an offline algorithm must suffer any

cache misses during that epoch.

If we consider two consecutive epochs, however, we can better

analyze the optimal offline algorithm. Consider two consecutive epochs,

i −1 and i. Each contains k requests for k different blocks. (Recall our

assumption that all requests are first requests in an epoch.) Epoch i

contains ri requests for new blocks, that is, blocks that were not

requested during epoch i − 1. Therefore, the number of distinct requests

during epochs i−1 and i is exactly k+ri. No matter what the cache

contents were at the beginning of epoch i − 1, after k + ri distinct

requests, there must be at least ri cache misses. There could be more, but

there is no way to have fewer. Letting mi denote the number of cache

misses of the offline algorithm during epoch i, we have just argued that

The total number of cache misses of the offline algorithm is
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The justification m1 = r1 for the last equality follows because, by our

assumptions, the cache starts out empty and every request incurs a

cache miss in the first epoch, even for the optimal offline adversary.

To conclude the analysis, because we have an upper bound of 

 on the expected number of cache misses for RANDOMIZED-

MARKING and a lower bound of  on the number of cache

misses for the optimal offline algorithm, the expected competitive ratio

is at most

▪

Exercises

27.3-1

For the cache sequence (27.10), show the contents of the cache after

each request and count the number of cache misses. How many misses

does each epoch incur?

27.3-2

Show that LFU has a competitive ratio of Θ(n/k) for the online caching

problem with n requests and a cache of size k.

27.3-3
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Show that FIFO has a competitive ratio of O(k) for the online caching

problem with n requests and a cache of size k.

27.3-4

Show that the deterministic MARKING algorithm has a competitive

ratio of O(k) for the online caching problem with n requests and a cache

of size k.

27.3-5

Theorem 27.4 shows that any deterministic online algorithm for caching

has a competitive ratio of Ω(k), where k is the cache size. One way in

which an algorithm might be able to perform better is to have some

ability to know what the next few requests will be. We say that an

algorithm is l-lookahead if it has the ability to look ahead at the next l

requests. Prove that for every constant l ≥ 0 and every cache size k ≥1,

every deterministic l-lookahead algorithm has competitive ratio Ω(k).

Problems

27-1     Cow-path problem

The Appalachian Trail (AT) is a marked hiking trail in the eastern

United States extending between Springer Mountain in Georgia and

Mount Katahdin in Maine. The trail is about 2,190 miles long. You

decide that you are going to hike the AT from Georgia to Maine and

back. You plan to learn more about algorithms while on the trail, and

so you bring along your copy of Introduction to Algorithms in your

backpack.2 You have already read through this chapter before starting

out. Because the beauty of the trail distracts you, you forget about

reading this book until you have reached Maine and hiked halfway back

to Georgia. At that point, you decide that you have already seen the

trail and want to continue reading the rest of the book, starting with

Chapter 28. Unfortunately, you find that the book is no longer in your

pack. You must have left it somewhere along the trail, but you don’t

know where. It could be anywhere between Georgia and Maine. You

want to find the book, but now that you have learned something about
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online algorithms, you want your algorithm for finding it to have a good

competitive ratio. That is, no matter where the book is, if its distance

from you is x miles away, you would like to be sure that you do not walk

more than cx miles to find it, for some constant c. You do not know x,

though you may assume that x ≥ 1.3

What algorithm should you use, and what constant c can you prove

bounds the total distance cx that you would have to walk? Your

algorithm should work for a trail of any length, not just the 2,190-mile-

long AT.

27-2     Online scheduling to minimize average completion time

Problem 15-2 discusses scheduling to minimize average completion time

on one machine, without release times and preemption and with release

times and preemption. Now you will develop an online algorithm for

nonpreemptively scheduling a set of tasks with release times. Suppose

you are given a set S = {a1, a2, … , an} of tasks, where task ai has

release time  ri, before which it cannot start, and requires pi units of

processing time to complete once it has started. You have one computer

on which to run the tasks. Tasks cannot be preempted, which is to say

that once started, a task must run to completion without interruption.

(See Problem 15-2 on page 446 for a more detailed description of this

problem.) Given a schedule, let Ci be the completion time of task ai, that

is, the time at which task ai completes processing. Your goal is to find a

schedule that minimizes the average completion time, that is, to

minimize .

In the online version of this problem, you learn about task i only

when it arrives at its release time ri, and at that point, you know its

processing time pi. The offline version of this problem is NP-hard (see

Chapter 34), but you will develop a 2-competitive online algorithm.

a. Show that, if there are release times, scheduling by shortest processing

time (when the machine becomes idle, start the already released task

with the smallest processing time that has not yet run) is not d-

competitive for any constant d.
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In order to develop an online algorithm, consider the preemptive

version of this problem, which is discussed in Problem 15-2(b). One way

to schedule is to run the tasks according to the shortest remaining

processing time (SRPT) order. That is, at any point, the machine is

running the available task with the smallest amount of remaining

processing time.

b. Explain how to run SRPT as an online algorithm.

c. Suppose that you run SRPT and obtain completion times .

Show that

where the  are the completion times in an optimal nonpreemptive

schedule.

Consider the (offline) algorithm COMPLETION-TIME-SCHEDULE.

COMPLETION-TIME-SCHEDULE(S)

1 compute an optimal schedule for the preemptive version of the

problem

2 renumber the tasks so that the completion times in the optimal

preemptive schedule are ordered by their completion times 

 in SRPT order

3 greedily schedule the tasks nonpreemptively in the renumbered

order a1, … , an

4 let C1, … , Cn be the completion times of renumbered tasks a1, … ,

an in this nonpreemptive schedule

5 return C1, … , Cn

d. Prove that  for i = 1, … , n.

e. Prove that  for i = 1, … , n.

f. Algorithm COMPLETION-TIME-SCHEDULE is an offline

algorithm. Explain how to modify it to produce an online algorithm.
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g. Combine parts (c)–(f) to show that the online version of

COMPLETION-TIME-SCHEDULE is 2-competitive.

Chapter notes

Online algorithms are widely used in many domains. Some good

overviews include the textbook by Borodin and El-Yaniv [68], the

collection of surveys edited by Fiat and Woeginger [142], and the survey

by Albers [14].

The move-to-front heuristic from Section 27.2 was analyzed by

Sleator and Tarjan [416, 417] as part of their early work on amortized

analysis. This rule works quite well in practice.

Competitive analysis of online caching also originated with Sleator

and Tarjan [417]. The randomized marking algorithm was proposed

and analyzed by Fiat et al. [141]. Young [464] surveys online caching

and paging algorithms, and Buchbinder and Naor [76] survey primal-

dual online algorithms.

Specific types of online algorithms are described using other names.

Dynamic graph algorithms are online algorithms on graphs, where at

each step a vertex or edge undergoes modification. Typically a vertex or

edge is either inserted or deleted, or some associated property, such as

edge weight, changes. Some graph problems need to be solved again

after each change to the graph, and a good dynamic graph algorithm

will not need to solve from scratch. For example, edges are inserted and

deleted, and after each change to the graph, the minimum spanning tree

is recomputed. Exercise 21.2-8 asks such a question. Similar questions

can be asked for other graph algorithms, such as shortest paths,

connectivity, or matching. The first paper in this field is credited to Even

and Shiloach [138], who study how to maintain a shortest-path tree as

edges are being deleted from a graph. Since then hundreds of papers

have been published. Demetrescu et al. [110] survey early developments

in dynamic graph algorithms.

For massive data sets, the input data might be too large to store.

Streaming algorithms model this situation by requiring the memory

used by an algorithm to be significantly smaller than the input size. For
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example, you may have a graph with n vertices and m edges with m ≫ n,

but the memory allowed may be only O(n). Or you may have n numbers,

but the memory allowed may only be O(lg n) or . A streaming

algorithm is measured by the number of passes made over the data in

addition to the running time of the algorithm. McGregor [322] surveys

streaming algorithms for graphs and Muthukrishnan [341] surveys

general streaming algorithms.

1 The path-compression heuristic in Section 19.3 resembles MOVE-TO-FRONT, although it

would be more accurately expressed as “move-to-next-to-front.” Unlike MOVE-TO-FRONT in

a doubly linked list, path compression can relocate multiple elements to become “next-to-front.”

2 This book is heavy. We do not recommend that you carry it on a long hike.

3 In case you’re wondering what this problem has to do with cows, some papers about it frame

the problem as a cow looking for a field in which to graze.
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28        Matrix Operations

Because operations on matrices lie at the heart of scientific computing,

efficient algorithms for working with matrices have many practical

applications. This chapter focuses on how to multiply matrices and solve

sets of simultaneous linear equations. Appendix D reviews the basics of

matrices.

Section 28.1 shows how to solve a set of linear equations using LUP

decompositions. Then, Section 28.2 explores the close relationship

between multiplying and inverting matrices. Finally, Section 28.3

discusses the important class of symmetric positive-definite matrices

and shows how to use them to find a least-squares solution to an

overdetermined set of linear equations.

One important issue that arises in practice is numerical stability.

Because actual computers have limits to how precisely they can

represent floating-point numbers, round-off errors in numerical

computations may become amplified over the course of a computation,

leading to incorrect results. Such computations are called numerically

unstable. Although we’ll briefly consider numerical stability on

occasion, we won’t focus on it in this chapter. We refer you to the

excellent book by Higham [216] for a thorough discussion of stability

issues.

28.1    Solving systems of linear equations
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Numerous applications need to solve sets of simultaneous linear

equations. A linear system can be cast as a matrix equation in which

each matrix or vector element belongs to a field, typically the real

numbers ℝ. This section discusses how to solve a system of linear

equations using a method called LUP decomposition.

The process starts with a set of linear equations in n unknowns x1,

x2, … , xn:

A solution to the equations (28.1) is a set of values for x1, x2, … , xn

that satisfy all of the equations simultaneously. In this section, we treat

only the case in which there are exactly n equations in n unknowns.

Next, rewrite equations (28.1) as the matrix-vector equation

or, equivalently, letting A = (aij), x = (xi), and b = (bi), as

If A is nonsingular, it possesses an inverse A−1, and

is the solution vector. We can prove that x is the unique solution to

equation (28.2) as follows. If there are two solutions, x and x′, then Ax

= Ax′ = b and, letting I denote an identity matrix,

x = Ix

= (A−1A)x

= A−1(Ax)

=
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A−1(Ax′)
= (A−1A)x′
= Ix′
= x′.

This section focuses on the case in which A is nonsingular or,

equivalently (by Theorem D.1 on page 1220), the rank of A equals the

number n of unknowns. There are other possibilities, however, which

merit a brief discussion. If the number of equations is less than the

number n of unknowns—or, more generally, if the rank of A is less than

n—then the system is underdetermined. An underdetermined system

typically has infinitely many solutions, although it may have no

solutions at all if the equations are inconsistent. If the number of

equations exceeds the number n of unknowns, the system is

overdetermined, and there may not exist any solutions. Section 28.3

addresses the important problem of finding good approximate solutions

to overdetermined systems of linear equations.

Let’s return to the problem of solving the system Ax = b of n

equations in n unknowns. One option is to compute A−1 and then,

using equation (28.3), multiply b by A−1, yielding x = A−1b. This

approach suffers in practice from numerical instability. Fortunately,

another approach—LUP decomposition—is numerically stable and has

the further advantage of being faster in practice.

Overview of LUP decomposition

The idea behind LUP decomposition is to find three n × n matrices L,

U, and P such that

where

L is a unit lower-triangular matrix,

U is an upper-triangular matrix, and

P is a permutation matrix.
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We call matrices L, U, and P satisfying equation (28.4) an LUP

decomposition of the matrix A. We’ll show that every nonsingular matrix

A possesses such a decomposition.

Computing an LUP decomposition for the matrix A has the

advantage that linear systems can be efficiently solved when they are

triangular, as is the case for both matrices L and U. If you have an LUP

decomposition for A, you can solve equation (28.2), Ax = b, by solving

only triangular linear systems, as follows. Multiply both sides of Ax = b

by P, yielding the equivalent equation PAx = Pb. By Exercise D.1-4 on

page 1219, multiplying both sides by a permutation matrix amounts to

permuting the equations (28.1). By the decomposition (28.4),

substituting LU for PA gives

LUx = Pb.

You can now solve this equation by solving two triangular linear

systems. Define y = Ux, where x is the desired solution vector. First,

solve the lower-triangular system

for the unknown vector y by a method called “forward substitution.”

Having solved for y, solve the upper-triangular system

for the unknown x by a method called “back substitution.” Why does

this process solve Ax = b? Because the permutation matrix P is

invertible (see Exercise D.2-3 on page 1223), multiplying both sides of

equation (28.4) by P −1 gives P−1PA = P−1LU, so that

Hence, the vector x that satisfies Ux = y is the solution to Ax = b:

Ax = P−1LUx (by equation (28.7))

= P−1Ly (by equation (28.6))

= P−1Pb (by equation (28.5))

= b.
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The next step is to show how forward and back substitution work

and then attack the problem of computing the LUP decomposition

itself.

Forward and back substitution

Forward substitution can solve the lower-triangular system (28.5) in

Θ(n2) time, given L, P, and b. An array π[1 : n] provides a more compact

format to represent the permutation P than an n × n matrix that is

mostly 0s. For i = 1, 2, … , n, the entry π[i] indicates that Pi,π[i] = 1 and

Pij = 0 for j ≠ π[i]. Thus, PA has aπ[i],j in row i and column j, and Pb has

bπ[i] as its ith element. Since L is unit lower-triangular, the matrix

equation Ly = Pb is equivalent to the n equations

   y1 = bπ[1],

l21y1 + y2 = bπ[2],

l31y1 + l32y2 + y3 = bπ[3],

⋮

ln1y1 + ln2y2 + ln3y3 + ⋯ + yn = bπ[n].

The first equation gives y1 = bπ[1] directly. Knowing the value of y1,

you can substitute it into the second equation, yielding

y2 = bπ[2] − l21y1.

Next, you can substitute both y1 and y2 into the third equation,

obtaining

y3 = bπ[3] − (l31y1 + l32y2).

In general, you substitute y1, y2, … , yi−1 “forward” into the ith

equation to solve for yi:
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Once you’ve solved for y, you can solve for x in equation (28.6) using

back substitution, which is similar to forward substitution. This time,

you solve the nth equation first and work backward to the first

equation. Like forward substitution, this process runs in Θ(n2) time.

Since U is upper-triangular, the matrix equation Ux = y is equivalent to

the n equations

u11x1 + u12x2 +

⋯ +

u1,n−2xn−2 + u1,n−1xn−1 + u1nxn = y1,

u22x2 + ⋯ + u2,n−2xn−2 + u2,n−1xn−1 + u2nxn = y2,

⋮

un−2,n−2xn−2

+

un−2,n−1xn−1

+

un−2,nxn = yn−2,

un−1,n−1xn−1

+

un−1,nxn = yn−1,

un,nxn = yn.

Thus, you can solve for xn, xn−1, … , x1 successively as follows:

xn = yn/un,n,

xn−1 = (yn−1 − un−1,nxn)/un−1,n−1,

xn−2 = (yn−2 − (un−2,n−1xn−1 + un−2,nxn))/un−2,n−2,

⋮

or, in general,

Given P, L, U, and b, the procedure LUP-SOLVE on the next page

solves for x by combining forward and back substitution. The

permutation matrix P is represented by the array π. The procedure first

solves for y using forward substitution in lines 2–3, and then it solves for

x using backward substitution in lines 4–5. Since the summation within
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each of the for loops includes an implicit loop, the running time is

Θ(n2).

As an example of these methods, consider the system of linear

equations defined by Ax = b, where

LUP-SOLVE(L, U, π, b, n)

1 let x and y be new vectors of length n

2 for i = 1 to n

3

4 for i = n downto 1

5

6 return x

and we want to solve for the unknown x. The LUP decomposition is

(You might want to verify that PA = LU.) Using forward substitution,

solve Ly = Pb for y:

obtaining

by computing first y1, then y2, and finally y3. Then, using back

substitution, solve Ux = y for x:
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thereby obtaining the desired answer

by computing first x3, then x2, and finally x1.

Computing an LU decomposition

Given an LUP decomposition for a nonsingular matrix A, you can use

forward and back substitution to solve the system Ax = b of linear

equations. Now let’s see how to efficiently compute an LUP

decomposition for A. We start with the simpler case in which A is an n ×

n nonsingular matrix and P is absent (or, equivalently, P = In, the n × n

identity matrix), so that A = LU. We call the two matrices L and U an

LU decomposition of A.

To create an LU decomposition, we’ll use a process known as

Gaussian elimination. Start by subtracting multiples of the first equation

from the other equations in order to remove the first variable from those

equations. Then subtract multiples of the second equation from the

third and subsequent equations so that now the first and second

variables are removed from them. Continue this process until the system

that remains has an upper-triangular form—this is the matrix U. The

matrix L comprises the row multipliers that cause variables to be

eliminated.

To implement this strategy, let’s start with a recursive formulation.

The input is an n × n nonsingular matrix A. If n = 1, then nothing needs

to be done: just choose L = I1 and U = A. For n > 1, break A into four

parts:
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where v = (a21, a31, … , an1) is a column (n−1)-vector, wT = (a12, a13,

… , a1n)T is a row (n − 1)-vector, and A′ is an (n − 1) × (n − 1) matrix.

Then, using matrix algebra (verify the equations by simply multiplying

through), factor A as

The 0s in the first and second matrices of equation (28.9) are row and

column (n − 1)-vectors, respectively. The term vwT/a11 is an (n − 1) × (n

− 1) matrix formed by taking the outer product of v and w and dividing

each element of the result by a11. Thus it conforms in size to the matrix

A′ from which it is subtracted. The resulting (n − 1) × (n − 1) matrix

is called the Schur complement of A with respect to a11.

We claim that if A is nonsingular, then the Schur complement is

nonsingular, too. Why? Suppose that the Schur complement, which is (n

− 1) × (n − 1), is singular. Then by Theorem D.1, it has row rank strictly

less than n − 1. Because the bottom n − 1 entries in the first column of

the matrix

are all 0, the bottom n − 1 rows of this matrix must have row rank

strictly less than n − 1. The row rank of the entire matrix, therefore, is

strictly less than n. Applying Exercise D.2-8 on page 1223 to equation

(28.9), A has rank strictly less than n, and from Theorem D.1, we derive

the contradiction that A is singular.

Because the Schur complement is nonsingular, it, too, has an LU

decomposition, which we can find recursively. Let’s say that

A′ − vwT/a11 = L′U′,

www.konkur.in

Telegram: @uni_k



where L′ is unit lower-triangular and U′ is upper-triangular. The LU

decomposition of A is then A = LU, with

as shown by

Because L′ is unit lower-triangular, so is L, and because U′ is upper-

triangular, so is U.

Of course, if a11 = 0, this method doesn’t work, because it divides by

0. It also doesn’t work if the upper leftmost entry of the Schur

complement A′ − vwT/a11 is 0, since the next step of the recursion will

divide by it. The denominators in each step of LU decomposition are

called pivots, and they occupy the diagonal elements of the matrix U.

The permutation matrix P included in LUP decomposition provides a

way to avoid dividing by 0, as we’ll see below. Using permutations to

avoid division by 0 (or by small numbers, which can contribute to

numerical instability), is called pivoting.

An important class of matrices for which LU decomposition always

works correctly is the class of symmetric positive-definite matrices. Such

matrices require no pivoting to avoid dividing by 0 in the recursive

strategy outlined above. We will prove this result, as well as several

others, in Section 28.3.

The pseudocode in the procedure LU-DECOMPOSITION follows

the recursive strategy, except that an iteration loop replaces the

recursion. (This transformation is a standard optimization for a “tail-

recursive” procedure—one whose last operation is a recursive call to

itself. See Problem 7-5 on page 202.) The procedure initializes the
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matrix U with 0s below the diagonal and matrix L with 1s on its

diagonal and 0s above the diagonal. Each iteration works on a square

submatrix, using its upper leftmost element as the pivot to compute the

v and w vectors and the Schur complement, which becomes the square

submatrix worked on by the next iteration.

LU-DECOMPOSITION(A, n)

  1let L and U be new n × n matrices

  2initialize U with 0s below the diagonal

  3initialize L with 1s on the diagonal and 0s above the diagonal

  4for k = 1 to n

  5 ukk = akk

  6 for i = k + 1 to n

  7 lik = aik/akk // aik holds vi

  8 uki = aki // aki holds wi

  9 for i = k + 1 to n // compute the Schur complement …

10 for j = k + 1 to n

11 aij = aij − likukj // … and store it back into A

12return L and U

Each recursive step in the description above takes place in one

iteration of the outer for loop of lines 4–11. Within this loop, line 5

determines the pivot to be ukk = akk. The for loop in lines 6–8 (which

does not execute when k = n) uses the v and w vectors to update L and

U. Line 7 determines the below-diagonal elements of L, storing vi/akk

in lik, and line 8 computes the above-diagonal elements of U, storing wi

in uki. Finally, lines 9–11 compute the elements of the Schur

complement and store them back into the matrix A. (There is no need

to divide by akk in line 11 because that already happened when line 7

computed lik.) Because line 11 is triply nested, LU-DECOMPOSITION

runs in Θ(n3) time.

Figure 28.1 illustrates the operation of LU-DECOMPOSITION. It

shows a standard optimization of the procedure that stores the
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significant elements of L and U in place in the matrix A. Each element

aij corresponds to either lij (if i > j) or uij (if i ≤ j), so that the matrix A

holds both L and U when the procedure terminates. To obtain the

pseudocode for this optimization from the pseudocode for the LU-

DECOMPOSITION procedure, just replace each reference to l or u by

a. You can verify that this transformation preserves correctness.

Figure 28.1 The operation of LU-DECOMPOSITION. (a) The matrix A. (b) The result of the

first iteration of the outer for loop of lines 4–11. The element a11 = 2 highlighted in blue is the

pivot, the tan column is v/a11, and the tan row is wT. The elements of U computed thus far are

above the horizontal line, and the elements of L are to the left of the vertical line. The Schur

complement matrix A′ − vwT/a11 occupies the lower right. (c) The result of the next iteration of

the outer for loop, on the Schur complement matrix from part (b). The element a22 = 4

highlighted in blue is the pivot, and the tan column and row are v/a22 and wT (in the

partitioning of the Schur complement), respectively. Lines divide the matrix into the elements of

U computed so far (above), the elements of L computed so far (left), and the new Schur

complement (lower right). (d) After the next iteration, the matrix A is factored. The element 3 in

the new Schur complement becomes part of U when the recursion terminates.) (e) The

factorization A = LU.

Computing an LUP decomposition

If the diagonal of the matrix given to LU-DECOMPOSITION contains

any 0s, then the procedure will attempt to divide by 0, which would

cause disaster. Even if the diagonal contains no 0s, but does have

numbers with small absolute values, dividing by such numbers can cause
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numerical instabilities. Therefore, LUP decomposition pivots on entries

with the largest absolute values that it can find.

In LUP decomposition, the input is an n × n nonsingular matrix A,

with a goal of finding a permutation matrix P, a unit lower-triangular

matrix L, and an upper-triangular matrix U such that PA = LU. Before

partitioning the matrix A, as LU decomposition does, LUP

decomposition moves a nonzero element, say ak1, from somewhere in

the first column to the (1, 1) position of the matrix. For the greatest

numerical stability, LUP decomposition chooses the element in the first

column with the greatest absolute value as ak1. (The first column

cannot contain only 0s, for then A would be singular, because its

determinant would be 0, by Theorems D.4 and D.5 on page 1221.) In

order to preserve the set of equations, LUP decomposition exchanges

row 1 with row k, which is equivalent to multiplying A by a permutation

matrix Q on the left (Exercise D.1-4 on page 1219). Thus, the analog to

equation (28.8) expresses QA as

where v = (a21, a31, … , an1), except that a11 replaces ak1; wT = (ak2,

ak3, … , akn)T; and A′ is an (n − 1) × (n − 1) matrix. Since ak1 ≠ 0, the

analog to equation (28.9) guarantees no division by 0:

Just as in LU decomposition, if A is nonsingular, then the Schur

complement A′ − vwT/ak1 is nonsingular, too. Therefore, you can

recursively find an LUP decomposition for it, with unit lower-triangular

matrix L′, upper-triangular matrix U′, and permutation matrix P′, such

that

P′(A′ − vwT/ak1) = L′U′.
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Define

which is a permutation matrix, since it is the product of two

permutation matrices (Exercise D.1-4 on page 1219). This definition of

P gives

which yields the LUP decomposition. Because L′ is unit lower-

triangular, so is L, and because U′ is upper-triangular, so is U.

Notice that in this derivation, unlike the one for LU decomposition,

both the column vector v/ak1 and the Schur complement A′ − vwT/ak1

are multiplied by the permutation matrix P′. The procedure LUP-

DECOMPOSITION gives the pseudocode for LUP decomposition.

LUP-DECOMPOSITION(A, n)

  1 let π[1 : n] be a new array

  2 for i = 1 to n

  3 π[i] = i // initialize π to the identity permutation

  4 for k = 1 to n

  5 p = 0

  6 for i = k to n // find largest absolute value in column

k

  7 if |aik| > p

  8
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p = |aik|

  9 k′ = i // row number of the largest found so

far

10 if p == 0

11 error “singular matrix”

12 exchange π[k] with π[k′]
13 for i = 1 to n

14 exchange aki with

ak′i

// exchange rows k and k′

15 for i = k + 1 to n

16 aik = aik/akk

17 for j = k + 1 to n

18 aij = aij − aikakj // compute L and U in place in A

Like LU-DECOMPOSITION, the LUP-DECOMPOSITION

procedure replaces the recursion with an iteration loop. As an

improvement over a direct implementation of the recursion, the

procedure dynamically maintains the permutation matrix P as an array

π, where π[i] = j means that the ith row of P contains a 1 in column j.

The LUP-DECOMPOSITION procedure also implements the

improvement mentioned earlier, computing L and U in place in the

matrix A. Thus, when the procedure terminates,

Figure 28.2 illustrates how LUP-DECOMPOSITION factors a

matrix. Lines 2–3 initialize the array π to represent the identity

permutation. The outer for loop of lines 4–18 implements the recursion,

finding an LUP decomposition of the (n − k + 1) × (n − k + 1)

submatrix whose upper left is in row k and column k. Each time

through the outer loop, lines 5–9 determine the element ak′k with the

largest absolute value of those in the current first column (column k) of

the (n − k + 1) × (n − k + 1) submatrix that the procedure is currently

working on. If all elements in the current first column are 0, lines 10–11
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report that the matrix is singular. To pivot, line 12 exchanges π[k′] with

π[k], and lines 13–14 exchange the kth and k′th rows of A, thereby

making the pivot element akk. (The entire rows are swapped because in

the derivation of the method above, not only is A′ − vwT/ak1 multiplied

by P′, but so is v/ak1.) Finally, the Schur complement is computed by

lines 15–18 in much the same way as it is computed by lines 6–11 of LU-

DECOMPOSITION, except that here the operation is written to work

in place.

Figure 28.2 The operation of LUP-DECOMPOSITION. (a) The input matrix A with the

identity permutation of the rows in yellow on the left. The first step of the algorithm determines

that the element 5 highlighted in blue in the third row is the pivot for the first column. (b) Rows

1 and 3 are swapped and the permutation is updated. The tan column and row represent v and

wT. (c) The vector v is replaced by v/5, and the lower right of the matrix is updated with the

Schur complement. Lines divide the matrix into three regions: elements of U (above), elements

of L (left), and elements of the Schur complement (lower right). (d)–(f) The second step. (g)–(i)

The third step. No further changes occur on the fourth (final) step. (j) The LUP decomposition

PA = LU.

www.konkur.in

Telegram: @uni_k



Because of its triply nested loop structure, LUP-

DECOMPOSITION has a running time of Θ(n3), which is the same as

that of LU-DECOMPOSITION. Thus, pivoting costs at most a

constant factor in time.

Exercises

28.1-1

Solve the equation

by using forward substitution.

28.1-2

Find an LU decomposition of the matrix

28.1-3

Solve the equation

by using an LUP decomposition.

28.1-4

Describe the LUP decomposition of a diagonal matrix.

28.1-5

Describe the LUP decomposition of a permutation matrix, and prove

that it is unique.

28.1-6

Show that for all n ≥ 1, there exists a singular n × n matrix that has an

LU decomposition.
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28.1-7

In LU-DECOMPOSITION, is it necessary to perform the outermost

for loop iteration when k = n? How about in LUP-

DECOMPOSITION?

28.2    Inverting matrices

Although you can use equation (28.3) to solve a system of linear

equations by computing a matrix inverse, in practice you are better off

using more numerically stable techniques, such as LUP decomposition.

Sometimes, however, you really do need to compute a matrix inverse.

This section shows how to use LUP decomposition to compute a matrix

inverse. It also proves that matrix multiplication and computing the

inverse of a matrix are equivalently hard problems, in that (subject to

technical conditions) an algorithm for one can solve the other in the

same asymptotic running time. Thus, you can use Strassen’s algorithm

(see Section 4.2) for matrix multiplication to invert a matrix. Indeed,

Strassen’s original paper was motivated by the idea that a set of a linear

equations could be solved more quickly than by the usual method.

Computing a matrix inverse from an LUP decomposition

Suppose that you have an LUP decomposition of a matrix A in the form

of three matrices L, U, and P such that PA = LU. Using LUP-SOLVE,

you can solve an equation of the form Ax = b in Θ(n2) time. Since the

LUP decomposition depends on A but not b, you can run LUP-SOLVE

on a second set of equations of the form Ax = b′ in Θ(n2) additional

time. In general, once you have the LUP decomposition of A, you can

solve, in Θ(kn2) time, k versions of the equation Ax = b that differ only

in the vector b.

Let’s think of the equation

which defines the matrix X, the inverse of A, as a set of n distinct

equations of the form Ax = b. To be precise, let Xi denote the ith
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column of X, and recall that the unit vector ei is the ith column of In.

You can then solve equation (28.11) for X by using the LUP

decomposition for A to solve each equation

AXi = ei

separately for Xi. Once you have the LUP decomposition, you can

compute each of the n columns Xi in Θ(n2) time, and so you can

compute X from the LUP decomposition of A in Θ(n3) time. Since you

find the LUP decomposition of A in Θ(n3) time, you can compute the

inverse A−1 of a matrix A in Θ(n3) time.

Matrix multiplication and matrix inversion

Now let’s see how the theoretical speedups obtained for matrix

multiplication translate to speedups for matrix inversion. In fact, we’ll

prove something stronger: matrix inversion is equivalent to matrix

multiplication, in the following sense. If M(n) denotes the time to

multiply two n × n matrices, then a nonsingular n × n matrix can be

inverted in O(M(n)) time. Moreover, if I(n) denotes the time to invert a

nonsingular n × n matrix, then two n × n matrices can be multiplied in

O(I(n)) time. We prove these results as two separate theorems.

Theorem 28.1 (Multiplication is no harder than inversion)

If an n × n matrix can be inverted in I(n) time, where I(n) = Ω(n2) and

I(n) satisfies the regularity condition I(3n) = O(I(n)), then two n × n

matrices can be multiplied in O(I(n)) time.

Proof     Let A and B be n × n matrices. To compute their product C =

AB, define the 3n × 3n matrix D by

The inverse of D is
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and thus to compute the product AB, just take the upper right n × n

submatrix of D−1.

Constructing matrix D takes Θ(n2) time, which is O(I(n)) from the

assumption that I(n) = Ω(n2), and inverting D takes O(I(3n)) = O(I(n))

time, by the regularity condition on I(n). We thus have M(n) = O(I(n)).

▪

Note that I(n) satisfies the regularity condition whenever I(n) = Θ(nc

lgdn) for any constants c > 0 and d ≥ 0.

The proof that matrix inversion is no harder than matrix

multiplication relies on some properties of symmetric positive-definite

matrices proved in Section 28.3.

Theorem 28.2 (Inversion is no harder than multiplication)

Suppose that two n × n real matrices can be multiplied in M(n) time,

where M(n) = Ω(n2) and M(n) satisfies the following two regularity

conditions:

1. M(n + k) = O(M(n)) for any k in the range 0 ≤ k < n, and

2. M(n/2) ≤ cM(n) for some constant c < 1/2.

Then the inverse of any real nonsingular n×n matrix can be computed in

O(M(n)) time.

Proof      Let A be an n × n matrix with real-valued entries that is

nonsingular. Assume that n is an exact power of 2 (i.e., n = 2l for some

integer l); we’ll see at the end of the proof what to do if n is not an exact

power of 2.

For the moment, assume that the n × n matrix A is symmetric and

positive-definite. Partition each of A and its inverse A−1 into four n/2 ×

n/2 submatrices:
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Then, if we let

be the Schur complement of A with respect to B (we’ll see more about

this form of Schur complement in Section 28.3), we have

since AA−1 = In, as you can verify by performing the matrix

multiplication. Because A is symmetric and positive-definite, Lemmas

28.4 and 28.5 in Section 28.3 imply that B and S are both symmetric

and positive-definite. By Lemma 28.3 in Section 28.3, therefore, the

inverses B−1 and S−1 exist, and by Exercise D.2-6 on page 1223, B−1

and S−1 are symmetric, so that (B−1)T = B−1 and (S−1)T = S−1.

Therefore, to compute the submatrices

R = B−1 + B−1CTS−1CB−1,

T = −B−1CTS−1,

U = −S−1CB−1, and

V = S−1

of A−1, do the following, where all matrices mentioned are n/2 × n/2:

1. Form the submatrices B, C, CT, and D of A.

2. Recursively compute the inverse B−1 of B.

3. Compute the matrix product W = CB−1, and then compute its

transpose WT, which equals B−1CT (by Exercise D.1-2 on page

1219 and (B−1)T = B−1).
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4. Compute the matrix product X = WCT, which equals CB−1CT,

and then compute the matrix S = D − X = D − CB−1CT.

5. Recursively compute the inverse S−1 of S.

6. Compute the matrix product Y = S−1W, which equals

S−1CB−1, and then compute its transpose YT, which equals

B−1CTS−1 (by Exercise D.1-2, (B−1)T = B−1, and (S−1)T =

S−1).

7. Compute the matrix product Z = WTY, which equals

B−1CTS−1CB−1.

8. Set R = B−1 + Z.

9. Set T = −YT.

10. Set U = −Y.

11. Set V = S−1.

Thus, to invert an n×n symmetric positive-definite matrix, invert two

n/2×n/2 matrices in steps 2 and 5; perform four multiplications of n/2 ×

n/2 matrices in steps 3, 4, 6, and 7; plus incur an additional cost of

O(n2) for extracting submatrices from A, inserting submatrices into

A−1, and performing a constant number of additions, subtractions, and

transposes on n/2 × n/2 matrices. The running time is given by the

recurrence

The second line follows from the assumption that M(n) = Ω(n2) and

from the second regularity condition in the statement of the theorem,

which implies that 4M(n/2) < 2M(n). Because M(n) = Ω(n2), case 3 of
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the master theorem (Theorem 4.1) applies to the recurrence (28.15),

giving the O(M(n)) result.

It remains to prove how to obtain the same asymptotic running time

for matrix multiplication as for matrix inversion when A is invertible but

not symmetric and positive-definite. The basic idea is that for any

nonsingular matrix A, the matrix ATA is symmetric (by Exercise D.1-2)

and positive-definite (by Theorem D.6 on page 1222). The trick, then, is

to reduce the problem of inverting A to the problem of inverting ATA.

The reduction is based on the observation that when A is an n × n

nonsingular matrix, we have

A−1 = (ATA)−1AT,

since ((ATA)−1AT)A = (ATA)−1(ATA) = In and a matrix inverse is

unique. Therefore, to compute A−1, first multiply AT by A to obtain

ATA, then invert the symmetric positive-definite matrix ATA using the

above divide-and-conquer algorithm, and finally multiply the result by

AT. Each of these three steps takes O(M(n)) time, and thus any

nonsingular matrix with real entries can be inverted in O(M(n)) time.

The above proof assumed that A is an n × n matrix, where n is an

exact power of 2. If n is not an exact power of 2, then let k < n be such

that n + k is an exact power of 2, and define the (n + k) × (n + k) matrix

A′ as

Then the inverse of A′ is

Apply the method of the proof to A′ to compute the inverse of A′, and

take the first n rows and n columns of the result as the desired answer

A−1. The first regularity condition on M(n) ensures that enlarging the

matrix in this way increases the running time by at most a constant

factor.
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▪

The proof of Theorem 28.2 suggests how to solve the equation Ax =

b by using LU decomposition without pivoting, so long as A is

nonsingular. Let y = ATb. Multiply both sides of the equation Ax = b

by AT, yielding (ATA)x = ATb = y. This transformation doesn’t affect

the solution x, since AT is invertible. Because ATA is symmetric

positive-definite, it can be factored by computing an LU decomposition.

Then, use forward and back substitution to solve for x in the equation

(ATA)x = y. Although this method is theoretically correct, in practice

the procedure LUP-DECOMPOSITION works much better. LUP

decomposition requires fewer arithmetic operations by a constant

factor, and it has somewhat better numerical properties.

Exercises

28.2-1

Let M(n) be the time to multiply two n × n matrices, and let S(n) denote

the time required to square an n × n matrix. Show that multiplying and

squaring matrices have essentially the same difficulty: an M(n)-time

matrix-multiplication algorithm implies an O(M(n))-time squaring

algorithm, and an S(n)-time squaring algorithm implies an O(S(n))-time

matrix-multiplication algorithm.

28.2-2

Let M(n) be the time to multiply two n × n matrices. Show that an M(n)-

time matrix-multiplication algorithm implies an O(M(n))-time LUP-

decomposition algorithm. (The LUP decomposition your method

produces need not be the same as the result produced by the LUP-

DECOMPOSITION procedure.)

28.2-3

Let M(n) be the time to multiply two n × n boolean matrices, and let

T(n) be the time to find the transitive closure of an n × n boolean

matrix. (See Section 23.2.) Show that an M(n)-time boolean matrix-

multiplication algorithm implies an O(M(n) lg n)-time transitive-closure
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algorithm, and a T(n)-time transitive-closure algorithm implies an O(T

(n))-time boolean matrix-multiplication algorithm.

28.2-4

Does the matrix-inversion algorithm based on Theorem 28.2 work when

matrix elements are drawn from the field of integers modulo 2? Explain.

★ 28.2-5

Generalize the matrix-inversion algorithm of Theorem 28.2 to handle

matrices of complex numbers, and prove that your generalization works

correctly. (Hint: Instead of the transpose of A, use the conjugate

transpose A*, which you obtain from the transpose of A by replacing

every entry with its complex conjugate. Instead of symmetric matrices,

consider Hermitian matrices, which are matrices A such that A = A*.)

28.3    Symmetric positive-definite matrices and least-squares

approximation

Symmetric positive-definite matrices have many interesting and

desirable properties. An n × n matrix A is symmetric positive-definite if A

= AT(A is symmetric) and xTAx > 0 for all n-vectors x ≠ 0 (A is

positive-definite). Symmetric positive-definite matrices are nonsingular,

and an LU decomposition on them will not divide by 0. This section

proves these and several other important properties of symmetric

positive-definite matrices. We’ll also see an interesting application to

curve fitting by a least-squares approximation.

The first property we prove is perhaps the most basic.

Lemma 28.3

Any positive-definite matrix is nonsingular.

Proof     Suppose that a matrix A is singular. Then by Corollary D.3 on

page 1221, there exists a nonzero vector x such that Ax = 0. Hence,

xTAx = 0, and A cannot be positive-definite.

▪
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The proof that an LU decomposition on a symmetric positive-

definite matrix A won’t divide by 0 is more involved. We begin by

proving properties about certain submatrices of A. Define the kth

leading submatrix of A to be the matrix Ak consisting of the intersection

of the first k rows and first k columns of A.

Lemma 28.4

If A is a symmetric positive-definite matrix, then every leading

submatrix of A is symmetric and positive-definite.

Proof      Since A is symmetric, each leading submatrix Ak is also

symmetric. We’ll prove that Ak is positive-definite by contradiction. If

Ak is not positive-definite, then there exists a k-vector xk ≠ 0 such that 

. Let A be n × n, and

for submatrices B (which is (n−k)×k) and C (which is (n−k)×(n−k)).

Define the n-vector , where n − k 0s follow xk. Then we have

which contradicts A being positive-definite.

▪

We now turn to some essential properties of the Schur complement.

Let A be a symmetric positive-definite matrix, and let Ak be a leading k

× k submatrix of A. Partition A once again according to equation

(28.16). Equation (28.10) generalizes to define the Schur complement S

of A with respect to Ak as
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(By Lemma 28.4, Ak is symmetric and positive-definite, and therefore, 

 exists by Lemma 28.3, and S is well defined.) The earlier definition

(28.10) of the Schur complement is consistent with equation (28.17) by

letting k = 1.

The next lemma shows that the Schur-complement matrices of

symmetric positive-definite matrices are themselves symmetric and

positive-definite. We used this result in Theorem 28.2, and its corollary

will help prove that LU decomposition works for symmetric positive-

definite matrices.

Lemma 28.5 (Schur complement lemma)

If A is a symmetric positive-definite matrix and Ak is a leading k × k

submatrix of A, then the Schur complement S of A with respect to Ak is

symmetric and positive-definite.

Proof   Because A is symmetric, so is the submatrix C. By Exercise D.2-

6 on page 1223, the product  is symmetric. Since C and  are

symmetric, then by Exercise D.1-1 on page 1219, so is S.

It remains to show that S is positive-definite. Consider the partition

of A given in equation (28.16). For any nonzero vector x, we have xTAx

> 0 by the assumption that A is positive-definite. Let the subvectors y

and z consist of the first k and last n − k elements in x, respectively, and

thus they are compatible with Ak and C, respectively. Because  exists,

we have

This last equation, which you can verify by multiplying through,

amounts to “completing the square” of the quadratic form. (See

Exercise 28.3-2.)

Since xTAx > 0 holds for any nonzero x, pick any nonzero z and

then choose , which causes the first term in equation (28.18)
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to vanish, leaving

as the value of the expression. For any z ≠ 0, we therefore have zTSz =

xTAx > 0, and thus S is positive-definite.

▪

Corollary 28.6

LU decomposition of a symmetric positive-definite matrix never causes

a division by 0.

Proof     Let A be an n × n symmetric positive-definite matrix. In fact,

we’ll prove a stronger result than the statement of the corollary: every

pivot is strictly positive. The first pivot is a11. Let e1 be the length-n unit

vector ( 1 0 0 ⋯ 0 )T, so that , which is positive because e1 is

nonzero and A is positive definite. Since the first step of LU

decomposition produces the Schur complement of A with respect to A1

= (a11), Lemma 28.5 implies by induction that all pivots are positive.

▪

Least-squares approximation

One important application of symmetric positive-definite matrices arises

in fitting curves to given sets of data points. You are given a set of m

data points

(x1, y1), (x2, y2), … , (xm, ym),

where you know that the yi are subject to measurement errors. You wish

to determine a function F(x) such that the approximation errors

are small for i = 1, 2, … , m. The form of the function F depends on the

problem at hand. Let’s assume that it has the form of a linearly

weighted sum
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where the number n of summands and the specific basis functions fj are

chosen based on knowledge of the problem at hand. A common choice

is fj(x) = xj−1, which means that

F(x) = c1 + c2x + c3x2 + ⋯ + cnxn−1

is a polynomial of degree n − 1 in x. Thus, if you are given m data points

(x1, y1), (x2, y2), … , (xm, ym), you need to calculate n coefficients c1,

c2, … , cn that minimize the approximation errors η1, η2, … , ηm.

By choosing n = m, you can calculate each yi  exactly in equation

(28.19). Such a high-degree polynomial F “fits the noise” as well as the

data, however, and generally gives poor results when used to predict y

for previously unseen values of x. It is usually better to choose n

significantly smaller than m and hope that by choosing the coefficients

cj well, you can obtain a function F that finds the significant patterns in

the data points without paying undue attention to the noise. Some

theoretical principles exist for choosing n, but they are beyond the scope

of this text. In any case, once you choose a value of n that is less than m,

you end up with an overdetermined set of equations whose solution you

wish to approximate. Let’s see how to do so.

Let

denote the matrix of values of the basis functions at the given points,

that is, aij = fj(xi). Let c = (ck) denote the desired n-vector of

coefficients. Then,
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is the m-vector of “predicted values” for y. Thus,

η = Ac − y

is the m-vector of approximation errors.

To minimize approximation errors, let’s minimize the norm of the

error vector η, which gives a least-squares solution, since

Because

to minimize ∥η∥, differentiate ∥η∥2 with respect to each ck and then set

the result to 0:

The n equations (28.20) for k = 1, 2, … , n are equivalent to the single

matrix equation

(Ac − y)T A = 0

or, equivalently (using Exercise D.1-2 on page 1219), to

AT(Ac − y) = 0,

which implies
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In statistics, equation (28.21) is called the normal equation. The matrix

ATA is symmetric by Exercise D.1-2, and if A has full column rank,

then by Theorem D.6 on page 1222, ATA is positive-definite as well.

Hence, (ATA)−1 exists, and the solution to equation (28.21) is

where the matrix A+ = ((ATA)−1AT) is the pseudoinverse of the matrix

A. The pseudoinverse naturally generalizes the notion of a matrix

inverse to the case in which A is not square. (Compare equation (28.22)

as the approximate solution to Ac = y with the solution A−1b as the

exact solution to Ax = b.)

As an example of producing a least-squares fit, suppose that you

have five data points

(x1, y1) = (−1, 2),

(x2, y2) = (1, 1),

(x3, y3) = (2, 1),

(x4, y4) = (3, 0),

(x5, y5) = (5, 3),

shown as orange dots in Figure 28.3, and you want to fit these points

with a quadratic polynomial

F(x) = c1 + c2x + c3x2.

Start with the matrix of basis-function values

whose pseudoinverse is
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Figure 28.3 The least-squares fit of a quadratic polynomial to the set of five data points {(−1, 2),

(1, 1), (2, 1), (3, 0), (5, 3)}. The orange dots are the data points, and the blue dots are their

estimated values predicted by the polynomial F(x) = 1.2 − 0.757x + 0.214x2, the quadratic

polynomial that minimizes the sum of the squared errors, plotted in blue. Each orange line

shows the error for one data point.

Multiplying y by A+ gives the coefficient vector

which corresponds to the quadratic polynomial

F(x) = 1.200 − 0.757x + 0.214x2

as the closest-fitting quadratic to the given data, in a least-squares sense.

As a practical matter, you would typically solve the normal equation

(28.21) by multiplying y by AT and then finding an LU decomposition

of ATA. If A has full rank, the matrix ATA is guaranteed to be

nonsingular, because it is symmetric and positive-definite. (See Exercise

D.1-2 and Theorem D.6.)
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Figure 28.4 A least-squares fit of a curve of the form

c1 + c2x + c3x2 + c4 sin(2πx) + c5 cos(2πx)

for the carbon-dioxide concentrations measured in Mauna Loa, Hawaii from 19901 to 2019,

where x is the number of years elapsed since 1990. This curve is the famous “Keeling curve,”

illustrating curve-fitting to nonpolynomial formulas. The sine and cosine terms allow modeling

of seasonal variations in CO2 concentrations. The red curve shows the measured CO2

concentrations. The best fit, shown in black, has the form

352.83 + 1.39x + 0.02x2 + 2.83 sin(2πx) − 0.94 cos(2πx).

We close this section with an example in Figure 28.4, illustrating that

a curve can also fit a nonpolynomial function. The curve confirms one

aspect of climate change: that carbon dioxide (CO2) concentrations

have steadily increased over a period of 29 years. Linear and quadratic

terms model the annual increase, and sine and cosine terms model

seasonal variations.

Exercises

28.3-1
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Prove that every diagonal element of a symmetric positive-definite

matrix is positive.

28.3-2

Let  be a 2 × 2 symmetric positive-definite matrix. Prove that

its determinant ac − b2 is positive by “completing the square” in a

manner similar to that used in the proof of Lemma 28.5.

28.3-3

Prove that the maximum element in a symmetric positive-definite matrix

lies on the diagonal.

28.3-4

Prove that the determinant of each leading submatrix of a symmetric

positive-definite matrix is positive.

28.3-5

Let Ak denote the kth leading submatrix of a symmetric positive-

definite matrix A. Prove that det(Ak)/det(Ak−1) is the kth pivot during

LU decomposition, where, by convention, det(A0) = 1.

28.3-6

Find the function of the form

F(x) = c1 + c2x lg x + c3ex

that is the best least-squares fit to the data points

(1, 1), (2, 1), (3, 3), (4, 8).

28.3-7

Show that the pseudoinverse A+ satisfies the following four equations:

AA+A = A,

A+AA+ = A+,

(AA+)T = AA+,
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(A+A)T = A+A.

Problems

28-1     Tridiagonal systems of linear equations

Consider the tridiagonal matrix

a. Find an LU decomposition of A.

b. Solve the equation Ax = ( 1 1 1 1 1 )T by using forward and back

substitution.

c. Find the inverse of A.

d. Show how to solve the equation Ax = b for any n × n symmetric

positive-definite, tridiagonal matrix A and any n-vector b in O(n) time

by performing an LU decomposition. Argue that any method based

on forming A−1 is asymptotically more expensive in the worst case.

e. Show how to solve the equation Ax = b for any n × n nonsingular,

tridiagonal matrix A and any n-vector b in O(n) time by performing an

LUP decomposition.

28-2     Splines

A practical method for interpolating a set of points with a curve is to

use cubic splines. You are given a set {(xi, yi) : i = 0, 1, … , n} of n + 1

point-value pairs, where x0 < x1 < ⋯ < xn. Your goal is to fit a

piecewise-cubic curve (spline) f(x) to the points. That is, the curve f(x) is

made up of n cubic polynomials fi(x) = ai + bix + cix
2 + dix

3 for i = 0,

1, … , n − 1, where if x falls in the range xi ≤ x ≤ xi+1, then the value of

the curve is given by f(x) = fi(x − xi). The points xi at which the cubic
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polynomials are “pasted” together are called knots. For simplicity,

assume that xi = i for i = 0, 1, … , n.

To ensure continuity of f(x), require that

f(xi) = fi(0) = yi,

f(xi+1) = fi(1) = yi+1

for i = 0, 1, … , n − 1. To ensure that f(x) is sufficiently smooth, also

require the first derivative to be continuous at each knot:

for i = 0, 1, … , n − 2.

a. Suppose that for i = 0, 1, … , n, in addition to the point-value pairs

{(xi, yi)}, you are also given the first derivative Di = f′(xi) at each

knot. Express each coefficient ai, bi, ci, and di in terms of the values

yi, yi+1, Di, and Di+1. (Remember that xi = i.) How quickly can you

compute the 4n coefficients from the point-value pairs and first

derivatives?

The question remains of how to choose the first derivatives of f(x) at the

knots. One method is to require the second derivatives to be continuous

at the knots:

for i = 0, 1, … , n−2. At the first and last knots, assume that 

 and . These assumptions make f(x) a

natural cubic spline.

b. Use the continuity constraints on the second derivative to show that

for i = 1, 2, … , n − 1,

c. Show that

www.konkur.in

Telegram: @uni_k



d. Rewrite equations (28.23)–(28.25) as a matrix equation involving the

vector D = (D0 D1 D2 ⋯ Dn)T of unknowns. What attributes does

the matrix in your equation have?

e. Argue that a natural cubic spline can interpolate a set of n + 1 point-

value pairs in O(n) time (see Problem 28-1).

f. Show how to determine a natural cubic spline that interpolates a set

of n + 1 points (xi, yi) satisfying x0 < x1 < ⋯ < xn, even when xi is

not necessarily equal to i. What matrix equation must your method

solve, and how quickly does your algorithm run?

Chapter notes

Many excellent texts describe numerical and scientific computation in

much greater detail than we have room for here. The following are

especially readable: George and Liu [180], Golub and Van Loan [192],

Press, Teukolsky, Vetterling, and Flannery [365, 366], and Strang [422,

423].

Golub and Van Loan [192] discuss numerical stability. They show

why det(A) is not necessarily a good indicator of the stability of a matrix

A, proposing instead to use ∥A∥∞ ∥A−1∥∞, where 

. They also address the question of how to

compute this value without actually computing A−1.

Gaussian elimination, upon which the LU and LUP decompositions

are based, was the first systematic method for solving linear systems of

equations. It was also one of the earliest numerical algorithms.

Although it was known earlier, its discovery is commonly attributed to

C. F. Gauss (1777–1855). In his famous paper [424], Strassen showed

that an n×n matrix can be inverted in O(nlg 7) time. Winograd [460]

originally proved that matrix multiplication is no harder than matrix

inversion, and the converse is due to Aho, Hopcroft, and Ullman [5].

Another important matrix decomposition is the singular value

decomposition, or SVD. The SVD factors an m × n matrix A into 
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, where Σ is an m×n matrix with nonzero values only on the

diagonal, Q1 is m×m with mutually orthonormal columns, and Q2 is n

× n, also with mutually orthonormal columns. Two vectors are

orthonormal if their inner product is 0 and each vector has a norm of 1.

The books by Strang [422, 423] and Golub and Van Loan [192] contain

good treatments of the SVD.

Strang [423] has an excellent presentation of symmetric positive-

definite matrices and of linear algebra in general.

1 The year in which Introduction to Algorithms was first published.
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29        Linear Programming

Many problems take the form of maximizing or minimizing an

objective, given limited resources and competing constraints. If you can

specify the objective as a linear function of certain variables, and if you

can specify the constraints on resources as equalities or inequalities on

those variables, then you have a linear-programming problem. Linear

programs arise in a variety of practical applications. We begin by

studying an application in electoral politics.

A political problem

Suppose that you are a politician trying to win an election. Your district

has three different types of areas—urban, suburban, and rural. These

areas have, respectively, 100,000, 200,000, and 50,000 registered voters.

Although not all the registered voters actually go to the polls, you

decide that to govern effectively, you would like at least half the

registered voters in each of the three regions to vote for you. You are

honorable and would never consider supporting policies you don’t

believe in. You realize, however, that certain issues may be more

effective in winning votes in certain places. Your primary issues are

preparing for a zombie apocalypse, equipping sharks with lasers,

building highways for flying cars, and allowing dolphins to vote.

According to your campaign staff’s research, you can estimate how

many votes you win or lose from each population segment by spending

$1,000 on advertising on each issue. This information appears in the

table of Figure 29.1. In this table, each entry indicates the number of
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thousands of either urban, suburban, or rural voters who would be won

over by spending $1,000 on advertising in support of a particular issue.

Negative entries denote votes that would be lost. Your task is to figure

out the minimum amount of money that you need to spend in order to

win 50,000 urban votes, 100,000 suburban votes, and 25,000 rural votes.

You could, by trial and error, devise a strategy that wins the required

number of votes, but the strategy you come up with might not be the

least expensive one. For example, you could devote $20,000 of

advertising to preparing for a zombie apocalypse, $0 to equipping

sharks with lasers, $4,000 to building highways for flying cars, and

$9,000 to allowing dolphins to vote. In this case, you would win (20 ·

−2) + (0 · 8) + (4 · 0) + (9 · 10) = 50 thousand urban votes, (20 · 5) + (0 ·

2) + (4 · 0) + (9 · 0) = 100 thousand suburban votes, and (20 · 3) + (0 ·

−5) + (4 · 10) + (9 · −2) = 82 thousand rural votes. You would win the

exact number of votes desired in the urban and suburban areas and

more than enough votes in the rural area. (In fact, according to your

model, in the rural area you would receive more votes than there are

voters.) In order to garner these votes, you would have paid for 20 + 0 +

4 + 9 = 33 thousand dollars of advertising.

Figure 29.1 The effects of policies on voters. Each entry describes the number of thousands of

urban, suburban, or rural voters who could be won over by spending $1,000 on advertising

support of a policy on a particular issue. Negative entries denote votes that would be lost.

It’s natural to wonder whether this strategy is the best possible. That

is, can you achieve your goals while spending less on advertising?

Additional trial and error might help you to answer this question, but a

better approach is to formulate (or model) this question mathematically.

The first step is to decide what decisions you have to make and to

introduce variables that capture these decisions. Since you have four

decisions, you introduce four decision variables:
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x1 is the number of thousands of dollars spent on advertising on

preparing for a zombie apocalypse,

x2 is the number of thousands of dollars spent on advertising on

equipping sharks with lasers,

x3 is the number of thousands of dollars spent on advertising on

building highways for flying cars, and

x4 is the number of thousands of dollars spent on advertising on

allowing dolphins to vote.

You then think about constraints, which are limits, or restrictions, on the

values that the decision variables can take. You can write the

requirement that you win at least 50,000 urban votes as

Similarly, you can write the requirements that you win at least 100,000

suburban votes and 25,000 rural votes as

and

Any setting of the variables x1, x2, x3, x4 that satisfies inequalities

(29.1)–(29.3) yields a strategy that wins a sufficient number of each type

of vote.

Finally, you think about your objective, which is the quantity that

you wish to either minimize or maximize. In order to keep costs as small

as possible, you would like to minimize the amount spent on

advertising. That is, you want to minimize the expression

Although negative advertising often occurs in political campaigns, there

is no such thing as negative-cost advertising. Consequently, you require

that
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Combining inequalities (29.1)–(29.3) and (29.5) with the objective of

minimizing (29.4) produces what is known as a “linear program.” We

can format this problem tabularly as

subject to

The solution to this linear program yields your optimal strategy.

The remainder of this chapter covers how to formulate linear

programs and is an introduction to modeling in general. Modeling

refers to the general process of converting a problem into a

mathematical form amenable to solution by an algorithm. Section 29.1

discusses briefly the algorithmic aspects of linear programming,

although it does not include the details of a linear-programming

algorithm. Throughout this book, we have seen ways to model

problems, such as by shortest paths and connectivity in a graph. When

modeling a problem as a linear program, you go through the steps used

in this political example—identifying the decision variables, specifying

the constraints, and formulating the objective function. In order to

model a problem as a linear program, the constraints and objectives

must be linear. In Section 29.2, we will see several other examples of

modeling via linear programs. Section 29.3 discusses duality, an

important concept in linear programming and other optimization

algorithms.

29.1    Linear programming formulations and algorithms

Linear programs take a particular form, which we will examine in this

section. Multiple algorithms have been developed to solve linear

programs. Some run in polynomial time, some do not, but they are all

too complicated to show here. Instead, we will give an example that
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demonstrates some ideas behind the simplex algorithm, which is

currently the most commonly deployed solution method.

General linear programs

In the general linear-programming problem, we wish to optimize a

linear function subject to a set of linear inequalities. Given a set of real

numbers a1, a2, … , an and a set of variables x1, x2, … , xn, we define a

linear function f on those variables by

If b is a real number and f is a linear function, then the equation

f(x1, x2, … , xn) = b

is a linear equality and the inequalities

f(x1, x2, … , xn) ≤ b and f(x1, x2, … , xn) ≥ b

are linear inequalities. We use the general term linear constraints to

denote either linear equalities or linear inequalities. Linear

programming does not allow strict inequalities. Formally, a linear-

programming problem is the problem of either minimizing or

maximizing a linear function subject to a finite set of linear constraints.

If minimizing, we call the linear program a minimization linear program,

and if maximizing, we call the linear program a maximization linear

program.

In order to discuss linear-programming algorithms and properties, it

will be helpful to use a standard notation for the input. By convention,

a maximization linear program takes as input n real numbers c1, c2, … ,

cn; m real numbers b1, b2, … , bm; and mn real numbers aij for i = 1, 2,

… , m and j = 1, 2, … , n.

The goal is to find n real numbers x1, x2, … , xn that
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subject to

We call expression (29.11) the objective function and the n + m

inequalities in lines (29.12) and (29.13) the constraints. The n constraints

in line (29.13) are the nonnegativity constraints. It can sometimes be

more convenient to express a linear program in a more compact form. If

we create an m × n matrix A = (aij), an m-vector b = (bi), an n-vector c

= (cj), and an n-vector x = (xj), then we can rewrite the linear program

defined in (29.11)–(29.13) as

subject to

In line (29.14), cTx is the inner product of two n-vectors. In inequality

(29.15), Ax is the m-vector that is the product of an m × n matrix and an

n-vector, and in inequality (29.16), x ≥ 0 means that each entry of the

vector x must be nonnegative. We call this representation the standard

form for a linear program, and we adopt the convention that A, b, and c

always have the dimensions given above.

The standard form above may not naturally correspond to real-life

situations you are trying to model. For example, you might have

equality constraints or variables that can take on negative values.

Exercises 29.1-6 and 29.1-7 ask you to show how to convert any linear

program into this standard form.

We now introduce terminology to describe solutions to linear

programs. We denote a particular setting of the values in a variable, say

x, by putting a bar over the variable name: x. If x satisfies all the

constraints, then it is a feasible solution, but if it fails to satisfy at least

one constraint, then it is an infeasible solution. We say that a solution x

has objective value cTx. A feasible solution x whose objective value is

maximum over all feasible solutions is an optimal solution, and we call
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its objective value cTx the optimal objective value. If a linear program

has no feasible solutions, we say that the linear program is infeasible,

and otherwise, it is feasible. The set of points that satisfy all the

constraints is the feasible region. If a linear program has some feasible

solutions but does not have a finite optimal objective value, then the

feasible region is unbounded and so is the linear program. Exercise 29.1-

5 asks you to show that a linear program can have a finite optimal

objective value even if the feasible region is unbounded.

One of the reasons for the power and popularity of linear

programming is that linear programs can, in general, be solved

efficiently. There are two classes of algorithms, known as ellipsoid

algorithms and interior-point algorithms, that solve linear programs in

polynomial time. In addition, the simplex algorithm is widely used.

Although it does not run in polynomial time in the worst case, it tends

to perform well in practice.

We will not give a detailed algorithm for linear programming, but

will discuss a few important ideas. First, we will give an example of

using a geometric procedure to solve a two-variable linear program.

Although this example does not immediately generalize to an efficient

algorithm for larger problems, it introduces some important concepts

for linear programming and for optimization in general.

A two-variable linear program

Let us first consider the following linear program with two variables:

subject to

Figure 29.2(a) graphs the constraints in the (x1, x2)-Cartesian

coordinate system. The feasible region in the two-dimensional space

(highlighted in blue in the figure) is convex.1 Conceptually, you could
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evaluate the objective function x1 + x2 at each point in the feasible

region, and then identify a point that has the maximum objective value

as an optimal solution. For this example (and for most linear

programs), however, the feasible region contains an infinite number of

points, and so to solve this linear program, you need an efficient way to

find a point that achieves the maximum objective value without

explicitly evaluating the objective function at every point in the feasible

region.

In two dimensions, you can optimize via a graphical procedure. The

set of points for which x1 + x2 = z, for any z, is a line with a slope of

−1. Plotting x1 + x2 = 0 produces the line with slope −1 through the

origin, as in Figure 29.2(b). The intersection of this line and the feasible

region is the set of feasible solutions that have an objective value of 0. In

this case, that intersection of the line with the feasible region is the

single point (0, 0). More generally, for any value z, the intersection of

the line x1 + x2 = z and the feasible region is the set of feasible

solutions that have objective value z. Figure 29.2(b) shows the lines x1 +

x2 = 0, x1 + x2 = 4, and x1 + x2 = 8. Because the feasible region in

Figure 29.2 is bounded, there must be some maximum value z for which

the intersection of the line x1 + x2 = z and the feasible region is

nonempty. Any point in the feasible region that maximizes x1 + x2 is an

optimal solution to the linear program, which in this case is the vertex

of the feasible region at x1 = 2 and x2 = 6, with objective value 8.
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Figure 29.2 (a) The linear program given in (29.18)–(29.21). Each constraint is represented by a

line and a direction. The intersection of the constraints, which is the feasible region, is

highlighted in blue. (b) The red lines show, respectively, the points for which the objective value

is 0, 4, and 8. The optimal solution to the linear program is x1 = 2 and x2 = 6 with objective

value 8.

It is no accident that an optimal solution to the linear program

occurs at a vertex of the feasible region. The maximum value of z for

which the line x1 + x2 = z intersects the feasible region must be on the

boundary of the feasible region, and thus the intersection of this line

with the boundary of the feasible region is either a single vertex or a line

segment. If the intersection is a single vertex, then there is just one

optimal solution, and it is that vertex. If the intersection is a line

segment, every point on that line segment must have the same objective

value. In particular, both endpoints of the line segment are optimal

solutions. Since each endpoint of a line segment is a vertex, there is an

optimal solution at a vertex in this case as well.

Although you cannot easily graph linear programs with more than

two variables, the same intuition holds. If you have three variables, then

each constraint corresponds to a half-space in three-dimensional space.

The intersection of these half-spaces forms the feasible region. The set

of points for which the objective function obtains a given value z is now

a plane (assuming no degenerate conditions). If all coefficients of the

objective function are nonnegative, and if the origin is a feasible

solution to the linear program, then as you move this plane away from
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the origin, in a direction normal to the objective function, you find

points of increasing objective value. (If the origin is not feasible or if

some coefficients in the objective function are negative, the intuitive

picture becomes slightly more complicated.) As in two dimensions,

because the feasible region is convex, the set of points that achieve the

optimal objective value must include a vertex of the feasible region.

Similarly, if you have n variables, each constraint defines a half-space in

n-dimensional space. We call the feasible region formed by the

intersection of these half-spaces a simplex. The objective function is

now a hyperplane and, because of convexity, an optimal solution still

occurs at a vertex of the simplex. Any algorithm for linear programming

must also identify linear programs that have no solutions, as well as

linear programs that have no finite optimal solution.

The simplex algorithm takes as input a linear program and returns an

optimal solution. It starts at some vertex of the simplex and performs a

sequence of iterations. In each iteration, it moves along an edge of the

simplex from a current vertex to a neighboring vertex whose objective

value is no smaller than that of the current vertex (and usually is larger.)

The simplex algorithm terminates when it reaches a local maximum,

which is a vertex from which all neighboring vertices have a smaller

objective value. Because the feasible region is convex and the objective

function is linear, this local optimum is actually a global optimum. In

Section 29.3, we’ll see an important concept called “duality,” which

we’ll use to prove that the solution returned by the simplex algorithm is

indeed optimal.

The simplex algorithm, when implemented carefully, often solves

general linear programs quickly in practice. With some carefully

contrived inputs, however, the simplex algorithm can require

exponential time. The first polynomial-time algorithm for linear

programming was the ellipsoid algorithm, which runs slowly in practice.

A second class of polynomial-time algorithms are known as interior-

point methods. In contrast to the simplex algorithm, which moves along

the exterior of the feasible region and maintains a feasible solution that

is a vertex of the simplex at each iteration, these algorithms move

through the interior of the feasible region. The intermediate solutions,

while feasible, are not necessarily vertices of the simplex, but the final
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solution is a vertex. For large inputs, interior-point algorithms can run

as fast as, and sometimes faster than, the simplex algorithm. The

chapter notes point you to more information about these algorithms.

If you add to a linear program the additional requirement that all

variables take on integer values, you have an integer linear program.

Exercise 34.5-3 on page 1098 asks you to show that just finding a

feasible solution to this problem is NP-hard. Since no polynomial-time

algorithms are known for any NP-hard problems, there is no known

polynomial-time algorithm for integer linear programming. In contrast,

a general linear-programming problem can be solved in polynomial

time.

Exercises

29.1-1

Consider the linear program

minimize −2x1 + 3x2

subject to

x1 + x2 = 7

x1 − 2x2 ≤ 4

x1 ≥ 0.

Give three feasible solutions to this linear program. What is the

objective value of each one?

29.1-2

Consider the following linear program, which has a nonpositivity

constraint:

minimize 2x1 + 7x2 + x3

subject to

x1 − x3 = 7

3x1 + x2 ≥ 24
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x2 ≥ 0

x3 ≤ 0.

Give three feasible solutions to this linear program. What is the

objective value of each one?

29.1-3

Show that the following linear program is infeasible:

maximize 3x1 − 2x2

subject to

x1 + x2 ≤ 2

−2x1 − 2x2 ≤ −10

x1, x2 ≥ 0.

29.1-4

Show that the following linear program is unbounded:

maximize x1 − x2

subject to

−2x1 + x2 ≤ −1

−x1 − 2x2 ≤ −2

x1, x2 ≥ 0.

29.1-5

Give an example of a linear program for which the feasible region is not

bounded, but the optimal objective value is finite.

29.1-6

Sometimes, in a linear program, you need to convert constraints from

one form to another.
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a. Show how to convert an equality constraint into an equivalent set of

inequalities. That is, given a constraint , give a set of

inequalities that will be satisfied if and only if ,

b. Show how to convert an inequality constraint  into an

equality constraint and a nonnegativity constraint. You will need to

introduce an additional variable s, and use the constraint that s ≥ 0.

29.1-7

Explain how to convert a minimization linear program to an equivalent

maximization linear program, and argue that your new linear program

is equivalent to the original one.

29.1-8

In the political problem at the beginning of this chapter, there are

feasible solutions that correspond to winning more voters than there

actually are in the district. For example, you can set x2 to 200, x3 to

200, and x1 = x4 = 0. That solution is feasible, yet it seems to say that

you will win 400,000 suburban voters, even though there are only

200,000 actual suburban voters. What constraints can you add to the

linear program to ensure that you never seem to win more voters than

there actually are? Even if you don’t add these constraints, argue that

the optimal solution to this linear program can never win more voters

than there actually are in the district.

29.2    Formulating problems as linear programs

Linear programming has many applications. Any textbook on

operations research is filled with examples of linear programming, and

linear programming has become a standard tool taught to students in

most business schools. The election scenario is one typical example.

Here are two more examples:

An airline wishes to schedule its flight crews. The Federal Aviation

Administration imposes several constraints, such as limiting the

number of consecutive hours that each crew member can work
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and insisting that a particular crew work only on one model of

aircraft during each month. The airline wants to schedule crews

on all of its flights using as few crew members as possible.

An oil company wants to decide where to drill for oil. Siting a

drill at a particular location has an associated cost and, based on

geological surveys, an expected payoff of some number of barrels

of oil. The company has a limited budget for locating new drills

and wants to maximize the amount of oil it expects to find, given

this budget.

Linear programs also model and solve graph and combinatorial

problems, such as those appearing in this book. We have already seen a

special case of linear programming used to solve systems of difference

constraints in Section 22.4. In this section, we’ll study how to formulate

several graph and network-flow problems as linear programs. Section

35.4 uses linear programming as a tool to find an approximate solution

to another graph problem.

Perhaps the most important aspect of linear programming is to be

able to recognize when you can formulate a problem as a linear

program. Once you cast a problem as a polynomial-sized linear

program, you can solve it in polynomial time by the ellipsoid algorithm

or interior-point methods. Several linear-programming software

packages can solve problems efficiently, so that once the problem is in

the form of a linear program, such a package can solve it.

We’ll look at several concrete examples of linear-programming

problems. We start with two problems that we have already studied: the

single-source shortest-paths problem from Chapter 22 and the

maximum-flow problem from Chapter 24. We then describe the

minimum-cost-flow problem. (Although the minimum-cost-flow

problem has a polynomial-time algorithm that is not based on linear

programming, we won’t describe the algorithm.) Finally, we describe the

multicommodity-flow problem, for which the only known polynomial-

time algorithm is based on linear programming.

When we solved graph problems in Part VI, we used attribute

notation, such as v.d and (u, v).f. Linear programs typically use

subscripted variables rather than objects with attached attributes,
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however. Therefore, when we express variables in linear programs, we

indicate vertices and edges through subscripts. For example, we denote

the shortest-path weight for vertex v not by v.d but by dv, and we denote

the flow from vertex u to vertex v not by (u, v).f but by fuv. For

quantities that are given as inputs to problems, such as edge weights or

capacities, we continue to use notations such as w(u, v) and c(u, v).

Shortest paths

We can formulate the single-source shortest-paths problem as a linear

program. We’ll focus on how to formulate the single-pair shortest-path

problem, leaving the extension to the more general single-source

shortest-paths problem as Exercise 29.2-2.

In the single-pair shortest-path problem, the input is a weighted,

directed graph G = (V, E), with weight function w : E → ℝ mapping

edges to real-valued weights, a source vertex s, and destination vertex t.

The goal is to compute the value dt, which is the weight of a shortest

path from s to t. To express this problem as a linear program, you need

to determine a set of variables and constraints that define when you

have a shortest path from s to t. The triangle inequality (Lemma 22.10

on page 633) gives dv ≤ du + w(u, v) for each edge (u, v) ∈ E. The source

vertex initially receives a value ds = 0, which never changes. Thus the

following linear program expresses the shortest-path weight from s to t:

subject to

You might be surprised that this linear program maximizes an objective

function when it is supposed to compute shortest paths. Minimizing the

objective function would be a mistake, because when all the edge

weights are nonnegative, setting dv = 0 for all v ∈ V (recall that a bar

over a variable name denotes a specific setting of the variable’s value)

would yield an optimal solution to the linear program without solving
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the shortest-paths problem. Maximizing is the right thing to do because

an optimal solution to the shortest-paths problem sets each dv to min

{du + w(u, v) : u ∈ V and (u, v) ∈ E}, so that dv is the largest value that

is less than or equal to all of the values in the set {du + w(u, v).

Therefore, it makes sense to maximize dv for all vertices v on a shortest

path from s to t subject to these constraints, and maximizing dt achieves

this goal.

This linear program has |V| variables dv, one for each vertex v ∈ V. It

also has |E| + 1 constraints: one for each edge, plus the additional

constraint that the source vertex’s shortest-path weight always has the

value 0.

Maximum flow

Next, let’s express the maximum-flow problem as a linear program.

Recall that the input is a directed graph G = (V, E) in which each edge

(u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0, and two distinguished

vertices: a source s and a sink t. As defined in Section 24.1, a flow is a

nonnegative real-valued function f : V × V → ℝ that satisfies the

capacity constraint and flow conservation. A maximum flow is a flow

that satisfies these constraints and maximizes the flow value, which is

the total flow coming out of the source minus the total flow into the

source. A flow, therefore, satisfies linear constraints, and the value of a

flow is a linear function. Recalling also that we assume that c(u, v) = 0 if

(u, v) ∉ E and that there are no antiparallel edges, the maximum-flow

problem can be expressed as a linear program:

subject to
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This linear program has |V|2 variables, corresponding to the flow

between each pair of vertices, and it has 2 |V|2 + |V| − 2 constraints.

It is usually more efficient to solve a smaller-sized linear program.

The linear program in (29.25)–(29.28) has, for ease of notation, a flow

and capacity of 0 for each pair of vertices u, v with (u, v) ∉ E. It is more

efficient to rewrite the linear program so that it has O(V + E)

constraints. Exercise 29.2-4 asks you to do so.

Minimum-cost flow

In this section, we have used linear programming to solve problems for

which we already knew efficient algorithms. In fact, an efficient

algorithm designed specifically for a problem, such as Dijkstra’s

algorithm for the single-source shortest-paths problem, will often be

more efficient than linear programming, both in theory and in practice.

The real power of linear programming comes from the ability to

solve new problems. Recall the problem faced by the politician in the

beginning of this chapter. The problem of obtaining a sufficient number

of votes, while not spending too much money, is not solved by any of

the algorithms that we have studied in this book, yet it can be solved by

linear programming. Books abound with such real-world problems that

linear programming can solve. Linear programming is also particularly

useful for solving variants of problems for which we may not already

know of an efficient algorithm.

Figure 29.3 (a) An example of a minimum-cost-flow problem. Capacities are denoted by c and

costs by a. Vertex s is the source, and vertex t is the sink. The goal is to send 4 units of flow from

s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s

to t. For each edge, the flow and capacity are written as flow/capacity.
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Consider, for example, the following generalization of the maximum-

flow problem. Suppose that, in addition to a capacity c(u, v) for each

edge (u, v), you are given a real-valued cost a(u, v). As in the maximum-

flow problem, assume that c(u, v) = 0 if (u, v) ∉ E and that there are no

antiparallel edges. If you send fuv units of flow over edge (u, v), you

incur a cost of a(u, v) · fuv. You are also given a flow demand d. You

wish to send d units of flow from s to t while minimizing the total cost

∑(u,v)∈E a(u, v) · fuv incurred by the flow. This problem is known as the

minimum-cost-flow problem.

Figure 29.3(a) shows an example of the minimum-cost-flow problem,

with a goal of sending 4 units of flow from s to t while incurring the

minimum total cost. Any particular legal flow, that is, a function f

satisfying constraints (29.26)–(29.28), incurs a total cost of

∑(u,v)∈E a(u, v) · fuv. What is the particular 4-unit flow that minimizes

this cost? Figure 29.3(b) shows an optimal solution, with total cost

∑(u,v)∈E a(u, v) · fuv = (2 · 2) + (5 · 2) + (3 · 1) + (7 · 1) + (1 · 3) = 27.

There are polynomial-time algorithms specifically designed for the

minimum-cost-flow problem, but they are beyond the scope of this

book. The minimum-cost-flow problem can be expressed as a linear

program, however. The linear program looks similar to the one for the

maximum-flow problem with the additional constraint that the value of

the flow must be exactly d units, and with the new objective function of

minimizing the cost:

subject to

Multicommodity flow
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As a final example, let’s consider another flow problem. Suppose that

the Lucky Puck company from Section 24.1 decides to diversify its

product line and ship not only hockey pucks, but also hockey sticks and

hockey helmets. Each piece of equipment is manufactured in its own

factory, has its own warehouse, and must be shipped, each day, from

factory to warehouse. The sticks are manufactured in Vancouver and

are needed in Saskatoon, and the helmets are manufactured in

Edmonton and must be shipped to Regina. The capacity of the shipping

network does not change, however, and the different items, or

commodities, must share the same network.

This example is an instance of a multicommodity-flow problem. The

input to this problem is once again a directed graph G = (V, E) in which

each edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0. As in the

maximum-flow problem, implicitly assume that c(u, v) = 0 for (u, v) ∉ E

and that the graph has no antiparallel edges. In addition, there are k

different commodities, K1, K2, … , Kk, with commodity i specified by

the triple Ki = (si, ti, di). Here, vertex si is the source of commodity i,

vertex ti is the sink of commodity i, and di is the demand for commodity

i, which is the desired flow value for the commodity from si to ti. We

define a flow for commodity i, denoted by fi, (so that fiuv is the flow of

commodity i from vertex u to vertex v) to be a real-valued function that

satisfies the flow-conservation and capacity constraints. We define fuv,

the aggregate flow, to be the sum of the various commodity flows, so

that . The aggregate flow on edge (u, v) must be no more

than the capacity of edge (u, v). This problem has no objective function:

the question is to determine whether such a flow exists. Thus the linear

program for this problem has a “null” objective function:
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The only known polynomial-time algorithm for this problem expresses

it as a linear program and then solves it with a polynomial-time linear-

programming algorithm.

Exercises

29.2-1

Write out explicitly the linear program corresponding to finding the

shortest path from vertex s to vertex x in Figure 22.2(a) on page 609.

29.2-2

Given a graph G, write a linear program for the single-source shortest-

paths problem. The solution should have the property that dv is the

shortest-path weight from the source vertex s to v for each vertex v ∈ V.

29.2-3

Write out explicitly the linear program corresponding to finding the

maximum flow in Figure 24.1(a).

29.2-4

Rewrite the linear program for maximum flow (29.25)–(29.28) so that it

uses only O(V + E) constraints.

29.2-5

Write a linear program that, given a bipartite graph G = (V, E), solves

the maximum-bipartite-matching problem.

29.2-6
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There can be more than one way to model a particular problem as a

linear program. This exercise gives an alternative formulation for the

maximum-flow problem. Let P = {P1, P2, … , Pp} be the set of all

possible directed simple paths from source s   to sink t. Using decision

variables x1, … , xp, where xi is the amount of flow on path i, formulate

a linear program for the maximum-flow problem. What is an upper

bound on p, the number of directed simple paths from s to t?

29.2-7

In the minimum-cost multicommodity-flow problem, the input is a

directed graph G = (V, E) in which each edge (u, v) ∈ E has a

nonnegative capacity c(u, v) ≥ 0 and a cost a(u, v). As in the

multicommodity-flow problem, there are k different commodities, K1,

K2, … , Kk, with commodity i specified by the triple Ki = (si, ti, di). We

define the flow fi for commodity i and the aggregate flow fuv on edge (u,

v) as in the multicommodity-flow problem. A feasible flow is one in

which the aggregate flow on each edge (u, v) is no more than the

capacity of edge (u, v). The cost of a flow is ∑u,v∈E a(u, v) · fuv, and the

goal is to find the feasible flow of minimum cost. Express this problem

as a linear program.

29.3    Duality

We will now introduce a powerful concept called linear-programming

duality. In general, given a maximization problem, duality allows you to

formulate a related minimization problem that has the same objective

value. The idea of duality is actually more general than linear

programming, but we restrict our attention to linear programming in

this section.

Duality enables us to prove that a solution is indeed optimal. We saw

an example of duality in Chapter 24 with Theorem 24.6, the max-flow

min-cut theorem. Suppose that, given an instance of a maximum-flow

problem, you find a flow f with value |f|. How do you know whether f is

a maximum flow? By the max-flow min-cut theorem, if you can find a
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cut whose value is also |f|, then you have verified that f is indeed a

maximum flow. This relationship provides an example of duality: given

a maximization problem, define a related minimization problem such

that the two problems have the same optimal objective values.

Given a linear program in standard form in which the objective is to

maximize, let’s see how to formulate a dual linear program in which the

objective is to minimize and whose optimal value is identical to that of

the original linear program. When referring to dual linear programs, we

call the original linear program the primal.

Given the primal linear program

subject to

its dual is

subject to

Mechanically, to form the dual, change the maximization to a

minimization, exchange the roles of coefficients on the right-hand sides

and in the objective function, and replace each ≤ by ≥. Each of the m

constraints in the primal corresponds to a variable yi in the dual.

Likewise, each of the n constraints in the dual corresponds to a variable

xj in the primal. For example, consider the following primal linear

program:

subject to
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Its dual is

subject to

Although forming the dual can be considered a mechanical

operation, there is an intuitive explanation. Consider the primal

maximization problem (29.37)–(29.41). Each constraint gives an upper

bound on the objective function. In addition, if you take one or more

constraints and add together nonnegative multiples of them, you get a

valid constraint. For example, you can add constraints (29.38) and

(29.39) to obtain the constraint 3x1 + 3x2 + 8x3 ≤ 54. Any feasible

solution to the primal must satisfy this new constraint, but there is

something else interesting about it. Comparing this new constraint to

the objective function (29.37), you can see that for each variable, the

corresponding coefficient is at least as large as the coefficient in the

objective function. Thus, since the variables x1, x2 and x3 are

nonnegative, we have that

3x1 + x2 + 4x3 ≤ 3x1 + 3x2 + 8x3 ≤ 54,

and so the solution value to the primal is at most 54. In other words,

adding these two constraints together has generated an upper bound on

the objective value.

In general, for any nonnegative multipliers y1, y2, and y3, you can

generate a constraint

y1(x1+x2+3x3)+y2(2x1+2x2+5x3)+y3(4x1+x2+2x3) ≤

30y1+24y2+36y3
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from the primal constraints or, by distributing and regrouping,

(y1+2y2+4y3)x1+(y1+2y2+y3)x2+(3y1+5y2+2y3)x3 ≤

30y1+24y2+36y3.

Now, as long as this constraint has coefficients of x1, x2, and x3 that

are at least their objective-function coefficients, it is a valid upper

bound. That is, as long as

y1 + 2y2 + 4y3 ≥ 3,

y1 + 2y2 + y3 ≥ 1,

3y1 + 5y2 + 2y3 ≥ 4,

you have a valid upper bound of 30y1+24y2+36y3. The multipliers y1,

y2, and y3 must be nonnegative, because otherwise you cannot combine

the inequalities. Of course, you would like the upper bound to be as

small as possible, and so you want to choose y to minimize 30y1 + 24y2

+ 36y3. Observe that we have just described the dual linear program as

the problem of finding the smallest possible upper bound on the primal.

We’ll formalize this idea and show in Theorem 29.4 that, if the linear

program and its dual are feasible and bounded, then the optimal value

of the dual linear program is always equal to the optimal value of the

primal linear program. We begin by demonstrating weak duality, which

states that any feasible solution to the primal linear program has a value

no greater than that of any feasible solution to the dual linear program.

Lemma 29.1 (Weak linear-programming duality)

Let x be any feasible solution to the primal linear program in (29.31)–

(29.33), and let ӯ be any feasible solution to its dual linear program in

(29.34)–(29.36). Then

Proof   We have
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▪

Corollary 29.2

Let x be a feasible solution to the primal linear program in (29.31)–

(29.33), and let ӯ be a feasible solution to its dual linear program in

(29.34)–(29.36). If

then x and ӯ are optimal solutions to the primal and dual linear

programs, respectively.

Proof   By Lemma 29.1, the objective value of a feasible solution to the

primal cannot exceed that of a feasible solution to the dual. The primal

linear program is a maximization problem and the dual is a

minimization problem. Thus, if feasible solutions x and ӯ have the same

objective value, neither can be improved.

▪

We now show that, at optimality, the primal and dual objective

values are indeed equal. To prove linear programming duality, we will

require one lemma from linear algebra, known as Farkas’s lemma, the

proof of which Problem 29-4 asks you to provide. Farkas’s lemma can

take several forms, each of which is about when a set of linear equalities

has a solution. In stating the lemma, we use m + 1 as a dimension

because it matches our use below.

Lemma 29.3 (Farkas’s lemma)

Given M ∈ ℝ(m+1)×n and g ∈ ℝm+1, exactly one of the following

statements is true:
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1. There exists v ∈ ℝn such that Mv ≤ g,

2. There exists w ∈ ℝm+1 such that w ≥ 0, wTM = 0 (an n-vector

of all zeros), and wTg < 0.

▪

Theorem 29.4 (Linear-programming duality)

Given the primal linear program in (29.31)–(29.33) and its

corresponding dual in (29.34)–(29.36), if both are feasible and bounded,

then for optimal solutions x* and y*, we have cTx* = bTy*.

Proof     Let μ = bTy* be the optimal value of the dual linear program

given in (29.34)–(29.36). Consider an augmented set of primal

constraints in which we add a constraint to (29.31)–(29.33) that the

objective value is at least μ. We write out this augmented primal as

We can multiply (29.48) through by −1 and rewrite (29.47)–(29.48) as

Here,  denotes an (m+1)×n matrix, x is an n-vector, and 

denotes an (m + 1)-vector.

We claim that if there is a feasible solution x to the augmented

primal, then the theorem is proved. To establish this claim, observe that

x is also a feasible solution to the original primal and that it has

objective value at least μ. We can then apply Lemma 29.1, which states

that the objective value of the primal is at most μ, to complete the proof

of the theorem.

It therefore remains to show that the augmented primal has a

feasible solution. Suppose, for the purpose of contradiction, that the

augmented primal is infeasible, which means that there is no v ∈ ℝn
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such that . We can apply Farkas’s lemma, Lemma 29.3, to

inequalty (29.49) with

Because the augmented primal is infeasible, condition 1 of Farkas’s

lemma does not hold. Therefore, condition 2 must apply, so that there

must exist a w ∈ ℝm+1 such that w ≥ 0, wTM = 0, and wTg < 0. Let’s

write w as  for some ӯ ∈ ℝm and λ ∈ ℝ, where ӯ ≥ 0 and λ ≥ 0.

Substituting for w, M, and g in condition 2 gives

Unpacking the matrix notation gives

We now show that the requirements in (29.50) contradict the

assumption that μ is the optimal solution value for the dual linear

program. We consider two cases.

The first case is when λ = 0. In this case, (29.50) simplifies to

We’ll now construct a dual feasible solution y′ with an objective value

smaller than bTy*. Set y′ = y* + ϵ ӯ, for any ϵ > 0. Since

y′TA = (y* + ϵ ӯ)TA

= y*TA + ϵ ӯTA

= y*TA (by (29.51))

≥ cT (because y* is feasible),

y′ is feasible. Now consider the objective value

bTy′ = bT(y* + ϵ ӯ)
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= bTy* + ϵ bTӯ

< bTy*,

where the last inequality follows because ϵ > 0 and, by (29.51), ӯTb =

bTӯ < 0 (since both ӯTb and bTӯ are the inner product of b and ӯ), and

so their product is negative. Thus we have a feasible dual solution of

value less than μ, which contradicts μ being the optimal objective value.

We now consider the second case, where λ > 0. In this case, we can

take (29.50) and divide through by λ to obtain

Now set y′ = ӯ/λ in (29.52), giving

y′TA = cT and y′Tb < μ.

Thus, y′ is a feasible dual solution with objective value strictly less than

μ, a contradiction. We conclude that the augmented primal has a

feasible solution, and the theorem is proved.

▪

Fundamental theorem of linear programming

We conclude this chapter by stating the fundamental theorem of linear

programming, which extends Theorem 29.4 to the cases when the linear

program may be either feasible or unbounded. Exercise 29.3-8 asks you

to provide the proof.

Theorem 29.5 (Fundamental theorem of linear programming)

Any linear program, given in standard form, either

1. has an optimal solution with a finite objective value,

2. is infeasible, or

3. is unbounded.

▪
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Exercises

29.3-1

Formulate the dual of the linear program given in lines (29.6)–(29.10)

on page 852.

29.3-2

You have a linear program that is not in standard form. You could

produce the dual by first converting it to standard form, and then

taking the dual. It would be more convenient, however, to produce the

dual directly. Explain how to directly take the dual of an arbitrary linear

program.

29.3-3

Write down the dual of the maximum-flow linear program, as given in

lines (29.25)–(29.28) on page 862. Explain how to interpret this

formulation as a minimum-cut problem.

29.3-4

Write down the dual of the minimum-cost-flow linear program, as given

in lines (29.29)–(29.30) on page 864. Explain how to interpret this

problem in terms of graphs and flows.

29.3-5

Show that the dual of the dual of a linear program is the primal linear

program.

29.3-6

Which result from Chapter 24 can be interpreted as weak duality for the

maximum-flow problem?

29.3-7

Consider the following 1-variable primal linear program:

maximize tx

subject to

rx ≤ s

x ≥ 0,
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where r, s, and t are arbitrary real numbers. State for which values of r,

s, and t you can assert that

1. Both the primal linear program and its dual have optimal

solutions with finite objective values.

2. The primal is feasible, but the dual is infeasible.

3. The dual is feasible, but the primal is infeasible.

4. Neither the primal nor the dual is feasible.

29.3-8

Prove the fundamental theorem of linear programming, Theorem 29.5.

Problems

29-1     Linear-inequality feasibility

Given a set of m linear inequalities on n variables x1, x2, … , xn, the

linear-inequality feasibility problem asks whether there is a setting of the

variables that simultaneously satisfies each of the inequalities.

a. Given an algorithm for the linear-programming problem, show how

to use it to solve a linear-inequality feasibility problem. The number

of variables and constraints that you use in the linear-programming

problem should be polynomial in n and m.

b. Given an algorithm for the linear-inequality feasibility problem, show

how to use it to solve a linear-programming problem. The number of

variables and linear inequalities that you use in the linear-inequality

feasibility problem should be polynomial in n and m, the number of

variables and constraints in the linear program.

29-2     Complementary slackness

Complementary slackness describes a relationship between the values of

primal variables and dual constraints and between the values of dual

variables and primal constraints. Let x be a feasible solution to the

primal linear program given in (29.31)–(29.33), and let ӯ be a feasible
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solution to the dual linear program given in (29.34)–(29.36).

Complementary slackness states that the following conditions are

necessary and sufficient for x and ӯ to be optimal:

and

a. Verify that complementary slackness holds for the linear program in

lines (29.37)–(29.41).

b. Prove that complementary slackness holds for any primal linear

program and its corresponding dual.

c. Prove that a feasible solution x to a primal linear program given in

lines (29.31)–(29.33) is optimal if and only if there exist values ӯ =

(ӯ1, ӯ2, … , ӯm) such that

1. ӯ is a feasible solution to the dual linear program given in

(29.34)–(29.36),

2.  for all j such that xj > 0, and

3. ӯi = 0 for all i such that .

29-3     Integer linear programming

An integer linear-programming problem is a linear-programming

problem with the additional constraint that the variables x must take on

integer values. Exercise 34.5-3 on page 1098 shows that just determining

whether an integer linear program has a feasible solution is NP-hard,

which means that there is no known polynomial-time algorithm for this

problem.

a. Show that weak duality (Lemma 29.1) holds for an integer linear

program.
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b. Show that duality (Theorem 29.4) does not always hold for an integer

linear program.

c. Given a primal linear program in standard form, let P be the optimal

objective value for the primal linear program, D be the optimal

objective value for its dual, IP be the optimal objective value for the

integer version of the primal (that is, the primal with the added

constraint that the variables take on integer values), and ID be the

optimal objective value for the integer version of the dual. Assuming

that both the primal integer program and the dual integer program

are feasible and bounded, show that

IP ≤ P = D ≤ ID.

29-4     Farkas’s lemma

Prove Farkas’s lemma, Lemma 29.3.

29-5     Minimum-cost circulation

This problem considers a variant of the minimum-cost-flow problem

from Section 29.2 in which there is no demand, source, or sink. Instead,

the input, as before, contains a flow network, capacity constraints c(u,

v), and edge costs a(u, v). A flow is feasible if it satisfies the capacity

constraint on every edge and flow conservation at every vertex. The goal

is to find, among all feasible flows, the one of minimum cost. We call

this problem the minimum-cost-circulation problem.

a. Formulate the minimum-cost-circulation problem as a linear

program.

b. Suppose that for all edges (u, v) ∈ E, we have a(u, v) > 0. What does

an optimal solution to the minimum-cost-circulation problem look

like?

c. Formulate the maximum-flow problem as a minimum-cost-circulation

problem linear program. That is, given a maximum-flow problem

instance G = (V, E) with source s, sink t and edge capacities c, create a

minimum-cost-circulation problem by giving a (possibly different)

network G′ = (V′, E′) with edge capacities c′ and edge costs a′ such
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that you can derive a solution to the maximum-flow problem from a

solution to the minimum-cost-circulation problem.

d. Formulate the single-source shortest-path problem as a minimum-

cost-circulation problem linear program.

Chapter notes

This chapter only begins to study the wide field of linear programming.

A number of books are devoted exclusively to linear programming,

including those by Chvátal [94], Gass [178], Karloff [246], Schrijver

[398], and Vanderbei [444]. Many other books give a good coverage of

linear programming, including those by Papadimitriou and Steiglitz

[353] and Ahuja, Magnanti, and Orlin [7]. The coverage in this chapter

draws on the approach taken by Chvátal.

The simplex algorithm for linear programming was invented by G.

Dantzig in 1947. Shortly after, researchers discovered how to formulate

a number of problems in a variety of fields as linear programs and solve

them with the simplex algorithm. As a result, applications of linear

programming flourished, along with several algorithms. Variants of the

simplex algorithm remain the most popular methods for solving linear-

programming problems. This history appears in a number of places,

including the notes in [94] and [246].

The ellipsoid algorithm was the first polynomial-time algorithm for

linear programming and is due to L. G. Khachian in 1979. It was based

on earlier work by N. Z. Shor, D. B. Judin, and A. S. Nemirovskii.

Grötschel, Lovász, and Schrijver [201] describe how to use the ellipsoid

algorithm to solve a variety of problems in combinatorial optimization.

To date, the ellipsoid algorithm does not appear to be competitive with

the simplex algorithm in practice.

Karmarkar’s paper [247] includes a description of the first interior-

point algorithm. Many subsequent researchers designed interior-point

algorithms. Good surveys appear in the article of Goldfarb and Todd

[189] and the book by Ye [463].

Analysis of the simplex algorithm remains an active area of research.

V. Klee and G. J. Minty constructed an example on which the simplex
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algorithm runs through 2n − 1 iterations. The simplex algorithm usually

performs well in practice, and many researchers have tried to give

theoretical justification for this empirical observation. A line of research

begun by K. H. Borgwardt, and carried on by many others, shows that

under certain probabilistic assumptions on the input, the simplex

algorithm converges in expected polynomial time. Spielman and Teng

[421] made progress in this area, introducing the “smoothed analysis of

algorithms” and applying it to the simplex algorithm.

The simplex algorithm is known to run efficiently in certain special

cases. Particularly noteworthy is the network-simplex algorithm, which

is the simplex algorithm, specialized to network-flow problems. For

certain network problems, including the shortest-paths, maximum-flow,

and minimum-cost-flow problems, variants of the network-simplex

algorithm run in polynomial time. See, for example, the article by Orlin

[349] and the citations therein.

1 An intuitive definition of a convex region is that it fulfills the requirement that for any two

points in the region, all points on a line segment between them are also in the region.
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30        Polynomials and the FFT

The straightforward method of adding two polynomials of degree n

takes Θ(n) time, but the straightforward method of multiplying them

takes Θ(n2) time. This chapter will show how the fast Fourier transform,

or FFT, can reduce the time to multiply polynomials to Θ(n lg n).

The most common use for Fourier transforms, and hence the FFT, is

in signal processing. A signal is given in the time domain: as a function

mapping time to amplitude. Fourier analysis expresses the signal as a

weighted sum of phase-shifted sinusoids of varying frequencies. The

weights and phases associated with the frequencies characterize the

signal in the frequency domain. Among the many everyday applications

of FFT’s are compression techniques used to encode digital video and

audio information, including MP3 files. Many fine books delve into the

rich area of signal processing, and the chapter notes reference a few of

them.

Polynomials

A polynomial in the variable x over an algebraic field F represents a

function A(x) as a formal sum:

The values a0, a1, … , an−1 are the coefficients of the polynomial. The

coefficients and x are drawn from a field F, typically the set ℂ of

complex numbers. A polynomial A(x) has degree k if its highest nonzero
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coefficient is ak, in which case we say that degree(A) = k. Any integer

strictly greater than the degree of a polynomial is a degree-bound of that

polynomial. Therefore, the degree of a polynomial of degree-bound n

may be any integer between 0 and n − 1, inclusive.

A variety of operations extend to polynomials. For polynomial

addition, if A(x) and B(x) are polynomials of degree-bound n, their sum

is a polynomial C(x), also of degree-bound n, such that C(x) =

A(x)+B(x) for all x in the underlying field. That is, if

then

where cj = aj + bj for j = 0, 1, … , n − 1. For example, given the

polynomials A(x) = 6x3 + 7x2 − 10x + 9 and B(x) = −2x3 + 4x − 5,

their sum is C(x) = 4x3 + 7x2 − 6x + 4.

For polynomial multiplication, if A(x) and B(x) are polynomials of

degree-bound n, their product C(x) is a polynomial of degree-bound 2n

− 1 such that C(x) = A(x)B(x) for all x in the underlying field. You

probably have multiplied polynomials before, by multiplying each term

in A(x) by each term in B(x) and then combining terms with equal

powers. For example, you can multiply A(x) = 6x3 + 7x2 − 10x + 9 and

B(x) = −2x3 + 4x − 5 as follows:

Another way to express the product C(x) is

www.konkur.in

Telegram: @uni_k



where

(By the definition of degree, ak = 0 for all k > degree(A) and bk = 0 for

all k > degree(B).) If A is a polynomial of degree-bound na and B is a

polynomial of degree-bound nb, then C must be a polynomial of degree-

bound na + nb − 1, because degree(C) = degree(A) + degree(B). Since a

polynomial of degree-bound k is also a polynomial of degree-bound k +

1, we normally make the somewhat simpler statement that the product

polynomial C is a polynomial of degree-bound na + nb.

Chapter outline

Section 30.1 presents two ways to represent polynomials: the coefficient

representation and the point-value representation. The straightforward

method for multiplying polynomials of degree n—equations (30.1) and

(30.2)—takes Θ(n2) time with polynomials represented in coefficient

form, but only Θ(n) time with point-value form. Converting between the

two representations, however, reduces the time to multiply polynomials

to just Θ(n lg n). To see why this approach works, you must first

understand complex roots of unity, which Section 30.2 covers. Section

30.2 then uses the FFT and its inverse to perform the conversions.

Because the FFT is used so often in signal processing, it is often

implemented as a circuit in hardware, and Section 30.3 illustrates the

structure of such circuits.

This chapter relies on complex numbers, and within this chapter the

symbol i denotes  exclusively.

30.1    Representing polynomials

The coefficient and point-value representations of polynomials are in a

sense equivalent: a polynomial in point-value form has a unique

counterpart in coefficient form. This section introduces the two
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representations and shows how to combine them in order to multiply

two degree-bound n polynomials in Θ(n lg n) time.

Coefficient representation

A coefficient representation of a polynomial  of degree-

bound n is a vector of coefficients a = (a0, a1, … , an−1). Matrix

equations in this chapter generally treat vectors as column vectors.

The coefficient representation is convenient for certain operations on

polynomials. For example, the operation of evaluating the polynomial

A(x) at a given point x0 consists of computing the value of A(x0). To

evaluate a polynomial in Θ(n) time, use Horner’s rule:

Similarly, adding two polynomials represented by the coefficient vectors

a = (a0, a1, … , an−1) and b = (b0, b1, … , bn−1) takes Θ(n) time: just

produce the coefficient vector c = (c0, c1, … , cn−1), where cj = aj + bj

for j = 0, 1, … , n− 1.

Now, consider multiplying two degree-bound n polynomials A(x)

and B(x) represented in coefficient form. The method described by

equations (30.1) and (30.2) takes Θ(n2) time, since it multiplies each

coefficient in the vector a by each coefficient in the vector b. The

operation of multiplying polynomials in coefficient form seems to be

considerably more difficult than that of evaluating a polynomial or

adding two polynomials. The resulting coefficient vector c, given by

equation (30.2), is also called the convolution of the input vectors a and

b, denoted c = a ⊗ b. Since multiplying polynomials and computing

convolutions are fundamental computational problems of considerable

practical importance, this chapter concentrates on efficient algorithms

for them.

Point-value representation

A point-value representation of a polynomial A(x) of degree-bound n is a

set of n point-value pairs
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{(x0, y0), (x1, y1), … , (xn−1, yn−1)}

such that all of the xk are distinct and

for k = 0, 1, … , n − 1. A polynomial has many different point-value

representations, since any set of n distinct points x0, x1, … , xn−1 can

serve as a basis for the representation.

