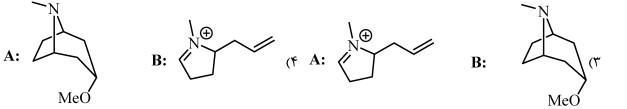
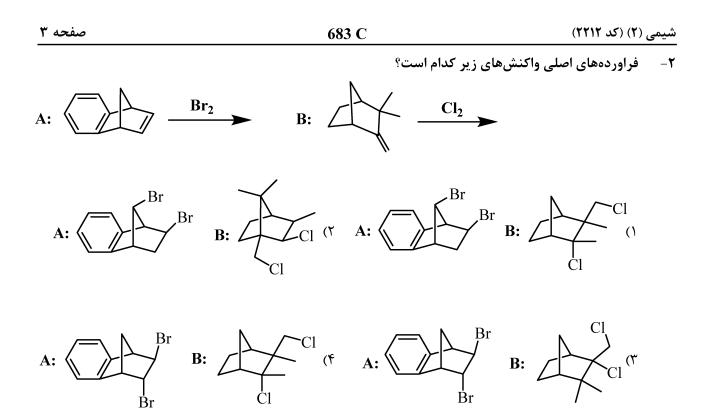
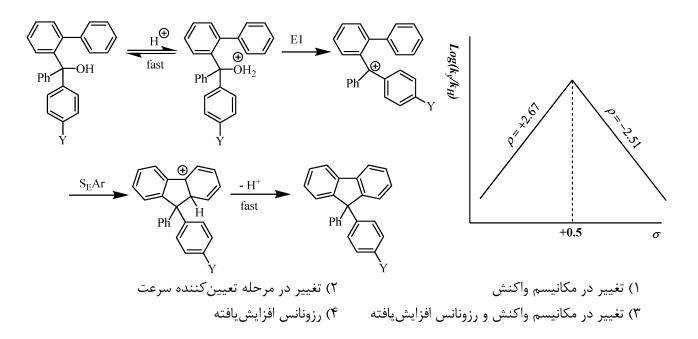
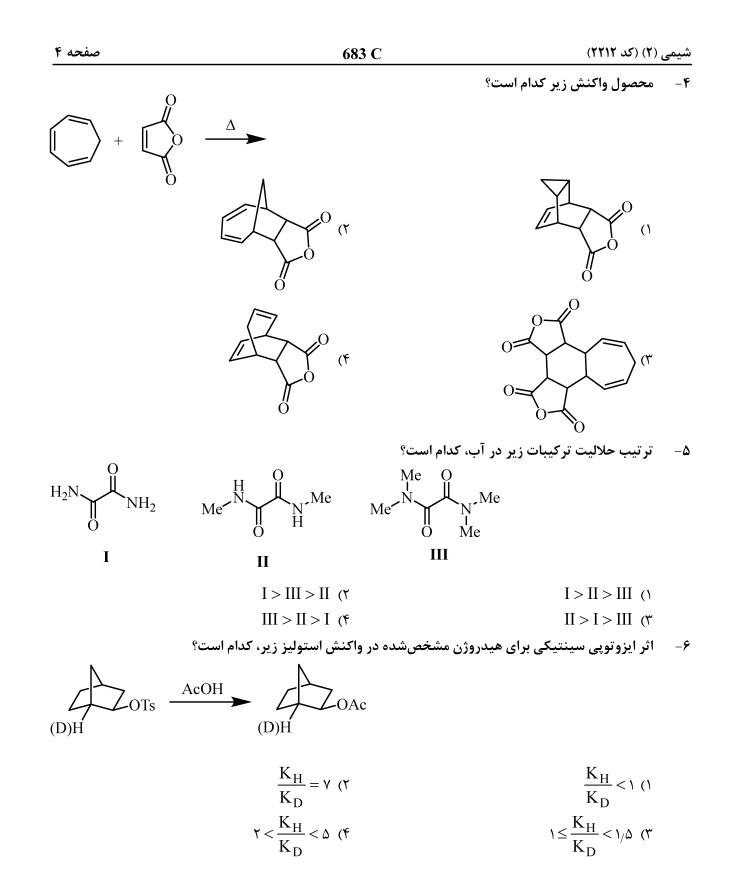
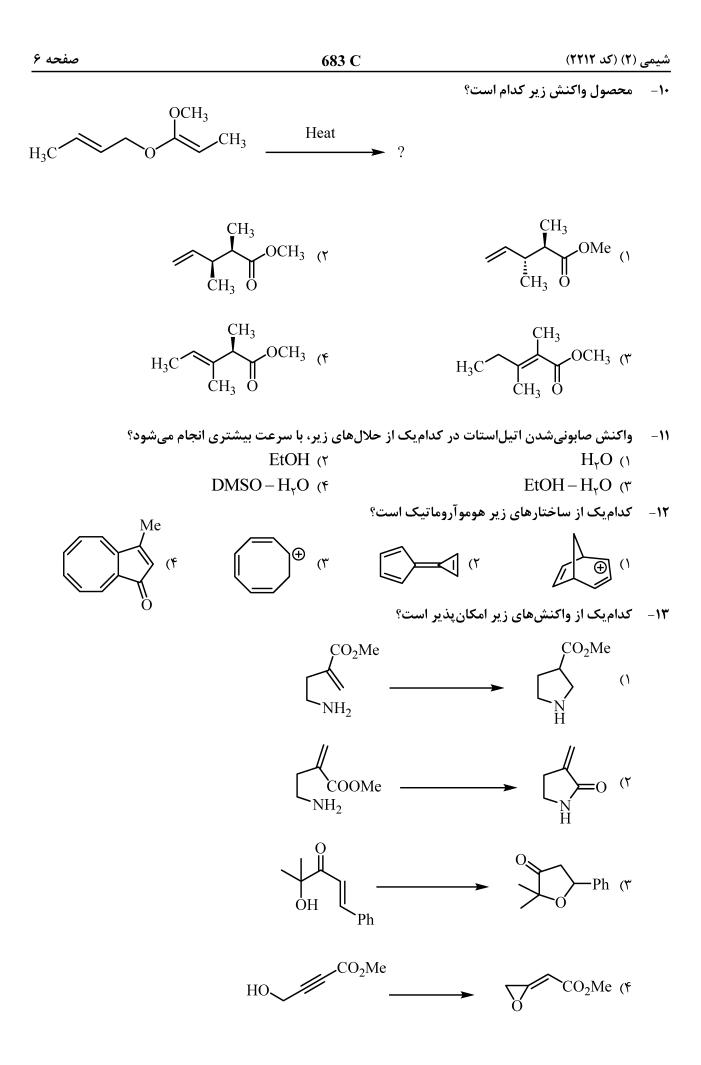

صفحه ۲	683 C	شیمی (۲) (کد ۲۲۱۲)
ضور شما در جلسه آزمون است.	و امضا در مندرجات جدول زیر، بهمنزله عدم ح	٭ داوطلب گرامی، عدم درج مشخصات
ئامل، یکسان بودن شماره صندلی	با شماره داوطلبی با آگاهی ک	اينجانب
فترچه سؤالها، نوع و کد کنترل	لای کارت ورود به جلسه، بالای پاسخنامه و ده	خود با شماره داوطلبی مندرج در با
	یین پاسخنامهام را تأیید مینمایم.	درجشده بر روی دفترچه سؤالها و پا
	امضا:	
	امضا:	


شیمی آلی پیشرفته:

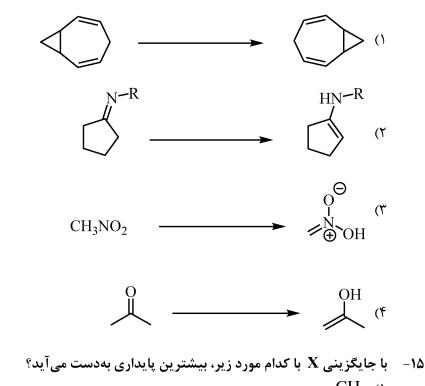

است؟
 فراورده های اصلی واکنش های متانولیز زیر کدام است؟


A:





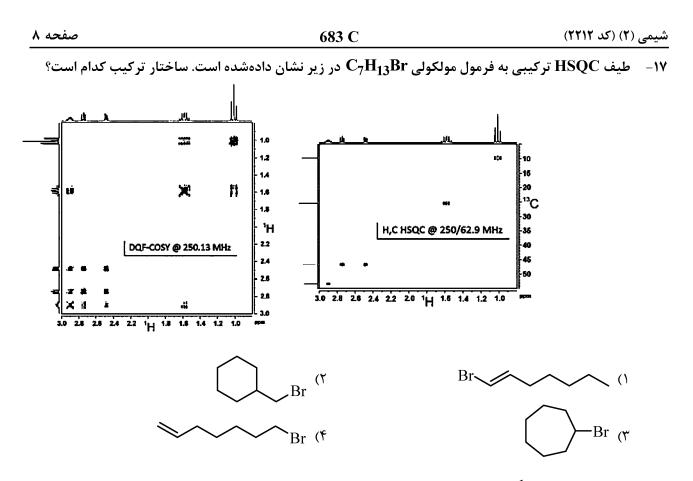
۳- برای واکنش جانشینی الکتروفیلی آروماتیک درون مولکولی که مکانیسم آن در زیر آورده شده است، معادله هامت
 از حالت خطی انحراف نشان میدهد. دلیل غیرخطی بودن رابطه هامت در کدام گزینه بهدرستی آمده است؟


صفحه ۵		683	С	ل (۲) (کد ۲۲۱۲)	شيمى
G ⊕S O	ده است؟ F>	بەدرستى نشاندادەش	و ترکیب زیر، در کدام مورد،	پایدارترین کنفورمرهای د	- Y
Cl		F			
Α	В				
Ľ	$A \overset{\Theta}{\underset{{}_{\scriptstyle 0}}{\overset{{}_{\scriptstyle 0}}{\overset{{}}}{\overset{{}_{\scriptstyle 0}}{\overset{{}}}{\overset{{}_{\scriptstyle 0}}}{\overset{{}}}{\overset{{}_{\scriptstyle 0}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}}}}$	$H \stackrel{F}{\underset{H}{\longrightarrow}} H \stackrel{F}{\underset{H}{\longrightarrow}} H (7)$		$\mathbf{B}^{\mathbf{H}} \stackrel{\mathbf{F}}{\underset{\mathbf{H}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}}{\overset{\mathbf{F}}}}}}}}}}$	
		D	Α		
L	$A \overset{\Theta}{\underset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}{\overset{{}}{\overset{{}}{\overset{{}}{\overset{{}}{\overset{{}}{\overset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}{\overset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}{\overset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}{\overset{{}}{\overset{{}}{\overset{{}}}{\overset{{}}}{\overset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}}{\overset{{}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}{\overset{{}}}}{\overset{{}}}{\overset{{}}}{}}{$	$H \bigoplus_{F}^{F} H (f)$		$\mathbf{B} = \mathbf{B} = \mathbf{B}$	
			ل هستند؟ Cl	از ترکیبات زیر کدام کایرا	- A
A	Ċl B	С	D		
		В.С (т		A .D ()	
		A .B .C (۴		B ,D ("	٥
		/	بر در دمای محیط راسمیزه م ۸۸		_ ٩
		P (7	Me	P_2C $N-OCH_3$ ()	
	\square	(۴		N-CH ₃ (r	

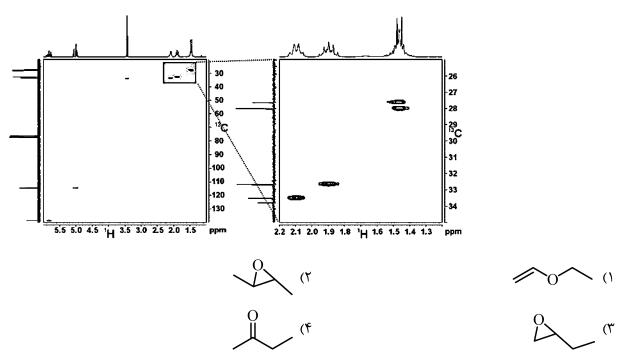
شیمی (۲) (کد ۲۲۱۲)

 $\underset{CH_2 \rightarrowtail X}{\Theta}$

14 كدام واكنش زير يك واكنش همزمان (توتومري والانس) محسوب مي شود؟


- CH₇ (1
- NH_{T} (T
- ۳) F
- ОН (۴

طیفسنجی در شیمی آلی ـ سنتز ترکیبات آلی:


۱۳- در طیف دیکلرواتان (ترکیب A) در حلال CDCl₃، طیف مربوط به ناخالصی دیکلرواتان دارای ایزوتوپ کربن-۱۳ (ترکیب B) بهصورت پیکهای با شدت پایین در دو طرف پیک مربوط به دیکلرواتان مشاهده می شود. سیستم اسپینی ترکیب (A) و ترکیب (B) در کدام گزینه به درستی آمده است؟

