
کد کنترل

704

C

جمهوری اسلامی ایران وزارت علوم، تحقیقات و فناوری سازمان سنجش آموزش کشور

«در زمینه مسائل علمی، باید دنبال قلّه بود.» مقام معظم رهبری

دفترچه شماره ۳ از ۳

14.7/17/.4

آزمون ورودی دورههای دکتری (نیمهمتمرکز) ـ سال ۱۴۰۳

مهندسی صنایع (کد ۲۳۵۰)

مدتزمان پاسخگویی: ۱۳۵ دقیقه

تعداد سؤال: ۴۵

عنوان مواد امتحانی، تعداد و شماره سؤالها

تا شماره	از شماره	تعداد سؤال	مواد امتحانی	ردیف
٣٠	١	٣٠	تحقیق در عملیات (۱ و ۲) ـ تئوری احتمالات و آمار مهندسی	١
40	٣١	۱۵	طراحی سیستمهای صنعتی	٢

این آزمون، نمره منفی دارد.

استفاده از ماشین حساب مجاز نیست.

حق چاپ، تکثیر و انتشار سؤالات به هر روش (الکترونیکی و ...) پس از برگزاری آزمون، برای تمامی اشخاص حقیقی و حقوقی تنها با مجوز این سازمان مجاز میباشد و با متخلفین برابر مقررات رفتار می شود.

مهندسی صنایع (کد ۲۳۵۰) 704 C

* داوطلب گرامی، عدم درج مشخصات و امضا در مندرجات جدول زیر، بهمنزله عدم حضور شما در جلسه آزمون است.

اینجانب با شماره داوطلبی با آگاهی کامل، یکسان بودن شماره صندلی خود با شماره داوطلبی مندرج در بالای کارت ورود به جلسه، بالای پاسخنامه و دفترچه سؤالها، نوع و کد کنترل درجشده بر روی دفترچه سؤالها و پایین پاسخنامهام را تأیید مینمایم.

امضا:

تحقیق در عملیات (۱ و ۲) ـ تئوری احتمالات و آمار مهندسی:

اگر A = 0 + A و A و B هر دو ماتریسهای مربعی باشند، کدام یک از روابط زیر همواره صحیح است؟

$$det(A + B) = det(A)$$
 (Y

$$det(A - B) = det(A)$$
 (\)

$$\det(A + B)^{\Upsilon} = \det(A - B)^{\Upsilon}$$
 (\Gamma

$$det(A + B) = det(A - B)$$
 ($^{\circ}$

ماتریسهای $Y \times Y$ باشند که دارای دترمینان و اثر (جمع عناصر قطری) یکسان هستند. کدام A فرض کنید A و A ماتریسهای $Y \times Y$ باشند که دارای دترمینان و اثر (جمع عناصر قطری) یکسان هستند. کدام گزاره همواره صحیح است؟

به ازای همه α های حقیقی $B = \alpha A$ (۱

$$b_{yy} = a_{yy}$$
 اگر $B = A$ (۲

یا می توانند یکسان یا متفاوت باشند. B و A

بهازای یک عدد حقیقی lpha که لزوماً یک نیست. B=lpha A (۴

۲- چه تعداد از مجموعههای زیر، محدب است؟

_مجموعهٔ اعداد گنگ در بازهٔ [۱,۰]

_مجموعهٔ اعداد گویا در بازهٔ [۰٫۱]

ـ بازهٔ [۱,۰]

۱) صفر

1 (٢

۲ (۳

۴ (۴

توابع f و g به شکل روبهرو تعریف شدهاند:

 $\mathbf{f}(\mathbf{x}) = \mathbf{e}^{-\frac{\mathbf{x}^{\mathsf{T}}}{\mathsf{Y}}} \qquad \mathbf{x} \in \mathbb{R}$

