

صفحه ۲	698 C	مهندسی مکانیک (۲) (کد ۲۳۲۳)
زله عدم حضور شما در جلسه آزمون است.	در مندرجات جدول زیر، بهمن	* داوطلب گرامی، عدم درج مشخصات و امضا
. با آگاهی کامل، یکسان بودن شماره صندلی	ماره داوطلبیماره داوطلبی	اينجانببا ش
خنامه و دفترچه سؤالها، نوع و کد کنترل	ت ورود به جلسه، بالای پاس	خود با شماره داوطلبی مندرج در بالای کار،
	خنامهام را تأیید مینمایم.	درجشده بر روی دفترچه سؤالها و پایین پاس
امضا:		

ریاضیات مهندسی:

(ا- با استفاده از سری فوریهٔ تابع
$$f(\mathbf{x}) = \mathbf{x}(\pi^{Y} - \mathbf{x}^{Y})$$
 مقدار $\sum_{n=1}^{\infty} \frac{1}{(n\pi)^{r}}$ مقدار $\sum_{n=1}^{\infty} \frac{1}{(n\pi)^{r}}$ مقدار $\frac{1}{\sqrt{10}}$ (۲)
 $\frac{1}{\sqrt{10}}$ (۲)
 $\frac{1}{\sqrt{10}}$ (۲)
 $\frac{1}{\sqrt{10}}$ (۲)
 $\frac{1}{\sqrt{10}}$ (۲)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (8)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (8)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (8)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (8)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (8)
 $\frac{1}{\sqrt{10}}$ (7)
 $\frac{1}{\sqrt{10}}$ (7)

698 C

مهندسی مکانیک (۲) (کد ۲۳۲۳)

 $\left[u_{\mathbf{x}}(\circ,\mathbf{y}) = \mathcal{F} \mathbf{y}(\boldsymbol{\pi} - \mathbf{y}) \right]$

ج فرض کنید ((x,y) یو ((x,y)) (u, +)) (u, +)) کام است؟
ج درش کنید (u, y) یاشد. آنگاه مقدار
$$(\frac{1}{\gamma})$$
 کدام است?
 $1 - e^{\frac{1}{\gamma}}(1 - \ln \sqrt{\gamma})$ ($1 - e^$

$$\pm \sqrt{n + \frac{s}{r}}$$
 (4

مسئله زیر دارای جواب کران دار است. مقدار ${f A}+{f B}$ کدام است? – ۷

$$\begin{cases} u_{xx} + u_{yy} = \begin{cases} x - Yy & \circ < x \le 1 \\ & \circ < y < \pi \\ Ax & x > 1 \end{cases}$$

$$u(x, \circ) = \begin{cases} Yx - F & \circ < x < \pi \\ B & x > \pi \\ u(x, \pi) = \circ \end{cases}$$

$$(Y = 0$$

مهندسی مکانیک (۲) (کد ۲۳۲۳)

اگر g(z) = v(x, y) + iu(x, y) و f(z = x + iy) = u(x, y) + iv(x, y) در حوزهٔ D در حوزهٔ D ۸_ کدام مورد همواره درست است؟ ۱) f یک تابع ثابت است. ۲) برد تابع f روی دایره قرار می گیرد. ۳) [f] ممکن است ہے کران شود.) |f| تابعی کران دار بر حسب x و y است. |f|ب سری لوران تابع $f(z) = \frac{1}{z^7 - z}$ حول z = z در ناحیهٔ |z - z|، کدام است؟ -۹ $\sum_{n=1}^{\infty} \frac{(-r)^n}{(z-r)^{n+r}}$ (1) $\sum_{n=1}^{\infty} \frac{\epsilon^n}{(z-\tau)^{n+\tau}} (\tau)$ $\sum_{k=1}^{\infty} \frac{(z-\tau)^{n-\nu}}{\epsilon^{n+\nu}} (\tau)$ $\sum_{k=1}^{\infty} \frac{(-1)^{n} (z-7)^{n-1}}{r^{n+1}} \ (r^{k})$ بالت عقدار $\int_{0}^{1} \frac{\sin \theta + 1}{\cos \theta + 1} d\theta$ عقدار -۱۰ $\frac{\sqrt{r}}{r}\pi (1)$ $\sqrt{r}\pi$ (r $\frac{r\sqrt{r}}{m}\pi$ (r $\frac{\sqrt{r}}{m}\pi$ (f مقدار $\sin(ax)dx$ با فرض $a \neq a$ ، کدام است? $\int_{-\infty}^{\infty} \frac{\sin(ax)dx}{x(x^{7}+1)^{7}}$ $\Upsilon\pi\left(1+\frac{a+\Upsilon}{\epsilon}e^{-a}\right)$ (1) $\pi\left(1+\frac{a+\gamma}{\gamma}e^{-a}\right)$ (γ $\pi\left(1-\frac{a+\gamma}{\gamma}e^{-a}\right)$ (*

صفحه ۵	698 C	سی مکانیک (۲) (کد ۲۳۲۳)	مهندس
ره فوقانی ۱ = ۲ + ۲ ^۲ (<mark>۲</mark> + ۱) در	x = 1 تحت نگاشت w = $\frac{1}{z}$ به درون نیمدایر z	كدام ناحيه از صفحهٔ مختلط iy -	-12
	ود؟	صفحهٔ w = u + iv تبدیل می شو	
		$x < -1$, $y > \circ$ (1	
		$x < -1$, $y < \circ$ (t	
		$x > 1$, $y > \circ$ (T	
		$x > 1$, $y < \circ$ (f	
و صفر را از صفحهٔ z بهترتیب به	مت دوخطی (موبیوس) باشد که نقاط ۱ و i + i	فرض کنید (w = w(z یک نگاش	-1۳
	گارد. مقدار (w(1−i کدام است؟	نقاط i و i - و ۱ در صفحهٔ w مین	
		7+i (1	
		$\tau\!-\!i$ (T	
		1+7i (m	
		1-7i (4	
	ست؟	مقدار tanh(z)dz مقدار $\oint_{ z =1}$ کدام ا	-14
		-τπί ()	
		۲) صفر	
		τπί (۳	
		۴πί (۴	
٩	هٔ π < arg z < ۵π، در نقطهٔ z = ۱، کدام است	ماندهٔ تابع f(z)= $\frac{\sqrt{z}}{1-z}$ در شاخهٔ	-10
		-τπί ()	
		-1 (۲	
		۱ (۳	
		۲πί (۴	
		. 5 . 1'	

ترموديناميک:

- ۱۶- جریانی به شدت ۳ و آنتالپی ۸ با جریان دیگری به شدت ۲ و آنتالپی ۵ بهطور کاملاً یکنواخت (پایدار یا SSSF) در یک مخزن اختلاط مخلوط می شود. اگر مخزن، همزنی به توان مصرفی ۵ داشته باشد و محیط نیز به مخزن با شدت ۱۰ گرما بدهد، آنتالپی جریان خروجی کدام است؟ (واحدها همه همآهنگ و اختیاری هستند.) ۵/۸ (۱

 - ۶/٨ (۲
 - ٧/٨ (٣
 - ٩/٨ (۴

۱۰۰۲۰۰۲۰۰۲۰۰۲۰۰۲۰۰میشود. اگر تعول توربین آنتروبی ثابت (آدیایاتیک بازگشت بذیر) فرض میشود و در فشار
$$\frac{P}{\gamma F}$$
 کارجمیشود. اگر تعول توربین آنتروبی ثابت (آدیایاتیک بازگشت بذیر) فرض میشود و در فشار $\frac{P}{\gamma F}$ کارجمیشود. اگر تعول توربین آنتروبی ثابت وی کنا تعول از ۲۰۰<

