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Preface to the Second Edition 

 
 
 
 
 
This updated and expanded edition of Engineering Vibrations continues in the spirit of the 
first edition and, in addition, includes chapters on the dynamics and vibration of two-
dimensional continua. The current edition also includes the effects of structural damping on 
the vibration of both one-dimensional and two-dimensional continua, as well as on discrete 
systems. Like its forerunner, the text couples thorough mathematical development with 
physical interpretation and emphasizes the mechanics and physics of the phenomena. As 
with the first edition, the current volume presents vibrations from a unified point of view, 
with emphasis placed on developing a connected string of ideas, concepts and techniques 
that are sequentially advanced and generalized throughout the text. The text naturally se-
gues from preliminaries to vibration of single degree of freedom systems (including sys-
tems that are undamped, as well as those with viscous, Coulomb and structural/internal 
damping), to discrete multi-degree of free systems (including general viscous damping, as 
well as Rayleigh damping), to one-dimensional continua (rods, strings, Euler-Bernoulli 
beams and beam-columns, and Timoshenko beams), and ultimately to two-dimensional 
continua (membranes, Kirchhoff plates, von Karman plates and Mindlin plates). The com-
prehensive second edition can be used for a one semester course or for a two semester, three 
semester or four semester sequence at the advanced undergraduate and/or graduate level 
depending on the instructor's choice of topics.   
 The original eleven chapters from the first edition remain largely intact, with some 
minor revisions and additions. In addition, a section on the forced response of structurally 
damped one-dimensional continua is now included at the end of Chapter 11. The corre-
sponding formulation and solution uses as its basis the phenomenological development 
(from first principle) of structural damping presented in Section 3.4. (The reader is referred 
to the Preface for the First Edition that follows, for a detailed discussion of the remainder 
of the contents of the first eleven chapters.) In addition, three new chapters have been add-
ed;  Chapter 12 – Dynamics of Two-Dimensional Continua, Chapter 13 – Free Vibration of 
Two-Dimensional Continua, and Chapter 14 – Forced Vibration of Two-Dimensional Con-
tinua. The topics covered include characterization of three-dimensional linear and geomet-
rically nonlinear deformation for mathematically two-dimensional structures, as well as the 
dynamics and vibration of various types of structures within this class. In particular, the 
deformation, dynamics and vibration of membranes, of Kirchhoff plates, of von Karman 
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plates, and of Mindlin plates are covered. General analytical solutions are developed and 
applied for both free and forced vibration of all structures considered. 
 In Chapter 12, a full development for the characterization of deformation for mathe-
matically two-dimensional continua is first presented. The governing equations, boundary 
and initial conditions for membranes are then developed and carefully simplified to the case 
of an ideal membrane. The equations of motion and the associated boundary and initial 
conditions are then developed for various plate structures. The common assumptions are 
first outlined and developed into general equations, and then specific assumptions are ap-
plied sequentially resulting in the governing equations and conditions for Kirchhoff plates, 
Mindlin plates and uniformly stretched von Karman plates. Separate sections of the chapter 
are devoted to each type of structure.  
 The free vibration of the various structures considered in Chapter 12 is discussed in 
Chapter 13. After a brief discussion of the scalar product and orthogonality of functions of 
two spatial variables, the general free vibration problem and its solution is outlined for 
structures of the class considered. Free vibration of ideal membranes is then considered, 
followed by free vibration of Kirchhoff plates. Free vibration of uniformly stretched von 
Karman plates is next considered and then free vibration of Mindlin plates is discussed. In 
each case, general analytical solutions are developed and then applied to illustrative exam-
ples. A discussion of the orthogonality of the modal functions for the structures of interest is 
presented in ensuing sections. The chapter concludes with the development and presenta-
tion of formal expressions for the evaluation of the amplitudes and phase angles for free 
vibration of the various two-dimensional continua considered based on the mutual 
orthogonality of the modes.  
 Forced vibration of two-dimensional continua is discussed in Chapter 14. The chapter 
begins with a brief discussion of the mathematical representation of point loads in a spatial-
ly two-dimensional domain. Modal analysis for structures with one dependent variable is 
then developed and applied to ideal membranes, Kirchhoff plates and uniformly stretched 
von Karman plates. The development is then extended to systems with multiple dependent 
variables and is applied to the forced vibration of Mindlin plates. The chapter concludes 
with a discussion of the steady state response of two-dimensional continua with structural 
damping. The stiffness operators for the damped structures of interest are first developed, 
and the general steady state response is then given for structurally damped Kirchhoff plates 
and for uniformly stretched, damped, von Karman plates. The chapter finishes with the de-
velopment of the response for damped Mindlin plates. 
 The second edition of Engineering Vibrations covers a wide variety and depth of 
topics. Like the first edition, it endeavors to be both rigorous and readable, and to provide 
the student or professional with a solid and extensive background in the subject area. 
 To close, I'd like to thank Professor Ellis H. Dill and Mr. Peinan Ge, both of Rutgers 
University, for helpful discussions pertaining to the evaluation of the shape factor for Timo-
shenko beams. Many thanks go to Mr. Michael J. Pavlou and Ms. Amber M. McGoff for 
producing the many excellent drawings for Chapters 12–14. I'd also like to thank Mr. M.J. 
Pavlou, Ms. A.M. McGoff and Mr. J.M. Lakawicz for the drawing and/or modification of 
the various new and updated figures for Chapters 1–11. In addition, I'd like to express my 
sincere gratitude to Mr. Pavlou for performing the extensive computations for the examples 
in Chapters 13 and 14. Sincere thanks go to Mr. Joseph M. Lakawicz and Mr. Michael J. 
Pavlou, both of Rutgers University, for their valuable assistance with, discussions of, and 
contributions to the analytical solution for free vibration of Mindlin plates and the associat-
ed examples. Finally, I wish to thank Mr. Lakawicz and Mr. Pavlou for their extensive and 
meticulous proof reading, corrections and helpful comments for the entire manuscript. 
     William J. Bottega 
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Preface to the First Edition 

 
 
 
 
 
 
 
 
The effects of vibrations on the behavior of mechanical and structural systems are often of 
critical importance to their design, performance, and survival. For this reason the subject of 
mechanical vibrations is offered at both the advanced undergraduate level and graduate 
level at most engineering schools. I have taught vibrations to mechanical and aerospace 
engineering students, primarily seniors, for a number of years and have used a variety of 
textbooks in the process. As with many books of this type, the emphasis is often a matter of 
taste. Some texts emphasize mathematics, but generally fall short on physical interpretation 
and demonstrative examples, while others emphasize methodology and application but tend 
to oversimplify the mathematical development and fail to stress the fundamental principles. 
Moreover, both types fail to stress the underlying mechanics and physics to a satisfactory 
degree, if at all. For these reasons, there appeared to be a need for a textbook that couples 
thorough mathematical development and physical interpretation, and that emphasizes the 
mechanics and physics of the phenomena. The book would need to be readable for students 
with the background afforded by a typical university engineering curriculum, and would 
have to be self-contained to the extent that concepts are developed, advanced and abstracted 
using that background as a base. The present volume has been written to meet these goals 
and fill the apparent void.    
 Engineering Vibrations provides a systematic and unified presentation of the subject 
of mechanical and structural vibrations, emphasizing physical interpretation, fundamental 
principles and problem solving, coupled with rigorous mathematical development in a form 
that is readable to advanced undergraduate and graduate university students majoring in 
engineering and related fields. Abstract concepts are developed and advanced from princi-
ples familiar to the student, and the interaction of theory, numerous illustrative examples 
and discussion form the basic pedagogical approach. The text, which is extensively illus-
trated, gives the student a thorough understanding of the basic concepts of the subject, and 
enables him or her to apply these principles and techniques to any problem of interest. In 
addition, the pedagogy encourages the reader’s physical sense and intuition, as well as ana-
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lytical skills. The text also provides the student with a solid background for further formal 
study and research, as well as for self study of specialized techniques and more advanced 
topics. 
 Particular emphasis is placed on developing a connected string of ideas, concepts and 
techniques that are sequentially advanced and generalized throughout the text. In this way, 
the reader is provided with a thorough background in the vibration of single degree of free-
dom systems, discrete multi-degree of freedom systems, one-dimensional continua, and the 
relations between each, with the subject viewed as a whole. Some distinctive features are as 
follows. The concept of mathematical modeling is introduced in the first chapter and the 
question of validity of such models is emphasized throughout. An extensive review of ele-
mentary dynamics is presented as part of the introductory chapter. A discussion and demon-
stration of the underlying physics accompany the introduction of the phenomenon of reso-
nance. A distinctive approach incorporating generalized functions and elementary dynamics 
is used to develop the general impulse response. Structural damping is introduced and de-
veloped from first principle as a phenomenological theory, not as a heuristic empirical re-
sult as presented in many other texts. Continuity between basic vector operations including 
the scalar product and normalization in three-dimensions and their extensions to N-
dimensional space is clearly established. General (linear) viscous damping, as well as Ray-
leigh (proportional) damping, of discrete multi-degree of freedom systems is discussed, and 
represented in state space. Correspondence between discrete and continuous systems is es-
tablished and the concepts of linear differential operators are introduced. A thorough devel-
opment of the mechanics of pertinent 1-D continua is presented, and the dynamics and vi-
brations of various structures are studied in depth. These include axial and torsional motion 
of rods and transverse motion of strings, transverse motion of Euler-Bernoulli beams and 
beam-columns, beams on elastic foundations, Rayleigh beams and Timoshenko beams. 
Unlike in other texts, the Timoshenko beam problem is stated and solved in matrix form. 
Operator notation is introduced throughout. In this way, all continua discussed are viewed 
from a unified perspective. Case studies provide a basis for comparison of the various beam 
theories with one another and demonstrate quantitatively the limitations of single degree of 
freedom approximations. Such studies are examined both as examples and as exercises for 
the student. 
 The background assumed is typical of that provided in engineering curricula at U.S. 
universities. The requisite background includes standard topics in differential and integral 
calculus, linear differential equations, linear algebra, boundary value problems and separa-
tion of variables as pertains to linear partial differential equations of two variables, sopho-
more level dynamics and mechanics of materials. MATLAB is used for root solving and re-
lated computations, but is not required. A certain degree of computational skill is, however, 
desirable. 
 The text can basically be partitioned into preliminary material and three major parts: 
single degree of freedom systems, discrete multi-degree of freedom systems, and one-
dimensional continua. For each class of system the fundamental dynamics is discussed and 
free and forced vibrations under various conditions are studied. A breakdown of the eleven 
chapters that comprise the text is provided below. 
 The first chapter provides introductory material and includes discussions of degrees 
of freedom, mathematical modeling and equivalent systems, a review of complex numbers 
and an extensive review of elementary dynamics. Chapters 2 through 4 are devoted to free 
and forced vibration of single degree of freedom systems. Chapter 2 examines free vibra-
tions and includes undamped, viscously damped and Coulomb damped systems. An exten-
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sive discussion of the linear and nonlinear pendulum is also included. In Chapter 3 the re-
sponse to harmonic loading is established and extended to various applications including 
support excitation, rotating imbalance and whirling of shafts. The mathematical model for 
structural damping is developed from first principle based on local representation of the 
body as comprised of linear hereditary material. The chapter closes with a general Fourier 
series solution for systems subjected to general periodic loading and its application. The 
responses of systems to nonperiodic loading, including impulse, step and ramp loading and 
others, as well as general loading, are discussed in Chapter 4. The Dirac delta function and 
the Heaviside step function are first introduced as generalized functions. The relation and a 
discussion of impulsive and nonimpulsive forces follow. The general impulse response is 
then established based on application of these concepts with basic dynamics. The responses 
to other types of loading are discussed throughout the remainder of the chapter. Chapter 5, 
which is optional and does not affect continuity, covers Laplace transforms and their appli-
cation as an alternate, less physical/nonphysical, approach to problems of vibration of single 
degree of freedom systems.  
 The dynamics of multi-degree of freedom systems is studied in Chapter 6. The first 
part of the chapter addresses Newtonian mechanics and the derivation of the equations of 
motion of representative systems in this context. It has been my experience (and I know I’m 
not alone in this) that many students often have difficulty and can become preoccupied or 
despondent with setting up the equations of motion for a given system. As a result of this 
they often lose sight of, or never get to, the vibrations problem itself. To help overcome this 
difficulty, Lagrange’s equations are developed in the second part of Chapter 6, and a meth-
odology and corresponding outline are established to derive the equations of motion for 
multi-degree of freedom systems. Once mastered, this approach provides the student a di-
rect means of deriving the equations of motion of complex multi-degree of freedom sys-
tems. The instructor who chooses not to cover Lagrange’s equations may bypass these sec-
tions. The chapter closes with a fundamental discussion of the symmetry of the mass, stiff-
ness and damping matrices with appropriate coordinates. 
 The free vibration problem for multi-degree of freedom systems with applications to 
various systems and conditions including semi-definite systems is presented in Chapter 7. 
The physical meanings of the modal vectors for undamped systems are emphasized and the 
properties of the modal vectors are discussed. The concepts of the scalar product, 
orthogonality and normalization of three-dimensional vectors are restated in matrix form 
and abstracted to N-dimensional space, where they are then discussed in the context of the 
modal vectors. The chapter closes with extensive discussions of the free vibration of dis-
crete systems with viscous damping. The problem is examined in both N-dimensional space 
and in the corresponding state space. Analogies to the properties of the modal vectors for 
undamped systems are then abstracted to the complex eigenvectors for the problem of 
damped systems viewed in state space. Forced vibration of discrete multi-degree of free-
dom systems is studied in Chapter 8. A simple matrix inversion approach is first introduced 
for systems subjected to harmonic excitation. The introductory section concludes with a 
discussion of the simple vibration absorber. The concepts of coordinate transformations, 
principal coordinates and modal coordinates are next established. The bulk of the chapter is 
concerned with modal analysis of undamped and proportionally damped systems. The 
chapter concludes with these procedures abstracted to systems with general (linear) viscous 
damping in both N-dimensional space and in state space. 
 The dynamics of one-dimensional continua is discussed in Chapter 9. Correlation 
between discrete and continuous systems is first established, and the concept of differential 
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operators is introduced. The correspondence between vectors and functions is made evident 
as is that of matrix operators and differential operators. This enables the reader to identify 
the dynamics of continua as an abstraction of the dynamics of discrete systems. The scalar 
product and orthogonality in function space then follow directly. The kinematics of deform-
ing media is then developed for both linear and geometrically nonlinear situations. The 
equations governing various one-dimensional continua are established, along with corre-
sponding possibilities for boundary conditions. It has been my experience that students have 
difficulty in stating all but the simplest boundary conditions when approaching vibrations 
problems. This discussion will enlighten the reader in this regard and aid in alleviating that 
problem. Second order systems that are studied include longitudinal and torsional motion of 
elastic rods and transverse motion of strings. Various beam theories are developed from a 
general, first principle, point of view with the limitations of each evident from the discus-
sion. Euler-Bernoulli beams and beam-columns, Rayleigh beams and Timoshenko beams 
are discussed in great detail, as is the dynamics of accelerating beam-columns. The various 
operators pertinent to each system are summarized in a table at the end of the chapter. 
 The general free vibration of one-dimensional continua is established in Chapter 10 
and applied to the various continua discussed in Chapter 9. The operator notation intro-
duced earlier permits the student to perceive the vibrations problem for continua as merely 
an extension of that discussed for discrete systems. Case studies are presented for various 
rods and beams, allowing for a direct quantitative evaluation of the one degree of freedom 
approximation assumed in the first five chapters. It further allows for direct comparison of 
the effectiveness and validity of the various beam theories. Properties of the modal func-
tions, including the scalar product, normalization and orthogonality are established. The 
latter is then used in the evaluation of amplitudes and phase angles. Forced vibration of one-
dimensional continua is discussed in Chapter 11. The justification for generalized Fourier 
series representation of the response is established and modal analysis is applied to the 
structures of interest under various loading conditions. 
 The material covered in this text is suitable for a two-semester sequence or a one-
semester course. The instructor can choose appropriate chapters and/or sections to suit the 
level, breadth and length of the particular course being taught.  
 To close, I would like to thank Professor Haim Baruh, Professor Andrew Norris, Ms. 
Pamela Carabetta, Mr. Lucian Iorga and Ms. Meghan Suchorsky, all of Rutgers University, 
for reading various portions of the manuscript and offering helpful comments and valuable 
suggestions. I would also like to express my gratitude to Ms. Carabetta for preparing the 
index. I wish to thank Glen and Maria Hurd for their time, effort and patience in producing 
the many excellent drawings for this volume. Finally, I wish to thank all of those students, 
past and present, who encouraged me to write this book. 
 

William J. Bottega  
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1 
Preliminaries 

 
 
 
 
 
 
 
 
The subject of mechanical vibrations is primarily concerned with the study of repeated, or 
nearly repeated, motion of mechanical systems. As engineers, we may be interested in 
avoiding excessive vibration in a structure, machine or vehicle, or we may wish to induce 
certain types of vibrations in a very precise manner. Stealth of a submarine is intimately 
connected to vibration suppression, and earthquakes can have dramatic effects on engineer-
ing structures. The response and durability of an engineering system to short duration, high 
intensity, loading is a function of the vibration characteristics of the system as well. Most of 
us have experienced the effects of vibrations in our everyday lives. We might feel undesira-
ble vibrations in an automobile, or similarly while riding a bicycle. Likewise we might ob-
serve the vibration of an airplane wing while flying to or from a vacation, on our way to 
visiting friends or relatives, or while traveling on business. We all enjoy the benefit of vi-
brations when we have a conversation on a telephone or when we listen to music coming 
from our stereo speakers. Even our ability to speak stems from the vibrations of our vocal 
chords. 
 The earliest modern scientific studies of vibrations are generally attributed to Galileo, 
who examined the motion of the simple pendulum and the motion of strings. Based on his 
observations, Galileo arrived at a relationship between the length of the pendulum and its 
frequency and described the phenomenon of resonance, whereby a system exhibits large 
amplitude vibrations when excited at or near its natural frequency. Galileo also observed 
the dependence of the frequencies of a string on its length, mass density and tension, and 
made comparisons with the behavior of the pendulum. The fundamental understanding of 
mechanical vibrations was advanced in the centuries that followed, with the development 
and advancement of mechanics and the calculus. Investigations toward this end continue to 
the present day. 
 To study vibrations properly we must first understand and bring into context certain 
preliminary material that will be used throughout this text. Much of this material is present-
ed in the present chapter, while other material of this type is introduced and discussed in 
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subsequent chapters of this book as needed. The preliminary material presented in this 
chapter includes a discussion of the concepts of degrees of freedom, mathematical modeling 
and equivalent systems, and a review of complex numbers. The chapter finishes with an 
extensive review of elementary dynamics. 
 
 

1.1  DEGREES OF FREEDOM 

When we study the behavior of a system we need to choose parameters that describe the 
motion of that system and we must make sure that we are employing enough parameters to 
characterize the motion of interest completely. That is to say, if we know the values of these 
variables at a particular instant in time then we know the configuration of the system at that 
time. Consider, for example, the two (rigid) bar mechanism shown in Figure 1.1. Note that 
if we know the location of pins B and C at any time, then we know the configuration of the 
entire system at that time, since the lengths of the rigid rods are specified. That is, we know 
the location of every particle (e.g., point) of the system. It may be noted that the location of 
pins B and C may be characterized in many ways, some more efficient than others. We 
may, for example, describe their locations by their Cartesian coordinates (xB , yB) and (xC , 
yC), or we may describe their locations by the angular coordinates θAB and θBC , as indicated. 
Both sets of coordinates describe the configuration of the mechanism completely. A combi-
nation of the two sets of coordinates, say (xB , yB) and θBC , also describes the configuration 
of the system. It may be seen, however, that if we choose the angular coordinates then we 
only need two coordinates to describe the configuration of the system, while if we choose 
the Cartesian coordinates we need four, and if we choose the mixed set of coordinates we 
need three. We see that, for this particular system, the minimum number of coordinates 
needed to characterize its configuration completely is two. This minimum number of coor-
dinates is referred to as the degrees of freedom of the system. We also note that the two 
angular coordinates may not be expressed in terms of one another. They are said to be inde-
pendent in this regard. In general then, the number of degrees of freedom of a system refers 
to the number of independent coordinates needed to describe its configuration at any time. 
Examples of one degree of freedom (1 d.o.f.) systems, two degree of freedom systems (2 
d.o.f.), ‘N’ degree of freedom systems (N d.o.f. — where N is any integer) and continuous 
(infinite degree of freedom) systems are discussed in the remainder of this section. 
 
 
 
 

 
    Figure 1.1  A two bar mechanism. 
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Figure 1.2  Sample single degree of freedom systems: (a) mass-spring system, (b) simple pendulum. 
 

Single Degree of Freedom Systems 
Single degree of freedom systems are the simplest systems as they require only one inde-
pendent coordinate to describe their configuration. The simplest example of a single degree 
of freedom system is the mass-spring system shown in Figure 1.2a. For the system shown, 
the coordinate x indicates the position of the mass measured relative to its position when the 
massless elastic spring is unstretched. If x is known as a function of time t, that is x = x(t) is 
known, then the motion of the entire system is known as a function of time. Similarly, the 
simple pendulum shown in Figure 1.2b is also a one degree of freedom system since the 
motion of the entire system is known if the angular coordinate θ is known as a function of 
time. Note that while the position of the bob may be described by the two Cartesian coordi-
nates, x(t) and y(t), these coordinates are not independent. That is, the Cartesian coordi-
nates (x ,y ) of the bob are related by the constraint equation, x2 + y2 = L2. Thus, if x is 
known then y is known and vice versa. Further, both x(t) and y(t) are known if ( )tθ is 
known. In either case, only one coordinate is needed to characterize the configuration of the 
system. The system therefore has one degree of freedom.  
 

 
Figure 1.3  Sample two degree of freedom systems: (a) two-mass two-spring system, (b) double 
pendulum. 
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Two Degree of Freedom Systems 
The two bar mechanism described in the introduction of this section was identified as a two 
degree of freedom system. Two other examples include the two-mass two-spring system 
shown in Figure 1.3a and the double pendulum depicted in Figure 1.3b. In the first case, the 
configuration of the entire system is known if the position of mass m1 is known and the 
position of mass m2 is known. The positions are known if the coordinates u1 and u2 are 
known, where u1 and u2 represent the displacements of the respective masses from their 
equilibrium configurations. Likewise, the motion of the double pendulum is known if the 
angular displacements, θ1 and θ2, measured from the vertical equilibrium configurations of 
the masses, are known functions of time. 
 

General Discrete Multi-Degree of Freedom Systems 
Two degree of freedom systems are a special case of multi-degree of freedom systems (sys-
tems with more than 1 d.o.f.). Thus, let us consider general N degree of freedom systems, 
where N can take on any integer value as large as we like. Examples of such systems are the 
system comprised of N masses and N + 1 springs shown in Figure 1.4a, the compound pen-
dulum consisting of N rods and N bobs shown in Figure 1.4b, and the discrete model of an 
aircraft structure depicted in Figure 1.4c. 
 
 

 
Figure 1.4  Sample N-degree of freedom systems: (a) N-mass N+1-spring system, (b) compound 
pendulum, (c) discrete model of aircraft structure. 
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            Figure 1.5  Elastic beam: an example of a continuous system. 
 

Continuous Systems 
To this point we have been discussing discrete systems — systems that have a finite (or 
even infinite) number of masses separated by a finite distance. Continuous systems are sys-
tems whose mass is distributed continuously, typically over a finite domain. An example of 
a continuous system is the elastic beam shown in Figure 1.5. For the case of a linear beam 
(one for which the strain-displacement relation contains only first order terms of the dis-
placement gradient), the transverse motion of the beam is known if the transverse deflec-
tion, w(x, t), of each particle located at the coordinates 0 x L≤ ≤  along the axis of the beam 
is known. 
 
 The systems we described above are all examples of mathematical models that may 
represent actual systems. Each has its place depending, of course, on the particular system 
and the degree of accuracy required for the given application. In most cases there is a 
tradeoff between accuracy and facility of solution. Too simple a model may not capture the 
desired behavior at all. Too complex a model may not be practical to solve, or may yield 
results that are difficult to interpret. The modeler must choose the most suitable representa-
tion for the task at hand. In the next section we shall discuss how some complicated systems 
may be modeled as much simpler systems. Such simplifications can often capture dominant 
behavior for certain situations. We shall examine the vibrations of single degree of freedom 
systems in the next three chapters. The behavior of discrete multi-degree of freedom sys-
tems and continuous systems will then be examined in subsequent chapters. The richness of 
the behavior of such systems and the restrictions imposed by simplified representations will 
also be discussed.  
 
 

1.2 EQUIVALENT SYSTEMS 

In many applications the motion of a certain point of the system is of primary concern, and 
a single type of motion is dominant. For such cases certain simplifications may be made 
that allow us to approximate a higher degree of freedom system by a lower degree of free-
dom system, say a single degree of freedom system. Such simplifications shall be demon-
strated in this section. Simplifications of this type approximate one type of motion (the low-
est mode) of the many possible motions of discrete multi-degree of freedom systems and 
continuous systems. Thus, even if such a representation adequately represents a particular 
mode, it cannot capture all possible motion. Therefore, such approximations are only suita-
ble for applications where the motion that is captured by the simplified model is dominant. 
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Results of simplified models may be compared with those of multi-degree of freedom and 
continuous systems as they are studied in full in subsequent chapters of this text. The con-
cept of equivalent systems will be introduced via several examples. In these examples, an 
equivalent stiffness is determined from a static deflection of a continuous system such as an 
elastic beam or rod. Since the inertia of the structure is neglected, such models are justifia-
ble only when the mass of the beam or rod is much smaller than other masses of the system. 
 

1.2.1  Extension/Contraction of Elastic Rods 

Elastic rods possess an infinite number of degrees of freedom. Nevertheless, if the mass of 
the rod is small compared with other masses to which it is attached, and if we are interested 
only in the motion of a single point, say the unsupported end, the elastic rod may be mod-
eled as an equivalent elastic spring as discussed below. 
 Consider a uniform elastic rod of length L, cross-sectional area A, and elastic modulus 
E. Let x correspond to the axial coordinate, and let the rod be fixed at the end x = 0 as 
shown in Figure 1.6a. Further, let the rod be subjected to a tensile force of magnitude F0 
applied at the end x = L, as indicated. If u(x) corresponds to the axial displacement of the 
cross section originally located at x then, for small axial strains ε (x), the strain and dis-
placement are related by 
 

 ( ) dux
dx

ε =  (1.1) 

 
The constitutive relation for an elastic rod in uniaxial tension/compression is 
 
 ( ) ( )x E xσ ε=  (1.2) 
 
where σ is the axial stress in the rod. It follows from Eqs. (1.1) and (1.2) that the resultant 
membrane force, N(x), acting over the cross section at x is given by 
    

 ( ) ( ) duN x x A EA
dx

σ= =  (1.3) 

 
Consideration of the equilibrium of a differential volume element of the rod yields its gov-
erning equation as 

 
2

2 ( )d uEA n x
dx

=  (1.4) 

 
where n(x) represents a distributed axial load. For the present problem n(x) = 0, and the 
boundary conditions for the rod of Figure 1.6a are stated mathematically as 
 

 0(0) 0,      
x L

duu EA F
dx =

= =  (1.5) 

 
Integrating Eq. (1.4), with n(x) = 0, imposing the boundary conditions (1.5), and evaluating 
the resulting expression at x = L gives the axial deflection of the loaded end, ∆L , as 
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Figure 1.6  (a) Elastic rod subjected to axial load, (b) equivalent single degree of freedom system. 
 
 
 

 0
L

F L
EA

∆ =  (1.6) 

 
Rearranging Eq. (1.6) then gives the relation 
 
 0 LF k= ∆  (1.7) 
where 

 EAk
L

=  (1.8) 

 
Equation (1.7) may be seen to be the form of the constitutive relation for a linear spring. 
Thus, if we are only interested in the motion of the free end of the rod, and if the mass of 
the rod is negligible, then the elastic rod may be modeled as an equivalent spring (Figure 
1.6b) whose stiffness is given by Eq. (1.8). In this way, the continuous system (the elastic 
rod) is modeled as an equivalent single degree of freedom system. 
 
 

1.2.2  Bending of Elastic Beams 

As discussed earlier, continuous systems such as elastic beams have an infinite number of 
degrees of freedom. Yet, under appropriate circumstances (loading type, kinematical con-
straints, mass ratios, etc.) a certain type of motion may be dominant. Further, as a simple 
model may be desirable and still capture important behavior, we next consider several ex-
amples of elastic beams modeled as equivalent single degree of freedom systems. 

The Cantilever Beam 
Consider a uniform elastic beam of length L, cross-sectional area moment of inertia I and 
elastic modulus E that is supported as shown in Figure 1.7a. Let the beam be subjected to a 
transverse point load of magnitude P0 applied on its free end, and let ∆L correspond to the 
deflection of that point as indicated. Suppose now that we are only interested in the motion 
of the point of the beam under the load, and that the inertia of the beam is negligible com-
pared with other masses that the beam will ultimately be connected to. If we wish to con-
struct an equivalent single degree of freedom system for the beam then we must seek a rela-
tion between the applied load and the load point deflection of the form 
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 Figure 1.7  (a) Cantilever beam, (b) equivalent single degree of freedom system. 
 
 
 
 0 LP k= ∆  (1.9) 
 
where the parameter k is an equivalent stiffness. That is, we wish to treat the beam as an 
equivalent elastic spring of stiffness k as shown in Figure 1.7b. To find k, let us consider the 
static deflection of the beam due to the applied point load. If w(x) corresponds to the deflec-
tion of the centerline of the beam at the axial coordinate x, then we know from elementary 
beam theory that the governing equation for the transverse motion of an elastic beam sub-
jected to a distributed transverse load of intensity q(x) is of the form 
 

 
4

4 ( )d wEI q x
dx

=  (1.10) 

 
where q(x) = 0 for the case under consideration. The boundary conditions for a beam that is 
clamped at the origin and loaded by a point load at its free end are 
 

 
2 3

02 3
0

(0) 0,      0,     
x x L x L

dw d w d ww EI EI P
dx dx dx= = =

= = = = −  (1.11) 

 
Integrating Eq. (1.10) with q(x) = 0, imposing the boundary conditions of Eq. (1.11) and 
evaluating the resulting solution at x = L gives the load point deflection  
 

 
3

0( )
3L

P Lw L
EI

∆ ≡ =  (1.12) 

 
Solving Eq. (1.12) for P0 gives the relation 
 
 0 LP k= ∆  (1.13) 
where 

 3

3EIk
L

=  (1.14) 
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We have thus found the equivalent stiffness (i.e., the stiffness of an equivalent spring) for a 
cantilever beam loaded at its free edge by a transverse point load. We shall next use this 
result to establish mathematical models for selected sample structures.  
 

Side-Sway of Structures 
In the previous section we found the equivalent stiffness of a cantilever beam as pertains to 
the motion of its free end. In this section we shall employ that stiffness in the construction 
of a dynamic single degree of freedom model of a one-story structure undergoing side-sway 
motion as may occur, for example, during an earthquake. 
 Consider a structure consisting of four identical elastic columns supporting an effec-
tively rigid roof of mass m, as shown in Figure 1.8a. Let the columns, each of length L and 
bending stiffness EI, be embedded in a rigid foundation as indicated. Further, let the mass 
of the roof be much larger than the mass of the columns. We shall consider two types of 
connections of the columns with the roof, pinned and clamped/embedded. 

 

  Pinned Connections 
Let the columns be connected to the roof of the structure as shown in Figure 1.8a. If 
we are interested in side-sway motion of the structure as may occur during earth-
quakes, and if the mass of the columns is negligible compared with the mass of the 
roof, then the columns may be treated as cantilever beams as discussed earlier.  

 
 

 
Figure 1.8  Side-sway of one-story structure with pinned connections at roof: (a) representa-
tive structure, (b) roof with columns represented as equivalent springs, (c) equivalent system. 
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For this purpose, the structure may be modeled as four equivalent springs, each of 
stiffness k as given by Eq. (1.14) and shown in Figure 1.8b. This, in turn, is equiva-
lent to a mass attached to a single effective spring of stiffness keff (see Section 1.3), 
given by 

 

 3

124eff
EIk k

L
= =  (1.15) 

 
 

Clamped Connections 
If the columns are embedded (framed) into the roof structure, as shown in Figure 
1.9a), the deflections differ from those for the pinned case. One way to determine the 
equivalent stiffness of a beam that is clamped-fixed at one end and clamped-free at 
the other is to solve Eq. (1.10) with q(x) = 0 subject to the boundary conditions 

 

 
3

03
0

(0) 0,      0,     
x x L x L

dw dw d ww EI P
dx dx dx= = =

= = = = −  (1.16) 

 
in lieu of the boundary conditions of Eq. (1.11). It may be seen that only the third 
condition differs from the previous case. This approach, however, will be left as an 
exercise (Problem 1.6). Instead, we shall use the results for the cantilever beam to ob-
tain the desired result. This may be done if we realize that, due to the anti-symmetry 
of the deformation, the deflection of the column for the present case possesses an in-
flection point at the center of the span (point A, Figure 1.9b). Since, by definition, the 
curvature and hence the bending moment vanishes at an inflection point such a point 
is equivalent to a pin joint. Thus, each of the columns for the structure under consid-
eration may be viewed as two cantilever beams of length L/2 that are connected by a 
pin at the center of the span. The total deflection of the roof will then be twice that of 
the inflection point, as indicated. Therefore, letting / 2L L→  and / 2L L∆ → ∆ in Eq. 
(1.13) gives, for a single clamped-fixed/clamped-free column, that 
 

    3

12EIk
L

=  (1.17) 

 
 
 

 
Figure 1.9  Side-sway of one-story structure with clamped connections at roof: (a) structure in 
motion, (b) deflection of column showing inflection point A. 
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As for the pinned roof structure considered earlier, the four equivalent springs for the 
present structure act in parallel (see Section 1.3) and are thus equivalent to a single ef-
fective spring of stiffness 
 

 3

484eff
EIk k

L
= =  (1.18) 

 
Note that since, for this case, the columns are embedded in the roof and hence pro-
vide greater resistance to bending and therefore to lateral translation of the roof than 
for the pinned case, the effective stiffness is higher (by a factor of 4) than the stiffness 
for the pinned case. 
 

Multi-Story Buildings 
Consider the N-story building shown in Figure 1.10a. Let each floor of the building 
be connected by four columns below it and four columns above it, with the obvious 
exception that the roof (floor number N) has no columns above it. Let each floor, 
numbered j = 1, 2, …, N from bottom to top, possess mass mj and let the ends of the 
columns be embedded into the floors. The ground floor, j = 0, is fixed to the ground. 

 

 
 
Figure 1.10  Side-sway of multi-story structure: (a) multi-story building, (b) equivalent discrete 
system. 
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Further, let each column that connects floor j with floor j −1 possess bending stiffness 
EjIj, as indicated, where Ej and Ij respectively correspond to the elastic modulus and 
area moment of inertia of the column. If we are interested in side-sway motion of the 
building, and if the masses of the columns are negligible compared to those of the 
floors, then the building may be represented by the equivalent discrete N – degree of 
freedom system shown in Figure 1.10b. It follows from our discussions of a single 
story building with end-embedded columns that the equivalent stiffness of the jth 
spring may be obtained directly from Eq. (1.18). Hence, 
 

 3

48
    ( 1,2,... )j j

j

E I
k j N

L
= =  (1.19) 

 
 
 

The Simply Supported Beam 
We next construct an equivalent single degree of freedom system for a simply supported 
beam subjected to a transverse point load applied at the midpoint of the span. The equiva-
lent stiffness of this structure can, of course, be found by solving Eq. (1.10) subject to the 
appropriate boundary conditions. However, we shall use the equivalent stiffness of the can-
tilever beam, Eq. (1.14), as a shortcut to establish the equivalent stiffness of the present 
structure, as was done earlier for the modeling of side-sway of a single story building. To-
ward this end, let us consider a simply supported beam of length 2L L=� and bending stiff-
ness EI, and let the beam be subjected to a transverse point load of magnitude Q0 = 2P0 
applied at the center of the span as shown in Figure 1.11a. Consideration of the differential 
beam element on the interval 2 2dx x dx− ≤ ≤  (Figure 1.11b) shows that the problem is 
equivalent to that of half of the structure on 0 x L≤ ≤  subjected to a transverse point load 
of magnitude P0 acting at the edge x = 0 (Figure 1.11c). This, in turn may be seen to be 
equivalent to the problem of the cantilever beam shown in Figure 1.11d. Next, let ∆0 corre-
spond to the deflection of the cantilever beam under the point load P0. It may be seen that 
∆0 also corresponds to the center-span deflection of the beam of Figure 1.11a. It then fol-
lows from Eq. (1.12) that  
  

 
3 3

0 0
0 3 6

P L Q L
EI EI

∆ = =  (1.20) 

 
and hence that 
  
 0 0Q k= ∆  (1.21) 
 
where 
 

    3 3

6 48EI EIk
L L

= = �  (1.22) 

 
 for the equivalent system (Figure 1.11e). 
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Figure 1.11  Simply supported beam: (a) beam subjected to point load at center of span, (b) free-
body diagram of segmented beam, (c) half span problem, (d) equivalent cantilever beam, (e) equiva-
lent single degree of freedom system.  
 
 
 

Compound Systems 
In many applications a beam may be attached to another structure, or to compliant supports. 
The effect of the second structure, or the compliance of the supports, may often be repre-
sented as a linear elastic spring, in the manner discussed throughout this section. As before, 
and under similar circumstances, we may be interested in representing the primary beam as 
an equivalent linear spring, and ultimately the combined structure of the beam and spring as 
a single equivalent spring. We shall do this for two related cases as examples. 
 We next consider and compare the two related systems shown in Figures 1.12a and 
1.12b. In each case the system consists of a simply supported elastic beam to which a spring 
of stiffness k is attached at the center of the span. In the first case the other end of the spring 
is attached to a rigid foundation while a point load is applied to the beam at center span 
(Figure 1.12a), while in the second case the bottom edge of the spring is free to translate 
and a point load is applied to that edge (Figure 1.12b). 
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Figure 1.12  Compound system of elastic beam and spring: (a) fixed spring, (b) loaded spring. 
 
 
 
 

Simply Supported Beam Attached to a Fixed Spring 
Since we are interested in the vertical motion of the center-span of the beam we may 
model the beam as an equivalent linear spring. It follows that the effective stiffness, 
kbeam, of the equivalent spring for the beam is given by Eq. (1.22). The stiffness of the 
compound system consisting of the two springs may then be obtained by superposi-
tion, as shown in Figure 1.13. For this case, the springs are seen to act in parallel and 
thus to act as a single equivalent spring whose stiffness, keq, is the sum of the 
stiffnesses of the two parallel springs (see Section 1.3). We therefore have that   
 

 3

6
eq beam

EIk k k k
L

= + = +  (1.23) 

 
 
 
 

 

 
    Figure 1.13  Equivalent system for beam and spring of Figure 1.12a. 
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  Figure 1.14  Equivalent system for beam and spring of Figure 1.12b. 
 
 

Simply Supported Beam Attached to a Loaded Spring  
Let us again consider a simply supported elastic beam attached to a linear spring of 
stiffness k. In this case, however, a point load is applied to the free edge of the spring 
(Figure 1.12b). Once again, if we are only interested in the motion of the point of the 
beam that lies directly over the point load (the center-span of the beam), we may 
model the beam as an equivalent linear spring as we did for the previous case. Using 
superposition, as shown in Figure 1.14, it may be seen that the two springs act in se-
ries and hence that the effect of the two springs is equivalent to that of a single equiv-
alent spring. As shown in Section 1.3, the stiffness of the equivalent spring represent-
ing the compound system of the two springs in series is given by 

 

 ( ) ( ) ( ) ( )3

1 1
1 1 6 1eq

beam

k
k k L EI k

= =
+ +

 (1.24) 

 
 

1.2.3 Torsion of Elastic Rods 

In Section 1.2.1 we examined axial motion of elastic rods and the bending of elastic beams. 
In each case we found the stiffness of an equivalent elastic spring for situations where we 
would be concerned with axial or transverse motion of a single point of the structure. This 
stiffness could then be used in the construction of a simpler, single degree of freedom sys-
tem representation for situations where the mass of the rod or beam is much smaller than 
other masses of the system. An example of the use of such a representation was in the side-
sway motion of a roof structure. In this section we shall determine the analogous stiffness of 
an equivalent torsional spring representing the rotational resistance of an elastic rod of cir-
cular cross section. In this regard, such a model will be applicable in situations where we 
are interested in small rotational motion of a single cross section at some point along the 
axis of the rod, say at its free end, and when the mass moment of inertia of the rod is small 
compared with other mass moments of inertia of the system. 
 

Single Rod 
Consider a long thin elastic rod of circular cross section. Let the rod be of length L, shear 
modulus G, and polar moment of inertia J. Further, let the rod be fixed at one end and be 
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subjected to a twisting moment (torque) of magnitude T0 at its free end, as shown in Figure 
1.15a. Let a coordinate x originate at the fixed end of the rod and run along the axis of the 
rod, and let ( )xθ correspond to the rotation of the cross section located at coordinate x as 
indicated. The governing equilibrium equation for torsion of a uniform elastic rod subjected 
to a distributed torque (torque per unit length) ( )xµ is given by  
 

 
2

2 ( )dGJ x
dx

θ µ=  (1.25) 

 
where ( ) 0xµ =  for the present case. The boundary conditions for the case under considera-
tion are 

 0(0) 0,     
x L

dGJ
dx
θθ

=

= = T  (1.26) 

 
Integrating Eq. (1.25), with µ = 0, imposing the boundary conditions defined in Eq. (1.26), 
and evaluating the resulting expression at x = L gives the rotation at the free end of the rod 
as 

 0( )L
LL

GJ
θ θ≡ = T  (1.27) 

or 
 0 T Lk θ=T  (1.28) 
where 

 T
GJk
L

=  (1.29) 

 
The parameter kT is the stiffness of an equivalent torsional spring (Figure 1.15b) simulating 
the motion of the free edge of an elastic rod subjected to a torque at that edge and fixed at 
the other edge (Figure 1.15b). This model will be used in Chapters 2–8 for applications 
where the moment of inertia of the rod is small compared with other mass moments of iner-
tia of the system. 
 
 
 
 

 
 Figure 1.15  Torsion of elastic rod: (a) elastic rod, (b) equivalent 1 d.o.f. system. 
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   Figure 1.16  Rigid disk at junction of two elastic rods. 
 

Compound Systems 
In practice, the supports to which an elastic rod is secured have a certain degree of compli-
ance. If we wish to include this effect, the support may be modeled as an equivalent tor-
sional spring. In addition, many mechanical systems are comprised of several connected 
elastic rods. If we are interested in the motion of a single point, and if the mass moments of 
inertia of the rods are small compared with those of other elements of the system, then we 
may model the system as an equivalent single degree of freedom system in a manner simi-
lar to that which was done for beams. We do this for two sample systems in this section. 
 As a first example, suppose we are interested in the motion of the rigid disk connect-
ed to the junction of two elastic rods such that all axes of revolution are coincident (Figure 
1.16). If the mass moments of inertia of the rods are small compared to that of the disk we 
may treat the resistance (restoring moment) imparted by the two elastic rods as that due to 
equivalent torsional springs. The effect of the two rods fixed at their far ends is then equiva-
lent to a single torsional spring whose stiffness is the sum of the stiffnesses of the individual 
rods as given by Eq. (1.29). (See also the discussion of parallel springs in Section 1.3.1.) 
Hence, the two rods may be represented as a single torsional spring of stiffness 
 

 
1 2

( ) 1 1 2 2

1 2

eq
T T T

G J G Jk k k
L L

= + = +  (1.30) 

 
As another example, let us consider the effect of a compliant support of torsional 

stiffness kTs, on the rotation of the rigid disk at the free end of an elastic rod of torsional 
stiffness GJ and length L (Figure 1.17). The equivalent stiffness for this system is found 
from an analogous argument with that of the beam attached to a loaded spring. (See also the 
discussion of springs connected in series in Section 1.3.2.) 

 

 
    Figure 1.17  Elastic rod with compliant support. 
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     Figure 1.18  Elastic rods in series. 
 
 
 
 
The combined effect of the rod and compliant support on the motion of a rigid disk at the 
free end of the rod is then that of a single torsional spring of stiffness 

 

 ( ) ( )
( ) 1

1
eq

T
Ts

k
L GJ k

=
+

 (1.31) 

 
Similar expressions may be found for the effect of two elastic rods connected in series as 
shown in Figure 1.18. 
 Finally, consider the multi-component shaft of Figure 1.19. The torsional motion of 
the discrete system comprised of N rigid disks connected to N+1 elastic shafts aligned se-
quentially, as shown, is directly analogous to the side-sway motion of a multi-story building 
considered in Section 1.2.2. Thus, each rod may be modeled as an equivalent torsional 
spring, with the corresponding stiffnesses given by 
 

 ( )    ( 1, 2,..., 1)j jj
T

j

G J
k j N

L
= = +  (1.32) 

 
 
 
 

 
 
    Figure 1.19  Multi-component shaft. 
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    Figure 1.20  (a) Floating body, (b) equivalent system. 
 
 
 

1.2.4  Floating Bodies 

If we push down on a floating body we observe that the body deflects into the fluid. We 
also observe that the fluid exerts a resistance to the applied force that restricts the extent of 
the deflection of the floating body. If we subsequently release the body we will observe that 
it returns to its original position, first bobbing about that position before eventually coming 
to rest. The fluid thus exerts a restoring force on the floating body and may, under appropri-
ate circumstances, be treated as an equivalent elastic spring. We next compute the stiffness 
of that equivalent spring. 
 Consider the vertical motion of a rigid body of mass m that floats in a fluid of mass 
density ρf , as shown in Figure 1.20a. We shall not consider wobbling of the body here. 
That will be left to the chapters concerned with multi-degree of freedom systems (Chapters 
6–8). We wish to model the system shown in the figure as an equivalent mass-spring sys-
tem (Figure 1.20b). We thus wish to determine the stiffness provided by the buoyant effects 
of the fluid, say water. 
 Let ∆g be the deflection of the body due to gravity and thus correspond to the initial 
equilibrium configuration of the bottom surface of the body relative to the free surface of 
the fluid as indicated. Let ∆F represent the additional deflection of the body due to a force F 
that is subsequently applied along a vertical axis through the centroid of the body (and thus 
does not cause any rotation of the body). Let us first determine ∆g .  
 Archimedes Principle tells us that, at equilibrium, the weight of the displaced water is 
equal to the weight of the body. We also know, from fluid statics, that the pressure acting 
on the surface of the body varies linearly with depth from the free surface. Given this, the 
free-body diagram for the floating body under its own weight alone is as shown in Figure 
1.21. Letting y correspond to the depth coordinate measured from the stationary surface of 
the fluid, and g represent the gravitational acceleration, then the (gage) pressure, p, is given 
by 
 fp g yρ=  (1.33) 
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        Figure 1.21  Free-body diagram of floating body under its own weight. 
 
 
The buoyant force, Fbg, the resultant force acting on the bottom surface (y = ∆g) of the body 
is thus given by 
 
 bg f gF p A g Aρ= = ∆  (1.34) 
 
where A is the area of the bottom surface of the body. Now, the balance of forces in the 
vertical direction, ΣFy = 0, gives 
 
 0f gg A mgρ ∆ − =  (1.35) 
 
which is seen to be a statement of Archimedes Principle. Solving for the deflection, ∆g, 
gives 

 g
f

m
Aρ

∆ =  (1.36) 

 
Let us next determine the additional deflection due to the applied force F. The free-body 
diagram for this case is shown in Figure 1.22. For this case, the pressure exerted on the bot-
tom surface of the body is given by  
 
 ( )f g Fp gρ= ∆ + ∆  (1.37) 

 
where ∆F is the additional deflection due to the applied force F, as indicated. The resultant 
force acting on the bottom surface of the body is then given by 
 
 buoy bg bFF F F= +  (1.38) 
 
where Fbg is given by Eq. (1.34), and 
  
 bF f FF g Aρ= ∆  (1.39) 
 
 
 

www.konkur.in



1│ Preliminaries  21 

 
 Figure 1.22  Free-body diagram of floating body subjected to an applied force. 
 
 
The force FbF is evidently the restoring force exerted by the fluid on the body as it is moved 
away from its initial equilibrium configuration. The effective stiffness of the fluid, k, is then 
given by the coefficient of the associated deflection appearing in Eq. (1.39). Hence, 
 
 fk g Aρ=  (1.40) 
 

1.2.5 The Viscous Damper 

A simple type of dissipation mechanism typically considered in vibrations studies is that of 
viscous damping. Though damping may be introduced in a variety of ways, the following 
model captures the characteristics of a standard viscous damper. 
 Consider a long cylindrical rod of radius Ri that is immersed in a Newtonian fluid of 
viscosity µ that is contained within a cylinder of radius Ro possessing rigid walls. Let the 
axis of the rod and that of the cylinder be coincident, as shown in Figure 1.23, and let the 
rod be moving through the fluid with velocity v0 in the axial direction, as indicated. For 
such a fluid the shear stress, τ, is proportional to the rate of deformation. If we define the z-
axis to be coincident with the axes of the cylinder and the rod, and let r be the radial coordi-
nate measured from this axis, then the shear stress may be expressed as 
 

 r zv v
z r

τ µ ∂ ∂§ ·= +¨ ¸∂ ∂© ¹
 

 
 

     Figure 1.23  Rod moving through viscous fluid contained within cylinder. 
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            Figure 1.24  Flow field of damper fluid. 
 
 
where vr and vz represent the radial and axial components of the velocity of the fluid. If no-
slip conditions are imposed on the fluid at the rod and cylinder walls, the fluid velocity pro-
file varies logarithmically, as indicated in Figure 1.24, such that 
 

 
( )

( )0
0

ln ln
( )  ,     0

ln
o

z r
i

R r
v r v v

R R
−

= =  

 
The shear stress acting on the surface of the rod is then seen to be given by 

 

 ( ) 0ln
i

o i

R v
R R
µτ −=  

 
It follows that the resultant force, Fd, applied to the rod by the viscous fluid is given by 
 
 0dF A cvτ= = −  
 
where 

 ( )ln
i

o i

A Rc
R R

µ=  

 
and A is the surface area of the rod. 
 
 
 

 
    Figure 1.25  Representation of viscous damper. 
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 As demonstrated by the above example, the force applied to the body by the linear 
viscous fluid damper opposes the motion of the body and is linearly proportional to the 
speed, v, at which the body travels relative to the damper. Hence, in general, the damping 
force is 
 
 dF cv= −  (1.41) 
 
where the constant c is referred to as the damping coefficient. A viscous damper is typically 
represented schematically as a piston or dashpot (Figure 1.25). 
 