B

Α

- ۱۸ در طیف HNMR ترکیب۳_متیل_۲_بوتانول، پیامهای گروههای متیل به چه صورت ظاهر می شوند؟ ۱) یک پیام دوتایی (دابلت) ۳) دو پیام یکتایی (سینگلت)
- ا ست؟ H,H-COSY و HSQC ا ترکیبی به فرمول مولکولی C_4H_8O در زیر آورده شده است. ساختار ترکیب کدام است HSQC ۱۹

شیمی (۲) (کد ۲۲۱۲)

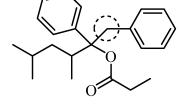
صفحه ۹

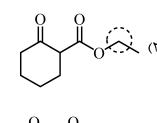
MeO

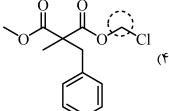
۲۰ – دادههای طیفی ¹³C NMR ترکیبی با فرمول مولکولی C₈H₈ در پایین آمده است. این دادههای با ترکیب ارائه شده در کدام گزینه تطابق دارد؟

¹³C NMR (CDCl₃, 500 MHz): δ_c 147, 138, 131, 127, 112 (ppm)

۲۱ در طیف H NMR ترکیب زیر چند پیام متمایز از هم قابل انتظار است؟

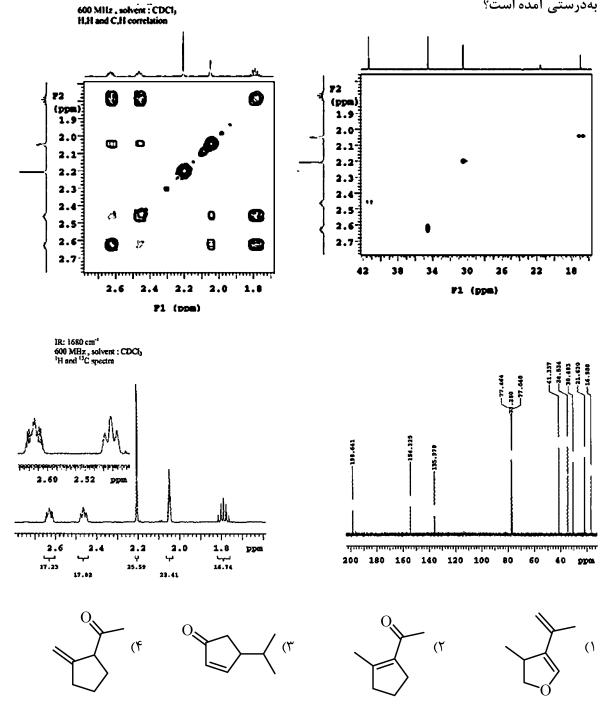


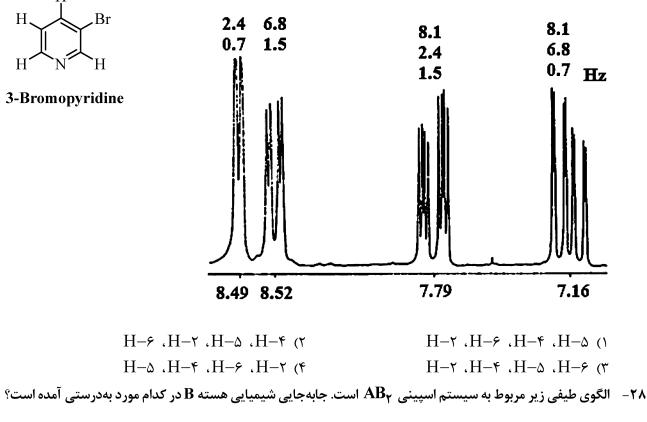

- ۹ (۳
- ()
- ۴) ۸


()

(٣

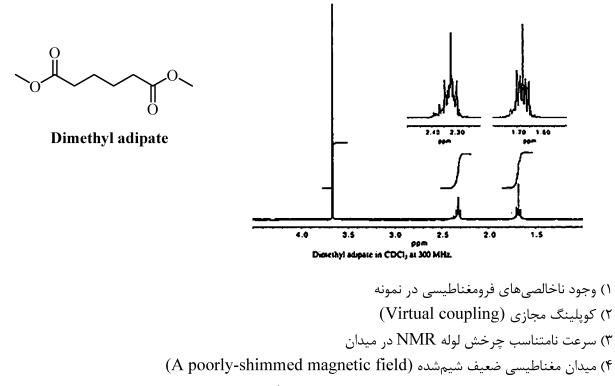
۲۲- در طیف HNMR ترکیب زیر، الگوی پیام گروه متیلن علامتگذاری شده با الگوی پیام متیلن مشخص شده در ترکیب کدام گزینه یکسان است؟



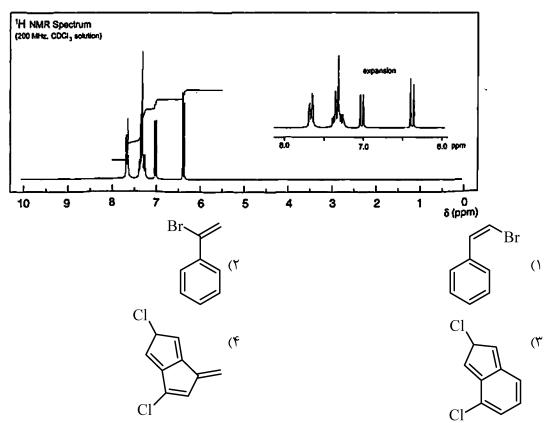


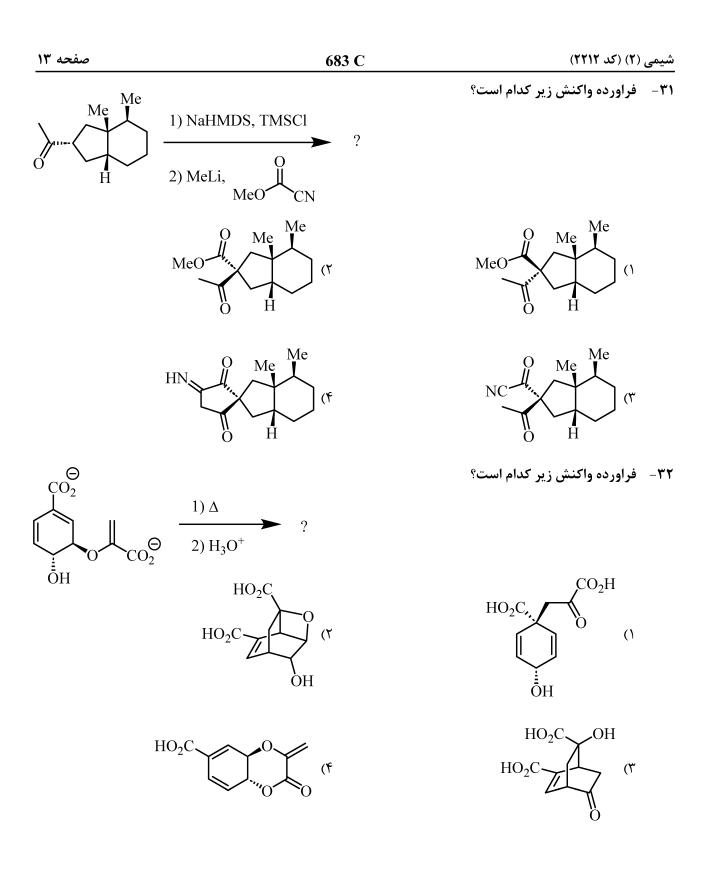
۲۳- در طیف ¹H NMR ترکیبی که فقط در ساختار خود هیدروژن و کربن به عنوان هسته های فعال مغناطیسی دارد سه پیام dd واضح، علاوهبر دیگر پیام ها ظاهر شده است. ساختار ترکیب مورد نظر کدام مورد زیر نمی تواند باشد؟
 ۱) آلکن تک استخلافی
 ۲) ایوکسید تک استخلافی
 ۳) حلقه بنزن سه استخلافی

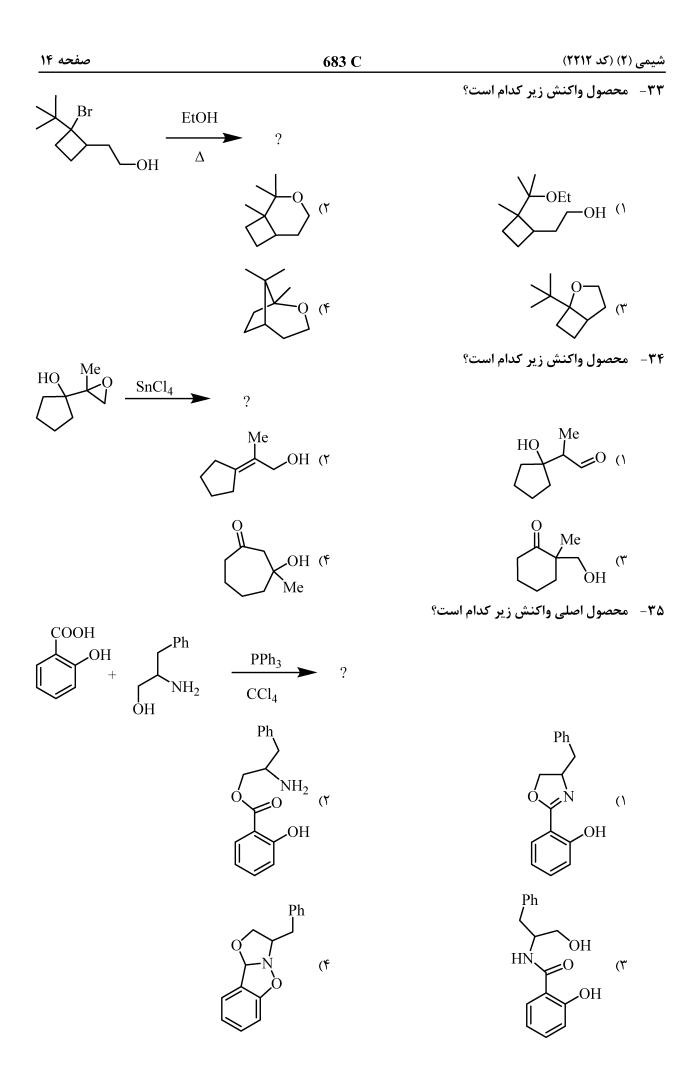
- ۲۴– در طیف ¹³C NMR ایزومری از دی متیل سیکلوهگزان در دمای اتاق سه پیام و در دمای ¹³C NMR دیده میشود. این ایزومر در کدام گزینه بهدرستی آمده است؟ ۱) ترانس−۲۰۱–دی متیل سیکلوهگزان ۲) سیس−۲۰۱–دی متیل سیکلوهگزان ۴) ترانس−۲۰۱–دی متیل سیکلوهگزان
 - ۲۵ توالی پالس برای ثبت یک طیف NMR یک بعدی در کدام مورد به درستی آمده است؟ $(\Delta T_1 - 9 \circ X' - \Delta T_1 - Echo)_n$ (۲ $(\Delta T_1 - 9 \circ X' - FID)_n$ (۱ $(\Delta T_2 - 9 \circ X' - \tau - 1 \land \circ X' - FID)_n$ (۴ $(\Delta T_1 - 1 \land \circ Y' - 9 \circ X' - FID)_n$ (۳
- ۲۶- با توجه به طیفهای زیر که مربوط به ترکیبی با فرمول مولکولی C₈H₁₂O هستند، ساختار مربوطه در کدام مورد بهدرستی آمده است؟