°/۵۸ (۴

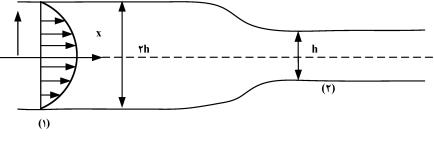
صفحه ۷	698 C	سی مکانیک (۲) (کد ۲۳۲۳)	مهندس
	مای جزئی مساوی داریم: ا	در یک محلول دو جزئی، گازی با مولھ	-۲۵
$\mathbf{B}_{11} = \mathbf{F}_{0} \mathbf{B}_{11} = \mathbf{B}_{01} \mathbf{B}_{11} = \mathbf{T}$			
ندام است؟	ر اثر اختلاط در دما و فشار ثابت، ک	تغییر حجم مخصوص این دو سازنده در	
+ I = X همواره صدق میکند.)	تند. معادله ویریال به شکل B'P -	(واحدها همه هم آهنگ و اختیاری هسن	
	°∕ ۳۶ (۲	0/YQ (1	
	۰/ ۵ ۰ (۴	°∕ ft (m	
. گاز از معادله ویریال دو جملهای پیروی	ر فشار ۴۴ atm برابر ۹ _/ ۰ است.	ضریب تراکمپذیری یک گاز واقعی در	-19
?	و فشار، تقريباً چند اتمسفر است	میکند. فوگاسیته آن گاز در همین دما	
$(\exp(1) = \frac{1}{\sqrt{2}} exp(\circ_{/}1) = \frac{1}{\sqrt{2}} $	$\mathbf{p} \ (\circ_{/} T) = I_{/} T T)$		
	4° (1	47 (1	
	۳۴/۵ (۴	۳۸/۵ (۳	
رار دارد. در اثر حادثهای یک سوراخ بسیار	رگ، یک منبع آب روباز پر از آب ق	بر روی پشت بام یک برج ساختمانی بزر	-27
از سطح آزاد آب در منبع ایجاد میشود.	ی منبع) به فاصله ۲۰ سانتیمتر	کوچک در نقطهای از بدنه (سطح جانب	
ـتاب ثقل زمين را ١٥ متر بر مجذور ثانيه	چند سانتیمتر بر ثانیه است؟ (ش	سرعت خروجی از این سوراخ کوچک	
		فرض کنید.)	
	۱۰ (۲	۲ (۱	
	۲۰۰ (۴	۲۰ (۳	
ک اتمسفر و دمای C°°۳ وجود دارد که	فاز مایع فشرده (سرد) در فشار ی	درون یک مخزن کاملاً صلب فقط یک	-78
برابر $rac{\operatorname{atm}}{\operatorname{K}}$ است. اگر به این مایع ($rac{eta}{\operatorname{K}}$	جمی به ضریب تراکم ایزوترمال (برای آن مایع نسبت ضریب انبساط ح	
ا کند، فشار مایع داخل مخزن تقریباً چند	ه دمای آن به C°°۴ افزایش پید	درون مخزن صلب، کمی گرما بدهیم ک	
		اتمسفر خواهد شد؟	
	۲۰/۱ (۲	Y ° 1 (1	
	1/4 (4	۲/۱ (۳	
دمای محیط (۲۵°C) و فشار ۲۰MPa	۰ ۰ ۷ لیتر حاوی هوای فشرده در	یک مخزن صلب و غیرعایق به حجم	-29
بسیار طولانی فشار هوای درون مخزن به	کوچک ایجاد شده و پس از مدتی	است. در این مخزن یک سوراخ بسیار	
ن مخزن و محیط چند کیلوژول است؟ (هوا	مدت، مقدار گرمای مبادلهشده بین	۱۰ MPa کاهش پیدا میکند. در این ه	
	نيد.)	را گاز کامل با گرمای ویژه ثابت فرض ک	
	۳۵۰۰ (۲	٢ ००० ()	
	۷००० (۴	4000 (4	
ت (SSSF) در یک یخچال فرضی به دمای	آب ۳۱۵K، را بهطور کاملاً یکنواخ	میخواهیم مقدار ۱۰ کیلوگرم بر ثانیه آ	-۳۰
است؟ (گرمای ویژه آب را در این شرایط	این یخچال فرضی چند کیلووات	۳۰۰K برسانیم. حداقل کار مصرفی	
10. *0	فرض کنید.)	تقریباً ۴ کیلوژول بر کیلوگرم بر کلوین	
$(\ln \frac{10}{10} = -0.09\Delta)$. $\ln \frac{10}{10} = -0.0\Delta$		تقریباً ۴ کیلوژول بر کیلوگرم بر کلوین	
$(\ln \frac{1\circ}{11} = -\circ/\circ \mathfrak{A})$, $\ln \frac{\mathfrak{T}\circ}{\mathfrak{T}} = -\circ/\circ \mathfrak{A}$		تقریباً ۴ کیلوژول بر کیلوگرم بر کلوین ۱) ۱۰	
$(\ln \frac{10}{11} = -0/04\Delta), \ln \frac{10}{71} = -0/0\Delta$			

۴۰ (۴

698 C

مکانیک سیالات پیشرفته ـ ترمودینامیک پیشرفته:


۳۱- شکل زیر را در جریان کوئت پوآزی نظر بگیرید. گرادیان فشار $\frac{\partial p}{\partial x}$ در این جریان چگونه است؟ ۱) منفی ۲) منفی ۳) صفر ۴) نمی توان نظر داد.


۲۲- در یک تقریب اولیه می توان تغییرات دما در اتمسفر زمین را با یک رابطهٔ خطی به شکل $T = T_{\circ} - \lambda Z$ تقریب زد. که در رابطهٔ فوق (T_{\circ}) دمای هوا در سطح زمین و (Z) ارتفاع از سطح زمین است. یک چترباز درحال سقوط آزاد، وقتی به سرعت حد خود به مقدار (V_{f}) می سد، چه گرادیان دمایی را تجربه می کند؟ λZ (۲)

صفر (۴
$$\lambda V_{\rm f}$$
 (۴

- ۳۳– مهم ترین فرضیه لایه مرزی که براساس آن، معادلات ناویر استوکس ساده شده و به معادلات لایه مرزی تبدیل می شوند، کدام است؟ ۱) جریان آرام و عدد رینولدز کل بزرگ است. ۲) سرعت جریان زیاد بوده و طول صفحه بزرگ است. ۳) جریان آرام و مقدار گرادیان فشار برابر با صفر است. ۴) ضخامت لایه مرزی بسیار کوچک تر از طول صفحه است.
- ۳۴– جریان تراکمناپذیر، غیرلزج و دائم مطابق شکل، در یک کانال همگرا جریان دارد. در ورودی کانال (مقطع ۱)، جریان $u = U_o \left(1 \left(\frac{y}{h} \right)^r \right)$ در راستای x بوده و پروفیل آن به فرم $\left(1 \left(\frac{y}{h} \right)^r \right)$ است. با توجه به مقدار ورتیسیتی در مقطع ۱، پروفیل

سرعت در مقطع ۲ کدام است؟

مهندسی مکانیک (۲) (کد ۲۳۲۳)

صفحه ۹	698 C	مهندسی مکانیک (۲) (کد ۲۳۲۳)
	عال توسعه در لوله، بهترتیب چند تا است؟	۳۵- تعداد بعد جریان توسعهیافته و در
	1.1 (7	7 . 7 (1
	۱،۲ (۴	۲ ، ۱ (۳
با فرض یک میدان سرعت	درون یک میدان سیال نیوتنی و تراکمناپذیر در نظر بگیرید	۳۶ - یک استوانهٔ چرخان به شکل زیر را در
میکند؟	، فشار ایجادشده درون میدان سیال، از کدام رابطه پیروی	یکبعدی و یک جهته دائمی، گرادیان
Ω		$\frac{\mathrm{dP}}{\mathrm{dr}} = \rho \mathbf{R}^r \frac{\boldsymbol{\Omega}^r}{r^r} (1)$
(L		$\frac{dP}{dr} = \rho R^{r} \frac{\Omega^{r}}{r^{r}} $ (r
r		$\frac{dP}{dr} = \tau \rho R^{\tau} \frac{\Omega^{\tau}}{r^{\tau}} (\tau)$
		$\frac{dP}{dr} = \frac{1}{r} \rho R^{r} \frac{Q^{r}}{r^{r}} (r)$
	ته باشد تا ثابت برنولی به جریان وابسته <mark>نباشد</mark> ؟	۳۷- جریان دائمی چه ویژگی(های) داش
	۲) تراکمناپذیر	۱) غیرلزج
	۴) غيرلزج و تراكمناپذير	۳) غیرلزج و غیرچرخشی
	انال به فرم یکنواخت با سرعت (U_{\circ}) است. به دلیل رشد	
	(U _c) به تدریج افزایش پیدا می <i>ک</i> ند. با استفاده از پروفیل	<i>/ ×</i>
ن خط مرکزی ((U _c (x)) و	، مقدار ضخامت لایه مرزی برحسب سرعت روی $(\frac{\mathbf{u}}{\mathbf{U_c}} =$	
U.		سرعت ورودی $({ m U_{\circ}})$ کدام است؟
		$\frac{\delta(\mathbf{x})}{h} = \left(1 - \frac{U_{\circ}}{U_{c}(\mathbf{x})}\right) (1)$
		$\frac{\delta(\mathbf{x})}{h} = \frac{\left(1 - \frac{U_{\circ}}{U_{c}(\mathbf{x})}\right)}{\left(1 - \frac{\pi}{c}\right)} $ (Y
		$\frac{\delta(\mathbf{x})}{h} = \frac{\left(1 + \frac{U_{\circ}}{U_{c}(\mathbf{x})}\right)}{\left(1 + \frac{\pi}{\gamma}\right)} (\forall$
		$\frac{\delta(\mathbf{x})}{h} = \frac{\left(1 - \frac{U_{\circ}}{U_{c}(\mathbf{x})}\right)}{\left(1 - \frac{Y}{\pi}\right)} (f)$

- ۳۹- کدام گزاره <u>نادرست</u> است؟ ۱) در جریان خزشی، جدایش لایه مرزی رخ نمیدهد. ۲) گذار جریان از آرام به مغشوش، لزوماً همواره موجب افزایش نیروی پسا نیست. ۳) در اعداد رینولدز بالا، اثرات لزجت با دقت قابل قبولی در تمام میدان جریان، قابل صرفنظر کردن است. ۴) اگر در یک جریان دوبعدی یک المان مستطیلی شکل افقی، پس از جابه جایی ذرات همچنان مستطیلی شکل و افقی بماند، تانسور گرادیان سرعت قطری است.
- به ایر فویل با زوایه حمله صفر مطابق شکل، در معرض یک جریان یکنواخت با سرعت u_{∞} قرار می *گیر*د. سرعت در ناحیه $u(z) = u_{\infty} - \frac{u_{\infty}}{7} \cos(\frac{\pi z}{7w})$ لزج پایین دست ایر فویل اندازه گیری شده و پروفیل به دست آمده برای آن مطابق با رابطه ($\frac{\pi z}{7w} - \frac{u_{\infty}}{7} - \frac{u_{\infty}}{7}$ است. ارتفاع جریان در ورودی که در شکل نیز نشان داده شده است، برابر ۲h بوده و ارتفاع آن در ناحیه پشت ایر فویل برابر است. ارتفاع جریان در ورودی که در شکل نیز نشان داده شده است، برابر ۲h بوده و ارتفاع آن در ناحیه پشت ایر فویل برابر ۲w است. خطوط جریان متصل کننده قسمت ورودی به خروجی جریان اطراف ایر فویل در شکل نشان داده شده است. در صورتی که مقدار $v_{\infty} = v_{\infty}$
 - - ۴۱ با استفاده از مدل لزجت گردابهای برای یک جریان متلاطم، کدام پارامتر(ها) محاسبه میشود؟ ۱) سرعتهای ū و ⊽ و برش اغتشاش $(\overline{-u'v'})$
 - ۲) سرعتهای 'u و 'v' ۳) انرژی اغتشاش ۴) انرژی اغتشاش و برش اغتشاش ('u'v-)

۱) سهموی ۲) خطی

۳) چندجملهای مرتبه سوم

۴) نمی توان اظهارنظر قطعی کرد.