 $g(x) = \int_{-\infty}^{x} f(t) dt$ $x \in \mathbb{R}$

چه تعداد از توابع زیر، روی x>0 مقعر هستند؟

 $f(x),g(x),\ln \Big(f(x)g(x)\Big)$ صفر (۱

١ (٢

۲ (۳

4) 4

اشد. $b \sim N(\mu_{\gamma}, \sigma_{\gamma}^{7})$ و $a \sim N(\mu_{\gamma}, \sigma_{\gamma}^{7})$ و $a \sim N(\mu_{\gamma}, \sigma_{\gamma}^{7})$ دارای توزیع نرمال و از هم مستقل باشند و $a \sim N(\mu_{\gamma}, \sigma_{\gamma}^{7})$ دارای چه مقادیری از $a \geq \delta \leq 1$ ، محدودیت تصادفی زیر را می توان به یک محدودیت محدب تبدیل نمود؟

$$\Pr(\mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} \leq \mathbf{c}) \geq \delta \qquad \qquad \delta \leq \frac{1}{2} \text{ (1)}$$

$$\delta$$
) هیچ مقداری از $\delta \leq \delta \leq 1$ (۳ معلامی از $\delta \leq \delta \leq 1$ (۳

چه تعداد از گزارههای زیر، در استفاده از شرایط KKT برقرار است؟ (فرض کنید توابع مورد استفاده در بهینهسازی همه مشتق پذیر هستند و مسئلهٔ بهینهسازی دارای جواب بهینه است.)

- ـ در بهینهسازی محدب، اولین نقطهای که در شرایط KKT صدق کند، بهینهٔ سراسری است.
- در بهینه سازی، ممکن است نتوان جواب بهینه را با استفاده از شرایط KKT به دست آورد.
 - ـ در بهینه سازی محدب با استفاده از شرایط KKT، حتماً جواب بهینه را می توان یافت.
 - ۱) صفر
 - 1 (٢
 - ۲ (۳
 - 4 (4

 $\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)^{1}$ میخواهیم نقطهای را بیابیم که در محدودیتهای زیر صدق میکند و فاصلهٔ مَنهَتَن آن تا نقطهٔ کمینه شود. برای حل این مسئله با برنامه ریزی خطی، به چه تعداد متغیر و محدودیت جدید نیاز داریم؟ (فاصله

 $\mathbf{A}\mathbf{x} \leq \mathbf{b}, \sum_{i=1}^{n} \mathbf{x}_{i} = 1, \ \mathbf{x}_{i} \geq 0, \ i = 1,...,n$ مَنْهَتَن بين دو نقطه \mathbf{x} و \mathbf{x} به صورت $\sum_{i=1}^{n} \left| \mathbf{x}_{i} - \mathbf{y}_{i} \right|$ تعريف می شود.)

- n ()
- Yn (Y
- ٣n (٣
- 4n (4

جواب بهینه مدل زیر، $s_v = 1$ و $s_v = 7$ است (سایر متغیرها صفر هستند.) درصورت تغییر $s_v = 1$ به کدام ناحیه شامل مقادیری از δ است که می تواند باعث تغییر در پایهٔ بهینه شود؟

 $\max z = -\Delta x_1 + \Delta x_2 + 1 \forall x_3$

 $[\circ, \mathsf{Y}, \Delta]$ (1

 $-x_1 + x_2 + \forall x_3 \leq 7$ s.t.

 $[-1\circ,\circ]$ (7

 $17x_1 + 7x_2 + 1 \circ x_4 \leq 9 \circ$

[-3.7] (π

 $x_1, x_2, x_3 \geq 0$

 $[-\Delta, \Delta]$ (4

اگر منطقه موجه یک مسئله برنامهریزی خطی بهصورت زیر، بهگونهای که فضای موجه آن پارهخط بین دو نقطه مشخص شده

در شکل باشد، برای بیان مسئله به فرم استاندارد برنامهریزی خطی، چه تعداد متغیر اصلی و کمکی نیاز است؟

- 4 (1
- ۵ (۲
- ۶ (۳
- ٧ (۴

۱۰ در مسئله برنامهریزی خطی زیر، اگر محدودیت دوم حذف شود، مقدار بهینهٔ مسئله چه تغییری میکند؟

$$\min z = \Delta x_1 + \forall x_7 + \forall x_7 + x_8$$

۱) مسئله بی کران می شود.

s.t. $x_1 + x_7 = 10 \circ$

۲) مقدار بهینه تغییری نمیکند.

 $x_{\gamma} + x_{\varphi} = \gamma \Delta \circ$

۳) مقدار بهینه ممکن است بدتر شود.

 $x_1 + x_T = YV \circ$

۴) مقدار بهینه ممکن است بهتر شود.