 

1.2.6  Aero/Hydrodynamic Damping (Drag) 

Drag is a retarding force exerted on a body as it moves through a fluid medium such as air 
or water, as shown in Figure 1.26. It is generally comprised of both viscous and pressure 
effects. However, for incompressible flows of classical fluids at very low Reynolds num-
bers, 

 1v LRe ρ
µ

≡ ≤  

 
where ρ and µ are respectively the (constant) mass density and (constant) viscosity of the 
fluid, v is the magnitude of the velocity of the fluid relative to the body and L is a character-
istic length of the body, the drag force exerted on the body is predominantly due to friction 
and is linearly proportional to the velocity.  
 
Thus, for such flows, 
 DF c v= −  (1.42) 
 
where, for a sphere, 
 6c Rπ µ=   
 
and R is the radius of the sphere. Equation (1.42) is seen to be of identical form to Eq. 
(1.41). Thus, from a vibrations perspective, the low Re drag force and the viscous force 
affect the system in the same way. This is not surprising since, for low Reynolds numbers, 
the drag force is predominantly frictional. For larger Reynolds numbers the drag force de-
pends on the velocity in a nonlinear manner, with the specific form depending on the range 
of Reynolds number, and Eq. (1.42) is no longer valid. 
 
 
 

 
    Figure 1.26  Body moving through fluid medium. 
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Figure 1.27  Compound springs: (a) springs in parallel, (b) springs in series, (c) equivalent system.  
 

1.3  SPRINGS CONNECTED IN PARALLEL AND IN SERIES 

When linear springs are connected to one another and viewed collectively, the displacement 
of the outermost points is related to the applied load in a manner identical to that of a single 
spring. That is, when viewed collectively, the system of linear springs behaves as a single 
equivalent linear spring. There are two fundamental ways in which linear elastic springs 
may be connected: (a) in parallel (Figure 1.27a), and (b) in series (Figure 1.27b). Other ar-
rangements correspond to combinations of these two fundamental configurations. In this 
section we shall obtain the effective stiffness of the equivalent springs corresponding to 
these two fundamental configurations (Figure 1.27c). We begin with a discussion of parallel 
springs. 
 

1.3.1 Springs in Parallel 

Consider a rigid plate attached to any number of elastic springs, say N, with the other end of 
the springs connected to a fixed rigid wall as shown in Figure 1.27a. Let the stiffnesses of 
the springs that comprise the system be respectively designated kj (j = 1, 2, …, N) as indi-
cated. If the plate is displaced a distance ∆ to the right (or left) then each spring exerts a 
restoring force of the form Fj = kj ∆ (j = 1, 2, …, N)  acting on the plate, as shown in the 
free-body diagram depicted in Figure 1.28. The total restoring force, that is the resultant of 
all the forces exerted by the springs on the plate, is then the sum of the individual restoring 
forces. Thus,  

 
1 1

N N

j j eff
j j

F F k k
= =

= = ∆ = ∆¦ ¦  (1.43) 

where 

 
1

N

eff j
j

k k
=

=¦  (1.44) 

 
The system of parallel springs therefore behaves as a single spring whose stiffness is equal 
to the sum of the stiffnesses of the individual springs that comprise the system. 
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   Figure 1.28  Free-body diagram for springs in parallel. 
 
 

1.3.2  Springs in Series 

Consider a system of N springs connected end to end (i.e., in series), and let one end of 
spring number 1 be attached to a rigid wall as shown in Figure 1.27b. In addition, let an 
external force P be applied to the free end of spring number N. Further, let kj (j = 1, 2, …, 
N) correspond to the stiffness of spring number j, and let ∆j represent the “stretch” (the rela-
tive displacement between the two ends) in that spring. Note that since spring 1 is fixed at 
one end, the stretch in that particular spring, ∆1, is also the absolute displacement of the 
joint connecting spring 1 and spring 2. Let ∆* represent the absolute displacement of the 
free end of the system (i.e., the displacement of joint number N measured with respect to its 
rest position), and thus the displacement of the applied force P. The displacement ∆* then 
also represents the total stretch in the system, or the stretch of an equivalent spring with 
effective stiffness keff. We wish to determine keff such that the relationship between the ap-
plied force and its displacement is of the form  
 
 *effP k= ∆  (1.45) 
 
To do this, let us first isolate each spring in the system and indicate the forces that act on 
them as shown in Figure 1.29. It then follows from Newton’s Third Law applied at each 
joint, and the implicit assumption that the springs are massless, that  
 
 1 1 2 2 ... N Nk k k P∆ = ∆ = = ∆ =  (1.46) 
 
 
 

 
    Figure 1.29  Free-body diagram for springs in series.  
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Dividing through by the stiffness of each individual spring then gives the relations 
 

    ( 1,2,..., )j
j

P j N
k

∆ = =  (1.47) 

Now, as discussed earlier, the deflection of the load is equal to the total stretch in the sys-
tem. Further, the total stretch of the system is equal to the sum of the individual stretches. 
Hence, 

 1 2
1

* ...
N

N j
j =

∆ = ∆ + ∆ + + ∆ = ∆¦  (1.48) 

 
Substitution of each of Eqs. (1.47) into Eq. (1.48) gives the relation 
 

 
1 2 1

1* ...
N

N jj

P P P P
k k k k=

∆ = + + + = ¦  (1.49) 

or 

 *
eff

P
k

∆ =  (1.50) 

where 

 
1 2 1

1 1 1 1 1...
N

eff N jjk k k k k=

= + + + =¦  (1.51) 

 
Equation (1.51) gives the relation between the effective stiffness of the single equivalent 
spring and the stiffnesses of the springs that comprise the system 
 
 

1.4  A BRIEF REVIEW OF COMPLEX NUMBERS 

During the course of our study of vibrations we shall find that many pertinent functions and 
solutions may be expressed more generally and more compactly using complex representa-
tion. Likewise, solutions to many vibrations problems are facilitated by the use of complex 
numbers. In this section we briefly review complex numbers and derive certain identities 
that will be used throughout this text. 
 Let us consider numbers of the form 
 
 z x iy= +  (1.52) 
 
where 1i ≡ − . The number x is said to be the real part of the complex number z, and y is 
said to be the imaginary part of z. Alternatively, we may write 
 
 Re( ),   Im( )x z y z= =  (1.53) 
 
The complex conjugate of z, which we shall denote as zc , is defined as 
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 z x iy≡ −c  (1.54) 
 
The product of a complex number and its conjugate may be seen to have the property 
 
 22 2z z x y z= + =c  (1.55) 
 
where z  is called the magnitude of the complex number z. Alternatively, we may write 
 
 2 2mag( )z z x y z z= = + = c  (1.56) 
 
The complex number z may be expressed in vector form as z = (x, y), and may be represent-
ed graphically in the complex plane as shown in Figure 1.30. We then define the magnitude 
and argument of z as the radius or length, r, of the line from the origin to the point (x, y) and 
the angle, ψ, that this line makes with the x-axis, respectively. Hence, 
 
 
 2 2 mag( )r x y z z z z= + = = = c  (1.57) 
and 
 ( )1tan arg( )y x zψ −= =  (1.58) 
 
Both z and zc are displayed in Figure 1.30 where it is seen that zc  is the reflection of z 
through the real axis. It is also seen from Figure 1.30 that a complex number and its conju-
gate may be expressed in terms of its magnitude, r, and its argument, ψ, as 
 

 
(cos sin )
(cos sin )

z r i
z r i

ψ ψ
ψ ψ

= +
= −c  (1.59) 

 
 
 

 
    Figure 1.30  Graphical representation of a complex number and its conjugate 
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Note that if ψ = ω t, where the parameter t is the time, then ω corresponds to angular fre-
quency, a quantity that will be central to our studies of vibrating systems. In this case, ω is 
the angular rate (angular velocity — see Section 1.5) at which the radial line segment con-
necting the origin and point z (i.e., the “vector” z) rotates about an axis through the origin 
and perpendicular to the complex plane. 
 The forms given by Eqs. (1.59) will lead us to further identities that will be useful to 
us in our study of vibrations. Toward this end, let us first recall the series representation for 
cosψ  and sinψ, 
  

 

2 4

3 5

cos 1
2! 4!

sin
3! 5!

ψ ψψ

ψ ψψ ψ

= − + −

= − + −

"

"
 (1.60) 

 
Let us next take the complex sum of the two series as follows, 
 

 

2 3

2 3

cos sin 1
2! 3!

( ) ( ) ( )                      1
1! 2! 3!

                      i

i i

i i i

e ψ

ψ ψψ ψ ψ
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§ · § ·
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=
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Similarly, letting ψ ψ→ −  in the above expressions gives the identity 
 
 cos sin ii e ψψ ψ −− =  
 
Combining the above two results gives Euler’s formula, 
 
 cos sinie iψ ψ ψ± = ±  (1.61) 
 
Complex numbers and their conjugates may be written in useful forms using Euler’s formu-
la. Substitution of Eq. (1.61) into Eqs. (1.59) gives the summary of the various forms for a 
complex number and its conjugate, 
 

 
(cos sin )
(cos sin )

i

i

z x iy r i re
z x iy r i re

ψ

ψ

ψ ψ
ψ ψ −

= + = + =
= − = − =c

 (1.62) 

 
Lastly, letting iψ ψ→ − in Eq. (1.60) and paralleling the development of Eq. (1.61) gives 
the analog of Euler’s formula for hyperbolic functions, 
 
 cosh sinhe ψ ψ ψ± = ±  (1.63) 
 
The complex forms of functions, and Euler’s formula in particular, will greatly facilitate our 
analyses throughout this text. 
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1.5 A REVIEW OF ELEMENTARY DYNAMICS 

Dynamics is the study of motion. As such, the principles of dynamics are central to our 
study of vibrations. In fact, vibrations may be viewed as a subset of dynamics, focusing on 
certain types of motions. For the study of mechanical and structural vibrations, which con-
stitutes the scope of this book, we are interested in classical mechanics. In this section we 
shall review some of the basic principles of Newtonian Mechanics, while certain concepts 
and principles of the subject known as Analytical Mechanics will be introduced in Chapter 
6. (The reader who is well grounded in elementary dynamics may proceed to Chapter 2 
without loss of continuity.) We shall first discuss the dynamics of single particles, and then 
extend these ideas to particle systems. These concepts will then be abstracted to a continu-
um, viewed as a continuous distribution of matter or particles, with the dynamics of rigid 
bodies presented as a special case at the close of this section. The dynamics of deformable 
bodies is discussed in Chapters 9 and 12. 
 The study of dynamics can be separated into two sub-areas, kinematics and kinetics. 
Kinematics is the study of the geometry of motion. That is, it is the study of how we de-
scribe a given motion mathematically. Kinetics, on the other hand, deals with the forces 
imparted on bodies and the response (motion) of the bodies to these forces. The notion of a 
particle is an idealization. A particle is a body that has mass but no volume. It is thus a point 
that moves through space. We shall see that, for many situations, the motion of a finite body 
may be adequately described by that of a particle. The consequences of such an idealization 
for finite bodies will be examined in subsequent sections. More generally, a body may be 
viewed as an assemblage of particles. We first review the kinematics of particles. 
 
 

1.5.1  Kinematics of Particles 

As stated in the introduction to this section, kinematics is the study of the geometry of mo-
tion. In this section we introduce fundamental mathematical measures that characterize the 
motion of a particle. 
 
 
 
 

 
    Figure 1.31  A particle and its trajectory. 
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    Figure 1.32  Displacement of a particle. 
 
 

Basic Kinematic Measures 
In order to locate a particle, we must specify its location with respect to some reference. 
Therefore, let us define a coordinate system with origin at point “O.” All quantities are then 
measured with respect to this point. Alternatively, we may view such quantities as those 
“seen by an observer standing at O.” In this context, the location of a particle at a particular 
time is defined as the position of the particle at that time. We thus introduce the position 
vector 
 ( )r r t=G G  (1.64) 
 
which is represented as the directed line segment between the origin O and the location of 
the particle at time t, as shown in Figure 1.31.  
 The path that the particle follows during its motion is called the particle’s trajectory. 
Let us consider the particle at two points along its trajectory at two instants in time, t and 
t+∆t, as shown in Figure 1.32. The change in position of the particle between these two 
points is called the displacement of the particle and is defined by the displacement vector 
 
 ( ) ( )r r t t r t∆ ≡ + ∆ −G G G  (1.65) 

 
If we wish to characterize how quickly the particle is changing its location we must contin-
ue our development by quantifying the rate at which the position of the particle is changing. 
The time rate of change of the position vector is called the velocity vector. The average 
velocity over a given time interval, ∆t, is simply the ratio of the change of position to the 
duration of the interval. The average velocity is thus 
 

 ( ) ( )
avg

r r t t r tv
t t

∆ + ∆ −≡ =
∆ ∆

G G GG  (1.66) 

 
The instantaneous velocity, or simply the velocity, at a given time t is established by letting 
the time interval approach zero. Thus, the instantaneous velocity at time t is given by 
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0 0

( ) ( )( ) lim lim
t t

d r r r t t r tv t
dt t t∆ → ∆ →

∆ + ∆ −≡ = =
∆ ∆

G G G GG  (1.67) 

 
If one considers the displacement vector between two positions of the particle, and lets this 
vector get smaller and smaller as shown in Figure 1.32, it is seen that as 0t∆ →  the vector 

r d r∆ →G G  and becomes tangent to the path at time t. It follows from Eq. (1.67) that the 
velocity vector is always tangent to the path traversed by the particle. 
 To characterize how the velocity changes as a function of time we introduce its rate 
of change. The time rate of change of the velocity vector is referred to as the acceleration 
vector, or simply the acceleration. Paralleling our discussion of velocity we first introduce 
the average acceleration, 
 

 ( ) ( )
avg

v v t t v ta
t t

∆ + ∆ −≡ =
∆ ∆

G G GG  (1.68) 

 
The instantaneous acceleration is then  
 

 
0 0

( ) ( )( ) lim lim
t t

d v v v t t v ta t
dt t t∆ → ∆ →

∆ + ∆ −≡ = =
∆ ∆

G G G GG  (1.69) 

 

Relative Motion 
Consider the motions of two particles, A and B, and let ( ) and ( )A Br t r tG G  be the corresponding 
position vectors of the particles with respect to a common origin O. Further, let / ( )B Ar tG cor-
respond to the position vector of particle B as seen by an observer translating (but not rotat-
ing) with particle A, as indicated in Figure 1.33. It may be seen from the figure that, 
through vector addition, the relative position of particle B with respect to particle A may be 
expressed in terms of the positions of the two particles with respect to the origin O by the 
relation 
 
 / ( ) ( ) ( )B A B Ar t r t r t= −G G G  (1.70) 
 
 

 
    Figure 1.33  Two particles in motion. 
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Differentiation of Eq. (1.70) with respect to time gives the relative velocity of particle B 
with respect to particle A, 
  
 / ( ) ( ) ( )B A B Av t v t v t= −G G G  (1.71) 
 
where ( ) and ( )A Bv t v tG G are, respectively, the velocities of particles A and B with respect to 
O. Differentiating Eq. (1.71) gives the corresponding relative acceleration, 
 
 / ( ) ( ) ( )B A B Aa t a t a t= −G G G  (1.72) 
 
where ( ) and ( )A Ba t a tG G are the accelerations of the indicated particles with respect to the 
origin. The relative velocity / ( )B Av tG is interpreted as the velocity of particle B as seen by an 
observer that is translating (but not rotating) with particle A. The relative acceleration 

/ ( )B Aa tG  is interpreted similarly. 
 

Coordinate Systems 
It is often expedient to use a particular coordinate system for a particular problem or appli-
cation. We next consider Cartesian, path, cylindrical-polar and spherical coordinates, and 
express the position, velocity and acceleration vectors in terms of their components with 
respect to these coordinate systems. 
 

Cartesian Coordinates 
Let , ,i j k

GG G
 represent unit base vectors oriented along the x, y, z coordinate axes, re-

spectively, as indicated in Figure 1.34. As the basis vectors are constant in direction 
as well as magnitude for this case, it follows that their derivatives with respect to time 
vanish. It then follows that the position, velocity and acceleration vectors expressed in 
terms of their Cartesian components, are respectively 
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
x y z

x y z

r t x t i y t j z t k

v t v t i v t j v t k x t i y t j z t k

a t a t i a t j a t k x t i y t j z t k

= + +
= + + = + +

= + + = + +

GG GG
G GG G G GG � � �
G GG G G GG �� �� ��

 (1.73) 

 

 
    Figure 1.34  Cartesian coordinates. 
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    Figure 1.35  Path coordinates. 

 
 
 

  Path Coordinates 
Let s represent a coordinate along the path traversed by a particle, as indicated in Fig-
ure 1.35. Let teG  represent the unit vector that is tangent to the path in the direction of 
increasing s at a given point, let neG  represent the unit normal to the path directed to-
ward the center of curvature at that point, and let b t ne e e≡ ×G G G  be the corresponding 
unit binormal vector that completes the triad of basis vectors, as indicated. We note 
that, though the basis vectors are of unit magnitude, their directions are constantly 
changing as the particle proceeds along its trajectory. In fact, it is easily shown that  
 

 t n
se e
ρ

=
�G G� �  (1.74) 

 
where ρ�  is the radius of curvature of the path at the point in question. Since s(t) 
measures the distance along the path, and hence locates the particle at a given time, it 
follows that the speed is given by 
 

 ( ) ( )v t s t= �  
 
Since the velocity vector is always tangent to the path, we have that 
 

 ( ) ( ) ( ) ( )t tv t v t e t s t e= =G G G�  (1.75) 
 
Differentiating Eq. (1.75) and incorporating the identity stated by Eq. (1.74) gives the 
acceleration in terms of its normal and tangential components. Hence, 
 

 
2

( ) ( ) ( ) ( )t t n n t n
sa t a t e a t e s t e e
ρ

= + = +
�G G G G G�� �  (1.76) 
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     Figure 1.36  Cylindrical-polar coordinates. 

 

  Cylindrical Polar Coordinates 
Let R,θ, z, represent the radial, angular and axial coordinates of a particle at a given 
instant, as indicated in Figure 1.36. Let , ,R ze e eθ

G G G represent the corresponding unit vec-
tors. Though the magnitude of all three basis vectors remains constant, the directions 
associated with the first two are constantly changing as the particle moves along its 
trajectory. The relation between the time derivatives of the first two unit vectors is 
similar to that for the basis vectors associated with path coordinates. The position 
vector expressed in terms of its components in cylindrical-polar coordinates takes the 
form  
 

 ( ) ( ) ( )R zr t R t e z t e= +G G G  (1.77) 
 
Differentiating Eq. (1.77) with respect to time, and noting that 
 

 andR Re e e eθ θθ θ= = −G G G G� �� �   
 
gives the corresponding velocity vector  
 

 ( ) ( ) ( ) ( )R R z z R zv t v t e v t e v t e R e R e z eθ θ θθ= + + = + +G G G G G G G�� �  (1.78) 
 

Differentiating again gives the acceleration vector in terms of its cylindrical-polar 
components as 
 

 ( ) ( )2( ) ( ) ( ) ( ) 2R R z z R za t a t e a t e a t e R R e R R e z eθ θ θθ θ θ= + + = − + + +G G G G G G G� �� ��� � ��  (1.79) 

 
 

Spherical Coordinates 
Let r, θ, ϕ represent the radial, polar angle and azimuth coordinates and let , ,re e eϕθ

G G G  
represent the corresponding unit vectors, as indicated in Figure 1.37. As for polar and 
path coordinates, the unit vectors associated with spherical coordinates have constant 
magnitude but constantly change direction throughout the motion of the particle. 
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    Figure 1.37  Spherical coordinates. 

 
 
Therefore, their time derivatives do not vanish. Proceeding as we did for path and po-
lar coordinates, we first express the position vector in terms of its spherical compo-
nents. This is simply  
 

 ( ) ( ) rr t r t e=G G  (1.80) 
 

Differentiating Eq. (1.80) gives the velocity vector in terms of its spherical compo-
nents. Hence,  
 

 ( ) ( ) ( ) ( ) cosr r rv t v t e v t e v t e r e r e r eθ θ ϕ ϕ θ ϕθ ϕ ϕ= + + = + +G G G G G G G�� �  (1.81) 
 
Differentiating again gives the corresponding expression for the acceleration vector 
as  

 

 ( )

( )

2 2 2 2

2 2

( ) ( ) ( ) ( )

cos      cos 2 sin

1                                                      + sin cos
r

r r

r

a t a t e a t e a t e

dr r r e r r e
r dt

d r r e
dt

θ θ ϕ ϕ

θ

ϕ

ϕϕ θ ϕ θ θ ϕ ϕ

ϕ θ ϕ ϕ

= + +

ª ºª º= − − + −« »¬ ¼ ¬ ¼
ª º+« »¬ ¼

G G G G

G G� � ��� � �

G��

 (1.82) 

 
 

1.5.2 Kinetics of a Single Particle 

Classical mechanics is based on the three fundamental laws posed by Newton, and the inte-
grals of one of them. We first discuss Newton’s Laws of Motion. 

Newton’s Laws of Motion 
Newton’s three laws of motion form the basis for our study of dynamics. They are para-
phrased below. 
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Newton’s First Law 
A body at rest, or in motion at constant velocity, remains in that state unless acted 
upon by an unbalanced force. 

Newton’s Second Law 
If a body is acted upon by an unbalanced force, its velocity changes at a rate propor-
tional to that force. This is stated mathematically by the well-known relation 
 

 F m a=
G G  (1.83) 

 
where F

G
 is the force acting on the particle, aG  is the time rate of change of the veloci-

ty of the particle and m is the mass of the particle. The mass (or inertia) of the particle 
is seen to be a measure of the resistance of the particle to changes in its velocity. The 
larger the mass, the larger the force required to produce the same rate of change of 
velocity. 

Newton’s Third Law 
If a body exerts a force on a second body, the second body exerts an equal and oppo-
site force on the first body. 

 
In principle, the motion of a particle is completely defined by these laws. However, it is 
often convenient to approach a problem from an alternate perspective. Certain integrals of 
Newton’s Second Law accomplish this, and lead to other principles of classical mechanics. 
These principles are discussed in the following sections.  
 

Work and Kinetic Energy 
If we take the scalar dot product of the mathematical statement of Newton’s Second Law, 
Eq. (1.83), with the increment of the position vector, drG , multiply and divide the right-
hand side by dt, and integrate the resulting expression between two points on the particle’s 
trajectory we arrive at the Principle of Work-Energy, 
 
 2 1= ∆ = −/� ,�� , ,  (1.84) 
where 

 
2

1

r

r
F dr≡ ³

G

G

G G</  (1.85) 

 
is the work done by the applied force in moving the particle from position 1 1( )r r t≡G G  to 
position 2 2( )r r t≡G G , t1 and t2 are the times at which the particle is at these positions,  
  
 21

2 m v≡,  (1.86) 
 
is the kinetic energy of the particle, and vj

 = v(tj). It is instructive to write Eq. (1.85) in terms 
of path coordinates. Hence, expressing the resultant force in terms of its tangential, normal 
and binormal components, noting that tdr ds e=G G , substituting into Eq. (1.85) and carrying 
through the dot product gives 
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 [ ] ( )
2 2

1 1

s s

t t n n b b t t
s s

F e F e F e ds e F ds= + + =³ ³G G G G</  (1.87) 

 
where s1

 = s(t1) and s2
 = s(t2). It is seen from Eq. (1.87) that only the tangential component 

of the force does work. 
 

Path Dependence, Conservative Forces and Potential Energy 
Let us consider a particular type of force for which the work done by that force in moving 
the particle from position 1 to position 2 is independent of the particular path along which 
the particle moves. Let us denote this force as ( )CF

G
. The work done by such a force,  

 

 
2

1

( ) ( )
r

C C

r
F dr≡ ³

G

G

G G</  (1.88) 

 
is thus a function of the coordinates of the end points of the path only. If we denote this 
function as − -, where we adopt the minus sign for convention, then 
 

 
[ ]

2

1

2

1

( )
2 1( ) ( )

                   

r
C

r

r

r

F dr s s

dr

= − − = −∆

= − ∇

³
³

G

G

G

G

G G<

G<

- - -

-
 (1.89) 

 
where ∇  is the gradient operator. Comparison of the integrals on the right and left-hand 
sides of Eq. (1.89) gives the relation 
 
 ( )CF = −∇

G
-  (1.90) 

 
It is seen from Eq. (1.90) that a force for which the work done is independent of the path 
traversed is derivable from a scalar potential. Such a force is referred to as a conservative 
force, and the corresponding potential function as the potential energy. Forces that do not 
fall into this category, that is forces for which the work done is dependent on the path trav-
ersed, are referred to as nonconservative forces. It is seen from Eq. (1.89) that only the dif-
ference in potential energy between positions, or its gradient, enters the formulation and 
thus the potential energy is defined to within an arbitrary constant. It is often convenient to 
introduce a “datum” in order to assign a definite value to the potential energy. The potential 
energy is defined through its change. Hence, the change in potential energy is the negative 
of the work done by a conservative force in moving a particle between two positions. The 
potential energy is thus seen to be the work that would be done if the process were reversed. 
That is, it is the work that would be done by the conservative force if the particle were to 
move from the latter position to the former position. The potential energy may therefore be 
viewed as “stored energy” or “the ability to do work”. Examples of conservative forces are 
the gravitational force and the force of an elastic spring. Examples of nonconservative forc-
es are friction forces, damping forces, and follower forces such as the thrust of a rocket. 
 If we partition our forces into conservative and nonconservative then the work-energy 
principle, Eq. (1.84), may be written in an alternative form. Toward this end, let the result-
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ant force acting on a particle be comprised of a resultant conservative force and a resultant 
nonconservative force, ( )CF

G
 and ( )NCF

G
, respectively. Hence, 

 
 ( ) ( ) ( )C NC NCF F F F= + = −∇ +

G G G G
-  (1.91) 

 
where we have incorporated Eq. (1.90). Substituting Eqs. (1.91) and (1.88) into Eqs. (1.85) 
and (1.84), and rearranging terms, gives the alternate form of the work-energy principle 
 
 ( )NC = ∆ + ∆/ , -  (1.92) 
where 

 
2

1

( ) ( )
r

NC NC

r
F dr≡ ³

G

G

G G</  (1.93) 

 
is the work of the nonconservative force. Note that the work of the conservative force is 
already taken into account as the change in potential energy. Thus, ( )NC/  represents the 
work of the remaining forces (those not included in ∆-) acting on the particle.  
 
 

   Example 1.1 – Work done by the weight of a body 
A car travels between two points, A and 
B, along the road shown. Evaluate the 
work done by the weight of the car as it 
travels between these two points. 
 
                                                    
                                                                                         Figure E1.1-1 
Solution 
The kinetic diagram corresponding to the car at a generic point along the path is 
shown in Figure E1.1-2. 

    
   Figure E1.1-2  Kinetic diagram for vehicle. 
 
The weight and the increment in position may be expressed in terms of the Cartesian 
coordinates shown as 
 
 W mg j= −

G G
 (a) 

and 
 d r dx i dy j= +

G GG  (b) 
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where the relation between the coordinates x and y depends on the specific equation 
that describes the road (not given). We next evaluate the work done by the weight by 
substituting Eqs. (a) and (b) into Eq. (1.85). Thus, 
 

 
B B B

A A A

r s y

r s y
F dr mg j dx i dy j mgdyª º ª º= − + = −¬ ¼ ¬ ¼³ ³ ³

G

G

G G G GG< <  (c) 

 
Hence, 
 ( )W B Amg y y= − −/  � (d) 
 
It may be seen that the work done by the weight depends only on the coordinates of 
the end points of the path. The particular road on which the car travels between the 
two points A and B is thus immaterial as far as the work of the weight is concerned. 
Since the work done is independent of path, the weight is then a conservative force. 
The change in potential energy is then, by definition, 
 
 mg y∆ = ∆-  (e) 
 
If we choose our datum (the level of zero potential energy) to be at A, we recover the 
elementary formula 
 
 mgh=-  
 
where h = y – yA is the height above the datum. 

 
 
 
 

Example 1.2 – Work done by a follower force 
Consider the motion of a rocket car as it 
moves along a straight track or along a 
circular track between two points A and 
B, as shown. For simplicity, let us as-
sume that the magnitude of the thrust is 
constant throughout the motion. The 
thrust, tT T e=

G G , which is always tangent 
to the path, is an example of what is re-
ferred to as a “follower force,” since it 
follows the direction of the path of the 
particle. 

 
           
 
 
                                       Figure E1.2  Rocket car traversing two different tracks. 

 

A

R

T

1

2

T

B
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Solution 
For T = T0 = constant, the work done by the thrust as the rocket car moves from A to 
B along the straight track (Path 1) clearly differs from that done along the circular 
track (Path 2). Specifically, using Eq. (1.87), we have that 
 
 (1) (2)

0 02         2T R T Rπ= ≠ =/ /   
 
Since the work done clearly depends on the particular path traversed by the car, the 
thrust is then a nonconservative force. 

 
 

 

Example 1.3 – Potential energy of elastic springs 
Determine the potential energy of (a) a deformed linear spring of stiffness k and (b) a 
deformed torsional spring of stiffness kT.  
 
Solution 

 
 
 Figure E1.3  Displacement and restoring action: (a) linear spring, (b) torsional spring. 
 
(a) 
The work done by the restoring force of a linear spring as it is stretched from the ref-
erence (unstretched) configuration to the current configuration is readily evaluated as 
 

 ( ) 21
2

0

s
s ks ds ks= − = −³ � �/  (a) 

 
where s is the stretch in the spring (Figure E1.3a). The corresponding potential ener-
gy of the deformed spring is then, from Eq. (1.89), 
  
 ( ) 21

2
s ks=-  (b) 
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Note that it is implicit in the above expression that the datum is chosen as the unde-
formed state of the spring [as per the lower limit of integration of Eq. (a)]. 
 
(b) 
The potential energy of the deformed torsional spring is similarly determined by first 
calculating the work done by the restoring torque and then using Eq. (1.89). Hence, 
 

 ( ) 21
2

0

TS
T Tk d k

θ
θ θ θ= − = −³ � �/  (c) 

and 
 ( ) 21

2
TS

Tk θ=-  (d) 
 

where it is implicit that the datum is taken as the undeformed state of the torsional 
spring. 

 

 
 

Conservation of Mechanical Energy 
A system for which only conservative forces do work is said to be a conservative system. If 
this is the case, that is if 
 

 
2

1

( ) 0
r

NC

r
F dr =³

G

G

G G<  (1.94) 

 
then Eq. (1.92) reduces to the statement that 
 
 0∆ + ∆ =, -   
 
This may also be expressed in the alternate form 
 
 constant= + =� , -  (1.95) 
 
where � is the total mechanical energy of the system. Equation (1.95) is the statement of 
conservation of mechanical energy of the system. It is thus seen that conservative forces 
conserve mechanical energy. 
 
 

Example 1.4 
A coaster traveling with speed v0 enters a vertical loop of radius R and proceeds 
around the loop as shown in Fig. E1.4-1. (a) If the total mass of the coaster and its 
passengers is m, determine the force exerted by the track on the coaster as it moves 
around the loop (i.e., as a function of the angular coordinate θ ). (b) What is the min-
imum entry speed for the coaster to successfully traverse the loop? 
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   Figure E1.4-1  Roller coaster and loop. 
 
 
Solution 
We first draw the kinetic diagram (dynamic free-body diagram) of the coaster at a 
generic location, as depicted in Figure E1.4-2. This displays the forces that act on the 
“particle” (in this case the coaster) on one figure, and the inertia “forces” (the re-
sponse of the particle) on another. The kinetic diagram is basically a pictorial state-
ment of Newton’s Second (and Third) Law. 
 
 

 
         Figure E1.4-2  Kinetic diagram for coaster. 
 
 
(a) 
For this particular problem it is convenient to work in either path or polar coordi-
nates. It is, however, somewhat more informative if we choose the former. We shall 
therefore solve the problem using path coordinates.  
 With the help of the kinetic diagram, and the incorporation of Eq. (1.76), the 
component of the statement of Newton’s Second Law along the normal direction is 
written as 
 

 
2

cos mvN mg
R

θ+ =  

 
which, when solved for the normal force N, gives 
 

v0

R

N

R

mg

mv

mv 2

=

.
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2

cosmvN mg
R

θ= −  (a) 

 
In order to find N(θ ) for a given v0 we must first determine v(θ ). That we require 
the velocity as a function of position suggests that we should employ the work-
energy principle. It is evident from Eq. (1.87) that the normal force does no work. 
Since the only other force acting on the coaster is the weight, which is a conservative 
force, we know that the energy of the system is conserved throughout its motion. 
Evaluating Eq. (1.95) at the entrance and at the current point of the loop gives the re-
lation 
 
 2 21 1

02 2(1 cos )mv mgR mvθ= + +  (b) 
 
where we have chosen the entrance level of the loop as our datum. Solving Eq. (b) 
for mv2 and substituting the resulting expression into Eq. (a) gives the normal force 
as a function of location around the loop. Hence, 
 

 
2

0( ) (2 3cos )
mvN mg

R
θ θ= − +  � (c) 

 
(b) 
It may be seen upon inspection of Eq. (c) that the normal force, N, achieves its min-
imum value when θ = 0. Thus, the critical entry speed (the minimum speed at which 
the coaster can round the loop without leaving the track) is determined from condi-
tions at the top of the loop. Further, when the coaster is about to fall away from the 
track, 0N → . Substituting these values of θ and N into Eq. (c) gives the critical en-
try speed 
  
 0 5crv gR=  � (d) 

 
 
 

Linear Impulse and Momentum 
We obtained the Principle of Work-Energy as an integral of Newton’s Second Law over 
space. We shall next consider an integral of Newton’s Second Law over time that is gener-
ally concerned with translational motion.  
 Let us multiply Newton’s Second Law, Eq. (1.83), by the differential time increment 
dt and integrate between two instants in time, t1 and t2, during the particle’s motion. Doing 
this results in the Principle of Linear Impulse-Momentum, 
 

 
2

1
2 1( ) ( )

t

t
F dt mv t mv t= −³
G G G  (1.96) 

or, equivalently, 
 = ∆℘

G G
!  (1.97) 

where 
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2

1

t

t
F dt≡ ³

G G
!  (1.98) 

 
is the linear impulse imparted by the force F

G
 over the time interval ∆t = t2 − t1, and 

  
 ( ) ( )t m v t℘ ≡

G G  (1.99) 
 
is the linear momentum of the particle at time t. Thus, a linear impulse that acts on a particle 
for a given duration produces a change in linear momentum of that particle during that time 
period. 
 

Conservation of Linear Momentum 
If the linear impulse vanishes over a given time interval, Eqs. (1.96) and (1.97) reduce to 
the statements 
 2 1( ) ( )mv t m v t=G G  (1.100) 
or 
 constantm v℘ = =

G G  (1.101) 
 
When this occurs, the linear momentum is said to be conserved over the given time interval. 
 

Angular Impulse and Momentum 
In the previous section we established an integral, over time, of Newton’s Second Law that 
led to the principle of linear impulse-momentum. We next establish the rotational analog of 
that principle.  
 Let us form the vector cross product of Newton’s Second Law, Eq. (1.83), with the 
position vector of a particle at a given instant. Doing this results in the relation 
 
 O OM H=

G G�  (1.102) 
where 
 OM r F= ×

G GG  (1.103) 
 
is the moment of the applied force about an axis through the origin, and  
 
 OH r mv= ×

G G G  (1.104) 
 
is referred to as the angular momentum, or moment of momentum, of the particle about O. 
Let us next multiply Eq. (1.102) by the differential time increment dt, and integrate the re-
sulting expression between two instants in time, t1 and t2, during the particle’s motion. This 
results in the statement of the Principle of Angular Impulse-Momentum,  
 

 [ ] [ ]
2

2 1
1

t

t t t t
t

r F dt r mv r mv= =× = × − ×³
GG G G G G  (1.105) 
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  O

F

 
 
    Figure 1.38  Central force motion. 
 
 
or, equivalently, 
 O OH= ∆

G G
"  (1.106) 

 
where 

 
2 2

1 1

t t

O O
t t

M dt r F dt≡ = ×³ ³
G G GG
"  (1.107) 

 
is the angular impulse about an axis through O, imparted by the force F

G
, or simply the 

angular impulse about O. The angular impulse is seen to be the impulse of the moment of 
the applied force about the origin. 
 

Conservation of Angular Momentum 
If the angular impulse about an axis vanishes, then Eqs. (1.105) and (1.106) reduce to the 
equivalent statements 
 
 [ ] [ ]

2 1t t t t
r mv r mv= =× = ×G G G G  (1.108) 

or 
 constantOH r mv= × =

G G G  (1.109) 
 
over the given time interval. When this is so, the angular momentum is said to be conserved 
about an axis through O. It should be noted that angular momentum may be conserved 
about an axis through one point and not another. An example of this is when a particle un-
dergoes central force motion, where the line of action of the applied force is always directed 
through the same point (Figure 1.38). 
 
 

1.5.3 Dynamics of Particle Systems 

Mechanical systems are typically comprised of many particles. In fact, rigid bodies and 
deformable bodies may each be considered as an assemblage of a continuous distribution of 
particles with certain characteristic constraints. In this section we extend the concepts dis-
cussed for a single particle to general particle systems. These results may then be abstracted 
to more complex systems, as needed. We begin by examining the equations of motion for a 
system of particles. 
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    Figure 1.39  System of N particles. 
 
 
 

Equations of Motion 
Consider the N particle system shown in Figure 1.39. Let mp (p = 1, 2, …, N) represent the 
mass of particle p, and let prG  represent its position vector with respect to a fixed reference 
frame, as shown. In addition, let pF

G
 be the resultant external force acting on particle p, and 

let pqf
G

(p,q = 1, 2, …, N) be the internal force exerted on particle p by particle q. (We as-
sume that the resultant internal force that a particle exerts on itself vanishes. Thus, 

11 22 ... 0NNf f f= = = =
G G G G

). The resultant internal force acting on particle p by all other parti-
cles of the system is then 
 

    *

1

N

p pq
q

f f
=

≡¦
G G

  

 
It follows from Newton’s Third Law that 
 
    ( , 1, 2,..., )qp pqf f p q N= − =

G G
 

 
and hence that 

 *

1 1 1

0
N N N

p pq
p p q

f f
= = =

= =¦ ¦¦
G G G

 (1.110) 

 
Applying Newton’s Second Law to each particle individually gives the set of equations 
 
 *    ( 1,2,..., )p p p pF f m a p N+ = =

GG G  (1.111) 
 
Adding the equations for all of the particles, and incorporating Eq. (1.110) gives the relation 
 

 
1

N

p p
p

F m a
=

=¦
G G  (1.112) 

Fp

rp

rG

fpq

mp

m1

mq

m2mN

�G�

fqp

rp/G
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where 

 
1

N

p
p

F F
=

≡¦
G G

 (1.113) 

 
is the resultant external force acting on the system. 
 Let us next consider some point G that moves with the system of particles and let 

( )Gr tG be the position vector of that point measured with respect to the fixed reference frame 
defined earlier. Further, let / ( )p Gr tG  correspond to the position of particle p as seen by an 
observer translating with point G. It then follows from Eqs. (1.70)–(1.72) and Figure 1.33 
that 
 
 /    ( 1, 2,..., )p G p Gr r r p N= + =G G G  (1.114) 

 
 /    ( 1,2,..., )p G p Gv v v p N= + =G G G  (1.115) 

 
 /    ( 1,2,..., )p G p Ga a a p N= + =G G G  (1.116) 
 
where /p GvG  and /p GaG  are, respectively the velocity and acceleration of particle p as seen by 
an observer translating with point G. Substitution of Eq. (1.116) into Eq. (1.112) and re-
grouping terms gives 
 

 ( )
2

1 1/ 2 2 / /2 ...G G G N N G
dF ma m r m r m r
dt

= + + + +
G G G G G  (1.117) 

where 

 
1

N

p
p

m m
=

≡¦  (1.118) 

 
is the total mass of the particle system. If we now define the point G such that 
 

 /
1

0
N

p p G
p

m r
=

=¦ G  (1.119) 

or, equivalently, that 

 
1

1 N

G p
p

r r
m =

≡ ¦G G  (1.120) 

 
then Eq. (1.117) reduces to the familiar form 
 
 GF ma=

G G  (1.121) 
 
The point G defined by Eq. (1.120) is referred to as the center of mass of the system. It is 
seen from Eq. (1.121) that the motion of the center of mass is governed by Newton’s Se-
cond Law of Motion. Thus, the center of mass of the system behaves as a single particle 
whose mass is equal to the total mass of the system. It follows that the Principles of Work-
Energy and Impulse-Momentum for a single particle also hold for the center of mass of a 

www.konkur.in



48 Engineering Vibrations 

particle system. The motion of a system of particles can be described by the motion of the 
center of mass acting as a particle and the motion of the system relative to the center of 
mass. If the motion relative to the center of mass is negligible for a given application, then 
Eq. (1.121) and its integrals adequately describe the motion of the system. 
 

Work and Energy 
The total kinetic energy of the system is the sum of the kinetic energies of the individual 
particles that comprise the system. Summing the kinetic energies and incorporating Eq. 
(1.115) gives the total kinetic energy of the system in the form 
 

 2 21 1 1
/2 2 2

1 1

N N

p p p G p p G
p p

m v v mv m v
= =

= = +¦ ¦G G<,  (1.122) 

 
It may be seen that the total kinetic energy of the system may be partitioned into the sum of 
two kinetic energies: the kinetic energy of motion of the center of mass of the system acting 
as a single particle, and the kinetic energy of motion of the system relative to the center of 
mass. The total work done on the system may be similarly partitioned by adding the work 
done by the external and internal forces acting on the individual particles, and incorporating 
Eq. (1.114). Hence, 
 

 
(2) (2)(2 )

/

(1) (1)(1)
/

* *
/

1 1

p G p G

p G p G

N Nr r r

p p p G p p p G
r r rp p

F f dr F dr F f dr
= =

ª º ª º= + = + +¬ ¼ ¬ ¼¦ ¦³ ³ ³
G G G

G G G

G GG G GG G G< < </  (1.123) 

 
The first integral on the right hand side of Eq. (1.123) is seen to be the work done by the 
resultant external force moving along the trajectory of the center of mass, while the second 
term may be seen to be the work done by the forces acting on the individual particles in 
moving them along their trajectories relative to the center of mass. 
 Summing the work-energy relations of the individual particles gives the work-kinetic 
energy principle for a particle system, 
 

 
( 2)

(1)

2 2* (2) (1)1 1
2 2

1 1 1

p

p

N N Nr

p p p p p p p
rp p p

F f dr m v m v
= = =

ª º+ = −¬ ¼¦ ¦ ¦³
G

G

GG G<  (1.124) 

 
Paralleling the development of Eq. (1.84) with Eq. (1.121) replacing Eq. (1.83), or simply 
applying Eq. (1.83) for the center of mass directly, gives the work-kinetic energy principle 
for the center of mass of a particle system, 
 

 
(2)

(1)

2 2(2) (1)1 1
2 2

G

G

r

G G G
r

F dr mv mv= −³
G

G

G G<  (1.125) 

 
Substitution of Eqs. (1.122), (1.123) and (1.125) into Eq. (1.124), and incorporating Eq. 
(1.119), gives the work-kinetic energy principle for motion of a system relative to its center 
of mass, 
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( 2)
/

(1)
/

2 2* (2) (1)1 1
/ / /2 2

1 1 1

p G

p G

N N Nr

p p p G p p G p p G
rp p p

F f dr m v m v
= = =

ª º+ = −¬ ¼¦ ¦ ¦³
G

G

GG G<  (1.126) 

 
Equations (1.124)–(1.126) hold for all particle systems. When a subset of the forces that act 
on the system are conservative, these work-energy relations can be written in alternative 
forms, replacing the work done by the conservative forces by corresponding changes in 
potential energy, as discussed for single particles in Section 1.5.2. Doing this results in the 
alternative forms of Eqs. (1.124)–(1.126), respectively, as 
 
 ( )NC = ∆ + ∆/ , -  (1.127) 
 
 ( )NC

G G G= ∆ + ∆/ , -  (1.128) 
 
 ( )NC

rel rel rel= ∆ + ∆/ , -  (1.129) 
 
where the superscript NC indicates work done by nonconservative forces, a subscript G 
indicates work, kinetic energy and potential energy measured following the center of mass, 
and a subscript rel indicates work, kinetic energy and potential energy measured relative to 
the center of mass. 
 

Linear Impulse and Momentum 
The impulse-momentum principles for particle systems may be obtained in a manner simi-
lar to that employed to obtain the work-energy principles. We first consider linear impulse 
and momentum. 
 The linear impulse-momentum relation for each particle may be obtained by multi-
plying Eq. (1.111) by dt and integrating between two instants in time. Alternatively, we 
could simply apply Eq. (1.96) for each particle of the system. Either approach gives the 
relation 
 

 
2

1

*
2 1( ) ( ) ( 1, 2,..., )

t

p p p p p p
t

F f dt m v t m v t p Nª º+ = − =¬ ¼³
GG G G  (1.130) 

 
The total linear momentum of a system of particles is the sum of the momenta of the indi-
vidual particles. If we add the linear impulse-momentum relations for the individual parti-
cles, and recall Eq. (1.110), we obtain the linear impulse-momentum principle for a particle 
system given by 
 

 
2

1
2 1

1 1

( ) ( )
N Nt

p p p p
t p p

F dt m v t m v t
= =

= −¦ ¦³
G G G  (1.131) 

 
where F

G
 is the resultant external force acting on the system, as defined by Eq. (1.113). 

 Multiplying Eq. (1.121) by dt, and integrating over the given time interval, gives the 
linear impulse-momentum principle for the center of mass of a particle system, 
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2

1
2 1( ) ( )

t

G G
t

F dt mv t mv t= −³
G G G  (1.132) 

 
Substituting Eq. (1.115) into Eq. (1.131), and subtracting Eq. (1.132) from the resulting 
expression gives the linear impulse-momentum principle for motion relative to the center of 
mass, 
 

 / 2 / 1
1 1

( ) ( )
N N

p p G p p G
p p

m v t m v t
= =

=¦ ¦G G  (1.133) 

 
It is seen from Eq. (1.133) that the system's linear momentum for motion relative to the cen-
ter of mass is always conserved. Further, it may be seen from Eqs. (1.131) and (1.132) that 
if the resultant external impulse acting on the system vanishes over a given time interval 
then the total momentum of the system is conserved, and the velocity of the center of mass 
is constant during this time interval. Thus, in such situations, the momentum of the individ-
ual particles may be altered but the total momentum of the system is unchanged. An exam-
ple of this phenomenon may be seen when a cue ball collides with a set of billiard balls.  
 

Angular Impulse and Momentum 
We next take the vector cross product of the position vector of particle p with Eq. (1.111). 
This gives the relation 
 
    ( 1,2,..., )p pM H p N= =

G G�  (1.134) 
where 
 *

p p p pM r F fª º≡ × +¬ ¼
GG GG  (1.135) 

and 
 p p p pH r m v≡ ×

G G G  (1.136) 
 
are, respectively, the moment of the forces acting on particle p about an axis through the 
origin O, and the angular momentum of particle p about O. Summing Eq. (1.134) over all 
particles of the system, noting that it is implicitly assumed that each internal force is collin-
ear with its reciprocal, and recalling Eq. (1.110) gives the relation 
 
 O OM H=

G G�  (1.137) 
where 

 
1

N

O p p
p

M r F
=

≡ ×¦
G GG  (1.138) 

and 

 
1

N

O p p p
p

H r m v
=

≡ ×¦
G G G  (1.139) 
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respectively correspond to the resultant moment of the external forces about O, and total 
angular momentum of the system about an axis through O.  
 If we next multiply Eq. (1.137) by the differential time increment dt, and integrate 
between two instants in time, we obtain the angular impulse-momentum principle for the 
particle system, 
 

 
2

1
2 1( ) ( )

t

O O O
t

M dt H t H t= −³
G G G

 (1.140) 

or, in expanded form, 
 

 
2

2 1
1 1 1 1

N N Nt

p p p p p p p pt t t tt p p p

r F dt r m v r m v
= =

= = =

ª º ª º× = × − ×¬ ¼ ¬ ¼¦ ¦ ¦³
GG G G G G  (1.141) 

 
Proceeding for the center of mass as for a single particle gives the angular impulse-
momentum principle for the center of mass of a particle system, 
 

 [ ] [ ]
2

2 1
1

t

G G G G Gt t t t
t

r F dt r mv r mv= =× = × − ×³
GG G G G G  (1.142) 

 
Substitution of Eqs. (1.114) and (1.115) into Eq. (1.141), subtracting Eq. (1.142) from the 
resulting expression and incorporating Eq. (1.119) gives the angular impulse-momentum 
principle for motion relative to the center of mass,  
 

 
2

2 1
1

/ / / / /
1 1 1

N N Nt

p G p p G p p G p G p p Gt t t ttp p p

r F dt r m v r m v
= =

= = =

ª º ª º× = × − ×¬ ¼ ¬ ¼¦ ¦ ¦³
GG G G G G  (1.143) 

 
Equations (1.140)–(1.143) are the statements of angular impulse-momentum for general 
particle systems. 
 
 
 
 
 

Example 1.5 
Consider a circular disk comprised of a skin of mass ms, a relatively rigid core of 
mass mc and a compliant weave modeled as n identical linear springs of stiffness k 
and negligible mass, as shown. The length of each spring when unstretched is R0 = 
Rs − Rc − ε. The disk is translating at a speed v0 in the direction indicated when the 
skin fragments into four identical pieces and separates from the remaining structure. 
If the fragments travel at the same speed relative to the core, and at equal angles as 
viewed from the core, determine the absolute velocity of the fragments if the energy 
loss due to the fragmentation is negligible. Assume that the fragmentation occurs in-
stantaneously. 
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   Figure E1.5  Fragmented disk. 
 