- ۴۲ لایهٔ ناز کی از مایع بر روی سطح شیبداری بر اثر نیروی وزن بهطرف پایین جریان دارد. توزیع سرعت، کدام شکل است؟
- h y μ z α

698 C

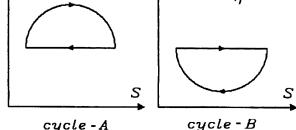
- ۳۳ $\mathbf{v}_{\mathbf{r}} = \mathbf{ar}^{\mathsf{r}} \cos \theta$ $\mathbf{v}_{\mathbf{r}} = \mathbf{ar}^{\mathsf{r}} \cos \theta$ $\mathbf{v}_{\mathbf{\theta}} = \mathbf{br}$ $\mathbf{v}_{\mathbf{\theta}} = \mathbf{br}$ $\mathbf{v}_{\mathbf{\theta}} = \mathbf{br}$ $\mathbf{v}_{\mathbf{\theta}} = \mathbf{br}$ $\mathbf{v}_{\mathbf{\theta}} = \mathbf{v}_{\mathbf{\theta}}$ $\mathbf{v}_{\mathbf{$
- ۴۴ جریان سیال بین دو استوانه هممرکز و ایستا را در نظربگیرید. اگر ناگهان استوانه خارجی با سرعت دوران ۵ شروع به دوران کند، پس از گذشت چند ثانیه استوانه داخلی در آستانه شروع دوران قرار میگیرد؟ (برای سادگی فرض کنید فاصله بین دو استوانه کوچک باشد. ۷ ویسکوزیته سینماتیکی، R_i شعاع استوانه داخلی و R_0 شعاع استوانه خارجی است.)

$$\frac{\left(R_{o}-R_{i}\right)^{r}}{\nu} (r) \qquad \frac{\left(R_{o}-R_{i}\right)^{r}}{\varepsilon\nu} (r)$$

$$\frac{\left(R_{o}-R_{i}\right)^{r}}{\varepsilon\nu} (r) \qquad \frac{\left(R_{o}-R_{i}\right)^{r}}{\varepsilon\nu} (r)$$

- ۴۶ ثابت تعادل واکنش تجزیه اکسیژن در دمای T_r و فشار ۱MPa برابر ^{(–}(MPa) K = ۱ است. درصورتی که ۵ مول اکسیژن در داخل یک محفظه را به این دما و فشار برسانیم، چند مول اکسیژن مولکولی در نهایت باقی خواهد ماند؟
- $0_7 \longrightarrow 70$

- (Gibb's-Duhem) جب الحجم العالي المحجم العالي المحجم المحل المحل
 - $\begin{aligned} Ud(\frac{\gamma}{T}) + \forall d(\frac{P}{T}) \sum_{i} N_{i}d(\frac{\mu_{i}}{T}) &= \circ (\gamma) \\ dS &= \frac{dU}{T} + \frac{P}{T}d\forall \sum_{k=\gamma}^{N}\frac{\mu_{k}}{T}dN_{k} \quad (\gamma) \\ S &= (\frac{\gamma}{T})U + (\frac{P}{T})\forall \sum_{k=\gamma}^{N}(\frac{\mu_{k}}{T})N_{k} \quad (\gamma) \\ dU &= TdS Pd\forall + \sum_{i=\gamma}^{N}\frac{\mu_{k}}{T}dN_{k} \quad (\gamma) \end{aligned}$
- ۵۰ تولید آنتروپی کل در فرایند تبدیل بخار آب اشباع با دمای ۱۴۷ درجه سلسیوس و دمای محیط ۵۷ درجه سلسیوس به مایع اشباع چند کیلوژول بر کیلوگرم کلوین (<u>kJ</u> kgK


$$S_{fg} = \Delta kJ/kgK$$
; $h_{fg} = 716\Delta kJ/kg$

- ۱/ ۰ (۲ و امکان پذیر
 ۱/ ۰ (۲ و امکان پذیر
 ۳) ۰۱/ و امکان پذیر
 ۳) ۰۱/ و امکان پذیر
- ۵۱- گورهای را در نظر بگیرید که در دمای ثابت C°۷۲۷ و بهطور پایا، گرمایی با شدت kW ۰۰۰ ۲۰ را منتقل میکند. اگر دمای محیط C°۲۷ باشد، نرخ تبادل اگرزژی توسط این انتقال گرما، چند kW است؟ ۱) ۶۰۰ (۱
 - ۶۶۶۶_/۶۷ (۴ ۲۸۶۰ (۳
- ۵۲ هوا بهعنوان یک گاز ایدهآل در مخزنی به حجم V در دمای محیط T_o و فشار P قرار دارد. با صرفنظر کردن از انرژیهای جنبشی و پتانسیل، کدام رابطه اگرزژی هوای موردنظر را ارائه میکند؟ (T_o, P_o بهترتیب فشار و دمای محیط هستند.)

$$\phi = P_{\circ}V[1 - \frac{P_{\circ}}{P} + \frac{P_{\circ}}{P}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 + \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} - \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\uparrow \qquad \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad \phi = P_{\circ}V[1 - \frac{P}{P_{\circ}} + \frac{P}{P_{\circ}}\ln\frac{P}{P_{\circ}}] \quad (\downarrow \qquad$$

۵۳- در طی فرایند آدیاباتیک، مجذور فشار یک گاز ایده آل با توان پنجم دمای مطلق آن متناسب است. نسبت گرمای ویژه $rac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}}$ برای گاز، کدام است؟ $\frac{\Delta}{r} (r)$ $\frac{\pi}{r} (r)$ $\frac{\Delta}{\pi}$ () ۴ (۳ ۵۴- یک مخزن بزرگ کاملاً عایق از یک خط لولهٔ هوا که دما و فشار مطلق آن بهترتیب T_i و P_i هستند، پر می شود. (تمام خواص خط لوله ثابت است). در لحظهای که گذر جرمی هوای ورودی به مخزن m_i است، جرم هوای مخزن و دمای آن $T_{
m cv}$ است. هوا، گاز آرمانی با ${
m C_V}$ و ${
m C_P}$ ثابت است. تغییرات دمای مخزن با زمان ${
m T_{
m cv}}$ برابر ${
m m_{
m cv}}$ کدام است؟ (از تغییرات انرژی جنبشی و پتانسیل صرفنظر کنید.) $\frac{\dot{m}_{i}c_{p}\left(T_{i}-T_{cv}\right)}{m-c}$ (Y $\frac{m_i c_v (T_i - T_{cv})}{m_{cv} c_p}$ (1) $\frac{\dot{m}_i(T_i - T_{ev})}{m_{\star}}$ (* $\frac{\dot{m}_i(c_pT_i-c_vT_{cv})}{m-c}$ (f دوچرخه بازگشت پذیر طبق دیاگرامهای T-S ملاحظه می شود. اگر دمای حداقل چرخه (A) برابر دمای حداکثر -۵۵

چرخه (B) باشد، کدام مقایسه در رابطه با کار خالص چرخه و بازده حرارتی آنها درست است؟ $\eta_B > \eta_A$, $W_A = W_B$ () $\eta_A > \eta_B$, $W_A > W_B$ (r

 $\eta_A > \eta_B$, $W_A = W_B$ (r $\eta_{\mathrm{B}} > \eta_{\mathrm{A}}$, $W_{\mathrm{A}} < W_{\mathrm{B}}$ (f

 $\mathbf{m}_1 = \mathbf{m}_Y = \mathbf{m}$ میستم ترمودینامیکی شامل دو ساچمهٔ سنگزنی را در دمای \mathbf{T}_1 برحسب کلوین و هر یک به جرم $\mathbf{m}_2 = \mathbf{m}_3$ کیلوگرم در نظر است. در ابتدا یک ساچمه ساکن و ساچمهٔ دیگر با سرعت v1 (برحسب متر بر ثانیه) درحال حرکت است. ساچمهٔ متحرک به ساچمهٔ ساکن به گونهای برخورد میکند که دو ساچمه به هم چسبیده با سرعت کمتری معادل ۷۶ حرکت میکنند. گرمای ویژهٔ ساچمه برحسب $rac{{f kJ}}{{f kg\,K}}$ ، با فرض اینکه هیچگونه تبادل انرژی با محیط انجام نمیشود، تغییرات آنترویی سیستم شامل دو ساچمه در اثر برخورد $(S_{Y} - S_{1})$ ، چقدر است? $\tau mc \ln \frac{T_{1} + \frac{V_{1}^{\tau}}{\tau c}}{T}$ (1) $\tau mc \ln \frac{T_1 + \frac{V_1^{\prime}}{\Lambda c}}{T}$ (7) $fmcln \frac{T_{\gamma} + \frac{v_{\gamma}^{\gamma}}{\gamma c}}{T}$ (f $mc \ln \frac{T_{1} + \frac{v_{1}^{r}}{rc}}{r}$ ("

698 C

مهندسی مکانیک (۲) (کد ۲۳۲۳)

$$-\Delta V$$

$$+ \frac{dP}{dt} = \frac{ds}{dv}$$

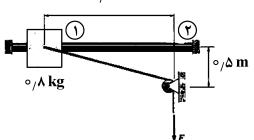
$$+ \frac{dP}{dv}$$

۵۸- یک گاز تکاتمی که دارای دو تراز الکترونی ∘ = ε_e و ε_e است، را در نظر بگیرید. دیژنریسی (degeneracy) این دو تراز برابر واحد است. بخشی از اتمها که بر روی هر یک از این ترازها قرار دارند، چقدر است؟

