

(2290	, (کد	هستهای	مهندسی
-------	-------	--------	--------

711 C

صفحه ۲

* داوطلب گرامی، عدم درج مشخصات و امضا در مندرجات جدول زیر، بهمنزله عدم حضور شما در جلسه آزمون است.
اینجانببا آگاهی کامل، یکسان بودن شماره داوطلبی
خود با شماره داوطلبی مندرج در بالای کارت ورود به جلسه، بالای پاسخنامه و دفترچه سؤالها، نوع و کد کنترل
درجشده بر روی دفترچه سؤالها و پایین پاسخنامهام را تأیید مینمایم.
امضا:

حفاظت در برابر اشعه:

- ۲- کدام یک از موارد زیر، جهت حفاظ سازی در مقابل الکترون های با انرژی MeV ۲۰ مورد مناسب تری است؟
 ۱) سرب
 ۲) لایه اول: آلومینیم، لایه دوم: سرب
 ۳) لایه اول: شیشه، لایه دوم: آلومینیم
 ۳) لایه اول: تنگستن، لایه دوم: شیشه
 ۳) مورد، درست است؟
 ۲- کدام مورد، درست است؟
 ۲) معادل دُز و دُز معادل، از نظر مقدار با هم برابر هستند.
 ۲) معادل دُز و دُز معادل، از نظر مقدار با هم برابر هستند.
 ۳) معادل دُز و دُز معادل، از نظر مقدار با هم برابر هستند.
 ۳) معادل دُز و دُز معادل، از نظر مقدار با هم برابر هستند.
 ۲) معادل دُز و دُز معادل، از نظر مقدار با هم برابر هستند.
 ۲) دُز مؤثر جمعی، به کل دُز دریافتی یک جمعیت که منجر به آثار بیولوژیک شود، اطلاق می شود.
 ۳) معادل دُز ، کمیتی است که توسط ICRP برای تعریف کمیتهای کاربردی نظیر معادل دُز محیطی به کار می رود.
 ۹) دُز جمعی به کل دُز دریافتی یک جمعیت اطلاق می شود و عبارت است از حاصل ضرب تعداد افرادی که از یک منبع
- ۳) در جمعی به ص در دریانگین دُر دریافتی آغاری شیسود و عبارت است از حاصاصرب تعناد اگرادی که از یک منبع پرتوگیری کردهاند در میانگین دُز دریافتی آنها. ۰
- ۳- صخامت حفاظ لازم با ضریب تضعیف ^{(- n}cm در مقابل فوتونهای با انرژی ۲ MeV که قادر باشد شدت فوتون را ۱۶ برابر تضعیف کند، برحسب سانتیمتر با کدام مورد برابر است؟ ۱) ۴ ln ۲ ۲

بارت درست است $w_{\rm T}$ ، $w_{\rm R}$ ، Q و $W_{\rm T}$ به تر تیب ضریب کیفیت، ضریب وزنی تابش و بافت و دز جذبی باشند، کدام عبارت درست است $w_{\rm T}$ ($w_{\rm R}$, Q) - ۴ س $W_{\rm R} D$ = دز معادل وز = QD (۱

دز مؤثر =
$$\sum_{T} w_{T} \sum_{R} Q_{R} D_{T,R}$$
 (۴ $\sum_{T} w_{T} \sum_{R} w_{R} D_{T,R}$ (۳

 ۵- اگر LET، انتقال انرژی خطی برای ذره باردار باشد، برای پروتون، دوترون و آلفا با انرژیهای بهترتیب برابر با ۲ MeV، ۱ MeV و ۲ MeV، کدام مورد درست است؟

$$LET(P(MeV)) = LET(D(MeV)) = \frac{1}{2}LET(\alpha(MeV))$$
(1)

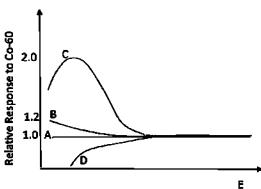
- $LET(P(MeV)) = r LET(D(r MeV)) = LET(\alpha(rMeV))$ (r
- $f LET(P(MeV)) = f LET(D(f MeV) = LET(\alpha(f MeV))$ (r
- $\tau \text{LET}(P(\iota \text{MeV})) = \tau \text{LET}(D(\tau \text{MeV}) = \text{LET}(\alpha(\tau \text{MeV}))$ (f

711 C

-9

10-4

10


ټ،

$$\delta = 0.70$$
 المح توان توقف الکترون در محیط آب رابطه $\frac{\rho T^{1-n}}{n \, \delta}$ باشد که درآن ρ ، چگالی آب، n = 1/۳۲ و $\delta = 0.70$ است،
حداکثر برد الکترونهای ناشی از برخورد فوتون با انرژی MeV در محیط آب، چند سانتیمتر است؟ ($\frac{gr}{cm^{n}} = 1 - \rho$)
() 49/0
() 1/۴۷ () ۲۵۶/0
() 1/۳۲ ()

- كدام مورد درخصوص رابطه طول واهلش (Relaxation Length) با ضريب انباشت(Buildup factor)، درست است؟ **-Y** ۱) طول واهلش، مضرب ثابتی از ضریب انباشت است. ۲) طول واهلش، مستقل از ضریب انباشت است. ۳) با افزایش طول واهلش، ضریب انباشت کاهش می یابد. ۴) با افزایش طول واهلش، ضریب انباشت افزایش می یابد. در بررسی آثار زیستشناختی پرتو، مفهوم شاخص ۵۰/۳۰ LD چیست؟ **−∧** دزی که باعث مرگ ۵۵ درصد از جمعیت در مدت ۳۰ روز شود. ۲) دزی که باعث آسیب ۵۰ درصد از جمعیت در مدت ۳۰ روز شود. ۳) دزی که باعث مرگ ۳۰ درصد از جمعیت در مدت ۵۰ روز شود.
- ۴) دزی که باعث آسیب ۳۰ درصد از جمعیت در مدت ۵۰ روز شود. با توجه به منحنی زیر، چنانچه هدف کاهش آهنگ دُز از $\frac{\mathrm{Gy}}{\mathrm{h}}$ ۱ به ۱۰ $\frac{\mathrm{mGy}}{\mathrm{h}}$ ۱۰ باشد، حداقل ضخامت تقریبی حفاظ -٩ 10⁰ سربی برای چشمه سزیم و کبالت بهترتیب چند سانتیمتر باید درنظر گرفته شود؟ 71,11() 10 15 , 8/0 (5 10-2 rection transmitted ٨/٢ , ۴/٣ (٣ ۴) ۵ و ۱۰ 10-1

اگر پاسخ انرژی سه آشکارساز A، B و C نسبت به انرژی کبالت – ۶۰ از منحنی زیر تبعیت نماید، کدام آشکارسازها -1+ برای دزیمتری مناسبتر است؟ C , A () 2.0 B , A (۲ C, D (

D , A (۴

20

ىدەس	سی هسته ای (کد ۱۳۴۵) / ۲۱۱ C	صفحه ۲
_	برای ارزیابی خطر در نزدیکی یک چشمه فوتونی با اکتیویته بالا، ک	ناسب <u>نیست و به چه دلیل</u> ؟
	۱) نیمههادی ـ بازدهی پایین پاسخ	
	۲) اتاقک یونش ـ اشباع سریع جریان خروجی	
	۳) سوسوزن ـ پرتوزا شدن ناخالصیهای شبکه بلور	
	۴) گایگر _ مولر _ زمان مرگ طولانی و کاهش شمارش نسبت به مق	
_	چنانچه یک مادر (S) تحت درمان به روش پزشکی هستهای قرار	های جنین و اعضای خانواده وی
	(T) ، بهترتیب، از کدام طرح در شکلها تبعیت میکند؟	В
	t) D و D	
	۲) C و E	(the second sec
	۳) B و C	(s s-T
	C , A (۴	n
		$\left(T \left(S \right) \right)$
_	کدام مورد درخصوص نسبت $rac{\mathbf{D}}{\mathbf{K}}$ (دُز به کرما) در المان مدنظر، در ا	\bigcirc
	Ν	
	٣ (١	जिंद रही
	$\frac{1}{r}$ (Y	Mev www
	. (*	Y MeV Z
	۶ (۴	
		\backslash
_	حد دز برای پرتوگیریهای پزشکی، کدام است؟	\setminus /
	۱) ۵۰ میلیسیورت در سال	
	۲) میانگین ۲۰ میلیسیورت در سال برای ۵ سال متوالی	
	۳) تا زمانی که تشخیص یا درمان بیمار توجیه دارد، حدی برای پرتوئ	يود ندارد.
	۴) موارد ۱ و ۲ ۴) موارد ۱ و ۲	,
_		
-	چنانچه طی ۱۰ دقیقه مقدار j ^{۶−} ۰۱×۱ انرژی تابشی اشعه ایکس ب	رم ۱۵۵ درم داده سود، میران د
	تابشی در بافت چقدر خواهد بود؟ محمد می افتار خواهد بود؟	
	$1/\gamma \vee 1^{-\lambda}$ SV (1	
	1/ m m m m m m m m m m m m m	