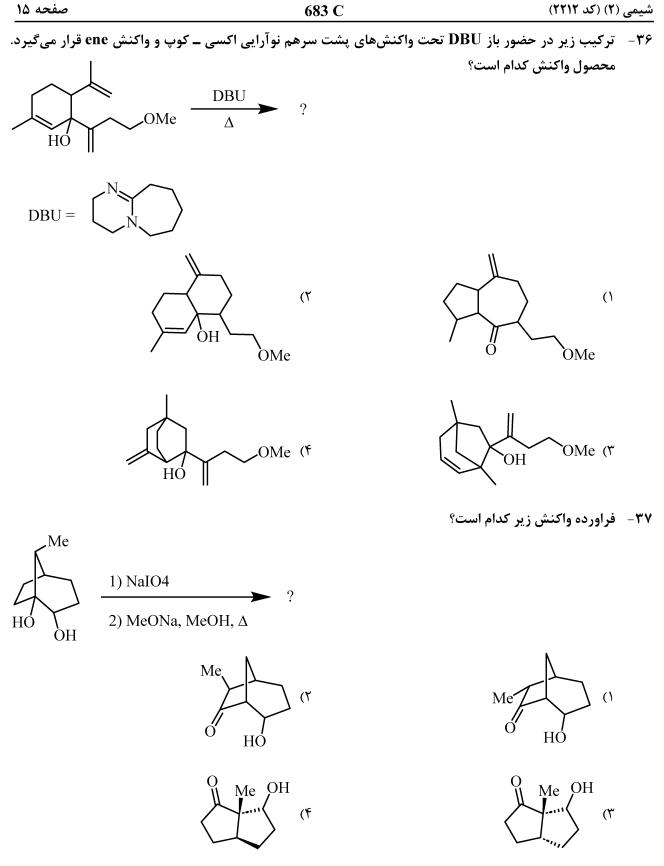


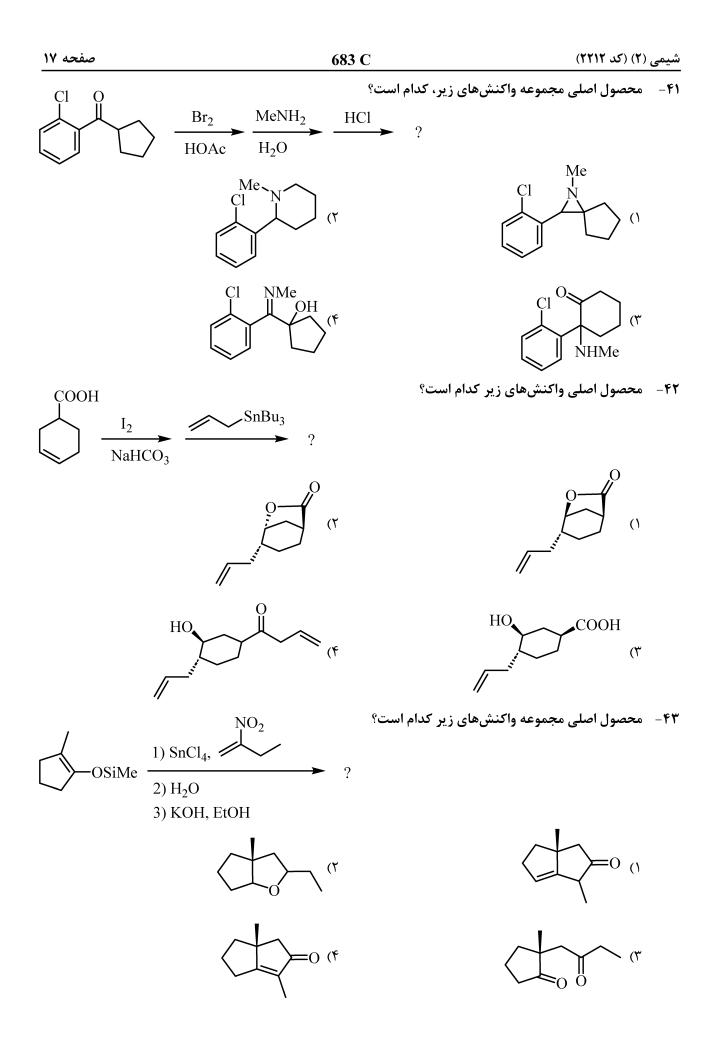
۲۷- در پایین طیف H NMR ¹ ترکیب ۳-برموپیریدین در حلال کلروفرم دوتره آورده شده است. روی هر دسته پیام ۸/۵۲ ، ۷/۷۹ ، ۷/۱۶ ثابتهای جفتشدن پروتون مربوطه نوشته شده است. برای پیامهای با جابهجایی شیمیایی ۷/۱۶ ، ۸/۵۲ ، ۸ و ۹۸/۴۹ بهترتیب از راست به چپ گمارش انجام شده در کدام مورد درست است؟





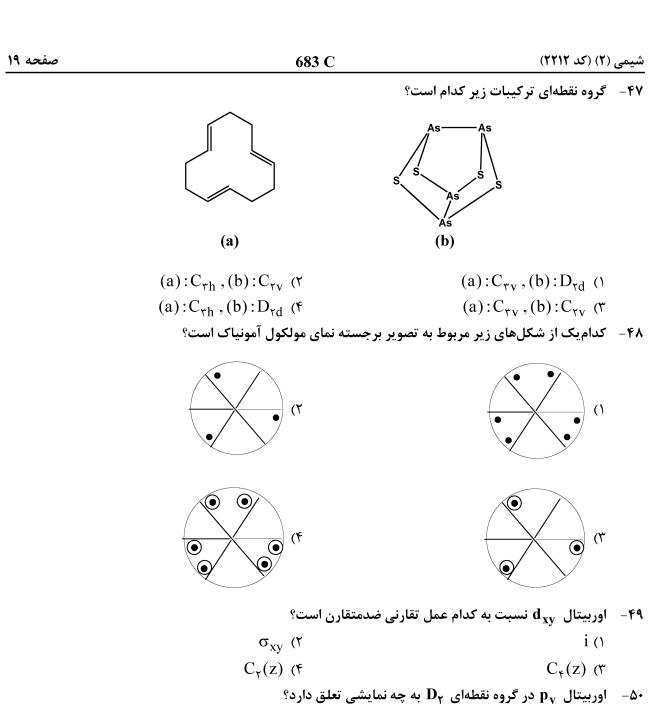

۲۹ – در پایین طیف ¹H NMR ترکیب دی متیل آدیپات در حلال کلروفرم دوتره آورده شده است. دلیل شکل پیچیده پیامهای متیلن این ترکیب، در کدام مورد بهدرستی آمده است؟


۳۰– در طیف IR ترکیبی مجهول، یک نوار جذبی متوسط در ناحیه I۶۲۰ cm^{-۱} مشهود است. از طرفی در طیف جرمی همین ترکیب مجهول، دو قله با شدت تقریباً برابر در m/zهای ۱۸۲ و ۱۸۴ رؤیت میشود. طیف H NMR ترکیب فوقالذکر در زیر آورده شده است. ساختار منطبقبر این دادههای طیفی در کدام مورد بهدرستی آمده است؟





(2212	(کد	(٢)	شيم
())))	ω ,	(1)	سيسى


صفحه ۱۶	6	83 C	شیمی (۲) (کد ۲۲۱۲)
Nał	$\frac{\text{KI, I}_2}{\text{HCO}_3} \xrightarrow{2 \text{ t-BuOK}} \frac{2 \text{ t-BuOK}}{3 \text{ OsO}_4, \text{ NMO}}$ $4 \text{ NaOH, H}_2\text{O}$ $4 \text{ mylmorpholine N-oxide}$	کنشهای زیر کدام است؟ ?	۳۸- فر آورده اصلی مجموعه وا
	HO, COOH HO ^W OH	НО НО	\uparrow \uparrow \land
	HO, COOH HO OH (*	НО	Т) (т
	$\xrightarrow{_{4}\text{NBH(OAc)}_{3}} ?$ $\xrightarrow{H}_{HO} OH (7)$	ای ترکیب زیر کدام است؟	۳۹- محصول اصلی واکنش احی OH H ⁽⁾
	OH H OH (F		OH OH ("
	$ \begin{array}{c} $		۴۰ – محصول اصلی مجموعه وا
	но (т		PhSe OH (1
	(f		но ("

شیمی معدنی پیشرفته – سینتیک – ترمودینامیک و مکانیزم واکنشهای معدنی – طیفسنجی در شیمی معدنی:

۴۶– اکسیژن الکترونگاتیوتر از نیتروژن و فلوئور الکترونگاتیوتر از سایر هالوژنها است. فلوئورید دارای میدان لیگاند قویتر از سایر هالوژنها است. فلوئورید دارای میدان لیگاند قویتر از سایر هالیدها است، اما آمونیاک میدان قویتری نسبت به آب دارد. کدام مورد درست است؟
۱) آب سیگمادهنده و پایدهنده ضعیفی است و قدرت میدان را کاهش میدهد.
۲) هالیدهای دارای الکترونگاتیوی کمتر سیگمادهنده خوب و پایپذیر ضعیفی هستند و قدرت میدان را کاهش میدهد.
۳) فلوئورید سیگمادهنده و پایپذیر خوبی است و قدرت میدان را افزایش میدهد.
۳) فلوئورید سیگمادهنده و پایپذیر خوبی است و قدرت میدان را افزایش میدهد.
۳) فلوئورید سیگمادهنده خوبی است و قدرت میدان را افزایش میدهد.

D۲	E	C ₇ (z)	C ₇ (y)	$C_{\gamma}(x)$
Α	1	١	١	١
B	1	١	-1	-1
B۲	1	-1	١	-1
B۳	1	-1	-1	١

- ۵۱ مجموعه اعمالهای تقارنی $\left\{ E\,, {
 m C}_{r}\,, \sigma_{
 m h}
 ight\}$ را در نظر بگیرید. برای تشکیل گروه نقطهای کامل، کدام اعمال تقارنی باید به این مجموعه اضافه شود و گروه نقطهای چیست؟
 - $\{ {}^{\mathsf{r}}\mathbf{C}_{\mathsf{r}}, \mathbf{C}_{\mathsf{r}}^{\mathsf{r}}, \mathbf{S}_{\mathsf{r}}, \mathbf{S}_{\mathsf{r}}^{\diamond} \}, \mathbf{D}_{\mathsf{r}h} (\mathsf{r})$ $\{ {}^{\mathsf{r}}\mathbf{C}_{\mathsf{r}}, \mathbf{C}_{\mathsf{r}}^{\mathsf{r}}, \mathbf{S}_{\mathsf{r}}^{\diamond}, {}^{\mathsf{r}}\boldsymbol{\sigma}_{d} \}, \mathbf{D}_{\mathsf{r}d} (\mathsf{r})$ $\{ {}^{\mathsf{r}}\mathbf{C}_{\mathsf{r}}, \mathbf{S}_{\mathsf{r}}, \mathbf{S}_{\mathsf{r}}^{\diamond}, {}^{\mathsf{r}}\boldsymbol{\sigma}_{d} \}, \mathbf{S}_{\mathsf{r}d} (\mathsf{r})$ $\{ {}^{\mathsf{r}}\mathbf{C}_{\mathsf{r}}, \mathbf{S}_{\mathsf{r}}, \mathbf{S}_{\mathsf{r}}^{\diamond}, {}^{\mathsf{r}}\boldsymbol{\sigma}_{d} \}, \mathbf{C}_{\mathsf{r}h} (\mathsf{r})$

شیمی (۲) (کد ۲۲۱۲)

683 C

C _{4v} (4 <i>mm</i>)	E	2 <i>C</i> 4	<i>C</i> ₂	2 <i>o</i> v	2 $\sigma_{\rm d}$
A ₁	1	1	1	1	1
A ₂	1	1	1	-1	-1
B ₁	1	$\cdot \mathbf{A}$	1	1	-1
B ₂	1	-1	1	-1	1
E	2	0	B	0	0

۵۳- در یک کمپلکس L) ML_۸ لیگاند میدان قوی تهدهنده است) با ساختار ضدمنشور مربعی که فلز آرایش d^۶ دارد، اوربیتالهای HOMO کدام است؟

> $d_{z^{\gamma}}, d_{x^{\gamma}-y^{\gamma}}$ (7) d_{xz}, d_{yz} () $d_{x^{\gamma}-y^{\gamma}}, d_{xy}$ (r d_{xz}, d_{vz}, d_{xv} (f

> > ۵۴- تقارن چرخش حول محور x در مولکول CH_vCl_v کدام است؟

C _{2v} (2mm)	Ε	C_2	$\sigma_v(xz)$	σ', (yz)
A ₁	1	1	1	1
A ₂	1	1	-1	-1
B ₁	1	-1	1	-1
B ₂	1	-1	-1	1