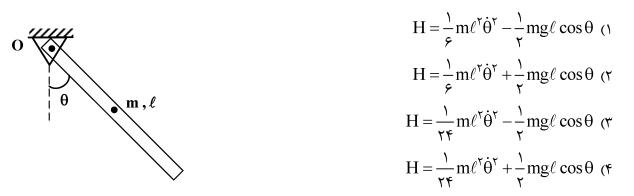
(ک ثابت بولتزمن K) y =
$$\frac{\varepsilon_{e1}}{KT}$$

$$\frac{1}{1+e^{y}} e^{z_{x}} e^{z_{y}} e^{z_{y}}$$

۵۹ – یک سیستم ترمودینامیکی دارای ۳ ذرهٔ قابل تشخیص B ،*a* و c و کل انرژی سیستم ۳ واحد (E = ۳) است. تعداد حالات ماکرو (macrostetate) و تعداد کل حالات میکرو (microstates) برای این سیستم، بهتر تیب چقدر است؟ ۱) ۲، ۵


- ۲) ۳، ۱۰
- ۹ ، ۷ (۳
- 10.0 (4

۶۰ – یک گاز تکاتمی با دوتراز الکترونی ۵ = _ee و _{Ee}، را در نظر بگیرید. دیژنریسی (degeneracy) این دو تراز برابر واحد است، اگر دمای گاز T باشد، مقدار آنتالپی مولی گاز (Ā) چقدر است؟ (R ثابت جهانی گاز است.)

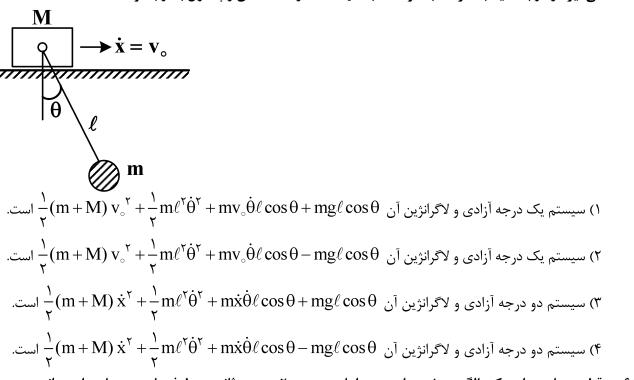

(ا) توانيت بولتزمن
$$\mathbf{K}$$
 $\mathbf{y} = \frac{\mathbf{\epsilon}_{e_1}}{\mathbf{KT}}$
 $\overline{\mathbf{R}}\mathbf{T}(\frac{\Delta}{\gamma} + \frac{e^{-y}}{1 + e^{-y}})$ ($\mathbf{R}\mathbf{T}(\frac{\Delta}{\gamma} + \frac{ye^{-y}}{1 + e^{-y}})$ ($\mathbf{R}\mathbf{T}(\frac{\gamma}{\gamma} + \frac{e^{-y}}{1 + e^{-y}})$ ($\mathbf{R}\mathbf{T}(\frac{\gamma}{\gamma} + \frac{ye^{-y}}{1 + e^{-y}})$ ($\mathbf{R}\mathbf{T}(\frac{ye^{-y}}{1 + e^{-y}})$

صفحه ۱۵	698 C	مهندسی مکانیک (۲) (کد ۲۳۲۳)
	كنترل پيشرفته:	۔ دینامیک پیشرفته ۔ارتعاشات پیشرفته ۔

- ۶۱ لغزندهای به جرم ۸/۰ کیلوگرم در موقعیت (۱) در حال سکون است. به کابلی که به لغزنده متصل است نیرویF وارد می شود. اگر در موقعیت (۲) سرعت لغزنده ۶ متر بر ثانیه باشد و از اصطکاک صرفنظر شود، نیروی F چند نیوتن است؟
 (از جرم کابل و قرقره در مقابل جرم لغزنده صرفنظر شود.)
 ۱/۲ m
 - 18 (۲
 - ۱۷ (۳
 - ۱۸ (۴

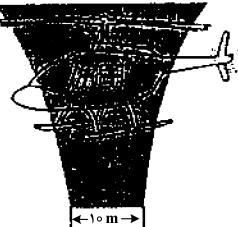
باندول نشان دادهشده از یک میله نازک یکنواخت به جرم f m و طول ℓ تشکیل شدهاست. هامیلتونین سیستم کدام است? -۶۲

-5% حلقهای با سرعت چرخشی P در هوا پر تاب می شود. اگر مشاهده شود که محور هندسی آن دارای لنگ پیشروشی بسیار P جزئی است، با صرفنظر از گشتاور نیروهای جریان هوا حول مرکز جرم حلقه، سرعت حرکت پیشروشی چند برابر P جزئی است، با صرفنظر از گشتاور نیروهای جریان هوا حول مرکز جرم حلقه، سرعت حرکت پیشروشی $(I_{zz} = mr^7, I_{xx} = I_{yy} = -mr^7)$

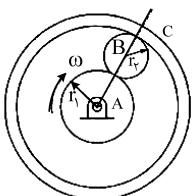

$$(\mathbf{I}_{zz} = \mathbf{m}\mathbf{r}^{T}, \mathbf{I}_{xx} = \mathbf{I}_{yy} = \frac{1}{\mathbf{r}}\mathbf{m}\mathbf{r}^{T})$$

$$(\mathbf{I}_{zz} = \mathbf{m}\mathbf{r}^{T}, \mathbf{I}_{xx} = \mathbf{I}_{yy} = \frac{1}{\mathbf{r}}\mathbf{m}\mathbf{r}^{T})$$

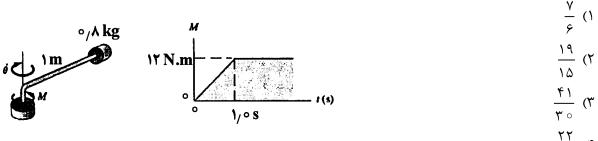
$$(\mathbf{I}_{zz} = \mathbf{m}\mathbf{r}^{T}, \mathbf{I}_{xx} = \mathbf{I}_{yy} = \frac{1}{\mathbf{r}}\mathbf{m}\mathbf{r}^{T}$$


$$(\mathbf{I}_{zz} = \mathbf{m}\mathbf{r}^{T}, \mathbf{I}_{xx} = \mathbf{I}_{yy} = \frac{1}{\mathbf{r}}\mathbf{r}^{T}$$

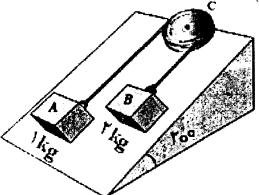
۶۴- کدام مورد درخصوص سیستم دینامیکی نشاندادهشده درست است؟ (حرکت مجموعه در صفحه قائم صورت میگیرد و ارابه مقید به حرکت با سرعت ثابت $\mathbf{\dot{x}} = \mathbf{v}_{\circ}$ در امتداد افق و پاندول به ارابه لولا شده است.)


- ۶۵ قطر جریان هوای یک بالگرد ۱۰ متر است. هوا با سرعت ۲۰ متر در ثانیه به طرف پایین جریان دارد. دانسیته هوا یک کیلوگرم بر مترمکعب است. نیروی رانش هوای ایجادشده توسط بالها، چند نیوتن و به چه سمتی است؟
 - ۱) ۳۲۸۷۵ ـ بالا ۲) ۳۱۴۱۶ ـ یایین

 - ۳) ۲۲۵۷۶ ـ پايين
 - ۲۸۵۴۱ (۴ _ بالا

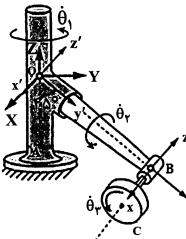


۶۶- در شکل زیر، حلقه C ثابت است و دیسک A با سرعت زاویهای ∞ دوران میکند و دیسک B بین آنها میغلند. اگر جرم دیسک یکنواخت B بین آنها میغلند. اگر جرم دیسک یکنواخت B برابر m باشد، تکانه زاویهای آن حول مرکز جرمش کدام است؟


$$\frac{1}{r} \operatorname{mr}_{r} \mathbf{r}_{r} \omega (1)$$
$$\frac{1}{r} \operatorname{mr}_{r}^{r} \omega (7)$$
$$\frac{1}{r} \operatorname{mr}_{r}^{r} \omega (7)$$
$$\frac{1}{r} \operatorname{mr}_{r} \mathbf{r}_{r} \omega (7)$$
$$\frac{1}{r} \operatorname{mr}_{r}^{r} \omega (7)$$

۶۷- یک مهره کوچک به جرم ۸g ۸/۵ بر روی میلهای بدون جرم مطابق شکل ثابت شده است. مجموعه با سرعت زاویهای ۱۰ رادیان بر ثانیه حول محور قائم دوران میکند. گشتاور ترمزی M به محور قائم اعمال میشود. اگر گشتاور طبق نمودار دادهشده تغییر کند، چند ثانیه طول میکشد تا محور متوقف شود؟

- ۲۲ (۴ ۱۵
- . بلوکهای A و B روی سطح شیبدار بدون اصطکاک میتوانند بلغزند و با کابل مطابق شکل بههم متصل شدهاند. شتاب بلوک A چقدر است؟ (از جرم کابل و قرقره صرفنظر شود.)
 - $\frac{\Delta}{r}g\sin\tau\circ^{\circ}(1)$ $\frac{r}{r}g\sin\tau\circ^{\circ}(1)$ $\frac{r}{r}g\sin\tau\circ^{\circ}(1)$ $\frac{r}{r}g\sin\tau\circ^{\circ}(1)$ $\frac{r}{r}g\sin\tau\circ^{\circ}(1)$