Computing a point-value representation for a polynomial given in

coefficient form is in principle straightforward, since all you have to do

is select n distinct points x0, x1, … , xn−1 and then evaluate A(xk) for k

= 0, 1, … , n − 1. With Horner’s method, evaluating a polynomial at n

points takes Θ(n2) time. We’ll see later that if you choose the points xk

cleverly, you can accelerate this computation to run in Θ(n lg n) time.

The inverse of evaluation—determining the coefficient form of a

polynomial from a point-value representation—is interpolation. The

following theorem shows that interpolation is well defined when the

desired interpolating polynomial must have a degree-bound equal to the

given number of point-value pairs.

Theorem 30.1 (Uniqueness of an interpolating polynomial)

For any set {(x0, y0), (x1, y1), … , (xn−1, yn−1)} of n point-value pairs

such that all the xk values are distinct, there is a unique polynomial

A(x) of degree-bound n such that yk = A(xk) for k = 0, 1, … , n − 1.

Proof      The proof relies on the existence of the inverse of a certain

matrix. Equation (30.3) is equivalent to the matrix equation

The matrix on the left is denoted V(x0, x1, … , xn−1) and is known

as a Vandermonde matrix. By Problem D-1 on page 1223, this matrix

has determinant
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and therefore, by Theorem D.5 on page 1221, it is invertible (that is,

nonsingular) if the xk are distinct. To solve for the coefficients aj

uniquely given the point-value representation, use the inverse of the

Vandermonde matrix:

a = V(x0, x1, … , xn−1)−1y.

▪

The proof of Theorem 30.1 describes an algorithm for interpolation

based on solving the set (30.4) of linear equations. Section 28.1 shows

how to solve these equations in O(n3) time.

A faster algorithm for n-point interpolation is based on Lagrange’s

formula:

You might want to verify that the right-hand side of equation (30.5) is a

polynomial of degree-bound n that satisfies A(xk) = yk for all k.

Exercise 30.1-5 asks you how to compute the coefficients of A using

Lagrange’s formula in Θ(n2) time.

Thus, n-point evaluation and interpolation are well-defined inverse

operations that transform between the coefficient representation of a

polynomial and a point-value representation.1 The algorithms

described above for these problems take Θ(n2) time.

The point-value representation is quite convenient for many

operations on polynomials. For addition, if C(x) = A(x) + B(x), then

C(xk) = A(xk) + B(xk) for any point xk. More precisely, given point-

value representations for A,

{(x0, y0), (x1, y1), … , (xn−1, yn−1)},
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and for B,

where A and B are evaluated at the same n points, then a point-value

representation for C is

Thus the time to add two polynomials of degree-bound n in point-value

form is Θ(n).

Similarly, the point-value representation is convenient for

multiplying polynomials. If C(x) = A(x)B(x), then C(xk) = A(xk)B(xk)

for any point xk, and to obtain a point-value representation for C, just

pointwise multiply a point-value representation for A by a point-value

representation for B. Polynomial multiplication differs from polynomial

addition in one key aspect, however: degree(C) = degree(A) + degree(B),

so that if A and B have degree-bound n, then C has degree-bound 2n. A

standard point-value representation for A and B consists of n point-

value pairs for each polynomial. Multiplying these together gives n

point-value pairs, but 2n pairs are necessary to interpolate a unique

polynomial C of degree-bound 2n. (See Exercise 30.1-4.) Instead, begin

with “extended” point-value representations for A and for B consisting

of 2n point-value pairs each. Given an extended point-value

representation for A,

{(x0, y0), (x1, y1), … , (x2n−1, y2n−1)},

and a corresponding extended point-value representation for B,

then a point-value representation for C is

Given two input polynomials in extended point-value form, multiplying

them to obtain the point-value form of the result takes just Θ(n) time,

much less than the Θ(n2) time required to multiply polynomials in

coefficient form.
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Finally, let’s consider how to evaluate a polynomial given in point-

value form at a new point. For this problem, the simplest approach

known is to first convert the polynomial to coefficient form and then

evaluate it at the new point.

Fast multiplication of polynomials in coefficient form

Can the linear-time multiplication method for polynomials in point-

value form expedite polynomial multiplication in coefficient form? The

answer hinges on whether it is possible convert a polynomial quickly

from coefficient form to point-value form (evaluate) and vice versa

(interpolate).

Figure 30.1 A graphical outline of an efficient polynomial-multiplication process.

Representations on the top are in coefficient form, and those on the bottom are in point-value

form. The arrows from left to right correspond to the multiplication operation. The ω2n terms

are complex (2n)th roots of unity.

Any points can serve as evaluation points, but certain evaluation

points allow conversion between representations in only Θ(n lg n) time.

As we’ll see in Section 30.2, if “complex roots of unity” are the

evaluation points, then the discrete Fourier transform (or DFT)

evaluates and the inverse DFT interpolates. Section 30.2 shows how the

FFT accomplishes the DFT and inverse DFT operations in Θ(n lg n)

time.

Figure 30.1 shows this strategy graphically. One minor detail

concerns degree-bounds. The product of two polynomials of degree-

bound n is a polynomial of degree-bound 2n. Before evaluating the

input polynomials A and B, therefore, first double their degree-bounds
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to 2n by adding n high-order coefficients of 0. Because the vectors have

2n elements, use “complex (2n)th roots of unity,” which are denoted by

the ω2n terms in Figure 30.1.

The following procedure takes advantage of the FFT to multiply two

polynomials A(x) and B(x) of degree-bound n in Θ(n lg n)-time, where

the input and output representations are in coefficient form. The

procedure assumes that n is an exact power of 2, so if it isn’t, just add

high-order zero coefficients.

1. Double degree-bound: Create coefficient representations of A(x)

and B(x) as degree-bound 2n polynomials by adding n high-

order zero coefficients to each.

2. Evaluate: Compute point-value representations of A(x) and B(x)

of length 2n by applying the FFT of order 2n on each

polynomial. These representations contain the values of the two

polynomials at the (2n)th roots of unity.

3. Pointwise multiply: Compute a point-value representation for the

polynomial C(x) = A(x)B(x) by multiplying these values together

pointwise. This representation contains the value of C(x) at each

(2n)th root of unity.

4. Interpolate: Create the coefficient representation of the

polynomial C(x) by applying the FFT on 2n point-value pairs to

compute the inverse DFT.

Steps (1) and (3) take Θ(n) time, and steps (2) and (4) take Θ(n lg n)

time. Thus, once we show how to use the FFT, we will have proven the

following.

Theorem 30.2

Two polynomials of degree-bound n with both the input and output

representations in coefficient form can be multiplied in Θ(n lg n) time.

▪

Exercises

30.1-1
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Multiply the polynomials A(x) = 7x3 − x2 + x − 10 and B(x) = 8x3 −

6x + 3 using equations (30.1) and (30.2).

30.1-2

Another way to evaluate a polynomial A(x) of degree-bound n at a

given point x0 is to divide A(x) by the polynomial (x − x0), obtaining a

quotient polynomial q(x) of degree-bound n − 1 and a remainder r, such

that

A(x) = q(x)(x − x0) + r.

Then we have A(x0) = r. Show how to compute the remainder r and the

coefficients of q(x) from x0 and the coefficients of A in Θ(n) time.

30.1-3

Given a polynomial , define . Show how

to derive a point-value representation for Arev(x) from a point-value

representation for A(x), assuming that none of the points is 0.

30.1-4

Prove that n distinct point-value pairs are necessary to uniquely specify

a polynomial of degree-bound n, that is, if fewer than n distinct point-

value pairs are given, they fail to specify a unique polynomial of degree-

bound n. (Hint: Using Theorem 30.1, what can you say about a set of n

− 1 point-value pairs to which you add one more arbitrarily chosen

point-value pair?)

30.1-5

Show how to use equation (30.5) to interpolate in Θ(n2) time. (Hint:

First compute the coefficient representation of the polynomial ∏j(x −

xj) and then divide by (x − xk) as necessary for the numerator of each

term (see Exercise 30.1-2). You can compute each of the n denominators

in O(n) time.)

30.1-6
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Explain what is wrong with the “obvious” approach to polynomial

division using a point-value representation: dividing the corresponding

y values. Discuss separately the case in which the division comes out

exactly and the case in which it doesn’t.

30.1-7

Consider two sets A and B, each having n integers in the range from 0 to

10n. The Cartesian sum of A and B is defined by

C = {x + y : x ∈ A and y ∈ B}.

The integers in C lie in the range from 0 to 20n. Show how, in O(n lg n)

time, to find the elements of C and the number of times each element of

C is realized as a sum of elements in A and B. (Hint: Represent A and B

as polynomials of degree at most 10n.)

30.2    The DFT and FFT

In Section 30.1, we claimed that by computing the DFT and its inverse

by using the FFT, it is possible to evaluate and interpolate a degree n

polynomial at the complex roots of unity in Θ(n lg n) time. This section

defines complex roots of unity, studies their properties, defines the DFT,

and then shows how the FFT computes the DFT and its inverse in Θ(n

lg n) time.

Complex roots of unity

A complex nth root of unity is a complex number ω such that

ωn = 1.

There are exactly n complex nth roots of unity: e2πik/n for k = 0, 1, … ,

n − 1. To interpret this formula, use the definition of the exponential of

a complex number:

eiu = cos(u) + i sin(u).

Figure 30.2 shows that the n complex roots of unity are equally spaced

around the circle of unit radius centered at the origin of the complex
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plane. The value

Figure 30.2 The values of  in the complex plane, where ω8 = e2πi/8 is the principal

8th root of unity.

is the principal nth root of unity.2 All other complex nth roots of unity

are powers of ωn.

The n complex nth roots of unity,

form a group under multiplication (see Section 31.3). This group has the

same structure as the additive group (ℤn, +) modulo n, since 

implies that . Similarly, . The following

lemmas furnish some essential properties of the complex nth roots of

unity.

Lemma 30.3 (Cancellation lemma)

For any integers n > 0, k ≥ 0, and d > 0,

Proof   The lemma follows directly from equation (30.6), since
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▪

Corollary 30.4

For any even integer n > 0,

Proof   The proof is left as Exercise 30.2-1.

▪

Lemma 30.5 (Halving lemma)

If n > 0 is even, then the squares of the n complex nth roots of unity are

the n/2 complex (n/2)th roots of unity.

Proof   By the cancellation lemma,  for any nonnegative integer

k. Squaring all of the complex nth roots of unity produces each (n/2)th

root of unity exactly twice, since

Thus  and  have the same square. We could also have used

Corollary 30.4 to prove this property, since  implies 

, and thus .

▪

As we’ll see, the halving lemma is essential to the divide-and-conquer

approach for converting between coefficient and point-value

representations of polynomials, since it guarantees that the recursive

subproblems are only half as large.

Lemma 30.6 (Summation lemma)

For any integer n ≥ 1 and nonzero integer k not divisible by n,
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Proof     Equation (A.6) on page 1142 applies to complex values as well

as to reals, giving

To see that the denominator is not 0, note that  only when k is

divisible by n, which the lemma statement prohibits.

▪

The DFT

Recall the goal of evaluating a polynomial

of degree-bound n at , ,  (that is, at the n complex nth roots

of unity).3 The polynomial A is given in coefficient form: a = (a0, a1, …

, an−1). Let us define the results yk, for k = 0, 1, … , n − 1, by

The vector y = (y0, y1, … , yn−1) is the discrete Fourier transform

(DFT) of the coefficient vector a = (a0, a1, … , an−1). We also write y

= DFTn(a).

The FFT

The fast Fourier transform (FFT) takes advantage of the special

properties of the complex roots of unity to compute DFTn(a) in Θ(n lg

n) time, as opposed to the Θ(n2) time of the straightforward method.
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Assume throughout that n is an exact power of 2. Although strategies

for dealing with sizes that are not exact powers of 2 are known, they are

beyond the scope of this book.

The FFT method employs a divide-and-conquer strategy, using the

even-indexed and odd-indexed coefficients of A(x) separately to define

the two new polynomials Aeven(x) and Aodd(x) of degree-bound n/2:

Aeven(x) = a0 + a2x + a4x2 + ⋯ + an−2xn/2−1,

Aodd(x) = a1 + a3x + a5x2 + ⋯ + an−1xn/2−1.

Note that Aeven contains all the even-indexed coefficients of A (the

binary representation of the index ends in 0) and Aodd contains all the

odd-indexed coefficients (the binary representation of the index ends in

1). It follows that

so that the problem of evaluating A(x) at ,  reduces to

1. evaluating the degree-bound n/2 polynomials Aeven(x) and

Aodd(x) at the points

and then

2. combining the results according to equation (30.9).

By the halving lemma, the list of values (30.10) consists not of n

distinct values but only of the n/2 complex (n/2)th roots of unity, with

each root occurring exactly twice. Therefore, the FFT recursively

evaluates the polynomials Aeven and Aodd of degree-bound n/2 at the

n/2 complex (n/2)th roots of unity. These subproblems have exactly the

same form as the original problem, but are half the size, dividing an n-

element DFTn computation into two n/2-element DFTn/2

computations. This decomposition is the basis for the FFT procedure
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on the next page, which computes the DFT of an n-element vector a =

(a0, a1, … , an−1), where n is an exact power of 2.

The FFT procedure works as follows. Lines 1–2 represent the base

case of the recursion. The DFT of 1 element is the element itself, since

in this case

y0 =

= a0 · 1

= a0.

Lines 5–6 define the coefficient vectors for the polynomials Aeven and

Aodd. Lines 3, 4, and 12 guarantee that ω is updated properly so that

whenever lines 10–11 are executed, . (Keeping a running value of ω
from iteration to iteration saves time over computing  from scratch

each time through the for loop.4) Lines 7–8 perform the recursive

DFTn/2 computations, setting, for k = 0, 1, … , n/2 − 1,

FFT(a, n)

  1if n == 1

  2 return a // DFT of 1 element is the element itself

  3ωn = e2πi/n

  4ω = 1

  5aeven = (a0, a2, … , an−2)

  6aodd = (a1, a3, … , an−1)

  7yeven = FFT(aeven, n/2)

  8yodd = FFT(aodd, n/2)

  9for k = 0 to n/2 − 1 // at this point, 

10

11

12 ω = ωωn

13return y
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or, since  by the cancellation lemma,

Lines 10–11 combine the results of the recursive DFTn/2 calculations.

For the first n/2 results y0, y1, … , yn/2−1, line 10 yields

For yn/2, yn/2+1, … , yn−1, letting k = 0, 1, … , n/2 − 1, line 11 yields

Thus the vector y returned by FFT is indeed the DFT of the input

vector a.

Lines 10 and 11 multiply each value  by , for k = 0, 1, … , n/2 −

1. Line 10 adds this product to , and line 11 subtracts it. Because

each factor  appears in both its positive and negative forms, we call the

factors  twiddle factors.

To determine the running time of the procedure FFT, note that

exclusive of the recursive calls, each invocation takes Θ(n) time, where n

is the length of the input vector. The recurrence for the running time is

therefore

T(n) = 2T(n/2) + Θ(n)

= Θ(n lg n),

by case 2 of the master theorem (Theorem 4.1). Thus the FFT can

evaluate a polynomial of degree-bound n at the complex nth roots of

unity in Θ(n lg n) time.
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Interpolation at the complex roots of unity

The polynomial multiplication scheme entails converting from

coefficient form to point-value form by evaluating the polynomial at the

complex roots of unity, pointwise multiplying, and finally converting

from point-value form back to coefficient form by interpolating. We’ve

just seen how to evaluate, so now we’ll see how to interpolate the

complex roots of unity by a polynomial. To interpolate, we’ll write the

DFT as a matrix equation and then look at the form of the matrix

inverse.

From equation (30.4), we can write the DFT as the matrix product y

= Vna, where Vn is a Vandermonde matrix containing the appropriate

powers of ωn:

The (k, j) entry of Vn is , for j, k = 0, 1, … , n − 1. The exponents of

the entries of Vn form a multiplication table for factors 0 to n − 1.

For the inverse operation, which we write as , multiply y by

the matrix , the inverse of Vn.

Theorem 30.7

For j, k = 0, 1, … , n − 1, the (j, k) entry of  is .

Proof     We show that , the n × n identity matrix. Consider the

(k, k′) entry of :
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This summation equals 1 if k′ = k, and it is 0 otherwise by the

summation lemma (Lemma 30.6). Note that in order for the summation

lemma to apply, k′ − k must not be divisible by n. Indeed, it is not, since

−(n − 1) ≤ k′ − k ≤ n − 1.

▪

With the inverse matrix  defined,  is given by

for j = 0, 1, … , n − 1. By comparing equations (30.8) and (30.11), you

can see that if you modify the FFT algorithm to switch the roles of a

and y, replace ωn by , and divide each element of the result by n, you

get the inverse DFT (see Exercise 30.2-4). Thus,  is computable in

Θ(n lg n) time as well.

Thus, the FFT and the inverse FFT provide a way to transform a

polynomial of degree-bound n back and forth between its coefficient

representation and a point-value representation in only Θ(n lg n) time.

In the context of polynomial multiplication, we have shown the

following about the convolution a ⊗ b of vectors a and b:

Theorem 30.8 (Convolution theorem)

For any two vectors a and b of length n, where n is an exact power of 2,

where the vectors a and b are padded with 0s to length 2n and · denotes

the componentwise product of two 2n-element vectors.

▪

Exercises

30.2-1

Prove Corollary 30.4.
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30.2-2

Compute the DFT of the vector (0, 1, 2, 3).

30.2-3

Do Exercise 30.1-1 by using the Θ(n lg n)-time scheme.

30.2-4

Write pseudocode to compute  in Θ(n lg n) time.

30.2-5

Describe the generalization of the FFT procedure to the case in which n

is an exact power of 3. Give a recurrence for the running time, and solve

the recurrence.

★ 30.2-6

Instead of performing an n-element FFT over the field of complex

numbers (where n is an exact power of 2), let’s use the ring ℤm of

integers modulo m, where m = 2tn/2 + 1 and t is an arbitrary positive

integer. We can use ω = 2t instead of ωn as a principal nth root of unity,

modulo m. Prove that the DFT and the inverse DFT are well defined in

this system.

30.2-7

Given a list of values z0, z1, … , zn−1 (possibly with repetitions), show

how to find the coefficients of a polynomial P(x) of degree-bound n + 1

that has zeros only at z0, z1, … , zn−1 (possibly with repetitions). Your

procedure should run in O(n lg2  n) time. (Hint: The polynomial P(x)

has a zero at zj if and only if P(x) is a multiple of (x − zj).)

★ 30.2-8

The chirp transform of a vector a = (a0, a1, … , an−1) is the vector y =

(y0, y1, … , yn−1), where  and z is any complex number.

The DFT is therefore a special case of the chirp transform, obtained by
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taking z = ωn. Show how to evaluate the chirp transform for any

complex number z in O(n lg n) time. (Hint: Use the equation

to view the chirp transform as a convolution.)

30.3    FFT circuits

Many of the FFT’s applications in signal processing require the utmost

speed, and so the FFT is often implemented as a circuit in hardware.

The FFT’s divide-and-conquer structure enables the circuit to have a

parallel structure so that the depth of the circuit—the maximum number

of computational elements between any output and any input that can

reach it—is Θ(lg n). Moreover, the structure of the FFT circuit has

several interesting mathematical properties, which we won’t go into here.

Butterfly operations

Notice that the for loop of lines 9–12 of the FFT procedure computes

the value  twice per iteration: once in line 10 and once in line 11. A

good optimizing compiler produces code that evaluates this common

subexpression just once, storing its value into a temporary variable, so

that lines 10–11 are treated like the three lines

This operation, multiplying the twiddle factor  by , storing the

product into the temporary variable t, and adding and subtracting t

from , is known as a butterfly operation. Figure 30.3 shows it as a

circuit, and you can see how it vaguely resembles the shape of a

butterfly. (Although less colorfully, it could have been called a “bowtie”

operation.)
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Figure 30.3 A circuit for a butterfly operation. (a) The two input values enter from the left, the

twiddle factor  is multiplied by , and the sum and difference are output on the right. (b) A

simplified drawing of a butterfly operation, which we’ll use when drawing the parallel FFT

circuit.

Figure 30.4 The schema for the conquer and combine steps of an n-input, n-output FFT circuit,

FFTn, shown for n = 8. Inputs enter from the left, and outputs exit from the right. The input

values first go through two FFTn/2 circuits, and then n/2 butterfly circuits combine the results.

Only the top and bottom wires entering a butterfly interact with it: wires that pass through the

middle of a butterfly do not affect that butterfly, nor are their values changed by that butterfly.

Recursive circuit structure

The FFT procedure follows the divide-and-conquer strategy that we

first saw in Section 2.3.1:

Divide the n-element input vector into its n/2 even-indexed and n/2 odd-

indexed elements.
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Conquer by recursively computing the DFTs of the two subproblems,

each of size n/2.

Combine by performing n/2 butterfly operations. These butterfly

operations work with twiddle factors , .

The circuit schema in Figure 30.4 follows the conquer and combine

steps of this pattern for an FFT circuit with n inputs and n outputs,

denoted by FFTn. Each line is a wire that carries a value. Inputs enter

from the left, one per wire, and outputs exit from the right. The conquer

step runs the inputs through two FFTn/2 circuits, which are also

constructed recursively. The values produced by the two FFTn/2 circuits

feed into n/2 butterfly circuits, with twiddle factors , , to

combine the results. The base case of the recursion occurs when n = 1,

where the sole output value equals the sole input value. An FFT1

circuit, therefore, does nothing, and so the smallest nontrivial FFT

circuit is FFT2, a single butterfly operation whose twiddle factor is 

.

Figure 30.5 The tree of input vectors to the recursive calls of the FFT procedure. The initial

invocation is for n = 8.

Permuting the inputs

How does the divide step enter into the circuit design? Let’s examine

how input vectors to the various recursive calls of the FFT procedure

relate to the original input vector, so that the circuit can emulate the

divide step at the start for all levels of recursion. Figure 30.5 arranges

the input vectors to the recursive calls in an invocation of FFT in a tree
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structure, where the initial call is for n = 8. The tree has one node for

each call of the procedure, labeled by the elements of the initial call as

they appear in the corresponding input vector. Each FFT invocation

makes two recursive calls, unless it has received a 1-element vector. The

first call appears in the left child, and the second call appears in the

right child.

Looking at the tree, observe that if you arrange the elements of the

initial vector a into the order in which they appear in the leaves, you can

trace the execution of the FFT procedure, but bottom up instead of top

down. First, take the elements in pairs, compute the DFT of each pair

using one butterfly operation, and replace the pair with its DFT. The

vector then holds n/2 two-element DFTs. Next, take these n/2 DFTs in

pairs and compute the DFT of the four vector elements they come from

by executing two butterfly operations, replacing two two-element DFTs

with one four-element DFT. The vector then holds n/4 four-element

DFTs. Continue in this manner until the vector holds two (n/2)-element

DFTs, which n/2 butterfly operations combine into the final n-element

DFT. In other words, you can start with the elements of the initial

vector a, but rearranged as in the leaves of Figure 30.5, and then feed

them directly into a circuit that follows the schema in Figure 30.4.

Let’s think about the permutation that rearranges the input vector.

The order in which the leaves appear in Figure 30.5 is a bit-reversal

permutation. That is, letting rev(k) be the lg n-bit integer formed by

reversing the bits of the binary representation of k, then vector element

ak moves to position rev(k). In Figure 30.5, for example, the leaves

appear in the order 0, 4, 2, 6, 1, 5, 3, 7. This sequence in binary is 000,

100, 010, 110, 001, 101, 011, 111, and you can obtain it by reversing the

bits of each number in the sequence 0, 1, 2, 3, 4, 6, 7 or, in binary, 000,

001, 010, 011, 100, 101, 110, 111. To see in general that the input vector

should be rearranged by a bit-reversal permutation, note that at the top

level of the tree, indices whose low-order bit is 0 go into the left subtree

and indices whose low-order bit is 1 go into the right subtree. Stripping

off the low-order bit at each level, continue this process down the tree,

until you get the order given by the bit-reversal permutation at the

leaves.
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The full FFT circuit

Figure 30.6 depicts the entire circuit for n = 8. The circuit begins with a

bit-reversal permutation of the inputs, followed by lg n stages, each

stage consisting of n/2 butterflies executed in parallel. Assuming that

each butterfly circuit has constant depth, the full circuit has depth Θ(lg

n). The butterfly operations at each level of recursion in the FFT

procedure are independent, and so the circuit performs them in parallel.

The figure shows wires running from left to right, carrying values

through the lg n stages. For s = 1, 2, … , lg n, stage s consists of n/2s

groups of butterflies, with 2s−1 butterflies per group. The twiddle

factors in stage s are , , where m = 2s.

Exercises

30.3-1

Show the values on the wires for each butterfly input and output in the

FFT circuit of Figure 30.6, given the input vector (0, 2, 3, −1, 4, 5, 7, 9).

30.3-2

Consider an FFTn circuit, such as in Figure 30.6, with wires 0, 1, … ,

n−1 (wire j has output yj) and stages numbered as in the figure. Stage s,

for s = 1, 2 … , lg n, consists of n/2s groups of butterflies. Which two

wires are inputs and outputs for the jth butterfly circuit in the gth group

in stage s?

30.3-3

Consider a b-bit integer k in the range 0 ≤ k < 2b. Treating k as a b-

element vector over {0, 1}, describe a b × b matrix M such that the

matrix-vector product Mk is the binary representation of rev(k).
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Figure 30.6 A full circuit that computes the FFT in parallel, here shown for n = 8 inputs. It has

lg n stages, and each stage comprises n/2 butterflies that can operate in parallel. As in Figure

30.4, only the top and bottom wires entering a butterfly interact with it. For example, the top

butterfly in stage 2 has inputs and outputs only on wires 0 and 2 (the wires with outputs y0 and

y2, respectively). This circuit has depth Θ(lg n) and performs Θ(n lg n) butterfly operations

altogether.

30.3-4

Write pseudocode for the procedure BIT-REVERSE-

PERMUTATION(a, n), which performs the bit-reversal permutation

on a vector a of length n in-place. Assume that you may call the

procedure BIT-REVERSE-OF(k, b), which returns an integer that is

the b-bit reversal of the nonnegative integer k, where 0 ≤ k < 2b.

★ 30.3-5

Suppose that the adders within the butterfly operations of a given FFT

circuit sometimes fail in such a manner that they always produce a 0

output, independent of their inputs. In addition, suppose that exactly

one adder has failed, but you don’t know which one. Describe how you

can identify the failed adder by supplying inputs to the overall FFT

circuit and observing the outputs. How efficient is your method?
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Problems

30-1     Divide-and-conquer multiplication

a. Show how to multiply two linear polynomials ax + b and cx + d using

only three multiplications. (Hint: One of the multiplications is (a + b) ·

(c + d).)

b. Give two divide-and-conquer algorithms for multiplying two

polynomials of degree-bound n in Θ(nlg 3) time. The first algorithm

should divide the input polynomial coefficients into a high half and a

low half, and the second algorithm should divide them according to

whether their index is odd or even.

c. Show how to multiply two n-bit integers in O(nlg 3) steps, where each

step operates on at most a constant number of 1-bit values.

30-2     Multidimensional fast Fourier transform

The 1-dimensional discrete Fourier transform defined by equation

(30.8) generalizes to d dimensions. The input is a d-dimensional array A

= (aj1,j2,…,jd
) whose dimensions are n1, n2, … , nd, where n1n2 ⋯ nd =

n. The d-dimensional discrete Fourier transform is defined by the

equation

for 0 ≤ k1 < n1, 0 ≤ k2 < n2, … , 0 ≤ kd < nd.

a. Show how to produce a d-dimensional DFT by computing 1-

dimensional DFTs on each dimension in turn. That is, first compute

n/n1 separate 1-dimensional DFTs along dimension 1. Then, using the

result of the DFTs along dimension 1 as the input, compute n/n2

separate 1-dimensional DFTs along dimension 2. Using this result as

the input, compute n/n3 separate 1-dimensional DFTs along

dimension 3, and so on, through dimension d.

www.konkur.in

Telegram: @uni_k



b. Show that the ordering of dimensions does not matter, so that if you

compute the 1-dimensional DFTs in any order of the d dimensions,

you compute the d-dimensional DFT.

c. Show that if you compute each 1-dimensional DFT by computing the

fast Fourier transform, the total time to compute a d-dimensional

DFT is O(n lg n), independent of d.

30-3     Evaluating all derivatives of a polynomial at a point

Given a polynomial A(x) of degree-bound n, we define its tth derivative

by

In this problem, you will show how to determine A(t)(x0) for t = 0, 1, …

, n − 1, given the coefficient representation (a0, a1, … , an−1) of A(x)

and a point x0.

a. Given coefficients b0, b1, … , bn−1 such that

show how to compute A(t)(x0), for t = 0, 1, … , n − 1, in O(n) time.

b. Explain how to find b0, b1, … , bn−1 in O(n lg n) time, given 

for k = 0, 1, … , n − 1.

c. Prove that

where f(j) = aj · j! and
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d. Explain how to evaluate  for k = 0, 1, … , n − 1 in O(n lg n)

time. Conclude that you can evaluate all nontrivial derivatives of A(x)

at x0 in O(n lg n) time.

30-4     Polynomial evaluation at multiple points

Problem 2-3 showed how to evaluate a polynomial of degree-bound n at

a single point in O(n) time using Horner’s rule. This chapter described

how to evaluate such a polynomial at all n complex roots of unity in O(n

lg n) time using the FFT. Now, you will show how to evaluate a

polynomial of degree-bound n at n arbitrary points in O(n lg2 n) time.

To do so, assume that you can compute the polynomial remainder

when one such polynomial is divided by another in O(n lg n) time. For

example, the remainder of 3x3 + x2 − 3x + 1 when divided by x2 + x +

2 is

(3x3 + x2 − 3x + 1) mod (x2 + x + 2) = −7x + 5.

Given the coefficient representation of a polynomial 

and n points x0, x1, … , xn−1, your goal is to compute the n values

A(x0), A(x1), … , A(xn−1). For 0 ≤ i ≤ j ≤ n − 1, define the polynomials 

 and Qij(x) = A(x) mod Pij(x). Note that Qij(x) has

degree at most j − i.

a. Prove that A(x) mod (x − z) = A(z) for any point z.

b. Prove that Qkk(x) = A(xk) and that Q0,n−1(x) = A(x).

c. Prove that for i ≤ k ≤ j, we have both Qik(x) = Qij(x) mod Pik(x) and

Qkj(x) = Qij(x) mod Pkj(x).

d. Give an O(n lg2 n)-time algorithm to evaluate A(x0), A(x1), … ,

A(xn−1).

30-5     FFT using modular arithmetic
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As defined, the discrete Fourier transform requires computation with

complex numbers, which can result in a loss of precision due to round-

off errors. For some problems, the answer is known to contain only

integers, and a variant of the FFT based on modular arithmetic can

guarantee that the answer is calculated exactly. An example of such a

problem is that of multiplying two polynomials with integer coefficients.

Exercise 30.2-6 gives one approach, using a modulus of length Ω(n) bits

to handle a DFT on n points. This problem explores another approach

that uses a modulus of the more reasonable length O(lg n), but it

requires that you understand the material of Chapter 31. Let n be an

exact power of 2.

a. You wish to search for the smallest k such that p = kn + 1 is prime.

Give a simple heuristic argument why you might expect k to be

approximately ln n. (The value of k might be much larger or smaller,

but you can reasonably expect to examine O(lg n) candidate values of

k on average.) How does the expected length of p compare to the

length of n?

Let g be a generator of , and let w = gk mod p.

b. Argue that the DFT and the inverse DFT are well-defined inverse

operations modulo p, where w is used as a principal nth root of unity.

c. Show how to make the FFT and its inverse work modulo p in O(n lg

n) time, where operations on words of O(lg n) bits take unit time.

Assume that the algorithm is given p and w.

d. Compute the DFT modulo p = 17 of the vector (0, 5, 3, 7, 7, 2, 1, 6).

(Hint: Verify and use the fact that g = 3 is a generator of .)

Chapter notes

Van Loan’s book [442] provides an outstanding treatment of the fast

Fourier transform. Press, Teukolsky, Vetterling, and Flannery [365, 366]

offer a good description of the fast Fourier transform and its

applications. For an excellent introduction to signal processing, a

popular FFT application area, see the texts by Oppenheim and Schafer
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[347] and Oppenheim and Willsky [348]. The Oppenheim and Schafer

book also shows how to handle cases in which n is not an exact power

of 2.

Fourier analysis is not limited to 1-dimensional data. It is widely

used in image processing to analyze data in two or more dimensions.

The books by Gonzalez and Woods [194] and Pratt [363] discuss

multidimensional Fourier transforms and their use in image processing,

and books by Tolimieri, An, and Lu [439] and Van Loan [442] discuss

the mathematics of multidimensional fast Fourier transforms.

Cooley and Tukey [101] are widely credited with devising the FFT in

the 1960s. The FFT had in fact been discovered many times previously,

but its importance was not fully realized before the advent of modern

digital computers. Although Press, Teukolsky, Vetterling, and Flannery

attribute the origins of the method to Runge and König in 1924, an

article by Heideman, Johnson, and Burrus [211] traces the history of the

FFT as far back as C. F. Gauss in 1805.

Frigo and Johnson [161] developed a fast and flexible

implementation of the FFT, called FFTW (“fastest Fourier transform in

the West”). FFTW is designed for situations requiring multiple DFT

computations on the same problem size. Before actually computing the

DFTs, FFTW executes a “planner,” which, by a series of trial runs,

determines how best to decompose the FFT computation for the given

problem size on the host machine. FFTW adapts to use the hardware

cache efficiently, and once subproblems are small enough, FFTW solves

them with optimized, straight-line code. Moreover, FFTW has the

advantage of taking Θ(n lg n) time for any problem size n, even when n

is a large prime.

Although the standard Fourier transform assumes that the input

represents points that are uniformly spaced in the time domain, other

techniques can approximate the FFT on “nonequispaced” data. The

article by Ware [449] provides an overview.

1 Interpolation is a notoriously tricky problem from the point of view of numerical stability.

Although the approaches described here are mathematically correct, small differences in the

inputs or round-off errors during computation can cause large differences in the result.
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2 Many other authors define ωn differently: ωn = e−2πi/n. This alternative definition tends to be

used for signal-processing applications. The underlying mathematics is substantially the same

with either definition of ωn.

3 The length n is actually what Section 30.1 referred to as 2n, since the degree-bound of the

given polynomials doubles prior to evaluation. In the context of polynomial multiplication,

therefore, we are actually working with complex (2n)th roots of unity.

4 The downside of iteratively updating ω is that round-off errors can accumulate, especially for

larger input sizes. Several techniques to limit the magnitude of FFT round-off errors have been

proposed, but are beyond the scope of this book. If several FFTs are going to be run on inputs

of the same size, then it might be worthwhile to directly precompute a table of all n/2 values of 

.
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31        Number-Theoretic Algorithms

Number theory was once viewed as a beautiful but largely useless

subject in pure mathematics. Today number-theoretic algorithms are

used widely, due in large part to the invention of cryptographic schemes

based on large prime numbers. These schemes are feasible because we

can find large primes quickly, and they are secure because we do not

know how to factor the product of large primes (or solve related

problems, such as computing discrete logarithms) efficiently. This

chapter presents some of the number theory and related algorithms that

underlie such applications.

We start in Section 31.1 by introducing basic concepts of number

theory, such as divisibility, modular equivalence, and unique prime

factorization. Section 31.2 studies one of the world’s oldest algorithms:

Euclid’s algorithm for computing the greatest common divisor of two

integers, and Section 31.3 reviews concepts of modular arithmetic.

Section 31.4 then explores the set of multiples of a given number a,

modulo n, and shows how to find all solutions to the equation ax = b

(mod n) by using Euclid’s algorithm. The Chinese remainder theorem is

presented in Section 31.5. Section 31.6 considers powers of a given

number a, modulo n, and presents a repeated-squaring algorithm for

efficiently computing ab mod n, given a, b, and n. This operation is at

the heart of efficient primality testing and of much modern

cryptography, such as the RSA public-key cryptosystem described in

Section 31.7. We wrap up in Section 31.8, which examines a randomized
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primality test. This test finds large primes efficiently, an essential step in

creating keys for the RSA cryptosystem.

Size of inputs and cost of arithmetic computations

Because we’ll be working with large integers, we need to adjust how to

think about the size of an input and about the cost of elementary

arithmetic operations.

In this chapter, a “large input” typically means an input containing

“large integers” rather than an input containing “many integers” (as for

sorting). Thus, the size of an input depends on the number of bits

required to represent that input, not just the number of integers in the

input. An algorithm with integer inputs a1, a2, …, ak is a polynomial-

time algorithm if it runs in time polynomial in 1g a1, 1g a2, …, 1g ak,

that is, polynomial in the lengths of its binary-encoded inputs.

Most of this book considers the elementary arithmetic operations

(multiplications, divisions, or computing remainders) as primitive

operations that take one unit of time. Counting the number of such

arithmetic operations that an algorithm performs provides a basis for

making a reasonable estimate of the algorithm’s actual running time on

a computer. Elementary operations can be time-consuming, however,

when their inputs are large. It thus becomes appropriate to measure how

many bit operations a number-theoretic algorithm requires. In this

model, multiplying two β-bit integers by the ordinary method uses

Θ(β2) bit operations. Similarly, dividing a β-bit integer by a shorter

integer or taking the remainder of a β-bit integer when divided by a

shorter integer requires Θ(β2) time by simple algorithms. (See Exercise

31.1-12.) Faster methods are known. For example, a simple divide-and-

conquer method for multiplying two β-bit integers has a running time of

Θ(β1g 3), and O(β 1g β 1g 1g β) time is possible. For practical purposes,

however, the Θ(β2) algorithm is often best, and we use this bound as a

basis for our analyses. In this chapter, we’ll usually analyze algorithms

in terms of both the number of arithmetic operations and the number of

bit operations they require.
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31.1    Elementary number-theoretic notions

This section provides a brief review of notions from elementary number

theory concerning the set ℤ = {…, –2, –1, 0, 1, 2, …} of integers and the

set ℕ = {0, 1, 2, …} of natural numbers.

Divisibility and divisors

The notion of one integer being divisible by another is key to the theory

of numbers. The notation d | a (read “d divides a”) means that a = kd for

some integer k. Every integer divides 0. If a > 0 and d | a, then |d| ≤ |a|. If

d | a, then we also say that a is a multiple of d. If d does not divide a, we

write d ∤ a.

If d | a and d ≥ 0, then d is a divisor of a. Since d | a if and only if –d |

a, without loss of generality, we define the divisors of a to be

nonnegative, with the understanding that the negative of any divisor of

a also divides a. A divisor of a nonzero integer a is at least 1 but not

greater than |a|. For example, the divisors of 24 are 1, 2, 3, 4, 6, 8, 12,

and 24.

Every positive integer a is divisible by the trivial divisors 1 and a. The

nontrivial divisors of a are the factors of a. For example, the factors of

20 are 2, 4, 5, and 10.

Prime and composite numbers

An integer a > 1 whose only divisors are the trivial divisors 1 and a is a

prime number or, more simply, a prime. Primes have many special

properties and play a critical role in number theory. The first 20 primes,

in order, are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71.

Exercise 31.1-2 asks you to prove that there are infinitely many primes.

An integer a > 1 that is not prime is a composite number or, more

simply, a composite. For example, 39 is composite because 3 | 39. We call

the integer 1 a unit, and it is neither prime nor composite. Similarly, the

integer 0 and all negative integers are neither prime nor composite.
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The division theorem, remainders, and modular equivalence

Given an integer n, we can partition the integers into those that are

multiples of n and those that are not multiples of n. Much number

theory is based upon refining this partition by classifying the integers

that are not multiples of n according to their remainders when divided

by n. The following theorem provides the basis for this refinement. We

omit the proof (but see, for example, Niven and Zuckerman [345]).

Theorem 31.1 (Division theorem)

For any integer a and any positive integer n, there exist unique integers

q and r such that 0 ≤ r < n and a = qn + r.

▪

The value q = ⌊a/n⌋ is the quotient of the division. The value r = a

mod n is the remainder (or residue) of the division, so that n | a if and

only if a mod n = 0.

The integers partition into n equivalence classes according to their

remainders modulo n. The equivalence class modulo n containing an

integer a is

[a]n = {a + kn : k ∈ ℤ}.

For example, [3]7 = {…, –11, –4, 3, 10, 17, …}, and [–4]7 and [10]7 also

denote this set. With the notation defined on page 64, writing a ∈ [b]n is

the same as writing a = b (mod n). The set of all such equivalence

classes is

When you see the definition

you should read it as equivalent to equation (31.1) with the

understanding that 0 represents [0]n, 1 represents [1]n, and so on. Each

class is represented by its smallest nonnegative element. You should

keep the underlying equivalence classes in mind, however. For example,
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if we refer to –1 as a member of ℤn, we are really referring to [n – 1]n,

since –1 = n – 1 (mod n).

Common divisors and greatest common divisors

If d is a divisor of a and d is also a divisor of b, then d is a common

divisor of a and b. For example, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15,

and 30, and so the common divisors of 24 and 30 are 1, 2, 3, and 6. Any

pair of integers has a common divisor of 1.

An important property of common divisors is that

More generally, for any integers x and y,

Also, if a | b, then either |a| ≤ |b| or b = 0, which implies that

The greatest common divisor of two integers a and b which are not

both 0, denoted by gcd(a, b), is the largest of the common divisors of a

and b. For example, gcd(24, 30) = 6, gcd(5, 7) = 1, and gcd(0, 9) = 9. If

a and b are both nonzero, then gcd(a, b) is an integer between 1 and min

{|a|, |b|}. We define gcd(0, 0) to be 0, so that standard properties of the

gcd function (such as equation (31.9) below) hold universally.

Exercise 31.1-9 asks you to prove the following elementary properties

of the gcd function:

The following theorem provides an alternative and useful way to

characterize gcd(a, b).

Theorem 31.2
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If a and b are any integers, not both zero, then gcd(a, b) is the smallest

positive element of the set {ax + by : x, y ∈ ℤ} of linear combinations

of a and b.

Proof   Let s be the smallest positive such linear combination of a and b,

and let s = ax + by for some x, y ∈ ℤ. Let q = ⌊a/s⌋. Equation (3.11) on

page 64 then implies

a mod s = a – qs

= a – q(ax + by)

= a (1 – qx) + b (–qy),

so that a mod s is a linear combination of a and b as well. Because s is

the smallest positive such linear combination and 0 ≤ a mod s < s

(inequality (3.12) on page 64), a mod s cannot be positive. Hence, a mod

s = 0. Therefore, we have that s | a and, by analogous reasoning, s | b.

Thus, s is a common divisor of a and b, so that gcd(a, b) ≥ s. By

definition, gcd(a, b) divides both a and b, and s is defined as a linear

combination of a and b. Equation (31.4) therefore implies that gcd(a, b)

| s. But gcd(a, b) | s and s > 0 imply that gcd(a, b) ≤ s. Combining gcd(a,

b) ≥ s and gcd(a, b) ≤ s yields gcd(a, b) = s. We conclude that s, the

smallest positive linear combination of a and b, is also their greatest

common divisor.

▪

Theorem 31.2 engenders three useful corollaries.

Corollary 31.3

For any integers a and b, if d | a and d | b, then d | gcd(a, b).

Proof     This corollary follows from equation (31.4) and Theorem 31.2,

because gcd(a, b) is a linear combination of a and b,

▪

Corollary 31.4

For all integers a and b and any nonnegative integer n, we have

gcd(an, bn) = n gcd(a, b).
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Proof   If n = 0, the corollary is trivial. If n > 0, then gcd(an, bn) is the

smallest positive element of the set {anx + bny : x, y ∈ ℤ}, which in

turn is n times the smallest positive element of the set {ax + by : x, y ∈

ℤ}.

▪

Corollary 31.5

For all positive integers n, a, and b, if n | ab and gcd(a, n) = 1, then n | b.

Proof   Exercise 31.1-5 asks you to provide the proof.

▪

Relatively prime integers

Two integers a and b are relatively prime if their only common divisor is

1, that is, if gcd(a, b) = 1. For example, 8 and 15 are relatively prime,

since the divisors of 8 are 1, 2, 4, and 8, and the divisors of 15 are 1, 3,

5, and 15. The following theorem states that if two integers are each

relatively prime to an integer p, then their product is relatively prime to

p.

Theorem 31.6

For any integers a, b, and p, we have gcd(ab, p) = 1 if and only if gcd(a,

p) = 1 and gcd(b, p) = 1 both hold.

Proof   If gcd(a, p) = 1 and gcd(b, p) = 1, then it follows from Theorem

31.2 that there exist integers x, y, x′, and y′ such that

ax + py = 1,

bx′ + py′ = 1.

Multiplying these equations and rearranging gives

ab(xx′) + p(ybx′ + y′ax + pyy′) = 1.

Since 1 is thus a positive linear combination of ab and p, it is the

smallest positive linear combination. Applying Theorem 31.2 implies

gcd(ab, p) = 1, completing the proof in this direction.
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Conversely, if gcd(ab, p) = 1, then Theorem 31.2 implies that there

exist integers x and y such that

abx + py = 1.

Writing abx as a(bx) and applying Theorem 31.2 again proves that

gcd(a, p) = 1. Proving that gcd(b, p) = 1 is similar.

▪

Integers n1, n2, …, nk are pairwise relatively prime if gcd(ni, nj) = 1

for 1 ≤ i < j ≤ k.

Unique prime factorization

An elementary but important fact about divisibility by primes is the

following.

Theorem 31.7

For all primes p and all integers a and b, if p | ab, then p | a or p | b (or

both).

Proof   Assume for the purpose of contradiction that p | ab, but that p ∤

a and p ∤ b. Because p > 1 and ab = kp for some k ∈ ℤ, equation (31.10)

gives that gcd(ab, p) = p. We also have that gcd(a, p) = 1 and gcd(b, p) =

1, since the only divisors of p are 1 and p, and we assumed that p divides

neither a nor b. Theorem 31.6 then implies that gcd(ab, p) = 1,

contradicting gcd(ab, p) = p. This contradiction completes the proof.

▪

A consequence of Theorem 31.7 is that any composite integer can be

uniquely factored into a product of primes. Exercise 31.1-11 asks you to

provide a proof.

Theorem 31.8 (Unique prime factorization)

There is exactly one way to write any composite integer a as a product

of the form
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where the pi are prime, p1 < p2 < … < pr, and the ei are positive

integers.

▪

As an example, the unique prime factorization of the number 6000 is

24 · 31 · 53.

Exercises

31.1-1

Prove that if a > b > 0 and c = a + b, then c mod a = b.

31.1-2

Prove that there are infinitely many primes. (Hint: Show that none of

the primes p1, p2, …, pk divide (p1p2 ⋯ pk) + 1.)

31.1-3

Prove that if a | b and b | c, then a | c.

31.1-4

Prove that if p is prime and 0 < k < p, then gcd(k, p) = 1.

31.1-5

Prove Corollary 31.5.

31.1-6

Prove that if p is prime and 0 < k < p, then . Conclude that for all

integers a and b and all primes p,

(a + b)p = ap + bp (mod p).

31.1-7

Prove that if a and b are any positive integers such that a | b, then

(x mod b) mod a = x mod a

for any x. Prove, under the same assumptions, that

x = y (mod b) implies x = y (mod a)
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for any integers x and y.

31.1-8

For any integer k > 0, an integer n is a kth power if there exists an

integer a such that ak = n. Furthermore, n > 1 is a nontrivial power if it

is a kth power for some integer k > 1. Show how to determine whether a

given β-bit integer n is a nontrivial power in time polynomial in β.

31.1-9

Prove equations (31.6)–(31.10).

31.1-10

Show that the gcd operator is associative. That is, prove that for all

integers a, b, and c, we have

gcd(a, gcd(b, c)) = gcd(gcd(a, b), c).

★ 31.1-11

Prove Theorem 31.8.

31.1-12

Give efficient algorithms for the operations of dividing a β-bit integer by

a shorter integer and of taking the remainder of a β-bit integer when

divided by a shorter integer. Your algorithms should run in Θ(β2) time.

31.1-13

Give an efficient algorithm to convert a given β-bit (binary) integer to a

decimal representation. Argue that if multiplication or division of

integers whose length is at most β takes M(β) time, where M(β) = Ω(β),

then you can convert binary to decimal in O(M(β) 1g β) time. (Hint: Use

a divide-and-conquer approach, obtaining the top and bottom halves of

the result with separate recursions.)

31.1-14

Professor Marshall sets up n lightbulbs in a row. The lightbulbs all have

switches, so that if he presses a bulb, it toggles on if it was off and off if

it was on. The lightbulbs all start off. For i = 1, 2, 3, …, n, the professor
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presses bulb i, 2i, 3i, …. After the last press, which lightbulbs are on?

Prove your answer.

31.2    Greatest common divisor

In this section, we describe Euclid’s algorithm for efficiently computing

the greatest common divisor of two integers. When we analyze the

running time, we’ll see a surprising connection with the Fibonacci

numbers, which yield a worst-case input for Euclid’s algorithm.

We restrict ourselves in this section to nonnegative integers. This

restriction is justified by equation (31.8), which states that gcd(a, b) =

gcd(|a|, |b|).

In principle, for positive integers a and b, their prime factorizations

suffice to compute gcd(a, b). Indeed, if

with 0 exponents being used to make the set of primes p1, p2, …, pr the

same for both a and b, then, as Exercise 31.2-1 asks you to show,

The best algorithms to date for factoring do not run in polynomial time.

Thus, this approach to computing greatest common divisors seems

unlikely to yield an efficient algorithm.

Euclid’s algorithm for computing greatest common divisors relies on

the following theorem.

Theorem 31.9 (GCD recursion theorem)

For any nonnegative integer a and any positive integer b,

gcd(a, b) = gcd(b, a mod b).

Proof      We will show that gcd(a, b) and gcd(b, a mod b) divide each

other. Since they are both nonnegative, equation (31.5) then implies that

they must be equal.
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We first show that gcd(a, b) | gcd(b, a mod b). If we let d = gcd(a, b),

then d | a and d | b. By equation (3.11) on page 64, a mod b = a – qb,

where q = ⌊a/b⌋. Since a mod b is thus a linear combination of a and b,

equation (31.4) implies that d | (a mod b). Therefore, since d | b and d | (a

mod b), Corollary 31.3 implies that d | gcd(b, a mod b), that is,

Showing that gcd(b, a mod b) | gcd(a, b) is almost the same. If we

now let d = gcd(b, a mod b), then d | b and d | (a mod b). Since a = qb +

(a mod b), where q = ⌊a/b⌋, we have that a is a linear combination of b

and (a mod b). By equation (31.4), we conclude that d | a. Since d | b and

d | a, we have that d | gcd(a, b) by Corollary 31.3, so that

Using equation (31.5) to combine equations (31.14) and (31.15)

completes the proof.

▪

Euclid’s algorithm

Euclid’s Elements (circa 300 B.C.E.) describes the following gcd

algorithm, although its origin might be even earlier. The recursive

procedure EUCLID implements Euclid’s algorithm, based directly on

Theorem 31.9. The inputs a and b are arbitrary nonnegative integers.

EUCLID(a, b)

1 if b == 0

2 return a

3 else return EUCLID(b, a mod b)

For example, here is how the procedure computes gcd(30, 21):

EUCLID(30, 21) = EUCLID(21, 9)

= EUCLID(9, 3)

= EUCLID(3, 0)
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= 3.

This computation calls EUCLID recursively three times.

The correctness of EUCLID follows from Theorem 31.9 and the

property that if the algorithm returns a in line 2, then b = 0, so that by

equation (31.9), gcd(a, b) = gcd(a, 0) = a. The algorithm cannot recurse

indefinitely, since the second argument strictly decreases in each

recursive call and is always nonnegative. Therefore, EUCLID always

terminates with the correct answer.

The running time of Euclid’s algorithm

Let’s analyze the worst-case running time of EUCLID as a function of

the size of a and b. The overall running time of EUCLID is

proportional to the number of recursive calls it makes. The analysis

assumes that a > b ≥ 0, that is, the first argument is greater than the

second argument. Why? If b = a > 0, then a mod b = 0 and the

procedure terminates after one recursive call. If b > a ≥ 0, then the

procedure makes just one more recursive call than when a > b, because

in this case EUCLID(a, b) immediately makes the recursive call

EUCLID(b, a), and now the first argument is greater than the second.

Our analysis relies on the Fibonacci numbers Fk, defined by the

recurrence equation (3.31) on page 69.

Lemma 31.10

If a > b ≥ 1 and the call EUCLID(a, b) performs k ≥ 1 recursive calls,

then a ≥ Fk+2 and b ≥ Fk+1.

Proof   The proof proceeds by induction on k. For the base case of the

induction, let k = 1. Then, b ≥ 1 = F2, and since a > b, we must have a ≥

2 = F3. Since b > (a mod b), in each recursive call the first argument is

strictly larger than the second. The assumption that a > b therefore

holds for each recursive call.

Assuming inductively that the lemma holds if the procedure makes k

– 1 recursive calls, we shall prove that the lemma holds for k recursive

calls. Since k > 0, we have b > 0, and EUCLID(a, b) calls EUCLID(b, a
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mod b) recursively, which in turn makes k – 1 recursive calls. The

inductive hypothesis then implies that b ≥ Fk+1 (thus proving part of

the lemma), and a mod b ≥ Fk. We have

b + (a mod b) = b + (a – b ⌊a/b⌋) (by equation (3.11))

≤ a,

since a > b > 0 implies ⌊a/b⌋ ≥ 1. Thus,

a ≥ b + (a mod b)

≥ Fk+1 + Fk

= Fk+2.

▪

The following theorem is an immediate corollary of this lemma.

Theorem 31.11 (Lamé’s theorem)

For any integer k ≥ 1, if a > b ≥ 1 and b < Fk+1, then the call

EUCLID(a, b) makes fewer than k recursive calls.

▪

To show that the upper bound of Theorem 31.11 is the best possible,

we’ll show that the call EUCLID(Fk+1, Fk) makes exactly k – 1

recursive calls when k ≥ 2. We use induction on k. For the base case, k =

2, and the call EUCLID(F3, F2) makes exactly one recursive call, to

EUCLID(1, 0). (We have to start at k = 2, because when k = 1 we do

not have F2 > F1.) For the inductive step, assume that EUCLID(Fk,

Fk−1) makes exactly k – 2 recursive calls. For k > 2, we have Fk > Fk−1

> 0 and Fk+1 = Fk + Fk−1, and so by Exercise 31.1-1, we have Fk+1

mod Fk = Fk−1. Because EUCLID(a, b) calls EUCLID(b, a mod b)

when b > 0, the call EUCLID(Fk+1, Fk) recurses one time more than

the call EUCLID(Fk, Fk−1), or exactly k – 1 times, which meets the

upper bound given by Theorem 31.11.
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Since Fk is approximately , where ϕ is the golden ratio 

 defined by equation (3.32) on page 69, the number of

recursive calls in EUCLID is O(1g b). (See Exercise 31.2-5 for a tighter

bound.) Therefore, a call of EUCLID on two β-bit numbers performs

O(β) arithmetic operations and O(β3) bit operations (assuming that

multiplication and division of β-bit numbers take O(β2) bit operations).

Problem 31-2 asks you to prove an O(β2) bound on the number of bit

operations.

The extended form of Euclid’s algorithm

By rewriting Euclid’s algorithm, we can gain additional useful

information. Specifically, let’s extend the algorithm to compute the

integer coefficients x and y such that

where either or both of x and y may be zero or negative. These

coefficients will prove useful later for computing modular multiplicative

inverses. The procedure EXTENDED-EUCLID takes as input a pair of

nonnegative integers and returns a triple of the form (d, x, y) that

satisfies equation (31.16). As an example, Figure 31.1 traces out the call

EXTENDED-EUCLID(99, 78).

EXTENDED-EUCLID(a, b)

1 if b == 0

2 return (a, 1, 0)

3 else (d′, x′, y′) = EXTENDED-EUCLID(b, a mod b)

4 (d, x, y) = (d′, y′, x′ – ⌊a/b⌋ y′)
5 return (d, x, y)

The EXTENDED-EUCLID procedure is a variation of the

EUCLID procedure. Line 1 is equivalent to the test “b == 0” in line 1 of

EUCLID. If b = 0, then EXTENDED-EUCLID returns not only d = a

in line 2, but also the coefficients x = 1 and y = 0, so that a = ax + by. If
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b ≠ 0, EXTENDED-EUCLID first computes (d′, x′, y′) such that d′ =

gcd(b, a mod b) and

As in the EUCLID procedure, we have d = gcd(a, b) = d′ = gcd(b, a

mod b). To obtain x and y such that d = ax + by, let’s rewrite equation

(31.17), setting d = d′ and using equation (3.11):

Figure 31.1 How EXTENDED-EUCLID computes gcd(99, 78). Each line shows one level of

the recursion: the values of the inputs a and b, the computed value ⌊a/b⌋, and the values d, x,

and y returned. The triple (d, x, y) returned becomes the triple (d′, x′, y′) used at the next higher

level of recursion. The call EXTENDED-EUCLID(99, 78) returns (3, –11, 14), so that gcd(99,

78) = 3 = 99 · (–11) + 78 · 14.

d = bx′ + (a – b ⌊a/b⌋)y′
= ay′ + b(x′ – ⌊a/b⌋ y′).

Thus, choosing x = y′ and y = x′ – ⌊a/b⌋ y′ satisfies the equation d = ax

+ by, thereby proving the correctness of EXTENDED-EUCLID.

Since the number of recursive calls made in EUCLID is equal to the

number of recursive calls made in EXTENDED-EUCLID, the running

times of EUCLID and EXTENDED-EUCLID are the same, to within

a constant factor. That is, for a > b > 0, the number of recursive calls is

O(1g b).

Exercises

31.2-1

Prove that equations (31.11) and (31.12) imply equation (31.13).

31.2-2
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Compute the values (d, x, y) that the call EXTENDED-EUCLID(899,

493) returns.

31.2-3

Prove that for all integers a, k, and n,

Use equation (31.18) to show that a = 1 (mod n) implies gcd(a, n) = 1.

31.2-4

Rewrite EUCLID in an iterative form that uses only a constant amount

of memory (that is, stores only a constant number of integer values).

31.2-5

If a > b ≥ 0, show that the call EUCLID (a, b) makes at most 1 + logϕ b

recursive calls. Improve this bound to 1 + logϕ(b/gcd(a, b)).

31.2-6

What does EXTENDED-EUCLID(Fk+1, Fk) return? Prove your

answer correct.

31.2-7

Define the gcd function for more than two arguments by the recursive

equation gcd(a0, a1, …, an) = gcd(a0, gcd(a1, a2, …, an)). Show that

the gcd function returns the same answer independent of the order in

which its arguments are specified. Also show how to find integers x0,

x1, …, xn such that gcd(a0, a1, …, an) = a0x0 + a1x1 + ⋯ + anxn.

Show that the number of divisions performed by your algorithm is O(n

+ 1g(max {a0, a1, …, an})).

31.2-8

The least common multiple 1cm(a1, a2, …, an) of integers a1, a2, …, an

is the smallest nonnegative integer that is a multiple of each ai. Show

how to compute 1cm(a1, a2, …, an) efficiently using the (two-argument)

gcd operation as a subroutine.
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31.2-9

Prove that n1, n2, n3, and n4 are pairwise relatively prime if and only if

gcd(n1n2, n3n4) = gcd(n1n3, n2n4) = 1.

More generally, show that n1, n2, …, nk are pairwise relatively prime if

and only if a set of ⌈1g k⌉ pairs of numbers derived from the ni are

relatively prime.

31.3    Modular arithmetic

Informally, you can think of modular arithmetic as arithmetic as usual

over the integers, except that when working modulo n, then every result

x is replaced by the element of {0, 1, …, n – 1} that is equivalent to x,

modulo n (so that x is replaced by x mod n). This informal model

suffices if you stick to the operations of addition, subtraction, and

multiplication. A more formal model for modular arithmetic, which

follows, is best described within the framework of group theory.

Finite groups

A group (S, ⊕) is a set S together with a binary operation ⊕ defined on

S for which the following properties hold:

1. Closure: For all a, b ∈ S, we have a ⊕ b ∈ S.

2. Identity: There exists an element e ∈ S, called the identity of the

group, such that e ⊕ a = a ⊕ e = a for all a ∈ S.

3. Associativity: For all a, b, c ∈ S, we have (a ⊕ b) ⊕ c = a ⊕ (b ⊕

c).

4. Inverses: For each a ∈ S, there exists a unique element b ∈ S,

called the inverse of a, such that a ⊕ b = b ⊕ a = e.

As an example, consider the familiar group (ℤ, +) of the integers ℤ

under the operation of addition: 0 is the identity, and the inverse of a is

–a. An abelian group (S, ⊕) satisfies the commutative law a ⊕ b = b ⊕ a
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for all a, b ∈ S. The size of group (S, ⊕) is |S|, and if |S| < ∞, then (S,

⊕) is a finite group.

The groups defined by modular addition and multiplication

We can form two finite abelian groups by using addition and

multiplication modulo n, where n is a positive integer. These groups are

based on the equivalence classes of the integers modulo n, defined in

Section 31.1.

To define a group on ℤn, we need suitable binary operations, which

we obtain by redefining the ordinary operations of addition and

multiplication. We can define addition and multiplication operations for

ℤn, because the equivalence class of two integers uniquely determines

the equivalence class of their sum or product. That is, if a = a′ (mod n)

and b = b′ (mod n), then

a + b = a′ + b′ (mod n),

ab = a′b′ (mod n).

Thus, we define addition and multiplication modulo n, denoted +n and

·n, by

(We can define subtraction similarly on ℤn by [a]n –n [b]n = [a – b]n, but

division is more complicated, as we’ll see.) These facts justify the

common and convenient practice of using the smallest nonnegative

element of each equivalence class as its representative when performing

computations in ℤn. We add, subtract, and multiply as usual on the

representatives, but we replace each result x by the representative of its

class, that is, by x mod n.
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Figure 31.2 Two finite groups. Equivalence classes are denoted by their representative elements.

(a) The group (ℤ6, +6). (b) The group .

Using this definition of addition modulo n, we define the additive

group modulo n as (ℤn, +n). The size of the additive group modulo n is |

ℤn| = n. Figure 31.2(a) gives the operation table for the group (ℤ6, +6).

Theorem 31.12

The system (ℤn, +n) is a finite abelian group.

Proof   Equation (31.19) shows that (ℤn, +n) is closed. Associativity and

commutativity of +n follow from the associativity and commutativity of

+:

([a]n +n [b]n) +n [c]n = [a + b]n +n [c]n

= [(a + b) + c]n

= [a + (b + c)]n

= [a]n +n [b + c]n

= [a]n +n ([b]n +n [c]n),

 

[a]n +n [b]n = [a + b]n

= [b + a]n

www.konkur.in

Telegram: @uni_k



= [b]n +n [a]n.

The identity element of (ℤn, +n) is 0 (that is, [0]n). The (additive) inverse

of an element a (that is, of [a]n) is the element –a (that is, [–a]n or [n –

a]n), since [a]n +n [–a]n = [a – a]n = [0]n.

▪

Using the definition of multiplication modulo n, we define the

multiplicative group modulo n as . The elements of this group are

the set  of elements in ℤn that are relatively prime to n, so that each

one has a unique inverse, modulo n:

To see that  is well defined, note that for 0 ≤ a < n, we have a = (a +

kn) (mod n) for all integers k. By Exercise 31.2-3, therefore, gcd(a, n) = 1

implies gcd(a + kn, n) = 1 for all integers k. Since [a]n = {a + kn : k ∈

ℤ}, the set  is well defined. An example of such a group is

where the group operation is multiplication modulo 15. (We have

denoted an element [a]15 as a, and thus, for example, we denote [7]15 as

7.) Figure 31.2(b) shows the group . For example, 8 · 11 = 13

(mod 15), working in . The identity for this group is 1.

Theorem 31.13

The system  is a finite abelian group.

Proof      Theorem 31.6 implies that  is closed. Associativity and

commutativity can be proved for ·n as they were for +n in the proof of

Theorem 31.12. The identity element is [1]n. To show the existence of

inverses, let a be an element of  and let (d, x, y) be returned by

EXTENDED-EUCLID(a, n). Then we have d = 1, since , and

or equivalently,
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ax = 1 (mod n).

Thus [x]n is a multiplicative inverse of [a]n, modulo n. Furthermore, we

claim that . To see why, equation (31.20) demonstrates that the

smallest positive linear combination of x and n must be 1. Therefore,

Theorem 31.2 implies that gcd(x, n) = 1. We defer the proof that

inverses are uniquely defined until Corollary 31.26 in Section 31.4.

▪

As an example of computing multiplicative inverses, suppose that a

= 5 and n = 11. Then EXTENDED-EUCLID(a, n) returns (d, x, y) =

(1, –2, 1), so that 1 = 5 · (–2) + 11 · 1. Thus, [–2]11 (i.e., [9]11) is the

multiplicative inverse of [5]11.

When working with the groups (ℤn, +n) and  in the remainder

of this chapter, we follow the convenient practice of denoting

equivalence classes by their representative elements and denoting the

operations +n and ·n by the usual arithmetic notations + and · (or

juxtaposition, so that ab = a · b) respectively. Furthermore, equivalences

modulo n may also be interpreted as equations in ℤn. For example, the

following two statements are equivalent:

ax = b (mod n)

and

[a]n ·n [x]n = [b]n.

As a further convenience, we sometimes refer to a group (S, ⊕)

merely as S when the operation ⊕ is understood from context. We may

thus refer to the groups (ℤn, +n) and  as just ℤn and ,

respectively.

We denote the (multiplicative) inverse of an element a by (a−1 mod

n). Division in  is defined by the equation a/b = ab−1 (mod n). For

example, in  we have that 7−1 = 13 (mod 15), since 7 · 13 = 91 = 1

(mod 15), so that 2/7 = 2 · 13 = 11 (mod 15).
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The size of  is denoted ϕ(n). This function, known as Euler’s phi

function, satisfies the equation

so that p runs over all the primes dividing n (including n itself, if n is

prime). We won’t prove this formula here. Intuitively, begin with a list of

the n remainders {0, 1, …, n – 1} and then, for each prime p that divides

n, cross out every multiple of p in the list. For example, since the prime

divisors of 45 are 3 and 5,

If p is prime, then , and

If n is composite, then ϕ(n) < n – 1, although it can be shown that

for n ≥ 3, where γ = 0.5772156649 … is Euler’s constant. A somewhat

simpler (but looser) lower bound for n > 5 is

The lower bound (31.23) is essentially the best possible, since

Subgroups
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If (S, ⊕) is a group, S′ ⊆ S, and (S′, ⊕) is also a group, then (S′, ⊕) is a

subgroup of (S, ⊕). For example, the even integers form a subgroup of

the integers under the operation of addition. The following theorem,

whose proof we leave as Exercise 31.3-3, provides a useful tool for

recognizing subgroups.

Theorem 31.14 (A nonempty closed subset of a finite group is a subgroup)

If (S, ⊕) is a finite group and S′ is any nonempty subset of S such that a

⊕ b ∈ S′ for all a, b ∈ S′, then (S′, ⊕) is a subgroup of (S, ⊕).

▪

For example, the set {0, 2, 4, 6} forms a subgroup of ℤ8, since it is

nonempty and closed under the operation + (that is, it is closed under

+8).

The following theorem, whose proof is omitted, provides an

extremely useful constraint on the size of a subgroup.

Theorem 31.15 (Lagrange’s theorem)

If (S, ⊕) is a finite group and (S′, ⊕) is a subgroup of (S, ⊕), then |S′| is
a divisor of |S|.

▪

A subgroup S′ of a group S is a proper subgroup if S′ ≠ S. We’ll use

the following corollary in the analysis in Section 31.8 of the Miller-

Rabin primality test procedure.

Corollary 31.16

If S′ is a proper subgroup of a finite group S, then |S′| ≤ |S|/2.

▪

Subgroups generated by an element

Theorem 31.14 affords us a straightforward way to produce a subgroup

of a finite group (S, ⊕): choose an element a and take all elements that

can be generated from a using the group operation. Specifically, define

a(k) for k ≥ 1 by
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For example, taking a = 2 in the group ℤ6 yields the sequence

a(1), a(2), a(3), … = 2, 4, 0, 2, 4, 0, 2, 4, 0, ….

We have a(k) = ka mod n in the group ℤn, and a(k) = ak mod n in the

group . We define the subgroup generated by a, denoted 〈a〉 or (〈a〉, ⊕),

by

〈a〉 = {a(k) : k ≥ 1}.

We say that a generates the subgroup 〈a〉 or that a is a generator of 〈a〉.

Since S is finite, 〈a〉 is a finite subset of S, possibly including all of S.

Since the associativity of ⊕ implies

a(i) ⊕ a(j) = a(i+j),

〈a〉 is closed and therefore, by Theorem 31.14, 〈a〉 is a subgroup of S.

For example, in ℤ6, we have

〈0〉 = {0},

〈1〉 = {0, 1, 2, 3, 4, 5},

〈2〉 = {0, 2, 4}.

Similarly, in , we have

〈1〉 = {1},

〈2〉 = {1, 2, 4},

〈3〉 = {1, 2, 3, 4, 5, 6}.

The order of a (in the group S), denoted ord(a), is defined as the

smallest positive integer t such that a(t) = e. (Recall that e ∈ S is the

group identity.)
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Theorem 31.17

For any finite group (S, ⊕) and any a ∈ S, the order of a is equal to the

size of the subgroup it generates, or ord(a) = |〈a〉|.

Proof   Let t = ord(a). Since a(t) = e and a(t+k) = a(t) ⊕ a(k) = a(k) for

k ≥ 1, if i > t, then a(i) = a(j) for some j < i. Therefore, as we generate

elements by a, we see no new elements after a(t). Thus, 〈a〉 = {a(1), a(2),

…, a(t)}, and so |〈a〉| ≤ t. To show that |〈a〉| ≥ t, we show that each

element of the sequence a(1), a(2), …, a(t) is distinct. Suppose for the

purpose of contradiction that a(i) = a(j) for some i and j satisfying 1 ≤ i

< j ≤ t. Then, a(i+k) = a(j+k) for k ≥ 0. But this equation implies that

a(i+(t–j)) = a(j+(t–j)) = e, a contradiction, since i + (t – j) < t but t is the

least positive value such that a(t) = e. Therefore, each element of the

sequence a(1), a(2), …, a(t) is distinct, and |〈a〉| ≥ t. We conclude that

ord(a) = |〈a〉|.

▪

Corollary 31.18

The sequence a(1), a(2), … is periodic with period t = ord(a), that is, a(i)

= a(j) if and only if i = j (mod t).

▪

Consistent with the above corollary, we define a(0) as e and a(i) as a(i

mod t), where t = ord(a), for all integers i.

Corollary 31.19

If (S, ⊕) is a finite group with identity e, then for all a ∈ S,

a(|S|) = e.

Proof      Lagrange’s theorem (Theorem 31.15) implies that ord(a) | |S|,

and so |S| = 0 (mod t), where t = ord(a). Therefore, a(|S|) = a(0) = e.

▪
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Exercises

31.3-1

Draw the group operation tables for the groups (ℤ4, +4) and .

Show that these groups are isomorphic by exhibiting a one-to-one

correspondence f between ℤ4 and  such that a+b = c (mod 4) if and

only if f(a)·f(b) = f(c) (mod 5).

31.3-2

List all subgroups of ℤ9 and of .

31.3-3

Prove Theorem 31.14.

31.3-4

Show that if p is prime and e is a positive integer, then

ϕ(pe) = pe–1(p – 1).

31.3-5

Show that for any integer n > 1 and for any , the function 

 defined by fa(x) = ax mod n is a permutation of .

31.4    Solving modular linear equations

We now consider the problem of finding solutions to the equation

where a > 0 and n > 0. This problem has several applications. For

example, we’ll use it in Section 31.7 as part of the procedure to find keys

in the RSA public-key cryptosystem. We assume that a, b, and n are

given, and we wish to find all values of x, modulo n, that satisfy

equation (31.26). The equation may have zero, one, or more than one

such solution.
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Let 〈a〉 denote the subgroup of ℤn generated by a. Since 〈a〉 = {a(x) :

x > 0} = {ax mod n : x > 0}, equation (31.26) has a solution if and only

if [b] ∈ 〈a〉. Lagrange’s theorem (Theorem 31.15) tells us that |〈a〉| must

be a divisor of n. The following theorem gives us a precise

characterization of 〈a〉.

Theorem 31.20

For any positive integers a and n, if d = gcd(a, n), then we have

〈a〉 = 〈d〉

= {0, d, 2d, …, ((n/d) – 1)d}

in ℤn, and thus

|〈a〉| = n/d.

Proof     We begin by showing that d ∈ 〈a〉. Recall that EXTENDED-

EUCLID(a, n) returns a triple (d, x, y) such that ax + ny = d. Thus, ax

= d (mod n), so that d ∈ 〈a〉. In other words, d is a multiple of a in ℤn.

Since d ∈ 〈a〉, it follows that every multiple of d belongs to 〈a〉,

because any multiple of a multiple of a is itself a multiple of a. Thus, 〈a〉

contains every element in {0, d, 2d, …, ((n/d) – 1)d}. That is, 〈d〉 ⊆ 〈a〉.

We now show that 〈a〉 ⊆ 〈d〉. If m ∈ 〈a〉, then m = ax mod n for some

integer x, and so m = ax + ny for some integer y. Because d = gcd(a, n),

we know that d | a and d | n, and so d | m by equation (31.4). Therefore,

m ∈ 〈d〉.

Combining these results, we have that 〈a〉 = 〈d〉. To see that |〈a〉| =

n/d, observe that there are exactly n/d multiples of d between 0 and n – 1,

inclusive.

▪

Corollary 31.21

The equation ax = b (mod n) is solvable for the unknown x if and only if

d | b, where d = gcd(a, n).
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Proof   The equation ax = b (mod n) is solvable if and only if [b] ∈ 〈a〉,

which is the same as saying

(b mod n) ∈ {0, d, 2d, …, ((n/d) – 1)d},

by Theorem 31.20. If 0 ≤ b < n, then b ∈ 〈a〉 if and only if d | b, since the

members of 〈a〉 are precisely the multiples of d. If b < 0 or b ≥ n, the

corollary then follows from the observation that d | b if and only if d | (b

mod n), since b and b mod n differ by a multiple of n, which is itself a

multiple of d.

▪

Corollary 31.22

The equation ax = b (mod n) either has d distinct solutions modulo n,

where d = gcd(a, n), or it has no solutions.

Proof      If ax = b (mod n) has a solution, then b ∈ 〈a〉. By Theorem

31.17, ord(a) = |〈a〉|, and so Corollary 31.18 and Theorem 31.20 imply

that the sequence ai mod n, for i = 0, 1, …, is periodic with period |〈a〉| =

n/d. If b ∈ 〈a〉, then b appears exactly d times in the sequence ai mod n,

for i = 0, 1, …, n – 1, since the length-(n/d) block of values 〈a〉 repeats

exactly d times as i increases from 0 to n–1. The indices x of the d

positions for which ax mod n = b are the solutions of the equation ax =

b (mod n).

▪

Theorem 31.23

Let d = gcd(a, n), and suppose that d = ax′ + ny′ for some integers x′
and y′ (for example, as computed by EXTENDED-EUCLID). If d | b,

then the equation ax = b (mod n) has as one of its solutions the value

x0, where

x0 = x′(b/d) mod n.

Proof   We have

ax0 = ax′(b/d) (mod n)
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= d(b/d) (mod n) (because ax′ = d (mod n))

= b (mod n),

and thus x0 is a solution to ax = b (mod n).

▪

Theorem 31.24

Suppose that the equation ax = b (mod n) is solvable (that is, d | b,

where d = gcd(a, n)) and that x0 is any solution to this equation. Then,

this equation has exactly d distinct solutions, modulo n, given by xi = x0

+ i(n/d) for i = 0, 1, …, d – 1.

Proof     Because n/d > 0 and 0 ≤ i(n/d) < n for i = 0, 1, …, d – 1, the

values x0, x1, …, xd–1 are all distinct, modulo n. Since x0 is a solution

of ax = b (mod n), we have ax0 mod n = b (mod n). Thus, for i = 0, 1,

…, d – 1, we have

axi mod

n

= a(x0 + in/d) mod n

= (ax0 + ain/d) mod n

= ax0 mod n (because d | a implies that ain/d is a multiple of

n)

= b (mod n),

and hence axi = b (mod n), making xi a solution, too. By Corollary

31.22, the equation ax = b (mod n) has exactly d solutions, so that x0,

x1, …, xd–1 must be all of them.

▪

We have now developed the mathematics needed to solve the

equation ax = b (mod n). The procedure MODULAR-LINEAR-

EQUATION-SOLVER prints all solutions to this equation. The inputs

a and n are arbitrary positive integers, and b is an arbitrary integer.
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MODULAR-LINEAR-EQUATION-SOLVER(a, b, n)

1 (d, x′, y′) = EXTENDED-EUCLID(a, n)

2 if d | b

3 x0 = x′(b/d) mod n

4 for i = 0 to d – 1

5 print (x0 + i(n/d)) mod n

6 else print “no solutions”

As an example of the operation of MODULAR-LINEAR-

EQUATION-SOLVER, consider the equation 14x = 30 (mod 100) (and

thus a = 14, b = 30, and n = 100). Calling EXTENDED-EUCLID in

line 1 gives (d, x′, y′) = (2, –7, 1). Since 2 | 30, lines 3–5 execute. Line 3

computes x0 = (–7)(15) mod 100 = 95. The for loop of lines 4–5 prints

the two solutions, 95 and 45.

The procedure MODULAR-LINEAR-EQUATION-SOLVER

works as follows. The call to EXTENDED-EUCLID in line 1 returns a

triple (d, x′, y′) such that d = gcd(a, n) and d = ax′ + ny′. Therefore, x′ is
a solution to the equation ax′ = d (mod n). If d does not divide b, then

the equation ax = b (mod n) has no solution, by Corollary 31.21. Line 2

checks to see whether d | b, and if not, line 6 reports that there are no

solutions. Otherwise, line 3 computes a solution x0 to ax = b (mod n),

as Theorem 31.23 suggests. Given one solution, Theorem 31.24 states

that adding multiples of (n/d), modulo n, yields the other d – 1 solutions.

The for loop of lines 4–5 prints out all d solutions, beginning with x0

and spaced n/d apart, modulo n.

MODULAR-LINEAR-EQUATION-SOLVER performs O(1g n +

gcd(a, n)) arithmetic operations, since EXTENDED-EUCLID

performs O(1g n) arithmetic operations, and each iteration of the for

loop of lines 4–5 performs a constant number of arithmetic operations.

The following corollaries of Theorem 31.24 give specializations of

particular interest.

Corollary 31.25
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For any n > 1, if gcd(a, n) = 1, then the equation ax = b (mod n) has a

unique solution, modulo n.

▪

If b = 1, a common case of considerable interest, the x that solves the

equation is a multiplicative inverse of a, modulo n.

Corollary 31.26

For any n > 1, if gcd(a, n) = 1, then the equation ax = 1 (mod n) has a

unique solution, modulo n. Otherwise, it has no solution.

▪

Thanks to Corollary 31.26, the notation a−1 mod n refers to the

multiplicative inverse of a, modulo n, when a and n are relatively prime.

If gcd(a, n) = 1, then the unique solution to the equation ax = 1 (mod n)

is the integer x returned by EXTENDED-EUCLID, since the equation

gcd(a, n) = 1 = ax + ny

implies ax = 1 (mod n). Thus, EXTENDED-EUCLID can compute

a−1 mod n efficiently.

Exercises

31.4-1

Find all solutions to the equation 35x = 10 (mod 50).

31.4-2

Prove that the equation ax = ay (mod n) implies x = y (mod n) whenever

gcd(a, n) = 1. Show that the condition gcd(a, n) = 1 is necessary by

supplying a counterexample with gcd(a, n) > 1.

31.4-3

Consider the following change to line 3 of the procedure MODULAR-

LINEAR-EQUATION-SOLVER:

 

3 x0 = x′(b/d) mod (n/d)
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With this change, will the procedure still work? Explain why or why not.

★ 31.4-4

Let p be prime and f(x) = (f0 + f1x + ⋯ + ftx
t) (mod p) be a

polynomial of degree t, with coefficients fi drawn from ℤp. We say that

a ∈ ℤp is a zero of f if f(a) = 0 (mod p). Prove that if a is a zero of f,

then f(x) = (x – a)g(x) (mod p) for some polynomial g(x) of degree t – 1.

Prove by induction on t that if p is prime, then a polynomial f(x) of

degree t can have at most t distinct zeros modulo p.

31.5    The Chinese remainder theorem

Around 100 C.E., the Chinese mathematician Sun-Tsŭ solved the

problem of finding those integers x that leave remainders 2, 3, and 2

when divided by 3, 5, and 7 respectively. One such solution is x = 23,

and all solutions are of the form 23+105k for arbitrary integers k. The

“Chinese remainder theorem” provides a correspondence between a

system of equations modulo a set of pairwise relatively prime moduli

(for example, 3, 5, and 7) and an equation modulo their product (for

example, 105).

The Chinese remainder theorem has two major applications. Let the

integer n be factored as n = n1n2 ⋯ nk, where the factors ni are pairwise

relatively prime. First, the Chinese remainder theorem is a descriptive

“structure theorem” that describes the structure of ℤn as identical to

that of the Cartesian product  with componentwise

addition and multiplication modulo ni in the ith component. Second,

this description helps in designing efficient algorithms, since working in

each of the systems  can be more efficient (in terms of bit operations)

than working modulo n.

Theorem 31.27 (Chinese remainder theorem)

Let n = n1n2 ⋯ nk, where the ni are pairwise relatively prime. Consider

the correspondence
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where , and

ai = a mod ni

for i = 1, 2, …, k. Then, mapping (31.27) is a one-to-one mapping

(bijection) between ℤn and the Cartesian product .

Operations performed on the elements of ℤn can be equivalently

performed on the corresponding k-tuples by performing the operations

independently in each coordinate position in the appropriate system.

That is, if

a ↔ (a1, a2, …, ak),

b ↔ (b1, b2, …, bk),

then

Proof      Let’s see how to translate between the two representations.

Going from a to (a1, a2, …, ak) requires only k “mod” operations. The

reverse—computing a from inputs (a1, a2, …, ak)—is only slightly more

complicated.

We begin by defining mi = n/ni for i = 1, 2, …, k. Thus, mi is the

product of all of the nj’s other than ni: mi = n1n2 ⋯ ni−1ni+1 ⋯ nk. We

next define

for i = 1, 2, …, k. Equation (31.31) is well defined: since mi and ni are

relatively prime (by Theorem 31.6), Corollary 31.26 guarantees that 

mod ni exists. Here is how to compute a as a function of the ai and ci:
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We now show that equation (31.32) ensures that a = ai (mod ni) for i

= 1, 2, …, k. If j ≠ i, then mj = 0 (mod ni), which implies that cj = mj = 0

(mod ni). Note also that ci = 1 (mod ni), from equation (31.31). We thus

have the appealing and useful correspondence

ci ↔ (0, 0, …, 0, 1, 0, …, 0),

a vector that has 0s everywhere except in the ith coordinate, where it has

a 1. The ci thus form a “basis” for the representation, in a certain sense.

For each i, therefore, we have

which is what we wished to show: our method of computing a from the

ai’s produces a result a that satisfies the constraints a = ai (mod ni) for i

= 1, 2, …, k. The correspondence is one-to-one, since we can transform

in both directions. Finally, equations (31.28)–(31.30) follow directly

from Exercise 31.1-7, since x mod ni = (x mod n) mod ni for any x and i

= 1, 2, …, k.

▪

We’ll use the following corollaries later in this chapter.

Corollary 31.28

If n1, n2, …, nk are pairwise relatively prime and n = n1n2 ⋯ nk, then

for any integers a1, a2, …, ak, the set of simultaneous equations

x = ai (mod ni),

for i = 1, 2, …, k, has a unique solution modulo n for the unknown x.

▪

Corollary 31.29

If n1, n2, …, nk are pairwise relatively prime and n = n1n2 ⋯ nk, then

for all integers x and a,
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x = a (mod ni)

for i = 1, 2, …, k if and only if

x = a (mod n).

▪

As an example of the application of the Chinese remainder theorem,

suppose that you are given the two equations

a = 2 (mod 5),

a = 3 (mod 13),

so that a1 = 2, n1 = m2 = 5, a2 = 3, and n2 = m1 = 13, and you wish to

compute a mod 65, since n = n1n2 = 65. Because 13−1 = 2 (mod 5) and

5−1 = 8 (mod 13), you compute

c1 = 13 · (2 mod 5) = 26,

c2 = 5 · (8 mod 13) = 40,

and

a = 2 · 26 + 3 · 40 (mod 65)

= 52 + 120 (mod 65)

= 42 (mod 65).
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Figure 31.3 An illustration of the Chinese remainder theorem for n1 = 5 and n2 = 13. For this

example, c1 = 26 and c2 = 40. In row i, column j is shown the value of a, modulo 65, such that a

mod 5 = i and a mod 13 = j. Note that row 0, column 0 contains a 0. Similarly, row 4, column 12

contains a 64 (equivalent to −1). Since c1 = 26, moving down a row increases a by 26. Similarly,

c2 = 40 means that moving right by a column increases a by 40. Increasing a by 1 corresponds

to moving diagonally downward and to the right, wrapping around from the bottom to the top

and from the right to the left.

See Figure 31.3 for an illustration of the Chinese remainder theorem,

modulo 65.

Thus, you can work modulo n by working modulo n directly or by

working in the transformed representation using separate modulo ni

computations, as convenient. The computations are entirely equivalent.

Exercises

31.5-1

Find all solutions to the equations x = 4 (mod 5) and x = 5 (mod 11).

31.5-2

Find all integers x that leave remainders 1, 2, and 3 when divided by 9,

8, and 7, respectively.

31.5-3

Argue that, under the definitions of Theorem 31.27, if gcd(a, n) = 1,

then

31.5-4

Under the definitions of Theorem 31.27, prove that for any polynomial

f, the number of roots of the equation f(x) = 0 (mod n) equals the
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product of the number of roots of each of the equations f(x) = 0 (mod

n1), f(x) = 0 (mod n2), …, f(x) = 0 (mod nk).

31.6    Powers of an element

Along with considering the multiples of a given element a, modulo n, we

often consider the sequence of powers of a, modulo n, where :

a0, a1, a2, a3, …,

modulo n. Indexing from 0, the 0th value in this sequence is a0 mod n =

1, and the ith value is ai mod n. For example, the powers of 3 modulo 7

are

and the powers of 2 modulo 7 are

In this section, let 〈a〉 denote the subgroup of  generated by a

through repeated multiplication, and let ordn(a) (the “order of a,

modulo n”) denote the order of a in . For example, 〈2〉 = {1, 2, 4} in 

, and ord7(2) = 3. Using the definition of the Euler phi function ϕ(n)

as the size of  (see Section 31.3), we now translate Corollary 31.19

into the notation of  to obtain Euler’s theorem and specialize it to ,

where p is prime, to obtain Fermat’s theorem.

Theorem 31.30 (Euler’s theorem)

For any integer n > 1,

▪

Theorem 31.31 (Fermat’s theorem)
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If p is prime, then

Proof   By equation (31.22), ϕ(p) = p – 1 if p is prime.

▪

Fermat’s theorem applies to every element in ℤp except 0, since 

. For all a ∈ ℤp, however, we have ap = a (mod p) if p is prime.

If , then every element in  is a power of g, modulo n,

and g is a primitive root or a generator of . For example, 3 is a

primitive root, modulo 7, but 2 is not a primitive root, modulo 7. If 

possesses a primitive root, the group  is cyclic. We omit the proof of

the following theorem, which is proven by Niven and Zuckerman [345].

Theorem 31.32

The values of n > 1 for which  is cyclic are 2, 4, pe, and 2pe, for all

primes p > 2 and all positive integers e.

▪

If g is a primitive root of  and a is any element of , then there

exists a z such that gz = a (mod n). This z is a discrete logarithm or an

index of a, modulo n, to the base g. We denote this value as indn,g(a).

Theorem 31.33 (Discrete logarithm theorem)

If g is a primitive root of , then the equation gx = gy (mod n) holds if

and only if the equation x = y (mod ϕ(n)) holds.

Proof   Suppose first that x = y (mod ϕ(n)). Then, we have x = y + kϕ(n)

for some integer k, and thus

gx
= gy+kϕ(n) (mod n)

= gy · (gϕ(n))k
(mod n)

= gy · 1k (mod n) (by Euler’s theorem)
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= gy (mod n).

Conversely, suppose that gx = gy (mod n). Because the sequence of

powers of g generates every element of 〈g〉 and |〈g〉| = ϕ(n), Corollary

31.18 implies that the sequence of powers of g is periodic with period

ϕ(n). Therefore, if gx = gy (mod n), we must have x = y (mod ϕ(n)).

▪

Let’s now turn our attention to the square roots of 1, modulo a

prime power. The following properties will be useful to justify the

primality-testing algorithm in Section 31.8.

Theorem 31.34

If p is an odd prime and e ≥ 1, then the equation

has only two solutions, namely x = 1 and x = −1.

Proof   By Exercise 31.6-2, equation (31.33) is equivalent to

pe | (x − 1)(x + 1).

Since p > 2, we can have p | (x − 1) or p | (x + 1), but not both.

(Otherwise, by property (31.3), p would also divide their difference (x +

1) – (x − 1) = 2.) If p ∤ (x – 1), then gcd(pe, x − 1) = 1, and by Corollary

31.5, we would have pe | (x + 1). That is, x = −1 (mod pe).

Symmetrically, if p ∤ (x + 1), then gcd(pe, x + 1) = 1, and Corollary 31.5

implies that pe | (x − 1), so that x = 1 (mod pe). Therefore, either x = −1

(mod pe) or x = 1 (mod pe).

▪

A number x is a nontrivial square root of 1, modulo n, if it satisfies the

equation x2 = 1 (mod n) but x is equivalent to neither of the two

“trivial” square roots: 1 or −1, modulo n. For example, 6 is a nontrivial

square root of 1, modulo 35. We’ll use the following corollary to
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Theorem 31.34 in Section 31.8 to prove the Miller-Rabin primality-

testing procedure correct.

Corollary 31.35

If there exists a nontrivial square root of 1, modulo n, then n is

composite.

Proof      By the contrapositive of Theorem 31.34, if there exists a

nontrivial square root of 1, modulo n, then n cannot be an odd prime or

a power of an odd prime. Nor can n be 2, because if x2 = 1 (mod 2),

then x = 1 (mod 2), and therefore, all square roots of 1, modulo 2, are

trivial. Thus, n cannot be prime. Finally, we must have n > 1 for a

nontrivial square root of 1 to exist. Therefore, n must be composite.

▪

Raising to powers with repeated squaring

A frequently occurring operation in number-theoretic computations is

raising one number to a power modulo another number, also known as

modular exponentiation. More precisely, we would like an efficient way

to compute ab mod n, where a and b are nonnegative integers and n is a

positive integer. Modular exponentiation is an essential operation in

many primality-testing routines and in the RSA public-key

cryptosystem. The method of repeated squaring solves this problem

efficiently.

Repeated squaring is based on the following formula to compute ab

for nonnegative integers a and b:

The last case, where b is odd, reduces to the one of the first two cases,

since if b is odd, then b − 1 is even. The recursive procedure

MODULAR-EXPONENTIATION on the next page computes ab mod

n using equation (31.34), but performing all computations modulo n.

The term “repeated squaring” comes from squaring the intermediate
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result d = ab/2 in line 5. Figure 31.4 shows the values of the parameter

b, the local variable d, and the value returned at each level of the

recursion for the call MODULAR-EXPONENTIATION(7,560,561),

which returns the result 1.

Figure 31.4 The values of the parameter b, the local variable d, and the value returned for

recursive calls of MODULAR-EXPONENTIATION with parameter values a = 7, b = 560, and

n = 561. The value returned by each recursive call is assigned directly to d. The result of the call

with a = 7, b = 560, and n = 561 is 1.

MODULAR-EXPONENTIATION(a, b, n)

1 if b == 0

2 return 1

3 elseif b mod 2 == 0

4 d = MODULAR-EXPONENTIATION(a, b/2,

n)

//  b is

even

5 return (d · d) mod n

6 else d = MODULAR-EXPONENTIATION(a, b −

1, n)

//  b is

odd

7 return (a · d) mod n

The total number of recursive calls depends on the number of bits of

b and the values of these bits. Assume that b > 0 and that the most

significant bit of b is a 1. Each 0 generates one recursive call (in line 4),

and each 1 generates two recursive calls (one in line 6 followed by one in

line 4 because if b is odd, then b − 1 is even). If the inputs a, b, and n are

β-bit numbers, then there are between β and 2β − 1 recursive calls

altogether, the total number of arithmetic operations required is O(β),

and the total number of bit operations required is O(β3).

Exercises

www.konkur.in

Telegram: @uni_k



31.6-1

Draw a table showing the order of every element in . Pick the

smallest primitive root g and compute a table giving ind11,g(x) for all 

.

31.6-2

Show that x2 = 1 (mod pe) is equivalent to pe | (x − 1)(x + 1).

31.6-3

Rewrite the third case of MODULAR-EXPONENTIATION, where b

is odd, so that if b has β bits and the most significant bit is 1, then there

are always exactly β recursive calls.

31.6-4

Give a nonrecursive (i.e., iterative) version of MODULAR-

EXPONENTIATION.

31.6-5

Assuming that you know ϕ(n), explain how to compute a−1 mod n for

any  using the procedure MODULAR-EXPONENTIATION.

31.7    The RSA public-key cryptosystem

With a public-key cryptosystem, you can encrypt messages sent between

two communicating parties so that an eavesdropper who overhears the

encrypted messages will not be able to decode, or decrypt, them. A

public-key cryptosystem also enables a party to append an unforgeable

“digital signature” to the end of an electronic message. Such a signature

is the electronic version of a handwritten signature on a paper

document. It can be easily checked by anyone, forged by no one, yet

loses its validity if any bit of the message is altered. It therefore provides

authentication of both the identity of the signer and the contents of the

signed message. It is the perfect tool for electronically signed business

contracts, electronic checks, electronic purchase orders, and other

electronic communications that parties wish to authenticate.
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The RSA public-key cryptosystem relies on the dramatic difference

between the ease of finding large prime numbers and the difficulty of

factoring the product of two large prime numbers. Section 31.8

describes an efficient procedure for finding large prime numbers.

Public-key cryptosystems

In a public-key cryptosystem, each participant has both a public key

and a secret key. Each key is a piece of information. For example, in the

RSA cryptosystem, each key consists of a pair of integers. The

participants “Alice” and “Bob” are traditionally used in cryptography

examples. We denote the public keys for Alice and Bob as PA and PB,

respectively, and likewise the secret keys are SA for Alice and SB for

Bob.

Each participant creates his or her own public and secret keys. Secret

keys are kept secret, but public keys can be revealed to anyone or even

published. In fact, it is often convenient to assume that everyone’s

public key is available in a public directory, so that any participant can

easily obtain the public key of any other participant.

Figure 31.5 Encryption in a public key system. Bob encrypts the message M using Alice’s public

key PA and transmits the resulting ciphertext C = PA(M) over a communication channel to

Alice. An eavesdropper who captures the transmitted ciphertext gains no information about M.

Alice receives C and decrypts it using her secret key to obtain the original message M = SA(C).

The public and secret keys specify functions that can be applied to

any message. Let D denote the set of permissible messages. For

example, D might be the set of all finite-length bit sequences. The

simplest, and original, formulation of public-key cryptography requires

one-to-one functions from D to itself, based on the public and secret
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keys. We denote the function based on Alice’s public key PA by PA()

and the function based on her secret key SA by SA(). The functions

PA() and SA() are thus permutations of D. We assume that the

functions PA() and SA() are efficiently computable given the

corresponding keys PA and SA.

The public and secret keys for any participant are a “matched pair”

in that they specify functions that are inverses of each other. That is,

for any message M ∈ D. Transforming M with the two keys PA and SA

successively, in either order, yields back the original message M.

A public-key cryptosystem requires that Alice, and only Alice, be

able to compute the function SA() in any practical amount of time. This

assumption is crucial to keeping encrypted messages sent to Alice

private and to knowing that Alice’s digital signatures are authentic.

Alice must keep her key SA secret. If she does not, whoever else has

access to SA can decrypt messages intended only for Alice and can also

forge her digital signature. The assumption that only Alice can

reasonably compute SA() must hold even though everyone knows PA

and can compute PA(), the inverse function to SA(), efficiently. These

requirements appear formidable, but we’ll see how to satisfy them.

In a public-key cryptosystem, encryption works as shown in Figure

31.5. Suppose that Bob wishes to send Alice a message M encrypted so

that it looks like
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Figure 31.6 Digital signatures in a public-key system. Alice signs the message M′ by appending

her digital signature σ = SA(M′) to it. She transmits the message/signature pair (M′, σ) to Bob,

who verifies it by checking the equation M′ = PA(σ). If the equation holds, he accepts (M′, σ) as

a message that Alice has signed.

unintelligible gibberish to an eavesdropper. The scenario for sending the

message goes as follows.

Bob obtains Alice’s public key PA, perhaps from a public

directory or perhaps directly from Alice.

Bob computes the ciphertext  C = PA(M) corresponding to the

message M and sends C to Alice.

When Alice receives the ciphertext C, she applies her secret key

SA to retrieve the original message: SA(C) = SA(PA(M)) = M.

Because SA() and PA() are inverse functions, Alice can compute M

from C. Because only Alice is able to compute SA(), only Alice can

compute M from C. Because Bob encrypts M using PA(), only Alice

can understand the transmitted message.

Digital signatures can be implemented within this formulation of a

public-key cryptosystem. (There are other ways to construct digital

signatures, but we won’t go into them here.) Suppose now that Alice

wishes to send Bob a digitally signed response M′. Figure 31.6 shows

how the digital-signature scenario proceeds.

Alice computes her digital signature σ for the message M′ using

her secret key SA and the equation σ = SA(M′).
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Alice sends the message/signature pair (M′, σ) to Bob.

When Bob receives (M′, σ), he can verify that it originated from

Alice by using Alice’s public key to verify the equation M′ =

PA(σ). (Presumably, M′ contains Alice’s name, so that Bob knows

whose public key to use.) If the equation holds, then Bob

concludes that the message M′ was actually signed by Alice. If the

equation fails to hold, Bob concludes either that the information

he received was corrupted by transmission errors or that the pair

(M′, σ) is an attempted forgery.

Because a digital signature provides both authentication of the signer’s

identity and authentication of the contents of the signed message, it is

analogous to a handwritten signature at the end of a written document.

A digital signature must be verifiable by anyone who has access to

the signer’s public key. A signed message can be verified by one party

and then passed on to other parties who can also verify the signature.

For example, the message might be an electronic check from Alice to

Bob. After Bob verifies Alice’s signature on the check, he can give the

check to his bank, who can then also verify the signature and effect the

appropriate funds transfer.

A signed message may or may not be encrypted. The message can be

“in the clear” and not protected from disclosure. By composing the

above protocols for encryption and for signatures, Alice can create a

message to Bob that is both signed and encrypted. Alice first appends

her digital signature to the message and then encrypts the resulting

message/signature pair with Bob’s public key. Bob decrypts the received

message with his secret key to obtain both the original message and its

digital signature. Bob can then verify the signature using Alice’s public

key. The corresponding combined process using paper-based systems

would be to sign the paper document and then seal the document inside

a paper envelope that is opened only by the intended recipient.

The RSA cryptosystem

In the RSA public-key cryptosystem, a participant creates a public key

and a secret key with the following procedure:
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1. Select at random two large prime numbers p and q such that p ≠

q. The primes p and q might be, say, 1024 bits each.

2. Compute n = pq.

3. Select a small odd integer e that is relatively prime to ϕ(n),

which, by equation (31.21), equals (p – 1)(q – 1).

4. Compute d as the multiplicative inverse of e, modulo ϕ(n).

(Corollary 31.26 guarantees that d exists and is uniquely defined.

You can use the technique of Section 31.4 to compute d, given e

and ϕ(n).)

5. Publish the pair P = (e, n) as the participant’s RSA public key.

6. Keep secret the pair S = (d, n) as the participant’s RSA secret

key.

For this scheme, the domain D is the set ℤn. To transform a message

M associated with a public key P = (e, n), compute

To transform a ciphertext C associated with a secret key S = (d, n),

compute

These equations apply to both encryption and signatures. To create a

signature, the signer’s secret key is applied to the message to be signed,

rather than to a ciphertext. To verify a signature, the public key of the

signer is applied to the signature rather than to a message to be

encrypted.

To implement the public-key and secret-key operations (31.37) and

(31.38), you can use the procedure MODULAR-EXPONENTIATION

described in Section 31.6. To analyze the running time of these

operations, assume that the public key (e, n) and secret key (d, n) satisfy

1g e = O(1), 1g d ≤ β, and 1g n ≤ β. Then, applying a public key requires

O(1) modular multiplications and uses O(β2) bit operations. Applying a
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secret key requires O(β) modular multiplications, using O(β3) bit

operations.

Theorem 31.36 (Correctness of RSA)

The RSA equations (31.37) and (31.38) define inverse transformations

of ℤn satisfying equations (31.35) and (31.36).

Proof     From equations (31.37) and (31.38), we have that for any M ∈

ℤn,

P(S(M)) = S(P(M)) = Med (mod n).

Since e and d are multiplicative inverses modulo ϕ(n) = (p – 1)(q – 1),

ed = 1 + k(p – 1)(q – 1)

for some integer k. But then, if M ≠ 0 (mod p), we have

Med = M(Mp–1)k(q–1) (mod p)

= M((M mod p)p–1)k(q–1) (mod p)

= M(1)k(q–1) (mod p) (by Theorem 31.31)

= M (mod p)

Also, Med = M (mod p) if M = 0 (mod p). Thus,

Med = M (mod p)

for all M. Similarly,

Med = M (mod q)

for all M. Thus, by Corollary 31.29 to the Chinese remainder theorem,

Med = M (mod n)

for all M.