- $1 \times 1 \circ^{-\gamma} Gy$ (r
- $1 \times 1 \circ^{-\Delta} Gy$ (f

711 C

711 C

ل (کد ۲۳۶۵)	هستهاء	مهندسي
-------------	--------	--------

ر باضبات مهندسی: \mathbf{b}_{π} هرگاه سری فوریه $\mathbf{x} < \pi < \mathbf{x} < \pi$ باشد، آنگاه ضریب $\mathbf{y} = \mathbf{f}(\mathbf{x}), -\pi < \mathbf{x} < \pi$ در سری فوریه تابع $f(x) = (\sin x + \cos x)^{7}$ ، کدام است؟ $\frac{1}{r}$ () $\frac{1}{7}$ (7 1 (٣ ۳ (۴ اگر e^{-ix} اگر $e^{-ax}H(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{a+i\omega}, a > 0$ باشد، آنگاه تبدیل فوریه معکوس تابع $\frac{1}{\sqrt{2\pi}} \frac{1}{a+i\omega}, a > 0$ -1۷ (H(x) نمایش تابع یله واحد است.) $(e^{\tau x} - e^{\tau x})H(-x)$ () $(e^{-\tau_{X}} - e^{-\tau_{X}})H(-x)$ (τ $(e^{-r_{X}} + e^{-r_{X}})H(x)$ (r $(e^{-r_{x}} - e^{-r_{x}})H(x)$ (* $u_x(x, \circ) = p = u_y(\circ, y) = q$ ، $u(\circ, \circ) = p + q$ و اولیه p + q و $u_y(\circ, y) = q$ ، $u(\circ, \circ) = p + q$, $u_x(x, \circ) = q$, $u_y(\circ, y) = q$ ، $u(\circ, \circ) = p + q$. $u_y(\circ, y) = q$. $u_y(\circ,$ كدام است؟ u(x, y) = xy + p + q() u(x, y) = xy + qy + p + q (Y $u(x, y) = xy + px + p + q \quad (\forall$ u(x, y) = xy + px + qy + p + q (* اگر مشتقات جزیی مرتبه اول و دوم تابع u پیوسته باشند، با کدام تغییر متغیر، معادله دیفرانسیل -19 $u_{vz} = \circ$ به $u_{xx} - fu_{xv} + w_{vv} = \circ$ $\mathbf{v} = \mathbf{x} + \mathbf{y}, \mathbf{z} = \mathbf{v}\mathbf{x} - \mathbf{y}$ () $\mathbf{v} = \mathbf{x} - \mathbf{y}$, $\mathbf{z} = \mathbf{v}\mathbf{x} + \mathbf{y}$ (\mathbf{v} $\mathbf{v} = \mathbf{x} - \mathbf{y}$, $\mathbf{z} = \mathbf{v}\mathbf{x} - \mathbf{y}$ (v v = x + y, $z = \forall x + y$ (* کدام معادله دیفرانسیل با مشتقات نسبی (جزیی)، دارای جواب (xyz = $\phi(x + y + z)$ است؟ -1+ $xy(\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}) = z(x+y)$ (1) $xy(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}) = z(x - y)$ (Y $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = z(x+y)$ (r $y \frac{\partial z}{\partial x} - x \frac{\partial z}{\partial y} = z(x - y)$ (*

صفحه ۶	711 C	مهندسی هستهای (کد ۲۳۶۵)
ارای جــــوابی بـــــهصـــورت	$ \begin{cases} \nabla^{T} \mathbf{u} = \circ , \circ < \mathbf{x} < I , \circ < \mathbf{y} < T \\ \mathbf{u}_{\mathbf{x}}(\circ, \mathbf{y}) = \mathbf{u}_{\mathbf{x}}(I, \mathbf{y}) = \circ , \circ < \mathbf{y} < T \\ \mathbf{u}(\mathbf{x}, \circ) = \mathbf{x} , \mathbf{u}(\mathbf{x}, T) = \circ , \circ < \mathbf{x} < I \end{cases} $	۲۱ – فـــرض کنیـــد مســ
	باشد. مقدار (۱) باشد. مقدار (${\rm G}_{\circ}'(1)$ ، کدام است? u(x,y) = ${\rm G}_{\circ}(1)$	00
		η_, -Υ ()
		$-\frac{1}{r}$ (r
		$\frac{1}{r}$ (r
		, 7 (f
• = (• , •) v باشد، آنگاه مقدار	ز تابع u(x,y) = (x ^۲ - y ^۲ + ۱) ^۲ - ۴x ^۲ y ^۲ به شرط	۲۲- اگر (v(x,y) مزدوج همسا
		v(1, 1) کدام است؟
		-۲ (۱
		۲) صفر
		۱ (۳
		4 (4
	= z ^۳ ، کدام است؟	۲۳- تعداد جوابهای معادله Z =
		۵ (۱
		۴ (۲
		۳ (۳
		۲ (۴
	∳(e ²)، کدام است؟	$\frac{1}{z^{r}} + \frac{\cos(\pi z^{r})}{z-r} dz$ مقدار –۲۴
		-7 π i (1
		τπί (τ
		$-\frac{\mathrm{r}\pi\mathrm{i}}{\mathrm{r}}$ (r
		1
		$\frac{\mathrm{Y}\pi\mathrm{i}}{\mathrm{r}}$ (f
تبدیل م <i>یک</i> ند؟	به مرکز مبدأ مختصات و شعاع واحد را به چه شکلی	
	*	۱) بیضی با قطرهای ۵ و ۳
و ۱ و مرکز مبدأ مختصات	کز مبدأ مختصات ۴) بیضی با قطرهای ۵) دایرهای به شعاع $rac{\Delta}{Y}$ و مر

مهندسی هستهای (کد ۲۳۶۵)

آشکارسازی ـ محاسبات ترابرد پرتوها:

- ۲۷– اکتیویته چشمه گامای کبالت ۶۰ (گسیل دو گاما با انرژی ۱/۱۷ و ۱/۳۳ مگاالکترون ولت، هر دو با احتمال ۱۰۰ درصد، ۱۰ میکروکوری است. اگر بازدهی ذاتی آشکارساز برای هر دو قله ۱۰ درصد درنظر گرفته شود، درصورت ثبت ۱۰۰ میکروکوری است. اگر بازدهی ذاتی آشکارساز برای هر دو قله ۱۰ درصد درنظر گرفته شود، درصورت ثبت ۱۰۰ میکروکوری است. اگر بازدهی ذاتی آشکارساز برای هر دو قله ۱۰ درصد درنظر گرفته شود، درصورت مدرصد، ۱۰ میکروکوری است. اگر بازدهی ذاتی آشکارساز برای هر دو قله ۱۰ درصد درنظر گرفته شود، درصورت درصد، ۱۰ میکروکوری است. اگر بازدهی ذاتی آشکارساز برای هر دو قله ۱۰ درصد درنظر گرفته شود، درصورت ثبت ۱۰۰۵ میکروکوری است. اگر بازدهی ذاتی آشکارساز ۱/۱۷ مگاالکترون ولت، بازدهی مطلق و فاکتور هندسی این مجموعه آشکارسازی، به تر تیب چند درصد است؟
 - ۱) ۱ و ۱۰ ۲) ۲ و ۵٪
 - ٣) ٢ و ٢/٥
 - ۲۸- کدام مورد درخصوص قدرت تفکیک آشکارسازهای سوسوزنی، درست است؟
- ۱) مقدار عددی قدرت تفکیک انرژی با افزایش انرژی ذره، کاهش یافته و مهمترین مؤلفه قدرت تفکیک، ناشی از نویز در داینود است.
- ۲) مقدار عددی قدرت تفکیک انرژی با افزایش انرژی ذره، افزایش یافته و مهمترین مؤلفه قدرت تفکیک، مربوط به نوسانات آماری تبدیل نور به فوتوالکترون در فوتوکاتد است.
- ۳) مقدار عددی قدرت تفکیک انرژی با افزایش انرژی، کاهش یافته و مهمترین مؤلفه قدرت تفکیک، در گذار نور تولیدی به فوتوکاتد است.
- ۴) مقدار عددی قدرت تفکیک انرژی با افزایش انرژی ذره، کاهش یافته و مهمترین مؤلفه قدرت تفکیک، ناشی از نوسانات آماری تبدیل نور به فوتوالکترون در فوتوکاتد است.
- ۲۹- در یک انرژی خاص گاما، برای آشکارسازی با قدرت تفکیک ۱/۰٪، میزان انرژی تولید زوج یون w = ۲ eV و ضریب فانو ۱/۰ و برای آشکارساز دیگر با قدرت تفکیک w = ۲۵ eV ،R و ضریب فانو ۲/۰ است. قدرت تفکیک آشکارساز دوم، چند درصد است؟
 - ۲۵ (۲ ۱۲ (۱
 - ۵ (۴ ۴ (۳
- ۳۰ تعداد شمارش ثبتشده از یک چشمه پر توزا، ۱۰^۵ با واریانس ۱۰^۴ است. اگر در آزمایش دیگری، شمارش ثبت شود، به تر تیب، شمارش ثبتشده بین چه تعدادی خواهد بود با چه احتمالی؟ ۱) ۹۹۷۰۰ تا ۱۰۰۳۰۰۰ – ۸۵٪
 - ۳) ۹۹۷۹۰ تا ۹۹۰۰ _ ۹۹٫۷ _ ۹۹٫۷ _ ۴ ۲۰۰ (۴
- ۲۹ شدت نور تولیدی از سه ذره باردار p،e و α با انرژیهای یکسان در آشکارساز سوسوزنی به تر تیب با Lp، Le و Lα ۳۱ مشخص می شود. کدام مورد، درست است؟
 - $$\label{eq:loss} \begin{split} Le &< Lp < L\alpha \ (Y & Lp > Le > L\alpha \ (V & Le > Lp > La \ (V & Le) \ (V & L$$