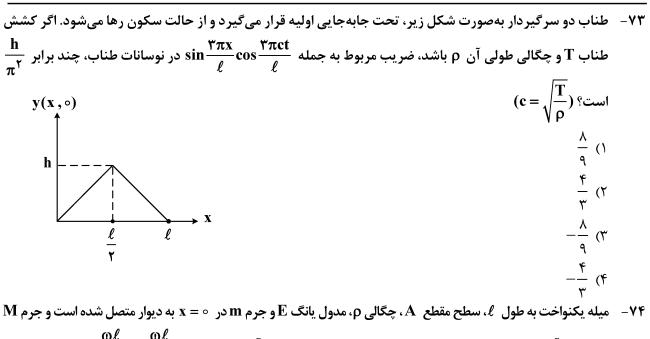
$$(\dot{\theta}_{\gamma}\cos\theta_{\gamma})\vec{i}' + (\frac{\sqrt{\gamma}}{\gamma}\dot{\theta}_{\gamma} - \dot{\theta}_{\gamma})\vec{j}' + (\frac{\sqrt{\gamma}}{\gamma}\dot{\theta}_{\gamma} - \dot{\theta}_{\gamma}\sin\theta_{\gamma})\vec{k}' (1)$$

$$(\dot{\theta}_{\gamma}\cos\theta_{\gamma})\vec{i}' + (-\frac{\sqrt{\gamma}}{\gamma}\dot{\theta}_{\gamma} + \dot{\theta}_{\gamma})\vec{j}' + (\frac{\sqrt{\gamma}}{\gamma}\dot{\theta}_{\gamma} + \dot{\theta}_{\gamma}\sin\theta_{\gamma})\vec{k}' (7)$$

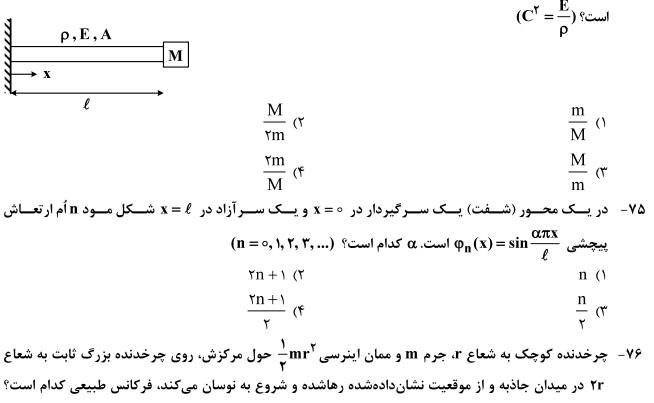
$$(\dot{\theta}_{\gamma}\cos\theta_{\gamma})\vec{i}' + (\frac{\sqrt{\gamma}}{\gamma}\dot{\theta}_{\gamma} + \dot{\theta}_{\gamma})\vec{j}' + (-\frac{\sqrt{\gamma}}{\gamma}\dot{\theta}_{\gamma} + \dot{\theta}_{\gamma}\sin\theta_{\gamma})\vec{k}' (7)$$

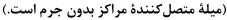
$$(\dot{\theta}_{\gamma}\cos\theta_{\gamma})\vec{i}' + (-\frac{\sqrt{\gamma}}{\gamma}\dot{\theta}_{\gamma} + \dot{\theta}_{\gamma})\vec{j}' + (\frac{\sqrt{\gamma}}{\gamma}\dot{\theta}_{\gamma} - \dot{\theta}_{\gamma}\sin\theta_{\gamma})\vec{k}' (7)$$

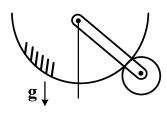
مهندسی مکانیک (۲) (کد ۲۳۲۳)



- چرخهای پایهٔ سیار زیر، بر روی زمین بدون لغزش میغلتند. مختصات این سیستم $\{ heta_L, heta_R, \phi, y_A, x_A\}$ در -/+ نظر گرفته شدهاست. کدام مورد نادرست است؟ محور دوران چرخها AX . مرکز جرم یایه سیار محور تقارن پایه سیار ۱) این سیستم تنها دارای یک قید هولونومیک و یک قید غیرهولونومیک است. معادله ($\dot{\theta}_{\rm R} - \dot{\theta}_{\rm L}$) معادله (۲ فار $\dot{\phi}_{\rm R} - \dot{\theta}_{\rm L}$) معادله (۲) معادله $\phi = \hat{y}_A \cos \phi - \dot{x}_A \sin \phi$ یک قید غیرهولونومیک این سیستم است. (۳) معادله $\dot{x}_A \cos \phi + \dot{y}_A \sin \phi = \frac{r_a}{r_a} (\dot{\theta}_R + \dot{\theta}_L)$ معادله (۴) معادله (۴) با استفاده از روش ریلی و با در نظر گرفتن تابع $\psi(\mathbf{x}) = \left(\frac{\mathbf{x}}{\mathbf{L}}\right)^{\gamma}$ ، فرکانس طبیعی اصلی ارتعاش عرضی تیر یک سرگیردار -71 زير چند برابر $\frac{1}{100} \sqrt{\frac{EI}{DA}}$ است؟ (مدول الاستيسيته تير: E، ممان اينرسی سطح مقطع: I ، چگالی تير: ho، طول تير: L و سطح مقطع تير: A) ۲۰ (۲ 10 () $\sqrt{\gamma \circ}$ (f $\sqrt{10}$ (T ۷۲- از یک ورق فلزی که از یک سمت گیردار است، برداشت ماده مطابق شکل انجام می شود. در مورد فرکانس طبیعی اول ارتعاش عرضی آن کدام مورد درست است؟ گیردار گیردار بر داشت ماده ۳a ۱) تغییری نمی کند. ۲) بیشتر میشود. ٣a
 - ۳) کمتر میشود.


۴) وابسته به مدول الاستیسیته، می تواند کمتر یا بیشتر شود.


698 C


مهندسی مکانیک (۲) (کد ۲۳۲۳)

در انتهای آن x = x نصب شده است. اگر معادله فرکانسی ارتعاش طولی آن به صورت $x = \frac{\omega \ell}{C} \tan \frac{\omega \ell}{C}$ باشد، مقدار B کدام E

صفحه ۱۹

698 C

-۷۷ نیروی متمرکز f با فرکانس تحریکی برابر با فرکانس طبیعی سوم ارتعاش طولی میله زیر که دو سر آزاد است، وارد می شود. محل اعمال این نیرو در کدام گزینه مود سوم ارتعاش طولی را تحریک می کند؟ f $x = \frac{\Delta \ell}{\varphi}$ () $x = \frac{\ell}{\varphi}$ () $x = \frac{\ell}{\gamma}$ ()

- v برای به دست آوردن فرکانس های طبیعی تقریبی ارتعاشات طولی یک میله یک سرگیردار _ یک سر آزاد به طول l، چگالی ρ و سطح مقطع A به روش ریلی _ ریتز، دو تابع پذیرفتنی $\frac{x^{T}}{\ell^{T}} = \varphi_{1} = \frac{x^{T}}{\ell^{T}}$ انتخاب شدهاند. ماتریس جرم حاصل از این روش، کدام است؟

$$A = \circ \qquad \rho A \ell \begin{bmatrix} \frac{1}{r} & \frac{1}{r} \\ \frac{1}{r} & \frac{1}{r} \\ \frac{1}{r} & \frac{1}{r} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{a} & \frac{1}{r} \\ \frac{1}{s} & \frac{1}{r} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{a} & \frac{1}{r} \\ \frac{1}{s} & \frac{1}{r} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{a} & \frac{1}{r} \\ \frac{1}{s} & \frac{1}{r} \\ \frac{1}{r} & \frac{1}{r} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{r} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{r} & \frac{1}{r} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{r} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{r} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{r} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{bmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{pmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{pmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{pmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{pmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{pmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{pmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \begin{pmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{bmatrix} (r \qquad \rho A \ell \end{pmatrix} (r \qquad \rho A \ell \begin{pmatrix} \frac{1}{s} & \frac{1}{s} \\ \frac{1}{s} & \frac{1}{s} \end{pmatrix} (r \qquad \rho A \ell \end{pmatrix} (r \ \rho A \ell \end{pmatrix} (r \ \rho A \ell \end{pmatrix} (r \ \rho A \ell)$$

۷۹- جرم سنگین M روی زمین قرار داشته و سیستم جرم و فنر به آن متصل است. اگر نیروی F = F_o sin @t به جرم وارد شود، محدودهٔ فرکانس تحریک @ چقدر باشد تا جرم سنگین از زمین جدا شود؟

$$\mathbf{F} = \mathbf{F}_{\circ} \sin \omega t$$

$$\sqrt{\frac{k}{m}} (1 - \frac{F_{\circ}}{Mg}) \leq \omega \leq \sqrt{\frac{k}{m}} (1 + \frac{F_{\circ}}{Mg}) \quad (1 + \frac{F_{\circ}}{Mg}) \leq \omega \leq \sqrt{\frac{k}{m}} (1 + \frac{F_{\circ}}{Mg}) \quad (1 + \frac{F_{\circ}}{Mg}) \leq \omega \leq \sqrt{\frac{k}{m}} (1 + \frac{F_{\circ}}{Mg}) \quad (1 + \frac{F_{\circ$$

مهندسی مکانیک (۲) (کد ۲۳۲۳)