▪
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The security of the RSA cryptosystem rests in large part on the

difficulty of factoring large integers. If an adversary can factor the

modulus n in a public key, then the adversary can derive the secret key

from the public key, using the knowledge of the factors p and q in the

same way that the creator of the public key used them. Therefore, if

factoring large integers is easy, then breaking the RSA cryptosystem is

easy. The converse statement, that if factoring large integers is hard,

then breaking RSA is hard, is unproven. After two decades of research,

however, no easier method has been found to break the RSA public-key

cryptosystem than to factor the modulus n. And factoring large integers

is surprisingly difficult. By randomly selecting and multiplying together

two 1024-bit primes, you can create a public key that cannot be

“broken” in any feasible amount of time with current technology. In the

absence of a fundamental breakthrough in the design of number-

theoretic algorithms, and when implemented with care following

recommended standards, the RSA cryptosystem is capable of providing

a high degree of security in applications.

In order to achieve security with the RSA cryptosystem, however,

you should use integers that are quite long—more than 1000 bits—to

resist possible advances in the art of factoring. In 2021, RSA moduli are

commonly in the range of 2048 to 4096 bits. To create moduli of such

sizes, you must find large primes efficiently. Section 31.8 addresses this

problem.

For efficiency, RSA is often used in a “hybrid” or “key-

management” mode with fast cryptosystems that are not public-key

cryptosystems. With such a symmetric-key system, the encryption and

decryption keys are identical. If Alice wishes to send a long message M

to Bob privately, she selects a random key K for the fast symmetric-key

cryptosystem and encrypts M using K, obtaining ciphertext C, where C

is as long as M, but K is quite short. Then she encrypts K using Bob’s

public RSA key. Since K is short, computing PB(K) is fast (much faster

than computing PB(M)). She then transmits (C, PB(K)) to Bob, who

decrypts PB(K) to obtain K and then uses K to decrypt C, obtaining M.

A similar hybrid approach creates digital signatures efficiently. This

approach combines RSA with a public collision-resistant hash function h
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—a function that is easy to compute but for which it is computationally

infeasible to find two messages M and M′ such that h(M) = h(M′). The

value h(M) is a short (say, 256-bit) “fingerprint” of the message M. If

Alice wishes to sign a message M, she first applies h to M to obtain the

fingerprint h(M), which she then encrypts with her secret key. She sends

(M, SA(h(M))) to Bob as her signed version of M. Bob can verify the

signature by computing h(M) and verifying that PA applied to

SA(h(M)) as received equals h(M). Because no one can create two

messages with the same fingerprint, it is computationally infeasible to

alter a signed message and preserve the validity of the signature.

One way to distribute public keys uses certificates. For example,

assume that there is a “trusted authority” T whose public key is known

by everyone. Alice can obtain from T a signed message (her certificate)

stating that “Alice’s public key is PA.” This certificate is “self-

authenticating” since everyone knows PT. Alice can include her

certificate with her signed messages, so that the recipient has Alice’s

public key immediately available in order to verify her signature.

Because her key was signed by T, the recipient knows that Alice’s key is

really Alice’s.

Exercises

31.7-1

Consider an RSA key set with p = 11, q = 29, n = 319, and e = 3. What

value of d should be used in the secret key? What is the encryption of

the message M = 100?

31.7-2

Prove that if Alice’s public exponent e is 3 and an adversary obtains

Alice’s secret exponent d, where 0 < d < ϕ(n), then the adversary can

factor Alice’s modulus n in time polynomial in the number of bits in n.

(Although you are not asked to prove it, you might be interested to

know that this result remains true even if the condition e = 3 is

removed. See Miller [327].)
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★ 31.7-3

Prove that RSA is multiplicative in the sense that

PA(M1)PA(M2) = PA(M1M2) (mod n).

Use this fact to prove that if an adversary had a procedure that could

efficiently decrypt 1% of messages from ℤn encrypted with PA, then the

adversary could employ a probabilistic algorithm to decrypt every

message encrypted with PA with high probability.

★ 31.8    Primality testing

This section shows how to find large primes. We begin with a discussion

of the density of primes, proceed to examine a plausible, but incomplete,

approach to primality testing, and then present an effective randomized

primality test due to Miller and Rabin.

The density of prime numbers

Many applications, such as cryptography, call for finding large

“random” primes. Fortunately, large primes are not too rare, so that it is

feasible to test random integers of the appropriate size until you find

one that is prime. The prime distribution function  π(n) specifies the

number of primes that are less than or equal to n. For example, π(10) =

4, since there are 4 prime numbers less than or equal to 10, namely, 2, 3,

5, and 7. The prime number theorem gives a useful approximation to

π(n).

Theorem 31.37 (Prime number theorem)

▪

The approximation n/ln n gives reasonably accurate estimates of π(n)

even for small n. For example, it is off by less than 6% at n = 109, where
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π(n) = 50,847,534 and n/ln n ≈ 48,254,942. (To a number theorist, 109 is

a small number.)

The process of randomly selecting an integer n and determining

whether it is prime is really just a Bernoulli trial (see Section C.4). By

the prime number theorem, the probability of a success—that is, the

probability that n is prime—is approximately 1/ln n. The geometric

distribution says how many trials must occur to obtain a success, and by

equation (C.36) on page 1197, the expected number of trials is

approximately ln n. Thus, in order to find a prime that has the same

length as n by testing integers chosen randomly near n, the expected

number examined would be approximately ln n. For example, the

expectation is that finding a 1024-bit prime would require testing

approximately ln 21024 ≈ 710 randomly chosen 1024-bit numbers for

primality. (Of course, to cut this figure in half, choose only odd

integers.)

The remainder of this section shows how to determine whether a

large odd integer n is prime. For notational convenience, we assume that

n has the prime factorization

where r ≥ 1, p1, p2, …, pr are the prime factors of n, and e1, e2, …, er

are positive integers. The integer n is prime if and only if r = 1 and e1 =

1.

One simple approach to the problem of testing for primality is trial

division: try dividing n by each integer 2, 3, 5, 7, 9, …, , skipping

even integers greater than 2. We can conclude that n is prime if and only

if none of the trial divisors divides n. Assuming that each trial division

takes constant time, the worst-case running time is , which is

exponential in the length of n. (Recall that if n is encoded in binary

using β bits, then β = ⌈1g(n + 1)⌉, and so .) Thus, trial

division works well only if n is very small or happens to have a small

prime factor. When it works, trial division has the advantage that it not

only determines whether n is prime or composite, it also determines one

of n’s prime factors if n is composite.
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This section focuses on finding out whether a given number n is

prime. If n is composite, we won’t worry about finding its prime

factorization. Computing the prime factorization of a number is

computationally expensive. You might be surprised that it turns out to

be much easier to ascertain whether a given number is prime than it is

to determine the prime factorization of the number if it is not prime.

Pseudoprimality testing

We’ll start with a method for primality testing that “almost works” and,

in fact, is good enough for many practical applications. Later on, we’ll

refine this method to remove the small defect. Let  denote the

nonzero elements of ℤn:

If n is prime, then .

We say that n is a base-a pseudoprime if n is composite and

Fermat’s theorem (Theorem 31.31 on page 932) implies that if n is

prime, then n satisfies equation (31.39) for every a in . Thus, if there is

any  such that n does not satisfy equation (31.39), then n is

certainly composite. Surprisingly, the converse almost holds, so that this

criterion forms an almost perfect test for primality. Instead of trying

every value of , test to see whether n satisfies equation (31.39) for

just a = 2. If not, then declare n to be composite by returning

COMPOSITE. Otherwise, return PRIME, guessing that n is prime

(when, in fact, all we know is that n is either prime or a base-2

pseudoprime).

The procedure PSEUDOPRIME on the next page pretends in this

manner to check whether n is prime. It uses the procedure MODULAR-

EXPONENTIATION from Section 31.6. It assumes that the input n is

an odd integer greater than 2. This procedure can make errors, but only

of one type. That is, if it says that n is composite, then it is always

correct. If it says that n is prime, however, then it makes an error only if

n is a base-2 pseudoprime.
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How often does PSEUDOPRIME err? Surprisingly rarely. There are

only 22 values of n less than 10,000 for which it errs, the first four of

which are 341, 561, 645,

PSEUDOPRIME(n)

1 if MODULAR-EXPONENTIATION(2, n – 1, n) ≠ 1 (mod n)

2 return COMPOSITE // definitely

3 else return PRIME // we hope!

and 1105. We won’t prove it, but the probability that this program

makes an error on a randomly chosen β-bit number goes to 0 as β
approaches ∞. Using more precise estimates due to Pomerance [361] of

the number of base-2 pseudoprimes of a given size, a randomly chosen

512-bit number that is called prime by PSEUDOPRIME has less than

one chance in 1020 of being a base-2 pseudoprime, and a randomly

chosen 1024-bit number that is called prime has less than one chance in

1041 of being a base-2 pseudoprime. Thus, if you are merely trying to

find a large prime for some application, for all practical purposes you

almost never go wrong by choosing large numbers at random until one

of them causes PSEUDOPRIME to return PRIME. But when the

numbers being tested for primality are not randomly chosen, you might

need a better approach for testing primality. As we’ll see, a little more

cleverness, and some randomization, will yield a primality-testing

method that works well on all inputs.

Since PSEUDOPRIME checks equation (31.39) for only a = 2, you

might think that you could eliminate all the errors by simply checking

equation (31.39) for a second base number, say a = 3. Better yet, you

could check equation (31.39) for even more values of a. Unfortunately,

even checking for several values of a does not eliminate all errors,

because there exist composite integers n, known as Carmichael numbers,

that satisfy equation (31.39) for all  . (The equation does fail when

gcd(a, n) > 1—that is, when —but demonstrating that n is

composite by finding such an a can be difficult if n has only large prime

factors.) The first three Carmichael numbers are 561, 1105, and 1729.
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Carmichael numbers are extremely rare. For example, only 255 of them

are less than 100,000,000. Exercise 31.8-2 helps explain why they are so

rare.

Let’s see how to improve the primality test so that Carmichael

numbers won’t fool it.

The Miller-Rabin randomized primality test

The Miller-Rabin primality test overcomes the problems of the simple

procedure PSEUDOPRIME with two modifications:

It tries several randomly chosen base values a instead of just one

base value.

While computing each modular exponentiation, it looks for a

nontrivial square root of 1, modulo n, during the final set of

squarings. If it finds one, it stops and returns COMPOSITE.

Corollary 31.35 from Section 31.6 justifies detecting composites in

this manner.

The pseudocode for the Miller-Rabin primality test appears in the

procedures MILLER-RABIN and WITNESS. The input n > 2 to

MILLER-RABIN is the odd number to be tested for primality, and s is

the number of randomly chosen base values from  to be tried. The

code uses the random-number generator RANDOM described on page

129: RANDOM(2, n – 2) returns a randomly chosen integer a satisfying

2 ≤ a ≤ n – 2. (This range of values avoids having a = ≥1 (mod n).) The

call of the auxiliary procedure WITNESS(a, n) returns TRUE if and

only if a is a “witness” to the compositeness of n—that is, if it is possible

using a to prove (in a manner that we will see) that n is composite. The

test WITNESS(a, n) is an extension of, but more effective than, the test

in equation (31.39) that formed the basis for PSEUDOPRIME, using a

= 2.

Let’s first understand how WITNESS works, and then we’ll see how

the Miller-Rabin primality test uses it. Let n – 1 = 2tu where t ≥ 1 and u

is odd. That is, the binary representation of n – 1 is the binary

representation of the odd integer u followed by exactly t zeros.
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Therefore, , so that one way to compute an−1 mod n is to

first compute au mod n and then square the result t times successively.

MILLER-RABIN(n, s) // n > 2 is odd

1 for j = 1 to s

2 a = RANDOM(2, n – 2)

3 if WITNESS(a, n)

4 return COMPOSITE// definitely

5 return PRIME // almost surely

WITNESS(a, n)

1 let t and u be such that t ≥ 1, u is odd, and n – 1 = 2tu

2 x0 = MODULAR-EXPONENTIATION(a, u, n)

3 for i = 1 to t

4

5 if xi == 1 and xi–1 ≠ 1 and xi–1 ≠ n – 1

6 return TRUE // found a nontrivial square root

of 1

7 if xt ≠ 1

8 return TRUE // composite, as in

PSEUDOPRIME

9 return FALSE

This pseudocode for WITNESS computes an–1 mod n by first

computing the value x0 = au mod n in line 2 and then repeatedly

squaring the result t times in the for loop of lines 3–6. By induction on i,

the sequence x0, x1, …, xt of values computed satisfies the equation 

 for i = 0, 1, …, t, so that in particular xt = an–1 (mod n). After

line 4 performs a squaring step, however, the loop will terminate early if

lines 5–6 detect that a nontrivial square root of 1 has just been

discovered. (We’ll explain these tests shortly.) If so, the procedure stops

and returns TRUE. Lines 7–8 return TRUE if the value computed for xt
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= an–1 (mod n) is not equal to 1, just as the PSEUDOPRIME

procedure returns COMPOSITE in this case. Line 9 returns FALSE if

lines 6 or 8 have not returned TRUE.

The following lemma proves the correctness of WITNESS.

Lemma 31.38

If WITNESS(a, n) returns TRUE, then a proof that n is composite can

be constructed using a as a witness.

Proof      If WITNESS returns TRUE from line 8, it’s because line 7

determined that xt = an–1 mod n ≠ 1. If n is prime, however, Fermat’s

theorem (Theorem 31.31) says that an–1 = 1 (mod n) for all . Since

 if n is prime, Fermat’s theorem also says that an–1 = 1 (mod n)

for all . Therefore, n cannot be prime, and the equation an–1 mod

n ≠ 1 proves this fact.

If WITNESS returns TRUE from line 6, then it has discovered that

xi–1 is a nontrivial square root of 1, modulo n, since we have that xi–1 ≠

±1 (mod n) yet . Corollary 31.35 on page 934 states that only

if n is composite can there exist a nontrivial square root of 1, modulo n,

so that demonstrating that xi–1 is a nontrivial square root of 1, modulo

n proves that n is composite.

▪

Thus, if the call WITNESS(a, n) returns TRUE, then n is surely

composite, and the witness a, along with the reason that the procedure

returns TRUE (did it return from line 6 or from line 8?), provides a

proof that n is composite.

Let’s explore an alternative view of the behavior of WITNESS as a

function of the sequence X = 〈x0, x1, …, xt〉. We’ll find this view useful

later on, when we analyze the error rate of the Miller-Rabin primality

test. Note that if xi = 1 for some 0 ≤ i < t, WITNESS might not

compute the rest of the sequence. If it were to do so, however, each

value xi+1, xi+2, …, xt would be 1, so we can consider these positions

in the sequence X as being all 1s. There are four cases:

www.konkur.in

Telegram: @uni_k



1. X = 〈…, d〉, where d ≠ 1: the sequence X does not end in 1.

Return TRUE in line 8, since a is a witness to the compositeness

of n (by Fermat’s Theorem).

2. X = 〈1, 1, …, 1〉: the sequence X is all 1s. Return FALSE, since a

is not a witness to the compositeness of n.

3. X = 〈…, –1, 1, …, 1〉: the sequence X ends in 1, and the last non-

1 is equal to –1. Return FALSE, since a is not a witness to the

compositeness of n.

4. X = 〈…, d, 1, …, 1〉, where d ≠ ±1: the sequence X ends in 1, but

the last non-1 is not –1. Return TRUE in line 6: a is a witness to

the compositeness of n, since d is a nontrivial square root of 1.

Now, let’s examine the Miller-Rabin primality test based on how it

uses the WITNESS procedure. As before, assume that n is an odd

integer greater than 2.

The procedure MILLER-RABIN is a probabilistic search for a

proof that n is composite. The main loop (beginning on line 1) picks up

to s random values of a from , except for 1 and n – 1 (line 2). If it

picks a value of a that is a witness to the compositeness of n, then

MILLER-RABIN returns COMPOSITE on line 4. Such a result is

always correct, by the correctness of WITNESS. If MILLER-RABIN

finds no witness in s trials, then the procedure assumes that it found no

witness because no witnesses exist, and therefore it assumes that n is

prime. We’ll see that this result is likely to be correct if s is large enough,

but there is still a tiny chance that the procedure could be unlucky in its

choice of s random values of a, so that even though the procedure failed

to find a witness, at least one witness exists.

To illustrate the operation of MILLER-RABIN, let n be the

Carmichael number 561, so that n – 1 = 560 = 24 · 35, t = 4, and u = 35.

If the procedure chooses a = 7 as a base, the column for b = 35 in Figure

31.4 (Section 31.6) shows that WITNESS computes x0 = a35 = 241

(mod 561). Because of how the MODULAR-EXPONENTIATION

procedure operates recursively on its parameter b, the first four columns
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in Figure 31.4 represent the factor 24 of 560—the rightmost four zeros

in the binary representation of 560—reading these four zeros from right

to left in the binary representation. Thus WITNESS computes the

sequence X = 〈241, 298, 166, 67, 1〉. Then, in the last squaring step,

WITNESS discovers that a280 is a nontrivial square root of 1 since

a280 = 67 (mod n) and (a280)2 = a560 = 1 (mod n). Therefore, a = 7 is a

witness to the compositeness of n, WITNESS(7, n) returns TRUE, and

MILLER-RABIN returns COMPOSITE.

If n is a β-bit number, MILLER-RABIN requires O(sβ) arithmetic

operations and O(sβ3) bit operations, since it requires asymptotically no

more work than s modular exponentiations.

Error rate of the Miller-Rabin primality test

If MILLER-RABIN returns PRIME, then there is a very slim chance

that it has made an error. Unlike PSEUDOPRIME, however, the

chance of error does not depend on n: there are no bad inputs for this

procedure. Rather, it depends on the size of s and the “luck of the draw”

in choosing base values a. Moreover, since each test is more stringent

than a simple check of equation (31.39), we can expect on general

principles that the error rate should be small for randomly chosen

integers n. The following theorem presents a more precise argument.

Theorem 31.39

If n is an odd composite number, then the number of witnesses to the

compositeness of n is at least (n – 1)/2.

Proof   The proof shows that the number of nonwitnesses is at most (n –

1)/2, which implies the theorem.

We start by claiming that any nonwitness must be a member of .

Why? Consider any nonwitness a. It must satisfy an–1 = 1 (mod n) or,

equivalently, a · an−2 = 1 (mod n). Thus the equation ax = 1 (mod n)

has a solution, namely an−2. By Corollary 31.21 on page 924, gcd(a, n) |

1, which in turn implies that gcd(a, n) = 1. Therefore, a is a member of 

, and all nonwitnesses belong to .
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To complete the proof, we show that not only are all nonwitnesses

contained in , they are all contained in a proper subgroup B of 

(recall that B is a proper subgroup of  when B is subgroup of  but B

is not equal to ). By Corollary 31.16 on page 921, we then have 

. Since , we obtain |B| ≤ (n – 1)/2. Therefore, if all

nonwitnesses are contained in a proper subgroup of , then the

number of nonwitnesses is at most (n – 1)/2, so that the number of

witnesses must be at least (n – 1)/2.

To find a proper subgroup B of  containing all of the

nonwitnesses, we consider two cases.

Case 1: There exists an  such that

xn–1 ≠ 1 (mod n).

In other words, n is not a Carmichael number. Since, as noted earlier,

Carmichael numbers are extremely rare, case 1 is the more typical case

(e.g., when n has been chosen randomly and is being tested for

primality).

Let . The set B must be nonempty, since 1 ∈ B.

The set B is closed under multiplication modulo n, and so B is a

subgroup of  by Theorem 31.14. Every nonwitness belongs to B, since

a nonwitness a satisfies an–1 = 1 (mod n). Since , we have that

B is a proper subgroup of .

Case 2: For all ,

In other words, n is a Carmichael number. This case is extremely rare in

practice. Unlike a pseudoprimality test, however, the Miller-Rabin test

can efficiently determine that Carmichael numbers are composite, as

we’re about to see.

In this case, n cannot be a prime power. To see why, suppose to the

contrary that n = pe, where p is a prime and e > 1. We derive a

contradiction as follows. Since we assume that n is odd, p must also be

odd. Theorem 31.32 on page 933 implies that  is a cyclic group: it

contains a generator g such that 

. (The formula for ϕ(n)

www.konkur.in

Telegram: @uni_k



comes from equation (31.21) on page 920.) By equation (31.40), we have

gn–1 = 1 (mod n). Then the discrete logarithm theorem (Theorem 31.33

on page 933, taking y = 0) implies that n – 1 = 0 (mod ϕ (n)), or

(p – 1)pe−1 | pe – 1.

This statement is a contradiction for e > 1, since (p – 1)pe−1 is divisible

by the prime p, but pe – 1 is not. Thus n is not a prime power.

Since the odd composite number n is not a prime power, we

decompose it into a product n1n2, where n1 and n2 are odd numbers

greater than 1 that are relatively prime to each other. (There may be

several ways to decompose n, and it does not matter which one we

choose. For example, if , then we can choose  and 

.)

Recall that t and u are such that n – 1 = 2tu, where t ≥ 1 and u is odd,

and that for an input a, the procedure WITNESS computes the

sequence

where all computations are performed modulo n.

Let us call a pair (v, j) of integers acceptable if ,

and

Acceptable pairs certainly exist, since u is odd. Choose v = n – 1 and j =

0, and let u = 2k + 1, so that . Taking this

number modulo n gives (n – 1)2k+1 = (n – 1)2k · (n – 1) = (–1)2k · –1 =

−1 (mod n). Thus, (n – 1, 0) is an acceptable pair. Now pick the largest

possible j such that there exists an acceptable pair (v, j), and fix v so that

(v, j) is an acceptable pair. Let

Since B is closed under multiplication modulo n, it is a subgroup of .

By Theorem 31.15 on page 921, therefore, |B| divides . Every
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nonwitness must be a member of B, since the sequence X produced by a

nonwitness must either be all 1s or else contain a –1 no later than the jth

position, by the maximality of j. (If (a, j′) is acceptable, where a is a

nonwitness, we must have j′ ≤ j by how we chose j.)

We now use the existence of v to demonstrate that there exists a 

, and hence that B is a proper subgroup of . Since 

, we also have  by Corollary 31.29 to the

Chinese remainder theorem. By Corollary 31.28, there exists a w

simultaneously satisfying the equations

w = v (mod n1),

w = 1 (mod n2).

Therefore,

Corollary 31.29 gives that  implies  and also that 

 implies . Hence, we conclude that 

, and so w ∉ B.

It remains to show that . We start by working separately

modulo n1 and modulo n2. Working modulo n1, since , we have

that gcd(v, n) = 1. Also, we have gcd(v, n1) = 1, since if v does not have

any common divisors with n, then it certainly does not have any

common divisors with n1. Since w = v (mod n1), we see that gcd(w, n1)

= 1. Working modulo n2, we have w = 1 (mod n2) implies gcd(w, n2) = 1

by Exercise 31.2-3. Since gcd(w, n1) = 1 and gcd(w, n2) = 1, Theorem

31.6 on page 908 yields gcd(w, n1n2) = gcd(w, n) = 1. That is, .

Therefore, we have , and we can conclude in case 2 that B,

which includes all nonwitnesses, is a proper subgroup of  and

therefore has size at most (n – 1)/2.

In either case, the number of witnesses to the compositeness of n is at

least (n – 1)/2.

▪
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Theorem 31.40

For any odd integer n > 2 and positive integer s, the probability that

MILLER-RABIN(n, s) errs is at most 2–s.

Proof   By Theorem 31.39, if n is composite, then each execution of the

for loop of lines 1–4 of MILLER-RABIN has a probability of at least

1/2 of discovering a witness to the compositeness of n. MILLER-

RABIN makes an error only if it is so unlucky as to miss discovering a

witness to the compositeness of n on each of the s iterations of the main

loop. The probability of such a sequence of misses is at most 2–s.

▪

If n is prime, MILLER-RABIN always reports PRIME, and if n is

composite, the chance that MILLER-RABIN reports PRIME is at

most 2−s.

When applying MILLER-RABIN to a large randomly chosen

integer n, however, we need to consider as well the prior probability that

n is prime, in order to correctly interpret MILLER-RABIN’s result.

Suppose that we fix a bit length β and choose at random an integer n of

length β bits to be tested for primality, so that β ≈ 1g n ≈ 1.443 ln n. Let

A denote the event that n is prime. By the prime number theorem

(Theorem 31.37), the probability that n is prime is approximately

Pr {A} ≈ 1/ln n

≈ 1.443/β.

Now let B denote the event that MILLER-RABIN returns PRIME. We

have that  (or equivalently, that Pr{B | A} = 1) and 

 (or equivalently, that ).

But what is Pr{A | B}, the probability that n is prime, given that

MILLER-RABIN has returned PRIME? By the alternate form of

Bayes’s theorem (equation (C.20) on page 1189) and approximating 

, we have
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This probability does not exceed 1/2 until s exceeds 1g(ln n – 1).

Intuitively, that many initial trials are needed just for the confidence

derived from failing to find a witness to the compositeness of n to

overcome the prior bias in favor of n being composite. For a number

with β = 1024 bits, this initial testing requires about

lg(ln n – 1) ≈ lg(β/1.443)

≈ 9

trials. In any case, choosing s = 50 should suffice for almost any

imaginable application.

In fact, the situation is much better. If you are trying to find large

primes by applying MILLER-RABIN to large randomly chosen odd

integers, then choosing a small value of s (say 3) is unlikely to lead to

erroneous results, though we won’t prove it here. The reason is that for a

randomly chosen odd composite integer n, the expected number of

nonwitnesses to the compositeness of n is likely to be considerably

smaller than (n – 1)/2.

If the integer n is not chosen randomly, however, the best that can be

proven is that the number of nonwitnesses is at most (n – 1)/4, using an

improved version of Theorem 31.39. Furthermore, there do exist

integers n for which the number of nonwitnesses is (n – 1)/4.

Exercises

31.8-1

Prove that if an odd integer n > 1 is not a prime or a prime power, then

there exists a nontrivial square root of 1, modulo n.

★ 31.8-2

www.konkur.in

Telegram: @uni_k



It is possible to strengthen Euler’s theorem (Theorem 31.30) slightly to

the form

where  and λ(n) is defined by

Prove that λ(n) | ϕ(n). A composite number n is a Carmichael number if

λ(n) | n – 1. The smallest Carmichael number is 561 = 3 · 11 · 17, for

which λ(n) = 1cm(2, 10, 16) = 80, which divides 560. Prove that

Carmichael numbers must be both “square-free” (not divisible by the

square of any prime) and the product of at least three primes. (For this

reason, they are not common.)

31.8-3

Prove that if x is a nontrivial square root of 1, modulo n, then gcd(x −

1, n) and gcd(x + 1, n) are both nontrivial divisors of n.

Problems

31-1     Binary gcd algorithm

Most computers can perform the operations of subtraction, testing the

parity (odd or even) of a binary integer, and halving more quickly than

computing remainders. This problem investigates the binary gcd

algorithm, which avoids the remainder computations used in Euclid’s

algorithm.

a. Prove that if a and b are both even, then gcd(a, b) = 2 · gcd(a/2, b/2).

b. Prove that if a is odd and b is even, then gcd(a, b) = gcd(a, b/2).

c. Prove that if a and b are both odd, then gcd(a, b) = gcd((a – b)/2, b).

d. Design an efficient binary gcd algorithm for input integers a and b,

where a ≥ b, that runs in O(1g a) time. Assume that each subtraction,

parity test, and halving takes unit time.

31-2     Analysis of bit operations in Euclid’s algorithm
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a. Consider the ordinary “paper and pencil” algorithm for long

division: dividing a by b, which yields a quotient q and remainder r.

Show that this method requires O((1 + 1g q)1g b) bit operations.

b. Define μ(a, b) = (1 + 1g a)(1 + 1g b). Show that the number of bit

operations performed by EUCLID in reducing the problem of

computing gcd(a, b) to that of computing gcd(b, a mod b) is at most

c(μ(a, b) – μ(b, a mod b)) for some sufficiently large constant c > 0.

c. Show that EUCLID(a, b) requires O(μ(a, b)) bit operations in general

and O(β2) bit operations when applied to two β-bit inputs.

31-3     Three algorithms for Fibonacci numbers

This problem compares the efficiency of three methods for computing

the nth Fibonacci number Fn, given n. Assume that the cost of adding,

subtracting, or multiplying two numbers is O(1), independent of the size

of the numbers.

a. Show that the running time of the straightforward recursive method

for computing Fn based on recurrence (3.31) on page 69 is exponential

in n. (See, for example, the FIB procedure on page 751.)

b. Show how to compute Fn in O(n) time using memoization.

c. Show how to compute Fn in O(1g n) time using only integer addition

and multiplication. (Hint: Consider the matrix  and its powers.)

d. Assume now that adding two β-bit numbers takes Θ(β) time and that

multiplying two β-bit numbers takes Θ(β2) time. What is the running

time of these three methods under this more reasonable cost measure

for the elementary arithmetic operations?

31-4     Quadratic residues

Let p be an odd prime. A number  is a quadratic residue modulo p,

if the equation x2 = a (mod p) has a solution for the unknown x.

a. Show that there are exactly (p – 1)/2 quadratic residues, modulo p.
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b. If p is prime, we define the Legendre symbol  , for , to be 1 if a

is a quadratic residue, modulo p, and –1 otherwise. Prove that if ,

then

Give an efficient algorithm that determines whether a given number a

is a quadratic residue, modulo p. Analyze the efficiency of your

algorithm.

c. Prove that if p is a prime of the form 4k + 3 and a is a quadratic

residue in , then ak+1 mod p is a square root of a, modulo p. How

much time is required to find the square root of a quadratic residue a,

modulo p?

d. Describe an efficient randomized algorithm for finding a

nonquadratic residue, modulo an arbitrary prime p, that is, a member

of  that is not a quadratic residue. How many arithmetic operations

does your algorithm require on average?

Chapter notes

Knuth [260] contains a good discussion of algorithms for finding the

greatest common divisor, as well as other basic number-theoretic

algorithms. Dixon [121] gives an overview of factorization and primality

testing. Bach [33], Riesel [378], and Bach and Shallit [34] provide

overviews of the basics of computational number theory; Shoup [411]

provides a more recent survey. The conference proceedings edited by

Pomerance [362] contains several excellent survey articles.

Knuth [260] discusses the origin of Euclid’s algorithm. It appears in

Book 7, Propositions 1 and 2, of the Greek mathematician Euclid’s

Elements, which was written around 300 B.C.E. Euclid’s description

may have been derived from an algorithm due to Eudoxus around 375

B.C.E. Euclid’s algorithm may hold the honor of being the oldest

nontrivial algorithm, rivaled only by an algorithm for multiplication
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known to the ancient Egyptians. Shallit [407] chronicles the history of

the analysis of Euclid’s algorithm.

Knuth attributes a special case of the Chinese remainder theorem

(Theorem 31.27) to the Chinese mathematician Sun-Tsŭ, who lived

sometime between 200 B.C.E. and 200 C.E.—the date is quite

uncertain. The same special case was given by the Greek mathematician

Nichomachus around 100 C.E. It was generalized by Qin Jiushao in

1247. The Chinese remainder theorem was finally stated and proved in

its full generality by L. Euler in 1734.

The randomized primality-testing algorithm presented here is due to

Miller [327] and Rabin [373] and is the fastest randomized primality-

testing algorithm known, to within constant factors. The proof of

Theorem 31.40 is a slight adaptation of one suggested by Bach [32]. A

proof of a stronger result for MILLER-RABIN was given by Monier

[332, 333]. For many years primality-testing was the classic example of a

problem where randomization appeared to be necessary to obtain an

efficient (polynomial-time) algorithm. In 2002, however, Agrawal,

Kayal, and Saxena [4] surprised everyone with their deterministic

polynomial-time primality-testing algorithm. Until then, the fastest

deterministic primality testing algorithm known, due to Cohen and

Lenstra [97], ran in (1g n)O(1g1g1g n) time on input n, which is just

slightly superpolynomial. Nonetheless, for practical purposes,

randomized primality-testing algorithms remain more efficient and are

generally preferred.

Beauchemin, Brassard, Crépeau, Goutier, and Pomerance [40] nicely

discuss the problem of finding large “random” primes.

The concept of a public-key cryptosystem is due to Diffie and

Hellman [115]. The RSA cryptosystem was proposed in 1977 by Rivest,

Shamir, and Adleman [380]. Since then, the field of cryptography has

blossomed. Our understanding of the RSA cryptosystem has deepened,

and modern implementations use significant refinements of the basic

techniques presented here. In addition, many new techniques have been

developed for proving cryptosystems to be secure. For example,

Goldwasser and Micali [190] show that randomization can be an

effective tool in the design of secure public-key encryption schemes. For
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signature schemes, Goldwasser, Micali, and Rivest [191] present a

digital-signature scheme for which every conceivable type of forgery is

provably as difficult as factoring. Katz and Lindell [253] provide an

overview of modern cryptography.

The best algorithms for factoring large numbers have a running time

that grows roughly exponentially with the cube root of the length of the

number n to be factored. The general number-field sieve factoring

algorithm (as developed by Buhler, Lenstra, and Pomerance [77] as an

extension of the ideas in the number-field sieve factoring algorithm by

Pollard [360] and Lenstra et al. [295] and refined by Coppersmith [102]

and others) is perhaps the most efficient such algorithm in general for

large inputs. Although it is difficult to give a rigorous analysis of this

algorithm, under reasonable assumptions we can derive a running-time

estimate of L(1/3, n)1.902+o(1), where .

The elliptic-curve method due to Lenstra [296] may be more effective

for some inputs than the number-field sieve method, since it can find a

small prime factor p quite quickly. With this method, the time to find p

is estimated to be .
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32        String Matching

Text-editing programs frequently need to find all occurrences of a

pattern in the text. Typically, the text is a document being edited, and

the pattern searched for is a particular word supplied by the user.

Efficient algorithms for this problem—called “string matching”—can

greatly aid the responsiveness of the text-editing program. Among their

many other applications, string-matching algorithms search for

particular patterns in DNA sequences. Internet search engines also use

them to find web pages relevant to queries.

The string-matching problem can be stated formally as follows. The

text is given as an array T[1 : n] of length n, and the pattern is an array

P[1 : m] of length m ≤ n. The elements of P and T are characters drawn

from an alphabet ∑, which is a finite set of characters. For example, ∑

could be the set {0, 1}, or it could be the set {a, b, …, z}. The

character arrays P and T are often called strings of characters.

As Figure 32.1 shows, pattern P  occurs with shift s in text T (or,

equivalently, that pattern P occurs beginning at position s + 1 in text T) if

0 ≤ s ≤ n – m and T[s + 1:s + m] = P[1:m], that is, if T[s + j] = P[j], for 1 ≤

j ≤ m. If P occurs with shift s in T, then s is a valid shift, and otherwise, s

is an invalid shift. The string-matching problem is the problem of finding

all valid shifts with which a given pattern P occurs in a given text T.
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Figure 32.1 An example of the string-matching problem to find all occurrences of the pattern P

= abaa in the text T = abcabaabcabac. The pattern occurs only once in the text, at shift s =

3, which is a valid shift. A vertical line connects each character of the pattern to its matching

character in the text, and all matched characters are shaded blue.

Except for the naive brute-force algorithm in Section 32.1, each

string-matching algorithm in this chapter performs some preprocessing

based on the pattern and then finds all valid shifts. We call this latter

phase “matching.” Here are the preprocessing and matching times for

each of the string-matching algorithms in this chapter. The total

running time of each algorithm is the sum of the preprocessing and

matching times:

Algorithm Preprocessing time Matching time

Naive 0 O((n – m + 1)m)

Rabin-Karp Θ(m) O((n – m + 1)m)

Finite automaton O(m |∑|) Θ(n)

Knuth-Morris-Pratt Θ(m) Θ(n)

Suffix array1 O(n 1g n) O(m 1g n + km)

Section 32.2 presents an interesting string-matching algorithm, due to

Rabin and Karp. Although the Θ((n – m + 1)m) worst-case running time

of this algorithm is no better than that of the naive method, it works

much better on average and in practice. It also generalizes nicely to

other pattern-matching problems. Section 32.3 then describes a string-

matching algorithm that begins by constructing a finite automaton

specifically designed to search for occurrences of the given pattern P in

a text. This algorithm takes O(m |∑|) preprocessing time, but only Θ(n)

matching time. Section 32.4 presents the similar, but much cleverer,

Knuth-Morris-Pratt (or KMP) algorithm, which has the same Θ(n)

matching time, but it reduces the preprocessing time to only Θ(m).

A completely different approach appears in Section 32.5, which

examines suffix arrays and the longest common prefix array. You can
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use these arrays not only to find a pattern in a text, but also to answer

other questions, such as what is the longest repeated substring in the

text and what is the longest common substring between two texts. The

algorithm to form the suffix array in Section 32.5 takes O(n 1g n) time

and, given the suffix array, the section shows how to compute the

longest common prefix array in O(n) time.

Notation and terminology

We denote by ∑* (read “sigma-star”) the set of all finite-length strings

formed using characters from the alphabet ∑. This chapter considers

only finite-length strings. The 0-length empty string, denoted ϵ, also

belongs to ∑*. The length of a string x is denoted |x|. The concatenation

of two strings x and y, denoted xy, has length |x| + |y| and consists of

the characters from x followed by the characters from y.

Figure 32.2 A graphical proof of Lemma 32.1. Suppose that x ⊐ z and y ⊐ z. The three parts of

the figure illustrate the three cases of the lemma. Vertical lines connect matching regions (shown

in blue) of the strings. (a) If |x| ≤ |y|, then x ⊐ y. (b) If |x| ≥ |y|, then y ⊐ x. (c) If |x| = |y|, then x =

y.

A string w is a prefix of a string x, denoted w ⊏ x, if x = wy for some

string y ∈ ∑*. Note that if w ⊏ x, then |w| ≤ |x|. Similarly, a string w is a

suffix of a string x, denoted w ⊐ x, if x = yw for some y ∈ ∑*. As with a

prefix, w ⊐ x implies |w| ≤ |x|. For example, ab ⊏ abcca and cca ⊐
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abcca. A string w is a proper prefix of x if w ⊏ x and |w| < |x|, and

likewise for a proper suffix. The empty string ϵ is both a suffix and a

prefix of every string. For any strings x and y and any character a, we

have x ⊐ y if and only if xa ⊐ ya. The ⊏ and ⊐ relations are transitive.

The following lemma will be useful later.

Lemma 32.1 (Overlapping-suffix lemma)

Suppose that x, y, and z are strings such that x ⊐ z and y ⊐ z. If |x| ≤ |y|,

then x ⊐ y. If |x| ≥ |y|, then y ⊐ x. If |x| = |y|, then x = y.

Proof   See Figure 32.2 for a graphical proof.

▪

For convenience, denote the k-character prefix P[1:k] of the pattern

P[1:m] by P[:k]. Thus, we can write P[:0] = ϵ and P[:m] = P = P[1:m].

Similarly, denote the k-character prefix of the text T by T[:k]. Using this

notation, we can state the string-matching problem as that of finding all

shifts s in the range 0 ≤ s ≤ n – m such that P ⊐ T[:s + m].

Our pseudocode allows two equal-length strings to be compared for

equality as a primitive operation. If the strings are compared from left

to right and the comparison stops when a mismatch is discovered, we

assume that the time taken by such a test is a linear function of the

number of matching characters discovered. To be precise, the test “x ==

y” is assumed to take Θ(t) time, where t is the length of the longest

string z such that z ⊏ x and z ⊏ y.

32.1    The naive string-matching algorithm

The NAIVE-STRING-MATCHER procedure finds all valid shifts

using a loop that checks the condition P[1:m] = T[s+1:s+m] for each of

the n−m+1 possible values of s.

NAIVE-STRING-MATCHER(T, P, n, m)

1 for s = 0 to n – m

2 if P[1:m] == T[s + 1:s + m]
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3 print “Pattern occurs with shift” s

Figure 32.3 portrays the naive string-matching procedure as sliding a

“template” containing the pattern over the text, noting for which shifts

all of the characters on the template equal the corresponding characters

in the text. The for loop of lines 1–3 considers each possible shift

explicitly. The test in line 2 determines whether the current shift is valid.

This test implicitly loops to check corresponding character positions

until all positions match successfully or a mismatch is found. Line 3

prints out each valid shift s.

Procedure NAIVE-STRING-MATCHER takes O((n – m + 1)m)

time, and this bound is tight in the worst case. For example, consider the

text string an (a string of na’s) and the pattern am. For each of the

n−m+1 possible values of the shift s, the implicit loop on line 2 to

compare corresponding characters must execute m times to validate the

shift. The worst-case running time is thus Θ((n − m + 1)m), which is

Θ(n2) if m = ⌊n/2⌋. Because it requires no preprocessing, NAIVE-

STRING-MATCHER’s running time equals its matching time.

NAIVE-STRING-MATCHER is far from an optimal procedure for

this problem. Indeed, this chapter will show that the Knuth-Morris-

Pratt algorithm is much better in the worst case. The naive string-

matcher is inefficient because it entirely ignores information gained

about the text for one value of s when it considers other values of s.

Such information can be quite valuable, however. For example, if P =

aaab and s = 0 is valid, then none of the shifts 1, 2, or 3 are valid, since

T[4] = b. The following sections examine several ways to make effective

use of this sort of information.
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Figure 32.3 The operation of the NAIVE-STRING-MATCHER procedure for the pattern P =

aab and the text T = acaabc. Imagine the pattern P as a template that slides next to the text.

(a)–(d) The four successive alignments tried by the naive string matcher. In each part, vertical

lines connect corresponding regions found to match (shown in blue), and a red jagged line

connects the first mismatched character found, if any. The algorithm finds one occurrence of the

pattern, at shift s = 2, shown in part (c).

Exercises

32.1-1

Show the comparisons the naive string matcher makes for the pattern P

= 0001 in the text T = 000010001010001.

32.1-2

Suppose that all characters in the pattern P are different. Show how to

accelerate NAIVE-STRING-MATCHER to run in O(n) time on an n-

character text T.

32.1-3

Suppose that pattern P and text T are randomly chosen strings of length

m and n, respectively, from the d-ary alphabet ∑d = {0, 1, …, d – 1},

where d ≥ 2. Show that the expected number of character-to-character

comparisons made by the implicit loop in line 2 of the naive algorithm

is

over all executions of this loop. (Assume that the naive algorithm stops

comparing characters for a given shift once it finds a mismatch or

matches the entire pattern.) Thus, for randomly chosen strings, the

naive algorithm is quite efficient.
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32.1-4

Suppose that the pattern P may contain occurrences of a gap character

♢  that can match an arbitrary string of characters (even one of 0

length). For example, the pattern ab ♢ ba ♢ c occurs in the text

cabccbacbacab as

and as

The gap character may occur an arbitrary number of times in the

pattern but not at all in the text. Give a polynomial-time algorithm to

determine whether such a pattern P occurs in a given text T, and

analyze the running time of your algorithm.

32.2    The Rabin-Karp algorithm

Rabin and Karp proposed a string-matching algorithm that performs

well in practice and that also generalizes to other algorithms for related

problems, such as two-dimensional pattern matching. The Rabin-Karp

algorithm uses Θ(m) preprocessing time, and its worst-case running time

is Θ((n−m+1)m). Based on certain assumptions, however, its average-

case running time is better.

This algorithm makes use of elementary number-theoretic notions

such as the equivalence of two numbers modulo a third number. You

might want to refer to Section 31.1 for the relevant definitions.

For expository purposes, let’s assume that ∑ = {0, 1, 2, …, 9}, so

that each character is a decimal digit. (In the general case, you can

assume that each character is a digit in radix-d notation, so that it has a

numerical value in the range 0 to d – 1, where d = |∑|.) You can then

view a string of k consecutive characters as representing a length-k

decimal number. For example, the character string 31415 corresponds

to the decimal number 31,415. Because we interpret the input characters
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as both graphical symbols and digits, it will be convenient in this section

to denote them as digits in standard text font.

Given a pattern P[1:m], let p denote its corresponding decimal value.

In a similar manner, given a text T[1:n], let ts denote the decimal value

of the length-m substring T[s + 1:s + m], for s = 0, 1, …, n – m.

Certainly, ts = p if and only if T [s + 1:s + m] = P[1:m], and thus, s is a

valid shift if and only if ts = p. If you could compute p in Θ(m) time and

all the ts values in a total of Θ(n – m + 1) time,2 then you could

determine all valid shifts s in Θ(m)+Θ(n − m + 1) = Θ(n) time by

comparing p with each of the ts values. (For the moment, let’s not worry

about the possibility that p and the ts values might be very large

numbers.)

Indeed, you can compute p in Θ(m) time using Horner’s rule (see

Problem 2-3):

Similarly, you can compute t0 from T[1:m] in Θ(m) time.

To compute the remaining values t1, t2, …, tn–m in Θ(n – m) time,

observe that you can compute ts+1 from ts in constant time, since

Subtracting 10m−1T [s + 1] removes the high-order digit from ts,

multiplying the result by 10 shifts the number left by one digit position,

and adding T[s + m + 1] brings in the appropriate low-order digit. For

example, suppose that m = 5, ts = 31415, and the new low-order digit is

T[s + 5 + 1] = 2. The high-order digit to remove is T[s + 1] = 3, and so

ts+1 = 10 (31415 − 10000 · 3) + 2

= 14152.

If you precompute the constant 10m−1 (which you can do in O(1g m)

time using the techniques of Section 31.6, although for this application
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a straightforward O(m)-time method suffices), then each execution of

equation (32.1) takes a constant number of arithmetic operations. Thus,

you can compute p in Θ(m) time, and you can compute all of t0, t1, …,

tn−m in Θ(n − m + 1) time. Therefore, you can find all occurrences of

the pattern P[1:m] in the text T[1: n] with Θ(m) preprocessing time and

Θ(n − m + 1) matching time.

This scheme works well if P is short enough and the alphabet ∑ is

small enough that arithmetic operations on p and ts take constant time.

But what if P is long, or if the size of ∑ means that instead of powers of

10 in equation (32.1) you have to use powers of a larger number (such as

powers of 256 for the extended ASCII character set)? Then the values of

p and ts might be too large to work with in constant time. Fortunately,

this problem can be solved, as Figure 32.4 shows: compute p and the ts

values modulo a suitable modulus q. You can compute p modulo q in

Θ(m) time and all the ts values modulo q in Θ(n − m + 1) time. With |∑|

= 10, if you choose the modulus q as a prime such that 10q just fits

within one computer word, then you can perform all the necessary

computations with single-precision arithmetic. In general, with a d-ary

alphabet {0, 1, …, d – 1}, choose q so that dq fits within a computer

word and adjust the recurrence equation (32.1) to work modulo q, so

that it becomes
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Figure 32.4 The Rabin-Karp algorithm. Each character is a decimal digit. Values are computed

modulo 13. (a) A text string. A window of length 5 is shaded blue. The numerical value of the

blue number, computed modulo 13, yields the value 7. (b) The same text string with values

computed modulo 13 for each possible position of a length-5 window. Assuming the pattern P =

31415, look for windows whose value modulo 13 is 7, since 31415 = 7 (mod 13). The algorithm

finds two such windows, shaded blue in the figure. The first, beginning at text position 7, is

indeed an occurrence of the pattern. The second window, beginning at text position 13, is a

spurious hit. (c) How to compute the value for a window in constant time, given the value for

the previous window. The first window has value 31415. Dropping the high-order digit 3,

shifting left (multiplying by 10), and then adding in the low-order digit 2 gives the new value

14152. Because all computations are performed modulo 13, the value for the first window is 7,

and the value for the new window is 8.

where h = dm−1 mod q is the value of the digit “1” in the high-order

position of an m-digit text window.
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The solution of working modulo q is not perfect, however: ts = p

(mod q) does not automatically mean that ts = p. On the other hand, if

ts ≠ p (mod q), then you definitely know that ts ≠ p, so that shift s is

invalid. Thus you can use the test ts = p (mod q) as a fast heuristic test

to rule out invalid shifts. If ts = p (mod q)—a hit—then you need to test

further to see whether s is really valid or you just have a spurious hit.

This additional test explicitly checks the condition P[1:m] = T[s + 1:s +

m]. If q is large enough, then you would hope that spurious hits occur

infrequently enough that the cost of the extra checking is low.

The procedure RABIN-KARP-MATCHER on the next page makes

these ideas precise. The inputs to the procedure are the text T, the

pattern P, their lengths n and m, the radix d to use (which is typically

taken to be |∑|), and the prime q to use. The procedure works as follows.

All characters are interpreted as radix-d digits. The subscripts on t are

provided only for clarity: the procedure works correctly if all the

subscripts are dropped. Line 1 initializes h to the value of the high-order

digit position of an m-digit window. Lines 2–6 compute p as the value of

P[1:m] mod q and t0 as the value of T[1:m] mod q. The for loop of lines

7–12 iterates through all possible shifts s, maintaining the following

invariant:

Whenever line 8 is executed, ts = T[s + 1:s + m] mod q.

If a hit occurs because p = ts in line 8, then line 9 determines whether s

is a valid shift or the hit was spurious via the test P[1:m] == T[s +1:s

+m]. Line 10 prints out any valid shifts that are found. If s < n – m

(checked in line 11), then the for loop will iterate at least one more time,

and so line 12 first executes to ensure that the loop invariant holds upon

the next iteration. Line 12 computes the value of ts+1 mod q from the

value of ts mod q in constant time using equation (32.2) directly.

RABIN-KARP-MATCHER takes Θ(m) preprocessing time, and its

matching time is Θ((n − m + 1)m) in the worst case, since (like the naive

string-matching algorithm) the Rabin-Karp algorithm explicitly verifies
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every valid shift. If P = am and T = an, then verifying takes

Θ((n−m+1)m) time, since each of the n−m+1 possible shifts is valid.

In many applications, you expect few valid shifts—perhaps some

constant c of them. In such applications, the expected matching time of

the algorithm is only O((n−m+1)+cm) = O(n+m), plus the time required

to process spurious hits. We can base a heuristic analysis on the

assumption that reducing values modulo q acts like a random mapping

from ∑* to ℤq. The expected number of spurious hits is then O(n/q),

because we can estimate the chance that an arbitrary ts will be

equivalent to p, modulo q, as 1/q. Since there are O(n) positions at

which the test of line 8 fails (actually, at most n − m + 1 positions) and

checking each hit takes O(m) time in line 9, the expected matching time

taken by the Rabin-Karp algorithm is

RABIN-KARP-MATCHER(T, P, n, m, d, q)

  1 h = dm−1 mod q

  2 p = 0

  3 t0 = 0

  4 for i = 1 to m // preprocessing

  5 p = (dp + P[i]) mod q

  6 t0 = (dt0 + T[i]) mod q

  7 for s = 0 to n – m // matching—try all possible

shifts

  8 if p == ts // a hit?

  9 if P[1:m] == T[s + 1:s + m] // valid shift?

10 print “Pattern occurs with shift” s

11 if s < n – m

12

O(n) + O(m(v + n/q)),

where v is the number of valid shifts. This running time is O(n) if v =

O(1) and you choose q ≥ m. That is, if the expected number of valid

shifts is small (O(1)) and you choose the prime q to be larger than the
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length of the pattern, then you can expect the Rabin-Karp procedure to

use only O(n + m) matching time. Since m ≤ n, this expected matching

time is O(n).

Exercises

32.2-1

Working modulo q = 11, how many spurious hits does the Rabin-Karp

matcher encounter in the text T = 3141592653589793 when looking for

the pattern P = 26?

32.2-2

Describe how to extend the Rabin-Karp method to the problem of

searching a text string for an occurrence of any one of a given set of k

patterns. Start by assuming that all k patterns have the same length.

Then generalize your solution to allow the patterns to have different

lengths.

32.2-3

Show how to extend the Rabin-Karp method to handle the problem of

looking for a given m × m pattern in an n × n array of characters. (The

pattern may be shifted vertically and horizontally, but it may not be

rotated.)

32.2-4

Alice has a copy of a long n-bit file A = 〈an–1, an–2, …, a0〉, and Bob

similarly has an n-bit file B = 〈bn–1, bn–2, …, b0〉. Alice and Bob wish

to know if their files are identical. To avoid transmitting all of A or B,

they use the following fast probabilistic check. Together, they select a

prime q > 1000n and randomly select an integer x from {0, 1, …, q – 1}.

Letting

Alice evaluates A(x) and Bob evaluates B(x). Prove that if A ≠ B, there is

at most one chance in 1000 that A(x) = B(x), whereas if the two files are
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the same, A(x) is necessarily the same as B(x). (Hint: See Exercise 31.4-

4.)

32.3    String matching with finite automata

Many string-matching algorithms build a finite automaton—a simple

machine for processing information—that scans the text string T for all

occurrences of the pattern P. This section presents a method for

building such an automaton. These string-matching automata are

efficient: they examine each text character exactly once, taking constant

time per text character. The matching time used—after preprocessing

the pattern to build the automaton—is therefore Θ(n). The time to build

the automaton, however, can be large if ∑ is large. Section 32.4 describes

a clever way around this problem.

We begin this section with the definition of a finite automaton. We

then examine a special string-matching automaton and show how to use

it to find occurrences of a pattern in a text. Finally, we’ll see how to

construct the string-matching automaton for a given input pattern.

Finite automata

A finite automaton M, illustrated in Figure 32.5, is a 5-tuple (Q, q0, A, ∑,

δ), where

Q is a finite set of states,

q0 ∈ Q is the start state,

A ⊆ Q is a distinguished set of accepting states,

∑ is a finite input alphabet,

δ is a function from Q × ∑ into Q, called the transition function of

M.
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Figure 32.5 A simple two-state finite automaton with state set Q = {0, 1}, start state q0 = 0, and

input alphabet ∑ = {a, b}. (a) A tabular representation of the transition function δ. (b) An

equivalent state-transition diagram. State 1, in orange, is the only accepting state. Directed edges

represent transitions. For example, the edge from state 1 to state 0 labeled b indicates that δ(1, b)

= 0. This automaton accepts those strings that end in an odd number of a’s. More precisely, it

accepts a string x if and only if x = yz, where y = ϵ or y ends with a b, and z = ak, where k is

odd. For example, on input abaaa, including the start state, this automaton enters the sequence

of states 〈0, 1, 0, 1, 0, 1〉, and so it accepts this input. For input abbaa, it enters the sequence of

states 〈0, 1, 0, 0, 1, 0〉, and so it rejects this input.

The finite automaton begins in state q0 and reads the characters of

its input string one at a time. If the automaton is in state q and reads

input character a, it moves (“makes a transition”) from state q to state

δ(q, a). Whenever its current state q is a member of A, the machine M

has accepted the string read so far. An input that is not accepted is

rejected.

A finite automaton M induces a function ϕ, called the final-state

function, from ∑* to Q such that ϕ(w) is the state M ends up in after

reading the string w. Thus, M accepts a string w if and only if ϕ(w) ∈ A.

We define the function ϕ recursively, using the transition function:

ϕ(ϵ) = q0,

ϕ(wa) = δ(ϕ(w), a) for w ∈ ∑*, a ∈ ∑.

String-matching automata

For a given pattern P, a preprocessing step constructs a string-matching

automaton specific to P. The automaton then searches the text string

for occurrences of P. Figure 32.6 illustrates the automaton for the

pattern P = ababaca. From now on, let’s assume that P is fixed, and
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for brevity, we won’t bother to indicate the dependence upon P in our

notation.

In order to specify the string-matching automaton corresponding to

a given pattern P[1:m], we first define an auxiliary function σ, called the

suffix function corresponding to the pattern P. The function σ maps ∑*

to {0, 1, …, m} such that σ(x) is the length of the longest prefix of P that

is also a suffix of x:
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Figure 32.6 (a) A state-transition diagram for the string-matching automaton that accepts all

strings ending in the string ababaca. State 0 is the start state, and state 7 (in orange) is the only

accepting state. The transition function δ is defined by equation (32.4), and a directed edge from

state i to state j labeled a represents δ(i, a) = j. The right-going edges forming the “spine” of the

automaton, shown in blue, correspond to successful matches between pattern and input

characters. Except for the edges from state 7 to states 1 and 2, the left-going edges correspond to

mismatches. Some edges corresponding to mismatches are omitted: by convention, if a state i

has no outgoing edge labeled a for some a ∈ ∑, then δ(i, a) = 0. (b) The corresponding transition

function δ, and the pattern string P = ababaca. The entries corresponding to successful

matches between pattern and input characters are shown in blue. (c) The operation of the

automaton on the text T = abababacaba. Under each text character T[i] appears the state

ϕ(T[:i]) that the automaton is in after processing the prefix T[:i]. The substring of the pattern

that occurs in the text is highlighted in blue. The automaton finds this one occurrence of the

pattern, ending in position 9.

The suffix function σ is well defined since the empty string P[:0] = ϵ is a

suffix of every string. As examples, for the pattern P = ab, we have σ(ε)
= 0, σ(ccaca) = 1, and σ(ccab) = 2. For a pattern P of length m, we

have σ(x) = m if and only if P ⊐ x. From the definition of the suffix

function, x ⊐ y implies σ(x) ≤ σ(y) (see Exercise 32.3-4).

We are now ready to define the string-matching automaton that

corresponds to a given pattern P[1:m]:
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The state set Q is {0, 1, …, m}. The start state q0 is state 0, and

state m is the only accepting state.

The transition function δ is defined, for any state q and character

a, by

As the automaton consumes characters of the text T, it is trying to

build a match of the pattern P against the most recently seen characters

of T. At any time, the state number q gives the length of the longest

prefix of P that matches the most recently seen text characters.

Whenever the automaton reaches state m, the m most recently seen text

characters match the first m characters of P. Since P has length m,

reaching state m means that the m most recently seen text characters

match the entire pattern, so that the automaton has found a match.

With this intuition behind the design of the automaton, here is the

reasoning behind defining δ(q, a) = σ(P[:q]a). Suppose that the

automaton is in state q after reading the first i characters of the text,

that is, q = ϕ(T[:i]). The intuitive idea then says that q also equals the

length of the longest prefix of P that matches a suffix of T[:i] or,

equivalently, that q = σ(T[:i]). Thus, since ϕ(T[:i]) and σ(T[:i]) both equal

q, we will see (in Theorem 32.4 on page 973) that the automaton

maintains the following invariant:

If the automaton is in state q and reads the next character T[i + 1] = a,

then the transition should lead to the state corresponding to the longest

prefix of P that is a suffix of T[:i]a. That state is σ(T[:i]a), and equation

(32.5) gives ϕ(T[:i]a) = σ(T[:i]a). Because P[:q] is the longest prefix of P

that is a suffix of T[:i], the longest prefix of P that is a suffix of T[:i]a has

length not only σ(T[:i]a), but also σ(P[:q]a), and so ϕ(T[:i]a) = σ(P[:q]a).

(Lemma 32.3 on page 972 will prove that σ(T[:i]a) = σ(P[:q]a).) Thus,

when the automaton is in state q, the transition function δ on character

a should take the automaton to state δ(q, a) = δ(ϕ(T[:i]), a) = ϕ(T[:i]a) =

σ(P[:q]a) (with the last equality following from equation (32.5)).
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There are two cases to consider, depending on whether the next

character continues to match the pattern. In the first case, a = P[q + 1],

so that the character a continues to match the pattern. In this case,

because δ(q, a) = q + 1, the transition continues to go along the “spine”

of the automaton (the blue edges in Figure 32.6(a)). In the second case,

a ≠ P[q + 1], so that a does not extend the match being built. In this

case, we need to find the longest prefix of P that is also a suffix of T[:i]a,

which will have length at most q. The preprocessing step matches the

pattern against itself when creating the string-matching automaton, so

that the transition function can quickly identify the longest such smaller

prefix of P.

Let’s look at an example. Consider state 5 in the string-matching

automaton of Figure 32.6. In state 5, the five most recently read

characters of T are ababa, the characters along the spine of the

automaton that reach state 5. If the next character of T is c, then the

most recently read characters of T are ababac, which is the prefix of P

with length 6. The automaton should continue along the spine to state

6. This is the first case, in which the match continues, and δ(5, c) = 6. To

illustrate the second case, suppose that in state 5, the next character of T

is b, so the most recently read characters of T are ababab. Here, the

longest prefix of P that matches the most recently read characters of T

—that is, a suffix of the portion of T read so far—is abab, with length

4, so δ(5, b) = 4.

To clarify the operation of a string-matching automaton, the simple

and efficient procedure FINITE-AUTOMATON-MATCHER

simulates the behavior of such an automaton (represented by its

transition function δ) in finding occurrences of a pattern P of length m

in an input text T[1:n]. As for any string-matching automaton for a

pattern of length m, the state set Q is {0, 1, …, m}, the start state is 0,

and the only accepting state is state m. From the simple loop structure

of FINITE-AUTOMATON-MATCHER, you can see that its matching

time on a text string of length n is Θ(n), assuming that each lookup of

the transition function δ takes constant time. This matching time,

however, does not include the preprocessing time required to compute

the transition function. We address this problem later, after first proving
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that the procedure FINITE-AUTOMATON-MATCHER operates

correctly.

FINITE-AUTOMATON-MATCHER(T, δ, n, m)

1 q = 0

2 for i = 1 to n

3 q = δ(q, T[i])

4 if q == m

5 print “Pattern occurs with shift” i – m

Let’s examine how the automaton operates on an input text T[1:n].

We will prove that the automaton is in state σ(T[:i]) after reading

character T[i]. Since σ(T[:i]) = m if and only if P ⊐ T[:i], the machine is

in the accepting state m if and only if it has just read the pattern P. We

start with two lemmas about the suffix function σ.

Lemma 32.2 (Suffix-function inequality)

For any string x and character a, we have σ(xa) ≤ σ(x) + 1.

Figure 32.7 An illustration for the proof of Lemma 32.2. The figure shows that r ≤ σ(x) + 1,

where r = σ(xa).

Figure 32.8 An illustration for the proof of Lemma 32.3. The figure shows that r = σ(P[:q]a),

where q = σ(x) and r = σ(xa).
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Proof      Referring to Figure 32.7, let r = σ(xa). If r = 0, then the

conclusion σ(xa) = r ≤ σ(x)+1 is trivially satisfied since σ(x) is

nonnegative. Now assume that r > 0. Then, P[:r] ⊐ xa, by the definition

of σ. Thus, P[:r − 1] ⊐ x, by dropping the a from both the end of P[:r]

and the end of xa. Therefore, r – 1 ≤ σ(x), since σ(x) is the largest k such

that P[:k] ⊐ x, and thus σ(xa) = r ≤ σ(x) + 1.

▪

Lemma 32.3 (Suffix-function recursion lemma)

For any string x and character a, if q = σ(x), then σ(xa) = σ(P[:q]a).

Proof   The definition of σ gives that P[:q] ⊐ x. As Figure 32.8 shows, we

also have P[:q]a ⊐ xa. Let r = σ(xa). Then P[:r] ⊐ xa and, by Lemma

32.2, r ≤ q + 1. Thus, we have |P[:r]| = r ≤ q + 1 = |P[:q]a|. Since P[:q]a ⊐

xa, P[:r] ⊐ xa, and |P[:r]| ≤ |P[:q]a|, Lemma 32.1 on page 959 implies

that P[:r] ⊐ P[:q]a. Therefore, r ≤ (P[:q]a), that is, σ(xa) ≤ σ(P[:q]a). But

we also have σ(P[:q]a) ≤ σ(xa), since P[:q]a ⊐ xa. Thus, σ(xa) = σ(P[:q]a).

▪

We are now ready to prove the main theorem characterizing the

behavior of a string-matching automaton on a given input text. As

noted above, this theorem shows that the automaton is merely keeping

track, at each step, of the longest prefix of the pattern that is a suffix of

what has been read so far. In other words, the automaton maintains the

invariant (32.5).

Theorem 32.4

If ϕ is the final-state function of a string-matching automaton for a

given pattern P and T[1:n] is an input text for the automaton, then

ϕ(T[:i]) = σ(T[:i])

for i = 0, 1, …, n.

Proof   The proof is by induction on i. For i = 0, the theorem is trivially

true, since T[:0] = ε. Thus, ϕ(T[:0]) = 0 = σ(T[:0]).
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Now assume that ϕ(T[:i]) = σ(T[:i]). We will prove that ϕ(T[:i + 1]) =

σ(T[:i + 1]). Let q denote ϕ(T[:i]), so that q = σ(T[:i]), and let a denote

T[i + 1]. Then,

ϕ(T[:i + 1]) = ϕ(T[:i]a) (by the definitions of T[:i + 1] and a)

= δ(ϕ(T[:i]), a) (by the definition of ϕ)

= δ(q, a) (by the definition of q)

= σ(P[:q]a) (by the definition (32.4) of δ)

= σ(T[:i]a) (by Lemma 32.3)

= (T[:i + 1]) (by the definition of T[:i + 1]).

▪

By Theorem 32.4, if the machine enters state q on line 3, then q is the

largest value such that P[:q] ⊐ T[:i]. Thus, in line 4, q = m if and only if

the machine has just read an occurrence of the pattern P. Therefore,

FINITE-AUTOMATON-MATCHER operates correctly.

Computing the transition function

The procedure COMPUTE-TRANSITION-FUNCTION on the

following page computes the transition function δ from a given pattern

P[1:m]. It computes δ(q, a) in a straightforward manner according to its

definition in equation (32.4). The nested loops beginning on lines 1 and

2 consider all states q and all characters a, and lines 3–6 set δ(q, a) to be

the largest k such that P[:k] ⊐ P[:q]a. The code starts with the largest

conceivable value of k, which is q+1, unless q = m, in which case k

cannot be larger than m. It then decreases k until P[:k] is a suffix of

P[:q]a, which must eventually occur, since P[:0] = ε is a suffix of every

string.

COMPUTE-TRANSITION-FUNCTION(P, ∑, m)

1 for q = 0 to m

2 for each character a ∈ ∑

3 k = min {m, q + 1}
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4 while P[:k] is not a suffix of P[:q]a

5 k = k – 1

6 δ(q, a) = k

7 return δ

The running time of COMPUTE-TRANSITION-FUNCTION is

O(m3 |∑|), because the outer loops contribute a factor of m |∑|, the inner

while loop can run at most m + 1 times, and the test for whether P[:k] is

a suffix of P[:q]a on line 4 can require comparing up to m characters.

Much faster procedures exist. By utilizing some cleverly computed

information about the pattern P (see Exercise 32.4-8), the time required

to compute δ from P improves to O(m |∑|). This improved procedure for

computing δ provides a way to find all occurrences of a length-m

pattern in a length-n text over an alphabet ∑ with O(m |∑|) preprocessing

time and Θ(n) matching time.

Exercises

32.3-1

Draw a state-transition diagram for the string-matching automaton for

the pattern P = aabab over the alphabet ∑ = {a, b} and illustrate its

operation on the text string T = aaababaabaababaab.

32.3-2

Draw a state-transition diagram for the string-matching automaton for

the pattern P = ababbabbababbababbabb over the alphabet ∑ = {a,

b}.

32.3-3

A pattern P is nonoverlappable if P[:k] ⊐ P[:q] implies k = 0 or k = q.

Describe the state-transition diagram of the string-matching automaton

for a nonoverlappable pattern.

32.3-4

Let x and y be prefixes of the pattern P. Prove that x ⊐ y implies σ(x) ≤

σ(y).
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★ 32.3-5

Given two patterns P and P′, describe how to construct a finite

automaton that determines all occurrences of either pattern. Try to

minimize the number of states in your automaton.

32.3-6

Given a pattern P containing gap characters (see Exercise 32.1-4), show

how to build a finite automaton that can find an occurrence of P in a

text T in O(n) matching time, where n = |T|.

★ 32.4 The Knuth-Morris-Pratt algorithm

Knuth, Morris, and Pratt developed a linear-time string matching

algorithm that avoids computing the transition function δ altogether.

Instead, the KMP algorithm uses an auxiliary function π, which it

precomputes from the pattern in Θ(m) time and stores in an array

π[1:m]. The array π allows the algorithm to compute the transition

function δ efficiently (in an amortized sense) “on the fly” as needed.

Loosely speaking, for any state q = 0, 1, …, m and any character a ∈ ∑,

the value π[q] contains the information needed to compute δ(q, a) but

that does not depend on a. Since the array π has only m entries, whereas

δ has Θ(m |∑|) entries, the KMP algorithm saves a factor of |∑| in the

preprocessing time by computing π rather than δ. Like the procedure

FINITE-AUTOMATON-MATCHER, once preprocessing has

completed, the KMP algorithm uses Θ(n) matching time.

The prefix function for a pattern

The prefix function π for a pattern encapsulates knowledge about how

the pattern matches against shifts of itself. The KMP algorithm takes

advantage of this information to avoid testing useless shifts in the naive

pattern-matching algorithm and to avoid precomputing the full

transition function δ for a string-matching automaton.

Consider the operation of the naive string matcher. Figure 32.9(a)

shows a particular shift s of a template containing the pattern P =

ababaca against a text T. For this example, q = 5 of the characters
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have matched successfully, but the 6th pattern character fails to match

the corresponding text character. The information that q characters

have matched successfully determines the corresponding text characters.

Because these q text characters match, certain shifts must be invalid. In

the example of the figure, the shift s + 1 is necessarily invalid, since the

first pattern character (a) would be aligned with a text character that

does not match the first pattern character, but does match the second

pattern character (b). The shift s′ = s + 2 shown in part (b) of the figure,

however, aligns the first three pattern characters with three text

characters that necessarily match.

More generally, suppose that you know that P[:q] ⊐ T[:s + q] or,

equivalently, that P[1:q] = T[s + 1:s + q]. You want to shift P so that

some shorter prefix P[:k] of P matches a suffix of T[:s +q], if possible.

You might have more than one choice for how much to shift, however.

In Figure 32.9(b), shifting P by 2 positions works, so that P[:3] ⊐ T[:s +

q], but so does shifting P by 4 positions, so that P[:1] ⊐ T[:s +q] in

Figure 32.9(c). If more than one shift amount works, you should choose

the smallest shift amount so that you do not miss any potential matches.

Put more precisely, you want to answer this question:

Given that pattern characters P[1:q] match text characters T[s +

1:s + q] (that is, P[:q] ⊐ T[:s + q]), what is the least shift s′ > s

such that for some k < q,

(that is, P[:k] ⊐ T[:s′ + k]), where s′ + k = s + q?

Here’s another way to look at this question. If you know P[:q] ⊐ T[:s

+ q], then how do you find the longest proper prefix P[:k] of P[:q] that is

also a suffix of T[:s + q]? These questions are equivalent because given s

and q, requiring s′ + k = s + q means that finding the smallest shift s′ (2
in Figure 32.9(b)) is tantamount to finding the longest prefix length k (3

in Figure 32.9(b)). If you add the difference q – k in the lengths of these

prefixes of P to the shift s, you get the new shift s′, so that s′ = s + (q –

k). In the best case, k = 0, so that s′ = s + q, immediately ruling out
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shifts s + 1, s + 2, …, s + q − 1. In any case, at the new shift s′, it is
redundant to compare the first k characters of P with the corresponding

characters of T, since equation (32.6) guarantees that they match.

As Figure 32.9(d) demonstrates, you can precompute the necessary

information by comparing the pattern against itself. Since T[s′ + 1:s′ +
k] is part of the matched portion of the text, it is a suffix of the string

P[:q]. Therefore, think of equation (32.6) as asking for the greatest k < q

such that P[:k] ⊐ P[:q]. Then, the new shift s′ = s + (q – k) is the next

potentially valid shift. It will be convenient to store, for each value of q,

the number k of matching characters at the new shift s′, rather than

storing, say, the amount s′ – s to shift by.

Let’s look at the precomputed information a little more formally. For

a given pattern P[1:m], the prefix function for P is the function π : {1, 2,

…, m} → {0, 1, …, m –} such that

π[q] = max{k : k < q and P[:k] ⊐ P[:q]}.

That is, π[q] is the length of the longest prefix of P that is a proper suffix

of P[:q]. Here is the complete prefix function π for the pattern

ababaca:
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Figure 32.9 The prefix function π. (a) The pattern P = ababaca aligns with a text T so that the

first q = 5 characters match. Matching characters, in blue, are connected by blue lines. (b)

Knowing these particular 5 matched characters (P[:5]) suffices to deduce that a shift of s + 1 is

invalid, but that a shift of s′ = s + 2 is consistent with everything known about the text and

therefore is potentially valid. The prefix P[:k], where k = 3, aligns with the text seen so far. (c) A

shift of s + 4 is also potentially valid, but it leaves only the prefix P[:1] aligned with the text seen

so far. (d) To precompute useful information for such deductions, compare the pattern with

itself. Here, the longest prefix of P that is also a proper suffix of P[:5] is P[:3]. The array π

represents this precomputed information, so that π[5] = 3. Given that q characters have matched

successfully at shift s, the next potentially valid shift is at s′ = s + (q – π[q]) as shown in part (b).

The procedure KMP-MATCHER on the following page gives the

Knuth-Morris-Pratt matching algorithm. The procedure follows from

FINITE-AUTOMATON-MATCHER for the most part. To compute

π, KMP-MATCHER calls the auxiliary procedure COMPUTE-

PREFIX-FUNCTION. These two procedures have much in common,

because both match a string against the pattern P: KMP-MATCHER

matches the text T against P, and COMPUTE-PREFIX-FUNCTION

matches P against itself.

Next, let’s analyze the running times of these procedures. Then we’ll

prove them correct, which will be more complicated.

Running-time analysis
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The running time of COMPUTE-PREFIX-FUNCTION is Θ(m),

which we show by using the aggregate method of amortized analysis

(see Section 16.1). The only tricky part is showing that the while loop of

lines 5–6 executes O(m) times altogether. Starting with some

observations about k, we’ll show that it makes at most m–1 iterations.

First, line 3 starts k at 0, and the only way that k increases is by the

increment operation in line 8, which executes at most once per iteration

of the for loop of lines 4–9. Thus, the total increase in k is at most m–1.

Second, since k < q upon entering the for loop and each iteration of the

loop increments q, we always have k < q. Therefore, the assignments in

lines 2 and 9 ensure that π[q] < q for all q = 1, 2, …, m, which means

that each iteration of the while loop decreases k. Third, k never becomes

negative. Putting these facts together, we see that the total decrease in k

from the while loop is bounded from above by the total increase in k

over all iterations of the for loop, which is m – 1. Thus, the while loop

iterates at most m – 1 times in all, and COMPUTE-PREFIX-

FUNCTION runs in Θ(m) time.

KMP-MATCHER(T, P, n, m)

  1π = COMPUTE-PREFIX-FUNCTION(P, m)

  2q = 0 // number of characters matched

  3 for i = 1 to n // scan the text from left to right

  4 while q > 0 and P[q + 1] ≠ T[i]

  5 q = π[q] // next character does not match

  6 if P[q + 1] == T[i]

  7 q = q + 1 // next character matches

  8 if q == m // is all of P matched?

  9 print “Pattern occurs with shift” i – m

10 q = π[q] // look for the next match

COMPUTE-PREFIX-FUNCTION(P, m)

  1 let π[1:m] be a new array

  2π[1] = 0

  3k = 0

  4 for q = 2 to m
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  5 while k > 0 and P[k + 1] ≠ P[q]

  6 k = π[k]

  7 if P[k + 1] == P[q]

  8 k = k + 1

  9 π[q] = k

10return π

Exercise 32.4-4 asks you to show, by a similar aggregate analysis,

that the matching time of KMP-MATCHER is Θ(n).

Figure 32.10 An illustration of Lemma 32.5 for the pattern P = ababaca and q = 5. (a) The π

function for the given pattern. Since π[5] = 3, π[3] = 1, and π[1]= 0, iterating π gives π*[5] = {3, 1,

0}. (b) Sliding the template containing the pattern P to the right and noting when some prefix

P[:k] of P matches up with some proper suffix of P[:5]. Matches occur when k = 3, 1, and 0. In

the figure, the first row gives P, and the vertical red line is drawn just after P[:5]. Successive rows

show all the shifts of P that cause some prefix P[:k] of P to match some suffix of P[:5].

Successfully matched characters are shown in blue. Blue lines connect aligned matching

characters. Thus, {k : k < 5 and P[:k] ⊐ P[:5]} = {3, 1, 0}. Lemma 32.5 claims that π*[q] = {k : k

< q and P[:k] ⊐ P[:q]} for all q.

Compared with FINITE-AUTOMATON-MATCHER, by using π

rather than δ, the KMP algorithm reduces the time for preprocessing

the pattern from O(m |∑|) to Θ(m), while keeping the actual matching

time bounded by Θ(n).

Correctness of the prefix-function computation

We’ll see a little later that the prefix function π helps to simulate the

transition function δ in a string-matching automaton. But first, we need
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to prove that the procedure COMPUTE-PREFIX-FUNCTION does

indeed compute the prefix function correctly. Doing so requires finding

all prefixes P[:k] that are proper suffixes of a given prefix P[:q]. The

value of π[q] gives us the length of the longest such prefix, but the

following lemma, illustrated in Figure 32.10, shows that iterating the

prefix function π generates all the prefixes P[:k] that are proper suffixes

of P[:q]. Let

π*[q] = {π[q], π(2)[q], π(3)[q], …, π(t)[q]},

where π(i)[q] is defined in terms of functional iteration, so that π(0)[q] =

q and π(i)[q] = π[π(i−1)[q]] for i ≥ 1 (so that π[q] = π(1)[q]), and where the

sequence in π*[q] stops upon reaching π(t)[q] = 0 for some t ≥ 1.

Lemma 32.5 (Prefix-function iteration lemma)

Let P be a pattern of length m with prefix function π. Then, for q = 1, 2,

…, m, we have π*[q] = {k : k < q and P[:k] ⊐ P[:q]}.

Proof      We first prove that π*[q] ⊆ {k : k < q and P[:k] ⊐ P[:q]} or,

equivalently,

If i ∈ π*[q], then i = π(u)[q] for some u > 0. We prove equation (32.7)

by induction on u. For u = 1, we have i = π[q], and the claim follows

since i < q and P[:π[q]] ⊐ P[:q] by the definition of π. Now consider

some u ≥ 1 such that both π(u)[q] and π(u+1)[q] belong to π*[q]. Let i =

π(u)[q], so that π[i] = π(u+1)[q]. The inductive hypothesis is that P[:i] ⊐

P[:q]. Because the relations < and ⊐ are transitive, we have π[i] < i < q

and P[:π[i]] ⊐ P[:i] ⊐ P[:q], which establishes equation (32.7) for all i in

π*[q]. Therefore, π*[q] ⊆ {k : k < q and P[:k] ⊐ P[:q]}.

We now prove that {k : k < q and P[:k] ⊐ P[:q]} ⊆ π*[q] by

contradiction. Suppose to the contrary that the set {k : k < q and P[:k]

⊐ P[:q]} – π*[q] is nonempty, and let j be the largest number in the set.

Because π[q] is the largest value in {k : k < q and P[:k] ⊐ P[:q]} and π*
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[q] ∈ π*[q], it must be the case that j < [q]. Having established that π*[q]

contains at least one integer greater than j, let j′ denote the smallest such

integer. (We can choose j′ = π[q] if no other number in π*[q] is greater

than j.) We have P[:j] ⊐ P[:q] because j ∈ {k : k < q and P[:k] ⊐ P[:q]},

and from j′ ∈ π*[q] and equation (32.7), we have P[:j′] ⊐ P[:q]. Thus,

P[:j] ⊐ P[:j′] by Lemma 32.1, and j is the largest value less than j′ with

this property. Therefore, we must have π[j′] = j and, since j′ ∈ π*[q], we

must have j ∈ π*[q] as well. This contradiction proves the lemma.

▪

The algorithm COMPUTE-PREFIX-FUNCTION computes π[q],

in order, for q = 1, 2, …, m. Setting π[1] to 0 in line 2 of COMPUTE-

PREFIX-FUNCTION is certainly correct, since π[q] < q for all q. We’ll

use the following lemma and its corollary to prove that COMPUTE-

PREFIX-FUNCTION computes π[q] correctly for q > 1.

Lemma 32.6

Let P be a pattern of length m, and let π be the prefix function for P.

For q = 1, 2, …, m, if π[q] > 0, then π[q] – 1 ∈ π*[q – 1].

Proof   Let r = π[q] > 0, so that r < q and P[:r] ⊐ P[:q], and thus, r – 1 <

q – 1 and P[:r – 1] ⊐ P[:q – 1] (by dropping the last character from P[:r]

and P[:q], which we can do because r > 0). By Lemma 32.5, therefore, r

– 1 ∈ π*[q – 1]. Thus, we have π[q] – 1 = r – 1 ∈ π*[q – 1].

▪

For q = 2, 3, …, m, define the subset Eq–1 ⊆ π*[q – 1] by

Eq–1 = {k ∈ π*[q – 1]: P[k + 1] = P[q]}

= {k : k < q – 1 and P[:k] ⊐ P[:q – 1] and P[k + 1] = P[q]}

(by Lemma 32.5)

= {k : k < q – 1 and P[:k + 1] ⊐ P[:q]}.

The set Eq–1 consists of the values k < q – 1 for which P[:k] ⊐ P[:q – 1]

and for which, because P[k + 1] = P[q], we have P[:k + 1] ⊐ P[:q]. Thus,
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Eq–1 consists of those values k ∈ π*[q – 1] such that extending P[:k] to

P[:k + 1] produces a proper suffix of P[:q].

Corollary 32.7

Let P be a pattern of length m, and let π be the prefix function for P.

Then, for q = 2, 3, …, m,

Proof   If Eq–1 is empty, there is no k ∈ π*[q – 1] (including k = 0) such

that extending P[:k] to P[:k + 1] produces a proper suffix of P[:q].

Therefore, π[q]= 0.

If, instead, Eq–1 is nonempty, then for each k ∈ Eq–1, we have k + 1

< q and P[:k + 1] ⊐ P[:q]. Therefore, the definition of π[q] gives

Note that π[q] > 0. Let r = π[q] – 1, so that r + 1 = π[q] > 0, and

therefore P[:r + 1] ⊐ P[:q]. If a nonempty string is a suffix of another,

then the two strings must have the same last character. Since r + 1 > 0,

the prefix P[:r + 1] is nonempty, and so P[r + 1] = P[q]. Furthermore, r

∈ π*[q – 1] by Lemma 32.6. Therefore, r ∈ Eq–1, and so π[q] – 1 = r ≤

max Eq–1 or, equivalently,

Combining equations (32.8) and (32.9) completes the proof.

▪

We now finish the proof that COMPUTE-PREFIX-FUNCTION

computes π correctly. The key is to combine the definition of Eq–1 with

the statement of Corollary 32.7, so that π[q] equals 1 plus the greatest

value of k in π*[q – 1] such that P[k + 1] = P[q]. First, in COMPUTE-

PREFIX-FUNCTION, k = π[q – 1] at the start of each iteration of the

for loop of lines 4–9. This condition is enforced by lines 2 and 3 when

the loop is first entered, and it remains true in each successive iteration

because of line 9. Lines 5–8 adjust k so that it becomes the correct value
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of π[q]. The while loop of lines 5–6 searches through all values k ∈ π*[q

– 1] in decreasing order to find the value of π[q]. The loop terminates

either because k reaches 0 or P[k + 1] = P[q]. Because the “and”

operator short-circuits, if the loop terminates because P[k + 1] = P[q],

then k must have also been positive, and so k is the greatest value in Eq–

1. In this case, lines 7–9 set π[q] to k + 1, according to Corollary 32.7. If,

instead, the while loop terminates because k = 0, then there are two

possibilities. If P[1] = P[q], then Eq–1 = {0}, and lines 7–9 set both k

and π[q] to 1. If k = 0 and P[1] ≠ P[q], however, then Eq–1 = ø;. In this

case, line 9 sets π[q] to 0, again according to Corollary 32.7, which

completes the proof of the correctness of COMPUTE-PREFIX-

FUNCTION.

Correctness of the Knuth-Morris-Pratt algorithm

You can think of the procedure KMP-MATCHER as a reimplemented

version of the procedure FINITE-AUTOMATON-MATCHER, but

using the prefix function π to compute state transitions. Specifically,

we’ll prove that in the ith iteration of the for loops of both KMP-

MATCHER and FINITE-AUTOMATON-MATCHER, the state q has

the same value upon testing for equality with m (at line 8 in KMP-

MATCHER and at line 4 in FINITE-AUTOMATON-MATCHER).

Once we have argued that KMP-MATCHER simulates the behavior of

FINITE-AUTOMATON-MATCHER, the correctness of KMP-

MATCHER follows from the correctness of FINITE-AUTOMATON-

MATCHER (though we’ll see a little later why line 10 in KMP-

MATCHER is necessary).

Before formally proving that KMP-MATCHER correctly simulates

FINITE-AUTOMATON-MATCHER, let’s take a moment to

understand how the prefix function π replaces the δ transition function.

Recall that when a string-matching automaton is in state q and it scans

a character a = T[i], it moves to a new state δ(q, a). If a = P[q + 1], so

that a continues to match the pattern, then the state number is

incremented: δ(q, a) = q + 1. Otherwise, a ≠ P[q + 1], so that a does not

continue to match the pattern, and the state number does not increase: 0
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≤ δ(q, a) ≤ q. In the first case, when a continues to match, KMP-

MATCHER moves to state q + 1 without referring to the π function:

the while loop test in line 4 immediately comes up false, the test in line 6

comes up true, and line 7 increments q.

The π function comes into play when the character a does not

continue to match the pattern, so that the new state δ(q, a) is either q or

to the left of q along the spine of the automaton. The while loop of lines

4–5 in KMP-MATCHER iterates through the states in π*[q], stopping

either when it arrives in a state, say q′, such that a matches P[q′ + 1] or q′
has gone all the way down to 0. If a matches P[q′ + 1], then line 7 sets

the new state to q′+1, which should equal δ(q, a) for the simulation to

work correctly. In other words, the new state δ(q, a) should be either

state 0 or a state numbered 1 more than some state in π*[q].

Let’s look at the example in Figures 32.6 and 32.10, which are for the

pattern P = ababaca. Suppose that the automaton is in state q = 5,

having matched ababa. The states in π*[5] are, in descending order, 3,

1, and 0. If the next character scanned is c, then you can see that the

automaton moves to state δ(5, c) = 6 in both FINITE-AUTOMATON-

MATCHER (line 3) and KMP-MATCHER (line 7). Now suppose that

the next character scanned is instead b, so that the automaton should

move to state δ(5, b) = 4. The while loop in KMP-MATCHER exits

after executing line 5 once, and the automaton arrives in state q′ = π[5]

= 3. Since P[q′ + 1] = P[4] = b, the test in line 6 comes up true, and the

automaton moves to the new state q′ + 1 = 4 = δ(5, b). Finally, suppose

that the next character scanned is instead a, so that the automaton

should move to state δ(5, a) = 1. The first three times that the test in line

4 executes, the test comes up true. The first time finds that P[6] = c ≠ a,

and the automaton moves to state π[5] = 3 (the first state in π*[5]). The

second time finds that P[4] = b ≠ a, and the automaton moves to state

π[3] = 1 (the second state in π*[5]). The third time finds that P[2] = b ≠

a, and the automaton moves to state π[1] = 0 (the last state in π*[5]).

The while loop exits once it arrives in state q′ = 0. Now line 6 finds that

P[q′ + 1] = P[1] = a, and line 7 moves the automaton to the new state q′
+ 1 = 1 = δ(5, a).
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Thus, the intuition is that KMP-MATCHER iterates through the

states in π*[q] in decreasing order, stopping at some state q′ and then

possibly moving to state q′+1. Although that might seem like a lot of

work just to simulate computing δ(q, a), bear in mind that

asymptotically, KMP-MATCHER is no slower than FINITE-

AUTOMATON-MATCHER.

We are now ready to formally prove the correctness of the Knuth-

Morris-Pratt algorithm. By Theorem 32.4, we have that q = σ(T[:i]) after

each time line 3 of FINITE-AUTOMATON-MATCHER executes.

Therefore, it suffices to show that the same property holds with regard

to the for loop in KMP-MATCHER. The proof proceeds by induction

on the number of loop iterations. Initially, both procedures set q to 0 as

they enter their respective for loops for the first time. Consider iteration

i of the for loop in KMP-MATCHER. By the inductive hypothesis, the

state number q equals σ(T[:i – 1]) at the start of the loop iteration. We

need to show that when line 8 is reached, the new value of q is σ(T[:i]).

(Again, we’ll handle line 10 separately.)

Considering q to be the state number at the start of the for loop

iteration, when KMP-MATCHER considers the character T[i], the

longest prefix of P that is a suffix of T[:i] is either P[:q + 1] (if P[q + 1] =

T[i]) or some prefix (not necessarily proper, and possibly empty) of

P[:q]. We consider separately the three cases in which σ(T[:i]) = 0,

σ(T[:i]) = q + 1, and 0 < σ(T[:i]) ≤ q.

If σ(T[:i]) = 0, then P[:0] = ϵ is the only prefix of P that is a suffix

of T[:i]. The while loop of lines 4–5 iterates through each value q′
in π*[q], but although P[:q′] ⊐ P[:q] ⊐ T[:i – 1] for every q′ ∈ π*[q]

(because < are ⊐ are transitive relations), the loop never finds a q′
such that P[q′ + 1] = T[i]. The loop terminates when q reaches 0,

and of course line 7 does not execute. Therefore, q = 0 at line 8, so

that now q = σ(T[:i]).

If σ(T[:i]) = q+1, then P[q+1] = T[i], and the while loop test in line

4 fails the first time through. Line 7 executes, incrementing the

state number to q + 1, which equals σ(T[:i]).

If 0 < σ(T[:i]) ≤ q′, then the while loop of lines 4–5 iterates at least

once, checking in decreasing order each value in π*[q] until it
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stops at some q′ < q. Thus, P[:q′] is the longest prefix of P[:q] for

which P[q′ + 1] = T[i], so that when the while loop terminates, q′ +
1 = σ(P[:q]T[i]). Since q = σ(T[:i – 1]), Lemma 32.3 implies that

σ(T[:i – 1]T[i]) = σ(P[:q]T[i]). Thus we have

q′ + 1 = σ(P[:q]T[i])

= σ(T[:i – 1]T[i])

= σ(T[:i])

when the while loop terminates. After line 7 increments q, the new

state number q equals σ(T[:i]).

Line 10 is necessary in KMP-MATCHER, because otherwise, line 4

might try to reference P[m + 1] after finding an occurrence of P. (The

argument that q = σ(T[:i – 1]) upon the next execution of line 4 remains

valid by the hint given in Exercise 32.4-8: that δ(m, a) = δ(π[m], a) or,

equivalently, σ(Pa) = σ(P[:π[m]]a) for any a ∈ ∑.) The remaining

argument for the correctness of the Knuth-Morris-Pratt algorithm

follows from the correctness of FINITE-AUTOMATON-MATCHER,

since we have shown that KMP-MATCHER simulates the behavior of

FINITE-AUTOMATON-MATCHER.

Exercises

32.4-1

Compute the prefix function π for the pattern

ababbabbabbababbabb.

32.4-2

Give an upper bound on the size of π*[q] as a function of q. Give an

example to show that your bound is tight.

32.4-3

Explain how to determine the occurrences of pattern P in the text T by

examining the π function for the string PT (the string of length m+n

that is the concatenation of P and T).

32.4-4
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Use an aggregate analysis to show that the running time of KMP-

MATCHER is Θ(n).

32.4-5

Use a potential function to show that the running time of KMP-

MATCHER is Θ(n).

32.4-6

Show how to improve KMP-MATCHER by replacing the occurrence

of π in line 5 (but not line 10) by π′, where π′ is defined recursively for q

= 1, 2, …, m – 1 by the equation

Explain why the modified algorithm is correct, and explain in what

sense this change constitutes an improvement.

32.4-7

Give a linear-time algorithm to determine whether a text T is a cyclic

rotation of another string T′. For example, braze and zebra are cyclic

rotations of each other.

★ 32.4-8

Give an O(m |∑|)-time algorithm for computing the transition function δ
for the string-matching automaton corresponding to a given pattern P.

(Hint: Prove that δ(q, a) = δ(π[q], a) if q = m or P[q + 1] ≠ a.)

32.5    Suffix arrays

The algorithms we have seen thus far in this chapter can efficiently find

all occurrences of a pattern in a text. That is, however, all they can do.

This section presents a different approach—suffix arrays—with which

you can find all occurrences of a pattern in a text, but also quite a bit

more. A suffix array won’t find all occurrences of a pattern as quickly as,
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say, the Knuth-Morris-Pratt algorithm, but its additional flexibility

makes it well worth studying.

Figure 32.11 The suffix array SA, rank array rank, longest common prefix array LCP, and

lexicographically sorted suffixes of the text T = ratatat with length n = 7. The value of rank[i]

indicates the position of the suffix T[i:] in the lexicographically sorted order: rank[SA[i]] = i for i

= 1, 2, …, n. The rank array is used to compute the LCP array.

A suffix array is simply a compact way to represent the

lexicographically sorted order of all n suffixes of a length-n text. Given a

text T[1:n], let T[i:] denote the suffix T[i:n]. The suffix array SA[1:n] of T

is defined such that if SA[i] = j, then T[j:] is the ith suffix of T in

lexicographic order.3 That is, the ith suffix of T in lexicographic order is

T[SA[i]:]. Along with the suffix array, another useful array is the longest

common prefix array LCPOE[1:n]. The entry LCP[i] gives the length of

the longest common prefix between the ith and (i – 1)st suffixes in the

sorted order (with LCP[SA[1]] defined to be 0, since there is no prefix

lexicographically smaller than T[SA[1]:]). Figure 32.11 shows the suffix

array and longest common prefix array for the 7-character text

ratatat.

Given the suffix array for a text, you can search for a pattern via

binary search on the suffix array. Each occurrence of a pattern in the

text starts some suffix of the text, and because the suffix array is in

lexicographically sorted order, all occurrences of a pattern will appear at

the start of consecutive entries of the suffix array. For example, in

Figure 32.11, the three occurrences of at in ratatat appear in

entries 1 through 3 of the suffix array. If you find the length-m pattern in

the length-n suffix array via binary search (taking O(m 1g n) time

because each comparison takes O(m) time), then you can find all

occurrences of the pattern in the text by searching backward and

www.konkur.in

Telegram: @uni_k



forward from that spot until you find a suffix that does not start with

the pattern (or you go beyond the bounds of the suffix array). If the

pattern occurs k times, then the time to find all k occurrences is O(m 1g

n + km).

With the longest common prefix array, you can find a longest

repeated substring, that is, the longest substring that occurs more than

once in the text. If LCP[i] contains a maximum value in the LCP array,

then a longest repeated substring appears in T[SA[i]:SA[i] + LCP[i] – 1].

In the example of Figure 32.11, the LCP array has one maximum value:

LCP[3] = 4. Therefore, since SA[3] = 2, the longest repeated substring is

T[2:5] = atat. Exercise 32.5-3 asks you to use the suffix array and

longest common prefix array to find the longest common substrings

between two texts. Next, we’ll see how to compute the suffix array for an

n-character text in O(n 1g n) time and, given the suffix array and the

text, how to compute the longest common prefix array in Θ(n) time.

Computing the suffix array

There are several algorithms to compute the suffix array of a length-n

text. Some run in linear time, but are rather complicated. One such

algorithm is given in Problem 32-2. Here we’ll explore a simpler

algorithm that runs in Θ(n 1g n) time.

The idea behind the O(n 1g n)-time procedure COMPUTE-

SUFFIX-ARRAY on the following page is to lexicographically sort

substrings of the text with increasing lengths. The procedure makes

several passes over the text, with the substring length doubling each

time. By the ⌈1g n⌉th pass, the procedure is sorting all the suffixes,

thereby gaining the information needed to construct the suffix array.

The key to attaining an O(n 1g n)-time algorithm will be to have each

pass after the first sort in linear time, which will indeed be possible by

using radix sort.

Let’s start with a simple observation. Consider any two strings, s1

and s2. Decompose s1 into  and , so that s1 is  concatenated with 

. Likewise, let s2 be  concatenated with . Now, suppose that  is

lexicographically smaller than . Then, regardless of  and , it must
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be the case that s1 is lexicographically smaller than s2. For example, let

s1 = aaz and s2 = aba, and decompose s1 into  and  and

s2 into  and . Because  is lexicographically smaller than 

, it follows that s1 is lexicographically smaller than s2, even though  is

lexicographically smaller than .

Instead of comparing substrings directly, COMPUTE-SUFFIX-

ARRAY represents substrings of the text with integer ranks. Ranks

have the simple property that one substring is lexicographically smaller

then another if and only if it has a smaller rank. Identical substrings

have equal ranks.

Where do these ranks come from? Initially, the substrings being

considered are just single characters from the text. Assume that, as in

many programming languages, there is a function, ord, that maps a

character to its underlying encoding, which is a positive integer. The ord

function could be the ASCII or Unicode encodings or any other

function that produces a relative ordering of the characters. For

example if all the characters are known to be lowercase letters, then

ord(a) = 1, ord(b) = 2, …, ord(z) = 26 would work. Once the substrings

being considered contain multiple characters, their ranks will be positive

integers less than or equal to n, coming from their relative order after

being sorted. An empty substring always has rank 0, since it is

lexicographically less than any nonempty substring.

COMPUTE-SUFFIX-ARRAY(T, n)

  1 allocate arrays substr-rank[1:n], rank[1:n], and SA[1:n]

  2 for i = 1 to n

  3 substr-rank[i].left-rank = ord(T[i])

  4 if i < n

  5 substr-rank[i].right-rank = ord(T[i + 1])

  6 else substr-rank[i].right-rank = 0

  7 substr-rank[i].index = i

  8 sort the array substr-rank into monotonically increasing order

based on the left-rank attributes, using the right-rank

attributes to break ties; if still a tie, the order does not matter
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  9 l = 2

10 while l < n

11 MAKE-RANKS(substr-rank, rank, n)

12 for i = 1 to n

13 substr-rank[i].left-rank = rank[i]

14 if i + l ≤ n

15 substr-rank[i].right-rank = rank[i + l]

16 else substr-rank[i].right-rank = 0

17 substr-rank[i].index = i

18 sort the array substr-rank into monotonically increasing

order based on the left-rank attributes, using the right-

rank attributes to break ties; if still a tie, the order does

not matter

19 l = 2l

20 for i = 1 to n

21 SA[i] = substr-rank[i].index

22 return SA

MAKE-RANKS(substr-rank, rank, n)

  1 r = 1

  2 rank[substr-rank[1].index] = r

  3 for i = 2 to n

  4 if substr-rank[i].left-rank ≠ substr-rank[i – 1].left-rank

   or substr-rank[i].right-rank ≠ substr-rank[i – 1].right-

rank

  5 r = r + 1

  6 rank[substr-rank[i].index] = r
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Figure 32.12 The substr-rank array for indices i = 1, 2, …, 7 after the for loop of lines 2–7 and

after the sorting step in line 8 for input string T = ratatat.

The COMPUTE-SUFFIX-ARRAY procedure uses objects

internally to keep track of the relative ordering of the substrings

according to their ranks. When considering substrings of a given length,

the procedure creates and sorts an array substr-rank[1:n] of n objects,

each with the following attributes:

left-rank contains the rank of the left part of the substring.

right-rank contains the rank of the right part of the substring.

index contains the index into the text T of where the substring

starts.

Before delving into the details of how the procedure works, let’s look

at how it operates on the input text ratatat, with n = 7. Assuming

that the ord function returns the ASCII code for a character, Figure

32.12 shows the substr-rank array after the for loop of lines 2–7 and

then after the sorting step in line 8. The left-rank and right-rank values

after lines 2–7 are the ranks of length-1 substrings in positions i and i +

1, for i = 1, 2, …, n. These initial ranks are the ASCII values of the

characters. At this point, the left-rank and right-rank values give the

ranks of the left and right part of each substring of length 2. Because

the substring starting at index 7 consists of only one character, its right

part is empty and so its right-rank is 0. After the sorting step in line 8,

the substr-rank array gives the relative lexicographic order of all the

substrings of length 2, with starting points of these substrings in the

index attribute. For example, the lexicographically smallest length-2

substring is at, which starts at position substr-rank[1].index, which
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equals 2. This substring also occurs at positions substr-rank[2].index = 4

and substr-rank[3].index = 6.

The procedure then enters the while loop of lines 10–19. The loop

variable l gives an upper bound on the length of substrings that have

been sorted thus far. Entering the while loop, therefore, the substrings of

length at most l = 2 are sorted. The call of MAKE-RANKS in line 11

gives each of these substrings its rank in the sorted order, from 1 up to

the number of unique length-2 substrings, based on the values it finds in

the substr-rank array. With l = 2, MAKE-RANKS sets rank[i] to be the

rank of the length-2 substring T[i:i + 1]. Figure 32.13 shows these new

ranks, which are not necessarily unique. For example, since the length-2

substring at occurs at positions 2, 4, and 6, MAKE-RANKS finds that

substr-rank[1], substr-rank[2], and substr-rank[3] have equal values in

left-rank and in right-rank. Since substr-rank[1].index = 2, substr-

rank[2].index = 4, and substr-rank[3].index = 6, and since at is the

smallest substring in lexicographic order, MAKE-RANKS sets rank[2]

= rank[4] = rank[6] = 1.

Figure 32.13 The rank array after line 11 and the substr-rank array after lines 12–17 and after

line 18 in the first iteration of the while loop of lines 10–19, where l = 2.

This iteration of the while loop will sort the substrings of length at

most 4 based on the ranks from sorting the substrings of length at most

2. The for loop of lines 12–17 reconstitutes the substr-rank array, with

substr-rank[i].left-rank based on rank[i] (the rank of the length-2

substring T[i:i+1]) and substr-rank[i].right-rank based on rank[i + 2] (the

rank of the length-2 substring T[i + 2:i + 3], which is 0 if this substring

starts beyond the end of the length-n text). Together, these two ranks

give the relative rank of the length-4 substring T[i:i + 3]. Figure 32.13
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shows the effect of lines 12–17. The figure also shows the result of

sorting the substr-rank array in line 18, based on the left-rank attribute,

and using the right-rank attribute to break ties. Now substr-rank gives

the lexicographically sorted order of all substrings with length at most

4.