۳۲- اگر (N(E) بیانگر طیف انتگرالی باشد و چشمه پر توزای موردنظر، ۱۰۰ ذره با انرژی MeV ۲، ۳۰۰ ذره با انرژی MeV ۵

711 C

و ۵۰۰ ذره با انرژی ۷ MeV گسیل کند، طیف انتگرالی در کدامیک از شکلهای زیر بهصورت درست بیان شده است؟ N(E)Δ٥ ٨٥٥ 800 (۲ () ٨٥٥ 100 ►E(MeV) ►E(MeV) N(E) 900 ٨٥ ۴) (٣ ۵۰۰ 400 ► E(MeV) E(MeV)

۳۳- در اندازه گیری طیف ارتفاع پالس، حداقل تعداد کانال موردنیاز برای آشکارسازی با رزولوشن ۲/۰ درصد، چند کانال است؟ ۱) ۵۰۰۰ (۱

- ۵०० (۲
- ω^οο (
- 208 (1
- 20 (6

۳۴- در آشکارسازی تابشهای هستهای مد جریانی زمانی استفاده میشود که نرخ رخدادها باشد و در اکثر مواقع بهمنظور بهدست آوردن اطلاعاتی دربارهٔ و و از مد استفاده میکنیم. ۱) کم ـ دامنه ـ زمان ـ پالسی ۲) بسیار زیاد ـ دامنه ـ زمان ـ جریانی ۳) بسیار زیاد ـ دامنه ـ زمان ـ جریانی

- ۴) بسیار زیاد _ دامنه _ جریانی _ ولتاژ مجذور متوسط (Mean square voltage)
 - ۳۵- کدام آشکارساز، دارای کمترین تابش پسزمینه داخلی است؟
 - $LaBr_{r}(Ce)$ (7 BGO (1
 - HPGe (* Nal(Tl) (*
- ۳۶ در چه مواردی، نمی توان معادله ترابرد را برای نوترونهای داخل راکتور استفاده کرد؟
 ۱) نوترونهای با انرژی فوقالعاده کم
 ۲) نوترونهای با انرژی بسیار زیاد
 ۳) در شرایطی که جذب نوترونی محیط، خیلی زیاد باشد.
 - ۳۷- برای بیان سطح آزاد (free Surface)، کدام تعریف زیر درست نیست؟ ۱) هیچ نوترونی از چشمه خارجی وارد سطح نشود. ۲) سطح گستردهای که محیط تکثیری را از سایر محیطها جدا ساخته باشد. ۳) هر نوترونی که از سطح خارج شد، دیگر امکان بازگشت نداشته باشد. ۴) سطحی که جداکننده محیط یراکندهکننده نوترون از خلأ باشد.

۳۸- یک چشمه نوترونی با شدت S نوترون بر سانتیمترمربعثانیه بر روی سطح کروی به شعاع R بهصورت یکنواخت توزیع شده است. شرط مرزی مربوط به پیوستگی جریان در حل معادله پخش در محیط کروی بر روی سطح کدام است؟ (جریان داخل کره J_{1} و جریان خارج کره J_{7} درنظر گرفته شود.) $\lim_{r \to R} (J_r + (-J_r) \times f \pi r^r) = S (r)$ $\lim_{r \to R} (J(r)) = \frac{S}{\epsilon_{\pi r} \tau}$ (1) $\lim_{r \to R} ((J_{\gamma} + J_{\gamma}) \times \mathfrak{F} \pi r^{\gamma}) = S \quad (\mathfrak{F}$ $\lim_{r \to R} (J_{\tau} - J_{\tau}) = \frac{S}{\tau - \tau} (\tau)$ ۳۹- با توجه به تعاريف معمول، تعبير عبارت <u>♥.J</u>d[™]rdE در معادلهٔ ترابرد چيست؟ ۱) آهنگ خالص نوترونهای ورودی به سیستم ۲) آهنگ جذب نوترون در سیستم ۴) آهنگ خالص نوترونهای فراری از سیستم ۳) آهنگ نوترونهای تولیدی در حجم سیستم اگر تابع $(E' o \Omega, E)$ اگر تابع $\sum f(\underline{r}; \Omega', E' o \Omega, E)$ معرف جمله پراکندگی باشد، کدام مورد، پراکندگی ایزوتروپیک است -4+ $\sum(\mathbf{r}; \mathbf{E}) \alpha$ $\Sigma(\underline{r})$ () $\frac{1}{\epsilon \pi} \sum (\underline{\mathbf{r}}; \mathbf{E} \to \mathbf{E}') \ (\epsilon$ $\frac{1}{\mathfrak{r}_{\pi}} \sum (\underline{\mathbf{r}}; \mathbf{E}' \to \mathbf{E}) \ (\mathbf{\tilde{r}})$ اگر $G(\underline{r}_{o}, \underline{\Omega}_{o}, E_{o} o \underline{r}, \underline{\Omega}, E)$ تابع گرین شار زاویهای نوترون مطابق تعاریف معمول باشد، کدام مورد، تعبیر -41 درست آن است؟ E, Ω, \underline{r}) شار زاویهای نوترون در $E_{\circ}, \Omega, \underline{r}_{\circ}$ ناشی از چشمه با شدت واحد واقع در $E_{\circ}, \underline{r}_{\circ}$ ${
m E}_{\circ}\,, {f \Omega}_{\circ}\,, {f r}_{\circ}\,$ کا ناشی از چشمه با شدت واحد واقع در ${
m E}\,, {f \Omega}\,, {f r}$ کا ناشی از چشمه با شدت واحد واقع در ${
m E}\,, {f \Omega}\,, {f r}$ E_\circ , Ω_\circ , $\underline{\mathrm{r}}_\circ$, $\underline{\mathrm{r}}_\circ$ ، اسکالر نوترون در E , Ω , $\underline{\mathrm{r}}_\circ$ ناشی از چشمه با شدت واحد مستقر در E) شار زاویهای نوترون در $\Omega, {f r}$ ناشی از چشمه با انرژی E_\circ در گستره واحد و در امتداد Ω_\circ در گستره واحد و (۴ در $\underline{\mathbf{r}}_{c}$ در گستره واحد چنانچه Q(r, Ω, E, t) عبارت توزیع چشمه باشد، کدام مورد، معرف چشمه ایزوتروپیک است؟ -47 $\frac{1}{r\pi}Q(\underline{r},E',t)$ (1) $\frac{1}{\epsilon \pi}Q(\underline{r}, E, t)$ (Y O(r.t) (f O(r,E,t) (" ۴۳ - تفاوت عمده تئوری ترابرد نوترون با معادله بولتزمان چیست؟ ۲) ترابرد نوترون، مختص محیطهای تکثیری است. ۲) معادلهٔ بولتزمان، حالت خاص از ترابرد نوترون است. ۳) معادلهٔ بولتزمان، مختص مولکولهای هواست که با نوترون فرق دارند. ۴) در مغایرت با معادلهٔ بولتزمان، در ترابرد، از پراکندگی نوترون _ نوترون صرفنظر میشود. در ترابرد نوترون، رسم بر این است که سطح مقطـع پراکنـدگی الاسـتیک برحسـب توابـع لژانـدر، بـهصـورت -44 بسط داده شود. در این صورت، پراکندگی ایزوتروپیک مطابق چه شرایطی $\sigma(\mu) = \sum_{r} \sigma_e P_l(\mu)$ خواهد بود؟