یاسخ معادله حرکت سیستم یک درجه آزادی با میرایی لزجی «ویسکوز» زیر با فرض شرایط اولیه x(۰) = ۰/۱۵ m و •=(•) كدام است؟ $\forall \ddot{\mathbf{x}}(t) + \forall \mathbf{A} \circ \dot{\mathbf{x}}(t) + \forall \circ \mathbf{A} \mathbf{x}(t) = \mathbf{O}$ $(\circ_{/})\Delta\cos \theta t + \frac{1}{\omega}\sin \theta t)e^{-\tau \circ t}$ (1) $\circ_{/} \tau e^{-\tau \circ t} - \circ_{/} \iota \Delta e^{-\iota \circ t}$ (t $\circ_{/} \mathbf{v} e^{-\mathbf{v} \cdot t} - \circ_{/} \mathbf{v} e^{-\mathbf{v} \cdot t}$ (v $(\circ_1 \wedge \delta + 1_2 \wedge t)e^{-1\circ t}$ (f ۸۱ تابع تبدیل معادل سیستم زیر کدام است؟ $\mathbf{A} = \begin{vmatrix} \circ & -1 & 1 & \circ & \circ & \circ \\ \circ & \circ & -1 & \circ & \circ & \circ \\ \circ & \circ & \circ & -7 & \circ & \circ \\ \circ & \circ & \circ & \circ & -7 & 1 \end{vmatrix}, \mathbf{B} = \begin{vmatrix} \circ \\ 1 \\ 1 \\ \circ \end{vmatrix}, \mathbf{C} = \begin{bmatrix} 1 & -7 & -1 & 1 & -7 & 1 \end{bmatrix}, \mathbf{D} = \circ$ $\frac{Y(s)}{U(s)} = \frac{1}{(s+r)^{\gamma}} + \frac{-\gamma}{(s+r)} + \frac{-1}{(s+r)} + \frac{1}{(s+r)^{\gamma}} + \frac{-\gamma}{(s+r)^{\gamma}} + \frac{1}{(s+r)^{\gamma}} +$ $\frac{Y(s)}{U(s)} = \frac{1}{(s+1)^{r}} + \frac{-r}{(s+1)^{r}} + \frac{-1}{s+1} + \frac{1}{s+1} + \frac{-r}{(s+r)^{r}} + \frac{1}{s+r}$ (7) $\frac{Y(s)}{U(s)} = \frac{1}{s+\tau} + \frac{-\tau}{(s+\tau)^{\tau}} + \frac{-1}{s+\tau} + \frac{1}{s+\tau} + \frac{-\tau}{(s+\tau)^{\tau}} + \frac{1}{(s+\tau)^{\tau}}$ (7) $\frac{Y(s)}{U(s)} = \frac{1}{(s+1)} + \frac{-r}{(s+1)^r} + \frac{-1}{(s+1)^r} + \frac{1}{s+r} + \frac{-r}{s+r} + \frac{1}{(s+r)^r}$ (* ۸۲ – پارامترهای کنتـرلکننـدهٔ PID در کـدام گزینـه قطـبهای سیســتم مــدار بســتهٔ زیــر را در نقــاط در صفحهٔ اعداد مختلط قرار می دهد؟ – ۴, – ۱– $\sqrt{\pi}$ i, – ۱+ $\sqrt{\pi}$ i $\rightarrow \boxed{k_{P} + k_{D} s + \frac{k_{I}}{s}} \rightarrow \boxed{\frac{r}{s^{\intercal} + rs + \Delta}}$

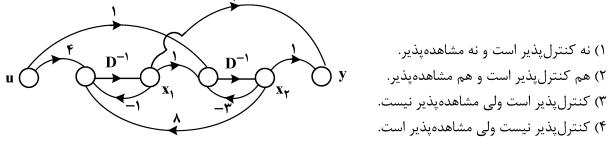
$$k_{D} = -\frac{\Delta}{r}, k_{P} = -\frac{\gamma}{r}, k_{I} = -\frac{\gamma}{r} (1)$$

$$k_{D} = \frac{\Delta}{r}, k_{P} = \frac{\gamma}{r}, k_{I} = -\frac{\gamma}{r} (7)$$

$$k_{D} = 1, k_{P} = \frac{\gamma}{r}, k_{I} = \frac{\gamma}{r} (7)$$

$$k_{D} = -1, k_{P} = -\frac{\gamma}{r}, k_{I} = -\frac{\gamma}{r} (7)$$

۸۳- ماتریسهای حالت A و ضرایب ورودی B و خروجی C در معادلات فضای حالت سیستم مداربستهٔ زیر، کداماند؟


$$R(s) \xrightarrow{+} \underbrace{1}_{s+r} \xrightarrow{X_1} \underbrace{r}_{s+r+r+} \xrightarrow{X_r} C(s)$$

$$A = \begin{bmatrix} -1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (1)$$
$$A = \begin{bmatrix} -1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} (1)$$
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} (1)$$
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} (1)$$
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} (1)$$

$$-\Lambda$$
۴ سیستم $\mathbf{x} = \mathbf{A}\mathbf{x}$ را در نظر بگیرید. \mathbf{v} یک بردار ویژه و \mathbf{s} مقدار ویژه متناظر با آن برای ماتریس A است. اگر شرایط
اولیه سیستم به صورت $\mathbf{v} = \mathbf{v}$ باشد، کدام گزینه صحیح است؟
 $\mathbf{x}(t) = \mathbf{e}^{At}\mathbf{v} = \mathbf{e}^{st}\mathbf{v}$ (۱
 $\mathbf{x}(t) = \mathbf{e}^{At}\mathbf{v} \neq \mathbf{e}^{st}\mathbf{v}$ (۲
 $\mathbf{x}(t) = \mathbf{e}^{St}\mathbf{v} \neq \mathbf{e}^{St}\mathbf{v}$ (۳
 $\mathbf{e}^{st}\mathbf{v} \neq \mathbf{e}^{At}\mathbf{v}$ (۳
 $\mathbf{e}^{st}\mathbf{v} \neq \mathbf{x}(t) \neq \mathbf{e}^{At}\mathbf{v}$ (۴
 $-\Delta\Delta$

$$\underline{\dot{\mathbf{x}}} = \begin{bmatrix} \mathbf{v} & -\mathbf{v} \\ \mathbf{\Delta} & -\mathbf{v} \end{bmatrix} \underline{\mathbf{x}} + \begin{bmatrix} \mathbf{o} \\ \mathbf{1} \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \begin{bmatrix} \mathbf{1} & \mathbf{v} \end{bmatrix} \underline{\mathbf{x}}$$

صفحه ۲۳ مهندسی مکانیک (۲) (کد ۲۳۲۳) 698 C در سیستم مداربسته زیر در مورد پایداری بین دو ورودی $\mathbf{R}(\mathbf{s})$ (ورودی مبنا) و $\mathbf{V}(\mathbf{s})$ (ورودی مزاحم) با متغیرهای $-\Lambda eta$ و E(s) و E(s)، کدام مورد درست است Y(s)E(s) →Y(s) **R(s)**-۲ - V(s) s) رابطه بین (s) = R(s) = V(s) یاپدار نیست ولی رابطه V(s) = V(s) یاپدار است.) رابطه بین R(s) و E(s) پایدار نیست ولی رابطه V(s) و E(s) پایدار است.) رابطه بین R(s) و R(s) یایدار است ولی رابطه V(s) و V(s) یایدار نیست.) رابطه بین R(s) و Y(s) پایدار است ولی رابطه V(s) و V(s) پایدار نیست. طبق روش کنترل فیدبک بردار حالت (State Vector Feedback Control) که در آن $u = -k_1x_1 - k_2x_3$ است، یارامترهای k₁ و k₁ چقدر باشند تا سیستم مداربسته دو مقدار ویژه (قطب) در –۵ – داشته باشد؟ ۱) در این سیستم نمی توان از کنترل فیدبک بردار حالت استفاده کرد. $k_r = r$, $k_r = r$ (r $k_r = \Delta$, $k_s = \pi$ (π $k_r = 1 \pi$, $k_s = 1 \tau$ (f ۸۸- دیاگرام کنترلی یک سیستم الکترومکانیکی بهصورت زیر است. اپراتور به اشتباه سیستم را با فیدبک مثبت وصل کرده است. مقدار k چقدر باشد تا خطای ماندگار سیستم تحت ورودی یله واحد برابر K– شود؟ $\frac{1}{7}$ (1 $\mathbf{R}(\mathbf{s})$ T(s+1)k (s + T)(s + T) $\frac{\gamma}{r}$ (7 ۹ ۴ (٣ 7 (4 ۸۹ در مورد کنترل پذیری و مشاهده پذیری سیستم شکل زیر، کدام مورد درست است؟

Telegram: @uni_k

 $X_{\gamma} = \Upsilon, X_{\gamma} = -1$ (1 $X_{\gamma} = \Upsilon, X_{\gamma} = -1$ (7 $X_{\gamma} = \Upsilon, X_{\gamma} = \circ$ (Υ $X_{\gamma} = \Upsilon, X_{\gamma} = 1$ (F

