256A

صفحه ۲	256 A	نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
عدم حضور شما در جلسه آزمون است.	لندرجات جدول زير، بهمنزله	* داوطلب گرامی، عدم درج مشخصات و امضا در ه
با آگاهی کامل، یکسان بودن شماره	ماره داوطلبی	اينجانب با شد
ی پاسخنامه و دفترچه سؤالها، نوع و	ی کارت ورود به جلسه، بالا	صندلی خود با شماره داوطلبی مندرج در بالا:
مىنمايم.	پایین پاسخنامهام را تأیید	کد کنترل درجشده بر روی دفترچه سؤالها و
امضا:		

زبان عمومی و تخصصی (انگلیسی):

PART A: Vocabulary

<u>Directions</u>: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark the answer on your answer sheet.

- 1- If you want to excel at what you love and take your skills to the next level, you need to make a to both yourself and your craft.
- 1) commitment2) passion3) statement4) venture2-It is usually difficult to clearly between fact and fiction in her books.1) gloat2) rely3) raise4) distinguish
- 3- Some people seem to lack a moral, but those who have one are capable of making the right choice when confronted with difficult decisions.
 1) aspect 2) compass 3) dilemma 4) sensation
- 4- The factual error may be insignificant; but it is surprising in a book put out by a/an academic publisher.
- 1) complacent 2) incipient 3) prestigious 4) notorious
- 5- In a society conditioned for instant, most people want quick results.
 1) marrow
 2) gratification
 3) spontaneity
 4) consternation
- 6- One medically-qualified official was that a product could be so beneficial and yet not have its medical benefit matched by commensurate commercial opportunity.
- incredulous 2) quintessential 3) appeased 4) exhilarated
 Some aspects of zoological gardens always me, because animals are put there expressly for the entertainment of the public.

 deliberate
 surmise
 patronize
 appall

PART B: Cloze Test

<u>Directions</u>: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark the correct choice on your answer sheet.

w.	ww	/.κ(лк	ur.ir

صفحه ۲	٣	صفحه
--------	---	------

can learn at their own pace, and from anywhere in the world. Online learning more accessible to a wider range of students.

- 8-1) forced to
 - 3) were forced to
- 9-1) including increased 3) and increase
- 1) is also more 10-3) which is also more

- 2) have forced
- 4) forcing
- 2) they include increasing
- 4) they are increased
- 2) also to be more
- 4) is also so

PART C: Reading Comprehension

<u>Directions</u>: Read the following three passages and answer the questions by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

PASSAGE 1:

Human dreams and imagination often give rise to new science and technology. Nanotechnology, a 21st-century frontier, was born out of such dreams. Nanotechnology is defined as the understanding and control of matter at dimensions between 1 and 100 nm where unique phenomena enable novel applications. Although human exposure to nanoparticles has occurred throughout human history, it dramatically increased during the industrial revolution. The study of nanoparticles is not new. The concept of a "nanometer" was first proposed by Richard Zsigmondy, the 1925 Nobel Prize Laureate in chemistry. He coined the term nanometer explicitly for characterizing particle size and he was the first to measure the size of particles such as gold colloids using a microscope.

Modern nanotechnology was the brain child of Richard Feynman, the 1965 Nobel Prize Laureate in physics. During the 1959 American Physical Society meeting at Caltech, he presented a lecture titled, "There's Plenty of Room at the Bottom", in which he introduced the concept of manipulating matter at the atomic level. This novel idea demonstrated new ways of thinking and Feynman's hypotheses have since been proven correct. It is for these reasons that he is considered the father of modern nanotechnology.

- The phrase "give rise to" in paragraph 1 is closest in meaning to 11-1) follow 2) produce 3) elaborate on 4) think about
- Which of the following techniques is used paragraph 1? 12-2) statistics 1) definition 3) comparison 4) classification
- According to paragraph 1, all of the following points are true about Richard 13-Zsigmondy EXCEPT that he
 - 1) won a prize in chemistry
 - 2) proposed the concept of "nanometer"
 - 3) is considered to be the father of chemistry
 - 4) measured the size of particles using a microscope

صفحه ۴	256 A	نانو فناوری _ نانو مواد (کد ۲۷۳ _ (شناور))

- 14- According to the passage, which of the following statements is true?
 - 1) Richard Feynman first came to be exposed to nanotechnology as a child.
 - 2) Feynman's lecture at the American Physical Society meeting in 1959 was innovative.
 - 3) The industrial revolution entailed changes that made human exposure to nanoparticles possible for the first time.
 - 4) Being the father of nanotechnology, Feynman never put forward ideas or theses without first proving them in a scientific manner.
- 15- Which of the following words best describes the author's tone in the passage?
 - 1) Ironic2) Indignant3) Objective4) Ambivalent

PASSAGE 2:

There is no doubt that nanotechnology has seen massive growth over the past few decades. The percentage of publications containing the key phrases 'synthesis of nanomaterials', 'nanotechnology' and 'nanoscience' are recorded in various sources. Overall, these figures show that nanotechnology itself predates the use of the term in the scientific literature, as the ability to prepare commercial nanostructured materials, such as zeolites, dates from 1956 and the interest in preparing sols of nanoparticles dates as far back as Faraday. The recent increase in interest in nanotechnology and nanomaterials and its tentative application in consumer products has led to the realization that clear definitions are needed so that communication across the broad range of disciplines involved may be transparent and easily understood.

Furthermore, for regulation to be conceived, definitions are required so that regulation may be enforced. Currently the use of size as a definition of a nanoparticle is common and follows the similar application of size in the definition of the ultrafine particle in atmospheric science. The <u>latter</u> have been of interest for a number of years, mainly in relation to inhalation exposure in humans and air pollution. However, many of these nanomaterials were not purposely produced but formed as a by-product of another process. In addition, those which had been purposely prepared were not prepared in a form that had been optimized for dispersion in liquid media. The concern with current developments in nanotechnology is that new particles will be more active, more diverse and may be released into the environment by a wider range of mechanisms than ultrafine particles.

17- Why does the author mention Faraday in paragraph 1?

- 1) To qualify the statement made earlier in the paragraph
- 2) To support, by exemplification, a point made earlier in the paragraph
- 3) To draw attention to a figure indispensible to the field of nanotechnology
- 4) To establish a point of contrast against which modern nanotechnology is better understood

18- The word "the latter" in paragraph 2 refers to

1) atmospheric science

2) application

3) nanoparticle

4) ultrafine particle

- 19- According to paragraph 2, all of the following is related to the concerns with the current developments in nanotechnology EXCEPT that the new particles
 - 1) will be more active
 - 2) will be more diverse
 - 3) will be more difficult to identify
 - 4) may be released into the environment, comparatively, by a wider range of mechanisms
- 20- According to the passage, which of the following statements is true?
 - 1) Nanomaterials may be produced purposefully or as a by-product of another process.
 - 2) The current definition of nanoparticles based on size is unique, not seen elsewhere.
 - 3) Despite the significant growth of nanotechnology, it is now in a state of disorientation, and no longer a viable field.
 - 4) Nanotechnology first was introduced in scientific publications and then found its way out into popular literature as well.

PASSAGE 3:

Nanotechnology is the ability to work at the atomic, molecular and supramolecular levels (on a scale of 1–100 nm) in order to understand, create and use material structures, devices and systems with fundamentally new properties and functions resulting from their small structure. All biological and man-made systems have the first level of organization at the nanoscale (such as a nanocrystals, nanotubes or nanobiomotors) where their fundamental properties and functions are defined. [1] The goal of nanotechnology might be described as the ability to assemble molecules into objects, hierarchically along several length scales, and to disassemble objects into molecules. [2]

Rearranging matter at the nanoscale using 'weak' molecular interactions, such as van der Waal forces, hydrogen bonds, electrostatic dipoles, fluidics and various surface forces, requires low-energy consumption and allows for reversible or other subsequent changes. Such changes of usually 'soft' nanostructures in a limited temperature range are essential for bioprocesses to take place. Biosystems are governed by nanoscale processes that have been optimized over millions of years; examples of biostrategies have been surveyed. [3] Smalley classified nanotechnology into two categories: 'wet' nanotechnology (including living biosystems) and 'dry' nanotechnology. Research on dry nanostructures is now seeking systematic approaches to engineer man-made objects at the nanoscale and to integrate nanoscale structures into large-scale structures, as nature does. [4]

21- According to paragraph 1, which of the following statements is true?

- 1) The first level of organization in biological systems is unlike that of man-made systems.
- 2) Nanotechnology deals with objects of different size, ranging from 1-100 mm and beyond.
- 3) The objective of the nanotechnology includes assembling molecules into objects as well as disassembling objects into molecules.
- 4) The aim of nanotechnology is to change the natural essence of individual molecules in order to benefit mankind with as little damage to the environment as possible.

۶	صفحه	256 A	_(شناور))	نانو فناوری _ نانو مواد (کد ۱۲۷۳
22-	The passage me	ntions all of the followin	g terms EXCEPT	••••••
	1) fluidics			4) nanofibers
23-	According to the	e passage, which of the f		
	1) Bioprocesses range of temp		he fact that they ca	in take place in a wide
			ystems, have been o	optimized over millions
		matter at the nanoscale except the reversibility		lecular interactions has
	4) Nanotubes ar		xamples of dry and	l wet nanotechnologies
24-				which of the following
	questions?			······································
		ame of a scientist now e	ngaged in engineerii	ng man-made objects at
	the nanoscale to	produce large-scale stru	actures?	
		e reason behind the rise		
		ne basic properties and f	unctions of biological	l and man-made systems
	defined?			
	1) Only I		3) Only III	
25-] or [4], can the fol	lowing sentence best be
	inserted in the p	0		•
		ure already does in livin		
	1) [1]	2) [2]	3) [3]	4) [4]
				ریاضیات مهندسی:
<u>π</u> _	$\frac{f}{\pi}(\frac{\cos x}{y^{\gamma}}+\frac{\cos^{\gamma} x}{\gamma^{\gamma}}+\frac{\cos^{\gamma} x}{\gamma}+\frac{\cos^{\gamma} x}{\gamma}+\frac{\cos^{\gamma} x}+\frac{\cos^{\gamma} x}+\frac{\cos^{\gamma} x}$	$\frac{\cos \Delta x}{\Delta^{\gamma}} + \cdots + f(x) = $		۲۶- اگر سری فوریهٔ تابع متن
			کدام است؟ $\sum_{n=0}^{\infty} \frac{(-1)}{(7n+1)}$) ⁿ باشد، آنگاه مقدار ۱) ^۳ - ۱)
				$\frac{\pi^{Y}}{\gamma\gamma}$ (1)
				ГТ _Ү
				$\frac{\pi^{Y}}{\sqrt{\epsilon}}$ (Y
				10

 $\frac{\pi^{r}}{rr} (r)$ $\frac{\pi^{r}}{rr} (r)$

است.) جواب معادله دیفرانسیل cot(x) $u_y + u = y$ ، کدام است? (f تابع حقیقی مقدار دلخواه برحسب x است.)

