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Foreword

In their preface, the authors connect the arbitrary reference frame analysis of ac
machines to Tesla’s rotating field. This transformation of Tesla’s rotating magnetic
field to any reference frame lends itself to selecting a frame that aids analysis and
provides insight for advanced control algorithm development. This flexibility is
most beneficial with the rise of adjustable speed ac drives. This development
has changed the relative importance of reference frame theory (RFT), and the
authors make a sound case for introducing RFT early in a student’s undergraduate
program. The authors state and I concur from experience that the arbitrary refer-
ence frame can be applied to synchronous machines of all types and induction
machines.
One of the earliest uses Imade of proper reference frame selection in the analysis

of ac machines occurred in the late 1970s during the energy crisis. It is then an
emphasis was placed on machine energy efficiency. One approach proposed
was the development of permanent magnet single-phase motors with the intent
to replace single-phase induction motors. The presence of an unsymmetrical rotor
dictated a rotor reference frame. By applying harmonic balance to the resulting
model provided an analysis strategy resulting in accurate predictions of the total
torque on the machine with its inductive accelerating component and its braking
permanent magnet component.
In the late 1980s and early 1990s change in the industrial sector was beginning at

great speed. With the invention of sizable power transistors and then insulated
gate bipolar transistors (IGBT) dc drives, the backbone of industrial power, were
challenged by low voltage source inverters. Although still in its infancy,motor con-
trol chips were under investigation with the promise of control algorithms only
written about in theoretical papers. Early on, high-performance current regulation
was identified as necessary to achieve the performance beyond volts per hertz
operation. Initial controllers attempted to achieve high performance necessary
for difficult applications included three independent proportional/integral (PI)
controllers. These controllers were implemented in the stationary reference frame
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to negate the transformation to the synchronous frame resulting in burdening the
microcontrollers of the day. But there were problems of performance and stability.
Our team quickly realized the error when employing three independent PI con-
trollers in a three-phase motor controller and developed a stationary equivalent
to a synchronous reference frame PI controller.
Simultaneous with the development of high-performance current regulation

was the development of field-oriented control (FOC). FOC provides dynamic con-
trol of ac machines beyond volts per hertz and comparable to dc machines. This
discovery opened the door for ac drives to attack high-performance markets like
spindle drives and servo drives formerly dominated by dc drives. The theory
behind this control is easily described by proper reference frame selection. For
induction machines aligning the synchronous frame such that the rotor flux only
exists in one of the two d–q axes sets up a system with decoupled rotor dynamics –
not unlike the performance of dc machines. Our team further observed selecting
the synchronous frame without adjusting the reference frame angle to nullify one
rotor axis’ flux, but examining the constraint embedded within the rotor equations
provides a model that was conducive to online adaption for changes in rotor resist-
ance andmagnetic saturation. This led tomodel reference and observer-based con-
trollers still in use 30 years later.
Another advance was made possible by applying RFT online parameter identi-

fication. In our development of advanced high-performance FOC controllers heat-
ing of the stator and rotor raising their respective resistances leads to performance
degradation especially at low speeds. By rotating the synchronous frame by the
angle necessary to align this new reference frame with the current vector provides
a means for flux control and stator resistance identification.
FOC requires detailed knowledge of the load machine. General purpose drives

lack the luxury of controlling a prespecified machine. As a result ac drives incor-
porate a commissioning procedure to identify critical machine parameters for the
controller employed. Deterministic approaches are the most prevalent and are
divided into transient and steady state. Through considerable testing we concluded
that transient approaches were problematic chiefly because of inverter nonlinea-
rities. Consequently, we developed a commissioning procedure that incorporated
the stationary reference frame for induction motors wherein the machine was
excited in a single-phase fashion with a sinewave at a sufficiently high frequency.
This approach would yield two critical machine parameters necessary for high-
performance FOC machines. Here again knowledge of RFT provided an avenue
for solving a fundamental problem in the evolution of ac drives.
With the heightened concern over harmonic distortion, utilities have demanded

from drive manufacturers improvements in drive performance as measured by the
harmonic content presented to the distribution network by the drive system. This
has resulted in considerable investment into developing reduced harmonic
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rectifiers by drive manufacturers. Among critical functions for active front ends
are grid synchronization and resonance identification and rejection. One approach
incorporates nonlinear adaptive tracking filters. By employing RFT it is possible to
design a nonlinear bandpass tracking filter that has unique characteristics because
of proper implementation of RFT.
Invention using RFT continues in areas of motor control, motor diagnostics, grid

interface, drive protection, and in applications unanticipated only a few years ago.
I know of no one better able to bring RFT technology to the undergraduate and

graduate students than the authors. The contributions to RFT by the authors have
a long history spanning over 50 years, and numerous students have achieved tech-
nical prominence with RFT contributing to their success; technical papers in
respected journals authored or coauthored by the authors are numerous. This text
is in line with the previous texts “ElectromechanicalMotion Devices,” “Analysis of
Electric Machinery and Drive Systems,” “Analysis of Electric Machinery,” and
“Electromechanical Motion Devices,” all of which are widely read and distributed.

Russel J. Kerkman Distinguished Engineering Fellow (retired)
Rockwell Automation

Russel J. Kerkman received the BSEE, MSEE, and PhD degrees from Purdue
University, West Lafayette, IN, USA, all in electrical engineering. From 1976 to
1980, he was an electrical engineer with the Power Electronics Laboratory of
Corporate Research and Development, General Electric Company, Schenectady,
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Preface

It has been established that the transformation to the arbitrary reference frame
used in the analysis of ac machines is contained in the expression of Tesla’s rotat-
ing magnetic field for sinusoidally distributed windings. The voltage and flux link-
age equations can be expressed in any frame of reference by simply assigning the
speed of the arbitrary reference frame. The transformation is nothing more than a
means of expressing the variables that portray Tesla’s rotating magnetic field from
a given reference frame. This establishes a meaning to the transformation and
makes it much easier to understand. In addition, this allows location of the
dynamic and steady-state poles in the synchronously rotating reference frame
which can then be superimposed on the instantaneous and steady-state phasor
diagrams. The poles provide a direct means of visualizing motor and generator
action. In previous texts, Reference Frame Theory was an optional analysis tech-
nique. In this text, Reference Frame Theory is central to the analysis of ac
machines.
The electric drives area has become and will continue to be an important elec-

trical engineering discipline. Reference Frame Theory is necessary to analyze
modern electric drives and it should be introduced to the student early in their
undergraduate program. We can no longer just teach steady-state analysis. We
must meet the challenges of the drives area and prepare the undergraduate with
modern analysis tools. This book is an attempt to accomplish this goal by using
Reference Frame Theory throughout. We feel this is the future approach to ac
machine analysis for the undergraduate.
The arbitrary reference frame can be used for synchronous and induction

machines. The synchronous machine has an unsymmetrical rotor and therefore
is generally analyzed in the rotor reference frame. For purposes of analysis, how-
ever, the synchronous and induction machines differ only in the rotor configura-
tions, the stators are the same. Therefore, the stator variables are transformed
once, rather than for each machine. Once the transformation for the symmetrical

xv
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stator variables has been established and the arbitrary reference frame variables
set forth, only the transformation of the rotor variables of the symmetrical induc-
tion machine is needed. This transformation is very much the same as the trans-
formation of the stator variables. This unified and compact approach prevents
repeating material and makes machine analysis easier to convey to the student.
This book can be used as either the first or second course in the power and drives

area as a two- or three-hour course, depending on the depth of coverage and the
area program. In Chapter 1, some of the common concepts used by most authors
of machine analysis are set forth. The transformation of the symmetrical two-
and three-phase stator variables to the arbitrary reference frame is covered in
Chapter 2. The two- and three-phase symmetrical induction machines are ana-
lyzed in Chapter 3. The three-phase permanent-magnet ac machine and the syn-
chronous generator are treated in Chapter 4. The voltage and torque equations for
the synchronous generator are established from the equivalent circuit which is
established from the work in previous chapters. This approach significantly
reduces the time to obtain the necessary equations.
The dc machine and dc drive are covered briefly in Chapter 5 which provides a

comparison with the drives in Chapter 6 where the brushless dc and the field-
oriented induction motor drives are considered. Although the power electronic
switching for the ideal drive inverter is set forth in Chapter 6, courses in power
electronics and controls are not required. It is assumed that the control is working
perfectly, in other words, it is not how the control is designed, it is what a well-
designed control system does. This chapter is followed by Chapters 7 and 8 cover-
ing single-phase induction motors and stepper motors. Symmetrical components,
which can be obtained from the arbitrary reference frame transformation, are used
to analyze the single-phase induction machine. Neither the analysis of the stepper
motor nor the dc machine requires Reference Frame Theory.
If the interest is in drives the first six chapters, except for the synchronous gen-

erator in Chapter 4, would be covered and, if time permits, Chapter 8 on stepper
motors. If the interest is in power systems, then Chapters 6 and 8 can be omitted.

Paul C. Krause
Thomas C. Krause

xvi Preface
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1

Common Analysis Tools

1.1 Introduction

The electric machine consists of a stationary member called the stator and inside
this stator is a rotating member called the rotor. The stator and rotor are generally
constructed from conductive wire, iron (steel), and/or permanent magnets. For
alternating current (ac) machines, the main focus of this text, the rotor is different
for each type of machine, but the stators are essentially the same. This chapter
introduces tools to analyze the currents and magnetic fields that flow through
and about the stators and rotors of electric machines.
Since the beginning of analysis of machines, several basic tools have become

more or less standard. These concepts are covered briefly in this chapter. Most
are used in the analysis of the machines considered in this text. This chapter starts
with phasors which is a complex-number means for analyzing steady-state ac vari-
ables and ends with two- and three-phase stator arrangements. These concepts
have been covered by many authors but are necessary and warrant consideration
in texts on the analysis of machines.

1.2 Steady-State Phasor Calculations

Wewill deal with steady-state sinusoidal variables in this text and phasor analysis is
very convenient for analyzing these variables. In the early 1900s, Charles Stienmetz
set forth a method of analyzing the steady-state sinusoidal variables. This method
has evolved over the years with different names, for example, vector analysis, sinor
analysis, and now phasor analysis; however, depending on the area of application,
the phasormay be slightly different.Wewill define it as used in the power and drives
areas, which may differ somewhat from that taught in other courses.

1

Introduction to Modern Analysis of Electric Machines and Drives, First Edition.
Paul C. Krause and Thomas C. Krause.
© 2023 The Institute of Electrical and Electronics Engineers, Inc.
Published 2023 by John Wiley & Sons, Inc.
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The phasor is established by expressing a steady-state sinusoidal variable as

Fs t = Fp cos θef (1.2-1)

where the s subscript is used here to denote sinusoidal quantities. In the following
chapters, the s subscript will denote stator variables. The sinusoidal variations are
expressed as cosines, capital letters are used to denote steady-state quantities, and
Fp is the peak value of the sinusoidal variation. Here, F is just a placeholder for any
quantity of interest. Generally, in circuit analysis, F will be V for voltage or I for
current. For steady-state conditions, θef may be written as

θef t = ωet + θef 0 (1.2-2)

where ωe is the electrical angular velocity in rad/sec and θef 0 is the time-zero
position of the electrical variable. Substituting (1.2-2) into (1.2-1) yields

Fs t = Fp cos ωet + θef 0 (1.2-3)

Now, Euler’s formula is

ejα = cos α + j sin α (1.2-4)

and since we are expressing the sinusoidal variation as a cosine, (1.2-3) may be
written as

Fs t = Re Fpe
j ωet + θef 0 (1.2-5)

where Re is shorthand notation for the “real part of.” Equations (1.2-3) and (1.2-5)
are equivalent. Let us rewrite (1.2-5) as

Fs t = Re Fpe
jθef 0 ejωet (1.2-6)

We need to take a moment to define what is referred to as the root-mean-square
(rms) of a sinusoidal variation. In particular, the rms value is defined as

F =
1
T

T

0

F2
s t dt

1 2

(1.2-7)

where F is the rms value of Fs t and T is the period of the sinusoidal variation. It is

left to the reader to show that the rms value of (1.2-3) is Fp 2. Therefore, we can
express (1.2-6) as

Fs t = Re 2Fejθef 0 ejωet (1.2-8)

2 1 Common Analysis Tools
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By definition, the phasor representing Fs t , which is denoted with a raised tilde, is

Fs = Fejθef 0 (1.2-9)

which is a complex number. We see from (1.2-8) and (1.2-9) that if we consider the

complex plane and rotate 2Fs counterclockwise (ccw) at the angular velocity of
the sinusoidal variable, the real projection is the instantaneous sinusoidal variable.
We can stop the rotation and work only with the complex number. In sinusoidal
steady state with a single source, the quantities of interest in a linear system will
oscillate at the same frequency but with different magnitudes and relative phases.
Phasor analysis keeps the amplitude and relative phase of sinusoidal quantities
and eliminates the redundant information, frequency. Phasors of all like frequen-
cies may be added by adding the real parts and imaginary parts of each phasor. We
will use phasors extensively.
The reason for using the rms value as the magnitude of the phasor will be

addressed later in this section. Equation (1.2-6) may now be written as

Fs t = Re 2Fse
jωet (1.2-10)

A shorthand notation for (1.2-9) is

Fs = F θef 0 (1.2-11)

Equation (1.2-11) is commonly referred to as the polar form of the phasor. TheCar-
tesian form is

Fs = F cos θef 0 + jF sin θef 0 (1.2-12)

When using phasors to calculate steady-state voltages and currents, we think of
the phasors as being stationary at t = 0; however, we know from (1.2-10) that a
phasor is related to the instantaneous value of the sinusoidal quantity it represents.

In other words, the real projection of the phasor Fs rotating counterclockwise at ωe

is the instantaneous value of Fs t 2. Thus, with θef 0 = 0 in (1.2-3)

Fs t = 2F cosωet (1.2-13)

the phasor representing (1.2-13) is

Fs = Fej0 = F 0 = F + j0 (1.2-14)

For

Fs t = 2F sinωet

= 2F cos ωet− 90
(1.2-15)

1.2 Steady-State Phasor Calculations 3
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the phasor is

Fs = Fe− jπ 2 = F − 90 = 0− jF (1.2-16)

We will use degrees and radians interchangeably when expressing phasors.
Although there are several ways to arrive at (1.2-16) from (1.2-15), it is helpful
to ask yourself where must the rotating phasor be positioned at time zero so that,

when it rotates counterclockwise at ωe, its real projection is 1 2 Fp sinωet? It

follows that a phasor of amplitude F positioned at 90 represents − 2F sinωet.
To summarize, a sinusoidal variation can be viewed as the real projection of a

rotating line equal in magnitude to the positive peak value 2F of the variation

and rotating counterclockwise in the complex plane at the electrical angular veloc-
ity of the sinusoidal variation. Since we are in steady state and the electrical angu-
lar velocity is constant, we can stop the rotation at any time and view it as a fixed
line. This fixed line is the phasor representation of the sinusoidal quantity depicted
in phasor diagrams. A phasor diagram is shown in Fig. 1.A-1. Please understand

that if we ran at ωe in unison with the rotating 2F line, it would appear as a con-
stant to us.
In order to show the facility of the phasor in the analysis of steady-state

performance of ac circuits and devices, we will consider the following circuit
elements, a resistor with resistance, R, an inductor with inductance, L, and a
capacitor with capacitance, C. Thus, using uppercase letters to indicate sinusoidal
steady-state variables, the voltage across a resistance may be expressed in terms of
the current flowing through it. That is, with IR given as

IR = 2I cos ωet + θesi 0 (1.2-17)

VR = RIR
= R 2I cos ωet + θesi 0

(1.2-18)

In phasor form, the voltage across the resistor is in phase with the current through
it as shown in Fig. 1.2-1 [θesv (0) = θesi (0)]. Thus,

VR = RIR (1.2-19)

For the inductor

VL = L
dIL
dt

(1.2-20)

where

IL = 2I cos ωet + θesi 0 (1.2-21)

4 1 Common Analysis Tools
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Figure 1.2-1 Waveforms of steady-state variables in resistive (R), inductive (L), and
capacitive (C) circuits.
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dIL
dt

= ωe 2I cos ωet + θesi 0 +
1
2
π (1.2-22)

Now

VL = ωeL ej
π
2 IL

= jωeL IL
(1.2-23)

with ωeL = XL, which is referred to as the inductive reactance. The phasor form of
(1.2-23) is

VL = jXL IL (1.2-24)

Thus, the voltage across the inductor leads the current through it by π/2.
That is, the current through the inductor lags the voltage across it by π/2

θesv 0 = θesi 0 + 1
2 π . This is shown in Fig. 1.2-1.

For the capacitor

VC =
1
C

IC dt

=
1

ωeC
2I cos ωet + θesi 0 −

1
2
π

(1.2-25)

Following the procedure used for the inductor, the phasor voltage across it
becomes

VC = − jXCIC (1.2-26)

where XC = 1 ωeC, the capacitive reactance. The voltage across the capacitor lags

the current through it by π/2 θesv 0 = θesi 0 − 1
2 π , or the current through the

capacitor leads the voltage across it by π/2. This is also shown in Fig. 1.2-1.
A series RLC circuit is shown in Fig. 1.2-2. From Fig. 1.2-2,

Vs = ZIs (1.2-27)

Vs

R j XL
–j XC

˜
Is̃

+

–

Figure 1.2-2 Phasor equivalent circuit for a series RLC circuit.
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where Z = R + j XL −XC . We should be careful here. Some prefer to write
(1.2-27) as R + jX where X is XL + XC and let XC be negative. This is essentially
a matter of choice and does not change the end result. We will deal primarily with
XL and not XC , therefore, this will have little impact on our work; nevertheless,
since some authors will use a negative XC , we should make the reader aware of
this difference.
It is appropriate to discuss the notation that will be used throughout the text.

When an equation is written with the variables in lowercase letters, it is valid
for transient and steady state. If the variables are written with uppercase letters,
the equation is a function of time and valid for instantaneous steady-state condi-
tions. Equation (1.2-27) is a phasor equation representing steady-state sinusoidal
variables and are written in uppercase letters with an over tilde.

1.2.1 Power and Reactive Power

The instantaneous steady-state power is

P = VsIs
= 2V cos ωet + θev 0 2I cos ωet + θei 0

(1.2-28)

where V and I are rms values. After some manipulation, we can write (1.2-28) as

P = VI cos θev 0 − θei 0 + VI cos 2ωet + θev 0 + θei 0 (1.2-29)

The instantaneous steady-state power given by (1.2-29) varies about an average
value at a frequency of 2ωe. That is, the second term of (1.2-29) has a zero average
value and the average power Pave may be written as

Pave = Vs Is cos θev 0 − θei 0 (1.2-30)

where Vs and Is are V and I, respectively, which are the magnitudes of the pha-

sors (rms value), θev 0 − θei 0 is referred to as the power factor angle ϕpf , and

cos θev 0 − θei 0 is the power factor. Power is in watts. If current is assumed pos-
itive in the direction of voltage drop, then (1.2-30) is positive if power is consumed
and negative if power is generated. It is interesting to point out that in going from

(1.2-28) to (1.2-29), the coefficient of the two right-hand terms is 1 2 2V 2I or

one half the product of the peak values of the sinusoidal variables. Therefore, it
was considered more convenient to use the rms values for the phasors, whereupon
average steady-state power could be calculated by the product of the magnitude of
the voltage and current phasors as given by (1.2-30).
The reactive power is defined as

Q = Vs Is sin θev 0 − θei 0 (1.2-31)
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The units of Q are var (volt-ampere reactive). An inductance is said to absorb
reactive power where the current lags the voltage by 90 and Q is positive. In
the case of a capacitor, where the current leads the voltage by 90 , Q is supplied
and is negative. Actually, Q is a measure of the interchange of energy supplied by
the source that is stored in the electric (capacitor) and magnetic (inductor) fields.
However, unlike instantaneous real power, the average value of instantaneous
reactive power is zero.
We would like to minimize reactive power flow over the transmission lines in a

power system. In other words, we would like to transmit only real power from the
source to the load. The loads are generally inductive; therefore, capacitors are often
placed in parallel with the load to interchange reactive power with the inductive
load thus preventing the interchange current from flowing over the transmission
line. This is often referred to as power factor correction since the transmission
power factor approaches unity.

Example 1.A Phasor Analysis
The parameters of a seriesRLC circuit areR = 6Ω,L = 20mH,and C = 1 × 103 μF.

The 60-Hz applied voltage is Vs = 155 6 cosωet. Calculate Is, Pave, and Q and draw
the phasor diagram. From the expression of Vs,

Vs = 110 0 V (1A-1)

Now, ωe = 2πf = 2π × 60 = 377 rad s and

Z = R + j XL −XC

= R + j ωeL−
1

ωeC

= 6 + j 377 × 20 × 10− 3 −
1

377 × 1 × 10− 3 = 7 73 39 1o Ω

(1A-2)

j

j(XL – XC)Ia

–j

Vs

RIs

˜

˜
˜

Iã

Figure 1.A-1 Phasor diagram.
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Is =
Vs

Z
=

110 0

7 73 39 1
= 14 2 − 39 1 A (1A-3)

Pave = Vs Is cosϕpf (1A-4)

where
ϕpf = θev 0 − θei 0

= 0− − 39 1 = 39 1
(1A-5)

Pave = 110 × 14 2 cos 39 1

= 1212 2W
(1.A-6)

Q = Vs Is sinϕpf

= 110 × 14 2 sin 39 1 = 985 1 vars
(1.A-7)

The phasor diagram is shown Fig. 1.A-1.

SP1.2-1. Express the instantaneous steady-state power for Example 1.A. [Substi-
tute into (1.2-29)].

SP1.2-2. Redraw the phasor diagram shown in Fig. 1.A-1 showing jXLIs and

− jXCIs as individual voltages. [Show jXLIs and then from the terminus of

jXLIs, show − jXCIs].

SP1.2-3. We know that Pave = Is
2
R, does Q = Is

2
XL − Is

2
XC? [Yes]

SP1.2-4. If Vs = 1 0 V and Is = 1 180 A in the direction of the voltage drop, cal-

culate Z and Pave. Is power generated or consumed? [ − 1 + j0 ohms, 1 watt,
generated]

SP1.2-5. Express the instantaneous power for 60-Hz voltage, Vs = 1 0 , applied to

a resistive circuit, Is = 1 0 . 1 + cos 754t

SP1.2-6.Repeat SP1.2-5 for (a) an inductance, Is = IL − 90 and (b) a capacitance,

Is = IC 90 . a IL cos 754t− 90 , b IC cos 754t + 90

1.3 Stationary Magnetically Linear Systems

Before analyzing electromagnetic systems with motion, it is helpful to start with
stationary electromagnetic systems. A stationary, single winding electromagnetic
system is shown in Fig. 1.3-1. A coiled, conductive wire is referred to as a winding.
Usually the wire is wound (coiled) around some structure called the core. Each
loop of the winding around the core is referred to as a turn. The core is typically
made up of ferromagnetic material to guide the magnetic flux created by current
flowing in the wire. Magnetic flux prefers to travel through materials of high per-
meability, a property of ferromagnetic materials. Here, we use N to represent the
number of turns of the winding.

1.3 Stationary Magnetically Linear Systems 9
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In Fig. 1.3-1, ϕl is the leakage flux, which does not traverse the ferromagnetic
core and ϕm is the magnetizing flux, which traverses the entire ferromagnetic core.
Both ϕl and ϕm link N . The voltage equation is

v = ri + e (1.3-1)

where e = pλ (p is the operator d/dt). The resistor voltage term is due to Ohm’s
law. The induced voltage term due to the change of flux linkages is Faraday’s law.
From Fig. 1.3-1, the flux linking the winding is

ϕ = ϕl + ϕm (1.3-2)

The magnetizing flux also travels across the slot in the core of width x. This slot is
referred to as an air gap. In a structure such as this where the core is made of highly
permeable material, the leakage flux, ϕl , is small and it generally makes up
between 2 and 4% of the total flux linking the winding. Flux is said to link a wind-
ing if it travels through the turns of the winding. Both ϕl and ϕm link the winding.
The total flux linked by the winding, called the flux linkage λ, is the flux through
the winding multiplied by the number of turns of the winding

λ = Nϕ

= N ϕl + ϕm

(1.3-3)

Next, we define magnetic equivalent circuits. Magnetic equivalent circuits are a
model for magnetic systems based on Maxwell’s equations and ideas from electri-
cal circuit models. In magnetic circuits, we think of flux as current, magnetomo-
tive force (mmf ) as voltage, and reluctance as resistance. Ohm’s law for magnetic
circuits becomes

ϕl =
Ni

l
(1.3-4)

+

––

+

i

v
r

e

N x

ϕl

ϕm

Figure 1.3-1 Single winding electromagnetic system.
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ϕm =
Ni

m
(1.3-5)

where is the reluctance and Ni is the mmf. The reluctance of the leakage path,

l, is large since a significant part of the path is in air. The reluctance of the fer-
romagnetic core and air gap may be calculated as

m = i + g

=
li

μrμ0Ai
+

x
μ0Ag

(1.3-6)

where li x is the length of the iron path (gap) and Ai Ag is the cross-sectional

area of the core (gap), and μo is the permeability of free space (4π x 10−7 Wb/amp
m or H/m) and μr is the relative permeability. For air μr = 1, for the ferromagnetic
core, μr can be in the thousands, thus i < g. The equivalent magnetic circuit is
shown in Fig. 1.3-2.
Substituting (1.3-4) and (1.3-5) into (1.3-3) yields

λ = N
Ni

l
+

Ni

m

=
N2

l
+

N2

m
i

= Ll + Lm i

(1.3-7)

The self-inductance is Ll + Lm where Ll and Lm are the leakage and magnetizing
inductances, respectively. As seen above, inductance is defined as the relationship
between current and flux linkage. The voltage equation given by (1.3-1) may now
be written for a linear magnetic system as

v = ri + L
di
dt

(1.3-8)

where

L = Ll + Lm (1.3-9)

+

–
Ni l

i

g
ϕl

ϕmϕ

Figure 1.3-2 Magnetic equivalent circuit for the system shown in Fig. 1.3-1.
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Since we are assuming a linear magnetic system,
core saturation and hysteresis are neglected and we
have the λi plot shown in Fig. 1.3-3.
The magnetic equivalent circuit is similar to a

resistive circuit. In particular, if we replace the
magnetomotive force, mmf or Ni, with electromo-
tive force, emf or voltage, and replace all reluc-
tances, , with resistances R, then ϕ in Fig. 1.3-2
becomes the current i.
An important concept used in machine analysis

is the idea of magnetic poles. The reader should
have an intuition of north and south magnetic
poles thanks to elementary physics classes and per-
manent magnets. Let us incorporate poles into our
analysis of this stationary magnetically linear sys-
tem. If fringing fields are neglected, the magnetiz-

ing flux, ϕm , travels uniformly across the air gap of Fig. 1.3-1. We can define
magnetic north and south poles as the following: a north pole is a source of mag-
netic flux and a south pole is a sink for magnetic flux. To help determine pole
assignment, place yourself on the member with the winding and where the pos-
itive flux enters the air gap is a north pole and where the positive flux enters the
iron core is a south pole as shown in Fig. 1.3-4.
The concepts introduced in this chapter will be used throughout this text to ana-

lyze energy conversion systems. It is necessary to define quantities related to
energy. The total energy stored in the field, Wf , may be expressed as

Wf = eidt

= idλ
(1.3-10)

L = slope

dλ

di
i

λ

Figure 1.3-3 λi characteristic
of a magnetically linear
system.

i

v
r

e
N

SΦl

Φm

Figure 1.3-4 Repeat of Fig. 1.3-1 indicating north and south poles.
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which is to the left of the plot shown in Fig. 1.3-3 for a given value of i. The area to
the right of the plot is called the coenergy, Wc. It is expressed as

Wc = λdi (1.3-11)

Coenergy is a quantity we define for analytical purposes. It is calculated from phys-
ical quantities, but has no direct physical meaning. Coenergy is convenient to for-
mulate some expressions, for example, we can write from Fig. 1.3-3,

λi = Wf + Wc (1.3-12)

It should be clear that only for a magnetically linear system Wf = Wc.

1.3.1 Two-Winding Transformer

A two-winding transformer is shown in Fig.1.3-5. Here, we have mutual coupling
between the two windings which we will take care of in a minute. Magnetic cou-
pling refers to the situation where current through one winding creates flux which
contributes to the flux linkage of another winding. Magnetic coupling is an essen-
tial aspect of transformers and electric machines. These devices may contain mul-
tiple windings that may be magnetically coupled. We analyze the two winding
cases first. As always, we start with the winding voltage equations. The voltage
equations are [1]

v1
v2

=
r1 0

0 r2

i1
i2

+ p
λ1

λ2
(1.3-13)

where the first term on the right-hand side comes from Ohm’s law and the second
from Faraday’s law.
In Fig. 1.3-5, r1 and r2 are resistances of the windings and e1 = pλ1 and e2 = pλ2

where p = d
dt.

The flux linkages λ1 and λ2 may be expressed as

λ1 = N1ϕ1

= N1 ϕl1 + ϕm1 + ϕm2

=
N2

1

l1
i1 +

N2
1

m
i1 +

N1N2

m
i2

(1.3-14)
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and
λ2 = N2ϕ2

= N2 ϕl2 + ϕm2 + ϕm1

=
N2

2

l2
i2 +

N2
2

m
i2 +

N2N1

m
i1

(1.3-15)

where ϕ1(ϕ2) is the flux that flows through the winding with N1 N2 turns. The
self-inductance of the windings comes from the first two terms of (1.3-14) and
(1.3-15). It would exist even if the other coil were not present. That is,

L11 =
N2

1

l1
+

N2
1

m
= Ll1 + Lm1 (1.3-16)

For winding 2,

L22 =
N2

2

l2
+

N2
2

m
= Ll2 + Lm2 (1.3-17)

It is clear that the self-inductances are independent of other windings. The coef-
ficient of the last term of (1.3-14) and (1.3-15) is called the mutual inductance,
that is,

L12 = L21 =
N1N2

m
(1.3-18)

Therefore,

λ1

λ2
=

L11 L12
L21 L22

i1
i2

(1.3-19)

The mutual inductance which is new to most of us can be positive or negative
depending on the relative direction of ϕm1 and ϕm2. In this case it is positive; if,
however, the sense of winding 2 or the current i2 is reversed, the mutual induc-
tance would be negative.

N1

v1 v2e1 e2

r1
r2

N2

ϕl1 ϕl2

ϕm2

ϕm1

–

+

– – –

+ + +

i1 i2

Figure 1.3-5 Two-winding transformer.
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The inductances Lm1, Lm2, L12, and L21 have a common term m. This allows us
to write the flux linkages in terms of Lm1 or Lm2 and a turns ratio. We do this to
create an electric circuit model of the two-winding transformer. If we write λ1 and
λ2 in terms of Lm1 Lm2 , we are referring voltages, currents, and flux linkages to
winding 1 (winding 2). Referring to winding 1, λ1 becomes

λ1 = Ll1i1 + Lm1 i1 +
N2

N1
i2 (1.3-20)

Substituting

i2 =
N2

N1
i2 (1.3-21)

we see that i2 flowing in N1 produces the same mmf as i2 flowing in N2. Now, in
order to make v2i2 = v2i2,

v2 =
N1

N2
v2 (1.3-22)

Now since λ2 is in volt sec , λ2 becomes

λ2 =
N1

N2
λ2 (1.3-23)

and λ1 and λ2 become

λ1 = Ll1i1 + Lm1 i1 + i2 (1.3-24)

λ2 = Ll2i2 + Lm1 i1 + i2 (1.3-25)

The voltage equations for all variables referred to winding 1 are

v1
v2

=
r1 0

0 r2

i1
i2

+ p
λ1

λ2
(1.3-26)

where

Ll2 =
N1

N2

2

Ll2 (1.3-27)

r2 =
N1

N2

2

r2 (1.3-28)

These equations suggest the equivalent circuit given in Fig. 1.3-6.
With two windings, the total energy stored in the fields becomes

Wf = e1i1 + e2i2 dt (1.3-29)
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or in terms of referred variables

Wf = e1i1 + e2i2 dt

= i1dλi + i2dλ2

(1.3-30)

where the 2 variables are referred to N1.
Now,

dλ1 = L11di1 + L12di2 (1.3-31)

dλ2 = L12di1 + L22di2 (1.3-32)

where

L12 =
N1

N2
L12 (1.3-33)

L22 = Ll2 +
N1

N2

2

Lm2 (1.3-34)

we can evaluate (1.3-30) in two steps; first we will hold i2 at zero, thus di2 = 0, and
allow i1 to go from zero to i1. Thus,

Wf 1 =
i1

0
L11ξdξ =

1
2
L11i

2
1 (1.3-35)

where ξ is the dummy variable of integration. For the second step, we will hold i1 at
i1 with di1 = 0, and allow i2 to go from zero to i2. Thus,

Wf 2 =
i2

0
L12i1dξ + L22ξdξ (1.3-36)

The stored energy in the fields is

Wf = Wf 1 + Wf 2

=
1
2
L11i

2
1 + L12i1i2 +

1
2
L22i

2
2

(1.3-37)

v1 Lm1

Ll1 L′l2 r′2

i′2

v′2

r1

–

+

–

+

i1

Figure 1.3-6 Transformer equivalent T circuit with winding 1 selected as reference
winding.

16 1 Common Analysis Tools

www.konkur.in

Telegram: @uni_k



It is clear that (1.3-37) includes the energy stored in the leakage inductances,
which do not couple other fields also (1.3-37) is valid with or without the primes.
For multi-winding systems, (1.3-12) becomes

J

j = 1

ijλj = Wf + Wc (1.3-38)

Example 1.B Parameters of the Transformer Equivalent Circuit
It is instructive to illustrate the method of deriving an equivalent T circuit from
open- and short-circuit measurements of the transformer. When winding 2 of
the two-winding transformer shown in Fig 1.3-6 is open circuited and a 60-Hz volt-
age of 110 V (rms) is applied to winding 1, the average power supplied to winding 1
is 6.66W. The measured current in winding 1 is 1.05 A (rms). Next, with winding 2
short-circuited, the current flowing in winding 1 is 2 A when the applied 60-Hz
voltage is 30 V (rms). The average input power is 44W. If we assume Ll1 = Ll2 ,
an approximate equivalent T circuit can be determined from these measurements
with winding 1 selected as the reference winding.
The average power supplied to winding 1 may be expressed from (1.2-30) as

P1 = V 1 I1 cosφpf (1B-1)

where

ϕpf = θev 0 − θei 0 (1B-2)

Here, V1 and I1 are phasors with the positive direction of I1 taken in the direction

of voltage drop, and θev 0 and θei 0 are the phase angles of V 1 and I1, respectively.
Solving for ϕpf during the open-circuit test, we have

ϕpf = cos − 1 P1

V 1 I1
= cos − 1 6 66

110 1 05
= 86 7 (1B-3)

Although ϕpf = − 86 7 is also a legitimate solution of (1B-3), the positive value is

taken since V 1 leads I1 in an inductive circuit. With winding 2 open-circuited, the
input impedance of winding 1 is

Z =
V 1

I1
= r1 + j Xl1 + Xm1 (1B-4)

With V 1 as the reference phasor, V 1 = 110 0 , I1 = 1 05 − 86 7 . Thus,

r1 + j Xl1 + Xm1 =
110 0

1 05 − 86 7
= 6 + j104 6Ω (1B-5)

From (1B-5), r1 = 6Ω. We also see from (1B-5) that Xl1 + Xm1 = 104 6Ω.
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For the short-circuit test, we will assume that I1 = − I2 since transformers

are designed so that at rated frequency Xm1 >> r2 + jXl2 . Hence, using (1B-1)

again,

ϕpf = cos − 1 44
30 2

= 42 8 (1B-6)

In this case, the input impedance is Z = r1 + r2 + j Xl1 + Xl2 . This may be

determined as

Z =
30 0

2 − 42 8
= 11 + j10 2Ω (1B-7)

Hence, r2 = 11− r1 = 5Ω and, since it is assumed that Xl1 = Xl2 , both are
10.2/2 = 5.1 Ω. Therefore, Xm1 = 104 6− 5 1 = 99 5Ω In summary, r1 = 6Ω ,
Ll1 = 13 5mH, Lm1 = 263 9 mH,r2 = 5Ω,and Ll2 = 13 5 mH. It is left to the reader
to verify the conversion from X’s to L’s.

SP1.3-1. Show that the total field energy if a third winding is added to
Fig. 1.3-5 is

Wf =
1
2
L11i

2
1 +

1
2
L22i

2
2 +

1
2
L33i

2
3 + L12i1i2 + L13i1i3 + L23i2i3

SP1.3-2. Draw the equivalent circuit for a three-winding transformer with all vari-
ables referred to winding 1.

SP1.3-3. Consider the transformer and parameters calculated in Example 1.B.
Winding 2 is short-circuited and 12 V (dc) is applied to winding 1. Calculate
the steady-state values of i1 and i2 . Repeat with winding 2 open-circuited.
[I1 = 2 A and I2 = 0 in both cases]

1.4 Winding Configurations

The previous sections analyzed basic electromagnetic structures. Now, we will
introduce more complicated geometries useful for the construction of electric
machines. Electric machines are configurations of windings and ferromagnetic
material that create and guide magnetic fields. The magnetic fields interact to cre-
ate forces that turn the rotor.
The stator windings are shown in Fig. 1.4-1. We can see this multiphase stator is

very involved. In this section, we are going to consider the stator windings as sim-
ply as possible.
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To form the stator of an electric machine, conductive wire is wound in the slots
of a steel structure. The number of turns or coils of the stator windings of most ac
machines are distributed to approximate a space sinusoid as shown in Fig. 1.4-2. In
Section 1.2, we used the “s” subscript to denote sinusoidal variables. In Fig. 1.4-2,
we use the “s” subscript to denote stator or stationary.Wewill use this definition of
s as a subscript or superscript for the remainder of the text. Also in Fig. 1.4-2, the
“as” subscript denotes the variables associated with the a-phase of the stator. In
some machines, great pains are taken to obtain a sinusoidal distribution of the sta-
tor windings to meet harmonic specifications. We attempt to distribute windings
sinusoidally because sinusoidal currents through sinusoidally distributed wind-
ings create a constant amplitude rotating air-gap mmf. We use the terms rotating
air-gap mmf and rotating magnetic field interchangeably. We will talk about the
rotating air-gapmmf in detail in Chapter 2.With a constant amplitude rotating air-
gap mmf, a constant power or torque is produced.
In Fig. 1.4-2, each winding segment as1 − as1, as2 − as2, as3 − as3, and as4 − as4

has ncs coils for each or . Positive current is into the paper indicated by and
out of the paper at . The current through the windings is alternating so the cross,
, and , will change; however, we are looking at an instant of time where positive

current is in at as1, as2, as3, and as4.
If we follow the path of assumed positive current ias flowing in the as winding,

we see that current enters as1, depicted by , to indicate that the assumed direction
of positive current is down the length of the stator in an axial direction (into the
paper). Current flows down the length of the stator, loops at the end, and flows

End conductors

Teeth

Slots

Slot

conductors

Stator

housing

Figure 1.4-1 Stator windings of a multiphase machine.
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back down the length of the stator and out at as1, depicted by . Note that as1 and
as1 are placed in stator slots that span π radians. This is referred to as the winding
pitch of π radians which is characteristic of a two-pole machine. Now, as1 around
to as1 is referred to as a coil and as1 or as1 is a coil side. In practice, a coil will contain
more than one conductor. Current flows into as1 in a conductor and out of as1 via
the same conductor. The conductor, which is insulated, may then be looped back
to as1 and the winding of the conductor around the as1 − as1path repeated, thereby

2π
ϕs π π

4

3

1

2

mmfas 3

41

2

1
2

π3
2

ncsiasncsias
4

2

ncsiasncsias
2

2

ncsiasncsias
2

2

ncsiasncsias
4

2

ncsiasncsias
4

2

(c)

(b)

(a)

1

ncsiasncsias
2

2

2

ncsiasncsias
2–

–

–

–
2

3

ncsiasncsias
4

2

4

as axis

as′4
as′4
as4

ias

vas

as1
as2
as3
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Figure 1.4-2 Elementary sinusoidally distributed windings. (a) Winding connections and
distribution, (b) Ampere’s law, and (c) mmfas.
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forming a coil with numerous turns. The number of conductors in a coil side tells
us the number of turns in the coil, which is denoted as ncs.
Once we have wound ncs turns in the as1 − as1 coil, we will take the same con-

ductor and repeat this winding process to form the as2 − as2 coil. We will assume
that the same number of turns ncs make up the as2 − as2 coil as the as1 − as1 coil
and, similarly, for as3 − as3and as4 − as4. We could have wound a different number
of turns in each coil but we will assume that this was not done. Once the winding is
wound, we can use the right-hand rule to give a meaning to the as axis shown in
Fig. 1.4-2a. It is, by definition, the principal direction of the magnetic flux estab-
lished by the assumed positive current flowing in the as winding. It is said to indi-
cate the assumed positive direction of the magnetic axis of the as winding of this
elementary sinusoidally distributed winding. The positive direction of the as axis
reverses when ias reverses.
Before getting into the mmf due to the current flowing in the winding let us con-

sider the self-inductance of the winding. The rotor is round and the magnetizing
flux established by this winding must cross the air gap twice and for positive cur-
rent as shown in Fig. 1.4-2, the positive as axis is to the right. Since the air gap is
uniform, the self-inductance is constant independent of rotor position. Therefore,
the self-inductance is of the same form as given by (1.3-9). The difference is the
leakage inductance makes up 5–15% of the self-inductance and the reluctance
to the flux is dominated by the air gaps.
Ampere’s law is

H dL = i (1.4-1)

which says that the closed line integral of the mmf drops equals that current
enclosed. For the instant shown in Fig. 1.4-2

mmf 0 + mmf π = Nsias (1.4-2)

where one half of the mmf is dropped at ϕs = 0and one half at ϕs = π. Since there
is no point source of mmf, we will assume that rotor to stator is positive. Since the
reluctance of air is much larger than iron, we will neglect the mmf drop in the iron
and assume that the air gap is uniform, thus,

mmf 0 =
Ns

2
ias (1.4-3)

mmf π = −
Ns

2
ias (1.4-4)

Also the path of integration in Fig. 1.4-2 is 180 . Regardless of the type of rotor, the
air gap is the same every 180 for the two-pole device. Following this same

1.4 Winding Configurations 21

www.konkur.in

Telegram: @uni_k



procedure for paths 2 through 4, we obtain the stepped plot of mmfas as shown in
Fig. 1.4-2c. The fundamental component of this stepped mmf is

mmfas =
Ns

2
ias cos ϕs (1.4-5)

whereNs is the amplitude of the fundamental component of the Fourier transform
of the winding distribution. For the winding distribution given in Fig. 1.4-2, Ns is
2.37 ncs. Note, also that the sinusoidal distributed winding is denoted with and
placed at the maximum winding density.
The winding shown in Fig. 1.4-2 is an approximation of a sinusoidal distributed

winding. In the case of a large generator, pains would be taken to distribute the
winding much closer to a sinusoidal winding to minimize the voltage harmonics.
Nevertheless, Ampere’s law would be performed the same. Also, for multiphase
machines, windings of two- or three-phase may exist in the same slot.

Example 1.C Air-Gap mmf for a Uniformly Distributed Winding
Consider the uniformly distributed winding arrangement shown in Fig. 1.C-1.
Each coil has ncs turns and the current in each turn is iaswith the positive direction
as shown. Follow the procedure used in Fig. 1.4-2 to establish the air-gap mmf.

ncsias
3

2

(b)

(a)

1

ncsias
1

2

2

ncsias
1

2

3

ncsias
3

2

4

as1́

as1́

as 2́

as2́

as 3́

as3́

as3

vas

ias

as1

as1
as2

as2
as3

as axis

ϕs

–

+

– –

Figure 1.C-1 Elementary two-pole single-phase stator winding uniformly distributed. (a)
Winding connections and distribution, (b) Ampere’s law, and (c) mmfas, here Ns = 1 534 ncs.
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SP1.4-1. Express the sinusoidal approximation of mmfas if the assumed positive
direction of ias is reversed in Fig. 1.4-2. [mmfas = − 1 4− 5 ]

SP1.4-2.Assume that only the as2winding exists in Fig. 1.C-1a which has one turn.
Sketch the air-gap mmf due to current i1 flowing in this winding. [12 i1 for

− 1
2 π < ϕs <

1
2 π and − 1

2 i1 for
1
2 π < ϕs <

2
3 π]

1.5 Two- and Three-Phase Stators

High-voltage transmission, most inverter-supplied electric drives, and the alterna-
tor of your car are examples of three-phase systems. Although two-phase systems
are not common, a two-phase system is far less involved when it comes to machine
analysis than its three-phase big sister. Fortunately, once the derivations have been
set forth for a two-phase machine, the extension to a three-phase machine is
straightforward and easily achieved. This section is devoted to the introduction
of these multiphase systems.
By definition, a two-phase set of variables is balanced if the variables are equal-

amplitude sinusoidal quantities in time quadrature (90 out of time phase).
A three-phase set of variables is balanced if the sinusoidal variables are equal-
amplitude quantities that are 120 out of time phase with each other.

1.5.1 Two-Phase Stator

In the broadest sense of the above definition, two-phase balanced sets may be
expressed as

f a t = ± f cos θef (1.5-1)

f b t = ± f sin θef (1.5-2)

2π
ϕs

π π

4

3

1

2

mmfas 3

41

2

π3
2

1
2

ncsias
3
2

ncsias
1
2

ncsias
1

2

ncsias
3
2

(c)

–

–

Figure 1.C-1 (Continued)
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where

θef t =
t

0
ωe ξ dξ + θef 0 (1.5-3)

In (1.5-1) and (1.5-2), f a t is the a-phase and f b t is the b-phase of voltage,
current, or flux linkage. The amplitude f is assumed to be constant. In (1.5-3),
ωe is the electrical angular velocity and ξ is a dummy variable of integration.
Equations (1.5-1) and (1.5-2) express four balanced two-phase sets. Like signs of
(1.5-1) and (1.5-2) define balanced sets where f a t leads f b t by 90 , an ab
sequence; for unlike signs f a t lags f b t by 90 , a ba sequence.
For steady-state balanced conditions, ωe is constant and (1.5-3) becomes

θef t = ωet + θef 0 (1.5-4)

Whereupon (1.5-1) and (1.5-2) are written as

Fa t = ± 2F cos ωet + θef 0 (1.5-5)

Fb t = ± 2F sin ωet + θef 0 (1.5-6)

For like signs of (1.5-5) and (1.5-6), Fa = jFb; for unlike signs, Fa = − jFb.
Most large horsepower electric machines are three-phase and smaller household

machines are two-phase machines powered from a single-phase source like a com-
mon wall outlet. For single-phase machines, a capacitor is generally connected in
series with one of the windings (see Chapter 7). It is helpful to take a brief look at
the stator winding arrangement of the two-phase machine, shown in Fig. 1.5-1.
The windings are assumed to be identical in parameters and distribution. The dis-
placement around the stator is denoted ϕs . The two windings are displaced 90

degrees from each other. The voltage equa-
tions may be written as

vas = rsias +
dλas
dt

(1.5-7)

vbs = rsibs +
dλbs
dt

(1.5-8)

where the subscripts as and bs denote phase
a of the stator and phase b of the stator,
respectively. In matrix form

vabs = rsiabs + pλabs (1.5-9)

The stator has identical, sinusoidally distrib-
uted windings and the air gap is uniform.

bs axis

as axis

as

as′

bs′ bs

ϕs

Figure 1.5-1 Elementary two-pole
two-phase sinusoidally distributed
stator windings.
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The magnetic axes are orthogonal (thus Lasbs = 0) and the flux linkage equations
may be written as

λas = Lasasias
= Lls + Lms ias

(1.5-10)

λbs = Lbsbsibs
= Lls + Lms ibs

(1.5-11)

where Lls is the leakage inductance and Lms is the magnetizing inductance of the
stator windings. In matrix form

λas

λbs
=

Lss 0

0 Lss

ias
ibs

(1.5-12)

or

λabs = Lsiabs (1.5-13)

where

Ls =
Lss 0

0 Lss
(1.5-14)

and

Lss = Lls + Lms (1.5-15)

An important feature of multiphase systems is that the instantaneous power is
constant for balanced operation. You are asked to show this in SP1.5-2. Recall that
in a single-phase system the instantaneous power has an average value and a dou-
ble frequency component.