- n = 1 (Y n = 0 ()
- $n = \infty$ (f n = r (t

۴۵ - ساده ترین بیان معادله ترابرد نوترون برای یک چشمه صفحهای ایزوتروپیک در محیط بینهایت بزرگ، تقریب P₁ است که به شکل جفت معادلات زیر نمایش داده میشود:

$$\begin{cases} \left\{ \frac{d\phi_1(x)}{dx} + (1 - C)\phi_\circ(x) = \delta(x) \right\} \\ \frac{d\phi_\circ(x)}{dx} + \forall\phi_1(x) = \circ \end{cases}$$

کدام مورد زیر، تعبیر درستی برای آن است؟ ۱) هم متناظر با شار اسکالر نوترون ۲) عدد ۳ متناطر با ضریب پخش ۳) هم متناظر با جریان خالص نوترون در امتداد X ۴) پارامتر C متناظر با سطح مقطع ماکرسکوپیک جذب

محاسبات عددی پیشرفته ـ فیزیک راکتور ـ تکنولوژی نیروگاههای هستهای:

- ۴۶ نمونه پر توزایی در مقابل آشکارساز قرار گرفته است و در زمانهای ۱، ۲ و ۷ ساعت بعد از شروع شمارش پر تو، نرخ شمارش ذره ثبت شده به تر تیب، برابر $\frac{\#}{\min}$ ۵۰۰۰ ، $\frac{\#}{\min}$ ۹۰۰۰ ، $\frac{\#}{\min}$ ۵۰۰۰ است. با استفاده از روش لاگرانژ مر تبه ۲، نرخ شمارش ثبت شده بعد از ۴ ساعت، کدام است؟ ۱۰ (۱) ۵۰۰ (۱) ۱۰ (۲) ۱۰

$$d = -\frac{i}{r} \cdot b = \frac{i}{r} \cdot D = \frac{i}{r} \cdot B = -\frac{i}{r} (i)$$
$$d = \frac{i}{r} \cdot b = -\frac{i}{r} \cdot D = \frac{i}{r} \cdot B = \frac{i}{r} (r)$$
$$d = \frac{i}{r} \cdot b = -\frac{i}{r} \cdot D = \frac{i}{r} \cdot B = -\frac{i}{r} (r)$$
$$d = -\frac{i}{r} \cdot b = \frac{i}{r} \cdot D = -\frac{i}{r} \cdot B = -\frac{i}{r} (r)$$

، رابطه $\int_{-1}^{+1} f(x) dx = C_{\circ}f(-1) + C_{\gamma}f(\circ) + C_{\gamma}f(1)$ quadrature رابطه -۴۸ بهعنوان رابطه دقیق می تواند استفاده شود. کدام یک از موارد زیر، درست است؟ $C_{\circ} = C_{\gamma} = C_{\gamma} = \frac{\gamma}{\omega}$ (1) $C_{\gamma} = \frac{1}{\omega} g C_{\gamma} = \frac{\gamma}{\omega} r C_{\circ} = \frac{1}{\omega} r$ (7) $C_{\gamma} = \frac{1}{\psi} g C_{\gamma} = -\frac{\gamma}{\psi} r C_{\circ} = \frac{1}{\psi} (\tau)$ $C_{\gamma} = \frac{1}{r}$, $C_{\gamma} = \frac{r}{r}$, $C_{\circ} = \frac{1}{r}$ (* ۲۹ - کدام مورد زیر، بیانگر معکوس ماتریس ۲۱ - ۲۰ | است؟ $\begin{vmatrix} \circ & \frac{\Delta}{r} & \frac{r}{r} & -\frac{1}{r} \\ 1 & \frac{\Delta}{r} & \frac{r}{r} & -\frac{r}{r} \end{vmatrix} (r$ $\begin{vmatrix} -1 & \frac{\Delta}{r} & \frac{\Delta}{r} & -1 \\ -1 & \frac{r}{r} & \frac{r}{r} & \circ \\ \circ & -\frac{1}{r} & -\frac{r}{r} & 1 \end{vmatrix}$ (7) $\begin{vmatrix} -1 & 1 & 0 & -7 \\ -1 & 1 & 0 & -7 \\ -7 & 1 & 7 & -1 \end{vmatrix}$ (f ، ۱۰ | ۱۰ | ۰ | ۰ ۵۰ | ۰ | ۰ | ۵ | ۰ ۱۰ ۱۰ ۱۰ | ۰ | ۰ ۲) ۵، ۲ و ۱ √۲ , ∘ .۱ (۳ VT , T . VT (4

$$\begin{aligned} A &= \begin{bmatrix} Y & Y & -Y \\ 0 & Y & -1 \\ 0 & Y & -1 \\ y &= \begin{bmatrix} Y & -1 & Y \end{bmatrix}^{n} \\ Y & (1) \\ y &= Y \\ Y & (7) \\$$

۵۳- کدام مورد زیر، بیانگر رابطه صحیح تابع خطای توزیع نرمال است؟

$$\operatorname{erf}(\mathbf{x}) = \frac{Y}{\sqrt{\pi}} \int_{\circ}^{\mathbf{x}} e^{-Yt} dt \quad (1)$$
$$\operatorname{erf}(\mathbf{x}) = \frac{Y}{\sqrt{\pi}} \int_{\circ}^{\mathbf{x}} e^{-t^{Y}} dt \quad (Y)$$
$$\operatorname{erf}(\mathbf{x}) = \frac{Y}{\sqrt{\pi}} \int_{\mathbf{x}}^{\infty} e^{-t^{Y}} dt \quad (Y)$$
$$\operatorname{erf}(\mathbf{x}) = \frac{Y}{\sqrt{\pi}} \int_{\circ}^{\mathbf{x}} e^{+t^{Y}} dt \quad (Y)$$

۵۴- کدام مورد درخصوص سری $\{\mathbf{p_n}\}$ که همگرای فوقِخطی به p است، درست است؟