 
Solution 
If the fragmentation occurs instantaneously, then the impulse imposed by the weight 
of the ball is vanishingly small. (See the discussion of nonimpulsive forces in Chap-
ter 4.) Therefore, since there are no external impulses acting on the system, the total 
linear momentum of the system is conserved throughout the interval of interest. For 
these conditions, Eq. (1.132) tells us that the velocity of the center of mass is un-
changed. Thus, 
 
 0( )Gv t v=G G  (a) 

  
If the energy of fragmentation is negligible, then the work done by the 
nonconservative forces vanishes and the energy of the system is conserved. We next 
apply Eq. (1.129) with ( ) 0NC

rel =/ . This gives 
 
 2 21 1

2 20 0 0s relm v n k εª º ª º= − + −¬ ¼ ¬ ¼  (b) 
 

where vrel is the speed of the fragments relative to the center of mass. Solving for vrel 
gives 

 rel
s

n kv
m

ε=  (c) 

 
Substitution of Eqs. (a) and (c) into Eq. (1.115) gives the absolute velocities of the 
fragments, 

 1,2 0 2 s

n kv v i j
m

ε ª º= + ±¬ ¼
G GG G  � (d-1,2) 

 

 3,4 0 2 s

n kv v i j
m

ε ª º= − ±¬ ¼
G GG G  � (d-3,4) 
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1.5.4 Kinematics of Rigid Bodies 

A rigid body is an idealization that, in certain applications, may capture the dominant mo-
tion of the body. Alternatively, we may be interested in motions such as vibrations where 
the circumstances are such that the rigid body portion of the motion is unimportant to us, 
for example in predicting structural or material failure in aircraft or other vehicular struc-
tures. In such cases it may be necessary to identify the rigid body portion of the response 
and subtract it out. In any event rigid body motion, and hence the dynamics of rigid bodies, 
is of interest. 
 A rigid body may be considered to be a continuous distribution of particles, and 
hence a particle system, for which the relative distances and orientations of the constituent 
particles remains fixed. Therefore, the principles pertaining to the dynamics of particle sys-
tems discussed in Section 1.5.3 may be applied to this particular class of particle systems. 
As the relative motions of the particles that comprise a rigid body are restricted, it is expe-
dient to incorporate these constraints into the description of the motion. In this regard, we 
first discuss the kinematics of rigid body motion. We shall restrict the overall discussion 
herein to planar motion of rigid bodies. 
 The motion of rigid bodies is comprised of two basic motions — translation and rota-
tion. We shall first consider each type of motion separately and then together. 

Pure Translation 
Translation is a motion for which the velocity vectors are the same for each and every point 
of the body throughout the motion. As a result of this, the orientation of the body with re-
gard to a given reference frame is preserved throughout the motion, as demonstrated in Fig-
ure 1.40. 

Pure Rotation 
As the relative distances between particles or points of a rigid body remain fixed, it is evi-
dent that if one point on the body is fixed with regard to translation (say pinned) as in Fig-
ure 1.41, then each point on the body traverses a circular path about the axis through the 
fixed point. The most general motion of a rigid body with one point fixed is therefore 
equivalent to a rotation about an axis through the fixed point. 
 
 
 

 
    Figure 1.40  Rigid body in pure translation. 

www.konkur.in



54 Engineering Vibrations 

   
        Figure 1.41  Motion of a rigid body with one point fixed: pure rotation. 
 
 
 
 It is apparent that if the rotation of a rigid body with a fixed point is known, then the 
displacement of each and every particle or point of the body is known. Further, the velocity 
and acceleration of each point is known if we know the first and second time rates of 
change of this angle, Letting the z-axis correspond to the axis of rotation, we introduce the 
angular displacement, θ

G
, the angular velocity, ϖG , and the angular acceleration, αG , re-

spectively defined as  
   
 ( ) zt eθ θ=

G G  (1.144) 
 

 ( ) ( )z z
d t e t e
dt
θϖ ϖ θ≡ = =
G

G G G�  (1.145) 

 

 ( ) ( ) ( )z z z
d t e t e t e
dt
ϖα α ϖ θ≡ = = =
GG G G G���  (1.146) 

 
where zeG  is the corresponding unit vector parallel to the z-axis. 
 As each particle of the body traverses a circular path about the axis of rotation, it fol-
lows from Eqs. (1.78), (1.79), (1.145) and (1.146) that the velocity and acceleration of a 
point on the body located a radial distance r from the axis of rotation are respectively given 
by 
 
 ( ) ( )v t r t e rθθ ϖ= = ×G G G G�  (1.147) 
 
and 
 
 2( ) ( ) ( )ra t r e r e r rθθ θ α ϖ ϖ= − = × + × ×G G G G G G G G�� �  (1.148) 
 
where ( )r tG  is the position vector of the point on the body in question, and reG , eθ

G  are unit 
vectors in the directions indicated (Figure 1.42). 
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      Figure 1.42  Velocity and acceleration of generic point of a rigid body in pure rotation. 
 

General Motion 
Consider the representative body shown in Figure 1.43 and two generic points, A and B. 
Suppose that you are translating but not rotating with point A and that you are observing the 
motion of point B which is painted on the body. Then, since the body is rigid, and therefore 

/ constantB Ar =G , the motion of point B that you would observe is simply that point mov-
ing in a circular path around you at distance /B ArG . It is evident that, for a rigid body in 
general motion (i.e., no point on the body is fixed) the relative motion between two points 
on the body is purely rotational. Therefore, from Eqs. (1.147) and (1.148), the relative ve-
locity and relative acceleration of particle B with respect to particle A are, respectively, 
 
 / /( )B A B Av t rϖ= ×G G G  (1.149) 
 
 / / /( )B A B A B Aa t r rα ϖ ϖ= × + × ×G G G G G G  (1.150) 
 
Substitution of Eqs. (1.149) and (1.150) into Eqs. (1.71) and (1.72) gives the velocity and 
acceleration of point B with respect to the fixed reference frame at O. Hence, 
 
 
 /( ) ( )B A B Av t v t rϖ= + ×G G G G  (1.151) 
 
 / /( ) ( )B A B A B Aa t a t r rα ϖ ϖ= + × + × ×G G G G G G G  (1.152) 
 
 
 

 
          Figure 1.43 General motion of a rigid body. 
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Equations (1.151) and (1.152) are statements of Euler’s Theorem, which says that the most 
general motion of a rigid body is equivalent to the translation of one point on the body and 
a rotation about an axis through that point.  
 

Rolling Motion 
Consider a rigid wheel that rolls along the surface of a track such that no slip occurs be-
tween the surface of the wheel and the surface of the track. Such motion is referred to as 
rolling without slip. If the wheel rolls without slipping, then the velocity of the point of the 
wheel in instantaneous contact with the track must have the same velocity as the track. 
Thus, the relative velocity of the contact point with respect to the track must vanish. Con-
sider a wheel of radius R that is rolling on a stationary track, as shown in Figure 1.44. Let 
the velocity and tangential component of the acceleration of the hub, or geometric center, of 
the wheel be designated as vC and aCt respectively, and let the angular velocity and angular 
acceleration of the wheel be ϖ(t) and α(t), respectively. Let us next consider a small time 
interval ∆t during the motion of the wheel, and let ∆s be the displacement of the hub during 
this time. Further, let ∆θ represent the corresponding angle through which the wheel rotates. 
If we imagine that a piece of tape attached to the circumference of the wheel peels during 
rolling and adheres point by point to the surface of the track as shown, it is evident from the 
figure that 
 
 s R θ∆ = ∆  (1.153) 
 
Dividing both sides of the above equation by the time increment and taking the limit as 

0t∆ →  gives the relation 
 
 ( ) ( )Cv t R tϖ=  (1.154) 
 
Differentiating with respect to time gives the companion relation 
 
 ( )Cta R tα=  (1.155) 
 
 
 
 

 
    Figure 1.44  Wheel rolling without slip. 
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 An extension of the above arguments that accounts for rocking of the wheel shows 
that the relations stated in Eqs. (1.154) and (1.155) hold for rolling on curved tracks as well. 
For rolling on curved tracks the normal component of the acceleration of the hub does not 
vanish identically ( 0)Cna ≠  as it does for flat tracks. Formally, regardless of the curvature 
of the track, the velocity of the point of the wheel (say, point P) that is instantaneously in 
contact with the surface of the track is found from Eq. (1.151) as 
 
 / /( ) ( ) ( )P C P C C C Pv t v t r v t rϖ ϖ= + × = − ×G G G G G G G  (1.156) 
 
Recognizing that for no slip 0Pv =

GG , the above expression gives  
 
 / ( ) ( )C C P Cv r v t R tϖ ϖ= × ↔ =G G G  (1.157) 
 
regardless of the curvature of the track. 
 To this point we have established how the motion of a rigid body may be described. 
We next discuss the physical laws that govern this motion. 
 
 

1.5.5 (Planar) Kinetics of Rigid Bodies 

A rigid body may be considered as an assemblage of particles that are subject to certain 
kinematical constraints. We can therefore apply the principles established in Section 1.5.3 
and exploit the constraints and the kinematics of rigid body motion developed in Section 
1.5.4. 
 Let us consider a rigid body as a continuous distribution of mass. Let dm be the mass 
of a differential volume element as shown in Figure 1.45. We have thus replaced the dis-
crete particle system of Section 1.5.3 by a continuous distribution of mass. The associated 
position, velocity and acceleration vectors for the discrete particles are similarly replaced by 
corresponding vector functions as follows; 
 
 ,   ( ) ( , , , ),   ( ) ( , , , ),   ( ) ( , , , )p p p pm dm r t r x y z t v t v x y z t a t a x y z t→ → → →G G G G G G  
  (1.158) 
 
where the Cartesian coordinates (x, y, z) are indicated simply to emphasize the spatial de-
pendence of the vectors.  
 
 

 
         Figure 1.45  Rigid body, showing generic mass element. 
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The actual coordinate system employed may be any convenient system, such as Cartesian, 
polar or spherical. Further, since all quantities involved are now continuous functions of the 
spatial coordinates, summations over discrete masses are replaced by integrals over the en-
tire mass, and hence volume, of the body. Thus, for any quantity λ

G
, 

 

 
1

( ) ( , , , )
N

p p
mp

m t x y z t dmλ λ
=

→¦ ³
G G

 (1.159) 

 

Equations of Motion 
The equation governing the motion of the center of mass, Eq. (1.121), may be directly ap-
plied to any particle system including the system that comprises a rigid body. Hence, 
 
 GF m a=

G G  (1.160) 
 
however, the total mass of the system is now given by 
 

 ( , , )
m V

m dm x y z dVρ= =³ ³  (1.161) 

 
where ρ is the mass density (mass per unit volume) of the body. 
 Let us next express Eqs. (1.137)–(1.139) in terms of continuous functions using Eqs. 
(1.158) and (1.159). Doing this gives the equations governing rotational motion about the 
center of mass, and about an arbitrary point P. Hence, 
 
 G GM I α=

G G  (1.162) 
 
 [ ]/P G G P GM I r m aα= + ×

G G G G  (1.163) 
 
where GM

G
 and PM

G
 are, respectively, the resultant moment about an axis through the cen-

ter of mass and the resultant moment about an axis through P of the external forces acting 
on the body. Further, the parameter 
 

 2
G rel

m
I r dm= ³  (1.164) 

 
is the mass moment of inertia (the second moment of the mass) about the axis through the 
center of mass of the body, and 
 
 ( , , ) ( , , )rel relr x y z r x y z≡ G  
 
is the distance of the mass element, dm, from that axis.  
 If one point of the body is fixed with regard to translation, say point P as in Figures 
1.41 and 1.42, then the acceleration of the center of mass is obtained from Eq. (1.148) 
which, when substituted into Eq. (1.163), gives the equation of motion for pure rotation, 
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 P PM I α=

G G  (1.165) 
where 
 2

/P G G PI I r m= + G  (1.166) 
 
is the moment of inertia about the axis through P. Equation (1.166) is a statement of the 
Parallel Axis Theorem. Equations (1.160), (1.162) and (1.163) govern the motion of a rigid 
body. For the special case of a rigid body with one point fixed with regard to translation, 
these equations reduce to Eq. (1.165). 
 

Work and Energy 
The relations that govern work and energy for a rigid body may be found by applying the 
corresponding relations for particle systems in a manner similar to that which was done to 
obtain the equations of motion. Alternatively, we can operate directly on the equations of 
motion that were established above for a rigid body. 
 Equation (1.125) can be applied directly, with the total mass m interpreted as given 
by Eq. (1.161). This gives the work-kinetic energy relation for translational motion of the 
center of mass of a rigid body, 
 

 
2

2 1
1

2 21 1
2 2

G

G

r

G G G
r

F dr mv mv= −³
G

G

G G<  (1.167) 

 
The left hand side of Eq. (1.167) corresponds to the work done by the resultant external 
force acting on the body as it follows the trajectory of the center of mass, while the right 
hand side is the change in kinetic energy of translational motion of the body. The work-
energy relation for motion relative to the center of mass may be found in an analogous fash-
ion. We, therefore, first form the scalar dot product of the governing equation for rotational 
motion about the center of mass, Eq. (1.162), with incremental rotational displacement and 
then integrate the resulting expression between two configurations. We thus obtain the 
work-kinetic energy relation for motion of a rigid body about the center of mass, 
 

 
2

1

2 21 1
2 12 2G G GM d I I

θ

θ
θ θ θ= −³

G

G

GG � �<  (1.168)  

 
The expression on the left-hand side of Eq. (1.168) corresponds to the work done by the 
resultant moment of the external forces about the axis through the center of mass as it ro-
tates between the two configurations. The right-hand side is the corresponding change in 
kinetic energy of rotational motion (i.e., motion relative to the center of mass). Performing 
the same operation on Eq. (1.165) gives the work-kinetic energy relation for a rigid body 
with one point fixed, 
 

 
2

1

2 21 1
2 12 2P P PM d I I

θ

θ
θ θ θ= −³

G

G

GG � �<  (1.169) 

 
The kinetic energy for this case is, of course, observed to be purely rotational. 
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 Let us next partition the forces and moments acting on the body into conservative and 
nonconservative forces and moments as follows, 
 
 ( ) ( )C NCF F F= +

G G G
 (1.170) 

 
 ( ) ( )C NCM M M= +

G G G
 (1.171) 

 
where the superscript C and superscript NC denote conservative and nonconservative, re-
spectively. Proceeding as in Section 1.5.2, the work done by the conservative forces are 
each, by definition, independent of path and thus may be expressed as (the negative of) a 
change in potential energy. Hence, 
 

 
2

1

( ) ( )
r

C F

r
F dr = −∆³

G

G

G G< -  (1.172) 

 

 
2

1

( ) ( )C MM d
θ

θ
θ = −∆³

G

G

GG
< -  (1.173) 

 
Substitution of Eqs. (1.170)–(1.173) into Eqs. (1.167)–(1.169) gives the alternate forms of 
the work-energy relations for a rigid body,  
 

 
2

1

( ) ( ) 21
2

r
NC F

G
r

F dr mv= ∆ + ∆³
G

G

G G< -  (1.174) 

 

 
2

1

( ) ( ) 21
2

NC M
G GM d I

θ

θ
θ θ= ∆ + ∆³

G

G

GG �< -  (1.175) 

 

 
2

1

( ) ( ) 21
2

NC M
P PM d I

θ

θ
θ θ= ∆ + ∆³

G

G

GG �< -  (1.176) 

 
If the work done by the nonconservative forces and moments vanish, then the total mechan-
ical energy of the body is conserved. 
 

Impulse and Momentum 
The relations that govern impulse and momentum for a rigid body may be found by inte-
grating the corresponding equations of motion for translation and rotation over time. Hence, 
multiplying Eqs. (1.160), (1.162), (1.163) and (1.165) by dt and integrating between two 
instants in time gives the linear and angular impulse-momentum relations for a rigid body. 
We thus have the linear impulse-momentum relation for a rigid body, 
 

 
2

1
2 1( ) ( )

t

G G
t

F dt mv t mv t= −³
G G G  (1.177) 

 

www.konkur.in



1│ Preliminaries  61 

We likewise obtain the angular impulse-momentum relation for a rigid body about it's cen-
ter of mass, 
 

 
2

1
2 1( ) ( )

t

G G G
t

M dt I t I tϖ ϖ= −³
G G G  (1.178) 

 
and the angular impulse-momentum relation for a rigid body about an arbitrary point P, 
 

 ( ) ( )
2

2 1
1

/ / / /

t

P G G P G P G G P G Pt t t tt
M dt I r mv I r mvϖ ϖ

= =
= + × − + ×ª º ª º¬ ¼ ¬ ¼³

G G G G G G G  (1.179) 

 
Equations (1.177)–(1.179) pertain to a rigid body in general motion. If point P is fixed with 
regard to translation, the above equations may be replaced by the angular impulse-
momentum relation about a fixed point, 
 

 
2

1
2 1( ) ( )

t

P P P
t

M dt I t I tϖ ϖ= −³
G G G  (1.180) 

 
If an impulse in one of the equations vanishes then the corresponding momentum is said to 
be conserved. It may be seen that, for a given force system, angular momentum may be 
conserved about one point while not about another. 
 
 

Example 1.6 
A uniform rigid rod of mass m and length L is pinned 
at one end as shown. If the rod is released from rest 
when horizontal, determine the velocity of the tip when 
the rod is vertical. Also determine the reactions at the 
pin. 
 
 
                                                                                   Figure E1.6-1   
Solution 
Let us first consider the kinetic diagram for the system (Figure E1.6-2), where it may 
be observed that only conservative forces and moments act on the body. Application 
of Eq. (1.176) with ( ) 0NC

OM =
GG

gives  
 
 [ ]21

20 0 ( / 2) cos 0OI mg Lθ θª º= − + − −¬ ¼
�  (a) 

 
where we have chosen the datum to be at the horizontal configuration. Solving for 
the angular speed, and using Eq. (1.78) and the relation IO = mL3/3, gives the speed 
of the tip of the rod as 
 
 

0 0
3tipv L gL

θ θ
θ

= =
= =�  � (b) 

directed to the left. 
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  Figure E1.6-2  Kinetic diagram for swinging rod. 
 
 
We next apply Eq. (1.165) and solve for α to get 
 

 2 0
0

( / 2)sin 0
O

mg L
Iθ

θ

θα α =
=

= = − =  (c) 

 
Then, applying Eq. (1.160) in component form along the horizontal and vertical di-
rections when θ = 0, and incorporating the results of Eqs. (b) and (c) and the relation 
IO = mL3/3, gives the reactions at the pin, 
 
 2( / 2) 0HF m L α= =  � (d-1) 

 
 2 3

2 2( / 2)     2.5V VF mg m L F m g g mgθ− = � = + =ª º¬ ¼�  � (d-2) 
 
 
 
 

1.6 CONCLUDING REMARKS 

In this chapter we discussed and reviewed some fundamental issues pertinent to the study of 
vibrations. These included the concepts of degrees of freedom and the modeling of complex 
systems as equivalent lower degree of freedom systems under appropriate circumstances. 
We also reviewed complex numbers and the basic principles of elementary dynamics. With 
this basic background we are now ready to begin our study of vibrations. Additional back-
ground material will be introduced in subsequent chapters, as needed. 
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PROBLEMS 

1.1 Assess the number of degrees of freedom for the system shown in Figure P1.1. 

                                    
                          Fig. P1.1    Fig. P1.2 
          
1.2 Assess the number of degrees of freedom for the system shown in Figure P1.2. 
 
 
1.3 Assess the number of degrees of freedom for 

the system shown in Figure P1.3. 
                                                                                
                                                                                   

         Fig. P1.3 
 
1.4 A 200 lb. weight is placed at the free end of a canti-

levered beam that is 10 ft in length and has a 2"× 4" 
rectangular cross section (Figure P1.4). Determine 
the elastic modulus of the beam if the weight deflects 
½ inch. 

 
                                                                                                       Fig. P1.4  
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1.5 Determine the elastic modulus of the beam of 
Problem 1.4 if it is simply supported and the 
weight is placed at the center of the span (Figure 
P1.5). 

   
 
                                                                                             Fig. P1.5 
 
1.6 Determine the effective stiffness of an equiv-

alent single degree of freedom system for the 
cantilever beam whose free end is embedded 
in a rigid block that is free to move trans-
versely as indicated. Do this by solving the 
elementary beam equation with the appropri-
ate boundary conditions.                                   
    Fig. P1.6 

         
 
1.7 A flat raft with a 6 ft ×  6 ft surface 

floats in a fresh water lake. Deter-
mine the deflection of the raft if a 
190 lb man stands at the geometric 
center. 

                                                                    
                                                                                       Fig. P1.7   

                 
                                                                                 
1.8 Determine the stiffness of a single equivalent spring that represents the three-spring 

system shown in Figure P1.8.  

 
  Fig. P1.8                                                    Fig. P1.9 
 
 
1.9 Determine the stiffness of a single equivalent spring that represents the three-spring 

system shown in Figure P1.9. 
 
 
1.10 A 2m aluminum rod of circular cross section and 2cm radius is welded end to end to a 

3m steel rod of circular cross section and radius 3cm as shown (Figure P1.10). If the 
steel rod is fixed at one end and the axes of the two rods are coincident, determine the 
deflection of the free end of the composite rod if it is pulled axially by a force of 10N 
at the free end as indicated.                                                           
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                                                             Fig. P1.10 
 
 
 
1.11 Determine the rotation of the free end of the rod of Problem 1.10 if a torque of 200N-

m is applied at that end (Figure P1.11).  

                                                             Fig. P1.11 
 
 
 
1.12 Determine the effective stiffness of an equiva-

lent single degree of freedom system that models 
side-sway motion of the frame shown in Figure 
P1.12. 

                              
                                                                                         

                             
 
     
     
                                                                                                           Fig. P1.12 
                                         
 
 
1.13 Determine the effective stiffness of an 

equivalent single degree of freedom 
system that models the beam structure 
shown in Figure P1.13. 

                                                                         
                            

                                                                                            Fig. P1.13  
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1.14 Determine the effective stiffness of an equivalent single degree of freedom system 
that models the beam shown in Figure P1.14. 

 
           Fig. P1.14 
 
 
 
1.15 A raft consists of a board sitting on 

four cylindrical floats, each of 2 ft ra-
dius and oriented vertically as shown. 
If the raft sits in sea water, determine 
the deflection of the raft if a 125 lb 
woman sits at its geometric center.       
   Fig. P1.15    

         
 
1.16 Determine the effective stiffness of the multi-rod system shown in Figure P1.16. 
 

  
  Fig. P1.16 
 
 
1.17 Determine the effective torsional stiffness of the multi-rod system shown in Figure 

P1.17 when it is twisted at the center of the span. 
                     
                                                        

                
 
 
 
 
 
 
           Fig. P1.17 
 

www.konkur.in



1│ Preliminaries  67 

1.18 Determine the effective stiffness of the multi-beam system shown in Figure P1.18. 
(Neglect twisting.) 

 
    Fig. P1.18 
 
 
 
1.19 Use Euler’s formula to establish the identities 
  

    cos      and     sin
2 2

i i i ie e e e
i

ψ ψ ψ ψ

ψ ψ
− −+ −= =  

 
 
1.20 Use Eq. (1.63) to show that 
 

    cosh     and    sinh
2 2

e e e eψ ψ ψ ψ

ψ ψ
− −+ −= =  

 
 
1.21 Consider the function 
 
  1 1

2 2( ) ( ) ( )i if a ib e a ib eθ θθ −= + + −  
 
 where a and b are real numbers. Show that f can be written in the form 
 
  1 2( ) cos sinf C Cθ θ θ= +  
  
 and determine the values of C1 and C2. 
 
 
 
1.22 Consider the complex number 
 

  a ibz
c id

+=
+

 

 
  where a, b, c and d are real. Determine Re(z) and Im(z).  
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1.23 A cart is attached to an elastic tether of stiffness k as shown. Determine the work done 
by the tether force as the cart moves from point A to point C; (a) if the cart traverses 
path AC, and (b) if the cart traverses path ABC. The tether is fixed through a hole in 
point A and is unstretched when the cart is at that location. 

 

       Fig. P1.23 
 
 
 
1.24 A block of mass m moves in the horizontal plane. (a) Determine the work done by the 

friction force if the block moves from A to B and back to A along path 1. (b) Deter-
mine the work done by the friction force as the block moves from A to B to C to D to 
A along paths 1, 2, 3 and 4. What do your results show? 

    

    Fig. P1.24 
 
 
 
1.25 The timing device shown is deflected by an angle θ0 and 

released from rest. Determine the velocity of the mass m 
when the rod passes through the vertical. The mass of the 
rod may be considered negligible and the spring is 
untorqued when θ  = 0. 

                                          
                                                       
         Fig. P1.25 

y
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1
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1.26 Derive the equations of motion for the mass-spring-damper system shown, (a) using 
Newton’s Second Law and (b) using the Principle of Work – Energy. 

      

    Fig. P1.26 
 
 
 
1.27 A tire of mass m and radius of gyration rG and 

outer radius R rolls without slipping down the 
hill as shown. If the tire started from rest at 
the top of the hill determine the linear and an-
gular velocities of the tire when it reaches the 
flat road.  

    
    Fig. P1.27                                                                 

h 

R
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 71 

2 
Free Vibration of Single Degree of 
Freedom Systems 

 
 
 
 
 
 
The most fundamental system germane to the study of vibrations is the single degree of 
freedom system. By definition (see Section 1.1), a single degree of freedom system is one 
for which only a single independent coordinate is needed to describe the motion of the sys-
tem completely. It was seen in Chapter 1 that, under appropriate circumstances, many com-
plex systems may be adequately represented by an equivalent single degree of freedom 
system. Further, it will be shown in later chapters that, under a certain type of transfor-
mation, the motion of discrete multi-degree of freedom systems and continuous systems can 
be decomposed into the motion of a series of independent single degree of freedom sys-
tems. Thus, the behavior of single degree of freedom systems is of interest in this context as 
well as in its own right. In the next few chapters the behavior of these fundamental systems 
will be studied and basic concepts of vibration will be introduced. 
 

2.1 FREE VIBRATION OF UNDAMPED SYSTEMS 

The oscillatory motion of a mechanical system may be generally characterized as one of 
two types, free vibration or forced vibration. Vibratory motions that occur without the ac-
tion of external dynamic forces are referred to as free vibrations, while those resulting from 
dynamic external forces are referred to as forced vibrations. In this chapter we shall study 
free vibrations of single degree of freedom systems. We first establish the general form of 
the equation of motion and its associated solution. 
 

2.1.1 Governing Equation and System Response 

It was seen in Chapter 1 that many mechanical systems can be represented as equivalent 
single degree of freedom systems and, in particular, as equivalent mass-spring systems. Let  
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   Figure 2.1  Mass-spring system. 

 
 
us therefore consider the system comprised of a mass m attached to a linear spring of stiff-
ness k that is fixed at one end, as shown in Figure 2.1. Let the mass be constrained so as to 
move over a horizontal frictionless surface, and let the coordinate x measure the position of 
the mass with respect to its rest configuration, as indicated. Thus, x = 0 corresponds to the 
configuration of the horizontally oriented system when the spring is unstretched. We wish 
to determine the motion of the mass as a function of time, given the displacement and ve-
locity of the mass at the instant it is released. If we let the parameter t represent time, we 
will know the motion of a given system if we know x(t) for all times of interest. To accom-
plish this, we must first derive the equation of motion that governs the given system. This is 
expedited by examination of the dynamic free-body diagram (DFBD) for the system, also 
known as the kinetic diagram, depicted in Figure 2.2. In that figure, the applied force acting 
on the system (the cause) is shown on the left-hand side of the figure, and the inertia force 
(the response) is shown on the right-hand side of the figure. The kinetic diagram is simply a 
pictorial representation of Newton’s Second Law of Motion and, as was seen in Section 1.5, 
greatly aids in the proper derivation of the governing equations for complex systems. In 
Figure 2.2, and throughout this text, we employ the notation that superposed dots imply 
(total) differentiation with respect to time (i.e., /x dx dt≡� , etc.). Stating Newton’s Second 
Law mathematically for the one-dimensional problem at hand, we have that 
 
 kx mx− = ��   
 
Upon rearranging terms and dividing through by m, we obtain the governing equation 
 
 2 0x xω+ =��  (2.1) 
where 

 k
m

ω =  (2.2) 

 
Equation (2.1) is known as the harmonic equation, and the parameter ω is referred to as the 
natural (circular) frequency. It may be seen that the natural frequency defines the 
undamped system in the sense that all the parameters that characterize the system are con-
tained in the single parameter ω. Thus, systems with the same stiffness to mass ratio will 
respond in the same way to a given set of initial conditions. The physical meaning and im-
portance of the natural frequency of the system will be established once we determine the 
response of the system. As the solution of Eq. (2.1) will give the motion of the system as a 
function of time, we shall next determine this solution. 
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    Figure 2.2  Kinetic diagram. 
 
 
 Suppose the mass is pulled some distance away from its equilibrium position and 
subsequently released with a given velocity. We wish to determine the motion of the mass-
spring system when it is released from such an initial configuration. That is, we wish to 
obtain the solution to Eq. (2.1) subject to a general set of initial conditions. To do this, let us 
assume a solution of the form 
 
 ( ) stx t Ce�  (2.3) 
 
where e is the exponential function, and the parameters C and s are constants that are yet to 
be determined. In order for Eq. (2.3) to be a solution to Eq. (2.1) it must, by definition, sat-
isfy that equation. That is it must yield zero when substituted into the left-hand side of  Eq. 
(2.1). Upon substitution of Eq. (2.3) into Eq. (2.1) we have that 
 
 ( )2 2 0sts Ceω+ =  (2.4) 

 
Thus, for Eq. (2.3) to be a solution of Eq. (2.1), the parameters C and s must satisfy Eq. 
(2.4). One obvious solution is C = 0, which gives ( ) 0x t ≡  (the trivial solution). This corre-
sponds to the equilibrium configuration, where the mass does not move. This solution is, of 
course, uninteresting to us as we are concerned with  the dynamic response of the system. 
For nontrivial solutions [ ( ) 0x t ≠  identically], it is required that 0C ≠ . If this is so, then 
the bracketed term in Eq. (2.4) must vanish. Setting the bracketed expression to zero and 
solving for s we obtain 
 
 s iω= ±  (2.5) 
 
where 1i ≡ − . Equation (2.5) suggests two values of the parameter s, and hence two solu-
tions of the form of Eq. (2.3), that satisfy Eq. (2.1). Since Eq. (2.1) is a linear differential 
equation, a linear combination of these solutions is also a solution. Thus, the general solu-
tion to Eq. (2.1) is given by  
 
 1 2( ) i t i tx t C e C eω ω−= +  (2.6) 
 
where C1 and C2 are complex constants. While Eq. (2.6) is a form of the general solution to 
Eq. (2.1), the solution may be written in alternative forms that lend themselves to physical 
interpretation. If we apply Euler’s formula, Eq. (1.61), to Eq. (2.6) we find that the solution 
may be expressed in the alternate form 
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 1 2( ) cos sinx t A t A tω ω= +  (2.7) 
where 
 1 1 2 2 1 2   and    ( )A C C A i C C= + = −  (2.8) 
 
are real constants. Let us further define two additional constants, A and φ, such that 
 
 ( )2 2 -1

1 2 2 1    and    tanA A A A Aφ= + =  (2.9) 
or, equivalently,  
 1 2cos     and    sinA A A Aφ φ= =  (2.10) 
 
Substitution of Eqs. (2.9) and (2.10) into Eq. (2.7) provides the alternate, and physically 
interpretable, form of the solution given by 
 
 ( ) cos( )x t A tω φ= −  (2.11) 
 
The constant A is referred to as the amplitude of the oscillation, and the constant φ is called 
the phase angle. The reason for this terminology will become apparent shortly. Equations 
(2.6), (2.7) and (2.11) are different forms of the same solution. Each has its place. The last 
form, Eq. (2.11), allows for the most direct physical interpretation. The constants of integra-
tion are evaluated by imposing the initial conditions. Clearly, once one pair of integration 
constants is determined then all integration constants are determined.  
 The system is put into motion by displacing the mass and releasing it at some instant 
in time. We shall take the instant of release as our reference time, t = 0. Thus, if at the in-
stant of release the mass is at position x0 and is moving at velocity v0, the initial conditions 
may be formally stated as 
 
 0 0(0)  ,    (0) (0)x x x v v= = =�  (2.12) 
 
Imposition of the initial conditions, Eq. (2.12), on the solution given by Eq. (2.7) yields 
 
 1 0 2 0    and    A x A v ω= =  (2.13) 
 
It follows from Eqs. (2.7) and (2.13)  that the response is given by 
 

 0
0( ) cos sin

vx t x t tω ω
ω

= +  (2.14) 

 
It follows from Eqs. (2.9), (2.11) and (2.13) that the response is also given by the equivalent 
form 
 
 ( ) cos( )x t A tω φ= −  (2.15) 
 
where 

 ( )22
0 0A x v ω= +  (2.16) 
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    Figure 2.3  Time history of a harmonic oscillator in free vibration. 
 
 
and 

 1 0

0

tan
v
x

φ
ω

− § ·
= ¨ ¸

© ¹
 (2.17) 

 
A plot of the response described by Eq. (2.15) is displayed in Figure 2.3. It may be seen 
from the figure that A is indeed the amplitude of the oscillations. It corresponds to the mag-
nitude of the maximum displacement of the mass during its motion and therefore represents 
a bound on the displacement of the mass from its equilibrium position. It is also seen that 
the cosine function is shifted by an amount 
 
 tφ φ ω=  (2.18) 
 
along the time axis. This time difference is referred to as the phase shift, or phase lag, of the 
response in that the response is shifted from, or lags behind, a pure cosine response by this 
amount of time. It is seen from Eq. (2.17) that the pure cosine response (φ  = 0) corresponds 
to the case of vanishing initial velocity (v0 = 0). From a physical perspective, for such initial 
conditions, the mass is initially displaced (held) away from its equilibrium configuration, 
say x0 > 0, and released from rest. The mass then immediately begins to move toward the 
equilibrium configuration, eventually passes it and moves away from it, and so on, as de-
scribed by the cosine function. For the case of nonvanishing initial velocity the mass is ini-
tially displaced away from the equilibrium configuration, say x0 > 0, and “launched” with 
an initial velocity, say v0 > 0, as if the mass is thrown or hit with a baseball bat or a golf 
club. For such initial conditions, the mass first moves further away from the equilibrium 
configuration, until it stops for an instant and reverses its direction. The time to this first 
direction reversal is the phase lag, tφ . For subsequent times the mass follows the pure co-
sine function as if it were released from rest. The initial velocity thus causes the system to 
lag behind the initially quiescent system by tφ . 
 It may be seen from Figure 2.3, as well as from Eq. (2.15), that the response repeats 
itself (i.e., it is periodic) at time intervals of 2π /ω. In this context, the quantity 
 

 2T π
ω

=  (2.19) 
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                 Table 2.1  Free Vibration Parameters 

SYMBOL DEFINITION SAMPLE UNITS 
A amplitude meters, feet 
T = 2π /ω = 1/ν period seconds 
ν = 1/T = ω / 2π natural frequency cycles per second 
ω = 2πν = 2π /T natural (circular) frequency radians per second 
φ phase angle radians 
tφ  = φ / ω phase shift seconds 

 
 
 
 
 

 
  Figure 2.4  Freeze-frame depiction of motion of mass-spring system. 
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is referred to as the period of the vibratory response. If the mass is at a certain position x at 
time t, the mass will be at the same location at times t = t + nT, where n is any integer. The 
response therefore has the property that 
 
 ( ) ( )     ( 1, 2,...)x t nT x t n+ = =  (2.20) 
 
Equation (2.20) is characteristic of all functions of period T and is, in fact, the formal defini-
tion of a periodic function. The inverse of the period is the natural frequency ν. It corre-
sponds  to the rate at which the vibrations are occurring and hence to the number of oscilla-
tions, or cycles, that the system goes through per unit of time. The frequency ν differs 
slightly from the natural circular frequency ω, which is related to ν, and represents an angu-
lar rate in the complex plane as discussed in Section 1.4. A summary of the parameters in-
troduced in this section (along with sample units) is given in Table 2.1. 
 The corresponding physical depiction of the motion described by Eq. (2.15) is 
sketched, at selected instants in time, in Figure 2.4. Recognizing that the slope of the x vs. t 
 plot of Figure 2.3 corresponds to the velocity of the mass at any instant in time, the solution 
given by Eq. (2.15) and its plot (Figure 2.3) offer the scenario depicted in Figure 2.4. It may 
be seen that the mass moves first in one direction, slows, then stops and subsequently re-
verses its direction when t = tφ = φ / ω. The mass then continues to move in the opposite 
direction and eventually slows, stops and reverses direction again. The mass then moves in 
its original direction and eventually reaches its initial position and achieves its initial veloci-
ty at the same instant. The process then starts all over again and repeats itself continuously. 
 
 

Example 2.1 
A 2 kg block sits on a frictionless table and is connected to a coil of stiffness 4.935 
N/m. The mass is displaced 1 m and released with a velocity of 2.721 m/sec. Deter-
mine the natural frequency of the system and the amplitude and phase lag of the re-
sponse. Sketch and label the time history of the response. 
 
Solution 
The natural frequency of the mass-spring system is calculated from Eq. (2.2) to give 
 

 4.935 1.571 rad/sec
2

k
m

ω = = =  (a) 

 
The natural period of the motion is then, from Eq. (2.19),  

 

 2 2 4.0 secs
1.571

T π π
ω

= = =  (b) 

 
The amplitude of the motion is found using Eq. (2.16). Hence, 

 

 ( ) ( )2 22 2
0 0 (1) 2.721 1.571 2 mA x v ω= + = + =  (c) 
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The phase angle is calculated using Eq. (2.17). We thus obtain 
 

 1 10

0

3tan tan 63.36 1.088 rads
(1.571)(1)

v
x

φ
ω

− −§ · § ·= = = ° =¨ ¸ ¨ ¸
© ¹© ¹

 (d) 

 
The phase lag is then, from Eq. (2.18), 

 
 1.088 1.571 0.693 secstφ φ ω= = =  (e) 
 

  
   Figure E2.1 Time history of response. 

 
 
 

Example 2.2 
Consider side-sway motion of the elastic column of length L and bending stiffness 
EI, which is pinned to a rigid mass m as shown (Figure E2.2a), where the total mass 
of the column is much smaller than that of the supported mass. If ρ is the mass densi-
ty of the column and A is its cross-sectional area, determine the response of the struc-
ture when the supported mass is displaced a distance x0 from the equilibrium position 
and then released from rest at that position.  
 

    
       Figure E2.2  (a) Column-mass structure, (b) equivalent system. 
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Solution 
If ρAL�m we may treat the column-point mass system as the equivalent single de-
gree of freedom system shown in Figure E2.2b, as discussed in Section 1.2.2. For the 
particular structure under consideration we have, from Eq. (1.14), that 
 
   33eqk EI L=  
 
It then follows from Eqs. (2.2) and (2.19) that the natural frequency of the system is 
 

 3

3EI
mL

ω =  (a) 

and the natural period is 
 

 
3

2
3
mLT
EI

π=  (b) 

 
If the mass is released from rest from the initial position x0 then v0 = 0. The response 
is then found from Eqs. (2.15)–(2.17) to be 
 

 0 3

3( ) cos EIx t x t
mL

=  � (c) 

 
The structure therefore oscillates from side to side at the frequency given by Eq. (a) 
with amplitude A = x0,  as described by Eq. (c).  

 
 
 
 

Example 2.3 
A 20 lb wheel of 15 inch radius is attached to a 3 ft long axle that is supported by a 
fixed frictionless collar, as shown. The axle is 1 inch in diameter and its mass is neg-
ligible compared with that of the wheel. If the wheel is rotated slightly and released, 
a period of 0.1 seconds is observed. Determine the shear modulus of the axle. (As-
sume that the mass of the wheel is uniformly distributed.) 
    
 

 
   Figure E2.3-1  Wheel and axle. 
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   Figure E2.3-2  Equivalent system. 
 
 
Solution 
Since the mass of the axle is small compared with that of the wheel, the axle may be 
modeled as an equivalent torsional spring as discussed in Section 1.2.3. This renders 
the equivalent single degree of freedom system shown in Figure E2.3-2. 
 Let us first derive the equation of motion for the equivalent system, with the z-
axis chosen to coincide with the axis of the shaft. In this regard, we apply Eq. (1.165) 
to the present problem with the help of the kinetic diagram of Figure E2.3-3. 
Hence,  
 T zzk Iθ θ− = ��  
or 
 2 0θ ω θ+ =��  (a) 
where 

 T

zz

k
I

ω =  (b) 

 
The stiffness of the equivalent system is given by Eq. (1.29) as 
 
 Tk GJ L=  (c) 
 
where G, J, and L are respectively the shear modulus, area polar moment of inertia, 
and length of the axle. Further, the mass moment of inertia for a disk of mass m and 
radius R is 
 21

2zzI mR=  (d) 
 
 

 
   Figure E2.3-3  Kinetic diagram. 
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Substitution of Eqs. (c) and (d) into Eq. (b) and solving for the shear modulus gives 
 

 
( )
( )

222 2

2 44

22 64
32

T zz
mR Lk L I L mR LG

J J T T DD
ω π π

π
§ ·= = = =¨ ¸
© ¹

 (e) 

 
Substitution of the given values of the various parameters into Eq. (e) gives the value 
 

 
2

6
2 4

[20 /(32.2 12)](15) (3 12)64 8.43 10 psi
(0.1) (1)

G π × ×= = ×  � (f) 

 
 
 

Example 2.4 
A 200 lb man floats on a 6 ft by 2 ft 
inflatable raft in a quiescent swim-
ming pool. Estimate the period of 
vertical bobbing of the man and raft 
system should the man be disturbed. 
Assume that the weight of the man is 
distributed uniformly over the raft 
and that the mass of the raft is negligible. 
 
 
Solution 
The effect of the stiffness of the water, as pertains to the man 
and the raft, is modeled as an equivalent spring as discussed in 
Section 1.2.4. The corresponding equivalent system is shown in 
the adjacent figure.  
 
We thus have from Eq. (1.40) that 
 
 ( ) 62.4[(2)(6)] 749 lb/fteq waterk g Aρ= = =  (a) 
 
The natural frequency of the system is then obtained from Eq. (2.2) as 
 

 749 11.0 rad/sec
200 / 32.2

ω = =  (b) 

 
Equation (2.19) then gives the period as 
 

 2 0.571 sec
11.0

T π= =  (c) 

 
Now, from Table 2.1, 
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 1 1.75 cps
0.571

ν = =  � (d) 

 
Thus, the man will oscillate through a little less than 2 cycles in a second. (How does 
this compare with your own experience?) 

 
 
 

2.1.2 The Effect of Gravity 

In the previous section we considered systems modeled as an equivalent mass-spring sys-
tem. In those models the equivalent mass-spring system was typically aligned horizontally 
along a frictionless surface, and so gravity was not a factor. Suppose now that we take the 
horizontally configured mass-spring system in its undeformed configuration as depicted in 
Figure 2.5a and hold the mass so that the spring remains unstretched as we rotate the system 
until it is aligned vertically as shown in Figure 2.5b. Let us next allow the mass to deflect 
very slowly until the system comes to equilibrium as shown in Figure 2.5c. Let x measure 
the position of the mass with respect to its position when the spring is unstretched, and let u 
measure the deflection of the mass from its equilibrium position in the vertical configura-
tion as indicated. 

Static Deflection 
Let xst correspond to the static deflection of the mass as depicted in Figure 2.5, and let us 
consider the associated free body diagram of the equilibrated system shown in Figure 2.6. 
For equilibrium the forces must sum to zero and hence the gravitational force and the spring 
force must balance. Thus,  
 stkx mg=  (2.21) 
 
where g is the gravitational acceleration. 
 
 

 
Figure 2.5  Mass-spring system: (a) in horizontal equilibrium, (b) vertical configuration with spring 
unstretched, (c) vertical equilibrium configuration and generic position of mass in motion. 
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 Figure 2.6  Free-body diagram for mass in equilibrium. 
 

Dynamic Response 
Suppose now that the mass of the vertically oriented system is deflected away from its equi-
librium position and released. The corresponding dynamic free body diagram of the mass is 
shown in Figure 2.7. Application of Newton’s Second Law gives 
 
 mg kx mx− = ��  (2.22) 
 
which, after substitution of Eq. (2.21) and rearranging terms, takes the form 
 
 ( ) 0stmx k x x+ − =��  (2.23) 
Let 
 stu x x= −  (2.24) 
 
represent the displacement of the mass from its equilibrium position. Substituting Eq. (2.24) 
into Eq. (2.23) and noting that xst is a constant gives the equation of motion of the system 
expressed in terms of the position relative to the equilibrium configuration. Hence, 
 
 2 0u uω+ =��  (2.25) 
 
where ω is given by Eq. (2.2). It follows from Eqs. (2.15)–(2.17) that 
 
 ( )( ) cosu t A tω φ= −  (2.26) 
 

 
    Figure 2.7  Kinetic diagram for vertical motion. 
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where 

 ( )22
0 0A u v ω= +  (2.27) 

 

 1 0

0

tan
v
u

φ
ω

− § ·
= ¨ ¸

© ¹
 (2.28) 

 
and u0 and v0 are, respectively, the initial displacement and initial velocity of the mass. 
Consideration of Eq. (2.26) shows that the mass oscillates about its equilibrium position in 
precisely the same manner that the mass of the horizontally oriented system oscillates about 
its (unstretched) equilibrium position. Thus, from a vibrations perspective, gravity has no 
effect on the behavior of the system except to change the position about which the mass 
oscillates. 
 
 
 

Example 2.5 
A block of mass m is attached to a spring of stiffness ks that is suspended from a long 
cantilever beam of length L and bending stiffness EI as shown in Figure E2.5a. If the 
mass of the block is much greater than the mass of the beam, determine the natural 
frequency of the system.   
 

 
Figure E2.5  Elastic beam with suspended mass: (a) physical system, (b) representation of 
compound system with beam as equivalent 1 d.o.f. system, (c) equivalent system for beam and 
spring combination. 
 
 
Solution 
The natural frequency of an equivalent single degree of freedom system of stiffness 
keq and mass m is given by Eq. (2.2) as 
 

 eqk
m

ω =  (a) 
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We therefore need to determine the equivalent stiffness keq . 
 The equivalent single degree of freedom system is realized by first considering 
the equivalent system for the beam alone. As discussed in Section 1.2.2, a cantilever 
beam may be modeled as a spring of stiffness kbm, where, from Eq. (1.14), 
 
 33bmk EI L=  (b) 
 
The composite beam-spring structure is thus represented as two springs connected in 
series as shown in Figure E2.5b. The  two spring structure may in turn be represent-
ed as an equivalent single spring of stiffness keq as shown in Figure E2.5c and dis-
cussed in Section 1.3.2. We then have, from Eq. (1.51), that 
 

 ( )1
s

eq
s bm

k
k

k k
=

+
 (c) 

 
Substituting Eq. (b) in to Eq. (c) gives the equivalent stiffness of the beam-spring-
mass system as 
 

 ( )31 3
s

eq
s

k
k

k L EI
=

+
 (d) 

 
Substitution of Eq. (d) into Eq. (a) gives the natural frequency sought. Hence, 
 

 
( )31 3

s

s

k m

k L EI
ω =

+
 � (e) 

 
It may be seen that the expression in the numerator of Eq. (e) corresponds to the nat-
ural frequency of the mass-spring system attached to a rigid support, and that this 
frequency is recovered if the beam has infinite bending stiffness. That is, it may be 
seen that 
  
   as  sk m EIω → → ∞  
 
We thus see that the effect of adding compliance to the support of the mass-spring 
system, in this case the flexibility of an elastic beam, is to lower the natural frequen-
cy of the system. Such behavior is characteristic of mechanical systems in general. 
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Example 2.6 
Consider the small two wheel trailer of known mass mA (shown in end view in Figure 
E2.6-1). Let the tires of the trailer be modeled as elastic springs, each of unknown 
stiffness k/2, as indicated, and let a removable package of unknown mass, mB, be se-
cured to the trailer as shown. How might we measure (a) the stiffness of the spring 
and (b) the mass of the package if there is no scale available in our laboratory? (c) If 
the natural period of oscillation of the trailer is increased by a factor of 1.05 when 
hauling the package, determine the weight of the package as a percentage of the 
weight of the unloaded trailer. 

 
   Figure E2.6-1  Two wheel trailer carrying package. 
 
 
Solution 
If we displace and release the known mass, mA, with or without the unknown mass, 
mB, attached we may measure the period of vibration (or equivalently the corre-
sponding natural frequency), as well as the amplitude and phase of the motion. The 
latter two are immaterial for the purposes of the present problem. Thus, we may de-
termine the stiffness of the springs and the unknown mass of the package in terms of 
the known mass of the trailer and the measured period for both the one mass and two 
mass systems. 
 
(a) 
Let us first remove the package. Let us next push down on and then release the trail-
er (mass mA), and trace the subsequent motion of the lone mass on a recording de-
vice. The trace of the response will be similar in appearance to that shown in Figure 
E2.6-2.  

 
  Figure E2.6-2  Free vibration of trailer alone. 
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We may then read off the period, TA, of the motion of the single mass from this trace. 
Equations (2.2) and (2.19) then give, for the trailer alone, 
 

 2
A

A A

k
T m
πω = =  (a) 

 
Equation (a) may be solved for k to give the spring stiffness in terms of the known 
mass and measured period, 

 

 
24 A

A

mk
T

π=  � (b) 

 
(b) 
Let us next secure the package in the trailer and then pull and release the combined 
mass system (Figure E2.6-1). We then trace and record the resulting motion, which 
would appear as in Fig. E2.6-3, and read off the corresponding period, TA+B, from the 
plot. Once again, we substitute the measured value of the period into Eqs. (2.2) and 
(2.19) to determine the natural frequency for the combined mass system. Thus, 
 

 2
A B

A B A B

k
T m m

πω +
+

= =
+

 (c) 

 
Equation (c) may now be solved for mB. This gives the unknown mass in terms of 
the known mass and measured spring stiffness as 
 

 
2

24
A B

B A
k Tm m

π
+= −  (d) 

 
Substitution of Eq. (b) into Eq. (d) gives the unknown mass of the package in terms 
of the known mass of the trailer and the measured periods of the single and com-
bined mass systems. Hence, 
 
 ( )2 1B A A B Am m T T+

ª º= −¬ ¼  � (e) 

 

 
  Figure E2.6-3  Free vibration of trailer with package. 
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(c) 
From Eq. (e), 

 2(1.05) 1 0.1025B

A

m g
m g

= − =  � (f) 

 
Thus, the weight of the package is 10.25% of the weight of the unloaded trailer.   