1.5.2 Three-Phase Stator

The three-phase stator is shown in Fig. 1.5-2. A three-phase balanced set may be
expressed as

f a t = f cos θef (1.5-16)

f b t = f cos θef −
2
3
π (1.5-17)

f c t = f cos θef +
2
3
π (1.5-18)

where θef is given by (1.5-3). This set is referred to as an abc sequence, since f a t
leads f b t by 120 and f b t leads f c t by 120 . An acb sequence is obtained by
interchanging f b t and f c t , that is,
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f a t = f cos θef (1.5-19)

f b t = f cos θef +
2
3
π (1.5-20)

f c t = f cos θef −
2
3
π (1.5-21)

For steady-state balanced conditions, the abc sequence may be written as

Fa t = 2F cos ωet + θef 0 (1.5-22)

Fb t = 2F cos ωet−
2
3
π + θef 0 (1.5-23)

Fc t = 2F cos ωet +
2
3
π + θef 0 (1.5-24)

with Fa = F θef 0 , Fb = F θef 0 −
2
3
π , and Fc = F θef 0 +

2
3
π . For an acb

sequence, Fb and Fc are interchanged.

ibs

ics

rs rs

rs

Ns
vcs vbs

vas

Ns

Ns

+

+

+

– –

ias

cs axis

bs axis

as axis

cs

as

bs
as′

bs′
cs′

ϕs

Figure 1.5-2 Elementary two-pole three-phase sinusoidally distributed stator windings.
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A three-phase stator is shown in Fig. 1.5-2. Again, the stator has identical, sinus-
oidally distributed windings and the air gap is uniform. The magnetic axes of the
windings are displaced 120 and the windings are often “wye-connected” as
shown. The line-to-neutral voltage equations may be written as

vas = rsias +
dλas
dt

(1.5-25)

vbs = rsibs +
dλbs
dt

(1.5-26)

vcs = rsics +
dλcs
dt

(1.5-27)

where subscripts as, bs, and cs denote the three phases of the stator. In matrix form

vabcs = rsiabcs + pλabcs (1.5-28)

Since the windings are displaced 120 from each other, there is a mutual coupling
between the stator windings. Let us assume that we can move the bs winding
clockwise through the iron until it is “on top” of the as winding at ϕs = 0. The
coupling would be maximum positive. Now, assume we can rotate the bs winding
counterclockwise back to ϕs = 120 where the mutual inductance between the as
and bs windings can be approximated as

Lasbs = Lms cos 120

= −
1
2
Lms

(1.5-29)

where Lms is the magnetizing inductance of the stator windings. Following this
same approach, we can express the flux-linkage matrix as

λas

λbs

λcs

=

Lss −
1
2
Lms −

1
2
Lms

−
1
2
Lms Lss −

1
2
Lms

−
1
2
Lms −

1
2
Lms Lss

ias
ibs
ics

(1.5-30)

where

Lss = Lls + Lms (1.5-31)

Equation (1.5-30) may also be written as

λabcs = Lsiabcs (1.5-32)
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1.5.3 Line-to-Line Voltage

In the case of a three-phase stator as shown in Fig. 1.5-2, the voltage rating is gen-

erally given as line-to-line voltage. For example, Vab is

Vab = Vas −Vbs (1.5-33)

For an abc sequence

Vab = Vs 0 −Vs − 120

= Vs 1 + j0 −Vs − 0 5− j0 866

= 3Vs 30

(1.5-34)

Vbc = Vs − 120 −Vs 120

= Vs − 0 5− j0 866 −Vs − 0 5 + j0 866

= 3Vs − 90

(1.5-35)

Vca = Vs 120 −Vs 0

= Vs − 0 5 + j0 866 −Vs 1 + j0

= 3Vs 150

(1.5-36)

The magnitude of the line-to-line voltages is 3 times the phase voltages and
shifted 30 ccw.

Example 1.D Voltage Equations for a Three-Wire System
A three-phase stator similar to that given in Fig. 1.5-2 is connected to a three-phase
source as shown in Fig. 1.D-1. Assume the stator is symmetrical, that is, the wind-
ings have the same resistance and same number of turns and displaced 120 . The
stator configuration could be that of induction or synchronous machine. The

vcs vbs

vas

cb

egb

ega

a

egc g

c

a

b

n

Figure 1.D-1 Three-phase source connected to symmetrical stator windings.
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source voltages ega, egb, and egcmay be of any form. Express vas, vbs, and vcs in terms
of ega, egb, and egc.
From Fig. 1.D-1, we can write

ega = vas + vng (1D-1)

egb = vbs + vng (1D-2)

egc = vcs + vng (1D-3)

Adding (1D-1) through (1D-3) yields

ega + egb + egc = vas + vbs + vcs + 3vng (1D-4)

Let us look at vas + vbs + vcs. From (1.5-25) through (1.5-27)

vas + vbs + vcs = rs ias + ibs + ics + p λas + λbs + λcs (1D-5)

In a three-wire, wye-connected stator, the sum of ias + ibs + ics must be zero
regardless of the form of the currents. Now from (1.5-30)

λas + λbs + λcs = Lss ias + ibs + ics − Lms ias + ibs + ics = 0 (ID-6)

Thus,

vas + vbs + vcs = 0 (1D-7)

Will this be the case when we bring the rotor into play? We will find that for the
electromechanical devices we will consider, it will be true. Substituting (1D-7) into
(1D-4) yields

vng =
1
3

ega + egb + egc (1D-8)

Going back to (1D-1) through (1D-3), we can write

vas = ega − vng

=
2
3
ega −

1
3

egb + egc
(1D-9)

vbs = egb − vng

=
2
3
egb −

1
3

egc + ega
(1D-10)

vcs = egc − vng

=
2
3
egc −

1
3

ega + egb
(1D-11)

We will make use of these equations when considering electric drives.
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SP1.5-1. In Fig. 1.D-1, let ega = 1, egb = 0, and egc = cosωet. Determine vas , vbs ,

and vcs
2
3
−
1
3
cosωet; −

1
3
−
1
3
cosωet; −

1
3
+
2
3
cosωet Note that vas+vbs+

vcs=0.

SP1.5-2. In a two-phase system, let Va = 2V cos ωet + θev 0 ,

Ia = 2I cos ωet + θei 0 , Vb = 2V sin ωet + θev 0 , and Ib = 2I sin
ωet + θei 0 Show that the total instantaneous power is P = 2VI cos
θev 0 − θei 0 .

SP1.5-3. Express the line-to-line voltages for an acb sequence. [Vab = 3Vs − 30 ,

Vbc = 3Vs 90 , Vca = 3Vs − 150 ]

1.6 Problems

1 Derive (1.2-26).

2 Derive (1.3-25).

3 Consider Fig. 1.3-5. The negative terminal of winding 1 is connected to the pos-
itive terminal of winding 2 and 110 V (rms) is applied between the positive
terminal of winding 1 to the negative terminal of winding 2. Express the input
impedance.

4 During the open-circuit test performed in Example 1.B, the rms voltage across
the open-circuit 2 winding was 34.8 V. Determine Xm2 ωeLm2 .

5 Show that (1.3-38) is true for the two-winding system given in Fig. 1.3-5.

6 Determine mmf for a winding distribution uniformly as shown in Fig. 1.6-1
where coils with ncs turns are 30 apart.

30°

Figure 1.6-1 Uniform winding distribution.
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7 Consider Example 1.D and Fig. 1.D-1. The load is symmetrical and the source
voltages are given in Fig. 1.6-2. (a) Plot vng, vas, vbs, and vcs. (b) Connect n to g
in Fig. 1.D-1 and repeat part (a).

8 Assume that the direction of positive current is reversed in winding 2 of
Fig. 1.3-5. Express (a) L12 in terms of N1, N2, and m; (b) λ1 and λ2 in the form
of (1.3-14) and (1.3-15); (c) λ1 and λ2 in the form of (1.3-24) and (1.3-25); and
(d) v1 and v2 in the form of (1.3-26).

9 The parameters of a transformer are: r1 = r2 = 10Ω , Lm1 = 300 mH, and
Ll1 = Ll2 = 30 mH. A 10-V peak-to-peak 30-Hz sinusoidal voltage is applied
to winding 1. Winding 2 is short-circuited. Assume i1 = − i2. Calculate the

phasor I1 with V 1 at zero degrees.

10 A transformer with two windings has the following parameters: r1 = r2 = 1Ω,
Lm1 = 1 H, Ll1 = Ll2 = 0 01 H, andN1 = N2. A 2−Ω load resistance RL is con-

nected across winding 2. V 1 = 2 cos 400t. (a) Calculate I1. (b) Express I1.

v

0

–v

ega
90 180 270 360

v

0

–v

egb
90 180 270 360

v

0

–v

egc
90 180 270 360

Figure 1.6-2 Waveforms of the source voltages of Fig. 1.D-1.
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Reference

1 P. C. Krause, Analysis of Electric Machinery, McGraw-Hill Book Company,
New York, 1986.
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2

Analysis of the Symmetrical Stator

2.1 Introduction

Two important classes of ac electric machines are induction and synchronous
machines. Both operate thanks to Tesla’s rotating magnetic field. The induction
machine is covered in Chapter 3. The synchronous machine is covered in
Chapter 4. Although the rotors of induction and synchronous machines are differ-
ent, the stators are essentially identical. The analysis of the symmetrical stator
common to both is carried out in this chapter. It is called a symmetrical stator
because each stator winding has the same distribution and electrical parameters.
This chapter also introduces a change of variables to analyze ac electric

machines. It is a mathematical transformation that simplifies the analysis. The
transformation is viewing Tesla’s rotating magnetic field as an observer rotating
at different speeds including zero, i.e. different frames of reference. In electric
machine analysis, the transformation or “reference frame theory” is applied to
physical quantities associated with the machine windings, in particular, voltages,
currents, and flux linkages. The transformed versions of physical winding vari-
ables are the variables of “imaginary” or “fictitious” circuits that rotate at an arbi-
trary speed or, in other words, fictitious circuits that exist in a specific reference
frame. Reference frame theory is the basis for modern analysis of ac electric
machines.

2.2 Tesla’s Rotating Magnetic Field

In the case of a single-phase stator winding, the sinusoidal approximation of the
air-gap mmf is given by (1.4-5). Let us think about this for a minute: (1.4-5) is a
product of ias and cosϕs , whereupon, the air-gap mmf will be nonexistent
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whenever ias = 0. This is not too desirable since we will find that in order to pro-
duce a constant steady-state torque, we need a constant amplitude rotating air-gap
mmf (north and south poles) produced by the stator. Is it possible to place another
winding on the stator and arrange its position and the time sequence of the current
flowing in it so that its mmf would complement the mmf due to the as winding
resulting in a rotating air-gap mmf whose amplitude is constant? Yes, fortunately,
and Tesla showed us how; the symmetrical two-pole two-phase stator is the most
elementary example [1].

2.2.1 Two-Pole Two-Phase Stator

In the case of a symmetrical two-pole two-phase stator, the bs winding is located
π/2 radians from the as winding and it is identical in distribution and parameters
to the as winding. Let us assume it is positioned as illustrated in Fig. 2.2-1.
Therein, a circle placed at the position of maximum turn density indicates a sinus-
oidally distributed winding. The mmf across one air gap created by ibs is approxi-
mated as

mmfbs =
Ns

2
ibs sinϕs (2.2-1)

where now Ns is the amplitude of the fundamental component of the winding dis-
tribution. Thus, since we are assuming a magnetically linear system, one half of
the stator air-gap mmf due to the two-pole stator windings would be

mmf s = mmfas + mmfbs

=
Ns

2
ias cosϕs + ibs sinϕs (2.2-2)

where the s subscript now refers to the stator not to be confused with s used in
Section 1.2 for a sinusoidal variable. This relationship is perhaps the most

bs axis

as axis

as′

as

bsbs′

ϕs

Figure 2.2-1 Elementary two-pole two-phase sinusoidally distributed stator windings.
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important equation we will run into in this text since it is key to reference frame
theory and the operation and analysis of ac machines.
A two-phase steady-state balanced set of stator currents may be expressed for an

ab-sequence as

Ias = 2Is cos ωet + θesi 0 (2.2-3)

Ibs = 2Is sin ωet + θesi 0 (2.2-4)

where Is is the rms value of the phase current, ωe is the electrical angular velocity
in rad/s, and θesi 0 is the phase angle of the currents. The stator currents are
defined as positive into the machine. This is convenient for motor action where
voltages applied to the stator windings cause current to flow and produce torque.

For this balanced set, Ibs = − jIas.
Since Tesla’s magnetic field rotates relative to the stator, perhaps, looking at it

from a rotating axis will help us visualize what is happening. In Fig. 2.2-2, we have
added a third axis, the q axis, to Fig. 2.2-1. We will explain why we use “q” later. As
shown in Fig. 2.2-2, the concept of a q axis and associated winding is no different
from the as or bs axis, except that the winding and q axis can rotate at any arbitrary
angular velocity ω or it can be stationary (ω = 0). We are free to specify ω. The
sinusoidally distributed winding with the q axis is fictitious except when θ = 0
where it is the as winding. The as and bs axes are fixed with their associated stator
windings and serve as a stationary reference. We are free to specify it. The angle
from the as axis to the q axis is θ and for a constant ω is

θ = ωt + θ 0 (2.2-5)

The displacement ϕ shown in Fig. 2.2-2 is from the q axis just as ϕs is the displace-
ment from the as axis. Let us relate a rotating position to an adjacent position on
the stator. From Fig. 2.2-2,

ϕs = θ + ϕ (2.2-6)

ϕs
ϕ

ω

θ

qs′

qs

as′

as

bs′ bs as axis

bs axis qs axis

Figure 2.2-2 Elementary two-pole two-phase sinusoidally distributed stator windings with
a third magnetic axis (q axis).
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If we substitute (2.2.-6) into (2.2-2), we obtain

mmf s =
Ns

2
ias cos θ + ϕ + ibs sin θ + ϕ (2.2-7)

Substituting (2.2-3) and (2.2-4) into (2.2-7) for ias and ibs, respectively, and (2.2-5)
for θ and after some work with trigonometric identities, the steady-state mmf s
becomes

mmf s =
Ns

2
2Is cos ωe −ω t + θesi 0 − θ 0 −ϕ (2.2-8)

Recall that ωe is the angular velocity of the electrical system and ω is the angular
velocity of the q axis, θ(0) is the time-zero position of the q axis which will be con-
sidered to be zero unless otherwise specified, and ϕ is the displacement from the
q axis. We have chosen to work with one of the two air gaps. The total mmf is two
times (2.2-8).
If we let the angular velocity of the q axis to be zero (ω = 0) and θ(0) = 0, then

ϕ = ϕs and we would be viewing Tesla’s rotating magnetic field as a stationary
observer. In other words, the q-axis is stationary. In this case, (2.2-8) becomes

mmf ss =
Ns

2
2Is cos ωet + θesi 0 −ϕs (2.2-9)

where we have added a superscript s to emphasize that we are observing Tesla’s
rotating magnetic field from a stationary frame of reference. Since both θesi 0
and ϕs are constants, mmf ss is a sinusoidal variation of frequency ωe. If ϕs is zero,
as we have mentioned, we would be positioned (fixed) at the as axis (ϕs = 0 in
Fig. 2.2-2) and the mmf ss would be pulsating at ωe.
If we now let ω = ωe, (2.2-8) becomes

mmfes =
Ns

2
2Is cos θesi 0 −ϕe (2.2-10)

where ϕe (a renamed version of ϕ) is the displacement from the q axis which is
rotating at ωe . Since θesi 0 is constant for balanced steady-state conditions and
let us say we have 360 vision, then (2.2-10) appears as a sinusoidal function of
ϕe (the displacement from the q axis) with its maximum value occurring at
ϕe = θesi 0 which is the phase angle of the balanced steady-state stator currents.
In other words, we are observing one half of Tesla’s rotating magnetic field as we
run at ωe in the counterclockwise direction around the air gap. Since ωe is the elec-
trical angular velocity of Ias and Ibs, this is referred to as the synchronously rotating
frame of reference. The view from the synchronous rotating frame is depicted in
Fig. 2.2-3 where θesi 0 is negative for inductive circuits (see Example 1.A). Apply-
ing the rule given in Chapter 1, a positive mmf es is a south pole due to the stator
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currents Ss with the maximum intensity at ϕe = θesi 0 which is the phase angle
of the currents Ias and Ibs. Flux entering the member with the winding. A negative
mmfes represents a stator north pole Ns . Flux leaving the member with the
winding.
We have observed Tesla’s rotating magnetic field from the synchronous refer-

ence frame which is a frame of reference rotating at ωe. We will find that the syn-
chronous reference frame allows us to work with dc variables and eliminates
position-dependent inductances. This simplifies the analysis and enables a clear
visualization of the operation of ac electric machines.
This is not the first time we have viewed a sinusoidal variation from a reference

frame rotating at ωe. In Section 1.2, Example 1.A, it was illustrated that a phasor
rotated at ωe in the counterclockwise direction and when we consider the phasor
as a constant, we have either stopped the rotation or we are running counterclock-
wise at ωe. The position of the winding and the phasor of the current locate the
poles. Therefore, we can superimpose the poles on the phasor diagram. We will
talk more about poles and the phasor diagram in later sections.
It is important not to confuse the magnetic axes of the stator windings (as and bs

axes) which are stationary, with the definition of the phasors representing the sta-

tor currents (Ias and Ibs). However, it is interesting to note the relative position of

the as axis and bs axis versus the relative position of Ias and Ibs on a phasor diagram
for a constant, counterclockwise rotating mmf s to occur. The bs axis is displaced
π/2 ahead of the as axis, as illustrated in Fig. 2.2-1; however, from (2.2-3) and

(2.2-4), we see that Ibs lags Ias by π/2. The direction of rotation of the air-gap
mmf mmf s may readily be determined by forgetting about θesi 0 and locate

the position of Ns
2 2Is when time has progressed to where Ibs is maximum and

Ias is zero ωet = π 2 . That is, the maximum mmf s has rotated counterclockwise

q axis

mmfe
s

Ss

2Ns
2 Is–

– –ππ π2
1 π2

1

2Ns
2 Is

Ns

ϕe

θesi(0)

Figure 2.2-3 Tesla’s rotating magnetic field mmfes viewed from −π to π by an observer
rotating counterclockwise about the air gap at ωe with θ(0) = 0 and θesi 0 is negative.
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from the as axis when Ias is maximum to the bs axis when Ibs is maximum. Note,
that the negative of both (2.2-3) and (2.2-4) would also produce a counterclockwise

mmf s. In this case, Iaswould be at 180 and Ibs at 90 . In other words, maximum Ias
followed π/2 electrical degrees by negative maximum Ibs produces counterclock-
wise rotation of mmf s in the device shown in Fig. 2.2-1.

Example 2.A Components of mmf es
Express mmf eas and mmf ebs with θ(0) = 0. Add the resulting relationships to obtain
mmfes which is (2.2-10). The currents may be expressed as

Ias = 2Is cos ωet + θesi 0 (2A-1)

Ibs = 2Is sin ωet + θesi 0 (2A-2)

To view the mmf as an observer running at ωe counterclockwise with the q axis
(Fig. 2.2-2),

ϕs = ωet + ϕe (2A-3)

where ϕe is the displacement from the q axis when it is rotating at ωe with
θ 0 = 0 θe = ωet . Thus, from (2.2-7),

mmf eas =
Ns

2
2Is cos ωet + θesi 0 cos ωet + ϕe

=
Ns

2
2Is

1
2

cos 2ωet + θesi 0 + ϕe + cos θesi 0 −ϕe

(2A-4)

From (2.2-1), we can express mmfebs as

mmf ebs =
Ns

2
2Is

1
2

cos θesi 0 −ϕe − cos 2ωet + θesi 0 + ϕe (2A-5)

Now, from (2.2-2),

mmfes = mmfeas + mmf ebs

=
Ns

2
2Is cos θesi 0 −ϕe

(2A-6)

The double frequency terms cancel and we obtain (2A-6) which is (2.2-10) and it is
a constant if θesi 0 and ϕe are constants.
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2.2.2 Two-Pole Three-Phase Stator

The arrangement of the stator windings of a two-pole three-phase device is shown
in Fig. 2.2-4. It is noted that the three-phase machine requires only three wires
while the two-phase requires four wires. Moreover, the three-phase systems can
transmit 150% more power than a two-phase system with one less wire.
The windings are connected in wye and they are identical, sinusoidally distrib-

uted with Ns equivalent turns and with their magnetic axes displaced by 2
3 π. The

positive directions of the magnetic axes are selected so as to achieve counterclock-
wise rotation of the rotating air-gap mmf with balanced stator currents of the abc
sequence. We shall see this in just a moment. The air-gap mmfs established by the
stator phases may be expressed by inspection of Fig. 2.2-4. In particular,

mmfas =
Ns

2
ias cosϕs (2.2-11)

mmfbs =
Ns

2
ibs cos ϕs −

2
3
π (2.2-12)

mmfcs =
Ns

2
ics cos ϕs +

2
3
π (2.2-13)

ϕs
ϕ ω

θ

as′

as

bs′

bs

cs′

cs

qs′

qs

as axis

bs axis

cs axis

qs axis

ias

ibs

ics

+

vas

Ns

rs

+
vbs

Ns

rs

+
vcs

Ns

rs

Figure 2.2-4 Elementary two-pole three-phase sinusoidally distributed stator windings.
Outer housing is not shown.
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As before, Ns is the number of turns of the equivalent sinusoidally distributed sta-
tor windings and ϕs is the angular displacement about the stator measured from
the as axis. The air-gap mmf s is

mmf s =
Ns

2
ias cosϕs + ibs cos ϕs −

2
3
π + ics cos ϕs +

2
3
π (2.2-14)

For balanced steady-state conditions, the stator currents for an abc sequence
may be expressed as

Ias = 2Is cos ωet + θesi 0 (2.2-15)

Ibs = 2Is cos ωet−
2
3
π + θesi 0 (2.2-16)

Ics = 2Is cos ωet +
2
3
π + θesi 0 (2.2-17)

Substituting (2.2-15) through (2.2-17) into (2.2-14) and using (2.2-6) for ϕs and
then after some trigonometric manipulations, we can obtain an expression for
Tesla’s rotating magnetic field established by balanced steady-state stator currents

mmf s =
Ns

2
2Is

3
2
cos ωe −ω t + θesi 0 − θ 0 −ϕ , (2.2-18)

whereω, θ(0), andϕ are defined as they were for two-phasemachine and are shown
in Fig. 2.2-4. If mmf s for the three-phase device given by (2.2-18) is compared with
mmf s for a two-phase device given by (2.2-8), we see that they are identical except
that the amplitude for the three-phase device is 3

2 times that of a two-phase device.

We need not repeat the work we did leading up to Fig. 2.2-3. The only difference
would be the 3/2 factor. Therefore, it is reasonable to treat the two-phase machine
first since the rotating magnetic fields differ only by a constant.
It is important to note that, with the assumed positive directions of the magnetic

axes, a counterclockwise rotating air-gap mmf is obtained with a three-phase set of
balanced stator currents of the abc sequence. As in the two-phase case, it is also
important to note the relative positions of the magnetic axes versus the relative
positions of the phasors representing the currents in order to establish a constant
amplitude counterclockwise rotating air-gap mmf. From (2.2-11) through (2.2-13)
or Fig. 2.2-4, we see that the bs axis is stationary at 120 , whereas the cs axis is sta-

tionary at −120 . From (2.2-15) through (2.2-17), Ias, Ibs, and Ics are 120 out of
phase; however, in order for the constant-amplitude air-gap mmf to rotate in

the counterclockwise direction, Ibs lags Ias by 120 and Ics lags Ias by 240 . In other
words, maximum positive Ias is followed by maximum positive Ibs and then
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maximum positive Ics for an abc sequence. With the magnetic axis positioned as
shown in Fig. 2.2-4, this sequence of maximum currents produces a counterclock-
wise rotation of the air-gap mmf.

SP2.2-1.Wehave expressedmmfssandmmfes. Expressmmfrs; a reference frame rotat-
ing counterclockwise at the angular velocity of the rotor, ωr . [(2.2-8) for a two-
phase stator or (2.2-18) for three-phase with ω = ωr and ϕ replaced by ϕr]

SP2.2-2. Express mmf ss for a ba sequence of a two-phase stator.

2.3 Reference Frame Theory

R. H. Park set forth a change of variables in 1929 that eliminated the position-
varying inductances of a synchronous machine [2]. His work, which was for sinus-
oidal distributed windings and generator action with positive current out of the
stator convenient for supplying loads connected to the power grid. Nevertheless,
it revolutionized machine analysis. This was the beginning of Reference Frame
Theory and modern electric machine analysis; however, it was not appreciated
until the advent of the computer and later power electronics and electric drives.
It is now a necessity to design and analyze drive systems. The use of reference
frame theory to analyze electric machines is the main thrust of this text; no longer
can we focus only on steady-state operation of electric machines and drives, the
student must become knowledgeable of reference frame theory in the early
courses. It is no longer an option, it has become a necessity.
Only recently was the connection between Tesla and Park discovered [3]. As it

turns out, reference frame theory is nothing more than establishing the variables
associated with the fictitious circuits that produce Tesla’s balanced rotating mag-
netic field as viewed from that reference frame.

2.3.1 Two-Phase Transformation

The transformation or change of variables can be readily established from (2.2-2),
(2.2-6), and (2.2-7). These equations are repeated here to start our derivation.

mmf s =
Ns

2
ias cosϕs + ibs sinϕs (2.3-1)

ϕs = θ + ϕ (2.3-2)

Substituting (2.3-2) into (2.3-1) yields

mmf s =
Ns

2
ias cos θ + ϕ + ibs sin θ + ϕ (2.3-3)
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Equation (2.3-3) may be written, using basic trigonometry, as

mmf s =
Ns

2
cosϕ ias cos θ + ibs sin θ +

Ns

2
sinϕ − ias sin θ + ibs cos θ (2.3-4)

As shown in Fig. 2.3-1 and from (2.3-4), Ns cosϕ and Ns sinϕ result from two
orthogonal sinusoidally distributed windings that are fictitious except when
θ = 0, the stationary reference frame.
The current flowing in the winding hovered around the q axis (ϕ= 0) is the arbi-

trary reference frame variable iqs which is expressed as

iqs = ias cos θ + ibs sin θ (2.3-5)

The second winding axis can be at ϕ = ± π
2 . We will let ϕ = − π

2 , then the

second arbitrary reference frame current which we will call ids. It is expressed as

ids = ias sin θ− ibs cos θ (2.3-6)

We can now write (2.3-4) in the arbitrary reference frame variables as

mmf s =
Ns

2
iqs cosϕ−

Ns

2
ids sinϕ (2.3-7)

The change of variables or transformation to the arbitrary reference frame
expressed in matrix form is

iqs
ids

=
cos θ sin θ

sin θ − cos θ

ias
ibs

(2.3-8)

bs axis
q axis

as axis

d axis

as′

qs′

bs′

ds

as
qs

bs

ds′

ϕs

ϕ
ω

θ

Figure 2.3-1 Elementary two-pole two-phase stator with a two-phase q and d axes.
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This same transformation also applies to voltage and flux linkages, thus

f qs
f ds

=
cos θ sin θ

sin θ − cos θ

f as
f bs

(2.3-9)

where f can be voltage, current, or flux linkage. We can also write (2.3-9) as

fqds = Ksfabs (2.3-10)

Now,

dθ
dt

= ω t (2.3-11)

where ω is the unspecified speed of the arbitrary reference frame; we are free to
assign it any value. Also, Ks is considered as the transformation to the arbitrary

reference frame and with ϕ = −
π

2
, K − 1 = Ks. In this text, we will only concern

ourselves with three specific reference frames: stationary, ω= 0; the rotor, ω = ωr;
and the synchronously rotating, ω = ωe. It is interesting that for reference frames
rotating at ω<ωe , the mmf s rotates counterclockwise and for reference frames
rotating at ω>ωe, mmf s rotates clockwise. In other words, mmf s rotates toward
synchronous speed [4].

2.3.2 Three-Phase Transformation

For the three-phase transformation, we will start with (2.2-14) which is

mmf s =
Ns

2
ias cosϕs + ibs cos ϕs −

2
3
π + ics cos ϕs +

2
3
π (2.3-12)

Substituting (2.3-2) for ϕs yields

mmf s =
Ns

2
cosϕ ias cos θ + ibs cos θ−

2
3
π + ics cos θ +

2
3
π

−
Ns

2
sinϕ ias sin θ + ibs sin θ−

2
3
π + ics sin θ +

2
3
π

(2.3-13)

Here, iqs is the [ ] multiplying cosϕ with ϕ = 0 and ids is the [ ] multiplying sinϕ

with ϕ = −
π

2
. In addition to the q and d variables, a third variable, the zero var-

iable, is introduced as

f 0s =
1
3

f as + f bs + f cs (2.3-14)
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The transformation to the arbitrary reference frame becomes

fqd0s = Ksfabcs (2.3-15)

where in the case of the three-phase machine

fqd0s
T
= f qs f ds f 0s (2.3-16)

fabcs
T = f as f bs f cs (2.3-17)

Ks =
2
3

cos θ cos θ−
2
3
π cos θ +

2
3
π

sin θ sin θ−
2
3
π sin θ +

2
3
π

1
2

1
2

1
2

(2.3-18)

Ks
− 1 =

cos θ sin θ 1

cos θ−
2
3
π sin θ−

2
3
π 1

cos θ +
2
3
π sin θ +

2
3
π 1

(2.3-19)

where

dθ
dt

= ω t (2.3-20)

Note that the f 0s variable does not contain θ and is zero for balanced conditions.
The 2/3 factor in (2.3-18) was introduced by Park. It is not suggested by Tesla. Due
to this 2/3 factor in Park’s transformation, which makes the magnitude of the vari-
ables equal to those of the two-phase system, we must multiply the power and tor-
que by 3/2 in order to correct this reduction in the power calculated using Park’s
variables. In other words, Park’s transformation makes a three-phase machine a
two-phase machine. We will take care of all this when we consider the individual
machines.

Example 2.B Applied Voltages in Different Reference Frames

We will assume that

vas = 2Vs cos θesv (2B-1)

vbs = 2Vs sin θesv (2B-2)

θesv = ωet + θesv 0 (2B-3)
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Throughout this text the applied voltages will be of the form given by (2B-1)
through (2B-3). Although Vs and θesv are generally constant. It is desirable to
express the applied voltages, vqs and vds in the arbitrary, stationary, and synchro-
nously rotating reference frames. For this purpose, let

θ = ωt + θ 0 (2B-4)

Substituting (2B-1) through (2B-4) into (2.3-9) and after some work, we have the
expression for the applied voltages in the arbitrary reference frame

vqs = 2Vs cos ωe −ω t + θesv 0 − θ 0 (2B-5)

vds = − 2Vs sin ωe −ω t + θesv 0 − θ 0 (2B-6)

where θesv 0 is the phase angle of vas and vbs and θ(0) is zero unless otherwise
specified.
For the stationary reference frame ω = 0 and

vsqs = vas (2B-7)

vsds = − vbs (2B-8)

where the superscript s denotes variables in the stationary reference frame. In the
synchronously rotating reference frame, ω = ωe,

veqs = 2Vs cos θesv 0 (2B-9)

veds = − 2Vs sin θesv 0 (2B-10)

where the raised e denotes variables in the synchronously rotating reference frame.
It is important to note that, in the steady state, veqs and veds are constant dc, applied

voltages. It is a good bet that the currents ieqs and ieds will also be dc in the

steady state.

SP2.3-1. Express vqs and vds in the arbitrary reference frame for a balanced three-
phase system. The trigonometric identities in Appendix A will help. [(2B-5) and
(2B-6)]

SP2.3-2. Assume vds and ids are both zero. Show that we must multiply power cal-
culated using Parks transformation by 3/2. [P3ϕ = 3 2 P2ϕ = 3 2 2VsIs =
3VsIs]

SP2.3-3. Show that for balanced conditions f 0s is zero. [f as + f bs + f cs = 0]
SP2.3-4. Use (2B-5) and (2B-6) to express vrqs and vrds. [Let ω = ωr]

SP2.3-5.Why is the transformation used here convenient for drive systems? [drive
machines are motors]
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2.4 Stator Voltage and Flux Linkage Equations in the
Arbitrary Reference Frame and the Instantaneous Phasor

In this section, we will transform the voltages, currents, and flux linkage equations
for the two- and three-phase stator to the arbitrary reference frame. The results will
be used in later chapters to investigate the behavior of induction and synchronous
machines.

2.4.1 Two-Phase Stator

Let us consider Fig. 2.3-1, where current is positive in the direction of voltage drop,
motor action

vas = rsias +
dλas
dt

(2.4-1)

vbs = rsibs +
dλbs
dt

(2.4-2)

which may be written as

vabs = rsiabs + pλabs (2.4-3)

where the first term on the right-hand side comes from Ohm’s law and the second
term from Faraday’s law, Also, p is the operator d dt. From (2.3-10),

fabs = Ks
− 1fqds (2.4-4)

where K − 1 = Ks for the d axis behind the q axis by
π

2
radians or ϕ = −

π

2
in

(2.3-4). Substituting into (2.4-3) yields

Ks
− 1vqds = rs Ks

− 1iqds + p Ks
− 1λqds (2.4-5)

Multiplying each side of (2.4-5) by Ks gives

vqds = Ksrs Ks
− 1iqds + Ksp Ks

− 1 λqds + Ks Ks
− 1pλqds (2.4-6)

where the product rule has been used to express the second term on the right-hand
side of (2.4-5).
Now, term by term of (2.4-6)

Ksrs Ks
− 1iqds = KsrsI Ks

− 1iqds

= rsKs Ks
− 1iqds = rsiqds

(2.4-7)
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Ksp Ks
− 1λqds = Ksω

− sin θ cos θ

cos θ sin θ

λqs

λds

= ω
0 1

− 1 0

λqs

λds

= ω
λds

− λqs
= ωλdqs

(2.4-8)

Ks Ks
− 1pλqds = pλqds (2.4-9)

The voltage equation in the arbitrary reference frame becomes

vqds = rsiqds + ωλdqs + pλqds (2.4-10)

where ωλdqs is (2.4-8).
In expanded form

vqs = rsiqs + ωλds + pλqs (2.4-11)

vds = rsids −ωλqs + pλds (2.4-12)

These are the voltage equations associated with the fictitious windings in the
arbitrary reference frame. For example, if we assign (ω = 0), we yield the voltage
equations in the stationary reference frame

vsqs = rsi
s
qs + pλsqs (2.4-13)

vsds = rsi
s
ds + pλsds (2.4-14)

where the raised s denotes variables in the stationary or stator reference frame. In
the rotor reference frame, ω = ωr , and

vrqs = rsi
r
qs + ωrλ

r
ds + pλrqs (2.4-15)

vrds = rsi
r
ds −ωrλ

r
qs + pλrds (2.4-16)

where the raised r denotes variables in the rotor reference frame. In the synchro-
nously rotating reference frame, ω = ωe ,

veqs = rsi
e
qs + ωeλ

e
ds + pλeqs (2.4-17)

veds = rsi
e
ds −ωeλ

e
qs + pλeds (2.4-18)

where the raised e denotes variables in the synchronously ωe rotating reference
frame. These equations provide the rotating magnetic field as viewed from the sta-
tionary, rotor, and synchronous reference frames. The applied voltages in the arbi-
trary reference frame are given for balanced conditions by (2B-5) and (2B-6). We
have not defined λqs and λds, therefore the above voltage equations are valid for
linear or nonlinear magnetic systems.
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Example 2.C Voltage Equations with d-axis located at ϕ =
π
2

The transformation, Ks, for ϕ =
π

2
in (2.3-4) is

f qs

f ds
=

cos θ sin θ

− sin θ cos θ

f as

f bs

= Ks

f as

f bs

(2C-1)

In this case,

Ks
− 1 =

cos θ sin θ

sin θ − cos θ
(2C-2)

Thus, Ks
− 1 Ks. Now, (2.4-7) and (2.4-9) do not change, that is,

Ksrs Ks
− 1iqds = rsiqds (2C-3)

Ks Ks
− 1pλqds = pλqds (2C-4)

The speed voltage changes

Ksp Ks
− 1λqds = Ksω

− sin θ − cos θ

cos θ − sin θ

λqs

λds

= ω
cos θ sin θ

− sin θ cos θ

− sin θ − cos θ

cos θ − sin θ

λqs

λds

= ω
0 − 1

1 0

λqs

λds

= ω
− λds

λqs

(2C-5)

The voltage equations in the arbitrary reference frame become

vqs = rsiqs −ωλds + pλqs (2C-6)

vds = rsids + ωλqs + pλds (2C-7)

The sign associated with the speed voltages is reversed.

The flux linkage equations for a magnetically linear two-phase stator are given
by (1.5-12) through (1.5-15). From (1.5-13),

Ks
− 1λqds = Ls Ks

− 1iqds (2.4-19)
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or

λqds = KsLs Ks
− 1iqds

= KsLssI Ks
− 1iqds

= LssKs Ks
− 1iqds

= Lsiqds

(2.4-20)

2.4.2 Three-Phase Stator

The three-phase wye-connected stator is given in Fig. 1.5-2. The voltage equation is
given by (1.5-25) through (1.5-28). Transforming to the arbitrary reference frame,
(1.5-28) becomes

Ks
− 1vqd0s = rs Ks

− 1iqd0s + p K − 1 λqd0s
+ Ks

− 1pλqd0s
(2.4-21)

whereKs and Ks
− 1 are given by (2.3-18) and (2.3-19), respectively. Following the

work for the two-phase stator, (2.4-10) becomes

vqd0s = rsiqd0s + ωλdq0s + pλqd0s (2.4-22)

In expanded form

vqs = rsiqs + ωλds + pλqs (2.4-23)

vds = rsids −ωλqs + pλds (2.4-24)

v0s = rsi0s + pλ0s (2.4-25)

Except for v0s these equations are of identical form to the two-phase stator. More-
over, v0s is zero for balanced conditions and for a wye-connected symmetrical
stator.
The flux linkage equations for a magnetically linear system become

K − 1λqd0s = Ls Ks
− 1iqd0s (2.4-26)

where Ks is (2.3-18), Ks
− 1 is (2.3-19), and Ls is (1.5-30), We can write (2.4-26) as

λqd0s = KsLs Ks
− 1iqd0s (2.4-27)

Now, for a wye-connection or for balanced conditions

ias + ibs + ics = 0 (2.4-28)

and if we let LMs =
3
2
Lms, we can write Ls as
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Ls =

Lls + LMs 0 0

0 Lls + LMs 0

0 0 Lls + LMs

= Lls + LMs I (2.4-29)

Thus,

λqd0s = Ks Lls + LMs I Ks
− 1iqd0s

= Lls + LMs KsI Ks
− 1iqd0s

(2.4-30)

For wye-connected stator windings where ias + ibs + ics = 0, this becomes

λqs

λds

λ0s

=

Lls + LMs 0 0

0 Lls + LMs 0

0 0 Lls

iqs
ids
i0s

(2.4-31)

The 3x3 term is Lls + LMs in (2.4-29); however, the LMsi0s term is coupled between
the as, bs, and cs axes which sums to zero. The leakage inductances, Lls, are not
coupled.

2.4.3 Instantaneous and Steady-State Phasors

The synchronously rotating reference frame can be thought of as a synchronously
rotating complex plane as shown in Fig. 2.4-1, whereupon we can think of f eqs and

f eds as f as, an instantaneous phasor of phase as variables. This would include the
steady-state and transient response for balanced conditions for a two- or three-
phase stator. From Fig. 2.4-1, we can write

q axis

as axis

d axis

f e
ds

f e
qs

fas
~

–j

θr

ωe

ωe

Figure 2.4-1 The q and d complex plane.
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f as t = f eqs t − jf eds t (2.4-32)

Substituting (2.4-17) and (2.4-18) into (2.4-32), whereupon for both the two- or
three-phase stator

veqs − jveds = rsi
e
qs + ωeλ

e
ds + pλeqs − j rsi

e
ds −ωeλ

e
qs + pλeds (2.4-33)

In terms of instantaneous phasors

vas = rsias + jωeλas + pλas (2.4-34)

Once the transient subsides, the ieqs and ieds become constant, pλas becomes zero,

and (2.4-34) becomes

vas = rsias + jωeλas (2.4-35)

Now, (2.4-35) is expressed in instantaneous variables andmust be divided by 2to
be expressed in terms of steady-state phasors. Also, for a magnetically linear two-
phase stator and the rL circuit being considered

λas = Lssias (2.4-36)

thus, (2.4-35) becomes

Vas = r + jωeLss Ias (2.4-37)

for a two-phase stator Lss = Lls + Lms , for a three-phase Lms is replaced by LMs .
Now,

2Fas = Fe
qs − jFe

ds (2.4-38)

where the uppercase letters denote steady-state variables.
For a two-phase ab sequence,

2Fbs = − 2jFas

= −Fe
ds − jFe

qs

(2.4-39)

For a three-phase abc sequence, Fas is (2.4-38) and

Fbs = Fas −120 (2.4-40)

Fcs = Fas +120 (2.4-41)

We will make extensive use of the instantaneous phasor when dealing with the
dynamic response of machine performance.
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Example 2.D The Instantaneous and Steady-State Phasors

Let rs = 3 4Ω, Lls = 1 1mH, and Lms = 11mH. Assume ωe = 377 rad s and for a
two-phase stator

λeqs = Lssi
e
qs (2D-1)

λeds = Lssi
e
ds (2D-2)

Express vas and Vas. From (2.4-34),

vas = 3 4ias + j 377 11 + 1 1 × 10− 3ias + p 11 + 1 1 × 10− 3ias

= 3 4ias + j4 6ias + 0 012pias
(2D-3)

When the system reaches steady state, pias becomes zero and (2D-3) becomes

vas = 3 4 + j4 6 ias (2D-4)

In terms of steady-state phasor

2Vas = 3 4 + j4 6 2 Ias (2D-5)

or

Vas = 3 4 + j4 6 Ias (2D-6)

SP2.4-1. Let Vas = 2Vs sin ωet + θesv 0 and Vbs = − 2Vs cos ωet + θesv 0

Express Ve
qs and Ve

ds. [V
e
qs = 2Vs sin θesv 0 , Ve

ds = 2Vs cos θesv 0 ]

SP2.4-2. Verify (2.4-8).

SP2.4-3. Determine Ks
− 1 for Ks for ϕ =

π

2
for ids.

Ks
− 1 =

cos θ − sin θ

sin θ cos θ
;Ks Ks

− 1

SP2.4-4. Express f bs in terms of f eqs and f eds. [f bs = − j f eqs − jf eds ]

SP2.4-5. Add f bs to Fig. 2.4-1. [− jf as]

2.5 Problems

1 Repeat Example 2.A for the arbitrary reference variables rather than the syn-
chronous reference frame.

2 Obtain (2.2-18) from (2.2-14) and (2.2-6).

3 Obtain (2.2-8) from (2.2-7).
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4 Assume

Ias = 2 Is cos ωet + θesi 0

Ibs = − 2 Is sin ωet + θesi 0

Express mmf s for Fig. 2.2-2.

5 Determine the transformation to the arbitrary reference frame for Problem 4.

6 Verify (2.4-31).

7 Assume

υas = Va cos ωet

υbs = Vb sin ωet

where Va Vb. Determine υqs and υds

8 Express υas and υbs for current positive out of the machine.

9 Express mmf s for Problem 8.

10 Express vas for Problem 8.
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3

Symmetrical Induction Machine

3.1 Introduction

Although the induction machine is generally used as a means to convert electric
power to mechanical work (motor action), it can also operate as a generator and
convert mechanical work to electric power. Three-phase induction motors are
commonly used in large-horsepower applications, for example, pump drives, steel
mill drives, hoist drives, vehicle drives, and as a generator in wind turbine and low-
head hydro applications. In applications where three-phase is not available or in
low-power requirements as household applications, single-phase induction
motors, which are covered in Chapter 7, are used. Single-phase induction motors
develop torque in a manner similar to multiphase induction motors and can oper-
ate with direct connection of the stator windings to a single-phase wall outlet.
The analysis of symmetrical two- and three-phase induction machines is essen-

tially the same. In addition, we will show that we can relate the two-pole machine
to machines with any number of pole pairs. Therefore, we will consider the two-
pole two-phase machine, since this enables us to become familiar with the theory
and performance of induction machines without becoming inundated with three-
phase trigonometric manipulations. When appropriate, we will point out the
changes necessary to apply the work to a three-phase symmetrical induction
machine once the derivation for the two-phase machine has been completed.

3.2 Symmetrical Machines

A disassembled four-pole two-phase 1
10 -hp115-V induction motor, which is used in

low-power control applications, is shown in Fig. 3.2-1. Also shown in Fig. 3.2-1 is
the case that houses the speed-reduction gears for hospital bed application.
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The rotors of the induction motors are referred to as “squirrel-cage” rotors.
A cutaway of a four-pole three-phase 6.5-hp 460-V squirrel-cage induction motor
is shown in Fig. 3.2-2. It is an enclosed fan-cooled severe-duty motor for use in the
chemical, paper, cement, and mining industries. Although it is difficult to discern,
the squirrel-cage rotors are made up of laminated punched steel with aluminum
bars die casted in the openings of the laminated rotor and the bars terminated at
each end of the rotor in an aluminum ring, which is visible in Figs. 3.2-1 and 3.2-2.
The protrusions from the aluminum rings are for cooling purposes. If we remove
the steel laminations, the remaining aluminum bars and end rings resemble the
rotor (blades) of a “squirrel-cage fan.” The question often arises as to how these

Reduction
gear

Stator

Rotor

End
cap

Figure 3.2-1 Four-pole two-phase 1/10-Hp 115-V induction motor with reduction gear.

Figure 3.2-2 Four-pole three-phase 6.5-Hp 460-V severe-duty, squirrel-cage induction
motor (courtesy of General Electric).
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short-circuited bars produce a rotating magnetic field. It turns out that these short-
circuited bars behave like symmetrical windings. Short-circuited sinusoidally dis-
tributed windings are a good model for the rotor bars of a squirrel-cage induction
machine. This requires considerable work to show the equivalence analytically;
however, for now, let us assume that the rotor is equipped with symmetrical wind-
ings as shown in Fig. 3.2-3. Later wewill show that this is a reasonable assumption.
For purposes of analysis, the two-pole two-phase induction machine is shown in

Fig. 3.2-3. The stator windings are orthogonal, sinusoidally distributed windings as
described in Chapter 2. We will also assume that the rotor of the two-pole two-
phase induction machine may also be portrayed electrically by two sinusoidally
distributed windings displaced 90 . Hence, for our present purposes, we will con-
sider that the ar and br windings are sinusoidally distributed, each with the same
number of turns and the same winding resistance. Thus, both the stator and rotor

br axis
bs axis

ar axis

as axis

as

Ns

Ns

Nr Nrvas

var

vbr

rr
ibr

iar

rr

ias

ibs

vbs

rs

rs

arʹ

asʹ

brʹ
bsʹ

ar

br

bs

TL

Te

ϕs
ϕr

ωr

θr

Figure 3.2-3 A two-pole two-phase, symmetrical machine. Note: ϕs = θr + ϕr .
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are symmetrical, that is, all stator windings have the same distribution and elec-
trical parameters and all rotor windings have the same distribution and electrical
parameters. For this reason, this device is often referred to as a symmetrical
machine for analysis purposes.
Note that the air gap distance between the stator and rotor is uniform. The rotor

windings of an induction machine are generally short-circuited var = vbr = 0
with only the stator windings connected to a source. In this case, the machine
is said to be single-fed. In some special applications, such as wind turbines, both
the rotor windings, which are coil-wound, and stator windings are connected to
sources. In particular, the rotor windings are connected to a stationary multiphase
source by a brush and slip-ring arrangement. In this case, the machine is double-
fed. We will not deal with the double-fed machine.
As established in Chapter 2, the angular displacement about the stator is

denoted ϕs, and it is referenced to the as axis. We see from Fig. 3.2-3 that the angu-
lar displacement about the rotor is denoted ϕr and it is referenced to the ar axis.
The angular velocity of the rotor is ωr and θr is its angular position between the ar
and as axes. The electromechanical torque Te and the load torque TL are also indi-
cated in Fig. 3.2-3. The torque Te is assumed to be positive in the direction of
increasing θr whereas the load torque TL is positive in the opposite direction
(opposing rotation).
Recall that Tesla’s rotatingmagnetic field of the stator mmf s rotates about the air

gap at ωe and the rotor windings see a changing flux linkage only when ωr ωe.
Since the currents induced in the rotor circuits are due to a time rate change of flux
linkage, rotor currents would not be induced when the angular velocity of the rotor
is equal to the angular velocity of the stator rotating magnetic field ωr = ωe

Thus, the symmetrical induction machine will not develop a torque at synchro-
nous speed; only when ωr ωe will rotor currents be induced and a torque pro-
duced. We will find that this is completely opposite to a synchronous machine
which produces an average torque only when ωr = ωe. By now you have probably
guessed that the induction machine is so named from the fact that torque is pro-
duced as a result the rotor currents being “induced” by the stator rotatingmagnetic
field. It is interesting that the induction machine was first referred to as a rotating
transformer. This is understandable and we will see this more clearly when we
derive the steady-state equivalent circuit for the induction machine and find that
it is similar to that of a transformer. Also, we should mention that generator action
occurs if the stator windings are connected to a source, thus establishing a rotating
magnetic field, and the rotor, with its short-circuited windings, is driven above
synchronous speed.