 $x_{\gamma} + x_{\varphi} = 1$ $\gamma \circ$

 $x_1, x_7, x_7, x_8 \geq 0$

اا - مدل برنامه ریزی خطی زیر را درنظر بگیرید. ${\bf B}$ دارای معکوس است. تابع هدف، کدام است؟

 $\min z = c_B^T x_B + c_N^T x_N$

s.t. $Bx_B + Nx_N = b$

 $x_B, x_N \geq 0$

 $c_{B}^{T}B^{-1}b + (c_{B}^{T}B^{-1}N - c_{N}^{T})x_{N}$ (Y

 $c_B^T B^{-1} x_B + c_N^T B^{-1} N x_N$ (1

 $c_{R}^{T}B^{-1}b + (c_{N}^{T} - c_{R}^{T}B^{-1}N)x_{N}$ (*

 $c_B^T B^{-1} b + c_N^T B^{-1} N x_N$ (Y

۱۲- برای حل مدل زیر با استفاده از الگوریتم سیمپلکس، حداقل به چه تعداد متغیر جدید نیاز است؟

 $\max z = \sum_{i=1}^{n} a_i \mid x_i \mid$

7n () 7n (7

s.t. Ax = b

۴n (۳

۵n (۴

۱۳ در حل مدل زیر با استفاده از سیمپلکس دوگان در یک تکرار، مقدار تابع هدف چه میزان افزایش می یابد؟ $\min z = \forall x_1 + \forall x_2 + \forall x_3 + \forall x_4 + \forall x_5 + \forall x_6 + \forall x$

s.t. $\forall x_1 + \forall x_2 + \forall x_3 + x_4 \geq \Delta$

 $\lambda x_1 + f x_7 + f x_8 + f x_9 \ge \lambda$

 $\forall x_1 + \lambda x_2 + x_2 + x_3 \geq 4$

 $X_1, X_2, X_3, X_4 \geq 0$

7 (7

4 (1

-4 (4

-r (r

۱۱ – برای حل کامل مدل زیر بهوسیلهٔ روش شاخهوکران، بهغیر از ریشهٔ درخت، به چند گره نیاز است؟

 $\max z = 1\Delta x_1 + 17x_7 + 7x_7 + 7x_7$

s.t. $\lambda x_1 + \Delta x_7 + \nabla x_7 + \nabla x_6 \leq 1$

 $X_1, X_{\gamma}, X_{\gamma}, X_{\gamma} \in \{\circ, 1\}$

۲ (۱

٣ (٢

4 (4

۵ (۴

$$\sum_{i=1}^{n} (x_{i1t} + y_{it}) = d_t^{\gamma} \quad t = 1, ..., T$$

$$\sum_{i=1}^{n} (x_{i1t} + y_{it}) = d_t^{\gamma} \quad t = 1, ..., T$$

$$\sum_{i=1}^{n} x_{i1t} = d_t^{\gamma} \quad t = 1, ..., T$$

$$\sum_{i=1}^{r} (x_{ijt} + y_{it}) \le 1 \qquad t = 1, ..., T, i = 1, ..., n$$

- _ یک پرستار در هر روز حداکثر به یک شیفت تخصیص می یابد.
- ـ یک پرستار می تواند در شیفتهای ۱ و ۲ در یک روز به صورت متوالی کار کند.
 - ـ یک پرستار می تواند در شیفتهای ۳ و ۱ در دو روز متوالی کار کند.
 - ـ برای بر آورده کردن تقاضا می توان برون سیاری کرد.
 - ــ تقاضای هر شیفت باید بر آورده شود.

۱۶− برای بازرسی سوزن سرنگ، از دستگاهی استفاده میشود که ۲٪ سوزنهای معیوب را سالم و ۱۰٪ سوزنهای سالم را معیوب تشخیص میدهد. از یک مجموعه سوزن سرنگ که تقریباً ۵٪ معیوب دارد، سوزنی بهطور تصادفی انتخاب و بازرسی میشود. اگر دستگاه این سوزن را معیوب تشخیص دهد، احتمال آنکه سالم باشد، کدام است؟