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = 1 \quad (1)$$

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n|} = 1 \quad (7)$$

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = 0 \quad (7)$$

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n|} = 0 \quad (7)$$

ا استفاده از روش نیوتن ـ رافسون برای یافتن ریشه معادله $x_1 + \cos x - \gamma = \infty$ و نقطه آغازین π با x_1 ، $x_2 = \pi$ کدام مورد برابر است؟ $\frac{\pi}{\Sigma} + \frac{\Gamma}{\Sigma\pi}$ (1) $\frac{\pi}{r} - \frac{r}{r\pi}$ (r $\frac{\pi\pi}{\tau} + \frac{\tau}{\pi}$ (π $\frac{r\pi}{r}-\frac{r}{\pi}$ (f ۵۶- چرا در راکتور هتروژن، فاکتور بهره حرارتی(f)، کوچکتر از تعداد مشابه خود در راکتور هموژن است؟ ۲) افزایش احتمال فرار از رزونانس ۱) اثر خودحفاظی میله سوخت برای نوترون حرارتی ۳) کاهش شار نوترونی داخل کندکننده ۴) افزایش شار نوترون سریع داخل میله سوخت ۵۷- چشمه نوترونی به شدت S نوترون بر ثانیه بر سانتیمترمکعب در کل فضا در محیط بینهایت توزیع شده است. شکل شار نوترونی چگونه است؟ $\frac{SL^{r}}{rD}sinh(\frac{r}{L})$ (7) $\frac{SL^{\gamma}}{D} \sinh(\frac{r}{L})$ (1) $\frac{\mathrm{SL}^{\mathrm{r}}}{\mathrm{D}}$ (f $\frac{SL^{r}}{r} exp(-\frac{r}{r})$ (r ۵۸- در حل معادله Inhour، اگر قرار باشد ریشه مثبتی وجود داشته باشد، تعداد نهایی ممکن چقدر است؟ ۲) فقط یک ریشه ۱) فقط ۸ ریشه ۴) محدودیتی وجود ندارد. ۳) بدون ریشه مثبت در طرح یک راکتور فرضی، باکلینگ بینهایت شده است. کدام مورد مرتبط است؟ -۵۹ ۲) طول پخش، بینهایت است. ۱) طول پخش، صفر است. ۴) احتمال فرار نوترون، صفر است. ۳) ابعاد راکتور، صفر است. ۶۰ یک چشمه نوترونی در فضای خلاً قرار دارد. طول یخش در چنین حالتی، چقدر است؟ ۱) صفر است. ۲) بی نهایت است. ۴) بهخاطر تجزیه نوترون، مقداری متناهی است. ۳) قابل کاربست نیست. وضعیت واکنش زنجیری در راکتوری که K < ۱ > ۰ باشد، کدام است؟ -81 ۲) برقرار نیست، تحت هیچ شرایطی ۱) برقرار است، ولی وابسته به حضور چشمه $\mathbf{k} = \circ$ برقرار است، حتى در حالت (۴ ۳) برقرار است، حتی بدون حضور چشمه ۶۲ - مشهور است در گذشته های خیلی دور، در محل یک معدن اورانیوم، واکنش زنجیری خود کفا برای هزاران سال برقرار بوده است. کدام مورد، صحیح است؟ چنین چیزی هرگز نمی توانسته رخ داده باشد. ۲) می تواند علی الاصول در هر زمانی اتفاق افتاده یا بیفتد. ۳) معادن دارای غنای بالای اورانیوم، حتی در زمان حاضر، می تواند این گونه باشد. ۴) می تواند درست باشد، چنانچه به دست کم ۲ میلیارد سال پیش مربوط باشد.

ی (کد ۲۳۶۵)	مهندسي هستها
-------------	--------------

-93	در یک راکتور مولّد نیرو	و، در همان ابتدای کار، یک افن	، قابلِملاحظه در غلظت بو	بوران محلول در داخل قلب دید
	میشود. علت آن، کدام ا	است؟		
	۱) جذب شدید نوترون تو	وسط ۱۰-B		
	۲) کاهش راکتیویته، به ع	علت افزایش دما و افزایش غلظت	زينون	
	۳) افزایش رأکتیویته قلب	ب، بەخاطر افزايش قدرت		
	۴) افزایش سرعت خنک	کننده و شسته شدن محلول		
-94	در یک راکتور درحالِ کار	ر پایدار، یک حباب بزرگ بخار نا	گهان از پایین قلب شروع ب	، به بالا آمدن از داخل قلب میکند
	بيشترين تغيير راكتيويته	، در کجای قلب رخ میدهد؟		
	۱) در ابتدای بالا رفتن		۲) در ارتفاع نیمهراه	
	۳) هنگام خروج از قلب		۴) تغییر آشکاری ظاهر ن	نمىشود.
۵-۶۵	هنگامی که راکتور در شر	رایط پایدار کار میکند، تغییرار	ن کوچکی حول مقدار متو	نوسط در شار نوترون وجود دارد
	موسوم به «نویز راکتور»،	، منشأ آن كدام است؟		
	۱) نیمهعمر نوترون آزاد		۲) نوترون تأخیری	
	۳) فرایند شکافت		۴) آثار مکانیک کوانتومی	ى
-99	با توجه به اینکه P فشار	ِ درون ظرف فشار یک نیروگاه	مستهای، σ تنش کششی	ی ماده ظرف، D قطر دهانه ظرف
	t ضخامت دیوارہ آن باش	.د، پارامتر t چه رابطهای با سایر	پارامترها دارد؟	
	۱) با D ،P و σ رابطه م	مستقيم	۲) با D مستقیم و با P م	معكوس
	۳) با P مستقیم و با D م	معكوس	۴) با P مستقیم و با م م	معكوس
-9V	علت وجود گنبد اصلی د	دربر گیرنده قلب و تشکیلات مد	رات NPP، كدام است؟	
	۱) ایجاد فشار منفی درور	ن گنبد	۲) محافظت درون از بیرو	رون و بالعکس
	۳) محافظت بیرون از درو		۴) محافظت درون از بیرو	رون
		با قدرت MW _e ۱۰۰۰ به سوخه		
		۳۰ (۲		
- ۶ ٩		نی نیروگاههای هستهای، بیش از		?،
	۱) دمای نازل در چگالند		۲) مهندسی به کلی متفاو	
	۳) دمای نازلتر بخار تولی		۴) دمای زیاد در قلب	
-Y•	در چه نیروگاههائی تعویم	ض سوخت میتواند برخط و بدو	ن خاموشی راکتور انجام ش	شود؟
	CANUD ()	BWR (۲	FBR (۳	PWR (۴
-71	برای حل نهایی کمبود انر	رژی، کدام نوع نیروگاه هستهای	، مناسبتر است؟	
		FBR (۲		CANDU (۴
-77	نیروگاهی با توان اسمی _و	tor) • • • ۱۰ دارای فاکتور بار (tor	load fao) حدود ∘ ۸ درصد ا	د است. کدام مورد، درست است؟
	۱) توان متوسط، MW _e			/
	• • • • •	صد اوقات، روشن بوده است.		
		درصد انرژی متوسط است.		
		۸ درصد مقدار ماکزیمم بوده اس	ىت.	
	- j · j- ()	J. 10		

صفحه ۱۵	711 C		بهندسی هستهای (کد ۲۳۶۵)
اورانیوم تهی شده است	حاوی ۴ تن پلوتونیوم و مقدار کافی از	ایش ۱/۲ است. قلب	۷۲ – یک راکتور زایا دارای نسبت ز
	چند تن سوخت مازاد باقی خواهد ماند؟	بوختگذاری مجدد،	بعد یک دوره کاری و پس از س
	۰ _/ ۸ (۲		۰/۲ (۱
	4 (4		٣) ٢ (٣
مروج از قلب، دارای °/ ⁰	ده میکند، سوخت مصرفشده هنگام خ	ورانيوم طبيعي استفا	۷۱- در یک HWR که از سوخت ا
	دوداً چقدر می تواند باشد؟	است. بهره تبدیل ح	درصد پلوتونيوم ۲۳۹ و ۲۴۱
	°∕ Y (۲		1 (1
	۰/٣ (۴		۰/ ۴۳ (۳
	ام است؟	ی گنبد BWRها،کد	۷۷- نقش استخر آب در بخش پایین
	۲) خنککننده اضطراری قلب		۱) کنترل شیمی آب
رايط حادثه	۴) جذب و چگالش بخارآب در ش	ت مصرفشده	۳) خنک کردن میلههای سوخ
			<i>ادیوایزوتوپها و کاربرد آنها ــ آشکا</i> ۷۶- سری واپاشی طبیعی اکتنیوم،
	لی سو∙. ۲) سرب _ ۲∘۷		۲، مسری و،پ سی حبیدی ، عدیو ۲. ۱) سرب _ ۶ ∘ ۲
	۴) بیسموت _ ۲۰۹		۳) سرب ــ ۲۰۸
		، کالیفرنیوم ــ ۲۵۲، ب	۷۱- روش اصلی تولید رادیونوکلید
	۲) زنجیرہ واپاشی اورانیوم ـ ۲۳۵		رو کا کا را با می اورانیوم ـ ۸ ۱) زنجیرہ واپاشی اورانیوم ـ ۸
	۴) جذب متوالی نوترون توسط پلو		
	بیماریها مورد استفاده قرار میگیرند. با		
	رفع مرد عنوان رادیوداروی درمانی در پلاکهای .		
1231	124x	126-	
	¹²⁴ I	¹²⁵ I	1 ¹³¹ I
13.2 h	4.15 d	59.41 d	8.02 d

۱) ید ـ ۱۲۳ (۱) ید ـ ۱۲۴ (۳) ید ـ ۱۳۵ (۴) ید ـ ۱۳۱

γ 35, e⁻

σ 900

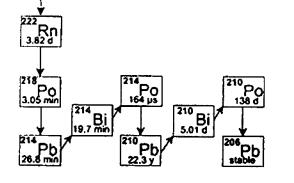
β⁺ 2.1...

γ 603; 1691...

no β⁺

γ 159...