SP3.2-1. The frequency of the balanced stator currents of the symmetrical machine
is 60-Hz and mmf s rotates counterclockwise. The device is operating as a motor,
and the rotor of the two-pole machine is rotating counterclockwise at 0 9 ωe .
Determine the frequency of the rotor currents. [6-Hz]
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SP3.2-2. Determine the direction of rotation of mmf s for (a) Ib = − jIa and (b)

Ib = jIa. [(a) ccw, (b) cw]
SP3.2-3. Assume sinusoidally distributed windings on the stator and rotor of the

machine shown in Fig. 3.2-3. Express (a) mmfas in terms of θr and ϕr and
(b) mmfar in terms of θr and ϕs . [(a) mmfas = Ns 2 ias cos ϕr + θr ; (b)
mmfar = Nr 2 iar cos ϕs − θr ]

3.3 Symmetrical Two-Pole Rotor Windings

3.3.1 Two-Phase Rotor Windings

The derivation of the air-gap mmf due to rotating symmetrical windings parallels
that of stationary symmetrical windings. As shown in Fig. 3.3-1, the ar and br
windings are orthogonal and if they are identical and sinusoidally distributed,
Tesla’s rotating magnetic field of these symmetrical windings may be expressed.

mmf r =
Nr

2
iar cosϕr + ibr sinϕr (3.3-1)

whereNr is the equivalent number of turns of the rotor windings and ϕr is its angu-
lar position from the ar axis, which is positioned θr from the as axis. In Fig. 3.3-1,
the positions θr and θ, which locates the q-axis, are referenced to the as axis. The
q-axis is the same q-axis introduced in Fig. 2.2-2.
Now, the positions are related as

ϕr = β + ϕ (3.3-2)

br axis
q axis

ar axis

as axis

ar
br′

br
θr

θ

β
ϕ

ϕr

ar′

Figure 3.3-1 Two-phase rotating, identical, sinusoidally distributed windings.
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Substituting (3.3-2) into (3.3-1) yields

mmf r =
Nr

2
iar cos β + ϕ + ibr sin β + ϕ (3.3-3)

We will return to (3.3-3) in a moment; however, let us continue our focus on the
rotating air-gap mmf during balanced steady-state operation.
Now,

β = θ− θr (3.3-4)

and during steady-state operation

β = ω−ωr t + θ 0 − θr 0 (3.3-5)

During balanced steady-state operation the currents, in the short-circuited rotor
windings, which are induced by mmf s, are balanced with the angular frequency of
ωe −ωr . Thus,

Iar = 2Ir cos ωe −ωr t + θeri 0 (3.3-6)

Ibr = 2Ir sin ωe −ωr t + θeri 0 (3.3-7)

It is important to recall that Iar and Ibr are zero if ωr = ωe, so (3.3-6) and (3.3-7) are
only valid for ωe ωr .
If we now substitute (3.3-6), (3.3-7), and (3.3-4) into (3.3-3), we will obtain an

expression for mmf r :

mmf r =
Nr

2
2Ir cos ωe −ωr −ω + ωr t + θeri 0 − θ 0 + θr 0 −ϕ (3.3-8)

Now, we will select θ(0) and θr 0 to be zero unless otherwise specified, where-
upon, (3.3-8) may be written as

mmf r =
Nr

2
2Ir cos ωe −ω t + θeri 0 −ϕ (3.3-9)

Equation (3.3-9) is similar in form tommf sgiven by (2.2-8). This is a very important
observation. Recall from Chapter 2 that the rotating magnetic field produced by
the stator comes about due to the sinusoidally distributed windings and the bal-
anced stator currents. The two- and three-phase rotating magnetic fields differ
only by a constant. The currents induced in the short-circuited rotor bars are unre-
stricted and one can argue that the stator mmf will induce rotor currents such that
the resulting fundamental of the rotor rotating magnetic field mmf r would be
sinusoidal in waveform as the inducing mmf mmf s with an angular velocity
equal to the difference in rotor speed from synchronous speed. We see from
(3.3-9) that this is what occurs if the rotor were equipped with short-circuited sym-
metrical sinusoidally distributed windings with currents of an angular frequency
of ωe −ωr .
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If the rotor currents are balanced and if the angular frequency of these currents
is ωe −ωr , then the stator mmf s and the rotor mmf rwill travel around the air gap
at the same angular velocity regardless of the actual speed of the rotor if ωr ωe.
If, for example, we observe mmf s and mmf r as a stationary observer (ω = 0), mmf ss
and mmf sr would both be traveling counterclockwise at ωe relative to us. If we are
riding on the rotor ω = ωr , mmf rs and mmf rrwould be traveling at ωe −ωr coun-
terclockwise relative to us. If we are running at ωe, mmf es and mmf er would appear
to us as constant space sinusoids of ϕe during the steady state. Since mmf s and
mmf r are traveling in unison, a constant torque (power) is produced. The magni-
tude of the constant torque is determined by the equivalent number of turns of
stator and rotor windings, machine geometry, the magnitude of the stator and
rotor currents, and the relative position of mmf s and mmf r .
The relative position of the phase between the mmfs, θesi(0) and θeri(0), is easily

discerned in the synchronous reference frame, i.e. mmf es and mmfer

mmf es =
Ns

2
2Is cos θesi 0 −ϕe (3.3-10)

mmf er =
Nr

2
2Ir cos θeri 0 −ϕe (3.3-11)

A plot of mmf es and mmfer is shown in Fig. 3.3-2 for motor action.
A synchronous machine develops a constant torque only at synchronous speed,

ωr=ωe. This occurs due to the fact that the rotor is either a permanent magnet or a
field winding with a dc current which is stationary with respect to the rotor which

q axis

θeri(0)

Sr

2N
mmf e

s

mmf e
r

2

π π

I

Ss

Nr Ns

θesi (0)
ϕe

1
2 π –π1

2–

2N
2

I–

Figure 3.3-2 Plot of developed or unrolled view of mmfes (3.3-10) and mmfer (3.3-11),
motor action.
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must rotate in unison with Tesla’s rotating magnetic field. This, of course, is nec-
essary to produce an average torque. Now, the induction or symmetrical machine
produces torque at any rotor speed except when ωr=ωe and current is not induced
in the short-circuited rotor circuits. In this case, mmfr disappears and mmfs has no
other mmf with which to interact.
Let us take a minute to talk about the assumption we have made in regard to the

rotor windings. As we have said earlier, the rotating mmf s induces currents in
the rotor windings that will produce a rotor mmf r that is of the form as mmf s. With
the rotor windings assumed to be symmetrical windings, mmf r as viewed from the
arbitrary reference frame (3.3-9) is of the same form as the stator rotating, mmf s,
(2.2-8). The assumption of rotor squirrel-cage windings as two short-circuited
orthogonal symmetrical sinusoidally distributed windings appears justified. This
is also true for the three-phase machine since the mmf s for the three-phase
mmf differs from the two-phase only by a constant as given by (2.2-18).

3.3.2 Three-Phase Rotor Windings

This subsection is very similar to the derivation of the subsection entitled “Two-
Pole Three-Phase Stator” in Section 2.2. For the three-phase rotor, mmf r differs
from the two-phase by a constant 3

2. In particular, in the arbitrary reference frame

mmf r =
Nr

2
2 Ir

3
2
cos ωe −ω t + θeri 0 − θ 0 −ϕ (3.3-12)

In the synchronous rotating reference frame for θ(0) = 0,

mmf er =
Nr

2
2 Ir

3
2
cos θeri 0 −ϕ (3.3-13)

Therefore, it is not necessary to redo the derivation leading up to Fig. 3.3-2 since
the three-phase case differs only by a constant from the two-phase case.

SP3.3-1. Let θ(0) be
π

4
and express mmf s and mmf r . Does this change the justifi-

cation made for sinusoidal rotor windings? [No]
SP3.3-2. Write (3.3-6) and (3.3-7) for cw rotation mmf r . [Ibr = − 3 3− 7 ]

3.4 Substitute Variables for Symmetrical Rotating
Circuits and Equivalent Circuit

3.4.1 Two-Phase Machine

The voltage equations expressed for two-phase stator circuits in the arbitrary ref-
erence frame are given by (2.4-11) and (2.4-12). We need similar equations for
the symmetrical rotor circuits. The transformation for the rotor variables to the
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arbitrary reference frame follows that set forth in Section 2.4 for the stator circuits.
In particular, if (3.3-2) is substituted into (3.3-1) and after a few trigonometric
manipulations, we have

mmf r =
Nr

2
cosϕ iar cos β + ibr sin β +

Nr

2
sinϕ − iar sin β + ibr cos β (3.4-1)

If we let ϕ = 0, we obtain iqr and ϕ = −
π

2
, we obtain idr. Equation (3.4-1) may now

be written as

mmf r =
Nr

2
iqr cosϕ− idr sinϕ (3.4-2)

Figure 3.4-1 depicts the fictitious qr and dr windings for the rotor. Please under-
stand that the q- and d-axis are the same for the stator, Fig. 2.3-1, as for the rotor,
Fig. 3.4-1. It is important to mention that if a device has symmetrical stator wind-
ings and symmetrical rotor windings, as is the case of an induction or symmetrical
machine, the stator and rotor windings have symmetrical fictitious two-phase
windings in the arbitrary reference frame. Moreover, we will find that in the arbi-
trary reference frame the stator and rotor fictitious windings are stationary relative
to each other; therefore, position-dependent mutual inductances are eliminated in
all reference frames.
The transformation for the rotating symmetrical circuits becomes

f qr
f dr

=
cos β sin β

sin β − cos β

f ar
f br

(3.4-3)

br axis
br axis

q axis

ar axis

as axis

d axis

qr
dr

dr′
θr

θ

βϕr

ϕ

qr′

Figure 3.4-1 The fictitious two-phase qr and dr windings.
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or

fqdr = Krfabr (3.4-4)

and

Kr
− 1 = Kr (3.4-5)

The voltages var and vbr are similar in form to (2.4-1) and (2.4-2) with r rather than s
in the subscript. By a procedure similar to that used for the stator voltages, the sub-
stitute arbitrary reference frame voltage equations for a resistive-inductive circuit
become

vqr = rriqr + ω−ωr λdr + pλqr (3.4-6)

vdr = rridr − ω−ωr λqr + pλdr (3.4-7)

These substitute voltage equations are very similar in form to those for stationary
circuits given by (2.4-11) and (2.4-12), in particular, ω−ωr replaces ω.
We have two things to do before we can come up with equivalent circuits. In

particular, we must refer the rotor variables to the stator windings and next we
must express λqds and λqdr. First, the turn ratios necessary to refer the rotor vari-

ables to the stator windings are

iabr =
Nr

Ns
iabr (3.4-8)

vabr =
Ns

Nr
vabr (3.4-9)

λabr =
Ns

Nr
λabr (3.4-10)

The substitute variables may now be written in the arbitrary reference frame as

vqs = rsiqs + ωλds + pλqs (3.4-11)

vds = rsids −ωλqs + pλds (3.4-12)

vqr = rriqr + ω−ωr λdr + pλqr (3.4-13)

vdr = rridr − ω−ωr λqr + pλdr (3.4-14)

where

rr =
Ns

Nr

2

rr (3.4-15)
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From Fig. 3.2-3, we can express the flux linkages as

λas = Lasasias + Lasbsibs + Lasar iar + Lasbr ibr (3.4-16)

λbs = Lbsasias + Lbsbsibs + Lbsariar + Lbsbribr (3.4-17)

λar = Larasias + Larbsibs + Larariar + Larbribr (3.4-18)

λbr = Lbrasias + Lbrbsibs + Lbrariar + Lbrbribr (3.4-19)

The self- and mutual inductances are defined by their subscripts. Reciprocity
applies, thus Lasbs = Lbsas, Lasar = Laras, etc. For future derivations, it is convenient
to write (3.4-16) through (3.4-19) in matrix form as

λabs
λabr

=
Ls Lsr

Lsr
T Lr

iabs
iabr

(3.4-20)

As in the case of the transformer, the self-inductance of each winding is made up
of a leakage inductance caused by the flux that fails to cross the air gap and a mag-
netizing inductance due to the flux that traverses the air gaps and circulates
through the stator and rotor steel. For symmetrical stator windings, the self-
inductances Lasas and Lbsbs are equal and will be denoted Lss, where

Lss = Lls + Lms (3.4-21)

In (3.4-21), Lls is the leakage inductance and Lms the magnetizing inductance. The
machine is designed to minimize the leakage inductance; it generally makes up
approximately 10% of the self-inductance. The self-inductance of symmetrical
rotor windings may be expressed similarly,

Lrr = Llr + Lmr (3.4-22)

The magnetizing inductances Lms and Lmr may be expressed in terms of turns and
reluctance. In particular,

Lms =
N2

s

m
(3.4-23)

Lmr =
N2

r

m
(3.4-24)

The magnetizing reluctance m is the reluctance seen by the magnetizing flux
which includes the iron and both air gaps. It is dominated by the air gaps. Since
the stator (rotor) windings are orthogonal and the rotor is round, coupling does not
exist between the as and bswindings (Lasas or Lbsbs or between the ar and brwind-
ings (Larbr or Lbrar). Recall that the equivalent, sinusoidally distributed windings
are depicted by one coil placed at the maximum turn density. The mutual induc-
tances Lasbs, Lbsas, Larbr, and Lbrar are all zero in the case of a two-phase stator. In a
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three-phase machine, where the stator (rotor) windings are displaced by 120 mag-
netically in space, a coupling exists between the stator (rotor) windings. Neverthe-
less, for the two-phase machine, we can write

Ls =
Lss 0

0 Lss
= LssI (3.4-25)

Lr =
Lrr 0

0 Lrr
= LrrI (3.4-26)

Coupling will occur between the stator and rotor windings and this coupling will
vary with the position θr of the rotor windings relative to the stator windings. For
example, when the as and ar windings are aligned, θr = 0, the magnitude of cou-
pling between these windings is maximized and, with the assumed direction of
positive ias and iar, the right-hand rule tells us that the mutual fluxes are adding.
Hence, the mutual inductance at θr = 0 is a positive maximum and can be
expressed in terms of turns and m as

Lasar =
NsNr

m
for θr = 0 (3.4-27)

Now, when θr = 1
2 π, the as and ar windings are orthogonal and

Lasar = 0 for θr =
1
2
π (3.4-28)

For θr = π the windings are again aligned but now, with the assumed direction of
positive ias and iar , they oppose, thus

Lasar = −
NsNr

m
for θr = π (3.4-29)

at θr =
3
2
π, the windings are again orthogonal and

Lasar = 0 for θr =
3
2
π (3.4-30)

From (3.4-27) through (3.4-30), we see that mutual inductances can be approxi-
mated as a cosine function of θr . In particular, if we define Lsr as

Lsr =
NsNr

m
(3.4-31)

we can write Lasar or Laras as

Lasar = Lsr cos θr (3.4-32)

If we were to carry out the derivation as in [1], we would find that (3.4-32) is,
indeed, a valid expression for the mutual inductance between the as and ar sinus-
oidally distributed windings. It follows by inspection of Fig. 3.2-3 that
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Lasbr = − Lsr sin θr (3.4-33)

Lbsar = Lsr sin θr (3.4-34)

Lbsbr = Lsr cos θr (3.4-35)

Hence,

Lsr = Lsr
cos θr − sin θr

sin θr cos θr
(3.4-36)

Once the expressions for the mutual inductances are known, we begin to under-
stand the complexities involved in the analysis of electric machines. The stator-to-
rotor mutual inductances are sinusoidal functions of θr because of the relative
motion. In the voltage equations, we take the derivative of the flux linkages with
respect to time, we no longer obtain only the familiar L di dt term. Instead, two
terms result; one due to the derivative of the mutual inductance, since θr is a func-
tion of time, and one due to the derivative of the current. For example,

d Lasarias
dt

=
∂ Lasarias

∂θr

dθr
dt

+
∂ Lasarias

∂ias

dias
dt

(3.4-37)

Substitution of (3.4-8) and (3.4-10) into (3.4-20) yields

λabs
λabr

=
Ls

Ns

Nr
Lsr

Ns

Nr
Lsr

T Lr

iabs
iabr

(3.4-38)

where

Lr =
Ns

Nr

2

Lr =
Lrr 0

0 Lrr
(3.4-39)

Since Lmr and Lms may be related from (3.4-23) and (3.4-24) and Llr =
Ns

Nr

2

Llr,

Lrr = Llr +
Ns

Nr

2

Lmr

= Llr + Lms

(3.4-40)

Note that

Ns

Nr
Lsr =

Ns

Nr
Lsr

cos θr − sin θr
sin θr cos θr

(3.4-41)

Comparing Lms and Lsr , we see that

Ns

Nr
Lsr = Lms (3.4-42)
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Hence, (3.4-41) may be expressed in terms of Lms and, for compactness, we will
define Lsr as

Lsr =
Ns

Nr
Lsr

= Lms

cos θr − sin θr

sin θr cos θr

(3.4-43)

Thus, (3.4-38) becomes

λabs
λabr

=
Ls Lsr

Lsr
T

Lr

iabs
iabr

(3.4-44)

The flux linkage equations for a magnetically linear system given by (3.4-44) are
in terms of as, bs, ar , and br variables. In the arbitrary reference frame, (3.4-44)
becomes

λqds
λqdr

=
KsLs Ks

− 1 KsLsr Kr
− 1

Kr Lsr
T
Ks

− 1 KrLr Kr
− 1

iqds
iqdr

(3.4-45)

Since, Ls = LssI and Lr = LrrI,

KsLs Ks
− 1 =

Lss 0

0 Lss
(3.4-46)

KrLr Kr
− 1 =

Lrr 0

0 Lrr

(3.4-47)

Now let us work on the upper right element of the 2 × 2 matrix in (3.4-45)

KsLsr Kr
−1 =

cosθ sinθ

sinθ − cosθ
Lms

cosθr − sinθr
sinθr cosθr

cos θ−θr sin θ−θr

sin θ−θr − cos θ−θr

(3.4-48)

It is left to the reader to show that (3.4-48) reduces to

KsLsr Kr
− 1 =

Lms 0

0 Lms
(3.4-49)

and that

KsLsr Kr
− 1 = Kr Lsr

T
Ks

− 1 (3.4-50)
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Therefore, due to the fact that Lms , Lmr , and Lsr have a common term, m , we
can write

λqds
λqdr

=
Ls Lms

Lms Lr

iqds
iqdr

(3.4-51)

Since Lss = Lls + Lms and Lrr = Llr + Lms, (3.4-51) may be expressed as

λqs = Llsiqs + Lms iqs + iqr (3.4-52)

λds = Llsids + Lms ids + idr (3.4-53)

λqr = Llriqr + Lms iqs + iqr (3.4-54)

λdr = Llridr + Lms ids + idr (3.4-55)

Equations (3.4-11) through (3.4-14) and (3.4-52) through (3.4-55) suggest the
equivalent circuits given in Fig. 3.4-2. Equations (3.4-52) through (3.4-55) and
Fig. 3.4-2 are important in that for a symmetrical induction machine, the rotor
position-dependent terms of the mutual inductances are eliminated in all frames
of reference. We would expect this since both the stator and rotor windings are

+

+

+

+

––

– –

–

–

+

+

+

+

–

–

rs

rs

vqs

vds

iqs

ids

Lms

Lms

i′qr

i′dr

(ω–ωr)λ′dr

(ω–ωr)λ′qr

ωλds

ωλqs

v′qr

v′dr

r′r

r′r

Lls

Lls

L′lr

L′lr

Figure 3.4-2 Arbitrary reference frame equivalent circuits for a two-phase, symmetrical
induction machine.
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assumed to be symmetrical and we are able to transform the variables to a com-
mon frame of reference, the arbitrary reference frame.

3.4.2 Three-Phase Machine

As a result of Park’s 2
3
factor in the transformation of three-phase variables, the

substitute variables are the same form for the two-phase and three-phase systems.
Also, due to the fact that most stator and rotor windings are Y-connected, the sum
of the stator and rotor currents is zero; therefore, Lms is replaced with LMs. Thus,
Fig. 3.4-2 is valid for a three-phase machine if Lms is replaced with LMs and if the
equivalent circuits, shown in Fig. 3.4-3, for the zero-variables, which are zero for
balanced conditions and not a function of θr or θ, are added to Fig. 3.4-2.

SP3.4-1. If in the equivalent circuits given in Fig. 3.4-2, there are speed voltages
only in the qr and dr part of the T equivalent circuits, what reference frame
is being used? [stationary]

SP3.4-2. Repeat SP3.4-1 if speed voltages are only in the qs and ds part. [rotor]
SP3.4-3. Redraw Fig. 3.4-2 for a blocked rotor test of a squirrel-cage rotor.

[ωr andω both zero, v s
qr = vsdr = 0,vsqs = vas,vsds = − vbs]

3.5 Electromagnetic Force and Torque

Our goal in this section is to derive an expression for the electromagnetic torque
developed in rotational systems or force in translational systems. Although there
are several approaches that could be used for this derivation, with the background
that we have established, the “energy balance” approach is perhaps most conven-
ient [2]. This method is quite direct and results in an easy-to-use expression for
evaluating torque or force in electromagnetic systems.
Electromechanical devices consist of an electrical system, a coupling field, and a

mechanical system. The electric and the mechanical systems can either supply or
absorb energy by way of the coupling field which can either be magnetic, which
will be our focus, or electric. The coupling field stores energy and transfers energy

rs

v0s v 0́r

i0s

Lls Lĺr

rŕ

i0r

+

–

+

–

Figure 3.4-3 Zero-variables
equivalent circuits to be added to
Fig. 3.4-2 for a three-phase machine.
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between the two systems. A block diagram depicting this interaction and possible
directions of energy flow is given in Fig. 3.5-1.
The energy balance is shown in Fig. 3.5-2. WE and WM are positive for energy

being supplied to the electromechanical device from an external electrical system
WE and mechanical system WM . Likewise, We and Wm are positive when
supplying energy to the coupling field in the electrical form We and mechanical
form Wm .
In Fig. 3.5-2, the subscripts E and e pertain to the electrical system, M and m to

the mechanical, and f to the field. Also, the subscripts S and L indicate energy
stored and energy lost, respectively. The energyWeL is the energy lost due to resis-
tive losses (i2r); WeS is the energy stored in a field external to the coupling field.
Some authors consider energy stored in the field of the leakage inductances asWeS

while others will include the leakage flux in the coupling field. This is irrelevant
since the energy stored in the field of the leakage inductance is generally not a
function of the mechanical motion of the electromechanical device.
The energy WmL represents energy lost due to mechanical friction and windage

losses.WmS is the energy stored as kinetic energy in the rotating mass (rotor) or as
potential energy in a spring.
The energyWe is the energy coming into the coupling field from the electric sys-

tem. The energyWm is the energy coming into the coupling field from themechan-
ical system. The energyWfL is the energy lost due to hysteresis loss and circulating
currents induced in the mechanical components of the coupling field. Electric
machines are designed to minimize these losses making the λi relationship

Electrical
system

Coupling
field

Mechanical
system

Figure 3.5-1 Block diagram of possible energy interchange in an elementary
electromechanical system.

WE

WeL

WeS Wf

WfL WmL

WM

WmS

We
Wm

Electrical
system

Coupling
field

Mechanical
system

Σ Σ Σ

Figure 3.5-2 Energy balance.
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approach a single-valued function as shown in Fig. 1.3-3. We will neglect WfL ,
whereupon, we can express the energy balance of the coupling field as

Wf = We + Wm (3.5-1)

where Wf is the energy stored in the coupling field.
The torque relationship between the electromechanical device and the mechan-

ical system may be written as

Te = J
dωr

dt
+ Bmωr + TL (3.5-2)

which is the rotational form of Newton’s second law. Here, J is the inertia of the
rotor and any tightly mechanically coupled rotating mass, Bm, is the mechanical
damping which is generally small and often neglected. Note that positive Te acts
to increase ωr whereas a positive load torque TL would act to retard ωr. Therefore,
with Te positive for motor action, then positive Wm entering the coupling field as
shown in Fig. 3.5-2 and as expressed in (3.5-1), would be

Wm = − Tedθr (3.5-3)

The energy entering the coupling field from the two electrical sources shown in
Fig. 3.2-3 We is

We = i1
dλ1
dt

dt + i2
dλ2
dt

dt (3.5-4)

where the subscripts 1 and 2 are as and bs, respectively.
Therefore, (3.5-4) may be written as

We = iasdλas + ibsdλbs (3.5-5)

For J electrical inputs, (3.5-5) may be expressed as

We =
J

j = 1

ijdλj (3.5-6)

where in the case of a machine, J is the number of stator phases and where j is an
index (1,2,3,… J) not to be confused with the imaginary part of a complex number
or with inertia or Joules. Thus, (3.5-1) may now be written as

Wf =
J

j = 1

ijdλj − Tedθr (3.5-7)
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In differential form, which we will use extensively, (3.5-7) can be written as

Tedθr =
J

j = 1

ijdλj − dWf (3.5-8)

From (1.3-38) for multiple electrical inputs

J

j = 1

λjij = Wc + Wf (3.5-9)

where Wc is the coenergy. If we take the derivative of (3.5-9), we have

J

j = 1

λjdij +
J

j = 1

ijdλj = dWc + dWf (3.5-10)

Solving (3.5-10) for
J

j = 1
ijdλj and substituting the result into (3.5-8) yields

Tedθr = −
J

j = 1

λjdij + dWc (3.5-11)

Although (3.5-8) and (3.5-11) are valid for magnetically linear and nonlinear sys-
tems, we will consider onlymagnetically linear systems. Therefore, it is convenient
to express the flux linkages in terms of currents and either θr for rotational systems
or x for translational systems. Hence, we will choose currents and θr or x as inde-
pendent variables. In this case, (3.5-11) is most convenient for obtaining an expres-
sion for Te which can be written as

Te i, θr dθr = −
J

j = 1

λj i, θr dij + dWc i, θr (3.5-12)

for compactness,

i = i1, i2, i3, …, iJ (3.5-13)

Equation (3.5-12) may now be written as

Te i, θr dθr = −
J

j = 1

λj i, θr dij +
J

j = 1

∂Wc

∂ij
i, θr dij +

∂Wc i, θr
∂θr

dθr (3.5-14)

Equating coefficients of dθr ,

Te i, θr =
∂Wc

∂θr
(3.5-15)
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In case of a translational system

f e i, x =
∂Wc

∂x
(3.5-16)

where f e is the electromagnetic force and x is the displacement. Since we will con-
sider only magnetically linear systems Wc = Wf .

Example 3.A Force Between Pole Faces of Air Gap

Determine the force that exists between the pole faces of the elementarymagnetic cir-
cuit given in Fig. 1.3-1. The parameters of the magnetic circuit is shown in Fig. 1.3-1
are: r = 1Ω , N = 100 turns, v = 10 V, ℓi = 40 cm, x = 3mm, Ai = Ag = 40 cm2,
μ0 = 4π × 10−7 H/m, and μri = 1000
In order tomake use of (3.5-16) to calculate the electromagnetic force f e, wemust

allow what is referred to as a virtual displacement. That is, we will assume that the
air-gap length x increases in the positive direction by dx; therefore, according to
(3.5-16), f e will be positive if it acts to lengthen the air gap. If f e is negative, it acts
to shorten the air gap.
From (1.3-9), the self-inductance is

L = Ll + Lm (3A-1)

where Ll is the leakage inductance and Lm is the magnetizing inductance. In
particular,

L =
N2

l
+

N2

i + g
(3A-2)

The coenergy is

Wc =
1
2

Ll + Lm i2 (3A-3)

In order to determine f e, we must take the partial derivative ofWcwith respect to x.
Since Ll is not a function of x, we need only concern ourselves with Lm. We can
write Lm as

Lm =
N2

i + g

=
N2

ℓi

μriμ0Ai
+

x
μ0Ag

(3A-4)
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which can be written as

Lm x =
k0

k1 + k2x

=

k0
k2

k1
k2

+ x

(3A-5)

where

k0 = N2

= 1 × 102 2 = 1 × 104 turns
(3A-6)

k1 =
ℓi

μriμ0Ai

=
4 × 10− 1

1 × 103 4π × 10− 7 4 × 10− 4 = 7 96 × 105 H− 1
(3A-7)

k2 =
1

μ0Ag

=
1

4π × 10− 7 4 × 10− 4 = 1 99 × 109 m H
(3A-8)

Therefore,

Wc =

1
2
k0
k2

i2

k1
k2

+ x
(3A-9)

Now, from (3.5-16),

f e i, x =
∂Wc

∂x

= −

1
2

k0
k2

i2

k1
k2

+ x
2

= −

1
2

5 025 × 10− 6 × 102

3 995 × 10− 4 + 3 × 10− 3 2 = − 21 74 N an attractive force

(3A-10)

A force is established in a magnetic system to minimize the reluctance.
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Let us now consider the two-phase symmetrical machine. From (3.4-25),
(3.4-39), and (3.4-44), we can express the field energy as

Wf i, θr =
1
2
Lssi

2
as +

1
2
Lssi

2
bs +

1
2
Lrri

2
ar +

1
2
Lrri

2
br + Lmsiasiar cos θr−Lmsiasibr sin θr

+ Lmsibsiar sin θr + Lmsibsibr cos θr
(3.5-17)

For a magnetically linear system Wf = Wc and Te becomes

Te = −Lms iasiar + ibsibr sin θr + iasibr − ibsiar cos θr (3.5-18)

Now since θr = θ− β, andwith considerable work, (3.5-18) may be written in terms
of substitute variables for a two-pole machine, as

Te = Lms iqsidr − idsiqr (3.5-19)

where Te is positive for motor action. Also, (3.5-19) can be written as

Te = λqridr − λdriqr (3.5-20)

or

Te = λdsiqs − λqsids (3.5-21)

We can determine the torque by a different approach. That is, the torque is the
cross product of the total flux, ϕ, and the total mmf. To do this we will start with
mmf s and mmf r in the arbitrary reference frame from (2.3-7) and (3.4-2):

mmf s =
Ns

2
iqs cosϕ + ids sinϕ (3.5-22)

mmf r =
Nr

2
iqr cosϕ + idr sinϕ (3.5-23)

These expressions are for one half of the mmfs, so that the total MMFs would be

MMFs = Ns iqs cosϕ + ids sinϕ (3.5-24)

MMFr = Ns iqr cosϕ + idr sinϕ (3.5-25)

where MMFr is referred to the Ns winding. Now, in order to obtain the total flux,
we must divide (3.5-24) by the total reluctance which includes both air gaps. The
cross product, Te, becomes

Te =
MMFs

m
× MMFr

=
Ns

m
iqs cosϕ + ids sinϕ x Ns iqr cosϕ + idr sinϕ

(3.5-26)
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which becomes

Te = Lms iqsidr − idsiqr (3.5.27)

which is (3.5.19). For the three-phase machine, we need only to replace Lms in

(3.5-19), (3.5-20), (3.5-21), and (3.5-27) with LMs , and multiply (3.5.27) by
3
2
due

to Park’s 2
3
factor.

From (3.5-19) and (3.5.27), torque can be evaluated by the same variables in any
reference frame. In other words, torque is invariant regardless of the reference
frame. Another way of looking at this is the input power may be expressed as

P = Vabs
T iabs (3.5-28)

In terms of qs- and ds-variables,

Vabs
Tiabs = Ks

− 1vqds Ksiqds

= vqds
T
− Ks

− 1 T
Ks

− 1iqds
(3.5-29)

Now,

Ks
− 1 T

= Ks (3.5-30)

Therefore,

vabs
Tiabs = vqds

T
iqds (3.5-31)

Now, Teωr is the power output, therefore, since power input is invariant in all ref-
erence frames and since ωr is a scalar, Te is also invariant in all reference frames.

SP3.5-1. Neglect the reluctance of the ferromagnetic core in Example 3.A and cal-
culate f e. [−27.92 N]

SP3.5-2. Rearrange the magnetic circuit in Fig. 1.3-1 to produce a repelling force
between pole faces. [The force will always be in the direction to minimize the
reluctance of the magnetic system.]

SP3.5-3. Using mmf s and mmf r obtain Te for ϕs =
π
2 for ids and following the pro-

cedure used for (3.5-26).
SP3.5-4. Obtain (3.5.27) from (3.5-26). [ cosϕ x cosϕ = 0, cosϕ x sinϕ = 1,

sinϕ x cos 0 = − 1]
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3.6 P-Pole Machines

Thus far, we have considered only two-pole electromechanical motion devices;
however, they may have any even number of pole pairs (2, 4, 6, 8, …) up to more
than 40 in the case of large hydroturbine generators. It happens that with a simple
change of variables we can analyze all machines as if they were two-pole devices.
We need only to modify the expression for evaluating torque and the actual rotor
speed of a machine with more than two poles will be a multiple less than a two-
pole machine.
The rotating air-gap mmf of a machine with more than two poles can be deter-

mined by considering the four-pole device shown in Fig. 3.6-1. In this figure, each
phase winding consists of two series-connected windings, each of which is
assumed to be sinusoidally distributed. For example, as1 represents a group of

conductors sinusoidally distributed over 0 < ϕs <
1
2
π. The phase windings consist

bs1 axis

as1 axisas2 axis bs2 bs1

as1

bs2 axis

as2

Ns

as2′

as1′
bs1′

bs1

ibsrs

vbs

bs2′
as1

bs2vas

ias

rs

bs1′

as1′
as2

as2′
bs2′

ϕs

–

–

+

+

2
Ns
2

Ns
2

Ns
2

Figure 3.6-1 Stator winding arrangement of a four-pole, two-phase symmetrical
electromechanical device. Flux streamlines shown for Ias maximum positive and Ibs is zero.
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of Ns turns, with Ns
P
2 turns in each of the two series-connected windings. There

may be some confusion in regard to notation. In Fig. 3.6-1, the notation as1, bs1, …
is used to denote sinusoidally distributed windings; however, a subscripted num-
ber denotes a coil.

Note that the maximum turns density for a winding occurs every
1
2
π radians and

each phase winding establishes two magnetic systems. As shown in Fig. 3.6-1, at
the instant when Ibs = 0 and Ias is a positive maximum, the as1 − as1 part of the as
winding produces positive flux in the as1-axis direction whereas the as2 − as2 part
of the aswinding produces positive flux in the as2-axis direction. South poles occur

from ϕs = −
1
4
π to

1
4
π and ϕs =

3
4
π to

5
4
π . Now, as shown in Fig. 3.6-1 by the

streamlines, half of the flux that enters the stator steel from −
1
4
π < ϕs <

1
4
π reen-

ters the air gap between ϕs =
π

4
and

π

2
; the other half between ϕs = −

π

4
and −

π

2
.

The flux that enters the stator from ϕs =
3
4 π to

5
4 π divides similarly. Hence, for

Ias = 2Is and Ibs = 0, two north poles occur; one from ϕs =
π

4
to ϕs =

3
4
π and

from ϕs =
5
4
π to ϕs =

7
4
π.

The air-gap mmf established by each phase is a sinusoidal function of 2ϕs for a
four-pole machine, or, in general, P 2 ϕs , where P is the number of poles. In
particular,

mmfas =
2
P

Ns

2
ias cos

P
2
ϕs (3.6-1)

mmfbs =
2
P

Ns

2
ibs sin

P
2
ϕs (3.6-2)

where Ns is the total equivalent turns per stator phase. For balanced steady-state
operation, the stator currents may be expressed as

Ias = 2Is cos ωet + θesi 0 (3.6-3)

Ibs = 2Is sin ωet + θesi 0 (3.6-4)

Equations (3.6-3) and (3.6-4) are the same expressions for the stator currents as
given for the two-pole case. Also, (2.2-9) would become

mmf ss =
2
P

Ns

2
2Is cos ωet + θesi 0 −

P
2
ϕs (3.6-5)

With the stator arranged as in Fig. 3.6-1, balanced steady-state stator currents of
frequency ωe produce a four-pole (P-pole) magnetic system that rotates about the
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air gap at 2 4 ωe or 2 P ωe relative to a stationary observer. How do we know
that?Well in order for (3.6-5) to be a constant, the argument of the cosinemust be a

constant and this occurs when
P
2
ϕs is equal to ωet . In other words, when

ϕs =
2
P
ωet . Therefore, the speed of the rotating mmf (rotating poles) is now

2 P ωe which is the synchronous speed of the machine; however, the stator vari-
ables are unaware of this. To the electric system, ωe is synchronous speed.
A four-pole stator winding and a four-pole rotor winding are shown in Fig. 3.6-2.

The mutual inductance between the as- and ar-windings may be expressed as

Lasar = Lsr cos 2θrm (3.6-6)

where θrm is the actual rotor displacement. In the two-pole case, Fig. 2.2-1, we used
θr. We are going to give a newmeaning to θr in just a minute. Let us first generalize
the argument of the cosine in (3.6-6). Thus,

Lasar = Lsr cos
P
2
θrm (3.6-7)

If we let

P
2
θrm = θr (3.6-8)

then (3.6-7) becomes what we had for the two-pole case. Now, θrm is the actual
rotor displacement and θr is what is referred to as the electrical angular position
of the rotor. What in the world does that mean? Well, let us be stator variables; we
do not know or care howmany pole pairs the machine has, so we will assume that
both the stator and rotor have two poles. Thus, the electrical system is rotating at
ωeand it thinks the rotor speed isωr since we assumed it to be a two-pole stator and
rotor. Therefore, ωr is now the rotor speed “referred” to the angular velocity of the

ar 1 axis

as1 axisas2 axis

as2

as2′
ar2′

ar1′
as1′

ar2 axis as1

ar1

ar2 ϕs θrm

Figure 3.6-2 Mutual coupling between four-pole stator, as, and rotor, ar, windings.
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electrical system and (3.6-8) applies regardless of how many even-number poles
are on the stator and rotor.
Although we see that if we substitute (3.6-8) into (3.6-7), the result is the mutual

inductance for a two-pole system as given by (3.4-32); however, what about the
mutual inductance between stator windings as shown in Fig. 3.6-1? In the case of
the two-pole machine, Lasbs = 0, since the magnetic axes are orthogonal. Note,
however, that in the four-pole machine in Fig. 3.6-1, the bs winding is displaced
45∘ counterclockwise from the as winding. If we assume, for a minute, that in
Fig. 3.6-1, we rotated the bs-winding clockwise 45∘, it would be atop the as-winding
and Lasbswould be similar to (3.6-7) except Lasar would be replaced by Lasbs, and Lsr

would be replaced by Lms and θrm by the angle between as and bs windings. If now
we rotate the bs-winding counterclockwise by an angle of 45∘, then Lasbs would be
zero. From here on out, we will treat all electric machines as two-pole devices,
knowing full well that (3.5-8) is the relationship between θr and θrm and

P
2
ωrm = ωr (3.6-9)

where ωr is referred to as the electrical angular velocity of the rotor.
Now, since we are going to treat all machines as two-pole devices and use θr in

all the voltage equations, we have to do one last thing in order to make things work
out. In Section 3.5, we expressed the change in energy entering the coupling field
from the mechanical system as

dWm = −Tedθr (3.6-10)

and the torque Te as

Te i, θr =
∂Wc i, θr

∂θr
(3.6-11)

Equation (3.6-10) must now be written in terms of θrm,

dWm = −Tedθrm (3.6-12)

and since θrm =
2
P
θr , (3.5-11) becomes

Te i, θr =
P
2
∂Wc i, θr

∂θr
(3.6-13)

Therefore, all expressions of torque, Te, must be multiplied by
P
2
.

The torque and speed may be related by

Te = J
2
P

dωr

dt
+ Bm

2
P

ωr + TL (3.6-14)
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where P is the number of poles, J is the inertia in kg m2, Bm is the damping coef-
ficient in N m s/rad, and TL is positive for a load torque.

Example 3.B Torque Calculation for Four-Pole Machine

Consider the four-pole device shown in Fig. 3.6-2. Lsr = 0 1 H,Ns = 2Nr, Lls = 2Llr
where Lls = 0 1Lms, ias = 2iar = 2 A Determine the coenergyWc and the torque Te

With m the total reluctance of the two air gaps.

Lsr =
NsNr

m
= 0 1H (3B-1)

Lms =
N2

s

m
(3B-2)

Lmr =
N2

r

m
(3B-3)

Therefore,

Lms =
Ns

Nr
Lsr

= 2Lsr = 0 2H
(3B-4)

and

Lmr = Lms
Nr

Ns

2

= Lms
1
2

2

= 0 05 H

(3B-5)

Also,

Lls = 0 1 Lms = 0 02 H (3B-6)

Llr = 0 5 Lls = 0 01 H (3B-7)

Now,

Wc =
1
2
Lssi

2
as + Lasar iasibs +

1
2
Lrri

2
br (3B-8)

where

Lss = Lls + Lms = 0 02 + 0 2 = 0 22 H (3B-9)

Lasar = 0 1 cos θr (3B-10)

Lrr = Llr + Lmr = 0 01 + 0 05 = 0 06 H (3B-11)
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Wc =
1
2

0 22 2 2 + 0 1 2 1 cos θr +
1
2

0 06 1 2

= 0 44 + 0 2 cos θr + 0 03 = 0 47 + 0 2 cos θr J
(3B-12)

The torque may be calculated using (3.6-13), that is,

Te i, θr =
P
2
∂Wc i, θr

∂θr

=
4
2

∂ 0 2 cos θr
∂θr

= − 0 4 sin θr N m

(3B-13)

or

Te i, θrm = − 0 4 sin
P
2
θrm (3B-14)

SP3.6-1. A six-pole, 60 Hz induction motor is operating with rated frequency
applied voltages. What is the speed in rad/s of mmf s? [125.7 rad/s]

SP3.6-2. Suppose θesi 0 = 45∘ in (3.6-3) and (3.6-4). For a six-pole two-phase sta-
tor, determine the location of the positive and negative maximum values of
mmf ss at time zero. Ss at ϕs = 15∘,135∘,255∘; Ns at ϕs = 75∘,195∘,315∘]

SP3.6-3. The rotor speedωrm of a six-pole 60 Hz two-phase inductionmotor is 0.3ωe.

Express (a) Iar (b) I s
qr , and (c) Iar for balanced steady-state operation with

I
s
qr = Ir 30∘ . [(a) Iar = 2 Ir cos 0 0333ωet+30∘ ; (b) I s

qr = 2 Ir cos ωet+30∘ ;

(c) Iar = I
s

qr]

3.7 Free Acceleration Variables Viewed from Different
Reference Frames

It is instructive to view the free acceleration variables from the stationary, rotor,
and synchronous reference frames. Free acceleration is when full voltage is
applied at stall with TL = 0 and without rotational losses represented. We will
see that the torque appears the same in all reference frames and the voltage
and currents form a balance set in all asynchronously rotating reference frames
with a steady-state frequency equal to ωe −ω, while in the synchronous reference
frame the steady-state variables are dc. The plots shown in Figs. 3.7-1 and 3.7-2 are
the actual machine variables during free acceleration. The torque versus rotor
speed is shown in Fig. 3.7-2. The performance characteristics given in this
section are for the single-fed two-pole two-phase 5-hp 110-V (rms) 60-Hz induction
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machine with the following parameters: rs = 0 295Ω, Lls = 0 944 mH,
Lms = 35 15 mH, rr = 0 201Ω, and Llr = 0 944 mH. The inertia of the rotor and
connected mechanical load is J = 0 026 kg m2.
The plots shown in Figs. 3.7-3 through 3.7-5 are for the same free acceleration as

viewed from the stationary, synchronous, and rotor reference frames. Torque is the

ibs,A

iár,A

ib́r,A

Te,N · m

0.1 s

0

40

20

–200

200

0

–200

200

0

–200

200

0

–200

200

0

377

0

156

–156

0

ωr, rad/s

ias,A

vas,V

Figure 3.7-1 Free-acceleration characteristics of a two-pole two-phase 5-hp induction
motor – actual machine variables.
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same regardless of the reference frame from which it is being viewed; and all
steady-state voltages and currents are varying at the same frequency in each ref-
erence frame. This is necessary since the change of variables provides a portrayal of
the rotating mmfs from that reference frame. That is, mmf s rotates at ωe and is
established by balanced currents flowing in the as- and bs-windings of frequency
ωe. The fictitious circuits for isqs and isds are also fixed in the stator; the stationary

reference frame. Therefore, these currents would vary at ωe the same as ias and ibs.
The fictitious windings for the rotor currents isqr and isdr are also flowing in station-

ary fictitious circuits; therefore, they would be balanced and vary at ωe in order for
mmf r to rotate at ωe. Another way to look at this is the actual rotor currents vary at
ωe −ωr . When viewed from the stationary reference frame where the fictitious
rotor windings are located, the frequency of the substitutive variables will be
ωe −ωr + ωr = ωe in order to produce a rotating magnetic field rotating at ωe .
The free acceleration as viewed from the synchronous reference frame is shown
in Fig. 3.7-4. In this reference frame, the fictitious circuits are rotating at ωe; there-
fore, since both mmf es and mmfer are constant in the steady state, the currents flow-
ing in these fictitious circuits must be constant in the steady state for a given rotor

50

40

30

Te, N·m

10

–10

0
1800 3600

Speed, r/min

Figure 3.7-2 Torque versus speed during free-acceleration shown in Fig. 3.7-1.
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speed. The transient offsets in the stator and rotor currents appear as small ωe

variations in the synchronously rotating reference frame currents.
The free acceleration as viewed from the rotor reference frame is shown in

Fig. 3.7-5. This is an interesting reference frame since its speed varies as the rotor

vs
qs, V

156

–156

0

isqs, A

200

–200

0

isds, A

200

–200

0

i′sqr, A

200

–200

0

i′sdr, A

Te,N·m

ωr, rad/s

200

–200

0

40

20

0

377

0

0.1 s

Figure 3.7-3 Free acceleration as viewed from the stationary reference frame.
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accelerates from ωr = 0 (stationary reference frame) to ωr = ωe (synchronously
rotating reference frame). Therefore, the fictitious circuits are stationary and
the currents start with a frequency of ωe and irqs and irds end as constants and irqr
and irdr end as zeros. Since mmfer is zero at ωr = ωe.

ve
qs, V

ieqs, A

ieds, A

i′eqr, A

i′edr, A

Te ,N·m

ωr, rad/s

156

0

200

0

200

–200

0

0

–200

0

40

377

0

0

0.1 s

Figure 3.7-4 Free acceleration viewed from the synchronously rotating reference frame.
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Example 3.C Write the Voltage Equations in the Synchronously Rotating
Reference Frame

From Fig. 3.4-2 with ω = ωe.

veqs = rsi
e
qs + ωe Lssi

e
ds + Lmsi

e
dr + Lss

dieqs
dt

+ Lms
di eqr
dt

(3C-1)

vr
qs,V

irqs,A

irds,A

i′rqr,A

i′rdr,A

Te,N · m

ωr, rad/s

0.1 s

0

40

20

–200

200

0

–200

200

0

–200

200

0

–200

200

0

377

0

156

–156

0

Figure 3.7-5 Free acceleration as viewed from rotor reference frame.
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veds = rsi
e
ds −ωe Lssi

e
qs + Lmsi

e
qr + Lss

dieds
dt

+ Lms
di edr
dt

(3C-2)

v e
qr = rri

e
qr + ωe −ωr Lrri

e
dr + Lmsi

e
ds + Lrr

di eqr
dt

+ Lms
dieqs
dt

(3C-3)

v e
dr = rri

e
dr − ωe −ωr Lrri

e
qr + Lmsi

e
qs + Lrr

di edr
dt

+ Lms
dieds
dt

(3C-4)

SP3.7-1. Determine the steady-state frequency for a given speed of (a) iar and ibr in

Fig. 3.7-1, (b) i sqr and i sdr in Fig. 3.7-3, and (c) ieqr and iedr in Fig. 3.7-4. [(a) ωe −ωr,

(b) ωe and zero at ωr = ωe, (c) dc for ωr ωe and zero for ωr = ωe]
SP3.7-2. Repeat SP3.7-1 for the stator-related variables. [(a) ωe, (b) ωe, (c) dc]
SP3.7-3. Why are veqs in Figs. 3.7-4 and 3.7-5 different? [In Fig. 3.7-4 ω = ωe from

ωr = 0 in Fig. 3.7-5 ωr becomes ωe at ωr = ωe and veqs becomes the value corre-

sponding to values at time ωr became equal to ωe]

3.8 Steady-State Equivalent Circuit

In this section, we will set forth the instantaneous and steady-state phasors and the
steady-state equivalent circuit. The instantaneous phasor equations may be
obtained by a procedure used in Chapter 2. In particular, we will substitute the
voltage equations in the synchronously rotating reference frame given by (3C-1)
through (3C-4) into

f as = f eqs − jf eds (3.8-1)

f ar = f e
qr − jf e

dr (3.8-2)

The instantaneous phasor voltage equations from Example 3.C which are in the
synchronous reference frame become

vas = rsias + jωeLssias + jωeLmsiar + pLssias + pLmsiar (3.8-3)

var = rsiar + j ωe −ωr Lrriar + j ωe −ωr Lmsias

+ pLrriar + pLmsias
(3.8-4)

For steady-state conditions the last two terms of (3.8-3) and (3.8-4) become zero
and we obtain the following steady-state voltage equations which are rotating atωe

as a phasor

Vas = rsIas + jωe Lls + Lms Ias + jωeLmsIar (3.8-5)
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Var = rrIar + j ωe −ωr Llr + Lms Iar + j ωe −ωr LmsIas (3.8-6)

The so-called “slip” is

s =
ωe −ωr

ωe
(3.8-7)

We see that slip increases when load torque increases, also, if we divide (3.8-6) by
the slip, it becomes

Var

s
=

rr
s
Iar + jωe Llr + Lms Iar + jωeLmsIas (3.8-8)

Equations (3.8-5) and (3.8-8) suggest the single-phase equivalent T circuit of a two-
phase symmetrical machine during steady-state balanced operation shown in
Fig. 3.8-1. Please note that the inductive reactances are calculated as X = ωeL.
One tends to want to calculate the inductive reactances of the rotor circuit as
X = ωe −ωr L and (3.8-6) is of the form we would expect; however, we have

divided (3.8-6) by ωe −ωr and multiplied by ωe to arrive at (3.8-8). With Var equal

to zero, only rr
s changes with rotor speed.