۱۷ فرض کنید تعداد اتومبیلهایی که در یک روز به یک پارکینگ مراجعه می کنند دارای توزیع پواسون با $\alpha = 1$ است.
اگر در یک روز تا ساعت ۱۲، حداقل یک اتومبیل به این پارکینگ مراجعه کرده باشد، احتمال اینکه در این روز
حداقل $\alpha = 1$ است؟

$$1-Fe^{-F}$$
 (7 $1-A/\Delta e^{-F}$ (1

$$\frac{1-\mathfrak{f}\,\mathrm{e}^{-\mathfrak{r}}}{1-\mathrm{e}^{-\mathfrak{r}}}\,\,(\mathfrak{f})\qquad\qquad \frac{1-\lambda/\Delta\,\mathrm{e}^{-\mathfrak{r}}}{1-\mathrm{e}^{-\mathfrak{r}}}\,\,(\mathfrak{r})$$

و انحراف $\mathbf{E}\Big[(X-\mathbf{Y})^{\mathsf{Y}}\Big]$ است، مقادیر $\mathbf{M}(t)=\mathbf{e}^{(\mathsf{Ye}^t-\mathsf{Y})}$ و انحراف حیار \mathbf{X} به تر تب کدام اند؟

۱۹ - شخصی از منطقه یک به سمت منطقه دو، در یک مسافت ۲۰ مایلی در حال رانندگی است. سرعت متوسط او یک تا ۲۰ مایل در هر ساعت دارد. میانگین مدت سفر او، چقدر است؟

704 C

کدام است؟ $Y\sim P(\lambda)$ و $X\sim Ge(p)$ کدام است؟ $Y\sim P(\lambda)$ کدام است؟ کدام است؟

$$\frac{p}{1-p}e^{-\lambda(1-p)} \text{ (1)}$$

$$\frac{1-p}{p}e^{-\lambda p} \text{ (7)}$$

$$e^{-\lambda p} \text{ (7)}$$

$$e^{-\lambda(1-p)} \text{ (4)}$$

حرض کنید در یک بانک، دو باجه خدمت دهی وجود دارد و مدت زمان خدمت دهی هر یک از این باجه ها متغیر تصادفی نمایی با میانگین $\frac{1}{7}$ ساعت باشد. اگر در هر باجه یک نفر در حال خدمت گرفتن باشد، امید ریاضی مدت زمانی که طول می کشد تا هر دو نفر خارج شوند، چند ساعت است؟

$$\frac{1}{r} (r)$$

$$\frac{r}{r} (r)$$

$$\frac{r}{r} (r)$$

۲۲– تابع مولد گشتاور متغیر تصادفی X، بهصورت زیر تعریف شدهاست. میانگین و واریانس X، بهترتیب چقدر است $^\circ$

$$M_X(t) = \frac{\circ / \varepsilon e^t}{1 - \circ / \varepsilon e^t}$$

۲۳− از جمعیتی نرمال به میانگین و واریانس ۲۵، نمونهای تصادفی به اندازه ۹ گرفته میشود. تقریباً چه نسبتی از نمونههای مشاهدهشده، بیشتر از ۲۰ و کمتر از ۳۰ هستند؟

 $\mathbf{f}(\mathbf{x}) = egin{cases} \frac{\mathbf{Y}}{\theta} e^{-rac{\mathbf{Y} \cdot \mathbf{X}}{\theta}} \\ \mathbf{x} > \circ & \text{ управод от разов от$

برابر \overline{X} ۲ بهدست آمدهاست. کار آیی این بر آوردکننده، کدام است؟

$$\frac{1}{r} (r) \qquad \qquad \frac{\pi}{r} (r) \qquad \qquad \frac{1}{r} (r)$$

$$\sum_{i=1}^n X_i + \sqrt{n}$$
 برای بر آوردکردن پارامتر p یک توزیع برنولی براساس نمونهای $\hat{\theta}_{\gamma} = \frac{i=1}{n}$ و $\hat{\theta}_{\gamma} = \overline{X}$ برای بر آوردکردن پارامتر p یک توزیع برنولی براساس نمونهای $\hat{\theta}_{\gamma}$ نسبت به بر آوردکننده $\hat{\theta}_{\gamma}$ کدام است؟ تصادفی به اندازهٔ p پیشنهاد شدهاست. کارایی نسبی بر آوردکننده p نسبت به بر آوردکننده p کدام است؟

$$\frac{pq}{pq-1} (\Upsilon \qquad \qquad \frac{pq-1}{pq} (\Upsilon)$$

$$\frac{pq+1}{pq} (\Upsilon)$$

$$\frac{pq}{pq+1} (\Upsilon)$$

کند. چه فرض کنید وزن یک نوزاد هنگام تولد از یک توزیع نرمال با میانگین مجهول μ و انحراف معیار μ 0/9 پیروی کند. چه تعداد نمونه لازم است تا یک فاصله اطمینان با طول حداکثر μ 0/9 با احتمال μ 9/9 پارامتر μ 1 دربرداشته باشد؟