- $u (x, y) = f(x)e^{-y\tan x} \cot x + y (1)$ $u (x, y) = f(x)e^{-y\tan x} + \cot x + y (7)$ $u (x, y) = f(x)e^{y\tan x} - \cot x + y (7)$
 - $u(x, y) = f(x)e^{y\tan x} + \cot x + y$ (*

صفحه ۷	256 A	نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
کدام رابطه بین x و y برقرار است	(y + ۱) u _{xx} + ۲xu _{xy} + ۲	۲۸ - اگر معادله دیفرانسیل ∘ = u _{yy} - x - y
		$x^{Y} \leq y + y$ ()
		$x^{r} < y + 1$ (r
		$x^{r} \leq i - y$ (r
		$x^{r} < 1 - y$ (f
متق پذیر دلخواه بر حسب t است.	است؟ ($\phi = \phi(t)$ تابع مش $z = x\phi(xy)$	۲۹ - کدام معادله با مشتقات جزیبی دارای جواب
		$yz_x - xz_y = z$ ()
		$xz_x - yz_y = z$ (Y
		$xz_x + yz_y = z$ (*
		$yz_x + xz_y = z$ (4
		$\int \frac{1}{2} \mathbf{x} 0 \le \mathbf{x} < 1$
ندام است؟	Af (π) مقدار $\int_{-\infty}^{\infty} f(w) \cos(wx)$	$dw = \begin{cases} \frac{1}{Y} & x \le x < 1 \\ A & x = 1 \\ 0 & x > 1 \end{cases}$
		• X > 1
		$\frac{\gamma}{\gamma}$ ()
		$\frac{r}{\pi^r} (1)$ $\frac{1}{r\pi^r} (r)$
		$\frac{1}{m-m}$ (Y
		۲ ۲
		$-\frac{r}{\pi^{r}}$ (r
		$-\frac{1}{7\pi^{r}}$ (f
~		
است؟ $\sum_{n=1}^{\infty} -$	(∘ , ∘) P (∘ , ∘) . ۲ − ۱)e ^{۲n − ۱} کدام مضرب (۰ , ∘)	۳۱ - سری فوریهٔ جواب مسئله زیر در نقطهٔ
$\int \nabla^{\tau} u = \circ \ , x < \frac{\pi}{\tau} \ , y >$	-1	
$\mathbf{u}(\mathbf{x},-1)=\frac{\pi}{\mathbf{y}}, \mathbf{x} \leq \frac{1}{2}$	<u>π</u>	
$u(-\frac{\pi}{Y}, y) = u(\frac{\pi}{Y}, y) = c$		
	-7 (7	-π ()
	π (۴	۲ (۳
	ت. مقدار (۳,۳) u كدام است؟	۳۲- مسئله هدایت گرمایی زیر، مفروض اس
$\int u_{xx}(x,t) = -1 + u_t(x,t)$); $\circ < x < \pi, t > \circ$	۲ (۱
$\mathbf{u}_{\mathbf{X}}(\circ,\mathbf{t}) = \mathbf{u}_{\mathbf{X}}(\pi,\mathbf{t}) = \mathbf{o};$		٣ (٢
$u(x, \circ) = 1; \circ \le x < \pi$		۴ (۳
		۶ (۴

صفحه ۸	256 A	نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
، برای تابع f با فرض z = x + iy،	هٔ مختلط، تحلیلی است. کدام مورد	۳۳- تابع (w=f(z در حوزهٔ D واقع در صفحهٔ
		درست است؟
		$\frac{\mathrm{d} \mathrm{w}}{\mathrm{d} \mathrm{z}} = \frac{\partial \mathrm{w}}{\partial \mathrm{x}} (\mathrm{v})$
		$\frac{\mathrm{dw}}{\mathrm{dz}} = \mathrm{i} \frac{\partial \mathrm{w}}{\partial \mathrm{y}}$ (Y
		$\frac{\mathrm{dw}}{\mathrm{dz}} = \frac{\partial \mathrm{w}}{\partial \mathrm{x}} + \mathrm{i}\frac{\partial \mathrm{w}}{\partial \mathrm{y}} (v)$
		$\frac{\mathrm{d}w}{\mathrm{d}z} = \frac{\mathrm{d}w}{\partial x} - \mathrm{i}\frac{\partial w}{\partial y} (\mathbf{f})$
u (x,y (∘, ∘) = ∘ باشد. اگر u (x, y	$=\frac{1}{r}(1+\cosh(Tx)\cos(Ty))$	uz Ox Oy ۳۴- فرض کنید (x,y) ، مزدوج همساز تابع
		آنگاه مقدار $v\left(1,rac{\pi}{4} ight)$ کدام است؟
		$-\sinh v$ (v
		$-\frac{1}{r}\sinh r$ (r
		sinh۱ (۳
		$\frac{1}{r}\sinh r$ (f
	ت؟	مقدار dz مقدار $\oint_{ z =\frac{1}{\gamma}} \frac{e^z}{z^{\gamma}(z^{\gamma}+1)} dz$ مقدار -۳۵
		-Υπί ()
		-πi (Υ πi (٣
		πι (۴
هساعتگرد میباشد، کدام است؟	یضی ۱ = + <mark>۲ + ۲</mark> در جهت پاد	مقدار C مقدار $\oint_C \frac{\pi z^7 + 1}{z^7 + z} dz$ مرز ب
		۱) صفر
		Υπί (Υ
		۴πi (۳ جستا <i>(</i> ۴
		۶πi (۴ ۲π ۱+sinΑ
		مقدار $d\theta$ مقدار $\int_{0}^{7\pi} \frac{1+\sin\theta}{\pi+\cos\theta} d\theta$ ، كدام است?
		√rπ () π (r
		$\frac{\pi}{\sqrt{\chi}}$ (٣
		$\frac{\pi}{\sqrt{r}} (r)$ $\frac{\pi}{r\sqrt{r}} (r)$

256 A

Sh (f

Telegram: @uni_k

۴۳- پس از باز کردن درب فریزر، به مرور زمان، کمتر احساس سرما میکنیم. علت این امر چیست؟

Sc (r

۴۲- کدام مورد زیر، معرف چگونگی انتقال جرم است؟

Nu ()

Pr (r

۱) انتقال گرما از طریق جابهجایی سریعاً صفر میشود. ۲) انتقال گرما از طریق تشعشع سریعاً صفر میشود. ۳) کاهش اختلاف دمای صورت و فریزر رخ میدهد.

۴) انتقال گرما از طریق هدایتی و تشعشعی صفر میشود.

256 A

نانو فناوری _ نانو مواد (کد ۲۷۳ _ (شناور))

BOD , NTU (*

التو فناوری - ناتو مواد (که ۲۷۲ - (شناور))
 256 A
 صفحه ۲

$$- 8h$$
 اف فشار سیالات در لولدها برای ۲۰۰۰ حدیق و شدت جریان (دبی) ثابت، تابعی از کدام مورد است؟

 $-8h$
 اف فشار سیالات در لولدها برای ۲۰۰۰ حدیق و شدت جریان (دبی) ثابت، تابعی از کدام مورد است؟

 $-9h$
 عکت توان چیارم قطر
 ۲) عکت توان پنجم قطر

 $-9h$
 عدد پرنتل برای کدام سیال در دما و فشار یکسان، بیشتر است؟

 $-9h$
 عدد پرنتل برای کدام سیال در دما و فشار یکسان، بیشتر است؟

 $-9h$
 عدد پرنتل برای کدام سیال در دما و فشار یکسان، بیشتر است؟

 $-9h$
 موا
 ۲) جره

 $-9h$
 مواد حدا و فشار یکسان، بیشتر است؟

 $-9h$
 مربع حرکت می کند. چند متر است؟

 $-9h$
 مربع حرکت می کند. اگر از رف سیکتونی این دره ۵۰ مگاالگذرون ولت باشد. انوزی

 $-9h$
 $-9h$

صفحه ۱۳	256 A	یناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))	نانو ف
کترونی با انرژی جنبشی ۱٫۵ الکترونولت از	، فلزی میتابد و فوتوالک	· فوتونی با طول موج ۶۰۰ نانومتر به سطح	-97
ت پلانک را تقریباً h = ۴×1∘ ⁻¹⁶ eV.s در	ز، چند هرتز است؟ (ثاب	سطح فلز خارج میکند. بسامد قطع این فل	
		نظر بگیرید.)	
$1/T\Delta \times 1$	⁾ ¹ ^k (۲	$1/7\Delta \times 10^{17}$ (1	
$r_{\Delta} \times 1$	⁾ ⁽⁴	$r_{\Delta} \times 1 \circ^{1} r$ (m	
V — ۳ تابیده میشود. اگر مدتزمان تابش نور cn	۵۵ نور با شار انرژی ۲ ۱ ^۲	- بر سطح یک جسم سیاه، به مساحت cm ^۲	-88
	ن ثانیه است؟	۱ ثانیه باشد، تغییر تکانه جسم چند نیوتور	
$\Delta \times 1 \circ$	⁻ ^ (۲	$r \times 10^{-\lambda}$ (1	
۱۵×۱۰	⁻ ^ (*	۹×۱۰ ^{-۸} (۳	
سطح فلز تابانده میشود. اگر انرژی جنبشی	رژی ۶ الکترونولت به	در آزمایش فوتوالکتریک، فوتونهایی با ان	- ۶۹
چند ولت است؟	ت باشد، پتانسیل قطع	بيشينه فوتوالكترونها برابر ۴ الكترونول	
	۶ (۲	10 (1	
	Y (F	۴ (۳	
دام است؟	ای زاویه ۶۰ درجه، ک	در پراکندگی کامپتون، تغییر طول موج بر	- Y •
$\frac{r}{r}$	$\frac{h}{hc}$ (r	$\frac{h}{\gamma mc}$ ()	
\sqrt{r}	<u>h</u> (۴	<u> </u>	
۲m		$\frac{1}{mc}$ ()	
تر به ۲۰۰ نانومتر تغییر میدهیم. مشاهده	نابشی را از ۵۰۰ نانوم	در آزمایش فوتوالکتریک، طول موج نور ز	-71
تابع كار فلز، تقريباً چند الكترونولت است؟	نها، سه برابر میشود.	میکنیم که انرژی جنبشی بیشینه الکترو	
°/;	FT (T	°∕ ff ()	
Ň)/Y (F	°∠\۵ (٣	
انرژی تابشی آن، با چه نسبتی تغییر میکند؟	بهاش کاهش یابد، مقدار	· اگر دمای یک جسم سیاه به نصف مقدار اول	-77
	$\frac{1}{\lambda}$ (Y	$\frac{k}{l}$ ()	
	1 (f	<u>1</u> 18 (٣	
یت در اندازه تکانه این پروتون ۵ درصد باشد	لت است. اگر عدم قطعی	۔ انرژی جنبشی پروتونی یک مگاالکترونوا	-7٣
	چند متر است؟	کمترین عدمقطعیت در مکان آن، تقریباً	
۸ _/ ۱۴×۱۰ ⁻	⁻¹ ° (۲	۸/۱۴×۱۰ ^{–۱۴} (۱	
4/08×10	- <i>1F</i> (<i>F</i>	۴/۵۶×۱۰ ^{-۱۰} (۳	
ی شتاب دادن الکترون، چند کیلوولت باید	متر، كمترين ولتاژ برا	· برای تولید پرتو ً X با طول موج ۲٫۰ نانو	-74
		باشد؟ (hc = ۱۲۴ ° eV.nm)	
$\lambda_{/}$	۱۲ (۲	۶/۲ (۱	
18/	17 (4	۱۲/۴ (۳	