We understand that current is not induced in the rotor windings when ωr = ωe.
Since the rotor windings are generally short-circuited (var and vbr = 0) and from

(3.8-7) the slip is zero and
rr
s
is infinite; hence, the rotor circuit appears to be open-

circuited, thus correctly portraying synchronous speed “operation.” We will find

that, with a slight modification (Xms becomes
3
2
Xms), this circuit may also be used

to calculate the per-phase steady-state performance of a three-phase symmetrical
machine.
An expression for the steady-state electromagnetic torquemay be obtained by first

writing (3.5-19) in terms of Ieqs, I
e
ds, I

e
qr, and I e

dr, and then express Ias and Iar using

+

–

+

–

Vas
˜

Ias

rs

rŕ

jXms

jXls jXĺr

˜ Iár
˜

˜

s

Vár
s

Figure 3.8-1 Equivalent single-phase circuit for a two-phase symmetrical induction
machine for balanced steady-state operation.
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2Fas = Fe
qs − jFe

ds (3.8-9)

2Far = Fe
qr − jFe

dr (3.8-10)

The expression may be reduced to

Te = Np
P
2

Lms Re jI
∗
asIar (3.8-11)

where I
∗
as is the conjugate of Ias. The phasor currents may be calculated from the

equivalent circuit given in Fig. 3.8-1. For a three-phasemachine Lmsmust bemulti-

plied by
3
2
and Np is either 2 or 3 depending on the number of phases.

The balanced steady-state torque-speed or torque-slip characteristic of a single-
fed induction machine warrants discussion. The vast majority of induction
machines in use today are single-fed, wherein electric power is transferred to or
from the induction machine via the stator circuits with the rotor windings

short-circuited. Therefore, Var is zero, whereupon (3.8-8) may be written as

Iar = −
jXms

rr s + j Xlr + Xms
Ias (3.8-12)

Substituting (3.8-12) into (3.8-11) yields the following expression for electromag-
netic torque of a single-fed two-phase symmetrical induction machine during bal-
anced steady-state operation:

Te =
Np P 2 X2

ms ωe rr s Ias
2

rr s
2
+ Xlr + Xms

2 (3.8-13)

In (3.8-12) and (3.8-13), Xms is replaced by
3
2
Xms for a three-phase machine.

It is important tonote from (3.8-13) that torque is positive (motor action)when slip
is positive which occurs whenωr < ωe, negative (generator action) when the slip is
negative which occurs when the rotor is being driven above synchronous speed,
ωr > ωe , and zero when the slip is zero ωr = ωe . In other words, the single-
fed induction machine develops torque at all speeds except at synchronous speed.
With the rotor windings short-circuited, the input impedance of the equivalent

circuit shown in Fig. 3.8-1 is

Z =
rsrr s + X2

ms −XssXrr + j rr s Xss + rsXrr

rr s + jXrr

(3.8-14)

For a three-phase machine, Xms is replaced with
3
2
Xms. Now Ias

2
is I2s and
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Is =
Vas

Z
(3.8-15)

Hence, the expression for the steady-state electromagnetic torque for a single-fed
two-phase symmetrical induction machine becomes

Te =
Np P 2 X2

ms ωe rrs Vas
2

rsrr + s X2
ms −XssXrr

2
+ rrXss + srsXrr

2 (3.8-16)

Again, for a three-phase machine, Xms is replaced with 3
2Xms. Thus, for a given set

of parameters and source frequencyωe, the steady-state torque varies as the square
of the magnitude of the applied voltages.
Figure 3.8-2 shows the steady-state torque speed plot of a typical industrial-type

induction motor. Stable operation occurs on the negative slope part of this plot.

Example 3.D Phasor Diagram for Steady-State Operation

Considera single-fed two-pole two-phase 5-hp110-V (rms)60-Hz inductionmachine
with the following parameters: rs = 0 295Ω, Lls = 0 944 mH, Lms = 35 15 mH ,

rr = 0 201Ω, and Llr = 0 944 mH. Calculate Ias, Iar, Te, draw the phasor diagram,
and show the rotor and stator poles for (a) s = 0.05 and (b)s = − 0 05 The equiv-
alent circuit for (a) and (b) is shown in Fig. 3.D-1. The inductive reactances are
calculated as ωe times the inductance in henrys.

rs = 0 295Ω Xms = 13 252Ω rr = 0 201Ω
Xls = 0 356Ω Xlr = 0 356Ω

Te

M
ot

or
G

en
er

at
or

–1.0
2.0

–0.6
1.6

–0.2
1.2

0.2
0.8

0.6
0.4

1.2
–0.2

1.6
–0.6

2.0
–1.0

ωr /ωe
slip

Figure 3.8-2 Steady-state torque-speed characteristics of a symmetrical induction
machine.
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For part (a):

rr
s

=
0 201
0 05

= 4 02Ω (3D-1)

Zin = rs + jXls +

rr
s

+ jXlr jXms

rr
s

+ j Xlr + Xms

= 0 295 + j0 356 +
4 02 + j0 356 j13 252

4 02 + j 0 356 + 13 252
= 4 175 24 64o Ω

(3D-2)

Ias =
Vas

Zin

=
110 0∘

4 175 24 64∘
= 26 35 − 24 64∘ A

(3D-3)

With Var = 0, Iar may be obtained from Ias by current division. That is,

Iar = −
jXms

rr s + jXrr

Ias

= −
j13 252

4 02 + j 0 356 + 13 252
26 35 − 24 64∘

= − 24 61 − 8 18∘ = 24 61 171 8∘ A

(3D-4)

rs

Iár
˜

jXls

jXms

jXʹlr

Vas

rs = 0.295Ω

Xls = 0.356Ω Xĺr = 0.356Ω

Xms = 13.252Ω rŕ = 0.201Ω

˜
Ias
˜

rŕ
s

+

–

Figure 3.D-1 Equivalent circuit for steady-state operation of a single-fed induction
machine.
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From (3.8-11),

Te = Np
P
2

LmsRe jI
∗
asIar

= 2
2
2

35 15 × 10− 3 Re 26 35 24 64 + 90 24 61 171 8

= 12 9 N m

(3D-5)

The torque is positive in the direction of rotation, motor action. The phasor dia-
gram for part (a) is shown in Fig. 3.D-2. The stator poles are “pushing” the rotor
poles counterclockwise, motor action.
For part (b):

rr
− 0 05

= − 4 02Ω (3D-6)

In the calculation, we need to replace
rr
s

= 0 402Ω in part (a) with

rr
s

= − 0 402Ω. Thus,

Zin = 3 648 151 5∘ Ω (3D-7)

Ias = 30 154 − 151 5∘ A (3D-8)

Iar = 28 2 12∘ A (3D-9)

d axis

q axis

Iár
˜

Sr

Ss

Ias
˜

Vas
˜Nr

Ns

Figure 3.D-2 Phasor diagram, motor action.
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From (3.8-11),

Te = 2
2
2

35 15 × 10− 3 Re j30 15 151 5 28 2 12

= − 17 0 N m
(3D-10)

The torque is negative in the direction of rotation, generator action. The phasor
diagram is shown in Fig. 3.D-3. Therein, the rotor poles are “pushing” the stator
poles counterclockwise, generator action.

We can determine motor or generator action using the cross product rule

(3.5-26). Therein, A is
mmf s

m
and B is mmf r. From Fig. 3.D-2, AxB is a torque vector

positive for motor action out of the paper. In Fig. 3.D-3, AxB is a torque vector in
the opposite direction, into the paper, generator action.
In most cases, the load torque is a function of ωr, say TL = Kω2

r, for example. In
these cases, the machine can develop sufficient starting torque and, if TL and Te

match on the negative slope portion, stable operation will occur. If, on the other
hand, TL is constant and greater than Te at ωr = 0, we have at least three choices:
(1) increase the stator voltage; (2) increase the rotor resistance; or (3) use a differ-
ent machine. Increasing the rotor resistance to increase the starting torque is
something that we have not yet discussed. We will now.
An expression for the slip at maximum torque may be obtained by taking the

derivative of (3.8-16) with respect to slip and setting the result equal to zero. In
particular,

sm = rrG (3.8-17)

where sm is the slip at maximum torque and

G = ±
r2s + X2

ss

X2
ms −XssXrr

2
+ r2s X

2
rr

(3.8-18)

d axis

q axis

Ias
˜

Iár
˜

Vas

Nr

Ns

Sr

Ss

˜

Figure 3.D-3 Phasor diagram, generator action.
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where Xms is replaced by
3
2
Xms for a three-phase machine. Two values of slip at

maximum torque, sm , are obtained, one for motor action and one for generator
action. It is important to note that G is not a function of rr; thus, the slip at max-
imum torque, (3.8-17), is directly proportional to rr. Consequently, with all other
machine parameters constant, the speed at which maximum steady-state torque
occurs may be varied by inserting external rotor resistance. This feature is often
used when starting large motors which have coil-wound rotor windings with slip
rings. In this application, balanced external rotor resistances are placed across the
terminals of the rotor windings so that maximum torque occurs near stall. As the
machine speeds up, the external resistors are decreased in value. On the other
hand, some induction machines are designed with high-resistance rotor windings
so that maximum torque is produced at or near stall to provide fast response.
It may at first appear that the magnitude of the maximum torque would be influ-

enced by rr. However, if (3.7-12) is substituted into (3.7-16), the maximum torque
may be expressed as

Te, max =
Np P 2 X2

ms ωe G Vas
2

rs + G X2
ms −XssXrr

2
+ Xss + GrsXrr

2 (3.8-19)

where Xms is replaced by 3
2Xms for a three-phase machine and Np is the number of

phases, either two or three. Equation (3.8-19) is independent of rr. Thus, the max-
imum torque remains constant if only rr is varied; however, the slip at which
maximum torque is produced varies in accordance with (3.8-17). Figure 3.8-3
illustrates the effect of changing rr . Therein, rr3 > rr2 > rr1.
In variable-frequency drive systems, the operating speed of the inductionmachine

is controlled by changing the frequency of the applied voltages by either a converter
(solid-state dc-to-ac converter) or a cyc1oconverter (ac frequency changer). The pha-
sor voltage equations are applicable regardless of the frequency of operation. It is
only necessary to keep in mind that the reactances given in the steady-state equiv-
alent circuit, Fig. 3.8-1, are defined as the product ofωe and the inductances. As the
frequency is decreased, the time rate of change of the steady-state variables is
decreased proportionally. Thus, the inductive reactances decrease linearly with
frequency. If the amplitude of the applied voltages is maintained at the rated value,
the currents will become excessive at the lower frequencies. To prevent these large
currents, the magnitude of the stator voltages is decreased as the frequency is
decreased. In many applications, the voltage magnitude is reduced linearly with
frequency until a low frequency is reached, whereupon the decrease in voltage
is programmed in a manner to compensate for the effects of the stator resistance.
The influence of frequency upon the steady-state torque-speed characteristics is

illustrated in Fig. 3.8-4. These characteristics are for a linear relationship between
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Figure 3.8-3 Steady-state torque-speed characteristics of a symmetrical induction
machine for different values of rr .
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Figure 3.8-4 Steady-state torque-speed characteristics of a symmetrical induction
machine for different operating frequencies.
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the magnitude of the applied voltages and frequency. This machine is designed to
operate at ωe = ωb, where ωb corresponds to the rated frequency. Rated voltage is

applied at rated frequency, that is, when ωe = ωb, Vas = VB, where VB is the base

or rated voltage. Since the reactances ωeL decrease with frequency, the voltage is
reduced as frequency is reduced to avoid large stator currents. The maximum tor-
que is reducedmarkedly atωe ωb = 0 1. At this frequency, the voltage would prob-
ably be increased somewhat so as to obtain a higher torque. Perhaps a voltage of,
say, 0 15VB or 0 2VB would be used rather than 0 1VB . Saturation of the stator
or rotor steel may, however, cause the stator currents to be excessive at this
higher voltage. These practical considerations of variable-frequency drives are
of major importance but beyond the scope of this text. However, we will encounter
variable frequency operation later when we deal with field orientation of an induc-
tion machine.

Example 3.E No-Load and Blocked-Rotor Tests

The parameters for the equivalent circuit shown in Fig. 3.8-1 may be calculated by
using electromagnetic field theory or determined from tests. The tests generally
performed are a dc test, a no-load test, and a blocked-rotor test. Table 3.E-1 gives
the test data for a 3-hp four-pole 110-V (rms) two-phase 60-Hz induction machine,
where all ac voltages and currents are in rms values:

During the dc test, a dc voltage is applied to one phase while the machine is at
standstill. Thus,

rs =
Vdc

Idc
=

6 9
13

= 0 531Ω (3E-1)

The no-load test, which is analogous to the transformer open-circuit test, is per-
formed with balanced 60-Hz voltages applied to the stator windings without
mechanical load on the rotor (no load). The total power input during this test is
the sum of the stator ohmic losses per phase, the core losses due to hysteresis

Table 3.E-1 Test data to determine machine parameters.

DC test No-load test Blocked-rotor test

Vdc = 6 9 V Vnl = 110 V Vbr = 23 5 V

Idc = 13 0 A Inl = 3 86 A Ibr = 16 1 A

Pnl = 134W Pbr = 469W

f = 60 Hz f = 15 Hz
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and eddy currents, and rotational losses due to friction and windage. The total sta-
tor ohmic losses (two phases) are

Pr = NpI
2
nlrs = 2 3 86 2 0 53 l = 15 8W (3E-2)

Therefore, the power loss due to friction, windage, and core losses is

PfWC = Pnl −Pr = 134− 15 8 = 118 2W (3E-3)

In the equivalent circuit shown in Fig. 3.8-1, the core loss is neglected. It is gen-
erally small and, in most cases, little error is introduced by neglecting it. It can be
approximated by placing a resistor in shunt with the magnetizing reactance Xms.
The friction and windage losses may be approximated with Bm in (3.5-8).
It is noted from the no-load test data that the power factor is very small since the

total apparent two-phase power input, Sn1, to the motor is

Sn1 = NpVnlInl = 2 110 3 86 = 849 2 VA (3E-4)

Therefore, the no-load impedance is highly inductive, and its magnitude is
assumed to be the sum of the stator leakage reactance and the magnetizing reac-
tance since the rotor speed is essentially synchronous, s≈ 0 , whereupon rr s is
much larger than Xms in Fig. 3.8-1. Thus,

Xls + Xms
Vnl

Inl
=

110
3 86

= 28 5Ω (3E-5)

During the blocked-rotor test, which is analogous to the transformer short-
circuit test, the rotor is locked by somemechanical means and balanced two-phase
stator voltages are applied. The frequency of the applied voltages is often less than
rated in order to obtain a representative value of rr, since during normal operation
the frequency of the rotor currents is low and the rotor resistance of some induc-
tion machines varies considerably with frequency. During stall s = 1 , the rotor
impedance rr s + jXlr is much smaller inmagnitude than Xms, whereupon the cur-
rent flowing in the magnetizing reactance may be neglected in these calculations.
Hence, the total two-phase power input to the motor during the blocked-rotor
test is

Pbr = NpI
2
br rs + rr (3E-6)
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From which

rr =
Pbr

2I2br
− rs =

469

2 16 1 2 − 0 531 = 0 374Ω (3E-7)

The magnitude of the blocked-rotor input impedance is

Zbr =
Vbr

Ibr
=

23 5
16 1

= 1 46Ω (3E-8)

Thus, since the frequency of the applied voltage for the block-rotor test is 15 Hz,

rs + rr + j
15
60

Xls + Xlr = 1 46Ω (3E-9)

From which

15
60

Xls + Xlr

2

= 1 46 2
− rs + rr

2

= 1 46 2
− 0 531 + 0 374 2 = 1 31Ω

(3E-10)

Thus,

Xls + Xlr = 4 58Ω (3E-11)

Generally, Xls and Xlr are assumed equal; however, in some types of induction
machines, a different ratio is suggested. We will assume Xls = Xlr , whereupon
we have determined the machine parameters. In particular, for ωe = 377 rad s,
the parameters are rs = 0 531Ω , Xls = 2 29Ω , Xms = 26 2Ω , rr = 0 374Ω , and
Xlr = 2 29Ω.

Example 3.F Starting Torque and Current Calculations

A four-pole 110-V (rms) 28-A 7.5-hp two-phase induction motor has the following
parameters: rs = 0 3Ω , Lls = 0 0015 H , Lms = 0 035 H , rr = 0 15Ω , and
Llr = 0 0007 H. The machine is supplied from a 110-V 60-Hz source. Calculate
the starting torque and starting current.
It would be convenient to use a computer to solve for the starting current and

torque if the electrical and mechanical transients are to be considered. However,
an approximation of the actual starting characteristics may be obtained from a
constant-speed steady-state analysis. For this purpose, it is assumed that the speed
is fixed at zero and the electric system has established steady-state operation.

Xss = ωe Lls + Lms = 377 0 0015 + 0 035 = 13 76Ω (3F-1)

Xrr = ωe Llr + Lms = 377 0 0007 + 0 035 = 13 46Ω (3F-2)

Xms = ωeLms = 377 0 035 = 13 2Ω (3F-3)
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The steady-state torque with ωr = 0 (s = 1) may be calculated from (3.8-16).

Te =
Np P 2 X2

ms ωe rrs Vas
2

rsrr + s X2
ms−XssXrr

2
+ rrXss + srsXrr

2

=
2

4
2

13 22 377 0 15 1 110 2

0 3 0 15 + 1 13 22− 13 76 13 46 2 + 0 15 13 76 + 1 0 3 13 46 2

= 21 4N m

(3F-4)

Since s = 1, the rotor impedance in parallel with Xms is much smaller than Xms.
Thus, for this mode of operation, the input impedance is approximately

Z = rs + rr + j Xls + Xlr

= 0 3 + 0 15 + j377 0 0015 + 0 0007

= 0 45 + j0 83Ω = 0 944 61 5∘ Ω
(3F-5)

With Vas as the reference phasor, then

Ias =
Vas

Z
=

110 0∘

0 944 61 5∘
= 117 − 61 5∘ A (3F-6)

The stall or starting current is over four times larger than the rated current. In
some large machines, the starting current with rated voltage applied may be
ten times the rated current. This high value of current may cause overheating
and damage to the windings. Consequently, reduced voltage is applied to many
large machines during the starting period, and rated voltage is not applied until
the machine has accelerated to near rated speed.

SP3.8-1. Neglecting the current flowing in Xms is generally an acceptable approx-
imation when calculating the machine parameters from the blocked-rotor test
(Example 3.E). However, this approximation is not valid when calculating the

blocked-rotor torque. Use (3.8-11) and let Ias = a + jb to show that Te is zero
regardless of the rotor speed if the current flowing in Xms is assumed to be neg-
ligibly small. [Real parts cancel]

SP3.8-2. Assume that the friction, windage, and core losses PfWC , calculated in
Example 3.E, are to be represented by Bmωrm, with Bm selected so that a load
equivalent to 118.2W occurs at ωr = 0 9ωe Determine Bm Bm = 4 11 × 10− 3

N m s rad

SP3.8-3. Using the parameters given in Example 3.D, determine Ias for (a)

ωr = ωe and (b) ωr = 0 . Let Ias = − Iar. [(a) Ias = 8 06 − 88 8∘ A, b Ias =

11 5 − 53 1∘ A]
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SP3.8-4. The frequency of the balanced stator currents of a two-phase induction
machine is 60 Hz, mmf s rotates counterclockwise. The device is operating as
a motor, and the rotor of the two-pole machine is rotating counterclockwise
at 0 9ωe. (a) Determine the frequency of the balanced rotor currents. Determine
the angular velocity of mmf s and mmf r relative to an observer sitting (b) on the
rotor and (c) on the stator. [(a) 6 Hz; (b) 37.7 rad/s, ccw; (c) 377 rad/s, ccw]

SP3.8-5. Assume that θr is positive in the clockwise direction in Fig. 3.2-3
rather than in the counterclockwise direction. Express all inductances.
[Lasbr = Lsr sin θr; Lbsar = −Lsr sin θr; all others unchanged]

3.9 Problems

1 Obtain (3.3-8) from (3.3-3).

2 Obtain (3.4-45).

3 Show that (3.5-31) is correct.

4 Show that (3.8-11) is correct.

5 Select a speed on the positive slope portion of Te vs ωr in Fig. 3.8-2 and show
that this is an unstable point of operation, then select a speed on the negative
slope and show that it is stable.

6 Consider the two-pole, two-phase induction machine shown in Fig. 3.2-3. The
device is operating as a motor at ωr = 95π rad/s with Iar = cos 5πt and
Ibr = − sin 5πt. Determine the angular velocity and direction of mmfr relative
to (a) an observer on the rotor and (b) an observer on the stator. Also determine
(c) angular velocity of the stator currents and (d) the direction of rotation of
the rotor.

7 The windings shown in Fig. 3.9-1 are sinusoidally distributed and the device is
symmetrical. The amplitude of the stator-to-rotor mutual inductance is Lsr.
Express all mutual inductances as functions of Lsr and θr.
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8 The rotor windings of the two-pole, two-phase symmetrical induction

machine shown in Fig. 3.2-3 are open-circuited. Ias = 2Is cosωet and

Ibs = − 2Is sinωet. The rotor is driven at ωr = ωe in the counterclockwise
direction. Express Var .

9 Synchronously rotating variables may be related to rotor reference frame
variables by f eqds =

rKef rqds. Determine rKe in terms of Ke
s and Kr

s .

10 A four-pole, two-phase induction machine has the following parameters:
rs = 0.3 Ω, Lls = 1 mH, Lms = 20 mH, rr = 0 2Ω, and Llr = 1mH. The device
is supplied from a 60-Hz source; the rotor speed is ωr = 360 rad/s. In this

mode of operation Ias = 28 8 − 36 1∘ A and I
'
ar = 23 9 − 173 2∘ A. Calculate

(a) Te, (b) the total ohmic loss in the rotor windings, (c) the mechanical power
delivered to the load, and (d) express Ias, Iar , I

s
qs, and I s

qr .

11 Consider Problem 10. Calculate Vas. Draw the phasor diagram and locate the
poles. Show all voltage drops associated with the equivalent circuit shown in
Fig. 3.8-1.

12 Construct the mmfes and mmfer as shown in Fig. 3.3-2 for Figs. 3.D-2 and 3.
D-3.

13 Select two identical capacitors so that when they are connected in parallel
with each phase (one capacitor per phase) of the induction machine
described in Example 3.E, the no-load capacitor-induction machine

θr

ωr

2rʹ
2sʹ

1sʹ
4

1s

2s 1rʹ

1r

2r π

Figure 3.9-1 Coupled windings.
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combination operates at unity power factor. Assume the capacitors are ideal
(zero resistance).

14 Show from Fig. 3.4-2 that for balanced conditions that the rotor currents are
zero when ωr = ωe.
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4

Synchronous Machines

4.1 Introduction

In this chapter, two types of synchronous machines are considered, the permanent
magnet synchronous machine and the synchronous generator. The permanent
magnet synchronous machine is the machine used in brushless dc drives where
power electronics, specifically, an inverter, is used to change the frequency of
the applied stator voltages such that they match the electrical angular velocity
of the rotor. This type of drive is covered in Chapter 6 on electric drives. In this
chapter, the voltage and flux linkage equations are derived for use in Chapter 6.
If your interest is in electric drives, you need only to study Section 4.2 of this chap-
ter. If your interest is in power systems, you need to study the complete chapter.
The stator and rotor of a two-pole-three phase 28-V 0.63-hp 4500-r/min

permanent-magnet ac machine is shown in Fig. 4.1-1. The magnets are samarium
cobalt and the drive inverter is supplied from a 28-V dc source. The magnetic end
cap is used in conjunction with Hall-effect sensors mounted in the stator housing
(not shown) to determine the rotor position.
The majority of the electric power is generated by synchronous generators, that

is, synchronous machines driven either by hydroturbines, steam turbines, or com-
bustion engines. Just as the induction machine is the workhorse when it comes to
converting energy from electric to mechanical, the three-phase synchronous gen-
erator is the principal means of converting energy from mechanical to electrical.
As it turns out, we are able to analyze the synchronous machine using work we
have done in earlier chapters. We will not repeat the derivation; instead, we will
set forth the necessary equations using the equivalent circuits we have already
developed.
A four-pole three-phase salient-pole synchronousmachine is shown in Fig. 4.1-2.

Note the dcmachine connected to the shaft for purposes of supplying voltage to the

105

Introduction to Modern Analysis of Electric Machines and Drives, First Edition.
Paul C. Krause and Thomas C. Krause.
© 2023 The Institute of Electrical and Electronics Engineers, Inc.
Published 2023 by John Wiley & Sons, Inc.

www.konkur.in

Telegram: @uni_k



field winding of the synchronous machine. Note also, the squirrel-cage damper
windings embedded in the pole faces.

4.2 Analysis of the Permanent-Magnet ac Motor

The two-pole three-phase permanent-magnet ac or synchronous machine is
shown in Fig. 4.2-1. The three-phase stator voltage equations are

Figure 4.1-1 Two-pole three-phase 28-V 0.63-hp 4500-r/min permanent-magnet
ac machine. Source: Courtesy of Vickers Electromech.

Figure 4.1-2 Four-pole three-phase salient-pole synchronous machine.
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vas = rsias +
dλas
dt

(4.2-1)

vbs = rsibs +
dλbs
dt

(4.2-2)

vcs = rsics +
dλcs
dt

(4.2-3)

Since the rotor is not electrically symmetrical, it is convenient to use the rotor
reference frame. From (2.4-15) and (2.4-16), the voltage equations with v0s added
for the three-phase stator in the rotor reference frame are

vrqs = rsi
r
qs + ωrλ

r
ds + pλrqs (4.2-4)

vrds = rsi
r
ds −ωrλ

r
qs + pλrds (4.2-5)

v0s = rsi0s + pλ0s (4.2-6)

bs axis

as axis

q axis

d axiscs axis

bs
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cs

cs′
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ibs
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Figure 4.2-1 Two-pole three-phase permanent-magnet ac machine.
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We need λqd0s which we can obtain from λabcs which is expressed as

λas = Lasasias + Lasbsibs + Lascsics + λasm (4.2-7)

λbs = Lbsasias + Lbsbsibs + Lbscsics + λbsm (4.2-8)

λcs = Lcsasias + Lcsbsibs + Lcscsics + λcsm (4.2-9)

In matrix form,

λabcs = Lsiabcs + λm (4.2-10)

where λm is the flux linkages due to the permanent magnet of the rotor referred to
the stator windings. From (4.2-7) through (4.2-9), λm can be written as

λm =

λasm

λbsm

λcsm

= λm

sin θr

sin θr −
2
3
π

sin θr +
2
3
π

(4.2-11)

where

ωr =
dθr
dt

(4.2-12)

The amplitude of pλasm , pλbsm , and pλcsm would be proportional to the open-
circuited phase voltages if the rotor is driven at some rotational speed.
The inductance matrix Ls for a wye-connected stator is given by (1.5-30) and

repeated here as

Ls =

Lls + Lms −
1
2
Lms −

1
2
Lms

−
1
2
Lms Lls + Lms −

1
2
Lms

−
1
2
Lms −

1
2
Lms Lls + Lms

(4.2-13)

The transformation to the rotor reference frame is

f rqd0s = Kr
sfabcs (4.2-14)

where

f rqd0s
T
= f rqs f rds f 0s (4.2-15)

fabcs
T = f as f bs f cs (4.2-16)
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From (2.3-18) with θ = θr ,

Kr
s =

2
3

cos θr cos θr −
2
3
π cos θr +

2
3
π

sin θr sin θr −
2
3
π sin θr +

2
3
π

1
2

1
2

1
2

(4.2-17)

where θr is defined by (4.2-12). The flux linkage λqd0s may be expressed as

λqd0s = Kr
sλabcs (4.2-18)

substituting (4.2-10) from λabcs gives

λqd0s = Kr
sLs + Kr

sλm (4.2-19)

which may be written as

λrqd0s =

Lls +
3
2
Lms 0 0

0 Lls +
3
2
Lms 0

0 0 Lls

irqs
irds
i0s

+ λ
r
m

0

1

0

(4.2-20)

where
3
2
Lms will be replaced with LMs and a superscript r has been added to λm to

indicate that it is in the rotor reference frame; however, λ r
m = λm. The first term of

(4.2-20) comes from the stator windings which is given by (2.4-31). The second
(last) term is due to the permanent magnet of the rotor. In expanded form, the
flux-linkage equations become

λrqs = Lssi
r
qs (4.2-21)

λrds = Lssi
r
ds + λ

r
m (4.2-22)

λ0s = Llsi0s (4.2-23)

where

Lss = Lls + LMs (4.2-24)

Equations (4.2-4) through (4.2-7) and (4.2-21) through (4.2-24) suggest the equiv-
alent circuit shown in Fig. 4.2-2.

4.2.1 Torque

The expression for the electromagnetic torque may be obtained from a power bal-
ance approach. To do this, we must multiply (4.2-4) by irqs and (4.2-5) by i

r
ds and add

the results to obtain the total power input at the stator terminals. This is then
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Figure 4.2-2 Equivalent circuit in rotor reference frame. λrqs = Lssi
r
qs, λ

r
ds = Lssi

r
ds + λ r

m.
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equated to the mechanically power which is Te
2
P
ωr. Thus, accounting for Park’s

2
3

factor, we have

3
2

vrqsi
r
qs + vrdsi

r
ds = Te

2
P
ωr (4.2-25)

which can be written as

3
2

rs ir2qs + ir2ds + ωr λrdsi
r
qs − λrqsi

r
ds + p λrqsi

r
qs + λrdsi

r
ds

= Te
2
P
ωr

(4.2-26)

If we now equate coefficients of ωr , we have

Te =
P
2
3
2

λrdsi
r
qs − λrqsi

r
ds (4.2-27)

substituting in for λrqs and λrds from (4.2-21) and (4.2-22), respectively, we have

Te =
P
2
3
2
λ
r
mi

r
qs (4.2-28)

Example 4.A Rotor Flux Linkage Referred to the Stator

The parameters of a four-pole three-phase permanent-magnet ac machine

are rs = 3 4Ω, Lls = 1.1 mH, and Lms =
3
2
11 mH. When the device is driven at

1000 r/min, the open-circuit phase voltage is sinusoidal with a peak-to-peak value
of 34.6 V. Determine λm The actual rotor speed at which the measurement was
taken is

ωrm =
r min rad r

s min

=
1000 2π

60
=

100
3

π rad s

(4A-1)

The electrical angular velocity is

ωr =
P
2
ωrm

=
4
2
100π
3

=
200
3

π rad s
(4A-2)

With the phases open-circuited, the stator currents are zero. Thus, from (4.2-1) and
(4.2-7),

vas =
d λm sin θr

dt
= λmωr cos θr (4A-3)
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Now the peak-to-peak voltage is 34.6 V; hence, from (4A-3), with the peak-to-peak
voltage divided by 2, we have

34 6
2

= λm
200
3

π (4A-4)

Solving for λm yields

λm =
34 6 3
2 200π

= 0 0826 V s rad (4A-5)

4.2.2 Unequal Direct– and Quadrature–Axis Inductances

In our analysis of the permanent-magnet ac machine, we have assumed that the
reluctance of the permanent magnet rotor is the same in the q and d axes. This
assumption simplifies the analysis and allows us to portray the main operating
modes of the brushless dc drive without significant error. There is, however, a dif-
ference in the q- and d-axis reluctances that produces a reluctance torque in addi-
tion to the main torque produced due to the interaction of the rotating magnetic
field and the permanent-magnet rotor. Therefore, the influence of the magneti-
cally unsymmetrical rotor on the voltage and torque expressions warrants some
discussion. In order to prevent becoming involved with three-phase trigonometry,
we will treat the two-phase machine and indicate the changes necessary for a
three-phase machine.
A two-phase permanent-magnet ac machine with unequal q- and d-axis induc-

tances is shown in Fig. 4.2-3.

bs axis

as axis

q axis

d axis

bsbs′

as

S

θr

as′

TL

Teϕs
ϕr

ωr

N

Figure 4.2-3 Two-phase permanent-magnet ac machine with unequal q- and d-axis
reluctances, a salient-pole rotor.
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The self-inductances of the stator windings and themutual inductances between
stator windings are functions of θr. Let us consider Lasas. With θr = 0, we see from
Fig. 4.2-3 that the magnetizing inductance of Lasas is less than it would be when

θr =
1
2
π. Let the magnetizing inductance of the as winding be denoted Lmq when

θr = 0, since in this position the q axis (high-reluctance path) is aligned with the
magnetic axis of the as winding. Thus,

Lasas = Lls + Lmq, when θr = 0 (4.2-29)

where Lls is the leakage inductance of the stator windings and

Lmq =
N2

s

mq
(4.2-30)

where mq is an equivalent reluctance which is dominated by the two large air

gaps of the magnetic path in the q axis. Now, at θr =
1
2
π the d axis (lower reluc-

tance path which is dominated by the two smaller air gaps) is aligned with the
magnetic axis of the as winding. Hence, denoting this magnetizing inductance
as Lmd, we can write

Lasas = Lls + Lmd, when θr =
1
2
π (4.2-31)

where

Lmd =
N2

s

md
(4.2-32)

where md is an equivalent reluctance of the magnetic path in the d axis.
Since mq > md, Lmq < Lmd, and we see that a minimum Lasas occurs at θr = 0

and also again at θr = π. In some permanent-magnet ac machines mq < md and
Lmq > Lmd, due to the magnets in the d-axis; however, we will continue and take
care of this later. Therefore, (4.2-29) is valid for θr = 0 and π. Similarly, maximum

Lasas occurs at θr =
1
2
π and again at θr =

3
2
π; hence (4.2-31) applies for θr =

1
2
π

and
3
2
π. Themagnetizing inductance varies about an average value (whichmust be

positive) and if we assume this variation to be sinusoidal, it would vary as a func-
tion of 2θr . Let LA be the average value and LB the amplitude of the sinusoidal
variation about this average value. In this case,

Lmq = LA −LB (4.2-33)

Lmd = LA + LB (4.2-34)

Substituting (4.2-30) and (4.2-32) for Lmq and Lmd, respectively, into (4.2-33) and
(4.2-34) and solving for LA and LB yields
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LA =
N2

s

2
1

md
+

1

mq
(4.2-35)

LB =
N2

s

2
1

md
−

1

mq
(4.2-36)

Assuming a sinusoidal variation, we can write

Lasas = Lls + LA − LB cos 2θr (4.2-37)

If the air gaps were uniform as is the case in a round-rotor synchronous machine,

mq = md and, hence, from (4.2-36), LB = 0.
By a similar procedure, it follows that, for the salient-pole device shown in

Fig. 4.2-3,

Lbsbs = Lls + LA + LB cos 2θr (4.2-38)

Note when θr = 0, Lasas is a minimum according to (4.2-37) and, according to
(4.2-38), Lbsbs is a maximum. This, of course, corresponds to that which is portrayed
in Fig. 4.2-3.
The mutual inductance Lasbs Lbsas is next. One would think that since the wind-

ings are orthogonal, the mutual coupling would always be zero; however, this is
not the case due to the nonuniform air gap. Let us consider Fig. 4.2-4 where various
rotor positions are shown with only the flux paths of the aswinding depicted. Cou-
pling occurs when flux produced by one winding links the other winding; for
example, when the flux of the as winding links the bs winding. This will give
us Lbsas and we know that Lasbs = Lbsas.

Note that, when θr = 0, π, and 2π as shown in Fig. 4.2-4a or when θr =
1
2
π and

3
2
π as shown in Fig. 4.2-4b. Lbsas (or Lasbs) is zero. In these positions, there is no

channeling of the flux of one winding through the other. However, let the

rotor start to turn counterclockwise from zero toward
1
2
π and consider the flux

produced by the as winding. As the rotor turns, the configuration of the rotor pro-
vides a low-reluctance path to the flux produced by the as winding and the flux is

channeled through the bs winding with maximum coupling occurring at θr =
1
4
π,

as illustrated in Fig. 4.2-4c. We see that this same rotor position relative to the

windings occurs also at θr =
5
4
π . Maximum coupling will again occur at

θr =
3
4
π and

7
4
π , as illustrated in Fig. 4.2-4c and d. Now, what is the sign of

the mutual inductance? With the assumed direction of positive currents, the

right-hand rule tells us that Lbsas (or Lasbs ) is negative at θr =
1
4
π ,

5
4
π,… (the

fluxes of the windings oppose each other for positive currents) and positive for
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bs axis

as′

bs′
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bs as axis

bs axis

as′

bs′

Lbsas
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bs as axis

bs axis

as′

bs′
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bs as axis

bs axis

as′

bs′

as

bs as axis

(a) (b)

(c) (d)

(e)

LB

π
2

π 2 π
2
3π

θr

Figure 4.2-4 Flux path of as winding illustrating the mutual coupling between stator

winding to determine Lbsas and Lasbs, (a) θr = 0, π, and 2π; (b) θr =
1

2
π and

3

2
π; (c) θr =

1

4
π and

5

4
π; (d) θr =

3

4
π and

7

4
π; and (e) approximation of Lbsas and Lasbs.
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θr =
3
4
π ,

7
4
π,… (the fluxes aid each other). If we sketch Lbsas versus θr using

the above information, we see, from Fig. 4.2-4e, that, as a first approximation,
Lbsas or Lasbs may be expressed as

Lbsas = Lasbs = −LB sin 2θr (4.2-39)

In order for us to prove that the coefficient is LB, it would be necessary to become
quite involved [1]. We will accept this without proving it.
The expression for the stator self-inductance becomes

Ls =
Lls + LA −LB cos 2θr − LB sin 2θr

− LB sin 2θr Lls + LA + LB cos 2θr
(4.2-40)

Now, in the rotor reference frame,

λrqs

λrds
= Kr

sLs Kr
s

− 1
irqds + Kr

sλ
r
m

sin θr

− cos θr

=
Lq 0

0 Ld

irqs

irds
+ λ r

m

0

1

(4.2-41)

In expanded form, (4.2-41) becomes

λrqs = Lqi
r
qs (4.2.42)

λrds = Ldi
r
ds + λ

r
m (4.2-43)

4.2.3 Three-Phase Machine

The equivalent circuits for the three-phase wye-connected machine with Lq Ld

are the same as those given in Fig. 4.2-2 with Lms replaced by LMq in the q axis and

LMd in the d axis where LMq is
3
2
Lmq and LMd is

3
2
Lmd and in (4.2-42) and (4.2-43), Lq

is Lls + LMq and Ld is Lls + LMd.
The torque for the three-phase machine may be obtained from the equivalent

circuits given in Fig. 4.2-2. The power = Teωr + losses, therefore if we multiply
vrqs by irqs and vrds by irds and equals coefficients of ωr , we obtain Te as

Te =
3
2

P
2

λ
r
mi

r
qs +

3
2

Ld − Lq irqsi
r
ds (4.2-44)

where
Lq = Lls + LMq (4.2-45)

Ld = Lls + LMd (4.2-46)

If your interest is in electric drives, you may skip to Chapters 5 and 6.

SP4.2-1. Express themmf created by the permanent-magnet rotor mmf rr as viewed

from the rotor for the two-pole three-phase permanent-magnet acmachine shown
in Fig. 4.2-1. Let Fp denote the peak value. [mmfrr = −Fp sinϕr]
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SP4.2-2. Obtain the last term of (4.2-20) from the last term of (4.2-19).
SP4.2-3. The inductive reactances for steady-state calculations are determined by

multiplying the inductances by ωr Why? ωr = ωe

SP4.2-4.Determine the reluctance torque if Ias is in phase with Ea = Ea 0 . [zero

since Irds = 0]

4.3 Windings of the Synchronous Machine

Before becoming involved in synchronous machine analysis, it is helpful to
describe the function of the windings that are present in most synchronous
machines. For this purpose, it is convenient to consider the windings of a two-pole
three-phase salient-pole synchronous machine shown in Fig. 4.3-1. The stator
windings are identical, sinusoidally distributed windings, as described in
Chapter 2. For analysis purposes, the electrical characteristics of the rotor may
be adequately represented with a field winding fd winding) and short-circuited

ibs

ics

ias rs

vcs

vas

vbs

rs rs
Ns vkq

vkd

rfd
vfd

ifd
ikq

ikdrkq
rkd

Nkq

Nfd

Nkd
Ns

Ns

+

+

+

+

+

+

–

–

–

––
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cs′
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as′

kq′

kd

kd′

fd′

fd

as

d axis
cs axis

Te

ϕs

ϕr

ωr

as axis

q axis

θr
TL

kq

Figure 4.3-1 Salient-rotor two-pole three-phase salient-pole synchronous machine.
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damper or amortisseur windings kq and kd windings). Although the damper
windings are shown with provisions to apply a voltage, they are, in fact, short-
circuited windings which represent the paths for induced rotor currents. We will
assume that the damper windings are approximated by two sinusoidally distribu-
ted windings displaced in space by 90 (see Chapter 3). The kd winding has the
same magnetic axis as the fd winding, it has Nkd equivalent turns with resistance
rkd. The magnetic axis of kqwinding is orthogonal with the magnetic axis of the fd
and kd windings. It has Nkq equivalent turns and rkq resistance. The rotor config-
uration shown in Fig. 4.3-1 for a three-phase machine is the same for any multi-
phase synchronous machine. The quadrature axis (q axis) and direct axis (d axis)
are also shown in Fig. 4.3-1. The q axis is the magnetic axis of the kq winding,
whereas the d axis is the magnetic axis of the fd and kdwindings. In synchronous
machine analysis, but not in general, the q and d axes are reserved to denote the
rotor magnetic axes since, over the years, they have been associated with the phys-
ical structure of the synchronous machine rotor quite independent of any trans-
formation. However, as we have seen in the previous chapters, these need not
be associated with any physical axes in general machine analysis.
With balanced steady-state stator currents, an air-gap mmf (mmf s) is established

that rotates about the air gap of a two-pole machine at ωe, the angular velocity of
the stator currents. We will assume that a dc voltage is applied to the fdwinding by
a brush and slip ring arrangement. The resulting field current ifd establishes an air-
gap mmf (mmf r) which is fixed with respect to the rotor. We understand that the
air-gap mmf (poles) established by the field winding must rotate at the same angu-
lar velocity as Tesla’s rotating air-gap mmf established by the stator currents in
order to produce a nonzero average electromagnetic torque during steady-state
operation. Therefore, the rotor must rotate in synchronism with the air-gap
mmf established by the stator windings ωr = ωe ; hence, the name synchronous
machine. That is, the main torque production mechanism is this interaction of the
air-gap mmf established by the stator currents mmf s and the air-gap mmf due to
the direct current flowing in the field winding mmf r . Albeit small, a reluctance
torque is also developed at synchronous speed as a result of the saliency of the
rotor. The so-called salient-pole construction is common for slower speed
machines (large number of poles) such as hydroturbine generators. In this type
of rotor construction, the field winding is wound upon the rotor surface, as shown
in Fig. 4.3-1, and the air-gap is nonuniform to make room for the placement of the
field winding. Therefore, the q-axis magnetic path has a higher reluctance than the
d-axis magnetic path.
At this point, it seems that other than the addition of the damper windings and

the saliency of the rotor, the important difference between the permanent-magnet
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ac machine considered in the previous section and this machine is that the perma-
nent magnet is replaced with a field winding. Why then are we considering these
two synchronous machines separately? The answer is in the mode of operation.
The primary use of a permanent-magnet ac machine is in a brushless dc drive,
where the frequency of the applied stator voltages is controlled to be the electrical
angular velocity of the rotor. The voltages applied to the stator of the synchronous
generator are fixed in frequency andmagnitude by the power system. The synchro-
nous generators in a power system are operating at the same electrical angular
velocity (frequency). That is, they are all synchronized, which is necessary in order
for each machine to supply power to the grid. We will talk more about this as we
go along.
We have yet to discuss the function of the damper windings. It was found early

on, that a synchronous machine with only a field winding would tend to oscillate
about synchronous speed in a slowly damped manner following any slight distur-
bance. Adding damper windings (short-circuited rotor windings) provided the
desired damping by induction machine action. The main torque of a synchronous
machine is developed at synchronous speed because of the interaction of mmf s
and mmf r. At synchronous speed, current is not induced in the damper windings
and, hence, “induction machine” torque is not developed when ωr = ωe

(Chapter 3). If, however, for any reason the speed of the rotor should vary from
synchronous speed, currents will be induced in the damper windings and the tor-
que developed due to induction machine action, although small, it will damp oscil-
lations of the rotor speed.
Torque is torque by whatever means it is developed and, perhaps, we should not

emphasize the separation of torque into three types (interaction ofmmf s and mmf r,
reluctance, and induction) since the dynamic operation of the machine is
described by nonlinear equations and superposition cannot be applied, in general.
Nevertheless, this separation is helpful for our first look at the synchronous
machine.