۲۷− احتمال آنکه واریانس یک نمونه ۵تایی از توزیع نرمال با میانگین ۴۰ و انحراف معیار ۹ از ۱۸۵ تجاوز کند، کدام است؟

 $^{\circ}/^{\circ}$ مقدار احتمال $^{\circ}/^{\circ}$ مقدار احتمال

 $^{\circ}/^{\circ}$ مقدار احتمال > $^{\circ}/^{\circ}$ (۲

۳) ۵ ∘ ر ∘ > مقدار احتمال

۴) ۲۵ ∘ر∘ < مقدار احتمال

در مقابل $H_{\circ}: d=0$ مهره است که $H_{\circ}: d=0$ انها سفید و بقیه سیاه هستند. علاقمند به آزمون $H_{\circ}: d=0$ در مقابل $H_{\circ}: d=0$ هستیم. برای انجام این آزمون ۵ مهره به تصادف و بدون جایگذاری انتخاب می کنیم، اگر هر ۵ مهره سفید باشند، فرض $H_{\circ}: d=0$ را رد می کنیم. احتمال خطای نوع دوم کدام است؟

$$\frac{9}{7\Delta T} (T)$$

$$\frac{7\Delta T}{7\Delta T} (T)$$

$$\frac{7\Delta T}{7\Delta T} (T)$$

 $\begin{cases} H_{\circ}: \mu_1 = \mu_T \\ H_1: \mu_1 > \mu_T \end{cases}$ فرض کنید دو جامعه داریم که دارای توزیعهای $N(\mu_T, \sigma^T)$ و $N(\mu_T, \sigma^T)$ هستند. برای انجام آزمون $N(\mu_T, \sigma^T)$

درصورتی که دو نمونهٔ مستقل از دو جامعه فوق گرفته شده باشند، نتایج بهصورت زیر است:

$$\overline{x}_1 = \Delta f/1\Delta, s_1^{\Upsilon} = \mathcal{F} f, n_1 = 1\Upsilon$$

$$\overline{x}_{\Upsilon} = f \Upsilon/\Upsilon \Delta, s_{\Upsilon}^{\Upsilon} = V \mathcal{F}/f, n_{\Upsilon} = 1\Upsilon$$

مقدار احتمال (P - Vlaue) براي انجام آزمون، كدام است؟

ا دار $> \circ_/$ ۱ د دار احتمال $> \circ_/$ ۱ د دار احتمال $> \circ_/$ ۱ مقدار احتمال $> \circ_/$ ۱ د مقدار احتمال

۳) دار احتمال مقدار احتمال مار $^{\circ}$ مقدار احتمال مقدار احتمال مقدار احتمال

 $Y_{ij}=\mu_i+ au_i+e_{ij}$ درمدل $H_\circ:H_\circ:\mu_1=\mu_1+e_{ij}$ درمدل «نقض خالف «نقض مخالف «نقض $H_\circ:\mu_1=\mu_1+e_{ij}$ درمدل $H_\circ:\mu_1=\mu_1+e_{ij}$ درمدل $H_\circ:\mu_1=\mu_1+e_{ij}$ درمدل $H_\circ:\mu_1=\mu_1+e_{ij}$ و $H_\circ:\mu_1=\mu_1+e_{ij}$ باشد، در این صورت بر آور د اختلاف اثر سطوح دوم و سوم عامل، $\overline{X}_\gamma=1$ و $\overline{X}_\gamma=1$ و $\overline{X}_\gamma=1$ باشد، در این صورت بر آور د اختلاف اثر سطوح دوم و سوم عامل، کدام است؟