The next iteration of the while loop, with l = 4, sorts the substrings of

length at most 8 based on the ranks from sorting the substrings of

length at most4 4. Figure 32.14 shows the ranks of the length-4

substrings and the substr-rank array before and after sorting. This

iteration is the final one, since with the length n of the text equaling 7,

the procedure has sorted all substrings.

Figure 32.14 The rank array after line 11 and the substr-rank array after lines 12–17 and after

line 18 in the second—and final—iteration of the while loop of lines 10–19, where l = 4.

In general, as the loop variable l increases, more and more of the

right parts of the substrings are empty. Therefore, more of the right-rank

values are 0. Because i is at most n within the loop of lines 12–17, the

left part of each substring is always nonempty, and so all left-rank

values are always positive.

This example illuminates why the COMPUTE-SUFFIX-ARRAY

procedure works. The initial ranks established in lines 2–7 are simply the

ord values of the characters in the text, and so when line 8 sorts the

substr-rank array, its ordering corresponds to the lexicographic ordering

of the length-2 substrings. Each iteration of the while loop of lines 10–19

takes sorted substrings of length l and produces sorted substrings of

length 2l. Once l reaches or exceeds n, all substrings have been sorted.

Within an iteration of the while loop, the MAKE-RANKS

procedure “re-ranks” the substrings that were sorted, either by line 8
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before the first iteration or by line 18 in the previous iteration. MAKE-

RANKS takes a substr-rank array, which has been sorted, and fills in an

array rank[1:n] so that rank[i] is the rank of the ith substring represented

in the substr-rank array. Each rank is a positive integer, starting from 1,

and going up to the number of unique substrings of length 2l.

Substrings with equal values of left-rank and right-rank receive the same

rank. Otherwise, a substring that is lexicographically smaller than

another appears earlier in the substr-rank array, and it receives a smaller

rank. Once the substrings of length 2l are re-ranked, line 18 sorts them

by rank, preparing for the next iteration of the while loop.

Once l reaches or exceeds n and all substrings are sorted, the values

in the index attributes give the starting positions of the sorted

substrings. These indices are precisely the values that constitute the

suffix array.

Let’s analyze the running time of COMPUTE-SUFFIX-ARRAY.

Lines 1–7 take Θ(n) time. Line 8 takes O(n 1g n) time, using either merge

sort (see Section 2.3.1) or heapsort (see Chapter 6). Because the value of

l doubles in each iteration of the while loop of lines 10–19, this loop

makes ⌈1g n⌉ – 1 iterations. Within each iteration, the call of MAKE-

RANKS takes Θ(n) time, as does the for loop of lines 12–17. Line 18,

like line 8, takes O(n 1g n) time, using either merge sort or heapsort.

Finally, the for loop of lines 20–21 takes Θ(n) time. The total time works

out to O(n 1g2 n).

A simple observation allows us to reduce the running time to Θ(n 1g

n). The values of left-rank and right-rank being sorted in line 18 are

always integers in the range 0 to n. Therefore, radix sort can sort the

substr-rank array in Θ(n) time by first running counting sort (see

Chapter 8) based on right-rank and then running counting sort based

on left-rank. Now each iteration of the while loop of lines 10–19 takes

only Θ(n) time, giving a total time of Θ(n 1g n).

Exercise 32.5-2 asks you to make a simple modification to

COMPUTE-SUFFIX-ARRAY that allows the while loop of lines 10–

19 to iterate fewer than ⌈1g n⌉ – 1 times for certain inputs.

Computing the LCP array
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Recall that LCP[i] is defined as the length of the longest common prefix

of the (i – 1)st and ith lexicographically smallest suffixes T[SA[i – 1]:]

and T[SA[i]:]. Because T[SA[1]:] is the lexicographically smallest suffix,

we define LCP[1] to be 0.

In order to compute the LCP array, we need an array rank that is the

inverse of the SA array, just like the final rank array in COMPUTE-

SUFFIX-ARRAY: if SA[i] = j, then rank[j] = i. That is, we have

rank[SA[i]] = i for i = 1, 2, …, n. For a suffix T[i:], the value of rank[i]

gives the position of this suffix in the lexicographically sorted order.

Figure 32.11 includes the rank array for the ratatat example. For

example, the suffix tat is T[5:]. To find this suffix’s position in the

sorted order, look up rank[5] = 6.

To compute the LCP array, we will need to determine where in the

lexicographically sorted order a suffix appears, but with its first

character removed. The rank array helps. Consider the ith smallest

suffix, which is T[SA[i]:]. Dropping its first character gives the suffix

T[SA[i] + 1:], that is, the suffix starting at position SA[i] + 1 in the text.

The location of this suffix in the sorted order is given by rank[SA[i] + 1].

For example, for the suffix atat, let’s see where to find tat (atat with

its first character removed) in the lexicographically sorted order. The

suffix atat appears in position 2 of the suffix array, and SA[2] = 4.

Thus, rank[SA[2] + 1] = rank[5] = 6, and sure enough the suffix tat

appears in location 6 in the sorted order.

The procedure COMPUTE-LCP on the next page produces the LCP

array. The following lemma helps show that the procedure is correct.

COMPUTE-LCP(T, SA, n)

  1allocate arrays rank[1:n] and LCP[1:n]

  2 for i = 1 to n

  3 rank[SA[i]] = i // by definition

  4LCP[1] = 0 // also by definition

  5 l = 0 // initialize length of LCP

  6 for i = 1 to n

  7 if rank[i] > 1

  8 j = SA[rank[i] – 1] // T[j:] precedes T[i:] lexicographically
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  9 m = max {i, j }

10 while m + l ≤ n and T[i + l] == T[j + l]

11 l = l + 1 // next character is in common prefix

12 LCP[rank[i]] = l // length of LCP of T[j:] and T[i:]

13 if l > 0

14 l = l – 1 // peel off first character of common

prefix

15return LCP

Lemma 32.8

Consider suffixes T[i – 1:] and T[i:], which appear at positions rank[i – 1]

and rank[i], respectively, in the lexicographically sorted order of suffixes.

If LCP[rank[i – 1]] = l > 1, then the suffix T[i:], which is T[i – 1:] with its

first character removed, has LCP[rank[i]] ≥ l – 1.

Proof      The suffix T[i – 1:] appears at position rank[i – 1] in the

lexicographically sorted order. The suffix immediately preceding it in the

sorted order appears at position rank[i – 1] – 1 and is T[SA[rank[i – 1] –

1]:]. By assumption and the definition of the LCP array, these two

suffixes, T[SA[rank[i–1]–1]:] and T[i–1:], have a longest common prefix

of length l > 1. Removing the first character from each of these suffixes

gives the suffixes T[SA[rank[i – 1] – 1] + 1:] and T[i:], respectively. These

suffixes have a longest common prefix of length l – 1. If T[SA[rank[i – 1]

– 1] + 1:] immediately precedes T[i:] in the lexicographically sorted order

(that is, if rank[SA[rank[i – 1] – 1] + 1] = rank[i] – 1), then the lemma is

proven.

So now assume that T[SA[rank[i – 1] – 1] + 1:] does not immediately

precede T[i:] in the sorted order. Since T[SA[rank[i – 1] – 1]:]

immediately precedes T[i–1:] and they have the same first l > 1

characters, T[SA[rank[i – 1] – 1] + 1:] must appear in the sorted order

somewhere before T[i:], with one or more other suffixes intervening.

Each of these suffixes must start with the same l – 1 characters as

T[SA[rank[i – 1] – 1] + 1:] and T[i:], for otherwise it would appear either

before T[SA[rank[i – 1] – 1] + 1:] or after T[i:]. Therefore, whichever

suffix appears in position rank[i] – 1, immediately before T[i:], has at
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least its first l – 1 characters in common with T[i:]. Thus, LCP[rank[i]] ≥

l – 1.

▪

The COMPUTE-LCP procedure works as follows. After allocating

the rank and LCP arrays in line 1, lines 2–3 fill in the rank array and line

4 pegs LCP[1] to 0, per the definition of the LCP array.

The for loop of lines 6–14 fills in the rest of the LCP array going by

decreasing-length suffixes. That is, it fills the position of the LCP array

in the order rank[1], rank[2], rank[3], …, rank[n], with the assignment

occurring in line 12. Upon considering a suffix T[i:], line 8 determines

the suffix T[j:] that immediately precedes T[i:] in the lexicographically

sorted order. At this point, the longest common prefix of T[j:] and T[i:]

has length at least l. This property certainly holds upon the first

iteration of the for loop, when l = 0. Assuming that line 12 sets

LCP[rank[i]] correctly, line 14 (which decrements l if it is positive) and

Lemma 32.8 maintain this property for the next iteration. The longest

common prefix of T[j:] and T[i:] might be even longer than the value of l

at the start of the iteration, however. Lines 9–11 increment l for each

additional character the prefixes have in common so that it achieves the

length of the longest common prefix. The index m is set in line 9 and

used in the test in line 10 to make sure that the test T[i + l] == T[j + l]

for extending the longest common prefix does not run off the end of the

text T. When the while loop of lines 10–11 terminates, l is the length of

the longest common prefix of T[j:] and T[i:].

As a simple aggregate analysis shows, the COMPUTE-LCP

procedure runs in Θ(n) time. Each of the two for loops iterates n times,

and so it remains only to bound the total number of iterations by the

while loop of lines 10–11. Each iteration increases l by 1, and the test m

+ l ≤ n ensures that l is always less than n. Because l has an initial value

of 0 and decreases at most n – 1 times in line 14, line 11 increments l

fewer than 2n times. Thus, COMPUTE-LCP takes Θ(n) time.

Exercises

32.5-1
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Show the substr-rank and rank arrays before each iteration of the while

loop of lines 10–19 and after the last iteration of the while loop, the

suffix array SA returned, and the sorted suffixes when COMPUTE-

SUFFIX-ARRAY is run on the text hippityhoppity. Use the

position of each letter in the alphabet as its ord value, so that ord(b) =

2. Then show the LCP array after each iteration of the for loop of lines

6–14 of COMPUTE-LCP given the text hippityhoppity and its

suffix array.

32.5-2

For some inputs, the COMPUTE-SUFFIX-ARRAY procedure can

produce the correct result with fewer than ⌈1g n⌉ – 1 iterations of the

while loop of lines 10–19. Modify COMPUTE-SUFFIX-ARRAY (and,

if necessary, MAKE-RANKS) so that the procedure can stop before

making all ⌈1g n⌉ – 1 iterations in some cases. Describe an input that

allows the procedure to make O(1) iterations. Describe an input that

forces the procedure to make the maximum number of iterations.

32.5-3

Given two texts, T1 of length n1 and T2 of length n2, show how to use

the suffix array and longest common prefix array to find all of the

longest common substrings, that is, the longest substrings that appear in

both T1 and T2. Your algorithm should run in O(n 1g n + kl) time,

where n = n1 + n2 and there are k such longest substrings, each with

length l.

32.5-4

Professor Markram proposes the following method to find the longest

palindromes in a string T[1:n] by using its suffix array and LCP array.

(Recall from Problem 14-2 that a palindrome is a nonempty string that

reads the same forward and backward.)

Let @ be a character that does not appear in T. Construct the

text T′ as the concatenation of T, @, and the reverse of T.

Denote the length of T′ by n′ = 2n + 1. Create the suffix array

SA and LCP array LCP for T′. Since the indices for a
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palindrome and its reverse appear in consecutive positions in

the suffix array, find the entries with the maximum LCP value

LCP[i] such that SA[i – 1] = n′ – SA[i] – LCP[i] + 2. (This

constraint prevents a substring—and its reverse—from being

construed as a palindrome unless it really is one.) For each such

index i, one of the longest palindromes is T′[SA[i]:SA[i] +

LCP[i] – 1].

For example, if the text T is unreferenced, with n = 12, then the

text T′ is unreferenced@decnerefernu, with n′ = 25 and the

following suffix array and LCP array:

The maximum LCP value is achieved at LCP[21] = 5, and SA[20] = 3 =

n′ – SA[21] – LCP[21] + 2. The suffixes of T′ starting at indices SA[20]

and SA[21] are referenced@decnerefernu and refernu, both of

which start with the length-5 palindrome refer.

Alas, this method is not foolproof. Give an input string T that causes

this method to give results that are shorter than the longest palindrome

contained within T, and explain why your input causes the method to

fail.

Problems

32-1     String matching based on repetition factors

Let yi denote the concatenation of string y with itself i times. For

example, (ab)3 = ababab. We say that a string x ∈ ∑* has repetition

factor r if x = yr for some string y ∈ ∑* and some r > 0. Let ρ(x) denote

the largest r such that x has repetition factor r.

a. Give an efficient algorithm that takes as input a pattern P[1:m] and

computes the value ρ(P[:i]) for i = 1, 2, …, m. What is the running

time of your algorithm?
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b. For any pattern P[1:m], let ρ*(P) be defined as max {ρ(P[:i]) : 1 ≤ i ≤

m}. Prove that if the pattern P is chosen randomly from the set of all

binary strings of length m, then the expected value of ρ*(P) is O(1).

c. Argue that the procedure REPETITION-MATCHER correctly finds

all occurrences of pattern P[1:m] in text T[1:n] in O(ρ*(P)n + m) time.

(This algorithm is due to Galil and Seiferas. By extending these ideas

greatly, they obtained a linear-time string-matching algorithm that

uses only O(1) storage beyond what is required for P and T.)

REPETITION-MATCHER(T, P, n, m)

  1k = 1 + ρ*(P)

  2q = 0

  3s = 0

  4while s ≤ n – m

  5 if T[s + q + 1] == P[q + 1]

  6 q = q + 1

  7 if q == m

  8 print “Pattern occurs with shift” s

  9 if q == m or T[s + q + 1] ≠ P[q + 1]

10 s = s + max {1, ⌈q/k⌉}

11 q = 0

32-2     A linear-time suffix-array algorithm

In this problem, you will develop and analyze a linear-time divide-and-

conquer algorithm to compute the suffix array of a text T[1:n]. As in

Section 32.5, assume that each character in the text is represented by an

underlying encoding, which is a positive integer.

The idea behind the linear-time algorithm is to compute the suffix

array for the suffixes starting at 2/3 of the positions in the text, recursing

as needed, use the resulting information to sort the suffixes starting at

the remaining 1/3 of the positions, and then merge the sorted

information in linear time to produce the full suffix array.

For i = 1, 2, …, n, if i mod 3 equals 1 or 2, then i is a sample position,

and the suffixes starting at such positions are sample suffixes. Positions
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3, 6, 9, … are nonsample positions, and the suffixes starting at nonsample

positions are nonsample suffixes.

The algorithm sorts the sample suffixes, sorts the nonsample suffixes

(aided by the result of sorting the sample suffixes), and merges the

sorted sample and nonsample suffixes. Using the example text T =

bippityboppityboo, here is the algorithm in detail, listing substeps

of each of the above steps:

1. The sample suffixes comprise about 2/3 of the suffixes. Sort them by

the following substeps, which work with a heavily modified version of

T and may require recursion. In part (a) of this problem on page 999,

you will show that the orders of the suffixes of T and the suffixes of

the modified version of T are the same.

A. Construct two texts P1 and P2 made up of “metacharacters” that

are actually substrings of three consecutive characters from T. We

delimit each such metacharacter with parentheses. Construct

P1 = (T[1:3])(T[4:6])(T[7:9]) ⋯ (T[n′:n′ + 2]),

where n′ is the largest integer congruent to 1, modulo 3, that is less

than or equal to n and T is extended beyond position n with the

special character Ø, with encoding 0. With the example text T =

bippityboppityboo, we get that

P1 = (bip) (pit) (ybo) (ppi) (tyb) (ooØ).

Similarly, construct

P2 = (T[2:4])(T[5:7])(T[8:10]) ⋯ (T[n″:n″ + 2]),

where n″ is the largest integer congruent to 2, modulo 3, that is less

than or equal to n. For our example, we have

P2 = (ipp) (ity) (bop) (pit) (ybo) (oØØ).
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Figure 32.15 Computed values when sorting the sample suffixes of the linear-time suffix-array

algorithm for the text T = bippityboppityboo.

If n is a multiple of 3, append the metacharacter (ØØØ) to the end

of P1. In this way, P1 is guaranteed to end with a metacharacter

containing Ø. (This property helps in part (a) of this problem.) The

text P2 may or may not end with a metacharacter containing Ø.

B. Concatenate P1 and P2 to form a new text P. Figure 32.15 shows P

for our example, along with the corresponding positions of T.

C. Sort and rank the unique metacharacters of P, with ranks starting

from 1. In the example, P has 10 unique metacharacters: in sorted

order, they are (bip), (bop), (ipp), (ity), (oØØ), (ooØ), (pit),

(ppi), (tyb), (ybo). The metacharacters (pit) and (ybo) each

appear twice.

D. As Figure 32.15 shows, construct a new “text” P′ by renaming each

metacharacter in P by its rank. If P contains k unique

metacharacters, then each “character” in P′ is an integer from 1 to

k. The suffix arrays for P and P′ are identical.

E. Compute the suffix array SAP′ of P′. If the characters of P′ (i.e.,

the ranks of metacharacters in P) are unique, then you can compute

its suffix array directly, since the ordering of the individual

characters gives the suffix array. Otherwise, recurse to compute the

suffix array of P′, treating the ranks in P′ as the input characters in

the recursive call. Figure 32.15 shows the suffix array SAP′ for our

example. Since the number of metacharacters in P, and hence the
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length of P′, is approximately 2n/3, this recursive subproblem is

smaller than the current problem.

F. From SAP′ and the positions in T corresponding to the sample

positions, compute the list of positions of the sorted sample suffixes

of the original text T. Figure 32.15 shows the list of positions in T

of the sorted sample suffixes in our example.

2. The nonsample suffixes comprise about 1/3 of the suffixes. Using the

sorted sample suffixes, sort the nonsample suffixes by the following

substeps.

Figure 32.16 The ranks r1 through rn+3 for the text T = bippityboppityboo with n = 17.

G. Extending the text T by the two special characters ØØ, so that T

now has n + 2 characters, consider each suffix T[i:] for i = 1, 2, …, n

+ 2. Assign a rank ri to each suffix T[i:]. For the two special

characters ØØ, set rn+1 = rn+2 = 0. For the sample positions of T,

base the rank on the list of sorted sample positions of T. The rank

is currently undefined for the nonsample positions of T. For these

positions, set ri = ☐. Figure 32.16 shows the ranks for T =

bippityboppityboo with n = 17.

H. Sort the nonsample suffixes by comparing tuples (T[i], ri+1). In

our example, we get T[15:] < T[12:] < T[9:] < T[3:] < T[6:] because

(b, 6) < (i, 10) < (o, 9) < (p, 8) < (t, 12).

3. Merge the sorted sets of suffixes. From the sorted set of suffixes,

determine the suffix array of T.

This completes the description of a linear-time algorithm for computing

suffix arrays. The following parts of this problem ask you to show that

www.konkur.in

Telegram: @uni_k



certain steps of this algorithm are correct and to analyze the algorithm’s

running time.

a. Define a nonempty suffix at position i of the text P created in substep

B as all metacharacters from position i of P up to and including the

first metacharacter of P in which Ø appears or the end of P. In the

example shown in Figure 32.15, the nonempty suffixes of P starting at

positions 1, 4, and 11 of P are (bip) (pit) (ybo) (ppi) (tyb) (ooØ),

(ppi) (tyb) (ooØ), and (ybo) (oØØ), respectively. Prove that the order

of suffixes of P is the same as the order of its nonempty suffixes.

Conclude that the order of suffixes of P gives the order of the sample

suffixes of T. (Hint: If P contains duplicate metacharacters, consider

separately the cases in which two suffixes both start in P1, both start

in P2, and one starts in P1 and the other starts in P2. Use the

property that Ø appears in the last metacharacter of P1.)

b. Show how to perform substep C in Θ(n) time, bearing in mind that in

a recursive call, the characters in T are actually ranks in P′ in the

caller.

c. Argue that the tuples in substep H are unique. Then show how to

perform this substep in Θ(n) time.

d. Consider two suffixes T[i:] and T[j:], where T[i:] is a sample suffix and

T[j:] is a nonsample suffix. Show how to determine in Θ(1) time

whether T[i:] is lexicographically smaller than T[j:]. (Hint: Consider

separately the cases in which i mod 3 = 1 and i mod 3 = 2. Compare

tuples whose elements are characters in T and ranks as shown in

Figure 32.16. The number of elements per tuple may depend on

whether i mod 3 equals 1 or 2.) Conclude that step 3 can be performed

in Θ(n) time.

e. Justify the recurrence T(n) ≤ T (2n/3 + 2) + Θ(n) for the running time

of the full algorithm, and show that its solution is O(n). Conclude that

the algorithm runs in Θ(n) time.

32-3     Burrows-Wheeler transform

www.konkur.in

Telegram: @uni_k



The Burrows-Wheeler transform, or BWT, for a text T is defined as

follows. First, append a new character that compares as

lexicographically less than every character of T, and denote this

character by $ and the resulting string by T′. Letting n be the length of

T′, create n rows of characters, where each row is one of the n cyclic

rotations of T′. Next, sort the rows lexicographically. The BWT is then

the string of n characters in the rightmost column, read top to bottom.

For example, let T = rutabaga, so that T′ = rutabaga$. The

cyclic rotations are

rutabaga$

utabaga$r

tabaga$ru

abaga$rut

baga$ruta

aga$rutab

ga$rutaba

a$rutabag

$rutabaga

Sorting the rows and numbering the sorted rows gives

1 $rutabaga

2 a$rutabag

3 abaga$rut

4 aga$rutab

5 baga$ruta

6 ga$rutaba

7 rutabaga$

8 tabaga$ru

9 utabaga$r

The BWT is the rightmost column, agtbaa$ur. (The row numbering

will be helpful in understanding how to compute the inverse BWT.)

The BWT has applications in bioinformatics, and it can also be a

step in text compression. That is because it tends to place identical

characters together, as in the BWT of rutabaga, which places two of
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the instances of a together. When identical characters are placed

together, or even nearby, additional means of compressing become

available. Following the BWT, combinations of move-to-front encoding,

run-length encoding, and Huffman coding (see Section 15.3) can

provide significant text compression. Compression ratios with the BWT

tend improve as the text length increases.

a. Given the suffix array for T′, show how to compute the BWT in Θ(n)

time.

In order to decompress, the BWT must be invertible. Assuming that

the alphabet size is constant, the inverse BWT can be computed in Θ(n)

time from the BWT. Let’s look at the BWT of rutabaga, denoting it

by BWT[1:n]. Each character in the BWT has a unique lexicographic

rank from 1 to n. Denote the rank of BWT[i] by rank[i]. If a character

appears multiple times in the BWT, each instance of the character has a

rank 1 greater than the previous instance of the character. Here are

BWT and rank for rutabaga:

For example, rank[1] = 2 because BWT[1] = a and the only character

that precedes the first a lexicographically is $ (which we defined to

precede all other characters, so that $ has rank 1). Next, we have rank[2]

= 6 because BWT[2] = g and five characters in the BWT precede g

lexicographically: $, the three instances of a, and b. Jumping ahead to

rank[5] = 3, that is because BWT[5] = a, and because this a is the

second instance of a in the BWT, its rank value is 1 greater than the

rank value for the previous instance of a, in position 1.

There is enough information in BWT and rank to reconstruct T′
from back to front. Suppose that you know the rank r of a character c

in T′. Then c is the first character in row r of the sorted cyclic rotations.

The last character in row r must be the character that precedes c in T′.
But you know which character is the last character in row r, because it is

BWT[r]. To reconstruct T′ from back to front, start with $, which you
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can find in BWT. Then work backward using BWT and rank to

reconstruct T′.
Let’s see how this strategy works for rutabaga. The last character

of T′, $, appears in position 7 of BWT. Since rank[7] = 1, row 1 of the

sorted cyclic rotations of T′ begins with $. The character that precedes $

in T′ is the last character in row 1, which is BWT[1]: a. Now we know

that the last two characters of T′ are a$. Looking up rank[1], it equals 2,

so that row 2 of the sorted cyclic rotations of T′ begins with a. The last

character in row 2 precedes a in T′, and that character is BWT[2] = g.

Now we know that the last three characters of T′ are ga$. Continuing

on, we have rank[2] = 6, so that row 6 of the sorted cyclic rotations

begins with g. The character preceding g in T′ is BWT[6] = a, and so

the last four characters of T′ are aga$. Because rank[6] = 4, a begins

row 4 of the sorted cyclic rotations of T′. The character preceding a in

T′ is the last character in row 4, BWT[4] = b, and the last five characters

of T′ are baga$. And so on, until all n characters of T′ have been

identified, from back to front.

b. Given the array BWT[1:n], write pseudcode to compute the array

rank[1:n] in Θ(n) time, assuming that the alphabet size is constant.

c. Given the arrays BWT[1:n] and rank[1:n], write pseudocode to

compute T′ in Θ(n) time.

Chapter notes

The relation of string matching to the theory of finite automata is

discussed by Aho, Hopcroft, and Ullman [5]. The Knuth-Morris-Pratt

algorithm [267] was invented independently by Knuth and Pratt and by

Morris, but they published their work jointly. Matiyasevich [317] earlier

discovered a similar algorithm, which applied only to an alphabet with

two characters and was specified for a Turing machine with a two-

dimensional tape. Reingold, Urban, and Gries [377] give an alternative

treatment of the Knuth-Morris-Pratt algorithm. The Rabin-Karp

algorithm was proposed by Karp and Rabin [250]. Galil and Seiferas

[173] give an interesting deterministic linear-time string-matching
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algorithm that uses only O(1) space beyond that required to store the

pattern and text.

The suffix-array algorithm in Section 32.5 is by Manber and Myers

[312], who first proposed the notion of suffix arrays. The linear-time

algorithm to compute the longest common prefix array presented here is

by Kasai et al. [252]. Problem 32-2 is based on the DC3 algorithm by

Kärkkäinen, Sanders, and Burkhardt [245]. For a survey of suffix-array

algorithms, see the article by Puglisi, Smyth, and Turpin [370]. To learn

more about the Burrows-Wheeler transform from Problem 32-3, see the

articles by Burrows and Wheeler [78] and Manzini [314].

1 For suffix arrays, the preprocessing time of O(n 1g n) comes from the algorithm presented in

Section 32.5. It can be reduced to Θ(n) by using the algorithm in Problem 32-2. The factor k in

the matching time denotes the number of occurrences of the pattern in the text.

2 We write Θ(n – m + 1) instead of Θ(n – m) because s takes on n − m + 1 different values. The

“+1” is significant in an asymptotic sense because when m = n, computing the lone ts value

takes Θ(1) time, not Θ(0) time.

3 Informally, lexicographic order is “alphabetical order” in the underlying character set. A more

precise definition of lexicographic order appears in Problem 12-2 on page 327.

4 Why keep saying “length at most”? Because for a given value of l, a substring of length l

starting at position i is T[i:i + l – 1]. If i + l − 1 > n, then the substring cuts off at the end of the

text.
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33        Machine-Learning Algorithms

Machine learning may be viewed as a subfield of artificial intelligence.

Broadly speaking, artificial intelligence aims to enable computers to

carry out complex perception and information-processing tasks with

human-like performance. The field of AI is vast and uses many different

algorithmic methods.

Machine learning is rich and fascinating, with strong ties to statistics

and optimization. Technology today produces enormous amounts of

data, providing myriad opportunities for machine-learning algorithms

to formulate and test hypotheses about patterns within the data. These

hypotheses can then be used to make predictions about the

characteristics or classifications in new data. Because machine learning

is particularly good with challenging tasks involving uncertainty, where

observed data follows unknown rules, it has markedly transformed

fields such as medicine, advertising, and speech recognition.

This chapter presents three important machine-learning algorithms:

k-means clustering, multiplicative weights, and gradient descent. You

can view each of these tasks as a learning problem, whereby an

algorithm uses the data collected so far to produce a hypothesis that

describes the regularities learned and/or makes predictions about new

data. The boundaries of machine learning are imprecise and evolving—

some might say that the k-means clustering algorithm should be called

“data science” and not “machine learning,” and gradient descent,

though an immensely important algorithm for machine learning, also

has a multitude of applications outside of machine learning (most

notably for optimization problems).
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Machine learning typically starts with a training phase followed by a

prediction phase in which predictions are made about new data. For

online learning, the training and prediction phases are intermingled. The

training phase takes as input training data, where each input data point

has an associated output or label; the label might be a category name or

some real-valued attribute. It then produces as an output one or more

hypotheses about how the labels depend on the attributes of the input

data points. Hypotheses can take many forms, typically some type of

formula or algorithm. The learning algorithm used is often a form of

gradient descent. The prediction phase then uses the hypothesis on new

data in order to make predictions regarding the labels of new data

points.

The type of learning just described is known as supervised learning,

since it starts with a set of inputs that are each labeled. As an example,

consider a machine-learning algorithm to recognize spam emails. The

training data comprises a collection of emails, each of which is labeled

either “spam” or “not spam.” The machine-learning algorithm frames a

hypothesis, possibly a rule of the form “if an email has one of a set of

words, then it is likely to be spam.” Or it might learn rules that assign a

spam score to each word and then evaluates a document by the sum of

the spam scores of its constituent words, so that a document with a total

score above a certain threshold value is classified as spam. The machine-

learning algorithm can then predict whether a new email is spam or not.

A second form of machine learning is unsupervised learning, where

the training data is unlabeled, as in the clustering problem of Section

33.1. Here the machine-learning algorithm produces hypotheses

regarding the centers of groups of input data points.

A third form of machine learning (not covered further here) is

reinforcement learning, where the machine-learning algorithm takes

actions in an environment, receives feedback for those actions from the

environment, and then updates its model of the environment based on

the feedback. The learner is in an environment that has some state, and

the actions of the learner have an effect on that state. Reinforcement

learning is a natural choice for situations such as game playing or

operating a self-driving car.
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Sometimes the goal in a supervised machine-learning application is

not making accurate predictions of labels for new examples, but rather

performing causal inference: finding an explanatory model that

describes how the various features of an input data point affect its

associated label. Finding a model that fits a given set of training data

well can be tricky. It may involve sophisticated optimization methods

that need to balance between producing a hypothesis that fits the data

well and producing a hypothesis that is simple.

This chapter focuses on three problem domains: finding hypotheses

that group the input data points well (using a clustering algorithm),

learning which predictors (experts) to rely upon for making predictions

in an online learning problem (using the multiplicative-weights

algorithm), and fitting a model to data (using gradient descent).

Section 33.1 considers the clustering problem: how to divide a given

set of n training data points into a given number k of groups, or

“clusters,” based on a measure of how similar (or more accurately, how

dissimilar) points are to each other. The approach is iterative, beginning

with an arbitrary initial clustering and incorporating successive

improvements until no further improvements occur. Clustering is often

used as an initial step when working on a machine-learning problem to

discover what structure exists in the data.

Section 33.2 shows how to make online predictions quite accurately

when you have a set of predictors, often called “experts,” to rely on,

many of which might be poor predictors, but some of which are good

predictors. At first, you do not know which predictors are poor and

which are good. The goal is to make predictions on new examples that

are nearly as good as the predictions made by the best predictor. We

study an effective multiplicative-weights prediction method that

associates a positive real weight with each predictor and multiplicatively

decreases the weights associated with predictors when they make poor

predictions. The model in this section is online (see Chapter 27): at each

step, we do not know anything about the future examples. In addition,

we are able to make predictions even in the presence of adversarial

experts, who are collaborating against us, a situation that actually

happens in game-playing settings.
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Finally, Section 33.3 introduces gradient descent, a powerful

optimization technique used to find parameter settings in machine-

learning models. Gradient descent also has many applications outside of

machine learning. Intuitively, gradient descent finds the value that

produces a local minimum for a function by “walking downhill.” In a

learning application, a “downhill step” is a step that adjusts hypothesis

parameters so that the hypothesis does better on the given set of labeled

examples.

This chapter makes extensive use of vectors. In contrast to the rest of

the book, vector names in this chapter appear in boldface, such as x, to

more clearly delineate which quantities are vectors. Components of

vectors do not appear in boldface, so if vector x has d dimensions, we

might write x = (x1, x2, …, xd).

33.1    Clustering

Suppose that you have a large number of data points (examples), and

you wish to group them into classes based on how similar they are to

each other. For example, each data point might represent a celestial star,

giving its temperature, size, and spectral characteristics. Or, each data

point might represent a fragment of recorded speech. Grouping these

speech fragments appropriately might reveal the set of accents of the

fragments. Once a grouping of the training data points is found, new

data can be placed into an appropriate group, facilitating star-type

recognition or speech recognition.

These situations, along with many others, fall under the umbrella of

clustering. The input to a clustering problem is a set of n examples

(objects) and an integer k, with the goal of dividing the examples into at

most k disjoint clusters such that the examples in each cluster are

similar to each other. The clustering problem has several variations. For

example, the integer k might not be given, but instead arises out of the

clustering procedure. In this section we presume that k is given.

Feature vectors and similarity
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Let’s formally define the clustering problem. The input is a set of

n  examples. Each example has a set of attributes in common with all

other examples, though the attribute values may vary among examples.

For example, the clustering problem shown in Figure 33.1 clusters n =

49 examples—48 state capitals plus the District of Columbia—into k =

4 clusters. Each example has two attributes: the latitude and longitude

of the capital. In a given clustering problem, each example has d

attributes, with an example x specified by a d-dimensional feature vector

x = (x1, x2, …, xd).

Here, xa for a = 1, 2, …, d is a real number giving the value of attribute

a for example x. We call x the point in ℝd representing the example. For

the example in Figure 33.1, each capital x has its latitude in x1 and its

longitude in x2.

In order to cluster similar points together, we need to define

similarity. Instead, let’s define the opposite: the dissimilarity Δ(x, y) of

points x and y is the squared Euclidean distance between them:

Of course, for Δ(x, y) to be well defined, all attribute values must be

present. If any are missing, then you might just ignore that example, or

you could fill in a missing attribute value with the median value for that

attribute.

The attribute values are often “messy” in other ways, so that some

“data cleaning” is necessary before the clustering algorithm is run. For

example, the scale of attribute values can vary widely across attributes.

In the example of Figure 33.1, the scales of the two attributes vary by a

factor of 2, since latitude ranges from −90 to +90 degrees but longitude

ranges from −180 to +180 degrees. You can imagine other scenarios

where the differences in scales are even greater. If the examples contain

information about students, one attribute might be grade-point average

but another might be family income. Therefore, the attribute values are
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usually scaled or normalized, so that no single attribute can dominate

the others when computing dissimilarities. One way to do so is by

scaling attribute values with a linear transform so that the minimum

value becomes 0 and the maximum value becomes 1. If the attribute

values are binary values, then no scaling may be needed. Another

option is scaling so that the values for each attribute have mean 0 and

unit variance. Sometimes it makes sense to choose the same scaling rule

for several related attributes (for example, if they are lengths measured

to the same scale).
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Figure 33.1 The iterations of Lloyd’s procedure when clustering the capitals of the lower 48

states and the District of Columbia into k = 4 clusters. Each capital has two attributes: latitude

and longitude. Each iteration reduces the value f, measuring the sum of squares of distances of

all capitals to their cluster centers, until the value of f does not change. (a) The initial four

clusters, with the capitals of Arkansas, Kansas, Louisiana, and Tennessee chosen as centers. (b)–

(k) Iterations of Lloyd’s procedure. (l) The 11th iteration results in the same value of f as the

10th iteration in part (k), and so the procedure terminates.

Also, the choice of dissimilarity measure is somewhat arbitrary. The

use of the sum of squared differences as in equation (33.1) is not
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required, but it is a conventional choice and mathematically convenient.

For the example of Figure 33.1, you might use the actual distance

between capitals rather than equation (33.1).

Clusterings

With the notion of similarity (actually, dissimilarity) defined, let’s see

how to define clusters of similar points. Let S denote the given set of n

points in ℝd. In some applications the points are not necessarily

distinct, so that S is a multiset rather than a set.

Because the goal is to create k clusters, we define a k-clustering of S

as a decomposition of S into a sequence 〈S(1), S(2), …, S(k)〉 of k

disjoint subsets, or clusters, so that

S = S(1) ⋃ S(2) ⋃ ⋯ ⋃ S(k).

A cluster may be empty, for example if k > 1 but all of the points in S

have the same attribute values.

There are many ways to define a k-clustering of S and many ways to

evaluate the quality of a given k-clustering. We consider here only k-

clusterings of S that are defined by a sequence C of k centers

C = 〈c(1), c(2), …, c(k)〉,

where each center is a point in ℝd, and the nearest-center rule says that

a point x may belong to cluster S(ℓ) if the center of no other cluster is

closer to x than the center c(ℓ) of S(ℓ):

x ∈ S(ℓ) only if Δ(x, c(ℓ)) = min {Δ(x, c(j)): 1 ≤ j ≤ k}.

A center can be anywhere, and not necessarily a point in S.

Ties are possible and must be broken so that each point lies in

exactly one cluster. In general, ties may be broken arbitrarily, although

we’ll need the property that we never change which cluster a point x is

assigned to unless the distance from x to its new cluster center is strictly

smaller than the distance from x to its old cluster center. That is, if the
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current cluster has a center that is one of the closest cluster centers to x,

then don’t change which cluster x is assigned to.

The k-means problem is then the following: given a set S of n points

and a positive integer k, find a sequence C = 〈c(1), c(2), …, c(k)〉 of k

center points minimizing the sum f(S, C) of the squared distance from

each point to its nearest center, where

In the second line, the k-clustering 〈S(1),S(2),…,S(k)〉 is defined by the

centers C and the nearest-center rule. See Exercise 33.1-1 for an

alternative formulation based on pairwise interpoint distances.

Is there a polynomial-time algorithm for the k-means problem?

Probably not, because it is NP-hard [310]. As we’ll see in Chapter 34,

NP-hard problems have no known polynomial-time algorithm, but

nobody has ever proven that polynomial-time algorithms for NP-hard

problems cannot exist. Although we know of no polynomial-time

algorithm that finds the global minimum over all clusterings (according

to equation (33.2)), we can find a local minimum.

Lloyd [304] proposed a simple procedure that finds a sequence C of k

centers that yields a local minimum of f(S, C). A local minimum in the

k-means problem satisfies two simple properties: each cluster has an

optimal center (defined below), and each point is assigned to the cluster

(or one of the clusters) with the closest center. Lloyd’s procedure finds a

good clustering—possibly optimal—that satisfies these two properties.

These properties are necessary, but not sufficient, for optimality.

Optimal center for a given cluster

In an optimal solution to the k-means problem, each center point must

be the centroid, or mean, of the points in its cluster. The centroid is a d-

dimensional point, where the value in each dimension is the mean of the

values of all the points in the cluster in that dimension (that is, the mean
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of the corresponding attribute values in the cluster). That is, if c(ℓ) is the

centroid for cluster S(ℓ), then for attributes a = 1, 2, …, d, we have

Over all attributes, we write

Theorem 33.1

Given a nonempty cluster S( ℓ ), its centroid (or mean) is the unique

choice for the cluster center c(ℓ) ∈ ℝd that minimizes

Proof   We wish to minimize, by choosing c(ℓ) ∈ ℝd, the sum

For each attribute a, the term summed is a convex quadratic function in

. To minimize this function, take its derivative with respect to  and

set it to 0:

or, equivalently,

Since the minimum is obtained uniquely when each coordinate of  is

the average of the corresponding coordinate for x ∈ S( ℓ ), the overall
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minimum is obtained when c( ℓ ) is the centroid of the points x, as in

equation (33.3).

▪

Optimal clusters for given centers

The following theorem shows that the nearest-center rule—assigning

each point x to one of the clusters whose center is nearest to x—yields

an optimal solution to the k-means problem.

Theorem 33.2

Given a set S of n points and a sequence 〈c(1), c(2), …, c(k)〉 of k

centers, a clustering 〈S(1), S(2), …, S(k)〉 minimizes

if and only if it assigns each point x ∈ S to a cluster S(ℓ) that minimizes

Δ(x, c(ℓ)).

Proof      The proof is straightforward: each point x ∈ S contributes

exactly once to the sum (33.4), and choosing to put x in a cluster whose

center is nearest minimizes the contribution from x.

▪

Lloyd’s procedure

Lloyd’s procedure just iterates two operations—assigning points to

clusters based on the nearest-center rule, followed by recomputing the

centers of clusters to be their centroids—until the results converge. Here

is Lloyd’s procedure:

Input: A set S of points in ℝd, and a positive integer k.

Output: A k-clustering 〈S(1), S(2), …, S(k)〉 of S with a sequence of

centers 〈c(1), c(2), …, c(k)〉.
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1. Initialize centers: Generate an initial sequence 〈c(1), c(2), …,

c(k)〉 of k centers by picking k points independently from S at

random. (If the points are not necessarily distinct, see Exercise

33.1-3.) Assign all points to cluster S(1) to begin.

2. Assign points to clusters: Use the nearest-center rule to define the

clustering 〈S(1), S(2), …, S(k)〉. That is, assign each point x ∈ S

to a cluster S(ℓ) having a nearest center (breaking ties arbitrarily,

but not changing the assignment for a point x unless the new

cluster center is strictly closer to x than the old one).

3. Stop if no change: If step 2 did not change the assignments of

any points to clusters, then stop and return the clustering 〈S(1),

S(2), …, S(k)〉 and the associated centers 〈c(1), c(2), …, c(k)〉.

Otherwise, go to step 4.

4. Recompute centers as centroids: For ℓ = 1, 2, …, k, compute the

center c(ℓ) of cluster S(ℓ) as the centroid of the points in S(ℓ). (If

S(ℓ) is empty, let c(ℓ) be the zero vector.) Then go to step 2.

It is possible for some of the clusters returned to be empty, particularly

if many of the input points are identical.

Lloyd’s procedure always terminates. By Theorem 33.1, recomputing

the centers of each cluster as the cluster centroid cannot increase f(S,

C). Lloyd’s procedure ensures that a point is reassigned to a different

cluster only when such an operation strictly decreases f(S, C). Thus each

iteration of Lloyd’s procedure, except the last iteration, must strictly

decrease f(S, C). Since there are only a finite number of possible k-

clusterings of S (at most kn), the procedure must terminate.

Furthermore, once one iteration of Lloyd’s procedure yields no decrease

in f, further iterations would not change anything, and the procedure

can stop at this locally optimum assignment of points to clusters.

If Lloyd’s procedure really required kn iterations, it would be

impractical. In practice, it sometimes suffices to terminate the procedure

when the percentage decrease in f(S, C) in the latest iteration falls below
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a predetermined threshold. Because Lloyd’s procedure is guaranteed to

find only a locally optimal clustering, one approach to finding a good

clustering is to run Lloyd’s procedure many times with different

randomly chosen initial centers, taking the best result.

The running time of Lloyd’s procedure is proportional to the number

T of iterations. In one iteration, assigning points to clusters based on

the nearest-center rule requires O(dkn) time, and recomputing new

centers for each cluster requires O(dn) time (because each point is in one

cluster). The overall running time of the k-means procedure is thus

O(Tdkn).

Lloyd’s algorithm illustrates an approach common to many

machine-learning algorithms:

First, define a hypothesis space in terms an appropriate sequence

θ of parameters, so that each θ is associated with a specific

hypothesis hθ. (For the k-means problem, θ is a dk-dimensional

vector, equivalent to C, containing the d-dimensional center of

each of the k clusters, and hθ is the hypothesis that each data

point x should be grouped with a cluster having a center closest to

x.)

Second, define a measure f(E, θ) describing how poorly hypothesis

hθ fits the given training data E. Smaller values of f(E, θ) are

better, and a (locally) optimal solution (locally) minimizes f(E, θ).

(For the k-means problem, f(E, θ) is just f(S, C).)

Third, given a set of training data E, use a suitable optimization

procedure to find a value of θ* that minimizes f(E, θ*), at least

locally. (For the k-means problem, this value of θ* is the sequence

C of k center points returned by Lloyd’s algorithm.)

Return θ* as the answer.

In this framework, we see that optimization becomes a powerful tool for

machine learning. Using optimization in this way is flexible. For

example, regularization terms can be incorporated in the function to be

minimized, in order to penalize hypotheses that are “too complicated”
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and that “overfit” the training data. (Regularization is a complex topic

that isn’t pursued further here.)

Examples

Figure 33.1 demonstrates Lloyd’s procedure on a set of n = 49 cities: 48

U.S. state capitals and the District of Columbia. Each city has d = 2

dimensions: latitude and longitude. The initial clustering in part (a) of

the figure has the initial cluster centers arbitrarily chosen as the capitals

of Arkansas, Kansas, Louisiana, and Tennessee. As the procedure

iterates, the value of the function f decreases, until the 11th iteration in

part (l), where it remains the same as in the 10th iteration in part (k).

Lloyd’s procedure then terminates with the clusters shown in part (l).

As Figure 33.2 shows, Lloyd’s procedure can also apply to “vector

quantization.” Here, the goal is to reduce the number of distinct colors

required to represent a photograph, thereby allowing the photograph to

be greatly compressed (albeit in a lossy manner). In part (a) of the

figure, an original photograph 700 pixels wide and 500 pixels high uses

24 bits (three bytes) per pixel to encode a triple of red, green, and blue

(RGB) primary color intensities. Parts (b)–(e) of the figure show the

results of using Lloyd’s procedure to compress the picture from a initial

space of 224 possible values per pixel to a space of only k = 4, k = 16, k

= 64, or k = 256 possible values per pixel; these k values are the cluster

centers. The photograph can then be represented with only 2, 4, 6, or 8

bits per pixel, respectively, instead of the 24-bits per pixel needed by the

initial photograph. An auxiliary table, the “palette,” accompanies the

compressed image; it holds the k 24-bit cluster centers and is used to

map each pixel value to its 24-bit cluster center when the photo is

decompressed.

Exercises

33.1-1

Show that the objective function f(S, C) of equation (33.2) may be

alternatively written as
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33.1-2

Give an example in the plane with n = 4 points and k = 2 clusters where

an iteration of Lloyd’s procedure does not improve f(S, C), yet the k-

clustering is not optimal.

33.1-3

When the input to Lloyd’s procedure contains many repeated points, a

different initialization procedure might be used. Describe a way to pick

a number of centers at random that maximizes the number of distinct

centers picked. (Hint: See Exercise 5.3-5.)

33.1-4

Show how to find an optimal k-clustering in polynomial time when

there is just one attribute (d = 1).

www.konkur.in

Telegram: @uni_k



Figure 33.2 Using Lloyd’s procedure for vector quantization to compress a photo by using fewer

colors. (a) The original photo has 350,000 pixels (700 × 500), each a 24-bit RGB (red/blue/green)

triple of 8-bit values; these pixels (colors) are the “points” to be clustered. Points repeat, so there

are only 79,083 distinct colors (less than 224). After compression, only k distinct colors are

used, so each pixel is represented by only ⌈1g k⌉ bits instead of 24. A “palette” maps these values

back to 24-bit RGB values (the cluster centers). (b)–(e) The same photo with k = 4, 16, 64, and

256 colors. (Photo from standuppaddle, pixabay.com.)

33.2    Multiplicative-weights algorithms

This section considers problems that require you to make a series of

decisions. After each decision you receive feedback as to whether your

decision was correct. We will study a class of algorithms that are called

multiplicative-weights algorithms. This class of algorithms has a wide

variety of applications, including game playing in economics,

approximately solving linear-programming and multicommodity-flow

problems, and various applications in online machine learning. We

emphasize the online nature of the problem here: you have to make a

sequence of decisions, but some of the information needed to make the

ith decision appears only after you have already made the (i – 1)st

decision. In this section, we look at one particular problem, known as

“learning from experts,” and develop an example of a multiplicative-

weights algorithm, called the weighted-majority algorithm.

Suppose that a series of events will occur, and you want to make

predictions about these events. For example, over a series of days, you
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want to predict whether it is going to rain. Or perhaps you want to

predict whether the price of a stock will increase or decrease. One way

to approach this problem is to assemble a group of “experts” and use

their collective wisdom in order to make good predictions. Let’s denote

the experts, n of them, by E1, E2, …, En, and let’s say that T events are

going to take place. Each event has an outcome of either 0 or 1, with

o(t) denoting the outcome of the tth event. Before event t, each expert

E(i) makes a prediction . You, as the “learner,” then take the

set of n expert predictions for event t and produce a single prediction

p(t) ∈ {0, 1} of your own. You base your prediction only on the

predictions of the experts and anything you have learned about the

experts from their previous predictions. You do not use any additional

information about the event. Only after making your prediction do you

ascertain the outcome o(t) of event t. If your prediction p(t) matches

o(t), then you were correct; otherwise, you made a mistake. The goal is

to minimize the total number m of mistakes, where .

You can also keep track of the number of mistakes each expert makes:

expert Ei makes mi mistakes, where .

For example, suppose that you are following the price of a stock, and

each day you decide whether to invest in it for just that day by buying it

at the beginning of the day and selling it at the end of the day. If, on

some day, you buy the stock and it goes up, then you made the correct

decision, but if the stock goes down, then you made a mistake.

Similarly, if on some day, you do not buy the stock and it goes down,

then you made the correct decision, but if the stock goes up, then you

made a mistake. Since you would like to make as few mistakes as

possible, you use the advice of the experts to make your decisions.

We’ll assume nothing about the movement of the stock. We’ll also

assume nothing about the experts: the experts’ predictions could be

correlated, they could be chosen to deceive you, or perhaps some are

not really experts after all. What algorithm would you use?

Before designing an algorithm for this problem, we need to consider

what is a fair way to evaluate our algorithm. It is reasonable to expect

www.konkur.in

Telegram: @uni_k



that our algorithm performs better when the expert predictions are

better, and that it performs worse when the expert predictions are worse.

The goal of the algorithm is to limit the number of mistakes you make

to be close to the number of mistakes that the best of the experts makes.

At first, this goal might seem impossible, because you do not know until

the end which expert is best. We’ll see, however, that by taking the

advice provided by all the experts into account, you can achieve this

goal. More formally, we use the notion of “regret,” which compares our

algorithm to the performance of the best expert (in hindsight) over all.

Letting m* = min {mi : 1 ≤ i ≤ n} denote the number of mistakes made

by the best expert, the regret is m – m*. The goal is to design an

algorithm with low regret. (Regret can be negative, although it typically

isn’t, since it is rare that you do better than the best expert.)

As a warm-up, let’s consider the case in which one of the experts

makes a correct prediction each time. Even without knowing who that

expert is, you can still achieve good results.

Lemma 33.3

Suppose that out of n experts, there is one who always makes the correct

prediction for all T events. Then there is an algorithm that makes at

most ⌈1g n⌉ mistakes.

Proof   The algorithm maintains a set S consisting of experts who have

not yet made a mistake. Initially, S contains all n experts. The

algorithm’s prediction is always the majority vote of the predictions of

the experts remaining in set S. In case of a tie, the algorithm makes any

prediction. After each outcome is learned, set S is updated to remove all

the experts who made an incorrect prediction about that outcome.

We now analyze the algorithm. The expert who always makes the

correct prediction will always be in set S. Every time the algorithm

makes a mistake, at least half of the experts who were still in S also

make a mistake, and these experts are removed from S. If S′ is the set of

experts remaining after removing those who made a mistake, we have

that |S′| ≤ |S|/2. The size of S can be halved at most ⌈1g n⌉ times until |S|

= 1. From this point on, we know that the algorithm never makes a

mistake, since the set S consists only of the one expert who never makes
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a mistake. Therefore, overall the algorithm makes at most ⌈1g n⌉

mistakes.

▪

Exercise 33.2-1 asks you to generalize this result to the case when

there is no expert who makes perfect predictions and show that, for any

set of experts, there is an algorithm that makes at most m* ⌈1g n⌉

mistakes. The generalized algorithm begins in the same way. The set S

might become empty at some point, however. If that ever happens, reset

S to contain all the experts and continue the algorithm.

You can substantially improve your prediction ability by not just

tracking which experts have not made any mistakes, or have not made

any mistakes recently, to a more nuanced evaluation of the quality of

each expert. The key idea is to use the feedback you receive to update

your evaluation of how much trust to put in each expert. As the experts

make predictions, you observe whether they were correct and decrease

your confidence in the experts who make more mistakes. In this way,

you can learn over time which experts are more reliable and which are

less reliable, and weight their predictions accordlingly. The change in

weights is accomplished via multiplication, hence the term

“multiplicative weights.”

The algorithm appears in the procedure WEIGHTED-MAJORITY

on the following page, which takes a set E = {E1, E2, …, En} of experts,

a number T of events, the number n of experts, and a parameter 0 < γ ≤
1/2 that controls how the weights change. The algorithm maintains

weights  for i = 1, 2, …, n and t = 1, 2, …, T, where . The

for loop of lines 1–2 sets the initial weights  to 1, capturing the idea

that with no knowledge, you trust each expert equally. Each iteration of

the main for loop of lines 3–18 does the following for an event t = 1, 2,

…, T. Each expert Ei makes a prediction for event t in line 4. Lines 5–8

compute upweight(t), the sum of the weights of the experts who predict

1 for event t, and downweight(t), the sum of the weights of the experts

who predict 0 for the event. Lines 9–11 decide the algorithm’s prediction

p(t) for event t based on whichever weighted sum is larger (breaking ties

in favor of deciding 1). The outcome of event t is revealed in line 12.
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Finally, lines 14–17 decrease the weights of the experts who made an

incorrect prediction for event t by multiplying their weights by 1 – γ,
leaving alone the weights of the experts who correctly predicted the

event’s outcome. Thus, the fewer mistakes each expert makes, the higher

that expert’s weight.

The WEIGHTED-MAJORITY procedure doesn’t do much worse

than any expert. In particular, it doesn’t do much worse than the best

expert. To quantify this claim, let m(t) be the number of mistakes made

by the procedure through event t, and let  be the number of mistakes

made by expert Ei through event t. The following theorem is the key.

WEIGHTED-MAJORITY(E, T, n, γ)
  1 for i = 1 to n

  2 // trust each expert equally

  3 for t = 1 to T

  4 each expert Ei ∈ E makes a prediction 

  5 // experts who predicted 1

  6 // sum of weights of who predicted 1

  7 // experts who predicted 0

  8 // sum of weights of who predicted 0

  9 if upweight(t) ≥ downweight(t)

10 p(t) = 1 // algorithm predicts 1

11 else p(t) = 0 // algorithm predicts 0

12 outcome o(t) is revealed

13 // If p(t) ≠ o(t), the algorithm made a mistake.

14 for i = 1 to n

15 if  // if expert E(i) made a mistake …

16 // … then decrease that expert’s weight

17 else 

18 return p(t)
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Theorem 33.4

When running WEIGHTED-MAJORITY, we have, for every expert Ei

and every event T′ ≤ T,

Proof      Every time an expert Ei makes a mistake, its weight, which is

initially 1, is multiplied by 1 – γ, and so we have

for t = 1, 2, …, T.

We use a potential function , summing the weights for

all n experts after iteration t of the for loop of lines 3–18. Initially, we

have W(0) = n since all n weights start out with the value 1. Because

each expert belongs to either the set U or the set D (defined in lines 5

and 7 of WEIGHTED-MAJORITY), we always have W(t) =

upweight(t) + downweight(t) after each execution of line 8.

Consider an iteration t in which the algorithm makes a mistake in its

prediction, which means that either the algorithm predicts 1 and the

outcome is 0 or the algorithm predicts 0 and the outcome is 1. Without

loss of generality, assume that the algorithm predicts 1 and the outcome

is 0. The algorithm predicted 1 because upweight(t) ≥ downweight(t) in

line 9, which implies that

Each expert in U then has its weight multiplied by 1 – γ, and each expert

in D has its weight unchanged. Thus, we have
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Therefore, for every iteration t in which the algorithm makes a mistake,

we have

In an iteration where the algorithm does not make a mistake, some of

the weights decrease and some remain unchanged, so that we have

Since there are m(T′) mistakes made through iteration T′, and W(1) = n,

we can repeatedly apply inequality (33.8) to iterations where the

algorithm makes a mistake and inequality (33.9) to iterations where the

algorithm does not make a mistake, obtaining

Because the function W is the sum of the weights and all weights are

positive, its value exceeds any single weight. Therefore, using equation

(33.6) we have, for any expert Ei and for any iteration T′ ≤ T,

Combining inequalities (33.10) and (33.11) gives

Taking the natural logarithm of both sides yields

We now use the Taylor series expansion to derive upper and lower

bounds on the logarithmic factors in inequality (33.12). The Taylor

series for ln(1+x) is given in equation (3.22) on page 67. Substituting −x

for x, we have that for 0 < x ≤ 1/2,

Since each term on the right-hand side is negative, we can drop all terms

except the first and obtain an upper bound of ln(1 – x) ≤ −x. Since 0 < γ
≤ 1/2, we have
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For the lower bound, Exercise 33.2-2 asks you to show that ln(1 – x) ≥

−x − x2 when 0 < x ≤ 1/2, so that

Thus, we have

so that

Subtracting ln n from both sides of inequality (33.16) and then

multiplying both sides by −2/γ yields , thus

proving the theorem.

▪

Theorem 33.4 applies to any expert and any event T′ ≤ T. In

particular, we can compare against the best expert after all events have

occurred, producing the following corollary.

Corollary 33.5

At the end of procedure WEIGHTED-MAJORITY, we have

▪

Let’s explore this bound. Assuming that , we can

choose  and plug into inequality (33.17) to obtain
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and so the number of errors is at most twice the number of errors made

by the best expert plus a term that is often slower growing than m*.

Exercise 33.2-4 shows that you can decrease the bound on the number

of errors by a factor of 2 by using randomization, which leads to much

stronger bounds. In particular, the upper bound on regret (m – m*) is

reduced from (1 + 2γ)m* + (2 ln n)/γ to an expected value of ϵm* + (ln

n)/ϵ, where both γ and ϵ are at most 1/2. Numerically, we can see that

ifγ = 1/2, WEIGHTED-MAJORITY makes at most 3 times the number

of errors as the best expert, plus 4 ln n errors. As another example,

suppose that T = 1000 predictions are being made by n = 20 experts,

and the best expert is correct 95% of the time, making 50 errors. Then

WEIGHTED-MAJORITY makes at most 100(1+γ)+2 ln 20/γ errors.

By choosing γ = 1/4, WEIGHTED-MAJORITY makes at most 149

errors, or a success rate of at least 85%.

Multiplicative weights methods typically refer to a broader class of

algorithms that includes WEIGHTED-MAJORITY. The outcomes

and predictions need not be only 0 or 1, but can be real numbers, and

there can be a loss associated with a particular outcome and prediction.

The weights can be updated by a multiplicative factor that depends on

the loss, and the algorithm can, given a set of weights, treat them as a

distribution on experts and use them to choose an expert to follow in

each event. Even in these more general settings, bounds similar to

Theorem 33.4 hold.

Exercises

33.2-1

The proof of Lemma 33.3 assumes that some expert never makes a

mistake. It is possible to generalize the algorithm and analysis to

remove this assumption. The new algorithm begins in the same way.

The set S might become empty at some point, however. If that ever

happens, reset S to contain all the experts and continue the algorithm.

Show that the number of mistakes that this algorithm makes is at most

m* ⌈1g n⌉.

33.2-2
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Show that ln(1 – x) ≥ −x – x2 when 0 < x ≤ 1/2. (Hint: Start with

equation (33.13), group all the terms after the first three, and use

equation (A.7) on page 1142.)

33.2-3

Consider a randomized variant of the algorithm given in the proof of

Lemma 33.3, in which some expert never makes a mistake. At each step,

choose an expert Ei uniformly at random from the set S and then make

the same predication as Ei. Show that the expected number of mistakes

made by this algorithm is ⌈1g n⌉.

33.2-4

Consider a randomized version of WEIGHTED-MAJORITY. The

algorithm is the same, except for the prediction step, which interprets

the weights as a probability distribution over the experts and chooses an

expert Ei according to that distribution. It then chooses its prediction to

be the same as the prediction made by expert Ei. Show that, for any 0 <

ϵ < 1/2, the expected number of mistakes made by this algorithm is at

most (1 + ϵ)m* + (ln n)/ϵ.

33.3    Gradient descent

Suppose that you have a set {p1, p2, …, pn} of points and you want to

find the line that best fits these points. For any line ℓ, there is a distance

di between each point pi and the line. You want to find the line that

minimizes some function f(d1, …, dn). There are many possible choices

for the definition of distance and for the function f. For example, the

distance can be the projection distance to the line and the function can

be the sum of the squares of the distances. This type of problem is

common in data science and machine learning—the line is the

hypothesis that best describes the data—where the particular definition

of best is determined by the definition of distance and the objective f. If

the definition of distance and the function f are linear, then we have a

linear-programming problem, as discussed in Chapter 29. Although the
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linear-programming framework captures several important problems,

many other problems, including various machine-learning problems,

have objectives and constraints that are not necessarily linear. We need

frameworks and algorithms to solve such problems.

In this section, we consider the problem of optimizing a continuous

function and discuss one of the most popular methods to do so:

gradient descent. Gradient descent is a general method for finding a

local minimum of a function f : ℝn → ℝ, where informally, a local

minimum of a function f is a point x for which f(x) ≤ f(x′) for all x′ that

are “near” x. When the function is convex, it can find a point near the

global minimizer of f: an n-vector argument x = (x1, x2, …, xn) such

that f(x) is minimum. For the intuitive idea behind gradient descent,

imagine being in a landscape of hills and valleys, and wanting to get to a

low point as quickly as possible. You survey the terrain and choose to

move in the direction that takes you downhill the fastest from your

current position. You move in that direction, but only for a short while,

because as you proceed, the terrain changes and you might need to

choose a different direction. So you stop, reevaluate the possible

directions and move another short distance in the steepest downhill

direction, which might differ from the direction of your previous

movement. You continue this process until you reach a point from

which all directions lead up. Such a point is a local minimum.

In order to make this informal procedure more formal, we need to

define the gradient of a function, which in the analogy above is a

measure of the steepness of the various directions. Given a function f :

ℝn → ℝ, its gradient ∇f is a function ∇f : ℝn → ℝn comprising n partial

derivatives: . Analogous to the derivative of a

function of a single variable, the gradient can be viewed as a direction in

which the function value locally increases the fastest, and the rate of

that increase. This view is informal; in order to make it formal we would

have to define what local means and place certain conditions, such as

continuity or existence of derivatives, on the function. Nevertheless, this

view motivates the key step of gradient descent—move in the direction
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opposite to the gradient, by a distance influenced by the magnitude of

the gradient.

The general procedure of gradient descent proceeds in steps. You

start at some initial point x(0), which is an n-vector. At each step t, you

compute the value of the gradient of f at point x(t), that is, (∇f)(x(t)),

which is also an n-vector. You then move in the direction opposite to the

gradient in each dimension at x(t) to arrive at the next point x(t+1),

which again is an n-vector. Because you moved in a monotonically

decreasing direction in each dimension, you should have that f(x(t+1)) ≤

f(x(t)). Several details are needed to turn this idea into an actual

algorithm. The two main details are that you need an initial point and

that you need to decide how far to move in the direction of the negative

gradient. You also need to understand when to stop and what you can

conclude about the quality of the solution found. We will explore these

issues further in this section, for both constrained minimization, where

there are additional constraints on the points, and unconstrained

minimization, where there are none.

Unconstrained gradient descent

In order to gain intuition, let’s consider unconstrained gradient descent

in just one dimension, that is, when f is a function of a scalar x, so that f

: ℝ → ℝ. In this case, the gradient ∇f of f is just f′(x), the derivative of f

with respect to x. Consider the function f shown in blue in Figure 33.3,

with minimizer x* and starting point x(0). The gradient (derivative) f′
(x(0)), shown in orange, has a negative slope, so that a small step from

x(0) in the direction of increasing x results in a point x′ for which f(x′) <
f(x(0)). Too large a step, however, results in a
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Figure 33.3 A function f : ℝ → ℝ, shown in blue. Its gradient at point x(0), in orange, has a

negative slope, and so a small increase in x from x(0) to x′ results in f(x′) < f(x(0)). Small

increases in x from x(0) head toward , which gives a local minimum. Too large an increase in x

can end up at x″, where f(x″) > f(x(0)). Small steps starting from x(0) and going only in the

direction of decreasing values of f cannot end up at the global minimizer x*.

point x″ for which f(x″) > f(x(0)), so this is a bad idea. Restricting

ourselves to small steps, where each one has f(x′) < f(x), eventually

results in getting close to point , which gives a local minimum. By

taking only small downhill steps, however, gradient descent has no

chance to get to the global minimizer x*, given the starting point x(0).

We draw two observations from this simple example. First, gradient

descent converges toward a local minimum, and not necessarily a global

minimum. Second, the speed at which it converges and how it behaves

are related to properties of the function, to the initial point, and to the

step size of the algorithm.

The procedure GRADIENT-DESCENT on the facing page takes as

input a function f, an initial point x(0) ∈ ℝn, a fixed step-size multiplier

γ > 0, and a number T > 0 of steps to take. Each iteration of the for loop

of lines 2–4 performs a step by computing the n-dimensional gradient at

point x(t) and then moving distance γ in the opposite direction in the n-

dimensional space. The complexity of computing the gradient depends

on the function f and can sometimes be expensive. Line 3 sums the

points visited. After the loop terminates, line 6 returns x-avg, the
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average of all the points visited except for the last one, x(T). It might

seem more natural to return x(T), and in fact, in many circumstances,

you might prefer to have the function return x(T). For the version we

will analyze, however, we use x-avg.

GRADIENT-DESCENT(f, x(0), γ, T)

1 sum = 0 // n-dimensional vector, initially all 0

2 for t = 0 to T – 1

3 sum = sum + x(t) // add each of n dimensions into sum

4 x(t+1) = x(t) – γ · (∇f)(x(t)) // (∇f)(x(t)), x(t+1) are n-

dimensional

5 x-avg = sum/T // divide each of n dimensions by T

6 return x-avg

Figure 33.4 depicts how gradient descent ideally runs on a convex 1-

dimensional function.1 We’ll define convexity more formally below, but

the figure shows that each iteration moves in the direction opposite to

the gradient, with the distance moved being proportional to the

magnitude of the gradient. As the iterations proceed, the magnitude of

the gradient decreases, and thus the distance moved along the

horizontal axis decreases. After each iteration, the distance to the

optimal point x* decreases. This ideal behavior is not guaranteed to

occur in general, but the analysis in the remainder of this section

formalizes when this behavior occurs and quantifies the number of

iterations needed. Gradient descent does not always work, however. We

have already seen that if the function is not convex, gradient descent can

converge to a local, rather than global, minimum. We have also seen

that if the step size is too large, GRADIENT-DESCENT can overshoot

the minimum and wind up farther away. (It is also possible to overshoot

the minimum and wind up closer to the optimum.)

Analysis of unconstrained gradient descent for convex functions

www.konkur.in

Telegram: @uni_k



Our analysis of gradient descent focuses on convex functions. Inequality

(C.29) on page 1194 defines a convex function of one variable, as shown

in Figure 33.5. We can extend that definition to a function f : ℝn → ℝ

and say that f is convex if for all x, y ∈ ℝn and for all 0 ≤ λ ≤ 1, we have

(Inequalities (33.18) and (C.29) are the same, except for the dimensions

of x and y.) We also assume that our convex functions are closed2 and

differentiable.

Figure 33.4 An example of running gradient descent on a convex function f : ℝ → ℝ, shown in

blue. Beginning at point x(0), each iteration moves in the direction opposite to the gradient, and

the distance moved is proportional to the magnitude of the gradient. Orange lines represent the

negative of the gradient at each point, scaled by the step size γ. As the iterations proceed, the

magnitude of the gradient decreases, and the distance moved decreases correspondingly. After

each iteration, the distance to the optimal point x* decreases.
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Figure 33.5 A convex function f : ℝ → ℝ, shown in blue, with local and global minimizer x*.

Because f is convex, f(λx + (1 – λ)y) ≤ λf(x) + (1 – λ)f(y) for any two values x and y and all 0 ≤ λ ≤
1, shown for a particular value of λ. Here, the orange line segment represents all values λf(x) + (1

– λ)f(y) for 0 ≤ λ ≤ 1, and it is above the blue line.

A convex function has the property that any local minimum is also a

global minimum. To verify this property, consider inequality (33.18),

and suppose for the purpose of contradiction that x is a local minimum

but not a global minimum and y ≠ x is a global minimum, so f(y) < f(x).

Then we have

f(λx + (1 – λ)y) ≤ λf(x) + (1 – λ)f(y) (by inequality (33.18))

< λf(x) + (1 – λ)f(x)

= f(x).

Thus, letting approach 1, we see that there is another point near x, say

x′, such that f(x′) < f(x), so x is not a local minimum.

Convex functions have several useful properties. The first property,

whose proof we leave as Exercise 33.3-1, says that a convex function

always lies above its tangent hyperplane. In the context of gradient

descent, angle brackets denote the notation for inner product defined on

page 1219 rather than denoting a sequence.

Lemma 33.6

For any convex differentiable function f : ℝn → ℝ and for all x, y ∈ ℝn,

we have ≤ f(x) ≤ f(y) + 〈(∇f)(x), x – y〉.

▪

The second property, which Exercise 33.3-2 asks you to prove, is a

repeated application of the definition of convexity in inequality (33.18).
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Lemma 33.7

For any convex function f : ℝn → ℝ, for any integer T ≥ 1, and for all

x(0), …, x(T–1) ∈ ℝn, we have

▪

The left-hand side of inequality (33.19) is the value of f at the vector

x-avg that GRADIENT-DESCENT returns.

We now proceed to analyze GRADIENT-DESCENT. It might not

return the exact global minimizer x*. We use an error bound ϵ, and we

want to choose T so that f(x-avg) – f(x*) ≤ ϵ at termination. The value

of ϵ depends on the number T of iterations and two additional values.

First, since you expect it to be better to start close to the global

minimizer, ϵ is a function of

the euclidean norm (or distance, defined on page 1219) of the difference

between x(0) and x*. The error bound ϵ is also a function of a quantity

we call L, which is an upper bound on the magnitude ∥(∇f)(x)∥ of the

gradient, so that

where x ranges over all the points x(0), …, x(T–1) whose gradients are

computed by GRADIENT-DESCENT. Of course, we don’t know the

values of L and R, but for now let’s assume that we do. We’ll discuss

later how to remove these assumptions. The analysis of GRADIENT-

DESCENT is summarized in the following theorem.

Theorem 33.8

Let x* ∈ ℝn be the minimizer of a convex function f, and suppose that

an execution of GRADIENT-DESCENT(f, x(0), γ, T) returns x-avg,
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where  and R and L are defined in equations (33.20) and

(33.21). Let . Then we have f(x-avg) – f(x*) ≤ ϵ.

▪

We now prove this theorem. We do not give an absolute bound on

how much progress each iteration makes. Instead, we use a potential

function, as in Section 16.3. Here, we define a potential Φ(t) after

computing x(t), such that Φ(t) ≥ 0 for t = 0, …, T. We define the

amortized progress in the iteration that computes x(t) as

Along with including the change in potential (Φ(t + 1) – Φ(t)), equation

(33.22) also subtracts the minimum value f(x*) because ultimately, you

care not about the values f(x(t)) but about how close they are to f(x*).

Suppose that we can show that p(t) ≤ B for some value B and t = 0, …,

T – 1. Then we can substitute for p(t) using equation (33.22), giving

Summing inequality (33.23) over t = 0, …, T – 1 yields

Observing that we have a telescoping series on the right and regrouping

terms, we have that

Dividing by T and dropping the positive term Φ(T) gives

and thus we have
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In other words, if we can show that p(t) ≤ B for some value B and

choose a potential function where Φ(0) is not too large, then inequality

(33.25) tells us how close the function value f(x-avg) is to the function

value f(x*) after T iterations. That is, we can set the error bound ϵ to B

+ Φ(0)/T.

In order to bound the amortized progress, we need to come up with

a concrete potential function. Define the potential function Φ(t) by

that is, the potential function is proportional to the square of the

distance between the current point and the minimizer x*. With this

potential function in hand, the next lemma provides a bound on the

amortized progress made in any iteration of GRADIENT-DESCENT.

Lemma 33.9

Let x* ∈ ℝn be the minimizer of a convex function f, and consider an

execution of GRADIENT-DESCENT(f, x(0), γ, T). Then for each

point x(t) computed by the procedure, we have that

Proof     We first bound the potential change Φ(t + 1) – Φ(t). Using the

definition of Φ(t) from equation (33.26), we have

From line 4 in GRADIENT-DESCENT, we know that
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and so we would like to rewrite equation (33.27) to have x(t+1) – x(t)

terms. As Exercise 33.3-3 asks you to prove, for any two vectors a, b ∈

ℝn, we have

Letting a = x(t) – x* and b = x(t+1) – x(t), we can write the right-hand

side of equation (33.27) as . Then we can express the

potential change as

and thus we have

We can now proceed to bound p(t). By the bound on the potential

change from inequality (33.31), and using the definition of L (inequality

(33.21)), we have

▪

sult in the following theorem
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Having bounded the amortized progress in one step, we now analyze

the entire GRADIENT-DESCENT procedure, completing the proof of

Theorem 33.8.

Proof of Theorem 33.8 Inequality (33.25) tells us that if we have an

upper bound of B for p(t), then we also have the bound f(x-avg) – f(x*)

≤ B + Φ(0)/T. By equations (33.20) and (33.26), we have that Φ(0) =

R2/(2γ). Lemma 33.9 gives us the upper bound of B = γL2/2, and so we

have

Our choice of  in the statement of Theorem 33.8 balances

the two terms, and we obtain

Since we chose  in the theorem statement, the proof is

complete.

▪

Continuing under the assumption that we know R (from equation

(33.20)) and L (from inequality (33.21)), we can think of the analysis in

a slightly different way. We can presume that we have a target accuracy

ϵ and then compute the number of iterations needed. That is, we can

solve  for T, obtaining T = R2L2/ϵ2. The number of

iterations thus depends on the square of R and L and, most

importantly, on 1/ϵ2. (The definition of L from inequality (33.21)

depends on T, but we may know an upper bound on L that doesn’t
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depend on the particular value of T.) Thus, if you want to halve your

error bound, you need to run four times as many iterations.

It is quite possible that we don’t really know R and L, since you’d

need to know x* in order to know R (since R = ∥x(0) – x*∥), and you

might not have an explicit upper bound on the gradient, which would

provide L. You can, however, interpret the analysis of gradient descent

as a proof that there is some step size for which the procedure makes

progress toward the minimum. You can then compute a step size for

which f(x(t)) – f(x(t+1)) is large enough. In fact, not having a fixed step

size multiplier can actually help in practice, as you are free to use any

step size s that achieves sufficient decrease in the value of f. You can

search for a step size that achieves a large decrease via a binary-search-

like routine, which is often called line search. For a given function f and

step size s, define the function g(x(t), s) = f(x(t)) – s(∇f)(x(t)). Start with

a small step size s for which g(x(t), s) ≤ f(x(t)). Then repeatedly double s

until g(x(t), 2s) ≥ g(x(t), s), and then perform a binary search in the

interval [s, 2s]. This procedure can produce a step size that achieves a

significant decrease in the objective function. In other circumstances,

however, you may know good upper bounds on R and L, typically from

problem-specific information, which can suffice.

The dominant computational step in each iteration of the for loop of

lines 2–4 is computing the gradient. The complexity of computing and

evaluating a gradient varies widely, depending on the application at

hand. We’ll discuss several applications later.

Constrained gradient descent

We can adapt gradient descent for constrained minimization to

minimize a closed convex function f(x), subject to the additional

requirement that x ∈ K, where K is a closed convex body. A body K ⊆

ℝn is convex if for all x, y ∈ K, the convex combination λx+(1–λ)y ∈ K

for all 0 ≤ λ ≤ 1. A closed convex body contains its limit points.

Somewhat surprisingly, restricting to the constrained problem does not

significantly increase the number of iterations of gradient descent. The

www.konkur.in

Telegram: @uni_k



idea is that you run the same algorithm, but in each iteration, check

whether the current point x(t) is still within the convex body K. If it is

not, just move to the closest point in K. Moving to the closest point is

known as projection. We formally define the projection ∏K(x) of a point

x in n dimensions onto a convex body K as the point y ∈ K such that ∥x

– y∥ = min {∥x – z∥ : z ∈ K}. If we have x ∈ K, then ∏K(x) = x.

This one change yields the procedure GRADIENT-DESCENT-

CONSTRAINED, in which line 4 of GRADIENT-DESCENT is

replaced by two lines. It assumes that x(0) ∈ K. Line 4 of GRADIENT-

DESCENT-CONSTRAINED moves in the direction of the negative

gradient, and line 5 projects back onto K. The lemma that follows helps

to show that when x* ∈ K, if the projection step in line 5 moves from a

point outside of K to a point in K, it cannot be moving away from x*.

GRADIENT-DESCENT-CONSTRAINED(f, x(0), γ, T, K)

1 sum = 0 // n-dimensional vector, initially all 0

2 for t = 0 to T – 1

3 sum = sum + x(t) // add each of n dimensions into sum

4 x′(t+1) = x(t) – γ · (∇f)(x(t)) // (∇f)(x(t)), x′(t+1) are n-

dimensional

5 x(t+1) = ∏K(x(t+1)) // project onto K

6 x-avg = sum/T // divide each of n dimensions by T

7 return x-avg

Lemma 33.10

Consider a convex body K ⊆ ℝn and points a ∈ K and b′ ∈ ℝn. Let b =

∏K(b′). Then ∥b – a∥2 ≤ ∥b′ – a∥2.

Proof   If b′ ∈ K, then b = b′ and the claim is true. Otherwise, b′ ≠ b, and

as Figure 33.6 shows, we can extend the line segment between b and b′
to a line ℓ. Let c be the projection of a onto ℓ. Point c may or may not be

in K, and if a is on the boundary of K, then c could coincide with b. If c
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coincides with b (part (c) of the figure), then abb′ is a right triangle, and

so ∥b – a∥2 ≤ ∥b′ – a∥2. If c does not coincide with b (parts (a) and (b) of

the figure), then because of convexity, the angle ∠abb′ must be obtuse.

Because angle ∠abb′ is obtuse, b lies between c and b′ on ℓ .

Furthermore, because c is the projection of a onto line ℓ, acb and acb′
must be right triangles. By the Pythagorean theorem, we have that ∥b′ –
a∥2 = ∥a – c∥2+∥c – b′∥2 and ∥b – a∥2 = ∥a – c∥2+∥c – b∥2. Subtracting

these two equations gives ∥b′ – a∥2 – ∥b – a∥2 = ∥c – b′∥2 – ∥c – b∥2.

Because b is between c and b′, we must have ∥c – b′∥2 ≥ ∥c – b∥2, and

thus ∥b′ – a∥2 – ∥b – a∥2 ≥ 0. The lemma follows.

Figure 33.6 Projecting a point b′ outside the convex body K to the closest point b = ∏K(b′) in K.

Line ℓ is the line containing b and b′, and point c is the projection of a onto ℓ. (a) When c is in K.

(b) When c is not in K. (c) When a is on the boundary of K and c coincides with b.

▪

We can now repeat the entire proof for the unconstrained case and

obtain the same bounds. Lemma 33.10 with a = x*, b = x(t+1), and b′ =
x′(t+1) tells us that ∥x(t+1)–x*∥2 ≤ ∥x′(t+1)–x*∥2. We can therefore

derive an upper bound that matches inequality (33.31). We continue to

define Φ(t) as in equation (33.26), but noting that x(t+1), computed in

line 5 of GRADIENT-DESCENT-CONSTRAINED, has a different

meaning here from in inequality (33.31):
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With the same upper bound on the change in the potential function as

in equation (33.30), the entire proof of Lemma 33.9 can proceed as

before. We can therefore conclude that the procedure GRADIENT-

DESCENT-CONSTRAINED has the same asymptotic complexity as

GRADIENT-DESCENT. We summarize this result in the following

theorem.

Theorem 33.11

Let K ⊆ ℝn be a convex body, x* ∈ ℝn be the minimizer of a convex

function f over K, and , where R and L are defined in

equations (33.20) and (33.21). Suppose that the vector x-avg is returned

by an execution of GRADIENT-DESCENT-CONSTRAINED(f, x(0),

γ, T, K). Let . Then we have f(x-avg) – f(x*) ≤ ϵ.

▪

Applications of gradient descent

Gradient descent has many applications to minimizing functions and is

widely used in optimization and machine learning. Here we sketch how

it can be used to solve linear systems. Then we discuss an application to

machine learning: prediction using linear regression.

In Chapter 28, we saw how to use Gaussian elimination to solve a

system of linear equations Ax = b, thereby computing x = A−1b. If A is

an n × n matrix and b is a length-n vector, then the running time of

www.konkur.in

Telegram: @uni_k



Gaussian elimination is Θ(n3), which for large matrices might be

prohibitively expensive. If an approximate solution is acceptable,

however, you can use gradient descent.

First, let’s see how to use gradient descent as a roundabout—and

admittedly inefficient—way to solve for x in the scalar equation ax = b,

where a, x, b ∈ ℝ. This equation is equivalent to ax – b = 0. If ax – b is

the derivative of a convex function f(x), then ax – b = 0 for the value of

x that minimizes f(x). Given f(x), gradient descent can then determine

this minimizer. Of course, f(x) is just the integral of ax – b, that is, 

, which is convex if a ≥ 0. Therefore, one way to solve ax

= b for a ≥ 0 is to find the minimizer for  via gradient descent.

We now generalize this idea to higher dimensions, where using

gradient descent may actually lead to a faster algorithm. One n-

dimensional analog is the function , where A is an n ×

n matrix. The gradient of f with respect to x is the function Ax – b. To

find the value of x that minimizes f, we set the gradient of f to 0 and

solve for x. Solving Ax–b = 0 for x, we obtain x = A−1b, Thus,

minimizing f(x) is equivalent to solving Ax = b. If f(x) is convex, then

gradient descent can approximately compute this minimum.

A 1-dimensional function is convex when its second derivative is

positive. The equivalent definition for a multidimensional function is

that it is convex when its Hessian matrix is positive-semidefinite (see

page 1222 for a definition), where the Hessian matrix (∇2f)(x) of a

function f(x) is the matrix in which entry (i, j) is the partial derivative of

f with respect to i and j:

Analogous to the 1-dimensional case, the Hessian of f is just A, and so if

A is a positive-semidefinite matrix, then we can use gradient descent to

www.konkur.in

Telegram: @uni_k



find a point x where Ax ≈ b. If R and L are not too large, then this

method is faster than using Gaussian elimination.

Gradient descent in machine learning

As a concrete example of supervised learning for prediction, suppose

that you want to predict whether a patient will develop heart disease.

For each of m patients, you have n different attributes. For example, you

might have n = 4 and the four pieces of data are age, height, blood

pressure, and number of close family members with heart disease.

Denote the data for patient i as a vector x(i) ∈ ℝn, with  giving the

jth entry in vector x(i). The label of patient i is denoted by a scalar y(i)

∈ ℝ, signifying the severity of the patient’s heart disease. The

hypothesis should capture a relationship between the x(i) values and

y(i). For this example, we make the modeling assumption that the

relationship is linear, and therefore the goal is to compute the “best”

linear relationship between the x(i) values and y(i): a linear function f :

ℝn → ℝ such that f(x(i)) ≈ y(i) for each patient i. Of course, no such

function may exist, but you would like one that comes as close as

possible. A linear function f can be defined by a vector of weights w =

(w0, w1, …, wn), with

When evaluating a machine-learning model, you need to measure

how close each value f(x(i)) is to its corresponding label y(i). In this

example, we define the error e(i) ∈ ℝ associated with patient i as e(i) =

f(x(i)) – y(i). The objective function we choose is to minimize the sum of

squares of the errors, which is
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The objective function is typically called the loss function, and the

least-squares error given by equation (33.33) is just one example of

many possible loss functions. The goal is then, given the x(i) and y(i)

values, to compute the weights w0, w1, …, wn so as to minimize the loss

function in equation (33.33). The variables here are the weights w0, w1,

…, wn and not the x(i) or y(i) values.

This particular objective is sometimes known as a least-squares fit,

and the problem of finding a linear function to fit data and minimize the

least-squares error is called linear regression. Finding a least-squares fit

is also addressed in Section 28.3.

When the function f is linear, the loss function defined in equation

(33.33) is convex, because it is the sum of squares of linear functions,

which are themselves convex. Therefore, we can apply gradient descent

to compute a set of weights to approximately minimize the least-squares

error. The concrete goal of learning is to be able to make predictions on

new data. Informally, if the features are all reported in the same units

and are from the same range (perhaps from being normalized), then the

weights tend to have a natural interpretation because the features of the

data that are better predictors of the label have a larger associated

weight. For example, you would expect that, after normalization, the

weight associated with the number of family members with heart

disease would be larger than the weight associated with height.

The computed weights form a model of the data. Once you have a

model, you can make predictions, so that given new data, you can

predict its label. In our example, given a new patient x′ who is not part

of the original training data set, you would still hope to predict the

chance that the new patient develops heart disease. You can do so by

computing the label f(x′), incorporating the weights computed by

gradient descent.

www.konkur.in

Telegram: @uni_k



For this linear-regression problem, the objective is to minimize the

expression in equation (33.33), which is a quadratic in each of the n+1

weights wj. Thus, entry j in the gradient is linear in wj. Exercise 33.3-5

asks you to explicitly compute the gradient and see that it can be

computed in O(nm) time, which is linear in the input size. Compared

with the exact method of solving equation (33.33) in Chapter 28, which

needs to invert a matrix, gradient descent is typically much faster.

Section 33.1 briefly discussed regularization—the idea that a

complicated hypothesis should be penalized in order to avoid overfitting

the training data. Regularization often involves adding a term to the

objective function, but it can also be achieved by adding a constraint.

One way to regularize this example would be to explicitly limit the norm

of the weights, adding a constraint that ∥w∥ ≤ B for some bound B > 0.

(Recall again that the components of the vector w are the variables in

the present application.) Adding this constraint controls the complexity

of the model, as the number of values wj that can have large absolute

value is now limited.

In order to run GRADIENT-DESCENT-CONSTRAINED for any

problem, you need to implement the projection step, as well as to

compute bounds on R and L. We conclude this section by describing

these calculations for gradient descent with the constraint ∥w∥ ≤ B.

First, consider the projection step in line 5. Suppose that the update in

line 4 results in a vector w′. The projection is implemented by

computing ∏k(w′) where K is defined by ∥w∥ ≤ B. This particular

projection can be accomplished by simply scaling w′, since we know that

closest point in K to w′ must be the point along the vector whose norm

is exactly B. The amount z by which we need to scale w′ to hit the

boundary of K is the solution to the equation z ∥w′∥ = B, which is

solved by z = B/∥w′∥. Hence line 5 is implemented by computing w =

w′B/∥w′∥. Because we always have ∥w∥ ≤ B, Exercise 33.3-6 asks you to

show that the upper bound on the magnitude L of the gradient is O(B).

We also get a bound on R, as follows. By the constraint ∥w∥ ≤ B, we

know that both ∥w(0)∥ ≤ B and ∥w*∥ ≤ B, and thus ∥w(0) – w*∥ ≤ 2B.

Using the definition of R in equation (33.20), we have R = O(B). The
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bound  on the accuracy of the solution after T iterations in

Theorem 33.11 becomes .

Exercises

33.3-1

Prove Lemma 33.6. Start from the definition of a convex function given

in equation (33.18). (Hint: You can prove the statement when n = 1 first.

The proof for general values of n is similar.)

33.3-2

Prove Lemma 33.7.

33.3-3

Prove equation (33.29). (Hint: The proof for n = 1 dimension is

straightforward. The proof for general values of n dimensions follows

along similar lines.)

33.3-4

Show that the function f in equation (33.32) is a convex function of the

variables w0, w1, …, wn.

33.3-5

Compute the gradient of expression (33.33) and explain how to evaluate

the gradient in O(nm) time.

33.3-6

Consider the function f defined in equation (33.32), and suppose that

you have a bound ∥w∥ ≤ B, as is considered in the discussion on

regularization. Show that L = O(B) in this case.

33.3-7

Equation (33.2) on page 1009 gives a function that, when minimized,

gives an optimal solution to the k-means problem. Explain how to use

gradient descent to solve the k-means problem.

Problems
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33-1     Newton’s method

Gradient descent iteratively moves closer to a desired value (the

minimum) of a function. Another algorithm in this spirit is known as

Newton’s method, which is an iterative algorithm that finds the root of a

function. Here, we consider Newton’s method which, given a function f :

ℝ → ℝ, finds a value x* such that f(x* ) = 0. The algorithm moves

through a series of points x(0), x(1), …. If the algorithm is currently at a

point x(t), then to find point x(t+1), it first takes the equation of the line

tangent to the curve at x = x(t),

y = f′(x(t))(x – x(t)) + f(x(t)).

It then uses the x-intercept of this line as the next point x(t+1).

a. Show that the algorithm described above can be summarized by the

update rule

We restrict our attention to some domain I and assume that f′(x) ≠ 0 for

all x ∈ I and that f″(x) is continuous. We also assume that the starting

point x(0) is sufficiently close to x*, where “sufficiently close” means

that we can use only the first two terms of the Taylor expansion of f(x*)

about x(0), namely

where γ(0) is some value between x(0) and x*. If the approximation in

equation (33.34) holds for x(0), it also holds for any point closer to x*.

b. Assume that the function f has exactly one point x* for which f(x*) =

0. Let ϵ(t) = |x(t) – x*|. Using the Taylor expansion in equation

(33.34), show that
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where γ(t) is some value between x(t) and x*.

c. If

for some constant c and ϵ(0) < 1, then we say that the function f has

quadratic convergence, since the error decreases quadratically.

Assuming that f has quadratic convergence, how many iterations are

needed to find a root of f(x) to an accuracy of δ? Your answer should

include δ.

d. Suppose you wish to find a root of the function f(x) = (x – 3)2, which

is also the minimizer, and you start at x(0) = 3.5. Compare the

number of iterations needed by gradient descent to find the minimizer

and Newton’s method to find the root.

33-2     Hedge

Another variant in the multiplicative-weights framework is known as

HEDGE. It differs from WEIGHTED MAJORITY in two ways. First,

HEDGE makes the prediction randomly—in iteration t, it assigns a

probability  to expert Ei, where . It then

chooses an expert Ei′ according to this probability distribution and

predicts according to Ei′. Second, the update rule is different. If an

expert makes a mistake, line 16 updates that expert’s weight by the rule 

, for some 0 < ϵ < 1. Show that the expected number of

mistakes made by HEDGE, running for T rounds, is at most m* + (ln

n)/ϵ + ϵT.

33-3     Nonoptimality of Lloyd’s procedure in one dimension

Give an example to show that even in one dimension, Lloyd’s procedure

for finding clusters does not always return an optimum result. That is,
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Lloyd’s procedure may terminate and return as a result a set C of

clusters that does not minimize f(S, C), even when S is a set of points on

a line.

33-4     Stochastic gradient descent

Consider the problem described in Section 33.3 of fitting a line f(x) = ax

+ b to a given set of point/value pairs S = {(x1, y1), …, (xT, yT)} by

optimizing the choice of the parameters a and b using gradient descent

to find a best least-squares fit. Here we consider the case where x is a

real-valued variable, rather than a vector.

Suppose that you are not given the point/value pairs in S all at once,

but only one at a time in an online manner. Furthermore, the points are

given in random order. That is, you know that there are n points, but in

iteration t you are given only (xi, yi) where i is independently and

randomly chosen from {1, …, T}.

You can use gradient descent to compute an estimate to the function.

As each point (xi, yi) is considered, you can update the current values of

a and b by taking the derivative with respect to a and b of the term of

the objective function depending on (xi, yi). Doing so gives you a

stochastic estimate of the gradient, and you can then take a small step

in the opposite direction.

Give pseudcode to implement this variant of gradient descent. What

would the expected value of the error be as a function of T, L, and R?

(Hint: Replicate the analysis of GRADIENT-DESCENT in Section

33.3 for this variant.)

This procedure and its variants are known as stochastic gradient

descent.

Chapter notes

For a general introduction to artificial intelligence, we recommend

Russell and Norvig [391]. For a general introduction to machine

learning, we recommend Murphy [340].
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Lloyd’s procedure for the k-means problem was first proposed by

Lloyd [304] and also later by Forgy [151]. It is sometimes called “Lloyd’s

algorithm” or the “Lloyd-Forgy algorithm.” Although Mahajan et al.

[310] showed that finding an optimal clustering is NP-hard, even in the

plane, Kanungo et al. [241] have shown that there is an approximation

algorithm for the k-means problem with approximation ratio 9 + ϵ, for

any ϵ > 0.

The multiplicative-weights method is surveyed by Arora, Hazan, and

Kale [25]. The main idea of updating weights based on feedback has

been rediscovered many times. One early use is in game theory, where

Brown defined “Fictitious Play” [74] and conjectured its convergence to

the value of a zero-sum game. The convergence properties were

established by Robinson [382].

In machine learning, the first use of multiplicative weights was by

Littlestone in the Winnow algorithm [300], which was later extended by

Littlestone and Warmuth to the weighted-majority algorithm described

in Section 33.2 [301]. This work is closely connected to the boosting

algorithm, originally due to Freund and Shapire [159]. The

multiplicative-weights idea is also closely related to several more general

optimization algorithms, including the perceptron algorithm [328] and

algorithms for optimization problems such as packing linear programs

[177, 359].

The treatment of gradient descent in this chapter draws heavily on

the unpublished manuscript of Bansal and Gupta [35]. They emphasize

the idea of using a potential function and using ideas from amortized

analysis to explain gradient descent. Other presentations and analyses

of gradient descent include works by Bubeck [75], Boyd and

Vanderberghe [69], and Nesterov [343].

Gradient descent is known to converge faster when functions obey

stronger properties than general convexity. For example, a function f is

α-strongly convex if f(y) ≥ f(x) + 〈(∇f)(x), (y – x)〉 + α∥y – x∥ for all x, y

∈ ℝn. In this case, GRADIENT-DESCENT can use a variable step

size and return x(T). The step size at step t becomes γt = 1/(α(t + 1)),

and the procedure returns a point such that f(x-avg) – f(x*) ≤ L2/(α(T +
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1)). This convergence is better than that of Theorem 33.8 because the

number of iterations needed is linear, rather than quadratic, in the

desired error parameter ϵ, and because the performance is independent

of the initial point.

Another case in which gradient descent can be shown to perform

better than the analysis in Section 33.3 suggests is for smooth convex

functions. We say that a function is β-smooth if 

. This inequality goes in the

opposite direction from the one for ≈-strong convexity. Better bounds

on gradient descent are possible here as well.

1 Although the curve in Figure 33.4 looks concave, according to the definition of convexity that

we’ll see below, the function f in the figure is convex.

2 A function f : ℝn → ℝ is closed if, for each α ∈ ℝ, the set {x ∈ dom(f) : f(x) ≤ α} is closed,

where dom(f) is the domain of f.
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34        NP-Completeness

Almost all the algorithms we have studied thus far have been

polynomial-time algorithms: on inputs of size n, their worst-case running

time is O(nk) for some constant k. You might wonder whether all

problems can be solved in polynomial time. The answer is no. For

example, there are problems, such as Turing’s famous “Halting

Problem,” that cannot be solved by any computer, no matter how long

you’re willing to wait for an answer.1 There are also problems that can

be solved, but not in O(nk) time for any constant k. Generally, we think

of problems that are solvable by polynomial-time algorithms as being

tractable, or “easy,” and problems that require superpolynomial time as

being intractable, or “hard.”

The subject of this chapter, however, is an interesting class of

problems, called the “NP-complete” problems, whose status is

unknown. No polynomial-time algorithm has yet been discovered for an

NP-complete problem, nor has anyone yet been able to prove that no

polynomial-time algorithm can exist for any one of them. This so-called

P ≠ NP question has been one of the deepest, most perplexing open

research problems in theoretical computer science since it was first

posed in 1971.

Several NP-complete problems are particularly tantalizing because

they seem on the surface to be similar to problems that we know how to

solve in polynomial time. In each of the following pairs of problems, one

is solvable in polynomial time and the other is NP-complete, but the

difference between the problems appears to be slight:
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Shortest versus longest simple paths: In Chapter 22, we saw that even

with negative edge weights, we can find shortest paths from a single

source in a directed graph G = (V, E) in O(VE) time. Finding a longest

simple path between two vertices is difficult, however. Merely

determining whether a graph contains a simple path with at least a

given number of edges is NP-complete.

Euler tour versus hamiltonian cycle: An Euler tour of a strongly

connected, directed graph G = (V, E) is a cycle that traverses each edge

of G exactly once, although it is allowed to visit each vertex more than

once. Problem 20-3 on page 583 asks you to show how to determine

whether a strongly connected, directed graph has an Euler tour and, if

it does, the order of the edges in the Euler tour, all in O(E) time. A

hamiltonian cycle of a directed graph G = (V, E) is a simple cycle that

contains each vertex in V. Determining whether a directed graph has a

hamiltonian cycle is NP-complete. (Later in this chapter, we’ll prove

that determining whether an undirected graph has a hamiltonian cycle

is NP-complete.)

2-CNF satisfiability versus 3-CNF satisfiability: Boolean formulas

contain binary variables whose values are 0 or 1; boolean connectives

such as ∧ (AND), ∨ (OR), and ¬ (NOT); and parentheses. A boolean

formula is satisfiable if there exists some assignment of the values 0

and 1 to its variables that causes it to evaluate to 1. We’ll define terms

more formally later in this chapter, but informally, a boolean formula

is in k-conjunctive normal form, or k-CNF if it is the AND of clauses

of ORs of exactly k variables or their negations. For example, the

boolean formula (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) is in 2-CNF

(with satisfying assignment x1 = 1, x2 = 0, and x3 = 1). Although

there is a polynomial-time algorithm to determine whether a 2-CNF

formula is satisfiable, we’ll see later in this chapter that determining

whether a 3-CNF formula is satisfiable is NP-complete.

NP-completeness and the classes P and NP
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Throughout this chapter, we refer to three classes of problems: P, NP,

and NPC, the latter class being the NP-complete problems. We describe

them informally here, with formal definitions to appear later on.

The class P consists of those problems that are solvable in

polynomial time. More specifically, they are problems that can be solved

in O(nk) time for some constant k, where n is the size of the input to the

problem. Most of the problems examined in previous chapters belong to

P.

The class NP consists of those problems that are “verifiable” in

polynomial time. What do we mean by a problem being verifiable? If

you were somehow given a “certificate” of a solution, then you could

verify that the certificate is correct in time polynomial in the size of the

input to the problem. For example, in the hamiltonian-cycle problem,

given a directed graph G = (V, E), a certificate would be a sequence 〈v1,

v2, v3, …, v|V|〉 of |V| vertices. You could check in polynomial time that

the sequence contains each of the |V| vertices exactly once, that (vi, vi+1)

∈ E for i = 1, 2, 3, …, |V| − 1, and that (v|V|, v1) ∈ E. As another

example, for 3-CNF satisfiability, a certificate could be an assignment of

values to variables. You could check in polynomial time that this

assignment satisfies the boolean formula.

Any problem in P also belongs to NP, since if a problem belongs to P

then it is solvable in polynomial time without even being supplied a

certificate. We’ll formalize this notion later in this chapter, but for now

you can believe that P ⊆ NP. The famous open question is whether P is

a proper subset of NP.

Informally, a problem belongs to the class NPC—and we call it NP-

complete—if it belongs to NP and is as “hard” as any problem in NP.

We’ll formally define what it means to be as hard as any problem in NP

later in this chapter. In the meantime, we state without proof that if any

NP-complete problem can be solved in polynomial time, then every

problem in NP has a polynomial-time algorithm. Most theoretical

computer scientists believe that the NP-complete problems are

intractable, since given the wide range of NP-complete problems that

have been studied to date—without anyone having discovered a
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polynomial-time solution to any of them—it would be truly astounding

if all of them could be solved in polynomial time. Yet, given the effort

devoted thus far to proving that NP-complete problems are intractable

—without a conclusive outcome—we cannot rule out the possibility

that the NP-complete problems could turn out to be solvable in

polynomial time.

To become a good algorithm designer, you must understand the

rudiments of the theory of NP-completeness. If you can establish a

problem as NP-complete, you provide good evidence for its

intractability. As an engineer, you would then do better to spend your

time developing an approximation algorithm (see Chapter 35) or

solving a tractable special case, rather than searching for a fast

algorithm that solves the problem exactly. Moreover, many natural and

interesting problems that on the surface seem no harder than sorting,

graph searching, or network flow are in fact NP-complete. Therefore,

you should become familiar with this remarkable class of problems.

Overview of showing problems to be NP-complete

The techniques used to show that a particular problem is NP-complete

differ fundamentally from the techniques used throughout most of this

book to design and analyze algorithms. If you can demonstrate that a

problem is NP-complete, you are making a statement about how hard it

is (or at least how hard we think it is), rather than about how easy it is.

If you prove a problem NP-complete, you are saying that searching for

efficient algorithm is likely to be a fruitless endeavor. In this way, NP-

completeness proofs bear some similarity to the proof in Section 8.1 of

an Ω(n lg n)-time lower bound for any comparison sort algorithm,

although the specific techniques used for showing NP-completeness

differ from the decision-tree method used in Section 8.1.

We rely on three key concepts in showing a problem to be NP-

complete:

Decision problems versus optimization problems

Many problems of interest are optimization problems, in which each

feasible (i.e., “legal”) solution has an associated value, and the goal is to
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find a feasible solution with the best value. For example, in a problem

that we call SHORTEST-PATH, the input is an undirected graph G and

vertices u and v, and the goal is to find a path from u to v that uses the

fewest edges. In other words, SHORTEST-PATH is the single-pair

shortest-path problem in an unweighted, undirected graph. NP-

completeness applies directly not to optimization problems, however,

but to decision problems, in which the answer is simply “yes” or “no”

(or, more formally, “1” or “0”).