 
 
 

2.1.3  Work and Energy   

Consider a system for which there are no dissipation mechanisms. Since there are no mech-
anisms for energy dissipation in this ideal system, the total mechanical energy of the system 
is conserved. As discussed in Section 1.5, the total mechanical energy of the system, �, con-
sists of the sum of the kinetic energy of the system, ,, and the potential energy of the sys-
tem, - . Thus, for such a conservative system, 
 
 constant= + =� , -  (2.29) 
  
It is evident from Eq. (2.29) that during any motion of the system, the kinetic energy in-
creases as the potential energy decreases, and vice versa. It then follows that  
 

 max min

max min

   when   
   when   

= =
= =

- - , ,
, , - -

 (2.30) 

 
Let us now focus our attention on the simple mass-spring system of Figure 2.1. For this 
particular system Eq. (2.29) may be stated explicitly as 
 
 2 21 1

2 2 constantmx kx+ =�  (2.31) 
 
Substitution of Eqs. (2.30) into Eq. (2.31), and equating the resulting expressions, gives the 
identity 
 2 21 1

max max2 20 0mx kx+ = +�  (2.32) 
 

Thus, for this simple system, the maximum potential energy is achieved when the spring 
achieves its maximum extension (contraction). This occurs at the instant the motion is about 
to reverse itself, at which point the mass stops momentarily. Conversely, the potential ener-
gy of the system vanishes when the stretch in the spring vanishes. Thus, the mass achieves 
its maximum kinetic energy, and hence its maximum speed, as the mass passes through this 
configuration. Solving Eq. (2.32) for k/m and evaluating Eq. (2.15) at the instants of maxi-
mum potential energy and maximum kinetic energy gives the natural frequency of the sys-
tem in terms of the amplitude of the motion and the maximum speed of the mass. Hence, 
 

 
2

2 max
2

vk
m A

ω = =  (2.33) 
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where ( ) ( )v t x t≡ �  is the velocity of the mass and thus corresponds to the slope of the x vs. t 
trace (Figure 2.3), and xmax = A (the amplitude of the oscillation). Finally, note that when we 
differentiate Eq. (2.31) with respect to t, we obtain the equality 
 
 ( ) 0x mx kx+ =� ��  

 
We thus recover the equation of motion for the mass-spring system, Eq. (2.1), for 0x ≠� . 
This should not surprise us since the work-energy principle is an integral of Newton’s Se-
cond Law (Section 1.5.2). Such an approach provides an alternative method for the deriva-
tion of equations of motion for conservative systems. 
 
 

2.1.4 The Simple Pendulum 

A classic problem in mechanics in general, and vibrations in particular, is the problem of 
the simple pendulum. The pendulum consists of a “bob” of mass m that is attached to the 
end of a rod or cord of length L and negligible mass. The rod is pinned to a rigid support at 
its opposite end, as shown in Figure 2.8. In that figure, the angular coordinate θ measures 
the position of the rod with respect to its (downward) vertical configuration, and the path 
coordinate s locates the position of the bob with respect to its position in that configuration, 
as indicated. 
 

The Equations of Motion 
The equations of motion for the simple pendulum may be derived in several ways. In the 
context of the discussions of this and the preceding chapter, we may use Newton’s laws or 
we may form the total energy of the system, as per Eq. (2.31), and then differentiate with 
respect to time. The latter approach will be demonstrated and employed in a subsequent 
section. We shall here apply Newton’s laws directly. We therefore first consider the dynam-
ic free-body diagram of the system (Figure 2.9). In that figure the parameter P corresponds 
to the tension in the rod, g is the gravitational acceleration, and the inertial force has been 
resolved into its tangential and normal components.  
 
 
 

    
   Figure 2.8  The simple pendulum. 
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   Figure 2.9 Kinetic diagram for bob of simple pendulum. 
 
 
Writing Newton’s Second Law in component form along the normal and tangential direc-
tions of the path of the bob, we have 
 

 2

sin

cos

mg ms
smg P m
L

θ

θ

− =

− + =

��
�  

 
Rearranging terms gives 
 sin 0s g θ+ =��  (2.34) 
and 

 
2

( ) cossP t m g
L

θª º
= +« »

¬ ¼

�
 (2.35) 

 
It may be seen that the mass drops out of the equation that governs the tangential compo-
nents since both the restoring force (the weight) and the inertia force are proportional to the 
mass. It is thus seen that the motion along the path is independent of the mass. Once the 
motion s(t) is known, the time history of the tension in the cord may be computed using Eq. 
(2.35). We are therefore interested in solving Eq. (2.34).  To do this, it is convenient to ex-
press the above equations solely in terms of the angular coordinate θ. In this regard, we 
substitute the kinematical relationship 
 
 s Lθ=  (2.36) 
 
into Eq. (2.34) and divide by L. Doing this renders the equation of motion to the form 
 

 sin 0g
L

θ θ+ =��  (2.37) 

 
Similarly, Eq. (2.35) takes the form 
 

 
2

( ) cosP t mg
g L
θ θª º

= +« »
¬ ¼

�
 (2.38) 
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The solution of Eq. (2.37) determines the motion of the pendulum as a function of time. It 
may be seen that the only system parameter that affects the motion of the pendulum is the 
length of the rod (or cord). It is seen from Eq. (2.38), however, that the tension in the rod 
(or cord) depends on the mass of the bob, as well as the length of the rod (or cord), as one 
might expect. 
 

Linearization and the “Small Angle Response” 
Equation (2.37) is seen to be a nonlinear differential equation and is valid for all values of 
the angular displacement θ. Its solution is nontrivial and will be examined in detail in the 
next section. However, if we here restrict our attention to small motions about the vertical 
(we shall specify what is meant by “small” momentarily), an approximate, yet very appli-
cable, solution is easily established. To obtain this solution we shall first linearize Eq. 
(2.37) and then determine the solution to the resulting equation. To do this, let us first con-
sider the series representation of the sine function given by 
 

 
3 5 2 4

sin ... 1 ...
3! 5! 3! 5!
θ θ θ θθ θ θ ª º

= − + − = − + −« »
¬ ¼

 (2.39) 

 
If we limit ourselves to motions for which 2 1θ �  (where θ is, of course, measured in radi-
ans) then all terms involving θ  within the brackets on the right-hand side of Eq. (2.39) may 
be neglected. We thus make the approximation 
 
 sinθ θ≈  (2.40) 
 
In doing this, we have linearized the sine function by approximating it by its dominant line-
ar term. Substitution of Eq. (2.40) into Eq. (2.37) gives the linearized equation of motion of 
the pendulum, 
 
 2 0θ ω θ+ =��  (2.41) 
where 

 g
L

ω =  (2.42) 

 
is the natural frequency of the system. Equation (2.41) is seen to correspond to the harmon-
ic equation, Eq. (2.1), with x replaced by θ. It therefore follows from Eqs. (2.15)–(2.17) that 
the free-vibration response of the pendulum is given by 
 
 ( ) cos( )t A tθ ω φ= −  (2.43) 
 
where 

 ( )22
0 0A θ χ ω= +  (2.44) 

 

 1 0

0

tan
χφ

ωθ
−  ½

= ® ¾
¯ ¿

 (2.45) 
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and 
 0 0(0)     and    (0)θ θ θ χ= =�  (2.46) 
 
are respectively the initial angular displacement and angular velocity of the pendulum. The 
response is thus seen to be harmonic with period 
 

 2 2T
g L

π π
ω

= =  (2.47) 

 
The natural frequency and natural period of the harmonic oscillator, and hence of the linear 
model of the pendulum, are constants that depend solely on the parameters of the system (in 
this case the length of the rod or cord). It will be seen that the exact period of the free vibra-
tion response, the response of the nonlinear pendulum described by Eq. (2.37), is dependent 
on the initial conditions described by Eq. (2.46) as well. It will also be seen that this exact 
period is asymptotic to the approximate constant period given by Eq. (2.47). It will be 
demonstrated in an example at the end of the next subsection, and in Problem 2.24, that the 
constant period predicted by the linear model is a reasonable approximation of the actual 
period, even for moderate initial displacements. 
 
 

Example 2.7 
A child’s swing consists of a seat hanging from four chains. A child is sitting quietly 
in a swing when a parent gently pulls and releases the seat. If the parent observes 
that it takes approximately 2 seconds for the child and swing to return, what is the 
length of the swing’s hoist? 
 
 
 
 
 
 
 
Solution 
From Eq. (2.47), 
 

 2T
g L
π=  (a) 

 
Solving for L and substituting the observed period and the value of g gives the length 
of the hoist as 
 

 
2 2232.2 3.26 3 -3

2 2
TL g
π π

§ · § · ′ ′ ′′= = = ≅¨ ¸ ¨ ¸
© ¹ © ¹

 � (b) 
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 Example 2.8 
A uniform rigid disk of mass m and radius rD is released from rest from some initial 
position along a circular track segment of radius R as shown. Determine the resulting 
small amplitude motion if the disk rolls without slipping.  
 

  
   Figure E2.8-1  Disk rolling on circular track. 
 
 
Solution 
Kinematics: Let s represent the path coordinate following the motion of the geomet-
ric center of the disk, and let ρ = R − rD be the corresponding radius of curvature of 
that path. Further, let vG be the (linear) speed of the geometric center of the disk and 
let aGt and aGn represent the tangential and normal components of the (linear) accel-
eration of that point, respectively. We then have the following kinematical relations 
between the path coordinate s and the angular displacement θ (see Section 1.5): 
 
 ( )Ds R rρθ θ= = −  (a) 

 
 ( )G Dv s R r θ= = − ��  (b) 

 
 ( )Gt Da s R r θ= = − ����  (c) 

 

 
2

2( )Gn D
sa R r θ
ρ

= = −
� �  (d) 

 
Furthermore, since the disk rolls without slipping we have, from Eqs. (1.154) and 
(1.155), the following no slip conditions between the linear speed and the tangential 
component of the linear acceleration of the center of the disk, and the angular veloci-
ty, ϖ, and the angular acceleration, α : 
 
 G Dv rϖ=  (e) 

 
 Gt Da rα=  (f) 
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   Figure E2.8-2  Kinetic diagram for rolling disk. 
 
 
Substituting Eq. (b) into Eq. (e), and Eq. (c) into Eq. (f), gives the relations 
 

 D

D

R r
r

ϖ θ−= �  (g) 

 D

D

R r
r

α θ−= ��  (h) 

 
Kinetics: Having established the kinematics of the system, we are now ready to de-
rive the associated equations of motion. To do this, we first consider the kinetic dia-
gram for the system (Figure E2.8-2). We shall designate the instantaneous point of 
contact of the disk with the track as P. The rotational equation of motion of a rigid 
body about some point P, Eq. (1.163), is rewritten for the present problem as 
 
 /P G G P GM I r maα= + ×¦

G G G G  (i) 
 
where /G PrG is the position of point G as seen by an observer translating with point P. 
Since the disk rolls in a single plane, the only nontrivial component of Eq. (i) is the 
component in the direction of the normal to that plane. Taking moments about an ax-
is perpendicular to the plane and through the contact point P, and substituting these 
moments into Eq. (i), gives 
 
 2

/sinD G G P Pmgr I m r Iθ α α α= − − = −  (j) 
where 
 2

/P G G PI I m r= +  (k) 
 

is the moment of inertia of the disk about an axis through the contact point. Further, 
for a uniform disk, the geometric center and the center of mass coincide. The mo-
ment of inertia of a uniform disk of radius rD about an axis through its geometric 
center G is given by 
 
 21

2G cm DI I mr= =  (l) 
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Substitution of Eq. (l) into Eq. (k) gives the moment of inertia about the axis through 
P as 
 23

2P DI m r=  (m) 
 
Substitution of Eqs. (h) and (m) into Eq. (j), and rearranging terms, gives the equa-
tion of motion of the disk in terms of the angular displacement θ. Hence, 
 

 sin 0
eff

g
L

θ θ+ =��  (n) 

where 
 3

2 ( )eff DL R r= −  (o) 
 

Comparison of Eq. (n) with Eq. (2.37) shows that the rigid disk rolling on a circular 
segment of track behaves as a pendulum with a rod of length L = Leff. The parameter 
Leff therefore represents an effective rod length. As for the pendulum, we may linear-
ize Eq. (n) if we restrict the motions of the disk to those for which 2 1θ � . Hence, 
employing the approximation given by Eq. (2.40), Eq. (n) simplifies to the harmonic 
equation in θ, 
 2 0θ ω θ+ =��  � (p) 

 
with the natural frequency identified as 

 

 2
3( )eff D

g g
L R r

ω = =
−

 (q) 

 
The response is then given by Eqs. (2.43)–(2.46), with ω and T interpreted accord-
ingly. 

 
 
 

Example 2.9 
A glider of mass m and radius of gyration rG teeters on its belly just before lifting off 
the ground. The center of mass of the craft lies a distance ℓ from the geometric center 
of the fuselage of radius R, as indicated. Determine the period of the small angle mo-
tion if no slip occurs. 
 
 
 
 
 
 
 
 
 
   Figure E2.9-1  Teetering glider. 
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   Figure E2.9-2  Kinetic diagram for glider. 
 
 
Solution 
The kinetic diagram for the system is shown in Figure E2.9-2. We next derive the 
equation of motion of the system by taking moments about the contact point P. To 
do this, we must first establish the acceleration of the center of mass. For no slip 
conditions, we have from Eq. (1.155) that the acceleration of the geometric center is 
 
 Oa R iθ=

GG ��  (a) 
 
The acceleration of the center of mass relative to the geometric center is seen to be 
pure rotation (Figure E2.9-3). From Eqs. (1.72), (1.148) and (a), the acceleration of 
the center of mass with respect to the ground is 
 

 ( ) ( )
/

2 2    sin cos cos sin

G O G Oa a a

R i i jθ θ θ θ θ θ θ θ θ

= +
ª º= + − + +¬ ¼

G G G

G G G�� � �� � ��A A
 (b) 

 
For small angle motion, let us linearize the above expression. Thus, neglecting terms 
of second order and above gives the approximate representation of the acceleration 
of the center of mass as 
 
 ( )Ga R iθ≅ −

GG ��A  (c) 
 

 
    Figure E2.9-3  Relative motion of glider. 
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We next take moments about the contact point. Hence, 
 
 [ ]/sin G G P G z

mg I r maθ θ− = + ×G G��A  (d) 
 

Linearizing the left-hand side and substituting Eq. (c) gives the equation of motion as 
 
 2 2( )Gmg m r Rθ θª º− = + −¬ ¼

��A A  (e) 
 
Bringing nonvanishing terms to one side and dividing by the coefficient of θ�� gives 
the equation of motion as 
 

 0
eff

g
L

θ θ+ =��  (f) 

where 
 2 2( )eff GL r Rª º= + −¬ ¼A A  (g) 
Thus, 
 2

effg Lω =  (h) 
 

The period for small angle motion of the glider is then 
 

   
2 2( )2 2 2 G

eff

r R
T

gg L
π π π

ω
+ −= = = A
A

 � (i) 

 
 

Finite Angle Response 
In the previous subsection we approximated the equation of motion for the simple pendu-
lum, Eq. (2.37), by its linear counterpart, Eq. (2.41). The latter was seen to be the harmonic 
equation and therefore yielded sinusoidal solutions with constant period. The methods used 
to obtain the solution to the approximate equation are limited to linear differential equa-
tions. Solving the exact nonlinear equation of motion, Eq. (2.37), requires a different ap-
proach. We shall here examine the nonlinear response and assess how well the linear ap-
proximation represents the motion of the pendulum. We first consider the static response. 
 

Static Response  
For the static case, Eq. (2.37) reduces to the equilibrium equation given by 

 
 sin 0mgL θ =  (2.48) 
 

The roots of Eq. (2.48) yield the solution, and hence the corresponding equilibrium 
configurations, defined by 

 
     ( 0,1,2,...)n nθ π= =  (2.49) 
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    Figure 2.10  Equilibrium configurations of the simple pendulum. 

 
 
 

Thus, the exact equation of motion gives the two distinct equilibrium configura-
tions, 0, ,θ π= shown in Figure 2.10. These obviously correspond to alignment of the 
rod vertically downward and vertically upward, respectively. If we parallel the above 
calculation with Eq. (2.41), it is seen that the linear counterpart to Eq. (2.48) only 
gives the configuration 0.θ =  Evidently the upward configuration is not predicted by 
the linearized equation of motion since we restricted our attention to angles that are 
small compared to unity in that approximation. In other words, when we linearized 
Eq. (2.37), we restricted our attention to angles close to the first equilibrium configu-
ration (n = 0). The omission of equilibrium configurations is typical of what may 
happen when an equation, or system of equations, is linearized. 
 If we focus our attention on the second (upward) equilibrium configuration, we 
intuitively know that this configuration is unstable. That is, we expect that the pendu-
lum will move away from this configuration if it is given even the smallest perturba-
tion (“nudge”). It is instructive to analyze this instability. To do this we must establish 
the potential energy of the system, which for the case under consideration is solely 
due to gravity. If we choose the lower equilibrium position of the bob as our datum 
(i.e., the level of zero potential energy), then the potential energy of the system at any 
other point, within allowable motions of the mass, is given by  

 
 (1 cos )mgL θ= −-  (2.50) 

 
A sketch of this function is displayed in Figure 2.11. Let us next take the derivative of 
the potential energy with respect to the angular displacement θ, and set the resulting 
expression to zero. This results in the equation 

 

 sin 0d mgL
d

θ
θ

= =-  (2.51) 
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 Figure 2.11  Potential energy of the simple pendulum as a function of angular displacement. 
 
 

which is seen to be the equilibrium equation, Eq. (2.48), the solution of which yields 
the roots that correspond to the equilibrium configurations of the system as estab-
lished previously. What we have effectively done is apply the statement of conserva-
tion of mechanical energy, Eq. (1.95), for the particular (conservative) single particle 
system under consideration. It may be seen that the equilibrium configurations corre-
spond to points on the potential energy curve for which the function is stationary (i.e., 
points where the derivative of the potential energy vanishes, and hence where the po-
tential energy is a relative minimum or maximum). Additional information regarding 
the behavior of the system at these points can be attained by examination of the se-
cond derivative of the potential energy of the system. Thus, differentiating Eq. (2.51) 
with respect to θ  gives 
 

 
2

2 cosd mgL
d

θ
θ

=-  (2.52) 

 
Evaluation of this expression at each of the equilibrium configurations shows that 
  

 

2

2
0

2

2

0

0

d mgL
d

d mgL
d

θ

θ π

θ

θ

=

=

= + >

= − <

-

-
 (2.53) 

 
It may be observed that the second derivative of the potential energy is positive for 
the stable configuration (θ = 0) and negative for the unstable configuration (θ = π). 
This is also seen by examination of Figure 2.11. These characteristics may be under-
stood by analogy with a marble that is perched either at the bottom of a well or at the 
top of a hill whose profile is similar to that of the potential energy function shown in 
Figure 2.11. When in the well, the potential energy of the marble will increase 

2 2( / 0)d dθ >- as the marble is perturbed away from its equilibrium configuration. 
Further, the marble will return to, or remain in the vicinity of, that configuration when 

2

1

20

mgL
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the perturbation is removed. In contrast, when the marble is at the top of the hill its 
potential energy will decrease 2 2( / 0)d dθ <- as it is perturbed away from its equi-
librium configuration, and it will continue to move away from the equilibrium con-
figuration after the perturbation is removed. In general for any system, whether single 
degree of freedom, multi-degree of freedom or continuous, the convexity of the po-
tential energy of that system at a given equilibrium configuration establishes the sta-
bility or instability of that configuration. 
 

Dynamic Response 
In this section we shall obtain a solution to the equation of motion, Eq. (2.37), with-
out any restriction on the size of the angular displacement. Because of the nonlinear 
nature of the problem, we shall obtain the response in the form ( )t t θ=  rather than 
the conventional form ( ).tθ θ=  
 It may be seen from the dynamic free-body diagram for the system (Figure 2.9) 
that the tension, P, in the rod is always perpendicular to the path of the bob and there-
fore does no work throughout the motion of the particle. Further, the only other force 
acting on the bob is its own weight, which is a conservative force. Finally, the pin at 
O is assumed to be frictionless and thus exerts no transverse shear or moment on the 
rod and hence on the bob. The total energy of the system is therefore conserved 
throughout the motion. If we take θ = 0 as our datum for the gravitational potential 
energy, then the statement of conservation of mechanical energy for the pendulum 
may be written in the explicit form 

 
 2 2 2 21 1

0 02 2(1 cos ) (1 cos )mgL mL mgL mLθ θ θ χ− + = − +�  (2.54) 
 
 where 0(0)θ θ=  and 0(0)θ χ=� . Solving Eq. (2.54) for θ�  gives 
 

 ( ) 2
0 0

2 cos cosd g
dt L
θ θ θ χ= − +  (2.55) 

 
 which may be rearranged to the form  
 

 
( ) 2

0 0
2 cos cos

ddt
g

L

θ

θ θ χ
=

− +
 (2.56) 

 
We remark that Eq. (2.55) could also be obtained by first multiplying the equation of 
motion, Eq. (2.37), by θ� , exploiting the identity 
 

    ( )21
2d dtθθ θ=��� �   

 
and then integrating the resulting expression and solving for θ� . We bypassed these 
calculations by starting from the statement of conservation of energy, since the work-
energy principle is, in fact, an integral of the equation of motion. (See Section 1.5.) 
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 Let us next integrate Eq. (2.56) over the time interval [0, t] and divide the re-
sulting expression by the period of oscillation of the linear response, 

 0
2T
g L
π≡  (2.57) 

 
 Doing this gives the response as 
 

 

( )0
2

0 0
0

1
2

2 cos cos

t dt
T

g L

θ

θ

θ
π χθ θ

≡ =
§ ·

− + ¨ ¸
© ¹

³  (2.58) 

 
where t  is the normalized time. Equation (2.58) is the solution we are seeking and 
may be integrated for given initial conditions to give the response. 
 Let us next consider motions for which the bob is released from rest 0( 0)χ = . 
In this way we exclude possible motions for which the bob orbits the pin. We also 
know, from conservation of energy, that the motion is periodic. Further, by virtue of 
the same arguments, we know that the time for the bob to move between the positions 
θ = θ0 and θ = 0 is one quarter of a period. Likewise, the reverse motion, where the 
bob moves from the position θ = 0 to θ = θ0, takes a quarter of a period to traverse as 
well. Taking this into account and utilizing the equivalence of the cosine function in 
the first and fourth quadrants in Eq. (2.58) gives the exact period, T, of an oscillation 
of the simple pendulum, 

 

 
( )

0

00 0

14
2 2 cos cos

T dT
T

θ θ
π θ θ

≡ = ⋅
−³  (2.59) 

 
where T  is the normalized period. It is seen that the “true” period depends on the ini-
tial conditions, that is 0( )T T θ= , while the period predicted by the linear approxima-
tion is independent of the initial conditions. We might expect, however, that the two 
solutions will converge as 0 0θ → . It is left as an exercise (Problem 2.24) to demon-
strate that this is so. The integral of Eq. (2.59) may be applied directly, or it may be 
put in a standard form by introducing the change of variable 

 

 ( )1 1sin sin 2
q

ϕ θ− § ·≡ ¨ ¸
© ¹

 (2.60) 

 where 
 ( )0sin 2q θ≡  (2.61) 
 
 After making these substitutions, Eq. (2.59) takes the equivalent form 
 

 2 ( , / 2)T q π
π

= �  (2.62) 

 where 
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2 20

( , )
1 sin

dq
q

β ϕβ
ϕ

≡
−³�  (2.63) 

 
is referred to as an Elliptic Integral of the First Kind, and ( , / 2)q π�  is called a 
Complete Elliptic Integral of the First Kind.  Elliptic integrals are tabulated in tables 
in much the same way as trigonometric functions and, in an analogous way, are also 
available in certain mathematical software. Equation (2.62), or equivalently Eq. 
(2.59), is normalized by the period that is predicted by the linear approximation. It 
thus allows for a direct comparison of the response predicted by the linear approxi-
mation with that predicted by the exact nonlinear model.  
 

 

Example 2.10 
Determine the percent error in approximating the true period of a simple pendulum 
by the period predicted by the linear approximation for an initial angular displace-
ment of 30 degrees. Do the same for initial angular displacements of 15 degrees and 
10 degrees. 
 
Solution 
We must first evaluate the normalized period for 0 30θ = ° . For this initial angular 
displacement, Eq. (2.61) gives 
 
 sin(30 / 2) 0.2588q = ° =  (a) 
 
The corresponding value of the complete elliptic integral is found from a table, using 
software, or from numerical integration of Eq. (2.63). We here use the MATLAB 
function “ellipke” to compute 
 
 (0.2588, / 2) 1.598π =�  (b) 
 
Substitution of Eq. (b) into Eq. (2.62) gives the normalized period 
 

 2 (1.598) 1.017T
π

= =  (c) 

 
Finally,  

 0 1 11 1 0.01672
1.017

T T
T T
− = − = − =  (d) 

 
Hence,  
   % Error = 1.67%     � (e) 
 
Carrying out similar calculations gives, for 0 15θ = ° , 1.005T =  and 
 
   % Error = 0.498% � (f) 
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and, for 0 10θ = ° , 1.002T =  and 
 
   % Error = 0.200% � (g) 
 
It is seen that the linear approximation gives quite accurate values of the period for 
small, and even for moderate, initial angular displacements. 

 
 
 

2.2 FREE VIBRATION OF SYSTEMS WITH VISCOUS DAMPING 

In all physical systems, a certain amount of energy is dissipated through various mecha-
nisms. Hence, the vibrations considered in the previous section, though important, applica-
ble and representative for many applications, conserve energy and are therefore idealistic in 
that sense. It is therefore of interest to examine and to characterize, to the extent possible, 
the effects of damping on the vibratory behavior of mechanical systems. The inclusion of 
some damping and its influence on the vibratory behavior of single degree of freedom sys-
tems is the subject of the next two sections. In particular, we shall discuss the effects of 
viscous damping in the present section and damping due to Coulomb friction in Section 2.3. 
Structural (material) damping and its effects on vibrating systems will be introduced in 
Chapter 3 (Section 3.4). 
 

2.2.1  Equation of Motion and General System Response  

A simple type of dissipation mechanism often considered in vibrations studies is that of 
viscous damping. It was demonstrated in Section 1.2.5 that the force applied to a body by a 
linear viscous damper opposes the motion of the body and is linearly proportional to the 
speed at which the body travels relative to the damper. In this section we derive the equa-
tions of motion and obtain the general solution for systems possessing this type of damping.  
 Consider the system comprised of a mass, m, attached to a spring of stiffness k, and a 
viscous damper with damping coefficient c (see Section 1.2.5), where the opposite end of 
the spring and the damper are fixed, as shown in Figure 2.12. Let x(t) denote the displace-
ment of the mass, measured from its equilibrium configuration. We shall be interested in 
the response of the system after it is initially displaced and released. The corresponding 
kinetic diagram for the system is shown in Figure 2.13. 

    Figure 2.12  Mass-spring-damper system. 
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       Figure 2.13  Kinetic diagram for mass-spring-damper system. 
 
 
Applying Newton’s Second Law along the horizontal direction gives 
 
 kx cx mx− − =� ��  

 
which, after rearranging terms, takes the form 
 
 22 0x x xωζ ω+ + =�� �  (2.64) 
 
where 

 
2 2

c c
m mk

ζ
ω

= =  (2.65) 

 
and ω is given by Eq. (2.2). The parameter ζ is referred to as the damping factor, while ω is 
seen to correspond to the natural frequency when no damping is present. (It will be seen 
shortly that, when damping is present, ω no longer corresponds to the frequency of oscilla-
tion.) 
 To determine the response of the mass-spring-damper system we must solve Eq. 
(2.64). To do this we shall proceed as we did for the undamped system. Hence, we first 
assume a solution of the form 
 
 ( ) stx t Ce�  (2.66) 
 
where C and s are (complex) parameters that are yet to be determined. Substitution of this 
expression into the governing equation (2.64) results in the characteristic equation 
 
 2 22 0s sωζ ω+ + =  (2.67) 
 
which yields the roots 
 
 2 1s ωζ ω ζ= − ± −  (2.68) 
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The response of the system is thus comprised of the sum of two solutions of the form of Eq. 
(2.66) corresponding to the two roots of Eq. (2.68). It is evident from Eqs. (2.66) and (2.68) 
that the behavior of the system is characterized by whether the damping factor is less than, 
greater than, or equal to unity. We shall consider each case separately. 
 

2.2.2  Underdamped Systems 2( 1)ζ <  
Systems for which ζ  2 < 1 are referred to as underdamped systems. When the square of the 
damping factor is less than unity, the characteristic roots given by Eq. (2.68) may be written 
as 
 ds iωζ ω= − ±  (2.69) 
where 
 21dω ω ζ= −  (2.70) 
 
It will be seen that ωd corresponds to the frequency of oscillation of the damped system (the 
damped natural frequency). Substitution of each of the characteristic roots defined by Eq. 
(2.69) into Eq. (2.66) gives two solutions of the form 
 
 ( ) di ttx t Ce e ωζω ±−�  (2.71) 
 
The general solution to Eq. (2.64) consists of a linear combination of these two solutions. 
Hence, 
 
 1 2( ) d di t i ttx t e C e C eω ωζω −− ª º= +¬ ¼  (2.72) 
 
The terms within the brackets of Eq. (2.72) are seen to be identical in form to the right-hand 
side of Eq. (2.6). It therefore follows from Eqs. (2.6)–(2.11) that the solution for the under-
damped case (ζ  2 < 1) may also be expressed in the equivalent forms 
 
 [ ]1 2( ) cos sint

d dx t e A t A tζω ω ω−= +  (2.73) 
 
and 
 ( ) cos( ) ( ) cos( )t

d d dx t Ae t A t tζω ω φ ω φ−= − = −  (2.74) 
 
where 
 ( ) t

dA t Ae ζω−=  (2.75) 
 
and the pairs of constants (A, φ), (A1, A2) and (C1, C2) are related by Eqs. (2.8), (2.9) and 
(2.10). The specific values of these constants are determined by imposing the initial condi-
tions 
 
 0 0(0)      and     (0)x x x v= =�  
 
on the above solutions. Doing this gives the relations  
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( )0 0

1 0 2 2
,

1

v x
A x A

ω ζ
ζ
+

= =
−

 (2.76) 

and 

 
( ) ( )2

0 0 0 01
0 2 2

1 , tan
1 1

v x v x
A x

ω ζ ω ζ
φ

ζ ζ
−
§ ·+ª º +¬ ¼ ¨ ¸= + =
¨ ¸− −© ¹

 (2.77) 

 
It may be seen from Eqs. (2.74) and (2.75) that the response of the system corresponds to 
harmonic oscillations whose amplitudes, Ad(t), decay with time at the rate ζω (= c/2m). It 
may be noted that the frequency of the oscillation for the underdamped case is ωd, as de-
fined by Eq. (2.70). It follows that the corresponding period is 
 

 
2

2 2

1
d

d

T π π
ω ω ζ

= =
−

 (2.78) 

 
and that the associated phase lag is  
 
 dtφ φ ω=  (2.79) 

 
Note that the frequency of the damped oscillations is lower, and hence the corresponding 
period is longer, than that for the undamped system (ζ = 0). It is thus seen that damping 
tends to slow the system down, as might be anticipated. 
 
 
 

 
  Figure 2.14  Characteristic response history of an underdamped system. 
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 A typical response history of an underdamped system is shown in Figure 2.14. It may 
be noted that, unlike the undamped case, the underdamped system will generally exhibit a 
nonvanishing phase shift for vanishing initial velocity (v0 = 0). The phase shift corresponds 
to the instant at which the time dependent amplitude and the displacement first become 
equal. Inclusion of the damping force in the development presented in Section 2.1.2 shows 
that the effect of gravity is the same for damped systems. That is, the damped system will 
exhibit decaying oscillations about the equilibrium configuration corresponding to the stati-
cally stretched spring due to gravity alone, with x(t) and x0 measured relative to the equilib-
rium position of the mass. 
 
 

Example 2.11 
A 4 kg mass is attached to a spring of stiffness 400 N/m and a viscous damper of co-
efficient 16 N-sec/m as shown. If the mass is displaced 0.5 m from its equilibrium 
position and released from rest, determine the position of the mass after it has oscil-
lated through 3 cycles from the point of release. Evaluate the ratio of the magnitude 
of the displacement to the initial displacement at this instant. 
 
 
 
 
 
 
 
 
   Figure E2.11 
 
Solution  
The undamped natural frequency and the damping factor may be calculated from the 
given parameters as 
 
 / 400 / 4 10 rad/seck mω = = =  (a) 
 
and 

 16 0.2
2 2(4)(10)

c
m

ζ
ω

= = =  (b) 

  
The damped natural frequency and the associated damped natural period are then ob-
tained by substituting Eqs. (a) and (b) into Eqs. (2.70) and (2.78), respectively. 
Hence, 
  
 2 21 10 1 (0.2) 9.798 rad/secdω ω ζ= − = − =  (c) 
 
and  

 2 2 0.6413 secs
9.798d

d

T π π
ω

= = =  (d) 
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The initial conditions for the problem are 
  
   0 0(0) 0.5m     and      (0) 0x x x v= = = =�  (e) 

 
The amplitude coefficient A and phase angle φ may be evaluated by substituting Eqs. 
(b) and (e) into Eqs. (2.77). We thus have that 
 

 0

2 2

0.5 0.5103 m
1 1 (0.2)

x
A

ζ
→ = =

− −
 (f) 

and 

 1 1

2 2

0.2tan tan 11.54 0.2014 rads
1 1 (0.2)

ζφ
ζ

− −
§ ·§ ·
¨ ¸¨ ¸→ = = ° =

¨ ¸ ¨ ¸− −© ¹ © ¹
 (g) 

 
Now, the time to the completion of 3 cycles is  

 
 3 3 3(0.6413) 1.924 secsdt T= = =  (h) 

 
The amplitude at this instant is then computed using Eq. (2.75). This gives 

 
 (3 ) 0.2(10)(1.924)

3( ) (3 ) (0.5103) 0.01088 mdT
d d dA t A T Ae eζω− −= = = =  (i) 

 
Next, 
 

 
( ){ }3cos( ) cos( 3 ) cos 3 2

                     cos(6 0.2014) 0.9798
d d d d dt Tω φ ω φ ω π ω φ

π
− = ⋅ − = ⋅ −

= − =
 (j) 

 
Finally, substitution of Eqs. (i) and (j) into Eq. (2.74) gives the desired response 
 
 

3
(3 ) cos( 3 ) 0.01066 m

d d d d dt Tx A T Tω φ= = ⋅ − =  � (k) 

 
The ratio of the displacement after three cycles to the initial displacement is given by 
 

 
0

(3 ) 0.01066 0.02132
0.5

dx T
x

= =  � (l) 

 
It is seen that the displacement of the damped oscillation reduces to 2.1% of its orig-
inal value after three cycles. 
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2.2.3  Logarithmic Decrement (measurement of ζ ) 

Suppose we have an underdamped system (ζ 2 < 1) and we wish to measure the damping 
coefficient, ζ. How might we accomplish this? Let us imagine that we displace the mass of 
Figure 2.12 an initial distance, release it, and then plot a trace of the ensuing motion as de-
picted in Figure 2.15. Let us consider the displacements measured at two instants in time 
occurring one period apart, say at two consecutive peaks, as indicated. Let the displacement 
at time t = t1 be denoted as x(t1) = x1, and the displacement measured at t = t2 be denoted as 
x(t2) = x2. It follows from Eq. (2.74) that the displacements at these instants are given by 
 

 
1

2

1 1

2 2

cos( )

cos( )

t
d

t
d

x Ae t

x Ae t

ζω

ζω

ω φ
ω φ

−

−

= −
= −

 (2.80) 

 
Since the measurements are taken at times separated by one period, we have the relation 
 
 2 1 dt t T= +  (2.81) 
It then follows that  
 
 { }2 1 1cos( ) cos ( ) cos( )d d d dt t T tω φ ω φ ω φ− = + − = −  (2.82) 
 
Next, let us take the ratio of the displacements measured a period apart. This gives 
 

 
1 1

2 1

2 2

( )1 11

2 2 1

cos( ) cos( )
cos( ) cos( )

d

t t
Tt td d

t t
d d

Ae t Ae tx e e
x Ae t Ae t

ζω ζω
ζωζω

ζω ζω
ω φ ω φ
ω φ ω φ

− −
−

− −

− −= = = =
− −

 (2.83) 

 
The logarithmic decrement, δ , is defined as the natural log of this ratio. Hence, 
 
 

 
    Figure 2.15  Two measurements taken one period apart. 

�
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T G 
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t 
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 1

2
2

2ln
1

d
x T
x

πζδ ζω
ζ

§ ·
≡ = =¨ ¸

−© ¹
 (2.84) 

 
where we have used Eq. (2.78) to eliminate the period. Solving for ζ gives the inverse rela-
tion 

 
2 24

δζ
π δ

=
+

 (2.85) 

 
It is seen that δ completely determines ζ . We may therefore measure successive peaks off 
of an x-t plot, take the natural log of the ratio, and substitute the logarithmic decrement into 
Eq. (2.85) to determine ζ . It may be seen from Eqs. (2.84) and (2.85) that for light damping 

2 2 2( 1, or equivalently 4 )ζ δ π� � , 
 

 
2
δζ
π

≈  (2.86) 

 
Let us next consider n+1 successive instants in time, such that adjacent instants are separat-
ed by a natural period on the displacement plot for an underdamped system (Figure 2.15). If 
we let xj and xj+1 represent the jth and  j+1st measurement, then we have from Eq. (2.84) that 
 

 
1

ln j
d

j

x
T

x
δ ζω

+

§ ·
= =¨ ¸¨ ¸

© ¹
 (2.87) 

 
Let us now take the ratio of the first and last displacement measurements. Using the above 
identity in the resulting expression gives 
 

 ( )1 1 2

1 2 3 1

d d
nT n Tn

n n

xx x x e e
x x x x

ζω ζω

+ +

= ⋅ ⋅ ⋅ = =  (2.88) 

 
Evaluating the natural log of this expression gives the relation 
 

 1

1

1 ln
n

x
n x

δ
+

§ ·
= ¨ ¸

© ¹
 (2.89) 

 
Thus, we may measure two displacements separated by n periods (∆t = nTd) and calculate 
the logarithmic decrement using Eq. (2.89). We may then determine the damping coeffi-
cient ζ  using Eq. (2.85) or, under appropriate circumstances, Eq. (2.86). 
 Finally, another useful relation is obtained if we take the inverse natural log of Eq. 
(2.89), rearrange terms, and substitute Eq. (2.84) into the resulting expression. This yields 
the relation 
 
 

22 1
1 1 1 1

d nn Tn
nx x e x e x e π ζ ζζωδ − −−−

+ = = =  (2.90) 
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Example 2.12 
A portion of an automobile suspen-
sion system consists of an elastic 
spring and a viscous damper, as 
shown. If the spring is chosen such 
that k/m = 40 sec-2, determine the al-
lowable range of the ratio c/m so that 
any oscillations that occur will decay 
by a factor of 95% within 1 cycle. 

 
 

Solution 
It is required that x2 = 0.05 x1. Thus, from Eq. (2.84), 
 

 1ln 2.996
0.05

δ § ·= =¨ ¸
© ¹

 (a)  

   
Using Eq. (2.85), we calculate the damping factor to be 
 

 
2 2

2.996 0.4304
4 (2.996)

ζ
π

= =
+

 (b) 

 
Substituting Eq. (b) into Eq. (2.65) and solving for c/m gives the value for the de-
sired ratio as 
 -12(0.4304) 40 5.444 secc m = =  (c) 
 
Thus, in order for an oscillation to decay at the desired rate, the damper must be cho-
sen such that 
 -15.444 secc m ≥  � (d) 

 
 
 

Example 2.13 (Ex. 2.11 revisited) 
A 4 kg mass is attached to a spring of stiffness 400 N/m and a viscous damper of co-
efficient 16 N-sec/m as shown in Figure E2.11. If the mass is displaced 0.5 m from 
its equilibrium position, and released from rest, determine the position of the mass 
after it has oscillated through 3 cycles. 
 
Solution 
The given initial conditions are  

 
 0 0(0) 0.5 m     and     (0) 0x x x v= = = =�  (a) 

 
As in our prior analysis of this problem (Example 2.11), we first calculate the 
undamped natural frequency and the damping factor. We thus have 
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 400 4 10 rad/seck mω = = =  (b) 
and 

 16 0.2
2 2(4)(10)

c
m

ζ
ω

= = =  (c) 

 
We next employ Eq. (2.90) where, for the present problem, n = 3 and x1 = 0.5 m. 
This gives the desired position directly as 
 
 3(0.2)(10)(0.6413)(3 ) 0.5 0.01066 mdx T e−= =  � (d-1) 

 
Equivalently, 
 
 

26 (0.2) 1 (0.2)(3 ) 0.5 0.01066 mdx T e π− −= =  � (d-2) 
 
 
 
 

2.2.4  Overdamped Systems 2( 1)ζ >  

Systems for which ζ 2 > 1 are referred to as overdamped systems. For such systems, the 
characteristic roots given by Eq. (2.68) are all real. Substitution of these roots into Eq. 
(2.66) gives the solution for the overdamped case as 
 
 ( ) ( )

1 2( ) t tx t C e C eζ ω ζ ω− − − += +z z  (2.91) 
where 
 2 1ζ= −z  (2.92) 
 
An equivalent form of the solution is easily obtained with the aid of Eq. (1.63) as 
 
 [ ]1 2( ) cosh sinhtx t e A t A tζω ω ω−= +z z  (2.93) 
and 
 1 1 2 2 1 2  ,  A C C A C C= + = −  (2.94) 
 
Upon imposing the initial conditions 0(0)x x=  and 0(0)x v=� , Eq. (2.93) gives the integra-
tion constants as 

 
( )0 0

1 0 2 2
  ,  

1

v x
A x A

ω ζ
ζ

+
= =

−
 (2.95) 

 
The solution for the overdamped case then takes the form 
 

 
( )0 0

0( ) cosh sinht v x
x t e x t tζω ζω

ω ω
ω

− +ª º
= +« »

¬ ¼
z z

z
 (2.96) 
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      Figure 2.16  Typical response history of an overdamped system. 
 
 
 
where z is given by Eq. (2.92). Consideration of the exponential form of the solution, Eq. 
(2.91), shows that both terms of the solution decay exponentially. A typical response is de-
picted in Figure 2.16. 
 
 

Example 2.14 
The automobile system shown is ini-
tially at rest when it is impacted, im-
parting an initial vertical velocity of 
0.5 m/sec. Determine the maximum 
vertical displacement of the system if 
k/m = 40 sec-2 and c/m = 19 sec-1. 
 
 
 
Solution 
For the given system, k/m = 40 sec-2, c/m = 19 sec-1, and the initial conditions are x0 = 
0 and v0 = 0.5 m/sec. Thus, from Eqs. (2.2) and (2.65), 
 

 40 6.32 rad/secω = =  (a) 
 

 19 1.50
2 2(6.32)
c mζ

ω
= = =  (b) 

 
It is seen from Eq. (b) that the system is overdamped. Hence, from Eq. (2.92), 

x � 

x 

t 
� 
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 2(1.5) 1 1.12= − =z  (c) 
 
Differentiating Eq. (2.96) once with respect to time, setting the resulting expression to 
zero, and imposing the condition of vanishing initial displacement gives the time to 
the maximum displacement, t*, as 
 

 1 1.12* tanh 0.965
1.50

tω − § ·= =¨ ¸
© ¹

z  (d) 

 Hence, 
 * 0.965 [(1.12)(6.32)] 0.136 secst = =  (e) 
 

Substitution of the nondimensional time, Eq. (d), or the dimensional time, Eq. (e), in-
to Eq. (2.96) gives the maximum deflection. Thus, 

 

 

*0
max

1.50(6.32)(0.136)

( *) sinh( *)

0.5       sinh(0.965)
(6.32)(1.12)

       0.0218 m 2.18 cm

tvx x t e t

e

ζω ω
ω

−

−

= =

=

= =

z
z

 � (f) 

 
 
 
 

2.2.5  Critically Damped Systems 2( 1)ζ =  
It was seen in the prior two sections that the response of an underdamped system  (ζ 2 < 1) is 
a decaying oscillation, while the response of an overdamped system (ζ 2 > 1) is an exponen-
tial decay with no oscillatory behavior at all. A system for which ζ 2 =1 is referred to as 
critically damped since it lies at the boundary between the underdamped and overdamped 
cases and therefore separates oscillatory behavior from nonoscillatory behavior. We exam-
ine this case next. 
 For critically damped systems, the characteristic roots given by Eq. (2.68) reduce to 
 
 ,s ω ω= − −  (2.97) 
 
When substituted into Eq. (2.66), these roots yield the solution for the critically damped 
case in the form 
 
 ( )1 2( ) tx t A A t e ω−= +  (2.98) 
 
where the factor t occurs because the roots are repeated. Imposition of the initial conditions, 

0(0)x x=  and 0(0)x v=� , renders the response given by Eq. (2.98) to the form 
 
 ( )0 0 0( ) tx t x v x t e ωω −= + +ª º¬ ¼  (2.99) 
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       Figure 2.17  Characteristic response histories of critically damped systems. 
 
 
Representative characteristic responses are displayed in Figure 2.17. It is seen from Eq. 
(2.99) that when the initial displacement and the initial velocity are of opposite sign and the 
latter is of sufficient magnitude, such that 0 0 1v xω < −  (Figure 2.17, case b), then the dis-
placement passes through zero once and occurs at time 
 

 
0 0

1
at t

v x ω
= =

−
 (2.100) 

 
Thus, for this situation, the displacement is initially positive and then becomes negative for 
t > ta . The mass then continues to move in the opposite direction, and eventually achieves a 
displacement of maximum magnitude, after which it changes direction. The displacement 
then decays exponentially. The change in direction occurs when 0x =� . Imposing this con-
dition on Eq. (2.99) and solving for the time gives the time to maximum overshoot as 
 

 1
os at t t

ω
= = +  (2.101) 

 
This maximum displacement following reversal of direction is referred to as the “over-
shoot.” Thus, from Eq. (2.99), we have that the overshoot is given by 
 

 ( 1)0 0( ) 0.3679a at t
os os

a a

x x
x x t e e

t t
ω ω

ω ω
− + −= = − = −  (2.102) 

 
To visualize this phenomenon let us imagine that we pull the mass in one direction, hold it, 
and then “throw” the mass toward its equilibrium configuration. The mass then moves in 
this direction, and eventually passes through the equilibrium configuration. At some later 

�

x 
Y � ! � 

Y �   � 

� � (FDVH E) Y � 
t 

x � 

Y � � � (FDVH D) 

x RV 
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time, the mass stops for an instant (the displacement at this instant is the “overshoot”). It 
then reverses its direction and travels back toward the equilibrium position asymptotically. 
 
 

Example 2.15 
A plank that bridges a small segment of a body of still water is pinned at one end and 
sits on a pontoon at a distance L from the pin as shown in Fig. E2.15-1. The plank is 
of length 3L , the cross-sectional area of the pontoon is 1 m2 and the total mass of 
the plank and the pontoon together is 100 kg. It is desired to attach a viscous damper 
of coefficient 1200 N-sec/m at some distance l along the plank to minimize the ef-
fects of vibration. (a) Assume “small angle” motion of the plank and determine the 
ratio of the attachment length of the damper to the length of the pontoon that will 
cause the system to achieve critical damping, and in so doing establish the allowable 
range of l/L that will prohibit (free) 
oscillatory motion. (b) If the pon-
toon is raised, held, and then pushed 
downward and released at a clock-
wise angular speed of 1.5 rad/sec at 
an angle of 0.1 rads counterclock-
wise from its level at equilibrium, 
determine the overshoot (if any) of 
the float if the system is critically 
damped. The density of water is ρw 
= 1000 kg/m3.                                                   
                                                          Figure E2.15-1  Plank and float system. 
 
Solution 
(a) 
To solve this problem we must (i) establish an equivalent system (recognizing that 
the buoyant force exerted on the pontoon by the water acts as a restoring force, (ii) 
derive the equation of motion for the pontoon using this model, (iii) put the govern-
ing equation in the form of Eq. (2.64) and establish the effective damping factor, ζ, 
and the undamped natural frequency, ω. (iv) We can then set the damping factor to 
unity and solve for the desired value of the length ratio in question. 
 

 
   Figure E2.15-2  Equivalent system. 
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   Figure E2.15-3  Kinetic diagram. 
 
 
(i) The equivalent system is shown in Figure E2.15-2 where, using Eq. (1.40), 
  
 (1000)(9.81)(1) 9810 N/meff wk gAρ= = =  (a) 

 
(ii) To derive the governing equation of motion for the equivalent system we first 
draw the kinetic diagram shown in Fig. E2.15-3. As we need the rotational accelera-
tion of the plank and the velocity of the damper, as well as the displacement of the 
mass, it is convenient to express our equations in terms of the angular coordinate 

.( )tθ  
 The damping force, Fd, and the spring force, Fs, are respectively 
 
 d lF cs clθ= = ��  (b) 
and 
 sins eff L effF k y k L θ= =  (c) 

 
The inertia force of the pontoon may be resolved into its normal and tangential com-
ponents, mflan and mflat, with regard to the circular path described by the float, 
where an and at are respectively the normal and tangential components of the accel-
eration of the pontoon, and mfl is its mass. Thus, if s = Lθ is the path coordinate for 
the pontoon, we have from Eq. (1.76) that 

 

 
2

2
fl n fl fl

sm a m m L
L

θ= =
� �  (d) 

 
 fl t fl flm a m s m Lθ= = ����  (e) 
 
[Note that we could have just as easily used polar coordinates, Eq. (1.79), with R = 
L.] The moment of inertia of the plank about hinge O is given by  
  
 ( ) 21

3
pl

O pl plI m L=  (f) 
 

where mpl and Lpl respectively correspond to the mass and length of the plank, and 
we have modeled the plank as a (uniform) rod. For the present problem the length of 
the plank is given as 
 3plL L=  
 
Upon substituting this into Eq. (f), the moment of inertia of the plank is given by 
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 ( ) 2 21

3
pl

O pl pl plI m L m L= =  (g) 
 

We are now ready to write the equation of motion for the plank-pontoon-damper 
system. 
  