۲ (۱

4 (1

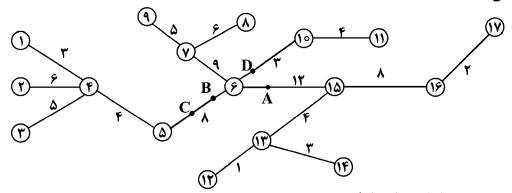
۵ (۳

٧ (۴

مهندسی صنایع (کد ۲۳۵۰) 704 C صفحه ۸

طراحی سیستمهای صنعتی:

- در کارگاهی، - دستگاه در مکانهای (۱ و ۲)، (- و ۵) و (۵ و - مستقر هستند. قرار است دستگاه جدیدی که ار تباط یکسانی با دستگاههای موجود دارد (- - استقرار یابد. فواصل به صورت مجذور فاصله خط مستقیم هستند. اگر مکان بهینه جهت استقرار مناسب نباشد و به مختصات طولی و عرضی مکان بهینه یک واحد اضافه شود، چقدر در هزینه حمل ونقل افزایش به وجود خواهد آمد؟


۳۲ در یک مجتمع شیمیایی با خیابانهای عمود برهم، ۶ بخش زیر موجود هستند.

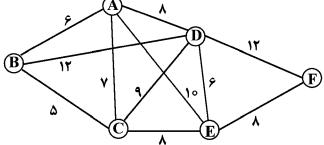
$$P_{1} = (\Upsilon, 1), P_{\Upsilon} = (\Upsilon, \circ), P_{\Psi} = (\Delta, \Upsilon), P_{\varphi} = (\Upsilon, \varnothing), P_{\Delta} = (1, \Upsilon), P_{\varphi} = (\Delta, \Upsilon)$$

قرار است یک واحد آتشنشانی در فاصله کمینه از دورترین بخش استقرار دادهشود. با فرض اینکه اهمیت بخشها یکسان باشد، مکان بهینه استقرار این واحد آتشنشانی، کدام و حداکثر فاصله تا بخشها، چقدر است؟

$$\Upsilon_{g}(\Upsilon,\Upsilon)$$
 (Υ

۳۳ به منظور استقرار یک واحد اضطراری بر روی شبکه درختی زیر، کدام نقطه به عنوان محل بهینه استقرار انتخاب می شود؟ (اعداد نشان داده شده در کنار یال ها، مسافت را برحسب مایل نشان می دهند و شبکه درختی، نشان دهنده اتصال نقاط شهری است. همه نقاط دارای اهمیت یکسان هستند.)

A نقطه A روی یال A - A به فاصله A واحد از گره


 8 نقطه 8 روی یال 8 2 به فاصله 8 واحد از گره

 $^{\circ}$ نقطه $^{\circ}$ روی یال $^{\circ}$ یال $^{\circ}$ به فاصله $^{\circ}$ واحد از گره $^{\circ}$

۴) نقطه D روی یال ۱۰ ـ ۶ به فاصله یک واحد از گره ۴

۳۴- بر روی یک شبکه فرودگاهی به شکل زیر، قرار است یک هاب استقرار یابد. گرهها نشان دهنده فرودگاهها و یالها نشان دهنده مسیرهای بین فرودگاهی است. اعداد نشان داده شده در کنار یالها نیز فاصله مسیر است. از آنجا که قرار است محصولات فسادپذیر حملونقل شوند، لازم است هاب در مکانی قرارگیرد که حداکثر فاصله، کمینه شود.

هاب بهینه در کدام فرودگاه در نظرگرفته می شود؟

A (۱

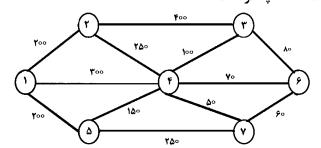
E (۲

C (r

D (4

C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C ، C . C . C ، C . C

	مکانهای نامزد				
خرده فروش	١	۲	٣	۴	تقاضای هفتگی
A	۴	۶	۵	۲	٣0
В	٣	۴	٧	۵	۲۰
С	۵	٨	۴	٩	۴۰
D	٣	۵	۴	*	۶۰


1	9	١	()
¢		,	/4

۲) ۱ و ۴

٣) ٣ و ٢

4 9 7 (4

۳۶− تعداد ۷ گره تقاضا مطابق شکل زیر استقرار یافتهاند. درصورتی که دو خدمت دهنده را در مکانهای ۱ و ۴ مستقر کنیم و مقدار تابع تقاضای گرههای ۱ تا ۷ به ترتیب از راست به چپ ۱۰، ۲۰، ۲۰، ۲۰، ۲۰، ۲۰، ۲۰ و ۲۰ باشد، با ضابطه ۲ مقدار تابع هدف حداکثر فواصل موزون گرههای تقاضا تا نزدیک ترین خدمت دهنده، چقدر است؟