SP4.3-1. Express mmf r for the two-pole three-phase synchronous machine shown

in Fig. 4.3-1. mmf r = − Nfd 2 ifd sinϕr ,where ϕr is the counterclockwise dis-

placement from the fd axis]
SP4.3-2. The damper windings are short-circuited and the machine shown in

Fig. 4.3-1 is driven at ωr , counterclockwise. Assume that the stator currents
are balanced 60-Hz currents with an acb-sequence. Determine the frequency
of the currents flowing in the damper windings. ωr + ωe
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4.4 Equivalent Circuit – Voltage and Torque Equations

Let us consider the synchronous machine shown in Fig 4.3-1. The stator is the
same as that treated in Section 4.2 where Lq and Ld are not the same and a reluc-
tance torque is produced. The damper windings, kq and kd, provide induction
machine torque whenever the rotor electrical angular velocity, ωr , is above or
below synchronous speed. Although these windings are not symmetrical and
the torque pulsates, the average value is similar to that shown in Fig. 3.8-2. The
only thing that we have not considered in previous chapters is the field winding
which actually is similar to the permanent-magnet ac machine considered in
Section 4.2. In the case of the field winding, the rotor main flux is established
by an adjustable field current rather than a permanent magnet.
Since we have already considered the stator and rotor circuits, we need not rede-

rive the voltage equations. Instead, we can obtain the voltage equations from the
equivalent circuits which we can construct from our previous work. This is shown
in Fig. 4.4-1. The voltage equations in the rotor reference frame may be written as

ωrλr
ds

ωrλr
qs

–

–

–

–

–

+

+

+

–

+

–

+

–

+

+

+

rs

rs

rs
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Lls

LMq

LMd

L′lkq

L′lfd

L′lkd

r′fd

i′rfd

i′rkd

v′rfd
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i′rkq
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r′kq

irqs

irds

i0s
v0s

vr
qs

vr
ds

Figure 4.4-1 Equivalent circuit for three-phase synchronous machine in the rotor
reference frame.
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vrqs = rsi
r
qs + ωrλ

r
ds + pλrqs (4.4-1)

vrds = rsi
r
ds −ωrλ

r
qs + pλrds (4.4-2)

v0s = rsi0s + pλ0s (4.4-3)

v r
kq = rkqi

r
kq + pλ r

kq (4.4-4)

v r
fd = rfdi

r
fd + pλ r

fd (4.4-5)

v r
kd = rkqi

r
kd + pλ r

kd (4.4-6)

The flux-linkage equations for a three-phase stator become

λrqs = Llsi
r
qs + LMq irqs + i rkq (4.4-7)

λrds = Llsi
r
ds + LMd irds + i rfd + i rkd (4.4-8)

λ0s = Llsi0s (4.4-9)

λ
r
kq = Llkqi

r
kq + LMq irqs + i rkq (4.4-10)

λ
r
fd = Llfdi

r
fd + LMd irds + i rfd + i rkd (4.4-11)

λ r
kd = Llkdi

r
kd + LMd irds + i rfd + i rkd (4.4-12)

where LMq =
3
2

LA − LB and LMd =
3
2

LA + LB .

In the voltage equations, the resistances, leakage inductances and currents of the
rotor windings referred to the stator windings are

rj =
3
2

Ns

Nj

2

rj (4.4-13)

Llj =
3
2

Ns

Nj

2

Llj (4.4-14)

ij =
2
3

Nj

Ns
ij (4.4-15)

vj =
Ns

Nj
vj (4.4-16)

λj =
Ns

Nj
λj (4.4-17)

where j may be kq, fd, or kd.
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4.4.1 Torque

We realize that the power output of a three-phase synchronous machine is

Pout =
2
P

Teωr (4.4-18)

The power input is

Pin =
3
2

vrqsi
r
qs + vrdsi

r
ds (4.4-19)

We see from the equivalent circuits given in Fig. 4.4-1, that the coefficients of ωr

are
3
2
times λrdsi

r
qs and − λrqsi

r
ds, thus setting those coefficients equal to Te

2
P
yields

Te =
3
2

P
2

λrdsi
r
qs − λrqsi

r
ds (4.4-20)

Substituting (4.4-7) and (4.4-8) into (4.4-20) with Lq = Lls + LMq and Ld = Lls + LMd

yields

Te =
3
2

P
2

Ldi
r
dsi

r
qs + LMdi

r
fdi

r
qs + LMdi

r
kqi

r
qs

−Lqi
r
qsi

r
ds + LMqi

r
kqi

r
ds

=
3
2

P
2

LMdi
r
fdi

r
qs + Ld − Lq irqsi

r
ds

+ LMdi
r
kdi

r
qs −LMqi

r
kqi

r
ds

(4.4-21)

The first term inside the [ ] is the main torque produced by the field mmf r and the
stator mmf s. Note that in the case of the permanent ac machine λm = LMdi

r
fd. The

second term is the reluctance torque from (4.2-44), and the third and fourth terms
are the induction machine torque. Now since LMd and LMq are different and i rkd
and i rkq do not form a balanced set, the torque will pulsate around an aver-

age value.
The torque–speed relation for motor operation is, with Bm neglected

Te = J
2
P

dωr

dt
+ TL (4.4-22)

4.4.2 Rotor Angle

In the case of the synchronous machine, the rotor angle is defined as
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δ = θr − θesv

= ωr −ωe t + θr 0 − θesv 0
(4.4-23)

For steady-state operation ωr = ωe and the voltage is fixed at zero, θesv 0 = 0 by
the power system and

δ = θr 0 (4.4-24)

SP4.4-1. In some cases there are two damper windings in the q-axis. Write the
voltage equation for this winding. [vkq2 = rkq2ikq2 + pλkq2]

SP4.4-2.Why is θesv 0 fixed at zero in (4.4-23)? [The large power system fixed the
voltage applied to the machine.]

4.5 Dynamic and Steady-State Performances

It is instructive to observe the variables of the synchronous machine during
dynamic and steady-state operation. For this purpose, the operation of a two-phase
synchronous generator is illustrated by computer traces. Two-phase machines are
not often used in practice; instead, three-phase machines are more common. Nev-
ertheless, our purpose is to understand the theory and principles of operation of a
synchronousmachine. A two-phasemachine is just as applicable in this regard as a
three-phase machine.
The two-phase synchronousmachinewhichwewill consider is a four-pole 150-hp

440-V (rms) 60-Hzmachine with the following parameters: rs =0 2Ω, Lls =1 14mH,
Lmq =11mH, Lmd =13 7mH, rfd =0 013Ω, and Llfd =2 1mH. The inertia of the rotor

and connected mechanical load is J = 16.6 kg m2 and Bm is neglected. The
machine is a salient-pole device equipped with damper windings.
The dynamic performance of this synchronous machine during a step decrease

in load torque from zero to −400 N m is illustrated in Fig. 4.5-1. Since this is gen-
erator operation, perhaps it is more appropriate to consider this as a step increase
in input torque from zero to 400 N m. In any event, the machine is initially oper-
ating at synchronous speed with the field voltage adjusted so that the open-circuit
voltage of the stator windings is equal to the rated voltage of the machine (440 V).
Therefore, the stator currents are very small since TL = 0. Plotted are vas, ias, vbs, ibs,
Te, ωr (electrical angular velocity), δ, and TL.
Immediately upon the application of the input torque −TL , themachine accel-

erates above synchronous speed as shown in Fig. 4.5-1 and the rotor angle, δ,
increases since δ = θr − θesv. The rotor continues to speed up until the accelerating
torque on the rotor is zero. This occurs when Te is equal in magnitude to the input
torque. As noted in Fig. 4.5-1, this occurs when the speed has increased to
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approximately 380 rad/s (electrical angular velocity). Even though the accelerating
torque on the rotor is zero at this time, the rotor is still running above synchronous
speed. Hence, δ will continue to increase and, consequently, Te will continue to
decrease (increase negatively) causing the rotor to decelerate and the speed of
the rotor decreases toward synchronous speed. When ωr becomes equal to ωe ,
the rotor angle is approximately 28 electrical degrees and Te is approximately
−600 N m.Now, there is a decelerating torque of approximately 200 N m causing
the rotor speed to decrease below synchronous speed, whereupon the rotor angle
will begin to decrease. Damped oscillations of the rotor about synchronous speed
continue due to the damper windings until the new steady-state operating point is
reached. We can think of the instantaneous electromagnetic torque during this
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Figure 4.5-1 Dynamic performance of a two-phase synchronous generator during a step
decrease in load torque (step increase in input torque).
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disturbance resulting from interaction between (1) the stator and field currents, (2)
the stator currents and saliency of the rotor, and (3) the stator and damper winding
currents. Although this line of thinking may be helpful in visualizing what is going
on, we must be careful since dynamically the device is an interactive, nonlinear,
system.
The dynamic torque versus rotor angle characteristics during and following this

step change in input torque are shown in Fig. 4.5-2. It is interesting to note that it
requires considerable time before the machine establishes steady-state operation
at TL = − 400 N m. The steady-state torque–angle curve which is also shown, in
part, in Fig. 4.5-2 will pass through Te = 0 at δ 0 and TL = − 400 N m at
δ = 68 ; however, it is important to note that the steady-state Te versus δ charac-
teristic is much different than the transient Te versus δ characteristic. This is espe-
cially true on the first swing of the rotor where for δ = 20 the transient torque is
over three times larger negatively than the steady-state torque.
If we slowly increase the input torque in small increments, theoretically we

could reach the maximum steady-state value of Te before the machine would fall
out of synchronism. Since the dynamic characteristics are predicted by nonlinear
differential equations, it is necessary to employ a computer to predict the dynamic

0

–400

–800

20 40

Steady-state torque-
angle characteristics

60 80

δ, degrees

Te, N·m

Figure 4.5-2 Dynamic torque versus rotor-angle characteristic for Fig. 4.5-1. The steady-
state characteristics are also shown.
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torque-angle characteristics. However, our purpose here is to make the first-time
reader aware that the steady-state and dynamic torque versus rotor-angle charac-
teristics are different, sometimes markedly different as illustrated here.
In Fig. 4.5-3, the rotor reference frame variables plotted rather than the stator or

machine variables and the plot of the load torque omitted. Also plotted is the field
current i rfd . Although, for this machine, the field current changes only slightly

owing to a change in flux linkages, this is not typical of all machines. In some cases,
depending upon the parameters and the type of the disturbance, a considerable
voltage may be induced in the field winding resulting in a change in field current
during the transient period [1].
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Figure 4.5-3 Same as Fig. 4.5-1 with rotor reference frame variables plotted, i
r
fd added and

TL removed.
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SP4.5-1.What changes would occur in Te, irqs, and δ in Fig. 4.5-3 if TL = 400 N m

rather than −400 N m. [Te would become positive, irqs would become positive,

and δ would become negative.]

4.6 Analysis of Steady-State Operation

In the case of the synchronous machine, we are using the rotor reference frame.
During steady-state operation, the electrical angular velocity of the rotor, ωr , is
equal to ωe. Hence, the circuits that exist in the rotor reference frame are the field

winding and the fictitious windings (qsr and ds
r
windings). These windings rotate at

ωr and therefore do not experience a change of flux linkages when ωr = ωe as a
result of relative motion between windings. Moreover, since i rfd is constant and

the rotor poles are shaped so that mmf rr is a constant amplitude sinusoidal function
of ϕr and for balanced steady-state conditions, the stator windings are arranged so
that mmf es is also a constant amplitude sinusoidal function of ϕe. Therefore, there
can be no induced voltage due to transformer action in any of the circuits in the
rotor reference frame. One would then guess that the substitute currents and
voltages associated with all windings in the rotor reference frame would be con-
stant (zero in the case of the damper windings) during balanced steady-state oper-
ation. This seems logical, but what has happened to the balanced, sinusoidal stator
variables? Remember the balanced, steady-state sinusoidal stator currents give rise
to a constant amplitude mmfes rotating at ωe (i.e. Tesla’s rotating magnetic field).
But, if this constant amplitude mmfes is now to be produced by substitute currents
flowing in fictitious windings (irqs and i

r
ds) that are mathematically fixed in the rotor

reference frame, which rotates at ωe during steady-state operation, these substitute
currents must be constant.
It should be pointed out that during steady-state operation, we can relate Fr

qs and

Fr
ds to Fas; however, whenωr differs fromωe, voltages are induced in the rotor wind-

ings that are of ωe −ωr angular velocity. The synchronous reference frame vari-
ables will then contain multiple frequencies and the instantaneous phasor
concept is not valid for sustained rotor speed different from ωe. Although we will
not set forth the derivation, we will use the instantaneous phasor later for small,
temporary changes in rotor speed from synchronous.
Now that we know what to expect, let us proceed. During balanced steady-state

operation, the stator variables may be expressed as

Fas = 2Fs cos ωet + θesf 0 (4.6-1)

4.6 Analysis of Steady-State Operation 127

www.konkur.in

Telegram: @uni_k



Fbs = 2Fs cos ωet−
2π
3

+ θesf 0 (4.6-2)

Fcs = 2Fs cos ωet +
2π
3

+ θesf 0 (4.6-3)

Substituting (4.6-1) through (4.6-3) into the equations of transformation, (2.3-18),
with θ = θr ,

θr = ωet + θr 0 (4.6-4)

Thus,

Fr
qs = 2Fs cos θesf 0 − θr 0 (4.6-5)

Fr
ds = − 2Fs sin θesf 0 − θr 0 (4.6-6)

Since, θesf 0 is constant and θr 0 is δ(0), Fr
qs and Fr

ds are constants.

During steady-state balanced conditions, the stator and the field windings are
the only windings carrying current. The voltage equations become

Vr
qs = rsI

r
qs + ωrλ

r
ds (4.6-7)

Vr
ds = rsI

r
ds −ωrλ

r
qs (4.6-8)

V r
fd = rfdI

r
fd (4.6-9)

where

λrqs = LlsI
r
qs + LMqI

r
qs = LqI

r
qs (4.6-10)

λrds = LlsI
r
ds + LMd Irds + I r

fd = LdI
r
ds + LMdI

r
fd (4.6-11)

where Lq = Lls + LMq and Ld = Lls + LMd.
Substituting θr 0 from (4.4-23) into (4.6-5) and (4.6-6) yields

Fr
qs = 2Fs cos θesf 0 − δ (4.6-12)

Fr
ds = − 2Fs sin θesf 0 − δ (4.6-13)

Now, Fas is

Fas = Fse
jθesf 0 (4.6-14)

If we multiply (4.6-14) by 2e− jδ, we can write

2Fase
− jδ = 2Fs cos θesf 0 − δ + j 2Fs sin θesf 0 − δ (4.6-15)
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Substituting (4.6-12) and (4.6-13) into (4.6-15), we can write

2Fase
− jδ = Fr

qs − jFr
ds (4.6-16)

Substituting (4.6-7) and (4.6-8) into (4.6-16) and since θesv 0 = 0 we have

2Vase
− jδ = rsI

r
qs + XdI

r
ds + ωeLMdI

r
fd + j − rsI

r
ds + XqI

r
qs (4.6-17)

where X = ωeL and

j 2Iase
− jδ = Irds + jIrqs (4.6-18)

In (4.6-17),

Xq = Xls + XMq (4.6-19)

Xd = Xls + XMd (4.6-20)

If we add and substitute XqIrds from the right-hand side of (4.6-17), we can write
it as

Vas = rs + jXq Ias +
1

2
Xd −Xq Irds + XMdI

r
fd ejδ (4.6-21)

The last term of (4.6-21) may be written as

Ea =
1

2
Xd −Xq Irds + XMdI

r
fd ejδ (4.6-22)

We can now write (4.6-21) as

Vas = rs + jXq Ias + Ea (4.6-23)

The phasor diagram is shown in Fig. 4.6-1 for typical generator action. The rotor
poles are “pushing” the stator poles counterclockwise.
From (4.4-21), the steady-state torque for balanced conditions with rs neglected

may be written (damper winding currents are zero) as

Te = −
3
2

P
2

1
ωe

XMdI
r
fd 2Vs

Xd
sin δ +

1
2

1
Xq

−
1
Xd

2Vs

2
sin 2δ

(4.6-24)

SP4.6-1.Why did wemultiply (4.6-14) by e− jδ ? [The q and d axes have beenmoved
ccw by δ, so we must move them both to zero for (4.6-16) to apply.]

SP4.6-2.Why can rs be neglected in the case of a synchronous generator but not in
the case of a brushless drive? [constant frequency versus variable frequency
operation.]
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4.7 Transient Stability

Large-excursion stability, which is commonly referred to as transient stability, is of
major concern to the power system engineer. Although we will not get too
involved, we will describe some of the major aspects of this phenomenon. As
we have mentioned, the vast majority of electric power is generated by synchro-
nous generators and in order for multiple generators to supply power to an electric
system, all of the generators must be synchronized with the electric system; in
other words, all synchronous generators connected to an electric system must
rotate at the same electrical angular velocity. Large areas of the power grid of
the United States are “synchronously tied together.” Since there are hundreds
of synchronous generators connected to a large power grid, we can understand
the concern of the power system engineer.

4.7.1 Three-Phase Fault

Our purpose is to describe large-excursion stability. To do this, we will consider the
system in Fig. 4.7-1. Although this example may be considered academic, it serves
our need without becoming overly involved. Initially, the steam turbine generator
is delivering rated MVA (mega volt ampere) at rated power factor with essentially
all of the power being delivered to the power grid.
The round-rotor machine parameters are

Rating: 835 MVA Line-to-line voltage: 26 kV
Power factor: 0.85 Poles: 2 Speed: 3600 r/min
Inertia: J = 0 0658 × 106 J s2 (turbine and generator)

Ss
Sr

Ias
I r

ds˜

˜

1
2

Vr
qs

1
2

Vr
ds

Vas

d axis

q axis

Ns

Nr

˜–rs Ias

˜–jXqIas

Ẽa

1
2

Ir
qs

1
2

δ

θesi(0)

Figure 4.6-1 Phasor diagram for generator operation.
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Resistances and reactances in ohms:

rs = 2 43 × 10− 3 XMs = 1 3032 rfd = 7 5 × 10− 4

Xls = 0 1538 Xlfd = 0 1145

A three-phase fault occurs on the line feeding the negligibly small local load near
the generator. This is simulated by stepping the three-phase voltages at the bus to
zero. The voltages are held at zero until the circuit breaker, CB, opens, clearing the
fault from the bus. Whereupon it is assumed that the voltage at the bus steps back
to normal magnitude, phase, and frequency due to the robustness or “stiffness” of
the large system.
Figures 4.7-2 and 4.7-3 illustrate the dynamic performance of the steam turbine

generator during and following the three-phase fault. There are a host of things
that we need to explain regarding these computer traces. In Fig. 4.7-2, ias , Te ,
ωr , and δ, the power angle, are plotted. The initial δ is δ(0) = 38.1 .
The dynamic torque-angle characteristics, with the electric transients of the sta-

tor and transmission line neglected, during and following the fault, are illustrated
in Fig. 4.7-3. The generator is initially operating in the steady state with the torque

input TI = 0 85 2 22 × 106N m and Ex = 2 48
2
3
26 kV Recall we are now

power system engineers and we changed the assumed direction of positive current;
thus, the input torque is TI and it is positive for generator action. With this change,
stable steady-state operation occurs on the positive-slope part of the Te versus δ

plot −
π

2
< δ <

π

2
; however, positive Te occurs from 0 < δ< π.

In themore sophisticated present-day transient stability programs, machines are
represented in their rotor reference frame and the network represented in the syn-
chronously rotating reference frame. The electric transients are neglected in the
stator windings of the machines and in the network; thereby, eliminating the need

Bus

Steam turbine
generator

CB
Local load

Three-phase
fault

Power grid

Figure 4.7-1 One-line diagram of system configuration for three-phase fault.
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Figure 4.7-3 Torque versus angle characteristics for the study shown in Fig. 4.7-2.

−100

0

100

i a
s,

 A

−2

0

2

4

6

T
e,

 1
0

6
 N

·m

1.02ωe

0.98ωe

ω
r,

 r
ad

/s

30 30.5 31 31.5 32 32.5
0

90

180

Time, s

δ,
 d

eg

Fault cleared

Three-phase fault

Figure 4.7-2 Dynamic performance of the steam turbine generator during a three-phase
fault at the terminals predicted with stator and transmission line electric transients
neglected.
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to integrate for each inductance in the stator and network circuit equations while
maintaining sufficient accuracy for transient stability studies. If the electric tran-
sients were taken into account, a rapidly decaying dc offset would be present in
stator and network currents following an electrical disturbance. The decaying
dc offset in the stator currents gives rise to a short-term 60-Hz decaying pulsation
in Te [1]. Although the damper windings are included in the simulation of the
steam turbine generator for studies shown in Figs. 4.7-2 and 4.7-3, we will not
include these windings in our following analysis since the effects of damper wind-
ings on transient stability is minimal.
Now, (4.4-23) defines δ and as we have mentioned, the power system is large and

is often considered to have infinite electrical and mechanical inertias. Although
the generator connected to the power system bus can deliver power to the system,
the voltage and frequency of a large power system is essentially independent of one
generator operation. This large power system bus is often referred to as an “infinite
bus.” Now, it can be argued that no such thing exists; clearly, a microgrid (small
power system with few generators and loads) is not an infinite inertia system; nev-
ertheless, we will assume an infinite bus in this discussion whereupon θesv is con-
stant and since we are now power system engineers, (4.4-22) becomes

TI −Te = J
2
P

d2δ

dt2
(4.7-1)

since positive current is out of the machine and Bm is neglected. When the input
torque, TI, from the steam turbine is greater than the output torque, Te, or power
output, the machine accelerates; when Te > TI, it slows. Equation (4.7-1) is often
referred to as the “swing equation.” It is the dynamic relationship between the
“swing” of the rotor of a generator relative to a large power system. That is, each
generator connected to the power systemwould have its own swing equationmade
up of its own Te, TI , inertia, and rotor angle δ.
Let us now get back to Figs. 4.7-2 and 4.7-3. As mentioned, the three-phase fault

is simulated by stepping the terminal voltages to zero; therefore, power cannot be
transferred from the generator to the power grid. Thus, the input torque TI accel-
erates the rotor as shown in the plot of ωr in Fig. 4.7-2 where ωe, in the plot of ωr, is
the electrical angular velocity of the power system. The fault is removed by open-
ing the circuit breakers to the small local load in 0.334 seconds, whereupon the
machine is reconnected to the power system and the oscillations in rotor speed
subside due to the action of the damper windings. Had the fault been allowed
to remain slightly longer and Tehad become less than TI, the machine would again
accelerate and would not have returned to synchronous operation with the grid
without going through a time consuming resynchronization, or by what is called
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“slipping poles,” which is not a common practice since system and/or machine
damage can result.
Now, we should mention that a sudden three-phase fault is rare and a “bolted”

three-phase fault near the machine is even rarer; however, it is often used in tran-
sient stability studies since it is a measure of the robustness of the system to faults.
The dynamic torque-angle characteristics due to the three-phase fault shown in
Fig. 4.7-3 are shown in the plot of Te versus δ from Fig. 4.7-2. Now, we understand
that the torque or power from themachine is essentially zero during the fault since
the voltage is zero. The goal is to clear the fault and reconnect the machine to the
grid and maintain synchronization of the machine with the grid. As we men-
tioned, synchronism is maintained if the fault is isolated by opening the circuit
breaker feeding the fault in 0.334 seconds. Thus, the so-called “critical-clearing
time” is 0.334 seconds and the “critical-clearing angle”which is the rotor displace-
ment at the critical-clearing rotor angle is approximately 128 electrical degrees.
Let us “fast-backwards” to the early twentieth century when power systems were

being built and the electric industry was growing rapidly and yet computers were
years away. It appears that even at the start of World War II there were less than
20 integrators available in the United States and these were mechanical. Neverthe-
less, with only slide rules, the engineers were faced with the problem of predicting
transient stability. Fortunately, R.E. Doherty and C.A. Nickle derived an approx-
imate transient torque-angle characteristic that was sufficiently accurate when
used with “equal-area criterion” to predict transient stability [1]. We are not going
to dwell on a technique that has long since given way to modern-day computation;
however, it is interesting that their method is based on the fact that during the
“first swing” of the rotor, which determines stable or unstable operation, the flux
linkages of circuits that are largely inductive with a relative small resistance, will
tend to remain constant. Starting with this assumption they derived a transient
torque–angle curve for the first rotor swing that was easy to determine and use.
We should also mention in passing that during the 1930s and 1940s, point-to-point
integration for transient stability studies was conducted using a “network calcu-
lator” which was a physical mimic of the main high-voltage part of the power sys-
tem. This was an inconvenient time-consuming device that rapidly gave way to the
digital computer in the 1960s.

Example 4.B Calculation of ωr and δ at the Time of Fault Clearing

Consider Figs. 4.7-2 and 4.7-3. Calculate the rotor speed, ωr, and rotor angle, δ, at
the clearing time tc of 0.334 seconds after the occurrence of the three-phase bolted
fault when the synchronous generator is reconnected to the system. The input tor-
que is

TI = 0 85 2 22 × 106 = 1 89 × 106 N m (4B-1)
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This input shaft torque remains on the generator during the duration of the fault,
0.334 seconds. For generator action, the power engineers write

TI −Te = J
2
P

dωr

dt
(4B-2)

where TL has become −TI, Te has become positive for generation action, and Bm

is neglected. Solving for ωr yields

ωr =
P
2J

TI −Te dt

=
P
2J

tc

0
TI −Te dξ

(4B-3)

where tc is the clearing time, J = 0 0658 × 106, and P = 2. Now, Te is essentially
zero during the time the fault is on the system; thus, (4B-3) becomes

ωr =
2 1 89 × 106

2 0 0658 × 106
ξ 0 344

0 + 377 = 9 59 + 377 = 386 6 rad s (4B-4)

This is 1.025 ωe.
Now, (4.7-1) may be written as

d2δ

dt2
=

2J
P

TI −Te (4B-5)

The initial rotor angle is δ(0) = 38.1 and during the fault Te = 0; thus,

δ =
P
2J

tc

0

t

0
TIdtdτ + δ 0

=
P
2J

TI

t

0
ξdξ + δ 0

=
P
2J

TI

2
ξ2 0 334

0
360
2π

+ δ 0

=
2 1 89 × 106 0 334 2

2 0 0658 × 106 2
360
2π

+ 38 1 = 129 9 (4B-6)

Note that tc is the clearing time and that the
360
2π

multiplier is to convert radians to

degrees.

SP4.7-1. Why is Te during the three-phase not exactly zero. 3 Ias
2
rs

SP4.7-2. Assume Ias = 40 kA during the fault. Calculate Te. [0.031 × 106 N m]
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4.8 Problems

1 It is found that λ r
m = 0 1V s rad for a permanent-magnet six-pole two-phase

ac machine. Calculate the amplitude (peak value) of the open-circuit phase
voltage measured when the rotor is turned at 60 revolutions per second (r/s).

2 Consider the steam turbine generator in Section 4.7. Assume it is operating as a
motor with rated power input and rated leading power factor. Draw the phasor
diagram with all the quantities that are shown in Fig. 4.6-1.

3 Repeat Problem 2 for motor action with rated power factor lagging.

4 A four-pole 2-hp two-phase round-rotor synchronous machine is connected to
a 110-V, 60-Hz source. The machine is operating as a generator with a total
steady-state power output of 1 kW at the terminals. The phase current lags
the phase voltage by 160 . The parameters are rs = 0 5Ω, Lls = 0 005 H, and

Lms = 0 05 H. Calculate Ea and draw the phasor diagram.

5 Repeat Problem 4 if the machine is operating as a motor with Ias in phase with

Vas. The input power is 1 kW.

6 Calculate the torque for Problem 5.

7 The field of a 60-Hz three-phase round-rotor synchronous machine is adjusted
so that the open-circuited phase voltage is 14 kV. The parameters are
rs = 0 003Ω, Xls = 0 1Ω, and Xms = 1 1Ω. Calculate i rfd.

8 A three-phase synchronous generator is a 64-pole hydroturbine generator
rated at 325 MVA with 20 kV line-to-line voltage. The machine delivers real
power with a power factor of −0.85. The machine parameters in ohms at

60-Hz are rs = 0 003Ω, Xls = 0 1Ω, and XMs = 1 2Ω. Calculate Ea , Te , and
draw the phasor diagram and locate the poles.

9 Obtain (4.6-24) from (4.4-21).

Reference

1 P. C. Krause, Analysis of Electric Machinery. McGraw-Hill Book Company,
New York, 1986.
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5

Direct Current Machine and Drive

5.1 Introduction

The direct-current (dc) machine is not as widely used today as it once was. The dc
generator has been replaced by power electronics which convert alternating cur-
rent into dc with provisions to control the magnitude of the dc voltage. In drive
applications, the dc motor is being replaced by the voltage-controlled perma-
nent-magnet ac machine (brushless dc drive) and/or the field-orientated induction
motor. Although the analysis of a dc machine does not require a change of vari-
ables, it is still desirable to devote some time to the dcmachine and dc drive since it
is used as a low-power drive motor. There is another and perhaps more important
reason to consider the dc machine. Although maintenance and environmental
issues hamper the use of dc machines, this device is the only electric machine that
is designed with the stator and rotor mmfs orthogonal, which inherently produces
maximum torque per ampere. With the advent of power electronics, a huge effort
is required to control the permanent-magnet ac and induction machines so as to
emulate the characteristics of the dc motor. In this chapter, we will treat the dc
machines sufficient to introduce the reader to the operating principles of dc
machines with focus on the shunt-connected and permanent-magnet dc machine
and drive. Thus, setting the stage for a comparison of the operating characteristics
with the voltage-controlled permanent-magnet ac drive and the field-oriented
induction motor drive set forth in Chapter 6.
A disassembled two-pole 0.1-hp 6-V 12,000-r/min permanent-magnet dc motor

is shown in Fig. 5.1-1. The magnets, which replace the stator field winding, are
samarium cobalt and the device is used to drive hand-held battery-operated sur-
gical instruments. Although some of these terms are new to us, they will be defined
as we go along.
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5.2 Commutation

An elementary dc machine is shown in cross section in Figs. 5.2-1 and 5.2-2. The
field winding is carrying a dc if into the paper at f 1 and out at f 1 and then in at f 2
and out at f 2. A voltage vf is applied across f 1 and f 2. With positive if , the field
winding creates a mmf that is stationary and positive in the f axis.
The armature or rotor consists of two parallel windings, the awinding and the A

winding. Each winding has four coils with each coil connected to two segments of
the commutator. The commutator is fixed to the rotor and makes contact with car-
bon brushes. As the rotor rotates, the commutator segments slide against the
brushes. This action connects the rotating circuits (a andAwindings) to stationary
terminals denoted as vawhich are connected to a dc source or to a load if the device
is operating as a generator. Note that in Fig. 5.2-1 the dc current ia is flowing into
the top brush which is straddling two of the eight segments of the commutator.
Each segment is insulated from the others. The top brush is short-circuiting the
A4 coil; the bottom brush is short-circuiting the a4 coil. In Fig. 5.2-2, the brushes
are not commutating any windings. Sinusoidal voltages are induced in each of the
coils due to the constant field current or permanent magnet producing a stationary
mmf s and the windings rotating in this constant mmf s. Due to the action of the
commutator, themmf r (a axis) of the rotor is also essentially stationary and orthog-
onal to the field mmf s ( f axis).
The full-wave rectified voltages in Figs. 5.2-1 and 5.2-2 are the open-circuit volt-

age of one parallel path between brushes. This is referred to as the back voltage or
back emf. This induced voltage exists only when the rotor is turning. In Figs. 5.2-1
and 5.2-2, the parallel windings each consist of four coils and produces an mmf
that is orthogonal to the mmf produced by the stator winding, the f winding.

Figure 5.1-1 Two-pole 0.1-hp 6-V 12,000-r/min permanent-magnet dc motor.
Source: Courtesy of Vick ElectroMech.
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It is important to understand that the commutator and brush combination is to
change the direction of current flow in the rotor windings so that for positive cur-
rent into the machine flows into the paper over the top part of the rotor and out
over the bottom part for motor action. The current is reversed for generator
action.
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Figure 5.2-1 A dc machine with parallel armature windings.
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SP5.2-1. The peak value of the voltage induced in one coil shown in Fig. 5.2-1 is
1 V. Determine, from Fig. 5.2-1, the maximum and minimum value of va. [2.813
V; 2.414 V]
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Figure 5.2-2 Same as Fig. 5.2-1 with rotor advanced approximately 22.5
counterclockwise.
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5.3 Voltage and Torque Equations

It is advantageous to first consider the dc machine with a field and armature wind-
ing before turning to the permanent-magnet device exclusively. Although rigorous
derivation of the voltage and torque equations is possible, it is rather lengthy and
little is gained since these relationships may be deduced. The armature coils
revolve in a stationary magnetic field established by a current flowing in the field
winding. We have established that a voltage is induced in these coils by virtue of
this rotation. However, the action of the commutator causes the armature coils to
appear as a stationary winding with its magnetic axis orthogonal to the magnetic
axis of the field winding. In other words, the stator and rotor mmfs are orthogonal.
Therefore, voltages are not induced in one winding due to the time rate of change
of the current flowing in the other (transformer action). Mindful of these condi-
tions, we can write the field and armature voltage equations in matrix form as

vf
va

=
rf + pLFF 0

ωrLAF ra + pLAA

if
ia

(5.3-1)

where LFF and LAA are the self-inductances of the field and armature windings,
respectively, and p is the short-hand notation for the operator d/dt. The rotor speed
is denoted as ωr, and LAF is the mutual inductance between the field and the rotat-
ing armature coils which is readily determined from the open-circuited voltage.
The above equation suggests the equivalent circuit shown in Fig. 5.3-1. The voltage
induced in the armature circuit, ωrLAFif, is commonly referred to as the counter or
back emf. It also represents the open-circuit armature voltage from which LAF can
be readily determined. The equivalent circuit shown in Fig. 5.3-1 is for a separately
excited machine where vf is from a separate dc source. When the field and arma-
ture are connected to the same dc source, vf = va, it is a shunt machine.
A substitute variable often used is

kv = LAFif (5.3-2)

We will find that this substitute variable is particularly convenient and frequently
used. Even though a permanent-magnet dc machine has no field circuit, the

rf ra

iaif
vf va

LFF

LAA

ωr LAFif

+

–

+

–

+

–

Figure 5.3-1 Equivalent circuit of dc machine.
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constant field flux produced by the permanent magnet is analogous to a dc
machine with a constant kv.
The torque can be determined by first expressing mmf s and mmfa . From

Figs. 5.2-1 and 5.2-2, one half of mmf s and mmf r becomes

mmf s =
Nf

2
sinϕsif (5.3-3)

mmfa =
Na

2
cosϕsia (5.3-4)

The mmfs are orthogonal. The field fluxΦf may be expressed as
mmf swhere mmf s

is two times (5.3-3) and is an equivalent reluctance. The torque may be
expressed by the cross product of the maximum mmfa , two times (5.3-4), and
Φf . Thus,

Te =
Nf if Naia

=
NfNa if ia

= LAFif ia

(5.3-5)

The torque and rotor speed are related by

Te = J
dωr

dt
+ Bmωr + TL (5.3-6)

where J is the inertia of the rotor and rigidly connectedmechanical load. The units of
the inertia are kg m2 or J s2. A positive electromagnetic torque Te acts to turn the
rotor in the direction of increasing θr. The load torque TL is positive for a torque,
on the shaft of the rotor, which opposes the positive electromagnetic torque Te .
The constant Bm is a damping coefficient associated with themechanical rotational
system of the machine. It has the units of N m s radand it is generally small and
often neglected.
Although we will focus on the permanent-magnet dc motor, it is worthwhile to

take amoment tomention that we have established the basis for several types of dc
machines. In particular, the machine shown in Fig. 5.3-1 is a separately excited dc
machine. If we connect the field winding in parallel with the armature winding, it
becomes a shunt-connected dc machine. If the field winding is connected in series
with the armature winding, it is a series-connected dc machine. If two windings
are used, one in parallel with and another in series with the armature, it is referred
to as a compound-connected dc machine. Clearly, this is an overly simplistic
description and the reader is referred to [1] for a more detailed consideration of
these machine types.
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Before proceeding, it is appropriate to mention briefly generator action even
though the dc generator has been replaced by the ac to dc converter. We see from
Fig. 5.3-1 that if ωrLAFif is greater than υa, ia is reversed and we have generator
action. In this case, TL is negative since the dc machine is being driven and Te ,

(5.3-5) is negative and in the steady state, from (5.3-6)
dωr

dt
is zero and Bm is small.

SP5.3-1. The armature applied voltage is 240 V; the rotor speed is constant at
50 rad/s and Ia = 15 A The armature resistance is 1Ω and LAF = 1H. Calculate

the steady-state field current. If = 4 5 A

5.4 Permanent-Magnet dc Machine

In the case of the permanent-magnet dc machine, LAFIf is replaced with kv, where-
upon the steady-state armature voltage equation becomes

Va = raIa + kvωr (5.4-1)

If (5.4-1) is solved for Ia and substituted into (5.3-5) with LAFIf replaced by kv, the
steady-state torque may be expressed as

Te = kvIa

=
kvVa − k2vωr

ra

(5.4-2)

The steady-state torque-speed characteristic is shown in Fig. 5.4-1.
It is apparent from Fig.5.4-1, that the stall (ωr = 0) torque could be made larger

for a given armature voltage by reducing ra Although the machine may be
designed with a smaller armature resistance, there is a problem since, at stall,
the steady-state armature current is limited by the armature resistance; hence,
for a constant Va, reducing ra will result in a larger Ia at stall which can cause

Te kvVa

Va

ωr
0

ra

kv

Figure 5.4-1 Steady-state torque-speed characteristic of a permanent-magnet dcmachine.
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damage to the brushes. On the other hand, increasing the starting torque by redu-
cing ra causes the torque-speed characteristics to have a steeper slope which results
in a smaller change in speed for a given change in load torque during normal (near
rated) operation. If, however, the armature voltage is reduced during the starting
period to protect the brushes, the desirable characteristic of a small speed change
for load torque variations during normal operation could be achieved. In fact, con-
trolled regulation of the armature voltage is generally employed for large horse-
power machines by using a converter; however, low-power permanent-magnet
dc machines are generally supplied from a battery as in the case of the automobile
and, therefore, a large armature resistance is necessary in order to prevent brush
damage during the early part of the starting period. Fortunately, a small speed
variation during load torque changes is not required in many applications of
the permanent-magnet dc machine; therefore, the steep torque-speed characteris-
tics are not necessary.

Example 5.A Calculating Machine Parameters
A permanent-magnet dc motor is rated at 6 V with the following parameters:
ra = 7Ω, LAA = 120mH, kT = 2 oz in A, and J = 150 μ oz in s2. (a) Determine
the stall torque and the no-load speed. (b) A torque load of 0.5 oz in is applied,
determine the steady-state ωr . (c) Determine the efficiency at this load.
First, let us convert kT and J to units which we have been using. In this regard,

we will convert the inertia to kg m2 which is the same as N m s2. To do this, we
must convert ounces to Newtons and inches to meters. Thus,

J =
150 × 10− 6

3 6 39 37
= 1 06 × 10− 6 kg m2 (5A-1)

We have not seen kT before. It is the torque constant and, if expressed in the appro-
priate units, it is numerically equal to kv. When kv is used in the expression for
Te Te = kvia , it is often referred to as the torque constant and denoted kT When
used in the voltage equation, it is always denoted kv. Now, we must convert oz into
N m, whereupon kT equals our kv; hence,

kv =
2

3 6 39 37
= 1 41 × 10− 2N m A = 1 41 × 10− 2 V s rad (5A-2)

(a) The stall torque is

Te =
kvVa

ra
=

1 41 × 10− 2 6
7

= 1 21 × 10− 2 N m (5A-3)
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The no-load speed is

ωr =
Va

kv
=

6
1 41 × 10− 2 = 425 5 rad s (5A-4)

TL =
0 5

3 6 39 37
= 3 5 × 10− 3 N m (5A-5)

(b) From (5.4-1) with Te = TL,

ωr =
Va

kv
−

TLra
k2v

=
6

1 41 × 10− 2 −
3 5 × 10− 3 7

1 41 × 10− 2 2

= 425 5− 123 2 = 302 3 rad s

(5A-6)

(c) Te = kvIa

3 5 × 10− 3 = 1 41 × 10− 2 Ia

Ia =
3 5 × 10− 3

1 41 × 10− 2 = 0 248 A (5A-7)

Ploss = raI
2
a = 7 0 248 2 = 0 431W (5A-8)

Pin = VaIa = 6 0 248 = 1 488W (5A-9)

Pout = Pin −Ploss = 1 488− 0 431 = 1 057W (5A-10)

Eff =
Pout

Pin
× 100 =

1 058
1 488

× 100 = 71 (5A-11)

Note that

Pout = Teωr = 3 5 × 10− 3 × 302 3 = 1 058W (5A-12)

which is essentially equal to (5A-10).

SP5.4-1. When a 12 V permanent-magnet dc motor is driven at 100 rad/s, the
open-circuit voltage is 10 V. Calculate kv. [kv = 0 1 V s rad]

SP5.4-2.Multiply the expression for va given in (5.3-1) by ia and identify all terms.
[vaia − input power to armature, i2ara − armature ohmic loss, LAAiapia − change
of energy stored in LAA, LAFif iaωr = Teωr − output power]

SP5.4-3. Is SP5.4-2 an alternate method of deriving an expression for torque? [Yes;
LAFif ia is the coefficient of pθr or ωr]

SP5.4-4. A 12-V permanent-magnet dc motor has an armature resistance of 12Ω
and kv = 0 01 V s rad. Calculate the steady-state stall torque (Te with ωr = 0).
Te = 0 01 N m .
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5.5 DC Drive

Since the dc machine plays a role in some drive applications, a brief look at a volt-
age control drive is appropriate. Our focus will be on the permanent-magnet dc
machine supplied from a two-quadrant dc converter. Dynamic and steady-state
performances are illustrated. Since the dc converters used in dc drive systems
are often called choppers, we will use dc converter and chopper interchangeably.
In this section, we will analyze the operation and establish the average-value
model for a two-quadrant chopper drive.
A two-quadrant dc converter is depicted in Fig. 5.5-1. The switches S1 and S2 are

transistors. They are assumed to be ideal; that is, if S1 or S2 is closed, current is
allowed to flow in the direction of the arrow; current is not permitted to flow oppo-
site to the arrow. If S1 or S2 is open, current is not allowed to flow in either direc-
tion regardless of the voltage across the switch. If S1 or S2 is closed and the current
is positive, the voltage drop across the switch is assumed to be zero. Similarly, the
diodes D1 and D2 are ideal. Therefore, if the diode current iD1 or iD2 is greater than
zero, the voltage across the diode is zero. The diode current can never be less
than zero.
Waveforms of the converter variables during steady-state operation are shown in

Fig. 5.5-2. Therein, the switching period T is made large relative to the armature
time constant τa for the purpose of depicting the transient of the armature current.
Normally, the switching period is much smaller than the armature time constant
and the switching segments of ia are essentially sawtooth in shape. This is por-
trayed later in this section. With a two-quadrant chopper, the armature voltage
cannot be negative va ≥ 0 ; however, the armature current can be positive or neg-
ative. That is, I1 and I2 (Fig. 5.5-2) can both be positive, or I1 can be negative and I2
positive, or I1 and I2 can both be negative. In Fig. 5.5-2, I1 is negative and I2 is
positive and the average value of ia is positive. The mode of operation depicted
is motor action if ωr is positive (ccw).

iS

iS1

ra

ia
va

kvωr

iS2

vS

iD1

iD2

D1
LAA

D2S2

S1

+

– –

+

–

+

Figure 5.5-1 Two-quadrant chopper drive.
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During interval A, S1 is closed and S2 is open and, at the start of interval A,
ia = I1, which is negative. Since S2 is open, a negative ia (I1) can only flow through
D1. It is important to note that − iD1 and − iS2 are plotted in Fig. 5.5-2 to allow-
ready comparison with the waveform of ia, since they are opposite to positive ia.
Let us go back to the start of interval A. How did ia become negative? Well, during
the interval B in the preceding period, S2 was closed with S1 open. With S2 closed,
the armature terminals are short-circuited and the counter emf has driven ia neg-
ative. Therefore, when S1 is closed and S2 is opened at the start of interval A, the
source voltage has to contend with this negative I1. We see from Fig. 5.5-2 that the
average value of ia is slightly positive; therefore, vS is larger than the counter emf
and at the start of interval A when vS is applied to the machine, the armature cur-
rent begins to increase toward zero from the negative value of I1. Once ia reaches
zero, the diode D1 blocks the current flow. That is, iD1 cannot become negative

A

T

vs

t1 t2

va

ia

iS1

iD2

–iS2

–iD1

B

0

I2

I1

I2

I2

I1

I1

Figure 5.5-2 Steady-state operation of a two-quadrant dc converter drive.
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(cannot conduct positive ia); however, S1 has been closed since the start of interval
A and since iS1 can only be positive, S1 is ready to carry the positive ia. The arma-
ture current, which is now iS1, continues to increase until the end of interval A I2 .
At the beginning of interval B, S1 is opened and S2 is closed; however, S2 cannot

conduct a positive armature current. Therefore, the positive current I2 is diverted
to diode D2 which is short-circuiting the armature terminals. Now, the counter
emf has the positive current I2 with which to contend. It is clear that if the arma-
ture terminals were permanently short-circuited, the counter-emf would drive ia
negative. At the start of interval B, the counter-emf begins to do just that; however,
when ia becomes zero, diode D2 blocks iD2 and the negative armature current is
picked up by S2, which has been closed since the beginning of interval B, waiting
to be called upon to conduct a negative armature current. This continues until the
end of interval B, whereupon we are back to where we started.
It is apparent that if the mode of operation is such that I1 and I2 are both positive,

then themachine is acting as a motor with a substantial load torque ifωr is positive
(ccw). In this mode, either S1 or D2 will carry current during a switching period T.
If both I1 and I2 are negative, the machine is operating as a generator, delivering
power to the source if ωr is driven ccw. In this case, either S2 or D1 will carry cur-
rent during a switching period.

5.5.1 Average-Value Time-Domain Block Diagram

The average-value time-domain block diagram for the two-quadrant chopper drive
system is shown in Fig. 5.5-3. From Fig. 5.5-2, the average armature voltage may be
determined as

va =
1
T

t1

0
vS dξ +

T

t1

0dξ (5.5-1)

Since t1 = kT, where k is referred to as the duty cycle, the average armature voltage
becomes

va = kvS (5.5-2)

vs va ia Te

TL

+

+

1/ra

1

Jp + Bm

τap + 1

1

0
k

kvωr

kv

kv

–

–– –ωr

Σ

Σ

Figure 5.5-3 Average-value model of two-quadrant dc converter drive.
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In Fig. 5.5-3, the bars over the variables denote average values.
The starting characteristics of a permanent-magnet dc machine with a two-

quadrant chopper drive are depicted in Fig. 5.5-4. The machine parameters are
ra = 7Ω , LAA = 120mH, kv = 1 41 × 10−2 V s rad, and J = 1 06 × 10−6 kg m2 ;
rated voltage is 6 V. Here, the switching frequency fs is set to 200 Hz and the source
voltage to 10 V. Typically, the switching frequency is much higher, generally
greater than 20 kHz. The frequency was selected to illustrate the dynamics intro-
duced by the converter. Even at this low switching frequency, the switching period
T is much less than the armature time constant τa . Thus, the armature current
essentially consists of piecewise linear segments about an average response. In
Fig. 5.5-4, the duty cycle is stepped from 0 to 0.6, corresponding to a step increase
in average applied voltage from 0 to 6 V. The start-up response established using
the average-value model is superimposed for purposes of comparison. As shown,
the only salient difference between the two responses is the “sawtooth” behavior of
the armature current due to converter switching. The difference in rotor speeds is
indistinguishable.