صفحه ۱۴	256 A	نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
یک دمای خاص، برابر با µm ∘۶ است. اگر	دت تابش بیشینه، در	۷۵- طول موج تابش از یک نمونه فلز برای ش
کرومتر خواهد شد؟	ابش بیشینه، چند می	دمای این نمونه دو برابر شود، طول موج تا
۶	° (Y	170 (1
١	۵ (۴	۳۰ (۳
ومتر تولید میکند. یک ناظر نسبیتی با چه	با طول موج ۶۵۰ نان	۷۶ – یک چشمه نور در آزمایشگاه، نور قرمز
ت کند تا نور آن را سبز (با طول موج ۵۵۵	این چشمه نور حرک	سرعتی (برحسب متر بر ثانیه) نسبت به
		نانومتر) ببيند؟
$\Delta \times 1$ C	⁹ ⁶ (۲	۵×۱۰ ^۶ (۱
9×10	۴ (۴	۹×۱۰ ^۵ (۳
یت است؟	_م رسانای نوع p، درس	۷۷- کدام مورد درخصوص بار الکتریکی یک نی
		۱) دارای بار الکتریکی منفی است.
		۲) دارای بار الکتریکی مثبت است.
		۳) از لحاظ الکتریکی، خنثی است.
ىشود.	با افزایش دما باردار م	۴) در دمای صفر کلوین بدون بار است، اما
ُن برحسب <mark>ا</mark> ُن برحسب حقيقه	است. ثابت واپاشی ا	۷۸- نیمهعمر یک عنصر رادیواکتیو، ۱۲۰ ثانیه
۳ ۲ ln	۲ (۲	۰/۵ (۱
°/ ۵ ln	7 (4	۲ (۳
بروی آن است. کمینه کسر عدم قطعیت در	برابر با طول موج دو	۳۹- عدم قطعیت در مکان ذرهای به جرم m،
		سرعت $\displaystyle rac{\Delta \mathbf{v}}{\mathbf{v}}$ ، کدام است؟
<u></u>	_ (Υ τ	<u>)</u> ()
42	τ	π
1	- (۴ π	$\frac{1}{\lambda\pi}$ (*
ابع موج این ذره، به شکل زیر است:	- ۱- محبوس است. ت	۸۰- ذرهای بر روی محور x، در فاصله x < X
$\Psi(\mathbf{x}) = \begin{cases} \circ & \mathbf{x} < -1 \\ \mathbf{A} & -1 < \mathbf{x} < \mathbf{v} \\ \circ & \mathbf{x} > \mathbf{v} \end{cases}$		
∘ x > ♥		
	است؟	کدام یک از مقادیر زیر، برای A قابل قبول
1	= (Y	$\frac{1}{\sqrt{Y}}$ (1)
•		
	<u> </u> T (f	$\frac{1}{r}$ (r

صفحه ۱۵	256 A	نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
		شیمیفیزیک و ترمودینامیک:

د هرگاه یک مول قلع و ۹۹ مول کادمیم در یک ظرف آدیاباتیک مخلوط شوند، انتالپی مخلوط برحسب ژول چقدر خواهد بود؟ «ضریب اکتیویته هنری قلع، از رابطه زیر پیروی میکند و در محلولهای مذاب Sn _Cd رقیق از $R = \Lambda \frac{J}{mol.K}$ ۱) ۱) $\ln \gamma_{Sn}^{\circ} = \frac{-\Lambda \circ \circ}{T} + 1/\Delta\Lambda$ ۲) ۳۰ (۳

VS (4

۸۲ - در محلول دوتایی B ـ A، انرژی آزاد اضافی جزء A در دمای C ۱۲۲۷°C از رابطه زیر پیروی میکند:

$$\overline{G}_{A}^{xs} = -9 \circ \circ \circ X_{B}^{\gamma} \left(\frac{cal}{mole}\right)$$

تغییر انتالپی محلول $\left(\frac{cal}{mole}\right)$ در آلیاژ حاوی ۲۰ درصد اتمی B، کدام مورد است؟
 $G^{xs} = RT \alpha X_{A} X_{B}$
 $\Delta H^{M} = -9 \circ \circ (1)$
 $\Delta H^{M} = -9 \circ \circ (7)$
 $\Delta H^{M} = -1 \circ \wedge \circ (7)$
 $\Delta H^{M} = -1 \circ \wedge \circ (7)$

در دمای T، محلولی ایده آل حاوی دو جزء A و B با بخارش در تعادل است. کسر مولی A و B و C در محلول، $A^{m} = A^{m}$ ه ترتیب X_{A} و X_{B} و X_{A} و X_{A} و X_{A} به ترتیب X_{A} و X_{A} است. اگر فشار بخار A و B خالص در دمای فوق به ترتیب P_{A}° و P_{B}° باشد، کدام مورد درست است? $P_{A}^{\circ} X_{A} X_{B}^{\prime} = P_{B}^{\circ} X_{B} X_{A}^{\prime}$ (۲ $P_{A}^{\circ} X_{A} X_{A}^{\prime} = P_{B}^{\circ} X_{B} X_{B}^{\prime}$

- ۸۴- آنتروپی یک مول A خالص، برابر ۲R است. اگر یک مول از این ماده در سه مول B حل شود و محلول باقاعده ایجاد کند، آنتروپی A در این محلول، کدام است؟
 - $TR + \ln F (T) TR \ln T (1)$
 - $TR(1+\ln T) (F) TR(1+\ln F) (T)$

۸۵- سیستم Na_YO(s) – Na (g) – O_Y(g) – Na(l) در تعادل ترمودینامیکی در فشار ثابت، بهترتیب، چند درجه آزادی و حداکثر چند فاز درحالِ تعادل دارد؟ ۱) صفر و ۲

٣) صفر و ٣

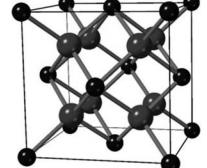
ا باشد، گرمای $\ln P = \frac{A'}{T} + C'$ اگر معادله فشاری بخار جامد و مذاب یک ماده، بهترتیب، $P = \frac{A}{T} + C$ و $\ln P = \frac{A'}{T} + C$ باشد، گرمای نهان ذوب ماده مطابق کدام مورد است؟ () R(A+A') () R(A'-A)

$$\frac{RA}{A'}$$
 (* $\frac{RA'}{A}$ (*

صفحه ۱۶	256 A	1	نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
در تعادل با یکدیگر ${ m H}_{ m Y}/{ m H}_{ m Y}{ m O}$	لخلوط گازی (N)، با یک م	۸۷- مخلوطی از فلز M و اکسید آن (IO
م است؟	ن فلز M، کداه	كسيداسيور	هستند. شرط لازم برای جلوگیری از آ
		زی دارد.	۱) بستگی به مقدار فشارکل مخلوط گا
خار آب باشد.	ر فشار جزئی ب	شتر از مقدار	۲) مقدار فشار جزئی هیدروژن، باید بین
سیژن تعادلی اکسیداسیون فلز باشد.	ىتر از فشار اكى	ِی، باید بیش	۳) فشار اکسیژن تعادلی در مخلوط گاز
يژن تعادلي اكسيداسيون فلز باشد.	تر از فشار اکس	ی، باید کم	۴) فشار اکسیژن تعادلی در مخلوط گاز
			۸۸- در دمای ۸۷۳K، رفتار آلیاژ Cd – Zn
		یاژ، به کداه	کسر مولی فلز روی، در فاز بخار این آا
$(\mathbf{P}_{\mathbf{Z}\mathbf{n}}^{\circ} = \mathbf{N} \circ \mathbf{m}\mathbf{m} \operatorname{Hg} , \mathbf{P}_{\mathbf{C}\mathbf{d}}^{\circ} = \mathbf{N} \circ \mathbf{m}\mathbf{m}\operatorname{Hg}$	[g)		۰ _/ ۱ (۱
			°/۲ (۲
			۰/٣ (٣
			°/ ۴ (۴
له زیر پیروی میکند. مقدار انتروپی اضافی	محلول از رابط		۸۹ - برای سیستم دوتایی B ـ A، انرژی آ
$\mathbf{G}^{\mathbf{X}\mathbf{S}} = -1\mathbf{f}\boldsymbol{\Delta} \circ \circ \mathbf{X}_{\mathbf{A}}\mathbf{X}_{\mathbf{B}}\left(1 - \frac{\mathbf{f}\boldsymbol{\Delta} \circ}{\mathbf{T}}\right)$			محلول، از کدام رابطه بهدست میآید؟
$\mathbf{S}^{\mathbf{X}\mathbf{S}} = -1\mathbf{f}\mathbf{\Delta} \circ \circ \mathbf{X}_{\mathbf{A}}\mathbf{X}_{\mathbf{B}} \left(\frac{\mathbf{f}\mathbf{\Delta} \circ}{\mathbf{T}^{\mathbf{f}}} \right)$	-) (r		$S^{xs} = \circ$ ()
$\mathbf{S}^{\mathbf{X}\mathbf{S}} = -1\mathbf{F}\mathbf{D} \circ \mathbf{O} \mathbf{X}_{\mathbf{A}} \mathbf{X}_{\mathbf{B}} \left(1 - \frac{\mathbf{F}\mathbf{D} \circ}{\mathbf{T}}\right)$) (۴		$\mathbf{S}^{xs} = 150 \circ \mathbf{X}_{A} \mathbf{X}_{B} \left(\frac{70}{\mathbf{T}^{7}} ight)$ (T
حجم جزئی اجزا به صورت زیر، داده شده است.) در ۲۵°C، <	نزن (جزء ۲	۹۰ در محلول تتراکلرورکربن (جزء یک) و ب
کیب x ₁ = 0/4، با کدام مورد برابر است؟			
x, ∘ ∘/٣ ∘/∆ —	,	١	
\overline{V}_{1} (lit mol ⁻¹) $\circ_{1} \wedge \circ_{1} \circ_{1} \circ_{1}$			
$\overline{\mathbf{V}}_{\mathbf{Y}}$ (lit mol) $\circ_{/} \circ \mathbf{A} \circ_{/} $		۰/ ۱۱	
$+ \circ_{/} \circ \mathfrak{r} \Delta \frac{\operatorname{lit}}{\operatorname{mo}}$	$\frac{t}{1}$ (r		$-\circ_{/}\circ ra \frac{\operatorname{lit}}{\operatorname{mol}}$ (1)
$\circ_{/}$) $\frac{\text{lit}}{\text{max}}$	$\frac{1}{2}$ (f		$-\circ_{/} \cup \frac{\text{lit}}{\text{mol}}$ ("
ر مول درجه کلوین، چقدر است؟	ہر ہرحسب ژول ب	ېډير زير، ب	۹۱- تغییر آنتروپی محیط در تحول برگشت
$\mathrm{H}_{Y}\mathrm{O}(-1\circ^{\circ}\mathrm{C},\mathrm{L}) \to \mathrm{H}_{Y}\mathrm{O}(-1\circ^{\circ}\mathrm{C},\mathrm{S})$	$(, C_{P} =)$	° <u>mol.</u> ° K	-
$C_P^{(s)} = \mathfrak{r} \circ \frac{J}{\text{mole.} \circ K}$ $L_f^{H_{\Upsilon}C}$	$D = \Delta \mathfrak{r} \circ \circ \frac{J}{\mathbf{m}}$	J	T1 (T
	m	ole	۲۳ (۳
$\ln\frac{\mathbf{T}\mathbf{V}\mathbf{T}}{\mathbf{T}\mathbf{F}\mathbf{T}} = \circ_{/} \circ \mathbf{T}$			20 (2

نانو فناوری _ نانو مواد (کد ۲۷۳ _ (شناور))