 $\mathbf{x}_{\gamma} \geq \circ$ and \mathbf{x}_{γ} : unsigned

صفحه ۲۵	698 C	مهندسی مکانیک (۲) (کد ۲۳۲۳)
	حیح کدام است؟	۹۵- پاسخ بهینه مسئله برنامهریزی عدد ص
Maximize $Z = T x_1 + T x_7$		
Subject to: $\begin{cases} -x_1 + x_Y \le 1/\Delta \\ \gamma x_1 - x_Y \le 1/\Delta \end{cases}$		
$\int \mathbf{T} \mathbf{x}_1 - \mathbf{x}_Y \leq 1/\delta$		
$\mathbf{x}_{1}, \mathbf{x}_{T} \geq \circ \&$ Integ	ger	
	14 (1	۱۲ (۱
	19 (4	۱۷ (۳
K ₁ = ۱۰۰۰۰ و K ₁ = ۱ نسبت به کدام متغیر	$\mathbf{K}_{\mathbf{y}} = \mathbf{F} \cdot \mathbf{Q} = 1 \circ \circ \circ \circ \circ$	۹۶- تابع هدف زیر با مقادیر ۳۱۶۲۲ = D،
		حساسیت بیشتری دارد؟
$\cos t = K_{\gamma}D + \frac{K_{\gamma}Q}{D} + K_{\gamma}Q$		
D		K, ()
		К _т (т
		K _r (r
	ر است.	۴) حساسیت نسبت به هر سه متغیر براب
= (f(x)، تعداد تکرار در کدام روش کمتر است؟	$1Tx_1^{\gamma} + Fx_{\gamma}^{\gamma} - 1Tx_1x_{\gamma} + T$	\mathbf{x}_{1} با شروع از نقطه $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ در تابع $\mathbf{x}^{\circ} = \begin{bmatrix} -9 \\ -1 \end{bmatrix}$
) سیمپدس		
۴) سیمپلکس -) در مقابل ترم اول، کدامیک از پارامترهای k، ا	قال حرارت جابهجایی h _c	۹۸- در رابطه زیر با صرفنظرکردن از اثر انت
	زند؟	و \mathbf{C}_{h} اثر بیشتری بر روی \mathbf{X}^{*} دار \mathbf{H}_{t}
$\mathbf{x}^* = \mathbf{k} \left[\left(\frac{\mathbf{H}_t \mathbf{Y} \Delta \mathbf{T}}{1 0^{ \hat{\mathbf{Y}}} \mathbf{k} \mathbf{C}_{1} \mathbf{r}} \right)^{\frac{1}{\mathbf{Y}}} - \frac{1}{\mathbf{h}_c} \right]$		
		k ()
		H _t (۲
		C, (٣
	ار است.	۴) حساسیت نسبت به هر سه متغیر برا!
ناع ممکن در سریع ترین زمان برسد. ار تفاع کوه با	و قصد دارد به پایین ترین ار تف	۹۹- یک کوهنورد در قله کوه ایستاده است، ا
		رابطه زیر بیان میشود:
$h(x, y) = r \circ \circ \circ - \frac{1}{1 \circ \circ \circ \circ} (\Delta x^{r} + r xy + r)$	متر ('y ^۲)	
ی ۲۰ دقیقه به هر نقطهای (x,y) درون یا روی	، هستند. کوهنورد می تواند ط	که در آن x و y مختصات افقی روی زمین
، برسد تا بیشترین ارتفاع را کم کرده باشد؟	به چه مختصاتی در ۳۰ دقیقه	دایرهای به شعاع ۱۰۰۰ متر برسد. او باید
(እ۹۴	.447) (7	(۱) (۱۳۳۹, ۲۲۷)
(* 1717)	668) (4	٣) (۵۶۶۲، ۸۶۸۲)

صفحه ۲۶	698 C	مهندسی مکانیک (۲) (کد ۲۳۲۳)
	نظر بگیرید:	۱۰۰ – مسئله برنامهریزی ریاضی زیر را در ن

 $Max Z = \forall x_1 - x_7 - x_7 + f x_7$

s.t $\begin{cases} & \Upsilon x_1 - \Delta x_{\Psi} + x_{\varphi} \le \Lambda \\ & \Upsilon x_1 - x_{\gamma} + \Upsilon x_{\varphi} \le \Delta \\ & \Delta x_1 - x_{\gamma} - \Upsilon x_{\varphi} \le \Psi \\ & -x_1 + \Upsilon x_{\gamma} - x_{\Psi} \le \Psi \\ & x_1, x_{\gamma}, x_{\Psi}, x_{\varphi} \ge \circ \end{cases}$

درصورتی که شروط زیر به مسئله فوق اضافه شوند، مقدار بهینه متغیرهای تصمیم گیری، کدام است؟

$x_{\gamma}, x_{\gamma}, x_{\varphi} \in integer$

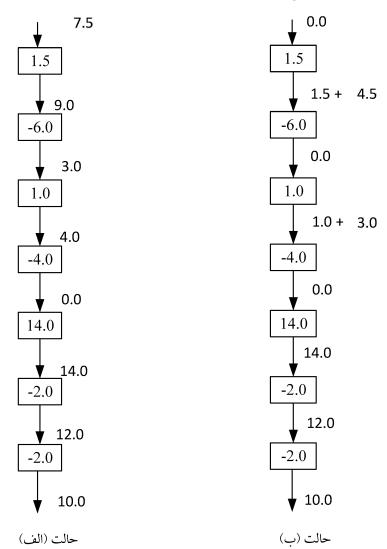
 $x_{i} \in binary$

- $\begin{aligned} x_{1} &= \circ, x_{7} = 7, x_{7} = \circ, x_{7} = 1 \ (1 \\ x_{1} &= 1, x_{7} = 1, x_{7} = \circ, x_{7} = 7 \ (7 \\ x_{1} &= 1, x_{7} = 7, x_{7} = \circ, x_{7} = 7 \ (7 \\ x_{1} &= \circ, x_{7} = 7, x_{7} = \circ, x_{7} = 7 \ (7 \\ x_{1} &= \circ, x_{7} = 7, x_{7} = \circ, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{7} = 7, x_{7} = 0, x_{7} = 7 \ (7 \\ x_{1} &= 0, x_{1} = 1, x_{1} = 0, x_{1}$
- ۱۰۱ در یک نیروگاه سیکل ترکیبی، دمای نقطه پینچ، به تر تیب، با استفاده از مبدل صرفهجو (Economizer) و مشعل
 کمکی در مبدل بازیاب (HRSG) درصورت وجود چه تغییری میکند؟
 ۱) تغییری نمی کند تغییری نمی کند.
 ۲) کاهش مییابد افزایش مییابد.
 ۳) کاهش مییابد افزایش مییابد.
- ۱۰۲- برای تعدادی جریان حرارتی آبشار انرژی در ($^{\circ}$) ۲۰ = ΔT_{min} به مورت زیر جدول زیر است، می خواهیم از این جریانها بخار اشباع ۱۴۰۰و ۲۵۰ درجه سانتی گراد تولید کنیم به نحوی که تولید بخار ۲۵۰ درجه سانتی گراد بیشینه شود. بار حرارتی بخار تولید شده ۱۴۰ درجه سانتی گراد، چند مگاوات می شود؟ (حالت اولیه کلیه بخارها به صورت مایع اشباع است.)
 - ۲/۸۳ (۱
 - 7/97 (7
 - ٧/٣۵ (٣
 - ٧/٩۵ (۴

T*(°C)	H (MW)
۵۵۰	0
400	۲٫۲۱
400	۳/۵۴
260	4/44
240	۵/۱۲
210	9/ V 9
100	٧/٣۵
۱۳۰	۷٫۹۵
40	٨/٤٨

698 C

مهندسی مکانیک (۲) (کد ۲۳۲۳)


۴

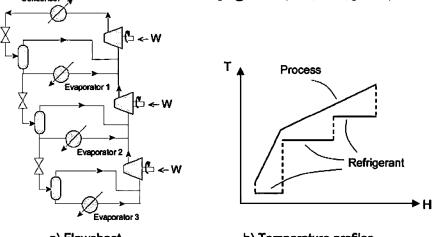
700

۵۵۰

۱۰۳- اطلاعات جریانهای حرارتی یک فرایند شیمیایی در جـدول زیـر نشـاندادهشـده اسـت. اگـر در ایـن مسـئله (C°) ۲۰ = ΔT _{min} فرض شود، نقطه پینچ گرم برابـر ۵۲۰ درجــه سـانتیگـراد خواهــد بـود. حــداقل تعــداد				
	جريان	T _s (°C)	T _t (°C)	واحدهای تبادل حرارت به روش پینچ، چند واحد است؟
	١	۷۲۰	۳۲۰	۵ (۱
	۲	۵۲۰	۲۲۰	۶ (۲
	٣	٣ 00	q o o	۷ (۳
	۰ ۴	Y 0 0	۵۵ ۰	٨ (۴

۱۰۴ اگر آبشار حرارتی یک فرایندی، از حالت (الف) به حالت (ب) تغییر کند، نشان دهنده چیست؟

۱) ۴/۵ مگاوات و ۳ مگاوات utility گرم نیاز است. ۲) ۴٫۵ مگاوات utility گرم و ۳ مگاوات utility سرد نیاز است. ۳) فرایند بدون utility گرم و سرد می تواند به کار خود ادامه دهد. ۴) شبکه مبدلهای حرارتی فرایند در حالت آستانه (Threshold) قرار گرفته است.