۵۵ – کدامیک از کمپلکسهای زیر فعال نوری است؟ A) cis $- \left[Co(en) Cl_{\gamma} (NH_{\gamma})_{\gamma} \right]^+$ A, B, C, D () B) $\left[Pt(NH_{\tau})(py)ClBr \right]$ A, C, D (7 C) cis $- \left[Co(en)_{\tau} (NH_{\tau})_{\tau} \right]$ B, D (" D) $\left[Ni(NH_{\tau})(py)ClBr \right]$ A.C (f ۵۶- جمله طیفی حالت پایه در کمپلکسهای ^۲ [NiCl_۴] و ^۲ [PtCl_۴] کدام است؟ $[\operatorname{NiCl}_{\mathfrak{f}}]^{\mathsf{T}-}: {}^{\mathsf{T}}\mathrm{T}_{1} , [\operatorname{PtCl}_{\mathfrak{f}}]^{\mathsf{T}-}: {}^{\mathsf{N}}\mathrm{A}_{\mathrm{lg}}$ (1) $\left[\operatorname{NiCl}_{\mathfrak{F}}\right]^{\mathsf{r}-}: \, {}^{\mathsf{r}}\operatorname{T}_{\mathsf{v}} \left[\operatorname{PtCl}_{\mathfrak{F}}\right]^{\mathsf{r}-}: \, {}^{\mathsf{r}}\operatorname{T}_{\mathsf{v}_{\mathcal{G}}} \, \left(\mathsf{r}\right)$ $[\operatorname{NiCl}_{\mathfrak{f}}]^{\mathsf{f}-}: {}^{\mathsf{h}}A_{\mathsf{f}}, [\operatorname{PtCl}_{\mathfrak{f}}]^{\mathsf{f}-}: {}^{\mathsf{h}}A_{\mathsf{h}\sigma}$ (7) $[\operatorname{NiCl}_{\mathfrak{f}}]^{\mathsf{r}-}: {}^{\mathsf{r}}A_{\mathsf{r}}, [\operatorname{PtCl}_{\mathfrak{f}}]^{\mathsf{r}-} {}^{\mathsf{r}}T_{\mathsf{vg}}$ (f ۵۷- کدام آرایش الکترونی زیر، جمله یون آزاد ^۳H را شامل می شود؟ p^f (r d^r (r d[¢] (¢ f' () ۵۸ – کدامیک از جهشهای زیر در کمیلکسهای فلزات واسطه شدت بیشتری دارند؟ $^{\mathsf{r}}A_{\mathsf{r}} \rightarrow ^{\mathsf{r}}T_{\mathsf{r}}$ () $^{\mathsf{r}}A_{\mathsf{r}\sigma} \rightarrow {}^{\mathsf{r}}T_{\mathsf{r}\sigma}$ (7) $T_{1} \rightarrow T_{1}$ (r $^{\gamma}T_{\gamma\sigma} \rightarrow T_{\gamma\sigma}$ (f

Telegram: @uni_k

 $A = -\gamma, B = \gamma \gamma$ $A = \gamma, B = -\gamma$ (γ $A = \gamma, B = \gamma$ (r

 $A = -\gamma$, $B = -\gamma$ (f

در جدول زیر کاراکترهای A و B عبار تند از: $-\Delta t$

683 C

۵۹ جمله طیفی حالت پایهٔ کدامیک از آرایشهای الکترونی زیر در میدان هشت وجهی، A_{1g} است؟ $t_{\gamma g}^{\dagger}$ (high spin) (7 $t_{\gamma g}^{f}$ (low spin) () $t_{\gamma g}^{\beta}(\text{low spin})$ (f $t_{\gamma g}^{\prime}$ (high spin) (r ۶۰ در نمودار اوربیتال مولکولی زیر برای کمپلکس $\mathrm{Cr}(\mathrm{CO})_{s}$ ، شکافتگی میدان بلور با فاصله کدام اوربیتالها مطابقت دارد؟ $e_g \rightarrow t_{\gamma g}$ () Ligand group Metal orbitals $t_{\gamma g} \rightarrow e_g^{*}$ (7 $e_g^* \rightarrow t_{\gamma g}^*$ (r t₂₄' $t_{\gamma g} \rightarrow t_{\gamma g}^{*}$ (f t₁₆, t₂₆, t₁₀, t₂₀ e, t2g t_{1u} e, a,, e,

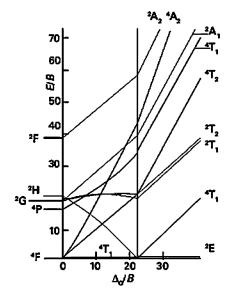
۶۱ – مکانیسم واکنش ⁺k_1 → ۲Fe^{T+} + Tl^{T+} → ۲Fe^{T+} + Tl به صورت زیر میباشد. با فرض k₋₁ ≪ k₁ ≫ درست است؟

$$\begin{aligned} \mathbf{F}\mathbf{e}^{\mathsf{r}+} + \mathbf{T}\mathbf{I}^{\mathsf{r}+} & \xleftarrow{\mathbf{k}_{1}} \mathbf{F}\mathbf{e}^{\mathsf{r}+} + \mathbf{T}\mathbf{I}^{\mathsf{r}+} \\ \mathbf{F}\mathbf{e}^{\mathsf{r}+} + \mathbf{T}\mathbf{I}^{\mathsf{r}+} & \xleftarrow{\mathbf{k}_{T}} \mathbf{F}\mathbf{e}^{\mathsf{r}+} + \mathbf{T}\mathbf{I}^{\mathsf{r}+} \\ & d\Big[\mathsf{T}\mathsf{I}^{\mathsf{r}}\Big]/d\mathsf{t} = k\Big[\mathsf{F}\mathsf{e}^{\mathsf{r}+}\Big]\Big[\mathsf{T}\mathsf{I}^{\mathsf{r}+}\Big]/\Big[\mathsf{F}\mathsf{e}^{\mathsf{r}+}\Big] (\mathsf{I} \\ & d\Big[\mathsf{T}\mathsf{I}^{\mathsf{r}+}\Big]/d\mathsf{t} = k\Big[\mathsf{F}\mathsf{e}^{\mathsf{r}+}\Big]\Big[\mathsf{T}\mathsf{I}^{\mathsf{r}+}\Big]/\Big[\mathsf{F}\mathsf{e}^{\mathsf{r}+}\Big] (\mathsf{r} \\ & d\Big[\mathsf{T}\mathsf{I}^{\mathsf{r}+}\Big]/d\mathsf{t} = k\Big[\mathsf{F}\mathsf{e}^{\mathsf{r}+}\Big]^{\mathsf{r}}\Big[\mathsf{T}\mathsf{I}^{\mathsf{r}+}\Big]/\Big[\mathsf{F}\mathsf{e}^{\mathsf{r}+}\Big] (\mathsf{r} \\ & d\Big[\mathsf{T}\mathsf{I}^{\mathsf{r}+}\Big]/d\mathsf{t} = k\Big[\mathsf{F}\mathsf{e}^{\mathsf{r}+}\Big]^{\mathsf{r}}\Big[\mathsf{T}\mathsf{I}^{\mathsf{r}+}\Big]/\Big[\mathsf{F}\mathsf{e}^{\mathsf{r}+}\Big] (\mathsf{r} \\ & d\Big[\mathsf{T}\mathsf{I}^{\mathsf{r}+}\Big]/d\mathsf{t} = k\Big[\mathsf{F}\mathsf{e}^{\mathsf{r}+}\Big]^{\mathsf{r}}\Big[\mathsf{T}\mathsf{I}^{\mathsf{r}+}\Big]/\Big[\mathsf{F}\mathsf{e}^{\mathsf{r}+}\Big] (\mathsf{r} \\ & e^{\mathsf{r}+} \\ &$$

شیمی (۲) (کد ۲۲۱۲)

و ثابت تعادل $r_{10}^{-7} = k_{obs} = \delta/80 \times 10^{-6} \, \mathrm{s}^{-1}$ و ثابت تعادل $r_{10}^{-7} \times 10^{-7}$ است. گزینه درست کدام است? –98

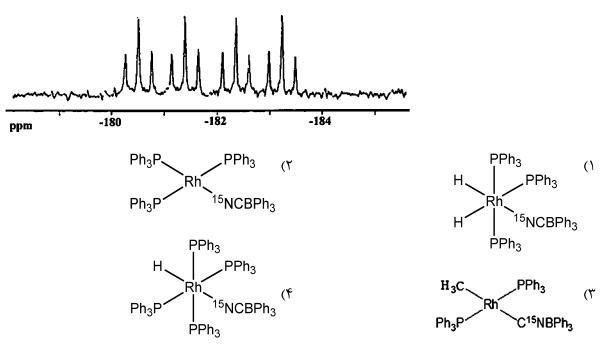
 $PhCH = CH_{\gamma} + H_{\gamma}O \xleftarrow{k_{\gamma}} PhCH(OH) CH_{\gamma}$ $k_{\gamma} = \gamma \tau_{\gamma} \gamma \times \gamma \circ^{-\gamma}$ (1) $\mathbf{k}_{-1} = \mathbf{17}/\mathbf{7} \times \mathbf{10}^{-\mathbf{7}}$ (7 $k_{-1} = \Delta/\Delta \times 10^{\circ}$ (f $k_1 = \Delta/\Delta \times 10^{-\Delta}$ (r **۶۴ محصول واکنش زیر کدام است؟** $\left| \begin{array}{c} Cl & \xrightarrow{1 \text{ NI} 13} \\ 0 & \xrightarrow{1 \text{ NI}$ $\begin{bmatrix} NH_3 \\ I \\ CI - Pt - NO_2 \end{bmatrix}^{-} (7)$ $\begin{vmatrix} O_2 N - Pt - NO_2 \end{vmatrix}$ (1) $\begin{bmatrix} NO_2 \\ | \\ Cl - Pt - NO_2 \\ | \\ | \\ Cl - Pt - NO_2 \end{bmatrix}^2$ ۶۵- در واکنش بنیادی B+C o B+C با نصف کردن غلظت ترکیب A، سرعت واکنش و زمان نیمهعمر بهترتیب از راست به چپ چند برابر خواهد شد؟ 4.7 (4 $\Upsilon, \frac{1}{r}, \frac{1}{r}$ ۶۶- در واکنش جانشینی زیر، حضور کدام گروه X منجر به بیشترین سرعت خواهد شد? $[Pt(dien)X]^+ + py \rightarrow [Pt(dien)py]^{\gamma+} + X^ (Rate = (k_1 + k_7[py])[Pt(dien)X]^+$ Cl⁻ (۴ CN^{-} (" NO_{r}^{-} (" SCN⁻ () ۶۷- سرعت واکنش حذف کاهشی (تولید اتان) از کمپلکس (Pd(II، در کدام ترکیب بیشتر است؟ Pd () Ph₃P—Pd—PPh_{3 (}^{Me} Me Me Ph₃P—Pd—Me (f MePh₂P—Pd—Me PPh₂Me


اطلاعات داده شده، کدام مورد درست است؟

 $Ph_{\gamma}CHCl \xleftarrow{k_{\gamma}}{} Ph_{\gamma}CH^{+} + Cl^{-}$ $\frac{d\left[Ph_{\gamma}CHOH\right]}{dt} = \frac{\alpha\left[Ph_{\gamma}CHCI\right]}{\beta+\left[CI^{-}\right]}$ $Ph_{\gamma}CH^{+} + H_{\gamma}O \xrightarrow{k_{\gamma}} Ph_{\gamma}CHOH$ $\alpha = k_{\tau} / k_{-1}$ $\beta = k_1 / k_{-1}$ (r $\alpha = k_1 k_{\tau} / k_{-1}$ (" $\beta = k_1 k_7 / k_{-1} \quad (\mathbf{f})$ ۶۹ ثابت سرعت واکنش انتقال الکترونِ کدام کمپلکس فلزی با کمپلکس ^{۲+۲} _م[Cr(H_YO) بیشتر است؟ $\left\lceil C\ell Co(NH_{\tau})_{\Lambda} \right\rceil^{\tau+} (\tau)$ $\left[FCo(NH_{\tau})_{\lambda} \right]^{\tau+}$ (1) $\left[(SCN)Co(NH_r)_{A} \right]^{r+}$ (r $\left[(Py)Co(NH_{r})_{\lambda} \right]^{r+}$ (* اکستنش جانشیینی آب در کمیپلکس $\left[Mn(CO)_{\mu}(H_{\gamma}O)_{\mu} \right]^{+}$ واکینش جانشیینی آب در مقایسیه بیا کم ابسیار سریع تیر رخ میں دہید. تغییرات حجیم فعیال سازی Re(CO) $_{\pi} \left(\mathrm{H_{Y}O}
ight)_{\pi}
ight]^{+}$ -۵٫۴±۰٫۴ cm[°]mol^{-۱} مے باشد. همچنین، کمیلکس منگنز ارتعاشات کششے CO را در نواحی ۱۹۴۴ cm^{-۱} و ۲۰۵۱ نشان میدهد. نوع مکانیسم پیشنهادی و ایزومری کمپلکس کدام است؟ , fac _ ایزومر D/Id (۲ mer _ L/ I_d (۱ _ ایزومر mer ايزومر A/Ia (۴ fac ايزومر A / Ia (۳ اثر تغییر لیگاند ترانس از H⁻ به Cl⁻ و تغییرگروه ترک شونده از Cl⁻ به I⁻ بر سرعت واکنش جانشینی کمیلکس -71 مربع مسطح به ترتيب از راست به چپ کدام است؟ ۱) کاهش ـ کاهش ۲) کاهش _ افزایش ۳) افزایش _ افزایش ۴) افزایش _ کاهش المسرعت واکنش $\int^{\pi+} \left[\operatorname{Co}(\operatorname{NH}_{\pi})_{A}(\operatorname{H}_{7}\operatorname{O}) \right]^{\pi+} \left[\operatorname{Co}(\operatorname{NH}_{\pi})_{A}(\operatorname{H}_{7}\operatorname{O}) \right]^{\pi+}$ (OH) (واکنش۲) است. مکانیسم واکنشها کدام است؛ $\left[\operatorname{Co}(\operatorname{NH}_{\operatorname{W}})_{\operatorname{A}} \left(\operatorname{OH} \right) \right]^{\mathsf{T}+1}$ داخلی (۱): انتقال الکترون کره خارجی _ واکنش (۲): انتقال الکترون کره داخلی ٢) واكنش (١): انتقال الكترون كره داخلي _ واكنش (٢): انتقال الكترون كره خارجي ۳) واكنش (۱): انتقال الكترون كره داخلى _ واكنش (۲): انتقال الكترون كره داخلى ۴) واكنش (۱): انتقال الكترون كره خارجى _ واكنش (۲): انتقال الكترون كره خارجى Telegram: @uni_k