. گازی از معادله واندروالز پیروی میکند (v-b) = RT)، اگر طی یک تحول همدمای برگشت پذیر، -۹۸ حجم یک مول از این گاز دو برابر شود، کدام مورد زیر، کار انجامشده را نشان میدهد؟ $w = RT \ln \left(\frac{a}{v-b}\right) + v$ (Y $w = RT \ln (v-b) - \frac{a}{v}$ () $w = RT \ln \left(\frac{Yv - b}{v - b}\right) + \frac{Ya}{v}$ (4) $w = RT \ln \left(1 + \frac{V}{V - h}\right) - \frac{a}{r_V} (r)$ برای یک سیستم بسته با کار انبساطی، میتوان نوشت: dA = - SdT - PdV. اگر ضریب انبساط حجمی و _99 ضریب تراکم برای این سیستم را بهتر تیب lpha و eta بنامیم، کدام رابطه درست است؟ $\left(\frac{\partial S}{\partial V}\right)_{T} = -\frac{\alpha}{\beta}$ (1) $\left(\frac{\partial S}{\partial V}\right)_{T} = \frac{\alpha}{\beta}$ (7) $\left(\frac{\partial S}{\partial V}\right)_{T} = -\frac{\beta}{\alpha}$ (τ $\left(\frac{\partial S}{\partial V}\right)_{T} = \alpha \beta$ (f ۱۰۰ - واکنش شیمیایی گازی زیر را درنظر بگیرید: A(g) + B(g) = C(g) + D(g)در دمای K∘۵۰، ۵/۵ مول A و ∆/° مول B در محفظهای وارد واکنش میشوند. اگر پس از برقراری تعادل، کسر مولی A در محفظه ۴/° باشد، کدامیک از روابط زیر، ΔG واکنش در شرایط استاندارد را نشان میدهد؟ $R = \tau \frac{Cal}{mole. k}$ $\Delta \circ \circ \ln 1 \beta$ (r $-\Delta \circ \circ \ln \tau \Delta$ ()


 $1000 \ln 17$ (f $-1000 \ln 10$ (f $-1000 \ln 10$ (f

راهنمایی: داوطلبان گرامی رشته «نانوفناوری ــ نانو مواد» می بایست از میان دروس «خواص فیزیکی و مکانیکی مواد» به شماره سؤالهای ۱۰۱ تا ۱۲۰ در صفحههای ۱۸ تا ۲۱ «پدیدههای انتقال جرم، مکانیک سیالات، انتقال حرارت» شماره سؤالهای ۱۲۱ تا ۱۴ در صفحههای ۲۱ تا ۲۶ و «لکترونیک (۱ و ۲) و الکترومغناطیس مهندسی» شماره سؤالهای ۱۴۱ تا ۱۶۰ در صفحههای ۲۶ تا ۳۱ فقط یک درس را انتخاب نموده و به آن پاسخ دهد.

خواص فیزیکی و مکانیکی مواد:

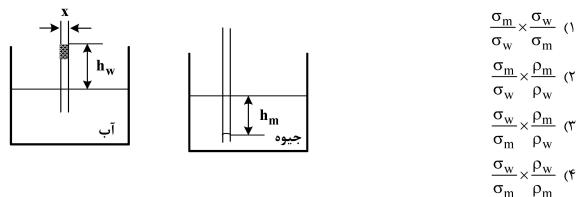
- ۱۰۱ شبکه کریستالی اکسید اورانیم در شکل زیر، نشان داده شده است. فرمول شیمیایی اکسید اورانیم با توجه
 - به شبکه کریستالی، کدام مورد است؟
 - UO ()
 - UO₇ (7
 - U70 (r
 - UO₄ (4

256 A

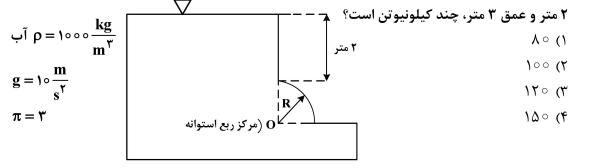
نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))

1.1.1خاصله بین نزدیکترین اتبها در شبکههای کریستالی BCC. BCC بال به ترتیب از راست به چپ.عرابر کدام مورد است؟
$$a \sqrt{r}$$
 , $\frac{a}{\sqrt{r}}$, $\frac{a}{\sqrt{r}}}$, $\frac{a}{\sqrt{r}}}$, $\frac{a}{\sqrt{r}}}$

صفحه ۲۰	256 A	نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
		۱۰۹ - کدام مورد، نادرست است؟
	لتیک است.	۱) سختی آلیاژ یوتکتیک، بیش از آلیاژ پریتک
	وتكتيك است.	۲) سختی آلیاژ هایپریوتکتیک، بیش از آلیاژ ی
	وتكتيك است.	۳) سختی آلیاژ هیپویوتکتیک، کمتر از آلیاژ یر
ک تعادلی سردشده است.	ل از آلياژ يوتكتيك	۴) سختی آلیاژ یوتکتیک سریع سردشده، بیش
		۱۱۰ - در کدام مورد، استحالهها بهدرستی نشان داد
$\mathbf{l_1} ightarrow \mathbf{l_7} + \mathbf{l_7}$ منوتکتیک $\mathbf{l_7} + \mathbf{l_7}$. (۲	$s_1 \rightarrow s_7 + s_7$) يوتكتوئيد (۱
$\mathrm{s}_{\mathrm{N}} + \mathrm{s}_{\mathrm{Y}} o \mathrm{s}_{\mathrm{W}}$ يوتكتوئيد		$\mathbf{l} + \mathbf{s}_{N} o \mathbf{s}_{Y}$ ایکستکتیک
$\mathrm{s_{t}+s_{ au}} ightarrow \mathrm{s_{ au}}$ پرىتكتوئىد $\mathrm{s_{ au}}$	(۴	$l_{\gamma} \rightarrow l_{\gamma} + s$ منوتکتیک (۳
$l_{1} + l_{7} \rightarrow s$ سين تكتيک		$l_1 + l_7 \rightarrow s_1 + s_7$ سین تکتیک
مت کشش باید چند برابر شود تا مقدار تنش	۵/۵ باشد، سرء	۱۱۱- درصورتی <i>ک</i> ه ضریب حساسیت فلزی برابر با
		سیلان فلز دو برابر شود؟
١	(٢	°/Å (1
٤	· (۴	۲ (۳
ه است. اگر بخواهیم شرایط کرنش صفحهای	$\sigma_y = 1 \circ \circ MPa$	ه و ${ m K}_{ m IC}=$ ۱۰ MPa $\sqrt{{ m m}}$ و ${ m K}_{ m IC}=$ ۱۰ MPa $\sqrt{{ m m}}$
	متر است ؟	داشته باشیم، حداقل ضخامت لازم چند میلے
	(۲	10 (1
	(۴	۵۰ (۳
ہی با مدول برشی ۶۳ GPa، چند گیگاپاسکال	ککریستال مکع	۱۱۳ - از نظر تئوری، تنش برشی ماکزیمم در یک تک است
		(GPa) است؟
۲۰		۳۱/۵ (۱
	(۴	۱۰ (۳
ن (stacking fault) بر نوان «کار شختی» و	اىرژى نقص چىد	۱۱۴- کدام مورد به تر تیب در خصوص تأثیر کاهش «نیم اند ش» در ستا میت
	1.5	« نوع لغزش»، درست است ؟ ۱) افزایش مییابد. ــ از صفحهای به موجی تغ
		 ۲) افرایش می یابد از صفحه ای به موجی تعار ۲) کاهش می یابد فقط از نوع لغزش موجی
		۳) افزایش می یابد ـ از موجی به صفحهای تغی
		۴) کاهش مییابد. از موجی به صفحهای تغییر
ی، درست است؟		- ۱۱۵ - در فلزات hcp، کدام مورد در رابطه با تأثیر ۱۵
		• ۱) سیستمهای لغزش در hcp به <mark>–</mark> بستگی ن a
ىتر است.		یں ہو ت $rac{c}{a} > 1/۶۳۳$ باشد، تمایل به لغزش در a
		۳) اگر ۲/۶۳۳ < <mark>c</mark> باشد، تمایل به لغزش در a
يشتر است.	صفحهٔ منشوری ب) اگر ۲/۶۳۳ $rac{{ m c}}{{ m a}} >$ باشد، تمایل به لغزش در ${ m c}$


صفحه ۲۱	256 A	نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
اییها» و «دوقلوییهای	برشی لازم برای تغییرشکل توسط «حرکت نابهج	۱۱۶ - کدام مورد درخصوص افزایش دما، بر تنش
		مکانیکی» درست است؟
	۲) کاهش ــ کاهش	۱) کاهش ــ بدون تغییر
	۴) افزایش ــ بدون تغییر	۳) افزایش _ افزایش
د نیز رخ دهد، آهنگ	، خزش است. اگر در این شرایط، تبلور مجد	۱۱۷- آلیاژی دمای بالا، در شرایط کاری تحت
		خزش چه تغییری خواهد داشت؟
	دارد.	۱) تبلور مجدد، تأثیری بر آهنگ خزش ن
	دانهها به هنگام تبلور مجدد زیاد میشود.	۲) آهنگ خزش کم میشود، چون اندازه
	مجدد باعث ایجاد دانههای جدید میشود.	۳) آهنگ خزش زیاد میشود، چون تبلور
	کیل دانههای ریزتر در تبلور مجدد مقاومت به .	
کدام مورد، درست است؟		۱۱۸ مقدار تغییر شکل مومسان در آزمایش پیچن -
		۱) کرنش برشی، در هر دو آزمایش برابر -
		۲) تنش برشی، در هر دو آزمایش برابر ام
		۳) تنش برشی ماکزیمم در کشش، دو بر
		۴) تنش برشی ماکزیمم در پیچش، دو بر
ن نیرو شکسته میشود؟	حت نیروی کششی قرار گیرد. کدام قطعه با کمتر ی	۱۱۹ سه قطعه از یک ورق فلزی (طبق شکل زیر) ت
		В(۲
$\neg \Gamma \rightarrow c$		C (٣
',' ,		۴) هر سه سطح مقطع C و B و A
A B		
واستانیک است؟	– است. کرنش حجمی، چند برابر تنش هیدر ۳	۱۲۰- نسبت پواسون در یک جامد همسانگرد
	$\frac{1}{E}$ (Y	E(
	$\frac{1-70}{7}$ (f	$\frac{1-7 \upsilon}{E}$ (r
	۳E	Е
	، انتقال حرارت):	پدیدههای انتقال (انتقال جرم، مکانیک سیالات
٢	د. ارتباط با حداقا ، حلال مصرفي درست است	۱۲۱ - دریک فرایند جذب از گاز، کدام جمله