صفحه ۲۸	698 C	مهندسی مکانیک (۲) (کد ۲۳۲۳)
لقدار ضريب تصحيح اختلاف دماى	Cross temp) در شبکه مبدل حرارتی، ه	۱۰۵- برای دوری از تلاقی دما (berature
	وىباشد.	لگاریتمی (F _c) باید بزرگتر یا مساو
	°∕Y∆ (Y	۰/۴ (۱
	۴) ربطی ندارد.	۱ (۳
ت؟ (فشار و دمای دو گاز a و b قبل	ی دو گاز ∣یدهآل a و b (شکل زیر)، چقدر اس	۱۰۶- آنتروپی تولیدی در جریان اختلاط بین
[و R ثابت جهانی گازها)	$\mathbf{P_r}=\mathbf{P}/\mathbf{P_\circ}$ با هم برابر است. $\mathbf{x_i}$ جزء مولی،	از اختلاط و پارەشدن غشای بین آنها،
Gas 'a' Ga	as 'b'	$R\sum_{i}x_{i}\ln\frac{1}{x_{i}}$ (1)
	₽	$R(\sum x_i \ln \frac{v}{x_i} - \ln P_r) $ (r
		$R(\sum x_i \ln P_{r_i})$ (۳) هفر
دریافت میکند، را در نظر بگیرید.	ما بالای متفاوت با دماهای مختلف، حرارت	۱۰۷- نیروگاه حرارتی زیر که از دو منبع د
	، نیروگاه حدوداً چند درصد است؟	راندمان قانون دوم ترموديناميك اين
$\dot{Q}_{\mu\tau}=25 \text{ kW}$		٣۴ (۱
power plan		۲۸ (۲
T _{HT} = 750K	$\dot{W}_{out} = 12 \text{ kW}$	۲۴ (۳
		18 (4
$\dot{Q}_{MT} = 50 \text{ kW}$	$T_0 = 300 \text{K}$	

۱۰۸- یک موتور حرارتی، ۴۵۰۰k حرارت را از منبعی با دمای ۲۰۰۴ دریافت کرده و ضمن دفع حرارت به منبع دماپایینی با دمای ۲۰۰۴، به میزان ۱۸۰kW توان تولیدی دارد (شکل زیر). میزان بازگشتناپذیری سیستم چند کیلووات است؟

Sink 300 K

۱۰۹- شکل زیر شماتیک و نمودار ترکیبی (CC) یک چرخه سرمازا را در یک فرایند شیمیایی نشان میدهد. چرخه سرمازای پیشنهادی دارای کمپرسور سه مرحله تراکم و سه اواپراتور با سطوح دمایی مختلف است. درصورتیکه افزایش راندمان اگزرژیک این سیستم مدنظر باشد، باید چه اقدامی کرد؟

a) Flowsheet.

b) Temperature profiles.

- ۱) با افزایش تعداد مراحل تراکم در کمپرسور، نسبت به افزایش تعداد اواپراتورها با سطوح دمایی مختلف اقدام نمود.
- ۲) سطوح دمایی اواپراتورها بهنحوی انتخاب شوند که سطح محصور بین Process و Refrigerant در نمودار b، حداقل شود.
- ۳) همزمان با افزایش تعداد مراحل تراکم در کمپرسور و تعداد اواپراتورها، سطوح دمایی اواپراتورها بهنحوی انتخاب شوند که سطح محصور بین Process و Refrigerant در نمودار b، حداقل شود.
- ۴) همزمان با کاهش تعداد مراحل تراکم کمپرسور و تعداد اواپراتورها، سطوح دمایی اواپراتورها بهنحوی انتخاب شوند که سطح محصور بین Process و Refrigerant در نمودار b، حداکثر شود.
- ۵۰ یک جریان فرایندی در یک کندانسور از دمای ۲۵۰K و آنتالپی ۴۰۰ مگاژول به دمای ۲۵۰K و آنتالپی برابر با ۵۰ مگاژول میرسد. حداکثر میزان کاری که میتوان با حرارت انتقالی در این کندانسور توسط یک ماشین حرارتی با راندمان ۷۵ درصد (نسبت به ماشین کارنو) بهدست آورد، چند مگاژول است؟ (دمای محیط ۲۰۰۳)
 - $\nabla V/\Delta$ (Y $\Delta \circ$ ()
 - 1º/YQ (F Y8/YQ (T
 - ۱۱۱ با افزایش کدام مورد، بهرهوری افزایش مییابد؟
 ۱) قیمت محصول
 ۳) قیمت حاملهای انرژی
 - ۴) سهم هزینههای انرژی در سبد خانوار
- ۱۱۲ یک مجموعه تولید میگو و ماهی، سال گذشته بهدلیل قطعی برق تلفات بسیاری داشته، لذا تصمیم گرفته است علاوه بر استفاده از برق شبکه از انرژیهای تجدیدپذیر نیز برای تولید برق استفاده کند. هزینه برای این مجموعه در اولویت نیست.
 با فرض دسترسی به منابع انرژی و قابلیت ذخیرهسازی روزانه، کدام منبع یا منابع انرژی تجدیدپذیر، پیشنهاد می شود؟
 ۱) انرژی باد
 ۲) انرژی خورشیدی و بادی
 ۳) انرژی خورشیدی (۲) انرژی خورشیدی و بادی

مهندسی مکانیک (۲) (کد ۲۳۲۳)

۱۱۳- متوسط بازده موتور سیکلتهای بنزینی و نیروگاههای کشور تقریباً یکسان است. در ارتباط با جایگزینی موتورسیکلتهای
بنزینی با برقی کدام مورد درست است؟
۱) آلودگی محلی و آلایندههای کلی هوا هر دو افزایش مییابند.
۲) آلودگی محلی کاهش می یابد ولی آلودگی کلی افزایش می یابد.
۳) آلودگی محلی و تولید آلایندههای کلی هوا هر دو قطعاً کاهش مییابند.
۴) آلودگی محلی هوا هیچ تغییری نمیکند ولی آلایندههای کلی هوا کاهش مییابند.
۱۱۴- بهمنظور ایجاد تعادل در عرضه و تقاضای الکتریسیته، کدام راهحل <u>نادرست</u> است؟
۱) پیشیینی پیشرفته آبوهوا بهگونهای که بتوان تغییرات خروجی سلولهای خورشیدی و توربینهای باد را پیشبینی کرد.
۲) کاهش مقیاس عملکرد سیستمهای قدرت، زیرا امکان ایجاد تعادل بین عرضه و تقاضا در سیستمهای مقیاس کوچک بیشتر است.
۳) خـاموش کـردن تولیدکننـدههـای بـرق درصـورت عرضـه بـیش از حـد و یـا روشـن کـردن تولیدکننـدههـای
اضافي درصورت عدم تأمين برق كافي
۴) خاموشکردن برخی از تجهیـزات مصـرفکننـده بـرق در صـورت کـم.ودن عرضـه و یـا روشـنکـردن تجهیـزات
اضافي مصرفكننده يا ذخيرهكننده درصورت مازاد عرضه
۱۱۵- میزان افزایش اجارهبها و همینطور قیمت خرید مسکن در شهر تهران بیش از میزان تورم و افزایش سایر هزینهها
بوده است. این امر موجب میشود تا
۱) نرخ رشد مصرف انرژی در بخش حملونقل مازاد بر نرخ رشد سالهای گذشته شود.
۲) نرخ رشد مصرف انرژی بخش خانگی کمتر از نرخ رشد سالهای گذشته شود.
۳) نرخ رشد مصرف انرژی در کلیه بخشها بهجز بخش خانگی کاهش یابد.
۴) نرخ رشد مصرف انرژی بخش خانگی منفی شود.

۱۱۶- با توجه به جدول زیر (میزان مصرف و تلفات انرژی حاملهای برق و بنزین در یک سال) درصورت جایگزینی موتورهای برقی با موتورهای بنزینی، مصرف انرژی بخش حملونقل و مصرف انرژی اولیه کشور بهترتیب چگونه تغییر میکند؟

برق (ميليون تن	بنزين (ميليون تن	
معادل نفت خام)	معادل نفت خام)	
۲۰٬۷	۵٩٫٧	کل مصرف نهایی
٣,٧	۲/۲	تلفات انتقال و توزيع

مهندسی مکانیک (۲) (کد ۲۳۲۳)

698 C

۱۱۸- فرض کنید مقدار مشخصی ذخیره نفتی (Q) موجود است که می توان آن را در بازه زمانی ۱ (q1) و یا در بازه زمانی (q_y) مصرف کرد. تابع تقاضا برای نفت در هر دوره به قرار زیر است: $\mathbf{q}_{1} = \mathbf{Y} \circ \circ - \mathbf{p}_{1}$ $\mathbf{q}_{\mathbf{Y}} = \mathbf{Y} \circ \circ - \mathbf{p}_{\mathbf{Y}}$ اگر Q = 189 و نرخ تنزل را ۱۰ درصد برای هر دوره باشد، قیمت تعادلی و میزان مصرف هر دوره چقدر است؟ و p_{T} و p_{T} قیمت نفت در هر دوره هستند. فرض کنید هزینه نهایی استخراج برابر صفر است.) $p_1 = 110, p_T = 171, q_1 = 90, q_T = 79$ (1) $p_1 = 119/\Delta$, $p_7 = 111/\Delta$, $q_1 = \Lambda \circ / \Delta$, $q_7 = \lambda \Lambda / \Delta$ (Y $p_1 = 11\Delta/\Delta$, $p_T = 11\Delta/\Delta$, $q_1 = \lambda f/\Delta$, $q_T = \lambda f/\Delta$ (1 $p_1 = 111/\Delta$, $p_r = 119/\Delta$, $q_1 = \lambda\lambda/\Delta$, $q_r = \lambda \circ/\Delta$ (f **۱۱۹** ظرفیت اسمی تولید برق ایران برابر ۹۰ هزار مگاوات و ضریب ظرفیت در زمستان حدود ۸۰ درصد است. حدود ۴ درصد برق تولیدی کشور صادر میشود. اگر در زمستان به منظور کاهش مصرف گاز نیروگاهها صادرات آن را متوقف گردد، مصرف گاز حدوداً چند مترمکعب بر ثانیه کاهش می یابد؟ (ارزش حرارتی گاز طبیعی را برابر MJ • ۴ • در نظر بگیرید.) $\lambda \circ ()$ 77 (7 10 (4 400 (1 ۱۲۰- چگونه تحلیل سیستمهای انرژی می تواند در مقابله با تحولات اقلیمی و گرمایش زمین مؤثر باشد؟ ۱) افزایش استفاده از انرژیهای تجدیدیذیر در محلهای مستعد به گرمایش زمین ۲) تعیین استراتژیهای مدیریت انرژی برای کاهش انتشار گازهای گلخانهای ۳) توسعه فناوریهای کاهنده انتشار گازهای گلخانهای

۴) طراحی و ساخت تجهیزات انرژیهای تجدیدپذیر