683 C

۶۸- برای واکنش ⁺Ph_YCHCl + H_YO → Ph_YCHOH + Cl⁻ + H، معادله سرعت بهصورت زیر است. با توجه به


- ۷۷- با استفاده از نمودار تانابه ـ سوگانو (در زیر) برای آرایش d^۷، اولین جهش الکترونی مجاز در ناحیه میدان قوی برای
 - کمپلکس $\mathbf{CoL}_{\varphi}^{\mathsf{r}+}$ کدام است؟ ${}^{\mathsf{r}}\mathbf{T}_{\mathsf{l}} \rightarrow {}^{\mathsf{r}}\mathbf{T}_{\mathsf{r}}$ () ${}^{\mathsf{r}}\mathbf{E} \rightarrow {}^{\mathsf{r}}\mathbf{T}_{\mathsf{l}}$ (${}^{\mathsf{r}}\mathbf{E} \rightarrow {}^{\mathsf{r}}\mathbf{T}_{\mathsf{l}}$ (${}^{\mathsf{r}}\mathbf{E} \rightarrow {}^{\mathsf{r}}\mathbf{T}_{\mathsf{l}}$ (${}^{\mathsf{r}}\mathbf{T}_{\mathsf{l}} \rightarrow {}^{\mathsf{r}}\mathbf{E}$ (${}^{\mathsf{r}}\mathbf{T}_{\mathsf{l}} \rightarrow {}^{\mathsf{r}}\mathbf{E}$

(acac = acetylacetonate) مفید رنگ است $WO_{\gamma}(acac)_{\gamma} = WO_{\gamma}(acac)_{\gamma}$ سفید رنگ است (MoO_γ(acac) - ۷۸ اختلاف رنگ این دو ترکیب ناشی از چیست؟ (۱) جهش الکترونی در کمپلکس $WO_{\gamma}(acac)_{\gamma} = WO_{\gamma}(acac)_{\gamma}$ کم

۲) شدت جهش الکترونی در $P_{\gamma}(acac)_{\gamma}$ کمتر از شدت جهش الکترونی در $MoO_{\gamma}(acac)_{\gamma}$ است. ۲) شدت جهش الکترونی در کمپلکس $WO_{\gamma}(acac)_{\gamma}$ کمتر از شدت جهش الکترونی در $MoO_{\gamma}(acac)_{\gamma}$ مجاز است. ۳) جهش الکترونی در کمپلکس $MoO_{\gamma}(acac)_{\gamma}$ و در $MoO_{\gamma}(acac)_{\gamma}$ کمانرژی تر است.

 $(I_{Rh} = I_{15_N} = I_P = \frac{1}{2})$ طيف NMR طيف ^{15}N MMR طيف -۷۹

683	C
683	C

مشاهده شده است که در ترکیباتی از نوع $H = H = CH_{\mu} - Hg$ ثابت جفت شدن $H = Hg^{199} Hg^{-1}$ بستگی زیادی به ماهیت استخلاف X دارد. کدام توضیح در مورد این مشاهده درست است?

X	^r J _{Hg-H} (Hz)
CH۳	104
Ι	Y 0 0
Br	TIT
Cl	212
ClO _F	۲۳۳

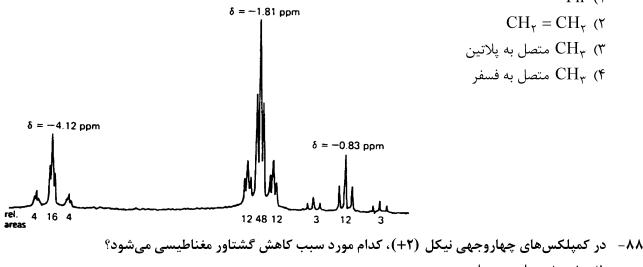
۱) با افزایش خصلت p اوربیتال هیبرید ارتباطدهنده دو اتم جفتشونده، ثابت جفت شدن افزایش می یابد.

- ۲) با توجه به حساس بودن J_{Hg-H} به فاصله بین دو اتم جفتشونده مقدار ثابت جفتشدگی به اندازه X بستگی دارد. ۳) مقدار ثابت جفتشدگی در طیفسنجی NMR به خصلت s اوربیتالهای هیبرید ارتباط دهنده دو اتم جفتشونده بستگی دارد.
- ۴) با افزایش الکترونگاتیوی X، خصلت s اوربیتال هیبرید در پیوند Hg X افزایشیافته و منجر به افزایش مقدار ثابت جفتشدگی در Hg-H می شود.
 - نمودار اوربیتال مولکولی π ناشی از اوربیتالهای P_z در $\overline{P_{\sigma}}$ و جدول کاراکتر آن بهصورت زیر است: a_2

$ \begin{array}{c} D_{3h} \\ (\overline{6})m2 \end{array} $	Ε	2 <i>C</i> ₃	3 <i>C</i> ₂	Ծհ	2 <i>S</i> 3	3σ _v		
Aí	1	1	1	1	1	1		$x^2 + y^2, z^2$
A'2	1	1	-1	1	1	-1	Rz	
E'	2	-1	0	2	-1	0	(x, y)	$(x^2-y^2, 2xy)$
A	1	1	1	-1	-1	-1		
A [*] 2	1	1	-1	-1	-1	1	Z	
Е″	2	-1	0	-2	1	0	(R_x, R_y)	(xy, yz)

با توجه به اینکه در این یون $a_{7}^{\prime} + YE' + A_{1}^{\prime} + YE' + A_{7}^{\prime}$ است، کدام جهش الکترونی مجاز است؟ ۱) $a_{7}^{\prime} \to e_{7}^{\prime}$ بهصورت خالص و بدون جفت شدن ارتعاشی مجاز است. ۲) $a_{7}^{\prime} \to a_{7}^{\prime} + a_{7}^{\prime}$ بمصورت خالص و بدون جفت شدن ارتعاشی مجاز است. ۳) هر دو جهش بهصورت خالص و بدون جفت شدن ارتعاشی مجاز است. ۴) $a_{7}^{\prime} \to a_{7}^{\prime}$ با جفت شدن با شیوه ارتعاشی A_{1}^{\prime} انجام می شود.

683 C


شیمی (۲) (کد ۲۲۱۲)

PEt₃

۸۶- محصول واکنش کمپلکس FT-IR ₍CO)(Cl)(PEt_۳) با H_۲ دارای دو نوار کششی Ir-H در FT-IR و یک رزونانس فسفر در ۳۱**P NMR** است. این محصول کدام است؟ PEt₃

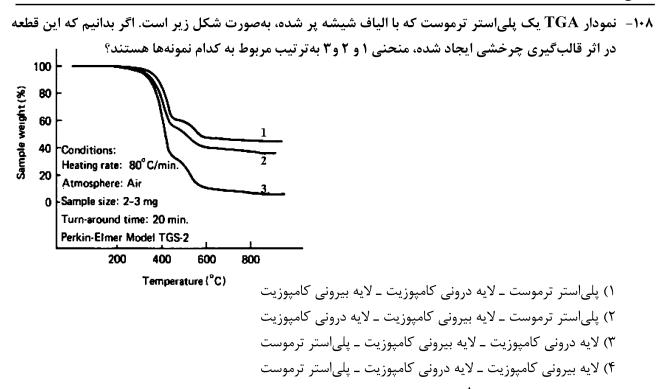
> PEt₃ PEt₃ |

 $\begin{array}{c} \begin{array}{c} \underset{P \in t_{3} \\ P \in t_{3} \end{array}}{\overset{H}{\underset{H}{\longrightarrow}}} \stackrel{CO}{\underset{Cl}{\longrightarrow}} (f \\ \begin{array}{c} \underset{P \in t_{3} \\ P \in t_{3} \end{array}}{\overset{H}{\underset{P \in t_{3}}{\longrightarrow}}} \stackrel{H}{\underset{P \in t_{3}}{\longrightarrow}} \stackrel{H}{\underset{P \in t_{3}}{\longrightarrow}} \stackrel{H}{\underset{P \in t_{3}}{\longrightarrow}} \stackrel{CO}{\underset{Cl}{\longrightarrow}} (\pi \\ \begin{array}{c} \underset{P \in t_{3} \\ P \in t_{3} \end{array}}{\overset{H}{\underset{P \in t_{3}}{\longrightarrow}}} \stackrel{CO}{\underset{Cl}{\longrightarrow}} (\pi \\ \begin{array}{c} \underset{P \in t_{3} \\ P \in t_{3} \end{array}}{\overset{H}{\underset{P \in t_{3}}{\longrightarrow}} \stackrel{CO}{\underset{P \in t_{3}}{\longrightarrow}} (\pi \\ \begin{array}{c} \underset{P \in t_{3} \\ P \in t_{3} \end{array}}{\overset{H}{\underset{P \in t_{3}}{\longrightarrow}} \stackrel{H}{\underset{P \in t_{3}}{\longrightarrow}} \stackrel{H}{\underset{P \in t_{3}}{\longrightarrow}} \stackrel{H}{\underset{P \in t_{3}}{\longrightarrow}} \stackrel{H}{\underset{P \in t_{3} \\ P \in t_{3} \end{array}} \stackrel{H}{\underset{P \in t_{3} \\ P \in t_{3} \\ P \in t_{3} \end{array}} \stackrel{H}{\underset{P \in t_{3} \\ P \in t_{$

۱) جفت شدن اسپین ـ اوربیت ۲) اختلاط حالت پایه و برانگیخته ۳) وارد شدن سهم اوربیتالی در گشتاور مغناطیسی ۴) انحراف از حالت چهاروجهی و مخلوط شدن سهم مسطح مربع 683 C

۸۹- دو طیف F NMR زیر در دو دمای ۲۲- و ۱۴۳- درجه سانتی گراد ثبت شدهاند. این دو طیف مربوط به کدام مولکول زیر هستند؟ $J_{\rm EP} = 1048 \, {\rm Hz}$ PFA (1 $\mathbf{T} = -\mathbf{T}\mathbf{T}^{\mathbf{o}}\mathbf{C}$ PCl_vF_r (7 PCl_rF_r (" PCl_eF (* Downfield Upfield (a) $J_{FP} = 1048 \text{ Hz}$ $J_{\rm FP} = 1048 \, {\rm Hz}$ $J_{\rm FF} = 124 \, {\rm Hz}$ $J_{FF} = 124 \text{ Hz}$ T=-142°C Downfield Upfield **(b)** ترتیب درست انرژی اتصال C(1s) گونههای زیر، کدام است? _٩٠ $CF_{\epsilon} < CH_{\tau}OH < CO_{\tau} < CH_{\epsilon}$ () $CH_{\epsilon} < CH_{\mu}OH < CO_{\mu} < CF_{\epsilon}$ (7) $CH_{\epsilon} < CO_{\tau} < CH_{\tau}OH < CF_{\epsilon}$ (7) $CH_{\epsilon} < CH_{\tau}OH < CF_{\epsilon} < CO_{\tau}$ (* شیمیفیزیک پلیمرها ـ شناسایی و تکنولوژی پلیمر ـ شیمی و سینتیک پلیمر شدن: ۹۱ – با افزایش پلیمرها بهعنوان اصلاح کننده ویسکوزیته در روغن موتور اتومبیل، با افزایش دما، کاهش محسوس ویسکوزیته، خوردگی و اصطکاک بین قطعات مشاهده می شود. استفاده از کدام پلیمر یا کوپلیمر این مشکل را حل می کند؟ ۱) همویلیمر یلی استایرن

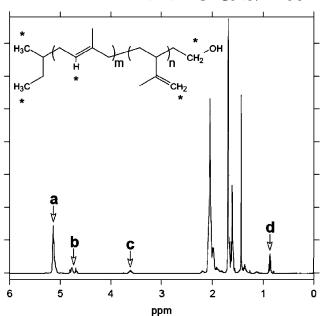
- ۲) هموپلیمر پلیایزوپرن
- ۳) کوپلیمر دستهای پلیاستایرن ـ پلیاتیلن
- ۴) كوپليمر دستەاي پلىاتيلن ـ پلىمتيلمتاكريلات ـ پلىاتيلن
- ۹۲- با افزایش وزن مولکولی در پلیمرها، کدام مورد اتفاق میافتد؟ () ایس کار کرد است کار است از ایس از می از ایس کار است است است است ا
- ۱) استحکام کششی و مدول سریعاً کاهش و کرنش تا نقطه پارگی افزایش مییابند تا به یک ناحیه مستقل از وزن مولکولی برسند.
 - ۲) استحکام کششی، مدول و کرنش تا نقطه پارگی به سرعت افزایش مییابند تا به یک ناحیه مستقل از وزن مولکولی برسند. ۳) استحکام کششی، مدول و کرنش تا نقطه یارگی با سرعت ثابت افزایش می یابند.
 - ۴) استحکام کششی، مدول و کرنش تا نقطه پارگی ثابت مانده و هیچ تغییری نمی کنند.