Although NP-complete problems are confined to the realm of

decision problems, there is usually a way to cast a given optimization

problem as a related decision problem by imposing a bound on the

value to be optimized. For example, a decision problem related to

SHORTEST-PATH is PATH: given an undirected graph G, vertices u

and v, and an integer k, does a path exist from u to v consisting of at

most k edges?

The relationship between an optimization problem and its related

decision problem works in your favor when you try to show that the

optimization problem is “hard.” That is because the decision problem is

in a sense “easier,” or at least “no harder.” As a specific example, you

can solve PATH by solving SHORTEST-PATH and then comparing the

number of edges in the shortest path found to the value of the decision-

problem parameter k. In other words, if an optimization problem is

easy, its related decision problem is easy as well. Stated in a way that has

more relevance to NP-completeness, if you can provide evidence that a

decision problem is hard, you also provide evidence that its related

optimization problem is hard. Thus, even though it restricts attention to

decision problems, the theory of NP-completeness often has

implications for optimization problems as well.

Reductions

The above notion of showing that one problem is no harder or no easier

than another applies even when both problems are decision problems.

Almost every NP-completeness proof takes advantage of this idea, as

follows. Consider a decision problem A, which you would like to solve

in polynomial time. We call the input to a particular problem an
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instance of that problem. For example, in PATH, an instance is a

particular graph G, particular vertices u and v of G, and a particular

integer k. Now suppose that you already know how to solve a different

decision problem B in polynomial time. Finally, suppose that you have a

procedure that transforms any instance α of A into some instance β of B

with the following characteristics:

Figure 34.1 How to use a polynomial-time reduction algorithm to solve a decision problem A in

polynomial time, given a polynomial-time decision algorithm for another problem B. In

polynomial time, transform an instance α of A into an instance β of B, solve B in polynomial

time, and use the answer for β as the answer for α.

The transformation takes polynomial time.

The answers are the same. That is, the answer for α is “yes” if and

only if the answer for β is also “yes.”

We call such a procedure a polynomial-time reduction algorithm and, as

Figure 34.1 shows, it provides us a way to solve problem A in

polynomial time:

1. Given an instance α of problem A, use a polynomial-time

reduction algorithm to transform it to an instance β of problem

B.

2. Run the polynomial-time decision algorithm for B on the

instance β.

3. Use the answer for β as the answer for α.

As long as each of these steps takes polynomial time, all three together

do also, and so you have a way to decide on α in polynomial time. In

other words, by “reducing” solving problem A to solving problem B,

you use the “easiness” of B to prove the “easiness” of A.
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Recalling that NP-completeness is about showing how hard a

problem is rather than how easy it is, you use polynomial-time

reductions in the opposite way to show that a problem is NP-complete.

Let’s take the idea a step further and show how you can use polynomial-

time reductions to show that no polynomial-time algorithm can exist for

a particular problem B. Suppose that you have a decision problem A for

which you already know that no polynomial-time algorithm can exist.

(Ignore for the moment how to find such a problem A.) Suppose further

that you have a polynomial-time reduction transforming instances of A

to instances of B. Now you can use a simple proof by contradiction to

show that no polynomial-time algorithm can exist for B. Suppose

otherwise, that is, suppose that B has a polynomial-time algorithm.

Then, using the method shown in Figure 34.1, you would have a way to

solve problem A in polynomial time, which contradicts the assumption

that there is no polynomial-time algorithm for A.

To prove that a problem B is NP-complete, the methodology is

similar. Although you cannot assume that there is absolutely no

polynomial-time algorithm for problem A, you prove that problem B is

NP-complete on the assumption that problem A is also NP-complete.

A first NP-complete problem

Because the technique of reduction relies on having a problem already

known to be NP-complete in order to prove a different problem NP-

complete, there must be some “first” NP-complete problem. We’ll use

the circuit-satisfiability problem, in which the input is a boolean

combinational circuit composed of AND, OR, and NOT gates, and the

question is whether there exists some set of boolean inputs to this circuit

that causes its output to be 1. Section 34.3 will prove that this first

problem is NP-complete.

Chapter outline

This chapter studies the aspects of NP-completeness that bear most

directly on the analysis of algorithms. Section 34.1 formalizes the notion

of “problem” and defines the complexity class P of polynomial-time

solvable decision problems. We’ll also see how these notions fit into the
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framework of formal-language theory. Section 34.2 defines the class NP

of decision problems whose solutions are verifiable in polynomial time.

It also formally poses the P ≠ NP question.

Section 34.3 shows how to relate problems via polynomial-time

“reductions.” It defines NP-completeness and sketches a proof that the

circuit-satisfiability problem is NP-complete. With one problem proven

NP-complete, Section 34.4 demonstrates how to prove other problems

to be NP-complete much more simply by the methodology of

reductions. To illustrate this methodology, the section shows that two

formula-satisfiability problems are NP-complete. Section 34.5 proves a

variety of other problems to be NP-complete by using reductions. You

will probably find several of these reductions to be quite creative,

because they convert a problem in one domain to a problem in a

completely different domain.

34.1    Polynomial time

Since NP-completeness relies on notions of solving a problem and

verifying a certificate in polynomial time, let’s first examine what it

means for a problem to be solvable in polynomial time.

Recall that we generally regard problems that have polynomial-time

solutions as tractable. Here are three reasons why:

1. Although no reasonable person considers a problem that

requires Θ(n100) time to be tractable, few practical problems

require time on the order of such a high-degree polynomial. The

polynomial-time computable problems encountered in practice

typically require much less time. Experience has shown that once

the first polynomial-time algorithm for a problem has been

discovered, more efficient algorithms often follow. Even if the

current best algorithm for a problem has a running time of

Θ(n100), an algorithm with a much better running time will

likely soon be discovered.

2. For many reasonable models of computation, a problem that can

be solved in polynomial time in one model can be solved in
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polynomial time in another. For example, the class of problems

solvable in polynomial time by the serial random-access machine

used throughout most of this book is the same as the class of

problems solvable in polynomial time on abstract Turing

machines.2 It is also the same as the class of problems solvable in

polynomial time on a parallel computer when the number of

processors grows polynomially with the input size.

3. The class of polynomial-time solvable problems has nice closure

properties, since polynomials are closed under addition,

multiplication, and composition. For example, if the output of

one polynomial-time algorithm is fed into the input of another,

the composite algorithm is polynomial. Exercise 34.1-5 asks you

to show that if an algorithm makes a constant number of calls to

polynomial-time subroutines and performs an additional

amount of work that also takes polynomial time, then the

running time of the composite algorithm is polynomial.

Abstract problems

To understand the class of polynomial-time solvable problems, you

must first have a formal notion of what a “problem” is. We define an

abstract problem  Q to be a binary relation on a set I of problem

instances and a set S of problem solutions. For example, an instance for

SHORTEST-PATH is a triple consisting of a graph and two vertices. A

solution is a sequence of vertices in the graph, with perhaps the empty

sequence denoting that no path exists. The problem SHORTEST-PATH

itself is the relation that associates each instance of a graph and two

vertices with a shortest path in the graph that connects the two vertices.

Since shortest paths are not necessarily unique, a given problem

instance may have more than one solution.

This formulation of an abstract problem is more general than

necessary for our purposes. As we saw above, the theory of NP-

completeness restricts attention to decision problems: those having a

yes/no solution. In this case, we can view an abstract decision problem

as a function that maps the instance set I to the solution set {0, 1}. For

example, a decision problem related to SHORTEST-PATH is the
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problem PATH that we saw earlier. If i = 〈G, u, v, k〉 is an instance of

PATH, then PATH(i) = 1 (yes) if G contains a path from u to v with at

most k edges, and PATH(i) = 0 (no) otherwise. Many abstract problems

are not decision problems, but rather optimization problems, which

require some value to be minimized or maximized. As we saw above,

however, you can usually recast an optimization problem as a decision

problem that is no harder.

Encodings

In order for a computer program to solve an abstract problem, its

problem instances must appear in a way that the program understands.

An encoding of a set S of abstract objects is a mapping e from S to the

set of binary strings.3 For example, we are all familiar with encoding the

natural numbers ℕ = {0, 1, 2, 3, 4,…} as the strings {0, 1, 10, 11,

100,…}. Using this encoding, e(17) = 10001. If you have looked at

computer representations of keyboard characters, you probably have

seen the ASCII code, where, for example, the encoding of A is 01000001.

You can encode a compound object as a binary string by combining the

representations of its constituent parts. Polygons, graphs, functions,

ordered pairs, programs—all can be encoded as binary strings.

Thus, a computer algorithm that “solves” some abstract decision

problem actually takes an encoding of a problem instance as input. The

size of an instance i is just the length of its string, which we denote by |i|.

We call a problem whose instance set is the set of binary strings a

concrete problem. We say that an algorithm solves a concrete problem in

O(T (n)) time if, when it is provided a problem instance i of length n =

|i|, the algorithm can produce the solution in O(T (n)) time.4 A concrete

problem is polynomial-time solvable, therefore, if there exists an

algorithm to solve it in O(nk) time for some constant k.

We can now formally define the complexity class P as the set of

concrete decision problems that are polynomial-time solvable.

Encodings map abstract problems to concrete problems. Given an

abstract decision problem Q mapping an instance set I to {0, 1}, an

encoding e : I → {0, 1}* can induce a related concrete decision problem,
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which we denote by e(Q).5 If the solution to an abstract-problem

instance i ∈ I is Q(i) ∈ {0, 1}, then the solution to the concrete-problem

instance e(i) ∈ {0, 1}* is also Q(i). As a technicality, some binary

strings might represent no meaningful abstract-problem instance. For

convenience, assume that any such string maps arbitrarily to 0. Thus,

the concrete problem produces the same solutions as the abstract

problem on binary-string instances that represent the encodings of

abstract-problem instances.

We would like to extend the definition of polynomial-time solvability

from concrete problems to abstract problems by using encodings as the

bridge, ideally with the definition independent of any particular

encoding. That is, the efficiency of solving a problem should not depend

on how the problem is encoded. Unfortunately, it depends quite heavily

on the encoding. For example, suppose that the sole input to an

algorithm is an integer k, and suppose that the running time of the

algorithm is Θ(k). If the integer k is provided in unary—a string of k 1s

—then the running time of the algorithm is O(n) on length-n inputs,

which is polynomial time. If the input k is provided using the more

natural binary representation, however, then the input length is n = ⌊lg

k⌋ + 1, so the size of the unary encoding is exponential in the size of the

binary encoding. With the binary representation, the running time of

the algorithm is Θ(k) = Θ(2n), which is exponential in the size of the

input. Thus, depending on the encoding, the algorithm runs in either

polynomial or superpolynomial time.

The encoding of an abstract problem matters quite a bit to how we

understand polynomial time. We cannot really talk about solving an

abstract problem without first specifying an encoding. Nevertheless, in

practice, if we rule out “expensive” encodings such as unary ones, the

actual encoding of a problem makes little difference to whether the

problem can be solved in polynomial time. For example, representing

integers in base 3 instead of binary has no effect on whether a problem

is solvable in polynomial time, since we can convert an integer

represented in base 3 to an integer represented in base 2 in polynomial

time.
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We say that a function f : {0, 1}* → {0, 1}* is polynomial-time

computable if there exists a polynomial-time algorithm A that, given any

input x ∈ {0, 1}*, produces as output f (x). For some set I of problem

instances, we say that two encodings e1 and e2 are polynomially related

if there exist two polynomial-time computable functions f12 and f21

such that for any i ∈ I, we have f12(e1(i)) = e2(i) and f21(e2(i)) = e1(i).6

That is, a polynomial-time algorithm can compute the encoding e2(i)

from the encoding e1(i), and vice versa. If two encodings e1 and e2 of

an abstract problem are polynomially related, whether the problem is

polynomial-time solvable or not is independent of which encoding we

use, as the following lemma shows.

Lemma 34.1

Let Q be an abstract decision problem on an instance set I, and let e1

and e2 be polynomially related encodings on I. Then, e1(Q) ∈ P if and

only if e2(Q) ∈ P.

Proof     We need only prove the forward direction, since the backward

direction is symmetric. Suppose, therefore, that e1(Q) can be solved in

O(nk) time for some constant k. Furthermore, suppose that for any

problem instance i, the encoding e1(i) can be computed from the

encoding e2(i) in O(nc) time for some constant c, where n = |e2(i)|. To

solve problem e2(Q) on input e2(i), first compute e1(i) and then run the

algorithm for e1(Q) on e1(i). How long does this procedure take?

Converting encodings takes O(nc) time, and therefore |e1(i)| = O(nc),

since the output of a serial computer cannot be longer than its running

time. Solving the problem on e1(i) takes O(|e1(i)|k) = O(nck) time, which

is polynomial since both c and k are constants.

▪
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Thus, whether an abstract problem has its instances encoded in

binary or base 3 does not affect its “complexity,” that is, whether it is

polynomial-time solvable or not. If instances are encoded in unary,

however, its complexity may change. In order to be able to converse in

an encoding-independent fashion, we generally assume that problem

instances are encoded in any reasonable, concise fashion, unless we

specifically say otherwise. To be precise, we assume that the encoding of

an integer is polynomially related to its binary representation, and that

the encoding of a finite set is polynomially related to its encoding as a

list of its elements, enclosed in braces and separated by commas. (ASCII

is one such encoding scheme.) With such a “standard” encoding in

hand, we can derive reasonable encodings of other mathematical

objects, such as tuples, graphs, and formulas. To denote the standard

encoding of an object, we enclose the object in angle brackets. Thus, 〈G〉

denotes the standard encoding of a graph G.

As long as the encoding implicitly used is polynomially related to

this standard encoding, we can talk directly about abstract problems

without reference to any particular encoding, knowing that the choice

of encoding has no effect on whether the abstract problem is

polynomial-time solvable. From now on, we will generally assume that

all problem instances are binary strings encoded using the standard

encoding, unless we explicitly specify the contrary. We’ll also typically

neglect the distinction between abstract and concrete problems. You

should watch out for problems that arise in practice, however, in which a

standard encoding is not obvious and the encoding does make a

difference.

A formal-language framework

By focusing on decision problems, we can take advantage of the

machinery of formal-language theory. Let’s review some definitions

from that theory. An alphabet Σ is a finite set of symbols. A language L

over Σ is any set of strings made up of symbols from Σ. For example, if

Σ = {0, 1}, the set L = {10, 11, 101, 111, 1011, 1101, 10001,…} is the

language of binary representations of prime numbers. We denote the

empty string by ε, the empty language by Ø, and the language of all
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strings over Σ by Σ*. For example, if Σ = {0, 1}, then Σ* = {ε, 0, 1, 00,

01, 10, 11, 000,…} is the set of all binary strings. Every language L over

Σ is a subset of Σ*.

Languages support a variety of operations. Set-theoretic operations,

such as union and intersection, follow directly from the set-theoretic

definitions. We define the complement of a language L by L = Σ* − L.

The concatenation L1L2 of two languages L1 and L2 is the language

L = {x1x2 : x1 ∈ L1 and x2 ∈ L2}.

The closure or Kleene star of a language L is the language

L* = {ε} ∪ L ∪ L2 ∪ L3 ∪ …,

where Lk is the language obtained by concatenating L to itself k times.

From the point of view of language theory, the set of instances for

any decision problem Q is simply the set Σ*, where Σ = {0, 1}. Since Q is

entirely characterized by those problem instances that produce a 1 (yes)

answer, we can view Q as a language L over Σ = {0, 1}, where

L = {x ∈ Σ* : Q(x) = 1}.

For example, the decision problem PATH has the corresponding

language

PATH = {〈G, u, v,

k〉:

G = (V, E) is an undirected graph,

u, v ∈ V,

k ≥ 0 is an integer, and

G contains a path from u to v with at most k

edges}.

(Where convenient, we’ll sometimes use the same name—PATH in this

case—to refer to both a decision problem and its corresponding

language.)

The formal-language framework allows us to express concisely the

relation between decision problems and algorithms that solve them. We

say that an algorithm A accepts a string x ∈ {0, 1}* if, given input x,
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the algorithm’s output A(x) is 1. The language accepted by an algorithm

A is the set of strings L = {x ∈ {0, 1}* : A(x) = 1}, that is, the set of

strings that the algorithm accepts. An algorithm A rejects a string x if

A(x) = 0.

Even if language L is accepted by an algorithm A, the algorithm

does not necessarily reject a string x ∉ L provided as input to it. For

example, the algorithm might loop forever. A language L is decided by

an algorithm A if every binary string in L is accepted by A and every

binary string not in L is rejected by A. A language L is accepted in

polynomial time by an algorithm A if it is accepted by A and if in

addition there exists a constant k such that for any length-n string x ∈

L, algorithm A accepts x in O(nk) time. A language L is decided in

polynomial time by an algorithm A if there exists a constant k such that

for any length-n string x ∈ {0, 1}*, the algorithm correctly decides

whether x ∈ L in O(nk) time. Thus, to accept a language, an algorithm

need only produce an answer when provided a string in L, but to decide

a language, it must correctly accept or reject every string in {0, 1}*.

As an example, the language PATH can be accepted in polynomial

time. One polynomial-time accepting algorithm verifies that G encodes

an undirected graph, verifies that u and v are vertices in G, uses breadth-

first search to compute a path from u to v in G with the fewest edges,

and then compares the number of edges on the path obtained with k. If

G encodes an undirected graph and the path found from u to v has at

most k edges, the algorithm outputs 1 and halts. Otherwise, the

algorithm runs forever. This algorithm does not decide PATH, however,

since it does not explicitly output 0 for instances in which a shortest

path has more than k edges. A decision algorithm for PATH must

explicitly reject binary strings that do not belong to PATH. For a

decision problem such as PATH, such a decision algorithm is

straightforward to design: instead of running forever when there is not a

path from u to v with at most k edges, it outputs 0 and halts. (It must

also output 0 and halt if the input encoding is faulty.) For other

problems, such as Turing’s Halting Problem, there exists an accepting

algorithm, but no decision algorithm exists.
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We can informally define a complexity class as a set of languages,

membership in which is determined by a complexity measure, such as

running time, of an algorithm that determines whether a given string x

belongs to language L. The actual definition of a complexity class is

somewhat more technical.7

Using this language-theoretic framework, we can provide an

alternative definition of the complexity class P:

P = {L ⊆ {0,

1}*:

there exists an algorithm A that decides L in

polynomial time}.

In fact, as the following theorem shows, P is also the class of languages

that can be accepted in polynomial time.

Theorem 34.2

P = {L : L is accepted by a polynomial-time algorithm}.

Proof Because the class of languages decided by polynomial-time

algorithms is a subset of the class of languages accepted by polynomial-

time algorithms, we need only show that if L is accepted by a

polynomial-time algorithm, it is decided by a polynomial-time

algorithm. Let L be the language accepted by some polynomial-time

algorithm A. We use a classic “simulation” argument to construct

another polynomial-time algorithm A′ that decides L. Because A

accepts L in O(nk) time for some constant k, there also exists a constant

c such that A accepts L in at most cnk steps. For any input string x, the

algorithm A′ simulates cnk steps of A. After simulating cnk steps,

algorithm A′ inspects the behavior of A. If A has accepted x, then A′
accepts x by outputting a 1. If A has not accepted x, then A′ rejects x by

outputting a 0. The overhead of A′ simulating A does not increase the

running time by more than a polynomial factor, and thus A′ is a

polynomial-time algorithm that decides L.

▪

The proof of Theorem 34.2 is nonconstructive. For a given language

L ∈ P, we may not actually know a bound on the running time for the
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algorithm A that accepts L. Nevertheless, we know that such a bound

exists, and therefore, that an algorithm A′ exists that can check the

bound, even though we may not be able to find the algorithm A′ easily.

Exercises

34.1-1

Define the optimization problem LONGEST-PATH-LENGTH as the

relation that associates each instance of an undirected graph and two

vertices with the number of edges in a longest simple path between the

two vertices. Define the decision problem LONGEST-PATH = {〈G, u, v,

k〉 : G = (V, E) is an undirected graph, u, v ∈ V, k ≥ 0 is an integer, and

there exists a simple path from u to v in G consisting of at least k edges}.

Show that the optimization problem LONGEST-PATH-LENGTH can

be solved in polynomial time if and only if LONGEST-PATH ∈ P.

34.1-2

Give a formal definition for the problem of finding the longest simple

cycle in an undirected graph. Give a related decision problem. Give the

language corresponding to the decision problem.

34.1-3

Give a formal encoding of directed graphs as binary strings using an

adjacency-matrix representation. Do the same using an adjacency-list

representation. Argue that the two representations are polynomially

related.

34.1-4

Is the dynamic-programming algorithm for the 0-1 knapsack problem

that is asked for in Exercise 15.2-2 a polynomial-time algorithm?

Explain your answer.

34.1-5

Show that if an algorithm makes at most a constant number of calls to

polynomial-time subroutines and performs an additional amount of

work that also takes polynomial time, then it runs in polynomial time.
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Also show that a polynomial number of calls to polynomial-time

subroutines may result in an exponential-time algorithm.

34.1-6

Show that the class P, viewed as a set of languages, is closed under

union, intersection, concatenation, complement, and Kleene star. That

is, if L1, L2 ∈ P, then L1 ∪ L2 ∈ P, L1 ∩ L2 ∈ P, L1L2 ∈ P, L1 ∈ P,

and .

34.2    Polynomial-time verification

Now, let’s look at algorithms that verify membership in languages. For

example, suppose that for a given instance 〈G, u, v, k〉 of the decision

problem PATH, you are also given a path p from u to v. You can check

whether p is a path in G and whether the length of p is at most k, and if

so, you can view p as a “certificate” that the instance indeed belongs to

PATH. For the decision problem PATH, this certificate doesn’t seem to

buy much. After all, PATH belongs to P—in fact, you can solve PATH

in linear time—and so verifying membership from a given certificate

takes as long as solving the problem from scratch. Instead, let’s examine

a problem for which we know of no polynomial-time decision algorithm

and yet, given a certificate, verification is easy.

Hamiltonian cycles

The problem of finding a hamiltonian cycle in an undirected graph has

been studied for over a hundred years. Formally, a hamiltonian cycle of

an undirected graph G = (V, E) is a simple cycle that contains each

vertex in V. A graph that contains a hamiltonian cycle is said to be

hamiltonian, and otherwise, it is nonhamiltonian. The name honors W.

R. Hamilton, who described a mathematical game on the dodecahedron

(Figure 34.2(a)) in which one player sticks five pins in any five

consecutive vertices and the other player must complete the path to

form a cycle containing all the vertices.8 The dodecahedron is

hamiltonian, and Figure 34.2(a) shows one hamiltonian cycle. Not all
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graphs are hamiltonian, however. For example, Figure 34.2(b) shows a

bipartite graph with an odd number of vertices. Exercise 34.2-2 asks you

to show that all such graphs are nonhamiltonian.

Here is how to define the hamiltonian-cycle problem, “Does a graph

G have a hamiltonian cycle?” as a formal language:

HAM-CYCLE = {〈G〉 : G is a hamiltonian graph}.

How might an algorithm decide the language HAM-CYCLE? Given a

problem instance 〈G〉, one possible decision algorithm lists all

permutations of the vertices of G and then checks each permutation to

see whether it is a hamiltonian cycle. What is the running time of this

algorithm? It depends on the encoding of the graph G. Let’s say that G

is encoded as its adjacency matrix. If the adjacency matrix contains n

entries, so that the length of the encoding of G equals n, then the

number m of vertices in the graph is . There are m! possible

permutations of the vertices, and therefore the running time is 

, which is not O(nk) for any constant k. Thus,

this naive algorithm does not run in polynomial time. In fact, the

hamiltonian-cycle problem is NP-complete, as we’ll prove in Section

34.5.
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Figure 34.2 (a) A graph representing the vertices, edges, and faces of a dodecahedron, with a

hamiltonian cycle shown by edges highlighted in blue. (b) A bipartite graph with an odd number

of vertices. Any such graph is nonhamiltonian.

Verification algorithms

Consider a slightly easier problem. Suppose that a friend tells you that a

given graph G is hamiltonian, and then the friend offers to prove it by

giving you the vertices in order along the hamiltonian cycle. It would

certainly be easy enough to verify the proof: simply verify that the

provided cycle is hamiltonian by checking whether it is a permutation of

the vertices of V and whether each of the consecutive edges along the

cycle actually exists in the graph. You could certainly implement this

verification algorithm to run in O(n2) time, where n is the length of the

encoding of G. Thus, a proof that a hamiltonian cycle exists in a graph

can be verified in polynomial time.

We define a verification algorithm as being a two-argument algorithm

A, where one argument is an ordinary input string x and the other is a

binary string y called a certificate. A two-argument algorithm A verifies

an input string x if there exists a certificate y such that A(x, y) = 1. The

language verified by a verification algorithm A is

L = {x ∈ {0, 1}* : there exists y ∈ {0, 1}* such that A(x, y) = 1}.
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Think of an algorithm A as verifying a language L if, for any string x

∈ L, there exists a certificate y that A can use to prove that x ∈ L.

Moreover, for any string x ∉ L, there must be no certificate proving that

x ∈ L. For example, in the hamiltonian-cycle problem, the certificate is

the list of vertices in some hamiltonian cycle. If a graph is hamiltonian,

the hamiltonian cycle itself offers enough information to verify that the

graph is indeed hamiltonian. Conversely, if a graph is not hamiltonian,

there can be no list of vertices that fools the verification algorithm into

believing that the graph is hamiltonian, since the verification algorithm

carefully checks the so-called cycle to be sure.

The complexity class NP

The complexity class NP is the class of languages that can be verified by

a polynomial-time algorithm.9 More precisely, a language L belongs to

NP if and only if there exist a two-input polynomial-time algorithm A

and a constant c such that

L = {x ∈ {0, 1}*: there exists a certificate y with |y| = O(|x|c)

such that A(x, y) = 1}.

We say that algorithm A verifies language L in polynomial time.

From our earlier discussion about the hamiltonian-cycle problem,

you can see that HAM-CYCLE ∈ NP. (It is always nice to know that an

important set is nonempty.) Moreover, if L ∈ P, then L ∈ NP, since if

there is a polynomial-time algorithm to decide L, the algorithm can be

converted to a two-argument verification algorithm that simply ignores

any certificate and accepts exactly those input strings it determines to

belong to L. Thus, P ⊆ NP.

That leaves the question of whether P = NP. A definitive answer is

unknown, but most researchers believe that P and NP are not the same

class. Think of the class P as consisting of problems that can be solved

quickly and the class NP as consisting of problems for which a solution

can be verified quickly. You may have learned from experience that it is

often more difficult to solve a problem from scratch than to verify a

clearly presented solution, especially when working under time
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constraints. Theoretical computer scientists generally believe that this

analogy extends to the classes P and NP, and thus that NP includes

languages that do not belong to P.

Figure 34.3 Four possibilities for relationships among complexity classes. In each diagram, one

region enclosing another indicates a proper-subset relation. (a) P = NP = co-NP. Most

researchers regard this possibility as the most unlikely. (b) If NP is closed under complement,

then NP = co-NP, but it need not be the case that P = NP. (c) P = NP ∩ co-NP, but NP is not

closed under complement. (d) NP ≠ co-NP and P ≠ NP ∩ co-NP. Most researchers regard this

possibility as the most likely.

There is more compelling, though not conclusive, evidence that P ≠

NP—the existence of languages that are “NP-complete.” Section 34.3

will study this class.

Many other fundamental questions beyond the P ≠ NP question

remain unresolved. Figure 34.3 shows some possible scenarios. Despite

much work by many researchers, no one even knows whether the class

NP is closed under complement. That is, does L ∈ NP imply L ∈ NP?

We define the complexity class co-NP as the set of languages L such that

L ∈ NP, so that the question of whether NP is closed under

complement is also whether NP = co-NP. Since P is closed under

complement (Exercise 34.1-6), it follows from Exercise 34.2-9 (P ⊆ co-

NP) that P ⊆ NP ∩ co-NP. Once again, however, no one knows whether

P = NP ∩ co-NP or whether there is some language in (NP ∩ co-NP) −

P.
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Thus our understanding of the precise relationship between P and

NP is woefully incomplete. Nevertheless, even though we might not be

able to prove that a particular problem is intractable, if we can prove

that it is NP-complete, then we have gained valuable information about

it.

Exercises

34.2-1

Consider the language GRAPH-ISOMORPHISM = {〈G1, G2〉 : G1

and G2 are isomorphic graphs}. Prove that GRAPH-ISOMORPHISM

∈ NP by describing a polynomial-time algorithm to verify the language.

34.2-2

Prove that if G is an undirected bipartite graph with an odd number of

vertices, then G is nonhamiltonian.

34.2-3

Show that if HAM-CYCLE ∈ P, then the problem of listing the vertices

of a hamiltonian cycle, in order, is polynomial-time solvable.

34.2-4

Prove that the class NP of languages is closed under union, intersection,

concatenation, and Kleene star. Discuss the closure of NP under

complement.

34.2-5

Show that any language in NP can be decided by an algorithm with a

running time of  for some constant k.

34.2-6

A hamiltonian path in a graph is a simple path that visits every vertex

exactly once. Show that the language HAM-PATH = {〈G, u, v〉 : there is

a hamiltonian path from u to v in graph G} belongs to NP.

34.2-7
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Show that the hamiltonian-path problem from Exercise 34.2-6 can be

solved in polynomial time on directed acyclic graphs. Give an efficient

algorithm for the problem.

34.2-8

Let ϕ be a boolean formula constructed from the boolean input

variables x1, x2, … , xk, negations (¬), ANDs (∧), ORs (∨), and

parentheses. The formula ϕ is a tautology if it evaluates to 1 for every

assignment of 1 and 0 to the input variables. Define TAUTOLOGY as

the language of boolean formulas that are tautologies. Show that

TAUTOLOGY ∈ co-NP.

34.2-9

Prove that P ⊆ co-NP.

34.2-10

Prove that if NP ≠ co-NP, then P ≠ NP.

34.2-11

Let G be a connected, undirected graph with at least three vertices, and

let G3 be the graph obtained by connecting all pairs of vertices that are

connected by a path in G of length at most 3. Prove that G3 is

hamiltonian. (Hint: Construct a spanning tree for G, and use an

inductive argument.)

34.3    NP-completeness and reducibility

Perhaps the most compelling reason why theoretical computer scientists

believe that P ≠ NP comes from the existence of the class of NP-

complete problems. This class has the intriguing property that if any

NP-complete problem can be solved in polynomial time, then every

problem in NP has a polynomial-time solution, that is, P = NP. Despite

decades of study, though, no polynomial-time algorithm has ever been

discovered for any NP-complete problem.
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The language HAM-CYCLE is one NP-complete problem. If there

were an algorithm to decide HAM-CYCLE in polynomial time, then

every problem in NP could be solved in polynomial time. The NP-

complete languages are, in a sense, the “hardest” languages in NP. In

fact, if NP − P turns out to be nonempty, we will be able to say with

certainty that HAM-CYCLE ∈ NP − P.

This section starts by showing how to compare the relative

“hardness” of languages using a precise notion called “polynomial-time

reducibility.” It then formally defines the NP-complete languages,

finishing by sketching a proof that one such language, called CIRCUIT-

SAT, is NP-complete. Sections 34.4 and 34.5 will use the notion of

reducibility to show that many other problems are NP-complete.

Reducibility

One way that sometimes works for solving a problem is to recast it as a

different problem. We call that strategy “reducing” one problem to

another. Think of a problem Q as being reducible to another problem

Q′ if any instance of Q can be recast as an instance of Q′, and the

solution to the instance of Q′ provides a solution to the instance of Q.

For example, the problem of solving linear equations in an

indeterminate x reduces to the problem of solving quadratic equations.

Given a linear-equation instance ax + b = 0 (with solution x = −b/a),

you can transform it to the quadratic equation ax2 + bx + 0 = 0. This

quadratic equation has the solutions , where c =

0, so that . The solutions are then x = (−b + b)/2a = 0 and

x = (−b − b)/2a = −b/a, thereby providing a solution to ax + b = 0.

Thus, if a problem Q reduces to another problem Q′, then Q is, in a

sense, “no harder to solve” than Q′.
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Figure 34.4 A function f that reduces language L1 to language L2. For any input x ∈ {0, 1}*,

the question of whether x ∈ L1 has the same answer as the question of whether f (x) ∈ L2.

Returning to our formal-language framework for decision problems,

we say that a language L1 is polynomial-time reducible to a language L2,

written L1 ≤P L2, if there exists a polynomial-time computable function

f : {0, 1}* → {0, 1}* such that for all x ∈ {0, 1}*,

We call the function f the reduction function, and a polynomial-time

algorithm F that computes f is a reduction algorithm.

Figure 34.4 illustrates the idea of a reduction from a language L1 to

another language L2. Each language is a subset of {0, 1}*. The

reduction function f provides a mapping such that if x ∈ L1, then f (x)

∈ L2. Moreover, if x ∉ L1, then f (x) ∉ L2. Thus, the reduction

function maps any instance x of the decision problem represented by the

language L1 to an instance f (x) of the problem represented by L2.

Providing an answer to whether f (x) ∈ L2 directly provides the answer

to whether x ∈ L1. If, in addition, f can be computed in polynomial

time, it is a polynomial-time reduction function.

Polynomial-time reductions give us a powerful tool for proving that

various languages belong to P.

Lemma 34.3
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If L1, L2 ⊆ {0, 1}* are languages such that L1 ≤P  L2, then L2 ∈ P

implies L1 ∈ P.

Figure 34.5 The proof of Lemma 34.3. The algorithm F is a reduction algorithm that computes

the reduction function f from L1 to L2 in polynomial time, and A2 is a polynomial-time

algorithm that decides L2. Algorithm A1 decides whether x ∈ L1 by using F to transform any

input x into f (x) and then using A2 to decide whether f (x) ∈ L2.

Proof   Let A2 be a polynomial-time algorithm that decides L2, and let

F be a polynomial-time reduction algorithm that computes the

reduction function f. We show how to construct a polynomial-time

algorithm A1 that decides L1.

Figure 34.5 illustrates how we construct A1. For a given input x ∈

{0, 1}*, algorithm A1 uses F to transform x into f (x), and then it uses

A2 to test whether f (x) ∈ L2. Algorithm A1 takes the output from

algorithm A2 and produces that answer as its own output.

The correctness of A1 follows from condition (34.1). The algorithm

runs in polynomial time, since both F and A2 run in polynomial time

(see Exercise 34.1-5).

▪

NP-completeness

Polynomial-time reductions allow us to formally show that one problem

is at least as hard as another, to within a polynomial-time factor. That

is, if L1 ≤P L2, then L1 is not more than a polynomial factor harder

than L2, which is why the “less than or equal to” notation for reduction

is mnemonic. We can now define the set of NP-complete languages,

which are the hardest problems in NP.
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A language L ⊆ {0, 1}* is NP-complete if

1. L ∈ NP, and

2. L′ ≤P L for every L′ ∈ NP.

If a language L satisfies property 2, but not necessarily property 1, we

say that L is NP-hard. We also define NPC to be the class of NP-

complete languages.

As the following theorem shows, NP-completeness is at the crux of

deciding whether P is in fact equal to NP.

Theorem 34.4

If any NP-complete problem is polynomial-time solvable, then P = NP.

Equivalently, if any problem in NP is not polynomial-time solvable, then

no NP-complete problem is polynomial-time solvable.

Figure 34.6 How most theoretical computer scientists view the relationships among P, NP, and

NPC. Both P and NPC are wholly contained within NP, and P ∩ NPC = Ø.

Proof   Suppose that L ∈ P and also that L ∈ NPC. For any L′ ∈ NP,

we have L′ ≤P  L by property 2 of the definition of NP-completeness.

Thus, by Lemma 34.3, we also have that L′ ∈ P, which proves the first

statement of the theorem.

To prove the second statement, consider the contrapositive of the

first statement: if P ≠ NP, then there does not exist an NP-complete

problem that is polynomial-time solvable. But P ≠ NP means that there

is some problem in NP that is not polynomial-time solvable, and hence

the second statement is the contrapositive of the first statement.

▪
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It is for this reason that research into the P ≠ NP question centers

around the NP-complete problems. Most theoretical computer scientists

believe that P ≠ NP, which leads to the relationships among P, NP, and

NPC shown in Figure 34.6. For all we know, however, someone may yet

come up with a polynomial-time algorithm for an NP-complete

problem, thus proving that P = NP. Nevertheless, since no polynomial-

time algorithm for any NP-complete problem has yet been discovered, a

proof that a problem is NP-complete provides excellent evidence that it

is intractable.

Circuit satisfiability

We have defined the notion of an NP-complete problem, but up to this

point, we have not actually proved that any problem is NP-complete.

Once we prove that at least one problem is NP-complete, polynomial-

time reducibility becomes a tool to prove other problems to be NP-

complete. Thus, we now focus on demonstrating the existence of an NP-

complete problem: the circuit-satisfiability problem.

Unfortunately, the formal proof that the circuit-satisfiability problem

is NP-complete requires technical detail beyond the scope of this text.

Instead, we’ll informally describe a proof that relies on a basic

understanding of boolean combinational circuits.

Figure 34.7 Three basic logic gates, with binary inputs and outputs. Under each gate is the truth

table that describes the gate’s operation. (a) The NOT gate. (b) The AND gate. (c) The OR gate.

Boolean combinational circuits are built from boolean

combinational elements that are interconnected by wires. A boolean

combinational element is any circuit element that has a constant number
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of boolean inputs and outputs and that performs a well-defined

function. Boolean values are drawn from the set {0, 1}, where 0

represents FALSE and 1 represents TRUE.

The boolean combinational elements appearing in the circuit-

satisfiability problem compute simple boolean functions, and they are

known as logic gates. Figure 34.7 shows the three basic logic gates used

in the circuit-satisfiability problem: the NOT gate (or inverter), the AND

gate, and the OR gate. The NOT gate takes a single binary input  x,

whose value is either 0 or 1, and produces a binary output z whose value

is opposite that of the input value. Each of the other two gates takes two

binary inputs x and y and produces a single binary output z.

The operation of each gate, or of any boolean combinational

element, is defined by a truth table, shown under each gate in Figure

34.7. A truth table gives the outputs of the combinational element for

each possible setting of the inputs. For example, the truth table for the

OR gate says that when the inputs are x = 0 and y = 1, the output value

is z = 1. The symbol ¬ denotes the NOT function, ∧ denotes the AND

function, and ∨ denotes the OR function. Thus, for example, 0 ∨ 1 = 1.

AND and OR gates are not limited to just two inputs. An AND

gate’s output is 1 if all of its inputs are 1, and its output is 0 otherwise.

An OR gate’s output is 1 if any of its inputs are 1, and its output is 0

otherwise.

A boolean combinational circuit consists of one or more boolean

combinational elements interconnected by wires. A wire can connect the

output of one element to the input of another, so that the output value

of the first element becomes an input value of the second. Figure 34.8

shows two similar boolean combinational circuits, differing in only one

gate. Part (a) of the figure also shows the values on the individual wires,

given the input 〈x1 = 1, x2 = 1, x3 = 0〉. Although a single wire may

have no more than one combinational-element output connected to it, it

can feed several element inputs. The number of element inputs fed by a

wire is called the fan-out of the wire. If no element output is connected

to a wire, the wire is a circuit input, accepting input values from an

external source. If no element input is connected to a wire, the wire is a

circuit output, providing the results of the circuit’s computation to the

www.konkur.in

Telegram: @uni_k



outside world. (An internal wire can also fan out to a circuit output.)

For the purpose of defining the circuit-satisfiability problem, we limit

the number of circuit outputs to 1, though in actual hardware design, a

boolean combinational circuit may have multiple outputs.

Figure 34.8 Two instances of the circuit-satisfiability problem. (a) The assignment 〈x1 = 1, x2 =

1, x3 = 0〉 to the inputs of this circuit causes the output of the circuit to be 1. The circuit is

therefore satisfiable. (b) No assignment to the inputs of this circuit can cause the output of the

circuit to be 1. The circuit is therefore unsatisfiable.

Boolean combinational circuits contain no cycles. In other words, for

a given combinational circuit, imagine a directed graph G = (V, E) with

one vertex for each combinational element and with k directed edges for

each wire whose fan-out is k, where the graph contains a directed edge

(u, v) if a wire connects the output of element u to an input of element v.

Then G must be acyclic.

A truth assignment for a boolean combinational circuit is a set of

boolean input values. We say that a 1-output boolean combinational

circuit is satisfiable if it has a satisfying assignment: a truth assignment

that causes the output of the circuit to be 1. For example, the circuit in

Figure 34.8(a) has the satisfying assignment 〈x1 = 1, x2 = 1, x3 = 0〉,

and so it is satisfiable. As Exercise 34.3-1 asks you to show, no

assignment of values to x1, x2, and x3 causes the circuit in Figure

34.8(b) to produce a 1 output. Since it always produces 0, it is

unsatisfiable.

The circuit-satisfiability problem is, “Given a boolean combinational

circuit composed of AND, OR, and NOT gates, is it satisfiable?” In
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order to pose this question formally, however, we must agree on a

standard encoding for circuits. The size of a boolean combinational

circuit is the number of boolean combinational elements plus the

number of wires in the circuit. We could devise a graph-like encoding

that maps any given circuit C into a binary string 〈C〉 whose length is

polynomial in the size of the circuit itself. As a formal language, we can

therefore define

CIRCUIT-SAT = {〈C〉 : C is a satisfiable boolean combinational

circuit}.

The circuit-satisfiability problem arises in the area of computer-aided

hardware optimization. If a subcircuit always produces 0, that subcircuit

is unnecessary: the designer can replace it by a simpler subcircuit that

omits all logic gates and provides the constant 0 value as its output. You

can see the value in having a polynomial-time algorithm for this

problem.

Given a circuit C, you can determine whether it is satisfiable by

simply checking all possible assignments to the inputs. Unfortunately, if

the circuit has k inputs, then you would have to check up to 2k possible

assignments. When the size of C is polynomial in k, checking all

possible assignments to the inputs takes Ω(2k) time, which is

superpolynomial in the size of the circuit.10 In fact, as we have claimed,

there is strong evidence that no polynomial-time algorithm exists that

solves the circuit-satisfiability problem because circuit satisfiability is

NP-complete. We break the proof of this fact into two parts, based on

the two parts of the definition of NP-completeness.

Lemma 34.5

The circuit-satisfiability problem belongs to the class NP.

Proof     We provide a two-input, polynomial-time algorithm A that can

verify CIRCUIT-SAT. One of the inputs to A is (a standard encoding

of) a boolean combinational circuit C. The other input is a certificate

corresponding to an assignment of a boolean value to each of the wires

in C. (See Exercise 34.3-4 for a smaller certificate.)
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The algorithm A works as follows. For each logic gate in the circuit,

it checks that the value provided by the certificate on the output wire is

correctly computed as a function of the values on the input wires. Then,

if the output of the entire circuit is 1, algorithm A outputs 1, since the

values assigned to the inputs of C provide a satisfying assignment.

Otherwise, A outputs 0.

Whenever a satisfiable circuit C is input to algorithm A, there exists a

certificate whose length is polynomial in the size of C and that causes A

to output a 1. Whenever an unsatisfiable circuit is input, no certificate

can fool A into believing that the circuit is satisfiable. Algorithm A runs

in polynomial time, and with a good implementation, linear time

suffices. Thus, CIRCUIT-SAT is verifiable in polynomial time, and

CIRCUIT-SAT ∈ NP.

▪

The second part of proving that CIRCUIT-SAT is NP-complete is to

show that the language is NP-hard: that every language in NP is

polynomial-time reducible to CIRCUIT-SAT. The actual proof of this

fact is full of technical intricacies, and so instead we’ll sketch the proof

based on some understanding of the workings of computer hardware.

A computer program is stored in the computer’s memory as a

sequence of instructions. A typical instruction encodes an operation to

be performed, addresses of operands in memory, and an address where

the result is to be stored. A special memory location, called the program

counter, keeps track of which instruction is to be executed next. The

program counter automatically increments when each instruction is

fetched, thereby causing the computer to execute instructions

sequentially. Certain instructions can cause a value to be written to the

program counter, however, which alters the normal sequential execution

and allows the computer to loop and perform conditional branches.

At any point while a program executes, the computer’s memory

holds the entire state of the computation. (Consider the memory to

include the program itself, the program counter, working storage, and

any of the various bits of state that a computer maintains for

bookkeeping.) We call any particular state of computer memory a

configuration. When an instruction executes, it transforms the
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configuration. Think of an instruction as mapping one configuration to

another. The computer hardware that accomplishes this mapping can be

implemented as a boolean combinational circuit, which we denote by M

in the proof of the following lemma.

Lemma 34.6

The circuit-satisfiability problem is NP-hard.

Proof   Let L be any language in NP. We’ll describe a polynomial-time

algorithm F computing a reduction function f that maps every binary

string x to a circuit C = f (x) such that x ∈ L if and only if C ∈

CIRCUIT-SAT.

Since L ∈ NP, there must exist an algorithm A that verifies L in

polynomial time. The algorithm F that we construct uses the two-input

algorithm A to compute the reduction function f.

Let T (n) denote the worst-case running time of algorithm A on

length-n input strings, and let k ≥ 1 be a constant such that T (n) =

O(nk) and the length of the certificate is O(nk). (The running time of A

is actually a polynomial in the total input size, which includes both an

input string and a certificate, but since the length of the certificate is

polynomial in the length n of the input string, the running time is

polynomial in n.)
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Figure 34.9 The sequence of configurations produced by an algorithm A running on an input x

and certificate y. Each configuration represents the state of the computer for one step of the

computation and, besides A, x, and y, includes the program counter (PC), auxiliary machine

state, and working storage. Except for the certificate y, the initial configuration c0 is constant. A

boolean combinational circuit M maps each configuration to the next configuration. The output

is a distinguished bit in the working storage.

The basic idea of the proof is to represent the computation of A as a

sequence of configurations. As Figure 34.9 illustrates, consider each

configuration as comprising a few parts: the program for A, the

program counter and auxiliary machine state, the input x, the certificate

y, and working storage. The combinational circuit M, which implements
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the computer hardware, maps each configuration ci to the next

configuration ci+1, starting from the initial configuration c0. Algorithm

A writes its output—0 or 1—to some designated location by the time it

finishes executing. After A halts, the output value never changes. Thus,

if the algorithm runs for at most T (n) steps, the output appears as one

of the bits in cT(n).

The reduction algorithm F constructs a single combinational circuit

that computes all configurations produced by a given initial

configuration. The idea is to paste together T (n) copies of the circuit M.

The output of the ith circuit, which produces configuration ci, feeds

directly into the input of the (i +1)st circuit. Thus, the configurations,

rather than being stored in the computer’s memory, simply reside as

values on the wires connecting copies of M.

Recall what the polynomial-time reduction algorithm F must do.

Given an input x, it must compute a circuit C = f (x) that is satisfiable if

and only if there exists a certificate y such that A(x, y) = 1. When F

obtains an input x, it first computes n = |x| and constructs a

combinational circuit C′ consisting of T (n) copies of M. The input to C′
is an initial configuration corresponding to a computation on A(x, y),

and the output is the configuration cT(n).

Algorithm F modifies circuit C′ slightly to construct the circuit C = f

(x). First, it wires the inputs to C′ corresponding to the program for A,

the initial program counter, the input x, and the initial state of memory

directly to these known values. Thus, the only remaining inputs to the

circuit correspond to the certificate y. Second, it ignores all outputs

from C′, except for the one bit of cT(n) corresponding to the output of

A. This circuit C, so constructed, computes C(y) = A(x, y) for any input

y of length O(nk). The reduction algorithm F, when provided an input

string x, computes such a circuit C and outputs it.

We need to prove two properties. First, we must show that F

correctly computes a reduction function f. That is, we must show that C

is satisfiable if and only if there exists a certificate y such that A(x, y) =

1. Second, we must show that F runs in polynomial time.
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To show that F correctly computes a reduction function, suppose

that there exists a certificate y of length O(nk) such that A(x, y) = 1.

Then, upon applying the bits of y to the inputs of C, the output of C is

C(y) = A(x, y) = 1. Thus, if a certificate exists, then C is satisfiable. For

the other direction, suppose that C is satisfiable. Hence, there exists an

input y to C such that C(y) = 1, from which we conclude that A(x, y) =

1. Thus, F correctly computes a reduction function.

To complete the proof sketch, we need to show that F runs in time

polynomial in n = |x|. First, the number of bits required to represent a

configuration is polynomial in n. Why? The program for A itself has

constant size, independent of the length of its input x. The length of the

input x is n, and the length of the certificate y is O(nk). Since the

algorithm runs for at most O(nk) steps, the amount of working storage

required by A is polynomial in n as well. (We implicitly assume that this

memory is contiguous. Exercise 34.3-5 asks you to extend the argument

to the situation in which the locations accessed by A are scattered across

a much larger region of memory and the particular pattern of scattering

can differ for each input x.)

The combinational circuit M implementing the computer hardware

has size polynomial in the length of a configuration, which is O(nk), and

hence, the size of M is polynomial in n. (Most of this circuitry

implements the logic of the memory system.) The circuit C consists of

O(nk) copies of M, and hence it has size polynomial in n. The reduction

algorithm F can construct C from x in polynomial time, since each step

of the construction takes polynomial time.

▪

The language CIRCUIT-SAT is therefore at least as hard as any

language in NP, and since it belongs to NP, it is NP-complete.

Theorem 34.7

The circuit-satisfiability problem is NP-complete.

Proof   Immediate from Lemmas 34.5 and 34.6 and from the definition

of NP-completeness.
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Exercises

34.3-1

Verify that the circuit in Figure 34.8(b) is unsatisfiable.

34.3-2

Show that the ≤P relation is a transitive relation on languages. That is,

show that if L1 ≤P L2 and L2 ≤P L3, then L1 ≤P L3.

34.3-3

Prove that L ≤P L if and only if L ≤P L.

34.3-4

Show that an alternative proof of Lemma 34.5 can use a satisfying

assignment as a certificate. Which certificate makes for an easier proof?

34.3-5

The proof of Lemma 34.6 assumes that the working storage for

algorithm A occupies a contiguous region of polynomial size. Where

does the proof exploit this assumption? Argue that this assumption does

not involve any loss of generality.

34.3-6

A language L is complete for a language class C with respect to

polynomial-time reductions if L ∈ C and L′ ≤P L for all L′ ∈ C. Show

that Ø and {0, 1}* are the only languages in P that are not complete for

P with respect to polynomial-time reductions.

34.3-7

Show that, with respect to polynomial-time reductions (see Exercise

34.3-6), L is complete for NP if and only if L is complete for co-NP.

34.3-8

The reduction algorithm F in the proof of Lemma 34.6 constructs the

circuit C = f (x) based on knowledge of x, A, and k. Professor Sartre
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observes that the string x is input to F, but only the existence of A, k,

and the constant factor implicit in the O(nk) running time is known to F

(since the language L belongs to NP), not their actual values. Thus, the

professor concludes that F cannot possibly construct the circuit C and

that the language CIRCUIT-SAT is not necessarily NP-hard. Explain

the flaw in the professor’s reasoning.

34.4    NP-completeness proofs

The proof that the circuit-satisfiability problem is NP-complete showed

directly that L ≤P CIRCUIT-SAT for every language L ∈ NP. This

section shows how to prove that languages are NP-complete without

directly reducing every language in NP to the given language. We’ll

explore examples of this methodology by proving that various formula-

satisfiability problems are NP-complete. Section 34.5 provides many

more examples.

The following lemma provides a foundation for showing that a given

language is NP-complete.

Lemma 34.8

If L is a language such that L′ ≤P L for some L′ ∈ NPC, then L is NP-

hard. If, in addition, we have L ∈ NP, then L ∈ NPC.

Proof   Since L′ is NP-complete, for all L″ ∈ NP, we have L″ ≤P L′. By

supposition, we have L′ ≤P L, and thus by transitivity (Exercise 34.3-2),

we have L″ ≤P L, which shows that L is NP-hard. If L ∈ NP, we also

have L ∈ NPC.

▪

In other words, by reducing a known NP-complete language L′ to L,

we implicitly reduce every language in NP to L. Thus, Lemma 34.8

provides a method for proving that a language L is NP-complete:

1. Prove L ∈ NP.

2. Prove that L is NP-hard:
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a. Select a known NP-complete language L′.

b. Describe an algorithm that computes a function f mapping

every instance x ∈ {0, 1}* of L′ to an instance f (x) of L.

c. Prove that the function f satisfies x ∈ L′ if and only if f (x) ∈

L for all x ∈ {0, 1}*.

d. Prove that the algorithm computing f runs in polynomial time.

This methodology of reducing from a single known NP-complete

language is far simpler than the more complicated process of showing

directly how to reduce from every language in NP. Proving CIRCUIT-

SAT ∈ NPC furnishes a starting point. Knowing that the circuit-

satisfiability problem is NP-complete makes it much easier to prove that

other problems are NP-complete. Moreover, as the catalog of known

NP-complete problems grows, so will the choices for languages from

which to reduce.

Formula satisfiability

To illustrate the reduction methodology, let’s see an NP-completeness

proof for the problem of determining whether a boolean formula, not a

circuit, is satisfiable. This problem has the historical honor of being the

first problem ever shown to be NP-complete.

We formulate the (formula) satisfiability problem in terms of the

language SAT as follows. An instance of SAT is a boolean formula ϕ

composed of

1. n boolean variables: x1, x2, … , xn;

2. m boolean connectives: any boolean function with one or two

inputs and one output, such as ∧ (AND), ∨ (OR), ¬ (NOT), →
(implication), ↔ (if and only if); and

3. parentheses. (Without loss of generality, assume that there are no

redundant parentheses, i.e., a formula contains at most one pair

of parentheses per boolean connective.)

www.konkur.in

Telegram: @uni_k



We can encode a boolean formula ϕ in a length that is polynomial in n

+ m. As in boolean combinational circuits, a truth assignment for a

boolean formula ϕ is a set of values for the variables of ϕ, and a

satisfying assignment is a truth assignment that causes it to evaluate to

1. A formula with a satisfying assignment is a satisfiable formula. The

satisfiability problem asks whether a given boolean formula is

satisfiable, which we can express in formal-language terms as

SAT = {〈ϕ〉 : ϕ is a satisfiable boolean formula}.

As an example, the formula

ϕ = ((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

has the satisfying assignment 〈x1 = 0, x2 = 0, x3 = 1, x4 = 1〉, since

and thus this formula ϕ belongs to SAT.

The naive algorithm to determine whether an arbitrary boolean

formula is satisfiable does not run in polynomial time. A formula with n

variables has 2n possible assignments. If the length of 〈ϕ〉 is polynomial

in n, then checking every assignment requires Ω(2n) time, which is

superpolynomial in the length of 〈ϕ〉. As the following theorem shows, a

polynomial-time algorithm is unlikely to exist.

Theorem 34.9

Satisfiability of boolean formulas is NP-complete.

Proof   We start by arguing that SAT ∈ NP. Then we prove that SAT is

NP-hard by showing that CIRCUIT-SAT ≤P SAT, which by Lemma

34.8 will prove the theorem.

To show that SAT belongs to NP, we show that a certificate

consisting of a satisfying assignment for an input formula ϕ can be
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verified in polynomial time. The verifying algorithm simply replaces

each variable in the formula with its corresponding value and then

evaluates the expression, much as we did in equation (34.2) above. This

task can be done in polynomial time. If the expression evaluates to 1,

then the algorithm has verified that the formula is satisfiable. Thus, SAT

belongs to NP.

To prove that SAT is NP-hard, we show that CIRCUIT-SAT ≤P

SAT. In other words, we need to show how to reduce any instance of

circuit satisfiability to an instance of formula satisfiability in polynomial

time. We can use induction to express any boolean combinational circuit

as a boolean formula. We simply look at the gate that produces the

circuit output and inductively express each of the gate’s inputs as

formulas. We then obtain the formula for the circuit by writing an

expression that applies the gate’s function to its inputs’ formulas.

Figure 34.10 Reducing circuit satisfiability to formula satisfiability. The formula produced by the

reduction algorithm has a variable for each wire in the circuit and a clause for each logic gate.

Unfortunately, this straightforward method does not amount to a

polynomial-time reduction. As Exercise 34.4-1 asks you to show, shared

subformulas—which arise from gates whose output wires have fan-out

of 2 or more—can cause the size of the generated formula to grow

exponentially. Thus, the reduction algorithm must be somewhat more

clever.

Figure 34.10 illustrates how to overcome this problem, using as an

example the circuit from Figure 34.8(a). For each wire xi in the circuit

C, the formula ϕ has a variable xi. To express how each gate operates,
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construct a small formula involving the variables of its incident wires.

The formula has the form of an “if and only if” (↔), with the variable

for the gate’s output on the left and on the right a logical expression

encapsulating the gate’s function on its inputs. For example, the

operation of the output AND gate (the rightmost gate in the figure) is

x10 ↔ (x7 ∧ x8 ∧ x9). We call each of these small formulas a clause.

The formula ϕ produced by the reduction algorithm is the AND of

the circuit-output variable with the conjunction of clauses describing

the operation of each gate. For the circuit in the figure, the formula is

ϕ = x10 ∧ (x4 ↔ ¬x3)

∧ (x5 ↔ (x1 ∨ x2))

∧ (x6 ↔ ¬x4)

∧ (x7 ↔ (x1 ∧ x2 ∧ x4))

∧ (x8 ↔ (x5 ∨ x6))

∧ (x9 ↔ (x6 ∨ x7))

∧ (x10 ↔ (x7 ∧ x8 ∧ x9)).

Given a circuit C, it is straightforward to produce such a formula ϕ in

polynomial time.

Why is the circuit C satisfiable exactly when the formula ϕ is

satisfiable? If C has a satisfying assignment, then each wire of the circuit

has a well-defined value, and the output of the circuit is 1. Therefore,

when wire values are assigned to variables in ϕ, each clause of ϕ

evaluates to 1, and thus the conjunction of all evaluates to 1.

Conversely, if some assignment causes ϕ to evaluate to 1, the circuit C is

satisfiable by an analogous argument. Thus, we have shown that

CIRCUIT-SAT ≤P SAT, which completes the proof.

▪

3-CNF satisfiability
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Reducing from formula satisfiability gives us an avenue to prove many

problems NP-complete. The reduction algorithm must handle any input

formula, though, and this requirement can lead to a huge number of

cases to consider. Instead, it is usually simpler to reduce from a

restricted language of boolean formulas. Of course, the restricted

language must not be polynomial-time solvable. One convenient

language is 3-CNF satisfiability, or 3-CNF-SAT.

In order to define 3-CNF satisfiability, we first need to define a few

terms. A literal in a boolean formula is an occurrence of a variable (such

as x1) or its negation (¬x1). A clause is the OR of one or more literals,

such as x1 ∨ ¬x2 ∨ ¬x3. A boolean formula is in conjunctive normal

form, or CNF, if it is expressed as an AND of clauses, and it’s in 3-

conjunctive normal form, or 3-CNF, if each clause contains exactly three

distinct literals.

For example, the boolean formula

(x1 ∨ ¬x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

is in 3-CNF. The first of its three clauses is (x1 ∨ ¬x1 ∨ ¬x2), which

contains the three literals x1, ¬x1, and ¬x2.

The language 3-CNF-SAT consists of encodings of boolean

formulas in 3-CNF that are satisfiable. The following theorem shows

that a polynomial-time algorithm that can determine the satisfiability of

boolean formulas is unlikely to exist, even when they are expressed in

this simple normal form.

Theorem 34.10

Satisfiability of boolean formulas in 3-conjunctive normal form is NP-

complete.

Proof   The argument from the proof of Theorem 34.9 to show that SAT

∈ NP applies equally well here to show that 3-CNF-SAT ∈ NP. By

Lemma 34.8, therefore, we need only show that SAT ≤P 3-CNF-SAT.

www.konkur.in

Telegram: @uni_k



Figure 34.11 The tree corresponding to the formula ϕ = ((x1 →x2)∨¬((¬x1 ↔ x3)∨x4))∧¬x2.

We break the reduction algorithm into three basic steps. Each step

progressively transforms the input formula ϕ closer to the desired 3-

conjunctive normal form.

The first step is similar to the one used to prove CIRCUIT-SAT ≤P

SAT in Theorem 34.9. First, construct a binary “parse” tree for the

input formula ϕ, with literals as leaves and connectives as internal

nodes. Figure 34.11 shows such a parse tree for the formula

If the input formula contains a clause such as the OR of several literals,

use associativity to parenthesize the expression fully so that every

internal node in the resulting tree has just one or two children. The

binary parse tree is like a circuit for computing the function.

Mimicking the reduction in the proof of Theorem 34.9, introduce a

variable yi for the output of each internal node. Then rewrite the

original formula ϕ as the AND of the variable at the root of the parse

tree and a conjunction of clauses describing the operation of each node.

For the formula (34.3), the resulting expression is

∧ (y1 ↔ (y2 ∧ ¬x2))
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ϕ′ = y1

∧ (y2 ↔ (y3 ∨ y4))

∧ (y3 ↔ (x1 → x2))

∧ (y4 ↔ ¬y5)

∧ (y5 ↔ (y6 ∨ x4))

∧ (y6 ↔ (¬x1 ↔ x3)).

Figure 34.12 The truth table for the clause (y1 ↔ (y2 ∧ ¬x2)).

The formula ϕ′ thus obtained is a conjunction of clauses , each of

which has at most three literals. These clauses are not yet ORs of three

literals.

The second step of the reduction converts each clause  into

conjunctive normal form. Construct a truth table for  by evaluating all

possible assignments to its variables. Each row of the truth table consists

of a possible assignment of the variables of the clause, together with the

value of the clause under that assignment. Using the truth-table entries

that evaluate to 0, build a formula in disjunctive normal form (or DNF)

—an OR of ANDs—that is equivalent to ¬ . Then negate this formula

and convert it into a CNF formula  by using DeMorgan’s laws for

propositional logic,

¬(a ∧ b) = ¬a ∨ ¬b,

¬(a ∨ b) = ¬a ∧ ¬b,
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to complement all literals, change ORs into ANDs, and change ANDs

into ORs.

In our example, the clause  converts into CNF

as follows. The truth table for  appears in Figure 34.12. The DNF

formula equivalent to ¬  is

(y1 ∧ y2 ∧ x2) ∨ (y1 ∧ ¬y2 ∧ x2) ∨ (y1 ∧ ¬y2 ∧ ¬x2) ∨ (¬y1 ∧ y2 ∧

¬x2).

Negating and applying DeMorgan’s laws yields the CNF formula

which is equivalent to the original clause .

At this point, each clause  of the formula ϕ′ has been converted

into a CNF formula , and thus ϕ′ is equivalent to the CNF formula

ϕ″ consisting of the conjunction of the . Moreover, each clause of ϕ″
has at most three literals.

The third and final step of the reduction further transforms the

formula so that each clause has exactly three distinct literals. From the

clauses of the CNF formula ϕ″, construct the final 3-CNF formula ϕ‴.

This formula also uses two auxiliary variables, p and q. For each clause

Ci of ϕ″, include the following clauses in ϕ‴:

If Ci contains three distinct literals, then simply include Ci as a

clause of ϕ‴.

If Ci contains exactly two distinct literals, that is, if Ci = (l1 ∨ l2),

where l1 and l2 are literals, then include (l1 ∨ l2 ∨ p) ∧ (l1 ∨ l2 ∨

¬p) as clauses of ϕ‴. The literals p and ¬p merely fulfill the

syntactic requirement that each clause of ϕ‴ contain exactly three

distinct literals. Whether p = 0 or p = 1, one of the clauses is

equivalent to l1 ∨ l2, and the other evaluates to 1, which is the

identity for AND.
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If Ci contains just one distinct literal l, then include (l ∨p ∨q)∧(l

∨ p ∨ ¬q) ∧ (l ∨ ¬p ∨ q) ∧ (l ∨ ¬p ∨ ¬q) as clauses of ϕ‴.

Regardless of the values of p and q, one of the four clauses is

equivalent to l, and the other three evaluate to 1.

We can see that the 3-CNF formula ϕ‴ is satisfiable if and only if ϕ is

satisfiable by inspecting each of the three steps. Like the reduction from

CIRCUIT-SAT to SAT, the construction of ϕ′ from ϕ in the first step

preserves satisfiability. The second step produces a CNF formula ϕ″
that is algebraically equivalent to ϕ′. Then the third step produces a 3-

CNF formula ϕ‴ that is effectively equivalent to ϕ″, since any

assignment to the variables p and q produces a formula that is

algebraically equivalent to ϕ″.

We must also show that the reduction can be computed in

polynomial time. Constructing ϕ′ from ϕ introduces at most one

variable and one clause per connective in ϕ. Constructing ϕ″ from ϕ′
can introduce at most eight clauses into ϕ″ for each clause from ϕ′,
since each clause of ϕ′ contains at most three variables, and the truth

table for each clause has at most 23 = 8 rows. The construction of ϕ‴

from ϕ″ introduces at most four clauses into ϕ‴ for each clause of ϕ″.

Thus the size of the resulting formula ϕ‴ is polynomial in the length of

the original formula. Each of the constructions can be accomplished in

polynomial time.

▪

Exercises

34.4-1

Consider the straightforward (nonpolynomial-time) reduction in the

proof of Theorem 34.9. Describe a circuit of size n that, when converted

to a formula by this method, yields a formula whose size is exponential

in n.

34.4-2
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Show the 3-CNF formula that results upon using the method of

Theorem 34.10 on the formula (34.3).

34.4-3

Professor Jagger proposes to show that SAT ≤P 3-CNF-SAT by using

only the truth-table technique in the proof of Theorem 34.10, and not

the other steps. That is, the professor proposes to take the boolean

formula ϕ, form a truth table for its variables, derive from the truth

table a formula in 3-DNF that is equivalent to ¬ϕ, and then negate and

apply DeMorgan’s laws to produce a 3-CNF formula equivalent to ϕ.

Show that this strategy does not yield a polynomial-time reduction.

34.4-4

Show that the problem of determining whether a boolean formula is a

tautology is complete for co-NP. (Hint: See Exercise 34.3-7.)

34.4-5

Show that the problem of determining the satisfiability of boolean

formulas in disjunctive normal form is polynomial-time solvable.

34.4-6

Someone gives you a polynomial-time algorithm to decide formula

satisfiability. Describe how to use this algorithm to find satisfying

assignments in polynomial time.

34.4-7

Let 2-CNF-SAT be the set of satisfiable boolean formulas in CNF with

exactly two literals per clause. Show that 2-CNF-SAT ∈ P. Make your

algorithm as efficient as possible. (Hint: Observe that x ∨ y is equivalent

to ¬x → y. Reduce 2-CNF-SAT to an efficiently solvable problem on a

directed graph.)

34.5    NP-complete problems

NP-complete problems arise in diverse domains: boolean logic, graphs,

arithmetic, network design, sets and partitions, storage and retrieval,
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sequencing and scheduling, mathematical programming, algebra and

number theory, games and puzzles, automata and language theory,

program optimization, biology, chemistry, physics, and more. This

section uses the reduction methodology to provide NP-completeness

proofs for a variety of problems drawn from graph theory and set

partitioning.

Figure 34.13 The structure of NP-completeness proofs in Sections 34.4 and 34.5. All proofs

ultimately follow by reduction from the NP-completeness of CIRCUIT-SAT.

Figure 34.13 outlines the structure of the NP-completeness proofs in

this section and Section 34.4. We prove each language in the figure to be

NP-complete by reduction from the language that points to it. At the

root is CIRCUIT-SAT, which we proved NP-complete in Theorem 34.7.

This section concludes with a recap of reduction strategies.

34.5.1    The clique problem

A clique in an undirected graph G = (V, E) is a subset V′ ⊆ V of

vertices, each pair of which is connected by an edge in E. In other

words, a clique is a complete subgraph of G. The size of a clique is the

number of vertices it contains. The clique problem is the optimization

problem of finding a clique of maximum size in a graph. The
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corresponding decision problem asks simply whether a clique of a given

size k exists in the graph. The formal definition is

CLIQUE = {〈G, k〉 : G is a graph containing a clique of size k}.

A naive algorithm for determining whether a graph G = (V, E) with

|V| vertices contains a clique of size k lists all k-subsets of V and checks

each one to see whether it forms a clique. The running time of this

algorithm is , which is polynomial if k is a constant. In general,

however, k could be near |V|/2, in which case the algorithm runs in

superpolynomial time. Indeed, an efficient algorithm for the clique

problem is unlikely to exist.

Theorem 34.11

The clique problem is NP-complete.

Proof   First, we show that CLIQUE ∈ NP. For a given graph G = (V,

E), use the set V′ ⊆ V of vertices in the clique as a certificate for G. To

check whether V′ is a clique in polynomial time, check whether, for each

pair u, v ∈ V′, the edge (u, v) belongs to E.

We next prove that 3-CNF-SAT ≤P CLIQUE, which shows that the

clique problem is NP-hard. You might be surprised that the proof

reduces an instance of 3-CNF-SAT to an instance of CLIQUE, since on

the surface logical formulas seem to have little to do with graphs.

The reduction algorithm begins with an instance of 3-CNF-SAT. Let

ϕ = C1 ∧ C2 ∧ ⋯ ∧ Ck be a boolean formula in 3-CNF with k clauses.

For r = 1, 2, … , k, each clause Cr contains exactly three distinct literals:

, and . We will construct a graph G such that ϕ is satisfiable if and

only if G contains a clique of size k.

We construct the undirected graph G = (V, E) as follows. For each

clause  in ϕ, place a triple of vertices , and  into V.

Add edge  into E if both of the following hold:

 and  are in different triples, that is, r ≠ s, and
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their corresponding literals are consistent, that is,  is not the

negation of .

We can build this graph from ϕ in polynomial time. As an example of

this construction, if

ϕ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3),

then G is the graph shown in Figure 34.14.

We must show that this transformation of ϕ into G is a reduction.

First, suppose that ϕ has a satisfying assignment. Then each clause Cr

contains at least one literal  that is assigned 1, and each such literal

corresponds to a vertex . Picking one such “true” literal from each

clause yields a set V′ of k vertices. We claim that V′ is a clique. For any

two vertices , where r ≠ s, both corresponding literals  and 

map to 1 by the given satisfying assignment, and thus the literals cannot

be complements. Thus, by the construction of G, the edge 

belongs to E.

Conversely, suppose that G contains a clique V′ of size k. No edges

in G connect vertices in the same triple, and so V′ contains exactly one

vertex per triple. If , then assign 1 to the corresponding literal .

Since G contains no edges between inconsistent literals, no literal and its

complement are both assigned 1. Each clause is satisfied, and so ϕ is

satisfied. (Any variables that do not correspond to a vertex in the clique

may be set arbitrarily.)

▪
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Figure 34.14 The graph G derived from the 3-CNF formula ϕ = C1 ∧ C2 ∧ C3, where C1 = (x1

∨ ¬x2 ∨ ¬x3), C2 = (¬x1 ∨ x2 ∨ x3), and C3 = (x1 ∨ x2 ∨ x3), in reducing 3-CNF-SAT to

CLIQUE. A satisfying assignment of the formula has x2 = 0, x3 = 1, and x1 set to either 0 or 1.

This assignment satisfies C1 with ¬x2, and it satisfies C2 and C3 with x3, corresponding to the

clique with blue vertices.

In the example of Figure 34.14, a satisfying assignment of ϕ has x2 =

0 and x3 = 1. A corresponding clique of size k = 3 consists of the

vertices corresponding to ¬x2 from the first clause, x3 from the second

clause, and x3 from the third clause. Because the clique contains no

vertices corresponding to either x1 or ¬x1, this satisfying assignment

can set x1 to either 0 or 1.

The proof of Theorem 34.11 reduced an arbitrary instance of 3-

CNF-SAT to an instance of CLIQUE with a particular structure. You

might think that we have shown only that CLIQUE is NP-hard in

graphs in which the vertices are restricted to occur in triples and in

which there are no edges between vertices in the same triple. Indeed, we

have shown that CLIQUE is NP-hard only in this restricted case, but

this proof suffices to show that CLIQUE is NP-hard in general graphs.

Why? If there were a polynomial-time algorithm that solves CLIQUE

on general graphs, it would also solve CLIQUE on restricted graphs.
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The opposite approach—reducing instances of 3-CNF-SAT with a

special structure to general instances of CLIQUE—does not suffice,

however. Why not? Perhaps the instances of 3-CNF-SAT that we choose

to reduce from are “easy,” and so we would not have reduced an NP-

hard problem to CLIQUE.

Moreover, the reduction uses the instance of 3-CNF-SAT, but not

the solution. We would have erred if the polynomial-time reduction had

relied on knowing whether the formula ϕ is satisfiable, since we do not

know how to decide whether ϕ is satisfiable in polynomial time.

Figure 34.15 Reducing CLIQUE to VERTEX-COVER. (a) An undirected graph G = (V, E)

with clique V′ = {u, v, x, y}, shown in blue. (b) The graph G produced by the reduction

algorithm that has vertex cover V − V′ = {w, z}, in blue.

34.5.2    The vertex-cover problem

A vertex cover of an undirected graph G = (V, E) is a subset V′ ⊆ V

such that if (u, v) ∈ E, then u ∈ V′ or v ∈ V′ (or both). That is, each

vertex “covers” its incident edges, and a vertex cover for G is a set of

vertices that covers all the edges in E. The size of a vertex cover is the

number of vertices in it. For example, the graph in Figure 34.15(b) has a

vertex cover {w, z} of size 2.

The vertex-cover problem is to find a vertex cover of minimum size in

a given graph. For this optimization problem, the corresponding

decision problem asks whether a graph has a vertex cover of a given size

k. As a language, we define

VERTEX-COVER = {〈G, k〉 : graph G has a vertex cover of size k}.
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The following theorem shows that this problem is NP-complete.

Theorem 34.12

The vertex-cover problem is NP-complete.

Proof   We first show that VERTEX-COVER ∈ NP. Given a graph G =

(V, E) and an integer k, the certificate is the vertex cover V′ ⊆ V itself.

The verification algorithm affirms that |V′| = k, and then it checks, for

each edge (u, v) ∈ E, that u ∈ V′ or v ∈ V′. It is easy to verify the

certificate in polynomial time.

To prove that the vertex-cover problem is NP-hard, we reduce from

the clique problem, showing that CLIQUE ≤P VERTEX-COVER. This

reduction relies on the notion of the complement of a graph. Given an

undirected graph G = (V, E), we define the complement of G as a graph

G = (V, E), where E = {(u, v) : u, v ∈ V, u ≠ v, and (u, v) ∉ E}. In other

words, G is the graph containing exactly those edges that are not in G.

Figure 34.15 shows a graph and its complement and illustrates the

reduction from CLIQUE to VERTEX-COVER.

The reduction algorithm takes as input an instance 〈G, k〉 of the

clique problem and computes the complement G in polynomial time.

The output of the reduction algorithm is the instance 〈G, |V| − k〉 of the

vertex-cover problem. To complete the proof, we show that this

transformation is indeed a reduction: the graph G contains a clique of

size k if and only if the graph G has a vertex cover of size |V| − k.

Suppose that G contains a clique V′ ⊆ V with |V′| = k. We claim that

V − V′ is a vertex cover in G. Let (u, v) be any edge in E. Then, (u, v) ∉

E, which implies that at least one of u or v does not belong to V′, since

every pair of vertices in V′ is connected by an edge of E. Equivalently, at

least one of u or v belongs to V − V′, which means that edge (u, v) is

covered by V − V′. Since (u, v) was chosen arbitrarily from E, every edge

of E is covered by a vertex in V −V′. Hence the set V − V′, which has

size |V| − k, forms a vertex cover for G.

Conversely, suppose that G has a vertex cover V′ ⊆ V, where |V′| =
|V| − k. Then for all u, v ∈ V, if (u, v) ∈ E, then u ∈ V′ or v ∈ V′ or

both. The contrapositive of this implication is that for all u, v ∈ V, if u

∉ ∉
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∉ V′ and v ∉ V′, then (u, v) ∈ E. In other words, V − V′ is a clique, and

it has size |V|−|V′| = k.

▪

Since VERTEX-COVER is NP-complete, we don’t expect to find a

polynomial-time algorithm for finding a minimum-size vertex cover.

Section 35.1 presents a polynomial-time “approximation algorithm,”

however, which produces “approximate” solutions for the vertex-cover

problem. The size of a vertex cover produced by the algorithm is at

most twice the minimum size of a vertex cover.

Thus, you shouldn’t give up hope just because a problem is NP-

complete. You might be able to design a polynomial-time

approximation algorithm that obtains near-optimal solutions, even

though finding an optimal solution is NP-complete. Chapter 35 gives

several approximation algorithms for NP-complete problems.

34.5.3    The hamiltonian-cycle problem

We now return to the hamiltonian-cycle problem defined in Section

34.2.

Theorem 34.13

The hamiltonian cycle problem is NP-complete.

Figure 34.16 The gadget used in reducing the vertex-cover problem to the hamiltonian-cycle

problem. An edge (u, v) of graph G corresponds to gadget Γuv in the graph G′ created in the

reduction. (a) The gadget, with individual vertices labeled. (b)–(d) The paths highlighted in blue

are the only possible ones through the gadget that include all vertices, assuming that the only

connections from the gadget to the remainder of G′ are through vertices [u, v, 1], [u, v, 6], [v, u,

1], and [v, u, 6].
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Proof     We first show that HAM-CYCLE ∈ NP. Given an undirected

graph G = (V, E), the certificate is the sequence of |V| vertices that

makes up the hamiltonian cycle. The verification algorithm checks that

this sequence contains each vertex in V exactly once and that with the

first vertex repeated at the end, it forms a cycle in G. That is, it checks

that there is an edge between each pair of consecutive vertices and

between the first and last vertices. This certificate can be verified in

polynomial time.

We now prove that VERTEX-COVER ≤P HAM-CYCLE, which

shows that HAM-CYCLE is NP-complete. Given an undirected graph

G = (V, E) and an integer k, we construct an undirected graph G′ = (V′,
E′) that has a hamiltonian cycle if and only if G has a vertex cover of

size k. We assume without loss of generality that G contains no isolated

vertices (that is, every vertex in V has at least one incident edge) and

that k ≤ |V|. (If an isolated vertex belongs to a vertex cover of size k,

then there also exists a vertex cover of size k − 1, and for any graph, the

entire set V is always a vertex cover.)

Our construction uses a gadget, which is a piece of a graph that

enforces certain properties. Figure 34.16(a) shows the gadget we use.

For each edge (u, v) ∈ E, the constructed graph G′ contains one copy of

this gadget, which we denote by Γuv. We denote each vertex in Γuv by

[u, v, i] or [v, u, i], where 1 ≤ i ≤ 6, so that each gadget Γuv contains 12

vertices. Gadget Γuv also contains the 14 edges shown in Figure

34.16(a).

Along with the internal structure of the gadget, we enforce the

properties we want by limiting the connections between the gadget and

the remainder of the graph G′ that we construct. In particular, only

vertices [u, v, 1], [u, v, 6], [v, u, 1], and [v, u, 6] will have edges incident

from outside Γuv. Any hamiltonian cycle of G′ must traverse the edges

of Γuv in one of the three ways shown in Figures 34.16(b)–(d). If the

cycle enters through vertex [u, v, 1], it must exit through vertex [u, v, 6],

and it either visits all 12 of the gadget’s vertices (Figure 34.16(b)) or the

six vertices [u, v, 1] through [u, v, 6] (Figure 34.16(c)). In the latter case,

the cycle will have to reenter the gadget to visit vertices [v, u, 1] through
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[v, u, 6]. Similarly, if the cycle enters through vertex [v, u, 1], it must exit

through vertex [v, u, 6], and either it visits all 12 of the gadget’s vertices

(Figure 34.16(d)) or it visits the six vertices [v, u, 1] through [v, u, 6] and

reenters to visit [u, v, 1] through [u, v, 6] (Figure 34.16(c)). No other

paths through the gadget that visit all 12 vertices are possible. In

particular, it is impossible to construct two vertex-disjoint paths, one of

which connects [u, v, 1] to [v, u, 6] and the other of which connects [v, u,

1] to [u, v, 6], such that the union of the two paths contains all of the

gadget’s vertices.

The only other vertices in V′ other than those of gadgets are selector

vertices s1, s2, … , sk. We’ll use edges incident on selector vertices in G′
to select the k vertices of the cover in G.

In addition to the edges in gadgets, E′ contains two other types of

edges, which Figure 34.17 shows. First, for each vertex u ∈ V, edges join

pairs of gadgets in order to form a path containing all gadgets

corresponding to edges incident on u in G. We arbitrarily order the

vertices adjacent to each vertex u ∈ V as u(1), u(2), … , u(degree(u)),

where degree(u) is the number of vertices adjacent to u. To create a path

in G′ through all the gadgets corresponding to edges incident on u, E′
contains the edges {([u, u(i), 6], [u, u(i+1), 1]) : 1 ≤ i ≤ degree(u) − 1}. In

Figure 34.17, for example, we order the vertices adjacent to w as 〈x, y,

z〉, and so graph G′ in part (b) of the figure includes the edges ([w, x, 6],

[w, y, 1]) and ([w, y, 6], [w, z, 1]). The vertices adjacent to x are ordered

as 〈w, y〉, so that G′ includes the edge ([x, w, 6], [x, y, 1]). For each vertex

u ∈ V, these edges in G′ fill in a path containing all gadgets

corresponding to edges incident on u in G.

The intuition behind these edges is that if vertex u ∈ V belongs to

the vertex cover of G, then G′ contains a path from [u, u(1), 1] to [u,

u(degree(u)), 6] that “covers” all gadgets corresponding to edges

incident on u. That is, for each of these gadgets, say , the path

either includes all 12 vertices (if u belongs to the vertex cover but u(i)

does not) or just the six vertices [u, u(i), 1] through [u, u(i), 6] (if both u

and u(i) belong to the vertex cover).
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The final type of edge in E′ joins the first vertex [u, u(1), 1] and the

last vertex [u, u(degree(u)), 6] of each of these paths to each of the

selector vertices. That is, E′ includes the edges

{(sj, [u, u(1), 1]) : u ∈ V and 1 ≤ j ≤ k}

∪ {(sj, [u, u(degree(u)), 6]) : u ∈ V and 1 ≤ j ≤

k}.

Figure 34.17 Reducing an instance of the vertex-cover problem to an instance of the

hamiltonian-cycle problem. (a) An undirected graph G with a vertex cover of size 2, consisting

of the blue vertices w and y. (b) The undirected graph G′ produced by the reduction, with the

hamiltonian cycle corresponding to the vertex cover highlighted in blue. The vertex cover {w, y}

corresponds to edges (s1, [w, x, 1]) and (s2, [y, x, 1]) appearing in the hamiltonian cycle.

Next we show that the size of G′ is polynomial in the size of G, and

hence it takes time polynomial in the size of G to construct G′. The
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vertices of G′ are those in the gadgets, plus the selector vertices. With 12

vertices per gadget, plus k ≤ |V | selector vertices, G′ contains a total of

|V′| = 12 |E| + k

≤ 12 |E| + |V|

vertices. The edges of G′ are those in the gadgets, those that go between

gadgets, and those connecting selector vertices to gadgets. Each gadget

contains 14 edges, totaling 14 |E| in all gadgets. For each vertex u ∈ V,

graph G′ has degree(u) − 1 edges going between gadgets, so that

summed over all vertices in V,

edges go between gadgets. Finally, G′ has two edges for each pair

consisting of a selector vertex and a vertex of V, totaling 2k |V| such

edges. The total number of edges of G′ is therefore

|E′| = (14 |E|) + (2 |E| − |V|) + (2k |V|)

= 16 |E| + (2k − 1) |V|

≤ 16 |E| + (2 |V| − 1) |V|.

Now we show that the transformation from graph G to G′ is a

reduction. That is, we must show that G has a vertex cover of size k if

and only if G′ has a hamiltonian cycle.

Suppose that G = (V, E) has a vertex cover V* ⊆ V, where |V*| = k.

Let V* = {u1, u2, … , uk}. As Figure 34.17 shows, we can construct a

hamiltonian cycle in G′ by including the following edges11 for each

vertex uj ∈ V*. Start by including edges 

, which connect all gadgets

corresponding to edges incident on uj. Also include the edges within

these gadgets as Figures 34.16(b)–(d) show, depending on whether the

edge is covered by one or two vertices in V*. The hamiltonian cycle also

includes the edges
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By inspecting Figure 34.17, you can verify that these edges form a cycle,

where u1 = w and u2 = y. The cycle starts at s1, visits all gadgets

corresponding to edges incident on u1, then visits s2, visits all gadgets

corresponding to edges incident on u2, and so on, until it returns to s1.

The cycle visits each gadget either once or twice, depending on whether

one or two vertices of V* cover its corresponding edge. Because V* is a

vertex cover for G, each edge in E is incident on some vertex in V*, and

so the cycle visits each vertex in each gadget of G′. Because the cycle

also visits every selector vertex, it is hamiltonian.

Conversely, suppose that G′ = (V′, E′) contains a hamiltonian cycle C

⊆ E′. We claim that the set

is a vertex cover for G.

We first argue that the set V* is well defined, that is, for each selector

vertex sj, exactly one of the incident edges in the hamiltonian cycle C is

of the form (sj, [u, u(1), 1]) for some vertex u ∈ V. To see why, partition

the hamiltonian cycle C into maximal paths that start at some selector

vertex si, visit one or more gadgets, and end at some selector vertex sj

without passing through any other selector vertex. Let’s call each of

these maximal paths a “cover path.” Let P be one such cover path, and

orient it going from si to sj. If P contains the edge (si, [u, u(1), 1]) for

some vertex u ∈ V, then we have shown that one edge incident on si has

the required form. Assume, then, that P contains the edge (si, [v,

v(degree(v)), 6]) for some vertex v ∈ V. This path enters a gadget from

the bottom, as drawn in Figures 34.16 and 34.17, and it leaves from the

top. It might go through several gadgets, but it always enters from the

bottom of a gadget and leaves from the top. The only edges incident on
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vertices at the top of a gadget either go to the bottoms of other gadgets

or to selector vertices. Therefore, after the last gadget in the series of

gadgets visited by P, the edge taken must go to a selector vertex sj, so

that P contains an edge of the form (sj, [u, u(1), 1]), where [u, u(1), 1] is a

vertex at the top of some gadget. To see that not both edges incident on

sj have this form, simply reverse the direction of traversing P in the

above argument.

Having established that the set V* is well defined, let’s see why it is a

vertex cover for G. We have already established that each cover path

starts at some si, takes the edge (si, [u, u(1), 1]) for some vertex u ∈ V,

passes through all the gadgets corresponding to edges in E incident on

u, and then ends at some selector vertex sj. (This orientation is the

reverse of the orientation in the paragraph above.) Let’s call this cover

path Pu, and by equation (34.4), the vertex cover V* includes u. Each

gadget visited by Pu must be Γuv or Γvu for some v ∈ V. For each

gadget visited by Pu, its vertices are visited by either one or two cover

paths. If they are visited by one cover path, then edge (u, v) ∈ E is

covered in G by vertex u. If two cover paths visit the gadget, then the

other cover path must be Pv, which implies that v ∈ V*, and edge (u, v)

∈ E is covered by both u and v. Because each vertex in each gadget is

visited by some cover path, we see that each edge in E is covered by

some vertex in V*.

▪

34.5.4    The traveling-salesperson problem

In the traveling-salesperson problem, which is closely related to the

hamiltonian-cycle problem, a salesperson must visit n cities. Let’s model

the problem as a complete graph with n vertices, so that the salesperson

wishes to make a tour, or hamiltonian cycle, visiting each city exactly

once and finishing at the starting city. The salesperson incurs a

nonnegative integer cost c(i, j) to travel from city i to city j. In the

optimization version of the problem, the salesperson wishes to make the

tour whose total cost is minimum, where the total cost is the sum of the
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individual costs along the edges of the tour. For example, in Figure

34.18, a minimum-cost tour is 〈u, w, v, x, u〉, with cost 7. The formal

language for the corresponding decision problem is

Figure 34.18 An instance of the traveling-salesperson problem. Edges highlighted in blue

represent a minimum-cost tour, with cost 7.

TSP = {〈G, c,

k〉:

G = (V, E) is a complete graph,

c is a function from V × V → ℕ,

k ∈ ℕ, and

G has a traveling-salesperson tour with cost at most

k}.

The following theorem shows that a fast algorithm for the traveling-

salesperson problem is unlikely to exist.

Theorem 34.14

The traveling-salesperson problem is NP-complete.

Proof   We first show that TSP ∈ NP. Given an instance of the problem,

the certificate is the sequence of n vertices in the tour. The verification

algorithm checks that this sequence contains each vertex exactly once,

sums up the edge costs, and checks that the sum is at most k. This

process can certainly be done in polynomial time.

To prove that TSP is NP-hard, we show that HAM-CYCLE ≤P TSP.

Given an instance G = (V, E) of HAM-CYCLE, construct an instance

of TSP by forming the complete graph G′ = (V, E′), where E′ = {(i, j) : i,

j ∈ V and i ≠ j }, with the cost function c defined as
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(Because G is undirected, it contains no self-loops, and so c(v, v) = 1 for

all vertices v ∈ V.) The instance of TSP is then 〈G′, c, 0〉, which can be

created in polynomial time.

We now show that graph G has a hamiltonian cycle if and only if

graph G′ has a tour of cost at most 0. Suppose that graph G has a

hamiltonian cycle H. Each edge in H belongs to E and thus has cost 0 in

G′. Thus, H is a tour in G′ with cost 0. Conversely, suppose that graph

G′ has a tour H′ of cost at most 0. Since the costs of the edges in E′ are 0

and 1, the cost of tour H′ is exactly 0 and each edge on the tour must

have cost 0. Therefore, H′ contains only edges in E. We conclude that H′
is a hamiltonian cycle in graph G.

▪

34.5.5    The subset-sum problem

We next consider an arithmetic NP-complete problem. The subset-sum

problem takes as inputs a finite set S of positive integers and an integer

target t > 0. It asks whether there exists a subset S′ ⊆ S whose elements

sum to exactly t. For example, if S = {1, 2, 7, 14, 49, 98, 343, 686, 2409,

2793, 16808, 17206, 117705, 117993} and t = 138457, then the subset S′
= {1, 2, 7, 98, 343, 686, 2409, 17206, 117705} is a solution.

As usual, we express the problem as a language:

SUBSET-SUM = {〈S, t〉 : there exists a subset S′ ⊆ S such that t =

Σs∈S′ S}.

As with any arithmetic problem, it is important to recall that our

standard encoding assumes that the input integers are coded in binary.

With this assumption in mind, we can show that the subset-sum

problem is unlikely to have a fast algorithm.

Theorem 34.15

The subset-sum problem is NP-complete.
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Proof   To show that SUBSET-SUM ∈ NP, for an instance 〈S, t〉 of the

problem, let the subset S′ be the certificate. A verification algorithm can

check whether t = Σs∈S′ S in polynomial time.

We now show that 3-CNF-SAT ≤P SUBSET-SUM. Given a 3-CNF

formula ϕ over variables x1, x2, … , xn with clauses C1, C2, … , Ck,

each containing exactly three distinct literals, the reduction algorithm

constructs an instance 〈S, t〉 of the subset-sum problem such that ϕ is

satisfiable if and only if there exists a subset of S whose sum is exactly t.

Without loss of generality, we make two simplifying assumptions about

the formula ϕ. First, no clause contains both a variable and its

negation, for such a clause is automatically satisfied by any assignment

of values to the variables. Second, each variable appears in at least one

clause, because it does not matter what value is assigned to a variable

that appears in no clauses.

The reduction creates two numbers in set S for each variable xi and

two numbers in S for each clause Cj. The numbers will be represented in

base 10, with each number containing n + k digits and each digit

corresponding to either one variable or one clause. Base 10 (and other

bases, as we shall see) has the property we need of preventing carries

from lower digits to higher digits.
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Figure 34.19 The reduction of 3-CNF-SAT to SUBSET-SUM. The formula in 3-CNF is ϕ =

C1∧C2∧C3∧C4, where C1 = (x1∨¬x2∨¬x3), C2 = (¬x1∨¬x2∨¬x3), C3 = (¬x1∨¬x2∨x3),

and C4 = (x1 ∨ x2 ∨ x3). A satisfying assignment of ϕ is 〈x1 = 0, x2 = 0, x3 = 1〉. The set S

produced by the reduction consists of the base-10 numbers shown: reading from top to bottom,

S = {1001001, 1000110, 100001, 101110, 10011, 11100, 1000, 2000, 100, 200, 10, 20, 1, 2}. The

target t is 1114444. The subset S′ ⊆ S is shaded blue, and it contains , and v3,

corresponding to the satisfying assignment. Subset S′ also contains slack variables s1, , s3,

s4, and  to achieve the target value of 4 in the digits labeled by C1 through C4.

As Figure 34.19 shows, we construct set S and target t as follows.

Label each digit position by either a variable or a clause. The least

significant k digits are labeled by the clauses, and the most significant n

digits are labeled by variables.

The target t has a 1 in each digit labeled by a variable and a 4 in

each digit labeled by a clause.

For each variable xi, set S contains two integers vi and . Each of

vi and  has a 1 in the digit labeled by xi and 0s in the other

variable digits. If literal xi appears in clause Cj, then the digit
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labeled by Cj in vi contains a 1. If literal ¬xi appears in clause Cj,

then the digit labeled by Cj in  contains a 1. All other digits

labeled by clauses in vi and  are 0.

All vi and  values in set S are unique. Why? For ℓ ≠ i, no vℓ or 

values can equal vi and  in the most significant n digits.

Furthermore, by our simplifying assumptions above, no vi and 

can be equal in all k least significant digits. If vi and  were equal,

then xi and ¬xi would have to appear in exactly the same set of

clauses. But we assume that no clause contains both xi and ¬xi

and that either xi or ¬xi appears in some clause, and so there

must be some clause Cj for which vi and  differ.

For each clause Cj, set S contains two integers sj and . Each of sj

and  has 0s in all digits other than the one labeled by Cj. For sj,

there is a 1 in the Cj digit, and  has a 2 in this digit. These

integers are “slack variables,” which we use to get each clause-

labeled digit position to add to the target value of 4.

Simple inspection of Figure 34.19 demonstrates that all sj and 

values in S are unique in set S.

The greatest sum of digits in any one digit position is 6, which occurs

in the digits labeled by clauses (three 1s from the vi and  values, plus 1

and 2 from the sj and  values). Interpreting these numbers in base 10,

therefore, no carries can occur from lower digits to higher digits.12

The reduction can be performed in polynomial time. The set S

consists of 2n + 2k values, each of which has n + k digits, and the time

to produce each digit is polynomial in n + k. The target t has n + k

digits, and the reduction produces each in constant time.

Let’s now show that the 3-CNF formula ϕ is satisfiable if and only if

there exists a subset S′ ⊆ S whose sum is t. First, suppose that ϕ has a
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satisfying assignment. For i = 1, 2, … , n, if xi = 1 in this assignment,

then include vi in S′. Otherwise, include . In other words, S′ includes

exactly the vi and  values that correspond to literals with the value 1 in

the satisfying assignment. Having included either vi or , but not both,

for all i, and having put 0 in the digits labeled by variables in all sj and 

, we see that for each variable-labeled digit, the sum of the values of S′
must be 1, which matches those digits of the target t. Because each

clause is satisfied, the clause contains some literal with the value 1.

Therefore, each digit labeled by a clause has at least one 1 contributed

to its sum by a vi or  value in S′. In fact, one, two, or three literals may

be 1 in each clause, and so each clause-labeled digit has a sum of 1, 2, or

3 from the vi and  values in S′. In Figure 34.19 for example, literals

¬x1, ¬x2, and x3 have the value 1 in a satisfying assignment. Each of

clauses C1 and C4 contains exactly one of these literals, and so together 

, and v3 contribute 1 to the sum in the digits for C1 and C4. Clause

C2 contains two of these literals, and , and v3 contribute 2 to the

sum in the digit for C2. Clause C3 contains all three of these literals,

and , and v3 contribute 3 to the sum in the digit for C3. To achieve

the target of 4 in each digit labeled by clause Cj, include in S′ the

appropriate nonempty subset of slack variables {sj,  }. In Figure 34.19,

S′ includes s1, , s3, s4, and . Since S′ matches the target in all digits

of the sum, and no carries can occur, the values of S′ sum to t.

Now suppose that some subset S′ ⊆ S sums to t. The subset S′ must

include exactly one of vi and  for each i = 1, 2, … , n, for otherwise the

digits labeled by variables would not sum to 1. If vi ∈ S′, then set xi = 1.

Otherwise, , and set xi = 0. We claim that every clause Cj, for j =

1, 2, … , k, is satisfied by this assignment. To prove this claim, note that

to achieve a sum of 4 in the digit labeled by Cj, the subset S′ must

include at least one vi or  value that has a 1 in the digit labeled by Cj,
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since the contributions of the slack variables sj and  together sum to at

most 3. If S′ includes a  that has a 1 in Cj’s position, then the literal xi

appears in clause Cj. Since xi = 1 when vi ∈ S′, clause Cj is satisfied. If

S′ includes a  that has a 1 in that position, then the literal ¬xi appears

in Cj. Since xi = 0 when  ∈ S′, clause Cj is again satisfied. Thus, all

clauses of ϕ are satisfied, which completes the proof.

▪

34.5.6    Reduction strategies

From the reductions in this section, you can see that no single strategy

applies to all NP-complete problems. Some reductions are

straightforward, such as reducing the hamiltonian-cycle problem to the

traveling-salesperson problem. Others are considerably more

complicated. Here are a few things to keep in mind and some strategies

that you can often bring to bear.

Pitfalls

Make sure that you don’t get the reduction backward. That is, in trying

to show that problem Y is NP-complete, you might take a known NP-

complete problem X and give a polynomial-time reduction from Y to X.

That is the wrong direction. The reduction should be from X to Y, so

that a solution to Y gives a solution to X.

Remember also that reducing a known NP-complete problem X to a

problem Y does not in itself prove that Y is NP-complete. It proves that

Y is NP-hard. In order to show that Y is NP-complete, you additionally

need to prove that it’s in NP by showing how to verify a certificate for Y

in polynomial time.

Go from general to specific

When reducing problem X to problem Y, you always have to start with

an arbitrary input to problem X. But you are allowed to restrict the

input to problem Y as much as you like. For example, when reducing 3-

CNF satisfiability to the subset-sum problem, the reduction had to be
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able to handle any 3-CNF formula as its input, but the input to the

subset-sum problem that it produced had a particular structure: 2n + 2k

integers in the set, and each integer was formed in a particular way. The

reduction did not need to produce every possible input to the subset-

sum problem. The point is that one way to solve the 3-CNF satisfiability

problem transforms the input into an input to the subset-sum problem

and then uses the answer to the subset-sum problem as the answer to

the 3-CNF satisfiability problem.

Take advantage of structure in the problem you are reducing from

When you are choosing a problem to reduce from, you might consider

two problems in the same domain, but one problem has more structure

than the other. For example, it’s almost always much easier to reduce

from 3-CNF satisfiability than to reduce from formula satisfiability.

Boolean formulas can be arbitrarily complicated, but you can exploit

the structure of 3-CNF formulas when reducing.

Likewise, it is usually more straightforward to reduce from the

hamiltonian-cycle problem than from the traveling-salesperson

problem, even though they are so similar. That’s because you can view

the hamiltonian-cycle problem as taking a complete graph but with

edge weights of just 0 or 1, as they would appear in the adjacency

matrix. In that sense, the hamiltonian-cycle problem has more structure

than the traveling-salesperson problem, in which edge weights are

unrestricted.

Look for special cases

Several NP-complete problems are just special cases of other NP-

complete problems. For example, consider the decision version of the 0-

1 knapsack problem: given a set of n items, each with a weight and a

value, does there exist a subset of items whose total weight is at most a

given weight W and whose total value is at least a given value V? You

can view the set-partition problem in Exercise 34.5-5 as a special case of

the 0-1 knapsack problem: let the value of each item equal its weight,

and set both W and V to half the total weight. If problem X is NP-hard

and it is a special case of problem Y, then problem Y must be NP-hard
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as well. That is because a polynomial-time solution for problem Y

automatically gives a polynomial-time solution for problem X. More

intuitively, problem Y, being more general than problem X, is at least as

hard.

Select an appropriate problem to reduce from

It’s often a good strategy to reduce from a problem in a domain that is

the same as, or at least related to, the domain of the problem that you’re

trying to prove NP-complete. For example, we saw that the vertex-cover

problem—a graph problem—was NP-hard by reducing from the clique

problem—also a graph problem. From the vertex-cover problem, we

reduced to the hamiltonian-cycle problem, and from the hamiltonian-

cycle problem, we reduced to the traveling-salesperson problem. All of

these problems take undirected graphs as inputs.

Sometimes, however, you will find that is it better to cross over from

one domain to another, such as when we reduced from 3-CNF

satisfiability to the clique problem or to the subset-sum problem. 3-CNF

satisfiability often turns out to be a good choice as a problem to reduce

from when crossing domains.

Within graph problems, if you need to select a portion of the graph,

without regard to ordering, then the vertex-cover problem is often a

good place to start. If ordering matters, then consider starting from the

hamiltonian-cycle or hamiltonian-path problem (see Exercise 34.5-6).

Make big rewards and big penalties

The strategy for reducing the hamiltonian-cycle problem with a graph G

to the traveling-salesperson problem encouraged using edges present in

G when choosing edges for the traveling-salesperson tour. The reduction

did so by giving these edges a low weight: 0. In other words, we gave a

big reward for using these edges.

Alternatively, the reduction could have given the edges in G a finite

weight and given edges not in G infinite weight, thereby exacting a hefty

penalty for using edges not in G. With this approach, if each edge in G

has weight W, then the target weight of the traveling-salesperson tour

becomes W · |V|. You can sometimes think of the penalties as a way to
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enforce requirements. For example, if the traveling-salesperson tour

includes an edge with infinite weight, then it violates the requirement

that the tour should include only edges belonging to G.