۷۹– اگر سنگ معدنی اورانیوم حاوی ۵/۵ درصد اورانیوم طبیعی باشد، برای تولید یک کوری رادیوم ــ ۲۲۶ به چند تن سنگ معدن نیاز است؟ (بازده فرایند استخراج رادیوم را ۸۵ درصد درنظر بگیرید. نیمهعمر اورانیوم – ۲۳۸، ۲/۸ میلیون برابر نیمهعمر رادیوم – ۲۲۶ است.) ۱) ۱۰۰


β-0.6, 0.8...

γ 364; 637...

۸۰ اکتیویته ویالی حاوی آهن ـ ۵۹ خالص (با نیمهعمر ۴۵ روز)، اکنون برابر ۱۰۰ کوری اندازهگیری شده است. اکتیویته ویژه این ویال بعد از گذشت ۳ ماه، تقریباً چند کوری بر میلیگرم است؟ (۱/۵ = ۱۳) ۱) ۱۲/۵ (۱ ۱) ۵) ۵ (۳)

۸۱ - زنجیره وایاشی رادیوم ـ ۲۲۶، در شکل زیر، نشان داده شده است. نمونهای حاوی ۲٫۲ گرم رادیوم ـ ۲۲۶ به مدت ۱۵۰ سال در ظرفی در بسته نگهداری شده است. در این زمان، فقط چشمه رادیوم از ظرف خارج می شود. مجموع اکتیویته رادیونوکلیدهای موجود در ظرف پس از گذشت حدود ۴ روز، تقریباً به چند کوری میرسد؟ "Ra 1600 y ۵ (۱

- ٨ (٢
- 11 (7
- 17 (4

-۸۲ برای تولید رادیونوکلید B (با ثابت وایاشی λ_b) مقداری از نوکلید A به جرم m در یک راکتور با شار نوترونی بالا به مدتزمان t پرتودهی می شود. محصول با گسیل ذره بتای منفی به رادیونوکلید \mathbf{C} (با ثابت واپاشی $\lambda_{ ext{c}}$) تبدیل می شود. اگر در پایان پر تودهی اکتیویته رادیونوکلید B برابر \mathbf{B}_{1} و اکتیویته رادیونوکلید C برابر \mathbf{C}_{1} باشد، پس از گذشت چه مدت از انتهای زمان بر تودهی اکتیویته رادیونوکلید C به مقدار بیشینه خود می رسد؟

$$\frac{\ln\left[\frac{\lambda c}{\lambda b} - \frac{C_{1}}{B_{1}}(1 - \frac{\lambda c}{\lambda b})\right]}{\lambda c - \lambda b} (\gamma)$$

$$\frac{\ln\left[\frac{\lambda c}{\lambda b} - \frac{B_{1}}{C_{1}}(1 - \frac{\lambda c}{\lambda b})\right]}{\lambda c - \lambda b} (\gamma)$$

$$\frac{\ln\left[\frac{\lambda c}{\lambda b} + \frac{C_{1}}{B_{1}}(1 - \frac{\lambda c}{\lambda b})\right]}{\lambda c - \lambda b} (\gamma)$$

۸۳- برای تولید یک رادیونوکلید با نیمهعمر ۱ ساعت، نمونهای در یک سیکلوترون با بیم پروتون با شدت جریان μA یر تودهی می شود. شرایط کار سیکلو ترون به گونه ای است که به طور متناوب، دو ساعت روشن و یک ساعت خاموش خواهد بود. با فرض ثابت بودن جرم نمونه پرتودهیشده، اکتیویته رادیونوکلید حاصل پس از دو مرتبه پرتودهی دقيقاً قبل از روشنشدن مرتبه سوم، به چند درصد مقدار بيشينه ممكن (اشباع) ميرسد؟ ۴

$$Y_{/}$$
 (1) $Y_{/}$ (1)

$$\Lambda F/TVD$$
 (F DS/TD (T

۸۴ – برای تولید رادیونوکلید سدیم ـ ۲۴ (با نیمهعمر حدود ۱۵ ساعت) ۱۰ گرم Na_rCO_W (با وزن مولکولی ۱۰۶) برای مدتی در یک راکتور هستهای با شار نوترونهای حرارتی ^{۱۳} ۱۰×۳ نوترون بر سانتیمترمربع بر ثانیه پرتودهی میشود. بعد از گذشت ۳۰ ساعت از پایان پرتودهی، اکتیویته ^{۲۴} Na ، ۱۰ کوری شده است. زمان پرتودهی در راکتور، چه مضربی از نیمه عمر محصول بوده است؟ (سطح مقطع واکنش (n,γ) برای تولید سدیم – ۲۴ برابر ۵/۵ بارن و سدیم موجود در طبیعت $(\ln \tau = \circ / \gamma)$ (الست.) (الار $\tau = \tau$

4 (4 ۳ (۳

مهندسی هستهای (کد ۲۳۶۵)

۸۵ - برخی از نمونههای زمین شناسی حاوی رادیونوکلیدهای ^{۸۷} Rb (با نیمهعمر ^۱۰°×۰×۴/۹ سال) هستند که به ^{۸۷}Sr پایدار واپاشی میکنند. استرانسیوم طبیعی دارای ایزوتوپ پایدار ^{۸۶}Sr است که در نمونههای فاقد ^{۸۷}Rb نسبت ثابتی (k_o) دارد. نمونهای از یک صخره دارای نسبت ایزوتوپی ^{۸۷}Sr به ^{۹۶}Sr برابر a و نسبت ایزوتویی (k_o) به h^{8} sr برابر b می باشد. سن این صخره بر حسب سال، از کدام رابطه به دست می آید h^{8} (h^{9} sr ب $\forall \times 1 \circ^{1} \ln [(a - k_{o})/b]$ (7) $\forall \times 1 \circ^{10} \ln \left[1 + (a - k_{o})/b \right]$ (1) $\gamma \times \gamma \circ \ln[k_{\circ} - a/b]$ (f $\forall \times 1 \circ^{1\circ} \ln[k_{\circ} + a/b]$ (\forall ۸۶ - در یک آشکارساز سیلیکونی با قابلیت تحرک یونها برابر m^۲ ۷۰^{۰–۱}۰۰ ×۵، چند ثانیه طول خواهد کشید تا ناحیه ذاتی (Intrinsic) به ضخامت ۲mm تحت بایاس معکوس ۷ ۲۰۰ به دست آورد؟ 1°° (T 104 () 4/0×10 (f $7 \times 10^{\circ}$ (T اگر $\overline{f M}$ پاسخ آشکارساز، $\overline{f R}$ ماتریس پاسخ آشکارساز و $\overline{f S}$ طیف چشمه پرتوزا باشد، کدام مورد درست نیست؟ -۸۷ $\overline{\overline{R}}\overline{S} = \overline{M}$ ()) دترمینان ماتریس $\overline{\overline{\mathrm{R}}}$ ، اغلب نزدیک به صفر است.) سطر i ام ماتریس $\overline{\mathrm{R}}$ ، یاسخ آشکارساز به چشمه تکانرژی واحد در کانال i اُم $\overline{\mathrm{S}}$ است. (i۴) جهت بازسازی طیف چشمه، عمدتاً از الگوریتمهای مبتنی بر تکرار استفاده می شود. ۸۸- کدام مورد، درست است؟) گسیل اشعه X، بسیار سریعتر از گسیل اشعه γ صورت می گیرد. ۲) در سیستم آشکارسازی SPECT، عمدتاً از آشکارسازهای نیمهرسانا استفاده میشود. ۳) اشعه X مورداستفاده در دستگاه پرتویزشکی CT، از مرتبه MeV است. ۴) انرژی گامای ناشی از تکنسیوم مورداستفاده در تصویربرداری با SPECT، از مرتبه keV است. ۸۹ - اگر شمارش ناخالص غیرواقعی در مدتزمان t_G برابر G و شمارش زمینه ثبتشده در مدتزمان $rac{\mathbf{t}_{\mathbf{G}}}{\mathbf{v}}$ برای 🗛 احتمال ۶۸/۳٪، نتیجه آزمایش در چه بازهای قرار خواهد گرفت؟

$$\frac{1}{t_{G}}\left(\frac{r}{r}G \mp \sqrt{\frac{r}{r}G}\right) (r \qquad \qquad \frac{1}{t_{G}}\left(\frac{r}{r}G \mp \sqrt{\frac{r}{r}G}\right) (r \\ \frac{1}{t_{G}}\left(rG \mp \sqrt{\frac{r}{r}G}\right) (r \qquad \qquad \frac{r}{t_{G}}\left(rG \mp \sqrt{rG}\right) (r \\ \frac{1}{t_{G}}\left(rG \mp \sqrt{rG}\right) (r \qquad \qquad \frac{r}{t_{G}}\left(rG \mp \sqrt{rG}\right) (r \\ \frac{1}{t_{G}}\left(rG \mp \sqrt{rG}\right$$