صفحه ۳۰	683 C	(۲) (کد ۲۱۲۲)	شيمى
		کدام مورد، نادرست است؟	-۹۳
	ه است ولی پلیاتیلن رفتار چکشخوار دارد.	۱) پارافین جامدی با رفتار شکنند	
وند.	برن و متانول بهعنوان ضدحلال آن بهکار میر	۲) تولوئن بەعنوان حلال پلىاستاي	
یش مییابند.	. پلیمری و شعاع ژیراسیون زنجیرهای آن افزای	۳) با افزایش دما، حجم یک قطعه	
صد آمورف بيشتر است.	ب نسبت به Tg همان پلیمر درحالت صد در ۰	۴) Tg یک پلیمر نیمەبلورین اغل	
بگر نزدیک شوند، نوع این سامانه(ها)	دال (Spinodal) با افزایش حلالیت به یکدی	اگر ترکیب درصد دو فاز اسپینود	-94
ست؟	ی فشار بر این سامانه(ها) در دمای ثابت چیس	از نظر ترمودینامیکی و اثر افزایش	
U _ کاهش سازگاری	سازگاری LCST (۲ و CST	۱) LCST و UCST ـ افزایش	
ں یا افزایش ساز <i>گ</i> اری	ازگاری UCST (۴ _ کاهش	۳) LCST _ کاهش یا افزایش س	
د. نقاط A تا D، به تر تیب از راست به	، وزن مولکولی پلیمری نوعی را نشان میده	شکل زیر نمودار فراوانی برحسب	-۹۵
D	ط وزن مولکولی هستند؟	چپ نشاندهنده کدام نوع متوس	
$ \wedge $	ﻧﻰ	M_w : وزن مولکولی متوسط وزن	
	دى	M _n : وزن مولکولی متوسط عد	
	لكوزيته	M _v : وزن مولکولی متوسط ویس	
		Z وزن مولکولی متوسط M _z	
M _n .M	$M_{ m w}$, $M_{ m v}$, $M_{ m z}$ (Y	$\mathrm{M_n}$, $\mathrm{M_z}$, $\mathrm{M_w}$, $\mathrm{M_v}$ ()	
М _п .М	$I_v \cdot M_w \cdot M_z$ (f	M_z , M_v , M_w , M_n (r	
يسكوالاستيك پليمرها است، پليمرها	نمودار (مدول ــ دما) که نشاندهنده رفتار و	در کدام ناحیه از نواحی پنجگانه	-96
	وت خوبی بهکار میروند؟	عموماً بهعنوان جاذب شوک و ص	
ىتىكى	۲) ناحیه مسطح لاس	۱) ناحیه شیشهای	
بژگی ندارند.	۴) پلیمرها چنین وی	۳) ناحیه انتقال شیشهای	
مقداری ثابت است و تنها	ىريب سختى پليمر (C_{\infty}) براى پليمرهاى	مقادیر پارامتر ممانعت (σ ^۲) و ض	-۹۷
		با تغییر حلال،می	
ں	۲) غیرقطبی _ کاهش	۱) قطبی ـ افزایش	
	۴) غیرقطبی ـ تغییر	۳) قطبی _ تغییر	
و در حلال $a = 0/0$ و $k = 10/7$	ه در حلال بنزن (℃C) دارای ^{6−} ۱۰×	وزن مولکولی پلیایزوبوتیلن ک	-۹۸
	و $a = \circ/9$ است، برابر $k = rv/9 \times 10^{-4}$		
		این پلیمر کدام است؟	
	٣/۴ (٢	بینی پیشر عدم (سعت) ۴٫۲ (۱	
	τ _/ Δ (۴	Ψ (٣	
، د د. ست است؟	۶۴ کالری بر سانتیمترمکعب است. کدام مو		_99
	۲۰٫۲ کارمی بر سامی سر سامی می میک می می رای با مشخصه حلالیت ۸ (جذر کالری بر سان	_	••
	ربی به مساعیه کردید ۲۰ بعد کاری بر سانتی مترمک شخصه حلالیت ۸ (جذر کالری بر سانتی مترمک	4	
	شخصه حلالیت ۶۴ (کالری بر سانتیمترمکعب	-	
	ه حلالیت ۸ (جذر کالری بر سانتیمترمکعب)		
		۲) میں چینگر در معربی ب ² منتظ	

683 C

(22)2	(۲) (کد	شیمی

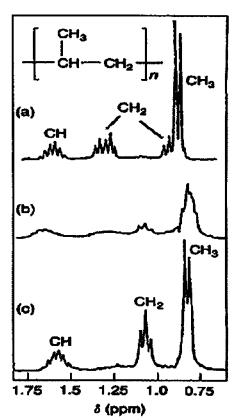
ومهاولة وحتماو لمله ومدين دستكام اندازهكي والشمد والدر	مراح فشار اسمنم محامل يقية بارمرم براحه مشخ
 ۱۰ فشار اسمزی محلول رقیق پلیمری، با چه مشخصهای از محتوای لوله مویین دستگاه اندازه گیری می شود و این مشخصه به تمایز چه خاصیتی از محلول و حلال مورد نظر وابسته است؟ 	
	۱) ارتفاع ـ چگالی محلول
۴) انحنای سطح محلول ـ اختلاف پتانسیل شیمیایی	۳) ارتفاع ـ اختلاف پتانسیل شیمیایی
	۱۰۱- ملت تفاوت ضریب انبساط حرارتی یک پلیمر در
ر در دو ناحیه می را سیست ای معام است. ۲) تفاوت مقدار و ماهیت حجم آزاد در دو ناحیه	۱) غیرتعادلی بودن رفتار پلیمر در دو ناحیه
	۳) تفاوت حجم آزاد پلیمر در دو ناحیه ۳
ب) عنوف سا عدر در در در دید. بلیمرهای با قابلیت بلورینگی، کدام پدیده مشاهده میشود؟	
بیشر ساق به توبیع بروریدی. عدم پدیده مسطحت می شود. مزش ۳) افزایش طول تا پارگی ۴) کاهش سرعت خزش	
مونومر یکسان، آزمون دینامیکی ــ مکانیکی DMTA انجام شده	
	است. نمودار اتلاف ـ دما حاصل از این تست، چا
-	۱) برای هر دو کوپلیمر دو پیک مجزا در دو دمای
۲) برای کوپلیمر تصادفی یک پیک و برای کوپلیمر قطعهای دو پیک مجزا دیده میشود. ۳) برای کوپلیمر تصادفی دو پیک مجزا و برای کوپلیمر قطعهای یک پیک دیده میشود.	
رپییمر طعبه ای یک پیک کینا میشود. های متفاوت از هم دیده میشود و در کوپلیمر تصادفی فاصله بین دو	
های متفاوت از هم دیناه میشود و در توپنیمز عفادتی تاطنه بین دو	پیک از کوپلیمر فو پیک مجر، ولی کار کمه پیک از کوپلیمر قطعهای بیشتر است.
بانت گذار و بارور (د) با دوای شیشهای ۹۹ درجه سانت گذار،	
۱۰۴– اگر پلیمر (الف) با دمای شیشهای ۳۰ درجه سانتیگراد و پلیمر (ب) با دمای شیشهای ۹۰ درجه سانتیگراد، کوپلیمری تصادفی با نسبت ۴۰ درصد از پلیمر (الف) و ۶۰ درصد از پلیمر (ب) تشکیل دهند، دمای شیشهای	
	تخمینی این کوپلیمر چند درجه سانتیگراد خوا
۶۰ (۲	ک میں ہیں تو پیشر چند کر جد سامنی تراب خور ۱) ۵۵
۷۰ (۴	۶۵ (۳
ت عمل انجام تست است. اگر سرعت عمل را از ۱۰۰ میلیمتر بر	
دقیقه به ۱۰ میلیمتر بر دقیقه کاهش دهیم، نمودار تنش ــ کرنش چه تغییری میکند؟	
ر سر عمل کا عربی کی می شود. ۲) غیرخطی می شود.	۱) به سمت راست نمودار جابهجا می شود.
۴) تغییری نمیکند.	۳) به سمت چپ نمودار جابهجا میشود.
یک و پارافین واکس با نقطه ذوب ۷۴ درجه سانتیگراد، بهترتیب	- -
	عالباً جزو كدام روان كنندهها هستند؟
۲) داخلی _ خارجی _ داخلی _ خارجی	۱) داخلی _ خارجی _ خارجی _ خارجی
؟) خارجی _ داخلی _ داخلی _ خارجی	۳) خارجی _ خارجی _ داخلی _ خارجی
انند سیستمهای تکفاز رفتار کند، به آنها و اگر	
گی خوب داشته باشد به آن میگویند.	
ک جب کار جیدیر _ سازگار	۱) سازگار _ امتزاجیذیر
۴) امتزاج پذیر _ غیرامتزاج پذیر	۳) سازگار _ ناسازگار



۱۰۹- در شکل، طیف HNMR^۱ نمونهای از پلیایزوپرن حاوی یک گروه شروعکننده sec ـ بوتیل و یک گروه پایانی هیدروکسیل، نشان داده شده است. اگر انتگرال پیک (۲۶/۹(a) ۲۶/۹، (۵) ۲/۵۰ (c) و (۵) ۵/۹۵ باشد، M_n برای این پلیمر چقدر است؟ (انتگرالهای گفتهشده مربوط به پروتونهای ستارهدار هستند.)

1789/0 (1

- $\mathbf{Y} \circ \mathbf{O} \mathbf{F}_{/} \mathbf{Y}$ (Y
- ۳λιγΔ (۳
- 80×0/10 (4



<u>شيمى (۲) (کد ۲۲۱۲) 683 C مفحه ۳۳</u> <u>مفحه ۳۳</u> <u>مفح ۳۳</u> <u>مف</u>

۱۱۱ – ترکیبات زیر، بهترتیب از چپ به راست، چه نقشی در نمونه پلیمری حاوی آن میتوانند داشته باشند؟ Cd – Zn salts ، ۹, ۱۰ – anthraquinone ، Kaolin ، Alumina trihydrate

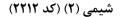
- Kickers Reinforcement Inert filler Pigment ()
- Kickers Pigment Coupling agent Flame retardant (Y
- Plasticizer Reinforcement Inert filler Heat Stabilizer (*
- Blowing agent Pigment Flame retardant Coupling agent (۴
- ۱۱۲ با توجه به طیف $^{13}C~NMR$ داده شده مربوط به پروپیلن، ترکیبهای a تا c به تر تیب مربوط به کدام نظم فضایی است؟

۱) سیندیوتاکتیک _ ایزوتاکتیک _ آتاکتیک ۲) آتاکتیک _ سیندیوتاکتیک _ ایزوتاکتیک ۳) ایزوتاکتیک _ آتاکتیک _ سیندیوتاکتیک ۴) سیندیوتاکتیک _ ایزوتاکتیک _ آتاکتیک

683 C

0.6

0.5


태 0.4

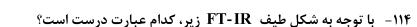
튣 - 0.3

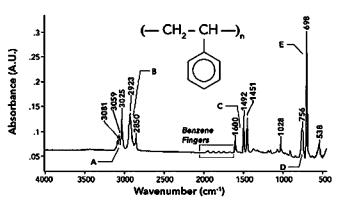
200

0.2

10"

E' (storage modulus)


E" (loss modulus)


-50

ò

Tan **δ**

100

150

50

Temperature,°C

۱) پیک Aromatic ring bend ،D و پیک Aromatic ring bend ،D است.

۲) پیک Aromatic ring bend ،E و پیک Aromatic ring bend ،E است.