(iii) Let FH and FV represent the horizontal and vertical reactions at pin O, respec-
tively. Taking moments about pin O, and using Eqs. (a)–(e) and (1.163), gives the 
rotational equation of motion for the plank. Thus, 
 

( )
/

pl
O O fl O fl flM I r m aα= + ×
G G G G : 

 

 
( ) ( )

( )
2

2

( sin )( cos )

                                               

eff pl fl

pl fl

cl l k L L m L m L L

m m L

θ θ θ θ θ

θ

+ = − −

= − +

� �� ��

��
 (h) 

 
(Note that the coefficient of the angular acceleration in Eq. (h) is simply the moment 
of inertia, about O, of an equivalent rod with a singularity at r = L in the otherwise 
uniform mass distribution.) Upon rearranging terms, the equation of angular motion 
takes the form 
 
 2 2 2 sin cos 0effmL cl k Lθ θ θ θ+ + =�� �  (i) 
 
where 
 pl flm m m= +  (j) 

 
is the total mass of the system. If we divide through by mL2 and employ the small 
angle assumption and linearize Eq. (i) by setting sin cosθ θ θ≈ , the equation of mo-
tion of the plank-pontoon-damper system reduces to the familiar form 
 
 22 0θ ωζθ ω θ+ + =�� �  (k) 
where 

 

 (1000)(9.81)(1) 9.90 rad/sec
100

eff wk g A
m m

ρ πω = = = =  (l) 

 
and 

 ( )2

2
c l L
m

ζ
ω

=  (m) 

 
(iv) For critical damping, we set ζ  = 1 in Eq. (m) and solve for the critical length ra-
tio. Doing this gives 
 

 
1/ 22 2(9.90)(100) 1.28

1200cr

l m
L c

ω§ · ª º= = =¨ ¸ « »© ¹ ¬ ¼
 (n) 
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Thus, for the system to avoid free vibratory behavior, the length ratio must be such 
that  

 
1/ 2

2 1.28l mk
L c

ª º
≥ =« »
¬ ¼

 � (o) 

 
(b) Let us first check to see if there will be an overshoot. Hence, 
 
 0 0 1.5 [9.9( 0.1)] 1.515 1v ωθ = − = − < −   
 
Since the ratio satisfies the requisite inequality, we anticipate that the plank will pass 
through its equilibrium position one time before returning to it asymptotically. We 
now proceed to calculate by how much. To determine the overshoot, we first calcu-
late the time to the overshoot. Substitution of the given initial conditions and the val-
ue of the undamped natural frequency given by Eq. (l) into Eq. (2.100) gives the 
time to crossing the equilibrium position as 

 

 1 0.196 secs
(1.5) /( 0.1) 9.9at = =

− −
 (p) 

  
Substitution of  Eqs. (l) and (p) into Eq. (2.101) then gives the time to overshoot as 
 

 10.196 0.297 secs
9.90ost = + =  (q) 

 
The overshoot may now be determined using Eq. (2.102). Thus, 

 

 9.90(0.196)( 0.10)0.3679 0.00272 rads
(9.90)(0.196)os eθ −−= − =  � (r) 

 
 
Thus far we have considered systems in which friction was not present or, if present, the 
friction force did no work (e.g, rolling without slip). In the next section we expand our 
scope and study the influence of Coulomb friction on vibration of single degree of freedom 
systems.  
 
 

2.3  COULOMB (DRY FRICTION) DAMPING 

The mass of the single degree of freedom system considered in Section 2.1 was assumed to 
move along a frictionless surface. Suppose that we relax the assumption of the frictionless 
surface (Figure 2.18). How will the presence of friction affect the response of the mass-
spring system? Since friction is a dissipative (nonconservative) force we know that the en-
ergy of the system will not be conserved (Section 1.5.2). We therefore anticipate that fric-
tion will have a damping effect on the motion of the mass. Let’s examine how. 
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    Figure 2.18 Mass-spring system on rough surface. 

 
 

2.3.1  Stick-Slip Condition 

Consider a stationary block that sits on a frictional surface and is acted upon by a force F, as 
shown in Figure 2.19a. The corresponding free-body diagram is shown in Figure 2.19b. It is 
seen from the free-body diagram that the applied force, F, is balanced by the friction force, 
Fµ , provided that 
 
 s sF N mgµ µ µ< =  (2.103) 
 
where µs is the coefficient of static friction for the pair of surfaces in mutual contact, and N 
is the (compressive) normal force exerted on the block by the support. Once the magnitude 
of the friction force, and hence that of the applied force, achieves the critical level ||F||cr 
where 
 s scr

F N mgµ µ= =  (2.104) 
 
sliding begins. The friction force then maintains the magnitude 
 
 k kF N mgµ µ µ= =  (2.105) 
 
throughout the motion, where µk is the coefficient of kinetic friction and 1k sµ µ≤ < . Con-
versely, if during motion the mass should stop momentarily, and if the applied force drops 
below the critical value while the mass is stationary, then the motion of the mass will cease. 
Thus, if ||F|| falls below ||F||cr as defined by Eq. (2.104), then the motion of the mass is ar-
rested (i.e., the mass “sticks”). For the mass-spring system of interest, we anticipate that the  
 
 

 
Figure 2.19  Equilibrium of block on rough surface: (a) block under applied load, (b) free-body dia-
gram. 
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mass will first move in one direction, stop for an instant, then move in the opposite direc-
tion, stop for an instant, then move in the original direction, stop for an instant and reverse 
direction, and so on. That this is the case will be confirmed shortly. In this regard, for the 
mass-spring system, the force appearing in Eqs. (2.103) and (2.104) is replaced by the re-
storing force of the spring, Fs = −kx, at the instants when the velocity of  the mass vanishes. 
Substituting Fs for F in Eq. (2.104) and solving for x gives the associated critical displace-
ment, ||x||cr , as 
 
 

cr
x fµµ=  (2.106) 

where 

 k

F mgf
k k

µ
µ µ≡ =  (2.107) 

and 

 1s

k

µµ
µ

≡ ≥  (2.108) 

 
The parameter fµ is seen to be the static displacement of the mass if subjected to a constant 
force having the magnitude of the friction force. After incorporating Eqs. (2.106)–(2.108) 
into Eqs. (2.103)–(2.105), the stick-slip criterion for the mass-spring system may be stated 
as follows: 
 

 

If, at time , ( ) 0 

then ( ) 0 provided that ( ) .

If not, 0 for .

s s

s s

s

t t x t

x t x t f

x t t
µµ+

= =

> ≥

≡ >

�

�

�

 (2.109) 

 

2.3.2  System Response 

Let us consider once again the mass-spring system of Section 2.1, however, let us now relax 
the assumption that the surface on which the mass slides is frictionless (Figure 2.18). The 
kinetic diagram for the present case is shown in Figure 2.20. When motion occurs, the 
magnitude of the friction force is given by Eq. (2.105) and its direction is always opposite 
to that of the velocity of the mass. Thus, the friction force reverses direction whenever the 
mass reverses direction. To solve the problem we therefore write the equations of motion 
for each case, 0x >�  and 0x <� , separately. Applying Newton’s Second Law as depicted in 
Figures 2.20a and 2.20b, respectively, and rearranging terms gives 
 

 
2 2

2 2

   ( 0)

   ( 0)

x x f x

x x f x
µ

µ

ω ω
ω ω

+ = − >

+ = + <

�� �

�� �
 (2.110) 

 
where ω and fµ are given by Eqs. (2.2) and (2.107), respectively. The solution for each case 
is easily found by adding the particular solution corresponding to the appropriate right-
hand side of Eq. (2.110) to the complementary solution given by Eq. (2.11). Thus, in each 
case, the response is of the form of a harmonic oscillation with a constant shift in displace-
ment, fµB . Hence, 
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    Figure 2.20  Kinetic diagram. 
 
 
 

 
( ) cos( )      ( 0)

( ) cos( )      ( 0)

x t A t f x

x t A t f x
µ

µ

ω φ
ω φ

+ +

− −

= − − >

= − + <

�

�
 (2.111) 

 
Since each solution is only valid for the sign of the velocity indicated, each of the above 
forms yields the response for only half of a cycle. 
 As the solutions described by Eqs. (2.111) are valid on intervals bounded by the van-
ishing of the velocity, and hence when the mass is about to reverse its direction, let us con-
sider the motion between the corresponding instants in time. If we start our “measurements” 
in this way, then the initial velocity of each half-cycle is zero and the phase angle appearing 
in Eqs. (2.111) vanishes ( 0)φ ± = . Likewise, the initial displacement for each half cycle is 
given by the final displacement of the prior half cycle, and the amplitude of the half cycle is 
adjusted accordingly (see Figure 2.21). One can increment between half cycles in this way 
to obtain the full response as a function of time. It will, however, prove sufficient to exam-
ine a single cycle in detail. 
 Let us now consider the motion through one cycle, beginning at time 0t t=  and con-
cluding at time 0t t T= + , where the period T is related to the frequency ω through Eq. 
(2.19). We shall take the reference displacement as positive, therefore the mass moves to 
the left ( 0)x <�  for the first half of the cycle as indicated in Figure 2.21. Let 0A A− =  corre-
spond to the amplitude of the half cycle that begins at time 0t t= . The second of Eqs. 
(2.111) then gives 
 
 0 0( )x t A fµ= +  (2.112) 
 
which can, of course, be solved for the amplitude A0 for given 0 0( )x t x= . Similarly, 
 
 ( ) ( )0 02x t T A fµ+ = − −  (2.113) 
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    Figure 2.21  Typical response history over one cycle. 
 
 
 
We next perform a similar calculation for the second half of the cycle (t0 + T/2 ≤  t ≤  t0 + T ) 
using the first of Eqs. (2.111) together with Eq. (2.113) as the initial condition. This gives 
 
 02A f Aµ

+ = −  (2.114) 
 
Substituting Eq. (2.114) into the first of Eqs. (2.111) and evaluating the resulting expression 
at t = t0 + T gives the displacement at that particular instant as 
 
 0 0( ) 3x t T A fµ+ = −  (2.115) 
 
Let ∆ correspond to the reduction in deflection over the cycle. Then, subtracting Eq. (2.115) 
from Eq. (2.112) gives the reduction 
 

 0 0
4

( ) ( ) 4 k mg
x t T x t f

kµ
µ∆ = + − = =  (2.116) 

 
It is similarly seen, by subtracting Eq. (2.113) from Eq. (2.112), that the reduction in dis-
placement over half of the cycle is ∆/2. The displacement reduction is clearly the same for 
each and every cycle. Thus, the effect of dry friction is to damp the free vibration response 
of the simple harmonic oscillator. However, the damping rate is seen to be constant causing 
the oscillations to decay in a linear manner for this case, as shown in Figure 2.22, rather 
than in an exponential manner as for the viscous damper discussed in Section 2.2.2. It is 
also seen that, unlike for systems with viscous damping, the frequency of oscillation and 
hence the period is unaltered by the presence of friction. Further, the motion terminates 
when 0x =�  and ||x|| < ||x||cr. At this point, the spring force can no longer overcome the fric-
tion force. 
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Figure 2.22  Response history of system with Coulomb damping from onset to cessation of motion. 
 
 
 
 To determine the time at which the mass sticks and motion subsides, let us consider 
the number of half-cycles the mass goes through to that point. Let n = 1, 2, …, represent the 
half-cycle number and let xn represent the corresponding peak displacement at the end of 
that half-cycle. It is seen from Figures 2.21 and 2.22 that 
 
 0 0(2 1) 2nx A n f x n fµ µ= − − = −  (2.117) 
 
The stick-slip condition, Eq. (2.109), tells us that motion will continue beyond a given peak 
provided that  
 
 0 2x n f fµ µµ− ≥  (2.118) 
 
The value of n for which sticking occurs is thus the first value of n for which the inequality 
of Eq. (2.118) is violated. Solving the corresponding equality for n gives the critical param-
eter 

 01
2cr

x
n

fµ

µ
ª º

= −« »
« »¬ ¼

 (2.119) 

 
In general, the parameter ncr will not be an integer. Thus, according to the criterion of  Eq. 
(2.109) together with Eq. (2.118), the value of the integer n at which sticking occurs is de-
scribed as follows: 
 
  is the first value of  that is greater than or equal to stick crn n n  (2.120) 
 
The time, tstick , at which sticking of the mass occurs is then 
 
 2stick stickt n T=  (2.121) 
 
The mass is thus seen to stick at the first peak that lies between the dotted horizontal enve-
lope, ||x|| = ||x||cr, shown in Figure 2.22. 
 

Τ = 2π/ω 

x FU 

�I µ 

x 

t 

� 
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Example 2.16 
A 2 kg mass attached to a linear elastic spring of stiffness k = 200 N/m is released 
from rest when the spring is stretched 10 cm. If the coefficients of static and kinetic 
friction between the mass and the surface that it moves on are µs = µk = 0.1, deter-
mine the time after release at which the mass sticks and the corresponding displace-
ment of the mass.  

  
Solution 
We first calculate the natural frequency and period using Eqs. (2.2) and (2.19). 
Hence, 

 200 10 rad/sec
2

ω = =  (a) 

 

 2 0.628 secs
10

T π= =  (b) 

 
We next evaluate the displacement parameter defined by Eq. (2.107), giving 

 

 (0.1)(2)(9.81) 0.00981 m
200

fµ = =  (c) 

 
The half-cycle number for which stick occurs is next obtained by evaluating Eq. 
(2.108) and substituting this result, along with Eq. (c), into Eq. (2.119). This gives 
 

 0.1 0.10.5 4.60
0.00981 0.1crn ª º= − =« »¬ ¼

 (d) 

 
Thus, from Eq. (2.120), 
 5stickn =  (e) 

 
Therefore, the mass comes to rest after going through 2½ cycles. The time at which 
the motion of the mass is arrested is found by substituting Eqs. (b) and (e) into Eq. 
(2.121), giving 
 

 5
(0.628)(5) 1.57 secs

2stickt t= = =  (f) 

 
Finally, we have from the given initial conditions that x0 = 0.10 m. The displacement 
of the mass at the sticking point is then found using Eq. (2.117). We thus find that 
 
 5 0.10 2(5)(0.00981) 0.0019 m 0.19 cmstickx x= = − = =  � (g) 
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2.4  CONCLUDING REMARKS 

In this chapter we have examined the behavior of single degree of freedom systems when 
they are free from forces from outside of the system. That is, no dynamic external forces 
were considered. Rather, only the forces exerted by one part of the system on another part 
of the system (internal forces) entered into the problem. In this regard, the spring, the vis-
cous damper and, in the case of Coulomb friction, the surface upon which the mass moved 
were all considered to be part of the system. We remark that the springs and dampers were 
considered to be massless. That is, the models considered apply to systems for which the 
mass, represented as a block or bob etc., is much greater than the masses of the objects rep-
resented as springs and dampers such as elastic beams. The only external force that was 
considered was the static gravitational force, the effect of which was simply to shift the 
equilibrium configuration about which the mass oscillated for the case of the mass-spring-
damper system. For the simple pendulum the gravitational force was seen to act as a restor-
ing force in the spirit of that of an elastic spring for a mass-spring system. Gravity was seen 
to also play a role in the buoyant force of a Newtonian fluid acting on a floating body. This 
resulted in the representation of the fluid as an equivalent elastic spring. 
 The mathematical process of linearization was demonstrated for the problem of the 
simple pendulum. The complex nonlinear equation of motion for the pendulum was simpli-
fied and took the form of the simple harmonic oscillator for situations where the amplitudes 
of the angular motions were suitably restricted. It was seen, however, that when this was 
done the second (vertical) equilibrium configuration was not predicted. This is typical of 
what occurs when linearization is performed; some information is lost. It was, however, 
seen that the oscillatory behavior of the pendulum was well represented by the linearized 
equation for a fairly wide range of amplitudes. It is instructive to remark here that the Euler-
Bernoulli beam equations, used in this and the prior chapter to represent the members of 
certain structural systems as equivalent linear springs, are also obtained by linearization of 
more complex models. Such beam equations are valid for a restricted range of strains (infin-
itesimal), rotations and deflections. More correct models include the small strain and mod-
erate rotation model typically used to examine buckling behavior (both static and dynamic). 
These issues are discussed in greater detail in Chapter 9. For truly finite deflections the 
structure must be modeled, more correctly, as an elastica. It is interesting to note that the 
equation governing the tangent angle as a function of distance along the axis for the (quasi-
static) elastica is identical to the nonlinear equation of motion (angle of rotation as a func-
tion of time) for the simple pendulum, with the parameters suitably interpreted. 
 The effects of two types of damping were considered. These included viscous and 
Coulomb damping. Other types of damping that influence the vibratory behavior of me-
chanical systems include structural/internal/material or hysteresis damping, and aerodynam-
ic damping, though these are often treated as effective viscous damping in practice. The 
effects of structural damping will be discussed in Chapter 3.  
 At this point we have an understanding of the vibratory behavior of single degree of 
freedom systems when free of external dynamic forces. We are now ready to examine the 
motion of such systems due to time dependent external excitation. 
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PROBLEMS 

2.1 The mass of a mass-spring system is displaced and released from rest. If the 20 gm 
mass is observed to return to the release point every 2 seconds, determine the stiffness 
of the spring. 

  
2.2 Two packages are placed on a spring scale whose plate weighs 10 lb and whose stiff-

ness is 50 lb/in. When one package is accidentally knocked off the scale the remain-
ing package is observed to oscillate through 3 cycles per second. What is the weight 
of the remaining package? 

 
2.3 Determine the natural frequency for side-sway motion of the one story structure 

shown in Figure 1.8. Do the same for the structure shown in Figure 1.9. What is the 
relation between the two and hence what is the effect of embedding the columns in 
the roof on the motion of the structure? 

  
2.4 A single degree of freedom system is represented as a 4 kg mass attached to a spring 

possessing a stiffness of 6 N/m. Determine the response of the horizontally config-
ured system if the mass is displaced 2 meters to the right and released with a velocity 
of 4 m/sec. What is the amplitude, period and phase lag for the motion? Sketch and 
label the response history of the system. 

 
2.5 A single degree of freedom system is represented as a 2 kg mass attached to a spring 

possessing a stiffness of 4 N/m. Determine the response of the vertically configured 
system if the mass is displaced 1 meter downward and released from rest. What is the 
amplitude, period and phase lag for the motion? Sketch and label the response history 
of the system. 
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2.6 A 30 cm aluminum rod possessing a circular cross sec-
tion of 1.25 cm radius is inserted into a testing machine 
where it is fixed at one end and attached to a load cell at 
the other end. At some point during a tensile test the 
clamp at the load cell slips, releasing that end of the rod. 
If the 20 kg clamp remains attached to the end of the rod, 
determine the frequency of the oscillations of the rod-
clamp system?  

 
                               
                                                                                Fig. P2.6 
 
2.7 A 30 cm aluminum rod possessing a circular cross section of 1.25 cm radius is insert-

ed into a testing machine where it is fixed at one end and attached to a load cell at the 
other end. At some point during a torsion test 
the clamp at the load cell slips, releasing that 
end of the rod. If the 20 kg clamp remains at-
tached to the end of the rod, determine the 
frequency of the oscillations of the rod-clamp 
system. The radius of gyration of the clamp is 
5 cm.                                                               Fig. P2.7 

 
 
2.8 Determine the natural period of a typical ice cube floating in water. Measure the di-

mensions of a typical cube from your refrigerator and calculate its natural frequency 
in water. (The dimensions may vary depending on your particular ice tray.) Confirm 
your “experiment.” Place an ice cube in water, displace it slightly and release it. 
Make an approximate measure of the period of an oscillation with your wrist watch, 
or a stop watch if available. 
Repeat this operation several 
times and compare the aver-
age measured value with the 
calculated value.                                        Fig. P2.8  

 
 
 
2.9 The manometer shown is used to measure the pressure in 

a pipe. If the pipe pressure is suddenly reduced to atmos-
pheric (the gage pressure reduced to zero), determine the 
frequency of the oscillations of the manometer fluid about 
its equilibrium configuration if the total length of the ma-
nometer fluid is L and the tube is uniform.                          

                                                                                         Fig. P2.9 
 
2.10 The tip of the cantilever beam of Problem 1.4 is displaced 1˝ and released from rest. 

Determine the response of the weight if it has been welded to the beam. Sketch and 
label the response. 
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2.11 The center span of the simply supported beam of Problem 1.5 is displaced 1˝ and 
released at a speed of 13.9 in/sec. Determine the response of the weight if it has been 
welded to the beam. Sketch and label the response. 

 
2.12 Determine the response of the movable support for the system of Problem 1.6 if the 

support is displaced 1˝ and released from rest. The beam and moveable support have 
the properties of the beam and weight of Problem 1.4. 

 
2.13 A railroad car of mass m is attached to a stop in a railroad yard. The stop consists of 

four identical metal rods of length L, radius R and elastic modulus E that are arranged 
symmetrically and are fixed to a rigid wall at one end and welded to a rigid plate at 
the other. The plate is hooked to the station-
ary railroad car as shown. In a docking ma-
neuver, a second car of mass m approaches 
the first at speed v1. If the second car locks 
onto the first upon contact, determine the re-
sponse of the two car system after docking.                    Fig. P2.13 

 
2.14 Determine the response of the 200 lb. raft of Problem 1.7 if the man suddenly dives 

off. 
 
2.15 Determine the response of the 200 lb. raft of Problem 1.15 if the woman suddenly 

dives off. 
 
 
 

 
 
2.16 The line of action of the resultant buoyant force 

exerted on a ship by the water passes through a 
point Q along the centerplane as indicated. If 
the point Q lies a distance A above the ship’s 
centroid G, and the ship possesses mass m and 
mass moment of inertia IG, determine the fre-
quency of small angle rolling. 
 
 
    
 
 
 
 
                                   Fig. P2.16 
 
 

2.17 A woman observes that the chandelier hanging in the hallway of her home is swing-
ing to and fro about every three seconds. What is the length of the chandelier’s cable? 
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2.18 The bob of a simple pendulum is immersed 
in a medium whose resistance may be rep-
resented as a spring of stiffness k connect-
ed at distance a from the base of the rod as 
shown. Determine the natural frequency of 
the system.  

 
        
                                           Fig. P2.18 
 
 
2.19 The timing device shown consists of a movable cylinder of known mass m that is 

attached to a rod of negligible mass supported by a torsional spring at its base. If the 
stiffness of the spring is kT, where kT /mgL > 1, determine the period of small angle 
motion of the device as a function of the attachment length, L, if the spring is 
untorqued when θ = 0. 

 

          Fig. P2.19                                                    Fig. P2.20 
 
 
2.20 A circular tube of 1 m inner diameter stands in the vertical plane. A  6 gm marble of 

1.5 cm diameter is placed in the tube, held at a certain height and then released. De-
termine the time it takes for the marble to reach its maximum height on the opposite 
rise. What is the frequency of the marble’s motion? 

 
 
2.21 The system shown consists of a 

rigid rod, a flywheel of radius R 
and mass m, and an elastic belt 
of stiffness k. Determine the 
natural frequency of the system. 
The belt is unstretched when 
θ = 0. 

                                                                                Fig. P2.21 
 
2.22 Determine the response of the flywheel of Problem 2.21 if it is slowly rotated through 

angle θ0 and then released from rest.  
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2.23 The cranking device shown consists of a mass-spring system of stiffness k and mass 
m that is pin-connected to a massless rod which, in turn, is pin-connected to a wheel 
at radius R, as indicated. If the mass moment of inertia of the wheel about an axis 
through the hub is IO, determine the natural frequency of the system. (The spring is 
unstretched when connecting pin is directly over hub ‘O’.) 

 

   Fig. P2.23 
 
2.24 Use the software of your choice (or, if this is not an option, any suitable mathematical 

tables at your disposal) to evaluate the period of the finite motion of a pendulum 
when it is released from rest at a series of initial angles within the range 0 < θ0 < π. 
(a) Plot the normalized period as a function of the initial angle. (b) Determine the ini-
tial angle at which the percent error for the linear approximation is (i) less than 5%, 
(ii) less than 1%.  

 
2.25 A single degree of freedom system is represented as a 4 kg mass attached to a spring 

possessing a stiffness of 6 N/m and a viscous damper whose coefficient is 1 N-sec/m. 
(a) Determine the response of the horizontally configured system if the mass is dis-
placed 2 meters to the right and released with a velocity of 4 m/sec. Plot and label the 
response history of the system. (b) Determine the response and plot its history if the 
damping coefficient is 5 N-sec/m. (c) Determine the response and plot its history if 
the damping coefficient is 10 N-sec/m. 

 
2.26 A single degree of freedom system is represented as a 2 kg mass attached to a spring 

possessing a stiffness of 4 N/m and a viscous damper whose coefficient is 2 N-sec/m. 
(a) Determine the response of the horizontally configured system if the mass is dis-
placed 1 meter to the right and released from rest. Plot and label the response history 
of the system. (b) Determine the response and plot its history if the damping coeffi-
cient is 8 N-sec/m. 

 
2.27 A 12 kg spool that is 1 m in radius is pinned to a viscoelastic rod of negligible mass 

with effective properties k = 10 N/m and c = 8 N-sec/m. The end of the rod is at-
tached to a rigid support as shown. Determine the natural frequency of the system if 
the spool rolls without slipping. 

    Fig. P2.27 
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2.28 A viscous damper with coefficient c is fixed at one end and is 
attached to the cylindrical mass of the timing device of Prob-
lem 2.19 at the other end. Determine the natural frequency of 
the system.  

 
 
 
                                                                         Fig. P2.28 
                                                     
2.29 (a) A mass-spring system oscillates freely with a period of 2.6 seconds. After a vis-

cous damper is attached, the resulting mass-spring-damper system is observed to os-
cillate with a period of 3.0 seconds. Determine the damping factor for the system. (b) 
A mass-spring-damper system is displaced and released from rest. The time history of 
the motion of the mass is recorded and displayed, as shown (Figure P2.29). Estimate 
the damping factor from the measured response. 

 

   Fig. P2.29 
 
2.30 A diving board that is 7 feet in length, has a cross-sectional area of 2 ft2 and a specific 

weight of 48 lb/ft3 is supported by a torsional spring of stiffness kT = 13.45× 103 ft-
lb/rad and a viscous damper of coefficient c that is located 2 feet ahead of the spring’s 
pivot, as shown. Assuming that the flexure of the board is accounted for in the model 
of the spring, and hence that the board may be treated as rigid, determine the value of 
c so that the oscillations will decay to 2% of their initial amplitude within 5 cycles. 

 
 
 
 
 
          
            
   Fig. P2.30 
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2.31 A simple pendulum is immersed in a viscous fluid. If the resistance of the fluid can be 
modeled by the linear spring and viscous damper attached a distance a from the sup-
port, determine the critical value of c. 

 

   Fig. P2.31 
 
2.32 Determine the critical value of the damping coefficient for the diving board of Prob-

lem 2.30. 
 
 
2.33 A screen door of mass m, height L and width A is attached 

to a door frame as indicated. A torsional spring of stiff-
ness kT is attached as a closer at the top of the door as in-
dicated, and a damper is to be installed near the bottom 
of the door to keep the door from slamming. Determine 
the limiting value of the damping coefficient so that the 
door closes gently, if the damper is to be attached a dis-
tance a from the hinge. 
 
 
                                                                 Fig.P2.33 
 
 
                                                  

2.34 Determine the overshoot of the system of Problem 2.25 if it is critically damped and 
v0 = − 4 m/sec. 

 
 
2.35 Determine the overshoot of the system of Problem 2.26 if it is critically damped and 

v0 = − 2 m/sec.  
 
 
2.36 A single degree of freedom system is represented as a 4 kg mass attached to a spring 

possessing a stiffness of 6 N/m. If the coefficients of static and kinetic friction be-
tween the mass and the surface it moves on are µs = µk = 0.1, and the mass is dis-
placed 2 meters to the right and released with a velocity of 4 m/sec, determine the 
time after release at which the mass sticks and the corresponding displacement of the 
mass.  
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2.37 A single degree of freedom system is represented as a 2 kg mass attached to a spring 
possessing a stiffness of 4 N/m. If the coefficients of static and kinetic friction be-
tween the block and the surface it moves on are respectively µs = 0.12 and µk = 0.10, 
determine the drop in amplitude between successive periods during free vibration. 
What is the frequency of the oscillations?  

 
2.38 Use the work-energy principle, Eq. (1.84) or Eq. (1.92), to arrive at Eq. (2.116). That 

is show, by way of the Principle of Work-Energy, that the decay in displacement per 
cycle for a mass-spring system with coulomb friction is 4 k mg kµ∆ = . 
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3 
Forced Vibration of Single Degree of 
Freedom Systems – 1:                           
Periodic Excitation 

 
 
 
 
 
In Chapter 2 we studied the response of single degree of freedom systems that were free 
from external loading. In doing so we established parameters that characterize the system 
and discussed the motion that would ensue if the system was disturbed from equilibrium 
and then moved under its own volition. In this and the next chapter we shall study the re-
sponse of single degree of freedom systems that are subjected to time dependent external 
forcing – that is, forcing which is applied to the system from an outside source. In the pre-
sent chapter we consider forcing that is continuously applied and repeats itself over time. 
Specifically, we now consider forcing that varies harmonically with time, and forcing that is 
periodic but is otherwise of a general nature. We begin with a discussion of the general 
form of the equation of motion for forced single degree of freedom systems, followed by a 
discussion of superposition. 
 

3.1 STANDARD FORM OF THE EQUATION OF MOTION 

It was seen in the previous two chapters that a mass-spring-damper system is representative 
of a variety of complex systems. It was also seen that the equations of motion of various 
single degree of freedom systems took on a common general form. We therefore consider 
the externally forced mass-spring-damper system to initiate our discussion. 
 Consider the system comprised of a mass m attached to a spring of stiffness k and a 
viscous damper of damping coefficient c that is subjected to a time dependent force F(t) as 
shown in Figure 3.1. The mass moves along a frictionless surface, or hangs vertically, as 
indicated. In either case, x(t) measures the displacement of the mass from its equilibrium 
configuration. The corresponding dynamic free body diagram (DFBD) is depicted in Figure 
3.2. Applying Newton’s Second Law along the x direction gives 
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         Figure 3.1  Mass-spring-damper system subjected to external forcing. 
 
 
 
 ( )kx cx F t mx− − + =� ��  
 
which, when rearranged, takes the form 
 
 2 22 ( )x x x f tωζ ω ω+ + =�� �  (3.1) 
 
where 

 ( )( ) F tf t
k

=  (3.2) 

and 

 
2

c
mk

ζ =     and    k
m

ω =   

 
respectively correspond to the viscous damping factor and undamped natural frequency 
introduced in Chapter 2. An equation of motion expressed in the form of Eq. (3.1) will be 
said to be in standard form. Equation (3.1) is seen to be of the same general form as Eq. 
(2.64), but with nonvanishing right-hand side. It may be seen that, for the mass-spring-
damper system, the quantity f(t) has units of length. 
 
 

3.2 SUPERPOSITION 

In this section we shall establish the principle of superposition for the specific class of linear 
systems under consideration. This principle shall be of great importance in evaluating the 
response of the many types of systems and loading considered throughout our study of line-
ar vibrations. We consider the mass-spring-damper system to represent the class of systems 
of interest.  
 Suppose the mass of the system of Figure 3.1 is simultaneously subjected to two dif-
ferent forces F1(t) and F2(t). Let x1(t) correspond to the response of the system when it is 
subjected to F1(t) alone, and let x2(t) correspond to the response of the system when it is 
subjected to F2(t) alone. Further, let 
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        Figure 3.2  Kinetic diagram for mass-spring-damper system. 
 
 
 
 1 1 2 2( ) ( )     and    ( ) ( )f t F t k f t F t k= =  
 
If this is so then each force-displacement pair, {F1, x1} and {F2, x2}, must separately satisfy 
Eq. (3.1). Hence, 
 
 2 2

1 1 1 12 ( )x x x f tωζ ω ω+ + =�� �  (3.3) 
 
 2 2

2 2 2 22 ( )x x x f tωζ ω ω+ + =�� �  (3.4) 
 
Adding Eqs. (3.3) and (3.4), and exploiting the fact that the differential operators are linear, 
gives the relation 
 

 { } { } { } { }
2

2 2
1 2 1 2 1 2 1 22 2d dx x x x x x f f

dtdt
ωζ ω ω+ + + + + = +   

 
or, equivalently, 
 
 2 22 ( )x x x f tωζ ω ω+ + =�� �  (3.5) 
 
where 
 1 2( ) ( ) ( )x t x t x t= +  (3.6) 
 
and 

 1 2
1 2

( ) ( )
( ) ( ) ( )

F t F tf t f t f t
k
+= + =  (3.7) 

 
Equation (3.5) is seen to be identical to Eq. (3.1), and the response is seen to be the sum of 
the responses to the individual forces. We thus see that the response of the system subjected 
to two forces acting simultaneously is equal to the sum of the responses to the two forces 
acting individually. This process can be extended to any number of forces and is referred to 
as the principle of superposition. What permits this convenient property to occur when we 
add Eqs. (3.3) and (3.4) to get Eq. (3.5) is the fact that the differential operators in Eq. (3.1), 
and hence in Eqs. (3.3) and (3.4), appear to first power only as does the displacement. If this 
was not the case (say, for example, one or more of the operators was squared) then it is evi-
dent that the equation resulting from the sum of the individual equations of motion would 
not be of the same form as the original two equations. 
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Example 3.1 
Determine the response of an undamped mass-spring system to an applied force of 
the form 0( ) (1 )F t F bt= + , where 0F  and b are constants. 
 
Solution 
Let us consider the applied force as the sum of two forces, 1 0( )F t F=  and 

2 0( )F t F bt= . Let us further determine the response of the system (the solution) to 
each force acting separately. Thus, let us solve the following two problems: 
 

 2 2 0Fx x
k

ω ω+ =��  (a) 

 2 2 0F
x x bt

k
ω ω+ =��  (b) 

 
The solutions to Eqs. (a) and (b) are readily obtained as 

 

 0
1 1 2( ) cos sin

F
x t A t A t

k
ω ω= + +  (c) 

 0
2 1 2( ) cos sin

Fx t B t B t bt
k

ω ω= + +  (d) 

 
respectively. Based on the principle of superposition, the response of the system in 
question to the given applied force 0( ) (1 )F t F bt= + is obtained by adding Eqs. (c) 
and (d). Hence, 
 

 0
1 2

(1 )
( ) cos sin

F btx t C t C t
k

ω ω += + +  � (e) 

where 
 1 1 1 2 2 2   and   C A B C A B= + = +  
 
and the constants of integration, C1 and C2, are determined from the specific initial 
conditions for a given problem. 

 
 
 
 
 In preparation for the development and analyses of the next section, we finish the 
present discussion by establishing a result for complex forces and displacements (forces and 
displacements possessing both real and imaginary parts). To accomplish this, let us multiply 
Eq. (3.4) by the imaginary number 1i ≡ −  and add Eq. (3.3) to the resulting expression. 
This gives the differential equation 
 
 2 2 ˆˆ ˆ ˆ2 ( )x x x f tωζ ω ω+ + =�� �  (3.8) 
 
where 
 1 2ˆ( ) ( ) ( )x t x t ix t= +  (3.9) 
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and 

 1 2
1 2

( ) ( )ˆ ( ) ( ) ( )
F t iF tf t f t if t

k
+= + =  (3.10) 

It is seen from the above superposition that the real part of the complex response is the re-
sponse to the real part of the complex force and the imaginary part of the complex response 
is the response to the imaginary part of the complex force. We shall use this important 
property in the developments and analyses of the next section, and throughout our study of 
vibrations. 
 
 

3.3 HARMONIC FORCING 

An important class of forcing in the study of vibrations, both fundamentally and with regard 
to applications, is harmonic excitation. In this section we shall consider the specific class of 
forces whose time dependence is harmonic. That is, we shall consider forces that vary tem-
porally in the form of sine and cosine functions.  
 

3.3.1  Formulation 

Let us consider forcing functions of the form 
 
 0 0( ) cos    and   ( ) sinF t F t F t F t= Ω = Ω  (3.11) 
 
where F0 = constant is the amplitude of the applied force and Ω is the frequency of the ap-
plied force. The latter is referred to as the forcing frequency or the excitation frequency. 
 We can solve the problem of harmonic forcing for time dependence in the form of 
cosine or sine functions individually, however that will be left as an exercise. Instead we 
shall solve both problems simultaneously by using the principle of superposition (Section 
3.2) together with Euler’s formula, Eq. (1.61). Let us combine the two forcing functions 
described by Eqs. (3.11) by defining the complex forcing function  
 
 0 0 0

ˆ ( ) cos sin i tF t F t iF t F e Ω= Ω + Ω =  (3.12) 
 

It follows from Eqs. (3.8)–(3.10) that once the response to the complex force is determined 
then the response to the cosine function will be the real part of the complex response and 
the response to the sine function will be the imaginary part of the complex response. We 
shall therefore solve the problem  
 
 2 2 2

0
ˆˆ ˆ ˆ2 ( ) i tx x x f t f eωζ ω ω ω Ω+ + = =�� �  (3.13) 

where 
 0 0f F k=  (3.14) 
 
It may be seen that the parameter f0 corresponds to the deflection that the mass of the sys-
tem would undergo if it were subjected to a static force of the same magnitude, F0, as that 
of the dynamic load. 
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 The general solution of Eq. (3.13) consists of the sum of the complementary solution 
and the particular solution associated with the specific form of the forcing function consid-
ered. Hence, 
 ˆ ˆ ˆ( ) ( ) ( )c px t x t x t= +  (3.15) 
 
where subscripts c and p indicate the complementary and particular solution, respectively. 
The former corresponds to the solution to the associated homogeneous equation, as dis-
cussed in Chapter 2. Incorporating Eqs. (2.11), (2.74), (2.93) and (2.98) gives the general 
solutions for undamped and viscously damped systems as 
 
 ( ) cos( ) ( )          (0 1)t

d px t Ae t x tζω ω φ ζ−= − + ≤ <  (3.16) 
 
 [ ]1 2( ) cosh sinh ( )   ( 1)t

px t e A t A t x tζω ω ω ζ−= + + >z z  (3.17) 
 
 ( )1 2( ) ( )             ( 1)t

px t A A t e x tω ζ−= + + =  (3.18) 
 
where ωd and z are defined by Eqs. (2.70) and (2.92), respectively. The constants of integra-
tion are evaluated by imposition of the initial conditions on the pertinent form of the re-
sponse, Eq. (3.16), (3.17) or (3.18), after the specific form of the particular solution is de-
termined. 
 It is seen that the complementary solution damps out and becomes negligible with 
respect to the particular solution after a sufficient amount of time. (Note that the undamped 
case, ζ = 0, is an idealization for very light damping. Since all systems possess some damp-
ing we shall, for the purposes of the present discussion, consider the complementary solu-
tion to decay for vanishing damping as well.) Since we are presently considering forces that 
act continuously over very long time intervals, the particular solution for these cases corre-
sponds to the steady state response of the system. As an example, imagine that we are mod-
eling the behavior of a machine or vehicle that is switched on and then runs for the entire 
day. The normal operating state will be achieved a short time after the system is turned on, 
after the transients have died out. This state is referred to as the steady state, and the re-
sponse during this time is referred to as the steady state response. Thus, for any loading 
which repeats itself over long intervals of time, including the present harmonic loading, we 
denote the particular solution as xss. Thus, xp ↔  xss for the class of loading considered in 
this chapter. We first examine the steady state response for undamped systems and then 
study the effects of damping on forced vibrations. 
 

3.3.2  Steady State Response of Undamped Systems 

Though all systems possess some degree of damping it is instructive, as well as practical, to 
examine the response of  undamped systems. We therefore first consider the special case of 
vanishing damping.  
 To establish the steady state response we seek to determine the complex function ˆssx  
that, when substituted into the left hand side of Eq. (3.13) with ζ = 0, results in the right 
hand side of that equation. Given that the time dependence of the forcing function is expo-
nential, and given that differentiation of exponentials results in exponentials, let us assume 
a particular solution of the form 
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 ˆˆ ˆ( ) ( ) i t

p ssx t x t Xe Ω= =  (3.19) 
 
where X̂ is a (possibly complex) constant to be determined. Substitution of the assumed 
form of the solution, Eq. (3.19), into the governing equation, Eq. (3.13), results in the alge-
braic equation 
 2 2 2

0
ˆ( ) i t i ti Xe f eω ωΩ Ωª ºΩ + =¬ ¼    

 
which may be solved for X̂  to give 
 

 0
2

ˆ
1

f
X =

− Ω
 (3.20) 

where  
 /ωΩ ≡ Ω  (3.21) 
 
Equivalently, 
 ˆ iX Xe− Φ=  (3.22) 
where 
 ( )0 0X f= Γ Ω  (3.23) 
 

 ( )0 2

1
1

Γ Ω =
− Ω

 (3.24) 

and 

    0   when   1
  when   1π

Φ = Ω <
Φ = Ω >

 (3.25) 

 
Substituting Eq. (3.20) into Eq. (3.19) and using Euler’s formula gives the particular solu-
tion 

 [ ] [ ]0
2

ˆ ( ) cos( ) sin( ) cos sin
1ss

fx t X t i t t i t= Ω − Φ + Ω − Φ = Ω + Ω
− Ω

 (3.26) 

 
As discussed at the end of Section 3.2, the response to the real part of a complex forcing 
function is the real part of the complex response. Likewise, the response to the imaginary 
part of a complex forcing function is the imaginary part of the complex response. Thus, 
pairing Eq. (3.26) with Eq. (3.12) in this sense, we find the following responses:  
 
if 0( ) cosF t F t= Ω , then 
 

 0
2( ) cos( ) cos

1ss
fx t X t t= Ω − Φ = Ω

− Ω
 (3.27) 

 
if 0( ) sinF t F t= Ω , then  

 0
2( ) sin( ) sin

1ss
fx t X t t= Ω − Φ = Ω

− Ω
 (3.28) 
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     Figure 3.3  Typical time histories of excitation, ( ),f t and response, ( ),x t for 1.Ω >  
 
 
 
The parameter X is seen to be the amplitude of the steady state response. Consequently, the 
parameter Γ0 is referred to as the magnification factor, and the angle Φ is seen to be the 
phase angle of the steady state response measured with respect to the excitation.  
 It may be seen that the steady state response is in phase with the force when the exci-
tation frequency is less than the natural frequency of the system and that the response is π 
radians out of phase with the force, and hence lags the force by tlag = π /Ω, when the excita-
tion frequency is greater than the natural frequency. Thus, when in steady state motion, the 
mass oscillates about its equilibrium position with frequency Ω and constant amplitude X, 
completely in phase or 180 degrees out of phase with the force according to Eq. (3.25). 
Typical time histories of the excitation and the corresponding response of the system are 
displayed in Figure 3.3 for the case when 1Ω > . In addition, it may be seen from Eq. (3.23) 
that the magnification factor corresponds to the ratio of the amplitude of the deflection in-
duced by the applied harmonic force to the deflection that would be produced by an applied 
static force having the same magnitude as the dynamic force. The magnification factor 
therefore measures the magnification of the static response due to the dynamic nature of the 
applied force and mechanical system and, as will be demonstrated in subsequent sections, is 
an important parameter in design considerations where vibratory behavior is pertinent. 
 
 
 

Example 3.2 
A 4 kg mass is attached to a spring of stiffness 2 N/m. If the mass is excited by the 
external force F(t) = 5cos2t N, where t is in seconds, determine the amplitude and 
phase of the steady state response. Write down the response. Plot the steady state re-
sponse of the system and label pertinent measures. 
 
 

�

I�t� 

x�t� 

t 

t 

I 
� 

−I 
� 

� 

� 

I 

−I 

� 

� 
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Solution 
For the mass-spring system, the natural frequency is 
 

 2 .7071 rad/sec
4

ω = =  (a) 

 
The frequency of the given excitation is Ω = 2 rad/sec. Thus, 
 

 2 2.828 ( 1)
0.7071

Ω = = >  

 
It then follows from Eq. (3.25) that 
 
 πΦ =  � (b) 
 
The amplitude of the steady state response is next computed using Eq. (3.23). Hence, 
 

 
2

5 2 0.357 m = 35.7 cm
1 (2.828)

X = =
−

 � (c) 

 
The steady state response of the mass-spring system is now calculated using Eq. 
(3.27). Thus, 
 
 ( ) 0.357 cos(2 ) 0.357 cos 2  m 35.7 cos 2  cmssx t t t tπ= − = − = −  � (d) 
 
The force and response histories are displayed below (Figure E3.2). 
 

   Figure E3.2 
 

� � � � � � � � �
í�

�

�

� � � � � � � � �
í���

í���

�

���

���

)�t� 

x�t� 

t 

t 
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(P) 

(VHFV) 

(VHFV) 
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Example 3.3 
The teetering glider of Example 2.9 undergoes a sustained breeze while on the 
ground. The force imposed by the breeze consists of a constant uniform lift force of 
magnitude 0F  (< mg) and a nonuniform time dependent perturbation. The perturba-
tion of the wind force manifests itself as the equivalent of two harmonic forces, each 
of magnitude Fε and frequency Ω, mutually out of phase and acting at the half length 
points of the wings as indicated. If the left force, FL, lags the right force, FR, by 180°, 
determine the steady state response of the glider. 
 
  

 
       Figure E3.3  Glider with wind load perturbation. 
 
Solution 
The perturbed portion of the wind forces may be expressed as follows: 
 
 ( ) sinRF t F tε= Ω   

 
 ( ) sin( ) sinLF t F t F tε επ= Ω − = − Ω   
 
To derive the equations of motion for the present case, we augment the kinetic dia-
gram of Example 2.9 by including the wind forces. The inertia portion of the kinetic 
diagram remains the same. Adding the moments of the wind forces to the develop-
ment of Example 2.9, and linearizing as for that problem, gives the equation of mo-
tion for the forced system as 
 
   2 2sin ( )GLF t mg m r Rε θ θª ºΩ − = + −¬ ¼

��A A  (a) 
 
Rearranging terms gives the equation of motion for the wind excited glider as 
 

 sin
eff eff

LFg g t
L L mg

εθ θ+ = Ω��
A

 (b) 

where 
 2 2( )eff GL r Rª º= + −¬ ¼A A  (c) 
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Equation (b) may be written in the “standard form” 
 

 2 2 sinf tεθ ω θ ω+ = Ω��  (d) 
where 

 2

eff

g
L

ω =  (e) 

and 

 
LF

f
mg

ε
ε =

A
 (f) 

 
With Eqs. (d)–(f) identified, the response of the system can now be written directly 
from Eq. (3.28). Doing this we find that the steady state response of the glider is  

 

 ( )2
( ) sin

1 eff

f
t t

L g
εθ = Ω

− Ω
 � (g) 

 
 
 
 The discussion to this point has pertained to excitation frequencies for which .ωΩ ≠  
However, upon examination of Eqs. (3.23), (3.24), (3.27) and (3.28), it is seen that the am-
plitude, and hence the solutions, become singular when 2 1 ( ).ωΩ = Ω =  Though this tells 
us that something interesting occurs when the forcing frequency takes on the value of the 
natural frequency of the system, the solutions given by Eqs. (3.26)–(3.28) are actually inva-
lid when 1.Ω =  This becomes evident when we go back and examine the equation of mo-
tion for this special case (ζ = 0). We must therefore re-solve the problem for the case where 
the forcing frequency equals the natural frequency of the system. 
 

The Phenomenon of Resonance 
When ζ = 0 and 1Ω = (Ω = ω), Eq. (3.13) reduces to the form 
 
 2 2

0ˆ ˆ i tx x f e ωω ω+ =��  (3.29) 
 
It is seen that, for this case, the time dependence of the forcing function is of precisely the 
same form as the solution to the corresponding homogenous equation studied in Section 
2.1. Thus, any solution of the form ˆ( ) i tx t Ce ω= will yield zero when substituted into the 
left-hand side of Eq. (3.29). The particular solution for this special case is therefore found 
by seeking a solution of the form 
 
 ˆˆ ( ) i t

ssx t Cte ω=  (3.30) 
 
where Ĉ is a (complex) constant. Substituting Eq. (3.30) into Eq. (3.29) and solving for the 
constant gives 
 1

02Ĉ i fω= −  (3.31) 
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Substituting Eq. (3.31) back into Eq. (3.30) and using Euler’s formula gives the particular 
solution of Eq. (3.29) as 
 

or, equivalently, 
[ ]

[ ]

1
02

1
02

ˆ ( ) sin cos

ˆ ( ) cos( / 2) sin( / 2)

ss

ss

x t f t t i t

x t f t t i t

ω ω ω

ω ω π ω π

= −

= − + −
 (3.32) 

 
As per earlier discussions, the real part of the solution is the response to the real part of the 
complex forcing function, and the imaginary part of the solution is the response to the im-
aginary part of the complex forcing function. Thus, 
 
when 0( ) cos ,F t F tω=  
 
 1

02( ) sin ( ) cos( / 2)ssx t f t t X t tω ω ω π= = −  (3.33) 
 
when 0( ) sin ,F t F tω=  
 
 1

02( ) cos ( )sin( / 2)ssx t f t t X t tω ω ω π= − = −  (3.34) 
 
where 
 1

02( )X X t f tω= =  (3.35) 
 
is the (time dependent) amplitude of the steady state response. It is seen that, when the forc-
ing frequency is numerically equal to the natural frequency of the undamped system, the 
steady state response of the system is out of phase with the force by Φ = π/2 radians and 
hence lags the force by tlag = π /2ω. The amplitude, X, is seen to grow linearly with time. A 
typical response is displayed in Figure 3.4. We see that, when the undamped system is ex-
cited by a harmonically varying force whose frequency is identical in value to the natural 
frequency of the system, the steady state response increases linearly in time without bound. 
This phenomenon is called resonance. Clearly the energy supplied by the applied force is 
being used in an optimum manner in this case. We certainly know, from our discussions of 
free vibrations in Chapter 2, that the system moves naturally at this rate (the natural fre-
quency) when disturbed and then left on its own. The system is now being forced at this 
very same rate. Let’s examine what is taking place more closely. 

To better understand the mechanics of resonance let us examine the work done by the 
applied force over one cycle of motion, nT < t < (n + 1)T, where T is the period of the exci-
tation (and thus of the steady state response as well) and n is any integer. We shall compare 
the work done by the applied force, F(t), for three cases; (i) 1,Ω <  (ii) 1Ω >  and (iii) 

1Ω = .  
 From the definition of work given in Section 1.5.2 [see Eqs. (1.85) and (1.87)], and 
utilization of the chain rule of differentiation, the work done by the applied force for the 
single degree of freedom system under consideration is seen to be given by the relation 
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   Figure 3.4  Time history of the response of a system at resonance. 
 
 
 

 
2 2

1 1

x t

x t
Fdx Fx dt= =³ ³ �/  (3.36) 

 
where  x1 = x(t1), x2 = x(t2) and, for the interval under consideration, t1 = nT and T2 = (n + 
1)T for any given n. 
 For the sake of the present discussion we will assume, without loss of generality, that 
the forcing function is of the form of a cosine function. The response is then given by Eq. 
(3.33). Typical plots of the applied force and the resulting steady state response for cases 
(i)–(iii) are displayed as functions of time over one cycle in Figures 3.5a–3.5d, respectively. 
Noting that the slope of the response plot corresponds to the velocity of the mass, we can 
examine the work done by the applied force qualitatively during each quarter of the repre-
sentative period considered for each case. 
 
 

Case (i): 1Ω <  
Consideration of Figures 3.5a and 3.5b shows that F > 0 and 0ssx <� in the first quad-
rant. Thus, it may be concluded from Eq. (3.36) that / < 0 over the first quarter of 
the period. If we examine the second quadrant, it is seen that F < 0 and 0ssx <� during 
this interval. Hence, / > 0 during the second quarter of the period. Proceeding in a 
similar manner, it is seen that F < 0 and 0ssx >� during the third quarter of the period. 
Hence, / < 0 during this interval. Finally, it may be observed that F > 0 
and 0ssx >� during the fourth quarter of the period. Therefore, / > 0 during the last 
interval. It is thus seen that the applied force does positive work on the system during 
half of the period and negative work during half of the period. Therefore, the applied 
force reinforces the motion of the mass during half of the period and opposes the mo-
tion of the mass during half of the period. In fact, the total work done by the applied 
force over a cycle vanishes for this case. Hence, the motion of the mass remains 
bounded for situations when 1Ω < . 