4000 (1

T000 (T

۲۰۰۰ (۳

1000 (4

 $A_{\varsigma}=(1\circ, 0)$, $A_{\gamma}=({\mathfrak f}, 0)$, $A_{\gamma}=({\mathfrak f}, 1\circ)$, $A_$

 $\mathbf{w}_1 = \mathbf{f}, \mathbf{w}_{\mathbf{f}} = \mathbf{f}$

معادله منحنی همتراز متناسب با هزینه ۲۰۴۷ درحالتی که نوع فاصله مجذور فاصله اقلیدسی باشد، کدام است؟

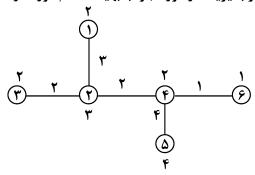
$$(x - \lambda/Y)^{\Upsilon} + (y - \beta)^{\Upsilon} = \Upsilon \beta$$
 (1)

$$(x-\beta)^{\Upsilon} + (y-Y/\Lambda)^{\Upsilon} = \Upsilon \beta (\Upsilon$$

$$(x - Y/IA)^{\Upsilon} + (y - F)^{\Upsilon} = \Upsilon \Delta (\Upsilon$$

$$(x - \lambda/Y)^{\Upsilon} + (y - \beta)^{\Upsilon} = \Upsilon \Delta (\Upsilon)^{\Upsilon}$$

۳۸ در یک مسئله مکانیابی تک تسهیلاتی با تعداد ۳ وسیله موجود، که اطلاعات آن به شرح زیر است، اختلاف مقدار تابع $P_{\nu} = (7.7)$ $P_{\nu} = (8.4)$ $P_{\nu} = (1.4)$ هدف بهینه در ۲ حالت فواصل متعامد و مجذور اقلیدسی، کدام است؟

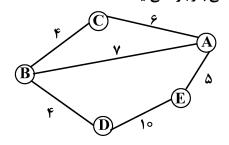

$$P_1 = (\Upsilon, \Upsilon)$$
 $P_{\Upsilon} = (\Upsilon, \Delta)$ $P_{\Upsilon} = (1, A)$
 $w_1 = \mathcal{F}$, $w_{\Upsilon} = \mathcal{F}$, $w_{\Psi} = \Delta$

$$\frac{1}{w}(4\lambda - 18\sqrt{1})$$
 (1

۳۹ در مسئله مکان یابی مرکز تکوسیلهای با اطلاعات زیر، کدام مورد درست است؟

و همهٔ
$$W_i=1$$
 و همهٔ $P_{\gamma}=(\Upsilon,\circ)$, $P_{\gamma}=(\Upsilon,\Upsilon)$, $P_{\gamma}=(\circ,\Upsilon)$, $P_{\gamma}=(\Upsilon,\Upsilon)$

- ۱) مسئله دارای جواب بهینه چندگانه است.
- ۲) مسئله دارای جواب بهینه منحصربهفرد است.
 - ۳) لوزی پوشش مسئله یک مربع است.
 - ۴) مقدار تابع هدف بهینه برابر ۴/۵ است.
- ۴۰ شبکه درختی زیر را در نظر بگیرید. در مورد جواب بهینه، کدام مورد درست است؟


$$V1C = 12$$
, $A1C = 16$, $V1M = 40$ (Y

$$V1C = 10$$
, $A1C = 12$, $V1M = 16$ (\)

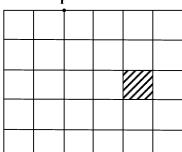
$$V1C = 16$$
 , $A1C = 12$, $V1M = 41$ ($^{\circ}$

هدف پوشش ۵ منطقه جمعیتی B ، C ، B ، A و D است که به صورت زیر از یکدیگر فاصله دارند. هزینه استقرار سرویسدهنده در هر یک از مکانها ارائه شده است. اگر شعاع پوشش از ۵ به ۶ افزایش یابد، چه تغییری در بودجه مورد نیاز برای فراهم نمودن پوشش کلی به وجود می آید ؟

منطقه	هزينه احداث		
A	۲۸		
В	٣٨		
\mathbf{C}	19		
D	۱۸		
${f E}$	**		

۲) ۱۷ واحد کاهش می یابد.