۳) ييک Aromatic out-of-plane C-H bend ،E و ييک Aromatic ring modes ،C

۴) پیک Aromatic out-of-plane C-H bend ،C و پیک Aromatic ring modes ،E است.

۱۱۵- در شناسایی پلیمرهای NBR/CR با استفاده از گازهای حاصل از تخریب اولیه، کدام مورد درست است؟ (NBR : butadiene – acrylonitrile – rubber; CR : Chloroprene rubber)

۱) بهدلیل تخریب حرارتی همزمان دو پلیمر، pH حاصل از گازهای متصاعد شده خنثی خواهد بود. ۲) ابتدا NBR، تخریب حرارتی خواهد شد که باعث اسیدی شدن pH گازهای متصاعد شده خواهد شد. ۳) ابتدا CR، تخریب حرارتی خواهد شد که باعث اسیدی شدن pH گازهای متصاعد شده خواهد شد.

۴) بهدلیل تخریب حرارتی همزمان دو پلیمر، pH گازهای متصاعد شده بستگی به نسبت پلیمرها خواهد داشت.

Telegram: @uni_k

10⁴

Storage modulus, MPa 0, 0,

10

(٣ (۴

۱۱۸- درجه عاملیت مونومر زیر، در هر یک از شرایط ذکر شده کدام است؟

$$H_{\gamma}N - CH_{\gamma}CH_{\gamma} - C - CH_{\gamma} - C = CH_{\gamma}$$

$$\| \qquad |$$

$$CH_{\gamma}CH_{\gamma}CH_{\gamma}CH_{\gamma}CH_{\gamma}CH_{\gamma}CH_{\gamma}COOH$$

ĈΗγ

- a: r .b: \ .c: \ (r
- a: " .b: \ .c: \ ("
- a: f .b: r .c:) (f
- ۱۱۹ پلیمری شدن رادیکال آزاد استایرن به روش تعلیقی را برای حل کدام مشکل اصلی بر روش پشتهای (Bulk) ترجیح مىدھند؟
 - ۱) مهار افزایش دما در جریان فرایند پلیمری شدن ۲) جلوگیری از ایجاد اتصالات عرضی ۳) کاهش شاخهای شدن پلیمر ۴) بهبود شیمی فضایی پلیمر
 - ۱۲۰- کدامیک از دو پلیمر زیر که از لحاظ مولکولی با یکدیگر ایزومر هستند، دارای مقاومت شعله بالاتری است، علت چیست؟

$$\begin{array}{c} \begin{pmatrix} CH_2 - CH_2 \\ \downarrow \\ OH \end{pmatrix} \qquad \qquad \begin{pmatrix} CH_2 - CH_2 - O \end{pmatrix} \\ \end{array}$$

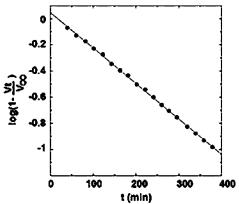
در آن واکنش باید متوقف شود تا این پلیمر بهدست آید، کدام است؟ (C = ۱۲
$$rac{\mathbf{g}}{\mathbf{mol}}$$
 , H = ۱ $rac{\mathbf{g}}{\mathbf{mol}}$, O = ۱۶ $rac{\mathbf{g}}{\mathbf{mol}}$ (C = ۱۲ $rac{\mathbf{g}}{\mathbf{mol}}$, H = ۱ $rac{\mathbf{g}}{\mathbf{mol}}$, O = ۱۶ $rac{\mathbf{g}}{\mathbf{mol}}$

- ۰/۹۷۰ (۲
- °/91 ° (٣
- 0/990 (F

$$\begin{array}{cccc} \underbrace{633 C}{(2 \times 10^{10})} & \underline{633 C}{(2 \times 10^{10})} & \underline{635 C}$$

صفحه ۳۷		683 C	شیمی (۲) (کد ۲۲۱۲)
ٍ واکنش با يون	– M _۱ = ۱۰ ^۵ که پس از m	g	۱۲۷- کسری از پیوندهای سر به سر در پ
$(C = 1) \frac{g}{mol}$	$H = \frac{g}{mol}$, $O =$	۲ = M _۲ رسیده، کدام است؟ (M _۲ =	پریودات به جرم مولکولی <mark>g ⁰ ° 0 mol</mark>
		·/.λ (Υ	<u>٪</u> ۱۰ (۱
		%Y (f	۲) ۴ (۳
	م است؟	رد شده، شاخص پراکندگی، (PDI) کدا	۱۲۸- دادههای یک پلیمر در جدول زیر وا
n _i (mol)	<i>M_i</i> (g/mol)	<i>m_i</i> (g)	
0.003	10,000	30	°/99۴ (I
0.008	12,000	96	N∕ ° °۶ (Y
	,		١/۵०٩ (٣

- Y/017 (4


()

۱۲۹- ساختار پلیمری با فرمول R − {−CO[−NH(CH_۲)_۵CO −]_y −OH}، چگونه است؟ ۴) ستارہای ۳) پرشاخه ۲) شانهای ۱) دندر یمر

۱۳۰- محصول پلیمریزاسیون کاتیونی مونومر زیر، کدام است؟

۱۳۱- تجزیه AIBN در زایلن در دمای ۷۷ درجه سانتیگراد با اندازهگیری حجم N_۲ تولید شده بر حسب زمان به شکل زیر است. حجمهای بهدست آمده در زمان t و $\infty=t$ بهتر تیب V_t و V_∞ هستند. با استفاده از منحنی داده شده،

شیمی (۲) (کد ۲۲۱۲)

()

۱۳۲ محصول پلیمریزاسیون ترکیب زیر، کدام است؟

۲)

$$R^{\oplus}$$

۴) با این روش پلیمریزه نمیشود.

۱۳۳- طول زنجیر سینتیکی 된 درحالت پایا در واکنش پلیمریزاسیون زنجیری، کدام است؟

$$\frac{k_p[M]}{r(fk_d[I]/k_t)^{\sqrt{r}}} (r \qquad \qquad \frac{k_p[M]}{r(fk_hk_d[I])^{\sqrt{r}}} (r \\ \frac{k_p[M]^{\sqrt{r}}}{r(fk_d[I]/k_t)^{\sqrt{r}}} (r \qquad \qquad \frac{k_p[M]^{\sqrt{r}}}{r(fk_hk_d[I])^{\sqrt{r}}} (r \\$$

۱۳۴- پلیمریزاسیون اتیلن در دمای ۱۳۰ درجه سانتیگراد و ۱۵۰۰ اتمسفر با استفاده از غلظتهای مختلف آغازگر، ۱۳۴- پلیمریزاسیون اتیلن در دمای ۱۳۰ درجه سانتیگراد و ۱۵۰۰ اتمسفر با استفاده از غلظتهای مختلف آغازگر، ۱۰- henoxycyclohexan - ۱- phenoxycyclohexan قرار گرفت. سرعت شروع بهطور مستقیم اندازهگیری شد و طول عمر رادیکال با استفاده از روش بخش چرخشی (rotating sector method) تعیین شد و نتایج زیر بهدست آمد. میانگین k_t ، کدام است؟

Run	τ̃(s)	$R_{\rm i} \times 10^9$ (mol L ⁻¹ s ⁻¹)	$1/9 \times 10^{-1}$ (1
5	0.73	4.7	۲) ^۲ ×۱۰ ^{-۸} (۲
6	0.93	3.2	۱/۴×۱۰ ^۸ (۳
8	0.32	26	، ۱/٩×۱۰ ^۸ (۴
			1/ (~ 1 ~ ()

۱۳۵- به کدام روش، می توان تعیین کرد که پلیمریزاسیون یک مونومر خاص که بهوسیله تابش یونیزهکننده انجام می پذیرد، دارای مکانیسم رادیکالی یا یونی است؟

شیمی دارویی ـ اصول بیوشیمی:

$$\begin{array}{cccc} \underbrace{Max}{Max} & \underline{Max} & \underline{Ma$$

(22)2	(۲) (کد	شيم
(1111	ω	سیمی ا

صفحه ۴۰

۱۴۴- برای داروی مهارکننده پمپ پروتون امپرازول با ساختار زیر، کدام واکنش متابولیکی محتمل تر است؟ OMe ۱) فازیک _ واکنش احیا O _ dealkylation _ فازیک _ T ۳) فاز دو _ dealkylation (۳ ۴) فاز دو _ واکنش اکسیداسیون **۱۴۵- داروی کاهنده فشار خون با ساختار شیمیایی زیر، با کدام مکانیزم عمل میکند؟** ONO_2) مهار گیرندههای α_1 عروق \bar{ONO}_2 O_2NO ۲) مهار آنزیم ACE ۳) مهار ترشح رنین از کلیهها ۴) آزادکردن رادیکال NO 149- داروی «Tadalafil»، به کدام طریق باعث باز شدن جداره عروق می شود؟) مهار آنزیم PDE مهار گیرندههای α_1 عروق (۲ ۳) آزادکردن رادیکالهای NO ۴) مهار گیرندههای آنژیوتانسین در عروق **۱۴۷** مکانیزم اثر داروی ضد ویروس با ساختار زیر چگونه است؟ ۱) مهار آنزیم پروتئاز H_3C NH_2 ۲) مهار Uncoating RNA .HCl ۳) مهار آنزیم Polymerase _ مهار ۴) مهار آنزیم Reverse Transcriptase ۱۴۸ - برای درمان علامتی آرتریت روماتوئید، از کدام دسته ساختارهای دارویی معدنی استفاده می شود؟ ۴) واناديوم (Va) ۳) طلا (Au) ۲) نقره (Ag) ۱) يلاتين (Pt) ۱۴۹- ثابت میکائیلیس، برای اتصال کدام دارو به آنزیم بتالاکتاماز بیشتر است؟ ۴) سفالکسین ۲) آمیکاسین ۱) آميي سيلين ۳) متیسیلین ۱۵۰ - کدامیک از داروهای زیر، Pro – drug نیست؟ ОН (7 () (٣ H₂ **OH** ۱۵۱- در کدام یک از مسیرهای متابولیکی زیر، NADPH تولید می شود؟ ۳) گلوکونئوژنز ۲) گليکوژنوليز ۴) ينتوز فسفات ۱) گليکوليز

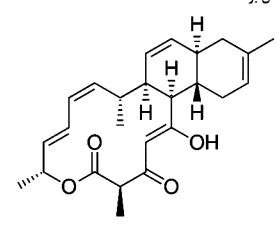
Telegram: @uni_k

صفحه ۴۱	683 C		شیمی (۲) (کد ۲۲۱۲)
	ز عوامل گلوکز ایجاد میشود؟	ثر اکسیداسیون کدامیک ا	۱۵۲- اسید گلوکورونیک، در ا
۴) الکل نوع اول و آلدهیدی	۳) الکل نوع دوم	۲) الکل نوع اول	۱) آلدهیدی
	ن دارد؟	، به کدام مورد زیر بستگی	۱۵۳- قدرت یک محلول بافری
	۲) غلظت [–] OH در محیط	آن	۱) غلظت اجزای سازنده
	۴) درجه حرارت محیط	L	۳) غلظت ⁺ H در محیط
	مز، کدام است؟	سم گلوکز در گلبولهای قره	۱۵۴- محصول نهایی کاتابولیس
۴) اسیدپیروویک	۳) اسیدلاکتیک	۲) استیل کوآ	CO _Y (1
	کوآنزیم نیاز دارد؟	، برای فعالیت خود به کدام	۱۵۵- سوکسینات دهیدروژناژ
NADP (۴	NAD (۳	FAD (۲	TPP (1
ه است؟	برات جذب در ۲۶۰ نانومتر چگون	یتهای را حرارت دهیم، تغی ی	۱۵۶- اگر محلول DNA دورش
	۲) کاهشی		۱) افزایشی
•	۴) بسته به غلظت DNA (۴		۳) ثابت
	از بقیه به طرف قطب مثبت حرکت		
		His – S	
Gln	-	Glu – A	
	بر متابولیکی را کاهش میدهد؟	,	
۴) پنتوز فسفات		۲) گلیگولیز	
			۱۵۹- درخصوص کاردیولیپین
		ول در سرقطبی خود است.	
		، در سرقطبی خود است. ز C، دو عدد دی آسیل گلی	
	بسرول ایجاد می صد. سرول و یک فسفاتیدیکاسید است		
·	شرول و یک عسفا دینایک است		 ۱۶۰- کوعی مسعونیپید است. ۱۶۰- کدام ویتامین زیر، نقش
E (۴	D۳	ر علي علي مرود. C (۲	
× ·			ا18- كو آنزيم Q، مستقيماً ال
Cyta (۴		Cyt c (۲	
·	ارد؟	رزیر، پیوند آمیدی وجود د	۱۶۲ - در کدامیک از لیپیدهای
۴) فسفوگلیسرید	۳) ترىگليسريد	۲) کارديوليپين	۱) سربروزید
تئين است؟	رهمکنشها در کدام ساختمان پرو	، مربوط به ازهمگسیختن بر	۱۶۳- دناتورهشدن پروتئینها
۴) دوم و سوم	۳) سوم	۲) دوم	۱) اول
	اده منتقل میشوند؟	خون، عمدتاً توسط كدام ما	۱۶۴- اسیدهای چرب آزاد در
۴) ليپوپروتئين	۳) گلوبولين	۲) ترانسفرین	۱) آلبومین
			۱۶۵- اثر مهارکننده رقابتی بر
	۲) K _m افزایش مییابد.		۱) V _{max} افزایش می ی
	۴) K _m کاهش مییابد.	بد.	۳) V _{max} کاهش مییا