5.5.2 Torque Control

The parameters of a permanent-magnet dc machine are Va = 6 V rated,
ra = 7Ω , kv = 1 41 × 10− 2 V s rad, LAA = 120mH, J = 1 06 kg m2, and Bm =
6 04 × 10− 6 N m s . We are to limit the torque T∗

e to 0.423 × 10−2 N m or

1
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1

0.5

0

400

200

0

0

k

ia

ωr

0.1 s

Figure 5.5-4 Starting characteristics of a permanent-magnet dc machine with a
two-quadrant dc/dc converter drive.
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I∗a = 0 3 A where the asterisk denotes commanded values. The control is shown
symbolically in Fig. 5.5-5.
Since the current is controlled, the electric dynamics are neglected; there-

fore, only the mechanical dynamics are considered. The equations involved
in Fig. 5.5-5 are

Va = raI
∗
a + ωrkv (5.5-3)

T∗
e = J

dωr

dt
+ Bmωr + TL (5.5-4)

where T∗
e = kvI∗a = 0 423 × 10− 2 N m. The load line is

TL = Kω2
r (5.5-5)

where

K = 5 529 × 10− 8 N m s2 (5.5-6)

This intersects rated Va torque versus rotor speed plot at Operating Point 1 where
ωr = 276 6 rad s, as shown in Fig. 5.5-6.
The dc machine is operating at point 1. The commanded torque is suddenly

switched to
1
2
the original value which intersects the limiting torque I∗a at Oper-

ating Point 2 where ωr = 195 6 rad s. The electromechanical dynamics are

T∗
e = J

dωr

dt
+ Bmωr + TL (5.5-7)

Assuming the torque control is functioning perfectly, the rotor slows and steady
state is reached at Operating Point 2. The voltage at Operating Point 2 is

T*e I*a Va

Ns

Nr

ωr

Sr

Ss

kv

1 Voltage
control

Figure 5.5-5 Torque control.
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Va = raI
∗
a + kvωr

= 7 0 15 + 1 41 × 10− 2 195 6

= 1 05 + 2 76 = 3 8 V

(5.5-8)

The commanded torque T∗
e is returned to the original value. The rotor speeds up

and reaches steady state at Operating Point 1. The trajectory from Operating Point
1 to Operating Point 2 and then back to 1 is shown in Fig. 5.5-6.

SP5.5-1. The dc machine given in the subsection entitled “Torque Control” is sup-
plied from a two-quadrant converter. Determine k to reduce the no-load speed
to one-half that when rated voltage is applied to the armature [k = 0.3].

SP5.5-2. Sketch Fig. 5.5-2 for only motor action; i.e. iS2 and iD1 equal to zero.
SP5.5-3. Assume ωr = 100 rad s, calculate Va and check the value with that given

in Fig. 5.5-6 [1.68 V]

5.6 Problems

1 A permanent-magnet dc motor has the following parameters: ra = 8 Ω and
kv = 0 01 V s rad The shaft load torque is approximated as TL = Kωr, where
K = 5 × 10− 6 N m s. The applied voltage is 8 V and Bm = 0. Calculate the
steady-state rotor speed ωr in rad/s.

2
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Figure 5.5-6 Drive operation during T ∗
e switching.
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2 A permanent-magnet dc motor is driven by amechanical source at 3820 r/min.
The measured open-circuit armature voltage is 7 V. The mechanical source is
disconnected, and a 12-V electric source is connected to the armature. With
zero-load torque, Ia = 0 1 A and ωr = 650 rad/s. Calculate kv, Bm, and ra.

3 The parameters of a permanent-magnet dc machine are ra = 6 Ω and
kv = 2 × 10− 2 V s rad. Va can be varied from 0 to 10 V. The device is to be
operated in the constant-torque mode with Te = 4 × 10− 3N m. (a) Determine
Va for ωr = 0. (b) Determine maximum ωr range of the constant-torque mode
of operation that is, maximum ωr with Te = 4 × 10− 3 N m and Va = 10 V.

4 Sketch Fig. 5.5-2 for generator action; i.e. iS1 and iD2 equal to zero.

Reference

1 P. C. Krause, Analysis of Electric Machinery, New York, McGraw-Hill Book
Company, 1986.
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6

Brushless dc and Field-Oriented Drives

6.1 Introduction

The three-phase permanent-magnet ac machine supplied from a controlled
inverter is used widely as a drive in low-to-medium power applications.
Although it may seem as a contradiction of terms, this inverter and ac machine
combination is often referred to as a brushless dc drive. Depending upon the con-
trol strategy and inverter used, the performance of this brushless dc drive can be
made to (1) emulate the performance of a permanent-magnet dc motor, (2) oper-
ate in a maximum torque per volt mode, (3) or in a maximum torque per ampere
mode. Fortunately, we are able to become quite familiar with the operating fea-
tures of these various modes without becoming overly involved with the actual
inverter control. In particular, if we assume that the stator variables (voltages and
currents) are sinusoidal and balanced with the same angular velocity as the rotor
speed, we are able to predict the dominant operating features of all modes of
operation without becoming involved with the actual switching or control of
the inverter. Therefore, we will focus on the performance of the brushless dc
drive assuming that the inverter is designed and controlled appropriately.
We will use the rotor reference frame to derive the equations used in the analysis
and for the control of the machine.
Although this chapter is primarily devoted to the brushless dc drive, the last

section deals with field orientation of an induction motor drive. The dominant
characteristics of this drive are considered assuming the control is working
perfectly.
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6.2 The Brushless dc Drive Configuration

The drive converter that wewill consider is the three-phase six-step inverter shown
in Fig 6.2-1 supplying the wye-connected symmetrical stator windings of a
three-phase permanent-magnet ac machine shown in Fig. 6.2-2. The drive needs
some way to measure the rotor speed of the machine, fortunately, there are many
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Figure 6.2-1 Inverter-machine drive. (a) Inverter configuration, (b) transistor switching
logic, and (c) plot of vas.
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sensors and techniques to estimate rotor speed. For example, the three sensors
shown in Fig. 6.2-2 are Hall-effect devices; when the south pole of the perma-
nent-magnet rotor is under a sensor its output is nonzero; with the rotor north pole
under the sensor, its output is zero. Regardless of the technique used, the rotor
speed estimate determines the switching logic for the inverter, which, in turn,
determines the output frequency and phase of the machine voltages. In the actual
machine, the sensors are not positioned over the rotor as shown in Fig. 6.2-2.
Instead, they are placed over a ring that is mounted on the shaft external to the
stator and magnetized the same as the rotor.
The inverter shown in Fig. 6.2-1a consists of six transistors each with an antipar-

allel diode supplied from a dc source Vin . The logic (switching) signals for the

ics

ibs

ias rs

vcs

vas

vbs

rs rs
NsNs

Ns

+

+

+

––
n
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SensorSensor
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Teϕs
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ωr

bs
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N

1

2 3

Figure 6.2-2 Two-pole three-phase permanent-magnet ac machine with sensors.
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transistors are shown in Fig. 6.2-1b. It is assumed that the forward resistance of the
diodes and transistors is negligibly small and the turn-on and turn-off times are
neglected, whereupon the transistors and diodes are considered to be ideal
switches. With these assumptions, the instant one of the “top-rail” transistors
in a phase is turned off the “bottom-rail” transistor of that phase can be turned
on and conversely. In other words, each phase is either connected to the top or
bottom rail; this is referred to as continuous-current or 180 mode of operation.
From the work in Example 1D, we can write

vag = vas + vng (6.2-1)

vbg = vbs + vng (6.2-2)

vcg = vcs + vng (6.2-3)

Adding (6.2-1) through (6.2-3) and since for a symmetrical wye-connected
machine vas + vbs + vcs = 0, we can write

vng =
1
3

vag + vbg + vcg (6.2-4)

Substituting (6.2-4) into (6.2-1) through (6.2-3) and then solving for vas, vbs, and
vcs yields

vas =
2
3
vag −

1
3

vbg + vcg (6.2-5)

vbs =
2
3
vbg −

1
3

vcg + vag (6.2-6)

vcs =
2
3
vcg −

1
3

vag + vbg (6.2-7)

where vag, vbg, and vcg are either Vin or zero depending upon the state of the tran-
sistors. A plot of vas is shown in Fig. 6.2-1c. The voltages vbs and vcs are of the same
waveform as vas but lag by 120 and 240 , respectively, for an abc sequence. The
firing of the inverter is controlled so that the fundamental frequency of the applied
voltages vas, vbs,and vcs corresponds to the rotor speed ωr of the permanent-
magnet ac machine. That is, T1 is turned on by sensor 1, T2 by sensor 2, and
T3 by sensor 3.
The plot of vasgiven in Fig. 6.2-1c is readily established from (6.2-5) and the firing

signals given in Fig. 6.2-1b. When T4, T5, and T6 are high terminals a, b, and c,
respectively, are connected to the lower rail and are zero. They allow a return path
for the currents. The signals T1, T2, and T3 determine the plot of vas, vbs, and vcs. In
the case of vas, Fig. 6.2-1c tells us that when T1 is high and T2 and T3 are low, vas is
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2
3
Vin . When T2 or T3 are high, they each contribute −

1
3
Vin to vas . Clearly vas

is −
2
3
Vin when T1 is low and both T2 and T3 are high.

In order to analytically “connect” the inverter to the machine equations, we
need to transform vas, vbs, and vcs to vrqsand v

r
ds; the voltage equations used to analyze

the permanent-magnet ac machine. A Fourier expansion of vas shown in Fig. 6.2-1c
may be written as

vas =
2Vin

π
cos θr +

1
5
cos 5θr −

1
7
cos 7θr + (6.2-8)

The inverter controls the frequency of vas , vbs , and vcs to correspond to ωr ,
the electrical angular velocity of the rotor; hence, the voltages are expressed in
terms of ωr .
It should be noted that the maximum value of Fourier expansion of vas given in

Fig. 6.2-1c is
2
3
Vin; however, the peak value of the fundamental component of vas

given in (6.2-8) is
2
π
Vin . The voltages vbs and vcs may be expressed, for an abc

sequence, by substituting θr −
2
3
π and θr +

2
3
π, respectively, for θr in (6.2-8).

Let us take a closer look at the voltage and current waveforms of the continuous-
current inverter. For this purpose, it is sufficient to focus on vas and ias shown
in Fig. 6.2-3. We will work with Fig. 6.2-1a and Fig. 6.2-3, where vas , ias ,
iaT1, − iad1, − iaT4, and iad4 are plotted for a typical operating condition with an
RL load for Vin = 25 V, where iad1 iad4 is the current flowing in the antiparallel
diode of T1(T4). The diodes are not labeled in Fig. 6.2-1a. Let us start at the center
of the peak value of vas. We see from Fig. 6.2-1a that at this instant T1 is carrying
positive ias and it is being returned to the source through T5 ibs and T6 ics (not
shown in Fig. 6.2-3). At the first step, T2 is turned on, T5 is turned off, and vasdrops
to 1

3Vin. Now, T1 ias and T2 ibs (not shown in Fig. 6.2-3) will share the positive

current and T6 ics will return the current to the source. At the next step, T1 is
turned off and T4 is turned on. Now T2 ibs has all of positive current and
T4 ias and T6 ics will share the return current. However, since we have an induc-
tive circuit, before T4 can share the return current there must be path for the pos-
itive current that was flowing in T1 ias at the time it was turned off. This is
through id4 (the antiparallel diode of T4). When T4 is turned off, the antiparallel
diode of T1 springs into action. The pattern is clear.
If we use (2.3-18) with θ = θr to transform vas, vbs, and vcs, where vas is given by

(6.2-8), to the ωr reference frame, we obtain
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vrqs =
2Vin

π
1 +

2
35

cos 6θr −
2
143

cos 12θr + (6.2-9)

vrds =
2Vin

π

12
35

sin 6θr −
24
143

sin 12θr + (6.2-10)

The frequency of the harmonics has changed. The 5th and 7th of the three-phase
voltages have become the 6th harmonic and the 11th and 13th have become the
12th in the qrs- and drs-voltages . The balanced set of 5th and 11th harmonics
produce magnetic fields that rotate cw at 5ωr and 11ωr . The balanced 7th and
13th harmonics produce magnetic fields that rotate ccw at 7ωr and 13ωr . When
we transform ccw to ωr , the 5th and 7th become the 6th and the 11th and 13th
become the 12th.
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Figure 6.2-3 Plots of vas and ias and the components of ias.
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SP6.2-1. Show that the 5th harmonic causes a rotating mmf in the cw direction at
5ωe in the steady state. [5th is an acb sequence]

SP6.2-2. Show that 7th causes a ccw rotation. [7th is an abc sequence]

6.3 Normal Mode of Brushless dc Drive Operation

The free-acceleration characteristics of this brushless dc motor-inverter drive are
shown in Fig. 6.3-1. The three-phase four-pole machine parameters are rs = 3 4Ω,

Lls = 1 1mH, LMs =
3
2
11mH, Lss = 17 6mH, and λ r

m = 0 0826 V s rad with a

total inertia of 5x104 kg m2. It is convenient to relate the phase of the three-phase
applied voltages to the q axis as

ϕv = θesv − θr (6.3-1)

Since ωr = ωe, steady-state operation (6.3-1) becomes

ϕv = θesv 0 − θr 0 (6.3-2)

Also, for brushless dc machine operation, it is convenient to select θr 0 equal to
zero, whereupon

ϕv = θesv 0 (6.3-3)

Therefore, ϕv is the phase of Vas and the phase of Ea is zero degrees since it is along
the q axis.
The normal mode of operation of the brushless dc drive is to control the inverter

so that the middle of the maximum vas coincides with the q-axis, ϕv = 0, with the
frequency the three-phase voltages equal to the electrical angular velocity of the
rotor. The free-acceleration characteristics of this brushless dc motor-inverter
drive with ϕv = 0 are shown in Fig. 6.3-1. The Te versus ωr for Fig. 6.3-1 is shown
in Fig. 6.3-2. Note the similarity of the steady-state torque given in Fig. 6.3-2 and
that given for the permanent magnet dc motor given in Fig. 5.4-1. Thus, the name
brushless dc.
The free-acceleration characteristics shown in Figs. 6.3-3 and 6.3-4 are with the

harmonics neglected in (6.2-9) and (6.2-10). Neglecting the voltage harmonics is a
good approximation except for the minor difference since the magnitude of vas is
2
3
Vin in Figs. 6.3-1 and 6.3-2 and

2
π
Vin in Figs. 6.3-3 and 6.3-4. We will neglect the

voltage harmonics in future work.
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In Fig. 6.3-5, the load torque is initially 0.1 N m and the machine is operating in
the steady state. The load torque is stepped to 0.4 N m, the machine slows and
steady-state operation is established with TL = 0 4 N m, whereupon the load tor-
que is stepped back to 0.1 N m. Note the change in frequency of that stator voltage
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Figure 6.3-1 Free-acceleration characteristics of a three-phase brushless dc motor
supplied by a six-step inverter with ϕv = 0.
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Figure 6.3-2 Torque-speed characteristics for free acceleration shown in Fig 6.4-1.
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Figure 6.3-3 Free-acceleration characteristics of a brushless dc drive with harmonics
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Figure 6.3-4 Torque-speed characteristics for the free acceleration shown in Fig. 6.3-3
with the steady-state torque shown for comparison purposes.
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and current and also the increase in stator current due to the decrease in inductive
reactances until Te = TL.
Before leaving this section, let us derive the instantaneous and steady-state pha-

sor voltage equations by following the work in Section 2.4. In the case of the per-
manent-magnet ac machine, the electrical angular velocity (frequency) of the
stator applied voltages is controlled by the inverter to be the same as the electrical
angular velocity of the rotor; in other words ωe is controlled to always be ωr. There-
fore, as long as ωe = ωr, the instantaneous and steady-state phasors may be used to
portray transient and steady-state machine and drive operation. If the rotor and
stator are symmetrical as in the case of an induction machine, all balanced modes
of operation regardless of rotor speed yield constant steady-state synchronous ref-
erence frame variables. In the case of the permanent-magnet ac machine, which is
an unsymmetrical machine due to the rotor, yields constant synchronous refer-
ence frame variables in the steady state only if the rotor speed is fixed at synchro-
nous speed. This is not the case in general; however, we will find that when the
permanent magnet ac machine is controlled as a brushless dc machine, the fun-
damental frequency of the applied stator voltages is controlled essentially, instan-
taneously to be equal to the rotor speed. Therefore, all modes of operation are in
the synchronous reference frame and the phasor representation is valid if we
neglect the harmonics introduced in the stator voltages due to the switching of
the drive inverter.
Substituting (4.2-4) and (4.2-5) into (2.4-32) with r used as a superscript rather

than e since ωr = ωe, we have

vrqs − jvrds = rs irqs − jirds + Lss pirqs − jpirds

+ ωrLss irds + jirqs + ωrλm (6.3-4)

which may be written as

vas = rs + jωrLss ias + ea + Lsspias (6.3-5)

where we are assuming that

ea = ωrλ
r
m 0 (6.3-6)

which is added to (2.4-37) due to the rotor.
Now, for balanced steady-state operation, the last term of (6.3-5) is zero and the

steady-state phasor voltage equation becomes

Vas = rs + jωrLss Ias + Ea (6.3-7)

where

Ea =
ωrλ

r
m

2
0 (6.3-8)
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For a three-phase machine, we will replace Lms, which is part of Lss, with LMs or
3
2Lms in (6.3-5) and (6.3-7).

We have set θ(0) = 0, therefore the q-axis is fixed at zero degrees, thus since

ωr = ωe we will also set θr 0 = 0. Therefore, since ϕv = θesv 0 Vas , and Ea are
in the q-axis. A convenient expression for the calculation of steady-state torque
for balanced operation can be obtained from (4.2-28) by expressing the instanta-
neous three-phase currents as given by (2.2-15) through (2.2-17) and transforming
the currents by (2.3-18) to the rotor reference. Substituting Irqs into (4.2-28) gives

the torque as

Te =
P
2
3
2
λ r
m 2Is cos θesi 0 − θr 0 (6.3-9)

We can use the phasor diagram to advantage in portraying the steady-state oper-
ation of the permanent-magnet ac machine. During balanced steady-state opera-
tion and with the assumption ofωe = ωr, the rotor and phasor diagram are rotating

in unison; therefore, they can be superimposed with Ea at zero degrees. Moreover,
since mmf r is also rotating at ωr,Nr and Sr can be superimposed with the rotor and
the phasor diagram. Now, since all are rotating in unison and the voltage and cur-
rent phasors are constant, we can stop the rotation at any time or we can run at ωe

and observe the operation of the machine.
It is important to realize that we have positioned the rotor so that when a voltage

is applied at stall, the torque is nearly maximum in the ccw direction. Depending
on the position of the rotor at stall, the starting torque may be small or even in the
cw direction. The control must take this into account to prevent this. Also,
when the torque is in ccw direction and the rotor speed is increasing as shown
in Figs. 6.3-1 through 6.3-4, the speed at which the torque becomes zero depends
upon the relative value of the applied voltage, and λm. That is, with ϕv = 0, when

Vas = Ea the stator current and thus the torque become zero [see (6.3-7) or (6A-2)].

Example 6.A Steady-State Operation with ϕv = 0

Let us assume that the parameters of the machine are those given earlier in this
section with Vin = 25 V and the actual steady-state rotor speed is 750 r/min. Cal-
culate ωe, Te, and draw the phasor diagram showing the stator and rotor poles.
From (3.6-9), the electrical angular velocity of the rotor is

ωr =
P
2
ωrm

=
P
2

r min rad r
s min

=
4
2

750 2π
60

= 50π rad s

(6A-1)
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Using phase variables, we can solve for Ias from (6.3-7) with Lss = Lls + LMs,

Ias =
Vas −Ea

rs + jωrLss

=
11 25 0 − 9 18 0

3 4 + j50π 17 6 × 10− 3

=
2 07 0

3 4 + j2 76
=

2 07 0

4 38 39 1
= 0 473 − 39 1 A

(6A-2)

The torque can be calculated using (6.3-9), thus,

Te =
P
2

3
2

λm 2 Is cos θesi 0 − θr 0

=
4
2
3
2

0 0826 2 0 473 cos − 39 1 − 0

= 0 129 N m

(6A-3)

The phasor diagram is shown in Fig. 6.A-1.
We see from Fig. 6.A-1 that the rotor poles are being “pulled” in the counter-

clockwise direction by the poles created by the stator currents, motor action.

SP6.3-1. Plot the trajectory of the torque switching of Fig. 6.3-5 on the steady-state
torque plot shown in Fig. 6.3-4.

SP6.3-2. If ωr = ωe and θr 0 = 0 show that vrds = 0 for ϕv = 0. [θesv 0 = 0]
SP6.3-3.With the initial conditions assumed, the stall torque of an inverter-driven

brushless dcmachine is slightly larger than the sinusoidal approximation. Why?
2
3
Vin vs

2
π
Vin

SP6.3-4. For a given inverter voltage what factors determine the starting torque.
[rotor position, position of mmf s]

Ns

Nr

Sr

Ss

Ias
˜

Ẽa Ṽas

˜rsIas ˜jωr LssIasθesi(0)

d axis

q axis

Figure 6.A-1 Phasor diagram for operation at ωr = 50π rad/s with ϕv = 0.
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6.4 Other Modes of Brushless dc Drive Operation

There are two other modes of ϕv that we will consider: the maximum torque per
voltage, ϕvMT V , and the maximum torque per ampere, ϕvMT A. The final mode of

operation that we will consider is the torque control mode which requires a reduc-
tion in the applied voltage as speed decreases. Although ϕv = 0is a commonmode
of operation of the brushless dc drive, researchers in [1, 2] discovered that advan-
cing ϕv with respect to the q axis could increase the torque at rotor speeds greater
than zero. This was shown analytically in [3] and illustrated by simulating the
phase shifting (increasing ϕv) of the applied voltages to obtain maximum torque

per volt ϕv = ϕvMT V at a given speed.

If the applied voltages and thus the stator poles are shifted relative to the mag-
netic field established by the permanent-magnet rotor, which is fixed in the d axis,
the torque versus speed characteristics can be changed over a wide range by shift-
ing ϕv from zero to 2π [4]. Here, we limit our discussion to shifting ϕv for the pur-
pose of maximizing torque during motor operation.

6.4.1 Maximum-Torque Per Volt Operation of a Brushless dc Drive
(ϕv = ϕvMT V )

Torque is proportional to irqs and when ϕv is shifted from zero, vrds is nonzero. For

the purpose of deriving an expression for the maximum torque per volt at a given

rotor speed ϕvMT V , we will start with the steady-state versions of (4.2-4) and

(4.2-5) and (4.2-21) and (4.2-22) for Vr
qs and Vr

ds, respectively. In particular, since

ωr = ωe, the derivative terms are zero for steady-state operation. Thus,

Vr
qs = rsI

r
qs + ωrLssI

r
ds + ωrλ

r
m (6.4-1)

Vr
ds = rsI

r
ds −ωrLssI

r
qs (6.4-2)

Please recall that these equations are valid for two- or three-phase devices for bal-

anced steady-state operation if, for the three-phase device, Lms is replaced by
3
2
Lms

is used when calculating Lss. We also need the expressions for Vr
qs and Vr

ds as func-

tions of ϕv We can obtain these relationships by transforming Vas and Vbs for the
two-phase machine or Vas, Vbs, and Vcs for the three-phase, to the rotor reference
frame and substituting (6.3-1) for ϕv. That is,

Vr
qs = 2Vs cosϕv (6.4-3)

Vr
ds = − 2Vs sinϕv (6.4-4)
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Since θr 0 = 0, ϕv is the phase of Vas.
Solving (6.4-2) for Irds and substituting the result into (6.4-1) yields

Vr
qs =

r2s + ω2
r L

2
ss

rs
Irqs +

ωrLss
rs

Vr
ds + ωrλ

r
m (6.4-5)

Now, solving (6.4-5) for Irqs and substituting (6.4-3) and (6.4-4) for Vr
qs and Vr

ds ,

respectively, with θr 0 = 0, we have

Irqs =
rs

r2s + ω2
r L

2
ss

2Vs cosϕv +
ωrLss
rs

2Vs sinϕv −ωrλ
r
m (6.4-6)

It is interesting to note from (6.4-6) that Vr
ds aids V

r
qs to increase I

r
qs for a given rotor

speed. Since this results in a negative Irds, it is often referred to as field weakening

even though λ r
m is not decreased in magnitude.

Since Te is proportional to Irqs, (4.2-28), we can obtain the maximum torque for a

given rotor speed by taking the derivative of Irqs with respect to ϕv and setting the

result equal to zero and then solving for ϕv. Thus, from (6.4-6),

0 = − sinϕv +
ωrLss

rs
cosϕv (6.4-7)

whereupon

sinϕv

cosϕv
=

ωrLss
rs

(6.4-8)

or

ϕvMT V = tan− 1 ωrLss

rs
(6.4-9)

Equation (6.4-9) tells us that for a given positive rotor speed, ϕvMT V will yield max-

imum possible torque per volt at that rotor speed. Equation (6.4-9) is derived for
steady-state conditions and is in slight error for transient conditions.
The free-acceleration characteristics for ϕvMT V are shown in Figs. 6.4-1 and

6.4-2. These characteristics may be compared to Figs. 6.3-3 and 6.3-4, respectively,
where ϕv = 0. Note the extended speed range with ϕvMT V (Fig. 6.4-2) compared

with ϕv = 0(Fig. 6.3-4). Also, note that irds is small positive in Fig. 6.3-3 but a larger

negative value in Fig. 6.4-1. In other words, an increase in torque Irqs and speed

range occurs due to a decrease in Irds (a larger negative value).
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Figure 6.4-1 Free-acceleration characteristics of a brushless dc drive with ϕv = ϕvMT V

and a total inertia of 5 × 10−4kg m2.
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Figure 6.4-2 Torque-speed characteristics for free acceleration shown in Fig. 6.4-1 with
the steady-state torque also shown. Compare to Fig. 6.3-4 where ϕv = 0.
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Example 6.B Brushless dc Drive Operation with ϕv = ϕvMT V

In Example 6.A, we determined the steady-state torque at 750 r/min
ωr = 50π rad s with ϕv = 0. In this example, we will calculate the torque at
the same speed with ϕv = ϕvMT V , draw the phasor diagram and locate the

poles, and calculate the power balance. The parameters for the machine are
repeated here for convenience; rs = 3 4Ω, Lls = 1 1mH, Lms = 11mH , and

λ r
m = 0 0826 V s/rad. From (6A-1), ωr = 50π rad s . Now, for a three-phase

machine,

Lss = Lls +
3
2
Lms

= 1 1 +
3
2
11 × 10− 3 = 17 6 mH (6B-1)

From (6.4-9),

ϕvMT V = tan − 1 ωrLss

rs

= tan − 1 50π 17 6 × 10− 3

3 4
= 39 1

(6B-2)

Therefore,

Vas = 211 25 cos ωr t + 39 1 (6B-3)

From (6.3-7),

Vas = rs + jωrLss Ias + Ea (6B-4)

and from Example 6.A, Ea = 9 18 0 . Solving for Ias,

Ias =
Vas −Ea

rs + jωrLss

=
11 25 39 1 − 9 18 0

3 4 + j50π 17 6 × 10− 3 = 1 62 54 5 A

(6B-5)

From (6.3-9) the steady-state torque is

Te =
3
2
P
2
λ r
m 2Is cos θesi 0

=
3
2

4
2

0 0826 2 1 62 cos 54 5 = 0 330 N m
(6B-6)

The phasor diagram is shown in Fig. 6.B-1.
Calculating a power balance

Pe = 3 Vas Ias cos θesv 0 − θesi 0

= 3 × 11 25 × 1 62 × cos 39 1 − 54 5 = 52 71W
(6B-7)
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Ploss = 3rs Ias
2

= 3 × 3 4 × 1 62 2 = 26 77W
(6B-8)

Pm = Teωrm

= 0 33 ×
2
4
× 50π = 25 92W

(6B-9)

The efficiency is

eff =
Pm

Pe
=

25 92
52 71

= 49 2 (6B-10)

From Fig. 6.B-1, we see that the poles created by the stator can be considered as
“pushing” the rotor poles in the counterclockwise direction. In Example 6.A, Te

was calculated to be 0.129 N m with ϕv = 0. Here, with ϕvMT V, the torque is cal-

culated to be 0.330 N m; however, the magnitude of Ias increased from 0.475 to
1.62 A. The torque is increased by a factor of 2.6 while the current is increased by a
factor of 3.4. This is the maximum torque per volt that this device can produce at
ωr = 50π rad s (750 r/min) with Vs = 11 25 V; however, when shifting the phase
of the terminal voltage to achieve maximum torque, one must not exceed rated
conditions for an extended period.

6.4.2 Maximum-Torque Per Ampere Operation of a Brushless
dc Drive (ϕv = ϕvMT A)

Maximum-torque per ampere operation occurs when Irds (imaginary part of Ias) is

made zero by controlling the position of Vas relative to the permanent magnet of

the rotor ϕv = ϕvMT A . This was done by M. Hasan in [3]. The torque is directly

Sr

Ss

Ias
˜

Ẽa

Ṽas

˜
rs

Ias

˜jωr Lss Ias

ϕvMT/V
θesi(0)

d axis

q axis

Ns

Nr

Figure 6.B-1 Phasor diagram for brushless dc drive operation at ωr = 50π rad s with
ϕv = ϕvMT V .
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related to the q-axis current (real part of Ias The d-axis current does contribute to
the torque indirectly, but decreases the efficiency of the machine as we have seen
in Example 6.B.
To derive an expression for ϕvMT A for steady-state operation, we will substitute

(6.4-3) and (6.4-4) into (6.4-1) and (6.4-2) for Vr
qs and V

r
ds, respectively, and solve for

cosϕv and sinϕv If we set Irds = 0 and perform several mathematical manipula-
tions, we can express ϕvMT A, at a given rotor speed, as

ϕvMT A = tan − 1 ωrτs
− 1 ± ωrτv 1 + ω2

r τ
2
v 1−ω2

r τ
2
v

ω4
r τ

2
s τ

2
v − 1

(6.4-10)

where, for compactness

τs =
Lss

rs
(6.4-11)

τv =
λ r
m

2Vs
(6.4-12)

The free-acceleration characteristics are shown in Figs. 6.4-3 and 6.4-4 for ϕvMT A.

Example 6.C Brushless dc Drive Operation with ϕv = ϕvMT A

In this example, we will calculate the torque with ϕv = ϕvMT Aand draw the phasor

diagram and locate the stator and rotor poles. The parameters are repeated again:

rs = 3 4Ω, Lls = 1 1mH,Lms = 11mH, and λ r
m = 0 0826 V s rad. In order to com-

pare with Examples 6.A and 6.B, we will perform the calculations for
ωr = 50π rad s . From (6.4-10), ϕvMT A is calculated to be 8.15 and 17 at

ωr = 50π . The larger angle (17 ) is an extraneous root. Also, Vs = 11 25 V,
Lss = 17 6mH, and

Vas = 2 11 25 cos ωr t + 8 15 V (6C-1)

From (6.3-7),

Vas = rs + jωrLss Ias + Ea (6C-2)

and again Ea = 9 18 0 . Solving for Ias,

Ias =
Vas −Ea

rs + jωrLss

=
11 25 8 15 − 9 18 0

3 4 + j50π 17 6 × 10− 3 = 0 577 0 A (6C-3)
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Figure 6.4-3 Free-acceleration characteristics of a brushless dc drive with ϕv = ϕvMT A

Irds = 0 and a total inertia of 5 × 10−4 kg m2.
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Figure 6.4-4 Torque-speed characteristics for free-acceleration shown in Fig. 6.4-3.
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From (6.3-9),

Te =
3
2
P
2
λ
r
m 2Is cos θesi 0

=
3
2

4
2

0 0826 2 0 577 = 0 202 N m
(6C-4)

The phasor diagram is shown in Fig. 6.C-1. Note that the stator and rotor poles are
orthogonal which yields the maximum torque per ampere for this device at
ωr = 50π rad s.
The power balance becomes

Pe = 3 Vas Ias cos θesv 0 − θesi 0

= 3 × 11 25 × 0 577 cos 8 15 − 0 = 19 3W
(6C-5)

Ploss = 3rs Ias
2

= 3 × 3 4 0 577 2 = 3 4W
(6C-6)

Pm = Teωrm

= 0 202 ×
2
4
× 50π = 15 9W

(6C-7)

The efficiency is

eff =
Pm

Pe
=

15 9
19 3

= 82 4 (6C-8)

Sr

Ss

Ias
˜ Ẽac

Ns

Nr

˜jωr LssIasϕvMT/A

˜rsIas

Ṽas

d-axis

q-axis

Figure 6.C-1 Phasor diagram for brushless dc drive operation at ωr = 50π rad s with
ϕv = ϕvMT A.
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6.4.3 Torque Control

In order to control the torque over a speed range, it is necessary to reduce the
voltage applied to the machine. This can be done with pulse width modulation
(PWM) of the drive inverter. This is accomplished by periodically connecting all
three terminals of the six-step inverter to the bottom rail. The torque speed char-
acteristics for reduced rms stator voltages are shown for ϕv = 0 in Fig. 6.4-5.

Example 6.D Torque Control
The parameters of the four-pole three-phase permanent magnet ac machine
are rs = 3 4Ω, Lls = 1 1mH, LMs = 16 5mH, λm = 0 0826 V s rad, and rated
Vs = 11 25 V The torque is controlled with ϕv = 0 at 0.315 N m until rated
voltage is reached at ωrm = 120 1 rad s. The voltage, Vs , is then maintained at
11.25 V with ϕv = 0 and the load line and Operating Point 1 are as shown in
Fig. 6.D-1. The load line is calculated from

TL = Kω2
rm (6D-1)

where TL = 0 315 N mand ωr = 120 1 rad s. Substituting into (6D-1) and solving
for K yields

K =
0 315

120 1 2 = 2 184 x 10− 5 N m s (6D-2)

0 50 100

11.25 V

7.5 V

4 V
2 V

150 200 250

ωr, rad/s 

1.5

1

0.5

0

Te, N·m

Figure 6.4-5 Torque-speed characteristics for ϕv = 0 for different rms values of the
applied voltage.
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The commanded torque T∗
e is suddenly reduced to one half the original. Thus,

T∗
e =

1
2

0 315

= 0 1575 N m
(6D-3)

The trajectory from Operating Point 1 to Operating Point 2 is shown in
Fig. 6.D-1. The rotor speed at Operating Point 2 can be calculated as

TL = Kω2
r (6D-4)

where TL = 0 1575 N m and K = 2 184 × 10− 5 N m s2. This yields

ωr =
0 1575

2 184 x 10− 5

1 2

= 84 9 rad s (6D-5)

Now, from (6.3-9),

Te =
3
2

P
2

λ
r
m 2Is cos θesi 0 (6D-6)

We can write

2Is cos θesi 0 =
Te

3 2 P 2 λ r
m

=
0 1575

3 2 4 2 0 0826
= 0 636 A (6D-7)
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1

0.8

0.6
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|Vas|
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0.4

0.2
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2
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6

8
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1

2

2 1

Load line

Figure 6.D-1 Controlling Te with ϕv = 0
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We can calculate the voltage from (6.3-7) and (6.3-8); however, we first need

Ias. Since ϕv = 0, Vas, and Ea are at zero degrees, the phase angle of Ias is

θest 0 = − tan − 1 ωrLss

rs

= − tan − 1
84 9 1 1 +

3
2
11 × 10− 3

rs

= − tan − 10 439 = − 23 7

(6D-8)

From (6D-7),

Is =
0 636

2 cos − 23 7
= 0 4912 A (6D-9)

Therefore,

Ias = 0 4912 − 23 7 A (6D-10)

Substituting into (6.3-7) and (6.3-8) yields

Vas = rs + jωrLss Ias +
1

2
ωrλ

r
m 0

= 3 4 + j84 9 1 1 +
3
2
11 × 10− 3 0 4912 − 23 7 +

84 9 0 0826

2

= 3 714 27 3 0 4912 − 23 7 + 4 96 = 6 78 V

(6D-11)

After steady-state operation is reached at Operating Point 2, the commanded
torque is increased back to 0.315 N m. The trajectory from Operating Point 2 to
Operating Point 1 is shown in Fig. 6.D-1. The mechanical dynamics are deter-
mined by

T∗
e = J

2
P

dωr

dt
+ Bm

2
P

ωr + TL (6D-12)

where J = 5 × 10− 4 kg m2 and Bm = 0.

SP6.4-1. Calculate the efficiency for ϕv = 0 given in Example 6.A. [81.7%]
SP6.4-2. Obtain (6.4-3) and (6.4-4).
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6.5 Field-Oriented Induction Motor Drive

The goal of field orientation of an inductionmachine is fast torque response, which
is accomplished with a controlled drive inverter [5, 6]. Unfortunately, the neces-
sary control is involved since not only is a torque control involved but it is also
necessary to control the stator variables to orient the maximum value of the rotor
field, mmfer, in the q axis, orthogonal with the d-axis component of the stator field,
mmfes To do all this, we have two things we can control, the stator applied voltage
and the slip frequency. Although the principle of field orientation is quite straight-
forward, the implementation of the control is not. In particular, the voltage equa-
tions in the synchronous rotating reference frame are used to determine the values
of the substitute currents necessary to ensure field orientation and these values are
then transformed from the synchronous reference frame to the stationary refer-
ence frame to determine the waveforms of the stator currents and applied voltages
necessary to produce the synchronous reference frame variables that will provide
field orientation. This is achieved by controlling the output voltage of the drive
inverter to shape the waveforms of the actual stator currents to that determined
necessary to provide field orientation. In this section, we will not become involved
with the details of implementing this control; instead, we will assume that the con-
trol is functioning perfectly and focus on the performance of an inductionmachine
with field orientation. In other words, in this section, our focus will be on what the
control does and not how it does it. Also, we will consider the two-phase device
since this reduces our work and the extension to three-phase is straightforward.
The voltage and flux linkage equations of a two-phase single-fed induction

machine in the synchronously rotating reference frame from Chapter 3 are

veqs = rsi
e
qs + ωeλ

e
ds + pλeqs (6.5-1)

veds = rsi
e
ds −ωeλ

e
qs + pλeds (6.5-2)

0 = rri
e
qr + ωe −ωr λ

e
dr + pλ e

qr (6.5-3)

0 = rri
e
dr − ωe −ωr λ

e
qr + pλ e

dr (6.5-4)

where

λeqs = Lssi
e
qs + Lmsi

e
qr (6.5-5)

λeds = Lssi
e
ds + Lmsi

e
dr (6.5-6)

λ
e
qr = Lrri

e
qr + Lmsi

e
qs (6.5-7)

λ e
dr = Lrri

e
dr + Lmsi

e
ds (6.5-8)
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The torque may be expressed as

Te =
P
2

λ e
qr i

e
dr − λ e

dri
e
qr (6.5-9)

The aim is to select the applied stator voltages so that λ e
qr = 0, whereupon (6.5-9)

becomes

Te = −
P
2
λ e
dri

e
qr (6.5-10)

Making λ e
qr zero does not mean that i eqr will also be zero; instead, from (6.5-7), we

see that with λ e
qr zero, then

i eqr = −
Lms

Lrr
ieqs (6.5-11)

Thus, if i eqr is (6.5-11), then λ e
dr = 0 and Te is (6.5-10).

From (6.5-10), we see that if λ e
dr is constant, then torque is proportional to ieqs as

given by (6.5-11). Now, let us control i edr to zero. Why? Well, if i edr is zero, the rotor

poles will be positioned completely in the q axis; however, controlling i edr to zero

does not mean that λ e
dr is zero; from (6.5-8) with i edr = 0, then

λ
e
dr = Lmsi

e
ds (6.5-12)

which will be constant if ieds is held constant. If (6.5-11) and (6.5-12) are substituted
into (6.5-10), the torque may be expressed as

Te =
P
2
L2
ms

Lrr
ieqsi

e
ds (6.5-13)

Note that we have Te in terms of stator-related currents and if ieds is held constant,
Te is directly proportional to ieqs . This equation is used to control ieqs when Te is

commanded and with ieds held constant, generally at its rated value.

We have eliminated (6.5-4) and since λ e
qr is zero, then so must be pλ e

qr , and if

(6.5-11) is substituted for i eqr and (6.5-12) for λ e
dr into (6.5-3), the angular velocity

of the slip may be calculated as

ωe −ωr calc =
rr
Lrr

ieqs
ieds

(6.5-14)

which we will also denote as ωs calc for compactness. This equation is used to con-
trol slip frequency. Note that (6.5-14), like (6.5-13), is in terms of stator-related cur-
rents. We have set forth the basic relationships for field orientation control which
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in effect positions the rotor poles along the q axis (6.5-11), orthogonal with the d

axis Ieds or at θesi 0 with Ieqs and Ieds or Ias.

Our purpose now is to consider the steady-state performance of an induction
motor assuming that the field orientation is functioning properly. Although this
idealized approach is an oversimplification of the control challenges involved, it
helps to give insight to the basic features of field orientation; however, since the
stator currents are commanded (controlled), the electric transients are minimized.
Therefore, we will find that steady-state, “ideally” controlled operation and the
actual field orientation drive with harmonics neglected are very similar.
Let us take aminute to express the steady-state torque assuming field orientation

is functioning properly. We can express Ieqs and Ieds, respectively, as

Ieqs = 2 Is cos θesi 0 (6.5-15)

Ieds = − 2Is sin θesi 0 (6.5-16)

where in (6.5-15) and (6.5-16), ω = ωe and θ(0) = 0. Substituting (6.5-15) and
(6.5-16) into (6.5-13) yields the expression for torque with field orientation as

Te = −
P
2
L2ms

Lrr
2 Is cos θesi 0 2 Is sin θesi 0

= −
P
2
L2ms

Lrr
I2s sin 2θesi 0

(6.5-17)

With field orientation and harmonics neglected, the flux-linkages in the syn-
chronous reference frame are zero or constants, whereupon, ideally the time rate

of change is zero. Therefore, with ideal functioning field orientation pias is zero
and the instantaneous phasor equations become the steady-state phasor equations.
The only dynamic feature is the relationship between rotor speed and torque given
by (3.6-14).
We will work with the steady-state equations and modify Ve

qs and Ve
ds to account

for the results of field orientation action on I e
qr and I e

dr variables given earlier,

thereby, making it necessary to work only with the stator phasor voltage equations.
Substituting I e

qr , in terms of the Ieqs from (6.5-11), into (6.5-5) yields

λeqs =
Lss
Lms

−
Lms

Lrr
LmsI

e
qs (6.5-18)

We can now express steady-state Ve
qs and Ve

ds. From (6.5-1) and (6.5-2) with pλ = 0,

λeds from (6.5-6), with I e
dr zero, and (6.5-18) for λeqs, we have

Ve
qs = rsI

e
qs + ωeLssI

e
ds (6.5-19)
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Ve
ds = rsI

e
ds −ωe

Lss
Lms

−
Lms

Lrr
LmsI

e
qs (6.5-20)

Let us take a minute to express Vas for steady-state operation. Substituting

(6.5-19) and (6.5-20) into (3.8-9) yields 2 Vas with field orientation, that is,

2Vas = Ve
qs − jVe

ds

= rsI
e
qs + ωeLssI

e
ds − j rsI

e
ds −ωeKLLmsI

e
qs

= rs Ieqs − jIeds + ωeLssI
e
ds + jωeKLLmsI

e
qs

(6.5-21)

where

KL =
Lss
Lms

−
Lms

Lrr
(6.5-22)

If now we add and subtract ωeKLLmsIeds on the right-hand side of (6.5-21), we can

express Vas as

Vas = rs + jωeKLLms Ias +
1

2
ωe Lss −KLLms I

e
ds (6.5-23)

Substituting (6.5-16) for Ieds into (6.5-23) yields

Vas = rs + jωeKLLms Ias −ωe Lss −KLLms Is sin θesi 0 (6.5-24)

Solving (6.5-13) for Ieqs yields

Ieqs =
2
P

Lrr
L2
ms

Te

Ieds
(6.5-25)

We are also going to use (6.5-14), but let us wait just a minute before we get to that.
Although we are not going to become involved in the details of the field orien-

tation, the block diagram shown in Fig. 6.5-1 depicts the basic principles of the
control. Therein, the input variables containing an asterisk are commanded vari-
ables. That is, if the machine is to operate with rated load torque and rated fre-
quency, then T∗

e would be rated torque and Ie∗ds would be constant and generally
selected to be the value of Ieds for rated conditions and maintained at that value
regardless of T∗

e . Now, (6.5-14), (6.5-25), and (6.5-26) which we will get to in a
moment, impose field orientation control on the currents, i∗as and i∗bs. The inverter
forms the voltages vas and vbs to ensure ias and ibs are i∗as and i∗bs, respectively.
We have Ie∗qs and Ie∗ds and, from (6.5-14), we can calculate ωe −ωr , which we are

calling ωs calc in Fig. 6.5-1 (the slip angular velocity) and/or ωe −ωr calc since it is
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calculated from commanded inputs Ie∗qs and Ie∗ds and machine parameters. Now,

ωs calc is the slip necessary for field orientation with the commanded stator-
related currents. Now, ωr meas is the measured electrical angular velocity of the
rotor and it is added to ωs calc. Thus, from Fig. 6.5-1,

ωe ctrl = ωs calc + ωr meas

= ωe −ωr calc + ωr meas

(6.5-26)

where ωe ctrl is the electrical angular velocity of the controlled stator voltages
applied to the machine (vas and vbs of Fig. 6.5-1) for the rotor magnetic field to
be oriented in the q axis. There is no direct control of speed; however, if we are
operating in the steady state and the torque load increases, (ωr)measwould decrease
which would decrease ωe until (ωe−ωr)calc was established. Again, ωe −ωr calc is
the slip angular velocity, calculated from the commanded T∗

e and Ie∗ds by (6.5-14).
Assuming the parameters remain constant with temperature change, then
ωe −ωr calc will change only if T∗

e and/or I
e∗
ds are changed.

Example 6.E Torque Control

The parameters of the two-phase two-pole 5-hp 110-V 60-Hz induction
machine are

rs = 0 295Ω
Lls = 0 944 mH

Lms = 35 15 mH rr = 0 201Ω

Llr = 0 944 mH

T*
e

Ie*

Ie*

i*
as

vas,vbs

ias,ibs
i*
bs

(6.5–25)

(6.514)

(6.5–26)
(ωe–ωr)calc

(Ke
s)

–1

(ωr)meas

(ωs)calc

(ωe)ctrl

IM

Voltage amplitude,
phase, and

frequency control
to give i*as and i*bs  

1
P

+ +Σ

qs

ds

Figure 6.5-1 Block diagram depicting field-oriented control principles. Note:

Ieqs = 2 Is cos θesi 0 and Ieds = − 2 Is sin θesi 0 .
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The machine is equipped with field orientation. The rated torque is 10 N m and
the rated power factor angle is −30 . This is Operating Point 1 of Fig. 6.E-1 which
shows the torque versus speed trajectory for switching the command from 10 N m
to 5 N m and then back to 10 N m. From (6.5-17),

Te = −
P
2
L2ms

Lrr
I2s sin 2θesi 0

10 = −
2
2

35 15 2 × 10− 3

35 15 + 0 944
I2s sin 2 − 30

(6E-1)

Solving for Is yields

Is =
10 35 15 + 0 944

35 15 2 × 10− 3 sin 60

1 2

= 18 37 A

(6E-2)

Therefore,

Ias = 18 37 − 30o A (6E-3)

Now,

Lss = Lls + Lms

= 35 15 + 0 944 × 10− 3

= 36 094 mH

(6E-4)

From (6.5-22),

KL =
Lss
Lms

−
Lms

Lrr
=

36 094
35 15

−
35 15
36 094

= 0 0531 (6E-5)

10

Te N·m

5

0
0 100

Load line

200

Rotor speed in rad/s

300 400

2

1

Figure 6.E-1 Operation of induction motor drive with field orientation for step change
in T∗

e .
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From (6.5-23),

Vas = rs + jωeKLLms Ias −ωe Lss −KLLms Is sin θesi 0

= 0 295 + j377 0 0531 35 15 × 10− 3 18 37 − 30

− 377 36 094− 0 0531 × 35 15 × 10− 3 18 37 − 0 5

= 129 7 + j8 5 = 130 3 74 V

(6E-6)

This voltage exceeds rated (110 V); however, the current is rated. We will continue.
The rotor speed is calculated from (6.5-14):

ωe −ωr =
rr
Lrr

Ieqs
Ieds

(6E-7)

where

Ieqs = 2Is cos θesi 0

= 2 18 37 cos − 30 = 22 5 A
(6E-8)

Ieds = − 2 18 37 sin θesi 0

= 2 18 37 cos − 30 = 22 5 A

− 2 18 37 sin − 30 = 12 99 A

(6E-9)

From (6.5-14),

ωe −ωr =
rr
Lrr

Ieqs
Ieds

=
0 201

36 09 × 10− 3

22 5
12 99

= 9 6 r s

−ωr = −ωe + 9 6

ωr = 377− 9 6 = 367 4 r s

(6E-10)

The drive is originally operating at Operating Point 1 of Fig. 6.E-1. The load
line is

TL = Kω2
r (6E-11)

where for Te = 10 N m at Operating Point 1 with ωr = 367 4 rad s.