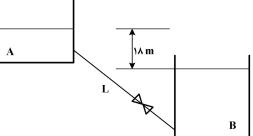
$\begin{split} \mathbf{y}_{AG} = \circ / \mathbf{v} \mathbf{x}_{AL} = \circ / \circ \mathbf{v} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} x$	$\frac{mol}{m^{7}.s}$ K_{y} چقدر است? (1) $S = K_{y}$ (2) $($	صفحه ۲۲	256 A	انو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
$\begin{split} \mathbf{y}_{AG} = \circ/Y \mathbf{y} \mathbf{x}_{AL} = \circ/\circ^{\circ} \mathbf{y} \mathbf{x} \mathbf{x} = \mathbf{Y} \times 10^{-1} \mathbf{\overline{m}^{V}.s} \\ \mathbf{Y}_{AG} = \circ/Y \mathbf{y} \mathbf{x}_{AL} = \circ/\circ^{\circ} \mathbf{y} \mathbf{x} \mathbf{x} = \mathbf{Y} \times 10^{-1} \\ \mathbf{x} \times$	$\overline{\mathbf{m}^{Y}.\mathbf{s}}$ $\mathbf{r} \times 10^{-6}$ (1 $\Delta \times 10^{-6}$ (7 $\mathbf{r} \times 10^{-7}$ (7 $\mathbf{r} \times 10^{-7}$ (7 $\Delta \times 10^{-7}$ (7 $\Delta \times 10^{-7}$ (7 $\Delta \times 10^{-7}$ (7 $\Delta \times 10^{-7}$ (7 \mathbf{r} \mathbf{r} (7 \mathbf{r} (7 \mathbf{r} (7 \mathbf{r} (7 \mathbf{r} (7 \mathbf{r} (7 \mathbf{r} (7 \mathbf{r} (7) \mathbf{r} (7) \mathbf{r} (7) \mathbf{r} (7) \mathbf{r} (7) \mathbf{r} (7) \mathbf{r} (7) \mathbf{r} (8) \mathbf{r} (8) \mathbf{r} (7) \mathbf{r} (7) \mathbf{r} (8) \mathbf{r} (7) \mathbf{r} (7)	ر رابطه تعادلی y = ۴x باشد	SI از هوا توسط آب انجام میشود. اگ	O_{Y} در یک ستون دیوار مرطوب، جذب -1۲۱
	$\begin{aligned} & (7 \times 10^{-4}) (1) \\ & (7 \times 10^{-4}) (7) \\ & (7 \times 10^{-7}) (7) \\ & (7 \times 10^{-7}) (7) \\ & (7 \times 10^{-7}) (7) \end{aligned}$ $(7 \times 10^{-7}) (7) \\ & (7 \times 10^{-7}) \\$	$y_{AG} = \circ_{/} \forall g x_{AL} = \circ_$	$\circ \mathcal{F}$ g $\mathbf{K}_{\mathbf{X}} = \mathbf{T} \times 10^{-\mathbf{F}} \frac{\text{mol}}{\mathbf{m}^{\mathbf{T}} \cdot \mathbf{s}}$	چقدر است؟ $\mathbf{K_y}$
$1^{-1} \times 10^{-1}$ $1^{-1} \times 10^{-1}$ $1^{$	$T \times 10^{-4}$ (" $\Delta \times 10^{-4}$ (F $\Delta \times 10^{-4}$ (F π^{-1} (J π^{-1} (J π^{-1} (J π^{-1} (J π^{-1} (J π^{-1} (J π^{-1} (J π^{-1} (C π^{-1} (J π^{-1} (C π^{-1} (C) (C π^{-1} (C)			$T \times 1 \circ^{-\Delta}$ (1
$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ ب همرفت انتقال حرارت در غیاب انتقال جرم از روی سطح یک جسم، $\frac{W}{m^{7}.K} \circ v$ است. سطح جس مرطوب می شود که به درون فاز گاز آرگون عبوری از روی سطح تبخیر می شود. ضریب همرفت انتقا ت در حضور انتقال جرم، تقریباً کدام است؟ بت گرمایی ویژه بخار آب $\frac{L}{k \ mol. K} \circ v \circ v$ و شار تبخیر $\frac{100}{m^{7}s} / v \circ v = 1$ $\frac{1}{\sqrt{2}} \circ v = 1$ ($\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} - \frac{1}{$	$(f)^{-F} = (f)^{-F} = (f)^{-F}$ (f) $(f)^{-F} = (f)^{-F} = (f)^{-F} = (f)^{-F} = (f)^{-F}$ (f) $(f)^{-F} = (f)^{-F} $			$\Delta imes 1 \circ^{-\Delta}$ (۲
ب همرفت انتقال حرارت در غیاب انتقال جرم از روی سطح یک جسم، $\frac{W}{m^{Y}.K}$ همرفت انتقال حرارت در غیاب انتقال جرم از روی سطح یک جسم، $\frac{W}{m^{Y}.K}$ مرطوب می شود که به درون فاز گاز آرگون عبوری از روی سطح تبخیر می شود. ضریب همرفت انتقا تد در حضور انتقال جرم، تقریباً کدام است؟ ت در حضور انتقال جرم، تقریباً کدام است؟ ت گرمایی ویژه بخار آب $\frac{V }{K} \frac{V }{K mol.K}$ (۲) است.) $\frac{V \circ \circ}{\sqrt{e}}$ (۲) $\frac{V \circ \circ}{\sqrt{e}}$ (۲) $\frac{V \circ \circ}{\sqrt{e}}$ (۲) $\frac{V \circ \circ}{\sqrt{e}}$ (۶) است.) $\frac{V \circ \circ}{\sqrt{e}}$ (۶) $\frac{V \circ \circ}{\sqrt{e}}$ (9) $\frac{V \circ V \circ}{e$	۱۲۳- ضریب همرفت انتقال حرارت در غیاب انتقال جرم از ر با آب مرطوب میشود که به درون فاز گاز آرگون عبور; حرارت در حضور انتقال جرم، تقریباً کدام است؟ (ظرفیت گرمایی ویژه بخار آب $\frac{J}{k \mod x} \circ \circ \circ \sigma$ و ($\frac{\gamma \circ \circ}{\sqrt{e} - 1}$ ($\frac{\gamma \circ \circ}{\sqrt{e} - 1}$			۳×۱۰ ^{-۴} (۳
مرطوب می شود که به درون فاز گاز آرگون عبوری از روی سطح تبخیر می شود. ضریب همرفت انتقا ت در حضور انتقال جرم، تقریباً کدام است؟ ت کرمایی ویژه بخار آب $\frac{J}{k mol. K} \circ 000 $ و شار تبخیر $\frac{k mol}{m^{7}s}$ (۵ / ۰ است.) $\frac{70 \circ 0}{\sqrt{e}}$ $\frac{70 \circ 0}{1 - \frac{1}{\sqrt{e}}}$ C سامانه دو جزئی، انتقال جرم جزء A در B ساکن رخ می دهد. غلظت A و B به تر تیب ۲۰ و ۳ $\frac{1}{\sqrt{e}}$ و شار انتقال جرم A در B برابر $\frac{k mol}{m^{7}s}$ ۶ / ۰ است. سرعت متوسط مولی مخلوط چقدر است؟ $\frac{1}{\sqrt{e}}$ $\frac{1}{\sqrt{e}}$ $1 - \frac{1}{\sqrt{e}}$ C سامانه دو جزئی، انتقال جرم جزء A در B ساکن رخ می دهد. غلظت A و B به تر تیب ۲۰ و ۳ $\frac{1}{\sqrt{e}}$ $\frac{1}{\sqrt{e}}$ 1×10^{-7} $\frac{1}{\sqrt{e}}$ 1×10^{-7} $\frac{1}{\sqrt{e}}$ $7 - 1 \times 10^{-7}$ $\frac{1}{\sqrt{e}}$ $7 - 1 \times 10^{-7}$ $\frac{1}{\sqrt{e}}$ $7 - 1 - 1 \times 10^{-7}$ $\frac{1}{\sqrt{e}}$ 1×10	با آب مرطوب می شود که به درون فاز گاز آرگون عبور: حرارت در حضور انتقال جرم، تقریباً کدام است؟ $(ext{dtess: $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$			$\Delta \times 1 \circ^{-F}$ (F
ت در حضور انتقال جرم، تقریباً کدام است؟ بت گرمایی ویژه بخار آب $\frac{J}{k \mod}$ مهری و شار تبخیر $\frac{m o}{m s} (\circ \ 0 \ 0 \ 0)$ است.) $\frac{70 \circ}{\sqrt{e}}$ (۲ $\frac{70 \circ}{\sqrt{e}}$ (۲ $\frac{70 \circ}{\sqrt{e}}$ (۶ $\frac{70 \circ}{\sqrt{e}}$ (9 $\frac{70 \circ}{\sqrt{e}}$ (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	حرارت در حضور انتقال جرم، تقریباً کدام است؟ حرارت در حضور انتقال جرم، تقریباً کدام است؟ (ظرفیت گرمایی ویژه بخار آب $\frac{J}{k \text{ mol. K}} \circ \circ \circ \pi$ و ($\eta = \frac{\pi \circ \circ}{\sqrt{e} - 1}$ ($\eta = \frac{\pi \circ \circ}{\sqrt{e} - 1$	۷۰۰ است. سطح جس m ^۲ .F	انتقال جرم از روی سطح یک جسم، - ل	۱۲۲- ضریب همرفت انتقال حرارت در غیاب
بت گرمایی ویژه بخار آب $\frac{J}{k \ mol. K}$ ۳۵ ۵۰۰ و شار تبخیر $\frac{m^{r}s}{m^{r}s}$ ۱ م ۱ است.) $\frac{70 \circ}{\sqrt{e}}$ ۲) $\frac{70 \circ}{\sqrt{e}}$ 7) $\frac{70 \circ}{e$	(ظرفیت گرمایی ویژه بخار آب $\frac{J}{k \text{ mol. } K}$ ۵۰۰۰ و $\frac{\# 00}{\sqrt{e} - 1}$ (۱) $\frac{\# 00}{\sqrt{e} - 1}$ (۲) $\frac{\# 00}{\sqrt{e} - 1}$ (۳) (۳) $\frac{\# 00}{\sqrt{e} - 1}$ (۳) $\frac{\# 00}{\sqrt{e} - 1}$ (۳) $\frac{1}{\sqrt{e} - 1}$ (۳) $\frac{\# 00}{m^7 \cdot s}$ و شار انتقال جرم A در B برابر $\frac{\# 00}{m^7}$ 4 در B with $\frac{\pi}{m^7}$ 4 co $\frac{\pi}{m}$ (1) $\pi^{-7} \frac{m}{s}$ (1) $7 \times 10^{-7} \frac{m}{s}$ (7) $\pi \times$	میشود. ضریب همرفت انتقا	ناز آرگون عبوری از روی سطح تبخیر	با آب مرطوب میشود که به درون فاز گ
$\begin{aligned} \frac{\pi \Delta \circ}{1 - \frac{1}{\sqrt{e}}} & (\Upsilon & \frac{\pi \Delta \circ}{\sqrt{e} - \frac{1}{\sqrt{e}}} \\ \frac{1}{\sqrt{e}} & (\Upsilon & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} \\ \frac{1}{\sqrt{e}} & (\Upsilon & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} \\ \frac{1}{\sqrt{e}} & (\Upsilon & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} \\ \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} \\ \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} \\ \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} \\ \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} & \frac{1}{\sqrt{e}} & $	$\frac{\pi \Delta \circ}{\sqrt{e} - 1} (1)$ $\frac{\sqrt{2} \circ \circ}{\sqrt{e} - 1} (7)$ $\frac{\sqrt{2} \circ \circ}{\sqrt{e} - 1} (7)$ $\frac{\sqrt{2} \circ \circ}{\sqrt{e} - 1} (7)$ $\frac{\sqrt{2} \circ \sqrt{2}}{\sqrt{e} - 1} (7)$ $\frac{\sqrt{2} \circ \sqrt{2}}{\sqrt{e} - 1} (7)$ $\frac{\sqrt{2} \circ \sqrt{2}}{m^{7} \cdot s} (7)$ $\frac{\sqrt{2} \circ \sqrt{2}}{m^{7} \cdot s} (7)$ $\frac{\sqrt{2} \circ \sqrt{2}}{m} (7)$ $\frac{\sqrt{2} \cos \sqrt{2}}{m} (7)$ $\frac{\sqrt{2} \cos $			
$\frac{V \circ \circ}{\sqrt{e}}$ $\frac{V \circ \circ}{\sqrt{e}}$ (f $\frac{V \circ \circ}{\sqrt{e}}$ ک سامانه دو جزئی، انتقال جرم جزء A در B ساکن رخ می دهد. غلظت A و B به تر تیب ۲۰ و $\frac{V}{\sqrt{e}}$ ک سامانه دو جزئی، انتقال جرم جزء A در B ساکن رخ می دهد. غلظت A و B به تر تیب ۲۰ و $\frac{V}{m}$ $\frac{V}{m}$ و شار انتقال جرم A در B برابر $\frac{K \text{ mol}}{m^{Y} \cdot s}$ \sqrt{e} است. سرعت متوسط مولی مخلوط چقدر است \sqrt{e} $1 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $4 \times 10^{-7} \frac{m}{s}$ $4 \times 10^{-7} \frac{m}{s}$ $4 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $1 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $1 \times 10^{-7} \frac{m}{s}$ 1	$\frac{\forall \circ \circ}{\sqrt{e} - 1}$ (۳ $\frac{\forall \circ \circ}{\sqrt{e} - 1}$ (۳ - 174) در یک سامانه دو جزئی، انتقال جرم جزء A در B س - 174) $\frac{\mathbf{k} \mod}{\mathbf{m}^{T}}$ و شار انتقال جرم A در B برابر $\frac{\mathbf{k} \mod}{\mathbf{m}^{T}}$ ۹ م $\frac{\mathbf{k} \mod}{\mathbf{m}^{T}}$ و شار انتقال جرم A در B برابر $\frac{\mathbf{k} \mod}{\mathbf{m}^{T}}$ ۹ م $\mathbf{k} \mod \frac{\mathbf{k} \mod}{\mathbf{m}^{T}}$ ۹ م $\mathbf{k} = \mathbf{k} \mod \frac{\mathbf{k} + \mathbf{k}}{\mathbf{k}}$ ۹ م $\mathbf{k} = \mathbf{k} + \mathbf{k}$ ۹ م (۴ $\mathbf{k} = \mathbf{k} + \mathbf{k}$ ۹ م (۴) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است (۳) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است (۳) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است (۳) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است	ر• است .)	۰۱ ۳۵۰۰۰ و شار تبخیر <mark>k mol</mark> k n ^۲ s	ل ال ال [] J 10l. K