۱) ۱۸ واحد افزایش می بابد.


۴) ۱۸ واحد کاهش می یابد.

۳) تغییری نمیکند.

در مسئله مکانیابی ۳ تسهیل II و II در چهار محل C، B و C بهطوری که حتماً یکی از تسهیلات در سایت B قرار گیرد، کدام تسهیل در سایت B قرار خواهد گرفت؟

	A	В	C	D	l ()
I	17	10	10	۶	II (7
П	10	٨	٣	٧	III (٣
		10			III لي I (۴

۴۳ قرار است ۴ کالای ۱، ۲ ، ۳ و ۴ در انباری به شکل زیر ذخیرهسازی شوند. مساحت مورد نیاز هر یک از این کالاها به تر تیب برابر ۱۹۰۰ ، ۲۰ و ۱۹۰۰ واحد است. میزان ارسال و دریافت آنها از طریق بارانداز P به تر تیب ۱۵۰۰ ، ۱۵۰ و دریافت آنها از طریق بارانداز P به تر تیب ۱۵۰۰ و فواصل را عمودی فرض کنیم، در قفسه علامت خورده، کدام کالا باید قرار گیرد؟

1 (1

۲ (۲

٣ (٣

4 (4

۴۴ اگر ماتریس جریان بین ۶ تسهیل به صورت زیر باشد و شماره مکانهای مورد نظر و موقعیت شان به صورت شکل زیر، کران پایین هزینه برای مسئله تخصیص، چقدر است؟ (فواصل پلهای هستند.) \rightarrow

1	۲	٣
۴	۵	۶

٨٨ (١

100 (٢

104 (4

114 (4

$$\mathbf{G} = \begin{pmatrix} \circ & \mathsf{f} & \mathsf{T} & \mathsf{T} & \mathsf{f} & \mathsf{f} \\ \mathsf{f} & \circ & \mathsf{f} & \mathsf{T} & \mathsf{T} & \mathsf{A} \\ \mathsf{f} & \mathsf{f} & \circ & \mathsf{T} & \mathsf{T} & \mathsf{A} \\ \mathsf{f} & \mathsf{f} & \circ & \mathsf{T} & \mathsf{T} & \mathsf{f} \\ \mathsf{T} & \mathsf{T} & \mathsf{T} & \circ & \mathsf{f} & \mathsf{T} \\ \mathsf{f} & \mathsf{T} & \mathsf{T} & \mathsf{f} & \circ & \mathsf{10} \\ \mathsf{f} & \mathsf{A} & \mathsf{f} & \mathsf{T} & \mathsf{10} & \circ \end{pmatrix}$$

۴۵ روش جابه جایی زوجی با تندترین شیب در مسئله \mathbf{QAP} ، به کدام الگوریتم شباهت بیشتری دارد؟

 $3 - opt (\Upsilon$

VNZ (1

۴) روش هیلیر

2 _ opt (*

	**************************************		_
	99999999999999999999999999999999999999	سطح زيو منعني نزمال استقداره	
	1991 1991 1991 1991 1991 1991 1991 199		
	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	ES		
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ξ.	
]:	
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	힑	
		•	
	######################################		
		1	
	ななはななななにない 自己 ローローローロー ター・ストレー 中		
		اڃ	
	2014 2014 2014 2015 2016 2016 2016 2016 2016 2016 2016 2016	وندي	
	1100 1100 1100 1100 1100 1100 1100 110	4	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	مقادير	
	100 A A A A A A A A A A A A A A A A A A		
,	8 A A A A A A A A A A A A A A A A A A A		
	25		
	990 0.0001 0.00		
	975 0.000 0.	کائ	
		فذيع مزيع	
	950 0.0009 0.1007 0.1007 0.1007 1.1459 1.1459 1.5250 3.2918 5.2706 5.2918 5.2706 7.2609 7.260		
	150 150 150 150 150 150 150 150	يولن	
	2024 11.100 11.1	مقادير	
	W44444444		
	.005 71.579 11.540 14.660 18.479 18.189 27.1		
L			