K =
10

367 4 2 = 7 41 x 10− 5 N m s2 (6E-12)

The phasor diagram for Operating Point 1 is given in Fig. 6.E-2.

We see that Iar is oriented orthogonal to I
e
dsand the torque is 10 N m and this has

been done by controlling Vas and ωe−ωr. The phasor diagram shown in Fig. 6.E-2
should be compared to Fig. 3.D-2 which is for uncontrolled rotor field orientation.
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The commanded torque is changed from 10 N m to 5 N m. The motor slows
and after the mechanical dynamics subside, the new Operating Point is at 2 on
Fig. 6.E-1. At this point the new speed from (6D-4) is

TL = Kω2
r

5 = 7 41 x 10− 5ω2
r

ωr =
5

7 41 × 10− 5

1 2

= 259 8 rad s

(6E-13)

We could liken this scenario to reducing the accelerator of an electric car by one
half. Now let us return to Operating Point 1, the accelerator is depressed and we
return to Operating Point 1 as shown in Fig. 6.E-1.
Let us calculate the applied voltage of Operating Point 2.

Vas = rs + jωeKLLms Ias −ωe Lss −KLLms Is sin θesi 0 (6E-14)

Now for T∗
e = 5 N m ωe −ωr = 4 8 rad s, therefore

ωe = 259 8 + 4 8 = 264 6 rad s (6E-15)

Also, Ias = 12 2 − 49 1 and for a two-phase motor rs = 0 295Ω, Lss=36 094 mH,

Lms = 35 15 mH, and KL = 0 053.
Substituting into (6E-14),

Vas = 0 295 + j264 6 0 053 35 151 × 10− 3 12 2 − 49 1

− 264 6 36 094− 0 053 × 35 15 × 10− 3 12 2 sin − 49 1

= 0 5744 59 1 12 2 − 49 1 + 83 51 0

= 90 + j1 15 = 90 0 732 V

(6E-16)

Ns

Nr

Ss

q axis

d axis

Sr

I′ar

Ias

Vas

˜
˜

˜

Figure 6.E-2 Phasor diagram for Operating Point 1.
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SP6.5-1. Calculate Ias for TL = 5N mat Operating Point 2. [Ias = 12 1 − 49 2 A]

SP6.5-2. Draw the phasor diagram for Operating Point 2 of Fig. 6.E-1.
SP6.5-3. What changes are necessary for a three-phase induction motor. [Lms is

replaced with LMs and Te are multiplied by 3
2]

6.6 Problems

1 It is found that λ r
m = 0 1V s rad for a permanent-magnet six-pole two-phase

ac machine. Calculate the amplitude (peak value) of the open-circuit phase
voltage measured when the rotor is turned at 60 revolutions per second (r/s).

2 Verify Fig. 6.2-1c.

3 In the analysis of the brushless dc motor, we have selected θr(0) = 0, where

2Fas = Fr
qs − jFr

ds . Express the relationship between these same variables if

we had selected θr 0 =
1
2
π.

4 Repeat Example 6.D for ωrm = 600 r min. Construct the phasor diagram

showing Vas,Ea, rsIas, jωrLssIas, and Ias. Show the pole locations.

5 A four-pole two-phase permanent-magnet ac machine is driven by a mechan-
ical source atωr= 3600 r/min. The open-circuit voltage across one of the phases

is 50 V (rms). (a) Calculate λ r
m . The mechanical source is removed and the

following voltages are applied: Vas = 2 25 cos θr , Vbs = 2 25 sin θr , where
θr = ωrt. (b) Neglect friction (Bm = 0) and calculate the no-load rotor speed
ωr in rad/s.

6 The parameters of a two-pole three-phase permanent-magnet ac machine are

rs = 4 Ω, λ r
m = 0 07 V s rad, Lls = 1 mH, and LMs = 13.5 mH. Let θr = 200t.

Determine (a) Ias, (b) Te, and (c) show the phasor diagram and locate the poles.

7 Repeat Prob. 6 with ϕυMT V .

8 Repeat Prob. 6 with ϕυMT A.
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9 Plot vas, vbs, vcs, vab, and vng for the 180 continuous-current inverter for 0 < θr
< 2π with the transistor switching shown in Fig. 4.4-1. Assume the inverter
voltage υi is constant.

10 Verify the rotor speed for Operating Point 1 of Example 6.E.
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7

Single-Phase Induction Motors

7.1 Introduction

Although the voltage and torque equations set forth in Chapter 3 for the induction
machine are valid regardless of the mode of operation, we focused on balanced
conditions. Single-phase induction motors are used in household washers, dryers,
air conditioners, garbage disposals, etc., where only a single-phase source is avail-
able. Symmetrical two-phase inductionmotors are often used in these single-phase
applications; however, in order to develop a starting torque, it is necessary to make
the symmetrical two-phase induction motor think it is being supplied from a two-
phase source or, at least, something that resembles a two-phase source. We will
find that this can be accomplished by placing a capacitor in series with one of
the stator phase windings until the rotor has accelerated to between 60 and 80%
of rated operating speed, whereupon the series combination of the capacitor
and the phase winding are disconnected from the source. The motor then operates
with only one of its phases connected to the single-phase source. Hence, there are
two common modes of unbalanced operation of a symmetrical two-phase induc-
tion motor when used as a single-phase device; first, during starting, the phase vol-
tages applied are not a balanced two-phase set and the input impedance of one
phase is different from the other owing to the series capacitor, and second, during
near rated operation one stator phase is often open-circuited.
To analyze steady-state unbalanced operation of an inductionmachine, it is con-

venient to use the method of symmetrical components [1]. This method is intro-
duced in the following section and used to analyze unbalanced stator voltages,
unequal stator impedances, and an open-circuited stator phase since all of these
modes of operation occur during operation of a single-phase induction motor.
It is interesting that the single-phase operation of an inductionmachine is some-

what the opposite of the synchronous machine where the stator has symmetrical
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excited windings and the rotor has unsymmetrical windings. In the case of the
single-phase operation of a symmetrical induction machine, the rotor has “sym-
metrical”windings but the stator is unsymmetrically excited. Reference frame the-
ory can be used to analyze the single-phase machine without using symmetrical
components; however, this approach is very similar to using symmetrical compo-
nents. This is more or less expected since the symmetrical component transforma-
tion comes from reference frame theory which comes from Tesla’s rotating
magnetic field [2].
In this chapter, steady-state and dynamic characteristics are illustrated for

single-phase applications; however, only the symmetrical two-phase induction
motor is considered in this chapter. Actually the unsymmetrical two-phase induc-
tion motor or the so-called split-phase induction motor is often used rather than its
symmetrical two-phase cousin [3]. Although the last section of this chapter is
devoted to a brief discussion of the split-phasemachine, it is not analyzed.We have
chosen to illustrate the salient operating features of single-phase induction
machines by using the symmetrical device since it is far easier to analyze than
the split-phase machine.

7.2 Symmetrical Components

Wemust deal with unbalanced conditions in the analysis of steady-state operation
of the symmetrical two-phase induction motor when used in single-phase applica-
tions. This can be accomplished by using what is referred to as the method of sym-
metrical components. C. L. Fortescue [1] published the method of symmetrical
components for the purpose of analyzing unbalanced multiphase systems. Since
that time, this method has been extended, modified, and used widely, sometimes
inappropriately. Nevertheless, it is a powerful analytical tool for steady-state
unbalanced operation of symmetrical systems; even though the derivation and
the procedure for applying this method often seemed to be without theoretical
basis. It has been shown, however, that reference frame theory provides a rigorous
derivation of the method of symmetrical components and sets clear guidelines for
its application [2]. In this section, we will describe the concept of symmetrical com-
ponents without derivation and establish the equations necessary to conduct the
analysis of unbalanced operation. A theoretical justification of the concept of sym-
metrical components using reference frame theory, which is based on Tesla’s rotat-
ing magnet field, is found in [2, 3].
For convenience, Fig. 3.2-3 of the two-pole two-phase symmetrical induction

machine is repeated in Fig. 7.2-1. The method of symmetrical components allows
us to represent an unbalanced two-phase set as two balanced sets or an unbalanced
three-phase set as two balanced sets and a single phase. The balanced sets are
referred to as the positive-sequence and negative-sequence components and the
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single phase is called the zero-sequence component. Here, we will deal only with a
two-phase system. Also, the method of symmetrical components is valid only for
steady-state conditions.
In general, an unbalanced two-phase set may be expressed as

Fas = 2 Fa cos ωet + θefa 0 (7.2-1)

Fbs = 2 Fb sin ωet + θef b 0 (7.2-2)

We realize that (7.2-1) and (7.2-2) form a balanced set if Fa= Fb and θefa(0) = θefb(0).
It is convenient for us to work with qss and dssvariables rather than as and bs vari-

ables. Recall that with ω = ωe and θ(0) = 0, f as = f sqs and f bs = − f sds or Fas = F
s
qs

and Fbs = −F
s
ds in the steady state.

It can be shown that an unbalanced two-phase set may be broken up into two
balanced sets as

F
s
qs = F

s
qs + + F

s
qs− (7.2-3)

–

–

–

–

+

+

+

+

rs

rs

rr
rr

Ns
Nr Nr

Ns

ias

vbs

vbr
ibs

ibr

iar
vas

var

bs axis
br axis

as axis

ar axis

br
bs

ar

ar′
br′

bs′

as′

as

Te
ϕs

ϕr

ωr

θr
TL

Figure 7.2-1 A two-pole, two-phase symmetrical induction machine.
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F
s
ds = F

s
ds + + F

s
ds− (7.2-4)

Here, we are departing somewhat from tradition. Rather than using qss and dss

variables, it has been customary to use as and bs variables and, hence, (7.2-3) and

(7.2-4) are written, respectively, as Fas = Fas + + Fas− and Fbs = Fbs + + Fbs−

Later, we will substitute Fas for F
s
qs and Fbs for −F

s
ds ; however, for purposes

of convenience, we will continue the break from tradition and use F
s
qs +,

F
s
qs− , F

s
ds +, and F

s
ds− rather than Fas + ,Fas− ,−Fbs + and −Fbs− , respectively.

In (7.2-3) and (7.2-4), F
s
qs + and F

s
ds + form the balanced, positive-sequence

set, where

F
s
ds + = jF

s
qs + (7.2-5)

The negative-sequence set is F
s
qs− and F

s
ds− , where

F
s
ds− = − jF

s
qs− (7.2-6)

Both the positive- and negative-sequence sets are balanced, but in the case of the

positive-sequence set F
s
ds + leads F

s
qs + Fbs + lags Fas + by 90 , whereas in the case

of the negative-sequence set F
s
ds− lags F

s
qs− (Fbs− leads Fas−). Why is one set called

the positive sequence and the other the negative sequence?Well, probably the best
explanation is to point out that positive-sequence currents flowing in the stator
windings (Fig. 7.2-1) will produce an air-gap mmf which rotates counterclockwise
whereas negative-sequence currents will produce an air-gap mmf which rotates

clockwise. (Do not forget that Fbs + = −Fds + and Fbs− = −Fds− .) It should

be apparent that, if Fas and Fbs are balanced with Fbs = − jFas , then the

negative-sequence variables (F
s
qs− and F

s
ds− ) would not exist.

Substituting (7.2-5) and (7.2-6) into (7.2-3) and (7.2-4) yields

F
s
qs

F
s
ds

=
1 1

j − j

F
s
qs +

F
s
qs−

(7.2-7)

Now, let us substitute Fas for F
s
qs and Fbs for −F

s
ds, whereupon

Fas

Fbs
=

1 1

− j j

F
s
qs +

F
s
qs−

(7.2-8)
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Solving for F
s
qs + and F

s
qs− yields

F
s
qs +

F
s
qs−

=
1
2

1 j

1 − j

Fas

Fbs
(7.2-9)

The symmetrical-component transformation matrix is defined from (7.2-9) as

S =
1
2

1 j

1 − j
(7.2-10)

and

S − 1 =
1 1

− j j
(7.2-11)

Example 7.A Symmetrical-Component Transformation
The steady-state variables of an unbalanced two-phase system are

Fas = 1 45 (7A-1)

Fbs =
1
2

− 120 (7A-2)

Calculate F
s
qs + and F

s
qs− . Substituting into (7.2-9),

F
s
qs +

F
s
qs−

=
1
2

1 j

1 − j

1 45

1
2

− 120
(7A-3)

From which

F
s
qs + =

1
2

1 45 + j
1
2

− 120

=
1
2

45 +
1
4

− 30

= 0 570 + j0 229 = 0 614 21 9

(7A-4)

F
s
qs− =

1
2

1 45 − j
1
2

− 120

=
1
2

45 −
1
4

− 30

= 0 137 + j0 479 = 0 498 74 0

(7A-5)

SP7.2-1. Fas = Fbs = Fs 0 , determine F
s
qs + and F

s
qs− F

s
qs− = F

s∗
qs + =

2 2 Fs 45 , where the asterisk denotes the conjugate]
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SP7.2-2. Express Fbs in terms of Fas so that the positive-sequence component is

zero. Fbs = jFas

SP7.2-3. F
s
ds + = F

s
ds− determine Fas and Fbs. Fas = 0, Fbs = − 2jF

s
qs +

7.3 Analysis of Unbalanced Modes of Operation

The rotor windings of the two-phase induction machine are short-circuited
(squirrel-cage windings). In this analysis, the rotor speed is assumed constant,
whereupon, the equations which describe constant-speed operation are linear
and the principle of superposition applies. Therefore, the substitute variables
(F s

qr and F s
dr) for the rotor variables may be broken up into positive- and nega-

tive-sequence quantities in the same manner as Fs
qs and Fs

ds . In particular, we

can write

F
s

qr = F
s

qr + + F
s

qr− (7.3-1)

F
s

dr = F
s

dr + + F
s

dr− (7.3-2)

and

F
s

dr + = jF
s

qr + (7.3-3)

F
s

dr− = − jF
s

qr− (7.3-4)

Armed with this information, let us see what we can derive in the way of voltage
equations. From Chapter 3, the voltage equations for steady-state operation of a
two-phase induction machine in the stationary reference frame.

V
s
qs

V
s
ds

V
s

qr

V
s

dr

=

rs + jωeLss 0 jωeLms 0

0 rs + jωeLss 0 jωeLms

jωeLms −ωrLms rr + jωeLrr −ωrLrr

ωrLms jωeLms ωrLrr rr + jωeLrr

I
s
qs

I
s
ds

I
s

qr

I
s

dr

(7.3-5)

Since for constant rotor speed ωr, the voltage equations are linear and superposi-
tion applies. Thus, we can express the four equations of (7.3-5) twice; once for the
positive-sequence variables and once for the negative-sequence variables. This
gives two sets of four equations each. One set relates the positive-sequence voltages
and currents, the other relates the negative-sequence voltages and currents.
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However, since F
s
ds + = jF

s
qs + , F

s

dr + = jF
s

qr + , F
s
ds− = − jF

s
qs− , and F

s

dr− =

− jF
s

qr− , the eight equations can be reduced back to four. If the d-variables are

expressed in terms of the q-variables, the four equations are

V
s
qs +

V
s

qr +

s
V

s
qs−

V
s

qr−

2− s

=

rs + jXss jXms 0 0

jXms
rr
s

+ jXrr 0 0

0 0 rs + jXss jXms

0 0 jXms
rr

2− s
+ jXrr

I
s
qs +

I
s

qr +

I
s
qs−

I
s

qr−

(7.3-6)

where

Xss = ωe Lls + Lms (7.3-7)

Xrr = ωe Llr + Lms (7.3-8)

Xms = ωeLms (7.3-9)

s =
ωe −ωr

ωe
(7.3-10)

We realize that at any time we can change to the notation generally used by repla-

cing F
s
qs + with Fas + , F

s

qr + with Far + , etc.

When we look at (7.3-6), we see that the positive- and negative-sequence vari-
ables are decoupled. From this, we might be led to believe that the positive- and
negative-sequence variables may be considered separately regardless of the
mode of operation of the induction motor. Although the voltage equations given
by (7.3-6) provide a starting point, system constraints may cause the positive- and
negative-sequence variables to be coupled. In the modes of operation which we
will consider, we shall find that the sequence variables are decoupled when unbal-
anced voltages are applied to a symmetrical two-phase induction motor but
coupled when an impedance is placed in series with one of the stator phase wind-
ings or when one of the stator phase windings is open-circuited.
The expression for the steady-state electromagnetic torque may be obtained by

expressing it in terms of steady-state stationary reference frame currents.

Te =
P
2
Lms IsqsI

s
dr − IsdsI

s
qr (7.3-11)

The instantaneous steady-state currents may each be expressed in terms of
positive- and negative-sequence components. In particular, let

Isqs = 2 Is + cos ωet + ϕs + + 2 Is− cos ωet + ϕs− (7.3-12)

Isds = − 2 Is + sin ωet + ϕs + + 2 Is− sin ωet + ϕs− (7.3-13)
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I s
qr = 2 Ir + cos ωet + ϕr + + 2 Ir− cos ωet + ϕr− (7.3-14)

I s
dr = − 2 Ir + sin ωet + ϕr + + 2 Ir− sin ωet + ϕr− (7.3-15)

where the + and − subscripts denote positive- and negative-sequence quantities,
respectively. If these expressions for the currents are substituted into (7.3-11) and
with a few trigonometric identities, we can express the steady-state (constant-
speed) torque as

Te = 2
P
2

Lms Is + Ir + sin ϕs + −ϕr + − Is− Ir− sin ϕs− −ϕr−

+ Is + Ir− sin 2ωet + ϕs + + ϕr− − Is− Ir + sin 2ωet + ϕs− + ϕr +

(7.3-16)

It is interesting that with the assumption of symmetrical rotor circuits, the electro-
magnetic torque during steady-state unbalanced operation is made up of a con-
stant and a sinusoidal component which pulsates at twice the frequency of the
stator variables. Recall that we have assumed that the steady-state stator variables
contain only one frequency, ωe. Multiple frequencies are treated in [2].
The above equation for torque may be expressed in terms of positive- and

negative-sequence current phasors. After considerable work,

Te = 2
P
2
Lms Re j I

s∗
qs + I

s

qr + − I
s∗
qs− I

s

qr−

+ Re j − I
s
qs + I

s

qr− + I
s
qs− I

s

qr + cos 2ωet

+ Re I
s
qs + I

s

qr− − I
s
qs− I

s

qr + sin 2ωet

(7.3-17)

where the asterisk denotes the conjugate. The constant term [first term on
right-hand side of (7.3-17)] is made up of the positive-sequence torque and the
negative-sequence torque. The last two terms, which represent the pulsating
torque component, could be combined; however, separate terms are somewhat
more convenient. We note that the amplitude of the pulsating torque is related
to the cross product of sequence currents.

7.3.1 Unbalanced Stator Voltages

During the starting period of a single-phase induction motor, a capacitor is placed
in series with one of the windings. This type of unbalance, wherein the stator cir-
cuits appear unsymmetrical to the source because of the series capacitor, must be
analyzed differently than for balanced conditions. We will consider the case of
unbalanced source voltages applied to a symmetrical machine first and leave
the series capacitor case for later.
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Let us return to the voltage equations given by (7.3-6). We can apply these equa-
tions directly to solve for the sequence currents with unbalanced source voltages
applied to the stator windings of a symmetrical machine. We need only to deter-

mine V
s
qs + and V

s
qs− from Vas and Vbs by (7.2-9). We know that, since the rotor

windings are short-circuited, V
s

qr + and V
s

qr− are zero.

Since this unbalanced mode of operation is described by positive- and negative-
sequence quantities which are decoupled, it is instructive to portray the
four voltage equations given by (7.3-6) in equivalent-circuit form as shown in
Fig. 7.3-1. The positive-sequence equivalent circuit is identical in form to that
given for balanced conditions in Fig. 3.D-1 with the rotor windings short-circuited.
This was expected. The negative-sequence equivalent circuit differs only in that
the slip s is replaced by 2− s. Recall that the negative sequence voltages cause neg-
ative-sequence currents which cause a negatively rotating air-gap mmf. With
respect to this negatively rotating air-gap mmf, the slip is (ωe+ωr)/ωe, which is
2− (ωe−ωr)/ωe or 2− s. This line of reasoning is often used to obtain the nega-
tive-sequence equivalent circuit in place of a derivation.
Equation (7.3-6) or the equivalent circuits which come from (7.3-6) can be used

to solve for the sequence currents. The steady-state electromagnetic torque
can then be calculated by appropriate substitution of the sequence currents into
(7.3-17). Since the positive- and negative-sequence circuits are decoupled,
the positive- and negative-sequence torques may be expressed from (3.8-16).
In particular, the positive-sequence torque, which is due to the product of the
positive-sequence currents in the first term on the right-hand side of (7.3-17),
may be expressed as

Te + =
2 P 2 X2

ms ωe rrs V
s
qs +

2

rsrr + s X2
ms −XssXrr

2
+ rrXss + srsXrr

2 (7.3-18)

The negative-sequence torque, which is due to the product of the negative-
sequence currents in the first term on the right-hand side of (7.3-17), may be
expressed

Te− =
2 P 2 X2

ms ωe rr 2− s V
s
qs−

2

rsrr + 2− s X2
ms −XssXrr

2
+ rrXss + 2− s rsXrr

2 (7.3-19)

Equation (7.3-18) was obtained from (3.8-16) with Vas replaced by V
s
qs + and

(7.3-19) was obtained from (3.8-16) with Vas replaced by V
s
qs− and s replaced

by (2− s). The average torque, Te,ave, is the difference between the positive- and
negative-sequence torques:
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Te,ave = Te + −Te− (7.3-20)

Comparing the first two terms in (7.3-17) with (3.8-11), it is interesting to observe
that, although torque, in general, is a nonlinear function of currents, we can use
superposition to establish the total average torque by first calculating the positive-
and negative-sequence currents from (7.3-6) or Fig. 7.3-1, then calculating individ-
ually the corresponding positive- and negative-sequence torques, and finally
superimposing the results by using (7.3-20). However, it should be clear that,
although superpositionmay be used to calculate the net average torque, the instan-
taneous torque (sum of average and pulsating components) cannot be calculated
by using superposition since, from (7.3-17), the pulsating torque is related to the
product of positive- and negative sequence currents.
Although we could express the amplitude of the pulsating torque in terms of the

sequence voltages, the algebraic manipulations necessary to do so are a bit prohib-
itive. It is sufficient, for our purposes, to take a little closer look at the phasor rela-

tionship I
s
qs + I

s

qr− − I
s
qs− I

s

qr + which is common to the second and third terms of

(7.3-17). With the rotor winding short-circuited, we can express

I
s

qr + = −
jXms

rr s + jXrr
I
s
qs + (7.3-21)

I
s

qr− = −
jXms

rr 2− s + jXrr
I
s
qs− (7.3-22)

These equations are obtained from the equivalent circuits given in Fig. 7.3-1. Note
the similarity between (7.3-21) and (3.8-12). Utilizing (7.3-21) and (7.3-22), we
can write

I
s
qs + I

s

qr− − I
s
qs− I

s

qr + = − jXmsI
s
qs + Isqs−

2 1− s s 2− s

rr 2− s + jXrr rr s + jXrr

(7.3-23)

If we express the sequence currents in terms of the sequence voltages, we can write
(7.3-23) as

I
s
qs + I

s

qr− − I
s
qs− I

s

qr + = − jXms

V
s
qs +

Z +

V
s
qs−

Z −

2 1− s s 2− s

rr 2− s + jXrr rr s + jXrr

(7.3-24)

where Z+ and Z− are the input impedances of the positive- and negative-sequence
equivalent circuits (Fig. 7.3-1), respectively.
The form of (7.3-24) allows a somewhat more direct means of calculating the

amplitude of the pulsating torque. It is interesting, however, to evaluate (7.3-24)
for the condition where the rotor speed is zero. With ωr = 0, s = 1 and (7.3-24)
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is zero. Hence, a steady-state pulsating torque does not exist at stall. Actually, the
amplitude of the pulsating torque is zero at ωr = 0 regardless of the stator condi-
tions. That is, an impedancemay be in series with one of the stator windings or one
winding may be opened-circuited. Regardless of the value of the sequence cur-
rents, (7.3-23) is zero when s = 1. The only requirement is that the rotor windings
must be symmetrical. This is an interesting observation.

7.3.2 Unbalanced Stator Impedances

When an impedance is placed in series with the as winding of the stator, we
can write

ega = iasz p + vas (7.3-25)

egb = vbs (7.3-26)

where vas and vbs are the voltages across the stator phase windings and ega and egb
are the source voltages which may be unbalanced. In (7.3-25), z(p) is the opera-
tional notation of the impedance; for example, a series rL would be expressed
z(p) = r+ pL. The phasor equivalents of (7.3-25) and (7.3-26) are

rs

Iqs + I′qr +

Vqs +

jXls

jXms

jXms

jX′lr
r′r
s

rs jXls jX′lr
r′r

2–s

̃
̃̃

Iqs –
̃ I′qr –

̃

+

–

Vqs –
̃

+

–

(a)

(b)

Figure 7.3-1 Equivalent-sequence circuits for unbalanced source voltages applied to a
symmetrical two-phase induction motor. (a) Positive sequence; (b) negative sequence.
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Vas = Ega − IasZ (7.3-27)

Vbs = Egb (7.3-28)

We can apply (7.2-9) to determine V
s
qs + and V

s
qs− as

V
s
qs +

V
s
qs−

=
1
2

1 j

1 − j

Ega − IasZ

Egb
(7.3-29)

which yields

V
s
qs + =

1
2

Ega + jEgb − IasZ (7.3-30)

V
s
qs− =

1
2

Ega − jEgb − IasZ (7.3-31)

Now,

Ias = I
s
qs = I

s
qs + + I

s
qs− (7.3-32)

Substituting (7.3-32) into (7.3-30) and (7.3-31) for Ias and then substituting the
result into (7.3-6), and assuming the rotor windings are short-circuited, we obtain

E1

0

E2

0

=

1
2
Z + rs + jXss jXms

1
2
Z 0

jXms
rr
s

+ jXrr 0 0

1
2
Z 0

1
2
Z + rs + jXss jXms

0 0 jXms
rr

2− s
+ jXrr

I
s
qs +

I
s

qr +

I
s
qs−

I
s

qr−

(7.3-33)

where

E1 =
1
2

Ega + jEgb (7.3-34)

E2 =
1
2

Ega − jEgb (7.3-35)

If the impedance is a series capacitor, then Z = − j(1/ωeC). Also, note that the
positive- and negative-sequence voltage equations are now coupled. Although we
could derive an equivalent circuit to portray these voltage equations, it is not worth
the work. We can use (7.3-33) directly; however, a computer would be helpful. We
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shall work more with this equation when we analyze the symmetrical two-phase
induction motor used as a single-phase motor.

7.3.3 Open-Circuited Stator Phase

For the analysis of an open-circuited stator phase, let us assume that ias isqs is

zero. Hence, from (2.4-13),

vsqs = pλsqs (7.3-36)

Now, since isqs = 0, λsqs may be expressed as

λsqs = Lmsi
s
qr (7.3-37)

Since vas = vsqs, we can write

vas = Lmspi
s
qr (7.3-38)

vbs = egb (7.3-39)

where egb is the source voltage. Now, in phasor form,

Vas = jXmsI
s

qr (7.3-40)

Vbs = Egb (7.3-41)

Substituting (7.3-40) and (7.3-41) into (7.2-9), we obtain

V
s
qs + =

1
2
jXmsI

s

qr +
1
2
jEgb (7.3-42)

V
s
qs− =

1
2
jXmsI

s

qr −
1
2
jEgb (7.3-43)

From (7.3-1),

I
s

qr = I
s

qr + + I
s

qr− (7.3-44)

and, since I
s
qs = 0, (7.2-3) becomes

I
s
qs− = − I

s
qs + (7.3-45)

Substituting (7.3-44) into (7.3-42) and (7.3-43), then substituting the result into
(7.3-6), with (7.3-45) incorporated, we can write (rotor windings short-circuited)
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1
2
jEgb

0

0

=

rs + jXss j
1
2
Xms − j

1
2
Xms

jXms
rr
s

+ jXrr 0

− jXms 0
rr

2− s
+ jXrr

I
s
qs +

I
s

qr +

I
s

qr−

(7.3-46)

From (7.3-40), the open-circuit voltage of the as winding is

Vas = jXms I
s

qr + + I
s

qr− (7.3-47)

where I
s

qr + and I
s

qr− are calculated from (7.3-46).

SP7.3-1. Determine the rotor speed at which the negative-sequence rotor currents

I
s

qr− and I
s

dr− are zero for unbalanced applied stator voltages. [ωr = −ωe]

SP7.3-2. Assume that the steady-state Te versus ωr plot shown in Fig. 3.8-2 is for

Vas = jVbs. Plot the Te versus ωr for Vas = − jVbs. [Inverted mirror image]
SP7.3-3. Determine the rotor speed at which Z+ = Z− for a symmetrical induction

motor. [ωr = 0]
SP7.3-4. Express Z+ and Z−. [Z+= (3.8-14), Z_ = (3.8-14) with s replaced by 2− s]

SP7.3-5. Express vbs when ibs = 0. vbs = −Lmspi
s
dr

SP7.3-6. Throughout this work we have assumedωr constant for unbalanced oper-
ation. When could this assumption be in question? [low-frequency with unbal-
anced applied voltages]

7.4 Single-Phase and Capacitor-Start Induction Motors

7.4.1 Single-Phase Induction Motor

In Chapter 3, we talked briefly about single-phase induction motors. Although we
will find that we must provide some means of starting the device, the single-phase
induction motor has only one stator winding energized during normal operation.
With this in mind, let us calculate the steady-state torque versus speed character-
istics with voltage applied to only one stator winding of a symmetrical two-phase
induction motor with the other winding open-circuited. Recall that we have
already derived the voltage equations necessary to make these calculations. In par-
ticular, (7.3-46) can be used to determine the sequence currents with the as wind-
ing open-circuited and a single-phase voltage source connected to the bs winding.
Once these calculations are made, the sequence currents may be substituted into
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(7.3-17) to determine the average and pulsating components of the steady-state
electromagnetic torque. The steady-state torque versus speed characteristics are
shown in Fig. 7.4-1 for a symmetrical two-phase induction motor with rated
voltage applied to one phase and the other phase open-circuited. The symmetrical

two-phase induction machine is a four-pole
1
4
-hp 110-V 60-Hz motor with the

following parameters: rs = 2.02Ω, Xls = 2.79Ω, Xms = 66.8Ω, rr = 4 12Ω, and
Xlr = 2 12Ω. The total inertia is J = 1.46 × 10−2 kg m2.
The average steady-state electromagnetic torque Te, ave = Te+− Te− and themag-

nitude of the double-frequency component of the torque |Te, pul| are plotted in
Fig. 7.4-1. There are at least two features worth mentioning. First, the plot of the
average torque Te, ave for ωrm< 0 is the negative mirror image of that for ωrm> 0.
Secondly, the plot of the pulsating torque |Te, pul| is symmetrical about the zero
speed axis. Finally, we see verification of our earlier claim that the starting torque,
is zero; Te = 0 at ωrm = 0. Recall that ωrm = (2/P)ωr.

7.4.2 Capacitor-Start Induction Motor

As we know, the single-phase induction motor will not develop a starting torque
since two equal and oppositely rotating air-gap mmf ’s are generated by a sinusoi-
dal stator winding current. If, now, we take a two-phase symmetrical induction
motor and apply a single-phase voltage across the two phases, the net torque at

Torque, N·m
3

2

1

–1

–2

–3

–188.5

–94.2 94.2 188.5

ωrm, rad/s

∣Te, pul∣

Te,av

Figure 7.4-1 Steady-state torque-versus-speed characteristics for a single-phase

induction motor ωrm =
2
P

ωr .
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stall will be zero since the rotor currents will be instantaneously equal and the air-
gap mmf will pulsate along an axis midway between the as and bs axes. Thus, two
equal and oppositely rotating air-gap mmf’s result. If, however, we cause the cur-
rent in one of the phases to be different instantaneously from that in the other
phase, a starting torque can be developed since this would cause one of the rotating
air-gap mmf’s to be larger than the other. One way of doing this is to place a capac-
itor in series with one of the stator windings of a two-phase symmetrical induction
motor. This will cause the current in the phase with the series capacitor to lead the
current in the other winding when the same voltage is applied to both.
We have already derived the equations necessary to calculate the component cur-

rents with an impedance in series with the aswinding. In particular, (7.3-33) can be
used to calculate the component currentswith a capacitor in series with the aswind-

ing. If we set Z= − j1/ωeC and let Ega = Egb, the single-phase source voltage, coun-

terclockwise rotation will occur since Ias will lead Ibs. Recall that, for the assumed
positive direction of the magnetic axes and for a balanced two-phase set, we have

Ias leading Ibs by 90 for counterclockwise rotation of the air-gap mmf.
Once the component currents are calculated, (7.3-17) can be used to determine

the average steady-state electromagnetic torque Te, ave and the magnitude of the
double-frequency component |Te, pul|. These steady-state torque versus speed char-
acteristics are shown in Fig. 7.4-2 for C = 530.5 μF.
In capacitor-start single-phase induction motors, the winding with the series

capacitor is disconnected from the source after the rotor has reached 60–80% of
synchronous speed. This is generally accomplished by a centrifugal switching
mechanism located inside the housing of the motor. Once the winding with the
series capacitor is disconnected, the device then operates as a single-phase

∣Te, pul∣ ∣Te, pul∣, N·mTe, av, N·m

Te,av

ωrm, rad/s

10

5

0
37.7 75.4 113.1 150.8 188.5

–5

20

10

Figure 7.4-2 Steady-state torque-versus-speed characteristics with a capacitor in series
with one winding of the two-phase induction machine.
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induction motor. In Fig. 7.4-3, the plot of average torque versus speed with a series
capacitor in one phase (Fig. 7.4-2) is superimposed upon the plot of average torque
versus speed with a single-phase winding (Fig. 7.4-1). The transition from capacitor-
start to single-phase operation at 75% of synchronous speed is illustrated.
Although the capacitor-start single-phase induction motor is by far the most

common type of single-phase induction motor, a capacitor-start capacitor-run
induction motor is sometimes used. In this case, both phase windings are ener-
gized during normal operation. The value of the series capacitance is changed from
the start value to the run value once the rotor reaches 60–80% of synchronous
speed. This is accomplished using two capacitors connected in parallel with pro-
vision to open-circuit one of the parallel paths. The purpose of the run capacitor is
to establish a leading current during normal loads, thereby increasing the torque
capability over that which is possible with only one stator winding energized. Since
two capacitors are needed, this device is somewhat more expensive and often the
application does not justify this added cost.

SP7.4-1. Determine the frequency of the rotor currents when ωrm is equal to syn-
chronous speed in Fig. 7.4-1. [120 Hz]

SP7.4-2. For the torque-speed characteristics shown in Fig. 7.4-1, determine the
approximate rotor speed at which the steady-state instantaneous torque first
pulsates to a negative value. [ωrm 600 r/min]

SP7.4-3. In Fig. 7.4-3, the device switches from capacitor-start to single-phase
operation at a rotor speed of 75% of synchronous speed. Will the rotor accelerate
faster or slower immediately following the switching? [Faster]

Te, av, N·m

10

5

0

–5

ωrm, rad/s
37.7 75.4 113.1 150.8 188.5

Figure 7.4-3 Average steady-state torque-versus-speed characteristics of a capacitor-start
single-phase induction motor.
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SP7.4-4. If the value of the capacitor was decreased, would you expect the starting
torque to decrease or increase? Why? [Decrease, less leading component of
current]

7.5 Dynamic and Steady-State Performance
of a Capacitor-Start Single-Phase Induction Motor

The free-acceleration characteristics of the example capacitor-start single-phase
induction motor are shown in Fig. 7.5-1. The variables vas, ias, vbs, ibs, vc, Te,
andωrm are plotted. The voltage vc is the instantaneous voltage across the capacitor

156

–156

25

–25

0

0vas, V

156

25

–25

0

125

–125

0

10

–10

0

1800

900

0

–156
0vbs, V

ibs, A

vc, V

ias, A

Te, N·m

ωrm, r/min

0.1 s

Figure 7.5-1 Free-acceleration characteristics of capacitor-start, single-phase
induction motor.
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which is connected in series with the bswinding. Themachine variables are shown
with an expanded scale in Fig. 7.5-2 to illustrate the switching out of the bs wind-
ing, which is disconnected from the source at a normal current zero once the rotor
reaches 75% of synchronous speed. The voltage across the capacitor is shown to
remain constant at its value when the bs winding is disconnected from the source.
In practice, this voltage would slowly decay owing to leakage currents within the
capacitor which are not considered in this analysis. The torque versus speed char-
acteristics given in Fig. 7.5-3 are for the free acceleration shown in Fig. 7.5-1. The
dynamic and steady-state characteristics following changes in load torque are

156

–156

25

–25

0

0vas, V

156

25

–25

0

125

–125

0

10

–10
1800

900

0

0

–156
0vbs, V

ibs, A

vc, V

ias, A

Te, N·m

ωrm, r/min

0.01s

Figure 7.5-2 Expanded plot of Fig. 7.5-1 illustrating the disconnection of the capacitor in
the bs winding.
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Te, N·m

10

0

–10

900 1800
ωrm, r/min

Figure 7.5-3 Torque-versus-speed characteristics for Fig. 7.5-1.
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5

2

–5

–2
1800

900

0

1
0

0

0

–125

vbs,V

i′ar,A

Te, N·m

TL, N·m

ωrm, r/min

0.1s

Load torque increased
from zero to 1N·m

Load torque decreased
from 1 N·m to zero

Figure 7.5-4 Step changes in load torque of single-phase induction motor.
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illustrated in Fig. 7.5-4. Therein vas, ias, vbs, (open-circuited), iar, Te, ωrm, and TL are
plotted.

SP7.5-1. In Fig. 7.5-1, the capacitor is in series with the bswinding and the voltage

applied to the as winding is Vas = 2 110 cosωet . Calculate the steady-state
stator currents Ias and Ibs at stall (ωrm = 0). Compare with the traces of ias
and ibs in Fig 7.5-2. Neglect the magnetizing reactance Xms in these calculations.
[Ias 19.8 cos(377t− 38.6 ); Ibs − 25.3 cos(377t− 0.8 )]

SP7.5-2. Determine the frequency of I s
qr and I s

dr for the loaded condition (TL = 1

N m) in Fig. 7.5-4. [60 Hz]

7.6 Split-Phase Induction Motor

Although we have considered only the symmetrical two-phase induction motor as
a single-phase induction motor, the split-phase induction motor is often used
[3, 4]. It is an unsymmetrical two-phase induction machine; that is, the stator
windings are different. Themain or run winding remains energized during normal
operation while the start or auxiliary winding is switched out after the rotor
reaches 60–80% of synchronous speed. The r to X ratio of the run winding would
be much the same as that of the stator windings of a two-phase symmetrical
machine; however, the start winding has a higher r to X ratio. Hence, with the
same voltage applied to the start and run windings, the current flowing in the start
winding would lead the current flowing in the run winding. We see the logic
behind all of this. Rather than using only a capacitor to shift the phase of one
of the winding currents in order to develop a starting torque, the machine is
designed with different stator windings so that one current leads the other due
to the difference in the winding impedances. Depending on the application and
the design of the machine, a capacitor may or may not be used in series with
the start winding.
We will not analyze the split-phase induction machine. The analysis is rather

involved since the mutual inductances between the rotor windings and the run
winding are different from those between the rotor windings and the start
winding. Actually we have established the main operating characteristics of
single-phase induction motors with the least amount of effort by considering
the symmetrical two-phase machine. If, however, one wishes to consider the
split-phase device in more detail, this analysis is given in [3].
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7.7 Problems

1 Calculate F
s
qs + and F

s
qs− for the following sets using (7.2-9).

(a) Fas = 10 30 , Fbs = 30 − 60o.

(b) Fas = 10 0 , Fbs = 0.

(c) Fas = cos ωet + 45 , Fbs = cos ωet− 45 .

2 Start with (7.3-5) and derive (7.3-6).

3 Derive (7.3-16).

4 Show that (7.3-16) and (7.3-17) are equivalent.

5 Express (7.3-46) with I
s
qr + and I

s
qr− eliminated.

6 The equivalent circuit for steady-state operation of an induction motor with
only one stator winding is shown in Fig. 7.7-1. Show that this equivalent circuit
is the same as that given by (7.3-46).

rs jXls

I s
qs

+

–

̃

V s
qs
̃

Xmsj 1
2

X′lr

X′lr

j 1
2

1
2 2–s

1
2

1
2 s

Xmsj

j

1
2

r′r

r′r

Figure 7.7-1 Equivalent circuit for single-phase stator winding.
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8

Stepper Motors

8.1 Introduction

Stepper motors are electromechanical motion devices which are used primarily to
convert information in digital form to mechanical motion. Although stepper
motors were used as early as the 1920s, their use has skyrocketed with the advent
of the digital computer. Whenever stepping from one position to another is
required, whether the application is industrial, military, or medical, the stepper
motor is often the motor of choice. Stepper motors come in various sizes and
shapes but most fall into two types − the variable-reluctance stepper motor and
the permanent-magnet stepper motor. Both types are considered in this chapter.
We shall find that the operating principle of the variable-reluctance stepper motor
is much the same as that of the salient-pole (reluctance) machine, and the
permanent-magnet stepper motor is similar in principle to the permanent-magnet
synchronous or ac machine.

8.2 Basic Configurations of Multistack
Variable-Reluctance Stepper Motors

There are two general types of variable-reluctance steppermotors: single- andmul-
tistack. As a first approximation, the behavior of both types may be described from
similar equations. Actually, the principle of operation of variable-reluctance step-
per motors is similar to the reluctance torque which we considered in Chapter 4;
only the mode of operation differs. There are, however, some new terms to define,
and it is necessary for us to extend some of our previous definitions to fit the step-
per motor. First, we will look at the multistack device in some detail, followed by a
brief discussion of the single-stack variable-reluctance stepper motor.
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In its most basic form, the multistack variable-reluctance stepper motor consists
of three or more single-phase reluctance motors on a common shaft with their sta-
tor magnetic axes displaced from each other. The rotor of an elementary three-
stack device is shown in Fig. 8.2-1. It has three cascaded two-pole rotors with a
minimum-reluctance path of each aligned at the angular displacement θrm. In
stepper motor language, each of the two-pole rotors is said to have two teeth.
Now, visualize that each of these rotors has its own, separate, single-phase stator
with the magnetic axes of the stators displaced from each other. In Fig. 8.2-1, we
have labeled the individual rotors a, b, and c. The corresponding stators are shown
in Fig. 8.2-2; the stator with the as winding is associated with the a rotor, the bs
winding with the b rotor, etc. There are several things to note. First, we see that
each of the single-phase stators has two poles, with the stator winding wound
around both poles. In particular, positive current flows into as1 and out as1, which
is then connected to as2 so that positive current flows into as2 and out as2 .
Although we have shown only one circle for as1,…as2, we realize that each would
represent several turns, and that the number of turns from as1 to as1 (indicated by
Ns/2 in Fig. 8.2-2) is the same as from as2 to as2. Let us note one more thing; here-
tofore, we have referenced θrm (or θr) from the as axis to the maximum-reluctance
path of a salient-pole rotor as shown in Fig. 4.3-1. In Fig. 8.2-2, θrm is referenced to
the minimum-reluctance path of the rotor. Since this is more or less standard in
stepper motor analysis, we will deviate from the convention we have established
for synchronous machines.

ωrm

ωrm

ωrm

θrm

θrm

θrm
a

b

c

Figure 8.2-1 Rotor of an elementary two-pole, three-stack, variable-reluctance
stepper motor.
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Each stack is often called a phase. In other words, a three-stack machine is a
three-phase machine. This nomenclature can be misleading since we generally
think of a three-phase ac device when we hear the words three-phase machine.
We will find that a stepper motor is a discrete device, operated by switching a
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as2

vas vbs

ias
ibs

as1

as1́

cs2́

cs2

cs1

cs1
cs2

cs1́

vcs

ics

cs2́cs1́

as2
bs2

bs2

bs1

bs1

bs2́

bs 2́

bs1́

bs ́1

as1́

as1

ωrm

θrm

ωrm

θrm

as axis

cs axis

bs axis

Ns

2
Ns

2
Ns

2

Ns

2

Ns

2

Ns

2

ωrm

θrm

Figure 8.2-2 Stator configuration for an elementary two-pole, three-stator variable-
reluctance stepper motor.
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dc voltage from one stator winding to the other. Although more than three stacks
(phases) may be used, three-stack variable-reluctance stepper motors are quite
common. Our previous meaning of phase must be changed somewhat to accom-
modate the stepper motor.
Before writing any equations, let us see if we can gain some insight in regard to

the operation of this device. To start, let the bs and cs windings in Fig. 8.2-2 be
open-circuited, and let us apply a dc voltage to the as winding, whereupon we will
assume that a constant ias is immediately established. Now, since the magnetic sys-
tems of the three single-phase stators are separate, flux set up by one winding does
not link the other windings. Hence, with only the aswinding energized, flux exists
only in the as axis. The minimum-reluctance path of the a part of the rotor (see
Fig. 8.2-2) will align with the as axis. That is, at equilibrium with zero load torque,
θrm in all parts of Fig. 8.2-2 is the same, either zero or 180 ; let us say it is zero to
make our discussion easier. (What would the rotor do if we could instantaneously
reverse the direction of ias?)
Stepper motors are used to convert digital or discrete information into a change

in angular position. Let us see how positioning (stepping) is achieved. For this, let
us instantaneously deenergize the as winding and immediately establish a direct
current in the bs winding. The minimum reluctance path of the rotor will align
itself with the bs axis. To do this, the rotor would rotate clockwise from θrm = 0
to θrm = − 60 . Note that by advancing the mmf from the positive as axis to
the positive bs axis, 120 counterclockwise, we have caused a 60 clockwise rota-
tion of the rotor. There must be something wrong here. We recall from our work
with rotating magnetic fields that, with the magnetic axes as shown in Fig. 8.2-2,
an abc sequence of balanced sinusoidal currents will yield operation at synchro-
nous speed with the rotor rotating counterclockwise. Therefore, it would seem that
rotating the air-gap mmf from the positive as axis to the positive bs axis would
cause rotation in the counterclockwise direction. In the case of variable-reluctance
stepper motors, we will find that the direction of stepping can be either in the same
or opposite direction of the rotation of the air-gap mmf depending upon the num-
ber of phases (stacks), the number of poles created by the stator windings, and the
number of rotor teeth.
If, instead of energizing the bswinding, we energize the cs winding in Fig. 8.2-2,

the rotor would have stepped counterclockwise from θrm = 0 to θrm = 60 . Thus,
applying a dc voltage separately in the sequences as, bs, cs, as,… produces 60 steps
in the clockwise direction, whereas the sequence as, cs, bs, as,… produces 60 steps
in the counterclockwise direction. We need at least three stacks to achieve rotation
(stepping) in both directions.
Before defining some stepper motor terms, let us think of one more thing. What

if we energized the as and bswindings with the same current? That is, assume that
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initially the as winding is energized with θrm = 0 and the bs winding is energized
without deenergizing the aswinding. What happens?Well, the rotor rotates clock-
wise from θrm = 0 to θrm = − 30 . We have reduced our step length by one half.
This is referred to as half-step operation. What would happen if all three stacks
were excited with a positive voltage?
It is time to define terms. Let RT denote the number of rotor teeth per stack and

ST the number of stator teeth per stack. The elementary device shown in Figs. 8.2-1
and 8.2-2 has two poles, two rotor teeth, and two stator teeth per stack; thus, RT=
ST = 2. In fact, RT (rotor teeth per stack) always equals ST (stator teeth per stack)
in amultistack variable-reluctance steppermotor. The number of stacks is denoted
as N; here N = 3. Now, the tooth pitch, which we will denote as TP, is the angular
displacement between rotor teeth. In this case, TP = 180 . We can write

TP =
2π
RT

(8.2-1)

We have onemore term to define; the step length, denoted as SL. It is the angular
rotation of the rotor as we change the excitation (dc voltage) from one phase to the
other. In this case, the step length is 60 , SL = 60 . If we energize each stack sep-
arately, then going from as to bs to cs back to as causes the rotor to rotate one tooth
pitch. In other words, the number of stacks (phases) times the step length is a tooth
pitch. That is,

TP = N SL (8.2-2)

We can substitute (8.2-1) into (8.2-2) and obtain

SL =
TP
N

=
2π

RT N
(8.2-3)

We shall find use for all of these new terms as we go along.
Although the elementary device shown in Figs. 8.2-1 and 8.2-2 offers a good

starting point in our analysis of stepper motors, it has limited application owing
to its large step length. Let us consider the four-pole three-stack variable-
reluctance stepper motor with four rotor teeth, as illustrated in Fig. 8.2-3. Here,
RT = 4 and N = 3; therefore, from (8.2-1), the tooth pitch is TP = 2π/RT = 90 .
From (8.2-2), the step length is SL = TP/N = 30 and an as, bs, cs, as, … sequence
produces 30 steps in the clockwise direction.
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The device shown in Fig. 8.2-4 is a four-pole three-stack variable-reluctance
stepper motor with eight rotor teeth. In this case, RT= 8 and N= 3, thus, TP= 45
and SL = 15 . However, in this device an as, bs, cs, as, … sequence produces 15
steps in the counterclockwise direction. The pattern is clear; by increasing the
number of stator and rotor teeth, we reduce the step length. The step lengths of
multistack variable-reluctance stepping motors typically range from 2 to 15 .
There appears to be an inconsistency in Fig. 8.2-4. In particular, θrm is referenced

from the as axis to a position between rotor teeth. Earlier in this section, we estab-
lished that, in the case of stepper motors, we would reference θrm from the as axis
to the minimum-reluctance path of the rotor, whereupon the reluctance of the
magnetic system associated with the aswinding would beminimumwhen θrm= 0.

as2 axis

bs1 axis

as1 axis

bs2 axis
cs1 axis

as3

bs3

bs2

bs4

bs1

as4

as1

as2

aś3

as 1́

as 2́

bs 1́
bs 2́

bs 4́bs 3́

as 4́

ωrm

θrm

ωrm

θrm

ωrm

θrm

cs 1́

cs 2́

cs 3́

cs 4́

cs2
cs3

cs1 cs4

cs2 axis

Figure 8.2-3 Four-pole, three-stack, variable-reluctance stepper motor with four
rotor teeth.
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At first glance it appears that we have violated this stepper motor convention.
However, when θrm is zero in Fig. 8.2-4, the reluctance of the magnetic system
associated with the as winding is minimum. Hence, we must reference θrm from
a position between rotor teeth to maintain the convention which we established
earlier in this section. A cutaway view of a four-pole three-stack variable-
reluctance stepper motor with 16 rotor teeth is shown in Fig. 8.2-5.