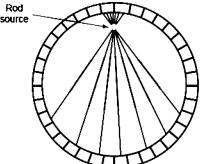
۹۰ یک لامپ اشعه ایکس که در ولتاژهای مختلف ۵۰ kV تا ۳۰۰ kV گامهای ۲۵ kV کار میکند، در اختیار داریم.
 انرژی مرتبط با هر ولتاژ اعمال شده به تیوب ایکس، با استفاده از کدامیک از موارد زیر، اندازه گیری می شود؟
 ۱) آشکارساز یدور سدیم به تنهایی
 ۲) آشکارساز گایگر مولر و ماده جاذب با ضخامت معین برای هر ولتاژ
 ۳) ماده جاذب با ضخامت معین برای هر ولتاژ و همچنین آشکارساز یدور سدیم
 ۹) ماده جاذب با ضخامت هین برای هر ولتاژ و همچنین آشکارساز یدور سدیم

(کد ۲۳۶۵)	هستهای	مهندسی
-----------	--------	--------

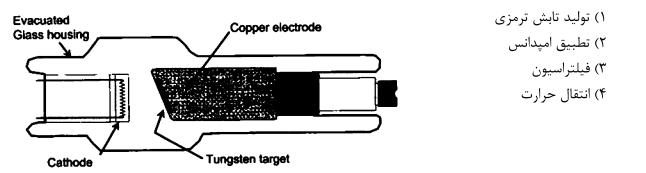
	•
کدام یک از آشکارسازهای زیر، بهمنظور اندازهگیری طیف انرژی نوترون، مورد استفاده قرار میگیرد؟	-91
۱) کردهای بانر	
) آشکارسازهای ${f BF}_{\! m F}$ با فشار گازهای مختلف	
۳) آشکارساز ^۳ He در یک ماده کندکننده با ابعاد ثابت	
۴) آشکارساز سوسوزنی پلاستیکی با ضخامتهای مختلف	
	-97
اندازه گیری شده است. مقدار کل دُز تابشی، چند mSV است؟	
$1 \forall 1 \pm \forall / 1 \Delta (\forall 1) \pm (\forall 1) \pm \forall / 1 \Delta (\forall 1) \pm (\forall 1) (\forall 1) \pm (\forall 1) (\forall 1))))))))))$	
$111\pm T/10$ (f $1T1\pm T/10$ (f	
مزیت اصلی استفاده از دُزیمتر TLD نسبت به دُزیمتر فیلم بج (film badge)، کدام است؟	-۹۳
۱) دُزیمترهای TLD، را میتوان چندین بار استفاده کرد.	
۲) دُزيمترهای TLD، بدون هرگونه محوشدگی هستند.	
۳) دُزيمترهای TLD، پرتودهیشده را چندين بار میتوان خواند.	
۴) پاسخ دُزیمتر TLD در تمامی انرژیها، کاملاً تخت است.	
کدام مورد زیر، در انتخاب یک آشکارساز پرتو برای کاربردهای تصویربرداری پزشکی، مورد توجه قرار میگیرد؟	-94
۱) رزولوشن فضایی (مکانی) بالا	
۲) حساسیت بالا به تابشهای کمانرژی	
۳) توانایی ایجاد تمایز بین انواع مختلف تابشها	
۴) توانایی آشکارسازی تابشها در طیف وسیعی از محیطها	
در طیفنگاری یک باریکه الکترونی تکانرژی، کدام عامل باعث افزایش مؤثر سهم الکترونهای پسپراکنده در طیف	۹۵-
انرژی الکترون نمیشود؟	
۱) افزایش انرژی الکترون	
۲) افزایش قطر باریکه الکترون	
۳) افزایش عدد اتمی ماده آشکارساز	
۴) افزایش زاویه بین باریکه و محور عمود برسطح اشکارساز	
سیگنال S در سیستم تصویربرداری به روش تشدید مغناطیسی هستهای، بهصورت زیر قابل بیان است:	-99
$S \propto \rho_{\rm H} \times f(v) \left[1 - e^{-TR/T_1} \right] \times e^{-TE/T_2}$	

که در آن، P_H چگالی پروتون (اسپین)، f(v) تابعی از حرکت و متأثر از فلوی مایع، T₁ و T₂ خصوصیات فیزیکی بافت شامل زمانهای آسایشی اسپین ـ شبکه و اسپین ـ اسپین، و TR و TE پارامترهای رشته پالس شامل زمان تکرار و زمان اکو هستند. در رشته پالس اسپین ـ اکو، تصاویر حاصله در چه شرایطی بر وزن چگالی پروتون (اسپین) هستند؟

۲) TR طولانی و TE کوتاه و TE طولانی
 ۳) TR کوتاه و TE طولانی و TR طولانی
 ۳) TR کوتاه و TE کوتاه


مهندسی هستهای (کد ۲۳۶۵)

۳) فلوروسكپي پالسي


۹۷- رزولوشن مکانی در سیستم اولتراسونیک، بهترتیب، در چه جهتی مستقل از عمق است و در کدام حالت، اثرات حرارتی اولتراسوند، بیشینه است؟
 ۹۷ حرارتی اولتراسوند، بیشینه است؟
 ۹۸ می از می اولتراسوند، بیشینه است؟
 ۹۲ می اولتراسوند، بیشینه است؟
 ۹۳ می اولتری اولتراسوند، بیشینه است؟
 ۹۳ می اولتری اولتراسوند، بیشینه است؟
 ۹۳ می اولتری اولتراسی اولتراسوندی به می اولتری ا

۴) فلوروسکپی پیوسته

- ۱۰۰ تضعیف و پراکندگی پرتوهای هستهای و موارد مرتبط دیگر، عملکرد سیستم تصویربرداری به روش نشر پوزیترون (PET) را تحت تأثیر قرار میدهند. در شکل زیر، عامل Rod Source، برای تصحیح کدام مورد به کار میرود؟) همزمانیهای پراکندگی Source (۲) همزمانیهای تصادفی
 - ۳) تضعيف
 - ۴) نویز

۱۰۱ آند یک تیوب اشعه ایکس، در شکل زیر، نشان داده شده است. الکترود مسی در آن، چه نقشی را ایفا میکند؟

۱۰۳- در شکل زیر، تصاویر حاصله از سیستم تصویربرداری به روش نشر تک فوتون (SPECT)، همراه با اعمال فیلترهای مختلف نشان داده شده است. با اعمال کدام فیلتر، می توان تصویری با رزولوشن مکانی مناسب ولی با نویز آماری بیش از حد ایجاد کرد؟ 40 AVE 758 841 (3.76 41 avg 203 aus 6766 41 av 217 av 237 av A () B ۳) غير خطي ramp (۴ 0.5 0.4 ramp Amplitude 0.3 0.2 0.1 B 0 0.5 0.2 0.3 0.4 0 0.1 Spatial frequency (cycles/pixel) ۱۰۴ – کدام رشته پالس در سیستم تصویربرداری تشدید مغناطیسی هستهای، در شکل زیر نشان داده شده است؟ Echo planar () Effective TE Perfusion (r RF -1.90' 180' Angiography (" Mammography (۴ SSG ப் PEG "blips" PEG · FEG Gradient Echo k, k-space k, **۱۰۵** - اجزای اصلی که در تعیین کیفیت تصویر نقش دارند، کداماند؟ کنتراست – رزولوشن زمانی – نویز ۲) کنتراست _ رزولوشن مکانی _ نویز ۳) آرتیفکت حلقوی _ کنتراست _ نسبت سیگنال به نویز ۴) رزولوشن مکانی _ رزولوشن زمانی _ نسبت سیگنال به نویز