Design gadgets

The reduction from the vertex-cover problem to the hamiltonian-cycle

problem uses the gadget shown in Figure 34.16. This gadget is a

subgraph that is connected to other parts of the constructed graph in

order to restrict the ways that a cycle can visit each vertex in the gadget

once. More generally, a gadget is a component that enforces certain

properties. Gadgets can be complicated, as in the reduction to the

hamiltonian-cycle problem. Or they can be simple: in the reduction of 3-

CNF satisfiability to the subset-sum problem, you can view the slack

variables sj and  as gadgets enabling each clause-labeled digit position

to achieve the target value of 4.

Exercises

34.5-1

The subgraph-isomorphism problem takes two undirected graphs G1 and

G2, and asks whether G1 is isomorphic to a subgraph of G2. Show that

the subgraph-isomorphism problem is NP-complete.

34.5-2

Given an integer m × n matrix A and an integer m-vector b, the 0-1

integer-programming problem asks whether there exists an integer n-

vector x with elements in the set {0, 1} such that Ax ≤ b. Prove that 0-1

integer programming is NP-complete. (Hint: Reduce from 3-CNF-SAT.)

34.5-3

The integer linear-programming problem is like the 0-1 integer-

programming problem given in Exercise 34.5-2, except that the values of

the vector x may be any integers rather than just 0 or 1. Assuming that

the 0-1 integer-programming problem is NP-hard, show that the integer

linear-programming problem is NP-complete.
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34.5-4

Show how to solve the subset-sum problem in polynomial time if the

target value t is expressed in unary.

34.5-5

The set-partition problem takes as input a set S of numbers. The

question is whether the numbers can be partitioned into two sets A and

A = S − A such that Σx∈A x = Σx∈A x. Show that the set-partition

problem is NP-complete.

34.5-6

Show that the hamiltonian-path problem is NP-complete.

34.5-7

The longest-simple-cycle problem is the problem of determining a simple

cycle (no repeated vertices) of maximum length in a graph. Formulate a

related decision problem, and show that the decision problem is NP-

complete.

34.5-8

In the half 3-CNF satisfiability problem, the input is a 3-CNF formula ϕ

with n variables and m clauses, where m is even. The question is whether

there exists a truth assignment to the variables of ϕ such that exactly

half the clauses evaluate to 0 and exactly half the clauses evaluate to 1.

Prove that the half 3-CNF satisfiability problem is NP-complete.

34.5-9

The proof that VERTEX-COVER ≤P HAM-CYCLE assumes that the

graph G given as input to the vertex-cover problem has no isolated

vertices. Show how the reduction in the proof can break down if G has

an isolated vertex.

Problems

34-1     Independent set
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An independent set of a graph G = (V, E) is a subset V′ ⊆ V of vertices

such that each edge in E is incident on at most one vertex in V′. The

independent-set problem is to find a maximum-size independent set in G.

a. Formulate a related decision problem for the independent-set

problem, and prove that it is NP-complete. (Hint: Reduce from the

clique problem.)

b. You are given a “black-box” subroutine to solve the decision problem

you defined in part (a). Give an algorithm to find an independent set

of maximum size. The running time of your algorithm should be

polynomial in |V | and |E|, counting queries to the black box as a

single step.

Although the independent-set decision problem is NP-complete, certain

special cases are polynomial-time solvable.

c. Give an efficient algorithm to solve the independent-set problem

when each vertex in G has degree 2. Analyze the running time, and

prove that your algorithm works correctly.

d. Give an efficient algorithm to solve the independent-set problem

when G is bipartite. Analyze the running time, and prove that your

algorithm works correctly. (Hint: First prove that in a bipartite graph,

the size of the maximimum independent set plus the size of the

maximum matching is equal to |V|. Then use a maximum-matching

algorithm (see Section 25.1) as a first step in an algorithm to find an

independent set.)

34-2     Bonnie and Clyde

Bonnie and Clyde have just robbed a bank. They have a bag of money

and want to divide it up. For each of the following scenarios, either give

a polynomial-time algorithm to divide the money or prove that the

problem of dividing the money in the manner described is NP-complete.

The input in each case is a list of the n items in the bag, along with the

value of each.

a. The bag contains n coins, but only two different denominations: some

coins are worth x dollars, and some are worth y dollars. Bonnie and
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Clyde wish to divide the money exactly evenly.

b. The bag contains n coins, with an arbitrary number of different

denominations, but each denomination is a nonnegative exact power

of 2, so that the possible denominations are 1 dollar, 2 dollars, 4

dollars, etc. Bonnie and Clyde wish to divide the money exactly

evenly.

c. The bag contains n checks, which are, in an amazing coincidence,

made out to “Bonnie or Clyde.” They wish to divide the checks so

that they each get the exact same amount of money.

d. The bag contains n checks as in part (c), but this time Bonnie and

Clyde are willing to accept a split in which the difference is no larger

than 100 dollars.

34-3     Graph coloring

Mapmakers try to use as few colors as possible when coloring countries

on a map, subject to the restriction that if two countries share a border,

they must have different colors. You can model this problem with an

undirected graph G = (V, E) in which each vertex represents a country

and vertices whose respective countries share a border are adjacent.

Then, a k-coloring is a function c : V → {1, 2, … , k} such that c(u) ≠

c(v) for every edge (u, v) ∈ E. In other words, the numbers 1, 2, … , k

represent the k colors, and adjacent vertices must have different colors.

The graph-coloring problem is to determine the minimum number of

colors needed to color a given graph.

a. Give an efficient algorithm to determine a 2-coloring of a graph, if

one exists.

b. Cast the graph-coloring problem as a decision problem. Show that

your decision problem is solvable in polynomial time if and only if the

graph-coloring problem is solvable in polynomial time.

c. Let the language 3-COLOR be the set of graphs that can be 3-

colored. Show that if 3-COLOR is NP-complete, then your decision

problem from part (b) is NP-complete.
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Figure 34.20 The subgraph of G in Problem 34-3 formed by the literal edges. The special vertices

TRUE, FALSE, and RED form a triangle, and for each variable xi, the vertices xi, ¬xi, and

RED form a triangle.

Figure 34.21 The gadget corresponding to a clause (x ∨ y ∨ z), used in Problem 34-3.

To prove that 3-COLOR is NP-complete, you can reduce from 3-CNF-

SAT. Given a formula ϕ of m clauses on n variables x1, x2, … , xn,

construct a graph G = (V, E) as follows. The set V consists of a vertex

for each variable, a vertex for the negation of each variable, five vertices

for each clause, and three special vertices: TRUE, FALSE, and RED.

The edges of the graph are of two types: “literal” edges that are

independent of the clauses and “clause” edges that depend on the

clauses. As Figure 34.20 shows, the literal edges form a triangle on the

three special vertices TRUE, FALSE, and RED, and they also form a

triangle on xi, ¬xi, and RED for i = 1, 2, … , n.

d. Consider a graph containing the literal edges. Argue that in any 3-

coloring c of such a graph, exactly one of a variable and its negation is

colored c(TRUE) and the other is colored c(FALSE). Then argue that
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for any truth assignment for ϕ, there exists a 3-coloring of the graph

containing just the literal edges.

The gadget shown in Figure 34.21 helps to enforce the condition

corresponding to a clause (x ∨ y ∨ z), where x, y, and z are literals.

Each clause requires a unique copy of the five blue vertices in the figure.

They connect as shown to the literals of the clause and the special vertex

TRUE.

e. Argue that if each of x, y, and z is colored c(TRUE) or c(FALSE),

then the gadget is 3-colorable if and only if at least one of x, y, or z is

colored c(TRUE).

f. Complete the proof that 3-COLOR is NP-complete.

34-4     Scheduling with profits and deadlines

You have one computer and a set of n tasks {a1, a2, … , an} requiring

time on the computer. Each task aj requires tj time units on the

computer (its processing time), yields a profit of pj, and has a deadline

dj. The computer can process only one task at a time, and task aj must

run without interruption for tj consecutive time units. If task aj

completes by its deadline dj, you receive a profit pj. If instead task aj

completes after its deadline, you receive no profit. As an optimization

problem, given the processing times, profits, and deadlines for a set of n

tasks, you wish to find a schedule that completes all the tasks and

returns the greatest amount of profit. The processing times, profits, and

deadlines are all nonnegative numbers.

a. State this problem as a decision problem.

b. Show that the decision problem is NP-complete.

c. Give a polynomial-time algorithm for the decision problem, assuming

that all processing times are integers from 1 to n. (Hint: Use dynamic

programming.)

d. Give a polynomial-time algorithm for the optimization problem,

assuming that all processing times are integers from 1 to n.
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Chapter notes

The book by Garey and Johnson [176] provides a wonderful guide to

NP-completeness, discussing the theory at length and providing a

catalogue of many problems that were known to be NP-complete in

1979. The proof of Theorem 34.13 is adapted from their book, and the

list of NP-complete problem domains at the beginning of Section 34.5 is

drawn from their table of contents. Johnson wrote a series of 23

columns in the Journal of Algorithms between 1981 and 1992 reporting

new developments in NP-completeness. Fortnow’s book [152] gives a

history of NP-completeness, along with societal implications. Hopcroft,

Motwani, and Ullman [225], Lewis and Papadimitriou [299],

Papadimitriou [352], and Sipser [413] have good treatments of NP-

completeness in the context of complexity theory. NP-completeness and

several reductions also appear in books by Aho, Hopcroft, and Ullman

[5], Dasgupta, Papadimitriou, and Vazirani [107], Johnsonbaugh and

Schaefer [239], and Kleinberg and Tardos [257]. The book by

Hromkovič [229] studies various methods for solving hard problems.

The class P was introduced in 1964 by Cobham [96] and,

independently, in 1965 by Edmonds [130], who also introduced the class

NP and conjectured that P ≠ NP. The notion of NP-completeness was

proposed in 1971 by Cook [100], who gave the first NP-completeness

proofs for formula satisfiability and 3-CNF satisfiability. Levin [297]

independently discovered the notion, giving an NP-completeness proof

for a tiling problem. Karp [248] introduced the methodology of

reductions in 1972 and demonstrated the rich variety of NP-complete

problems. Karp’s paper included the original NP-completeness proofs

of the clique, vertex-cover, and hamiltonian-cycle problems. Since then,

thousands of problems have been proven to be NP-complete by many

researchers.

Work in complexity theory has shed light on the complexity of

computing approximate solutions. This work gives a new definition of

NP using “probabilistically checkable proofs.” This new definition

implies that for problems such as clique, vertex cover, the traveling-

salesperson problem with the triangle inequality, and many others,

computing good approximate solutions (see Chapter 35) is NP-hard and
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hence no easier than computing optimal solutions. An introduction to

this area can be found in Arora’s thesis [21], a chapter by Arora and

Lund in Hochbaum [221], a survey article by Arora [22], a book edited

by Mayr, Prömel, and Steger [319], a survey article by Johnson [237],

and a chapter in the textbook by Arora and Barak [24].

1 For the Halting Problem and other unsolvable problems, there are proofs that no algorithm

can exist that, for every input, eventually produces the correct answer. A procedure attempting

to solve an unsolvable problem might always produce an answer but is sometimes incorrect, or

all the answers it produces might be correct but for some inputs it never produces an answer.

2 See the books by Hopcroft and Ullman [228], Lewis and Papadimitriou [299], or Sipser [413]

for a thorough treatment of the Turing-machine model.

3 The codomain of e need not be binary strings: any set of strings over a finite alphabet having at

least two symbols will do.

4 We assume that the algorithm’s output is separate from its input. Because it takes at least one

time step to produce each bit of the output and the algorithm takes O(T (n)) time steps, the size

of the output is O(T (n)).

5 The notation {0, 1}* denotes the set of all strings composed of symbols from the set {0, 1}.

6 Technically, we also require the functions f12 and f21 to “map noninstances to noninstances.”

A noninstance of an encoding e is a string x ∈ {0, 1}* such that there is no instance i for which

e(i) = x. We require that f12(x) = y for every noninstance x of encoding e1, where y is some

noninstance of e2, and that f21(x′) = y′ for every noninstance x′ of e2, where y′ is some

noninstance of e1.

7 For more on complexity classes, see the seminal paper by Hartmanis and Stearns [210].

8 In a letter dated 17 October 1856 to his friend John T. Graves, Hamilton [206, p. 624] wrote, “I

have found that some young persons have been much amused by trying a new mathematical

game which the Icosion furnishes, one person sticking five pins in any five consecutive points …

and the other player then aiming to insert, which by the theory in this letter can always be done,

fifteen other pins, in cyclical succession, so as to cover all the other points, and to end in

immediate proximity to the pin wherewith his antagonist had begun.”

9 The name “NP” stands for “nondeterministic polynomial time.” The class NP was originally

studied in the context of nondeterminism, but this book uses the somewhat simpler yet

equivalent notion of verification. Hopcroft and Ullman [228] give a good presentation of NP-

completeness in terms of nondeterministic models of computation.

10 On the other hand, if the size of the circuit C is Θ(2k), then an algorithm whose running time

is O(2k) has a running time that is polynomial in the circuit size. Even if P ≠ NP, this situation

would not contradict the NP-completeness of the problem. The existence of a polynomial-time
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algorithm for a special case does not imply that there is a polynomial-time algorithm for all

cases.

11 Technically, a cycle is defined as a sequence of vertices rather than edges (see Section B.4). In

the interest of clarity, we abuse notation here and define the hamiltonian cycle by its edges.

12 In fact, any base b ≥ 7 works. The instance at the beginning of this subsection is the set S and

target t in Figure 34.19 interpreted in base 7, with S listed in sorted order.
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35        Approximation Algorithms

Many problems of practical significance are NP-complete, yet they are

too important to abandon merely because nobody knows how to find

an optimal solution in polynomial time. Even if a problem is NP-

complete, there may be hope. You have at least three options to get

around NP-completeness. First, if the actual inputs are small, an

algorithm with exponential running time might be fast enough. Second,

you might be able to isolate important special cases that you can solve

in polynomial time. Third, you can try to devise an approach to find a

near-optimal solution in polynomial time (either in the worst case or the

expected case). In practice, near-optimality is often good enough. We

call an algorithm that returns near-optimal solutions an approximation

algorithm. This chapter presents polynomial-time approximation

algorithms for several NP-complete problems.

Performance ratios for approximation algorithms

Suppose that you are working on an optimization problem in which

each potential solution has a positive cost, and you want to find a near-

optimal solution. Depending on the problem, you could define an

optimal solution as one with maximum possible cost or as one with

minimum possible cost, which is to say that the problem might be either

a maximization or a minimization problem.

We say that an algorithm for a problem has an approximation ratio

of ρ(n) if, for any input of size n, the cost C of the solution produced by
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the algorithm is within a factor of ρ(n) of the cost C* of an optimal

solution:

If an algorithm achieves an approximation ratio of ρ(n), we call it a ρ(n)-

approximation algorithm. The definitions of approximation ratio and

ρ(n)-approximation algorithm apply to both minimization and

maximization problems. For a maximization problem, 0 < C ≤ C*, and

the ratio C*/C gives the factor by which the cost of an optimal solution

is larger than the cost of the approximate solution. Similarly, for a

minimization problem, 0 < C* ≤ C, and the ratio C/C* gives the factor

by which the cost of the approximate solution is larger than the cost of

an optimal solution. Because we assume that all solutions have positive

cost, these ratios are always well defined. The approximation ratio of an

approximation algorithm is never less than 1, since C/C* ≤ 1 implies

C*/C ≥ 1. Therefore, a 1-approximation algorithm1 produces an optimal

solution, and an approximation algorithm with a large approximation

ratio may return a solution that is much worse than optimal.

For many problems, we know of polynomial-time approximation

algorithms with small constant approximation ratios, although for other

problems, the best known polynomial-time approximation algorithms

have approximation ratios that grow as functions of the input size n. An

example of such a problem is the set-cover problem presented in Section

35.3.

Some polynomial-time approximation algorithms can achieve

increasingly better approximation ratios by using more and more

computation time. For such problems, you can trade computation time

for the quality of the approximation. An example is the subset-sum

problem studied in Section 35.5. This situation is important enough to

deserve a name of its own.

An approximation scheme for an optimization problem is an

approximation algorithm that takes as input not only an instance of the

problem, but also a value ϵ > 0 such that for any fixed ϵ, the scheme is a

(1 + ϵ)-approximation algorithm. We say that an approximation scheme
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is a polynomial-time approximation scheme if for any fixed ϵ > 0, the

scheme runs in time polynomial in the size n of its input instance.

The running time of a polynomial-time approximation scheme can

increase very rapidly as ϵ decreases. For example, the running time of a

polynomial-time approximation scheme might be O(n2/ϵ). Ideally, if ϵ

decreases by a constant factor, the running time to achieve the desired

approximation should not increase by more than a constant factor

(though not necessarily the same constant factor by which ϵ decreased).

We say that an approximation scheme is a fully polynomial-time

approximation scheme if it is an approximation scheme and its running

time is polynomial in both 1/ϵ and the size n of the input instance. For

example, the scheme might have a running time of O((1/ϵ)2n3). With

such a scheme, any constant-factor decrease in ϵ comes with a

corresponding constant-factor increase in the running time.

Chapter outline

The first four sections of this chapter present some examples of

polynomial-time approximation algorithms for NP-complete problems,

and the fifth section gives a fully polynomial-time approximation

scheme. We begin in Section 35.1 with a study of the vertex-cover

problem, an NP-complete minimization problem that has an

approximation algorithm with an approximation ratio of 2. Section 35.2

looks at a version of the traveling-salesperson problem in which the cost

function satisfies the triangle inequality and presents an approximation

algorithm with an approximation ratio of 2. The section also shows that

without the triangle inequality, for any constant ρ ≥ 1, a ρ-

approximation algorithm cannot exist unless P = NP. Section 35.3

applies a greedy method as an effective approximation algorithm for the

set-covering problem, obtaining a covering whose cost is at worst a

logarithmic factor larger than the optimal cost. Section 35.4 uses

randomization and linear programming to develop two more

approximation algorithms. The section first defines the optimization

version of 3-CNF satisfiability and gives a simple randomized algorithm

that produces a solution with an expected approximation ratio of 8/7.
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Then Section 35.4 examines a weighted variant of the vertex-cover

problem and exhibits how to use linear programming to develop a 2-

approximation algorithm. Finally, Section 35.5 presents a fully

polynomial-time approximation scheme for the subset-sum problem.

35.1    The vertex-cover problem

Section 34.5.2 defined the vertex-cover problem and proved it NP-

complete. Recall that a vertex cover of an undirected graph G = (V, E) is

a subset V′ ⊆ V such that if (u, v) is an edge of G, then either u ∈ V′ or v

∈ V′ (or both). The size of a vertex cover is the number of vertices in it.

The vertex-cover problem is to find a vertex cover of minimum size in

a given undirected graph. We call such a vertex cover an optimal vertex

cover. This problem is the optimization version of an NP-complete

decision problem.

Even though nobody knows how to find an optimal vertex cover in a

graph G in polynomial time, there is an efficient algorithm to find a

vertex cover that is near-optimal. The approximation algorithm

APPROX-VERTEX-COVER on the facing page takes as input an

undirected graph G and returns a vertex cover whose size is guaranteed

to be no more than twice the size of an optimal vertex cover.

Figure 35.1 illustrates how APPROX-VERTEX-COVER operates on

an example graph. The variable C contains the vertex cover being

constructed. Line 1 initializes C to the empty set. Line 2 sets E′ to be a

copy of the edge set G.E of the graph. The while loop of lines 3–6

repeatedly picks an edge (u, v) from E′, adds its endpoints u and v into

C, and deletes all edges in E′ that u or v covers. Finally, line 7 returns the

vertex cover C. The running time of this algorithm is O(V + E), using

adjacency lists to represent E′.

APPROX-VERTEX-COVER (G)

1 C = Ø

2 E′ = G.E

3 while E′ ≠ Ø
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4 let (u, v) be an arbitrary edge of E′
5 C = C ∪ {u, v}

6 remove from E′ edge (u, v) and every edge incident on either u or

v

7 return C

Theorem 35.1

APPROX-VERTEX-COVER is a polynomial-time 2-approximation

algorithm.

Proof   We have already shown that APPROX-VERTEX-COVER runs

in polynomial time.

The set C of vertices that is returned by APPROX-VERTEX-

COVER is a vertex cover, since the algorithm loops until every edge in

G.E has been covered by some vertex in C.

To see that APPROX-VERTEX-COVER returns a vertex cover that

is at most twice the size of an optimal cover, let A denote the set of

edges that line 4 of APPROX-VERTEX-COVER picked. In order to

cover the edges in A, any vertex cover—in particular, an optimal cover

C*—must include at least one endpoint of each edge in A. No two edges

in A share an endpoint, since once an edge is picked in line 4, all other

edges that are incident on its endpoints are deleted from E′ in line 6.

Thus, no two edges in A are covered by the same vertex from C*,

meaning that for every vertex in C*, there is at most one edge in A,

giving the lower bound

on the size of an optimal vertex cover. Each execution of line 4 picks an

edge for which neither of its endpoints is already in C, yielding an upper

bound (an exact upper bound, in fact) on the size of the vertex cover

returned:

Combining equations (35.2) and (35.3) yields

|C| = 2 |A|
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≤ 2 |C*|,

thereby proving the theorem.

▪

Figure 35.1 The operation of APPROX-VERTEX-COVER. (a) The input graph G, which has 7

vertices and 8 edges. (b) The highlighted edge (b, c) is the first edge chosen by APPROX-

VERTEX-COVER. Vertices b and c, in blue, are added to the set C containing the vertex cover

being created. Dashed edges (a, b), (c, e), and (c, d) are removed since they are now covered by

some vertex in C. (c) Edge (e, f) is chosen, and vertices e and f are added to C. (d) Edge (d, g) is

chosen, and vertices d and g are added to C. (e) The set C, which is the vertex cover produced by

APPROX-VERTEX-COVER, contains the six vertices b, c, d, e, f, g. (f) The optimal vertex

cover for this problem contains only three vertices: b, d, and e.

Let us reflect on this proof. At first, you might wonder how you can

possibly prove that the size of the vertex cover returned by APPROX-

VERTEX-COVER is at most twice the size of an optimal vertex cover,

when you don’t even know the size of an optimal vertex cover. Instead

of requiring that you know the exact size of an optimal vertex cover, you

find a lower bound on the size. As Exercise 35.1-2 asks you to show, the

set A of edges that line 4 of APPROX-VERTEX-COVER selects is

actually a maximal matching in the graph G. (A maximal matching is a
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matching to which no edges can be added and still have a matching.)

The size of a maximal matching is, as we argued in the proof of

Theorem 35.1, a lower bound on the size of an optimal vertex cover.

The algorithm returns a vertex cover whose size is at most twice the size

of the maximal matching A. The approximation ratio comes from

relating the size of the solution returned to the lower bound. We will use

this methodology in later sections as well.

Exercises

35.1-1

Give an example of a graph for which APPROX-VERTEX-COVER

always yields a suboptimal solution.

35.1-2

Prove that the set of edges picked in line 4 of APPROX-VERTEX-

COVER forms a maximal matching in the graph G.

★ 35.1-3

Consider the following heuristic to solve the vertex-cover problem.

Repeatedly select a vertex of highest degree, and remove all of its

incident edges. Give an example to show that this heuristic does not

provide an approximation ratio of 2. (Hint: Try a bipartite graph with

vertices of uniform degree on the left and vertices of varying degree on

the right.)

35.1-4

Give an efficient greedy algorithm that finds an optimal vertex cover for

a tree in linear time.

35.1-5

The proof of Theorem 34.12 on page 1084 illustrates that the vertex-

cover problem and the NP-complete clique problem are complementary

in the sense that an optimal vertex cover is the complement of a

maximum-size clique in the complement graph. Does this relationship

imply that there is a polynomial-time approximation algorithm with a

www.konkur.in

Telegram: @uni_k



constant approximation ratio for the clique problem? Justify your

answer.

35.2    The traveling-salesperson problem

The input to the traveling-salesperson problem, introduced in Section

34.5.4, is a complete undirected graph G = (V, E) that has a nonnegative

integer cost c(u, v) associated with each edge (u, v) ∈ E. The goal is to

find a hamiltonian cycle (a tour) of G with minimum cost. As an

extension of our notation, let c(A) denote the total cost of the edges in

the subset A ⊆ E:

In many practical situations, the least costly way to go from a place u

to a place w is to go directly, with no intermediate steps. Put another

way, cutting out an intermediate stop never increases the cost. Such a

cost function c satisfies the triangle inequality: for all vertices u, v, w ∈

V,

c(u, w) ≤ c(u, v) + c(v, w).

The triangle inequality seems as though it should naturally hold, and

it is automatically satisfied in several applications. For example, if the

vertices of the graph are points in the plane and the cost of traveling

between two vertices is the ordinary euclidean distance between them,

then the triangle inequality is satisfied. Furthermore, many cost

functions other than euclidean distance satisfy the triangle inequality.

As Exercise 35.2-2 shows, the traveling-salesperson problem is NP-

complete even if you require the cost function to satisfy the triangle

inequality. Thus, you should not expect to find a polynomial-time

algorithm for solving this problem exactly. Your time would be better

spent looking for good approximation algorithms.

In Section 35.2.1, we examine a 2-approximation algorithm for the

traveling-salesperson problem with the triangle inequality. In Section

35.2.2, we show that without the triangle inequality, a polynomial-time
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approximation algorithm with a constant approximation ratio does not

exist unless P = NP.

35.2.1    The traveling-salesperson problem with the triangle inequality

Applying the methodology of the previous section, start by computing a

structure—a minimum spanning tree—whose weight gives a lower

bound on the length of an optimal traveling-salesperson tour. Then use

the minimum spanning tree to create a tour whose cost is no more than

twice that of the minimum spanning tree’s weight, as long as the cost

function satisfies the triangle inequality. The procedure APPROX-TSP-

TOUR on the next page implements this approach, calling the

minimum-spanning-tree algorithm MST-PRIM on page 596 as a

subroutine. The parameter G is a complete undirected graph, and the

cost function c satisfies the triangle inequality.

Recall from Section 12.1 that a preorder tree walk recursively visits

every vertex in the tree, listing a vertex when it is first encountered,

before visiting any of its children.

Figure 35.2 illustrates the operation of APPROX-TSP-TOUR. Part

(a) of the figure shows a complete undirected graph, and part (b) shows

the minimum spanning tree T grown from root vertex a by MST-PRIM.

Part (c) shows how a preorder walk of T visits the vertices, and part (d)

displays the corresponding tour, which is the tour returned by

APPROX-TSP-TOUR. Part (e) displays an optimal tour, which is about

23% shorter.
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Figure 35.2 The operation of APPROX-TSP-TOUR. (a) A complete undirected graph. Vertices

lie on intersections of integer grid lines. For example, f is one unit to the right and two units up

from h. The cost function between two points is the ordinary euclidean distance. (b) A minimum

spanning tree T of the complete graph, as computed by MST-PRIM. Vertex a is the root vertex.

Only edges in the minimum spanning tree are shown. The vertices happen to be labeled in such a

way that they are added to the main tree by MST-PRIM in alphabetical order. (c) A walk of T,

starting at a. A full walk of the tree visits the vertices in the order a, b, c, b, h, b, a, d, e, f, e, g, e,

d, a. A preorder walk of T lists a vertex just when it is first encountered, as indicated by the dot

next to each vertex, yielding the ordering a, b, c, h, d, e, f, g. (d) A tour obtained by visiting the

vertices in the order given by the preorder walk, which is the tour H returned by APPROX-TSP-

TOUR. Its total cost is approximately 19.074. (e) An optimal tour H* for the original complete

graph. Its total cost is approximately 14.715.

APPROX-TSP-TOUR (G, c)

1 select a vertex r ∈ G.V to be a “root” vertex

2 compute a minimum spanning tree T for G from root r

using MST-PRIM (G, c, r)

3 let H be a list of vertices, ordered according to when they are first

visited in a preorder tree walk of T
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4 return the hamiltonian cycle H

By Exercise 21.2-2, even with a simple implementation of MST-

PRIM, the running time of APPROX-TSP-TOUR is Θ(V 2). We now

show that if the cost function for an instance of the traveling-

salesperson problem satisfies the triangle inequality, then APPROX-

TSP-TOUR returns a tour whose cost is at most twice the cost of an

optimal tour.

Theorem 35.2

When the triangle inequality holds, APPROX-TSP-TOUR is a

polynomial-time 2-approximation algorithm for the traveling-

salesperson problem.

Proof      We have already seen that APPROX-TSP-TOUR runs in

polynomial time.

Let H* denote an optimal tour for the given set of vertices. Deleting

any edge from a tour yields a spanning tree, and each edge cost is

nonnegative. Therefore, the weight of the minimum spanning tree T

computed in line 2 of APPROX-TSP-TOUR provides a lower bound on

the cost of an optimal tour:

A full walk of T lists the vertices when they are first visited and also

whenever they are returned to after a visit to a subtree. Let’s call this full

walk W. The full walk of our example gives the order

a, b, c, b, h, b, a, d, e, f, e, g, e, d, a.

Since the full walk traverses every edge of T exactly twice, by extending

the definition of the cost c in the natural manner to handle multisets of

edges, we have

Inequality (35.4) and equation (35.5) imply that
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and so the cost of W is within a factor of 2 of the cost of an optimal

tour.

Of course, the full walk W is not a tour, since it visits some vertices

more than once. By the triangle inequality, however, deleting a visit to

any vertex from W does not increase the cost. (When a vertex v is

deleted from W between visits to u and w, the resulting ordering

specifies going directly from u to w.) Repeatedly apply this operation on

each visit to a vertex after the first time it’s visited in W, so that W is left

with only the first visit to each vertex. In our example, this process

leaves the ordering

a, b, c, h, d, e, f, g.

This ordering is the same as that obtained by a preorder walk of the tree

T. Let H be the cycle corresponding to this preorder walk. It is a

hamiltonian cycle, since every vertex is visited exactly once, and in fact

it is the cycle computed by APPROX-TSP-TOUR. Since H is obtained

by deleting vertices from the full walk W, we have

Combining inequalities (35.6) and (35.7) gives c(H) ≤ 2c(H*), which

completes the proof.

▪

Despite the small approximation ratio provided by Theorem 35.2,

APPROX-TSP-TOUR is usually not the best practical choice for this

problem. There are other approximation algorithms that typically

perform much better in practice. (See the references at the end of this

chapter.)

35.2.2    The general traveling-salesperson problem

When the cost function c does not satisfy the triangle inequality, there is

no way to find good approximate tours in polynomial time unless P =

NP.

Theorem 35.3
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If P ≠ NP, then for any constant ρ ≥ 1, there is no polynomial-time

approximation algorithm with approximation ratio ρ for the general

traveling-salesperson problem.

Proof   The proof is by contradiction. Suppose to the contrary that for

some number ρ ≥ 1, there is a polynomial-time approximation algorithm

A with approximation ratio ρ. Without loss of generality, assume that ρ
is an integer, by rounding it up if necessary. We will show how to use A

to solve instances of the hamiltonian-cycle problem (defined in Section

34.2) in polynomial time. Since Theorem 34.13 on page 1085 says that

the hamiltonian-cycle problem is NP-complete, Theorem 34.4 on page

1063 implies that if it has a polynomial-time algorithm, then P = NP.

Let G = (V, E) be an instance of the hamiltonian-cycle problem. We

will show how to determine efficiently whether G contains a

hamiltonian cycle by making use of the hypothesized approximation

algorithm A. Convert G into an instance of the traveling-salesperson

problem as follows. Let G′ = (V, E′) be the complete graph on V, that is,

E′ = {(u, v) : u, v ∈ V and u ≠ v}.

Assign an integer cost to each edge in E′ as follows:

Given a representation of G, it takes time polynomial in |V| and |E| to

create representations of G′ and c.

Now consider the traveling-salesperson problem (G′, c). If the

original graph G has a hamiltonian cycle H, then the cost function c

assigns to each edge of H a cost of 1, and so (G′, c) contains a tour of

cost |V|. On the other hand, if G does not contain a hamiltonian cycle,

then any tour of G′ must use some edge not in E. But any tour that uses

an edge not in E has a cost of at least

(ρ |V| + 1) + (|V| − 1) = ρ |V| + |V|

> ρ |V|.
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Because edges not in G are so costly, there is a gap of at least ρ|V|

between the cost of a tour that is a hamiltonian cycle in G (cost |V|) and

the cost of any other tour (cost at least ρ|V| + |V|). Therefore, the cost of

a tour that is not a hamiltonian cycle in G is at least a factor of ρ + 1

greater than the cost of a tour that is a hamiltonian cycle in G.

What happens upon applying the approximation algorithm A to the

traveling-salesperson problem (G′, c)? Because A is guaranteed to return

a tour of cost no more than ρ times the cost of an optimal tour, if G

contains a hamiltonian cycle, then A must return it. If G has no

hamiltonian cycle, then A returns a tour of cost more than ρ |V|.

Therefore, using A solves the hamiltonian-cycle problem in polynomial

time.

▪

The proof of Theorem 35.3 serves as an example of a general

technique to prove that no good approximation algorithm exists for a

particular problem. Given an NP-hard decision problem X, produce in

polynomial time a minimization problem Y such that “yes” instances of

X correspond to instances of Y with value at most k (for some k), but

that “no” instances of X correspond to instances of Y with value greater

than ρk. This technique shows that, unless P = NP, there is no

polynomial-time ρ-approximation algorithm for problem Y.

Exercises

35.2-1

Let G = (V, E) be a complete undirected graph containing at least 3

vertices, and let c be a cost function that satisfies the triangle inequality.

Prove that c(u, v) ≥ 0 for all u, v ∈ V.

35.2-2

Show how in polynomial time to transform one instance of the

traveling-salesperson problem into another instance whose cost function

satisfies the triangle inequality. The two instances must have the same

set of optimal tours. Explain why such a polynomial-time

transformation does not contradict Theorem 35.3, assuming that P ≠

NP.
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35.2-3

Consider the following closest-point heuristic for building an

approximate traveling-salesperson tour whose cost function satisfies the

triangle inequality. Begin with a trivial cycle consisting of a single

arbitrarily chosen vertex. At each step, identify the vertex u that is not

on the cycle but whose distance to any vertex on the cycle is minimum.

Suppose that the vertex on the cycle that is nearest u is vertex v. Extend

the cycle to include u by inserting u just after v. Repeat until all vertices

are on the cycle. Prove that this heuristic returns a tour whose total cost

is not more than twice the cost of an optimal tour.

35.2-4

A solution to the bottleneck traveling-salesperson problem is the

hamiltonian cycle that minimizes the cost of the most costly edge in the

cycle. Assuming that the cost function satisfies the triangle inequality,

show that there exists a polynomial-time approximation algorithm with

approximation ratio 3 for this problem. (Hint: Show recursively how to

visit all the nodes in a bottleneck spanning tree, as discussed in Problem

21-4 on page 601, exactly once by taking a full walk of the tree and

skipping nodes, but without skipping more than two consecutive

intermediate nodes. Show that the costliest edge in a bottleneck

spanning tree has a cost bounded from above by the cost of the costliest

edge in a bottleneck hamiltonian cycle.)

35.2-5

Suppose that the vertices for an instance of the traveling-salesperson

problem are points in the plane and that the cost c(u, v) is the euclidean

distance between points u and v. Show that an optimal tour never

crosses itself.

35.2-6

Adapt the proof of Theorem 35.3 to show that for any constant c ≥ 0,

there is no polynomial-time approximation algorithm with

approximation ratio |V|c for the general traveling-salesperson problem.

35.3    The set-covering problem

www.konkur.in

Telegram: @uni_k



The set-covering problem is an optimization problem that models many

problems that require resources to be allocated. Its corresponding

decision problem generalizes the NP-complete vertex-cover problem

and is therefore also NP-hard. The approximation algorithm developed

to handle the vertex-cover problem doesn’t apply here, however. Instead,

this section investigates a simple greedy heuristic with a logarithmic

approximation ratio. That is, as the size of the instance gets larger, the

size of the approximate solution may grow, relative to the size of an

optimal solution. Because the logarithm function grows rather slowly,

however, this approximation algorithm may nonetheless give useful

results.

An instance (X, ℱ) of the set-covering problem consists of a finite set

X and a family ℱ of subsets of X, such that every element of X belongs

to at least one subset in ℱ:

We say that a subfamily C ⊆ ℱ covers a set of elements U if

The problem is to find a minimum-size subfamily C ⊆ ℱ whose

members cover all of X:

Figure 35.3 illustrates the set-covering problem. The size of C is the

number of sets it contains, rather than the number of individual

elements in these sets, since every subfamily C that covers X must

contain all |X| individual elements. In Figure 35.3, the minimum set

cover has size 3.

The set-covering problem abstracts many commonly arising

combinatorial problems. As a simple example, suppose that X

represents a set of skills that are needed to solve a problem and that you

have a given set of people available to work on the problem. You wish to
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form a committee, containing as few people as possible, such that for

every requisite skill in X, at least one member of the committee has that

skill. The decision version of the set-covering problem asks whether a

covering exists with size at most k, where k is an additional parameter

specified in the problem instance. The decision version of the problem is

NP-complete, as Exercise 35.3-2 asks you to show.

A greedy approximation algorithm

The greedy method in the procedure GREEDY-SET-COVER on the

facing page works by picking, at each stage, the set S that covers the

greatest number of remaining elements that are uncovered. In the

example of Figure 35.3, GREEDY-SET-COVER adds to C, in order,

the sets S1, S4, and S5, followed by either S3 or S6.

Figure 35.3 An instance (X, ℱ) of the set-covering problem, where X consists of the 12 tan

points and ℱ = {S1, S2, S3, S4, S5, S6, S4, S5}, Each set Si ∈ ℱ is outlined in blue. A

minimum-size set cover C = {S3, S4, S5}, with size 3. The greedy algorithm produces a cover of

size 4 by selecting either the sets S1, S4, S5, and S3 or the sets S1, S4, S5, and S6, in order.

GREEDY-SET-COVER (X, ℱ)

1 U0 = X

2C = Ø

3 i = 0

4 while Ui ≠ Ø
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5 select S ∈ ℱ that maximizes |S ∩ Ui|

6 Ui+1 = Ui − S

7 C = C ∪ {S}

8 i = i + 1

9 return C

The greedy algorithm works as follows. At the start of each iteration,

Ui is a subset of X containing the remaining uncovered elements, with

the initial subset U0 containing all the elements in X. The set C contains

the subfamily being constructed. Line 5 is the greedy decision-making

step, choosing a subset S that covers as many uncovered elements as

possible (breaking ties arbitrarily). After S is selected, line 6 updates the

set of remaining uncovered elements, denoting it by Ui+1, and line 7

places S into C. When the algorithm terminates, C is a subfamily of ℱ

that covers X.

Analysis

We now show that the greedy algorithm returns a set cover that is not

too much larger than an optimal set cover.

Theorem 35.4

The procedure GREEDY-SET-COVER run on a set X and family of

subsets ℱ is a polynomial-time O(lg X)-approximation algorithm.

Proof      Let’s first show that the algorithm runs in time that is

polynomial in |X| and |ℱ|. The number of iterations of the loop in lines

4–7 is bounded above by min {|X|, |ℱ|} = O(|X| + |ℱ|). The loop body

can be implemented to run in O(|X|·|ℱ|) time. Thus the algorithm runs

in O(|X|·|ℱ|·(|X|+|ℱ|)) time, which is polynomial in the input size.

(Exercise 35.3-3 asks for a linear-time algorithm.)

To prove the approximation bound, let C* be an optimal set cover

for the original instance (X, ℱ), and let k = |C*|. Since C* is also a set

cover of each subset Ui of X constructed by the algorithm, we know
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that any subset Ui constructed by the algorithm can be covered by k

sets. Therefore, if (Ui, ℱ) is an instance of the set-covering problem, its

optimal set cover has size at most k.

If an optimal set cover for an instance (Ui, ℱ) has size at most k, at

least one of the sets in C covers at least |Ui|/k new elements. Thus, line 5

of GREEDY-SET-COVER, which chooses a set with the maximum

number of uncovered elements, must choose a set in which the number

of newly covered elements is at least |Ui|/k. These elements are removed

when constructing Ui+1, giving

Iterating inequality (35.8) gives

|U0| = |X|,

|U1| ≤ |U0| (1 − 1/k),

|U2| ≤ |U1| (1 − 1/k) = |U| (1 − 1/k)2,

and in general

The algorithm stops when Ui = Ø, which means that |Ui| < 1. Thus an

upper bound on the number of iterations of the algorithm is the

smallest value of i for which |Ui| < 1.

Since 1 + x ≤ ex for all real x (see inequality (3.14) on page 66), by

letting x = −1/k, we have 1 − 1/k ≤ e−1/k, so that (1 − 1/k)k ≤ (e−1/k)k =

1/e. Denoting the number i of iterations by ck for some nonnegative

integer c, we want c such that

Multiplying both sides by ec and then taking the natural logarithm of

both sides gives c ≥ ln |X|, so we can choose for c any integer that is at
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least ln |X|. We choose c = ⌈ln |X|⌉. Since i = ck is an upper bound on the

number of iterations, which equals the size of C, and k = |C*|, we have

|C| ≤ i = ck = c |C*| = |C*| ⌈ln |X|⌉, and the theorem follows.

▪

Exercises

35.3-1

Consider each of the following words as a set of letters: {arid, dash,

drain, heard, lost, nose, shun, slate, snare, thread}. Show

which set cover GREEDY-SET-COVER produces when you break ties

in favor of the word that appears first in the dictionary.

35.3-2

Show that the decision version of the set-covering problem is NP-

complete by reducing the vertex-cover problem to it.

35.3-3

Show how to implement GREEDY-SET-COVER to run in O(ΣS∈ℱ

|S|) time.

35.3-4

The proof of Theorem 35.4 says that when GREEDY-SET-COVER,

run on the instance (X, ℱ), returns the subfamily C, then |C| ≤ |C*| ⌈ln

X⌉. Show that the following weaker bound is trivially true:

|C| ≤ |C*| max {|S| : S ∈ ℱ}.

35.3-5

GREEDY-SET-COVER can return a number of different solutions,

depending on how it breaks ties in line 5. Give a procedure BAD-SET-

COVER-INSTANCE (n) that returns an n-element instance of the set-

covering problem for which, depending on how line 5 breaks ties,

GREEDY-SET-COVER can return a number of different solutions that

is exponential in n.
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35.4    Randomization and linear programming

This section studies two useful techniques for designing approximation

algorithms: randomization and linear programming. It starts with a

simple randomized algorithm for an optimization version of 3-CNF

satisfiability, and then it shows how to design an approximation

algorithm for a weighted version of the vertex-cover problem based on

linear programming. This section only scratches the surface of these two

powerful techniques. The chapter notes give references for further study

of these areas.

A randomized approximation algorithm for MAX-3-CNF satisfiability

Just as some randomized algorithms compute exact solutions, some

randomized algorithms compute approximate solutions. We say that a

randomized algorithm for a problem has an approximation ratio of ρ(n)

if, for any input of size n, the expected cost C of the solution produced

by the randomized algorithm is within a factor of ρ(n) of the cost C* of

an optimal solution:

We call a randomized algorithm that achieves an approximation ratio of

ρ(n) a randomized ρ(n)-approximation algorithm. In other words, a

randomized approximation algorithm is like a deterministic

approximation algorithm, except that the approximation ratio is for an

expected cost.

A particular instance of 3-CNF satisfiability, as defined in Section

34.4, may or may not be satisfiable. In order to be satisfiable, there must

exist an assignment of the variables so that every clause evaluates to 1.

If an instance is not satisfiable, you might instead want to know how

“close” to satisfiable it is, that is, find an assignment of the variables that

satisfies as many clauses as possible. We call the resulting maximization

problem MAX-3-CNF satisfiability. The input to MAX-3-CNF

satisfiability is the same as for 3-CNF satisfiability, and the goal is to

return an assignment of the variables that maximizes the number of
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clauses evaluating to 1. You might be surprised that randomly setting

each variable to 1 with probability 1/2 and to 0 with probability 1/2

yields a randomized 8/7-approximation algorithm, but we’re about to

see why. Recall that the definition of 3-CNF satisfiability from Section

34.4 requires each clause to consist of exactly three distinct literals. We

now further assume that no clause contains both a variable and its

negation. Exercise 35.4-1 asks you to remove this last assumption.

Theorem 35.5

Given an instance of MAX-3-CNF satisfiability with n variables x1, x2,

… , xn and m clauses, the randomized algorithm that independently sets

each variable to 1 with probability 1/2 and to 0 with probability 1/2 is a

randomized 8/7-approximation algorithm.

Proof      Suppose that each variable is independently set to 1 with

probability 1/2 and to 0 with probability 1/2. Define, for i = 1, 2, … , m,

the indicator random variable

Yi = I {clause i is satisfied},

so that Yi = 1 as long as at least one of the literals in the ith clause is set

to 1. Since no literal appears more than once in the same clause, and

since we assume that no variable and its negation appear in the same

clause, the settings of the three literals in each clause are independent. A

clause is not satisfied only if all three of its literals are set to 0, and so Pr

{clause i is not satisfied} = (1/2)3 = 1/8. Thus, we have Pr {clause i is

satisfied} = 1 − 1/8 = 7/8, and Lemma 5.1 on page 130 gives E [Yi] =

7/8. Let Y be the number of satisfied clauses overall, so that Y = Y1 +

Y2 + ⋯ + Ym. Then, we have
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Since m is an upper bound on the number of satisfied clauses, the

approximation ratio is at most m/(7m/8) = 8/7.

▪

Approximating weighted vertex cover using linear programming

The minimum-weight vertex-cover problem takes as input an undirected

graph G = (V, E) in which each vertex v ∈ V has an associated positive

weight w(v). The weight w(V′) of a vertex cover V′ ⊆ V is the sum of the

weights of its vertices: w(V′) = Σv∈V′ w(v). The goal is to find a vertex

cover of minimum weight.

The approximation algorithm for unweighted vertex cover from

Section 35.1 won’t work here, because the solution it returns could be

far from optimal for the weighted problem. Instead, we’ll first compute

a lower bound on the weight of the minimum-weight vertex cover, by

using a linear program. Then we’ll “round” this solution and use it to

obtain a vertex cover.

Start by associating a variable x(v) with each vertex v ∈ V, and

require that x(v) equals either 0 or 1 for each v ∈ V. The vertex cover

includes v if and only if x(v) = 1. Then the constraint that for any edge

(u, v), at least one of u and v must belong to the vertex cover can be

expressed as x(u) + x(v) ≥ 1. This view gives rise to the following 0-1

integer program for finding a minimum-weight vertex cover:

subject to
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In the special case in which all the weights w(v) equal 1, this

formulation is the optimization version of the NP-hard vertex-cover

problem. Let’s remove the constraint that x(v) ∈ {0, 1} and replace it by

0 ≤ x(v) ≤ 1, resulting in the following linear program:

subject to

We refer to this linear program as the linear-programming relaxation.

Any feasible solution to the 0-1 integer program in lines (35.12)–(35.14)

is also a feasible solution to its linear-programming relaxation in lines

(35.15)–(35.18). Therefore, the value of an optimal solution to the

linear-programming relaxation provides a lower bound on the value of

an optimal solution to the 0-1 integer program, and hence a lower

bound on the optimal weight in the minimum-weight vertex-cover

problem.

The procedure APPROX-MIN-WEIGHT-VC on the facing page

starts with a solution to the linear-programming relaxation and uses it

to construct an approximate solution to the minimum-weight vertex-

cover problem. The procedure works as follows. Line 1 initializes the

vertex cover to be empty. Line 2 formulates the linear-programming

relaxation in lines (35.15)–(35.18) and then solves this linear program.

An optimal solution gives each vertex v an associated value x(v), where

0 ≤ x(v) ≤ 1. The procedure uses this value to guide the choice of which

vertices to add to the vertex cover C in lines 3–5: the vertex cover C

includes vertex v if and only if x(v) ≥ 1/2. In effect, the procedure

“rounds” each fractional variable in the solution to the linear-

programming relaxation to either 0 or 1 in order to obtain a solution to
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the 0-1 integer program in lines (35.12)–(35.14). Finally, line 6 returns

the vertex cover C.

Theorem 35.6

Algorithm APPROX-MIN-WEIGHT-VC is a polynomial-time2-

approximation algorithm for the minimum-weight vertex-cover

problem.

APPROX-MIN-WEIGHT-VC (G, w)

1 C = Ø

2 compute x, an optimal solution to the linear-programming

relaxation in lines (35.15)–(35.18)

3 for each vertex v ∈ V

4 if x(v) ≥ 1/2

5 C = C ∪ {v}

6 return C

Proof   Because there is a polynomial-time algorithm to solve the linear

program in line 2, and because the for loop of lines 3–5 runs in

polynomial time, APPROX-MIN-WEIGHT-VC is a polynomial-time

algorithm.

It remains to show that APPROX-MIN-WEIGHT-VC is a 2-

approximation algorithm. Let C* be an optimal solution to the

minimum-weight vertex-cover problem, and let z* be the value of an

optimal solution to the linear-programming relaxation in lines (35.15)–

(35.18). Since an optimal vertex cover is a feasible solution to the linear-

programming relaxation, z* must be a lower bound on w(C*), that is,

Next, we claim that rounding the fractional values of the variables x(v)

in lines 3–5 produces a set C that is a vertex cover and satisfies w(C) ≤

2z*. To see that C is a vertex cover, consider any edge (u, v) ∈ E. By

constraint (35.16), we know that x(u) + x(v) ≥ 1, which implies that at

least one of x(u) and x(v) is at least 1/2. Therefore, at least one of u and

v is included in the vertex cover, and so every edge is covered.
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Now we consider the weight of the cover. We have

Combining inequalities (35.19) and (35.20) gives

w(C) ≤ 2z* ≤ 2w(C*),

and hence APPROX-MIN-WEIGHT-VC is a 2-approximation

algorithm.

▪

Exercises

35.4-1

Show that even if a clause is allowed to contain both a variable and its

negation, randomly setting each variable to 1 with probability 1/2 and

to 0 with probability 1/2 still yields a randomized 8/7-approximation

algorithm.

35.4-2

The MAX-CNF satisfiability problem is like the MAX-3-CNF

satisfiability problem, except that it does not restrict each clause to have

exactly three literals. Give a randomized 2-approximation algorithm for

the MAX-CNF satisfiability problem.

35.4-3
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In the MAX-CUT problem, the input is an unweighted undirected

graph G = (V, E). We define a cut (S, V − S) as in Chapter 21 and the

weight of a cut as the number of edges crossing the cut. The goal is to

find a cut of maximum weight. Suppose that each vertex v is randomly

and independently placed into S with probability 1/2 and into V −S

with probability 1/2. Show that this algorithm is a randomized 2-

approximation algorithm.

35.4-4

Show that the constraints in line (35.17) are redundant in the sense that

removing them from the linear-programming relaxation in lines (35.15)–

(35.18) yields a linear program for which any optimal solution x must

satisfy x(v) ≤ 1 for each v ∈ V.

35.5    The subset-sum problem

Recall from Section 34.5.5 that an instance of the subset-sum problem is

given by a pair (S, t), where S is a set {x1, x2, … , xn} of positive

integers and t is a positive integer. This decision problem asks whether

there exists a subset of S that adds up exactly to the target value t. As

we saw in Section 34.5.5, this problem is NP-complete.

The optimization problem associated with this decision problem

arises in practical applications. The optimization problem seeks a subset

of {x1, x2, … , xn} whose sum is as large as possible but not larger than

t. For example, consider a truck that can carry no more than t pounds,

which is to be loaded with up to n different boxes, the ith of which

weighs xi pounds. How heavy a load can the truck take without

exceeding the t-pound weight limit?

We start this section with an exponential-time algorithm to compute

the optimal value for this optimization problem. Then we show how to

modify the algorithm so that it becomes a fully polynomial-time

approximation scheme. (Recall that a fully polynomial-time

approximation scheme has a running time that is polynomial in 1/ϵ as

well as in the size of the input.)
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An exponential-time exact algorithm

Suppose that you compute, for each subset S′ of S, the sum of the

elements in S′, and then you select, among the subsets whose sum does

not exceed t, the one whose sum is closest to t. This algorithm returns

the optimal solution, but it might take exponential time. To implement

this algorithm, you can use an iterative procedure that, in iteration i,

computes the sums of all subsets of {x1, x2, … , xi}, using as a starting

point the sums of all subsets of {x1, x2, … , xi−1}. In doing so, you

would realize that once a particular subset S′ has a sum exceeding t,

there is no reason to maintain it, since no superset of S′ can be an

optimal solution. Let’s see how to implement this strategy.

The procedure EXACT-SUBSET-SUM takes an input set S = {x1,

x2, … , xn}, the size n = |S|, and a target value t. This procedure

iteratively computes Li, the list of sums of all subsets of {x1, … , xi}

that do not exceed t, and then it returns the maximum value in Ln.

If L is a list of positive integers and x is another positive integer, then

let L + x denote the list of integers derived from L by increasing each

element of L by x. For example, if L = 〈1, 2, 3, 5, 9〉, then L + 2 = 〈3, 4,

5, 7, 11〉. This notation extends to sets, so that

S + x = {s + x : s ∈ S}.

EXACT-SUBSET-SUM (S, n, t)

1 L0 = 〈0〉

2 for i = 1 to n

3 Li = MERGE-LISTS (Li−1, Li−1 + xi)

4 remove from Li every element that is greater

than t

5 return the largest element in Ln

EXACT-SUBSET-SUM invokes an auxiliary procedure MERGE-

LISTS (L, L′), which returns the sorted list that is the merge of its two
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sorted input lists L and L′, with duplicate values removed. Like the

MERGE procedure we used in merge sort on page 36, MERGE-LISTS

runs in O(|L| + |L′|) time. We omit the pseudocode for MERGE-LISTS.

To see how EXACT-SUBSET-SUM works, let Pi denote the set of

values obtained by selecting each (possibly empty) subset of {x1, x2, …

, xi} and summing its members. For example, if S = {1, 4, 5}, then

P1 = {0, 1},

P2 = {0, 1, 4, 5},

P3 = {0, 1, 4, 5, 6, 9, 10}.

Given the identity

you can prove by induction on i (see Exercise 35.5-1) that the list Li is a

sorted list containing every element of Pi whose value is not more than

t. Since the length of Li can be as much as 2i, EXACT-SUBSET-SUM

is an exponential-time algorithm in general, although it is a polynomial-

time algorithm in the special cases in which t is polynomial in |S| or all

the numbers in S are bounded by a polynomial in |S|.

A fully polynomial-time approximation scheme

The key to devising a fully polynomial-time approximation scheme for

the subset-sum problem is to “trim” each list Li after it is created. Here’s

the idea behind trimming: if two values in L are close to each other,

then since the goal is just an approximate solution, there is no need to

maintain both of them explicitly. More precisely, use a trimming

parameter δ such that 0 < δ < 1. When trimming a list L by δ, remove as

many elements from L as possible, in such a way that if L′ is the result

of trimming L, then for every element y that was removed from L, some

element z still in L′ approximates y. For z to approximate y, it must be

no greater than y and also within a factor of 1 + δ of y, so that
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You can think of such a z as “representing” y in the new list L′. Each

removed element y is represented by a remaining element z satisfying

inequality (35.22). For example, suppose that δ = 0.1 and

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉.

Then trimming L results in

L′ = 〈10, 12, 15, 20, 23, 29〉,

where the deleted value 11 is represented by 10, the deleted values 21

and 22 are represented by 20, and the deleted value 24 is represented by

23. Because every element of the trimmed version of the list is also an

element of the original version of the list, trimming can dramatically

decrease the number of elements kept while keeping a close (and slightly

smaller) representative value in the list for each deleted element.

The procedure TRIM trims list L = 〈y1, y2, … , ym〉 in Θ(m) time,

given L and the trimming parameter δ. It assumes that L is sorted into

monotonically increasing order. The output of the procedure is a

trimmed, sorted list. The procedure scans the elements of L in

monotonically increasing order. A number is appended onto the

returned list L′ only if it is the first element of L or if it cannot be

represented by the most recent number placed into L′.

TRIM (L, δ)

1 let m be the length of L

2 L′ = 〈y1〉

3 last = y1

4 for i = 2 to m

5 if yi > last · (1 + δ) // yi ≥ last because L is sorted

6 append yi onto the end of L′
7 last = yi

8 return L′
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Given the procedure TRIM, the procedure APPROX-SUBSET-

SUM on the following page implements the approximation scheme.

This procedure takes as input a set S = {x1, x2, … , xn} of n integers (in

arbitrary order), the size n = |S|, the target integer t, and an

approximation parameter ϵ, where

It returns a value z* whose value is within a factor of 1 + ϵ of the

optimal solution.

The APPROX-SUBSET-SUM procedure works as follows. Line 1

initializes the list L0 to be the list containing just the element 0. The for

loop in lines 2–5 computes Li as a sorted list containing a suitably

trimmed version of the set Pi, with all elements larger than t removed.

Since the procedure creates Li from Li−1, it must ensure that the

repeated trimming doesn’t introduce too much compounded inaccuracy.

That’s why instead of the trimming parameter being ϵ in the call to

TRIM, it has the smaller value ϵ/2n. We’ll soon see that APPROX-

SUBSET-SUM returns a correct approximation if one exists.

APPROX-SUBSET-SUM (S, n, t, ϵ)

1 L0 = 〈0〉

2 for i = 1 to n

3 Li = MERGE-LISTS (Li−1, Li−1 + xi)

4 Li = TRIM (Li, ϵ/2n)

5 remove from Li every element that is greater than t

6 let z* be the largest value in Ln

7 return z*

As an example, suppose that APPROX-SUBSET-SUM is given

S = 〈104, 102, 201, 101〉
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with t = 308 and ϵ = 0.40. The trimming parameter δ is ϵ/2n = 0.40/80

= 0.05. The procedure computes the following values on the indicated

lines:

line 1: L0 = 〈0〉,

line 3: L1 = 〈0, 104〉,

line 4: L1 = 〈0, 104〉,

line 5: L1 = 〈0, 104〉,

line 3: L2 = 〈0, 102, 104, 206〉,

line 4: L2 = 〈0, 102, 206〉,

line 5: L2 = 〈0, 102, 206〉,

line 3: L3 = 〈0, 102, 201, 206, 303, 407〉,

line 4: L3 = 〈0, 102, 201, 303, 407〉,

line 5: L3 = 〈0, 102, 201, 303〉,

line 3: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉,

line 4: L4 = 〈0, 101, 201, 302, 404〉,

line 5: L4 = 〈0, 101, 201, 302〉.

The procedure returns z* = 302 as its answer, which is well within ϵ =

40% of the optimal answer 307 = 104 + 102 + 101. In fact, it is within

2%.

Theorem 35.7

APPROX-SUBSET-SUM is a fully polynomial-time approximation

scheme for the subset-sum problem.

Proof     The operations of trimming Li in line 4 and removing from Li

every element that is greater than t maintain the property that every

element of Li is also a member of Pi. Therefore, the value z* returned in

line 7 is indeed the sum of some subset of S, that is, z* ∈ Pn. Let y* ∈
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Pn denote an optimal solution to the subset-sum problem, so that it is

the greatest value in Pn that is less than or equal to t. Because line 5

ensures that z* ≤ t, we know that z* ≤ y*. By inequality (35.1), we need

to show that y*/z* ≤ 1 + ϵ. We must also show that the running time of

this algorithm is polynomial in both 1/ϵ and the size of the input.

As Exercise 35.5-2 asks you to show, for every element y in Pi that is

at most t, there exists an element z ∈ Li such that

Inequality (35.24) must hold for y* ∈ Pn, and therefore there exists an

element z ∈ Ln such that

and thus

Since there exists an element z ∈ Ln fulfilling inequality (35.25), the

inequality must hold for z*, which is the largest value in Ln, which is to

say

Now we show that y*/z* ≤ 1 + ϵ. We do so by showing that (1

+ϵ/2n)n ≤ 1 + ϵ. First, inequality (35.23), 0 < ϵ < 1, implies that

Next, from equation (3.16) on page 66, we have limn→∞(1 + ϵ/2n)n =

eϵ/2. Exercise 35.5-3 asks you to show that
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Therefore, the function (1 + ϵ/2n)n increases with n as it approaches its

limit of eϵ/2, and we have

Combining inequalities (35.26) and (35.29) completes the analysis of the

approximation ratio.

To show that APPROX-SUBSET-SUM is a fully polynomial-time

approximation scheme, we derive a bound on the length of Li. After

trimming, successive elements z and z′ of Li must have the relationship

z′/z > 1 + ϵ/2n. That is, they must differ by a factor of at least 1 + ϵ/2n.

Each list, therefore, contains the value 0, possibly the value 1, and up to

⌊log1 + ϵ/2n t⌋ additional values. The number of elements in each list Li

is at most

This bound is polynomial in the size of the input—which is the number

of bits lg t needed to represent t plus the number of bits needed to

represent the set S, which in turn is polynomial in n—and in 1/ϵ. Since

the running time of APPROX-SUBSET-SUM is polynomial in the

lengths of the lists Li, we conclude that APPROX-SUBSET-SUM is a

fully polynomial-time approximation scheme.

▪
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Exercises

35.5-1

Prove equation (35.21). Then show that after executing line 4 of

EXACT-SUBSET-SUM, Li is a sorted list containing every element of

Pi whose value is not more than t.

35.5-2

Using induction on i, prove inequality (35.24).

35.5-3

Prove inequality (35.28).

35.5-4

How can you modify the approximation scheme presented in this

section to find a good approximation to the smallest value not less than

t that is a sum of some subset of the given input list?

35.5-5

Modify the APPROX-SUBSET-SUM procedure to also return the

subset of S that sums to the value z*.

Problems

35-1     Bin packing

You are given a set of n objects, where the size si of the ith object

satisfies 0 < si < 1. Your goal is to pack all the objects into the minimum

number of unit-size bins. Each bin can hold any subset of the objects

whose total size does not exceed 1.

a. Prove that the problem of determining the minimum number of bins

required is NP-hard. (Hint: Reduce from the subset-sum problem.)

The first-fit heuristic takes each object in turn and places it into the first

bin that can accommodate it, as follows. It maintains an ordered list of

bins. Let b denote the number of bins in the list, where b increases over
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the course of the algorithm, and let 〈B1, … , Bb〉 be the list of bins.

Initially b = 0 and the list is empty. The algorithm takes each object i in

turn and places it in the lowest-numbered bin that can still

accommodate it. If no bin can accommodate object i, then b is

incremented and a new bin Bb is opened, containing object i. Let 

.

b. Argue that the optimal number of bins required is at least ⌈S⌉.

c. Argue that the first-fit heuristic leaves at most one bin at most half

full.

d. Prove that the number of bins used by the first-fit heuristic never

exceeds ⌈2S⌉.

e. Prove an approximation ratio of 2 for the first-fit heuristic.

f. Give an efficient implementation of the first-fit heuristic, and analyze

its running time.

35-2     Approximating the size of a maximum clique

Let G = (V, E) be an undirected graph. For any k ≥ 1, define G(k) to be

the undirected graph (V (k), E(k)), where V (k) is the set of all ordered

k-tuples of vertices from V and E(k) is defined so that (v1, v2, … , vk) is

adjacent to (w1, w2, … , wk) if and only if for i = 1, 2, … , k, either

vertex vi is adjacent to wi in G, or else vi = wi.

a. Prove that the size of the maximum clique in G(k) is equal to the kth

power of the size of the maximum clique in G.

b. Argue that if there is an approximation algorithm that has a constant

approximation ratio for finding a maximum-size clique, then there is a

polynomial-time approximation scheme for the problem.

35-3     Weighted set-covering problem
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Suppose that sets have weights in the set-covering problem, so that each

set Si in the family ℱ has an associated weight wi. The weight of a cover

C is . The goal is wish to determine a minimum-weight cover.

(Section 35.3 handles the case in which wi = 1 for all i.)

Show how to generalize the greedy set-covering heuristic in a natural

manner to provide an approximate solution for any instance of the

weighted set-covering problem. Letting d be the maximum size of any

set Si, show that your heuristic has an approximation ratio of 

.

35-4     Maximum matching

Recall that for an undirected graph G, a matching is a set of edges such

that no two edges in the set are incident on the same vertex. Section 25.1

showed how to find a maximum matching in a bipartite graph, that is, a

matching such that no other matching in G contains more edges. This

problem examines matchings in undirected graphs that are not required

to be bipartite.

a. Show that a maximal matching need not be a maximum matching by

exhibiting an undirected graph G and a maximal matching M in G

that is not a maximum matching. (Hint: You can find such a graph

with only four vertices.)

b. Consider a connected, undirected graph G = (V, E). Give an O(E)-

time greedy algorithm to find a maximal matching in G.

This problem concentrates on a polynomial-time approximation

algorithm for maximum matching. Whereas the fastest known

algorithm for maximum matching takes superlinear (but polynomial)

time, the approximation algorithm here will run in linear time. You will

show that the linear-time greedy algorithm for maximal matching in

part (b) is a 2-approximation algorithm for maximum matching.

c. Show that the size of a maximum matching in G is a lower bound on

the size of any vertex cover for G.
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d. Consider a maximal matching M in G = (V, E). Let T = {v ∈ V :

some edge in M is incident on v}. What can you say about the

subgraph of G induced by the vertices of G that are not in T ?

e. Conclude from part (d) that 2 |M| is the size of a vertex cover for G.

f. Using parts (c) and (e), prove that the greedy algorithm in part (b) is a

2-approximation algorithm for maximum matching.

35-5     Parallel machine scheduling

In the parallel-machine-scheduling problem, the input has two parts: n

jobs, J1, J2, … , Jn, where each job Jk has an associated nonnegative

processing time of pk, and m identical machines, M1, M2, … , Mm. Any

job can run on any machine. A schedule specifies, for each job Jk, the

machine on which it runs and the time period during which it runs.

Each job Jk must run on some machine Mi for pk consecutive time

units, and during that time period no other job may run on Mi. Let Ck

denote the completion time of job Jk, that is, the time at which job Jk

completes processing. Given a schedule, define Cmax = max {Cj : 1 ≤ j ≤

n} to be the makespan of the schedule. The goal is to find a schedule

whose makespan is minimum.

For example, consider an input with two machines M1 and M2, and

four jobs J1, J2, J3, and J4 with p1 = 2, p2 = 12, p3 = 4, and p4 = 5.

Then one possible schedule runs, on machine M1, job J1 followed by

job J2, and on machine M2, job J4 followed by job J3. For this

schedule, C1 = 2, C2 = 14, C3 = 9, C4 = 5, and Cmax = 14. An optimal

schedule runs job J2 on machine M1 and jobs J1, J3, and J4 on

machine M2. For this schedule, we have C1 = 2, C2 = 12, C3 = 6, and

C4 = 11, and so Cmax = 12.

Given the input to a parallel-machine-scheduling problem, let 

denote the makespan of an optimal schedule.

a. Show that the optimal makespan is at least as large as the greatest

processing time, that is,
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b. Show that the optimal makespan is at least as large as the average

machine load, that is,

Consider the following greedy algorithm for parallel machine

scheduling: whenever a machine is idle, schedule any job that has not

yet been scheduled.

c. Write pseudocode to implement this greedy algorithm. What is the

running time of your algorithm?

d. For the schedule returned by the greedy algorithm, show that

Conclude that this algorithm is a polynomial-time 2-approximation

algorithm.

35-6     Approximating a maximum spanning tree

Let G = (V, E) be an undirected graph with distinct edge weights w(u, v)

on each edge (u, v) ∈ E. For each vertex v ∈ V, denote by max(v) the

maximum-weight edge incident on that vertex. Let SG= {max(v) : v ∈ V

} be the set of maximum-weight edges incident on each vertex, and let

TG be the maximum-weight spanning tree of G, that is, the spanning

tree of maximum total weight. For any subset of edges E′ ⊆ E, define

w(E′) = Σ(u,v)∈E′ w(u, v).

a. Give an example of a graph with at least 4 vertices for which SG =

TG.

b. Give an example of a graph with at least 4 vertices for which SG ≠

TG.
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c. Prove that SG ⊆ TG for any graph G.

d. Prove that w(SG) ≥ w(TG)/2 for any graph G.

e. Give an O(V + E)-time algorithm to compute a 2-approximation to

the maximum spanning tree.

35-7     An approximation algorithm for the 0-1 knapsack problem

Recall the knapsack problem from Section 15.2. The input includes n

items, where the ith item is worth vi dollars and weighs wi pounds. The

input also includes the capacity of a knapsack, which is W pounds.

Here, we add the further assumptions that each weight wi is at most W

and that the items are indexed in monotonically decreasing order of

their values: v1 ≥ v2 ≥ ⋯ ≥ vn.

In the 0-1 knapsack problem, the goal is to find a subset of the items

whose total weight is at most W and whose total value is maximum. The

fractional knapsack problem is like the 0-1 knapsack problem, except

that a fraction of each item may be put into the knapsack, rather than

either all or none of each item. If a fraction xi of item i goes into the

knapsack, where 0 ≤ xi ≤ 1, it contributes xiwi to the weight of the

knapsack and adds value xivi. The goal of this problem is to develop a

polynomial-time 2-approximation algorithm for the 0-1 knapsack

problem.

In order to design a polynomial-time algorithm, let’s consider

restricted instances of the 0-1 knapsack problem. Given an instance I of

the knapsack problem, form restricted instances Ij, for j = 1, 2, … , n, by

removing items 1, 2, … , j − 1 and requiring the solution to include item

j (all of item j in both the fractional and 0-1 knapsack problems). No

items are removed in instance I1. For instance Ij, let Pj denote an

optimal solution to the 0-1 problem and Qj denote an optimal solution

to the fractional problem.

a. Argue that an optimal solution to instance I of the 0-1 knapsack

problem is one of {P1, P2, … , Pn}.
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b. Prove that to find an optimal solution Qj to the fractional problem

for instance Ij, you can include item j and then use the greedy

algorithm in which each step takes as much as possible of the

unchosen item with the maximum value per pound vi/wi in the set {j +

1, j + 2, … , n}.

c. Prove that there is always an optimal solution Qj to the fractional

problem for instance Ij that includes at most one item fractionally.

That is, for all items except possibly one, either all of the item or none

of the item goes into the knapsack.

d. Given an optimal solution Qj to the fractional problem for instance

Ij, form solution Rj from Qj by deleting any fractional items from Qj.

Let v(S) denote the total value of items taken in a solution S. Prove

that v(Rj) ≥ v(Qj)/2 ≥ v(Pj)/2.

e. Give a polynomial-time algorithm that returns a maximum-value

solution from the set {R1, R2, … , Rn}, and prove that your algorithm

is a polynomial-time 2-approximation algorithm for the 0-1 knapsack

problem.

Chapter notes

Although methods that do not necessarily compute exact solutions have

been known for thousands of years (for example, methods to

approximate the value of π), the notion of an approximation algorithm

is much more recent. Hochbaum [221] credits Garey, Graham, and

Ullman [175] and Johnson [236] with formalizing the concept of a

polynomial-time approximation algorithm. The first such algorithm is

often credited to Graham [197].

Since this early work, thousands of approximation algorithms have

been designed for a wide range of problems, and there is a wealth of

literature on this field. Texts by Ausiello et al. [29], Hochbaum [221],

Vazirani [446], and Williamson and Shmoys [459] deal exclusively with

approximation algorithms, as do surveys by Shmoys [409] and Klein
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and Young [256]. Several other texts, such as Garey and Johnson [176]

and Papadimitriou and Steiglitz [353], have significant coverage of

approximation algorithms as well. Books edited by Lawler, Lenstra,

Rinnooy Kan, and Shmoys [277] and by Gutin and Punnen [204]

provide extensive treatments of approximation algorithms and heuristics

for the traveling-salesperson problem.

Papadimitriou and Steiglitz attribute the algorithm APPROX-

VERTEX-COVER to F. Gavril and M. Yannakakis. The vertex-cover

problem has been studied extensively (Hochbaum [221] lists 16 different

approximation algorithms for this problem), but all the approximation

ratios are at least 2 − o(1).

The algorithm APPROX-TSP-TOUR appears in a paper by

Rosenkrantz, Stearns, and Lewis [384]. Christofides improved on this

algorithm and gave a 3/2-approximation algorithm for the traveling-

salesperson problem with the triangle inequality. Arora [23] and

Mitchell [330] have shown that if the points lie in the euclidean plane,

there is a polynomial-time approximation scheme. Theorem 35.3 is due

to Sahni and Gonzalez [392].

The algorithm APPROX-SUBSET-SUM and its analysis are loosely

modeled after related approximation algorithms for the knapsack and

subset-sum problems by Ibarra and Kim [234].

Problem 35-7 is a combinatorial version of a more general result on

approximating knapsack-type integer programs by Bienstock and

McClosky [55].

The randomized algorithm for MAX-3-CNF satisfiability is implicit

in the work of Johnson [236]. The weighted vertex-cover algorithm is by

Hochbaum [220]. Section 35.4 only touches on the power of

randomization and linear programming in the design of approximation

algorithms. A combination of these two ideas yields a technique called

“randomized rounding,” which formulates a problem as an integer

linear program, solves the linear-programming relaxation, and

interprets the variables in the solution as probabilities. These

probabilities then help guide the solution of the original problem. This

technique was first used by Raghavan and Thompson [374], and it has

had many subsequent uses. (See Motwani, Naor, and Raghavan [335]

for a survey.) Several other notable ideas in the field of approximation
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algorithms include the primal-dual method (see Goemans and

Williamson [184] for a survey), finding sparse cuts for use in divide-and-

conquer algorithms [288], and the use of semidefinite programming

[183].

As mentioned in the chapter notes for Chapter 34, results in

probabilistically checkable proofs have led to lower bounds on the

approximability of many problems, including several in this chapter. In

addition to the references there, the chapter by Arora and Lund [26]

contains a good description of the relationship between probabilistically

checkable proofs and the hardness of approximating various problems.

1 When the approximation ratio is independent of n, we use the terms “approximation ratio of

ρ” and “ρ-approximation algorithm,” indicating no dependence on n.
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Part VIII    Appendix: Mathematical Background
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Introduction

When you analyze algorithms, you often need to draw upon a body of

mathematical tools. Some of these tools are as simple as high-school

algebra, but others may be new to you. In Part I, we saw how to

manipulate asymptotic notations and solve recurrences. This appendix

comprises a compendium of several other concepts and methods used in

analyzing algorithms. As noted in the introduction to Part I, you may

have seen much of the material in this appendix before having read this

book, although some of the specific notational conventions appearing

here might differ from those you have seen elsewhere. Hence, you should

treat this appendix as reference material. As in the rest of this book,

however, we have included exercises and problems, in order for you to

improve your skills in these areas.

Appendix A offers methods for evaluating and bounding

summations, which occur frequently in the analysis of algorithms. Many

of the formulas here appear in any calculus text, but you will find it

convenient to have these methods compiled in one place.

Appendix B contains basic definitions and notations for sets,

relations, functions, graphs, and trees. It also gives some basic properties

of these mathematical objects.

Appendix C begins with elementary principles of counting:

permutations, combinations, and the like. The remainder contains

definitions and properties of basic probability. Most of the algorithms in

this book require no probability for their analysis, and thus you can

easily omit the latter sections of the chapter on a first reading, even
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without skimming them. Later, when you encounter a probabilistic

analysis that you want to understand better, you will find Appendix C

well organized for reference purposes.

Appendix D defines matrices, their operations, and some of their

basic properties. You have probably seen most of this material already if

you have taken a course in linear algebra. But you might find it helpful

to have one place to look for notations and definitions.
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A Summations

When an algorithm contains an iterative control construct such as a

while or for loop, you can express its running time as the sum of the

times spent on each execution of the body of the loop. For example,

Section 2.2 argued that the i th iteration of insertion sort took time

proportional to i in the worst case. Adding up the time spent on each

iteration produced the summation (or series) . Evaluating this

summation resulted in a bound of Θ(n2) on the worst-case running time

of the algorithm. This example illustrates why you should know how to

manipulate and bound summations.

Section A.1 lists several basic formulas involving summations.

Section A.2 offers useful techniques for bounding summations. The

formulas in Section A.1 appear without proof, though proofs for some

of them appear in Section A.2 to illustrate the methods of that section.

You can find most of the other proofs in any calculus text.

A.1 Summation formulas and properties

Given a sequence a1, a2, … , an of numbers, where n is a nonnegative

integer, the finite sum a1 + a2 + … + an can be expressed as . If n

= 0, the value of the summation is defined to be 0. The value of a finite

series is always well defined, and the order in which its terms are added

does not matter.
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Given an infinite sequence a1, a2, … of numbers, we can write their

infinite sum a1 + a2 + … as , which means . If the limit

does not exist, the series diverges, and otherwise, it converges. The terms

of a convergent series cannot always be added in any order. You can,

however, rearrange the terms of an absolutely convergent series, that is, a

series  for which the series  also converges.

Linearity

For any real number c and any finite sequences a1, a2, … , an and b1,

b2, … , bn,

The linearity property also applies to infinite convergent series.

The linearity property applies to summations incorporating

asymptotic notation. For example,

In this equation, the Θ-notation on the left-hand side applies to the

variable k, but on the right-hand side, it applies to n. Such

manipulations also apply to infinite convergent series.

Arithmetic series

The summation

is an arithmetic series and has the value
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A general arithmetic series includes an additive constant a ≥ 0 and a

constant coefficient b > 0 in each term, but has the same total

asymptotically:

Sums of squares and cubes

The following formulas apply to summations of squares and cubes:

Geometric series

For real x ≠ 1, the summation

is a geometric series and has the value

The infinite decreasing geometric series occurs when the summation is

infinite and |x| < 1:

If we assume that 00 = 1, these formulas apply even when x = 0.

Harmonic series

For positive integers n, the nth harmonic number is
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Inequalities (A.20) and (A.21) on page 1150 provide the stronger

bounds

Integrating and differentiating series

Integrating or differentiating the formulas above yields additional

formulas. For example, differentiating both sides of the infinite

geometric series (A.7) and multiplying by x gives

Telescoping series

For any sequence a0, a1, … , an,

since each of the terms a1, a2, … , an−1 is added in exactly once and

subtracted out exactly once. We say that the sum telescopes. Similarly,

As an example of a telescoping sum, consider the series

Rewriting each term as
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gives

Reindexing summations

A series can sometimes be simplified by changing its index, often

reversing the order of summation. Consider the series . Because

the terms in this summation are an, an−1, … , a0, we can reverse the

order of indices by letting j = n − k and rewrite this summation as

Generally, if the summation index appears in the body of the sum with a

minus sign, it’s worth thinking about reindexing.

As an example, consider the summation

The index k appears with a negative sign in 1/(n − k + 1). And indeed,

we can simplify this summation, this time setting j = n − k + 1, yielding

which is just the harmonic series (A.8).

Products

The finite product a1a2 … an can be expressed as

If n = 0, the value of the product is defined to be 1. You can convert a

formula with a product to a formula with a summation by using the

identity
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Exercises

A.1-1

Prove that  by using the linearity property of

summations.

A.1-2

Find a simple formula for .

A.1-3

Interpret the decimal number 111,111,111 in light of equation (A.6).

A.1-4

Evaluate the infinite series .

A.1-5

Let c ≥ 0 be a constant. Show that .

A.1-6

Show that  for |x| < 1.

A.1-7

Prove that . (Hint: Show the asymptotic upper

and lower bounds separately.)

★ A.1-8

Show that  by manipulating the harmonic

series.

★ A.1-9

Show that .

★ A.1-10

Evaluate the sum .
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★ A.1-11

Evaluate the product .

A.2 Bounding summations

You can choose from several techniques to bound the summations that

describe the running times of algorithms. Here are some of the most

frequently used methods.

Mathematical induction

The most basic way to evaluate a series is to use mathematical

induction. As an example, let’s prove that the arithmetic series 

evaluates to n(n + 1)/2. For n = 1, we have that n(n + 1)/2 = 1 · 2/2 = 1,

which equals . With the inductive assumption that it holds for n,

we prove that it holds for n + 1. We have

You don’t always need to guess the exact value of a summation in

order to use mathematical induction. Instead, you can use induction to

prove an upper or lower bound on a summation. As an example, let’s

prove the asymptotic upper bound . More specifically, we’ll

prove that  for some constant c. For the initial condition n =

0, we have  as long as c ≥ 1. Assuming that the bound holds

for n, we prove that it holds for n + 1. We have
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as long as (1/3 + 1/c) ≤ 1 or, equivalently, c ≥ 3/2. Thus, , as

we wished to show.

You need to take care when using asymptotic notation to prove

bounds by induction. Consider the following fallacious proof that 

. Certainly, . Assuming that the bound holds for

n, we now prove it for n + 1:

The bug in the argument is that the “constant” hidden by the “big-oh”

grows with n and thus is not constant. We have not shown that the same

constant works for all n.

Bounding the terms

You can sometimes obtain a good upper bound on a series by bounding

each term of the series, and it often suffices to use the largest term to

bound the others. For example, a quick upper bound on the arithmetic

series (A.1) is

In general, for a series , if we let amax = max {ak : 1 ≤ k ≤ n}, then

The technique of bounding each term in a series by the largest term

is a weak method when the series can in fact be bounded by a geometric
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series. Given the series , suppose that ak+1/ak ≤ r for all k ≥ 0,

where 0 < r < 1 is a constant. You can bound the sum by an infinite

decreasing geometric series, since ak ≤ a0rk, and thus

You can apply this method to bound the summation . In

order to start the summation at k = 0, rewrite it as . The

first term (a0) is 1/3, and the ratio (r) of consecutive terms is

for all k ≥ 0. Thus, we have

A common bug in applying this method is to show that the ratio of

consecutive terms is less than 1 and then to assume that the summation

is bounded by a geometric series. An example is the infinite harmonic

series, which diverges since

The ratio of the (k+1)st and kth terms in this series is k/(k+1) < 1, but

the series is not bounded by a decreasing geometric series. To bound a

series by a geometric series, you need to show that there is an r < 1,

which is a constant, such that the ratio of all pairs of consecutive terms
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never exceeds r. In the harmonic series, no such r exists because the

ratio becomes arbitrarily close to 1.

Splitting summations

One way to obtain bounds on a difficult summation is to express the

series as the sum of two or more series by partitioning the range of the

index and then to bound each of the resulting series. For example, let’s

find a lower bound on the arithmetic series , which we have already

seen has an upper bound of n2. You might attempt to bound each term

in the summation by the smallest term, but since that term is 1, you

would get a lower bound of n for the summation—far off from the

upper bound of n2.

You can obtain a better lower bound by first splitting the

summation. Assume for convenience that n is even, so that

which is an asymptotically tight bound, since .

For a summation arising from the analysis of an algorithm, you can

sometimes split the summation and ignore a constant number of the

initial terms. Generally, this technique applies when each term ak in a

summation  is independent of n. Then for any constant k0 > 0,

you can write

since the initial terms of the summation are all constant and there are a

constant number of them. You can then use other methods to bound 
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. This technique applies to infinite summations as well. For

example, let’s find an asymptotic upper bound on . The ratio of

consecutive terms is

if k ≥ 3. Thus, you can split the summation into

The technique of splitting summations can help determine

asymptotic bounds in much more difficult situations. For example, here

is one way to obtain a bound of O(lg n) on the harmonic series (A.9):

The idea is to split the range 1 to n into ⌊lg n⌋ + 1 pieces and upper-

bound the contribution of each piece by 1. For i = 0, 1, … , ⌊lg n⌋, the

ith piece consists of the terms starting at 1/2i and going up to but not

including 1/2i+1. The last piece might contain terms not in the original

harmonic series, giving
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Approximation by integrals

When a summation has the form , where f (k) is a

monotonically increasing function, you can approximate it by integrals:

Figure A.1 justifies this approximation. The summation is represented

as the area of the rectangles in the figure, and the integral is the blue

region under the curve. When f (k) is a monotonically decreasing

function, you can use a similar method to provide the bounds

The integral approximation (A.19) can be used to prove the tight

bounds in inequality (A.10) for the nth harmonic number. The lower

bound is

For the upper bound, the integral approximation gives

www.konkur.in

Telegram: @uni_k



Exercises

A.2-1

Show that  is bounded above by a constant.

A.2-2

Find an asymptotic upper bound on the summation
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Figure A.1 Approximation of  by integrals. The area of each rectangle is shown within

the rectangle, and the total rectangle area represents the value of the summation. The integral is

represented by the blue area under the curve. Comparing areas in (a) gives the lower bound 

. Shifting the rectangles one unit to the right gives the upper bound 

 in (b).

A.2-3

Show that the nth harmonic number is Ω(lg n) by splitting the

summation.

A.2-4

Approximate  with an integral.
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A.2-5

Why can’t you use the integral approximation (A.19) directly on 

 to obtain an upper bound on the nth harmonic number?

Problems

A-1 Bounding summations

Give asymptotically tight bounds on the following summations. Assume

that r ≥ 0 and s ≥ 0 are constants.

a. 

b. 

c. 

Appendix notes

Knuth [259] provides an excellent reference for the material presented

here. You can find basic properties of series in any good calculus book,

such as Apostol [19] or Thomas et al. [433].
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B Sets, Etc.

Many chapters of this book touch on the elements of discrete

mathematics. This appendix reviews the notations, definitions, and

elementary properties of sets, relations, functions, graphs, and trees. If

you are already well versed in this material, you can probably just skim

this chapter.

B.1 Sets

A set is a collection of distinguishable objects, called its members or

elements. If an object x is a member of a set S, we write x ∈ S (read “x

is a member of S” or, more briefly, “x belongs to S”). If x is not a

member of S, we write x ∉ S. To describe a set explicitly, write its

members as a list inside braces. For example, to define a set S to contain

precisely the numbers 1, 2, and 3, write S = {1, 2, 3}. Since 2 belongs to

the set S, we can write 2 ∈ S, and since 4 is not a member, we can write

4 ∉ S. A set cannot contain the same object more than once,1 and its

elements are not ordered. Two sets A and B are equal, written A = B, if

they contain the same elements. For example, {1, 2, 3, 1} = {1, 2, 3} =

{3, 2, 1}.

We adopt special notations for frequently encountered sets:

Ø denotes the empty set, that is, the set containing no members.

ℤ denotes the set of integers, that is, the set {… −2, −1, 0, 1,

2,…}.
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ℝ denotes the set of real numbers.

ℕ denotes the set of natural numbers, that is, the set {0, 1, 2,…}.2

If all the elements of a set A are contained in a set B, that is, if x ∈ A

implies x ∈ B, then we write A ⊆ B and say that A is a subset of B. A

set A is a proper subset of set B, written A ⊂ B, if A ⊆ B but A ≠ B.

(Some authors use the symbol “⊂” to denote the ordinary subset

relation, rather than the proper-subset relation.) Every set is a subset of

itself: A ⊆ A for any set A. For two sets A and B, we have A = B if and

only if A ⊆ B and B ⊆ A. The subset relation is transitive (see page

1159): for any three sets A, B, and C, if A ⊆ B and B ⊆ C, then A ⊆ C.

The proper-subset relation is transitive as well. The empty set is a subset

of all sets: for any set A, we have Ø ⊆ A.

Sets can be specified in terms of other sets. Given a set A, a set B ⊆

A can be defined by stating a property that distinguishes the elements of

B. For example, one way to define the set of even integers is {x : x ∈ ℤ

and x/2 is an integer}. The colon in this notation is read “such that.”

(Some authors use a vertical bar in place of the colon.)

Given two sets A and B, set operations define new sets:

The intersection of sets A and B is the set

A ∩ B = {x : x ∈ A and x ∈ B}.

The union of sets A and B is the set

A ∪ B = {x : x ∈ A or x ∈ B}.

The difference between two sets A and B is the set

A − B = {x : x ∈ A and x ∉ B}.

Set operations obey the following laws:

Empty set laws:

A ∩ Ø = Ø,

A ∪ Ø = A.
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Idempotency laws:

A ∩ A = A,

A ∪ A = A.

Commutative laws:

A ∩ B = B ∩ A,

A ∪ B = B ∪ A.

Figure B.1 A Venn diagram illustrating the first of DeMorgan’s laws (B.2). Each of the sets A, B,

and C is represented as a circle.

Associative laws:

A ∩ (B ∩ C) = (A ∩ B) ∩ C,

A ∪ (B ∪ C) = (A ∪ B) ∪ C.

Distributive laws:

Absorption laws:

A ∩ (A ∪ B) = A,

A ∪ (A ∩ B) = A.

DeMorgan’s laws:
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Figure B.1 illustrates the first of DeMorgan’s laws, using a Venn

diagram: a graphical picture in which sets are represented as regions of

the plane.

Often, all the sets under consideration are subsets of some larger set

U called the universe. For example, when considering various sets made

up only of integers, the set ℤ of integers is an appropriate universe.

Given a universe U, we define the complement of a set A as Ā = U − A =

{x : x ∈ U and x ∉ A}. For any set A ⊆ U, we have the following laws:

= A,

A ∩ Ā = Ø,

A ∪ Ā = U.

An equivalent way to express DeMorgan’s laws (B.2) uses set

complements. For any two sets B, C ⊆ U, we have

B ∩ C = B ∪ C,

B ∪ C = B ∩ C.

Two sets A and B are disjoint if they have no elements in common,

that is, if A ∩ B = Ø. A collection of sets S1, S2, … , either finite or

infinite, is a set of sets, in which each member is a set Si. A collection S

= {Si} of nonempty sets forms a partition of a set S if

the sets are pairwise disjoint, that is, Si, Sj ∈ S and i ≠ j imply Si

∩ Sj = Ø,

their union is S, that is,

In other words, S forms a partition of S if each element of S appears in

exactly one set Si ∈ S.

The number of elements in a set is the cardinality (or size) of the set,

denoted |S|. Two sets have the same cardinality if their elements can be

put into a one-to-one correspondence. The cardinality of the empty set
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is |Ø| = 0. If the cardinality of a set is a natural number, the set is finite,

and otherwise, it is infinite. An infinite set that can be put into a one-to-

one correspondence with the natural numbers ℕ is countably infinite,

and otherwise, it is uncountable. For example, the integers ℤ are

countable, but the reals ℝ are uncountable.

For any two finite sets A and B, we have the identity

from which we can conclude that

|A ∪ B| ≤ |A| + |B|.

If A and B are disjoint, then |A ∩ B| = 0 and thus |A ∪ B| = |A| + |B|. If

A ⊆ B, then |A| ≤ |B|.

A finite set of n elements is sometimes called an n-set. A 1-set is

called a singleton. A subset of k elements of a set is sometimes called a

k-subset.

We denote the set of all subsets of a set S, including the empty set

and S itself, by 2S, called the power set of S. For example, 2{a,b} = {Ø,

{a}, {b}, {a, b}}. The power set of a finite set S has cardinality 2|S| (see

Exercise B.1-5).

We sometimes care about setlike structures in which the elements are

ordered. An ordered pair of two elements a and b is denoted (a, b) and is

defined formally as the set (a, b) = {a, {a, b}}. Thus, the ordered pair (a,

b) is not the same as the ordered pair (b, a).

The Cartesian product of two sets A and B, denoted A × B, is the set

of all ordered pairs such that the first element of the pair is an element

of A and the second is an element of B. More formally,

A × B = {(a, b) : a ∈ A and b ∈ B}.

For example, {a, b}×{a, b, c} = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c)}.

When A and B are finite sets, the cardinality of their Cartesian product

is

The Cartesian product of n sets A1, A2, … , An is the set of n-tuples
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A1 × A2 × … × An = {(a1, a2, … , an) : ai ∈ Ai for i = 1, 2, … , n},

whose cardinality is

|A1 × A2 × … × An| = |A1| · |A2| · |An|

if all sets Ai are finite. We denote an n-fold Cartesian product over a

single set A by the set

whose cardinality is |An| = |A|n if A is finite. We can also view an n-tuple

as a finite sequence of length n (see page 1162).

Intervals are continuous sets of real numbers. We denote them with

parentheses and/or brackets. Given real numbers a and b, the closed

interval [a, b] is the set {x ∈ ℝ : a ≤ x ≤ b} of reals between a and b,

including both a and b. (If a > b, this definition implies that [a, b] = Ø.)

The open interval (a, b) = {x ∈ ℝ : a < x < b} omits both of the

endpoints from the set. There are two half-open intervals [a, b) = {x ∈ ℝ

: a ≤ x < b} and (a, b] = {x ∈ ℝ : a < x ≤ b}, each of which excludes one

endpoint.

Intervals can also be defined on the integers by replacing ℝ in the

these definitions by ℤ. Whether the interval is defined over the reals or

integers can usually be inferred from context.

Exercises

B.1-1

Draw Venn diagrams that illustrate the first of the distributive laws

(B.1).

B.1-2

Prove the generalization of DeMorgan’s laws to any finite collection of

sets:

A1 ∩ A2 ∩ … ∩ An = A1 ∪ A2 ∪ … ∪ An,

=
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A1 ∪ A2 ∪ … ∪ An A1 ∩ A2 ∩ … ∩ An.

★ B.1-3

Prove the generalization of equation (B.3), which is called the principle

of inclusion and exclusion:

|A1 ∪ A2 ∪ … ∪ An| =

|A1| + |A2| + … + |An|

− |A1 ∩ A2| − |A1 ∩ A3| − … (all pairs)

+ |A1 ∩ A2 ∩ A3| + … (all triples)

⋮

+ (−1)n−1 |A1 ∩ A2 ∩ … ∩ An|.

B.1-4

Show that the set of odd natural numbers is countable.

B.1-5

Show that for any finite set S, the power set 2S has 2|S| elements (that is,

there are 2|S| distinct subsets of S).

B.1-6

Give an inductive definition for an n-tuple by extending the set-theoretic

definition for an ordered pair.

B.2 Relations

A binary relation  R on two sets A and B is a subset of the Cartesian

product A×B. If (a, b) ∈ R, we sometimes write a R b. When we say

that R is a binary relation on a set A, we mean that R is a subset of A ×

A. For example, the “less than” relation on the natural numbers is the

set {(a, b) : a, b ∈ ℕ and a < b}. An n-ary relation on sets A1, A2, … ,

An is a subset of A1 × A2 × … × An.

A binary relation R ⊆ A × A is reflexive if
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a R a

for all a ∈ A. For example, “=” and “≤” are reflexive relations on ℕ, but

“<” is not. The relation R is symmetric if

a R b implies b R a

for all a, b ∈ A. For example, “=” is symmetric, but “<” and “≤” are

not. The relation R is transitive if

a R b and b R c imply a R c

for all a, b, c ∈ A. For example, the relations “<,” “≤,” and “=” are

transitive, but the relation R = {(a, b) : a, b ∈ ℕ and a = b − 1} is not,

since 3 R 4 and 4 R 5 do not imply 3 R 5.

A relation that is reflexive, symmetric, and transitive is an equivalence

relation. For example, “=” is an equivalence relation on the natural

numbers, but “<” is not. If R is an equivalence relation on a set A, then

for a ∈ A, the equivalence class of a is the set [a] = {b ∈ A : a R b}, that

is, the set of all elements equivalent to a. For example, if we define R =

{(a, b) : a, b ∈ ℕ and a + b is an even number}, then R is an equivalence

relation, since a + a is even (reflexive), a + b is even implies b + a is even

(symmetric), and a + b is even and b + c is even imply a + c is even

(transitive). The equivalence class of 4 is [4] = {0, 2, 4, 6,…}, and the

equivalence class of 3 is [3] = {1, 3, 5, 7,…}. A basic theorem of

equivalence classes is the following.

Theorem B.1 (An equivalence relation is the same as a partition)

The equivalence classes of any equivalence relation R on a set A form a

partition of A, and any partition of A determines an equivalence

relation on A for which the sets in the partition are the equivalence

classes.

Proof   For the first part of the proof, we must show that the equivalence

classes of R are nonempty, pairwise-disjoint sets whose union is A.

Because R is reflexive, a ∈ [a], and so the equivalence classes are

nonempty. Moreover, since every element a ∈ A belongs to the

equivalence class [a], the union of the equivalence classes is A. It

remains to show that the equivalence classes are pairwise disjoint, that
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is, if two equivalence classes [a] and [b] have an element c in common,

then they are in fact the same set. Suppose that a R c and b R c.

Symmetry gives that c R b and, by transitivity, a R b. Thus, we have x R

a for any arbitrary element x ∈ [a] and, by transitivity, x R b, and thus

[a] ⊆ [b]. Similarly, [b] ⊆ [a], and thus [a] = [b].

For the second part of the proof, let A = {Ai} be a partition of A,

and define R = {(a, b) : there exists i such that a ∈ Ai and b ∈ Ai}. We

claim that R is an equivalence relation on A. Reflexivity holds, since a ∈

Ai implies a R a. Symmetry holds, because if a R b, then a and b belong

to the same set Ai, and hence b R a. If a R b and b R c, then all three

elements are in the same set Ai, and thus a R c and transitivity holds. To

see that the sets in the partition are the equivalence classes of R, observe

that if a ∈ Ai, then x ∈ [a] implies x ∈ Ai, and x ∈ Ai implies x ∈ [a].

▪

A binary relation R on a set A is antisymmetric if

a R b and b R a imply a = b.

For example, the “≤” relation on the natural numbers is antisymmetric,

since a ≤ b and b ≤ a imply a = b. A relation that is reflexive,

antisymmetric, and transitive is a partial order, and we call a set on

which a partial order is defined a partially ordered set. For example, the

relation “is a descendant of” is a partial order on the set of all people (if

we view individuals as being their own descendants).

In a partially ordered set A, there may be no single “maximum”

element a such that b R a for all b ∈ A. Instead, the set may contain

several maximal elements a such that for no b ∈ A, where b ≠ a, is it the

case that a R b. For example, a collection of different-sized boxes may

contain several maximal boxes that don’t fit inside any other box, yet it

has no single “maximum” box into which any other box will fit.3

A relation R on a set A is a total relation if for all a, b ∈ A, we have a

R b or b R a (or both), that is, if every pairing of elements of A is related

by R. A partial order that is also a total relation is a total order or linear

order. For example, the relation “≤” is a total order on the natural
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numbers, but the “is a descendant of” relation is not a total order on

the set of all people, since there are individuals neither of whom is

descended from the other. A total relation that is transitive, but not

necessarily either symmetric or antisymmetric, is a total preorder.

Exercises

B.2-1

Prove that the subset relation “⊆” on all subsets of ℤ is a partial order

but not a total order.

B.2-2

Show that for any positive integer n, the relation “equivalent modulo n”

is an equivalence relation on the integers. (We say that a = b (mod n) if

there exists an integer q such that a − b = qn.) Into what equivalence

classes does this relation partition the integers?

B.2-3

Give examples of relations that are

a. reflexive and symmetric but not transitive,

b. reflexive and transitive but not symmetric,

c. symmetric and transitive but not reflexive.

B.2-4

Let S be a finite set, and let R be an equivalence relation on S × S.

Show that if in addition R is antisymmetric, then the equivalence classes

of S with respect to R are singletons.

B.2-5

Professor Narcissus claims that if a relation R is symmetric and

transitive, then it is also reflexive. He offers the following proof. By

symmetry, a R b implies b R a. Transitivity, therefore, implies a R a. Is

the professor correct?

B.3 Functions
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Given two sets A and B, a function  f is a binary relation on A and B

such that for all a ∈ A, there exists precisely one b ∈ B such that (a, b)

∈ f. The set A is called the domain of f, and the set B is called the

codomain of f. We sometimes write f : A → B, and if (a, b) ∈ f, we write

b = f (a), since the choice of a uniquely determines b.

Intuitively, the function f assigns an element of B to each element of

A. No element of A is assigned two different elements of B, but the

same element of B can be assigned to two different elements of A. For

example, the binary relation

f = {(a, b) : a, b ∈ ℕ and b = a mod 2}

is a function f : → {0, 1}, since for each natural number a, there is

exactly one value b in {0, 1} such that b = a mod 2. For this example, 0

= f (0), 1 = f (1), 0 = f (2), 1 = f (3), etc. In contrast, the binary relation

g = {(a, b) : a, b ∈ ℕ and a + b is even}

is not a function, since (1, 3) and (1, 5) are both in g, and thus for the

choice a = 1, there is not precisely one b such that (a, b) ∈ g.

Given a function f : A → B, if b = f (a), we say that a is the argument

of f and that b is the value of f at a. We can define a function by stating

its value for every element of its domain. For example, we might define f

(n) = 2n for n ∈ ℕ, which means f = {(n, 2n) : n ∈ ℕ}. Two functions f

and g are equal if they have the same domain and codomain and if f (a)

= g(a) for all a in the domain.

A finite sequence of length n is a function f whose domain is the set

of n integers {0, 1, … , n − 1}. We often denote a finite sequence by

listing its values in angle brackets: 〈f (0), f (1), … , f (n−1)〉. An infinite

sequence is a function whose domain is the set ℕ of natural numbers.

For example, the Fibonacci sequence, defined by recurrence (3.31), is

the infinite sequence 〈0, 1, 1, 2, 3, 5, 8, 13, 21,…〉.

When the domain of a function f is a Cartesian product, we often

omit the extra parentheses surrounding the argument of f. For example,

if we have a function f : A1 × A2 × … An → B, we write b = f (a1, a2, …

an) instead of writing b = f ((a1, a2, … an)). We also call each ai an
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argument to the function f, though technically f has just a single

argument, which is the n-tuple (a1, a2, … an).

If f : A → B is a function and b = f (a), then we sometimes say that b

is the image of a under f. The image of a set A′ ⊆ A under f is defined by

f (A′) = {b ∈ B : b = f (a) for some a ∈ A′}.

The range of f is the image of its domain, that is, f (A). For example, the

range of the function f : ℕ → ℕ defined by f (n) = 2n is f(ℕ) = {m : m =

2n for some n ∈ ℕ}, in other words, the set of nonnegative even

integers.