SP8.2-1. Calculate the step length for an eight-pole three-stack variable-reluctance
stepper motor with 16 rotor teeth. [SL = 7.5 ]

SP8.2-2. Consider the two-pole two-phase reluctance motor. Calculate (a) TP,
(b) SL, and (c) determine the direction of rotation when a dc voltage is switched
from the aswinding to the bswinding. [(a)TP= 180 ; (b) SL= 90 ; (c) either ccw
or cw]
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ωrm

θrm

as2 axis

bs2 axis

cs2 axis
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Figure 8.2-4 Four-pole, three-stack, variable-reluctance stepper motor with eight
rotor teeth.
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8.3 Equations for Multistack Variable-Reluctance
Stepper Motors

The voltage equations for a three-stack variable-reluctance stepper motor may be
written as

vas = rsias +
dλas
dt

(8.3-1)

vbs = rsibs +
dλbs
dt

(8.3-2)

vcs = rsics +
dλcs
dt

(8.3-3)

In matrix form,

vabcs = rsiabcs + pλabcs (8.3-4)

where p is the operator d/dt and, for voltages, currents, and flux linkages

fabcs
T = f as f bs f cs (8.3-5)

with

rs =

rs 0 0

0 rs 0

0 0 rs

(8.3-6)

Figure 8.2-5 Cutaway view of four-point, three-stack, variable-reluctance stepper motor
with 16 rotor teeth. Source: Courtesy of Warner Electric.
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Since magnetic coupling does not exist between phases, we can write the flux lin-
kages as

λas
λbs
λcs

=

Lasas 0 0

0 Lbsbs 0

0 0 Lcscs

ias
ibs
ics

(8.3-7)

For the purpose of expressing the self-inductances Lasas, Lbsbs, and Lcscs, let us
first consider the elementary two-pole device illustrated in Fig. 8.2-2. We can write
as a first approximation,

Lasas = Lls + LA + LB cos 2θrm (8.3-8)

Lbsbs = Lls + LA + LB cos 2 θrm −
2
3
π (8.3-9)

Lcscs = Lls + LA + LB cos 2 θrm −
4
3
π (8.3-10)

We are aware that Lls is the leakage inductance whereas LA and LB are constants
with LA> LB. The rotor displacement is expressed as

θrm = ωrmt + θrm 0 (8.3-11)

Wewill use θrm, the actual rotor displacement, rather than θr, the electrical angular
displacement. Although θrm and θr are related, θr = (P/2)θrm, where P is the num-
ber of poles, we will find it more convenient to use θrm in the analysis of stepper
motors. We see that (8.3-8) is similar to (4.2-37), with θrm referenced to the min-
imum reluctance path of the rotor. Equation (8.3-7) is easily developed once we
realize that the self-inductance of the bswinding is the same as that of the aswind-
ing. However, since θrm is referenced from the as axis, the angular displacement to

the bs axis from the as axis must be subtracted from θrm so that, when θrm =
2
3
π,

the argument of (8.3-7) is zero and (8.3-7) with θrm =
2
3
π becomes the same as

(8.3-8) with θrm = 0. Following this same line of reasoning, we would deter-

mine that the angular displacement of (8.3-10) is −
4
3
π . However, since

cos 2 θrm −
4
3
π = cos 2 θrm +

2
3
π , we can use

2
3
π as the angular displace-

ment for Lcscs. It is obvious that we can express (8.3-8) through (8.3-10) in various
forms. Later, we will find it advantageous to express the argument of (8.3-8) and
(8.3-10) in terms of step length.
The self-inductances of the four-pole three-stack variable-reluctance device with

four rotor teeth shown in Fig. 8.2-3 can be approximated as

Lasas = Lls + LA + LB cos 4θrm (8.3-12)
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Lbsbs = Lls + LA + LB cos 4 θrm −
1
3
π (8.3-13)

Lcscs = Lls + LA + LB cos 4 θrm −
2
3
π (8.3-14)

Although we are using the same Lls, LA, and LB to denote constants, we realize that
these are not equal for the various machines.
For the four-pole three-stack variable-reluctance stepper motor with eight rotor

teeth shown in Fig. 8.2-4, we can approximate the self-inductances as

Lasas = Lls + LA + LB cos 8θrm (8.3-15)

Lbsbs = Lls + LA + LB cos 8 θrm −
1
3
π (8.3-16)

Lcscs = Lls + LA + LB cos 8 θrm −
2
3
π (8.3-17)

By adding or subtracting multiples of 2π from the arguments, the above self-
inductances may be expressed in terms of SL. In particular, for the devices shown
in Figs. 8.2-2 and 8.2-3, where we have previously noted that a counterclockwise
rotation of the stator’ mmf and stepping are in opposite directions, cw, the induc-
tances may be expressed as

Lasas = Lls + LA + LB cos RT θrm (8.3-18)

Lbsbs = Lls + LA + LB cos RT θrm + SL (8.3-19)

Lcscs = Lls + LA + LB cos RT θrm − SL (8.3-20)

For the device shown in Fig. 8.2-4, where rotation of the stator mmf and stepping
are in the same direction, ccw, the self-inductances may be expressed as

Lasas = Lls + LA + LB cos RT θrm (8.3-21)

Lbsbs = Lls + LA + LB cos RT θrm − SL (8.3-22)

Lcscs = Lls + LA + LB cos RT θrm + SL (8.3-23)

An expression for the electromagnetic torque may be written,

Te =
∂Wc i, θrm

∂θrm
(8.3-24)

Since we are assuming a linear magnetic system, the field energy and coenergy are
equal. Thus, since the mutual inductances are zero,

Wc =
1
2
Lasasi

2
as +

1
2
Lbsbsi

2
bs +

1
2
Lcscsi

2
cs (8.3-25)
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Substituting the self-inductances given by (8.3-18) through (8.3-20) into (8.3-25)
and taking the partial derivative with respect to θrm yields

Te = −
RT
2

LB i2as sin RT θrm + i2bs sin RT θrm + SL + i2cs sin RT θrm − SL

(8.3-26)

An alternate form of (8.3-26) using the tooth pitch TP is

Te = −
RT
2

LB i2as sin
2π
TP

θrm + i2bs sin
2π
TP

θrm +
TP
3

+ i2cs sin
2π
TP

θrm −
TP
3

(8.3-27)

It is important to note that (8.3-26) and (8.3-27) are written for rotation of the stator
mmf and stepping of the rotor in opposite directions. For stepping in the same
direction, the sign preceding both SL’s in (8.3-26) and both (TP/3)’s in (8.3-26)
must be changed. Note also that the magnitude of the torque is proportional to
the number of rotor teeth RT.
The torque and rotor angular position are related as

Te = J
d2θrm
dt2

+ Bm
dθrm
dt

+ TL (8.3-28)

where J is the total inertia in kg m2 and Bm is a damping coefficient associated
with the mechanical rotational system in N m s. The electromagnetic torque
Te is positive in the counterclockwise direction (positive direction of θrm) whereas
the load torque TL is positive in the clockwise direction.

SP8.3-1.The stator currents of a three-stack variable-reluctancemachine are ias= I,
ibs = − I, and ics = 0. Determine the no-load rotor position. [θrm = − TP/6]

SP8.3-2. Repeat SP8.3-1 with ias = ibs = ics. [Te is zero for all values of θrm.]

8.4 Operating Characteristics of Multistack
Variable Reluctance Stepper Motors

It is instructive to take a little closer look at the operating characteristics of a multi-
stack variable-reluctance stepper motor from the standpoint of idealized, pseudo
steady-state conditions. For this purpose, let us consider the expression for torque
given by (8.3-27) for a three-stack motor with opposite directions of rotation of the
stator mmf and stepping. In particular,
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Te = −
RT
2

LB i2as sin
2π
TP

θrm + i2bs sin
2π
TP

θrm +
TP
3

+ i2cs sin
2π
TP

θrm −
TP
3

(8.4-1)

In Fig. 8.4-1, the three terms of (8.4-1) are plotted separately for equal, constant
(steady-state) currents. Let us assume that there is no load torque, TL=0, and ias= I
while ibs and ics are zero. Only the first term of (8.4-1) is present; that is, only the
steady-state torque due to ias exists. The stable steady-state rotor position would be
at θrm = 0 denoted as point 1 on Fig. 8.4-1. Now, let us assume that ias is instan-
taneously decreased from I to zero while ibs is increased from zero to I. Hence, the
steady-state torque plot due to ias would instantaneously disappear from Fig. 8.4-1
and the torque due to ibs would immediately appear. Now, we know that this can-
not happen in practice since there would be electrical transients involved, but we
are neglecting all transients in this discussion. Since, the torque at point 2 is neg-
ative, the rotor will rotate in the clockwise, −θrm, direction. We will then proceed
along the ibs torque plot until we have reached point 3. Note we have moved one
step length in the clockwise direction. If, instead of energizing the bswinding after
deenergizing the aswinding, we energized the cswinding, then the torque at point

Torque
as

RT
2

cs bs

4

2

LBi2as RT
2

LBi2cs
RT
2

LBi2bs

3 1 5

TP
2

TP

SL SL
2

– θrm

Figure 8.4-1 Stepping operation of a three-stack, variable-reluctance stepper motor
without load torque – steady-state torque-angle plots.
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4 would appear. This is a positive Te so the rotor will rotate in the counterclockwise
direction, +θrm, and we will ride along the torque angle plot to point 5. Please real-
ize that not only are we neglecting the electrical transients in this discussion but
we are also neglecting the mechanical transients. Normally, there would be a
damped oscillation about the new operating point.
Half-step operation is depicted in Fig. 8.4-2. To explain this, let us again start at

point 1 where TL = 0 and only the as winding is energized (ias = I). Instantane-
ously, the bs winding is energized and ibs = I. Now, both ias and ibs are I and only
the as + bs torque plot, shown in Fig. 8.4-2, exists. Immediately, the torque at point
2 appears and the rotor starts to rotate in the clockwise, −θrm, direction coming to
rest at point 3. The rotor has moved SL/2 clockwise.
Stepping action with a load torque is shown in Fig. 8.4-3. Assume that initial

operation is at point 1 with ias = I and ibs = ics = 0. Recall that Te is positive in
the counterclockwise direction while TL is positive in the clockwise direction,
and stable operation occurs when Te= TL. Thus, at point 1,Te= TL. The aswinding
is deenergized while the bs winding is energized. Immediately, the negative Te at
point 2 appears and the rotor will move clockwise to point 3. If the cs winding is
energized rather than the bs winding, the torque at point 4 would appear and the
rotor would move counterclockwise to point 5. Note that the step length is still
the same in both directions. However, the rotor will move more rapidly in the

as + bs as cs bsTorque

3 1

2

TP
2

TP
2

SL
2

θrm–

Figure 8.4-2 Half-step operation of a three-stack, variable-reluctance stepper motor –
steady-state torque-angle plots.
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clockwise direction than in the counterclockwise direction since the load torque is
in the clockwise direction. In other words, there is a larger torque to accelerate the
rotor in the clockwise direction than in the counterclockwise direction.
The plots of ias, ibs, ics, and θrm shown in Fig. 8.4-4 allow us to view stepping

operation from another standpoint. Initially, there is no load torque and ias = I.
The current ias is stepped off and ibs is stepped on. The rotor rotates clockwise
to θrm= − SL. Here, we have indicated the presence of a dampedmechanical oscil-
lation which was not shown in the steady-state torque angle plots. Next, ibs is
switched off and ias is switched back on. The rotor ends up back at θrm = 0. Next,
we see half-step operation; ias remains at I while ics is switched to I. The rotor

advances to
1
2
SL. When ias is switched to zero, the rotor again advances by

1
2
SL

to θrm = SL.

SP8.4-1. In Fig. 8.4-3, the load torque is such that the initial operating point with
ias = I and ibs = ics = 0 is at θrm = − TP/8. The current in the as winding is
switched to zero and the current in the cs winding is switched to I. Determine
the final value of θrm. Which direction will the rotor rotate? [θrm = − TP/8−
2SL; cw]

SP8.4-2. It is desirable to step from θrm= 0 to θrm= − SL/3 for the device shown in
Fig. 8.2-3. Assume that we have the facility to control the winding currents. Let
ias = I; determine ibs. [ibs=0.81I]

as cs bs
Torque

4

3 5
TL1

θrmTP
2

TP
2

2

–

Figure 8.4-3 Stepping operation of a three-stack, variable-reluctance stepper motor with
load torque – steady-state torque-angle plots.
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8.5 Single-Stack Variable-Reluctance Stepper Motors

As its name suggests, the single-stack variable-reluctance stepper motor has only
one stack and all stator phases are arranged on this single stack. A three-phase
single-stack variable-reluctance stepper motor is shown in Fig. 8.5-1. Here, it
appears that we have taken the three two-pole single-phase stators shown in
Fig. 8.2-2 and squeezed them into one stack. The magnetic axes of the stator wind-
ings are displaced 120 as in the case of the three-phase machines considered in
earlier chapters; however, the stepper motor generally has stator teeth or poles
which protrude rather than a circular inner stator surface.
Recall that in the case of the multistack variable-reluctance motor, the number

of rotor and stator teeth per stack is the same. In the case of the single-stack stepper
motor, the number of rotor teeth per stack, RT, is never equal to the number of
stator teeth per stack, ST. If, for example, the rotor shown in Fig. 8.5-1 had the
same number of teeth as the stator (6), then, when two diagonally opposite rotor
teeth are aligned with two diagonally opposite stator teeth, all diagonally opposite
rotor teeth would be aligned with diagonally opposite stator teeth and stepping
action could not occur. The equations which we derived for the tooth pitch TP
and step length SL for the multistack variable-reluctance stepper motor also apply
for the single-stack stepper motor. For the two-pole three-phase stepper motor
shown in Fig. 8.5-1, RT = 4 and, thus, TP = 2π/RT = 90 and SL = TP/N = 30 .
Note that the sequence as, bs, cs, as, … produces a counterclockwise stepping of
the rotor.

ias

ibs

ics

I

I

0

I

SL

0

0

0

–SL

θrm

Figure 8.4-4 Stepping operation depicting θrm versus time – no load torque.
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Figure 8.5-1 Two-pole, three-phase, single-stack, variable-reluctance stepper motor with
six stator teeth and four rotor teeth.
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Figure 8.5-2 Two-pole, three-phase, single-stack, variable-reluctance stepper motor with
six stator teeth and eight rotor teeth.
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Two other types of three-phase single-stack variable-reluctance stepper motors
are shown in Figs. 8.5-2 and 8.5-3. The two-pole device shown in Fig. 8.5-2 has six
stator teeth and eight rotor teeth, TP = 45 and SL = 15 , and an as, bs, cs, as, …
sequence produces a clockwise stepping of the rotor. For the four-pole three-phase
device shown in Fig. 8.5-3, ST= 12 and RT= 8. Thus, TP= 40 , SL= 15 . The step
length is the same as for the stator with six teeth (Fig. 8.5-2); however, counter-
clockwise stepping of the rotor occurs with the sequence as, bs, cs, as, …. In
Fig. 8.5-3, the labeling of the coil sides of the windings is omitted because of lack
of space.
The expressions given for the self-inductances of the three-stack (phase) variable-

reluctance stepper motor, (8.3-18) through (8.3-23), also apply to the three-phase
single-stack variable-reluctance stepper motor. Therefore, it would appear that
the operation of the single-stack and multistack variable-reluctance stepper motors
may be described by the same set of equations. Although this perception is essen-
tially valid from an idealized point of view, it is not valid in the practical world.
We see from Figs. 8.5-1 through 8.5-3 that the stator windings share the same mag-
netic system. Hence, there is a possibility of mutual coupling between stator phases.
For the purposes of discussion, let us consider Fig. 8.5-4, which is Fig. 8.5-1 with
θrm = 0. The dashed lines shown therein depict the flux linking the bs winding
due to positive current flowing in the as winding. If we assume that the reluctance
of the iron is small so that it can be neglected, the flux linkages cancel, whereupon
mutual coupling would not exist between stator phases. From an idealized stand-
point, this is a valid line of reasoning; from a practical standpoint it is not.

cs1 axis

as2 axis

bs2 axis cs2 axis

as1 axis

bs1 axis

ωrmθrm

Figure 8.5-3 Four-pole, three-phase, single-stack, variable-reluctance stepper motor with
12 stator teeth and eight rotor teeth.
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Steppermotors are generally designed to operate at current levels which saturate
the iron of the machine. Hence, owing to the increased reluctance of the saturated
iron, less flux will be circulating around the longer paths through iron than
through the shorter paths. Hence, a net mutual flux would exist between stator
phases. For the case depicted in Fig. 8.5-4, there would be a net flux in the direction
of the positive bs axis as a result of the saturation of the iron. Albeit relatively small
in amplitude, a mutual inductance does exist in the practical application of single-
stack variable-reluctance stepper motors. This complicates the analysis of these
devices far beyond that which we care to deal with in this text. Instead, for our
first look at stepper motors, we will consider it sufficient to neglect saturation
and the mutual coupling it causes in single-stack variable-reluctance stepper
motors. A single-stack variable-reluctance stepper motor is shown in Fig. 8.5-5.
This device has a 15 step length and is equipped with an integral lead screw
for translational motion.

SP8.5-1. Express the number of stator teeth possible for an N-phase single-stack
variable-reluctance stepper motor. [ST = n(2N), where n = 1,2,3, … ]

SP8.5-2. The rotor in Fig. 8.5-1 is replaced by the rotor from Fig. 8.5-3. Determine
(a) TP, (b) SL, and (c) the direction of rotation with an as, bs, cs, as, … sequence.
[(a) TP = 45 ; (b) SL = 15 ; (c) cw]

bs axis

as axis

cs axis

Figure 8.5-4 Two-pole, three-phase, single-stack, variable-reluctance stepper motor given
in Fig. 8.5-1 with θrm = 0.
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8.6 Basic Configuration of Permanent-Magnet
Stepper Motors

The permanent-magnet stepper motor is quite common. Actually, it is a
permanent-magnet synchronous machine and it may be operated either as a step-
ping motor or as a continuous-speed device. Here, we will concern ourselves only
with its application as a stepping motor since continuous-speed operation is sim-
ilar to the operation of a permanent magnet ac machine considered in Chapters 4
and 6 [1, 2].
A two-pole two-phase permanent-magnet stepper motor with five rotor teeth is

shown in Fig. 8.6-1. Most permanent-magnet stepper motors have more than two
poles and more than five rotor teeth; some may have as many as eight poles and as
many as 50 rotor teeth. Nevertheless, the elementary device shown in Fig. 8.6-1 is
sufficient to illustrate the principle of operation of the permanent-magnet stepper
motor. The radial cross-sectional view shown in Fig. 8.6-1b illustrates the perma-
nent magnet which is mounted on the rotor. The permanent magnet magnetizes
the iron end caps which are also mounted on the rotor and are slotted to form the
rotor teeth. The view looking from left to right at X is shown in Fig. 8.6-1a.
Figure 8.6-1c is the view from left to right at Y. The left end cap shown in
Fig.8.6-1a is magnetized as a north pole; the right end cap shown in Fig. 8.6-1c
is magnetized as a south pole. Note that the rotor teeth of the left end cap are dis-
placed one half a tooth pitch from the teeth on the right end cap. Also, note that the
stator windings are wound over the full axial length of the device; a part of the bs
winding is shown in Fig. 8.6-1b.

Figure 8.5-5 Single-stack, 15 step, variable-reluctance stepper motor. Source: Courtesy of
Warner Electric.
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Let us trace the main path of flux linking the bs winding for the rotor position
shown in Fig. 8.6-1. This path is depicted by dashed lines in Fig. 8.6-1b; however, it
is necessary to visualize the drawing in three dimensions. Flux leaves the left end
cap through the rotor tooth at the top of the rotor that is aligned with the stator
tooth which has the bs2 part of the bs winding. The flux travels up through the
stator tooth in the stator iron. The flux then splits and travels around the circum-
ference of the stator and returns to the south pole of the rotor through the stator
tooth, positioned at the bottom in Fig. 8.6-1c, on which the bs1 winding is wound.
The main flux linking the as winding for the rotor position shown in Fig. 8.6-1
would enter the stator tooth on which the as 1 winding is wound from the rotor
tooth on the right of Fig. 8.6-1a. The flux would travel around the circumference of

bs axis

bs axis

as axis

bs2

ibs

ibs

ibs

ibsas′1
bs′2

bs′2

bs′1

as′2

as2

bs1

as1

bs′1

N

N

Magnet

Iron end caps

S

ωrm

θrm

as axis

ωrm

θrm

X Y

bs2

as′1
bs′2

as′2

as2

bs1

as1
bs′1

S

(a)
(b)

(c)

Figure 8.6-1 Two-pole, two-phase, permanent-magnet stepper motor, (a) axial view at X;
(b) side cross-sectional view; (c) axial view at Y.

230 8 Stepper Motors

www.konkur.in

Telegram: @uni_k



the stator and return to the rotor through the stator pole upon which the as2 wind-
ing is wound, Fig. 8.6-1c.
Stepping action can be explained by first assuming that the bs winding is open-

circuited and a constant positive current is flowing in the aswinding. As a result of
this current, a south pole is established at the stator tooth onwhich the as1 winding
is wound, and a stator north pole is established at the stator tooth on which the as2
winding is wound. The rotor would be positioned at θrm = 0. Now, let us simul-
taneously deenergize the as winding while energizing the bs winding with a pos-
itive current. The rotor will move one step length in the counterclockwise
direction. To continue stepping in the counterclockwise direction, the bs winding
is deenergized and the as winding is energized with a negative current. That is,
counterclockwise stepping occurs with a current sequence of ias, ibs, −ias, −ibs,
ias, …. Clockwise rotation is achieved by ias, −ibs, −ias, ibs,….
The tooth pitch TP can be calculated from (8.2-1); however, the SL for a

permanent-magnet stepper motor cannot be calculated from (8.2-3). As we have
mentioned, counterclockwise rotation of the device shown in Fig. 8.6-1 is achieved
by a sequence of ias, ibs,−ias,−ibs, ias,…. We see that it takes four switchings (steps)
to advance the rotor one tooth pitch. Thus,

TP = 2N SL (8.6-1)

whereN is the number of phases. Substituting (8.2-1) into (8.6-1) and solving for SL
yields

SL =
π

RT N
(8.6-2)

For the device shown in Fig. 8.6-1, RT = 5 and N = 2. From (8.6-2), SL = 18 .
Recall that in the case of variable-reluctance stepper motors, it is unnecessary to

reverse the direction of the current in the stator windings to achieve rotation;
therefore, the stator voltage source need only be unidirectional. However, in
the case of a permanent-magnet stepper motor, it is necessary for the phase cur-
rents to flow in both directions to achieve rotation. Generally, stepper motors are
supplied from a dc voltage source; hence, the electronic interface between the
phase windings and the dc source must be bidirectional; that is, it must have
the capability of applying a positive and negative voltage to each phase winding.
This requirement markedly increases the cost of the electronic interface and
its associated controls relative to a unidirectional source. As an alternative,
permanent-magnet stepper motors are often equipped with what is referred to
as bifilar windings. Rather than only one winding on each stator tooth, there
are two identical windings with one wound opposite to the other, each having sep-
arate independent external terminals. With this type of winding configuration, the
direction of themagnetic field established by the stator windings is reversed, not by
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changing the direction of the current but by reversing the sense of the winding
through which current is flowing. If, for example, the device shown in Fig. 8.6-1
is equipped with bifilar windings, there would be another as winding and another
bs winding with separate, independent, external terminals wound opposite on the
stator teeth to the windings shown. Although this increases the size and weight of
the stepper motor, it eliminates the need for a bidirectional electronic interface.
When this permanent-magnet stepper motor is equipped with bifilar windings
as just described, it is (perhaps, inappropriately) called a four-phase device. Actu-
ally it has four windings, but it is still a two-phase device magnetically. Although
we are not going to consider the bifilar-wound machine in detail, one should be
aware of this somewhat ambiguous nomenclature. More specifically, care should
be takenwhen using (8.6-2) to calculate the step length. The number of phasesN in
(8.6-2) is the number of phases magnetically rather than the number of windings.
A cutaway view of a permanent-magnet stepper motor is shown in Fig. 8.6-2.

Figure 8.6-2 Cutaway view of a permanent-magnet stepper motor. Source: Courtesy of
Sanyo Denki.
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SP8.6-1. Consider the device shown in Fig. 8.6-1. The load torque is zero. Initially
ias= I and ibs= 0. From this condition, the following sequence occurs: ias= 0 and
ibs = I, then ias = − I and ibs = I. Determine the initial, intermediate, and final
positions. [θrm = 0, 18 , 27 ]

SP8.6-2. A four-pole two-phase permanent-magnet stepper motor has 18 rotor
teeth. Calculate TP and SL. [TP = 20 ; SL = 5 ]

8.7 Equations for Permanent-Magnet Stepper Motors

The voltage equations for a two-phase permanent-magnet stepper motor may be
written as

vas = rsias +
dλas
dt

(8.7-1)

vbs = rsibs +
dλbs
dt

(8.7-2)

In matrix form,

vabs = rsiabs + pλabs (8.7-3)

where p is the operator d/dt, and for voltages, currents, and flux linkages

fabs
T = f as f bs (8.7-4)

with

rs =
rs 0

0 rs
(8.7-5)

The flux linkages may be expressed as

λas = Lasasias + Lasbsibs + λasm (8.7-6)

λbs = Lbsasias + Lbsbsibs + λbsm (8.7-7)

In matrix form,

λabs = Lsiabs + λm (8.7-8)

where

Ls =
Lasas Lasbs
Lbsas Lbsbs

(8.7-9)
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λm =
λasm
λbsm

(8.7-10)

From Fig. 8.6-1, we can write, as a first approximation,

λm = λm
cos RT θrm

sin RT θrm
(8.7-11)

where λm is the amplitude of the flux linkages established by the permanent mag-
net as viewed from the stator phase windings. In other words, the magnitude of λm
is proportional to the magnitude of the open-circuit sinusoidal voltage induced in
each stator phase winding. In (8.7-11),

θrm = ωrmt + θrm 0 (8.7-12)

Those who have read Chapter 4 on the brushless dc machines will recognize the
similarity in the analysis. The procedure for calculating λm in the case of the step-
per motor is identical to that illustrated in Example 4.A.
From the idealized standpoint, the self-inductance of the stator phases of the

device shown in Fig. 8.6-1 is constant, and the reluctance seen by the permanent
magnet is also constant, independent of rotor position. However, in practice both
the self-inductances and the reluctance vary with rotor position due to saturation
of the stator iron and the differences from the idealized configuration which occur
when shaping the poles. We shall disregard these departures from the idealized
case and assume constant self-inductances and a constant reluctance seen by
the permanent magnet independent of rotor position. When doing so, we are
neglecting the reluctance torques caused by variation in self-inductances and
the permanent magnet, both of which attempt to place the rotor in its mini-
mum-reluctance position. The latter torque is often referred to as the detent or
retention torque, since it exists whether or not the stator windings are excited,
and, if the load torque is not too large, this detent torque will preserve the rotor
position during a power failure. Nevertheless, the reluctance torques are small rel-
ative to the torque produced by the interaction of the permanent magnet and the
stator currents and, although we are not looking at the complete picture when we
neglect the reluctance torques, this approximation is certainly adequate for our
first look at the permanent-magnet stepper motor.
With the assumption of constant self-inductances, we can write

Lasas = Lls + Lms = Lss (8.7-13)

Lbsbs = Lls + Lms = Lss (8.7-14)
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Following a line of reasoning similar to that used in the case of the single-stack
variable-reluctance stepper motor, it can be shown that stator mutual inductances
do not exist if saturation is neglected. Thus,

Ls =
Lss 0

0 Lss
(8.7-15)

An expression for the electromagnetic torquemay be obtained by taking the par-
tial derivative of the coenergy with respect to θrm. Since the stator mutual induc-
tances are zero, the coenergy may be expressed as

Wc =
1
2
Lasasi

2
as +

1
2
Lbsbsi

2
bs + λasmias + λbsmibs + Wpm (8.7-16)

where Lasas and Lbsbs are given by (8.7-13) and (8.7-14), respectively, and λasm and
λbsmare given by (8.7-11). The termWpm is related to the energy associated with the
permanent magnet. Since we are neglecting variations in the self-inductances and
in Wpm taking the partial derivative of Wc with respect to θrm yields

Te = −RT λm ias sin RT θrm − ibs cos RT θrm (8.7-17)

The terms of (8.7-17) are plotted in Fig. 8.7-1, wherein it is assumed that constant
currents are present in both phase windings. Each term of (8.7-17) is identified in
Fig. 8.7-1. In particular, ±Team is the torque due to the interaction of the

–Tebm +Tebm+Team –Team

Torque

TP
2

– TP

SL SL

4
TP
4

TP
2

–

θrm

Figure 8.7-1 Plot of Te versus θrm for a permanent-magnet stepper motor with constant
phase currents.
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permanent magnet and ±ias, and ±Tebm are due to the interaction of the perma-
nent magnet and ±ibs.
The reluctance of the permanent magnet is large, approaching that of air. Since

the flux established by the phase currents flows through the magnet, the reluctance
of the flux path is relatively large. Hence, the variation in the reluctance due to
rotation of the rotor is small and, consequently, the amplitudes of the reluctance
torques are small relative to the torque produced by the interaction between the per-
manent magnet and the phase currents. For this reason, the reluctance torques are
generally neglected, as we have done here, and the self-inductances are assumed to
be constant. Therefore, the voltage equations for the permanent-magnet stepper
motor become those of the permanent-magnet ac machine which we considered
in Chapters 4 and 6, except for the use of θrm instead of θr and the difference in the
referencingofθrm (to theminimumreluctancerather thanthemaximumreluctance).
Although a discussion of the stepping action of a permanent-magnet stepper

motor using the steady-state torque-angle characteristics is appropriate, this expla-
nation would be essentially a repeat of that given in Section 8.4 for the variable-
reluctance devices. We will not do this; instead, we will ask a few questions to help
emphasize this similarity. Also, we can use reference frame theory to express the
equations in the rotor reference frame; however, this is similar to that covered in
Chapters 4 and 6 and it is also carried out in [2].

SP8.7-1. Express λasm in terms of SL rather than RT. Determine the number of
step lengths in a period for the device shown in Fig. 8.6-1. {λasm = λm
cos π SL N θrm; 4}

SP8.7-2. Consider Fig. 8.7-1. The load torque is zero. Initially, ias = I, then ibs = 0

and ibs = − 3I, and, finally, ias = −
1
2
I and ibs = 0. Determine the three posi-

tions. [θrm = 0, −TP/4, −TP/2]

8.8 Problems

1 Sketch the configuration of a two-pole four-stack variable-reluctance stepper
motor with two rotor teeth. Use as, bs, cs, and ds to denote the phase windings.
Calculate TP, SL, and give the excitation sequence for ccw rotation.

2 For Prob. 1, express the self-inductances and the torque using SL in the
arguments.

3 The four-pole three-stack variable-reluctance steppermotor shown in Fig. 8.2-3
is to be operated at a continuous speed of 30 rad/s. Neglect electrical transients
and sketch the current ias indicating the time it is zero and nonzero.
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4 A four-pole five-stack variable-reluctance stepper motor has eight rotor teeth
as the rotor shown in Fig. 8.2-4. Its magnetic axes are arranged as, bs, cs, ds, and
es, in the counterclockwise direction. Express the self-inductances with the
constant angular displacement in terms of step length.

5 Express the self-inductances for the single-stack variable-reluctance stepper
motor shown in Fig. 8.5-1 with the constant angular displacement in terms
of step length.

6 A two-phase permanent-magnet stepper motor has 50 rotor teeth. When the
rotor is driven by an external mechanical source at ωrm=100 rad/s, the meas-
ured open-circuit phase voltage is 25 V, peak to peak. Calculate λm and SL.
If ias=1 A, ibs = 0, express Te.

7 Consider the two-phase permanent-magnet stepper motor of Fig. 8.6-1. Sketch
ias and ibs versus time for the excitation sequence ias, ibs,− ias,− ibs, ias, ….
Denote the time between steps as Ts and the stepping rate as fs= 1/Ts. Establish
a relationship between the fundamental frequency (ωe) of ias and ibs, and the
stepping rate fs. Relate ωrm to ωe and to fs.

8 A two-phase permanent-magnet stepper motor has 50 rotor teeth. The para-
meters are λm = 0.00226 V s/rad, rs = 10Ω, and Lss=1.1 mH. The applied sta-
tor voltages form a balanced two-phase set with Vs=10 V, ωe=314 rad/s.
Establish the steady-state rotor speed ωrm and the maximum electromagnetic
torque TeM that can be developed at this speed.
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Appendix A

Abbreviations, Constants, Conversions, and Identities

Term Abbreviation

alternating ac

ampere A

ampere-turn At

coulomb C

direct current dc

electromotive force emf

foot ft

gauss G

gram g

henry H

hertz Hz

horsepower hp

inch in

joule J

kilogram kg

kilovar kvar

kilovolt kV

kilovoltampere kVA

kilowatt kW

magnetomotive force mmf
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Term Abbreviation

maxwell Mx

megawatt MW

meter m

microfarad μF

millihenry mH

newton N

newton meter N m

oersted Oe

pound Ib

poundal pdl

power factor pf

pulse-width modulation PWM

radian rad

revolution per minute r/min (rpm)

root mean square rms

second s

voltampere reactive var

volt V

voltampere VA

watt W

weber Wb

Constants and Conversion Factors

permeability of free space μ0 = 4π × 10−7 Wb/A m

permittivity of free space ε0 = 8.854 × 10−12C2/N m2

acceleration of gravity g = 9.807 m/s2

length 1 m = 3.218 ft = 39.37 in

mass 1 kg = 0.0685 slug = 2.205 lb (mass)

force 1 N = 0.225 lb = 3.6 oz

torque 1 N m = 0.738 lb ft

energy 1 J (W s) = 0.738 lb ft

power 1 W = 1.341×10−3 hp

moment of inertia 1 kg m2 = 0.738 slug ft2 = 23.7 lb ft2

magnetic flux density 1Wb/m2 = 10, 000 G = 64.5 klines/in2

magnetizing force 1 At/m = 0.0254 At/in = 0.0126 Oe
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Trigonometric Identities

(I-1) e jα = cos α + j sin α

(I-2) α cos x + b sin x = a2 + b2 cos x + ϕ ϕ = tan − 1 − b a

(I-3) cos2x + sin2x = 1

(I-4) sin2x = 2 sin x cos x

(I-5) cos2x = cos2x − sin2x = 2cos2x − 1 = 1 − 2sin2x

(I-6) cos x cos y =
1
2
cos x + y +

1
2
cos x− y

(I-7) sin x sin y =
1
2
cos x− y −

1
2
cos x + y

(I-8) sin x cos y =
1
2
sin x + y +

1
2
sin x− y

(I-9) cos(x ± y) = cos x cos y sin x sin y

(I-10) sin(x ± y) = sin x cos y ± cos x sin y

(I-11) cos 2x + cos 2 x−
2
3
π + cos 2 x +

2
3
π =

3
2

(I-12) sin 2x + sin 2 x−
2
3
π + sin 2 x +

2
3
π =

3
2

(I-13) sin x cos x + sin x−
2
3
π cos x−

2
3
π + sin x +

2
3
π cos s +

2
3

= 0

(I-14) cos x + cos x−
2
3
π + cos x +

2
3
π = 0

(I-15) sin x + sin x−
2
3
π + sin x +

2
3
π = 0

(I-16) sin x cos y + sin x−
2
3
π cos y−

2
3
π + sin x +

2
3
π cos y +

2
3
π =

3
2
cos x− y

(I-17) sin x sin y + sin x−
2
3
π sin y−

2
3
π + sin x +

2
3
π sin y +

2
3
π =

3
2
cos x− y

(I-18) cos x sin y + cos x−
2
3
π sin y−

2
3
π + cos x +

2
3
π sin y +

2
3
π = −

3
2
sin x− y

(I-19) cos x cos y + cos x−
2
3
π sin y−

2
3
π + cos x +

2
3
π sin y +

2
3
π =

3
2
cos x− y

(I-20) sin x cos y + sin x +
2
3
π cos y−

2
3
π + sin x +

2
3
π cos y +

2
3
π =

3
2
sin x− y

(I-21) sin x sin y + sin x +
2
3
π cos y−

2
3
π + sin x−

2
3
π sin y +

2
3
π = −

3
2
cos x + y

(I-22) cos x sin y + cos x +
2
3
π sin y−

2
3
π + cos x−

2
3
π sin y +

2
3
π =

3
2
sin x + y

(I-23) cos x cos y + cos x +
2
3
π cos y−

2
3
π + cos x−

2
3
π cos y +

2
3
π =

3
2
cos x + y
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Epilogue

The goal of this book is to introduce the undergraduate electrical engineer, who
has an interest in electric power and/or drives areas, to modern analysis of electric
machines. With the emergence of electric drives, an interested person with a
bachelor’s degree in electrical engineering should have a working knowledge of
reference frame theory. This is no longer just a graduate subject. This book sets
forth reference frame theory and the arbitrary reference frame as the backbone
of the analysis of alternating current machines. Unlike other undergraduate books
where reference frame theory is either deemphasized or optional, here, reference
frame theory is the basis of analysis. The student must follow derivations using
reference frame theory which leads to a clearer understanding of the variables that
can be controlled for different applications and sets the stage for the design of con-
trols for new applications.
In the first chapter, some of the classic tools for machine analysis were set forth.

The stator is the same for most induction and synchronous machines. Thus, the
stator was analyzed once in the second chapter and this derivation is not repeated.
It was shown that the transformation used in reference frame theory comes from
the equation for Tesla’s rotating magnetic field. This transformation provides the
circuits in the reference frame of interest with the appropriate voltages, currents,
and flux linkages that produce/portray Tesla’s rotating magnetic field as viewed
from that reference frame. This fact makes reference frame theory and the trans-
formation intuitive and understandable. Analysis and discussions explained that
for reference frame speeds less than synchronous speed, the rotating magnetic
field rotates counterclockwise for an abc sequence. For reference frame speeds
above synchronous speed, the rotating magnetic field rotates clockwise.
The induction machine, which is the workhouse of the industry, was analyzed

next. It was shown that the squirrel-cage rotor, which is common inmost singly fed
induction machines, can be analyzed as a wound rotor similar in structure to the
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stator. The rotor analysis parallels previous work with the stator. The arbitrary ref-
erence frame was shown to be particularly useful for induction machines and
yieldedmachinemodels for dynamic simulations and the steady-state single-phase
equivalent circuit. Simulations viewed from the stationary, rotor, and synchronous
reference frames were shown and discussed.
Two types of synchronous machines were considered: the permanent-magnet

synchronous machine commonly used in brushless dc drives and the wound-rotor
synchronous generator. The first type is becoming the motor of choice for many
applications and the second is themain source of electric grid power. In a brushless
dc drive, the stator of the permanent magnet synchronous machine is driven by a
variable-frequency inverter. The frequency of the inverter is controlled to be the
electrical angular frequency of the rotor. This produces a torque speed character-
istic like a brushed permanent magnet dc machine. The synchronous generator
has a rotor with a single-phase field winding and damper windings. Using work
that we had done earlier in the text, we wrote out the equations for the synchro-
nous generator from the equivalent circuit. Operating characteristics of the syn-
chronous generator were shown, and discussions included an introduction to
transient stability which is important for the power systems engineer.
The next chapter included a brief treatment of the brushed permanent magnet

dc machine, primarily for comparison with the ac motor drives which were cov-
ered in the following chapter. Therein, the brushless dc drive and field-oriented
induction motor were considered. In the case of the brushless dc drive, the equa-
tions were established for normal operation as well as maximum torque per volt
and per ampere. Simulations and phasor diagrams demonstrated the differences of
the operating modes. In the case of the induction motor drive, the field-oriented
equations were established, and torque speed characteristics shown.
The final two chapters covered single-phase induction motors and stepper

motors, respectively. These chapters are informative for students interested in
the drives area. The theory of symmetrical components helped analyze the sin-
gle-phase induction motor. In the stepper motors chapter, the variable-reluctance
stepper motor and permanent magnet stepper motor were described and analyzed.
We hope this book helps students understand and appreciate electric machines

and drives. We feel this is the way machines should and will be taught in the
future. Hopefully this is a step in the right direction.

The following is a list of books published by Wiley and IEEE Press that provide
advanced reading.

1. Analysis of Electric Machinery
Paul C. Krause, Oleg Wasynczuk, and S. D. Sudhoff
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Arbitrary reference frame, stator voltage

and flux linkage equations
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Brushless dc drive

configuration 154–159
dynamic performance of 162
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characteristics 159, 160
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operation 170–173
maximum-torque per volt

operation 166–170
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Capacitor-start induction
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Choppers 146
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Compound-connected dc machine 142
Constants 240
Conversions 240

D
Damper windings 118, 119
Detent torque 234
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E
Electric machines 18
Electromagnetic force 70–74
Energy balance 70–71

F
Fault, three-phase 130–135
Field-oriented induction motor

drive 177–185
Four-pole
machines, torque for 82–83
three-phase salient-pole synchronous

machines 105, 106
two-phase symmetrical

electromechanical device 78
Free acceleration variables 83–88
rotor reference frame 86–88
stationary reference frame 85, 86
synchronously rotating reference

frame 85, 87

I
Induction machine 55
examples 92–102
no-load and blocked-rotor

tests 98–100
phasor diagram for steady-state

operation 92–98
p-pole machines 78–83
starting torque and current 100–102
symmetrical 55–59

Inductive reactance 6
Instantaneous phasor 50–52
Inverter-machine drive 154, 155

L
Large-excursion stability. See Transient

stability
Line-to-line voltages 28

M
Magnetic coupling 13
Magnetic equivalent circuits 10–12

Magnetic poles 12
Magnetizing inductance 65
Magnetizing reluctance 65
Magnetomotive force (mmf ) 12, 21–22

air gap 19, 22–23, 34, 39, 79, 118
Maximum-torque per ampere

operation 170–173
Maximum-torque per volt

operation 166–170
Multistack variable-reluctance stepper

motors
configurations of 211–218
equations for 218–221
operating characteristics of 221–225

Mutual inductance 14

N
Negative-sequence component 188
No-load test 98–99

O
Ohm’s law 10
Open-circuited stator phase 199–200

P
Permanent-magnet ac synchronous

machines 106–117
equivalent circuit 110
inductance matrix 108
rotor flux linkage 111–112
three-phase 116–117
torque 109–111
two-phase 112
two-pole three-phase 106–107
unequal direct– and quadrature–axis

inductances 112–116
voltage equations 106–107

Permanent-magnet dc
machine 143–145

Permanent-magnet stepper motors 211
configuration of 229–233
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Phasor diagram, for steady-state
operation 92–98

Positive-sequence component 188
Power factor 7
Power factor angle 7
P-pole machines 78–83
Pulse width modulation (PWM) 174

R
Reactive power 7–8
Reference frame theory 41–45
Retention torque 234
Root-mean-square (rms) 2
Rotor 1

angle 122–123, 125, 134–135
speed 134–135

S
Self-inductance 11, 14
Series-connected dc machine 142
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Single-phase induction motors

capacitor-start 201–207
load torque of 206
steady-state torque vs. speed
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uses of 187
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Speed, torque vs., 83, 85, 92, 97, 200–201
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Squirrel-cage induction motor 56
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Stationary magnetically linear

systems 9–18
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two-pole
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windings 18–19
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Stepper motors 211, 214
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variable-reluctance
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three-phase machine 70
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two-phase machine 62–70

Symmetrical stator analysis 33–52
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motors 187
Synchronously rotating reference frame
free acceleration viewed from 85, 87
voltage equations in 88–89

Synchronous machines 105
dynamic performance of 123–127
equivalent circuits 120–123
flux-linkage equations 121
four-pole three-phase salient-pole

105, 106
permanent-magnet ac 106–117

equivalent circuit 110
inductance matrix 108

Index 247

bindex 3d 247 18/11/2022 5:18:02 PM

www.konkur.in

Telegram: @uni_k



Synchronous machines (cont’d)
rotor flux linkage 111–112
three-phase 116–117
torque 109–111
two-phase 112
two-pole three-phase 106–107
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inductances 112–116
voltage equations 106–107

phasor diagram 130
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steady-state operation 127–130
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average-value time-domain block
diagram 148–149

steady-state operation of 146–148
Two-winding transformer 13–17

U
Unbalanced modes of
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stator impedances 197–199
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configurations of 211–218
equations for 218–221
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of 221–225
single-stack 225–229
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Voltage equations 10, 13, 24
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48–49
of dc machine 141–143
line-to-neutral 27
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stepper motors 218
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for permanent-magnet stepper

motor 233
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