�

x�t� 

t 
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Figure 3.5  Time histories of (a) the applied force, and the corresponding steady response of the 
system when (b) 1Ω < , (c) 1Ω > , and (d) 1Ω = . 

 
 
 
 

Case (ii): 1Ω >  
Proceeding as for case (i), it is seen from Figures 3.5a and 3.5c that / > 0 during the 
first and third quarters of the period, and that / < 0 for the second and fourth quar-
ters of the period. Thus, as for case (i), the applied force does positive work on the 
system during half of the period and negative work during half of the period. It there-
fore reinforces the motion of the mass for half of the cycle and opposes it during half 
of the cycle. As for case (i), the total work done by the applied force during a cycle 
vanishes and the motion of the mass remains bounded. 
 
 

Case (iii): 1Ω =  
For this case it may be seen, upon consideration of Figures 3.5a and 3.5d together 
with Eq. (3.36), that F > 0 and 0ssx >� during the first and fourth quarters of the peri-
od. Hence, / > 0 during these intervals. It may be similarly observed that  F < 0 
and 0ssx <� during the second and third quarters of the period. Therefore / > 0 during 
these intervals as well. Thus, for the case when Ω = ω, the applied force does positive 
work in moving the mass during the entire period. Hence, during resonance, the phase 
relationship between the applied force and the response of the system is such that the 
force continuously reinforces the motion of the mass (does positive work). The am-
plitude of the displacement of the mass thus increases continuously. It is seen that, 
during resonance, the system uses the work imparted by the applied force in the most 
optimum manner possible. 
 

�

�

�

   

�
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Example 3.4 
A 10 kg mass is attached to the end of a 
1 m long cantilever beam of rectangular 
cross section as shown. If the mass at-
tached to the 30 mm by 5 mm beam is 
driven by a harmonic point force it is 
found that the beam vibrates violently 
when the forcing frequency approaches 
3 cps. Determine Young’s modulus for the beam. 
 
Solution 
The beam has clearly achieved resonance at this frequency. Hence, 

  
 2 2 (3) 6  rad/secω πν π π= Ω = = =  (a) 

 
From Eqs. (2.2) and (1.14), 
 

 2
3

3k EI
m mL

ω = =  (b) 

 
Solving Eq. (b) for Young’s modulus, substituting Eq. (a) into the resulting expres-
sion and evaluating the final form in terms of the given values of the system parame-
ters yields 
 

 
2 3 2 3

11 2
3

(6 ) (10)(1) 1.05 10  N/m
3 3 0.005(0.030) 12
mLE
I

ω π= = = ×
ª º¬ ¼

 � (c) 

  
 
 

Example 3.5  
A system consisting of a 1 kg mass attached to a spring of stiffness k = 900 N/m is 
initially at rest. It is subsequently excited by the force F(t) =5cos(30t) N, where t is 
measured in seconds. (a) Determine the displacement of the mass due to a static 
force of equivalent magnitude. (b) Determine the displacement of the mass 25 se-
conds after the given time dependent force is applied. 
  
Solution 
(a) 
Applying Eq. (3.14): 

 0
0

5 0.00556 m
900

Ff
k

= = =  � (a) 

(b) 
Applying Eq. (2.2): 

 900 30.0 rad/sec
1

k
m

ω = = =  (b)  
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Now, for the given excitation, Ω = 30 rad/sec. Hence, 
 

 30 1
30ω

ΩΩ = = =  (c) 

 
This is evidently a resonance condition for the undamped system under considera-
tion. 
 Though we argued that the complementary solution damps out after some time 
for real systems, it is instructive to include it for the present problem since the sys-
tem is initially at rest and since the time of interest after application of the load is fi-
nite. Therefore, we have from Eqs. (3.16) and (3.33) that the forced response is given 
by 
 1

02( ) cos( ) sinx t A t f t tω φ ω ω= − +  (d) 
 
 To evaluate the constants of integration, A and φ, we must impose the given ini-
tial conditions on Eq. (d). Doing so we find that 
 
 (0) 0 cos( )x A φ= = −  
  either  0  or  cos( ) 0A φ� = − =  (e) 

and 
 (0) 0 sin( )x Aω φ= = − −�  
  either  0  or  sin( ) 0A φ� = − =  (f) 

 
Since both cos(−φ) and sin(−φ) cannot vanish simultaneously, we conclude from 
Eqs. (e) and (f), that 

 
 0A =  (g) 

 
Upon substitution of Eq. (g) into Eq. (d) it is seen that the response of the system 
which is initially at rest is simply the steady state response 
 
 1

02( ) sin ( 0)x t f t t tω ω= ≥  (h) 
 

Substitution of the given values of the system parameters into Eq. (h), or equivalent-
ly Eq. (3.33), gives the displacement in question. Hence, 
 

 { }25

(0.00556) (30)(25)sin 30(25) 1.55 m
2t

x = = =  � (i) 

 
It is interesting to note that  
 

 25

0

1.55 279
0.00556

t
x

f
= = =  (j) 
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Thus, within the first 25 seconds of application, the dynamic force deflects the ini-
tially quiescent mass by a factor of 279 times greater than the deflection that would 
be imparted by a static force of equal magnitude. (We remark that, at this stage, the 
system may have passed beyond the critical damage state or beyond the range of va-
lidity of the linear spring model employed, depending on the actual system being 
represented by this model and its dimensions and material properties.) 

 
 
 

The Phenomenon of Beating 
It was seen that resonance of an undamped system occurs when the mass is harmonically 
forced at a frequency equal to the natural frequency of the system. Another interesting phe-
nomenon occurs when such a system is forced harmonically at a frequency very near, but 
not equal to, the natural frequency of the system. We examine this situation next. 
 Consider a single degree of freedom system subjected to sinusoidal forcing 

0( ) sin .F t F t= Ω  If the system is initially undisturbed when the force is applied, i.e.; if 
(0) 0x =  and (0) 0x =� , then the response is found by incorporating Eq. (3.28) into Eq. 

(3.16) and then imposing the stated initial conditions. Doing this, we find that the response 
takes the form 
 

 0
2( ) sin sin

1
f

x t t tωª º= Ω − Ω¬ ¼− Ω
 (3.37) 

 
The solution described by Eq. (3.37) is valid for all .ωΩ ≠  However, let us now restrict our 
attention to the situation where the forcing frequency is very near, but not equal to, the natu-
ral frequency of the system ( ωΩ ≈ ). For this case, the solution can be simplified some-
what and, more importantly, it can be put into a form that has a clear physical interpretation. 
 If the forcing frequency is very close in value to the natural frequency of the system, 
the quotient appearing in Eq. (3.37) can be simplified as follows: 
 

 [ ]
0 0 0 0

2 (1 )(1 ) 1 (1 ) 21
f f f f

ε ε ε
= = ≅

− Ω + Ω + −− Ω
 (3.38) 

where 
 1    (|| || 1)ε ε≡ − Ω �  (3.39) 
 
Let us next introduce the average between the excitation and natural frequencies, ωa, and its 
conjugate frequency, ωb. Hence, 
 

 
2a

ωω + Ω≡  (3.40) 

 

 1
22b

ωω εω− Ω≡ =  (3.41) 

 
Next, let us use the first of the identities 
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 sin    and   cos  
2 2

i i i ie e e e
i

ψ ψ ψ ψ

ψ ψ
− −− += =  

 
(see Problem 1.19) in the trigonometric terms of Eq. (3.37). Doing this, then incorporating 
Eqs. (3.40) and (3.41) and regrouping terms gives 
  

 sin sin 2 sin
2 2

b b a ai t i t i t i te e e et t t
i

ω ω ω ω

ω ε ω
− −§ ·§ ·− +Ω − Ω = − +¨ ¸¨ ¸

© ¹© ¹
 

 
Using the aforementioned identities (Problem 1.19) once again simplifies the above equali-
ty to the convenient form 
  

 
1
2

sin sin 2sin cos sin
                          2sin( ) cos

b a

a

t t t t t
t t

ω ω ω ε ω
εω ω

Ω − Ω = − +
≅ −

 (3.42) 

 
Finally, substituting Eqs. (3.38) and (3.42) into Eq. (3.37) gives the desired physically in-
terpretable form of the response as 
 
 ( ) ( )sin( / 2)ax t X t tω π≅ −  (3.43) 
where 

 0 1
2( ) sin( )

f
X t tεω

ε
=  (3.44) 

 
The response described by Eqs. (3.43) and (3.44) is sketched in Figure 3.6. It may be seen 
from the solution, and with the aid of the figure, that the system oscillates at the average 
value of the excitation and natural frequencies and within an envelope corresponding to a 
time dependent amplitude that oscillates at the much slower frequency ωb = εω / 2. This 
phenomenon is referred to as beating. It is also seen that the response is out of phase with 
the excitation by Φ ≅ π / 2 radians and hence that the displacement lags the force by tlag ≅ π 
/ 2ωa for beating as for resonance. Thus, when the forcing frequency is very near but not 
equal to the natural frequency of the system, the system nearly achieves resonance. Howev-
er, in this case, the response does not “run away,” but rather is “captured” and remains 
bounded with the amplitude oscillating at a relatively slow rate. In fact, if we make the 
small angle approximation for the sine function in Eq. (3.44), 
  

 0 1 1
02 2( ) sin( )

fX t t f tεω ω
ε

= ≈  

 
and let aω ω≈  in the sine function of Eq. (3.43), then the solution takes the form 
 
 1

02( ) sin( / 2)x t f t tω ω π≈ −  
 
which is identical to the resonance solution given by Eqs. (3.34) and (3.35). Thus, as indi-
cated in Figure 3.6, beating parallels resonance for times that are small compared with the 
natural period of the system. 

www.konkur.in



3│ Forced Vibration of Single Degree of Freedom Systems – 1 153 

       Figure 3.6  Time history of response when ,ωΩ ≈  demonstrating beating. 
 
 
 Our study of the behavior of undamped systems subjected to harmonic forcing has 
revealed some interesting and important characteristics. We shall next examine how damp-
ing alters this behavior. 
 
 

3.3.3  Steady State Response of Systems with Viscous Damping 

In this section we consider the response of viscously damped systems to harmonic excita-
tion. It was seen in Section 3.3.1 that the complimentary solution damps out over time. This 
is not the same for the particular solution associated with the steady state response. We shall 
first obtain the corresponding solution and then examine the associated response under var-
ious conditions. As for the case of vanishing damping, we shall obtain the response for both 
cosine and sine excitation functions simultaneously by solving the corresponding problem 
for complex excitation. The governing equation is given by Eq. (3.13). 
 We seek to determine the function which, when substituted into the left-hand side of 
Eq. (3.13) results in the exponential function on the right-hand side of that equation. As for 
the case of vanishing damping considered in Section 3.3.2, we assume a particular solution 
of the form 
 ˆˆ ( ) i t

ssx t Xe Ω=  (3.45) 
 

where X̂ is a complex constant that is yet to be determined. Substitution of Eq. (3.45) into 
Eq. (3.13) results in the algebraic equality 
 
 2 2 2

0
ˆ( ) 2 ( ) i t i ti i Xe f eωζ ω ωΩ Ωª ºΩ + Ω + =¬ ¼  

 
which when solved for X̂ gives 
 

 ( )
0

2
ˆ

1 2
f

X
i ζ

=
− Ω + Ω

 (3.46) 

 
where Ω  is defined by Eq. (3.21). Let us next multiply both the numerator and the denom-
inator of Eq. (3.46) by the complex conjugate of the denominator. This will put the complex 
amplitude in the usual complex form ˆ ˆ ˆRe ImX X i X= + . Hence, multiplying the right 
hand side of Eq. (3.46) by the unit expression 
 

� 

;�t� x�t� 

t 

; UHV 
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( )
( )

2

2

1 2

1 2

i

i

ζ
ζ

− Ω − Ω

− Ω − Ω
 

 
gives the alternate form of the complex amplitude 
 

 
( ) ( )

( )20
2 22

ˆ 1 2
1 2

f
X i ζ

ζ
ª º= − Ω − Ω¬ ¼− Ω + Ω

 (3.47) 

 
Equation (3.47) can be expressed in exponential form with the aid of  Eq. (1.62). This gives 
 
 ˆ iX Xe− Φ=  (3.48) 
 
where  
 ( )0

ˆ ;X X f ζ= = Γ Ω  (3.49) 

 

 
( ) ( )2 220

1

1 2

X
f ζ

Γ ≡ =
− Ω + Ω

 (3.50) 

and 

 1
2

2tan
1

ζ− § ·ΩΦ = ¨ ¸− Ω© ¹
 (3.51) 

 
Substitution of Eq. (3.48) into Eq. (3.45) gives the particular solution to Eq. (3.13). Hence,  
 
 [ ]( )ˆ ( ) cos( ) sin( )i t

ssx t Xe X t i tΩ −Φ= = Ω − Φ + Ω − Φ  (3.52) 
 
From our discussion of superposition in Section 3.2 we see that if the force is of the form of 
a cosine function then the response is given by the real part of Eq. (3.52). Likewise, if the 
force is of the form of a sine function then the corresponding response is given by the imag-
inary part of Eq. (3.52). It follows that  
 
if 0( ) cosF t F t= Ω , then 
 
 0( ) cos( ) ( ; ) cos( )ssx t X t f tζ= Ω − Φ = Γ Ω Ω − Φ  (3.53) 
 
and if 0( ) sinF t F t= Ω , then 
 
 0( ) sin( ) ( ; )sin( )ssx t X t f tζ= Ω − Φ = Γ Ω Ω − Φ  (3.54) 
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         Figure 3.7  Time histories of excitation and corresponding steady state response.  
 
 
 
It is seen that, after the transients die out, the system oscillates with the frequency of the 
excitation, but that the displacement of the mass lags the force by the time tlag = Φ / Ω. The 
angle Φ is thus the phase angle of the steady state response and characterizes the extent to 
which the response lags the excitation. (The phase angle Φ should not be confused with the 
phase angle φ associated with the transient or free vibration response appearing in Eqs. 
(3.16) or (2.15), respectively.) The parameter X, defined by Eq. (3.49), is seen to be the 
amplitude of the steady state response of the system to the applied harmonic force. The 
amplitude of the response is seen to depend on the effective static deflection, f0, the damp-
ing factor, ζ, and the frequency ratio Ω . Representative plots of the applied force and the 
resulting steady state response are displayed as functions of time in Figure 3.7. 
 It may be seen from Eq. (3.49) that the parameter Γ corresponds to the ratio of the 
amplitude of the dynamic response to that of the effective static response. For this reason, Γ 
is referred to as the magnification factor as it is a measure of the magnification of the re-
sponse of the system to the harmonic force above the response of the system to a static 
force having the same magnitude. Note that Eq. (3.24) is a special case of Eq. (3.50). That 
is,  
    ( ) ( )0 ,0Γ Ω = Γ Ω  
 
It is seen from Eqs. (3.50) and (3.51) that, for a given system, the parameters Γ and Φ are 
solely dependent on the frequency ratio Ω . Plots of the magnification factor and the corre-
sponding phase angle of the steady state response are displayed in Figures 3.8 and 3.9 as 
functions of the ratio of the excitation frequency to the undamped natural frequency of the 
system for a range of values of the damping factor.  
 Consideration of Figures 3.8 and 3.9 reveals several important features. It is seen that 
the magnification factor, and hence the response of the system, achieves a maximum when 
the frequency ratio is at or near 1Ω = , depending on the value of the damping factor for the 
particular system of interest. (We shall discuss this optimum response shortly.) We note that 

)�t� 

2π/Ω 

2π/Ω 
Φ/Ω 

t 

t 

x�t� 

I � Γ 

Γ � I − 

� 

� 
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in all cases, except zero damping, the response is bounded. We also note that 1Γ →  and 
0Φ →  as 0Ω → , regardless of the value of the damping factor. This is the static limit. 

That is, as 0Ω → , the magnitude of the dynamic response approaches that of the static 
response, and the motion of the mass becomes synchronized with the applied force as the 
frequency of the excitation becomes small compared with the natural frequency of the sys-
tem. The system therefore behaves quasi-statically when the forcing frequency is low 
enough. We have all had the experience of trying to carry a delicate object very slowly so as 
not to disturb it. When we do this, we are attempting to achieve the static limit for the object 
we are carrying. In the opposite limit, it is seen that 0Γ →  and πΦ →  as Ω → ∞ , re-
gardless of the value of the damping factor. That is, the system is essentially unaffected by 
the applied harmonic force when the frequency of the excitation is very large compared 
with the natural frequency of the system. Hence, for this case, the motion of the mass is 
completely out of phase with the force. Under these conditions, the period of the excitation 
is very small compared with the natural time scale of the system, the period of free vibra-
tion, so the system effectively does not “sense” the excitation for large enough forcing fre-
quencies. As this limit is approached, the force is essentially moving too fast for the system 
to react to it, so the system remains almost stationary. 
 It is seen from Figure 3.8 that for a large range of values of ζ the amplitude of the 
dynamic response of the system achieves its maximum when 1Ω ≈ . It may be observed 
that the maximum shifts left, to lower values of the frequency ratio, as the damping factor 
increases. In fact, if the damping of the system is large enough, no maximum is seen at all. 
To determine the frequency ratio at which the peak response occurs, ,pkΩ = Ω  we simply 
differentiate the magnification factor with respect to the frequency ratio, set the resulting 
expression to zero and solve the corresponding equation for .pkΩ  Doing this, we find that 
Γ = Γmax when 
 
 ( )21 2 0 1 2pk ζ ζΩ = Ω ≡ − < <  (3.55) 

 
This is the resonance condition for the damped system. It is seen that 1pkΩ →  as 0ζ → , 
which recovers the resonance condition for the case of vanishing damping discussed in Sec-
tion 3.3.2. It may be further seen from Figure 3.8 and Eq. (3.55) that for 1 2ζ >  no peak 
is achieved in the Γ vs. Ω curve. In fact, for these cases, 1Γ ≤ with the equality being 
achieved when .0Ω =  Damping is thus seen to retard the motion of the system and there-
fore to slow things down. It should be emphasized that in the above measures the forcing 
frequency is divided by the natural frequency for vanishing damping. Recall that the natural 
frequency, ωd, for an underdamped system 2( 1)ζ < is given by Eq. (2.70), from which it 
follows that  
 

 
2

2

1 2 1
1

pk
pk

d

ζ
ω ζ
Ω −Ω ≡ = <

−
�  (3.56) 

 
Thus, for nonvanishing damping, the peak response is seen to occur when the forcing fre-
quency is less than the damped natural frequency as well, though it may be noted that 

pk pkΩ < Ω� . It is seen from Figure 3.9 that / 2πΦ ≈ at resonance. 
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Figure 3.8  Magnification factor as a function of frequency ratio for various values of the damping 
factor. 
 
 
 
 

 
Figure 3.9  Phase angle as a function of frequency ratio for various values of the damping factor. 
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Example 3.6 
A mechanical system represented as a mass-spring-damper system has the properties 
m = 4 kg,  k = 2 N/m and c = 3 N-sec/m. Determine the amplitude of the steady state 
response of the system, (a) if the mass is subjected to the external force F(t) = 5sin2t 
N, (b) if it is subjected to the force ( ) 5sinF t tω= N, (c) if it is subjected to the force 
F(t) = 5sin(ωd t) N, and (d) if it is subjected to the force F(t) = 5sin(Ωpk t) N. (In each 
case, t is in seconds.) 
 
Solution 
Let us first calculate the system parameters. Hence, 
 

 2 .7071 rad/sec
4

k
m

ω = = =  (a) 

 

 3 0.5303
2 2(0.7071)(4)

c
m

ζ
ω

= = =  (b) 

 
 2 21 0.7071 1 (0.5303) 0.5995 rad/secdω ω ζ= − = − =  (c) 
  
Further, for each case, 
 

 0
0

5 2.5 m
2

F
f

k
= = =  (d) 

 
(a) 
For this case, 

 2 2.828
0.7071ω

ΩΩ = = =  (e) 

 
For this excitation frequency the magnification factor is calculated as 
 

 
( ) ( )

[ ]

2 22

2 22

1

1 2

1  0.1313
1 (2.828) 2(0.5303)(2.828)

ζ
Γ =

− Ω + Ω

= =
ª º− +¬ ¼

 (f) 

 
We now calculate the corresponding amplitude of the steady state response, 
 
 0 (2.5)(0.1313) 0.3283 m 32.83 cmX f= Γ = = =  � (g) 
 
Let us compare the amplitude of the steady state response just calculated with the 
amplitude calculated in Example 3.2 for the same system without damping subjected 
to the same excitation. For the undamped system the amplitude of the steady state re-
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sponse was calculated to be X = 35.7 cm. We see that the damping has reduced the 
amplitude of the response by about 3 cm at this excitation frequency.  
 
(b) 
For the case where the forcing frequency has the same value as the undamped natu-
ral frequency, 1Ω =  and hence, 
 

 1 1 0.9429
2 2(0.5303)ζ

Γ → = =  (h) 

 
Thus, the amplitude of the steady state response when the excitation frequency has 
the same value as the undamped natural frequency is 
 
 (2.5)(0.9429) 2.355 mX = =  � (i) 
(c) 
For the case where the excitation frequency has the same value as the damped natu-
ral frequency,  

 
2

21
1 (0.5303) 0.8478

ω ζ
ω
−

Ω = = − =  (j) 

 
The magnification factor is then 
 

 
[ ]2 22

1 1.061
1 (0.8478) 2(0.5303)(0.8478)

Γ = =
ª º− +¬ ¼

 (k) 

 
Thus, the magnitude of the steady state response for this excitation frequency is 
 
 (2.5)(1.061) 2.653 mX = =  � (l) 
(d) 
For the peak (resonance) response, the normalized excitation frequency is calculated 
using Eq. (3.55). Hence, 
 
 2 21 2 1 2(0.5303) 0.6615pk ζΩ = − = − =  (m) 
 
The magnification factor for the peak (resonance) response is next calculated to be 
 

 
[ ]2 22

1 1.112
1 (0.6615) 2(0.5303)(0.6615)

Γ = =
ª º− +¬ ¼

 (n) 

 
The amplitude of the steady state response at resonance is then 
 
 (2.5)(1.112) 2.780 mX = =  � (o) 
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Example 3.7 
A sensor and actuator are attached to a 
mechanical system in an effort to control 
any vibrations that may occur. The total 
mass of the system is 6 kg, its effective 
stiffness is 2 N/m and its coefficient of 
viscous damping is 3.7 N-sec/m. If the 
sensor detects a sustained harmonic vi-
bration of amplitude 60 cm and frequen-
cy 2 rad/sec, what force must be applied 
by the actuator to counter the observed 
motion?  Figure E3.7-1  Mass-spring system  
   with applied force and actuator force. 
 
Solution 
To counter the observed motion, the actuator must apply a force that would produce 
a motion that is equal in magnitude and 180˚ out of phase with the applied force. 
That is, using superposition, we wish the actuator to apply a force such that 
 
 ( ) ( ) ( ) 0obs actx t x t x t= + =  (a) 
 
Since the observed motion is sustained (i.e., is steady state) our objective can be ac-
complished by applying a force that is of equal amplitude and 180˚ out of phase with 
the applied force. (See Figures E3.7-1 and E3.7-2.) We must therefore determine the 
characteristics of the applied force from the motion of the system detected by the 
sensor.   
 We may determine the amplitude of the applied force from the amplitude of the 
observed response as follows. The observed response may be expressed mathemati-
cally as 
 ( ) sin( ) 0.6sin(2 ) mobs obs obsx t X t t= Ω − Φ = − Φ  (b) 
 
(The phase angle is unknown, but is merely a reference in this case. Note that a force 
that is 180˚ out of phase with the applied force will produce a response that is 180˚ 
out of phase with the observed motion and Eq. (a) will be satisfied.) 
 
 
 

        Figure E3.7-2  Time history of applied force and actuator force. 
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� 

t 
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For the modified system, 
 

 2 0.5774 rad/sec
6

k
m

ω = = =  (c) 

and 

 3.7 0.5340
2 2(0.5774)(6)

c
m

ζ
ω

= = =  (d) 

 
Hence, for the observed steady state motion, 
 

 2 3.464
0.5774

Ω = =  (e) 

 
Now, from Eq. (3.49), 
 

 0
0obs

FX f
k

= Γ = Γ  (f) 

Thus, 
 

 
[ ]

0 2 22

(2)(0.6) 13.93 N
1 1 (3.464) 2(3.464)(0.5340)

obsk X
F = = =

Γ ª º− +¬ ¼

 (g) 

 
If we reference the external force as the sine function 
 
 0( ) sin 13.93sin 2F t F t t= Ω =  (h) 
 
then the actuator must apply the force 
 
 ( ) 13.93sin(2 ) 13.93sin(2 ) NactF t t tπ= − = −  � (i) 
 
to counter the effects of the excitation. 

 
 

Example 3.8 
A 20 lb rigid baffle hangs in the vertical plane. The 
baffle is 5 ft in length and is restrained by a viscous 
damper of coefficient 1 lb-sec/ft attached at mid-span 
as shown. A motor exerts a harmonic torque at the 
support causing the baffle to waffle at a prescribed 
rate. Determine the range of allowable excitation fre-
quencies if the magnitude of the applied torque is 2.5 
ft-lbs and the maximum allowable deflection of the 
baffle is 6 inches. 
                                                                                     
    Figure E3.8-1  Hanging baffle 
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   Figure E3.8-2  Kinetic diagram for baffle 
 
 
Solution 
We first derive the equation of motion. To do this, we draw the corresponding kinet-
ic diagram (Figure E3.8-2) and then take moments about the support at O. Hence, 
 

 ( ) cos sin
2 2c O
L LM t c v mg Iθ θ θ− − = ��  (a) 

 
where  

 sin cos
2 2c

d L Lv
dt

θ θ θ§ ·= =¨ ¸
© ¹

�  (b) 

and 
 21

3OI mL=  (c) 
 
for a uniform baffle. Next, we note that 
   

 max
max max

6" (1'/12") 0.1 rads
5'L

θ
∆ ×Θ ≡ = = =  (d) 

 
Making the small angle approximation in Eq. (a) and rearranging terms gives the 
equation of motion for the baffle as 
 
 21 1

4 2 ( )OI cL mgL M tθ θ θ+ + =�� �  (e) 
 
We next put Eq. (e) in standard form by dividing through by IO and grouping terms 
accordingly. Doing this we arrive at the equation 
 
 2 22 ( )f tθ ωζθ ω θ ω+ + =�� �  (f) 
 where 

 2 2 3
2O

mgL g
I L

ω = =  (g) 
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21 3

2 4 8O

cL c
I m

ζ
ω ω

= =  (h) 

and 

 ( )( )
2

M tf t
mgL

=  (i) 

 
Since phase is unimportant for the present analysis let us take the excitation as the 
sine function 
 
 0( ) sinM t M t= Ω  (j) 
 
Substituting Eq. (j) into Eq. (i) gives 
 
 0( ) sinf t f t= Ω  (k) 
where 

 0
0 2

M
f

mgL
=  (l) 

 
We next compute the values of the system parameters using the given system prop-
erties. Hence,  
 

 3 (32.2)1.5 3.108 rad/sec
2 5

g
L

ω = = =  (m) 

and 

 3 (1) 0.1943
8 (3.108)(20 / 32.2)

ζ = =  (n) 

 
The amplitude of the excitation function is similarly computed from Eq. (l) and the 
given amplitude of the applied moment. Hence, 
 

 0
(2.5) 0.05

(20)(5) 2
f = =  (o) 

 
From Eq. (3.54), we know that the response of the baffle will be of the form 
 
 ( ) sin( )t tθ = Θ Ω − Φ  
where 
 0fΘ = Γ  (p) 
  
and the magnification factor, Γ, is given by Eq. (3.50). The constraints on the system 
require that 
 max 0.1 radsΘ < Θ =  (q) 
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Substitution of Eq. (q) into Eq. (p) gives the relation  
 

 max

0

0
f

ΘΓ − =  (r-1) 

 
Expanding Γ in the above relation gives the polynomial 
 

 ( ) ( )( )
2

22 22 0

max

2 1 2 1 0
fζ

ª º§ ·
« »Ω − − Ω + − =¨ ¸Θ« »© ¹¬ ¼

 (r-2) 

 
which defines the bounds on the allowable excitation frequencies. Substituting Eqs. 
(d), (n) and (o) into Eq. (r-2) and solving for Ω  gives the bounds on the allowable 
frequency ratios as 
 0.7752,  1.117Ω =  (s) 
Now,  
 3.108ωΩ = Ω = Ω  (t) 
 
Upon substituting the values listed in Eq. (s) into the above expression we find that 
the frequencies of the applied torque must lie in the ranges  
 
 2.41 rad/sec    and    3.47 rad/secΩ < Ω >  � (u) 
 
to satisfy the constraints imposed on the baffle. 

  
 
 

Sharpness of the Resonance Peak 
In many applications it is desired to have the maximum performance of the system achieved 
within a narrow range of excitation frequencies. The performance of acoustic speakers, 
transducers, and telephone receivers fall in this category. The necessity of a clean peak re-
sponse requires that the resonance peak of the associated Γ vs. Ω  plot, Figure 3.8, be as 
sharp as possible ( 1)ζ � . In this way, a relatively small deviation in the driving frequency 
will not excite vibrations of appreciable amplitude. It also insures that a relatively large 
value of the amplitude will be achieved when the driving frequency is such that the fre-
quency ratio lies within a narrow band in the vicinity of the peak. It is useful to characterize 
the sharpness of the peak for such situations. 
 To characterize the sharpness of the peak of a typical Γ vs. Ω  curve (see Figure 3.10) 
we must establish some measure of the width of the peak as a function of its height. A 
standard approach is to define these measures in terms of work and energy, or average 
power, over one cycle of the response of the system. In particular, we shall employ as our 
measure the average power imparted by the applied force acting on the system over a cycle 
of the response. Specifically, let (Q represent the average power of the applied force when 
operating at the excitation frequency associated with the peak response (i.e., when 

)pkΩ = Ω  as defined by Eq. (3.55). Further, let aΩ and bΩ correspond to the excitation 
frequencies at which the average power imparted by the applied force over a cycle is half 
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that associated with the peak response (i.e., (a = (b =�(Q /2). The corresponding points on 
the associated Γ vs. Ω  curve are referred to as the half power points. The width of the peak 
at this level of the average power is referred to as the band width, Λ, and is seen to charac-
terize the sharpness of the peak. (See Figure 3.10.) The bandwidth is thus defined as 
  
 b aΛ ≡ Ω − Ω  (3.57) 
 
To evaluate the sharpness of the peak explicitly, we must express these quantities in terms 
of the parameters of the system. We do this next. 
 As discussed in Section 1.5, the work done by the forces acting on a mass may be 
partitioned into two parts; the work done by the conservative forces acting on the body and 
the work done by the nonconservative forces acting on the body. As shown in the afore-
mentioned section, the work of the conservative forces may be expressed as the negative of 
the change in potential energy of the system. For a mass-spring-damper system, the poten-
tial energy is simply the elastic energy of the spring. We further partition the remaining 
work into that done by the applied force, F(t), and that done by the viscous damping force, 

dF cx= − � . When this is done Eq. (1.92) takes the form 
 
 ext d+ = ∆ + ∆/ / , -  (3.58) 
where 

 
2 2

1 1

( )
x t

ext
x t

F t dx F x dt= =³ ³ �/  (3.59) 

 
 

 
Figure 3.10  Typical plot of magnification factor versus frequency ratio for lightly damped system, 
showing resonance peak, half-power points and band width.  
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is the work done by the applied force, 
 

 
2 2

1 1

2
x t

d d
x t

F dx c x dt= = −³ ³ �/  (3.60) 

 
is the work done by the viscous damping force, - and , are respectively the potential and 
kinetic energy of the system, t1 and t2 are two instants in time, x1 = x(t1) and x2 = x(t2). Re-
call that the steady state response of the system given by Eqs. (3.53) and (3.54) is purely 
harmonic. Therefore, if we consider the motion of the system over one cycle (i.e., t2 = t1 + 
Tss, where Tss = 2π/Ω), then the change in potential energy and the change in kinetic energy 
vanish over this interval. For this situation, Eq. (3.58) gives the equality 
  
 ( )ext d sst T= − ∆ =/ /  (3.61) 
 
Evaluating Eq. (3.60) for an applied force of the form of either of Eq. (3.11), together with 
the corresponding steady state response given by Eq. (3.53) or Eq. (3.54), gives the work 
done by the viscous damper and thus by the applied force over a cycle as 
 
 2 2

ext d c X= − = Ω/ /  (3.62) 
 
It is seen that the integrand of the right most integral of Eq. (3.59) corresponds to the power. 
The average power over a cycle is evaluated with the aid of Eqs. (3.62) and (3.49) to give 
 

 
2

1

3 23
2 201

2 2 2

t

avg ext
tss

c fcF x dt X
T π π π

ΩΩ Ω= = = = Γ³ �( /  (3.63) 

 
As stated at the outset of the present discussion, the sharpness of the resonance peak will be 
characterized by the average power. 
 It may be seen from Eq. (3.63) that the average power imparted by the applied force 
over a cycle achieves a maximum when the amplitude of the response, X, achieves a maxi-
mum. It follows from Eq. (3.49) that the amplitude, and hence the average power, achieves 
a maximum when the magnification factor, Γ, achieves a maximum. For systems pos-
sessing a resonance peak (systems for which 1 2ζ < ) and, in particular, those systems 
possessing very light damping ( 1)ζ �  the maximum value of the magnification factor, Γpk, 
is referred to as the quality factor, Qf. The quality factor may be expressed in terms of the 
damping factor alone by substituting Eq. (3.55) into Eq. (3.50). Thus, 
 

 ( )
2

1 1;
22 1

f pk pkQ ζ
ζζ ζ

≡ Γ = Γ Ω = ≈
−

 (3.64) 

 
It follows from Eq. (3.63) that  
 

 
3 2

20
max 2Q avg f

c f Q
π

Ω≡ =( (  (3.65) 
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Equation (3.64) allows for the evaluation of the damping factor by measurement of the 
quality factor from the Γ vs. Ω  curve for a given system. 
 To determine the bandwidth we must first evaluate the excitation frequencies at the 
half power points. It may be seen from Eqs. (3.65) and (3.63) that the frequency ratios at 
which (avg = (Q/2 is achieved occur when the equality 
 

 ( );
2
fQ

ζΓ Ω =  (3.66) 

 
is satisfied. The frequency ratios associated with the half power points will be designated as 

aΩ and bΩ , and may be found by solving Eq. (3.66) for Ω . Substitution of Eqs. (3.50) and 
(3.64) into Eq. (3.66), and rearranging terms, gives the fourth order polynomial equation for 
the frequency ratios associated with the half power points. Hence, 
 
 ( ) ( )2 22 21 2 8 0ζ ζ− Ω + Ω − =  (3.67) 
 
When expanded, Eq. (3.67) may be solved for the square of the frequency ratio to give 
 
 2 21 2  ,     1 2a bζ ζΩ ≅ − Ω ≅ +  (3.68) 
 
for 1ζ � . It follows from Eqs. (3.68), and the definition of bandwidth as stated by Eq. 
(3.57), that  
 
 ( )( )2 2 2 4b a b a b a ζΩ − Ω = Ω + Ω Ω − Ω ≅ Λ =  (3.69) 
 
Solving Eq. (3.69) for Λ gives the bandwidth in terms of the damping factor as 
 
 2ζΛ ≅  (3.70) 
 
The bandwidth, as given by Eq. (3.70), characterizes the sharpness of the resonance for a 
given system. Finally, substitution of Eq. (3.70) into Eq. (3.64) gives the relation between 
the quality factor and the bandwidth, 
 

 1
fQ ≅

Λ
 (3.71) 

 
Thus, measurement of the quality factor determines the bandwidth directly.  
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Example 3.9 
A harmonic force is applied to the mass of a lightly damped system. The excitation 
frequency is slowly varied, and the magnitude of the displacement of the mass is 
measured as a function of the excitation frequency giving the record shown in Figure 
E3.9. Determine the damping factor of the system. What is the bandwidth? 
 
 
 
 
 
 
 
 
  
 
   
  
 
 
 
 
 
   Figure E3.9 
 
 
Solution 
The values of the displacement parameters Xpk and f0 may be read directly from the 
plot of the test data. Then, using Eqs. (3.49) and (3.64) along with these values, we 
calculate the quality factor 
 

 
0

2 6
0.333

pk
f pk

X
Q

f
≡ Γ = = =  (a) 

 
The damping factor may now be determined by substituting Eq. (a) into Eq. (3.64) 
and solving for ζ. This gives 
 

 1 1 0.0833
2 2(6)fQ

ζ = = =  � (b) 

 
Finally, using Eq. (3.71), the bandwidth is calculated to be 
 

 1 1 0.1667
6fQ

Λ ≅ = =  � (c) 

 
 

����� 

��� 

��� 

; 

� Ω/ω 

(LQFKHV) 
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     Figure 3.11  Kinetic diagram for mass-spring-damper system and support. 
 
 

3.3.4 Force Transmission and Vibration Isolation 

In many applications it is of interest to determine the force transmitted to the support by the 
oscillating system. We may wish, for example, to minimize the magnitude of the transmit-
ted force so as not to damage the support or what is beyond or attached to it. Similarly, we 
may wish to minimize the magnitude of the transmitted force to avoid sound transmission 
through the boundary so as to keep the operation of the system quiet. In contrast, we may 
wish to maximize, or at least optimize in some sense, the amount of information transmitted 
via this force.  
 Let us consider the mass-spring-damper system that is subjected to a harmonically 
varying force applied to the mass (Figure 3.1) as our representative system. From Newton’s 
Third Law, and the associated dynamic free body diagram displayed in Figure 3.11, it is 
seen that the force transmitted to the support by the vibrating system is comprised of the 
elastic spring force and the viscous damping force. Hence, 
 
    22trF cx kx m x xωζ ωª º= + = +¬ ¼� �  (3.72) 
 
For the sake of the present discussion, it is convenient to express the applied force in the 
exponential form of Eq. (3.12). Substituting Eq. (3.12) and the corresponding complex form 
of the steady state solution, Eq. (3.52), into Eq. (3.72) gives the complex form of the trans-
mitted force as  
    ( )0

ˆ 1 2i t i
trF F e i eζΩ − Φª º= + Ω Γ¬ ¼  (3.73) 

 
where Γ and Φ are given by Eqs. (3.50) and (3.51), respectively. It may be seen from Eq. 
(3.51), with the aid of Figure 3.12, that 
 
    ( )2cos 1      and     sin 2ζΦ = − Ω Γ Φ = ΩΓ  (3.74) 

 
 

     Figure 3.12  Geometric relation between Γ and Φ. 
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Applying Eq. (1.61) to the exponential term within the brackets, and employing the identi-
ties of Eq. (3.74), renders the complex representation of the transmitted force to the form 
 
    ( )ˆ i t

tr trF F e Ω −Ψ=  (3.75) 
where 
    ( )0 ;trF F ζ= ϒ Ω  (3.76) 
 
is the magnitude of the transmitted force,  
 

 ( ) ( ) ( )2
; ; 1 2ζ ζ ζϒ Ω = Γ Ω + Ω  (3.77) 

and 

    
( )

3
1

22

2tan
1 2

ζ
ζ

−
 ½Ω° °Ψ = ® ¾

− Ω + Ω° °¯ ¿
 (3.78) 

 
The latter is the phase angle that measures the extent that the transmitted force lags behind 
the applied force. The corresponding lag time is thus tlag = Ψ/Ω. Plots of the phase angle as 
a function of the frequency ratio are displayed in Figure 3.13 for various values of the 
damping factor. Finally, it follows from Eq. (3.75) that  
 
if 0( ) cosF t F t= Ω  then 

 ( )0 ; cos( )trF F tζ= ϒ Ω Ω − Ψ  (3.79) 

 
if 0( ) sinF t F t= Ω then 

 ( )0 ; sin( )trF F tζ= ϒ Ω Ω − Ψ  (3.80) 

 
 It may be seen from Eqs. (3.76) and (3.77) that the magnitude of the force transmitted 
to the support is the product of the magnification factor and a nonlinear function of the 
damping factor and frequency ratio, as well as of the magnitude of the applied force. We 
shall characterize the frequency dependence of the transmitted force in a manner analogous 
to that for the steady state displacement. To do this we define the transmissibility,  
 

    ( )
0

;trF
F

ζ≡ = ϒ Ω�!�  (3.81) 

 
where ϒ  is given by Eq. (3.77). The transmissibility is thus the ratio of the magnitude of 
the transmitted force to the magnitude of the applied force, and is seen to give all pertinent 
information concerning the force transmitted to the support by the system. Plots of the 
transmissibility as a function of the frequency ratio are displayed in Figure 3.14 for various 
values of the damping factor. It is seen from the figure that the maximum force transmitted 
to the support occurs when the maximum displacement occurs (i.e., at resonance condi-
tions), which is to be expected. Setting ϒ  to unity and solving for the frequency ratio, we 
find that  
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Figure 3.13  Phase angle of transmitted force as a function of frequency ratio for various values of 
the damping factor. 
 
 
 
 
 

 
Figure 3.14  Transmissibility as a function of frequency ratio for various values of the damping fac-
tor. 
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0trF F=  when 
 0   and   2Ω = Ω =  (3.82) 
 
regardless of the value of ζ, as demonstrated in Figure 3.14. It may be noted from the figure 
that the magnitude of the transmitted force reduces to less than the magnitude of the applied 
force (i.e., to less than that which would occur for a static force of the same magnitude) 
when 2Ω > . We may also note that increasing the damping factor increases the transmit-
ted force in this frequency range. Thus, if the force transmitted to the support is a considera-
tion in the design of a system, then it would be desirable to operate the system in the afore-
mentioned frequency range, and with minimum damping, provided that the desired fre-
quency range can be achieved without passing through resonance. The desired frequency 
range may also be achieved if the system can be restrained during start-up, or a large 
amount of damping can be temporarily imposed until the excitation frequency is sufficient-
ly beyond the resonance frequency. To close, it is seen that if the system is operated in the 
desired frequency range and possesses low damping, then the vibrations of the system be-
come isolated from the surroundings. This is a very desirable result in many situations. 
 
 

Example 3.10 
Consider the system of Example 3.6. (a) Determine the magnitude of the force 
transmitted to the support if the system is excited by the external force F(t) = 5sin2t 
N, where t is measured in seconds. Also determine the lag time of the reaction force 
with respect to the applied force. (b) Determine the magnitude of the transmitted 
force at resonance. 
 
Solution 
(a) 
From Part (a) of Example 3.6, ζ = 0.5303, 2.828Ω =  and  Γ= 0.1313. Substituting 
these values into Eq. (3.77) gives the transmissibility as 
 
 20.1313 1 [2(0.5303)(2.828)] 0.4151= ϒ = + =�!  (a) 
 
Thus, 42% of the applied force is transmitted to the support. The magnitude of the 
force transmitted to the support is then, from Eq. (3.81), 
 
 0 (5)(0.4151) 2.076 NtrF F= = =�!  � (b) 
 
The corresponding phase angle is calculated using Eq. (3.78). Hence, 
 

 
[ ]

3
1

22

2(.5303)(2.828)tan 85.24 1.488 rads
1 (2.828) 2(.5303)(2.828)

−
 ½° °Ψ = = ° =® ¾

− +° °¯ ¿
 � (c) 

 
It follows that 
 
 1.488 2 0.7440 secslagt = Ψ Ω = =  � (d) 
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(b) 
For this case we have from Part (d) of Example 3.6 that 0.6615Ω =  and Γ= 1.112. 
Thus, 
 
 21.112 1 [2(.5303)(0.6615)] 1.358= + =�!  (e) 
 
The magnitude of the force transmitted to the support is then 
 
 (5)(1.358) 6.790 NtrF = =  � (f) 

 
 

 
 
 
 

 

Example 3.11 
The beam of Example 3.4 was designed on the basis of a static analysis. If the struc-
ture is to support harmonic loads at or below the static design level, determine the 
range of allowable frequencies of the applied load. 
 
Solution 
A static analysis predicts that the maximum transverse shear occurs at the support. 
This is then the force that is transmitted to the support since the resultant axial force 
in the beam vanishes. The problem is therefore to determine the frequency range for 
the applied dynamic load at which the magnitude of the force transmitted to the sup-
port is equal to the magnitude of the applied force (which we take to be equal to the 
level of the static design load). This corresponds to the situation where  
 
 1=�!  (a) 
 
and hence, from Eq. (3.82) and Figure 3.14, that 
 
 2Ω =  (b) 
 
From Example 3.4, the natural frequency of the system is 6π rad/sec. Substituting 
this value into Eq. (b) gives 
 
 ( )2 ( ) 2 26.7 rad/sec 4.24 cpsω πΩ = = 6 = =  (c) 
 
The allowable operating range is thus 
 
 26.7 rad/secΩ >  � (d) 
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3.4 STRUCTURAL DAMPING 

In Chapter 1, and thereafter, we employed models of equivalent single degree of freedom 
systems based on stiffnesses derived from the quasi-static behavior of linear elastic struc-
tures. Such models assume that the elastic moduli are constants that can be measured from 
simple quasi-static experiments. It is observed that elastic structures such as rods, beams, 
plates and shells, and their simplified 1 d.o.f. counterparts, do oscillate at natural frequen-
cies often adequately predicted based on these moduli. It is, however, also observed (even 
in our every day experiences) that the vibrations of such structures decay with time. Such 
damping is seen when structures oscillate in a vacuum, as well. The damping cannot then 
be a result of some external viscous medium, but rather must be a function of internal fric-
tion of the material comprising the structure itself. In this section we discuss and develop a 
model of internal friction for the case of structures subjected to harmonic excitation. 
 

3.4.1 Linear Hereditary Materials 

The constitutive relations (the stress-strain relations) for the elastic materials used in the 
structural models relate the current stress and the current strain. They implicitly assume that 
the history of loading does not affect the current strain, and thus that only the current level 
of the load is influential. In order to account for the effects of internal friction (which, as 
discussed in Section 1.5, is by its very nature nonconservative) we shall relax this implicit 
restriction and allow the current value of the strain to depend on the history of the stress as 
well as on its current level. Materials whose behavior depends on the history of the loading 
are referred to as hereditary materials, or materials with memory. Materials for which this 
relation is linear are referred to as linear hereditary materials. We shall be interested in the 
behavior of structures comprised of linear hereditary materials. 
     Consider a material for which the current state of strain is dependent, not only on the 
current state of stress, but on the entire history of stress to the present time. For the purposes 
of the present discussion, let us consider a specimen of such a material loaded in a simple 
manner, say in uniaxial tension or in pure shear, as would occur during a tension test or a 
torsion test. Let ( )tσ represent the stress at some point in the body at time t and let ( )tε rep-
resent the corresponding strain at that time. Consider a generic stress history as depicted in 
Figure 3.15a and let the increment in strain at time t, due to the increment in stress at some 
prior time τ (Figure 3.15b) be related to that increment in stress in a linear fashion. Hence, 
let 
    ( ) ( ) ( )d t t dε τ σ τ τ= − �"  (3.83) 
 
where ( )t τ−" is a material property referred to as the creep function. A material that obeys 
the constitutive relation given by Eq. (3.83) is referred to as a linear hereditary material. 
Let us sum the strains due to the stress states at all prior times to obtain the strain at the cur-
rent time. Thus, 

    
0

( ) ( ) ( )
t

t
t t dε τ σ τ τ= −³ �"  (3.84) 

 
where t0 is the initial (reference) time. An integral of the type that appears in Eq. (3.84) is 
called a convolution integral. Such integrals will be introduced and employed in a different 
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context in Chapter 4. In a similar manner, the stress at the current time t is related to the 
strain history by the convolution integral 
 

    
0

( ) ( )
t

t
t t dσ τ ε τ= Ξ −³ �  (3.85) 

 
where Ξ(t − τ) is referred to as the relaxation function for the material. In this section we 
shall be interested in the behavior of structures comprised of linear hereditary materials 
when they are subjected to harmonic excitation. 
 

3.4.2  Steady State Response of Linear Hereditary Materials 

Let us consider the response of systems after they are operating for times long enough for 
all transients to have died out. That is, let us consider the steady state response of these sys-
tems. For such situations, we extend the reference time back through negative infinity to 
capture the entire history of loading. In this case Eq. (3.84) assumes the form 
 

    ( ) ( ) ( )
t

t t dε τ σ τ τ
−∞

= −³ �"  (3.86) 

 
To discuss the response of the linear hereditary materials to harmonic excitation it is con-
venient to introduce the time shift 
 
    tξ τ= −  (3.87) 
 
into Eq. (3.86). The stress-strain relation then takes the form 
 
 
 

 
   Figure 3.15  Generic stress and strain histories. 

t
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0

( ) ( ) ( )t t dε ξ σ ξ ξ
∞

= −³ �"  (3.88) 

 
where we are now integrating back in time. Let us next consider the situation where the 
stress history varies harmonically in time. Hence, let us consider the stress history of the 
form 
    0( ) i tt eσ σ Ω=  (3.89) 
 
where σ0 = constant. Substitution of the harmonic stress form, Eq. (3.89), into the constitu-
tive relation, Eq. (3.88), gives the corresponding strain history 
 
    0( ) i tt eε ε Ω=  (3.90) 
 
where 
    0 0( )iε σ= Ω Ω

�
"  (3.91) 

 
and 

    
0

( ) ( ) ie dξξ ξ
∞

− ΩΩ = ³
�
" "  (3.92) 

The parameter ( )Ω
�
" is known as the complex compliance of the material and may be rec-

ognized as the Fourier transform of its counterpart ". As ( )Ω
�
" is generally a complex func-

tion of the excitation frequency, it may be expressed as the sum of its real and imaginary 
parts. Hence, we may express the complex compliance in the form 
 
    ( ) ( ) ( )R IiΩ = Ω + Ω

� � �
" " "  (3.93) 

 
where ( )RJ Ω

�
is referred to as the storage compliance and ( )IJ Ω

�
 is called the loss compli-

ance.  Substitution of Eq. (3.93) into Eq. (3.91) and solving for σ0 renders the relation be-
tween the magnitudes of the stress and strain to the form 
 
    0 0

ˆ ( )Eσ ε= Ω  (3.94) 
 
where ˆ ( )E Ω is defined as the complex elastic modulus of the material given by 
 
    ˆ ( ) ( ) ( )E E iEΩ = Ω + Ω�  (3.95) 
with 

    2 2

( ) ( )
( )     and    ( )

( ) ( )
I RE E− Ω − ΩΩ = Ω =

Ω Ω Ω Ω

� �
�� �

" "

" "
 (3.96) 

 
The parameters E(Ω) and ( )E Ω� are referred to as the storage modulus and the loss modu-
lus, respectively. It is seen that the components of the complex modulus are, in general, 
dependent on the excitation frequency. An analogous development may be used to establish 
the corresponding shear modulus of the material during a state of pure shear imposed, say, 
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during a torsion test. If this is done, the corresponding complex shear modulus takes the 
form 
    ˆ ( ) ( ) ( )G G iGΩ = Ω + Ω�  (3.97) 
 
where the associated shear storage modulus and shear loss modulus are generally dependent 
on the excitation frequency. 
 If we restrict our attention to materials for which the real part of the complex elastic 
modulus (the elastic storage modulus) and the real part of the complex shear modulus (the 
shear storage modulus) are independent of the excitation frequency and hence are equal to 
the corresponding elastic modulus, E, and shear modulus, G, that would be measured dur-
ing quasi-static tests, then the frequency dependence of the material lies solely in the imagi-
nary part of the corresponding modulus (the elastic loss modulus or the shear loss modulus). 
For such materials, Eqs. (3.95) and (3.97) take the respective forms 
 
    ˆ ( ) ( )E E iEΩ = + Ω�  (3.98) 
and 
    ˆ ( ) ( )G G iGΩ = + Ω�  (3.99) 
 
In this way, the standard elastic constants, E and G, together with the frequency dependent 
loss moduli, ( )E Ω� and ( )G Ω� characterize the material behavior for the case of harmonic 
loading. These parameters may be measured directly, and therefore provide an equivalent 
characterization of the behavior of the material to that provided by the creep function, ", for 
the case of harmonic excitation. 
 The complex moduli defined by Eqs. (3.98) and (3.99) may be substituted for the 
standard elastic constants in any structural model of interest, for the loading type under con-
sideration. This may be done, for example, for the continuous dynamic rod and beam mod-
els discussed in Chapters 9–11, for the membranes and plates discussed in Chapters 12–14, 
or for the simplified representations of such structures considered thus far. We shall next 
incorporate the model of hereditary material behavior introduced above into the approxi-
mate representations for structural  systems employed to this point. 
 