A function is a surjection if its range is its codomain. For example,

the function f (n) = ⌊n/2⌋ is a surjective function from ℕ to ℕ, since

every element in ℕ appears as the value of f for some argument. In

contrast, the function f (n) = 2n is not a surjective function from ℕ to

ℕ, since no argument to f can produce any odd natural number as a

value. The function f (n) = 2n is, however, a surjective function from the

natural numbers to the even numbers. A surjection f : A → B is

sometimes described as mapping A onto B. When we say that f is onto,

we mean that it is surjective.

A function f : A → B is an injection if distinct arguments to f produce

distinct values, that is, if a ≠ a′ implies f (a) ≠ f (a′). For example, the

function f (n) = 2n is an injective function from ℕ to ℕ, since each even

number b is the image under f of at most one element of the domain,

namely b/2. The function f (n) = ⌊n/2⌋ is not injective, since the value 1 is

produced by two arguments: f (2) = 1 and f (3) = 1. An injection is

sometimes called a one-to-one function.

A function f : A → B is a bijection if it is injective and surjective. For

example, the function f (n) = (−1)n⌈n/2⌉ is a bijection from ℕ to ℤ:

0 → 0,

1 → −1,

2 → 1,

3 → −2,

4 → 2,
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The function is injective, since no element of ℤ is the image of more

than one element of ℕ. It is surjective, since every element of ℤ appears

as the image of some element of ℕ. Hence, the function is bijective. A

bijection is sometimes called a one-to-one correspondence, since it pairs

elements in the domain and codomain. A bijection from a set A to itself

is sometimes called a permutation.

When a function f is bijective, we define its inverse f−1 as

f −1(b) = a if and only if f (a) = b.

For example, the inverse of the function f (n) = (−1)n⌈n/2⌉ is

Exercises

B.3-1

Let A and B be finite sets, and let f : A → B be a function. Show the

following:

a. If f is injective, then |A| ≤ |B|.

b. If f is surjective, then |A| ≥ |B|.

B.3-2

Is the function f (x) = x + 1 bijective when the domain and the

codomain are the set ℕ? Is it bijective when the domain and the

codomain are the set ℤ?

B.3-3

Give a natural definition for the inverse of a binary relation such that if

a relation is in fact a bijective function, its relational inverse is its

functional inverse.

★ B.3-4
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Give a bijection from ℤ to ℤ × ℤ.

B.4 Graphs

This section presents two kinds of graphs: directed and undirected.

Certain definitions in the literature differ from those given here, but for

the most part, the differences are slight. Section 20.1 shows how to

represent graphs in computer memory.

A directed graph (or digraph) G is a pair (V, E), where V is a finite set

and E is a binary relation on V. The set V is called the vertex set of G,

and its elements are called vertices (singular: vertex). The set E is called

the edge set of G, and its elements are called edges. Figure B.2(a) is a

pictorial representation of a directed graph on the vertex set {1, 2, 3, 4,

5, 6}. Vertices are represented by circles in the figure, and edges are

represented by arrows. Self-loops—edges from a vertex to itself—are

possible.

In an undirected graph  G = (V, E), the edge set E consists of

unordered pairs of vertices, rather than ordered pairs. That is, an edge is

a set {u, v}, where u, v ∈ V and u ≠ v. By convention, we use the

notation (u, v) for an edge, rather than the set notation {u, v}, and we

consider (u, v) and (v, u) to be the same edge. In an undirected graph,

self-loops are forbidden, so that every edge consists of two distinct

vertices. Figure B.2(b) shows an undirected graph on the vertex set {1,

2, 3, 4, 5, 6}.
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Figure B.2 Directed and undirected graphs. (a) A directed graph G = (V, E), where V = {1, 2, 3,

4, 5, 6} and E = {(1, 2), (2, 2), (2, 4), (2, 5), (4, 1), (4, 5), (5, 4), (6, 3)}. The edge (2, 2) is a self-

loop. (b) An undirected graph G = (V, E), where V = {1, 2, 3, 4, 5, 6} and E = {(1, 2), (1, 5), (2,

5), (3, 6)}. The vertex 4 is isolated. (c) The subgraph of the graph in part (a) induced by the

vertex set {1, 2, 3, 6}.

Many definitions for directed and undirected graphs are the same,

although certain terms have slightly different meanings in the two

contexts. If (u, v) is an edge in a directed graph G = (V, E), we say that

(u, v) is incident from or leaves vertex u and is incident to or enters vertex

v. For example, the edges leaving vertex 2 in Figure B.2(a) are (2, 2), (2,

4), and (2, 5). The edges entering vertex 2 are (1, 2) and (2, 2). If (u, v) is

an edge in an undirected graph G = (V, E), we say that (u, v) is incident

on vertices u and v. In Figure B.2(b), the edges incident on vertex 2 are

(1, 2) and (2, 5).

If (u, v) is an edge in a graph G = (V, E), we say that vertex v is

adjacent to vertex u. When the graph is undirected, the adjacency

relation is symmetric. When the graph is directed, the adjacency relation

is not necessarily symmetric. If v is adjacent to u in a directed graph, we

can write u → v. In parts (a) and (b) of Figure B.2, vertex 2 is adjacent

to vertex 1, since the edge (1, 2) belongs to both graphs. Vertex 1 is not

adjacent to vertex 2 in Figure B.2(a), since the edge (2, 1) is absent.

The degree of a vertex in an undirected graph is the number of edges

incident on it. For example, vertex 2 in Figure B.2(b) has degree 2. A

vertex whose degree is 0, such as vertex 4 in Figure B.2(b), is isolated. In

a directed graph, the out-degree of a vertex is the number of edges

leaving it, and the in-degree of a vertex is the number of edges entering

it. The degree of a vertex in a directed graph is its in-degree plus its out-

degree. Vertex 2 in Figure B.2(a) has in-degree 2, out-degree 3, and

degree 5.
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A path of length k from a vertex u to a vertex u′ in a graph G = (V, E)

is a sequence 〈v0, v1, v2, … , vk〉 of vertices such that u = v0, u′ = vk, and

(vi−1, vi) ∈ E for i = 1, 2, … , k. The length of the path is the number of

edges in the path, which is 1 less than the number of vertices in the path.

The path contains the vertices v0, v1, … , vk and the edges (v0, v1), (v1,

v2), … , (vk−1, vk). (There is always a 0-length path from u to u.) If

there is a path p from u to u′, we say that u′ is reachable from u via p,

which we can write as . A path is simple4 if all vertices in the path

are distinct. In Figure B.2(a), the path 〈1, 2, 5, 4〉 is a simple path of

length 3. The path 〈2, 5, 4, 5〉 is not simple. A subpath of path p = 〈v0,

v1, … , vk〉 is a contiguous subsequence of its vertices. That is, for any 0

≤ i ≤ j ≤ k, the subsequence of vertices 〈vi, vi+1, … , vj〉 is a subpath of p.

In a directed graph, a path 〈v0, v1, … , vk〉 forms a cycle if v0 = vk

and the path contains at least one edge. The cycle is simple if, in

addition, v1, v2, … , vk are distinct. A cycle consisting of k vertices has

length k. A self-loop is a cycle of length 1. Two paths 〈v0, v1, v2, … ,

vk−1, v0〉 and  form the same cycle if there exists an

integer j such that  for i = 0, 1, … , k−1. In Figure B.2(a), the

path 〈1,2,4,1〉 forms the same cycle as the paths 〈2, 4, 1, 2〉 and 〈4, 1, 2,

4〉. This cycle is simple, but the cycle 〈1, 2, 4, 5, 4, 1〉 is not. The cycle 〈2,

2〉 formed by the edge (2, 2) is a self-loop. A directed graph with no self-

loops is simple. In an undirected graph, a path 〈v0, v1, …, vk〉 forms a

cycle if k > 0, v0 = vk, and all edges on the path are distinct. The cycle is

simple if v1, v2, … , vk are distinct. For example, in Figure B.2(b), the

path 〈1, 2, 5, 1〉 is a simple cycle. A graph with no simple cycles is

acyclic.

An undirected graph is connected if every vertex is reachable from all

other vertices. The connected components of an undirected graph are the

equivalence classes of vertices under the “is reachable from” relation.

The graph shown in Figure B.2(b) has three connected components: {1,

2, 5}, {3, 6}, and {4}. Every vertex in the connected component {1, 2,
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5} is reachable from every other vertex in {1, 2, 5}. An undirected graph

is connected if it has exactly one connected component. The edges of a

connected component are those that are incident on only the vertices of

the component. In other words, edge (u, v) is an edge of a connected

component only if both u and v are vertices of the component.

A directed graph is strongly connected if every two vertices are

reachable from each other. The strongly connected components of a

directed graph are the equivalence classes of vertices under the “are

mutually reachable” relation. A directed graph is strongly connected if it

has only one strongly connected component. The graph in Figure B.2(a)

has three strongly connected components: {1, 2, 4, 5}, {3}, and {6}. All

pairs of vertices in {1, 2, 4, 5} are mutually reachable. The vertices {3,

6} do not form a strongly connected component, since vertex 6 cannot

be reached from vertex 3.

Two graphs G = (V, E) and G′ = (V′, E′) are isomorphic if there exists

a bijection f : V → V′ such that (u, v) ∈ E if and only if (f (u), f (v)) ∈

E′. In other words, G and G′ are isomorphic if the vertices of G can be

relabeled to be vertices of G′, maintaining the corresponding edges in G

and G′. Figure B.3(a) shows a pair of isomorphic graphs G and G′ with

respective vertex sets V = {1, 2, 3, 4, 5, 6} and V′ = {u, v, w, x, y, z}. The

mapping from V to V′ given by f (1) = u, f (2) = v, f (3) = w, f (4) = x, f

(5) = y, f (6) = z provides the required bijective function. The graphs in

Figure B.3(b) are not isomorphic. Although both graphs have 5 vertices

and 7 edges, the top graph has a vertex of degree 4 and the bottom

graph does not.

We say that a graph G′ = (V′, E′) is a subgraph of G = (V, E) if V′ ⊆
V and E′ ⊆ E. Given a set V′ ⊆ V, the subgraph of G induced by V′ is
the graph G′ = (V′, E′), where

E′ = {(u, v) ∈ E : u, v ∈ V′}.

The subgraph induced by the vertex set {1, 2, 3, 6} in Figure B.2(a)

appears in Figure B.2(c) and has the edge set {(1, 2), (2, 2), (6, 3)}.

Given an undirected graph G = (V, E), the directed version of G is the

directed graph G′ = (V, E′), where (u, v) ∈ E′ if and only if (u, v) ∈ E.

That is, each undirected edge (u, v) in G turns into two directed edges,

(u, v) and (v, u), in the directed version. Given a directed graph G = (V,
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E), the undirected version of G is the undirected graph G′ = (V, E′),
where (u, v) ∈ E′ if and only if u ≠ v and E contains at least one of the

edges (u, v) and (v, u). That is, the undirected version contains the edges

of G “with their directions removed” and with self-loops eliminated.

(Since (u, v) and (v, u) are the same edge in an undirected graph, the

undirected version of a directed graph contains it only once, even if the

directed graph contains both edges (u, v) and (v, u).) In a directed graph

G = (V, E), a neighbor of a vertex u is any vertex that is adjacent to u in

the undirected version of G. That is, v is a neighbor of u if u ≠ v and

either (u, v) ∈ E or (v, u) ∈ E. In an undirected graph, u and v are

neighbors if they are adjacent.

Figure B.3 (a) A pair of isomorphic graphs. The vertices of the top graph are mapped to the

vertices of the bottom graph by f (1) = u, f (2) = v, f (3) = w, f (4) = x, f (5) = y, f (6) = z. (b) Two

graphs that are not isomorphic. The top graph has a vertex of degree 4, and the bottom graph

does not.

Several kinds of graphs have special names. A complete graph is an

undirected graph in which every pair of vertices is adjacent. An

undirected graph G = (V, E) is bipartite if V can be partitioned into two

sets V1 and V2 such that (u, v) ∈ E implies either u ∈ V1 and v ∈ V2 or

u ∈ V2 and v ∈ V1. That is, all edges go between the two sets V1 and

V2. An acyclic, undirected graph is a forest, and a connected, acyclic,

undirected graph is a (free) tree (see Section B.5). We often take the

first letters of “directed acyclic graph” and call such a graph a dag.

There are two variants of graphs that you may occasionally

encounter. A multigraph is like an undirected graph, but it can have

www.konkur.in

Telegram: @uni_k



both multiple edges between vertices (such as two distinct edges (u, v)

and (u, v)) and self-loops. A hypergraph is like an undirected graph, but

each hyperedge, rather than connecting two vertices, connects an

arbitrary subset of vertices. Many algorithms written for ordinary

directed and undirected graphs can be adapted to run on these

graphlike structures.

The contraction of an undirected graph G = (V, E) by an edge e = (u,

v) is a graph G′ = (V′, E′), where V′ = V − {u, v} ∪ {x} and x is a new

vertex. The set of edges E′ is formed from E by deleting the edge (u, v)

and, for each vertex w adjacent to u or v, deleting whichever of (u, w)

and (v, w) belongs to E and adding the new edge (x, w). In effect, u and

v are “contracted” into a single vertex.

Exercises

B.4-1

Attendees of a faculty party shake hands to greet each other, with every

pair of professors shaking hands one time. Each professor remembers

the number of times he or she shook hands. At the end of the party, the

department head asks the professors for their totals and adds them all

up. Show that the result is even by proving the handshaking lemma: if G

= (V, E) is an undirected graph, then

B.4-2

Show that if a directed or undirected graph contains a path between two

vertices u and v, then it contains a simple path between u and v. Show

that if a directed graph contains a cycle, then it contains a simple cycle.

B.4-3

Show that any connected, undirected graph G = (V, E) satisfies |E| ≥ |V |

− 1.

B.4-4

Verify that in an undirected graph, the “is reachable from” relation is an

equivalence relation on the vertices of the graph. Which of the three
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properties of an equivalence relation hold in general for the “is

reachable from” relation on the vertices of a directed graph?

B.4-5

What is the undirected version of the directed graph in Figure B.2(a)?

What is the directed version of the undirected graph in Figure B.2(b)?

B.4-6

Show how a bipartite graph can represent a hypergraph by letting

incidence in the hypergraph correspond to adjacency in the bipartite

graph. (Hint: Let one set of vertices in the bipartite graph correspond to

vertices of the hypergraph, and let the other set of vertices of the

bipartite graph correspond to hyperedges.)

B.5 Trees

As with graphs, there are many related, but slightly different, notions of

trees. This section presents definitions and mathematical properties of

several kinds of trees. Sections 10.3 and 20.1 describe how to represent

trees in computer memory.

B.5.1 Free trees

As defined in Section B.4, a free tree is a connected, acyclic, undirected

graph. We often omit the adjective “free” when we say that a graph is a

tree. If an undirected graph is acyclic but possibly disconnected, it is a

forest. Many algorithms that work for trees also work for forests. Figure

B.4(a) shows a free tree, and Figure B.4(b) shows a forest. The forest in

Figure B.4(b) is not a tree because it is not connected. The graph in

Figure B.4(c) is connected but neither a tree nor a forest, because it

contains a cycle.

The following theorem captures many important facts about free

trees.

Theorem B.2 (Properties of free trees)
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Figure B.4 (a) A free tree. (b) A forest. (c) A graph that contains a cycle and is therefore neither a

tree nor a forest.

Let G = (V, E) be an undirected graph. The following statements are

equivalent.

1. G is a free tree.

2. Any two vertices in G are connected by a unique simple path.

3. G is connected, but if any edge is removed from E, the resulting

graph is disconnected.

4. G is connected, and |E| = |V | − 1.

5. G is acyclic, and |E| = |V | − 1.

6. G is acyclic, but if any edge is added to E, the resulting graph

contains a cycle.

Figure B.5 A step in the proof of Theorem B.2: if (1) G is a free tree, then (2) any two vertices in

G are connected by a unique simple path. Assume for the sake of contradiction that vertices u

and v are connected by two distinct simple paths. These paths first diverge at vertex w, and they

first reconverge at vertex z. The path p′ concatenated with the reverse of the path p″ forms a

cycle, which yields the contradiction.

Proof      (1) ⇒ (2): Since a tree is connected, any two vertices in G are

connected by at least one simple path. Suppose for the sake of
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contradiction that vertices u and v are connected by two distinct simple

paths as shown in Figure B.5. Let w be the vertex at which the paths first

diverge. That is, if we call the paths p1 and p2, then w is the first vertex

on both p1 and p2 whose successor on p1 is x and whose successor on

p2 is y, where x ≠ y. Let z be the first vertex at which the paths

reconverge, that is, z is the first vertex following w on p1 that is also on

p2. Let p′ = w → x ⇝ z be the subpath of p1 from w through x to z, so

that , and let p″ = w → y ⇝ z be the subpath of p2 from

w through y to z, so that . Paths p′ and p″ share no

vertices except their endpoints. Then, as Figure B.5 shows, the path

obtained by concatenating p′ and the reverse of p″ is a cycle, which

contradicts our assumption that G is a tree. Thus, if G is a tree, there can

be at most one simple path between two vertices.

(2) ⇒ (3): If any two vertices in G are connected by a unique simple

path, then G is connected. Let (u, v) be any edge in E. This edge is a

path from u to v, and so it must be the unique path from u to v. If (u, v)

were to be removed from G, there would be no path from u to v, and G

would be disconnected.

(3) ⇒ (4): By assumption, the graph G is connected, so Exercise B.4-3

gives that |E| ≥ |V| − 1. We prove |E| ≤ |V| − 1 by induction on |V|. The

base cases are when |V| = 1 or |V| = 2, and in either case, |E| = |V| − 1.

For the inductive step, suppose that |V| ≥ 3 for graph G and that any

graph G′ = (V′, E′), where |V′| < |V|, that satisfies (3) also satisfies |E′| ≤
|V′| − 1. Removing an arbitrary edge from G separates the graph into k

≥ 2 connected components (actually k = 2). Each component satisfies

(3), or else G would not satisfy (3). Consider each connected component

Vi, with edge set Ei, as a separate free tree. Then, because each

connected component has fewer than |V| vertices, the inductive

hypothesis implies that |Ei| ≤ |Vi| − 1. Thus, the number of edges in all k

connected components combined is at most |V| − k ≤ |V| − 2. Adding in

the removed edge yields |E| ≤ |V| − 1.

(4) ⇒ (5): Suppose that G is connected and that |E| = |V| − 1. We

must show that G is acyclic. Suppose that G has a cycle containing k
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vertices v1, v2, … , vk, and without loss of generality assume that this

cycle is simple. Let Gk = (Vk, Ek) be the subgraph of G consisting of the

cycle, so that |Vk| = |Ek| = k. If k < |V|, then because G is connected,

there must be a vertex vk+1∈ V − Vk that is adjacent to some vertex vi

∈ Vk. Define Gk+1 = (Vk+1, Ek+1) to be the subgraph of G with

Vk+1 = Vk ∪ {vk+1} and Ek+1 = Ek ∪ {(vi, vk+1)}. Note that |Vk+1|

= |Ek+1| = k + 1. If k + 1 < |V|, then continue, defining Gk+2 in the

same manner, and so forth, until we obtain Gn = (Vn, En), where n =

|V|, Vn = V, and |En| = |Vn| = |V|. Since Gn is a subgraph of G, we have

En ⊆ E, and hence |E| ≥ |En| = |Vn| = |V|, which contradicts the

assumption that |E| = |V| − 1. Thus, G is acyclic.

(5) ⇒ (6): Suppose that G is acyclic and that |E| = |V| − 1. Let k be

the number of connected components of G. Each connected component

is a free tree by definition, and since (1) implies (5), the sum of all edges

in all connected components of G is |V| − k. Consequently, k must equal

1, and G is in fact a tree. Since (1) implies (2), any two vertices in G are

connected by a unique simple path. Thus, adding any edge to G creates

a cycle.

(6) ⇒ (1): Suppose that G is acyclic but that adding any edge to E

creates a cycle. We must show that G is connected. Let u and v be

arbitrary vertices in G. If u and v are not already adjacent, adding the

edge (u, v) creates a cycle in which all edges but (u, v) belong to G. Thus,

the cycle minus edge (u, v) must contain a path from u to v, and since u

and v were chosen arbitrarily, G is connected.

▪

B.5.2 Rooted and ordered trees

A rooted tree is a free tree in which one of the vertices is distinguished

from the others. We call the distinguished vertex the root of the tree. We

often refer to a vertex of a rooted tree as a node5 of the tree. Figure

B.6(a) shows a rooted tree on a set of 12 nodes with root 7.
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Figure B.6 Rooted and ordered trees. (a) A rooted tree with height 4. The tree is drawn in a

standard way: the root (node 7) is at the top, its children (nodes with depth 1) are beneath it,

their children (nodes with depth 2) are beneath them, and so forth. If the tree is ordered, the

relative left-to-right order of the children of a node matters; otherwise, it doesn’t. (b) Another

rooted tree. As a rooted tree, it is identical to the tree in (a), but as an ordered tree it is different,

since the children of node 3 appear in a different order.

Consider a node x in a rooted tree T with root r. We call any node y

on the unique simple path from r to x an ancestor of x. If y is an

ancestor of x, then x is a descendant of y. (Every node is both an

ancestor and a descendant of itself.) If y is an ancestor of x and x ≠ y,

then y is a proper ancestor of x and x is a proper descendant of y. The

subtree rooted at x is the tree induced by descendants of x, rooted at x.

For example, the subtree rooted at node 8 in Figure B.6(a) contains

nodes 8, 6, 5, and 9.

If the last edge on the simple path from the root r of a tree T to a

node x is (y, x), then y is the parent of x, and x is a child of y. The root

is the only node in T with no parent. If two nodes have the same parent,

they are siblings. A node with no children is a leaf or external node. A

nonleaf node is an internal node.

The number of children of a node x in a rooted tree T is the degree of

x.6 The length of the simple path from the root r to a node x is the

depth of x in T. A level of a tree consists of all nodes at the same depth.

The height of a node in a tree is the number of edges on the longest

simple downward path from the node to a leaf, and the height of a tree

is the height of its root. The height of a tree is also equal to the largest

depth of any node in the tree.
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An ordered tree is a rooted tree in which the children of each node

are ordered. That is, if a node has k children, then there is a first child, a

second child, and so on, up to and including a kth child. The two trees

in Figure B.6 are different when considered to be ordered trees, but the

same when considered to be just rooted trees.

B.5.3 Binary and positional trees

We define binary trees recursively. A binary tree T is a structure defined

on a finite set of nodes that either

contains no nodes, or

is composed of three disjoint sets of nodes: a root node, a binary

tree called its left subtree, and a binary tree called its right subtree.

The binary tree that contains no nodes is called the empty tree or null

tree, sometimes denoted NIL. If the left subtree is nonempty, its root is

called the left child of the root of the entire tree. Likewise, the root of a

nonnull right subtree is the right child of the root of the entire tree. If a

subtree is the null tree NIL, we say that the child is absent or missing.

Figure B.7(a) shows a binary tree.

A binary tree is not simply an ordered tree in which each node has

degree at most 2. For example, in a binary tree, if a node has just one

child, the position of the child—whether it is the left child or the right

child—matters. In an ordered tree, there is no distinguishing a sole child

as being either left or right. Figure B.7(b) shows a binary tree that

differs from the tree in Figure B.7(a) because of the position of one

node. Considered as ordered trees, however, the two trees are identical.

One way to represent the positioning information in a binary tree is

by the internal nodes of an ordered tree, as shown in Figure B.7(c). The

idea is to replace each missing child in the binary tree with a node

having no children. These leaf nodes are drawn as squares in the figure.

The tree that results is a full binary tree: each node is either a leaf or has

degree exactly 2. No nodes have degree 1. Consequently, the order of

the children of a node preserves the position information.
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Figure B.7 Binary trees. (a) A binary tree drawn in a standard way. The left child of a node is

drawn beneath the node and to the left. The right child is drawn beneath and to the right. (b) A

binary tree different from the one in (a). In (a), the left child of node 7 is 5 and the right child is

absent. In (b), the left child of node 7 is absent and the right child is 5. As ordered trees, these

trees are the same, but as binary trees, they are distinct. (c) The binary tree in (a) represented by

the internal nodes of a full binary tree: an ordered tree in which each internal node has degree 2.

The leaves in the tree are shown as squares.

The positioning information that distinguishes binary trees from

ordered trees extends to trees with more than two children per node. In

a positional tree, the children of a node are labeled with distinct positive

integers. The ith child of a node is absent if no child is labeled with

integer i. A k-ary tree is a positional tree in which for every node, all

children with labels greater than k are missing. Thus, a binary tree is a

k-ary tree with k = 2.

A complete k-ary tree is a k-ary tree in which all leaves have the same

depth and all internal nodes have degree k. Figure B.8 shows a complete

binary tree of height 3. How many leaves does a complete k-ary tree of

height h have? The root has k children at depth 1, each of which has k

children at depth 2, etc. Thus, the number of nodes at depth d is kd. In a

complete k-ary tree with height h, the leaves are at depth h, so that there

are kh leaves. Consequently, the height of a complete k-ary tree with n

leaves is logkn. A complete k-ary tree of height h has
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internal nodes. Thus, a complete binary tree has 2h − 1 internal nodes.

Figure B.8 A complete binary tree of height 3 with 8 leaves and 7 internal nodes.

Exercises

B.5-1

Draw all the free trees composed of the three vertices x, y, and z. Draw

all the rooted trees with nodes x, y, and z with x as the root. Draw all

the ordered trees with nodes x, y, and z with x as the root. Draw all the

binary trees with nodes x, y, and z with x as the root.

B.5-2

Let G = (V, E) be a directed acyclic graph in which there is a vertex v0

∈ V such that there exists a unique path from v0 to every vertex v ∈ V.

Prove that the undirected version of G forms a tree.

B.5-3

Show by induction that the number of degree-2 nodes in any nonempty

binary tree is one less than the number of leaves. Conclude that the

number of internal nodes in a full binary tree is one less than the

number of leaves.

B.5-4

Prove that for any integer k ≥ 1, there is a full binary tree with k leaves.

B.5-5

Use induction to show that a nonempty binary tree with n nodes has

height at least ⌊lg n⌋.
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★ B.5-6

The internal path length of a full binary tree is the sum, taken over all

internal nodes of the tree, of the depth of each node. Likewise, the

external path length is the sum, taken over all leaves of the tree, of the

depth of each leaf. Consider a full binary tree with n internal nodes,

internal path length i, and external path length e. Prove that e = i + 2n.

★ B.5-7

Associate a “weight” w(x) = 2−d with each leaf x of depth d in a binary

tree T, and let L be the set of leaves of T. Prove the Kraft inequality:

Σx∈L w(x) ≤ 1.

★ B.5-8

Show that if L ≥ 2, then every binary tree with L leaves contains a

subtree having between L/3 and 2L/3 leaves, inclusive.

Problems

B-1 Graph coloring

A k-coloring of undirected graph G = (V, E) is a function c : V → {1, 2,

… , k} such that c(u) ≠ c(v) for every edge (u, v) ∈ E. In other words, the

numbers 1, 2, … , k represent the k colors, and adjacent vertices must

have different colors.

a. Show that any tree is 2-colorable.

b. Show that the following are equivalent:

1. G is bipartite.

2. G is 2-colorable.

3. G has no cycles of odd length.

c. Let d be the maximum degree of any vertex in a graph G. Prove that G

can be colored with d + 1 colors.
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d. Show that if G has O(|V|) edges, then G can be colored with 

colors.

B-2 Friendly graphs

Reword each of the following statements as a theorem about undirected

graphs, and then prove it. Assume that friendship is symmetric but not

reflexive.

a. Any group of at least two people contains at least two people with the

same number of friends in the group.

b. Every group of six people contains either at least three mutual friends

or at least three mutual strangers.

c. Any group of people can be partitioned into two subgroups such that

at least half the friends of each person belong to the subgroup of

which that person is not a member.

d. If everyone in a group is the friend of at least half the people in the

group, then the group can be seated around a table in such a way that

everyone is seated between two friends.

B-3 Bisecting trees

Many divide-and-conquer algorithms that operate on graphs require

that the graph be bisected into two nearly equal-sized subgraphs, which

are induced by a partition of the vertices. This problem investigates

bisections of trees formed by removing a small number of edges. We

require that whenever two vertices end up in the same subtree after

removing edges, then they must belong to the same partition.

a. Show that the vertices of any n-vertex binary tree can be partitioned

into two sets A and B, such that |A| ≤ 3n/4 and |B| ≤ 3n/4, by removing

a single edge.

b. Show that the constant 3/4 in part (a) is optimal in the worst case by

giving an example of a simple binary tree whose most evenly balanced

partition upon removal of a single edge has |A| = 3n/4.
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c. Show that by removing at most O(lg n) edges, we can partition the

vertices of any n-vertex binary tree into two sets A and B such that |A|

= ⌊n/2⌋ and |B| = ⌈n/2⌉.

Appendix notes

G. Boole pioneered the development of symbolic logic, and he

introduced many of the basic set notations in a book published in 1854.

Modern set theory was created by G. Cantor during the period 1874–

1895. Cantor focused primarily on sets of infinite cardinality. The term

“function” is attributed to G. W. Leibniz, who used it to refer to several

kinds of mathematical formulas. His limited definition has been

generalized many times. Graph theory originated in 1736, when L.

Euler proved that it was impossible to cross each of the seven bridges in

the city of Königsberg exactly once and return to the starting point.

The book by Harary [208] provides a useful compendium of many

definitions and results from graph theory.

1 A variation of a set, which can contain the same object more than once, is called a multiset.

2 Some authors start the natural numbers with 1 instead of 0. The modern trend seems to be to

start with 0.

3 To be precise, in order for the “fit inside” relation to be a partial order, we need to view a box

as fitting inside itself.

4 Some authors refer to what we call a path as a “walk” and to what we call a simple path as just

a “path.”

5 The term “node” is often used in the graph theory literature as a synonym for “vertex.” We

reserve the term “node” to mean a vertex of a rooted tree.

6 The degree of a node depends on whether we consider T to be a rooted tree or a free tree. The

degree of a vertex in a free tree is, as in any undirected graph, the number of adjacent vertices. In

a rooted tree, however, the degree is the number of children—the parent of a node does not

count toward its degree.
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C Counting and Probability

This appendix reviews elementary combinatorics and probability theory.

If you have a good background in these areas, you may want to skim the

beginning of this appendix lightly and concentrate on the later sections.

Most of this book’s chapters do not require probability, but for some

chapters it is essential.

Section C.1 reviews elementary results in counting theory, including

standard formulas for counting permutations and combinations. The

axioms of probability and basic facts concerning probability

distributions form Section C.2. Random variables are introduced in

Section C.3, along with the properties of expectation and variance.

Section C.4 investigates the geometric and binomial distributions that

arise from studying Bernoulli trials. The study of the binomial

distribution continues in Section C.5, an advanced discussion of the

“tails” of the distribution.

C.1 Counting

Counting theory tries to answer the question “How many?” without

actually enumerating all the choices. For example, you might ask, “How

many different n-bit numbers are there?” or “How many orderings of n

distinct elements are there?” This section reviews the elements of

counting theory. Since some of the material assumes a basic

understanding of sets, you might wish to start by reviewing the material

in Section B.1.
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Rules of sum and product

We can sometimes express a set of items that we wish to count as a

union of disjoint sets or as a Cartesian product of sets.

The rule of sum says that the number of ways to choose one element

from one of two disjoint sets is the sum of the cardinalities of the sets.

That is, if A and B are two finite sets with no members in common, then

|A ∪ B| = |A| + |B|, which follows from equation (B.3) on page 1156. For

example, if each position on a car’s license plate is a letter or a digit,

then the number of possibilities for each position is 26 + 10 = 36, since

there are 26 choices if it is a letter and 10 choices if it is a digit.

The rule of product says that the number of ways to choose an

ordered pair is the number of ways to choose the first element times the

number of ways to choose the second element. That is, if A and B are

two finite sets, then |A × B| = |A|·|B|, which is simply equation (B.4) on

page 1157. For example, if an ice-cream parlor offers 28 flavors of ice

cream and four toppings, the number of possible sundaes with one

scoop of ice cream and one topping is 28 · 4 = 112.

Strings

A string over a finite set S is a sequence of elements of S. For example,

there are eight binary strings of length 3:

000, 001, 010, 011, 100, 101, 110, 111.

(Here we use the shorthand of omitting the angle brackets when

denoting a sequence.) We sometimes call a string of length k a k-string.

A substring  s′ of a string s is an ordered sequence of consecutive

elements of s. A k-substring of a string is a substring of length k. For

example, 010 is a 3-substring of 01101001 (the 3-substring that begins in

position 4), but 111 is not a substring of 01101001.

We can view a k-string over a set S as an element of the Cartesian

product Sk of k-tuples, which means that there are |S|k strings of length

k. For example, the number of binary k-strings is 2k. Intuitively, to

construct a k-string over an n-set, there are n ways to pick the first

element; for each of these choices, there are n ways to pick the second
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element; and so forth k times. This construction leads to the k-fold

product  as the number of k-strings.

Permutations

A permutation of a finite set S is an ordered sequence of all the elements

of S, with each element appearing exactly once. For example, if S = {a,

b, c}, then S has 6 permutations:

abc, acb, bac, bca, cab, cba.

(Again, we use the shorthand of omitting the angle brackets when

denoting a sequence.) There are n! permutations of a set of n elements,

since there are n ways to choose the first element of the sequence, n − 1

ways for the second element, n − 2 ways for the third, and so on.

A k-permutation of S is an ordered sequence of k elements of S, with

no element appearing more than once in the sequence. (Thus, an

ordinary permutation is an n-permutation of an n-set.) Here are the 2-

permutations of the set {a, b, c, d}:

ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc.

The number of k-permutations of an n-set is

since there are n ways to choose the first element, n − 1 ways to choose

the second element, and so on, until k elements are chosen, with the last

element chosen from the remaining n − k + 1 elements. For the above

example, with n = 4 and k = 2, the formula (C.1) evaluates to 4!/2! = 12,

matching the number of 2-permutations listed.

Combinations

A k-combination of an n-set S is simply a k-subset of S. For example,

the 4-set {a, b, c, d} has six 2-combinations:

ab, ac, ad, bc, bd, cd.
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(Here we use the shorthand of omitting the braces around each subset.)

To construct a k-combination of an n-set, choose k distinct (different)

elements from the n-set. The order of selecting the elements does not

matter.

We can express the number of k-combinations of an n-set in terms of

the number of k-permutations of an n-set. Every k-combination has

exactly k! permutations of its elements, each of which is a distinct k-

permutation of the n-set. Thus the number of k-combinations of an n-

set is the number of k-permutations divided by k!. From equation (C.1),

this quantity is

For k = 0, this formula tells us that the number of ways to choose 0

elements from an n-set is 1 (not 0), since 0! = 1.

Binomial coefficients

The notation  (read “n choose k”) denotes the number of k-

combinations of an n-set. Equation (C.2) gives

This formula is symmetric in k and n − k:

These numbers are also known as binomial coefficients, due to their

appearance in the binomial theorem:

where n ∈ ℕ and x, y ∈ ℝ. The right-hand side of equation (C.4) is

called the binomial expansion of the left-hand side. A special case of the

binomial theorem occurs when x = y = 1:
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This formula corresponds to counting the 2n binary n-strings by the

number of 1s they contain:  binary n-strings contain exactly k 1s, since

there are  ways to choose k out of the n positions in which to place the

1s.

Many identities involve binomial coefficients. The exercises at the

end of this section give you the opportunity to prove a few.

Binomial bounds

You sometimes need to bound the size of a binomial coefficient. For 1 ≤

k ≤ n, we have the lower bound

Taking advantage of the inequality k! ≥ (k/e)k derived from Stirling’s

approximation (3.25) on page 67, we obtain the upper bounds

For all integers k such that 0 ≤ k ≤ n, you can use induction (see Exercise

C.1-12) to prove the bound

where for convenience we assume that 00 = 1. For k = λn, where 0 ≤ λ ≤
1, we can rewrite this bound as
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where

is the (binary) entropy function and where, for convenience, we assume

that 0 lg 0 = 0, so that H(0) = H(1) = 0.

Exercises

C.1-1

How many k-substrings does an n-string have? (Consider identical k-

substrings at different positions to be different.) How many substrings

does an n-string have in total?

C.1-2

An n-input, m-output boolean function is a function from {0, 1}n to {0,

1}m. How many n-input, 1-output boolean functions are there? How

many n-input, m-output boolean functions are there?

C.1-3

In how many ways can n professors sit around a circular conference

table? Consider two seatings to be the same if one can be rotated to

form the other.

C.1-4

In how many ways is it possible to choose three distinct numbers from

the set {1, 2, … , 99} so that their sum is even?

C.1-5

Prove the identity
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for 0 < k ≤ n.

C.1-6

Prove the identity

for 0 ≤ k < n.

C.1-7

To choose k objects from n, you can make one of the objects

distinguished and consider whether the distinguished object is chosen.

Use this approach to prove that

C.1-8

Using the result of Exercise C.1-7, make a table for n = 0, 1, … , 6 and 0

≤ k ≤ n of the binomial coefficients  with  at the top,  and  on the

next line, then , , and , and so forth. Such a table of binomial

coefficients is called Pascal’s triangle.

C.1-9

Prove that

C.1-10

Show that for any integers n ≥ 0 and 0 ≤ k ≤ n, the expression  achieves

its maximum value when k = ⌊n/2⌋ or k = ⌈n/2⌉.
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★ C.1-11

Argue that for any integers n ≥ 0, j ≥ 0, k ≥ 0, and j + k ≤ n,

Provide both an algebraic proof and an argument based on a method

for choosing j + k items out of n. Give an example in which equality

does not hold.

★ C.1-12

Use induction on all integers k such that 0 ≤ k ≤ n/2 to prove inequality

(C.7), and use equation (C.3) to extend it to all integers k such that 0 ≤ k

≤ n.

★ C.1-13

Use Stirling’s approximation to prove that

★ C.1-14

By differentiating the entropy function H(λ), show that it achieves its

maximum value at λ = 1/2. What is H(1/2)?

★ C.1-15

Show that for any integer n ≥ 0,

★ C.1-16

Inequality (C.5) provides a lower bound on the binomial coefficient .

For small values of k, a stronger bound holds. Prove that
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for .

C.2 Probability

Probability is an essential tool for the design and analysis of

probabilistic and randomized algorithms. This section reviews basic

probability theory.

We define probability in terms of a sample space  S, which is a set

whose elements are called outcomes or elementary events. Think of each

outcome as a possible result of an experiment. For the experiment of

flipping two distinguishable coins, with each individual flip resulting in a

head (H) or a tail (T), you can view the sample space S as consisting of

the set of all possible 2-strings over {H, T}:

S = {HH, HT, TH, TT}.

An event is a subset1 of the sample space S. For example, in the

experiment of flipping two coins, the event of obtaining one head and

one tail is {HT, TH}. The event S is called the certain event, and the

event ∅ is called the null event. We say that two events A and B are

mutually exclusive if A ∩ B = ∅. An outcome s also defines the event

{s}, which we sometimes write as just s. By definition, all outcomes are

mutually exclusive.

Axioms of probability

A probability distribution Pr {} on a sample space S is a mapping from

events of S to real numbers satisfying the following probability axioms:

1. Pr {A} ≥ 0 for any event A.

2. Pr {S} = 1.

3. Pr {A ∪ B} = Pr {A} + Pr {B} for any two mutually exclusive

events A and B. More generally, for any sequence of events A1,
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A2, … (finite or countably infinite) that are pairwise mutually

exclusive,

We call Pr {A} the probability of the event A. Axiom 2 is simply a

normalization requirement: there is really nothing fundamental about

choosing 1 as the probability of the certain event, except that it is

natural and convenient.

Several results follow immediately from these axioms and basic set

theory (see Section B.1). The null event ∅ has probability Pr {∅} = 0. If

A ⊆ B, then Pr {A} ≤ Pr {B}. Using Ā to denote the event S − A (the

complement of A), we have Pr {Ā} = 1 − Pr {A}. For any two events A

and B,

In our coin-flipping example, suppose that each of the four outcomes

has probability 1/4. Then the probability of getting at least one head is

Pr {HH, HT, TH} = Pr {HH} + Pr {HT} + Pr {TH}

= 3/4.

Another way to obtain the same result is to observe that since the

probability of getting strictly less than one head is Pr {TT} = 1/4, the

probability of getting at least one head is 1 − 1/4 = 3/4.

Discrete probability distributions

A probability distribution is discrete if it is defined over a finite or

countably infinite sample space. Let S be the sample space. Then for any

event A,

since outcomes, specifically those in A, are mutually exclusive. If S is

finite and every outcome s ∈ S has probability Pr {s} = 1/|S|, then we
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have the uniform probability distribution on S. In such a case the

experiment is often described as “picking an element of S at random.”

As an example, consider the process of flipping a fair coin, one for

which the probability of obtaining a head is the same as the probability

of obtaining a tail, that is, 1/2. Flipping the coin n times gives the

uniform probability distribution defined on the sample space S = {H,

T}n, a set of size 2n. We can represent each outcome in S as a string of

length n over {H, T}, with each string occurring with probability 1/2n.

The event A = {exactly k heads and exactly n − k tails occur} is a subset

of S of size , since  strings of length n over {H, T} contain

exactly kH’s. The probability of event A is thus .

Continuous uniform probability distribution

The continuous uniform probability distribution is an example of a

probability distribution in which not all subsets of the sample space are

considered to be events. The continuous uniform probability

distribution is defined over a closed interval [a, b] of the reals, where a <

b. The intuition is that each point in the interval [a, b] should be

“equally likely.” Because there are an uncountable number of points,

however, if all points had the same finite, positive probability, axioms 2

and 3 would not be simultaneously satisfied. For this reason, we’d like

to associate a probability only with some of the subsets of S in such a

way that the axioms are satisfied for these events.

For any closed interval [c, d], where a ≤ c ≤ d ≤ b, the continuous

uniform probability distribution defines the probability of the event [c, d]

to be

Letting c = d gives that the probability of a single point is 0. Removing

the endpoints [c, c] and [d, d] of an interval [c, d] results in the open

interval (c, d). Since [c, d] = [c, c] ∪ (c, d) ∪ [d, d], axiom 3 gives Pr {[c,

d]} = Pr {(c, d)}. Generally, the set of events for the continuous uniform

probability distribution contains any subset of the sample space [a, b]
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that can be obtained by a finite or countable union of open and closed

intervals, as well as certain more complicated sets.

Conditional probability and independence

Sometimes you have some prior partial knowledge about the outcome

of an experiment. For example, suppose that a friend has flipped two

fair coins and has told you that at least one of the coins showed a head.

What is the probability that both coins are heads? The information

given eliminates the possibility of two tails. The three remaining

outcomes are equally likely, and so you infer that each occurs with

probability 1/3. Since only one of these outcomes shows two heads, the

answer is 1/3.

Conditional probability formalizes the notion of having prior partial

knowledge of the outcome of an experiment. The conditional probability

of an event A given that another event B occurs is defined to be

whenever Pr {B} ≠ 0. (Read “Pr {A | B}” as “the probability of A given

B.”) The idea behind equation (C.16) is that since we are given that

event B occurs, the event that A also occurs is A ∩ B. That is, A ∩ B is

the set of outcomes in which both A and B occur. Because the outcome

is one of the elementary events in B, we normalize the probabilities of

all the elementary events in B by dividing them by Pr {B}, so that they

sum to 1. The conditional probability of A given B is, therefore, the

ratio of the probability of event A ∩ B to the probability of event B. In

the example above, A is the event that both coins are heads, and B is the

event that at least one coin is a head. Thus, Pr {A | B} = (1/4)/(3/4) =

1/3.

Two events are independent if

which is equivalent, if Pr {B} ≠ 0, to the condition

Pr {A | B} = Pr {A}.
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For example, suppose that you flip two fair coins and that the outcomes

are independent. Then the probability of two heads is (1/2)(1/2) = 1/4.

Now suppose that one event is that the first coin comes up heads and

the other event is that the coins come up differently. Each of these

events occurs with probability 1/2, and the probability that both events

occur is 1/4. Thus, according to the definition of independence, the

events are independent—even though you might think that both events

depend on the first coin. Finally, suppose that the coins are welded

together so that they both fall heads or both fall tails and that the two

possibilities are equally likely. Then the probability that each coin comes

up heads is 1/2, but the probability that they both come up heads is 1/2

≠ (1/2)(1/2). Consequently, the event that one comes up heads and the

event that the other comes up heads are not independent.

A collection A1, A2, … , An of events is said to be pairwise

independent if

Pr {Ai ∩ Aj } = Pr {Ai} Pr {Aj}

for all 1 ≤ i < j ≤ n. We say that the events of the collection are

(mutually) independent if every k-subset  of the collection,

where 2 ≤ k ≤ n and 1 ≤ i1 < i2 < ⋯ < ik ≤ n, satisfies

For example, suppose that you flip two fair coins. Let A1 be the event

that the first coin is heads, let A2 be the event that the second coin is

heads, and let A3 be the event that the two coins are different. Then,

Pr {A1} = 1/2,

Pr {A2} = 1/2,

Pr {A3} = 1/2,

Pr {A1 ∩ A2} = 1/4,

Pr {A1 ∩ A3} = 1/4,

Pr {A2 ∩ A3} = 1/4,
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Pr {A1 ∩ A2 ∩ A3} = 0.

Since for 1 ≤ i < j ≤ 3, we have Pr {Ai ∩ Aj } = Pr {Ai} Pr {Aj} = 1/4, the

events A1, A2, and A3 are pairwise independent. The events are not

mutually independent, however, because Pr {A1 ∩ A2 ∩ A3} = 0 and Pr

{A1} Pr {A2} Pr {A3} = 1/8 ≠ 0.

Bayes’s theorem

From the definition (C.16) of conditional probability and the

commutative law A ∩ B = B ∩ A, it follows that for two events A and B,

each with nonzero probability,

Solving for Pr {A | B}, we obtain

which is known as Bayes’s theorem. The denominator Pr {B} is a

normalizing constant, which we can reformulate as follows. Since B =

(B ∩ A) ∪ (B ∩ Ā), and since B ∩ A and B ∩ Ā are mutually exclusive

events,

Pr {B} = Pr {B ∩ A} + Pr {B ∩ Ā}

= Pr {A} Pr {B | A} + Pr {Ā} Pr {B | Ā}.

Substituting into equation (C.19) produces an equivalent form of

Bayes’s theorem:

Bayes’s theorem can simplify the computing of conditional

probabilities. For example, suppose that you have a fair coin and a

biased coin that always comes up heads. Run an experiment consisting

of three independent events: choose one of the two coins at random, flip

that coin once, and then flip it again. Suppose that the coin you have
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chosen comes up heads both times. What is the probability that it’s the

biased coin?

Bayes’s theorem solves this problem. Let A be the event that you

choose the biased coin, and let B be the event that the chosen coin

comes up heads both times. We wish to determine Pr {A | B}, knowing

that Pr {A} = 1/2, Pr {B | A} = 1, Pr {Ā} = 1/2, and Pr {B | Ā = 1/4.

Thus we have

Exercises

C.2-1

Professor Rosencrantz flips a fair coin twice. Professor Guildenstern

flips a fair coin once. What is the probability that Professor Rosencrantz

obtains strictly more heads than Professor Guildenstern?

C.2-2

Prove Boole’s inequality: For any finite or countably infinite sequence of

events A1, A2, …,

C.2-3

You shuffle a deck of 10 cards, each bearing a distinct number from 1 to

10, in order to mix the cards thoroughly. You then remove three cards,

one at a time, from the deck. What is the probability that the three cards

you select are in sorted (increasing) order?

C.2-4

Prove that

Pr {A | B} + Pr {Ā | B} = 1.

C.2-5

www.konkur.in

Telegram: @uni_k



Prove that for any collection of events A1, A2, … , An,

★ C.2-6

Show how to construct a set of n events that are pairwise independent

but such that no subset of k > 2 of them is mutually independent.

★ C.2-7

Two events A and B are conditionally independent, given C, if

Pr {A ∩ B | C} = Pr {A | C} · Pr {B | C}.

Give a simple but nontrivial example of two events that are not

independent but are conditionally independent given a third event.

★ C.2-8

Professor Gore teaches a music class on rhythm in which three students

—Jeff, Tim, and Carmine—are in danger of failing. Professor Gore tells

the three that one of them will pass the course and the other two will

fail. Carmine asks Professor Gore privately which of Jeff and Tim will

fail, arguing that since he already knows at least one of them will fail,

the professor won’t be revealing any information about Carmine’s

outcome. In a breach of privacy law, Professor Gore tells Carmine that

Jeff will fail. Carmine feels somewhat relieved now, figuring that either

he or Tim will pass, so that his probability of passing is now 1/2. Is

Carmine correct, or is his chance of passing still 1/3? Explain.

C.3 Discrete random variables

A (discrete) random variable X is a function from a finite or countably

infinite sample space S to the real numbers. It associates a real number

with each possible outcome of an experiment, which allows us to work

with the probability distribution induced on the resulting set of

numbers. Random variables can also be defined for uncountably infinite
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sample spaces, but they raise technical issues that are unnecessary to

address for our purposes. Therefore we’ll assume that random variables

are discrete.

For a random variable X and a real number x, we define the event X

= x to be {s ∈ S : X(s) = x}, and thus

The function

f(x) = Pr {X = x}

is the probability density function of the random variable X. From the

probability axioms, Pr {X = x} ≥ 0 and ∑x Pr {X = x} = 1.

As an example, consider the experiment of rolling a pair of ordinary,

6-sided dice. There are 36 possible outcomes in the sample space.

Assume that the probability distribution is uniform, so that each

outcome s ∈ S is equally likely: Pr {s} = 1/36. Define the random

variable X to be the maximum of the two values showing on the dice. We

have Pr {X = 3} = 5/36, since X assigns a value of 3 to 5 of the 36

possible outcomes, namely, (1, 3), (2, 3), (3, 3), (3, 2), and (3, 1).

We can define several random variables on the same sample space. If

X and Y are random variables, the function

f(x, y) = Pr {X = x and Y = y}

is the joint probability density function of X and Y. For a fixed value y,

and similarly, for a fixed value x,

Using the definition (C.16) of conditional probability on page 1187, we

have
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We define two random variables X and Y to be independent if for all x

and y, the events X = x and Y = y are independent or, equivalently, if

for all x and y, we have Pr {X = x and Y = y} = Pr {X = x} Pr {Y = y}.

Given a set of random variables defined over the same sample space,

we can define new random variables as sums, products, or other

functions of the original variables.

Expected value of a random variable

The simplest, and often the most useful, summary of the distribution of

a random variable is the “average” of the values it takes on. The

expected value (or, synonymously, expectation or mean) of a discrete

random variable X is

which is well defined if the sum is finite or converges absolutely.

Sometimes the expectation of X is denoted by μX or, when the random

variable is apparent from context, simply by μ.

Consider a game in which you flip two fair coins. You earn $3 for

each head but lose $2 for each tail. The expected value of the random

variable X representing your earnings is

E[X] = 6 · Pr {2 H’s} + 1 · Pr {1 H, 1 T} − 4 · Pr {2 T’s}

= 6 · (1/4) + 1 · (1/2) − 4 · (1/4)

= 1.

Linearity of expectation says that the expectation of the sum of two

random variables is the sum of their expectations, that is,

whenever E[X] and E[Y] are defined. Linearity of expectation applies to

a broad range of situations, holding even when X and Y are not

independent. It also extends to finite and absolutely convergent

summations of expectations. Linearity of expectation is the key property

that enables us to perform probabilistic analyses by using indicator

random variables (see Section 5.2).
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If X is any random variable, any function g(x) defines a new random

variable g(X). If the expectation of g(X) is defined, then

Letting g(x) = ax, we have for any constant a,

Consequently, expectations are linear: for any two random variables X

and Y and any constant a,

When two random variables X and Y are independent and each has

a defined expectation,

In general, when n random variables X1, X2, … , Xn are mutually

independent,

When a random variable X takes on values from the set of natural

numbers ℕ = {0, 1, 2, …}, we have a nice formula for its expectation:

since each term Pr {X ≥ i} is added in i times and subtracted out i − 1

times (except Pr {X ≥ 0}, which is added in 0 times and not subtracted
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out at all).

A function f(x) is convex if

for all x and y and for all 0 ≤ λ ≤ 1. Jensen’s inequality says that when a

convex function f(x) is applied to a random variable X,

provided that the expectations exist and are finite.

Variance and standard deviation

The expected value of a random variable does not express how “spread

out” the variable’s values are. For example, consider random variables X

and Y for which Pr {X = 1/4} = Pr {X = 3/4} = 1/2 and Pr {Y = 0} = Pr

{Y = 1} = 1/2. Then both E[X] and E[Y] are 1/2, yet the actual values

taken on by Y are further from the mean than the actual values taken

on by X.

The notion of variance mathematically expresses how far from the

mean a random variable’s values are likely to be. The variance of a

random variable X with mean E[X] is

To justify the equation E[E2[X]] = E2[X], note that because E[X] is a

real number and not a random variable, so is E2[X]. The equation

E[XE[X]] = E2[X] follows from equation (C.25), with a = E[X].

Rewriting equation (C.31) yields an expression for the expectation of

the square of a random variable:

The variance of a random variable X and the variance of aX are

related (see Exercise C.3-10):
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Var[aX] = a2Var[X].

When X and Y are independent random variables,

Var[X + Y] = Var[X] + Var[Y].

In general, if n random variables X1, X2, … , Xn are pairwise

independent, then

The standard deviation of a random variable X is the nonnegative square

root of the variance of X. The standard deviation of a random variable

X is sometimes denoted σX or simply σ when the random variable X is

understood from context. With this notation, the variance of X is

denoted σ2.

Exercises

C.3-1

You roll two ordinary, 6-sided dice. What is the expectation of the sum

of the two values showing? What is the expectation of the maximum of

the two values showing?

C.3-2

An array A[1 : n] contains n distinct numbers that are randomly

ordered, with each permutation of the n numbers being equally likely.

What is the expectation of the index of the maximum element in the

array? What is the expectation of the index of the minimum element in

the array?

C.3-3

A carnival game consists of three dice in a cage. A player can bet a

dollar on any of the numbers 1 through 6. The cage is shaken, and the

payoff is as follows. If the player’s number doesn’t appear on any of the

dice, the player loses the dollar. Otherwise, if the player’s number
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appears on exactly k of the three dice, for k = 1, 2, 3, the player keeps

the dollar and wins k more dollars. What is the expected gain from

playing the carnival game once?

C.3-4

Argue that if X and Y are nonnegative random variables, then

E[max {X, Y}] ≤ E[X] + E[Y].

★ C.3-5

Let X and Y be independent random variables. Prove that f(X) and g(Y)

are independent for any choice of functions f and g.

★ C.3-6

Let X be a nonnegative random variable, and suppose that E[X] is well

defined. Prove Markov’s inequality:

for all t > 0.

★ C.3-7

Let S be a sample space, and let X and X′ be random variables such that

X(s) ≥ X′(s) for all s ∈ S. Prove that for any real constant t,

Pr {X ≥ t} ≥ Pr {X′ ≥ t}.

C.3-8

Which is larger: the expectation of the square of a random variable, or

the square of its expectation?

C.3-9

Show that for any random variable X that takes on only the values 0

and 1, we have Var[X] = E[X] E [1 − X].

C.3-10
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Prove that Var[aX] = a2Var[X] from the definition (C.31) of variance.

C.4 The geometric and binomial distributions

A Bernoulli trial is an experiment with only two possible outcomes:

success, which occurs with probability p, and failure, which occurs with

probability q = 1 − p. A coin flip serves as an example where, depending

on your point of view, heads equates to success and tails to failure.

When we speak of Bernoulli trials collectively, we mean that the trials

are mutually independent and, unless we specifically say otherwise, that

each has the same probability p for success. Two important distributions

arise from Bernoulli trials: the geometric distribution and the binomial

distribution.

The geometric distribution

Consider a sequence of Bernoulli trials, each with a probability p of

success and a probability q = 1 − p of failure. How many trials occur

before a success? Define the random variable X to be the number of

trials needed to obtain a success. Then X has values in the range {1, 2,

…}, and for k ≥ 1,
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Figure C.1 A geometric distribution with probability p = 1/3 of success and a probability q = 1 −

p of failure. The expectation of the distribution is 1/p = 3.

since k − 1 failures occur before the first success. A probability

distribution satisfying equation (C.35) is said to be a geometric

distribution. Figure C.1 illustrates such a distribution.

Assuming that q < 1, we can calculate the expectation of a geometric

distribution:

Thus, on average, it takes 1/p trials before a success occurs, an intuitive

result. As Exercise C.4-3 asks you to show, the variance is
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As an example, suppose that you repeatedly roll two dice until you

obtain either a seven or an eleven. Of the 36 possible outcomes, 6 yield a

seven and 2 yield an eleven. Thus, the probability of success is p = 8/36

= 2/9, and you’d have to roll 1/p = 9/2 = 4.5 times on average to obtain a

seven or eleven.

The binomial distribution

How many successes occur during n Bernoulli trials, where a success

occurs with probability p and a failure with probability q = 1 − p?

Define the random variable X to be the number of successes in n trials.

Then X has values in the range {0, 1, … , n}, and for k = 0, 1, … , n,

since there are  ways to pick which k of the n trials are successes, and

the probability that each occurs is pkqn−k. A probability distribution

satisfying equation (C.38) is said to be a binomial distribution. For

convenience, we define the family of binomial distributions using the

notation

Figure C.2 illustrates a binomial distribution. The name “binomial”

comes from the right-hand side of equation (C.38) being the kth term of

the expansion of (p +q)n. Consequently, since p + q = 1, equation (C.4)

on page 1181 gives

as axiom 2 of the probability axioms requires.

We can compute the expectation of a random variable having a

binomial distribution from equations (C.9) and (C.40). Let X be a
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random variable that follows the binomial distribution b(k; n, p), and let

q = 1 − p. The definition of expectation gives

Figure C.2 The binomial distribution b(k; 15, 1/3) resulting from n = 15 Bernoulli trials, each

with probability p = 1/3 of success. The expectation of the distribution is np = 5.

Linearity of expectation produces the same result with substantially

less algebra. Let Xi be the random variable describing the number of

successes in the ith trial. Then E[Xi] = p · 1 + q · 0 = p, and the expected

number of successes for n trials is

www.konkur.in

Telegram: @uni_k



We can use the same approach to calculate the variance of the

distribution. By equation (C.31), . Since Xi takes on

only the values 0 and 1, we have , which implies .

Hence,

To compute the variance of X, we take advantage of the independence

of the n trials. By equation (C.33), we have

As Figure C.2 shows, the binomial distribution b(k; n, p) increases

with k until it reaches the mean np, and then it decreases. To prove that

the distribution always behaves in this manner, examine the ratio of

successive terms:
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This ratio is greater than 1 precisely when (n + 1)p − k is positive.

Consequently, b(k; n, p) > b(k − 1; n, p) for k < (n + 1)p (the distribution

increases), and b(k; n, p) < b(k − 1; n, p) for k > (n + 1)p (the

distribution decreases). If (n + 1)p is an integer, then for k = (n + 1)p,

the ratio b(k; n, p)/b(k − 1; n, p) equals 1, so that b(k; n, p) = b(k − 1; n,

p). In this case, the distribution has two maxima: at k = (n+1)p and at

k−1 = (n+1)p−1 = np−q. Otherwise, it attains a maximum at the unique

integer k that lies in the range np − q < k < (n + 1)p.

The following lemma provides an upper bound on the binomial

distribution.

Lemma C.1

Let n ≥ 0, let 0 < p < 1, let q = 1 − p, and let 0 ≤ k ≤ n. Then

Proof   We have

▪

Exercises
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C.4-1

Verify axiom 2 of the probability axioms for the geometric distribution.

C.4-2

How many times on average do you need to flip six fair coins before

obtaining three heads and three tails?

C.4-3

Show that the variance of the geometric distribution is q/p2. (Hint: Use

Exercise A.1-6 on page 1144.)

C.4-4

Show that b(k; n, p) = b(n − k; n, q), where q = 1 − p.

C.4-5

Show that the value of the maximum of the binomial distribution b(k; n,

p) is approximately , where q = 1 − p.

★ C.4-6

Show that the probability of no successes in n Bernoulli trials, each with

probability p = 1/n of success, is approximately 1/e. Show that the

probability of exactly one success is also approximately 1/e.

★ C.4-7

Professor Rosencrantz flips a fair coin n times, and so does Professor

Guildenstern. Show that the probability that they get the same number

of heads is . (Hint: For Professor Rosencrantz, call a head a

success, and for Professor Guildenstern, call a tail a success.) Use your

argument to verify the identity

★ C.4-8
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Show that for 0 ≤ k ≤ n,

b(k; n, 1/2) ≤ 2n H(k/n)−n,

where H(x) is the entropy function (C.8) on page 1182.

★ C.4-9

Consider n Bernoulli trials, where for i = 1, 2, … , n, the ith trial has

probability pi of success, and let X be the random variable denoting the

total number of successes. Let p ≥ pi for all i = 1, 2, … , n. Prove that for

1 ≤ k ≤ n,

★ C.4-10

Let X be the random variable for the total number of successes in a set

A of n Bernoulli trials, where the ith trial has a probability pi of success,

and let X′ be the random variable for the total number of successes in a

second set A′ of n Bernoulli trials, where the ith trial has a probability 

 of success. Prove that for 0 ≤ k ≤ n,

Pr {X′ ≥ k} ≥ Pr {X ≥ k}.

(Hint: Show how to obtain the Bernoulli trials in A′ by an experiment

involving the trials of A, and use the result of Exercise C.3-7.)

★ C.5 The tails of the binomial distribution

The probability of having at least, or at most, k successes in n Bernoulli

trials, each with probability p of success, is often of more interest than

the probability of having exactly k successes. In this section, we

investigate the tails of the binomial distribution: the two regions of the

distribution b(k; n, p) that are far from the mean np. We’ll prove several

important bounds on (the sum of all terms in) a tail.
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We first provide a bound on the right tail of the distribution b(k; n,

p). To determine bounds on the left tail, simply invert the roles of

successes and failures.

Theorem C.2

Consider a sequence of n Bernoulli trials, where success occurs with

probability p. Let X be the random variable denoting the total number

of successes. Then for 0 ≤ k ≤ n, the probability of at least k successes is

Proof   For S ⊆ {1, 2, … , n}, let AS denote the event that the ith trial is

a success for every i ∈ S. Since Pr {AS} = pk, where |S| = k, we have

▪

The following corollary restates the theorem for the left tail of the

binomial distribution. In general, we’ll leave it to you to adapt the

proofs from one tail to the other.

Corollary C.3

Consider a sequence of n Bernoulli trials, where success occurs with

probability p. If X is the random variable denoting the total number of

successes, then for 0 ≤ k ≤ n, the probability of at most k successes is
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▪

Our next bound concerns the left tail of the binomial distribution. Its

corollary shows that, far from the mean, the left tail diminishes

exponentially.

Theorem C.4

Consider a sequence of n Bernoulli trials, where success occurs with

probability p and failure with probability q = 1 − p. Let X be the

random variable denoting the total number of successes. Then for 0 < k

< np, the probability of fewer than k successes is

Proof     We bound the series  by a geometric series using the

technique from Section A.2, page 1147. For i = 1, 2, … , k, equation

(C.45) gives

If we let
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it follows that

b(i − 1; n, p) < xb(i; n, p)

for 0 < i ≤ k. Iteratively applying this inequality k − i times gives

b(i; n, p) < xk−i b(k; n, p)

for 0 ≤ i < k, and hence

▪

Corollary C.5

Consider a sequence of n Bernoulli trials, where success occurs with

probability p and failure with probability q = 1 − p. Then for 0 < k ≤

np/2, the probability of fewer than k successes is less than half the

probability of fewer than k + 1 successes.

Proof   Because k ≤ np/2, we have
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since q ≤ 1. Letting X be the random variable denoting the number of

successes, Theorem C.4 and inequality (C.46) imply that the probability

of fewer than k successes is

Thus we have

since .

▪

Bounds on the right tail follow similarly. Exercise C.5-2 asks you to

prove them.

Corollary C.6

Consider a sequence of n Bernoulli trials, where success occurs with

probability p. Let X be the random variable denoting the total number

of successes. Then for np < k < n, the probability of more than k

successes is

▪

Corollary C.7
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Consider a sequence of n Bernoulli trials, where success occurs with

probability p and failure with probability q = 1 − p. Then for (np + n)/2

< k < n, the probability of more than k successes is less than half the

probability of more than k − 1 successes.

▪

The next theorem considers n Bernoulli trials, each with a

probability pi of success, for i = 1, 2, … , n. As the subsequent corollary

shows, we can use the theorem to provide a bound on the right tail of

the binomial distribution by setting pi = p for each trial.

Theorem C.8

Consider a sequence of n Bernoulli trials, where in the ith trial, for i = 1,

2, … , n, success occurs with probability pi and failure occurs with

probability qi = 1 − pi. Let X be the random variable describing the

total number of successes, and let μ = E[X]. Then for r > μ,

Proof   Since for any α > 0, the function eαx strictly increases in x,

where we will determine α later. Using Markov’s inequality (C.34), we

obtain

The bulk of the proof consists of bounding E[eα(X−μ)] and

substituting a suitable value for α in inequality (C.48). First, we evaluate

E[eα(X−μ)]. Using the technique of indicator random variables (see

Section 5.2), let Xi = I {the ith Bernoulli trial is a success} for i = 1, 2,

… , n. That is, Xi is the random variable that is 1 if the ith Bernoulli trial

is a success and 0 if it is a failure. Thus, we have
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and by linearity of expectation,

which implies

To evaluate E[eα(X−μ)], we substitute for X − μ, obtaining

which follows from equation (C.27), since the mutual independence of

the random variables Xi implies the mutual independence of the

random variables  (see Exercise C.3-5). By the definition of

expectation,

where exp(x) denotes the exponential function: exp(x) = ex. (Inequality

(C.49) follows from the inequalities α > 0, qi ≤ 1, , and .

The last line follows from inequality (3.14) on page 66.) Consequently,
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since . Therefore, from equation (C.47) and inequalities (C.48)

and (C.50), it follows that

Choosing α = ln(r/μ) (see Exercise C.5-7), we obtain

▪

When applied to Bernoulli trials in which each trial has the same

probability of success, Theorem C.8 yields the following corollary

bounding the right tail of a binomial distribution.

Corollary C.9

Consider a sequence of n Bernoulli trials, where in each trial success

occurs with probability p and failure occurs with probability q = 1 − p.

Then for r > np,

Proof   By equation (C.41), we have μ = E[X] = np.

▪

Exercises

★ C.5-1

Which is more likely: getting exactly n heads in 2n flips of a fair coin, or

n heads in n flips of a fair coin?

★ C.5-2

Prove Corollaries C.6 and C.7.
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★ C.5-3

Show that

for all a > 0 and all k such that 0 < k < na/(a + 1).

★ C.5-4

Prove that if 0 < k < np, where 0 < p < 1 and q = 1 − p, then

★ C.5-5

Use Theorem C.8 to show that

for r > n − μ. Similarly, use Corollary C.9 to show that

for r > n − np.

★ C.5-6

Consider a sequence of n Bernoulli trials, where in the ith trial, for i = 1,

2, … , n, success occurs with probability pi and failure occurs with

probability qi = 1 − pi. Let X be the random variable describing the

total number of successes, and let μ = E[X]. Show that for r ≥ 0,

(Hint: Prove that . Then follow the outline of the proof

of Theorem C.8, using this inequality in place of inequality (C.49).)

★ C.5-7
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Show that choosing α = ln(r/μ) minimizes the right-hand side of

inequality (C.51).

Problems

C-1 The Monty Hall problem

Imagine that you are a contestant in the 1960s game show Let’s Make a

Deal, hosted by emcee Monty Hall. A valuable prize is hidden behind

one of three doors and comparatively worthless prizes behind the other

two doors. You will win the valuable prize, typically an automobile or

other expensive product, if you select the correct door. After you have

picked one door, but before the door has been opened, Monty, who

knows which door hides the automobile, directs his assistant Carol

Merrill to open one of the other doors, revealing a goat (not a valuable

prize). He asks whether you would like to stick with your current choice

or to switch to the other closed door. What should you do to maximize

your chances of winning the automobile and not the other goat?

The answer to this question—stick or switch?—has been heavily

debated, in part because the problem setup is ambiguous. We’ll explore

different subtle assumptions.

a. Suppose that your first pick is random, with probability 1/3 of

choosing the right door. Moreover, you know that Monty always gives

every contestant (and will give you) the opportunity to switch. Prove

that it is better to switch than stick. What is your probability of

winning the automobile?

This answer is the one typically given, even though the original

statement of the problem rarely mentions the assumption that Monty

always offers the contestant the opportunity to switch. But, as the

remainder of this problem will elucidate, your best strategy may be

different if this unstated assumption does not hold. In fact, in the real

game show, after a contestant picked a door, Monty sometimes simply

asked Carol to open the door that the contestant had chosen.

Let’s model the interactions between you and Monty as a

probabilistic experiment, where you both employ randomized strategies.
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Specifically, after you pick a door, Monty offers you the opportunity to

switch with probability pright if you picked the right door and with

probability pwrong if you picked the wrong door. Given the opportunity

to switch, you randomly choose to switch with probability pswitch. For

example, if Monty always offers you the opportunity to switch, then his

strategy is given by pright = pwrong = 1. If you always switch, then your

strategy is given by pswitch = 1.

The game can now be viewed as an experiment consisting of five

steps:

1. You pick a door at random, choosing the automobile (right) with

probability 1/3 or a goat (wrong) with probability 2/3.

2. Carol opens one of the two closed doors, revealing a goat.

3. Monty offers you the opportunity to switch with probability pright if

your choice is right and with probability pwrong if your choice is

wrong.

4. If Monty makes you an offer in step 3, you switch with probability

pswitch.

5. Carol opens the door you’ve chosen, revealing either an automobile

(you win) or a goat (you lose).

Let’s now analyze this game and understand how the choices of

pright, pwrong, and pswitch influence the probability of winning.

b. What are the six outcomes in the sample space for this game? Which

outcomes correspond to you winning the automobile? What are the

probabilities in terms of pright, pwrong, and pswitch of each

outcome? Organize your answers into a table.

c. Use the results of your table (or other means) to prove that the

probability of winning the automobile is
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Suppose that Monty knows the probability pswitch that you switch, and

his goal is to minimize your chance of winning.

d. If pswitch > 0 (you switch with a positive probability), what is

Monty’s best strategy, that is, his best choice for pright and pwrong?

e. If pswitch = 0 (you always stick), argue that all of Monty’s possible

strategies are optimal for him.

Suppose that now Monty’s strategy is fixed, with particular values for

pright and pwrong.

f. If you know pright and pwrong, what is your best strategy for

choosing your probability pswitch of switching as a function of pright

and pwrong?

g. If you don’t know pright and pwrong, what choice of pswitch

maximizes the minimum probability of winning over all the choices of

pright and pwrong?

Let’s return to the original problem as stated, where Monty has given

you the option of switching, but you have no knowledge of Monty’s

possible motivations or strategies.

h. Argue that the conditional probability of winning the automobile

given that Monty offers you the opportunity to switch is

Explain why pright + 2pwrong ≠ 0.

i. What is the value of expression (C.52) when pswitch = 1/2? Show that

choosing pswitch < 1/2 or pswitch > 1/2 allows Monty to select values

for pright and pwrong that yield a lower value for expression (C.52)

than choosing pswitch = 1/2.

j. Suppose that you don’t know Monty’s strategy. Explain why choosing

to switch with probability 1/2 is a good strategy for the original
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problem as stated. Summarize what you have learned overall from this

problem.

C-2 Balls and bins

This problem investigates the effect of various assumptions on the

number of ways of placing n balls into b distinct bins.

a. Suppose that the n balls are distinct and that their order within a bin

does not matter. Argue that the number of ways of placing the balls in

the bins is bn.

b. Suppose that the balls are distinct and that the balls in each bin are

ordered. Prove that there are exactly (b + n − 1)!/(b − 1)! ways to place

the balls in the bins. (Hint: Consider the number of ways of arranging

n distinct balls and b − 1 indistinguishable sticks in a row.)

c. Suppose that the balls are identical, and hence their order within a

bin does not matter. Show that the number of ways of placing the

balls in the bins is . (Hint: Of the arrangements in part (b), how

many are repeated if the balls are made identical?)

d. Suppose that the balls are identical and that no bin may contain more

than one ball, so that n ≤ b. Show that the number of ways of placing

the balls is .

e. Suppose that the balls are identical and that no bin may be left empty.

Assuming that n ≥ b, show that the number of ways of placing the

balls is .

Appendix notes

The first general methods for solving probability problems were

discussed in a famous correspondence between B. Pascal and P. de

Fermat, which began in 1654, and in a book by C. Huygens in 1657.

Rigorous probability theory began with the work of J. Bernoulli in 1713

and A. De Moivre in 1730. Further developments of the theory were

provided by P.-S. Laplace, S.-D. Poisson, and C. F. Gauss.
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Sums of random variables were originally studied by P. L. Chebyshev

and A. A. Markov. A. N. Kolmogorov axiomatized probability theory

in 1933. Chernoff [91] and Hoeffding [222] provided bounds on the tails

of distributions. Seminal work in random combinatorial structures was

done by P. Erdős.

Knuth [259] and Liu [302] are good references for elementary

combinatorics and counting. Standard textbooks such as Billingsley

[56], Chung [93], Drake [125], Feller [139], and Rozanov [390] offer

comprehensive introductions to probability.

1 For a general probability distribution, there may be some subsets of the sample space S that

are not considered to be events. This situation usually arises when the sample space is

uncountably infinite. The main requirement for what subsets are events is that the set of events

of a sample space must be closed under the operations of taking the complement of an event,

forming the union of a finite or countable number of events, and taking the intersection of a

finite or countable number of events. Most of the probability distributions we see in this book

are over finite or countable sample spaces, and we generally consider all subsets of a sample

space to be events. A notable exception is the continuous uniform probability distribution,

which we’ll see shortly.
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D Matrices

Matrices arise in numerous applications, including, but by no means

limited to, scientific computing. If you have seen matrices before, much

of the material in this appendix will be familiar to you, but some of it

might be new. Section D.1 covers basic matrix definitions and

operations, and Section D.2 presents some basic matrix properties.

D.1 Matrices and matrix operations

This section reviews some basic concepts of matrix theory and some

fundamental properties of matrices.

Matrices and vectors

A matrix is a rectangular array of numbers. For example,

is a 2 × 3 matrix A = (aij), where for i = 1, 2 and j = 1, 2, 3, the element

of the matrix in row i and column j is denoted by aij. By convention,

uppercase letters denote matrices and corresponding subscripted

lowercase letters denote their elements. We denote the set of all m × n

matrices with real-valued entries by ℝm×n and, in general, the set of m

× n matrices with entries drawn from a set S by Sm×n.
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The transpose of a matrix A is the matrix AT obtained by exchanging

the rows and columns of A. For the matrix A of equation (D.1),

A vector is a one-dimensional array of numbers. For example,

is a vector of size 3. We sometimes call a vector of length n an n-vector.

By convention, lowercase letters denote vectors, and the ith element of a

size-n vector x is denoted by xi, for i = 1, 2, … , n. We take the standard

form of a vector to be as a column vector equivalent to an n × 1 matrix,

whereas the corresponding row vector is obtained by taking the

transpose:

xT = ( 2 3 5 ).

The unit vector ei is the vector whose ith element is 1 and all of whose

other elements are 0. Usually, the context makes the size of a unit vector

clear.

A zero matrix is a matrix all of whose entries are 0. Such a matrix is

often denoted 0, since the ambiguity between the number 0 and a

matrix of 0s can usually be resolved from context. If a matrix of 0s is

intended, then the size of the matrix also needs to be derived from the

context.

Square matrices

Square n × n matrices arise frequently. Several special cases of square

matrices are of particular interest:

1. A diagonal matrix has aij = 0 whenever i ≠ j. Because all of the off-

diagonal elements are 0, a succinct way to specify the matrix lists only

the elements along the diagonal:
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2. The n × n identity matrix In is a diagonal matrix with 1s along the

diagonal:

When I appears without a subscript, its size derives from the context.

The ith column of an identity matrix is the unit vector ei.

3. A tridiagonal matrix T is one for which tij = 0 if |i − j | > 1. Nonzero

entries appear only on the main diagonal, immediately above the main

diagonal (ti,i+1 for i = 1, 2, … , n − 1), or immediately below the main

diagonal (ti+1,i for i = 1, 2, … , n − 1):

4. An upper-triangular matrix U is one for which uij = 0 if i > j. All

entries below the diagonal are 0:

An upper-triangular matrix is unit upper-triangular if it has all 1s

along the diagonal.
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5. A lower-triangular matrix L is one for which lij = 0 if i < j. All entries

above the diagonal are 0:

A lower-triangular matrix is unit lower-triangular if it has all 1s along

the diagonal.

6. A permutation matrix P has exactly one 1 in each row or column, and

0s elsewhere. An example of a permutation matrix is

Such a matrix is called a permutation matrix because multiplying a

vector x by a permutation matrix has the effect of permuting

(rearranging) the elements of x. Exercise D.1-4 explores additional

properties of permutation matrices.

7. A symmetric matrix A satisfies the condition A = AT. For example,

is a symmetric matrix.

Basic matrix operations

The elements of a matrix or vector are scalar numbers from a number

system, such as the real numbers, the complex numbers, or integers

modulo a prime. The number system defines how to add and multiply

scalars. These definitions extend to encompass addition and

multiplication of matrices.

We define matrix addition as follows. If A = (aij) and B = (bij) are m

× n matrices, then their matrix sum C = (cij) = A + B is the m × n
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matrix defined by

cij = aij + bij

for i = 1, 2, … , m and j = 1, 2, … , n. That is, matrix addition is

performed componentwise. A zero matrix is the identity for matrix

addition:

A + 0 = A = 0 + A.

If is λ a scalar number and A = (aij) is a matrix, then λA = (λaij) is
the scalar multiple of A obtained by multiplying each of its elements by

λ. As a special case, we define the negative of a matrix A = (aij) to be −1

· A = −A, so that the ijth entry of −A is −aij. Thus,

A + (−A) = 0 = (−A) + A.

The negative of a matrix defines matrix subtraction: A − B = A + (−B).

We define matrix multiplication as follows. Start with two matrices A

and B that are compatible in the sense that the number of columns of A

equals the number of rows of B. (In general, an expression containing a

matrix product AB is always assumed to imply that matrices A and B

are compatible.) If A = (aik) is a p × q matrix and B = (bkj) is a q × r

matrix, then their matrix product C = AB is the p × r matrix C = (cij),

where

for i = 1, 2, … , m and j = 1, 2, … , p. The procedure

RECTANGULAR-MATRIX-MULTIPLY on page 374 implements

matrix multiplication in the straightforward manner based on equation

(D.2), assuming that C is initialized to 0, using pqr multiplications and

p(q − 1)r additions for a running time of Θ(pqr). If the matrices are n×n

square matrices, so that n = p = q = r, the pseudocode reduces to

MATRIX-MULTIPLY on page 81, whose running time is Θ(n3).

(Section 4.2 describes an asymptotically faster Θ(nlg7)-time algorithm

due to V. Strassen.)
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Matrices have many (but not all) of the algebraic properties typical

of numbers. Identity matrices are identities for matrix multiplication:

ImA = AIn = A

for any m × n matrix A. Multiplying by a zero matrix gives a zero

matrix:

A · 0 = 0.

Matrix multiplication is associative:

A(BC) = (AB)C

for compatible matrices A, B, and C. Matrix multiplication distributes

over addition:

A(B + C) = AB + AC,

(B + C)D = BD + CD.

For n > 1, multiplication of n × n matrices is not commutative. For

example, if  and , then  and .

We define matrix-vector products or vector-vector products as if the

vector were the equivalent n × 1 matrix (or a 1 × n matrix, in the case of

a row vector). Thus, if A is an m × n matrix and x is an n-vector, then

Ax is an m-vector. If x and y are n-vectors, then

is a scalar number (actually a 1 × 1 matrix) called the inner product of x

and y. We also use the notation 〈x, y〉 to denote xTy. The inner-product

operator is commutative: 〈x, y〉 = 〈y, x〉. The matrix xyT is an n × n

matrix Z called the outer product of x and y, where zij = xiyj. The

(euclidean) norm ∥x∥ of an n-vector x is defined by
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Thus, the norm of x is its length in n-dimensional euclidean space. A

useful fact, which follows from the equality

is that for any real number a and n-vector x,

Exercises

D.1-1

Show that if A and B are symmetric n × n matrices, then so are A + B

and A − B.

D.1-2

Prove that (AB)T = BTAT and that ATA is always a symmetric matrix.

D.1-3

Prove that the product of two lower-triangular matrices is lower-

triangular.

D.1-4

Prove that if P is an n × n permutation matrix and A is an n × n matrix,

then the matrix product PA is A with its rows permuted, and the matrix

product AP is A with its columns permuted. Prove that the product of

two permutation matrices is a permutation matrix.

D.2 Basic matrix properties

We now define some basic properties pertaining to matrices: inverses,

linear dependence and independence, rank, and determinants. We also

define the class of positive-definite matrices.

Matrix inverses, ranks, and determinants
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The inverse of an n × n matrix A is the n × n matrix, denoted A−1 (if it

exists), such that AA−1 = In = A−1A. For example,

Many nonzero n × n matrices do not have inverses. A matrix without an

inverse is called noninvertible, or singular. An example of a nonzero

singular matrix is

If a matrix has an inverse, it is called invertible, or nonsingular. Matrix

inverses, when they exist, are unique. (See Exercise D.2-1.) If A and B

are nonsingular n × n matrices, then

(BA)−1 = A−1B−1.

The inverse operation commutes with the transpose operation:

(A−1)T = (AT)−1.

The vectors x1, x2, … , xn are linearly dependent if there exist

coefficients c1, c2, … , cn, not all of which are 0, such that c1x1 + c2x2

+ ⋯ + cnxn = 0. The row vectors x1 = ( 1 2 3 ), x2 = ( 2 6 4 ), and x3 = (

4 11 9 ) are linearly dependent, for example, since 2x1+3x2−2x3 = 0. If

vectors are not linearly dependent, they are linearly independent. For

example, the columns of an identity matrix are linearly independent.

The column rank of a nonzero m × n matrix A is the size of the

largest set of linearly independent columns of A. Similarly, the row rank

of A is the size of the largest set of linearly independent rows of A. A

fundamental property of any matrix A is that its row rank always equals

its column rank, so that we can simply refer to the rank of A. The rank

of an m × n matrix is an integer between 0 and min {m, n}, inclusive.

(The rank of a zero matrix is 0, and the rank of an n × n identity matrix

is n.) An alternate, but equivalent and often more useful, definition is

that the rank of a nonzero m×n matrix A is the smallest number r such
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that there exist matrices B and C of respective sizes m × r and r × n such

that A = BC. A square n × n matrix has full rank if its rank is n. An m ×

n matrix has full column rank if its rank is n. The following theorem

gives a fundamental property of ranks.

Theorem D.1

A square matrix has full rank if and only if it is nonsingular.

▪

A null vector for a matrix A is a nonzero vector x such that Ax = 0.

The following theorem (whose proof is left as Exercise D.2-7) and its

corollary relate the notions of column rank and singularity to null

vectors.

Theorem D.2

A matrix has full column rank if and only if it does not have a null

vector.

▪

Corollary D.3

A square matrix is singular if and only if it has a null vector.

▪

The ijth minor of an n×n matrix A, for n > 1, is the (n−1)×(n−1)

matrix A[ij] obtained by deleting the ith row and jth column of A. The

determinant of an n×n matrix A is defined recursively in terms of its

minors by

The term (−1)i+j det(A[ij]) is known as the cofactor of the element aij.

The following theorems, whose proofs are omitted, express

fundamental properties of the determinant.

Theorem D.4 (Determinant properties)

The determinant of a square matrix A has the following properties:

www.konkur.in

Telegram: @uni_k



If any row or any column of A is zero, then det(A) = 0.

The determinant of A is multiplied by λ if the entries of any one

row (or any one column) of A are all multiplied by λ.
The determinant of A is unchanged if the entries in one row

(respectively, column) are added to those in another row

(respectively, column).

The determinant of A equals the determinant of AT.

The determinant of A is multiplied by −1 if any two rows (or any

two columns) are exchanged.

Also, for any square matrices A and B, we have det(AB) = det(A) det(B).

▪

Theorem D.5

An n × n matrix A is singular if and only if det(A) = 0.

▪

Positive-definite matrices

Positive-definite matrices play an important role in many applications.

An n × n matrix A is positive-definite if xTAx > 0 for all n-vectors x ≠ 0.

For example, the identity matrix is positive-definite, since if x = ( x1 x2

⋯ xn)T is a nonzero vector, then

Matrices that arise in applications are often positive-definite due to

the following theorem.

Theorem D.6

For any matrix A with full column rank, the matrix ATA is positive-

definite.
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Proof   We must show that xT(ATA)x > 0 for any nonzero vector x. For

any vector x,

xT(ATA)x = (Ax)T(Ax) (by Exercise D.1-2)

= ∥Ax∥2.

The value ∥Ax∥2 is just the sum of the squares of the elements of the

vector Ax. Therefore, ∥Ax∥2 ≥ 0. We’ll show by contradiction that

∥Ax∥2 > 0. Suppose that ∥Ax∥2 = 0. Then, every element of Ax is 0,

which is to say Ax = 0. Since A has full column rank, Theorem D.2 says

that x = 0, which contradicts the requirement that x is nonzero. Hence,

ATA is positive-definite.

▪

Section 28.3 explores other properties of positive-definite matrices.

Section 33.3 uses a similar condition, known as positive-semidefinite.

An n × n matrix A is positive-semidefinite if xTAx ≥ 0 for all n-vectors x

≠ 0.

Exercises

D.2-1

Prove that matrix inverses are unique, that is, if B and C are inverses of

A, then B = C.

D.2-2

Prove that the determinant of a lower-triangular or upper-triangular

matrix is equal to the product of its diagonal elements. Prove that the

inverse of a lower-triangular matrix, if it exists, is lower-triangular.

D.2-3

Prove that if P is a permutation matrix, then P is invertible, its inverse is

PT, and PT is a permutation matrix.
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D.2-4

Let A and B be n × n matrices such that AB = I. Prove that if A′ is

obtained from A by adding row j into row i, where i ≠ j, then subtracting

column i from column j of B yields the inverse B′ of A′.

D.2-5

Let A be a nonsingular n × n matrix with complex entries. Show that

every entry of A−1 is real if and only if every entry of A is real.

D.2-6

Show that if A is a nonsingular, symmetric, n × n matrix, then A−1 is

symmetric. Show that if B is an arbitrary m × n matrix, then the m × m

matrix given by the product BABT is symmetric.

D.2-7

Prove Theorem D.2. That is, show that a matrix A has full column rank

if and only if Ax = 0 implies x = 0. (Hint: Express the linear dependence

of one column on the others as a matrix-vector equation.)

D.2-8

Prove that for any two compatible matrices A and B,

rank(AB) ≤ min {rank(A), rank(B)},

where equality holds if either A or B is a nonsingular square matrix.

(Hint: Use the alternate definition of the rank of a matrix.)

Problems

D-1 Vandermonde matrix

Given numbers x0, x1, … , xn−1, prove that the determinant of the

Vandermonde matrix

www.konkur.in

Telegram: @uni_k



is

(Hint: Multiply column i by −x0 and add it to column i + 1 for i = n −

1, n − 2, … , 1, and then use induction.)

D-2 Permutations defined by matrix-vector multiplication over GF.(2)

One class of permutations of the integers in the set Sn = {0, 1, 2, … , 2n

− 1} is defined by matrix multiplication over GF(2), the Galois field of

two elements. For each integer x ∈ Sn, we view its binary representation

as an n-bit vector

where . If A is an n × n matrix in which each entry is either 0

or 1, then we can define a permutation mapping each value x ∈ Sn to

the number whose binary representation is the matrix-vector product

Ax. All this arithmetic is performed over GF(2): all values are either 0 or

1, and with one exception, the usual rules of addition and multiplication

apply. The exception is that 1 + 1 = 0. You can think of arithmetic over

GF(2) as being just like regular integer arithmetic, except that you use

only the least-significant bit.

As an example, for S2 = {0, 1, 2, 3}, the matrix
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defines the following permutation πA: πA(0) = 0, πA(1) = 3, πA(2) = 2,

πA(3) = 1. To see why πA(3) = 1, observe that, working in GF(2),

which is the binary representation of 1.

For the remainder of this problem, we’ll work over GF(2), and all

matrix and vector entries will be 0 or 1. Define the rank of a 0-1 matrix

(a matrix for which each entry is either 0 or 1) over GF(2) the same as

for a regular matrix, but with all arithmetic that determines linear

independence performed over GF(2). We define the range of an n × n 0-1

matrix A by

R(A) = {y : y = Ax for some x ∈ Sn},

so that R(A) is the set of numbers in Sn that are produced by

multiplying each value x ∈ Sn by A.

a. If r is the rank of matrix A, prove that |R(A)| = 2r. Conclude that A

defines a permutation on Sn only if A has full rank.

For a given n × n matrix A and a given value y ∈ R(A), we define the

preimage of y by

P (A, y) = {x : Ax = y},

so that P(A, y) is the set of values in Sn that map to y when multiplied

by A.

b. If r is the rank of n × n matrix A and y ∈ R(A), prove that |P(A, y)| =

2n−r.

Let 0 ≤ m ≤ n, and suppose that we partition the set Sn into blocks of

consecutive numbers, where the ith block consists of the 2m numbers
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i2m, i2m + 1, i2m +2, … , (i +1)2m −1. For any subset S ⊆ Sn, define

B(S, m) to be the set of size-2m blocks of Sn containing some element of

S. As an example, when n = 3, m = 1, and S = {1, 4, 5}, then B(S, m)

consists of blocks 0 (since 1 is in the 0th block) and 2 (since both 4 and

5 belong to block 2).

c. Let r be the rank of the lower left (n − m) × m submatrix of A, that is,

the matrix formed by taking the intersection of the bottom n − m rows

and the leftmost m columns of A. Let S be any size-2m block of Sn,

and let S′ = {y : y = Ax for some x ∈ S}. Prove that |B(S′, m)| = 2r

and that for each block in B(S′, m), exactly 2m−r numbers in S map to

that block.

Because multiplying the zero vector by any matrix yields a zero

vector, the set of permutations of Sn defined by multiplying by n × n 0-1

matrices with full rank over GF(2) cannot include all permutations of

Sn. Let’s extend the class of permutations defined by matrix-vector

multiplication to include an additive term, so that x ∈ Sn maps to Ax +

c, where c is an n-bit vector and addition is performed over GF(2). For

example, when

and

we get the following permutation πA,c: πA,c(0) = 2, πA,c(1) = 1, πA,c(2)

= 0, πA,c(3) = 3. We call any permutation that maps x ∈ Sn to Ax + c,

for some n × n 0-1 matrix A with full rank and some n-bit vector c, a

linear permutation.

d. Use a counting argument to show that the number of linear

permutations of Sn is much less than the number of permutations of
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Sn.

e. Give an example of a value of n and a permutation of Sn that cannot

be achieved by any linear permutation. (Hint: For a given

permutation, think about how multiplying a matrix by a unit vector

relates to the columns of the matrix.)

Appendix notes

Linear-algebra textbooks provide plenty of background information on

matrices. The books by Strang [422, 423] are particularly good.
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Index

This index uses the following conventions. Numbers are alphabetized as
if spelled out; for example, “2-3-4 tree” is indexed as if it were “two-
three-four tree.” When an entry refers to a place other than the main
text, the page number is followed by a tag: ex. for exercise, pr. for
problem, fig. for figure, and n. for footnote. A tagged page number often
indicates the first page of an exercise or problem, which is not
necessarily the page on which the reference actually appears.

α(n), 533
α-strongly convex function, 1041
β-smooth function, 1041
δ

(shortest-path distance), 558
(shortest-path weight), 604

ϕ(golden ratio), 69

 (conjugate of the golden ratio), 69

ϕ(n) (Euler’s phi function), 920
π

(predecessor in a breadth-first tree), 555
(predecessor in a shortest-paths tree), 608

ρ(n)-approximation algorithm, 1104, 1120
o-notation, 60
O-notation, 50, 54–55
O′-notation, 73 pr.

-notation, 73 pr.
ω-notation, 61
Ω-notation, 51, 54 fig., 55–56

-notation, 73 pr.

-notation, 73 pr.
Θ-notation, 33, 51, 54 fig., 56
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-notation, 73 pr.
{ } (set), 1153
∈ (set member), 1153
∉ (not a set member), 1153
∅

(empty language), 1052
(empty set), 1153
⊆ (subset), 1154
⊂ (proper subset), 1154
: (such that), 54 n., 1154
∩ (set intersection), 1154
∪ (set union), 1154
− (set difference), 1154
| |

(flow value), 672
(length of a string), 959
(set cardinality), 1156

× (Cartesian product), 1157

〈 〉
(sequence), 1162
(standard encoding), 1052

: (subarray), 19, 23
[a, b] (closed interval), 1157
(a, b) (open interval), 1157
[a, b) or (a, b] (half-open interval), 1157

 (choose), 1180

∥ ∥ (euclidean norm), 1219
! (factorial), 67–68

⌈ ⌉ (ceiling), 63

⌊ ⌋ (floor), 63
∂ (partial derivative), 1023
∑ (sum), 1140
∏ (product), 1144
→ (adjacency relation), 1165

↝ (reachability relation), 1165
∧ (AND), 659, 1065

∥ (concatenation), 291
¬ (NOT), 1065
∨ (OR), 659, 1065

⋘ (left shift), 305

⋙ (logical right shift), 285
⊕

(group operator), 917
(semiring operator), 651 n.
(symmetric difference), 706
⊗
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(convolution operator), 880
(semiring operator), 651 n.

* (closure operator), 1052
| (divides relation), 904

∤ (does-not-divide relation), 904
= (mod n) (equivalent, modulo n), 64
≠ (mod n) (not equivalent, modulo n), 64
[a]n (equivalence class modulo n), 905

+n (addition modulo n), 917

·n (multiplication modulo n), 917

 (Legendre symbol), 954 pr.
ε (empty string), 959, 1052

⊏ (prefix relation), 959

⊐ (suffix relation), 959
// (comment symbol), 22

≫ (much-greater-than relation), 533

≪ (much-less-than relation), 761
≤P (polynomial-time reducibility relation), 1062, 1071 ex.

AA-tree, 358
abelian group, 917
absent child, 1173
absolutely convergent series, 1140
absorption laws for sets, 1155
abstract problem, 1048
abuse of asymptotic notation, 55, 59–60
acceptable pair of integers, 950
acceptance

by an algorithm, 1053
by a finite automaton, 968

accepting state, 967
accounting method, 453–456

for binary counters, 455
for dynamic tables, 463
for stack operations, 454–455

Ackermann’s function, 544
activity-selection problem, 418–425
acyclic graph, 1166
ADD-BINARY-INTEGERS, 25 ex.
add instruction, 26
addition

of matrices, 1217
modulo n (+n), 917

of polynomials, 877
additive group modulo n, 918
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addressing, open, see open-address hash table
ADD-SUBARRAY, 783 pr.
adjacency-list representation, 550–551

replaced by a hash table, 553 ex.
adjacency-matrix representation, 551–552
adjacency relation (→), 1165
adjacent vertices, 1165
Advanced Encryption Standard (AES), 291
adversary, 204, 286, 805, 807, 941
AES, 291
aggregate analysis, 449–453

for binary counters, 451–453
for breadth-first search, 558
for depth-first search, 566–567
for Dijkstra’s algorithm, 623–624
for disjoint-set data structures, 525–526, 527 ex.
for dynamic tables, 462–463
for the Knuth-Morris-Pratt algorithm, 977–978
for Prim’s algorithm, 597
for rod cutting, 370
for shortest paths in a dag, 617
for stack operations, 449–451

aggregate flow, 864
Akra-Bazzi recurrence, 115–119

solving by Akra-Bazzi method, 117–118
algorithm, 1–1226

analysis of, 25–34
approximation, 1104–1136
compare-exchange, 222 pr.
correctness of, 6
decision, 1053
deterministic, 135
lookahead, 815 ex.
nondeterministic, 765
oblivious, 222 pr.
offline, 791
online, see online algorithm
origin of word, 48
parallel, see parallel algorithm
push-relabel, 702
randomized, see randomized algorithm
recursive, 34
reduction, 1046, 1062
running time of, 29
scaling, 641 pr., 699 pr.
streaming, 818
as a technology, 13
verification, 1058
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algorithmic recurrence, 77–78
ALLOCATE-NODE, 506
all-pairs shortest paths, 605, 646–669

in dynamic graphs, 669

in ϵ-dense graphs, 668 pr.
Floyd-Warshall algorithm for, 655–659
Johnson’s algorithm for, 662–667
by matrix multiplication, 648–655, 668–669
by repeated squaring, 652–653

α-balanced, 472 pr.
α(n), 533
α-strongly convex function, 1041
alphabet, 967, 1052
alternating path, 705
amortized analysis, 448–475

by accounting method, 453–456
by aggregate analysis, 370, 449–453
for breadth-first search, 558
for depth-first search, 566–567
for Dijkstra’s algorithm, 623–624
for disjoint-set data structures, 525–526, 527 ex., 531 ex., 534–540, 541 ex.
for dynamic tables, 460–471
for the Knuth-Morris-Pratt algorithm, 977–978
for making binary search dynamic, 472 pr.
by potential method, 456–460
for Prim’s algorithm, 597
for restructuring red-black trees, 473 pr.
for shortest paths in a dag, 617
for stacks on secondary storage, 517 pr.
for weight-balanced trees, 472 pr.

amortized cost
in the accounting method, 453
in aggregate analysis, 449
in the potential method, 456

amortized progress, 1028
analysis of algorithms, 25–34

see also amortized analysis, competitive analysis, probabilistic analysis
ancestor, 1172

lowest common, 543 pr.
AND function (∧), 659, 1065
AND gate, 1065
and, in pseudocode, 24
antiparallel edges, 673–674
antisymmetric relation, 1160
approximation

by least squares, 841–845
of summation by integrals, 1150
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approximation algorithm, 1103–1136
for bin packing, 1131 pr.
for MAX-CNF satisfiability, 1124 ex.
for maximum clique, 1131 pr.
for maximum matching, 1132 pr.
for maximum spanning tree, 1134 pr.
for maximum-weight cut, 1124 ex.
for MAX-3-CNF satisfiability, 1120–1121
for parallel machine scheduling, 1133 pr.
randomized, 1120
for set cover, 1115–1119
for subset sum, 1124–1130
for traveling-salesperson problem, 1109–1115
for vertex cover, 1106–1109, 1121–1124
for weighted set cover, 1132 pr.
for 0-1 knapsack problem, 1134 pr.

approximation error, 842
approximation ratio, 1104, 1120
approximation scheme, 1105
APPROX-MIN-WEIGHT-VC, 1123
APPROX-SUBSET-SUM, 1128
APPROX-TSP-TOUR, 1111
APPROX-VERTEX-COVER, 1107
arbitrage, 641 pr.
arc, see edge
argument of a function, 1161–1162
arithmetic instructions, 26
arithmetic, modular, 64, 916–923
arithmetic series, 1141
arithmetic with infinities, 611
arm in a disk drive, 498
array

indexing into, 22–23, 26 n., 252
inversion in, 47 pr.
Monge, 123 pr.
passing as a parameter, 24
in pseudocode, 22–23
storage of, 26 n., 252

articulation point, 582 pr.
assignment

optimal, 723–739
satisfying, 1066, 1074
truth, 1066, 1073

assignment problem, 723–739
associative laws for sets, 1155
associative operation, 917
asymptotically larger, 62
asymptotically nonnegative, 54
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asymptotically positive, 54
asymptotically smaller, 62
asymptotically tight bound, 56
asymptotic lower bound, 55
asymptotic notation, 53–63, 72 pr.

and graph algorithms, 548
and linearity of summations, 1141

asymptotic running time, 49
asymptotic upper bound, 54
attribute

in clustering, 1006
in a graph, 552
of an object, 23

augmentation of a flow, 678
augmented primal linear program, 870
augmenting data structures, 480–496
augmenting path, 681–682, 705

widest, 700 pr.
authentication, 309 pr., 938–939, 942
automaton, 967–974
auxiliary hash function, 295
average-case running time, 32, 128
AVL tree, 357 pr., 358

back edge, 569, 573
back substitution, 823
balanced search tree

AA-trees, 358
AVL trees, 357 pr., 358
B-trees, 497–519
k-neighbor trees, 358
left-leaning red-black binary search trees, 358
red-black trees, 331–359
scapegoat trees, 358
splay trees, 359, 478
treaps, 358
2-3-4 trees, 502, 518 pr.
2-3 trees, 358, 519
weight-balanced trees, 358, 472 pr.

balls and bins, 143–144, 1212 pr.
base-a pseudoprime, 944
base case

of a divide-and-conquer algorithm, 34, 76
of a recurrence, 41, 77–78

base, in DNA, 393
basis function, 841
Bayes’s theorem, 1189
BELLMAN-FORD, 612
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Bellman-Ford algorithm, 612–616
for all-pairs shortest paths, 647
in Johnson’s algorithm, 664–666
and objective functions, 632 ex.
to solve systems of difference constraints, 630–631
Yen’s improvement to, 640 pr.