$\frac{V \circ \circ}{1 - \frac{1}{\sqrt{e}}}$ (۴ $\frac{V \circ \circ}{\sqrt{e} - \frac{1}{\sqrt{e}}}$ ک سامانه دو جزئی، انتقال جرم جزء A در B ساکن رخ می دهد. غلظت A و B به تر تیب ۲۰ و $\frac{V}{\sqrt{e}}$ $\frac{V}{\sqrt{e}}$ و شار انتقال جرم A در B برابر $\frac{K mol}{m^{T} s}$ ۶۰ /۰ است. سرعت متوسط مولی مخلوط چقدر است؟ $1 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $8 \times 10^{-7} \frac{m}{s}$ $4 \times 10^{-7} \frac{m}{s}$ $8 \times 10^{-7} \frac{m}{s}$ $1 \times 10^{-7} \frac{m}{s}$	۱۲۴- در یک سامانه دو جزئی، انتقال جرم جزء A در B س $(\mathbf{x}, \mathbf{wol}, \mathbf{wol}, \mathbf{w}, \mathbf{wol}, \mathbf{w}, \mathbf{h}$ و شار انتقال جرم A در B برابر $\mathbf{wol}, \mathbf{wol}, \mathbf{w}$ و شار انتقال جرم A در B برابر $\mathbf{wol}, \mathbf{wol}, \mathbf{w}$ ($\mathbf{wol}, \mathbf{w}, \mathbf{w}$) $(\mathbf{x}, \mathbf{wol}, wo$		$\frac{\circ \Delta \gamma}{1}$ (7	$\frac{\texttt{mao}}{\sqrt{e}-1} (1)$
ک سامانه دو جزئی، انتقال جرم جزء A در B ساکن رخ می دهد. غلظت A و B به تر تیب ۲۰ و ک سامانه دو جزئی، انتقال جرم A در B برابر $\frac{k mol}{m^7 s} / 2 \circ / 0$ است. سرعت متوسط مولی مخلوط چقدر است؟ $\frac{k_1}{m}$ و شار انتقال جرم A در B برابر $\frac{m^7 s}{m^7 s}$ $1 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $4 \times 10^{-7} \frac{m}{s}$ $1 \times 10^{-7} \frac{m}{s}$	۱۲۴- در یک سامانه دو جزئی، انتقال جرم جزء A در B س ۱۲۴- در یک سامانه دو جزئی، انتقال جرم جزء A در \mathbf{R} در \mathbf{M} در \mathbf{M} \mathbf{n}^{T} \mathbf{k} mol \mathbf{m}^{T} \mathbf{g} شار انتقال جرم A در B برابر \mathbf{m}^{K} \mathbf{n}^{S} \mathbf{n}^{S} \mathbf{n}^{T} \mathbf		$\sqrt{-\frac{1}{\sqrt{e}}}$	
ک سامانه دو جزئی، انتقال جرم جزء A در B ساکن رخ میدهد. غلظت A و B بهترتیب ۲۰ و \sqrt{e} ک سامانه دو جزئی، انتقال جرم A در B برابر $\frac{k mol}{m^7 s}$ ۹ م مید مید مید متوسط مولی مخلوط چقدر است؟ The first \sqrt{e} شار انتقال جرم A در B برابر $\frac{m^7 s}{m^7 s}$ ۹ م م است. سرعت متوسط مولی مخلوط چقدر است؟ $1 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $8 \times 10^{-7} \frac{m}{s}$ $1 \times 10^{-7} \frac{m}{s}$	۱۲۴- در یک سامانه دو جزئی، انتقال جرم جزء A در B س ۱۲۴- در یک سامانه دو جزئی، انتقال جرم جزء A در \mathbf{R} در \mathbf{M} در \mathbf{M} \mathbf{n}^{T} \mathbf{k} mol \mathbf{m}^{T} \mathbf{g} شار انتقال جرم A در B برابر \mathbf{m}^{K} \mathbf{n}^{S} \mathbf{n}^{S} \mathbf{n}^{T} \mathbf		<u> </u>	<u> </u>
ک سامانه دو جزئی، انتقال جرم جزء A در B ساکن رخ میدهد. غلظت A و B بهترتیب ۲۰ و $\frac{k_1}{m}$ و شار انتقال جرم A در B برابر $\frac{k mol}{m^7.s}$ ۶ / ۰ است. سرعت متوسط مولی مخلوط چقدر است؟ $\frac{k_1}{m}$ و شار انتقال جرم A در B برابر $\frac{m^7.s}{m^7.s}$ $1 \times 10^{-7} \frac{m}{s}$ $7 \times 10^{-7} \frac{m}{s}$ $4 \times 10^{-7} \frac{m}{s}$ $1 \times 10^{-7} \frac{m}{s}$ 1	$\frac{\mathbf{k} \operatorname{mol}}{\mathbf{m}^{T} \cdot \mathbf{s}}$ و شار انتقال جرم A در B برابر $\frac{\mathbf{k} \operatorname{mol}}{\mathbf{m}^{T}}$ و شار انتقال جرم A در B برابر $\frac{\mathbf{k} \operatorname{mol}}{\mathbf{m}^{T}}$ و شار انتقال جرم A در B برابر $\frac{\mathbf{k} \operatorname{mol}}{\mathbf{m}^{T}}$ (\mathbf{m}^{T}) ($\mathbf{m}^{T} \cdot \mathbf{s} \cdot \mathbf{s}$) ($\mathbf{m}^{T} \cdot \mathbf{s} \cdot \mathbf{s} \cdot \mathbf{s}$) ($\mathbf{m}^{T} \cdot \mathbf{s} \cdot \mathbf{s}$) ($\mathbf{m}^{T} \cdot \mathbf{s} \cdot \mathbf{s} \cdot \mathbf{s}$) ($\mathbf{m}^{T} \cdot \mathbf{s} \cdot \mathbf{s} \cdot \mathbf{s}$) ($\mathbf{m}^{T} \cdot \mathbf{s} \cdot \mathbf{s} \cdot \mathbf{s}$) ($\mathbf{m}^{T} \cdot \mathbf{s} \cdot \mathbf{s} \cdot \mathbf{s} \cdot \mathbf{s}$) ($\mathbf{m}^{T} \cdot \mathbf{s} \cdot \mathbf{s} \cdot \mathbf{s} \cdot \mathbf{s} \cdot \mathbf{s}$)) ($\mathbf{m}^{T} \cdot \mathbf{s} \cdot \mathbf{s}$		$1 - \frac{1}{\sqrt{2}}$	\sqrt{e} – 1
$\frac{\mathbf{k}}{\mathbf{m}}$ و شار انتقال جرم A در B برابر $\frac{\mathbf{k} \mathbf{mol}}{\mathbf{m}^{T} \cdot \mathbf{s}}$ ۶ م م است. سرعت متوسط مولی مخلوط چقدر است؟ $\mathbf{m}^{T} \cdot \mathbf{s}$ $\mathbf{n}^{T} \cdot \mathbf{n}^{T} \cdot \mathbf{s}$ $\mathbf{n}^{T} \cdot \mathbf{n}^{T} \cdot \mathbf{n}^{T} \cdot \mathbf{s}$ $\mathbf{n}^{T} \cdot \mathbf{n}^{T} \cdot \mathbf{n}$	$\frac{\mathbf{k} \operatorname{mol}}{\mathbf{m}^{T} \cdot \mathbf{s}}$ و شار انتقال جرم A در B برابر $\frac{\mathbf{k} \operatorname{mol}}{\mathbf{m}^{T}}$ و شار انتقال جرم A در B برابر $\frac{\mathbf{k} \operatorname{mol}}{\mathbf{m}^{T}}$ و شار انتقال جرم A در B برابر $\frac{\mathbf{k} \operatorname{mol}}{\mathbf{m}^{T}}$ (\mathbf{m}^{T}) ($\mathbf{m}^{T} \cdot \mathbf{s}$) ($\mathbf{m}^{T} \cdot \mathbf$	ت A و B بهتر تیب ۲۰ و ۰	ve	۱۲۴- در یک سامانه دو جزئی، انتقال جرم ·
x = 1 که که که د $1 \times 10^{-7} \frac{11}{5}$ $7 \times 10^{-7} \frac{11}{5}$ $8 \times 10^$	ال سی ال			
$x = x + 0^{-\pi} \frac{n}{s}$ $x + 10^{-\pi} \frac{n}{s}$ $x + 10^{-\pi} \frac{n}{s}$ $x + 10^{-\pi} \frac{n}{s}$ $x = x + 10^{-\pi} \frac{n}{s}$	ی مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. $7 = \frac{m}{s}$ (۲ $7 \times 10^{-7} \frac{m}{s}$ (۳ $7 \times 10^{-7} \frac{m}{s}$ (۳ $8 \times 10^{-7} \frac{m}{s}$ (۴ $8 \times 10^{-7} \frac{m}{s}$ (۴) $1 \times 10^{-7} \frac{m}{s}$ (1) $1 \times 10^{$	، موتی محلوط چغدر است!	رm۲.s	m ^۳ و شار التعال جرم A در D براب m
۳×۱۰ ^{-۳} ۳ ۶ ۴×۱۰ ^{-۳} ۳ ۶ ۱ومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است. ۱ومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. ۱ومت انتقال جرم در فاز مایع، برابر فاز گاز است.	$y = 7x$ (۳ $\frac{m}{s}$ (۳ $4 \times 10^{-7} \frac{m}{s}$ (۳ $4 \times 10^{-7} \frac{m}{s}$ (۴ $4 \times 10^{-7} \frac{m}{s}$ (۴ $4 \times 10^{-7} \frac{m}{s}$ (۴ $1 \times 10^{-7} \frac{m}{s}$ (۴ $1 \times 10^{-7} \frac{m}{s}$ (۴ $1 \times 10^{-7} \frac{m}{s}$) مقاومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است. ۲) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. ۳) مقاومت انتقال جرم در فاز مایع، برابر فاز گاز است.			$1 \times 1 \circ^{-\pi} \frac{m}{s}$ (1)
y = y به صورت $y = x$ باشد: y = x و منحنی تعادلی به صورت $y = x$ باشد: اومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است. اومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است.	$y = 7x$ (۳ $\frac{m}{s}$ (۳ $4 \times 10^{-7} \frac{m}{s}$ (۳ $4 \times 10^{-7} \frac{m}{s}$ (۴ $4 \times 10^{-7} \frac{m}{s}$ (۴ $4 \times 10^{-7} \frac{m}{s}$ (۴ $1 \times 10^{-7} \frac{m}{s}$ (۴ $1 \times 10^{-7} \frac{m}{s}$ (۴ $1 \times 10^{-7} \frac{m}{s}$) مقاومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است. ۲) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. ۳) مقاومت انتقال جرم در فاز مایع، برابر فاز گاز است.			$\tau \times 10^{-\pi} \frac{m}{m}$ (τ
جیست ۲ ۳ ۳ ۳ ۱ و منحنی تعادلی بهصورت y = ۲x باشد: اومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. اومت انتقال جرم در فاز مایع، برابر فاز گاز است.	۴×۱۰ ^{−۳} <mark>m (۴ s</mark>) ۴×۱۰^{−۳} m (۴ s) ۴×۱۰^{−۳} m (۴ s) ۲۲۵− اگر y = ۲x و منحنی تعادلی بهصورت y = ۲k باش ۱) مقاومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است. ۲) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. ۳) مقاومت انتقال جرم در فاز مایع، برابر فاز گاز است.			-
ی k_x = ۲k و منحنی تعادلی بهصورت y = ۲x باشد: اومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است. اومت انتقال جرم در فاز مایع، برابر فاز گاز است. اومت انتقال جرم در فاز مایع، برابر فاز گاز است.	۲۵ – ا گر k_y = ۲ k و منحنی تعادلی بهصورت y = ۲ باش ۱) مقاومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است. ۲) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. ۳) مقاومت انتقال جرم در فاز مایع، برابر فاز گاز است.			$r \times 1 \circ^{-r} \frac{m}{s}$ (r
ی k_x = ۲k و منحنی تعادلی بهصورت y = ۲x باشد: اومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است. اومت انتقال جرم در فاز مایع، برابر فاز گاز است. اومت انتقال جرم در فاز مایع، برابر فاز گاز است.	۲۵ – ا گر k_y = ۲ k و منحنی تعادلی بهصورت y = ۲ باش ۱) مقاومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است. ۲) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. ۳) مقاومت انتقال جرم در فاز مایع، برابر فاز گاز است.			$f \times 1 \circ^{-r} \frac{m}{s}$ (f
اومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است. اومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. اومت انتقال جرم در فاز مایع، برابر فاز گاز است.	۱) مقاومت انتقال جرم در فاز مایع، ۴ برابر فاز گاز است ۲) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. ۳) مقاومت انتقال جرم در فاز مایع، برابر فاز گاز است.		رت y = ۲x باشد:	5
اومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. اومت انتقال جرم در فاز مایع، برابر فاز گاز است.	۲) مقاومت انتقال جرم در فاز مایع، ۲ برابر فاز گاز است. ۳) مقاومت انتقال جرم در فاز مایع، برابر فاز گاز است.			•
اومت انتقال جرم در فاز مایع، ۲ ۲	۴) مقاومت انتقال جرم در فاز مایع، ^۲ برابر فاز گاز است ۲		ِ فاز گاز است.	۳) مقاومت انتقال جرم در فاز مایع، برابر
			رابر فاز گاز است.	۴) مقاومت انتقال جرم در فاز مایع، ۲ ۲


نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))

1۲۶- تبخیر آب به داخل هوا از یک سطح صاف داخل یک ظرف با سطح مقطع ثابت در حالت پایا و یک بعدی انجام می شود. با فرض ثابت بودن سطح مایع در ظرف، کدام جمله درست است؟ z جزء مولی آب در راستای y جزء مولی NA: شارکلی انتقال جرم بخار آب و $\frac{dy_A}{dz}$ ثابت هستند. N_A (۱ Z و $\frac{dy_A}{dz}$ ثابت نیستند. N_A (۲ . ثابت نیست، اما $rac{dy_A}{dz}$ ثابت است. N $_A$ (۳ . ثابت است، اما ${dy_A\over dz}$ ثابت نیست NA (۴ ۱۲۷− انتقال جرم جزء A از سطح یک جامد به درون یک سیال در حال حرکت در رژیم جریان آرام انجام می شود. اگر محیط انتقال جرم غلیظ از جزو A باشد ولی در محاسبات محیط رقیق فرض شده باشد، با استفاده از نظريه لايهٔ مرزی، ضريب انتقال جرم واقعی در محيط غليظ نسبت به محيط رقيق چگونه خواهد بود؟

۱۲۸ - نسبت ارتفاع بالارفتگی اب (h_w) به پایینافتادگی جیوه (h_m) در بین دو صفحه موازی قائم با فاصله t با صرفنظر کردن از انحنای سیال لوله و شیشه، کدام است؟

۱۲۹- با توجه به شکل مؤلفه عمودی نیروی کلی فشاری وارده از طرف آب بر دریچه ربع استوانهای شکل به شعاع


نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))

۱۳۰- در اثر رسوب مواد در یک لوله افقی، قطر لوله از ۴ سانتیمتر به ۲ سانتیمتر کاهش می یابد. اگر ضریب اصطکاک (f) دو برابر شود، دبی جریان در حالت دوم نسبت به حالت اول، برابر کدام مورد است؟ (افت فشار دو سر لوله در دو حالت ثابت است.)

256 A

- ۱۳۱ آب با دبی Q از مخزن A به B همانند شکل، توسط لولهای به طول L با نیروی وزن خود جریان دارد. با نصب یک شیر در خط لوله، دبی جریان به یک سوم مقدار اولیه می رسد. با صرفنظر کردن از سایر تلفات موضعی و با فرض ضریب اصطکاک ثابت، افت موضعی شیر چند متر است؟
 ۱۶ (۱
 - ۱۲ (۲
 - ٩ (٣

۱۳۲ – یک بستر کاتالیستی استوانهای شکل به قطر ۱۰ **cm با ۷۰۰ g**r کاتالیست با چگالی نسبی ۷_۱۰ به *گ*ونهای پر شده است که تخلخل بستر برابر ۴۰ درصد بهدست آمده است. هوا از پایین بستر به داخل آن طوری دمیده می شود که در شرایط سیالیت، نسبت طول به قطر بستر برابر ۲ باشد. مقدار افت فشار این بستر در

$$(\mathbf{g}=\mathbf{1}\circ \frac{\mathbf{m}}{\mathbf{s}^{\intercal}}$$
 و $\pi=\pi$, $ho_{\mathrm{air}}=\mathbf{1}\frac{\mathbf{kg}}{\mathbf{m}^{\intercal}}$ ($\mathbf{g}=\mathbf{1}\circ \frac{\mathbf{m}}{\mathbf{s}^{\intercal}}$) جالت سیالیت چند پاسکال است؟

- ۲۸۰ (۱
- ۵۶۰ (۲
- 1170 (7
- ۲۸۰۰ (۴

۱۳۳ - در اثر عبور سیال از لولهای با قطر ۱ سانتیمتر و طول ۴ متر، عدد رینولدز ۱۰۰۰ می شود. اگر افت انرژی ناشی از

حرکت سیال در تماس با دیواره لوله برابر $rac{{f J}}{{f Kg}}$ باشد، سرعت متوسط سیال در لوله، چند متر بر ثانیه است؟ (۱) ۲

- 1 ()
- ۱/۵ (۲
- ۳) (۳
- °/۵ (۴

256 A	۱۲۷۳ _ (شناور))	نانو فناوری _ نانو مواد (کد
-------	-----------------	-----------------------------

۱۳۴– زمان سقوط یک ذره جامد کروی با قطر **D** و دانسیته ρ_ρ در یک بیوراکتور (دانسیته و ویسکوزیته سیال عγ

$$(C_{D} = \frac{1}{Re}$$
 به ارتفاع L، چقدر است؟ (ضریب درگ برابر است با $(\mu \ \rho)$ و μ

$$t = \frac{i \wedge L \mu}{D_p^{\gamma} g(\rho_p - \rho)} \quad (i)$$

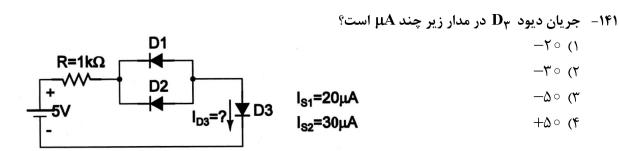
$$t = \frac{i \wedge L^{\gamma} \mu}{D_p^{\gamma} g(\rho_p - \rho)} \quad (i)$$

$$t = \frac{9 L \mu}{D_p^{\gamma} g(\rho_p - \rho)} \quad (i)$$

$$t = \frac{9 L^{\gamma} \mu}{D_p^{\gamma} g(\rho_p - \rho)} \quad (i)$$

۱۳۵- ضخامت دیواره کورهای ۱۰ سانتیمتر است و سطح خارجی کوره در معرض هوای C°C قرار دارد. اگر توزیع دمای کوره در حالت پایا بهصورت (T = ۱۰(۱۰۱ – x^۲) باشد، دمای سطح داخلی دیواره کوره، چند درجه سلسیوس است؟ (T برحسب درجه سلسیوس و x برحسب سانتیمتر است.) ۱) ۵۰۰ (۲ – ۵۰۰ ۱) ۱۰۰۰

 $-179 - c_{r} \operatorname{op}(r) = c_{r} \operatorname{op}(r$

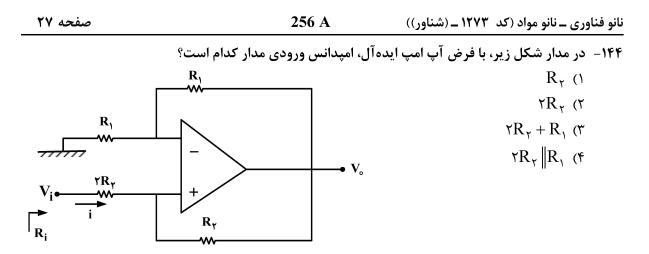

۱۳۸- در جریان آشفته بر روی صفحه تخت با دمای دیواره ثابت، با افزایش ۲۰ درصدی سرعت سیال، مقدار عدد ناسلت موضعی، به چه نسبتی تغییر میکند؟

$$Nu_{\tau} = (1/\tau^{\circ/\Lambda})Nu_{1} \quad (\tau \qquad Nu_{\tau} = (\circ/\tau^{\circ/\tau\tau})Nu_{1} \quad (\tau \land Nu_{\tau} = (\circ/\tau^{$$