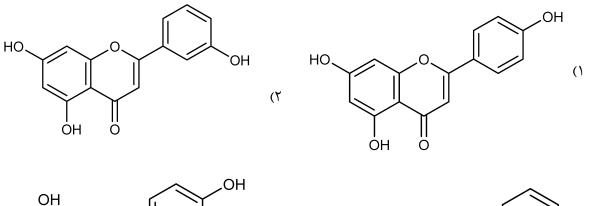
Telegram: @uni_k

یمی (۲) (کد ۲۲۱۲)	۵
-------------------	---

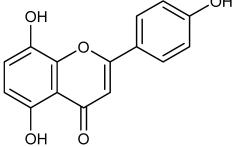
683 C

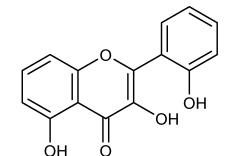

شیمی ترکیبات طبیعی ـ جداسازی و شناسایی ترکیبات طبیعی:

شیمی (۲) (کد ۲۲۱۲)

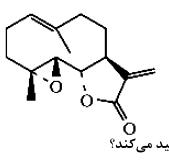

(٣

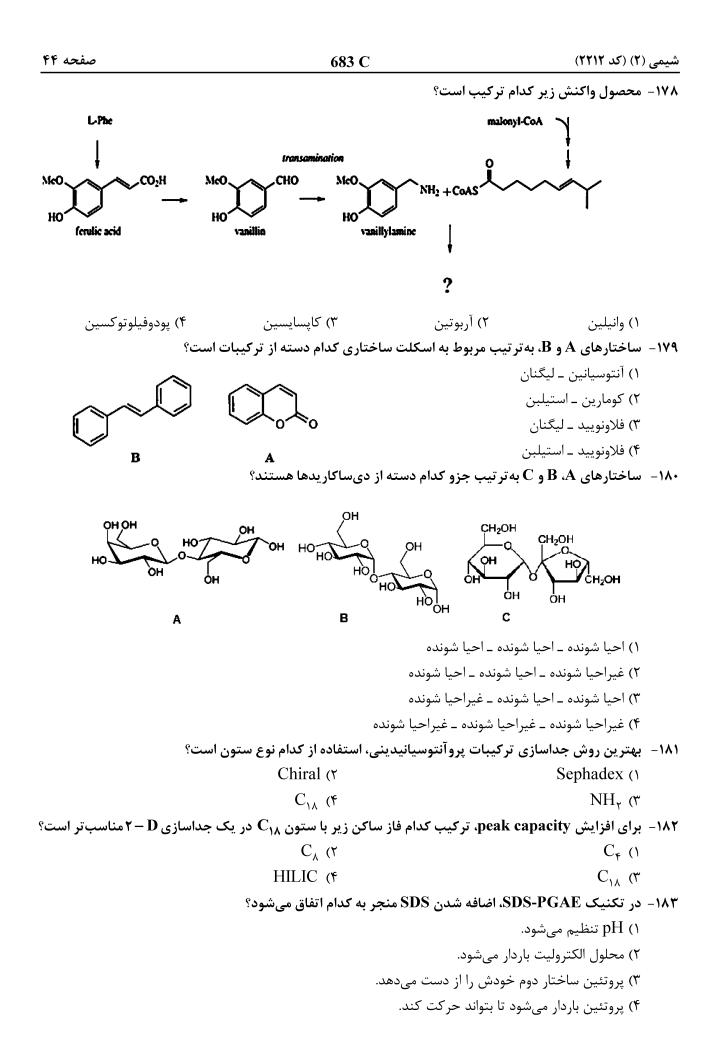
۱۷۳ – سیستم دکالینی موجود در ساختار ماکرولیدی آنتراسیمایسین (ترکیب زیر) توسط یک واکنش دیلز – آلدر درون مولکولی ایجاد شده است. در ماژول شماره ۸ چه آنزیمهایی فعال بوده است؟


- KS, AT ()
- KS, AT, KR (r
- KS, AT, KR, DH ("
- KS, AT, KR, DH, ER (*

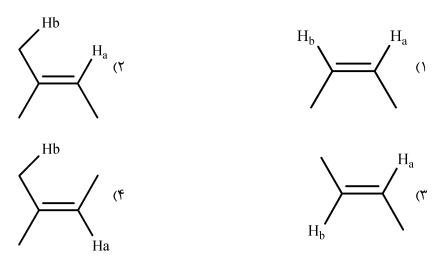


۱۷۴ – با توجه به مسیر بیوسنتز فلاونوئیدها، احتمال تولید کدامیک از ساختارهای زیر بیشتر است؟


۴)

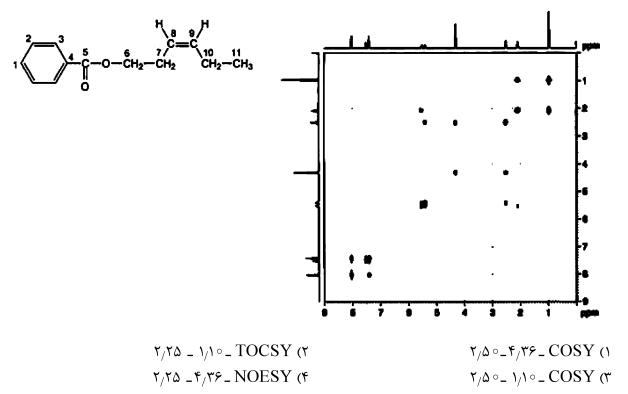

۱۷۵ - کدام یک از ترکیبات زیر، ساختار گلیکوآلکالوئید استروئیدی دارد؟

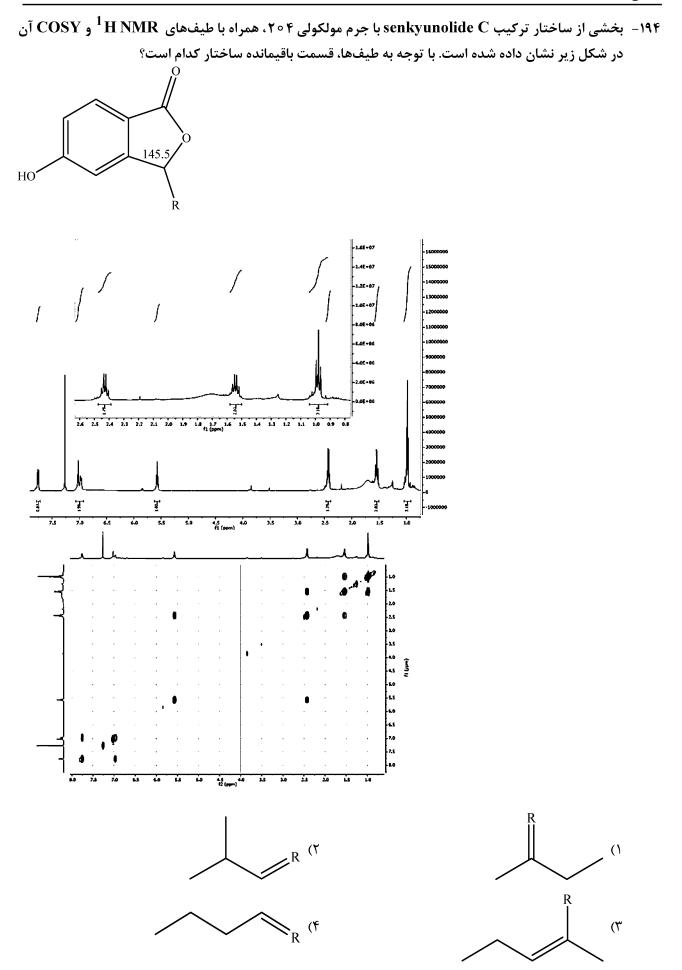
۴) گلوکورونیک اسید ۳) گلوکز ۶-فسفات


683 C

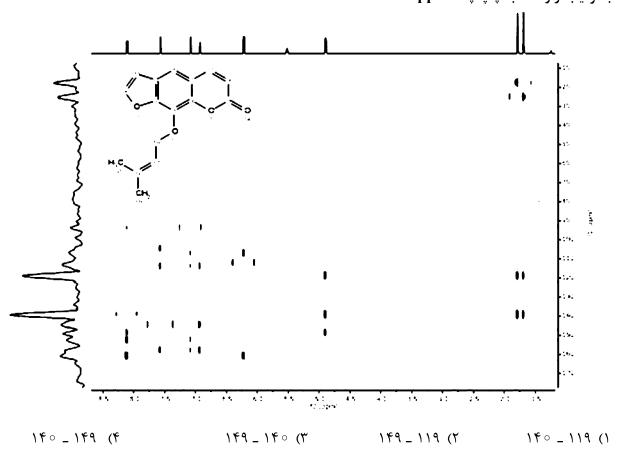
شیمی (۲) (کد ۲۲۱۲)

	003 C	
	یق، کدام مورد درست است؟	۱۸۴- در ارتباط با نشتی دستگاه HPLC قبل از محل تزر
		۱) کاهش زمان بازداری
		۲) پهنشدگی کروماتوگرامها
		۳) کاهش شدت کروماتوگرامها
		۴) پهنشدگی کروماتوگرامها و کاهش زمان بازداری
		۱۸۵- شکل زیر، مربوط به کدام حالت MS/MS است؟
Q1 Q2	Q3	Precursor ion ()
		Neutral ion (Y
		Product ion ("
m/z scanning fragmentation	n m/z constant	SIM (f
•		۱۸۶– مزیت Top-down به bottom-up در پروتئومیکس
	Top با دو عامل تأیید شود.	۱) آنزیمها سبب می شوند که نتایج تکنیک down-
	حت و دقت بیشتری است.	۲) تعداد اجزای کمتری تشکیل میشود و آنالیز با ص
	ین دارند.	۳) رزولوشن بالاتری را در جرمهای حدود ۲۰۰ دالتو
		۴) سیستمهای اربیتراپ براین اساس کار میکنند.
	ی مناسبتر است؟	۱۸۷- کدام فیبر زیر، برای مطالعه ترکیبات فرار یک باکترو
	CAR/PDMS (r	PDMS ()
D	VB/CAR/PDMS (۴	PDMS/DVB (r
ج ترکیبات طبیعی است؟	مربوط به کدام تکنیک استخرا	۱۸۸- استفاده از کاهش ثابت دیالکتریک در دماهای بالا،
	MAE (۲	ASE ()
Supercritica	l fluid extraction (f	Subcritical water extraction ("
	وتئین را دارد؟	۱۸۹- کدام تکنیک، قابلیت تمایز ساختار سه بعدی یک پر
	Raman (۲	Ion mobility mass spectrometry ()
	ATIR (۴	QTOF (٣
یت است؟	ه ستونهای کروماتوگرافی درس	۱۹۰- کدام جمله در مورد شکل زیر، بهعنوان مواد پرکنند
Porous sheli		۱) مناسب برای UPLC است.
		۲) منجر به افزایش کارایی جداسازی میشود.
	مىدھد.	۳) با افزایش ضریب نفوذ کارایی جداسازی را کاهش ،
solid core	-	۴) مقاومت ذرات پر کننده در برابر افزایش فشار را زیا
Porque chall particle		


Porous-shell particle


۱۹۱- در بین ترکیبات زیر، کدامیک بیشترین میزان ثابت کوپلاژ ^۳J_{HH} را دارد؟

۱۹۲- با کدام تکنیک NMR دوبعدی، می توان تشخیص داد که دو پروتون نسبت به هم vicinal یا geminal هستند؟ ۱۹۲ - HMQC (۲ ۲۰ HMBC (۱ ۲۰ H-H COSY (۴


۱۹۳ - طیف زیر، چه نوع طیفی است و براساس آن جابهجایی شیمیایی پروتونهای ۱۱ و ۷، بهتر تیب از راست به چپ چند است؟

Telegram: @uni_k

۱۹۵- با توجه به طیف زیر که مربوط به ساختار Imperatorin است، جابهجایی شیمیایی کربنهای شماره ۱۷ و ۱۸ بهترتیب از راست به چپ چند ppm است؟