Bernoulli trial, 1196
and balls and bins, 143–144
in bucket sort analysis, 217
in finding prime numbers, 943
in randomized selection analysis, 232
and streaks, 144–150

best-case running time, 34 ex.
β-smooth function, 1041
BFS, 556

see also breadth-first search
BIASED-RANDOM, 129 ex.
biconnected component, 582 pr.
big-oh notation (O), 50, 54–55
big-omega notation (Ω), 51, 54 fig., 55–56
bijective function, 1162
binary character code, 431
binary counter

analyzed by accounting method, 455
analyzed by aggregate analysis, 451–453
analyzed by potential method, 458–459

binary entropy function, 1182
binary gcd algorithm, 953 pr.
binary heap, see heap
binary logarithm (lg), 66
binary reflected Gray code, 471 pr.
binary relation, 1158
binary search, 44 ex.

with fast insertion, 472 pr.
in insertion sort, 45 ex.
in parallel merging, 777–778
in searching B-trees, 512 ex.

binary search tree, 312–330
AA-trees, 358
AVL trees, 357 pr., 358
deletion from, 322–325, 326 ex.
with equal keys, 327 pr.
insertion into, 321–322
k-neighbor trees, 358
left-leaning red-black binary search trees, 358
maximum key of, 317–318
minimum key of, 317–318
optimal, 400–407
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persistent, 355 pr.
predecessor in, 318–319
querying, 316–320
randomly built, 328 pr.
red-black trees, 331–359
right-converting of, 337 ex.
scapegoat trees, 358
searching, 316–317
for sorting, 326 ex.
splay trees, 359
successor in, 318–319
weight-balanced trees, 358
see also red-black tree

binary-search-tree property, 313–314
vs. min-heap property, 315 ex.

binary tree, 1173
full, 433, 1174
number of different ones, 329 pr.
representation of, 265
see also binary search tree

binomial coefficient, 1181–1182
binomial distribution, 1198–1201

and balls and bins, 143
in bucket sort analysis, 217
maximum value of, 1202 ex.
tails of, 1203–1210

binomial expansion, 1181
binomial theorem, 1181
bin packing, 1131 pr.
bipartite graph, 1167

complete, 716
corresponding flow network of, 694
d-regular, 716 ex., 740 pr.
matching in, 693–697, 704–743

bipartite matching, 693–697, 704–743
birthday paradox, 140–143
bisection of a tree, 1177 pr.
bitonic euclidean traveling-salesperson problem, 407 pr.
bitonic sequence, 644 pr.
bitonic tour, 407 pr.
bit operation, 904

in Euclid’s algorithm, 954 pr.
bit-reversal permutation, 897
bit vector, 274 ex.
black-height, 332
black vertex, 554, 564
block

in a cache, 440, 802
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on a disk, 499, 512 ex., 517 pr.
blocking flow, 702
blocking pair, 716
block representation of matrices, 254
block structure in pseudocode, 21–22
body, 1032
Boole’s inequality, 1190 ex.
boolean combinational circuit, 1065
boolean combinational element, 1065
boolean connective, 1073
boolean data type, 26
boolean formula, 1043, 1060 ex., 1073–1074
boolean function, 1182 ex.
boolean operators, 24

Borůvka’s algorithm, 603
bottleneck spanning tree, 601 pr.
bottleneck traveling-salesperson problem, 1115 ex.
bottoming out, 76
bottom of a stack, 254
BOTTOM-UP-CUT-ROD, 369
bottom-up method, for dynamic programming, 368
bound

asymptotically tight, 56
asymptotic lower, 55
asymptotic upper, 54
on binomial coefficients, 1181–1182
on binomial distributions, 1201
polylogarithmic, 67
on the tails of a binomial distribution, 1203–1210
see also lower bounds

bounding a summation, 1145–1152
box, nesting, 640 pr.

B+-tree, 501
branch instructions, 26
breadth-first forest, 728
breadth-first search, 554–563

in the Hopcroft-Karp algorithm, 711
in the Hungarian algorithm, 727–728
in maximum flow, 689–691
and shortest paths, 558–561, 605
similarity to Dijkstra’s algorithm, 624, 625 ex.

breadth-first tree, 555, 561
bridge, 582 pr.
B*-tree, 502 n.
B-tree, 497–519

compared with red-black trees, 497, 503
creating, 505–506
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deletion from, 513–516
full node in, 502
height of, 502–504
insertion into, 506–511
minimum degree of, 502
properties of, 501–504
searching, 504–505
splitting a node in, 506–508
2-3-4 trees, 502

B-TREE-CREATE, 506
B-TREE-DELETE, 513
B-TREE-INSERT, 508
B-TREE-INSERT-NONFULL, 511
B-TREE-SEARCH, 505, 512 ex.
B-TREE-SPLIT-CHILD, 507
B-TREE-SPLIT-ROOT, 509
BUBBLESORT, 46 pr.
bucket, 215
bucket sort, 215–219
BUCKET-SORT, 216
BUILD-MAX-HEAP, 167
BUILD-MAX-HEAP′, 179 pr.
BUILD-MIN-HEAP, 169
Burrows-Wheeler transform (BWT), 1000 pr.
butterfly operation, 894
BWT (Burrows-Wheeler transform), 1000 pr.
by, in pseudocode, 22

cache, 27, 301, 440, 802
cache block, 301, 440, 802
cache hit, 440, 803
cache line, see cache block
cache miss, 440, 803
cache obliviousness, 519
caching

offline, 440–446
online, 802–815

call
in a parallel computation, 753
of a subroutine, 26, 29 n.
by value, 23

cancellation lemma, 886
cancellation of flow, 679
capacity

of a cut, 682
of an edge, 671
residual, 677, 681
of a vertex, 676 ex.
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capacity constraint, 672
cardinality of a set (| |), 1156
Carmichael number, 945, 953 ex.
Cartesian product (×), 1157
Cartesian sum, 885 ex.
Catalan numbers, 329 pr., 375
CBC-MAC, 291, 306
c-competitive, 793

ceiling function (⌈ ⌉), 63
in recurrences, 116–117

ceiling instruction, 26
center of a cluster, 1008
centralized scheduler, 759
centroid of a cluster, 1009
certain event, 1185
certificate

in a cryptosystem, 942
for verification algorithms, 1058

CHAINED-HASH-DELETE, 278
CHAINED-HASH-INSERT, 278
CHAINED-HASH-SEARCH, 278
chaining, 277–281, 308 pr.
changing variables, to solve a recurrence, 120 pr.
character code, 431
character data type, 26
chess-playing program, 768–769
child

in a binary tree, 1173
in a parallel computation, 753
in a rooted tree, 1172

Chinese remainder theorem, 928–931
chirp transform, 893 ex.

choose , 1180
chord, 486 ex.
Cilk, 750, 790
ciphertext, 938
circuit

boolean combinational, 1065
depth of, 894
for fast Fourier transform, 894–897

CIRCUIT-SAT, 1067
circuit satisfiability, 1064–1071
circular, doubly linked list with a sentinel, 262
circular linked list, 259
class

complexity, 1054
equivalence, 1159
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classification of edges
in breadth-first search, 581 pr.
in depth-first search, 569–570, 571 ex.

clause, 1075–1076
clean area, 222 pr.
climate change, 845
clique, 1081
CLIQUE, 1081
clique problem

approximation algorithm for, 1131 pr.
NP-completeness of, 1081–1084

closed convex body, 1032
closed interval ([a, b]), 1157
closed semiring, 669
closest-point heuristic, 1115 ex.
closure

group property, 917
of a language (*), 1052
transitive, see transitive closure

cluster, 1008
for parallel computing, 748

clustering, 1005–1013
Lloyd’s procedure for, 1011–1013
primary, 303

CNF (conjunctive normal form), 1043, 1076
CNF satisfiability, 1124 ex.
coarsening leaves of recursion

in merge sort, 45 pr.
in quicksort, 198 ex.
when recursively spawning, 764

code, 431–432
Huffman, 431–439

codeword, 432
codomain, 1161
coefficient

binomial, 1181
of a polynomial, 65, 877

coefficient representation, 879
and fast multiplication, 882–884

cofactor, 1221
coin changing, 446 pr.
coin flipping, 131–132
collection of sets, 1156
collision, 275

resolution by chaining, 277–281
resolution by open addressing, 293–301

collision-resistant hash function, 941
coloring, 425 ex., 1100 pr., 1176 pr.
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color, of a red-black-tree node, 331
column-major order, 222 pr., 253
column rank, 1220
columnsort, 222 pr.
column vector, 1215
combination, 1180
combinational circuit, 1065
combinational element, 1065
combine step, in divide-and-conquer, 34, 76
comment, in pseudocode (//), 22
commodity, 864
common divisor, 906

greatest, see greatest common divisor
common multiple, 916 ex.
common subexpression, 894
common subsequence, 394

longest, 393–399
commutative laws for sets, 1154
commutative operation, 917
compact list, 269 pr.
COMPACT-LIST-SEARCH, 269 pr.
COMPACT-LIST-SEARCH′, 270 pr.
COMPARE-EXCHANGE, 222 pr.
COMPARE-EXCHANGE-INSERTION-SORT, 223 pr.
compare-exchange operation, 222 pr.
comparison sort, 205

and binary search trees, 315 ex.
randomized, 219 pr.
and selection, 241

compatible activities, 418
compatible matrices, 1218
competitive analysis, 792
competitive ratio, 793

expected, 808
unbounded, 804

complement
of an event, 1186
of a graph, 1085
of a language, 1052
Schur, 825, 839
of a set, 1155

complementary slackness, 873 pr.
complete graph, 1167

bipartite, 716
complete k-ary tree, 1174

see also heap
completeness of a language, 1072 ex.
complete step, 759
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completion time, 446 pr., 816 pr., 1133 pr.
COMPLETION-TIME-SCHEDULE, 817 pr.
complexity class, 1054

co-NP, 1059
NP, 1043, 1058, 1060 ex.
NPC, 1044, 1063
P, 1043, 1050, 1054, 1055 ex.

complexity measure, 1054
complex numbers

inverting matrices of, 838 ex.
multiplication of, 90 ex.

complex root of unity, 885
interpolation at, 891–892

component
biconnected, 582 pr.
connected, 1166
strongly connected, 1166

component graph, 576
composite number, 905

witness to, 946
composition

of logarithms, 66
of parallel traces, 762 fig.

compression
by Huffman code, 431–439
of images, 412 pr.

compulsory miss, 440
computational depth, see span
computational problem, 5–6
computation dag, 754 n.
COMPUTE-LCP, 993
COMPUTE-PREFIX-FUNCTION, 978
COMPUTE-SUFFIX-ARRAY, 988
COMPUTE-TRANSITION-FUNCTION, 974
concatenation

of languages, 1052

operator (∥), 291
of strings, 959

concrete problem, 1049
conditional branch instruction, 26
conditional independence, 1190 ex.
conditional probability, 1187, 1189
configuration, 1068

conjugate of the golden ratio ( ), 69, 70 ex.
conjugate transpose, 838 ex.
conjunctive normal form, 1043, 1076
connected component, 1166

www.konkur.in

Telegram: @uni_k



identified using depth-first search, 572 ex.
identified using disjoint-set data structures, 521–523

CONNECTED-COMPONENTS, 522
connected graph, 1166
connective, 1073
co-NP (complexity class), 1059
conquer step, in divide-and-conquer, 34, 76
conservation of flow, 672
consistency

of literals, 1082
sequential, 756

constrained gradient descent, 1032–1034
constraint

difference, 627
equality, 632 ex.
linear, 851, 853–854
nonnegativity, 854

constraint graph, 628–630
contain, in a path, 1165
continuous master theorem, 112

proof of, 107–115
continuous uniform probability distribution, 1187
contraction

of a dynamic table, 465–470
of an undirected graph by an edge, 1168

contraction algorithm, 701 pr.
control instructions, 26
convergence property, 611, 634–635
convergent series, 1140
converting binary to decimal, 910 ex.
convex body, 1032
convex function, 1025–1027, 1194
α-strongly convex, 1041

convex set, 675 ex.
convolution (⊗), 880
convolution theorem, 892
copy instruction, 26
correctness of an algorithm, 6
corresponding flow network for bipartite matching, 694
countably infinite set, 1156
counter, see binary counter
counting, 1178–1184

probabilistic, 153 pr.
counting sort, 208–211

in computing suffix arrays, 992
in radix sort, 213

COUNTING-SORT, 209
coupon collector’s problem, 144
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cover
path, 698 pr.
by a subfamily, 1116
vertex, 1084, 1106

credit, 453
critical edge, 690
critical path

in a dag, 619
of a PERT chart, 617
of a task-parallel trace, 757

cross a cut, 587, 701 pr.
cross edge, 569
cryptographic hash function, 291
cryptosystem, 936–942
cubic spline, 847 pr.
currency exchange, 641 pr.
curve fitting, 841–845
cut

capacity of, 682
of a flow network, 682–685
global, 701 pr.
minimum, 682
net flow across, 682
of an undirected graph, 587
weight of, 1124 ex.

CUT-ROD, 366
cycle of a graph, 1165–1166

hamiltonian, 1043, 1056, 1085–1090
minimum mean-weight, 642 pr.
negative-weight, see negative-weight cycle
and shortest paths, 607–608

cycle cover, 741 pr.
cyclic group, 932

dag, see directed acyclic graph
DAG-SHORTEST-PATHS, 617
d-ary heap, 179 pr.

in shortest-paths algorithms, 668 pr.
data-movement instructions, 26
data-parallel model, 789
data science, 14–15
data structure, 9, 249–359, 477–545

AA-trees, 358
augmentation of, 480–496
AVL trees, 357 pr., 358
binary search trees, 312–330
bit vectors, 274 ex.
B-trees, 497–519
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deques, 258 ex.
dictionaries, 249
direct-address tables, 273–275
for disjoint sets, 520–545
for dynamic graphs, 479
dynamic sets, 249–251
dynamic trees, 478
exponential search trees, 226, 478
Fibonacci heaps, 478
fusion trees, 226, 478
hash tables, 275–282
heaps, 161–181
interval trees, 489–495
k-neighbor trees, 358
left-leaning red-black binary search trees, 358
linked lists, 258–264
order-statistic trees, 480–486
persistent, 355 pr., 478
potential of, 456
priority queues, 172–178
queues, 254, 256–257
radix trees, 327 pr.
red-black trees, 331–359
rooted trees, 265–268
scapegoat trees, 358
on secondary storage, 498–501
skip lists, 359
splay trees, 359, 478
stacks, 254–255
treaps, 358
2-3-4 trees, 502, 518 pr.
2-3 trees, 358, 519
van Emde Boas trees, 478
weight-balanced trees, 358

data type, 26
decision by an algorithm, 1053
decision problem, 1045, 1049

and optimization problems, 1045
decision tree, 206–207, 219 pr.
decision variable, 851
DECREASE-KEY, 173
decrementing, 22
decryption, 936
default vertex labeling, 724
degree

minimum, of a B-tree, 502
of a node, 1173
of a polynomial, 65, 877
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of a vertex, 1165
degree-bound, 877
DELETE, 250
DELETE-LARGER-HALF, 460 ex.
deletion

from binary search trees, 322–325, 326 ex.
from B-trees, 513–516
from chained hash tables, 278
from direct-address tables, 274
from dynamic tables, 465–470
from hash tables with linear probing, 302–303
from heaps, 178 ex.
from interval trees, 491
from linked lists, 261
from open-address hash tables, 294–295
from order-statistic trees, 484–485
from queues, 256
from red-black trees, 346–355
from stacks, 254

DeMorgan’s laws
for propositional logic, 1078
for sets, 1155, 1158 ex.

dense graph, 549

ϵ-dense, 668 pr.
dense matrix, 81
density

of prime numbers, 943
of a rod, 372 ex.

dependence
and indicator random variables, 131
linear, 1220
see also independence

depth
average, of a node in a randomly built binary search tree, 328 pr.
of a circuit, 894
of a node in a rooted tree, 1173
of quicksort recursion tree, 191 ex.
of a stack, 202 pr.

depth-determination problem, 542 pr.
depth-first forest, 564
depth-first search, 563–572

in finding articulation points, bridges, and biconnected components, 582 pr.
in finding strongly connected components, 576–581
in the Hopcroft-Karp algorithm, 711
in topological sorting, 573–576

depth-first tree, 564
deque, 258 ex.
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DEQUEUE, 257
derivative of a series, 1142
descendant, 1172
destination vertex, 605
det, 1221
determinacy race, 765–768
determinant, 1221
deterministic algorithm, 135

parallel, 765
DETERMINISTIC-SEARCH, 154 pr.
DFS, 565

see also depth-first search
DFS-VISIT, 565
DFT, 888
diagonal matrix, 1215
diameter

of a network, 646
of a tree, 563 ex.

dictionary, 249
difference

of sets (−), 1154
symmetric, 706

difference constraints, 626–632
differentiation of a series, 1142
digital signature, 938
digraph, see directed graph
DIJKSTRA, 620
Dijkstra’s algorithm, 620–626

for all-pairs shortest paths, 646, 666
with edge weights in a range, 626 ex.
implemented with a Fibonacci heap, 623–624
implemented with a min-heap, 623
with integer edge weights, 625–626 ex.
in Johnson’s algorithm, 664
similarity to breadth-first search, 624, 625 ex.
similarity to Prim’s algorithm, 624

d-independent family of hash functions, 288
DIRECT-ADDRESS-DELETE, 274
direct addressing, 273–275
DIRECT-ADDRESS-INSERT, 274
DIRECT-ADDRESS-SEARCH, 274
direct-address table, 273–275
directed acyclic graph (dag), 1167

and back edges, 573
and component graphs, 578
and hamiltonian paths, 1060 ex.
longest simple path in, 407 pr.
for representing a parallel computation, 754
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single-source shortest-paths algorithm for, 616–619
topological sort of, 573–576

directed equality subgraph, 727
directed graph, 1164

all-pairs shortest paths in, 646–669
constraint graph, 628
Euler tour of, 583 pr., 1043
hamiltonian cycle of, 1043
incidence matrix of, 553 ex.
and longest paths, 1042
path cover of, 698 pr.
PERT chart, 617, 619 ex.
semiconnected, 581 ex.
shortest path in, 604
single-source shortest paths in, 604–645
singly connected, 572 ex.
square of, 553 ex.
transitive closure of, 659
transpose of, 553 ex.
universal sink in, 553 ex.
see also directed acyclic graph, graph, network

directed version of an undirected graph, 1166
dirty area, 222 pr.
discovered vertex, 554, 564
discovery time, 565
discrete Fourier transform, 888
discrete logarithm, 933
discrete logarithm theorem, 933
discrete probability distribution, 1186
discrete random variable, 1191–1196
disjoint-set data structure, 520–545

analysis of, 534–540
in connected components, 521–523
in depth determination, 542 pr.
disjoint-set-forest implementation of, 527–531
in Kruskal’s algorithm, 593
linear-time special case of, 545
linked-list implementation of, 523–527
lower bound for, 545
in offline lowest common ancestors, 543 pr.
in offline minimum, 541 pr.

disjoint-set forest, 527–531
analysis of, 534–540
rank properties of, 533–534, 540 ex.
see also disjoint-set data structure

disjoint sets, 1156
disjunctive normal form, 1078
disk drive, 498–500

www.konkur.in

Telegram: @uni_k



see also secondary storage
DISK-READ, 500
DISK-WRITE, 500
dissimilarity, 1006
distance

edit, 409 pr.
Manhattan, 244 pr.
of a shortest path (δ), 558

distributed memory, 748
distribution

binomial, see binomial distribution
continuous uniform, 1187
discrete, 1186
geometric, see geometric distribution
of inputs, 128, 134
of prime numbers, 943
probability, 218 ex., 1185
uniform, 1186

distributive laws for sets, 1155
divergent series, 1140
divide-and-conquer method, 34, 76

analysis of, 39–41, 90–119
for binary search, 44 ex.
for conversion of binary to decimal, 910 ex.
for fast Fourier transform, 888–891, 895
for matrix inversion, 834–837
for matrix multiplication, 81–90, 770–775, 783 pr.
for merge sort, 34–44, 775–782
for multiplication, 899 pr.
for quicksort, 182–204
relation to dynamic programming, 362
for selection, 230–243
solving recurrences for, 90–119
for Strassen’s algorithm, 85–90, 773–774

divide instruction, 26
divides relation (|), 904
divide step, in divide-and-conquer, 34, 76
division method, 284, 292 ex.
division theorem, 905
divisor, 904

common, 906
see also greatest common divisor

DNA, 6, 393–394, 409 pr.
DNF (disjunctive normal form), 1078

does-not-divide relation (∤), 904
Dog River, 717
dolphins, allowing to vote, 850
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domain, 1161
double hashing, 295–297, 301 ex.
doubly linked list, 258–259, 264 ex.

circular, with a sentinel, 262
downto, in pseudocode, 22
d-regular graph, 716 ex., 740 pr.
driving function, 101
duality, 734, 866–873, 874 pr.

weak, 868–869, 874 pr.
dual linear program, 866
dummy key, 400
dynamic graph, 523

all-pairs shortest paths algorithms for, 669
data structures for, 479
minimum-spanning-tree algorithm for, 599 ex.
transitive closure of, 667 pr., 669

dynamic graph algorithm, 817
dynamic multiset, 460 ex.
dynamic order statistics, 480–486
dynamic-programming method, 362–416

for activity selection, 424 ex.
for all-pairs shortest paths, 648–659
for bitonic euclidean traveling-salesperson problem, 407 pr.
bottom-up, 368
for breaking a string, 412 pr.
compared with greedy method, 384–385, 393 ex., 421, 426–430
for edit distance, 409 pr.
elements of, 382–393
for Floyd-Warshall algorithm, 655–659
for inventory planning, 414 pr.
for longest common subsequence, 393–399
for longest palindrome subsequence, 407 pr.
for longest simple path in a weighted directed acyclic graph, 407 pr.
for matrix-chain multiplication, 373–382
and memoization, 390–392
for optimal binary search trees, 400–407
optimal substructure in, 382–387
overlapping subproblems in, 387–390
for printing neatly, 408 pr.
reconstructing an optimal solution in, 390
relation to divide-and-conquer, 362
for rod cutting, 363–373
for seam carving, 412 pr.
for signing free agents, 414 pr.
top-down with memoization, 368
for transitive closure, 659–661
for Viterbi algorithm, 411 pr.
for the 0-1 knapsack problem, 430 ex.
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dynamic set, 249–251
see also data structure

dynamic table, 460–471
analyzed by accounting method, 463
analyzed by aggregate analysis, 462–463
analyzed by potential method, 463–470
load factor of, 461

dynamic tree, 478

E[ ], see expected value
e (base of the natural logarithm), 65
edge, 1164

antiparallel, 673–674
attributes of, 552
back, 569
bridge, 582 pr.
capacity of, 671
classification in breadth-first search, 581 pr.
classification in depth-first search, 569–570, 571 ex.
critical, 690
cross, 569
forward, 569
light, 587
negative-weight, 606–607
residual, 678
safe, 587
tree, 561, 564, 569
weight of, 551

edge connectivity, 692 ex.
edge set, 1164
edit distance, 409 pr.
Edmonds-Karp algorithm, 689–691
elementary event, 1185
elementary insertion, 461
element of a set (∈), 1153
ellipsoid algorithm, 857
elliptic-curve factorization method, 956
elseif, in pseudocode, 22 n.
else, in pseudocode, 22
empty language (∅), 1052
empty set (∅), 1153
empty set laws, 1154
empty stack, 255
empty string (ε), 959, 1052
empty tree, 1173
encoding of problem instances, 1049–1052
encryption, 936
endpoint of an interval, 489
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ENQUEUE, 257
entering a vertex, 1164
entropy function, 1182
epoch, 805

ϵ-dense graph, 668 pr.

ϵ-universal family of hash functions, 287, 292 ex.
equality

of functions, 1162
linear, 853
of sets, 1153

equality constraint, 632 ex.
equality subgraph, 724

directed, 727
equations and asymptotic notation, 58–59
equivalence class, 1159

modulo n([a]n), 905

equivalence, modular (= (mod n)), 64
equivalence relation, 1159
error bound, 1027
error, in pseudocode, 24
escape problem, 697 pr.
EUCLID, 912
Euclid’s algorithm, 911–916, 954 pr.

euclidean norm (∥ ∥), 1219
Euler’s constant, 921
Euler’s phi function, 920
Euler’s theorem, 932, 953 ex.
Euler tour, 583 pr., 740 pr.

and hamiltonian cycles, 1043
evaluation of a polynomial, 46 pr., 879, 884 ex.

derivatives of, 900 pr.
at multiple points, 900 pr.

event, 1185
event-driven simulation, 173, 181
EXACT-SUBSET-SUM, 1125
example, in clustering, 1006
exclusion and inclusion, 1158 ex.
execute a subroutine, 29 n.
expansion of a dynamic table, 461–465
expectation, see expected value
expected competitive ratio, 808
expected running time, 32, 129
expected value, 1192–1194

of a binomial distribution, 1198
of a geometric distribution, 1197
of an indicator random variable, 130

explored edge, 565
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exponential function, 65–66
exponential search tree, 226, 478
exponentiation

of logarithms, 66
modular, 934–935

exponentiation instruction, 27
EXTENDED-BOTTOM-UP-CUT-ROD, 372
EXTENDED-EUCLID, 914
EXTEND-SHORTEST-PATHS, 650
external node, 1172
external path length, 1175 ex.
extracting the maximum key

from d-ary heaps, 179 pr.
from max-heaps, 174

extracting the minimum key
from Young tableaus, 179 pr.

EXTRACT-MAX, 173–174
EXTRACT-MIN, 173

factor, 904
twiddle, 891

factorial function (!), 67–68
factorization, 956

unique, 909
failure, in a Bernoulli trial, 1196
fair coin, 1186
family of hash functions, 286–288, 292 ex.
fan-out, 1066
Farkas’s lemma, 869
FASTER-APSP, 653, 655 ex.
fast Fourier transform (FFT), 877–902

circuit for, 894–897
multidimensional, 899 pr.
recursive implementation of, 888–891
using modular arithmetic, 901 pr.

feasibility problem, 627, 873 pr.
feasible linear program, 854
feasible region, 854
feasible solution, 627, 854
feasible vertex labeling, 724, 742 pr.
feature vector, 1006
Fermat’s theorem, 932
FFT, 890

see also fast Fourier transform
FFTW, 902
FIB, 751
Fibonacci heap, 478

in Dijkstra’s algorithm, 623–624
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in Johnson’s algorithm, 666
in Prim’s algorithm, 597

Fibonacci numbers, 69, 70 ex., 121 pr.
computation of, 750–753, 954 pr.

FIFO, see first-in, first-out; queue
final-state function, 968
FIND-AUGMENTING-PATH, 738
FIND-DEPTH, 542 pr.
find path, 528
FIND-POM, 496 pr.
FIND-SET, 521

disjoint-set-forest implementation of, 530, 544
linked-list implementation of, 523

FIND-SPLIT-POINT, 778
finished vertex, 564
finish time

in activity selection, 418
in depth-first search, 565
and strongly connected components, 578

finite automaton, 967–975
FINITE-AUTOMATON-MATCHER, 971
finite group, 917
finite sequence, 1162
finite set, 1156
finite sum, 1140
first-fit heuristic, 1131 pr.
first-in, first-out (FIFO), 254, 803–804, 814 ex.

implemented with a priority queue, 178 ex.
see also queue

fixed-length code, 432
floating-point data type, 26

floor function (⌊ ⌋), 63
in recurrences, 116–117

floor instruction, 26
flow, 671–676

aggregate, 864
augmentation of, 678
blocking, 702
cancellation of, 679
integer-valued, 695
net, across a cut, 682
value of, 672

flow conservation, 672
flow network, 671–676

corresponding to a bipartite graph, 694
cut of, 682–685
with multiple sources and sinks, 674
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FLOYD-WARSHALL, 657
FLOYD-WARSHALL′, 661 ex.
Floyd-Warshall algorithm, 655–659, 661–662 ex.
flying cars, highways for, 850
FORD-FULKERSON, 686
Ford-Fulkerson method, 676–693
FORD-FULKERSON-METHOD, 676
FORESEE, 797
forest, 1167, 1169

breadth-first, 728
depth-first, 564
disjoint-set, 527–531

for, in pseudocode, 22
and loop invariants, 21 n.

fork-join parallelism, 749–770
see also parallel algorithm

fork-join scheduling, 759–761, 769 ex.
formal power series, 121 pr.
formula satisfiability, 1073–1076
forward edge, 569
forward substitution, 822–823
Fourier transform, see discrete Fourier transform, fast Fourier transform
fractional knapsack problem, 429
fractional matching, 741 pr.
free tree, 1167, 1169–1171
frequency count, 802 ex.
frequency domain, 877
full binary tree, 1174

relation to optimal code, 433
full node, 502
full rank, 1220
full walk of a tree, 1112
fully parenthesized matrix-chain product, 374
fully polynomial-time approximation scheme, 1105

for subset sum, 1124–1130
function, 1161–1163

Ackermann’s, 544
α-strongly convex, 1041
basis, 841
β-smooth, 1041
boolean, 1182 ex.
convex, 1025–1027, 1194
driving, 101
final-state, 968
hash, see hash function
iterated, 68, 74 pr.
linear, 30, 853
objective, 626, 852, 854
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potential, 456
prefix, 975–977
probability distribution, 218 ex.
quadratic, 31
reduction, 1062
suffix, 968
transition, 967, 973–974
watershed, 103

functional iteration, 68
fundamental theorem of linear programming, 872
furthest-in-future, 441
fusion tree, 226, 478
fuzzy sorting, 203 pr.

Gabow’s scaling algorithm for single-source shortest paths, 641 pr.
gadget, 1086, 1097
GALE-SHAPLEY, 719
Gale-Shapley algorithm, 718–722
Galois field of two elements (GF(2)), 1224 pr.
gap character, 961 ex., 975 ex.
gate, 1065
Gaussian elimination, 825
gcd, see greatest common divisor
GCD recursion theorem, 911
general arithmetic series, 1141
general number-field sieve, 956
generating function, 121 pr.
generation of partitioned sets, 234
generator

of a subgroup, 922

of , 932
GENERIC-MST, 587
geometric distribution, 1196–1198

and balls and bins, 143–144
in finding prime numbers, 943
in randomized selection analysis, 232

geometric series, 1142
GF(2) (Galois field of two elements), 1224 pr.
global cut, 701 pr.
global minimizer, 1022, 1024 fig., 1026 fig.
global variable, 22

golden ratio (ϕ), 69, 70 ex.
gossiping, 475
gradient descent, 1022–1038

constrained, 1032–1034
in machine learning, 1035–1037
for solving systems of linear equations, 1034–1035

www.konkur.in

Telegram: @uni_k



stochastic, 1040 pr.
unconstrained, 1023–1031

GRADIENT-DESCENT, 1025
GRADIENT-DESCENT-CONSTRAINED, 1032
gradient of a function, 1023
GRAFT, 542 pr.
grain size in a parallel algorithm, 783 pr.
graph, 1164–1169

adjacency-list representation of, 550–551
adjacency-matrix representation of, 551–552
and asymptotic notation, 548
attributes of, 548, 552
breadth-first search of, 554–563
coloring of, 1100 pr.
complement of, 1085
component, 576
constraint, 628–630
dense, 549
depth-first search of, 563–572
dynamic, 523, 817

ϵ-dense, 668 pr.
hamiltonian, 1056
interval, 425 ex.
matching in, 693–697, 704–743
nonhamiltonian, 1056
planar, 584 pr.
regular, 716 ex., 740 pr.
shortest path in, 558
singly connected, 572 ex.
sparse, 549
static, 522
subproblem, 370–371
tour of, 1090
weighted, 551
see also directed acyclic graph, directed graph, flow network, undirected graph, tree

GRAPH-ISOMORPHISM, 1060 ex.
Gray code, 471 pr.
gray vertex, 554, 564
greatest common divisor (gcd), 906–907, 910 ex.

binary gcd algorithm for, 953 pr.
Euclid’s algorithm for, 911–916, 954 pr.
with more than two arguments, 916 ex.
recursion theorem for, 911

GREEDY-ACTIVITY-SELECTOR, 424
GREEDY-BIPARTITE-MATCHING, 726
greedy-choice property, 427–428

of activity selection, 420–421
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of Huffman codes, 436–437
of offline caching, 442–445

greedy method, 417–447
for activity selection, 418–425
for coin changing, 446 pr.
compared with dynamic programming, 384–385, 393 ex., 421, 426–430
Dijkstra’s algorithm, 620–626
elements of, 426–431
for the fractional knapsack problem, 429
greedy-choice property in, 427–428
for Huffman code, 431–439
Kruskal’s algorithm, 592–594
for maximal bipartite matching, 726
for minimum spanning tree, 591–599
for offline caching, 440–446
optimal substructure in, 428
Prim’s algorithm, 594–597
for set cover, 1115–1119
for task-parallel scheduling, 759–761, 769 ex.
for task scheduling, 446 pr.
for weighted set cover, 1132 pr.

greedy scheduler, 759
GREEDY-SET-COVER, 1117
grid, 697 pr.
group, 916–923

cyclic, 932
operator (⊕), 917

growth step, 736
guessing the solution, in the substitution method, 92

Habanero-Java, 750
half 3-CNF satisfiability, 1099 ex.
half-open interval ([a, b) or (a, b]), 1157
Hall’s theorem, 715 ex.
halting, 6
halting problem, 1042
halving lemma, 887
HAM-CYCLE, 1056
hamiltonian cycle, 1043, 1056

NP completeness of, 1085–1090
hamiltonian graph, 1056
hamiltonian path, 1060 ex., 1098 ex.
HAM-PATH, 1060 ex.
handle, 173
handshaking lemma, 1168 ex.
harmonic number, 1142, 1149
harmonic series, 1142, 1149
HASH-DELETE, 300 ex.
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hash function, 275, 282–292
auxiliary, 295
collision-resistant, 941
cryptographic, 291
division method for, 284, 292 ex.
for hierarchical memory, 304–307
multiplication method for, 284–286
multiply-shift method for, 285–286
random, 286–290
static, 282, 284–286
universal, 286–290
wee, 305–307
see also family of hash functions

hashing, 272–311
with chaining, 277–281, 308 pr.
double, 295–297, 301 ex.
independent uniform, 276
with linear probing, 297, 302–304
in memoization, 368, 391
with open addressing, 293–301, 308 pr.
perfect, 310
random, 286–290
to replace adjacency lists, 553 ex.
of static sets, 308 pr.
of strings, 290–291, 292 ex.
uniform, 278
universal, 286–290, 309 pr.
of variable-length inputs, 290–291
of vectors, 290–291

HASH-INSERT, 294, 300 ex.
HASH-SEARCH, 294, 300 ex.
hash table, 275–282

dynamic, 470 ex.
used within a priority queue, 174
see also hashing

hash value, 275
hat-check problem, 134 ex.
head

in a disk drive, 498
of a linked list, 259
of a queue, 256

heap, 161–181
analyzed by potential method, 459 ex.
building, 167–170, 178 pr.
in constructing Huffman codes, 436
d-ary, 179 pr., 668 pr.
deletion from, 178 ex.
in Dijkstra’s algorithm, 623
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extracting the maximum key from, 174
Fibonacci, 478
height of, 163
increasing a key in, 174–175
insertion into, 175
in Johnson’s algorithm, 666
max-heap, 162
maximum key of, 174
mergeable, 268 pr.
min-heap, 163
in Prim’s algorithm, 597
as a priority queue, 172–178

HEAP-DECREASE-KEY, 176 ex.
HEAP-EXTRACT-MIN, 176 ex.
HEAP-MINIMUM, 176 ex.
heap property, 162

maintenance of, 164–167
vs. binary-search-tree property, 315 ex.

heapsort, 161–181
lower bound for, 207

HEAPSORT, 170
HEDGE, 1039 pr.
height

black-, 332
of a B-tree, 502–504
of a d-ary heap, 179 pr.
of a decision tree, 207
of a heap, 163
of a node in a heap, 163, 170 ex.
of a node in a tree, 1173
of a red-black tree, 332
of a tree, 1173

height-balanced tree, 357 pr.
helpful partitioning, 232
Hermitian matrix, 838 ex.
Hessian matrix, 1035
heuristic

first-fit for bin packing, 1131 pr.
path compression, 528
in the Rabin-Karp algorithm, 965
for the set-covering problem, 1116, 1132 pr.
table doubling, 461
for the traveling-salesperson problem, 1115 ex.
union by rank, 528
weighted union, 525

high endpoint of an interval, 489
high side of a partition, 183
HIRE-ASSISTANT, 127
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hiring problem, 126–127, 135–136
online, 150–152
probabilistic analysis of, 132–133

hit, 965
HOARE-PARTITION, 199 pr.
HOPCROFT-KARP, 709
Hopcroft-Karp algorithm, 709–715
HORNER, 47 pr.
Horner’s rule, 46 pr., 879, 963
HUFFMAN, 434
Huffman code, 431–439
Human Genome Project, 6
HUNGARIAN, 737
Hungarian algorithm, 723–739, 740 pr.
hybrid cryptosystem, 941
hyperedge, 1167
hypergraph, 1167
hypotheses, 1003

ideal parallel computer, 756
idempotency laws, 1154
identity, 917
identity matrix, 1215
identity permutation, 138 ex.
if, in pseudocode, 22
ill-defined recurrence, 77
image, 1162
image compression, 412 pr.
incidence, 1164–1165
incidence matrix

and difference constraints, 628
of a directed graph, 553 ex.

inclusion and exclusion, 1158 ex.
incomplete step, 759
INCREASE-KEY, 173
increasing a key, in a max-heap, 174–175
INCREMENT, 451
incremental design method, 34
incrementing, 21
in-degree, 1165
indentation in pseudocode, 21–22
independence

of events, 1188, 1190 ex.
of random variables, 1192
of subproblems in dynamic programming, 386–387

independent family of hash functions, 288
independent set, 1099 pr.
independent uniform hash function, 276
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independent uniform hashing, 276, 278
independent uniform permutation hashing, 295
indexing into an array, 22–23, 26 n., 252

index of an element of , 933
indicator random variable, 130–133

in approximation algorithm for MAX-3-CNF satisfiability, 1120–1121
in birthday paradox analysis, 142–143
in bounding the right tail of the binomial distribution, 1207–1208
in coin flipping analysis, 131–132
expected value of, 130
in hashing analysis, 279–281
in the hat-check problem, 134 ex.
in hiring-problem analysis, 132–133
and linearity of expectation, 131
in quicksort analysis, 197–198, 200 pr.
in randomized caching analysis, 812
in randomized-selection analysis, 245 pr.
in streak analysis, 148–150

induced subgraph, 1166
inequality, linear, 853
infeasible linear program, 854
infeasible solution, 854
inference, 1004
infinite sequence, 1162
infinite set, 1156
infinite sum, 1140
infinity, arithmetic with, 611
initialization of a loop invariant, 20
INITIALIZE-SINGLE-SOURCE, 609
injective function, 1162
inner product, 1219
inorder tree walk, 314, 320 ex.
INORDER-TREE-WALK, 314
in-place permuting, 136
in-place sorting, 158, 220 pr.
in play, 232
input

to an algorithm, 5
to a combinational circuit, 1066
distribution of, 128, 134
to a logic gate, 1065
size of, 28

input alphabet, 967
INSERT, 173, 250, 460 ex.
insertion

into binary search trees, 321–322
into B-trees, 506–511
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into chained hash tables, 278
into d-ary heaps, 179 pr.
into direct-address tables, 274
into dynamic tables, 461–465
elementary, 461
into heaps, 175
into interval trees, 491
into linked lists, 260
into open-address hash tables, 293–294
into order-statistic trees, 484
into queues, 256
into red-black trees, 338–346
into stacks, 254
into Young tableaus, 179 pr.

insertion sort, 17–21, 29–31, 51–53, 56–57
in bucket sort, 216–218
compared with merge sort, 12–13, 15 ex.
compared with quicksort, 191 ex.
decision tree for, 206 fig.
lower bound for, 52–53
in merge sort, 45 pr.
in quicksort, 198 ex.
using binary search, 45 ex.

INSERTION-SORT, 19, 30, 51
instance

of an abstract problem, 1045, 1049
of a problem, 6

instructions of the RAM model, 26
integer data type, 26
integer linear programming, 857, 874 pr., 1098 ex.

integers (ℤ), 1153
integer-valued flow, 695
integrality theorem, 696
integral, to approximate summations, 1150
integration of a series, 1142
interior-point methods, 857
intermediate vertex, 655
internal node, 1172
internal path length, 1175 ex.
interpolation by a cubic spline, 847 pr.
interpolation by a polynomial, 880, 885 ex.

at complex roots of unity, 891–892
intersection

of chords, 486 ex.
of languages, 1052
of sets (∩), 1154

interval, 489–490, 1157
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fuzzy sorting of, 203 pr.
INTERVAL-DELETE, 490, 496 pr.
interval graph, 425 ex.
INTERVAL-INSERT, 490, 496 pr.
INTERVAL-SEARCH, 490, 492
INTERVAL-SEARCH-EXACTLY, 495 ex.
interval tree, 489–495
interval trichotomy, 490
intractability, 1042
invalid shift, 957
inventory planning, 414 pr.
inverse

of a bijective function, 1163
in a group, 917
of a matrix, 784 pr., 833–837, 1220
multiplicative, modulo n, 927

inversion
in an array, 47 pr.
in linked lists, 798
in a sequence, 134 ex., 486 ex.

inversion count, 798
inverter, 1065
invertible matrix, 1220
invocation tree, 756
isolated vertex, 1165
isomorphic graphs, 1166
iterated function, 68, 74 pr.
iterated logarithm function (lg*), 68
ITERATIVE-TREE-SEARCH, 316
iter function, 536

Java Fork-Join Framework, 750
Jensen’s inequality, 1194
JOHNSON, 666
Johnson’s algorithm, 662–667
joining

of red-black trees, 356 pr.
of 2-3-4 trees, 518 pr.

joint probability density function, 1191
Josephus permutation, 496 pr.

Karmarkar’s algorithm, 876
Karp’s minimum mean-weight cycle algorithm, 642 pr.
k-ary tree, 1174
k-clustering, 1008
k-CNF, 1043
k-coloring, 1100 pr., 1176 pr.
k-combination, 1180
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k-conjunctive normal form, 1043
Keeling curve, 845 fig.
key, 17, 157, 173, 249, 283–284

in a cryptosystem, 936, 939
dummy, 400
median, of a B-tree node, 506

keywords, in pseudocode, 21–22, 24
parallel, 750, 752–754, 762–763

Kleene star (*), 1052
k-means problem, 1008
KMP algorithm, 975–985
KMP-MATCHER, 978
knapsack problem

decision version, 1096
fractional, 429
0-1, 428, 430 ex., 1134 pr.

k-neighbor tree, 358
knot, of a spline, 847 pr.
Knuth-Morris-Pratt algorithm, 975–985
k-permutation, 136, 1180
Kraft inequality, 1176 ex.
Kruskal’s algorithm, 592–594

with integer edge weights, 598 ex.
k-sorted, 221 pr.
k-string, 1179
k-subset, 1156
k-substring, 1179
kth power, 910 ex.

label
in machine learning, 1003, 1035
of a vertex, 724, 742 pr.

Lagrange’s formula, 881
Lagrange’s theorem, 921
Lamé’s theorem, 913
language, 1052

completeness of, 1072 ex.
proving NP-completeness of, 1072–1073
verification of, 1058

lasers, sharks with, 850
last-in, first-out (LIFO), 254, 803–804

implemented with a priority queue, 178 ex.
see also stack

latency, 499
LCA, 544 pr.
lcm (least common multiple), 916 ex.
LCP, see longest common prefix array
LCS, 393–399
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LCS-LENGTH, 397
leading submatrix, 839
leaf, 1172
least common multiple, 916 ex.
least frequently used (LFU), 803, 814 ex.
least recently used (LRU), 445 ex., 803–805
least-squares approximation, 841–845, 1035–1037
leaving a vertex, 1164
LEFT, 162
left child, 1173
left-child, right-sibling representation, 265, 268 ex.
left-leaning red-black binary search tree, 358
LEFT-ROTATE, 336, 495 ex.
left rotation, 335

left shift (⋘), 305
left subtree, 1173

Legendre symbol , 954 pr.
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length
of a cycle, 1165
of a path, 1165
of a sequence, 1162
of a string, 959, 1179

level
of a function, 532
of a node in a disjoint-set forest, 535
of a tree, 1173

lexicographically less than, 327 pr.
lexicographic sorting, 327 pr., 986 n.
LFU (least frequently used), 803, 814 ex.
lg (binary logarithm), 66
lg* (iterated logarithm function), 68

lgk (exponentiation of logarithms), 66
lg lg (composition of logarithms), 66
LIFO, see last-in, first-out; stack
light edge, 587
linear constraint, 853–854
linear dependence, 1220
linear equality, 853
linear equations

solving modular, 924–928
solving systems of, 819–833, 1034–1035
solving tridiagonal systems of, 847 pr.

linear function, 30, 853
linear independence, 1220
linear inequality, 853
linear-inequality feasibility problem, 873 pr.
linearity of expectation, 1192–1193

and indicator random variables, 131
linearity of summations, 1141
linear order, 1160
linear permutation, 1224 pr.
linear probing, 297, 302–304
LINEAR-PROBING-HASH-DELETE, 303
linear programming, 850–876, 1121–1124

applications of, 860–866
duality in, 866–873
ellipsoid algorithm for, 857
fundamental theorem of, 872
integer, 857, 874 pr.
interior-point methods for, 857
Karmarkar’s algorithm for, 876
and maximum flow, 862
and minimum-cost circulation, 875 pr.
and minimum-cost flow, 862–864
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and multicommodity flow, 864–865
simplex algorithm for, 857
and single-pair shortest path, 861
and single-source shortest paths, 626–632
standard form for, 854
see also integer linear programming, 0-1 integer programming

linear-programming relaxation, 1122
linear regression, 1036
linear search, 25 ex.
linear speedup, 758
line search, 1031
LINK, 530
linked list, 258–264

compact, 269 pr.
deletion from, 261
to implement disjoint sets, 523–527
insertion into, 260
maintained by an online algorithm, 795–802
searching, 260, 292 ex.

linking of trees in a disjoint-set forest, 529
list, see linked list
LIST-DELETE, 261
LIST-DELETE′, 262
LIST-INSERT, 261
LIST-INSERT′, 263
LIST-PREPEND, 260
LIST-SEARCH, 260
LIST-SEARCH′, 263
literal, 1076
little-oh notation (o), 60
little-omega notation (ω), 61
Lloyd’s procedure, 1011–1013, 1039 pr.
ln (natural logarithm), 66
load factor

of a dynamic table, 461
of a hash table, 278

load instruction, 26, 756
local minimizer, 1026 fig.
local variable, 22
logarithm function (log), 66–67

discrete, 933
iterated (lg*), 68

logical parallelism, 753

logical right shift (⋙), 285
logic gate, 1065
longest common prefix (LCP) array, 986, 992–994
longest common subsequence, 393–399
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longest common substring, 995 ex.
longest monotonically increasing subsequence, 399 ex.
longest palindrome subsequence, 407 pr.
LONGEST-PATH, 1055 ex.
LONGEST-PATH-LENGTH, 1055 ex.
longest repeated substring, 987
longest simple cycle, 1098 ex.
longest simple path, 1042

in an unweighted graph, 385
in a weighted directed acyclic graph, 407 pr.

lookahead algorithm, 815 ex.
LOOKUP-CHAIN, 391
loop, in pseudocode, 22

parallel, 762–765
loop invariant, 19–20

for breadth-first search, 555
for building a heap, 167
for counting sort, 211 ex.
for determining the rank of an element in an order-statistic tree, 483
and for loops, 21 n.
for the generic minimum-spanning-tree method, 586
for heapsort, 172 ex.
for Horner’s rule, 46 pr.
for increasing a key in a heap, 177 ex.
for insertion sort, 19–20
for partitioning, 184
for Prim’s algorithm, 597
for the Rabin-Karp algorithm, 965
for randomly permuting an array, 137
for red-black tree insertion, 340
for string-matching automata, 970, 973

loss function, 1036
low endpoint of an interval, 489
lower bounds

asymptotic, 55
on binomial coefficients, 1181, 1184 ex.
for comparing water jugs, 220 pr.
for competitive ratios for online caching, 804–806
for constructing binary search trees, 315 ex.
for disjoint-set data structures, 545
for finding the minimum, 228
for insertion sort, 52–53
for k-sorting, 221 pr.
for median finding, 247
for merging, 222 pr.
and potential functions, 475
for simultaneous minimum and maximum, 229 ex.
for sorting, 205–208, 219 pr., 225
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for streaks, 147–148, 153 ex.
on summations, 1148, 1150
for task-parallel computations, 757
for traveling-salesperson tour, 1110–1113
for vertex cover, 1108, 1121–1123, 1132 pr.

lower median, 227
lower-triangular matrix, 1216
lowest common ancestor, 543 pr.
low side of a partition, 183
LRU (least recently used), 445 ex., 803–805
LU decomposition, 824–827

parallel algorithm for, 784 pr.
LU-DECOMPOSITION, 827
LUP decomposition, 821

computation of, 828–832
in matrix inversion, 833–834
and matrix multiplication, 838 ex.
parallel algorithm for, 784 pr.
use of, 821–824

LUP-DECOMPOSITION, 830
LUP-SOLVE, 824

machine learning, 14, 1003–1041
main memory, 498
maintenance of a loop invariant, 20
MAKE-RANKS, 988
MAKE-SET, 521

disjoint-set-forest implementation of, 530
linked-list implementation of, 523

makespan, 1133 pr.
MAKE-TREE, 542 pr.
Manhattan distance, 244 pr.
MARKING, 807, 815 ex.
Markov’s inequality, 1196 ex.
master method for solving a recurrence, 101–107
master recurrence, 101
master theorem, 102

continuous, 112
proof of, 107–115

matched vertex, 693, 705
matching, 704–743

bipartite, 693–697, 704–743
fractional, 741 pr.
by Hopcroft-Karp algorithm, 709–715
maximal, 705, 1108, 1132 pr.
maximum, 704–716, 1132 pr.
and maximum flow, 693–697
perfect, 715 ex., 740 pr.
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stable, 716
of strings, 957–1002
unstable, 717

matrix, 1214–1226
addition of, 1217
adjacency, 551–552
conjugate transpose of, 838 ex.
dense, 81
determinant of, 1221
diagonal, 1215
Hermitian, 838 ex.
Hessian, 1035
identity, 1215
incidence, 553 ex.
inverse of, 784 pr., 833–837, 1220
lower-triangular, 1216
minor of, 1221
multiplication of, see matrix multiplication
negative of, 1217
permutation, 1217
positive-definite, 1222
positive-semidefinite, 1222
predecessor, 647, 655 ex., 657–659, 661 ex.
product of, with a vector, 762–765, 767, 1218
pseudoinverse of, 843
representation of, 253–254
scalar multiple of, 1217
sparse, 81
subtraction of, 1218
symmetric, 1217
symmetric positive-definite, 838–841
transpose of, 1214
tridiagonal, 1216
unit lower-triangular, 1216
unit upper-triangular, 1216
upper-triangular, 1216
Vandermonde, 881, 1223 pr.

matrix-chain multiplication, 373–382
MATRIX-CHAIN-MULTIPLY, 381 ex.
MATRIX-CHAIN-ORDER, 378
matrix multiplication, 80–90, 1218

for all-pairs shortest paths, 648–655, 668–669
divide-and-conquer method for, 81–90, 770–775, 783 pr.
and LUP decomposition, 838 ex.
and matrix inversion, 834–837
Pan’s method for, 89 ex.
parallel algorithm for, 770–775, 783 pr.
Strassen’s algorithm for, 85–90, 124–125, 773–774
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and transitive closure, 838 ex.
MATRIX-MULTIPLY, 81
MATRIX-MULTIPLY-RECURSIVE, 83
matrix-vector multiplication, 762–765, 767, 1218
MAX-CNF satisfiability, 1124 ex.
MAX-CUT problem, 1124 ex.
MAX-FLOW-BY-SCALING, 700 pr.
max-flow min-cut theorem, 684
max-heap, 162

building, 167–170
d-ary, 179 pr.
deletion from, 178 ex.
extracting the maximum key from, 174
in heapsort, 170–172
increasing a key in, 174–175
insertion into, 175
maximum key of, 174
as a max-priority queue, 172–178
mergeable, 268 n.

MAX-HEAP-DECREASE-KEY, 176 ex.
MAX-HEAP-DELETE, 178 ex.
MAX-HEAP-EXTRACT-MAX, 175
MAX-HEAPIFY, 165
MAX-HEAP-INCREASE-KEY, 176
MAX-HEAP-INSERT, 176

building a heap with, 178 pr.
MAX-HEAP-MAXIMUM, 175
max-heap property, 162

maintenance of, 164–167
maximal element, 1160
maximal matching, 705, 1108, 1132 pr.

greedy method for, 726
maximization linear program, 853
maximum, 227

in binary search trees, 317–318
of a binomial distribution, 1202 ex.
finding, 228–229
in heaps, 174
in red-black trees, 334

MAXIMUM, 173–174, 250
maximum bipartite matching, 693–697, 705–716
maximum flow, 670–703

Edmonds-Karp algorithm for, 689–691
Ford-Fulkerson method for, 676–693
as a linear program, 862
and maximum bipartite matching, 693–697
push-relabel algorithms for, 702
scaling algorithm for, 699 pr.
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updating, 699 pr.
maximum matching, 693, 704, 1132 pr.

see also maximum bipartite matching
maximum spanning tree, 1134 pr.
max-priority queue, 173
MAX-3-CNF satisfiability, 1120–1121
MAYBE-MST-A, 602 pr.
MAYBE-MST-B, 602 pr.
MAYBE-MST-C, 602 pr.
mean

of a cluster, 1009
see also expected value

mean weight of a cycle, 642 pr.
median, 227–247

weighted, 244 pr.
median key, of a B-tree node, 506
median-of-3 method, 203 pr.
member of a set (∈), 1153
memoization, 368, 390–392
MEMOIZED-CUT-ROD, 369
MEMOIZED-CUT-ROD-AUX, 369
MEMOIZED-MATRIX-CHAIN, 391
memory hierarchy, 27, 301

hash functions for, 304–307
MERGE, 36
mergeable heap, 268 pr.
MERGE-LISTS, 1125
merge sort, 34–44, 57

compared with insertion sort, 12–13, 15 ex.
lower bound for, 207
parallel algorithm for, 775–782
use of insertion sort in, 45 pr.

MERGE-SORT, 39
merging

of k sorted lists, 178 ex.
lower bounds for, 222 pr.
parallel algorithm for, 776–780
of two sorted subarrays, 35–38

MILLER-RABIN, 946
Miller-Rabin primality test, 945–953
MIN-GAP, 495 ex.
min-heap, 163

analyzed by potential method, 459 ex.
building, 167–170
in constructing Huffman codes, 436
d-ary, 668 pr.
in Dijkstra’s algorithm, 623
in Johnson’s algorithm, 666
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mergeable, 268 n.
as a min-priority queue, 176 ex.
in Prim’s algorithm, 597

MIN-HEAPIFY, 166 ex.
MIN-HEAP-INSERT, 176 ex.
min-heap property, 163

maintenance of, 166 ex.
vs. binary-search-tree property, 315 ex.

minimization linear program, 853
minimizer of a function, 1022, 1024 fig., 1026 fig.
minimum, 227

in binary search trees, 317–318
finding, 228–229
offline, 541 pr.
in red-black trees, 334

MINIMUM, 173, 228, 250
minimum-cost circulation, 875 pr.
minimum-cost flow, 862–864
minimum-cost multicommodity flow, 866 ex.
minimum-cost spanning tree, see minimum spanning tree
minimum cut, 682

global, 701 pr.
minimum degree, of a B-tree, 502
minimum mean-weight cycle, 642 pr.
minimum path cover, 698 pr.
minimum spanning tree, 585–603

in approximation algorithm for traveling-salesperson problem, 1110

Borůvka’s algorithm for, 603
on dynamic graphs, 599 ex.
generic method for, 586–591
Kruskal’s algorithm for, 592–594
Prim’s algorithm for, 594–597
second-best, 599 pr.

minimum-weight spanning tree, see minimum spanning tree
minimum-weight vertex cover, 1121–1124
minor of a matrix, 1221
min-priority queue, 173

in constructing Huffman codes, 434
in Dijkstra’s algorithm, 623–624
in Prim’s algorithm, 596–597

missing child, 1173
mod, 64, 905
modeling, 851
modifying operation, 250
modular arithmetic, 64, 901 pr., 916–923
modular equivalence (= (mod n)), 64, 905
modular exponentiation, 934–935
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MODULAR-EXPONENTIATION, 935
modular linear equations, 924–928
MODULAR-LINEAR-EQUATION-SOLVER, 926
modulo, 64, 905
Monge array, 123 pr.
monotone sequence, 181
monotonically decreasing, 63
monotonically increasing, 63
Monty Hall problem, 1210 pr.
MOVE-TO-FRONT, 796–797
MST-KRUSKAL, 594
MST-PRIM, 596
MST-REDUCE, 601 pr.

much-greater-than (≫), 533

much-less-than (≪), 761
multicommodity flow, 864–865
multicore computer, 748
multidimensional fast Fourier transform, 899 pr.
multigraph, 1167
multiple, 904

of an element modulo n, 924–928
least common, 916 ex.
scalar, 1217

multiple sources and sinks, 674
multiplication

of complex numbers, 90 ex.
divide-and-conquer method for, 899 pr.
of matrices, see matrix multiplication
of a matrix chain, 373–382
matrix-vector, 762–765, 767, 1218
modulo n (·n), 917

of polynomials, 878
multiplication method, 284–286
multiplicative group modulo n, 919
multiplicative inverse, modulo n, 927
multiplicative weights, 1015–1022
multiply instruction, 26
multiply-shift method, 285–286
MULTIPOP, 450
multiset, 1153 n.

dynamic, 460 ex.
mutually exclusive events, 1185
mutually independent events, 1188
mutually noninterfering strands, 767

ℕ (set of natural numbers), 1153
naive algorithm for string matching, 960–962
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NAIVE-STRING-MATCHER, 960
National Resident Matching Program, 704, 722 ex.
natural cubic spline, 847 pr.
natural logarithm (ln), 66

natural numbers (ℕ), 1153
keys interpreted as, 283–284

nearest-center rule, 1008
negative of a matrix, 1217
negative-weight cycle

and difference constraints, 629
and relaxation, 639 ex.
and shortest paths, 606–607, 614–615, 655 ex., 662 ex.

negative-weight edges, 606–607
neighbor, 1167
neighborhood, 715 ex.
nesting boxes, 640 pr.
net flow across a cut, 682
network

flow, see flow network
residual, 677–681
for sorting, 789

new request, 810
Newton’s method, 1038 pr.
NIL, 23
node, 1172

see also vertex
nondeterministic algorithm, 765
nondeterministic polynomial time, 1058 n.

see also NP
nonempty suffix, 997 pr.
nonhamiltonian graph, 1056
noninstance, 1051 n.
noninvertible matrix, 1220
nonnegativity constraint, 854
nonoblivious adversary, 807
nonoverlappable string pattern, 974 ex.
nonsample position, 997 pr.
nonsample suffix, 997 pr.
nonsingular matrix, 1220
nontrivial power, 910 ex.
nontrivial square root of 1, modulo n, 934
no-path property, 611, 634
normal equation, 843

norm of a vector (∥ ∥), 1219
NOT function (¬), 1065
not a set member (∉), 1153
not equivalent (≠ (mod n)), 64

www.konkur.in

Telegram: @uni_k



NOT gate, 1065
NP (complexity class), 1043, 1058, 1060 ex.
NPC (complexity class), 1044, 1063
NP-complete, 1044, 1063
NP-completeness, 9–10, 1042–1103

of the circuit-satisfiability problem, 1064–1071
of the clique problem, 1081–1084
of the formula-satisfiability problem, 1073–1076
of the graph-coloring problem, 1100 pr.
of the half 3-CNF satisfiability problem, 1099 ex.
of the hamiltonian-cycle problem, 1085–1090
of the hamiltonian-path problem, 1098 ex.
of the independent-set problem, 1099 pr.
of integer linear programming, 1098 ex.
of the longest-simple-cycle problem, 1098 ex.
proving, of a language, 1072–1073
reduction strategies for, 1095–1098
of scheduling with profits and deadlines, 1102 pr.
of the set-covering problem, 1119 ex.
of the set-partition problem, 1098 ex.
of the subgraph-isomorphism problem, 1098 ex.
of the subset-sum problem, 1092–1095
of the 3-CNF-satisfiability problem, 1076–1079
of the traveling-salesperson problem, 1090–1092
of the vertex-cover problem, 1084–1085
of 0-1 integer programming, 1098 ex.

NP-hard, 1063
n-set, 1156
n-tuple, 1157
null event, 1185
null tree, 1173
null vector, 1221
number-field sieve, 956
numerical stability, 819, 821
n-vector, 1215

o-notation, 60
O-notation, 50, 54–55
O′-notation, 73 pr.

-notation, 73 pr.
object, 23
objective function, 626, 852, 854
objective value, 854
oblivious adversary, 807
oblivious compare-exchange algorithm, 222 pr.
occurrence of a pattern, 957
offline algorithm, 791

www.konkur.in

Telegram: @uni_k



OFFLINE-MINIMUM, 542 pr.
offline problem

caching, 440–446
lowest common ancestors, 543 pr.
minimum, 541 pr.

old request, 810
Omega-notation, 51, 54 fig., 55–56
1-approximation algorithm, 1105
one-pass method, 544
one-to-one correspondence, 1163
one-to-one function, 1162
online algorithm, 791–818

for caching, 802–815
for the cow-path problem, 815 pr.
for hiring, 150–152
for maintaining a linked list, 795–802
for task scheduling, 816 pr.
for waiting for an elevator, 792–794

online learning, 1003
ONLINE-MAXIMUM, 150
online task-parallel scheduler, 759
onto function, 1162
open-address hash table, 293–301, 308 pr.

with double hashing, 295–297, 301 ex.
with linear probing, 297, 302–304

open interval ((a, b)), 1157
OpenMP, 750
optimal assignment, 723–739
optimal binary search tree, 400–407
OPTIMAL-BST, 405
optimal objective value, 854
optimal solution, 854
optimal substructure, 382–387

of activity selection, 419
of binary search trees, 402–403
of the fractional knapsack problem, 429
in greedy method, 428
of Huffman codes, 438
of longest common subsequences, 394–395
of matrix-chain multiplication, 376
of offline caching, 441–442
of rod cutting, 365
of shortest paths, 605–606, 649, 655–656
of unweighted shortest paths, 385
of the 0-1 knapsack problem, 429

optimal vertex cover, 1106
optimization problem, 362, 1045, 1049

approximation algorithms for, 1104–1136
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and decision problems, 1045
OR function (∨), 659, 1065
order

of a group, 922
of growth, 32
linear, 1160
partial, 1160
total, 1160

ordered pair, 1156
ordered tree, 1173
order statistics, 160, 227–247

dynamic, 480–486
order-statistic tree, 480–486
ord function, 987
OR gate, 1065
or, in pseudocode, 24
orthonormal, 849
OS-KEY-RANK, 485 ex.
OS-RANK, 483
OS-SELECT, 482
outcome, 1185
out-degree, 1165
outer product, 1219
output

of an algorithm, 5
of a combinational circuit, 1066
of a logic gate, 1065

overdetermined system of linear equations, 821
overflow

of a queue, 257
of a stack, 255

overflowing vertex, 703
overlapping intervals, 489

finding all, 495 ex.
point of maximum overlap, 496 pr.

overlapping rectangles, 495 ex.
overlapping subproblems, 387–390
overlapping-suffix lemma, 959

P (complexity class), 1043, 1050, 1054, 1055 ex.
page, in virtual memory, 440
pair

blocking, 716
ordered, 1156

pairwise disjoint sets, 1156
pairwise independence, 1188
pairwise relatively prime, 908
palindrome, 407 pr., 995 ex.
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Pan’s method for matrix multiplication, 89 ex.
parallel algorithm, 748–790

for computing Fibonacci numbers, 750–753
grain size in, 783 pr.
for LU decomposition, 784 pr.
for LUP decomposition, 784 pr.
for matrix inversion, 784 pr.
for matrix multiplication, 770–775, 783 pr.
for matrix-vector product, 762–765, 767
for merge sort, 775–782
for merging, 776–780
for prefix computation, 784 pr.
for quicksort, 789 pr.
randomized, 789 pr.
for reduction, 784 pr.
for a simple stencil calculation, 787 pr.
for solving systems of linear equations, 784 pr.
Strassen’s algorithm, 773–774
for well-formed parentheses, 786 pr.

parallel computer, 10, 748, 756
parallel for, in pseudocode, 762–763
parallelism

logical, 753
of a randomized parallel algorithm, 789 pr.
spawning, 753
syncing, 754
of a task-parallel computation, 758

parallel keywords, 750, 752, 762
parallel loop, 762–765, 783 pr.
parallel-machine-scheduling problem, 1133 pr.
parallel prefix, 784 pr.
parallel random-access machine, 789
parallel slackness, 758

rule of thumb, 761
parallel, strands logically in, 756
parallel trace, 754–756

series-parallel composition of, 762 fig.
parameter, 23

costs of passing, 120 pr.
parent

in a breadth-first tree (π), 555
in a parallel computation, 753
in a rooted tree, 1172

PARENT, 162
parenthesis theorem, 567
parenthesization of a matrix-chain product, 374
Pareto optimality, 722 ex.
parse tree, 1077
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partial derivative (∂), 1023
partial order, 1160
PARTITION, 184
PARTITION′, 200 pr.
PARTITION-AROUND, 237
partition function, 363 n.
partitioning, 183–186

around median of 3 elements, 198 ex.
helpful, 232
Hoare’s method for, 199 pr.
randomized, 192, 198 ex., 200 pr., 203 pr.

partition of a set, 1156, 1159
Pascal’s triangle, 1183 ex.
path, 1165

alternating, 705
augmenting, 681–682, 705
critical, 619
find, 528
hamiltonian, 1060 ex., 1098 ex.
longest, 385, 1042
shortest, see shortest paths
simple, 1165
weight of, 407 pr., 604

PATH, 1045, 1053
path compression, 528
path cover, 698 pr.
path length, of a tree, 328 pr., 1175 ex.
path-relaxation property, 611, 635
pattern, 957

nonoverlappable, 974 ex.
pattern matching, see string matching
perfect hashing, 310
perfect linear speedup, 758
perfect matching, 715 ex., 740 pr.
permutation, 1163, 1179–1180

bit-reversal, 897
identity, 138 ex.
in place, 136
Josephus, 496 pr.
k-permutation, 136, 1180
linear, 1224 pr.
random, 136–138
uniform random, 128, 136

permutation matrix, 1217
PERMUTE-BY-CYCLE, 139 ex.
PERMUTE-WITH-ALL, 139 ex.
PERMUTE-WITHOUT-IDENTITY, 138 ex.
persistent data structure, 355 pr., 478
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PERSISTENT-TREE-INSERT, 355 pr.
PERT chart, 617, 619 ex.
P-FIB, 753

phi function (ϕ(n)), 920
pivot

in LU decomposition, 826
in quicksort, 183
in selection, 230

P[:k] (prefix of a pattern), 959
planar graph, 584 pr.
platter in a disk drive, 498
P-MATRIX-MULTIPLY, 771
P-MATRIX-MULTIPLY-RECURSIVE, 772
P-MAT-VEC, 763
P-MAT-VEC-RECURSIVE, 763
P-MAT-VEC-WRONG, 768
P-MERGE, 779
P-MERGE-AUX, 779
P-MERGE-SORT, 775
P-NAIVE-MERGE-SORT, 775
pointer, 23

trailing, 321
point, in clustering, 1006
point-value representation, 880
polylogarithmically bounded, 67
polynomial, 65, 877–885

addition of, 877
asymptotic behavior of, 71 pr.
coefficient representation of, 879
derivatives of, 900 pr.
evaluation of, 46 pr., 879, 884 ex., 900 pr.
interpolation by, 880, 885 ex.
multiplication of, 878, 882–884, 899 pr.
point-value representation of, 880

polynomial-growth condition, 116–117
polynomially bounded, 65
polynomially related, 1051
polynomial-time acceptance, 1053
polynomial-time algorithm, 904, 1042
polynomial-time approximation scheme, 1105

for maximum clique, 1131 pr.
for subset sum, 1124–1130

polynomial-time computability, 1051
polynomial-time decision, 1053
polynomial-time reducibility (≤P), 1062, 1071 ex.

polynomial-time solvability, 1050
polynomial-time verification, 1056–1061
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POP, 255, 449
pop from a runtime stack, 202 pr.
positional tree, 1174
positive-definite matrix, 1222
positive-semidefinite matrix, 1222
post-office location problem, 244 pr.
postorder tree walk, 314
potential function, 456

for lower bounds, 475
potential method, 456–460

for binary counters, 458–459
for disjoint-set data structures, 534–540, 541 ex.
for dynamic tables, 463–470
for maintaining a linked list, 799–801
for min-heaps, 459 ex.
for restructuring red-black trees, 473 pr.
for stack operations, 457–458

potential of a data structure, 456
power

of an element, modulo n, 932–936
kth, 910 ex.
nontrivial, 910 ex.

power series, 121 pr.
power set, 1156
Pr { } (probability distribution), 1185
PRAM, 789
predecessor

in binary search trees, 318–319
in breadth-first trees (π), 555
in linked lists, 259
in red-black trees, 334
in shortest-paths trees (π), 608

PREDECESSOR, 250
predecessor matrix, 647, 655 ex., 657–659, 661 ex.
predecessor subgraph

in all-pairs shortest paths, 647
in breadth-first search, 561
in depth-first search, 564
in single-source shortest paths, 608

predecessor-subgraph property, 611, 637–638
prediction, 1004
prediction phase, 1003
preemption, 446 pr., 816 pr.
prefix

of a sequence, 395

of a string (⊏), 959
prefix computation, 784 pr.
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prefix-free code, 432
prefix function, 975–977
prefix-function iteration lemma, 980
preflow, 703
preimage of a matrix, 1224 pr.
preorder, total, 1160
preorder tree walk, 314
Prim’s algorithm, 594–597

with an adjacency matrix, 598 ex.
in approximation algorithm for traveling-salesperson problem, 1110
with integer edge weights, 598 ex.
similarity to Dijkstra’s algorithm, 624
for sparse graphs, 599 pr.

primality testing, 942–953, 956
Miller-Rabin test, 945–953
pseudoprimality testing, 944–945

primal linear program, 866
augmented, 870

primary clustering, 303
prime distribution function, 943
prime factorization of integers, 909
prime number, 905

density of, 943
prime number theorem, 943

primitive root of , 932
principal root of unity, 886
principle of inclusion and exclusion, 1158 ex.
PRINT-ALL-PAIRS-SHORTEST-PATH, 648
PRINT-CUT-ROD-SOLUTION, 372
PRINT-LCS, 397
PRINT-OPTIMAL-PARENS, 381
PRINT-PATH, 562
PRINT-SET, 531 ex.
priority queue, 172–178

in constructing Huffman codes, 434
in Dijkstra’s algorithm, 623–624
heap implementation of, 172–178
max-priority queue, 173
min-priority queue, 173, 176 ex.
with monotone extractions, 181
in Prim’s algorithm, 596–597
see also Fibonacci heap

probabilistically checkable proof, 1103, 1136
probabilistic analysis, 127–128, 140–153

of approximation algorithm for MAX-3-CNF satisfiability, 1120–1121
and average inputs, 32
of average node depth in a randomly built binary search tree, 328 pr.
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of balls and bins, 143–144
of birthday paradox, 140–143
of bucket sort, 216–218, 218 ex.
of collisions, 281 ex.
of file comparison, 967 ex.
of fuzzy sorting of intervals, 203 pr.
of hashing with chaining, 278–281
of hiring problem, 132–133, 150–152
of insertion into a binary search tree with equal keys, 327 pr.
of longest probe bound for hashing, 308 pr.
of lower bound for sorting, 219 pr.
of Miller-Rabin primality test, 948–953
of online hiring problem, 150–152
of open-address hashing, 297–300
and parallel algorithms, 789 pr.
of partitioning, 191 ex., 198 ex., 200 pr., 203 pr.
of probabilistic counting, 153 pr.
of quicksort, 194–198, 200 pr., 203 pr.
of Rabin-Karp algorithm, 965–966
and randomized algorithms, 134–136
of randomized online caching, 809–814
of randomized selection, 232–236, 245 pr.
of randomized weighted majority, 1022 ex.
of searching a sorted compact list, 269 pr.
of slot-size bound for chaining, 308 pr.
of sorting points by distance from origin, 218 ex.
of streaks, 144–150
of universal hashing, 286–290

probabilistic counting, 153 pr.
probability, 1184–1191
probability axioms, 1185
probability density function, 1191
probability distribution, 1185
probability distribution function, 218 ex.
probe sequence, 293
probing, 293

see also linear probing, double hashing
problem

abstract, 1048
computational, 5–6
concrete, 1049
decision, 1045, 1049
intractable, 1042
optimization, 362, 1045, 1049
solution to, 6, 1049
tractable, 1042

procedure, 18
calling, 23, 26, 29 n.
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product (∏), 1144
Cartesian (×), 1157
inner, 1219
of matrices, see matrix multiplication
outer, 1219
of polynomials, 878
rule of, 1179
scalar flow, 675 ex.

professional wrestler, 563 ex.
program counter, 1068
programming, see dynamic programming, linear programming
projection, 1032
proper ancestor, 1172
proper descendant, 1172
proper prefix, 959
proper subgroup, 921
proper subset (⊂), 1154
proper suffix, 959
P-SCAN-1, 785 pr.
P-SCAN-1-AUX, 785 pr.
P-SCAN-2, 786 pr.
P-SCAN-2-AUX, 786 pr.
P-SCAN-3, 787 pr.
P-SCAN-DOWN, 787 pr.
P-SCAN-UP, 787 pr.
pseudocode, 18, 21–24
pseudoinverse, 843
pseudoprime, 944–945
PSEUDOPRIME, 945
pseudorandom-number generator, 129
P-TRANSPOSE, 770 ex.
public key, 936, 939
public-key cryptosystem, 936–942
PUSH, 255, 449
push onto a runtime stack, 202 pr.
push-relabel algorithms, 702

quadratic convergence, 1039 pr.
quadratic function, 31
quadratic residue, 954 pr.
quantile, 242 ex.
query, 250
queue, 254, 256–257

in breadth-first search, 554
implemented by stacks, 258 ex., 460 ex.
linked-list implementation of, 264 ex.
priority, see priority queue

quicksort, 182–204
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analysis of, 187–191, 193–198
average-case analysis of, 194–198
compared with insertion sort, 191 ex.
compared with radix sort, 214
with equal element values, 200 pr.
good worst-case implementation of, 241 ex.
with median-of-3 method, 203 pr.
parallel algorithm for, 789 pr.
randomized version of, 191–193, 200 pr., 203 pr.
stack depth of, 202 pr.
and tail recursion, 202 pr.
use of insertion sort in, 198 ex.
worst-case analysis of, 193–194

QUICKSORT, 183
QUICKSORT′, 200 pr.
quotient, 905

ℝ (set of real numbers), 1153
Rabin-Karp algorithm, 962–967
RABIN-KARP-MATCHER, 966
race condition, 765–768
RACE-EXAMPLE, 766
radix sort, 211–215

compared with quicksort, 214
in computing suffix arrays, 992

RADIX-SORT, 213
radix tree, 327 pr.
RAM, 26–27
RANDOM, 129
random-access machine, 26–27

parallel, 789
random hashing, 286–290
randomized algorithm, 128–129, 134–140

and average inputs, 32
comparison sort, 219 pr.
for fuzzy sorting of intervals, 203 pr.
for hiring problem, 135–136
for insertion into a binary search tree with equal keys, 327 pr.
for MAX-3-CNF satisfiability, 1120–1121
Miller-Rabin primality test, 945–953
for online caching, 807–814
parallel, 789 pr.
for partitioning, 192, 198 ex., 200 pr., 203 pr.
for permuting an array, 136–138
and probabilistic analysis, 134–136
quicksort, 191–193, 200 pr., 203 pr.
random hashing, 286–290
randomized rounding, 1136
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for searching a sorted compact list, 269 pr.
for selection, 230–236, 245 pr.
universal hashing, 286–290
for weighted majority, 1022 ex.

RANDOMIZED-HIRE-ASSISTANT, 135
RANDOMIZED-MARKING, 808
RANDOMIZED-PARTITION, 192
RANDOMIZED-PARTITION′, 200 pr.
RANDOMIZED-QUICKSORT, 192

relation to randomly built binary search trees, 328 pr.
randomized rounding, 1136
RANDOMIZED-SELECT, 230
randomly built binary search tree, 328 pr.
RANDOMLY-PERMUTE, 136, 138 ex.
random-number generator, 129
random oracle, 276
random permutation, 136–138

uniform, 128, 136
RANDOM-SAMPLE, 139 ex.
RANDOM-SEARCH, 154 pr.
random variable, 1191–1196

indicator, see indicator random variable
range, 1162

of a matrix, 1224 pr.
rank

column, 1220
in computing suffix arrays, 987
full, 1220
of a matrix, 1220, 1224 pr.
of a node in a disjoint-set forest, 528, 533–534, 540 ex.
of a number in an ordered set, 480
in order-statistic trees, 482–484, 485–486 ex.
row, 1220

rate of growth, 32
RB-DELETE, 348
RB-DELETE-FIXUP, 351
RB-ENUMERATE, 355 ex.
RB-INSERT, 338
RB-INSERT-FIXUP, 339
RB-JOIN, 356 pr.
RB-TRANSPLANT, 347
RC6, 304

reachability in a graph (↝), 1165

real numbers (ℝ), 1153
reconstructing an optimal solution, in dynamic programming, 390
record, 17, 157
rectangle, 495 ex.
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RECTANGULAR-MATRIX-MULTIPLY, 374
recurrence, 39, 76–80, 90–125

Akra-Bazzi, 115–119
algorithmic, 77–78
inequalities in, 78
master, 101
solution by Akra-Bazzi method, 117–118
solution by master method, 101–107
solution by recursion-tree method, 95–101
solution by substitution method, 90–95

recursion, 34
recursion tree, 42, 95–101

in matrix-chain multiplication analysis, 388–390
in merge sort analysis, 42–44
in proof of continuous master theorem, 108–110
in quicksort analysis, 188–190
in rod cutting analysis, 366–367
and the substitution method, 98

RECURSIVE-ACTIVITY-SELECTOR, 422
recursive case, 34

of a divide-and-conquer algorithm, 76
of a recurrence, 77

RECURSIVE-MATRIX-CHAIN, 389
red-black properties, 331–332
red-black tree, 331–359

augmentation of, 487–489
compared with B-trees, 497, 503
deletion from, 346–355
for enumerating keys in a range, 355 ex.
height of, 332
insertion into, 338–346
in interval trees, 490–495
joining of, 356 pr.
left-leaning, 358
maximum key of, 334
minimum key of, 334
in order-statistic trees, 480–486
persistent, 355 pr.
predecessor in, 334
properties of, 331–335
relaxed, 334 ex.
restructuring, 473 pr.
rotation in, 335–338
searching in, 334
successor in, 334
see also interval tree, order-statistic tree

REDUCE, 784 pr.
reducibility, 1061–1063
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reduction algorithm, 1046, 1062
reduction function, 1062
reduction, of an array, 784 pr.
reduction strategies, 1095–1098
reference, 23
reflexive relation, 1158
reflexivity of asymptotic notation, 61
region, feasible, 854
register, 301, 756
regret, 1016
regular graph, 716 ex., 740 pr.
regularity condition, 103, 112, 114 ex.
regularization, 1012, 1036–1037
reindexing summations, 1143–1144
reinforcement learning, 1004
rejection

by an algorithm, 1053
by a finite automaton, 968

relation, 1158–1161
relatively prime, 908
RELAX, 610
relaxation

of an edge, 609–611
linear programming, 1122

relaxed red-black tree, 334 ex.
release time, 446 pr., 816 pr.
remainder, 64, 905
remainder instruction, 26
repeated squaring

for all-pairs shortest paths, 652–653
for raising a number to a power, 934

repeat, in pseudocode, 22
repetition factor, of a string, 996 pr.
REPETITION-MATCHER, 996 pr.
representative of a set, 520
RESET, 456 ex.
residual capacity, 677, 681
residual edge, 678
residual network, 677–681
residue, 64, 905, 954 pr.
respecting a set of edges, 587
return, in pseudocode, 24
return instruction, 26
reweighting

in all-pairs shortest paths, 662–664
in single-source shortest paths, 641 pr.

ρ(n)-approximation algorithm, 1104, 1120
RIGHT, 162
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right child, 1173
right-conversion, 337 ex.
RIGHT-ROTATE, 336
right rotation, 335

right shift (⋙), 285
right subtree, 1173
rod cutting, 363–373, 393 ex.
root

of a tree, 1171
of unity, 885–886

of , 932
rooted tree, 1171

representation of, 265–268
rotation, 335–338
rounding, 1122

randomized, 1136
row-major order, 253, 396
row rank, 1220
row vector, 1215
RSA public-key cryptosystem, 936–942
rule of product, 1179
rule of sum, 1178
running time, 29

asymptotic, 49
average-case, 32, 128
best-case, 34 ex.
expected, 32, 129
of a graph algorithm, 548
order of growth, 32
parallel, 757–758
and proper use of asymptotic notation, 56–57
rate of growth, 32
worst-case, 31

SA, see suffix array
sabermetrics, 415 n.
safe edge, 587
SAME-COMPONENT, 522
sample position, 997 pr.
sample space, 1185
sample suffix, 997 pr.
sampling, 139 ex.
SAT, 1074
satellite data, 17, 157, 249
satisfiability, 1066, 1073–1079, 1120–1121, 1124 ex.
satisfiable formula, 1043, 1074
satisfying assignment, 1066, 1074
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scalar, 1217
scalar flow product, 675 ex.
scaling

in maximum flow, 699 pr.
in single-source shortest paths, 641 pr.

scan, 784 pr.
SCAN, 785 pr.
scapegoat tree, 358
schedule, 1133 pr.
scheduler for task-parallel computations, 753, 759–761, 769 ex., 789
scheduling, 446 pr., 816 pr., 1102 pr., 1133 pr.
Schur complement, 825, 839
Schur complement lemma, 840
SCRAMBLE-SEARCH, 154 pr.
seam carving, 412 pr.
SEARCH, 250
searching

binary search, 44 ex., 777–778
in binary search trees, 316–317
in B-trees, 504–505
in chained hash tables, 278
in direct-address tables, 274
for an exact interval, 495 ex.
in interval trees, 492–494
linear search, 25 ex.
in linked lists, 260
in open-address hash tables, 294
in red-black trees, 334
in sorted compact lists, 269 pr.
of static sets, 308 pr.
in an unsorted array, 154 pr.

search list, see linked list
search tree, see balanced search tree, binary search tree, B-tree, exponential search tree, interval

tree, optimal binary search tree, order-statistic tree, red-black tree, splay tree, 2-3 tree, 2-3-4
tree

secondary storage
search tree for, 497–519
stacks on, 517 pr.

second-best minimum spanning tree, 599 pr.
secret key, 936, 939
SELECT, 237

used in quicksort, 241 ex.
SELECT3, 247 pr.
selection, 227

of activities, 418–425
and comparison sorts, 241
in order-statistic trees, 481–482
randomized, 230–236, 245 pr.
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in worst-case linear time, 236–243
selection sort, 33 ex., 53 ex.
selector vertex, 1087
self-loop, 1164
semiconnected graph, 581 ex.
semiring, 651 n., 669
sentinel

in linked lists, 261–264
in red-black trees, 332

sequence (〈 〉), 1162
bitonic, 644 pr.
inversion in, 134 ex., 486 ex.
probe, 293

sequential consistency, 756
serial algorithm versus parallel algorithm, 748
serial projection, 750, 753
series, 1141–1144

strands logically in, 756
series-parallel composition of parallel traces, 762 fig.
set ({ }), 1153–1158

cardinality (| |), 1156
collection of, 1156
convex, 675 ex.
difference (−), 1154
independent, 1099 pr.
intersection (∩), 1154
member (∈), 1153
not a member (∉), 1153
partially ordered, 1160
static, 308 pr.
union (∪), 1154

set-covering problem, 1115–1119
weighted, 1132 pr.

set-partition problem, 1098 ex.
SHA-256, 291
shared memory, 748
sharks with lasers, 850
Shell’s sort, 48
shift

left (⋘), 305

right (⋙), 285
in string matching, 957

shift instruction, 27
short-circuiting operator, 24
SHORTEST-PATH, 1045
shortest paths, 604–669

all-pairs, 605, 646–669
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Bellman-Ford algorithm for, 612–616
with bitonic shortest paths, 644 pr.
and breadth-first search, 558–561, 605
convergence property of, 611, 634–635
and cycles, 607–608
and difference constraints, 626–632
Dijkstra’s algorithm for, 620–626
in a directed acyclic graph, 616–619
distance in (δ), 558

in ϵ-dense graphs, 668 pr.
estimate of, 609
Floyd-Warshall algorithm for, 655–659, 662 ex.
Gabow’s scaling algorithm for, 641 pr.
Johnson’s algorithm for, 662–667
as a linear program, 861
and longest paths, 1042
by matrix multiplication, 648–655, 668–669
and negative-weight cycles, 606–607, 614–615, 655 ex., 662 ex.
with negative-weight edges, 606–607
no-path property of, 611, 634
optimal substructure of, 605–606, 649, 655–656
path-relaxation property of, 611, 635
predecessor in (π), 608
predecessor-subgraph property of, 611, 637–638
problem variants, 605
and relaxation, 609–611
by repeated squaring, 652–653
single-destination, 605
single-pair, 385, 605
single-source, 604–645
tree of, 608–609, 635–638
triangle inequality of, 611, 633
in an unweighted graph, 385, 558
upper-bound property of, 611, 633–634
in a weighted graph, 604
weight in (δ), 604

shortest remaining processing time (SRPT), 816 pr.
sibling, 1172
signature, 938
simple cycle, 1165–1166
simple graph, 1166
simple path, 1165

longest, 385, 1042
SIMPLER-RANDOMIZED-SELECT, 243 pr.
simplex, 857
simplex algorithm, 626, 857, 876
simulation, 173, 181
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single-destination shortest paths, 605
single-pair shortest path, 385, 605

as a linear program, 861
single-source shortest paths, 604–645

Bellman-Ford algorithm for, 612–616
with bitonic shortest paths, 644 pr.
and difference constraints, 626–632
Dijkstra’s algorithm for, 620–626
in a directed acyclic graph, 616–619

in ϵ-dense graphs, 668 pr.
Gabow’s scaling algorithm for, 641 pr.
and longest paths, 1042

singleton, 1156
singly connected graph, 572 ex.
singly linked list, 259
singular matrix, 1220
singular value decomposition, 849
sink vertex, 553 ex., 671, 674
size

of an algorithm’s input, 28, 903–904, 1049–1052
of a boolean combinational circuit, 1067
of a clique, 1081
of a group, 917
of a set, 1156
of a vertex cover, 1084, 1106

skip list, 359
slackness

complementary, 873 pr.
parallel, 758

slot
of a direct-access table, 273
of a hash table, 275

SLOW-APSP, 652
smoothed analysis, 876
solution

to an abstract problem, 1049
to a computational problem, 6
to a concrete problem, 1049
feasible, 627, 854
infeasible, 854
optimal, 854
to a system of linear equations, 820

sorted linked list, 259
sorting, 5, 17–21, 34–44, 51–53, 56–57, 157–226, 775–782

bubblesort, 46 pr.
bucket sort, 215–219
columnsort, 222 pr.
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comparison sort, 205
counting sort, 208–211
fuzzy, 203 pr.
heapsort, 161–181
in place, 158, 220 pr.
insertion sort, 12–13, 17–21, 51–53, 56–57
k-sorting, 221 pr.
lexicographic, 327 pr., 986 n.
in linear time, 208–219, 220 pr.
lower bounds for, 205–208, 225
merge sort, 12–13, 34–44, 57, 775–782
by an oblivious compare-exchange algorithm, 222 pr.
parallel merge sort, 775–782
parallel quicksort, 789 pr.
probabilistic lower bound for, 219 pr.
quicksort, 182–204
radix sort, 211–215
selection sort, 33 ex., 53 ex.
Shell’s sort, 48
stable, 210
table of running times, 159
topological, 573–576
using a binary search tree, 326 ex.
with variable-length items, 220 pr.
0-1 sorting lemma, 222 pr.

sorting network, 789
source vertex, 554, 605, 671, 674
span, 757
span law, 758
spanning tree, 585

bottleneck, 601 pr.
maximum, 1134 pr.
verification of, 603
see also minimum spanning tree

sparse graph, 549
all-pairs shortest paths for, 662–667
and Prim’s algorithm, 599 pr.

sparse matrix, 81
spawn, in pseudocode, 752–754
spawning, 753
speedup, 758

of a randomized parallel algorithm, 789 pr.
spindle in a disk drive, 498
spine of a string-matching automaton, 970
splay tree, 359, 478
splicing

in a binary search tree, 324–325
in a linked list, 260–261
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spline, 847 pr.
splitting

of B-tree nodes, 506–508
of 2-3-4 trees, 518 pr.

splitting summations, 1148–1149
spurious hit, 965
square matrix, 1215
square of a directed graph, 553 ex.
square root, modulo a prime, 954 pr.
squaring, repeated

for all-pairs shortest paths, 652–653
for raising a number to a power, 934

SRPT (shortest remaining processing time), 816 pr.
stability

numerical, 819, 821
of sorting algorithms, 210

stable-marriage problem, 716–723
stable matching, 716
stable-roommates problem, 723 ex.
stack, 254–255

implemented by queues, 258 ex.
implemented with a priority queue, 178 ex.
linked-list implementation of, 264 ex.
operations analyzed by accounting method, 454–455
operations analyzed by aggregate analysis, 449–451
operations analyzed by potential method, 457–458
for procedure execution, 202 pr.
on secondary storage, 517 pr.

STACK-EMPTY, 255
standard deviation, 1195

standard encoding (〈 〉), 1052
standard form of a linear program, 854
start state, 967
start time, 418
state of a finite automaton, 967
static graph, 522
static hashing, 282, 284–286
static set, 308 pr.
stencil, 787 pr.
Stirling’s approximation, 67
stochastic gradient descent, 1040 pr.
STOOGE-SORT, 202 pr.
store instruction, 26, 756
strand, 754

mutually noninterfering, 767
Strassen’s algorithm, 85–90, 124–125

parallel algorithm for, 773–774
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streaks, 144–150, 153 ex.
streaming algorithms, 818
strict Fibonacci heap, 478
strictly decreasing, 63
strictly increasing, 63
string, 957, 1179

interpreted as a key, 290–291, 292 ex.
string matching, 957–1002

based on repetition factors, 996 pr.
by finite automata, 967–975
with gap characters, 961 ex., 975 ex.
Knuth-Morris-Pratt algorithm for, 975–985
naive algorithm for, 960–962
Rabin-Karp algorithm for, 962–967
by suffix arrays, 985–996

string-matching automaton, 968–975
strongly connected component, 1166

decomposition into, 576–581
STRONGLY-CONNECTED-COMPONENTS, 577
strongly connected graph, 1166
subarray (:), 19, 23
subgraph, 1166

equality, 724
predecessor, see predecessor subgraph

subgraph-isomorphism problem, 1098 ex.
subgroup, 921–923
subpath, 1165
subproblem graph, 370–371
subroutine, 23, 26, 29 n.
subsequence, 394
subset (⊆), 1154, 1156
SUBSET-SUM, 1092
subset-sum problem

approximation algorithm for, 1124–1130
NP-completeness of, 1092–1095
with unary target, 1098 ex.

substitution method, 90–95
in quicksort analysis, 191 ex., 193–194
and recursion trees, 98
in selection analysis, 240–241

substring, 962, 1179
rank of, 987

subtracting a low-order term, in the substitution method, 92–93
subtract instruction, 26
subtraction of matrices, 1218
subtree, 1172

maintaining size of, in order-statistic trees, 484–485
success, in a Bernoulli trial, 1196
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successor
in binary search trees, 318–319
finding ith, of a node in an order-statistic tree, 486 ex.
in linked lists, 259
in red-black trees, 334

SUCCESSOR, 250
such that (:), 1154

suffix (⊐), 959
suffix array (SA), 985–996, 997 pr.
suffix function, 968
suffix-function inequality, 971
suffix-function recursion lemma, 972
sum (∑), 1140

Cartesian, 885 ex.
of matrices, 1217
of polynomials, 877
rule of, 1178
telescoping, 1143

SUM-ARRAY, 25 ex.
SUM-ARRAYS, 783 pr.
SUM-ARRAYS′, 783 pr.
summation, 1140–1152

approximated by integrals, 1150
in asymptotic notation, 58, 1141
bounding, 1145–1152
formulas and properties of, 1140–1145
linearity of, 1141
lower bounds on, 1148, 1150
splitting, 1148–1149

summation lemma, 887
supercomputer, 748
superpolynomial time, 1042
supersink, 674
supersource, 674
supervised learning, 1004
surjection, 1162
SVD, 849
symbol table, 272
symmetric difference, 706
symmetric-key cryptosystem, 941
symmetric matrix, 1217
symmetric positive-definite matrix, 838–841

inverse of, 784 pr.
symmetric relation, 1159
symmetry of Θ-notation, 61
sync, in pseudocode, 752–754
system of difference constraints, 626–632
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system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035

TABLE-DELETE, 467
TABLE-INSERT, 462
tail

of a binomial distribution, 1203–1210
of a linked list, 259
of a queue, 256

tail recursion, 202 pr., 422
target, 1092
Tarjan’s offline lowest-common-ancestors algorithm, 543 pr.
task parallelism, 749

see also parallel algorithm
Task Parallel Library, 750
task-parallel scheduling, 759–761, 769 ex.
task scheduling, 446 pr., 816 pr.
tautology, 1060 ex.
Taylor series, 329 pr.
telescoping series, 1143
telescoping sum, 1143
termination of a loop invariant, 20
testing

of primality, 942–953, 956
of pseudoprimality, 944–945

text, 957
Theta-notation (Θ), 33, 51, 54 fig., 56
thread, 748
Threading Building Blocks, 750
thread parallelism, 748
3-CNF, 1076
3-CNF-SAT, 1076
3-CNF satisfiability, 1076–1079

approximation algorithm for, 1120–1121
and 2-CNF satisfiability, 1043

3-COLOR, 1100 pr.
3-conjunctive normal form, 1076
threshold constant, 77
tight bounds, 56
time, see running time
time domain, 877
time-memory trade-off, 367
timestamp, 564, 571 ex.
T[i :] (suffix of a text), 986
T[: k] (prefix of a text), 959
to, in pseudocode, 22
top-down method, for dynamic programming, 368
top of a stack, 254
topological sort, 573–576
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in computing single-source shortest paths in a dag, 616
TOPOLOGICAL-SORT, 573
total order, 1160
total path length, 328 pr.
total preorder, 1160
total relation, 1160
tour

bitonic, 407 pr.
Euler, 583 pr., 1043
of a graph, 1090

trace, 754–756
series-parallel composition of, 762 fig.

track in a disk drive, 498
tractability, 1042
trailing pointer, 321
training data, 1003
training phase, 1003
transition function, 967, 973–974
transitive closure, 659–661

and boolean matrix multiplication, 838 ex.
of dynamic graphs, 667 pr., 669

TRANSITIVE-CLOSURE, 660
transitive relation, 1159
transitivity of asymptotic notation, 61
TRANSPLANT, 324, 346
transpose

conjugate, 838 ex.
of a directed graph, 553 ex.
of a matrix, 1214

transpose symmetry of asymptotic notation, 62
traveling-salesperson problem

approximation algorithm for, 1109–1115
bitonic euclidean, 407 pr.
bottleneck, 1115 ex.
NP-completeness of, 1090–1092
with the triangle inequality, 1110–1113
without the triangle inequality, 1113–1114

traversal of a tree, 314, 320 ex., 1112
treap, 358
tree, 1169–1176

AA-trees, 358
AVL, 357 pr., 358
binary, see binary tree
bisection of, 1177 pr.
breadth-first, 555, 561
B-trees, 497–519
decision, 206–207, 219 pr.
depth-first, 564
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diameter of, 563 ex.
dynamic, 478
free, 1167, 1169–1171
full walk of, 1112
fusion, 226, 478
heap, 161–181
height-balanced, 357 pr.
height of, 1173
interval, 489–495
k-neighbor, 358
left-leaning red-black binary search trees, 358
minimum spanning, see minimum spanning tree
optimal binary search, 400–407
order-statistic, 480–486
parse, 1077
recursion, 42, 95–101
red-black, see red-black tree
rooted, 265–268, 1171
scapegoat, 358
search, see search tree
shortest-paths, 608–609, 635–638
spanning, see minimum spanning tree, spanning tree
splay, 359, 478
treap, 358
2-3, 358, 519
2-3-4, 502, 518 pr.
van Emde Boas, 478
walk of, 314, 320 ex., 1112
weight-balanced trees, 358

TREE-DELETE, 325, 326 ex., 346–347
tree edge, 561, 564, 569
TREE-INSERT, 321, 338
TREE-MAXIMUM, 318
TREE-MINIMUM, 318
TREE-PREDECESSOR, 319
TREE-SEARCH, 316
TREE-SUCCESSOR, 319
tree walk, 314, 320 ex., 1112
TRE-QUICKSORT, 202 pr.
trial division, 943
triangle inequality, 1110

for shortest paths, 611, 633
triangular matrix, 1216
trichotomy, interval, 490
trichotomy property of real numbers, 62
tridiagonal linear systems, 847 pr.
tridiagonal matrix, 1216
trie (radix tree), 327 pr.
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TRIM, 1127
trimming a list, 1126
trivial divisor, 904
tropical semiring, 651 n.
truth assignment, 1066, 1073
truth table, 1065
TSP, 1091
tuple, 1157
twiddle factor, 891
2-CNF-SAT, 1080 ex.
2-CNF satisfiability, 1080 ex.

and 3-CNF satisfiability, 1043
two-pass method, 529
2-3-4 tree, 502, 518 pr.
2-3 tree, 358, 519

unary, 1050
unbounded competitive ratio, 804
unbounded linear program, 854
uncle, 340
unconditional branch instruction, 26
unconstrained gradient descent, 1023–1031
uncountable set, 1156
underdetermined system of linear equations, 820
underflow

of a queue, 256
of a stack, 255

undirected graph, 1164
articulation point of, 582 pr.
biconnected component of, 582 pr.
bridge of, 582 pr.
clique in, 1081
coloring of, 1100 pr., 1176 pr.
computing a minimum spanning tree in, 585–603
d-regular, 716 ex., 740 pr.
grid, 697 pr.
hamiltonian, 1056
independent set of, 1099 pr.
matching in, 693–697, 704–743
nonhamiltonian, 1056
vertex cover of, 1084, 1106
see also graph

undirected version of a directed graph, 1167
uniform family of hash functions, 287
uniform hash function, 278
uniform hashing, 295
uniform probability distribution, 1186–1187
uniform random permutation, 128, 136
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union
of languages, 1052
of linked lists, 264 ex.
of sets (∪), 1154

UNION, 264 ex., 521
disjoint-set-forest implementation of, 530
linked-list implementation of, 524–526

union by rank, 528
unit (1), 905
unit lower-triangular matrix, 1216
unit upper-triangular matrix, 1216
unit vector, 1215
universal family of hash functions, 286–287
universal hash function, 278
universal hashing, 286–290, 309 pr.
universal sink, 553 ex.
universe, 273, 1155
unmatched vertex, 693, 705
unsorted linked list, 259
unstable matching, 717
unsupervised learning, 1004
until, in pseudocode, 22
unweighted longest simple paths, 385
unweighted shortest paths, 385
upper bound, 54
upper-bound property, 611, 633–634
upper median, 227
upper-triangular matrix, 1216

valid shift, 957
value

of a flow, 672
of a function, 1161
objective, 854

Vandermonde matrix, 881, 1223 pr.
van Emde Boas tree, 478
Var [ ], see variance
variable

decision, 851
in pseudocode, 22
random, 1191–1196
see also indicator random variable

variable-length code, 432
variable-length input

interpreted as a key, 290–291
to the wee hash function, 306

variance, 1194
of a binomial distribution, 1200
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of a geometric distribution, 1198
vector, 1215, 1219–1221

convolution of, 880
interpreted as a key, 290–291
orthonormal, 849

Venn diagram, 1155
verification, 1056–1061

of spanning trees, 603
verification algorithm, 1058
vertex

articulation point, 582 pr.
attributes of, 552
capacity of, 676 ex.
in a graph, 1164
intermediate, 655
isolated, 1165
matched, 693, 705
selector, 1087
unmatched, 693, 705

vertex cover, 1084, 1106
VERTEX-COVER, 1084
vertex-cover problem

approximation algorithm for, 1106–1109, 1121–1124
NP-completeness of, 1084–1085

vertex labeling, 724, 742 pr.
vertex set, 1164
virtual memory, 27
Viterbi algorithm, 411 pr.

walk of a tree, 314, 320 ex., 1112
WAR (wins above replacement), 414 pr.
watershed function, 103
weak duality, 868–869, 874 pr.
weak Pareto optimality, 722 ex.
WEE, 307
wee hash function, 305–307
weight

of a cut, 1124 ex.
of an edge, 551
mean, 642 pr.
of a path, 407 pr., 604
of a shortest path (δ), 604
of a spanning tree, 585

weight-balanced tree, 358, 472 pr.
WEIGHTED-MAJORITY, 1018, 1022 ex.
weighted median, 244 pr.
weighted set-covering problem, 1132 pr.
weighted-union heuristic, 525
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weighted vertex cover, 1121–1124
weight function, 551
well-defined recurrence, 77
while, in pseudocode, 22
white-path theorem, 568
white vertex, 554, 564
widest augmenting path, 700 pr.
wins above replacement (WAR), 414 pr.
wire, 1065
WITNESS, 946
witness to the compositeness of a number, 946
work, 757
work law, 757
work-stealing scheduling algorithm, 790
worst-case running time, 31

X10, 750

Yen’s improvement to the Bellman-Ford algorithm, 640 pr.
Young tableau, 179 pr.

ℤ (set of integers), 1153

ℤn (equivalence classes modulo n), 905

 (elements of multiplicative group modulo n), 919

 (nonzero elements of ℤn), 944

zero matrix, 1215
zero of a polynomial modulo a prime, 928 ex.
0-1 integer programming, 1098 ex., 1121
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