۱۳۹- دمای ورودی و خروجی سیال سرد یک مبدل حرارتی دو لولهای بهترتیب برابر با ۲۰ و ۶۰ درجه سانتیگراد است. اگر دمای ورودی سیال گرم ۱۲۰ درجه سانتیگراد باشد، دمای خروجی چند درجه سانتیگراد است؟ (ظرفیت حرارتی ویژه دو سیال برابر بوده و دبی جرمی سیال گرم، نصف سیال سرد است.) ۱) ۲۰ ۲۰ ۲) ۰۹

صفحه ۲۶	256 A	نانو فناوری _ نانو مواد (کد ۲۷۳ _ (شناور))
ده و توسط یک جداکننده به دو	ا ورودی مربعی (با اندازه ضلع L) بو	۱۴۰- در شکل زیر که بهصورت یک کانال ب
	کدام است؟ $\mathbf{F_{Y1}}$	بخش تقسیم شده است، ضریب شکل
		°/Å (1
		١ (٢
A ₁ L		$\frac{\sqrt{Y}}{\sqrt{Y}}$ (*
A A		۲ (۱
3 2		\sqrt{r} (f

الکترونیک (۱ و۲) و الکترومغناطیس مهندسی:

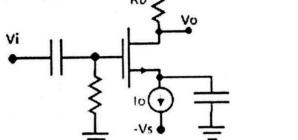


L

Vi

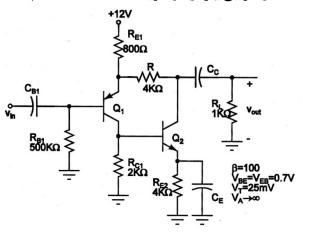
باشد، بهازای چه $I_{s1} = \ln A$, $I_{S7} = 1 \circ nA$ بهترتیب D_1 و D_7 و D_7 به ازای چه $I_{s1} = \ln A$, $I_{S7} = 1 \circ nA$ مقداری از ۷، جریانهای i_۲ و i_۱، باهم برابر هستند؟ f $V_{\rm T} \ln \tau$ () | i₁ v ,' η=۱ D₂ $V_T \ln r$ (r D₁ $V_T \ln \iota \circ$ (r 0 ۴) امکان برابری این دو جریان، وجود ندارد. ۱۴۳- در مدار مقابل، آپ امپ ایده آل فرض شود. کدام مورد نشاندهنده Av = $rac{V_0}{V_i}$ است؟ +V-10 (1 Į ≸∆kΩ MΩ 100 kΩ 11 (7 ~~ Ť ۵۵ (۳ ۴) بهدلیل وجود فیدبک مثبت، بهره بینهایت است.

> kΩ -V



با تغییر ولتاژ $\,V_{
m I}\,$ در بازه مشخصشده در مدار شکل زیر، مقدار حداقل ولتاژ خروجی چند ولت خواهد شد؟ eta < 0

$$V_{BE,on} = \circ V, V_{CE,sat} = \circ V, -1 \circ V < V_I < + \Delta V$$



است. به ازای جریان I_0 و مقاومت R_D ، مقدار بهره I_0 مقدار بهره I_0 است. به ازای جریان I_0 و مقاومت R_D ، مقدار بهره ولتاژ $\frac{V_0}{Vi}$ ولتاژ سیگنال کوچک $\frac{V_0}{Vi}$ برابر A است. اگر مقدار I_0 به نصف کاهش یابد، به ازای چه مقداری از R_D بهره ولتاژ میرت رابت و تقریباً همان A باقی می ماند؟

ثابت و تقریباً همان A باقی م_و 0/۵ R_D (۱ 0/۷ R_D (۲ ۱/۴ R_D (۳ ۲ R_D (۴

صفحه ۲۸	256 A	نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
بدار دادهشده چند اهم است؟	ار تقریبی مقاومت R _{eq} در م	۱۴۷ – با صرف نظر از جریان بیس ترانزیستورها، مقد
Vcc=+5V	β _{1,2} =100	100000 (1
	V _{BE1,2} =0.7V	70 (7
	r _{01,2} =100KΩ	۷००० (٣
	V _T =25mV	** • • • • • • • • • • • • • • • • • •
Q1		
	⊷R _{eq} =?	
8. _{7ка} Ş		
⊥ ⊥		
A با کدام مورد برابر است؟	$V = rac{\mathbf{V_{out}}}{\mathbf{V_{i1}} - \mathbf{V_{i1}}}$ بهره ولتاژ	۱۴۸ – در مدار تقویت کننده دیفرانسیل دادهشده
+5V		1000 (1
	$\overline{\mathbf{v}}$	1100 (۲
9	Q4 β _n =β _n =99	۲۲۰۰ (۳
110km 110km	ron, rop=220KΩ	44 00 (4
	V _T =25mV V _{BE} =V _{EB} =0.6V	
V ₀₁ - V _{out} + V ₀₂	L	
+ 01		
$\bigotimes v_{i1}$	$ \downarrow v_{i2} \bigcirc$	
4mA	<u> </u>	
÷ ()		
-5V		
ولتاژ تقویتکننده دادهشده کدام است؟ ۱۹۷۸	حالت ac، مقدار تقریبی بهره و	۱۴۹ – با فرض اتصال کوتاه بودن خازنهای مدار در

۶ (۱ ۲۰ (۲

۵۰ (۳

170 (4

صفحه ۲۹	256 A	نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))
= β باشد، فرکانس قطع پایین (-۳dB) این مدار	میانی) و ۱۰۰:	۱۵۰ - با فرض آن که بهره ۶۰ = $\left \frac{\mathbf{V}_{o}}{\mathbf{V}_{1}} \right $ (در باند فر کانسی
VDD	VDD	تقريباً چقدر میشود؟
$V_{s} \bigcirc \begin{matrix} R & C \\ W & \downarrow & V_{1} \\ V_{s} & \bigcirc & \downarrow \\ \hline & = \end{matrix}$	\mathbf{z} 3R \mathbf{v}_0	$\frac{1}{\frac{1}{\sqrt{\pi RC}}} (1)$ $\frac{1}{\sqrt{9\pi RC}} (7)$ $\frac{1}{\sqrt{\pi RC}} (7)$ $\frac{1}{\sqrt{7\pi RC}} (7)$
÷ ()	8,	
= (z) مطابق شکل قرار دارد. تابع پتانسیل	ا تابع <u></u>	۱۵۱- بین دو صفحه فلزی، یک لایهٔ دیالکتریک ب
$\varepsilon(z) = \frac{\varepsilon_0}{1+z}$ $z=0$ $V=V$	0	الکتریکی بین دو صفحه، از چه رابطهای به دس $V_{\circ} \frac{\ln(z+1)}{\ln \gamma}$ (۱ $V_{\circ} \frac{\ln(z^{\gamma}+1)}{\ln \gamma}$ (۲ $\frac{V_{\circ}}{\gamma}((z+1)^{\gamma}-1)$ (۳ $\frac{V_{\circ}}{\gamma}((z+1)^{r}-1)$ (۴
= V داده شده باشد، مقدار انرژی الکتریکی در	$=\frac{\sqrt{r}}{r}x^{r}+ry$	۱۵۲- اگر توزیع پتانسیل در فضا به صورت ۳ ۲ +۷
٩	۲، چقدر است	یک مکعب به مرکز مبدأ مختصات و ابعاد cm
$_{ m o}$ ይ $_{ m o}$		$\lambda \epsilon_{\circ}$ (1
$-117 \varepsilon_{\circ}$		۱۱۲٤, (۳
۱۵۳- یک خازن کروی به شعاع داخلی a و شعاع خارجی ۲ a داریم. اگر ابعاد این خازن دو برابر شود، ظرفیت خازن		
N. *	(5	چه تغییری میکند؟ () نو فرو و شدر
دو برابر میشود. بدون تغییر میماند.		۱) نصف میشود. ۳) ln۲ برابر میشود.
		۱۵۴- هزار قطره (کروی) یک میکرولیتری (دور از هم) د
اگر این قطرات به هم بپیوندند و تشکیل یک قطره بزرگ تر کروی را بدهند، پتانسیل این قطره چند ولت خواهد بود؟		
١	7)	۱) صفر
Y 0 0	(۴	۱۰۰ (۳

 $100 - 1\delta, \varphi = \frac{\rho_{o}}{x^{Y}} = \rho_{o} + \rho_{o$

256 A

۱۵۶ - برای داشتن شدت میدان مغناطیسی صفر در مرکز مربع، جریان گذرنده از سیمهای ۲ و ۳ به تر تیب چه مقدار باید باشد؟

۱۵۷- یک قطره (کروی) از مایع فرومغناطیسی، دارای چگالی دوقطبی مغناطیسی (M_o(i + j + k) است. مقادیر چگالی جریان مقید حجمی و سطحی در نقطه (۵, a , ۰)، بهتر تیب، کدام است؟

$$\frac{M_{\circ}}{\sqrt{r}}(\vec{i}+\vec{j}), \frac{M_{\circ}}{\sqrt{r}}(\vec{r}) \qquad \qquad \frac{M_{\circ}}{\sqrt{r}}(-\vec{i}+\vec{j}), (\vec{i}+\vec{j}+\vec{k}), (\vec{i}+\vec{i}+\vec{k}), (\vec{i}+\vec{i}+\vec{i}+\vec{k}), (\vec{i}+\vec{i}+\vec{i}+\vec{k}), (\vec{i}+\vec{i}+\vec{i}+\vec{i}), (\vec{i}+\vec{i}+\vec{i}+\vec{i}), (\vec{i}+\vec{i}+\vec{i}+\vec{i}), (\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}), (\vec{i}+\vec{i}+\vec{i}+\vec{i}), (\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}), (\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}), (\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}+\vec{i}), (\vec{i}$$

۱۵۸- شکل زیر، سطح مشترک دو عایق بدون بار را با ضرایب دیالکتریک نسبی ۱ و ۳ نشان میدهد. بردار پلاریزاسیون در محیط ۲، کدام است؟

$$\varepsilon_{1} = 1$$

$$\varepsilon_{1} = 1$$

$$\varepsilon_{2} = 3$$

$$\frac{\varepsilon_{1}}{\varepsilon_{2}} = 3$$

نانو فناوری _ نانو مواد (کد ۱۲۷۳ _ (شناور))

- المحال ولتاژ ۱۲ ولت بین σ پر شده است. اگر با اعمال ولتاژ ۱۲ ولت بین σ پر شده است. اگر با اعمال ولتاژ ۱۲ ولت بین سطح داخل و سطح خارجی این استوانه بخواهیم توان تلفاتی ۱۰۰ وات داشته باشیم، ارتفاع استوانه چند ساحت منابع استوانه چند والمح منابع استوانه جند والمح من والمح من والمح والمح من والمح و

256 A

F9 (F

۱۶۰- با توجه به شکل زیر، اگر $\mathbf{b} = \mathbf{T} \, \mathbf{a}$ ، شدت میدان مغناطیسی در مبدأ مختصات کدام است؟