 

3.4.3 Steady State Response of Single Degree of Freedom Systems  

When the mass of a structural member, such as a beam or rod, is small compared with the 
other mass measures of a system, and we are primarily interested in the motion of a single 
point on that structure, we often approximate that system as an equivalent single degree of 
freedom system. We next incorporate the effects of internal friction into such models. 
 If, in the equivalent single degree of freedom models of the elastic systems discussed 
in Chapter 1 and employed to this point, we replace Young’s modulus, E, and the shear 
modulus, G, by the complex elastic modulus, ˆ ( ),E Ω and complex shear modulus, ˆ ( ),G Ω re-
spectively defined by Eqs. (3.98) and (3.99), then the equivalent stiffness in each case will 
be replaced by an equivalent complex stiffness, ˆ( ),k Ω of the form 
 
    [ ]ˆ( ) ( ) 1 ( )k k ik k iγΩ = + Ω = + Ω� �  (3.100) 
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    Figure 3.16  Kinetic diagram for structure. 
 
 
 
where k = constant is the equivalent elastic stiffness as computed in Section 1.2 and 
 
    ( ) ( )k kγ Ω = Ω��  (3.101) 
 
is the structural loss factor. It follows from the corresponding dynamic free body diagram 
(Figure 3.16) that the equation of motion for a harmonically excited system with material 
damping takes the form of that for an undamped system with the spring stiffness replaced 
by the complex stiffness defined by Eq. (3.100). If we introduce the harmonic excitation in 
complex form, then the equation of motion for the corresponding equivalent single degree 
of freedom system takes the form 
 
    0

ˆˆ ˆ( ) i tmx k x F e Ω+ Ω =��  (3.102) 
Equivalently, 
 
    [ ]2 2

0ˆ ˆ1 ( ) i tx i x f eω γ ω Ω+ + Ω =�� �  (3.103) 
 
where the familiar parameters f0 and ω are defined by Eqs. (3.14) and (2.2), respectively. 
We next parallel the approach of Sections 3.3.2 and 3.3.3 to obtain the particular solution, 
and hence the steady state response of the structurally damped system described by Eq. 
(3.103). We thus assume a solution of the form 
 
    ˆˆ( ) i tx t Xe Ω=  (3.104) 
 
 
and substitute it into Eq. (3.103). Solving the resulting algebraic equation for X̂  and substi-
tuting the corresponding expression back into Eq. (3.104) gives the particular solution 
 
    ( )

0ˆ( ) ( ) i tx t f e Ω −Φ= Γ Ω ��  (3.105) 
where 

 0
0

Ff
k

=  (3.106) 
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( )22 2

1( )
1 γ

Γ Ω =
− Ω +

�
�

 (3.107) 

and 

    1
2tan

1
γ−  ½Φ = ® ¾− Ω¯ ¿

��  (3.108) 

 
are, respectively, the magnification factor and phase angle of the structurally damped re-
sponse. Employing Euler’s formula, Eq. (1.61), in Eq. (3.105) and equating real and imagi-
nary parts gives the steady state response for the explicit harmonic excitations as follows: 
 
if 0( ) cosF t F t= Ω  then 
 
    ( )0( ) ( ) cosssx t f t= Γ Ω Ω − Φ� �  (3.109) 
 
if 0( ) sinF t F t= Ω  then 
 
    ( )0( ) ( )sinssx t f t= Γ Ω Ω − Φ� �  (3.110) 
 
A comparison of Eqs. (3.107)–(3.110) with Eqs. (3.50), (3.51), (3.53) and (3.54) suggests 
the definition of the effective damping factor 
 

    ( )( )
2eff

γζ ΩΩ ≡
Ω
�

 (3.111) 

 
which is seen to be dependent on the excitation frequency. Thus, the loss factor ( )γ Ω�  is 
often referred to as the structural loss factor. Equations (3.111) and (3.101) together with 
Eq. (2.65) suggest the definition of an effective damping coefficient of an equivalent, but 
frequency dependent, viscous damper in the form 
 

    ( ) ( )( )eff
k kc γΩ ΩΩ ≡ =

Ω Ω

� �
 (3.112) 

 
Hereditary materials are also referred to as viscoelastic materials.  
 
 

Example 3.12 
A 1'× 1"× 1/16" metal strip is supported by rollers at its edges. The elastic modulus 
of the strip is measured in a quasi-static test as 3 × 107 psi. A 3 lb weight is bonded 
to the beam at center-span and the lower edge of the beam is excited by a harmonic 
force, as indicated in Figure E3.12. When the excitation frequency is set at 6 cps, the 
time history of  the displacement of the weight is observed to be out of phase with 
the force by 30°. Determine the loss factor, the effective damping factor and the 
damping coefficient of the beam for the given frequency. 
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   Figure E3.12 
 
 
Solution 
We first determine the effective stiffness of the equivalent single degree of freedom 
system. The area moment of inertia of a cross section is 
 

 
3

5 4(1)(1/16) 2.035 10  in
12

I −= = ×  (a) 

 
The effective stiffness is next found using Eq. (1.22). Hence, 
 

 
7 5

3

48(3 10 )(2.035 10 ) 16.95 lb/in 203.4 lb/ft
(12)

k
−× ×= = =  (b) 

 
It then follows that 
 

 203.4 46.72 rad/sec
3 / 32.2

ω = =  (c) 

 
The excitation frequency is 
  
 2 (6) 37.70 rad/secπΩ = =  (d) 
Hence, 
 37.70 46.72 0.8069Ω = =  (e) 
 
From Eq. (3.108), the structural loss factor is computed as 
 

 
2

2

1 tan(30 )

  1 (0.8069) (0.5774) 0.2015

γ ª º= − Ω °¬ ¼
ª º= − =¬ ¼

�
 � (f) 

 
Now, the effective damping factor is computed using Eq. (3.111) giving 
 

 (0.2015) 0.1249
2(0.8069)2eff

γζ = = =
Ω
�

 � (g) 

 
Finally, the effective damping coefficient is found using Eq. (3.112) to give 
 

 (203.4)(0.2015) 1.087 lb-sec/ft
37.70eff

kc γ= = =
Ω
�

 � (h) 
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     Figure 3.17  Mass-spring-damper system with movable support. 
 
 

3.5 SELECTED APPLICATIONS 

In this section, we examine three representative applications that involve harmonic excita-
tion. These include harmonic motion of the support, the unbalanced motor, and synchro-
nous whirling of rotating shafts. 
 
 

3.5.1 Harmonic Motion of the Support 

In many applications the support or foundation of the system is driven and undergoes mo-
tion. Examples include earthquake loadings on buildings, devices attached to machinery, 
and vehicles in motion. In this section we consider the response of single degree of freedom 
systems that are excited in this manner. 
 Consider the system shown in Figure 3.17, and let the foundation undergo the pre-
scribed displacement xF(t) as indicated. The associated kinetic diagram for the system is 
displayed in Figure 3.18. Since the spring force is proportional to the relative displacement 
of the mass with respect to the support, and the damping force is proportional to the relative 
velocity of the mass with respect to the support, the equation of motion is found from New-
ton’s Second Law as follows; 
 
 ( ) ( )F Fk x x c x x mx− − − − =� � ��  
or, equivalently, 
 22 ( ) ( ) 0F Fx x x x xωζ ω+ − + − =�� � �  (3.113) 
 
 

 
 Figure 3.18  Kinetic diagram for system with support motion. 
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Relative Motion 
Let u(t) measure the displacement of the mass relative to the moving foundation, and hence 
measure the stretch in the spring. Hence, 
 
 ( ) ( ) ( )Fu t x t x t= −  (3.114) 
 
It then follows that ( )u t� represents the relative velocity of the mass with respect to the 
foundation and therefore measures the rate at which the viscous damper is being separated. 
Substitution of Eq. (3.114) into Eq. (3.113) gives the governing equation in terms of the 
relative motion of the mass as 
 
 22 ( )Fu u u x tωζ ω+ + = −�� � ��  (3.115) 
 
Equation (3.115) is valid for any form of support excitation and is seen to have the form of 
the governing equation for the damped harmonic oscillator subjected to a time dependent 
force. As we are presently interested in harmonic motion of the support let us consider sup-
port motion in the form 
 
 0( ) sinFx t h t= Ω  (3.116) 
 
where h0 is the amplitude of the displacement of the foundation. Substitution of the pre-
scribed support displacement given by Eq. (3.116) into Eq. (3.115) gives the equation of 
motion in the form 
 
 2 2

02 sinu u u f tωζ ω ω+ + = Ω�� �  (3.117) 
where 
 2

0 0f h= Ω  (3.118) 
 
and, as before, / .ωΩ = Ω  Equation (3.117) is seen to be in standard form. Therefore, the 
steady state response may be written directly from Eq. (3.54), with appropriate change of 
variables. Thus, 
 
 0( ) sin( )ssu t U t= Ω − Φ  (3.119) 
where 
 ( )2

0 0 ;U h ζ= Ω Γ Ω  (3.120) 

 
is the amplitude of the steady state response, and  Γ and Φ are given by Eqs. (3.50) and Eq. 
(3.51) respectively. The phase angle Φ measures the degree that the relative motion of the 
mass lags the motion of the support. 

It may be seen that the ratio of the amplitude of the relative motion of the mass to the 
amplitude of the motion of the support is given by 
 

 ( )20

0

;
U

U
h

ζ≡ = Ω Γ Ω  (3.121) 
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Figure 3.19  Normalized amplitude of relative motion as a function of frequency ratio for various 
values of the damping factor. 

 
 
The normalized amplitude, ,U characterizes the relative motion of the support excited sys-
tem in the same sense that the magnification factor, Γ, characterizes the absolute motion of 
a system excited by a harmonic force applied to the mass. It may be noted from Eqs. 
(3.121) and (3.50) that when 2 1Ω � , 1U ≈  and hence 0 0U h≈  regardless of the excita-
tion frequency. Plots of the normalized amplitude are displayed as functions of the frequen-
cy ratio for various values of the damping factor in Figure 3.19. The phase angle is seen to 
be of the same form as that for the case of the harmonically forced mass. Hence the plots of 
the phase angle displayed in Figure 3.9 pertain to the present case as well, but with the cur-
rent interpretation. 
 

Absolute Motion 
The solution given by Eq. (3.119) gives the motion of the mass of the support excited sys-
tem as seen by an observer moving with the support. We next determine the motion of the 
mass as seen by an observer attached to a fixed reference frame.  
 The absolute steady state motion of the mass, that is the motion with regard to a fixed 
reference frame, is obtained by first rearranging Eq. (3.113) so that all terms associated with 
the prescribed motion of the support appear on the right-hand side. Hence, 
 
 2 22 2 F Fx x x x xωζ ω ωζ ω+ + = +�� � �  (3.122) 
 

� ��� � ��� � ��� �
�

�

�

�

�

�

�

�

�

�

��

Ω/ω 

ζ = 0 

ζ = 0.05 

ζ = 0.1

ζ = 0.2 

ζ = 0.3 

ζ = 0.5 ζ = 1.0 

8 
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Equation (3.122) is valid for any excitation of the foundation. As for relative motion, we are 
here interested in harmonic motion of the foundation in the form of Eq. (3.116). It is, how-
ever, expedient to solve for the absolute motion of the mass in complex form. Hence, let us 
consider the complex form of the support motion 
 
 0ˆ ( ) i t

Fx t h e Ω=  (3.123) 
 
After solving, we shall extract the imaginary part of the solution, as it will correspond to the 
response to forcing in the form of the sine function of interest. Substitution of Eq. (3.123) 
into Eq. (3.122) gives the differential equation governing the complex response as 
 
 ( )2 2

0ˆ ˆ ˆ2 1 2 i tx x x h i eωζ ω ω ζ Ω+ + = + Ω�� �  (3.124) 

 
The right-hand side of Eq. (3.124) may be viewed as the superposition of two harmonic 
forces,  
 (1) (1)

0 0( ) i t i tf t f e h eΩ Ω= =  
and 
 (2) (2)

0 0( ) 2i t i tf t f e ih eζΩ Ω= = Ω  
 
It follows from the Principle of Superposition (Section 3.1) that the response of the system 
to the two forces is the sum of the responses to each of the excitations applied individually. 
In addition, Eq. (3.124) is in standard form. Applying Eqs. (3.47)– (3.51) for the two forces 
of Eq. (3.124) and summing gives the complex form of the steady state response as 
 
 ˆˆ ( ) i t

ssx t Xe Ω=  (3.125) 
where 
 ( )0

ˆ 1 2iX h e i ζ− Φ= Γ + Ω  (3.126) 

 
and  Γ and Φ are given by Eqs. (3.50) and Eq. (3.51), respectively. Next, paralleling the 
development of Eqs. (3.73)–(3.74) gives the steady state response for the absolute motion 
of the mass as 
 
 ( )ˆ ( ) i t

ssx t Xe Ω −Ψ=  (3.127) 
where 

 ( ) ( ) ( )2

0 0; ; 1 2X h hζ ζ ζ= ϒ Ω = Γ Ω + Ω  (3.128) 

and 

    
( ) ( )

3
1

22

2tan
1 2

ζ
ζ

−
 ½Ω° °Ψ = ® ¾

− Ω + Ω° °¯ ¿
 (3.129) 

 
If the motion of the foundation is given by Eq. (3.116) then the steady state response of the 
support is given by the imaginary part of the complex response, Eq. (3.127). Hence,  
 
 0( ) sin( )ssx t h t= ϒ Ω − Ψ  (3.130) 
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The absolute motion of the mass is seen to be characterized by the ratio of the amplitude of 
the motion of the system to the amplitude of the motion of the foundation 
 

 ( )
0

;XX
h

ζ≡ = ϒ Ω  (3.131) 

 
Comparison of Eqs. (3.131) and (3.81) shows that the same functional form governs both 
the response for the present case and the force transmitted to a fixed support, though the 
parameters they represent have, of course, very different interpretations. Thus, the plots 
displayed in Figures 3.13 and 3.14 characterize the absolute motion of support excited sys-
tems with appropriate interpretation of the parameters. 
 

Force Transmitted to the Moving Support 
The kinetic diagram of the system (Figure 3.18) together with Eq. (3.113) shows that the 
force transmitted to the support by the system is 
 
 trF cu ku mx= + = −� ��  (3.132) 
 
Substitution of the steady state response, Eq. (3.130), into the right-hand side of Eq. (3.132) 
gives the transmitted force as 
 
 sin( )tr trF F t= Ω − Ψ  (3.133) 
where 
 0trF k h=

�
!  (3.134) 

and 

 
( )

( ) ( )

22

2

2 22

1 2

1 2

ζ

ζ

Ω + Ω
= Ω ϒ =

− Ω + Ω

�
!  (3.135) 

 
 
 
 

Example 3.13  
The foundation of a one-story building undergoes 
harmonic ground motion of magnitude 2 inches 
and frequency 4 cps. If the roof structure weighs 
one ton, the bending stiffness of each of the four 
identical 12 ft columns is 64 10× lb-ft2 and the 
structural damping factor at this frequency is es-
timated to be 0.1, determine the steady state re-
sponse of the structure. Also determine the mag-
nitude of the shear force within each column. 
 
    Figure E3.13 
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Solution 
The effective stiffness of the structure may be computed using Eq. (1.18) to give 
 

 
6

5
3 3

48 48(4 10 ) 1.11 10  lb/ft
(12)eff

EIk
L

×= = = ×  (a) 

Hence,  
 

 
5

3

48 1.11 10 42.3 rad/sec
(2000 / 32.2)

effk EI
m mL

ω ×= = = =  (b) 

 
The excitation frequency is given as 
 
 4 cps 2  rads/cycle 8  rad/secπ πΩ = × =  (c) 
Thus, 

 8 0.594
42.3

πΩ = =  (d) 

 
Now, to calculate the amplitude of the response using Eq. (3.128) we first compute 
ϒ , giving 
 

 
( )

( ) ( )
[ ]

[ ]

2 2

2 2 2 22 2

1 2 1 2(0.1)(0.594)
1.53

1 (0.594) 2(0.1)(0.594)1 2

ζ

ζ

+ Ω +
ϒ = = =

ª º− +− Ω + Ω ¬ ¼

 (e) 

 
The amplitude of the steady state response is then 
 
 0 2(1.53) 3.06X h ′′= ϒ = =  (f) 
 
The phase angle is next computed using Eq. (3.129) giving 
 

 
( )

[ ]

3
1

22

3
1

22

2tan
1 2

2(0.10)(0.594)   tan 0.0633 rads
1 (0.594) 2(0.1)(0.594)

ζ
ζ

−

−

 ½Ω° °Ψ = ® ¾
− Ω + Ω° °¯ ¿

 ½° °= =® ¾
− +° °¯ ¿

 (g) 

 
Substituting Eqs. (c), (f) and (g) into Eq. (3.130) gives the steady state response of 
the building, 
 
 ( ) 3.06sin(8 0.0633)  (inches)ssx t tπ= −  � (h) 
 
The force transmitted to the support is computed from Eqs. (3.134) and (3.135). For 

2 1ζ �  we have 
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 5 2 3

0 (1.11 10 )(2 /12) (0.594) (1.53) 9.99 10  lbtrF k h ª º= = × = ×¬ ¼
�
!  (i) 

 
Finally, the shear force in each of the four columns is one quarter of the total trans-
mitted force. Hence,  
 
 34 2.50 10  lbtrV F= = ×  � (j) 

 
 
 
 

Example 3.14  Vehicle Traveling on a Buckled Road 
During very hot weather roads often suffer thermal buckling. If the buckle is sinus-
oidal, as shown in Figure E3.14, the rise of the buckle, y, may be expressed as a 
function of the distance along the road, ξ, in the form 0 sin(2 )y y πξ λ= , where y0 
is the amplitude of the buckle (the maximum rise) and λ is the wavelength (the spa-
tial period) of the buckle. Those of us that drive, or even just ride, all know that the 
ride over a bumpy road is often worse at particular speeds. If a vehicle modeled as 
the equivalent, lightly damped, single degree of freedom system shown rides along 
the buckled road at constant speed, v0, determine the value of the speed at which the 
amplitude of the vehicle vibration achieves a maximum. Also determine the magni-
tude of the force transmitted to the axle at this speed. 
 

 
  Figure E3.14  Vehicle on buckled road. 

 
 
Solution 
The vehicle moves to the right at constant speed v0 over the buckled road, which 
causes the vehicle to rise and dip as it follows the contour of the road. The first thing 
we need to do is determine the vertical motion of the wheel as a function of time. 
Since the vehicle travels at constant speed, the horizontal component of the velocity 
is constant. The distance traveled in the horizontal direction is then given by 
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 0v tξ =  (a) 
 
as indicated in the figure. Substitution of Eq. (a) into the given equation for the road 
deflection gives the vertical motion of the wheel as 
 
 0 siny y t= Ω  (b) 
where 
 02 vπ λΩ =  (c) 
 
With the vertical motion of the wheel hub given by Eq. (b), it may be seen that the 
present problem corresponds to one of (vertical) excitation of the support, with y(t) 
identified with ( )Fx t  and y0 identified with h0. Since the damping in the vehicle’s 
suspension system is “light” 2( 1)ζ � , the maximum vertical response of the vehi-
cle will occur when 1Ω ≅ . Substituting Eq. (c) into the resonance condition, 

ωΩ ≅ , and solving for the velocity gives the critical speed of the vehicle, 
 

 
2cr

kv
m

λ
π

=  � (d) 

 
The magnitude of the force transmitted to the axle is found using Eq. (3.134) and 
(3.135) with 1Ω ≅  and 2 1ζ � . This gives 
 

 0

2tr
k y

F
ζ

≅  (e) 

 
Substituting Eqs. (c) and (d) into Eq. (e) gives the magnitude of the transmitted force 
at the critical speed as 
 

 ( )
0 0

02
2 2tr

k y y k mF v
c m c

π
ω λ

= =  � (f)   

 
 
 
 
 

3.5.2 Unbalanced Motor 

In many practical systems the situation exists where the mass of a supposedly axi-
symmetric rotating body is not evenly distributed. (In reality, this will likely be the case to 
some extent in all systems.) If, for example, a motor is slightly unbalanced in the sense that 
the mass of the rotor is not quite symmetrically distributed throughout its cross section, 
unwanted vibrations of the motor or its support system can occur. We examine this phe-
nomenon in the present section. 
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    Figure 3.20  Rotor system with imbalance. 
 
 

Equation of Motion 
Consider a circular wheel or shaft rotating within the frictionless sleeve of the representa-
tive system shown in Figure 3.20. Let the total mass of the system, including the shaft, be 
m, and let the distribution of the mass of the rotor be slightly nonuniform. A simple way to 
model this situation is to represent the uneven distribution of mass as an eccentric point 
mass embedded in a uniform distribution of mass. We shall thus consider an eccentric point 
mass, me, to be embedded in the rotor and located a distance A  from the axis of rotation, as 
indicated. If the shaft rotates at a constant angular rate Ω, the angular displacement, θ , of 
the radial generator to the eccentric mass is then θ = Ωt. Finally, let the vertical displace-
ment of the axis of rotation relative to its equilibrium position be x. We are interested in the 
motion x(t) of the system that results from the rotation of the nonuniform rotor. 
 To derive the equation of motion of the composite system it is useful to first express 
the Cartesian coordinates ( , )e ex y that establish the position of the eccentric mass, in terms 
of the vertical displacement of the axis of rotation and the angular displacement of the rotor 
or flywheel. The desired relations are found, with the aid of Figure 3.21, as 
 
 

 
    Figure 3.21  Description of motion of the system. 

t t

x(t)
xe(t)

sin

x

y
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 ( ) ( ) sinex t x t t= + ΩA  (3.136) 
 
 ( ) cosey t t= − ΩA  (3.137) 
 
We next isolate each of the bodies that comprise the idealized system. The corresponding 
dynamic free-body diagram is shown in Figure 3.22. In that diagram, the mass of the rotor 
is labeled mw, and the resultant internal forces acting on the wheel, the eccentric mass and 
the block are labeled ( ) ,wF

G
( )eF
G

and ( ) ,bF
G

 respectively. A subscript x indicates the corre-
sponding vertical component of that force. With the aid of the kinetic diagrams, the vertical 
component of Newton’s Second Law may be written for each body as 
  
 [ ]( ) ( ) 2 ( ), sin ,b e w

x e w x e e x wF kx cx m m m x F m x m x t F m xª º− − = − − = = − Ω Ω =¬ ¼� �� �� �� ��A  
  (3.138) 
  
We next sum Eqs. (3.138) and note that the internal forces sum to zero via Newton’s Third 
Law. This results in the governing equation for the vertical motion of the entire system 
 
 2 sinemx cx kx m t+ + = Ω Ω�� � A  (3.139) 
 
When rearranged, Eq. (3.139) takes the standard form 
 
 2 2

02 sinx x x f tωζ ω ω+ + = Ω�� �  (3.140) 
where 

 ( ) 2
0 0

em
f f

m
= Ω = ΩA  (3.141) 

 
 
 

 
      Figure 3.22  Kinetic diagram for each component of the system. 
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Steady State Response 
The steady state solution of Eq. (3.140) is given by Eq. (3.54) with appropriate interpreta-
tion of the parameters. Hence, the steady state response of the unbalanced motor is given by 
 

 ( )2( ) sin( ) ; sin( )e
ss

m
x t X t t

m
ζ= Ω − Φ = Ω Γ Ω Ω − ΦA

 (3.142) 

 
where Γ and Φ are given by Eqs. (3.50) and Eq. (3.51), respectively. The ratio of the first 
moments of the mass, 
 

 ( )2 ;
e

mX
m

ζ≡ = Ω Γ Ω
A

�  (3.143) 

 
is seen to characterize the response of the unbalanced motor. We note that when 2 1Ω � , 

1≈�  and hence 
 
 eX m m≈ A  (3.144)  
 
Thus, for large frequency ratios the amplitude of the response is effectively independent of 
the excitation frequency. It may be seen that the normalized (first) mass moment defined by 
Eq. (3.143) is characterized by the same function as the normalized amplitude of the rela-
tive motion associated with harmonic motion of the support, Eq. (3.121). The correspond-
ing plots of that function displayed in Figure 3.19 then describe the characteristics of the 
response for the unbalanced motor, as well. Plots of the associated phase angle are shown in 
Figure 3.9. Upon consideration of Figure 3.19 it may be seen that max→� � in the vicinity 
of 1Ω = as may be expected. It may also be seen that 0→�  and 0Φ →  as 0Ω → , and 
also that 1→�  and πΦ →  as Ω → ∞ . These trends may be put into context by exami-
nation of the motion of the center of mass of the system. 

The location of the center of mass of the block-rotor-eccentric mass system shifts as 
the block moves up and down and the eccentric mass rotates with the rotor about the corre-
sponding axis of rotation. The vertical location of the center of mass is found, as a function 
of time, by applying Eqs. (3.136) and (3.142) to Eq. (1.120). This gives 

 

 ( ) sin( ) sine
cm

mx t X t t
mX

ª º= Ω − Φ + Ω« »¬ ¼

A
 (3.145) 

 
Recall, from our earlier discussion, that 0→�  and 0Φ →  as .0Ω →  It is seen from Eq. 
(3.145) that, in this extreme, 
 

 sine
cm

mx t
m

→ ΩA
  

 
Thus, in the static limit, the excitation is so slow compared with the natural motion of the 
system that the block essentially remains stationary (X = 0) and the center of mass slowly 
moves up and down as the eccentric mass rotates very slowly about the axis of rotation. In 
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the opposite extreme, recall that 1→�  and πΦ →  as Ω → ∞ . It is seen from Eq. 
(3.145) that, in this extreme, 
 

 1 sin 0e
cm

mx X t
mX

ª º→ − + Ω →« »¬ ¼

A
  

 
Thus, in this limit, the center of mass of the system remains essentially stationary while the 
eccentric mass rotates rapidly about the axis of rotation, and the block moves rapidly up and 
down to compensate. This scenario is in keeping with that for the high (excitation) frequen-
cy response found for the cases discussed in previous sections in that, in this extreme, the 
excitation is so rapid that the system as a whole essentially does not respond to the excita-
tion.  
 

Force Transmitted to the Support 
The force transmitted to the support can be obtained by adopting the development of Sec-
tion 3.3.4 to the present case. To do this, we substitute the amplitude of the steady state 
response given by Eq. (3.142) into Eq. (3.72) and parallel the development leading to Eq. 
(3.80). This gives the force transmitted to the support of the unbalanced motor as 
 
 sin( )tr trF F t= Ω − Ψ  (3.146) 
 
where 

 ( ) ( )2 21 2tr eF k X k m mζ= + Ω = Ω ϒA  (3.147) 

 
ϒ  is defined by Eq. (3.77) and Ψ is given by Eq. (3.78). 
 
 

Example 3.15 
A 4 kg motor sits on an isolation mount possessing an equivalent stiffness of 64 N/m 
and damping coefficient 6.4 N-sec/m. It is observed that the motor oscillates at an 
amplitude of 5 cm when the rotor turns at a rate of 6 rad/sec. (a) Determine the offset 
moment of the motor. (b) What is the magnitude of the force transmitted to the sup-
port at this rate of rotation? 
 
Solution 
(a) 
Let us first determine the system parameters ω and ζ. Hence, 
 

 64 4 rad/sec
4

k
m

ω = = =  (a) 

and 

 6.4 0.2
2 2(4)(4)

c
m

ζ
ω

= = =  (b) 
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Therefore, 

 6 1.5
4ω

ΩΩ = = =  (c) 

 
Substituting Eqs. (b) and (c) into Eq. (3.143) gives the ratio of the first inertial mo-
ments as 
 

 
[ ]

2
2

2 22

(1.5) 1.623
1 (1.5) 2(1.5)(0.2)

= Ω Γ = =
ª º− +¬ ¼

�  (d) 

 
Rearranging Eq. (3.143) and substituting Eq. (d) gives the offset moment 
 

 (4)(0.05) 0.1232 kg-m
1.623e

mXm = = =A �  � (e) 

 
(b) 
To determine the magnitude of the transmitted force, we simply substitute the given 
displacement and effective stiffness, as well as the computed damping factor and 
frequency ratio, into Eq. (3.147). Carrying through the computation gives the magni-
tude of the force transmitted to the support as 
 

 [ ]2(64)(0.05) 1 2(0.2)(1.5) 3.732 NtrF = + =  � (f) 
 

   
 
 

Example 3.16 
Determine the amplitude of the response of the system of Example 3.15 when the ro-
tation rate is increased to 60 rad/sec. 

 
Solution 
For this case, 

 60 15
4

Ω = =  (a) 

and hence 
 2 225 1Ω = �  (b) 
 
Therefore 1≈�  and 
 

 0.1232 0.03080 m 3.08 cm
4

emX
m

≈ = = =A
 � (c) 

 
Let us next calculate the amplitude using the “exact” solution. Hence, 
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[ ]

2

2 22

(15) 1.004
1 (15) 2(0.2)(15)

= =
ª º− +¬ ¼

�  (d) 

 
The amplitude of the steady state response is then 
 

 0.1232 (1.004) 0.03092 m 3.09 cm
4

em
X

m
= = = =A�  � (e) 

 
Comparing the two answers we see that the error in using the large frequency ap-
proximation is  

 3.09 3.08% error 100% 0.324%
3.09

−= × =  (f) 

 
 
 
 

3.5.3 Synchronous Whirling of Rotating Shafts 

Consider a circular disk of mass m that is coaxially attached at center span of an elastic 
shaft as shown in Figure 3.23. Let the center of mass of the disk be offset a distance ℓ from 
the axis of the shaft as shown, and let the shaft-disk system be spinning about its axis at the 
angular rate Ω. Further let the mass of the shaft be very small compared with the mass of 
the disk and thus be considered negligible. The system may then be modeled as an equiva-
lent single degree of freedom system as shown in Figure 3.24. In this regard, let k represent 
the equivalent elastic stiffness of the shaft in bending (Section 1.2.2), and let c represent 
some effective viscous damping of the system. The latter may be provided, for example, by 
oil in the bearings, by structural damping (Section 3.4) or by aerodynamic damping (Sec-
tion 1.2.6). To examine this problem, we first derive the equations of motion for the disk 
during whirl.  
 

 
       Figure 3.23  Whirling shaft. 
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       Figure 3.24  Equivalent system. 
 
 
 To derive the equations of motion, we must apply Newton’s Second Law of Motion 
to the system of interest. In order to this we must first obtain expressions for the accelera-
tion of the center of mass during this relatively complex motion. If point O refers to the 
geometric center of the disk then we have, from Eq. (1.72), that the acceleration of the cen-
ter of mass of the disk is related to the acceleration of the geometric center of the disk, and 
hence of the axis of the shaft, by the relation 
 
 /G O G Oa a a= +G G G  (3.148) 
 
where GaG and OaG correspond to the absolute acceleration of the center of mass and the abso-
lute acceleration of the geometric center, respectively, and /G OaG  is the relative acceleration 
of the center of mass with respect to the geometric center (i.e., the acceleration of the center 
of mass as seen by an observer translating, but not rotating, with point O). For the present 
problem, it is convenient to work in polar coordinates. The acceleration of the geometric 
center is then given by Eq. (1.79) as 
 
 ( ) ( )2 2O Ra R R e R R eθθ θ θ= − + +G G G� �� ��� �  (3.149) 
 
where R is the radial distance of the geometric center of the disk from the axis between the 
supports (the z-axis) as shown in Figure 3.23. Thus, R(t) represents the amplitude of the 
whirling motion. The relative acceleration of the center of mass with respect to the geomet-
ric center is similarly obtained, with the aid of Figure 3.25. We thus find that 
 

 
2

/

2

cos( ) sin( )

                + cos( ) sin( )

G O Ra t t e

t t eθ

θ θ

θ θ

ª º= −Ω Ω − + Ω Ω −¬ ¼
ª ºΩ Ω − − Ω Ω −¬ ¼

G G�A A
G�A A

 (3.150) 
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         Figure 3.25  Inertial and axial reference frames. 
 
 
where θ is the angular displacement of the geometric center about the axis connecting the 
supports, as indicated in Figure 3.24, and we have employed the fact that the offset, A , of 
the center of mass is constant for a rigid disk. The kinematic relations described by Eqs. 
(3.148)–(3.150) are valid for general whirling of the system. 
 For synchronous whirl, we restrict our attention to motions for which the whirling 
rate is numerically equal to the rotational rate of the shaft, and for which the whirling mo-
tion remains steady. We therefore, at this juncture, restrict our attention to motions for 
which 
 constant    and    constantRθ = Ω = =�  (3.151) 
       
Integration of the first of Eqs. (3.151) with respect to time gives the angular displacement of 
the whirl as 
 
 tθ = Ω − Φ  (3.152) 
 
where Φ is seen to measure the lag of the whirl angle with respect to the spin angle (see 
Figure 3.25). Substituting Eqs. (3.151) and (3.152) into Eqs. (3.149) and (3.150), and then 
substituting the resulting expressions into Eq. (3.148), gives the acceleration of the center of 
mass of the system during synchronous whirl as 
 
 ( )2 cos sinG Ra R e eθª º= −Ω + Φ + Φ¬ ¼

G G GA  (3.153) 

where 
 R R≡ A  (3.154) 
 
is the normalized amplitude of the whirling motion. With the acceleration evaluated, we are 
now ready to apply Newton’s Second Law of Motion to the system of interest. We thus 
write the equations of motion for our system in terms of polar coordinates, substitute Eqs. 
(3.151)–(3.153) into these equations, and equate components. This gives the governing 
equations for the system along the radial and circumferential directions, respectively, as 
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 ( )2 2cos , sinkR m R c R m− = − Ω + Φ − Ω = − Ω ΦA A  (3.155) 
 
Solving the first of Eqs. (3.155) for cos Φ, the second for sin Φ, and dividing the latter by 
the former gives the phase angle in terms of the damping factor and the spin rate of the shaft 
as 

 1
2

2tan
1

ζ−  ½ΩΦ = ® ¾− Ω¯ ¿
 (3.156) 

 
where Ω is the ratio of the spin rate of the shaft to the undamped natural frequency of  the 
system and ζ is the damping factor. It may be seen that Eq. (3.156) is identical to Eq. (3.51). 
Thus, the plots displayed in Figure 3.9 pertain to the current problem as well, with suitable 
interpretation. However, recall that for structural damping the damping factor is dependent 
on the excitation frequency. (See Section 3.4) For the present case, the angle Φ represents 
the phase difference between the rotation of the eccentric mass about the geometric center 
of the disk (see Figure 3.25) and the motion of the geometric center about the axis between 
the supports. Substitution of the first (second) of Eqs. (3.74) into the first (second) of Eqs. 
(3.155) gives the normalized amplitude of whirling as a function of the normalized spin rate 
and the damping factor. Hence, 
 

 ( )2 ;RR ζ≡ = Ω Γ Ω
A

 (3.157) 

 
It may be seen that the normalized amplitude given by Eq. (3.157) is of the identical func-
tional form as Eq. (3.121). The associated plots displayed in Figure 3.19 therefore describe 
the normalized amplitude for the problem of synchronized whirl, as well. Recall, however, 
that for structural damping the damping factor is dependent on the excitation frequency. 
 
 
 

Example 3.17 
A 50 lb rotor is mounted at center span of a 6 ft shaft having a bending stiffness of 

620 10×  lb-in2. The shaft is supported by rigid bearings at each end. When operating 
at 2000 rpm the shaft is strobed and the rotor is observed to displace off-axis by ½ 
inch. If the damping factor for the system is 0.1 at this frequency, determine the offset 
of the rotor.  
 
Solution 
The effective stiffness for transverse motion of the shaft is determined using Eq. 
(1.17) to give 
 

 
6

3 3 3

12 (20 10 )2 192 192 10, 290 lb/in
( / 2) (6 12)

EI EIk
L L

×= × = = =
×

 (a) 

 
(See Problem 1.14.) The natural frequency of the system is then computed to be 

www.konkur.in



198 Engineering Vibrations 

 10,290 282 rad/sec
50 /(32.2 12)

ω = =
×

 (b) 

 
The rotation rate of the rod is given as 
 

 2000 rev/min 2 rad/rev 1min/60sec 209 rad/secπΩ = × × =  (c) 
 
Hence, 

 209 0.741
282

Ω = =  (d) 

 Now, 

 
[ ]

2
2

2 22

(0.741) 1.16
1 (0.741) 2(0.10)(0.741)

Ω Γ = =
ª º− +¬ ¼

 (e) 

   
 
Rearranging Eq. (3.157) and substituting the observed displacement and Eq. (e) gives 
the offset 
 

 2
0.5 0.432 inches

1.16
R= = =

Ω Γ
A  � (f) 

 
 
 

3.6  RESPONSE TO GENERAL PERIODIC LOADING 

To this point we have studied the response of single degree of freedom systems subjected to 
excitations that vary harmonically with time. That is the forcing functions considered were 
of the form of cosine or sine functions. We next consider excitations that are periodic, but 
not necessarily harmonic, in time. Such excitations are prevalent in common everyday sys-
tems as well as in engineering systems. A ratcheting action, a uneven cam driving a mecha-
nism or a parent pushing a child on a swing are just three examples. In this section we study 
the response of single degree of freedom systems that are subjected to this broader class of 
excitations, namely general periodic forcing of which harmonic loading is a special case. 
We shall see that the response to harmonic loading is intimately related to the response to 
other types of periodic loading. 
 
 

       Figure 3.26  Generic periodic function. 

2-2

F(t)

t
-
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3.6.1 General Periodic Excitation 

We shall consider the class of time dependent excitations that are applied to systems over a 
very long span of time and whose temporal form repeats itself over specified intervals (see 
Figure 3.26). The forces and hence the associated functions that describe them, may be dis-
continuous as in the case of periodically applied pulses such as those imparted by a parent 
pushing a child on a swing. Such periodic forces are represented mathematically by period-
ic functions which are defined as functions possessing the property 
 
 ( ) ( )F t F tτ+ =  (3.158) 
 
where t is the time and τ is the period of application of the force.  
 The standard form of the equation of motion for single degree of freedom systems is 
given by Eq. (3.1), and is repeated here for convenience. Hence, 
 

2 22 ( )x x x f tωζ ω ω+ + =�� �  
where now 
 ( ) ( )f t f tτ+ =  (3.159) 
 
which is related to F(t) by Eq. (3.2) for a mass-spring-damper system, or by analogous rela-
tions for other single degree of freedom systems. It is evident from Eq. (3.2) that ( )f t is 
periodic and has the same period as F(t). We wish to determine the general form of the 
steady state response of single degree of freedom systems (or equivalently establish an al-
gorithm to determine the steady state response of systems) subjected to excitations that vary 
periodically with time. To do this we shall first resolve the applied force into its projections 
(components) onto a set of periodic basis functions. That is we shall express ( )f t  in terms 
of its Fourier series.  
 Functions such as ( )f t are basically vectors in infinite dimensional space (see Chap-
ters 9 and 10). We can therefore express a function as the sum of the products of its compo-
nents with respect to a set of mutually orthogonal basis functions just as we can express a 
vector in three dimensional space as the sum of the products of its components with respect 
to three mutually orthogonal basis vectors. In three dimensional space there must be three 
basis vectors. In function space there must be an infinite number of basis functions. For the 
class of  periodic functions under consideration, the set of functions  
 
 ( ) ( ){ }cos 2 / ,sin 2 / 0,1, 2,...p t p t pπ τ π τ =  

 
forms such a basis. These functions have the property that  
 

 ( ) ( )
/ 2

/ 2
cos 2 / sin 2 / 0   ( , 0,1, 2,...)p t q t dt p q

τ

τ
π τ π τ

−
= =³  (3.160) 

 

        ( ) ( )
/ 2

/2

2 ( 0)
2 cos 2 / cos 2 / 1 ( ) ( , 1, 2,3,...)

0 ( ) ( , 0,1, 2,...)

p q
p t q t dt p q p q

p q p q

τ

τ
π τ π τ

τ −

= =
°= = =®
° ≠ =¯

³  (3.161) 
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and 
 

 ( ) ( )
/ 2

/ 2

0 ( )2 sin 2 / sin 2 /   ( , 1,2,3,...)
1 ( )

p q
p t q t dt p q

p q

τ

τ
π τ π τ

τ −

≠= =® =¯³  (3.162) 

 
The functions that comprise the set are thus mutually orthogonal in this sense. (See Chap-
ters 9 and 10.) 
 Let us express the excitation function ( )f t in terms of its Fourier series. Hence, 
 

 ( ) ( )
0

1 1

( ) cos sinc s
p p p p

p p

f t f f t f t
∞ ∞

= =

= + Ω + Ω¦ ¦  (3.163) 

where 

 2     ( 1,2,...)p
p pπ
τ

Ω = =  (3.164) 

 
and the associated Fourier components are given by 
 

 
/ 2

0
/ 2

1 ( )f f t dt
τ

ττ −
= ³  (3.165) 

 
which is seen to be the average value of the excitation ( )f t over a period, and 
 

 
/ 2

( )

/ 2

2 ( ) cos      ( 1, 2,...)c
p pf f t t dt p

τ

ττ −
= Ω =³  (3.166) 

and 

 
/ 2

( )

/ 2

2 ( )sin      ( 1, 2,...)s
p pf f t t dt p

τ

ττ −
= Ω =³  (3.167) 

 
which are the Fourier coefficients (components) of the cosine and sine basis functions, re-
spectively. These coefficients are thus the components of the given forcing function with 
respect to the harmonic basis functions. [The equations for the Fourier components arise 
from multiplying Eq. (3.163) by cos ptΩ  or sin ptΩ , then integrating over the period τ and 
incorporating Eqs. (3.160)–(3.162).] At this point we are reminded of certain characteristics 
regarding convergence of a Fourier series representation, particularly for functions that pos-
sess discontinuities. Notably, that the Fourier series of a discontinuous function converges 
to the average value of the function at points of discontinuity, and that the series does not 
converge uniformly. Rather, if the series for such a function is truncated, the partial sums 
exhibit Gibbs Phenomenon whereby overshoots (bounded oscillatory spikes) relative to the 
mean occur in the vicinity of the discontinuity. With the Fourier series of an arbitrary peri-
odic excitation established, we now proceed to obtain the general form of the corresponding 
steady state response. 
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3.6.2 Steady State Response 

We next substitute the Fourier series for the excitation into the equation of motion for the 
system. The equation of motion then takes the form 
 

 2 2 2 ( ) 2 ( )
0

1 1
2 cos sinc s

p p p p
p p

x x x f f t f tωζ ω ω ω ω
∞ ∞

= =
+ + = + Ω + Ω¦ ¦�� �  (3.168) 

 
We see that by incorporating the expansion defined by Eq. (3.163) in the right-hand side of 
Eq. (3.1) we are, in effect, treating the system as if it is subjected to an equivalent system of 
harmonic forces and a constant force. Recall that the constant force is the average value 
of ( ).f t  From the superposition principle discussed in Section 3.2 we know that the re-
sponse of the system to the system of forces is the sum of the responses to the individual 
forces applied separately. The steady state response to F(t) therefore corresponds to the sum 
of the responses to the individual Fourier components of F(t). The steady state response for 
the general periodic force may thus be found directly from Eqs. (3.53) and (3.54) for each 
Ωp. Hence, 

 ( ) ( )
0

1
( ) ( ) ( )c s

ss p p
p

x t x x t x t
∞

=

ª º= + +¬ ¼¦  (3.169) 

where 
 0 0x f=  (3.170) 
 
 ( )( ) ( )( ) cosc c

p p p p px t f t= Γ Ω − Φ  (3.171) 
 
 ( )( ) ( )( ) sins s

p p p p px t f t= Γ Ω − Φ  (3.172) 
 

 ( )
( ) ( )

( )
2 22

1;     1,2,...
1 2

p p

p p

pζ
ζ

Γ ≡ Γ Ω = =
− Ω + Ω

 (3.173) 

 

 ( ) 1
2

2
; tan     ( 1, 2,...)

1
p

p p
p

p
ζ

ζ −  ½Ω° °Φ ≡ Φ Ω = =® ¾− Ω° °¯ ¿
 (3.174) 

 

 ( )   1, 2,...p
p p

ω
Ω

Ω ≡ =  (3.175) 

 
For vanishing damping  

 
( )

( )
2 cos

1

c
pc

p p
p

f
x t= Ω

− Ω
 (3.176) 

and 

 
( )

( )
2 sin

1

s
ps

p p
p

f
x t= Ω

− Ω
 (3.177) 
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as per Eqs. (3.27) and (3.28). Note that for the case of structural damping the damping fac-
tor will generally have a different value for each harmonic, Ωp, of the excitation. That is, for 
the case of structural damping, 
 
 ( )    ( 1, 2,...)p p pζ ζ ζ→ ≡ Ω =  (3.178) 

 
Thus, for practical purposes, one must have an extensive knowledge of the structural damp-
ing factor if this approach is to be used for systems with appreciable structural damping. 
 
 

Example 3.18 
A parent pushes a child on a swing whose chains are 6 ft long, as shown. The force 
history exerted by the parent is approximated by the sequence of periodically applied 
step pulses of 0.75 second duration applied every 3 secs as indicated. Determine the 
motion of the child if the magnitude of the applied force is 1/10th the combined 
weight of the child and the seat. Assume that the system is free from damping and 
that the mass of the chain is negligible. 
 

   Figure E3.18-1 
 
Solution 
The equation of motion is derived by following the procedure for the simple pendu-
lum of Section 2.1.4. The kinetic diagram for the system is shown in Figure E3.18-2, 
where we have assumed that the pushing force is applied tangent to the path. Writing 
Newton’s Second Law along the tangential direction, rearranging terms and lineariz-
ing the resulting expression gives the equation of motion for the child on the swing 
as 
 2 2 ( )f tθ ω θ ω+ =��  (a) 
where 
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 Figure E3.18-2  Kinetic Diagram. 
 
 
 

 ( )( ) F tf t
mg

=  (b) 

and 

 32.2 2.317 rad/sec
6

g
L

ω = = =  (c) 

 
Since the swing is pushed periodically we may express the applied force in terms of 
its Fourier series. The frequencies of the Fourier basis functions are then computed 
as 

 2 2
3p

p pπ π
τ

Ω = =  (d) 

  
from which it follows that 
 

 2 2 0.904
(2.317)(3)p

p p pπ π
ωτ

Ω = = =  (e) 

 
We next compute the Fourier components of the applied force. The force is de-
scribed over the interval 1.5 1.5t− ≤ ≤ seconds by 
 

   0

0 ( 1.5 0)
( )  (0 0.75)

0 (0.75 1.5)

t
F t F t

t

− ≤ <
°= ≤ <®
° ≤ <¯

 (f)  

 
Substituting Eq. (f) into Eqs. (3.165)–(3.167) and carrying through the integration 
gives 

 

/ 2 0 0.75 1.5
0

0
/ 2 1.5 0 0.75

0

1 1 1 1( ) 0 0
3 3 3

(0.1)    0.025
4 4

Ff f t dt dt dt dt
mg

F mg

τ

ττ − −
= = + +

= = =

³ ³ ³ ³
 (g) 

 
(note that f0 is the average value of f over a period), 
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/ 2
( )

/ 2

0 0.75 1.5
0

1.5 0 0.75

2 ( )cos

2 2 2      0 cos cos 0 cos
3 3 3

sin( / 2)      0.1

c
p p

p p p

f f t t dt

F
t dt t dt t dt

mg
p
p

τ

ττ

π
π

−

−

= Ω

= ⋅ Ω + Ω + ⋅ Ω

=

³
³ ³ ³  (h) 

and 

 

/ 2
( )

/ 2

0 0.75 0
0

1.5 0 1.5

2 ( )sin

2 2 2      0 sin sin 0 sin
3 3 3

[1 cos( / 2)]      0.1

s
p p

p p p

f f t t dt

F
t dt t dt t dt

mg
p

p

τ

ττ

π
π

−

− −

= Ω

= ⋅ Ω + Ω + ⋅ Ω

−=

³
³ ³ ³  (i) 

 
Substituting Eqs. (d)–(i) into Eqs. (3.169), (3.170), (3.176) and (3.177) gives the 
steady state response of the child and swing, 
 

[ ]{ }2
1

( ) 0.025

0.1 1 + sin( / 2) cos(2 / 3) 1 cos( / 2) sin(2 / 3)
(1 0.816 )

ss

p

t

p p t p p t
p p

θ

π π π π
π

∞

=

=

+ −
−¦  

    radians� (j) 
 
 
 
 

Example 3.19 
A motor is configured to drive a system at the constant rate 0F� . A controller alters the 
sense of the applied force over specified time intervals of duration t� as indicated by 
the force history shown. Determine the response of the mass-spring-damper system.   