711 C

صفحه ۲۲

۱۰۱۱ ژول

- ۱۱۵ با توجه به عبارت «فشار اعمال شده از میدان مغناطیسی بر پلاسما، عمود بر میدان است»، کدام مورد درست است؟
 ۱) این امر با حرکت تنگشی پلاسمای چنبرهای مغایر است.
 ۲) میدان بر پلاسما فشار وارد نمی کند و این امر ربطی به میدان ندارد.
 ۳) می توان از میدان مغناطیسی جهت محصور سازی پلاسما استفاده کرد.
 ۹) به دلیل فشار اعمال شده، حرکت تنگشی پلاسمای استوانه ای به گرمای ژول ارتباط ندارد.
 - ۱۱۶ مفاهیم پایه در مبحث تعادل توکامک، کداماند؟
- ۱) توازن خارجی میان فشار پلاسما _ شکل زمان و مکان پلاسما که توسط محاسبه بهدست میآید.
 ۲) عدم توازن حاصل از میدان مغناطیسی _ عدم توازن حاصل از شکل پلاسما که یکی از مفاهیم پایه است.
 ۳) توازن حاصل از میدان مغناطیسی _ توازن حاصل از مکان پلاسما که هر دو در عمل و در آزمایشگاه قابل دستیابی است.
 ۴) توازن داخلی میان فشار پلاسما و نیروهای حاصل از میدان مغناطیسی _ شکل و مکان پلاسما که از میدان مغناطیسی _ توازن حاصل از مرا میدان مغناطیسی ـ عدم توازن حاصل از میدان مغناطیسی ـ عدم توازن حاصل از میدان مغناطیسی ـ عدم توازن حاصل از میدان مغناطیسی ـ می و در آزمایشگاه قابل دستیابی است.
 ۳) توازن داخلی میان فشار پلاسما و نیروهای حاصل از میدان مغناطیسی ـ شکل و مکان پلاسما که البته هر دو توسط جریان پیچههای خارجی کنترل می شوند.
 - ۱۱۷ کدام مورد، بیانگر تعریف شعاع دبای است؟
 ۱) شعاع دبای بردی است که در آن فاصله، میدان الکتریکی ذره باردار عملاً اثر می کند.
 ۲) شعاع دبای بردی است که تنها به میدان معناطیسی ارتباط داشته و تأثیر چندانی ندارد.
 ۳) اثر حجمی زوایای پراکندگی کوچک را شعاع دبای می گویند و یک کمیّت غیرعددی است.
 ۹) شعاع دبای یا T₁، عملاً بیانگر زوایای پراکندگی کوچک است و به همین دلیل شعاع دبای توسط آن تعریف می شود.
 ۹) شعاع دبای یا -۲۵، معاد آن تعریف می گویند و یک کمیّت غیرعددی است.
 ۹) شعاع دبای یا -۲۵، می گرویای پراکندگی کوچک را شعاع دبای می گویند و یک کمیّت غیرعددی است.
 ۹) شعاع دبای یا -۲۵، معاد آن تعریف می شویند و یک کمیّت غیرعددی است.
 ۹) شعاع دبای یا -۲۵، معاد آن تعریف می شود.
 ۹) شعاع دبای ای از کردگی کوچک را ست و به همین دلیل شعاع دبای توسط آن تعریف می شود.
 ۱۱۸ معادله ٥ = ۲ ح ح ح ح می از این که که است و به همین دلیل شعاع دبای توسط آن تعریف می شود.
 ۱۱۸ معادله ٥ = ۲ ح ح ح ح درست آن از کال کا دیلی که رابطهای برداری است.
 ۲) اصولاً رابطه بالا درست نیست و درست آن از کا می گرادیان است.
 ۲) رابطه معنی دار پایستگی معادلات جرم است و صوفاً تابع گرادیان است.
 - ۳) این معادله کاهشیافته با قانون آمپر در تناقض است و این تناقض قابل رفع نیست.
 ۴) یک معادله کاهشیافته است، چرا که با دیوژرانس گرفتن از معادله قانون آمیر بهدست میآید.

مهندسی هستهای (کد ۲۳۶۵)

۲۳	صفحه
----	------

هدایت، در یک مقیاس بزرگتر پدید میآید؟
۱) میدان مغناطیسی بدون انحنا
۲) میدان الکتریکی مستقل از زمان
۳) یک میدان الکتریکی عمود بر میدان مغناطیسی
۴) جابهجایی الکترونها، موجب نیروی برگشتی و شتاب نمیشود.
۱۲۰- با توجه به رسانش بالای الکتریکی پلاسما و درحالیکه چگالی پلاسما هشت برابر کوچکتر از چگالی مس است و با توجه به
اینکه رسانش الکتریکی پلاسمای گداخت حدود ۴۰ برابر بزرگتر از رسانایی مس میشود، دلیل این امر چیست؟
۱) برخوردهای کولنی بین یونها و الکترونها به ندرت اتفاق میافتد.
۲) رسانش الکتریکی پلاسمای گداخت ربطی به رسانایی مس ندارد و هیچگاه رسانش الکتریکی پلاسمای گداخت به
رسانایی مس نمیرسد.
۳) دلیل استفاده از ابررسانا، راهحّل شناختهشده این امر، تا امروز است. (بدیهی است برخوردهای کولنی بین یونها
و الکترونها را در این حالت بسیار زیاد است.)
۴) در دمای بالا (دماهای بالا) و چگالی پایین و برخوردهای کولنی بین یونها و الکترونها به ندرت اتفاق میافتد، در
نتیجه مقاومت الکتریکی در برابر انتقال بسیار ناچیز خواهد بود.
۱۲۱- براساس نتایج تجربی فاکتور ایمنی (q _s) چگونه باید باشد؟
۱) باید رقمی بزرگتر از ۲ باشد.
رقمی بین صفر و حداکثر یک خواهد بود. (۲ $q_{ m s}$
۳) رابطه معنیداری بین q _s و پایداری پلاسما وجود ندارد.
۴) q _s به رفتار ماشین بستگی داشته و مقدار آن کف و سقف ندارد.
۱۲۲- حد بتا چیست؟
۱) «بتا» و حدّ آن ربطی به ماگنتوئیدرو دینامیک ندارد. -
۲) مفهوم «بتا» از دقت لازم برخوردار نیست و برای آن نمیتوان حدی قایل شد.
۳) «بتا» یک پارامتر MHD است. که معیاری از فشار محصور شده است.
۴) حد بتا زیر مجموعهای از حدی است که توسط عددهای بالونی اعمال میشود و قابل تغییر است.
۱۲۳- کدام مورد درخصوص عبارت زیر درست است؟
«پر توزایی مواد در نیروگاههای گداخت به مواد ساختاری محدود می شود.»
۱) محصول واکنش گداخت، هلیم نمی تواند باشد.
۲) محصول پسمان واکنش گداخت، هلیم است.
۳) ارتباطی به پسمان ندارد و میتوان آن را به ساختار نسبت داد.
۴) در نیروگاههای گداخت، محدودیتی برای موآد نمیتوان قائل شد.
۱۲۴– نقش مدهای پارگی در ناپایداریها چیست؟ () ما ما ها ما
۱) مدهای پارگی ارتباطی نقشی در ناپایداریها ندارند. ۲۷ نتر از افسادها نیسیسی ما سال ۱۰ کتر کسیا نیسی میزا ایرا کی در سیسیسی ۲۰
۲) فقط اثر بازدارنده روی میدانهای الکتریکی دارند و خود ناپایدارکننده هستند. ۳) مدار ایگ را داری داران ما این از می اند و ترا ترکا کردار و در این و گزینا از تر میناند.
۳) مدهای پارگی، پایداریها را به صفر میرساند و در تمام توکامکها وجود دارد و هیچگونه اثر تخریبی نداشته، قابل اندازه گیری است. ۴) درماه ها گینتش می در نابا دارد مراه سیام اند و کامکها وجود دارد و هیچگونه اثر تخریبی نداشته، قابل اندازه گیری
۴) مدهای پارگی نقش مهمی در ناپایداریهای معمول بازی میکنند، آن و توپولوژی مغناطیسی داخل پلاسما را تغییر میدهند.

711 C

(2262	(کد	هستهای	مهندسي
-------	-----	--------	--------

۱۲۵ کدام مورد درخصوص نیاز به روش هیبرید پایین تر در توکامکها، درست است؟
 ۱) یکی از روشهای بازدارنده است و این بازدارندگی به نوع توکامک ارتباط پیدا می کند.
 ۲) نسبتهای بار به جرم متفاوت نیست و به همین دلیل از روش هیبرید پایین تر استفاده می شود.
 ۳) نیازی به هیبرید پایین تر نیست و تنها روش هیبرید پایین تر نمی تواند راندمانی را به خود اختصاص دهد.
 ۴) در روش هیبرید پایین تر که بیشترین راندمان را به خود اختصاص داده است.
 ۲) در روش هیبرید پایین تر که بیشترین راندمان را به خود اختصاص داده است. نیاز به قدرت در گردشی در حدود