 
Solution 
The force applied to the single degree of freedom system is clearly periodic with pe-
riod 
 2tτ = �  (a) 
 
and may be described over the interval t t t− ≤ ≤� �  by the relations 

F(t)

Fo Fo

3t2t

1 1

4tt-t-2t
t
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 0

0

( ) ( 0)
( ) (0 )

F t F t t t
F t F t t t

= − − ≤ ≤
= ≤ ≤

� �
� �  (b) 

 
We may therefore represent the force imparted by the motor by its Fourier series, 
where the frequencies of the Fourier basis functions are 
 

 2
p

p p
t

π π
τ

Ω = = �  (c) 

Hence, 

 p
p

t
π

ω
Ω = �  (d) 

 
We next evaluate the Fourier components of the applied force. Substituting Eq. (b) 
into Eqs. (3.165)–(3.167) and carrying through the integration gives  
 

 
/ 2 0

0 0 0 0
0

/ 2 0 0

1 1 1 1( )
2 2 2

t t

t

F t F F F
f f t dt dt t dt t dt t

t k t k t k k

τ

ττ − −
= = − + = =³ ³ ³ ³

� �

�

� � � �
�

� � �  (e) 

 

 
0

( ) 0 0

0

2 2sin sin 0
2 2

t
s

p p p
t

F F
f t t dt t t dt

t k t k−
= − Ω + Ω =³ ³

�

�

� �
� �  (f) 

 

 
[ ]

0
( ) 0 0 0

0 0

10 0
2 2 2 2

2 2 2cos cos cos
2 2
2 2

      1 cos 1 ( 1)

t t
c

p p p p
t

p

F F F
f t t dt t t dt t t dt

t k t k t k
F t F tp
p k p k

π
π π

−

+

= − Ω + Ω = Ω

ª º= − − = − + −¬ ¼

³ ³ ³
� �

�

� � �
� � �
� �� �  (g) 

 
With the Fourier components of the applied force calculated, we now determine the 
steady state response of the system by substituting Eqs. (d)–(g) into Eqs. (3.169)–
(3.175). In doing so we obtain the steady state response of the system as 
 

 
1

0
2 2

1

4 1 ( 1)( ) 1 cos( / )
2

p
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3.7 CONCLUDING REMARKS 

In this chapter we have considered the motion of single degree of freedom systems that are 
subjected to periodic excitation, that is excitation that repeats itself at regular intervals over 
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long periods of time. We began by studying systems which were subjected to external forc-
es that vary harmonically in time. We also considered classes of applications corresponding 
to motion of the support, unbalanced motors and synchronous whirling of rotating shafts. In 
each case the steady state response was seen to be strongly influenced by the ratio of the 
excitation frequency to the natural frequency of undamped motion, and the viscous damp-
ing factor. A notable feature is the phenomenon of resonance whereby the mass of the sys-
tem undergoes large amplitude motion when the excitation frequency achieves a critical 
value. For undamped systems this occurs when the forcing frequency is equal to the excita-
tion frequency. It was seen that at resonance the work of the external force is used in the 
optimal manner. For undamped systems the amplitude of the steady state response was seen 
to grow linearly with time. The related phenomenon of beating was seen to occur, for sys-
tems with vanishing damping, when the excitation frequency was very close to but not 
equal to the natural frequency. In this case the system is seen to oscillate at the average be-
tween the excitation and natural frequency, with the amplitude oscillating harmonically 
with a very large period. For viscously damped systems the peak response was seen to oc-
cur at values of the excitation frequency away from the undamped natural frequency, and at 
lower frequencies for a force excited system, the damping slowing the system down. We 
remark that in some literature the term resonance is associated solely with undamped sys-
tems, and the term resonance frequency with the excitation frequency equal to the 
undamped natural frequency. We here use the terms to mean the peak/maximum response 
and the frequency at which it occurs. In all cases the amplitude of the steady state response 
is characterized by a magnification factor, or related expression, which measures the effect 
of the dynamics on the amplitude of the response. In addition, the steady state response lags 
the excitation with the phase lag dependent upon the same parameters as the magnification 
factor. The phasing was seen to be central to the description of the resonance phenomenon. 
The force transmitted to the support during excitation was also examined and a critical fre-
quency ratio, beyond which the system is essentially isolated from the effects of vibration, 
was identified. A model for structural damping was presented, based on the mechanics of 
linear hereditary materials. The model was adapted to single degree of freedom systems and 
took the form of an effective viscous damping factor that is generally dependent on the fre-
quency of the excitation. We finished by studying the motion of systems subjected to gen-
eral periodic loading based on the principle of superposition and using Fourier series. In the 
next chapter we shall study the response of single degree of freedom systems subjected to 
excitations that are of finite duration in time.  
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PROBLEMS 

3.1 The mass of the system of Problem 2.1 is subjected to the time dependent force 
( ) 250cos 4F t t= dynes, where t is in seconds. Determine the response of the system. 

Plot the response and identify the amplitude, period and lag time. 
 
3.2 The load cell clamp attached to the end of the rod of Problem 2.6 is observed to oscil-

late with an amplitude of 0.1 cm when attached to a driving mechanism operating at 
the rate of 1 cps. Determine the magnitude of the force imparted by the mechanism.  

 
3.3 The wheel of Example 2.3 is subjected to a harmonic torque of frequency 15 rad/sec 

and magnitude 10 lb-ft. Determine the amplitude of the steady state response of the 
system. 

 
3.4 A 3000 pound cylindrical pontoon having a 

radius of 6 feet floats in a body of fluid. A 
driver exerts a harmonic force of magnitude 
500 lb at a rate of 200 cycles per minute at the 
center of the upper surface of the float as in-
dicated. (a) Determine the density of the fluid 
if the pontoon is observed to bob with an am-
plitude of 1 foot. (b) What is the magnitude of 
the bobbing motion of the pontoon when the 
excitation frequency is reduced to 5 rad/sec?                        Fig. P3.4 

        
3.5 A horizontally directed harmonic force 0( ) sinF t F t= Ω acts on the bob of mass m of 

a simple pendulum of length L (Figure P3.5).  Determine the steady state response of 
the pendulum. 
                                                                   

                                                                                            

 
 Fig. P3.5                                                          Fig. P3.6 

 
 
3.6 The left wheel of a conveyor belt is locked into position when the motor is accidental-

ly switched on, exerting a harmonic torque 0( ) sinM t M t= Ω about the hub of the 
right wheel, as indicated in Figure P3.6. The mass and radius of the flywheel are m 
and R, respectively. If no slipping occurs between the belt and wheels the effective 
stiffness of each leg of the elastic belt may be represented as k/2, as shown. Deter-
mine the response of the system at resonance. What is the amplitude of the response 
at a time of 4 natural periods after the motor is switched on?  
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3.7 An aircraft mock-up for ground testing is modeled as shown, where a brace repre-
sented as a torsional spring of stiffness kT has been attached at the pivot support to re-
strain excessive yawing. It is assumed that during a test, both thrusters will exert a 
constant force of magnitude F0. However, during a simulation, one of the thrusters 
deviates from the prescribed force by adding a perturbation in the form of a harmonic 
thrust of small amplitude. Thus, the force applied by this thruster takes the form 

0( ) (1 sin )F t F tε= + Ω , as indicated, where 1ε � . Determine the steady state yaw-
ing motion of the mock-up. What is the amplitude of the response at resonance? 

 

 
   Fig. P3.7 
 
 
3.8 The tip of the beam of Problem 1.4 is subjected to a sinusoidal force whose magni-

tude is 1% of the supported weight. Determine the motion of the supported mass if 
the excitation frequency is tuned to 98% of the natural frequency of the system. Plot 
and label the response. 

 
3.9 The disk of Example 2.8 is driven by the torque ( ) 2 cos( / )M t mgr g R t=  (positive 

clockwise). Determine the small angle motion of the disk. 
 
3.10 A horizontally directed harmonic force 0( ) sinF t F t= Ω acts on the mass of the tim-

ing device of Problem 2.28. Determine the steady state response of the device. 
 
3.11 Determine the torque transmitted to the support of the system of Problem 3.3. 

 
3.12 The mount for the system of Problem 3.1 is to be replaced by a mount having the 

same stiffness as the original but possessing appreciable damping. If the system is to 
be driven by the same force during operation, determine the minimum value of the 
damping coefficient needed by the mount so that the force transmitted to the base 
never exceeds 150% of the applied force.  
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3.13 A viscoelastic beam is configured as in Problem 1.4 and is subjected to a harmonic 
edge load of magnitude 1000 lb. (a) Determine the deflection of the beam due to a 
static load of the same magnitude as the dynamic load. (b) When the frequency of the 
excitation approaches the natural frequency of an elastic beam possessing the same 
geometry and elastic modulus (Problem 3.8) the amplitude of the deflection of the 
supported weight is measured to be 12.5 inches. Determine the structural loss factor 
of the system for this excitation frequency.   

 
 
3.14 The base of the inverted pendulum shown is attached to a cranking mechanism caus-

ing the base motion described by 0 .( ) (1 cos )x t X t= − Ω  Determine the steady state 
motion of the pendulum if kT > mgL. 

 
   Fig. P3.14 
 
 
3.15 Determine the range of excitation frequencies for which the amplitude of the (abso-

lute) steady state motion of the roof of the structure of Example 3.13 will always be 
smaller than the amplitude of the ground motion. 
 
 

3.16 An automatic slicer consists of an elastic rod of length L and axial stiffness EA at-
tached to the hub of a semi-circular blade of radius R and mass m, as shown. If the 
base of the rod is controlled so that its horizontal motion is described 
by 0 ,( ) sinx t h t= Ω  determine the motion of the blade during the cutting process. 
What force must be applied to the rod by the motor in order to produce this motion? 

 

 
                                                             Fig. P3.16 
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3.17 A structure identical to the building of Example 3.13, but with unknown damping 
factor, undergoes the same ground motion. If the magnitude of the steady state re-
sponse is 2.75 inches, determine the structural loss factor for that excitation frequen-
cy.  

 
 
3.18 The pitching motion of a certain vehicle is studied using the model shown. A control-

ler is embedded in the system and can provide an effective moment M(t) about the 
pivot, as indicated. If the base at the right undergoes the prescribed harmonic mo-
tion 0( ) siny t y t= Ω while the base at the left remains fixed, determine the moment 
that must be applied by the actuator to compensate for the base motion so that a pas-
senger within the vehicle will experience a smooth ride? 

 

   Fig. P3.18 
 
 
3.19 A 150 pound boy stands at the edge of the diving board of Problem 2.30, preparing to 

execute a dive. During this time, he shifts his weight in a leaping motion, moving up 
and down at the rate of 1 cps. If, at the apogee of each bob his feet just touch the 
board so that they are nearly losing contact, determine the steady state motion of the 
boy.  

 
 
3.20 A controller is attached to the pendulum of Problem 3.5. If a sensor measures the 

amplitude of the motion of the pendulum driven by the applied force to be X1, deter-
mine the moment that must be exerted by the actuator to maintain the quiescence of 
the system. 

 
 
3.21 Suppose the block sitting at the center of the simply supported beam of Problem 1.5 

corresponds to a motor whose rotor spins at a constant rate. If the beam is observed to 
deflect with an amplitude of 3 inches (about the static deflection) when the motor op-
erates at 50% of the critical rate of rotation determine the offset moment of the rotor.  
                                              
 
 
 
 
   Fig. P3.21 
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3.22 A flywheel of radius R and mass m is supported by an elastic rod of length L and 
bending stiffness EI, as shown. The wheel possesses an offset moment meℓ and is 
connected to the rest of the system by a fan belt, as indicated. If the flywheel rotates 
such that the belt moves with constant speed v0, determine the vertical motion of the 
wheel. What is the critical speed of the belt? (Assume that no slip of the belt occurs 
and that its stiffness is negligible.) 

 

 
   Fig. P3.22/P3.23 
 
3.23 Determine the horizontal motion of the flywheel of Problem 3.22, and the corre-

sponding critical speed of the fanbelt, if the cross-sectional area of the rod is A.   
 
3.24 Several bolts on the propeller of a 

fanboat detach, resulting in an offset 
moment of 5 lb-ft. Determine the 
amplitude of bobbing of the boat 
when the fan rotates at 200 rpm, if 
the total weight of the boat and pas-
sengers is 1000 lbs and the wet area 
projection is approximately 30 sq ft. 
What is the amplitude at 1000 rpm?                                   Fig. P3.24 

 
3.25 The damping factor for a shaft-turbine system is measured to be 0.15. When the tur-

bine rotates at a rate equal to 120% of the undamped natural frequency of the shaft, 
the system is observed to whirl with an amplitude equal to the radius of the shaft. 
What will be the amplitude of whirling when the rotation rate of the turbine is re-
duced to 80% of the undamped natural frequency of the shaft if the radius of the shaft 
is 1 inch? 
 

3.26 Determine the amplitude of whirling motion of the system of Example 3.17 if the 
supports permit in-plane rotation as well as spin.  

 
3.27 Determine the response of the 

system of Problem 3.1 when it is 
subjected to the sawtooth force 
history shown in Figure P3.27. 

 
 
 
                                                               Fig. P3.27 
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3.28 Determine the response of the right wheel 

of the conveyor belt of Problem 3.6 if the 
left wheel is locked and the alternating 
step torque shown in Figure P3.28 is ap-
plied to the right wheel by the motor. 

 
    
 
                                                                       Fig. P3.28 
 
3.29 Determine the response of the structure of Example 3.13 if the base motion is de-

scribed by the stuttering sinusoid shown in Figure P3.29. Neglect the effects of damp-
ing. 

  
 
 
 
 
              Fig. P3.29 
   
3.30 Determine the response of the vehicle of Problem 3.18 when the right base undergoes 

the step motion shown in Figure P3.30 and damping is negligible. 

   Fig. P3.30 
 
3.31 A vehicle of mass m, with suspension of stiffness k and negligible damping, is travel-

ing at constant speed v0 when it encounters the series of equally spaced semi-circular 
speed bumps shown. Assuming that no slip occurs between the wheel and the road, 
determine (a) the motion of the engine block while it is traveling over this part of the 
roadway and (b) the force transmitted to the block.  

 
   Fig. P3.31 
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4 
Forced Vibration of Single Degree of 
Freedom Systems – 2:                     
Nonperiodic Excitation 

 
 
 
 
 
To this point we have considered the response of systems to excitations that are continuous-
ly applied over a very long period of time. Moreover, we restricted our attention to excita-
tions that vary periodically in time. Though such excitations are clearly important in the 
study of vibrations, engineering systems may obviously be subjected to other forms of exci-
tation. A system may be at rest when it is first excited by a periodic or other continuously 
varying force. Alternatively, an engineering system may be subjected to a short duration 
load, a pulse, which can clearly affect its response and performance. Examples of such 
transient excitation include the start-up of an automobile engine, the behavior of a machine 
before it achieves steady state operation, the loads on an aircraft during take-off or landing, 
or the impact of a foreign object on a structure. In addition, a system may be subjected to 
loading that does not fall into any particular category. In this chapter we shall examine the 
behavior of single degree of freedom systems that are subjected to transient loading and to 
the general case of arbitrary excitation. 

  

4.1  TWO GENERALIZED FUNCTIONS 

To facilitate our study of the response of single degree of freedom systems to transient and 
general excitation it is expedient to introduce two generalized functions, the Dirac delta 
function and the Heaviside step function. The qualification “generalized” is employed be-
cause these mathematical entities do not follow the traditional definitions and rules of ordi-
nary functions. Rather, they fall into the category of “distributions.”  
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    Figure 4.1 The Dirac delta function (unit impulse). 
 
 

4.1.1  The Dirac Delta Function (Unit Impulse) 

Consider a function, )(tG
�

, which is of the form shown in Figure 4.1a. The function in ques-
tion is effectively a spike acting over the very small time interval 2/2/ WW dd� t , and the 
maximum height of the function is of the order of the inverse of the duration, as indicated. 
The specific form of the function is not specified. However, its integral is. The generalized 
function just described is referred to as the Dirac delta function, also known as the unit im-
pulse function, and is defined in terms of its integral as follows: 
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The integral of the unit impulse is dimensionless, hence the dimension of the unit impulse 
corresponds to that of the inverse of the independent variable. Thus, for the case under dis-
cussion, the Dirac delta function has units of 1/t. It may be seen that the delta function has 
the property that  
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          Figure 4.2  Generic function ( )f t , with unit impulse in background.  
 
 
If we introduce a time shift so that the delta function acts in the vicinity of  t   a, as indicat-
ed in Figure 4.1b, we see that the unit impulse has the following properties: 
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Another useful property of the Dirac delta function is found when we consider the integral 
of its product with some regular well behaved function, ( ).f t  (See Figure 4.2.) Piecewise 
evaluation of that integral takes the form  
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It may be seen from Eqs. (4.5) and (4.6) that the first and third integrals on the right-hand 
side of the above expression vanish. Further, over the infinitesimal time interval bounded 
by the limits of integration for the second integral on the right-hand side, the function f (t) 
effectively maintains the constant value f (a) and can be taken out of the corresponding in-
tegrand. Application of Eq. (4.4) on the resulting expression then gives the identity 
 

 ( ) ( ) ( )f t t a dt f aG
f

�f
�  ³

�
 (4.7) 

 
We next define the derivative of the unit impulse. 
  As for the delta function itself, the derivative of the Dirac delta function is defined 
through its integral. To motivate this, consider the integral  
 

a t 

f (t) 
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where we have assumed that we may perform integration by parts with the delta function as 
we do for regular functions. We may argue that the term in brackets vanishes at the limits 
and thus that 
 

 ( ) ( ) ( ) ( ) ( )f t t a dt f t t a dt f aG G
f f

�f �f
�  � �  �³ ³

� �� � �  (4.8) 

 
Regardless, we take Eq. (4.8) as the definition of the derivative of the Dirac delta function. 
The above procedure may be extended to give the jth derivative of the delta function as 
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We next introduce a (generalized) companion function to the Dirac delta function. 
 

4.1.2   The Heaviside Step Function (Unit Step) 

Consider a function ( )tH of the form shown in Figure 4.3a. Such a function can represent, 
say, a sudden start-up of a system to a constant operating level if the times of interest are 
large relative to the start-up time. The function in question is seen to be discontinuous at the 
origin, jumping from zero for t < � to unity for t > �.  This generalized function is referred 
to as the Heaviside step function, also known as the unit step function. It is formally defined 
as follows, 
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     Figure 4.3  The Heaviside step function (unit step). 
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The unit step function is dimensionless. If we introduce a time shift so that the jump occurs 
at t = a (Figure 4.3b), we have that  
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( )
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H  (4.11) 

 
The Heaviside step function is inherently related to the Dirac delta function. This relation is 
discussed next. 
 

4.1.3   Relation Between the Unit Step and the Unit Impulse 

When Eqs. (4.2) and (4.10) are compared, it is evident that  
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Similarly, comparison of Eqs. (4.5) and (4.11) gives the relation 
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t
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Since the unit step and unit impulse functions are related in this way, the derivatives of the 
Heaviside step function may be defined as the inverse operation. Equations (4.12) and 
(4.13) therefore suggest the definition of the derivative of the unit step function as 
 

 ( ) ( )d t t
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G�  �
�
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Both the Dirac delta function and the Heaviside step function will prove to be very useful in 
describing the loading and response for various types of transient excitation, as well as for 
the development of the response for arbitrary excitation. 
 
 

4.2   IMPULSE RESPONSE 

Engineering systems are often subjected to forces of very large magnitude that act over very 
short periods of time. Examples include forces produced by impact, explosions or shock. In 
this section we examine the response of single degree of freedom systems to such loading. 
It will be seen that the response to impulse loading provides a fundamental solution from 
which the response to more general loading types may be based. Toward these ends, we 
first classify forces into two fundamental types. 
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4.2.1  Impulsive and Nonimpulsive Forces 

Time dependent forces may be classified as impulsive or nonimpulsive. Impulsive forces 
are those that act over very short periods of time but possess very large magnitudes, such as 
the forces associated with explosions and impact. Nonimpulsive forces are those that are 
well behaved over time, such as the gravitational force, the elastic spring force and the vis-
cous damping force. Impulsive and nonimpulsive forces are defined formally in what fol-
lows. With the qualitative descriptions of these two types of forces established, we now 
proceed to formally define impulsive and nonimpulsive forces mathematically.  

Impulsive Forces 
Forces that act over very short periods of time, such as those due to explosions or impact, 
may be difficult to measure directly or to quantify mathematically. However, their impulses 
can be measured and quantified. In this light, an impulsive force is defined as a force that 
imparts a finite (nonvanishing) impulse over an infinitesimal time interval. Formally, an 
impulsive force F(t) is a force for which  
 

 
0 0

lim ( ) 0
t

t
F t dt

'

' o
o z³ !  (4.16) 

 
where ! is the impulse imparted by the impulsive force F. Consequently, and in light of 
Eqs. (4.7) and (4.16), an impulsive force may be expressed in the form 

 
 ( ) ( )F t tG 

�
!  (4.17) 

 
where )(tG

�
is the Dirac delta function discussed in Section 4.1. 

Nonimpulsive Forces 
Nonimpulsive forces, such as spring forces, damping forces and the gravitational force, are 
forces that are well behaved over time. Since such forces are finite, the impulse they pro-
duce over infinitesimal time intervals is vanishingly small. Formally, a nonimpulsive force 
is a force F(t) for which 
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t
F t dt

'

' o
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With the mathematical description of impulsive and nonimpulsive forces established, we 
next determine the general response of a standard single degree of freedom system to an 
arbitrary impulsive force. 
 
 

4.2.2   Response to an Applied Impulse 

Consider a mass-spring-damper system that is initially at rest when it is subjected to an im-
pulsive force F(t), as shown in Figure 4.4. Let us next apply the Principle of Linear Im-
pulse-Momentum, Eq. (1.96), to the initially quiescent system over the time interval when 
the impulsive force defined by Eq. (4.17) is applied. Hence, 
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         Figure 4.4  Mass-spring-damper system subjected to an impulsive force. 
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where m, k and c correspond to the mass, spring constant and damping coefficient of the 
system, respectively. Since the spring force and damping force are nonimpulsive forces, the 
second integral on the left-hand side of Eq. (4.19) vanishes. Since the system is initially at 
rest, the corresponding initial velocity is zero as well. The impulse-momentum balance, Eq. 
(4.19), then reduces to the relation 
 
 (0 )mx � �!  (4.20) 
 
If we consider times after the impulsive force has acted (t !��� then, using Eq. (4.20) to de-
fine the initial velocity, the problem of interest becomes equivalent to the problem of free 
vibrations with the initial conditions 
 
 0 0(0) 0    and    (0)x x v x m{  {  � !  (4.21) 
 
Recognizing this, the response can be written directly by incorporating the initial conditions 
stated in Eq. (4.21) into the solution given by Eqs. (2.73) and (2.76). The motion of an un-
derdamped system is then described as follows: 
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Let us next incorporate Eq. (4.10) into the above solution. The response of the under-
damped system to the impulse ! can then be restated in the compact form 
 
 ( ) ( )x t t !G  (4.22) 
where 
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 1( ) sin ( )t
d

d

t e t t
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]Z Z
Z

�{G H  (4.23) 

 
is the unit impulse response (the response of a single degree of freedom system to an im-
pulse of unit magnitude applied at t   0). In Eq. (4.23), ( )tH is the Heaviside step function 
and Z, ]�and dZ are given by Eqs. (2.2), (2.65) and (2.70) respectively. 
 The response to an impulse applied at t  �W is found by incorporating a time shift into 
Eq. (4.22). The motion of the system for this case is then  
 
 ( ) ( )x t t W �!G  (4.24) 
 
The response of a system to an impulse is evidently of fundamental, as well as of practical, 
importance in its own right. In addition, the response of engineering systems to impulse 
loading is fundamental to their response to loading of any type. This relation is discussed in 
the next section. 
 
 

Example 4.1 
A system consisting of a 4 kg mass, a spring of stiffness 400 N/m and a damper of 
coefficient 16 N-sec/m is initially at rest when it is struck by a hammer. (a) If the 
hammer imparts an impulse of magnitude 2 N-sec, determine the motion of the sys-
tem. (b) Determine the response if the hammer again strikes the mass with the same 
impulse 10 seconds later. (c) Determine the response of the system if instead, the se-
cond strike occurs 6.413 seconds after the first. 
 
Solution 
The damping factor, natural frequency and natural period are easily computed to be 
(see Example 2.11) 
 

 
2

400 4 10 rad/sec,    16 [2(10)(4)] 0.2,

10 1 (0.2) 9.798 rad/sec,    2 9.798 0.6413 secsd dT

Z ]

Z S

    

 �    
 (a) 

 
(a) 
The unit step response for the system is computed from Eq. (4.23) giving 
 

 
(0.2)(10)

2

1( ) sin(9.798 ) ( )
(4)(9.798)

      0.02552 sin(9.798 ) ( ) (m/N-sec)

t

t

t e t t

e t t

�

�

 

 

� H

H

 (b) 

 
Substitution of the given impulse and Eq. (b) into Eq. (4.22) gives the response of 
the system as 
 

 
2

2

( ) (2) 0.02552 sin(9.798 ) ( )

      0.05104 sin(9.798 ) ( ) (meters)

t

t

x t e t t

e t t

�

�

ª º ¬ ¼
 

H

H
 (c) 
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Hence, 
 

 2

( ) 0   ( 0)
( ) 0.05104 sin(9.798 )   ( 0)t

x t t
x t e t t�

 �
 !

 � (d) 

 
 
(b)  
The response of the system to the two impulses is the sum of the response to each 
impulse applied individually. Hence, 
 

 
^ `

2

2( 10)

( ) 0.05104 sin(9.798 ) ( )

                      sin 9.798( 10) ( 10)  (m)

t

t

x t e t t

e t t

�

� �

ª ¬
º� � � ¼

H

H
 (e) 

 
Thus, 
 

^ `

2

2 2( 10)

( ) 0 (m)  ( 0)
( ) 0.05104 sin(9.798 ) (m)  (0 10 secs)

( ) 0.05104 sin(9.798 ) sin 9.798( 10)  (m)  ( 10 secs)

t

t t

x t t
x t e t t

x t e t e t t

�

� � �

 �
 � �

ª º � � !¬ ¼

 

    � (f) 
 
(c) 
Paralleling the computation of Eq. (e) gives 
 

 
^ `

2

2( 6.413)

( ) 0.05104 sin(9.798 ) ( )

                        sin 9.798( 6.413) ( 6.413)  (m)

t

t

x t e t t

e t t

�

� �

ª ¬
º� � � ¼

H

H
 (g) 

 
The response of the system before the second impulse is applied (0 � t�� 6.413) fol-
lows as  
 

 2

( ) 0 (m)  ( 0)
( ) 0.05104 sin(9.798 ) (m)  (0 6.413 secs)t

x t t
x t e t t�

 �
 � �

 � (h-i,ii) 

 
However, for later times, Equation (g) can be simplified by noting that the applica-
tion of the second pulse occurs at precisely ten natural periods after the first pulse is 
imparted. Thus, for these times, 
 

 
� �2 12.83

4 2

( ) 0.05104 1 sin 9.798

      1.905 10 sin(9.798 ) (m)  ( 6.413 secs)

t

t

x t e e t

e t t

�

�

ª º �¬ ¼
 u !

 � (h-iii) 
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Example 4.2 
A tethered 1 pound ball hangs in the vertical plane when 
it is tapped with a racket. Following the tap, the ball is 
observed to exhibit oscillatory motion of amplitude 0.2 
radians with a period of 2 seconds. Determine the im-
pulse imparted by the racket. 
 
Solution 
From Eq. (4.22), the path of the ball as a function of time 
takes the form  
 ( ) ( ) ( )s t L t tT  ! �  (a) 
 
The ball and tether are evidently equivalent to a pendulum of length L. The natural 
frequency for small angle motion of the ball is then, from Eq. (2.42), 
 
 g LZ   (b) 
 
Substituting the frequency into Eq. (a) gives the small angle response of the ball as 
 

 � �( ) sin ( )t g L t t
m L

T
Z

 !
H  (c) 

 
where ! is the unknown impulse imparted by the racket and L is the unknown length 
of the tether. The length can be determined from the period of the observed motion 
as follows. The natural period for small angle motion of a pendulum, and hence of 
the tethered ball, is from Eq. (2.47) or Eq. (b) 
 

 2T
g L
S  (d) 

 
The length of the cord may now be computed using Eq. (d), giving 
 

 
2 2

2 2

32.2(2) 3.263 ft
4 4
gTL
S S

    (d) 

 
Next, it follows from Eq. (c) that the amplitude of the observed motion is related to 
the magnitude of the applied impulse by 
 
 m LT Z !  (e) 
 
Solving Eq. (e) for ! and substituting Eq. (d) and the observed amplitude gives the 
impact imparted by the racket on the ball as  
 
 (0.2)(3.263)(1/ 32.2)(2 / 2) 0.06367 lb-secLmT Z S   !  � (f) 
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4.3 RESPONSE TO ARBITRARY EXCITATION 

In this section we develop the response of an initially quiescent single degree of freedom 
system to a force of arbitrary form, based on the response to impulse loading. Toward this 
end, consider the generic time dependent force, F(t), shown in Figure 4.5a. Let us further 
consider the impulse of the force over the particular time interval ,t dW W Wd d � as indicat-
ed. The impulse, d!, imparted by the force on the mass during this particular differential 
time interval is thus given by 
 
 ( )d F dW W !  (4.25) 
 
The increment in the response of the system at some later time t to the particular increment 
of the impulse acting during the interval ,t dW W Wd d �  as depicted in Figure 4.5b, is ob-
tained using Eq. (4.24) and takes the form 
 
 ( ; ) ( ) ( ) ( )dx t d t F t dW W W W W �  �!G G  (4.26) 
 
The response at time t to the impulses imparted by the force F during all times t�W  is 
obtained by superposing the responses of each of the corresponding impulses. Hence, 
“summing” all such increments gives the general form of the total response of the system as 
 

 
0

( ) ( ) ( )
t

x t F t dW W W �³ G  (4.27) 

Equation (4.27) is referred to as the convolution integral and it gives the response of an 
initially quiescent system to any force history F(t).  
 
 
 

 
 Figure 4.5  Generic time histories of force and corresponding system response. 

F(t)

(a)
F(   )d

t 

x(t) x(t)

(b) dx(t;    )

t 
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 An alternate form of the convolution integral is obtained by introducing the coordi-
nate shift WW � t  into Eq. (4.27). This transforms the corresponding integral to the form 
  

 
0

( ) ( ) ( )
t

x t F t dW W W � �³ G  

 
which, after reversing the direction of integration, gives the response as 
 

 
0

( ) ( ) ( )
t

x t F t dW W W �³ G  (4.28) 

 
Either convolution integral, Eq. (4.27) or Eq. (4.28), may be used to obtain the response of 
an initially quiescent system to any force F(t). In the next two sections we employ the con-
volution integral to obtain the response of single degree of freedom systems subjected to a 
number of fundamental loading types. The response to other types of loading are then ob-
tained, using these results, in Section 4.6. Finally, in Section 4.7, the convolution integral is 
used to assess the maximum peak response for systems subjected to transient loading. 
 
 

4.4  RESPONSE TO STEP LOADING 

We next consider the situation where a system is loaded by a force F(t) that is applied very 
rapidly to a certain level F0 and is then maintained at that level thereafter (Figure 4.6). If the 
rise time is small compared with the times of interest then the loading may be treated as a 
step function. Such loading is referred to as step loading and may be represented mathemat-
ically in the form 
 
 0( ) ( )F t F t H  (4.29) 
 
where ( )tH is the unit step function. The response is easily evaluated by substituting Eqs. 
(4.23) and (4.29) into the convolution integral defined by Eq. (4.27). Hence, for an under-
damped system, 
 

 ( )0
0

0 0
( ) ( ) ( ) sin ( ) ( )

t t
t

d
d

F
x t F t d e t d t

m
]Z WW W W Z W W

Z
� � �  �³ ³H G H  (4.30) 

 
 
 

    Figure 4.6  Step loading. 

F(t) 

F 0 

t 
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Performing the required integration gives the step response 
 
 0( ) ( )x t f t S  (4.31) 
where 

 
2

( ) 1 cos( ) ( )
1

t

d
et t t

]Z

Z I
]

�ª º
« »{ � �
« »�¬ ¼

S H  (4.32) 

 
is the unit step response, 
 
 0 0f F k  (4.33) 
 
for a mass-spring-damper system, 
 
 21dZ Z ] �  (4.34) 
and 

 1

2
tan

1

]I
]

�
 ½° ° ® ¾

�° °¯ ¿
 (4.35) 

 
 

Example 4.3 
The beam and mass system of Example 3.4 is initially at 
rest when an actuator suddenly applies a constant down-
ward force whose magnitude is half the weight of the sys-
tem. Determine the motion of the beam and block. Plot 
the time history of the response. 
                      
                                                                                              
         Figure E4.3-1 
Solution 
From Example 3.4, m   10 kg and Z� �6S rad/sec. Hence, 
 
 2 2(6 ) (10) 360  N/mk S S   (a) 
 
We shall take the time at which the force is first applied to the structure as t   0. 
Now, the magnitude of the applied force is simply half the weight of the block. Fur-
ther, since the force is applied suddenly, its time dependence may be taken as a step 
function. Thus, 
 
 1 1

0 2 2( ) ( ) ( ) (10)(9.81) ( ) 49.1 ( ) NF t F t mg t t t  �  �  �H H H H  (b) 
 
It follows that 

 0
0 2

49.1 0.0138 m
360

Ff
k S

�   �  (c) 
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Substitution of Eq. (c) and the known natural frequency into Eq. (4.31), with ]� �0, 
gives the motion of the system as 
 

 
( ) 0.0138[1 cos 6 ] ( ) m 

      1.38[1 cos 6 ] ( ) cm
x t t t

t t
S

S
 � �
 � �

H
H

 � (d) 

 
Recalling that the deflection x(t) is measured from the equilibrium configuration of 
the 10 kg  mass, it may be seen that the system oscillates about the equilibrium con-
figuration associated with quasi-static application of the actuator force. A plot of the 
response is shown in Figure E4.3-2. 
 

   Figure E4.3-2 
 
 
 
 
 

Example 4.4 
A package of mass m is being shipped in the (rigid) crate shown, where k and c rep-
resent the stiffness and damping coefficient of the packing material. If the system is 
initially at rest, determine the response of the package if the crate is suddenly dis-
placed a distance h0 to the right, (a) when damping is negligible and (b) when the 
system is underdamped. 
 
 

 
   Figure E4.4-1  Package inside crate. 
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   Figure E4.4-2  Kinetic diagram of package. 
 
 
Solution 
The first thing we must do is derive the equation of motion for the system. To ac-
complish this we first draw the kinetic diagram for the package. Let x(t) correspond 
to the motion of the package and let  xC(t) represent the motion of the crate. To estab-
lish a convention, let us assume that the package displaces to the right relative to the 
crate. When this is so, the left spring is in tension and the right spring is in compres-
sion, as indicated. Similarly, if the relative velocity of the package with respect to the 
crate is assumed positive (i.e., to the right) both the left and right dampers act in the 
direction indicated.  
 We next apply Newton’s Second Law, based on the forces shown in the kinetic 
diagram (dynamic free-body diagram). Doing this gives 
 
  � � � � � � � � xmxxcxxkxxcxxk CCCC ������  �������   
 
which upon rearranging takes the form 
 
   )(2)(222 tkxtxckxxcxm CC � �� ����  (a) 
 
Note that we have brought the expressions for the displacement and velocity of the 
crate to the right-hand side of the equation since the excitation enters the problem 
through the prescribed motion of the crate. Equation (a) is valid for any prescribed 
motion of the crate. Let us next consider the specific excitation under consideration. 
 Since the crate is suddenly moved a given distance, the displacement of the 
crate is readily expressed as a function of time with the aid of the Heaviside step 
function. Hence, 
 
   0( ) ( )Cx t h t H  (b) 
 
The corresponding velocity of the crate is then found by direct application of Eq. 
(4.14) to the expression for the displacement just established. This gives 
 
   )()( 0 thtxC G

�
�   (c) 

 
Substitution of Eqs. (b) and (c) into Eq. (a) gives the explicit form of the equation of 
motion for the problem at hand. Thus, 
 
   0 02 2 2 ( ) 2 ( )mx cx kx c h t k h tG� �  �

�
�� � H  (d) 
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It is useful to put the above equation of motion in standard form. Doing so gives 
 
   N

1 2

2 2 2
0

( ) ( )

2 ( ) ( )
f t f t

x x x t h tZ] Z Z G Z� �  �
� �

�� � �	
! H  (e) 

where 
 
   0k h c k  

�
! !  (f) 

 
   2 2  andk m           c mZ ] Z   (g,h) 
 
(a) 
For negligible damping, c  �]� �� and the governing equation, Eq. (e), reduces to the 
form 
 
   2 2

0

( )

( )
f t

x x h tZ Z�  �� �	
H  (i) 

 
The response is obtained directly from Eq. (4.31) as 
 
   � �0( ) 1 cos 2  ( )x t h k m t tª º �¬ ¼H  (j) 

 
and is sketched in Figure E4.4-3. It is seen that the package oscillates about the new 
equilibrium configuration of the crate. 
 
 

 
  Figure E4.4-3  Time history of response for negligible damping. 

 
 
(b) 
When damping is taken into account, the response of the package to the combined 
effects of the damping and stiffness forces, f1 and f2 of Eq. (e), may be obtained using 
superposition. In this context, the response of the package is simply the sum of the 
responses to the two forces acting individually. Direct application of Eqs. (4.22) and 
(4.31) then gives the response of the package as 
 

x 

t 

h 0 

0 
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 0
0 2

( ) sin ( ) 1 cos( ) ( )
1

t
t

d d
d

h c ex t e t t h t t
m

]Z
]Z Z Z I

Z ]

�
�

ª º
« » � � �
« »�¬ ¼

H H  � (k) 

or 

 � �0 0 2
( ) ( ) sin cos ( )

1

t

d d
ex t h t h t t t

]Z

] Z Z I
]

�

ª º � � �¬ ¼�
H H  � (l) 

 
where Zd and I are given by Eqs. (4.34) and (4.35), respectively. It may be seen 
from Eq. (l) that the package oscillates about the new equilibrium position of the 
crate, with the amplitude of the oscillation decaying exponentionally with time. 

 
 
 

4.5  RESPONSE TO RAMP LOADING 

We next consider an initially quiescent single degree of freedom system that is subsequent-
ly excited by a force that increases linearly with time. If we consider the load to be activated 
at time t   0, then the excitation is such that the magnitude of the load is zero for t < 0 and 
increases linearly with time for t > 0, as depicted in Figure 4.7. Such loading is referred to 
as ramp loading, and may be expressed mathematically as 
 
 ( ) ( )F t F t t � H  (4.36) 
 
where F� is the (constant) rate at which the loading is applied to the system. It may be noted 
that the ramp function with unit loading rate ( 1)F  � is simply the integral of the unit step 
function and is a generalized function. It follows that the derivative of the unit ramp func-
tion is the unit step function.  
 The response to ramp loading may be determined by direct substitution of the forcing 
function defined by Eq. (4.36) into the convolution integral, Eq. (4.27). Hence, 
 

   � �

0

1( ) sin ( ) ( )
t

t
d

d

x t F e t d t
m

]Z WW Z W W
Z

� �ª º �¬ ¼³ � H  

 
 
 

 
   Figure 4.7  Ramp loading. 
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Carrying out the integration gives the response to the ramp loading as 
 
 ( ) ( )x t f t �R  (4.37) 
where 
 f F k � �  (4.38) 
 
for a mass-spring-damper system, and 
 

 
� �21 22 2( ) cos sin ( )t

d d
d

t t e t t t]Z
]] ] Z Z

Z Z Z
�

 ½ª º�° °« »{ � � �® ¾
« »° °¬ ¼¯ ¿

R H  (4.39) 

 
is the unit ramp response. The interpretation of the parameter f� in Eq. (4.37) is adjusted 
accordingly for systems other than mass-spring-damper systems. 
 
 
 

Example 4.5 
The man and the raft of Example 2.4 are at rest when a long rope is lowered to the 
raft. If the man guides the rope so that it forms a coil whose weight increases at the 
rate of 0.5 lb/sec, determine the vertical motion of the raft during this process. 
(mrope�mman) 

 
   Figure E4.5-1  Rope lowered to man on raft. 
 
Solution 
From Example 2.4, keq = 749 lb/ft, ]� �0 and the natural frequency of the undamped 
system is Z� �11.0 rad/sec. It is evident, from the given loading, that the problem at 
hand corresponds to ramp loading of the man and raft, with 0.5 lb/sec.F  �  The ap-
plied force may be expressed mathematically as 
 
 ( ) 0.5 ( )F t t t H  (a) 
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where t   0 represents the instant that the rope first comes into contact with the man 
and raft. It follows that 
 

 40.5 6.68 10  ft/sec
749

f �  u�  (b) 

 
Substituting Eq. (b), ]� �0 and Z� �11.0 rad/sec into Eqs. (4.37) and (4.39) gives the 
motion of the raft during the loading process as 
  
 > @4 51

11( ) 6.68 10 sin(11 ) (t) 6.07 10 11 sin(11 ) (t)  ftx t t t t t� � u �  u �ª º¬ ¼H H  � (c) 
 
The time history of the response is displayed in Figure E4.5-2. 
 
 

 
Figure E4.5-2  Time history of vertical motion of man and raft as rope is lowered  

5( 6.07 10 ft)A � u . 
 
 
 

4.6  TRANSIENT RESPONSE BY SUPERPOSITION 

Many transient loads and pulses may be constructed from combinations of the basic step 
and ramp functions, as well as other functions, by way of superposition. The corresponding 
response is then simply the sum of the responses to the participating functions. To demon-
strate this approach, we consider the response of an equivalent mass-spring-damper system 
to two basic forcing functions, the rectangular pulse and the linear transition to constant 
load. 
 

 
    Figure 4.8  The rectangular pulse. 
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4.6.1  The Rectangular Pulse 

Consider a rectangular pulse of magnitude 0F applied to a single degree of freedom system 
over the time interval 21 ttt ��  as depicted in Figure 4.8. The pulse can be expressed as 
the sum of two step loads, as indicated. The pulse may thus be represented mathematically 
in the form  

 
   > @0 1 2( ) ( ) ( )F t F t t t t � � �H H  (4.40) 

 
From the superposition principle established in Section 3.1, the response of the system to 
this pulse is then given by the sum of the responses to the individual step loadings. Hence, 
upon application of Eq. (4.31), the motion of the system is given by 
 
    > @0 1 2( ) ( ) ( )x t f t t t t � � �S S  (4.41) 
 
When expanded, Eq. (4.41) takes the form  
 

           

^ `

^ `

1

2

( )

0 1 12

( )

2 22

( ) 1 cos ( ) ( )
1

            1 cos ( ) ( )
1

t t

d

t t

d

ex t f t t t t

e t t t t

]Z

]Z

Z I
]

Z I
]

� �

� �

ª º°« » � � � �®
« »�°¬ ¼¯

½ª º °« »� � � � � ¾
« »� °¬ ¼ ¿

H

H

    (4.42) 

 
Thus, 
      

   

^ `

^ `

^ `

1

2

1

1

( )

0 1 1 22

( )

0 22

( )

1 22

( ) 0 ( )

( ) 1 cos ( ) ( )
1

( ) cos ( )
1

              cos ( ) ( )
1

t t

d

t t

d

t t

d

x t t t

ex t f t t t t t

ex t f t t

e t t t t

]Z

]Z

]Z

Z I
]

Z I
]

Z I
]

� �

� �

� �

 �

ª º
 � � � � �« »

« »�¬ ¼
ª

 � �«
« �¬

º
� � � !»

»� ¼

 (4.43) 

 
where 0  and f I  are given by Eqs. (4.33) and (4.35), respectively. 
 
 
 

Example 4.6 
Determine the motion of the system of Example 4.3, (a) if the actuator force is sud-
denly removed 10.5 seconds after first being applied to the structure, (b) if the actua-
tor force is suddenly removed 10 seconds after first being applied to the structure. 
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Solution 
(a) 
For this situation, the force may be expressed as the step loading 
 

 > @( ) 49.1 ( ) ( 10.5)  NF t t t � � �H H  (a) 
 
The response then follows by direct application of Eqs. (4.41)–(4.43), for an 
undamped system. We thus have that 
 

> @ > @^ `( ) 1.38 1 cos(6 ) ( ) 1 cos{6 ( 10.5)} ( 10.5)  cmx t t t t tS S � � � � � �H H  (b) 
 
Expanding equation (b) gives the motion of the system as 
 

 > @
> @

( ) 0   ( 0)
( ) 1.38 1 cos(6 )  cm   (0 10.5 secs)

( ) 1.38 cos(6 ) cos{6 ( 10.5)} cm ( 10.5 secs)

x t t
x t t t

x t t t t

S

S S

 �
 � � d �

 � � t

 � (c) 

 
It may be seen that the motion of the system between the time the force is first ap-
plied and when it is removed is identical to that predicted in Example 4.3, as it should 
be. It is also seen that, after the actuator force is removed, the system oscillates about 
the original equilibrium configuration, x   0. The time history of the motion of the 
beam-block system is displayed in Figure E4.6-1. 
 
 

Figure E4.6-1  Time history of the motion of the beam-mass system when the actuator force 
is removed 10.5 seconds after it is first applied. 
 
 
(b) 
The forcing function for this case may be expressed in the form 
 

 > @( ) 49.1 ( ) ( 10)  NF t t t � � �H H  (d) 
 
Proceeding as for the previous case yields the response 
 
 > @ > @^ `( ) 1.38 1 cos(6 ) ( ) 1 cos{6 ( 10)} ( 10)  cmx t t t t tS S � � � � � �H H  (e) 
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Expanding Eq. (e) gives the explicit form 
 

 > @
> @

( ) 0   ( 0)
( ) 1.38 1 cos(6 )  cm   (0 10 secs)

( ) 1.38 cos{6 ( 10)} cos(6 ) 0 cm ( 10 secs)

x t t
x t t t

x t t t t

S

S S

 �
 � � d �

 � �  t

 � (f) 

 
The time history of the motion is displayed in Figure E4.6-2. Note that, for this case, 
the system comes to rest after the actuator force is removed. This is because the am-
plitude of the oscillation to that point corresponds to the static deflection due to the 
actuator force, and because the time between the instant the force is first applied to 
the beam and the time it is removed is precisely an integer multiple of the natural pe-
riod of the system. The force is therefore removed at the exact instant that the system 
passes through the original equilibrium position and is about to reverse direction. At 
this instant the position and velocity are both zero. This situation is equivalent to a 
free vibration problem in which the initial conditions vanish identically. The system 
thus remains in the equilibrium configuration, x   0,  for all later times. 
 
 

Figure E4.6-2  Time history of the motion of the beam-mass system when the actuator force 
is removed 10.0 seconds after it is first applied . 

 
 
 

Example 4.7  
A vehicle travels at constant speed over a flat road when it encounters a bump of rise 
h0 and length L, having the shape shown. Determine the response of the vehicle to 
the disturbance in the road if the 
shape may be approximated as 
harmonic and, assuming that the 
horizontal speed of the vehicle is 
maintained, that the wheel rolls 
over the bump without leaving 
the surface of the road. Damping 
is negligible. 
 
 
 
    Figure E4.7 
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Solution 
The equation for the path of the vehicle when it traverses the bump is given, in terms 
of the indicated coordinates, as 
 

   »¼
º

«¬
ª � 

L
hy S[[ 2cos1)( 0         (0 < [ < L) (a) 

 
where h0 is the rise of the bump and L is its length. Since the vehicle travels at con-
stant speed, the horizontal position of the vehicle may be expressed as a function of 
time as 
 
   tv0 [  (b) 
 
where v0 is the speed and [ is measured from the start of the bump, as indicated. 
Substitution of Eq. (b) into Eq. (a) gives the vertical motion of the wheel as a func-
tion of time. Hence, 
 

   > @0

( ) 0                        ( 0)
( ) 1 cos    (0 )
( ) 0                        ( )

L

L

y t t
y t h t t t
y t t t

 �
 � : � �
 !

  

or 
 

 
> @ � �
> @> @

0 0

0

( ) 1 cos ( ) 1 cos ( )

      1 cos ( ) ( )
L L

L

y t h t t h t t t t

h t t t t

 � : � � : � �ª º¬ ¼
 � : � �

H H

H H
 (c)  

 
where 
   2 LtS:   (d) 
and 
 0Lt L v  (e) 
 
is the time that it takes for the vehicle to traverse the bump. The problem is thus 
equivalent to that of a single degree of freedom system subjected to prescribed mo-
tion of its support. The equation of motion is then given by Eq. (3.122) which, for 
vanishing damping and support motion given by Eq. (c), takes the form 
 
 2 2x x yZ Z�  ��  
or 
 
  > @ > @2 2 2

0 0( ) ( ) cos ( ) ( )L Lx x h t t t h t t t tZ Z Z�  � � � : � ��� H H H H  (f) 
 
It may be seen from Eqs. (c) and (f) that the system is excited by the superposition of 
a rectangular pulse and a cosine pulse. We shall solve Eq. (f) two different ways.  
 The response to the rectangular pulse is found directly from Eq. (4.42), while 
the response to the cosine pulse can be evaluated using the convolution integral, Eq. 
(4.27). Thus, 
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> @ � �

� �

� �

0 0

 

0
 0

 

0
 0

( ) 1 cos ( ) 1 cos ( )

1cos sin  ( ) 

1cos  sin ( )
L

L L

t

t t

L L

x t h t t h t t t t

k h t d t
m

k h t t d t t
m

Z Z

W Z W W
Z

W Z W W
Z

�

 � � � � �ª º¬ ¼

� : �

� : � � �

³
³

  H H

H

H

 

 
which, after carrying out the integration and using trigonometric identities and 
lengthy algebraic operations, takes the form 
 

  
� �

� � � � � �

2
0

2
0

( ) 1 cos cos ( )

          1 cos cos ( )L L L

x t h t t t

h t t t t t t

Z E Z E

Z E Z E

ª º � : � :¬ ¼
ª º� � : � � : � �¬ ¼

H

H
 � (g) 

 
where 

   
� � � �2 2

1 1
1 1 2 Lt

E
Z S Z

  
� : �

 (h) 

 
 Though the use of the convolution integral to obtain the response is, in princi-
ple, straightforward it required a great deal of algebraic and trigonometric manipula-
tion for the current loading type. [The reader is invited to evaluate the corresponding 
convolution integrals to obtain the solution (g).] An alternative, and perhaps simpler, 
approach to solving Eq. (f) is to use the solutions pertaining to harmonic excitation 
developed in Chapter 3. To do this, we shall first obtain the response to the first forc-
ing function on the right hand side of Eq. (c). The solution to the second forcing 
function will then be the same as the first but with a time shift (t replaced by t � tL). 
The actual response will be obtained by superposing the two solutions. 
 The general solution to Eq. (f) is given by the sum of the complementary and 
particular solutions. Hence, with aid of Eqs. (2.7) and (3.27), the general form of the 
response (1) ( )x t  to the first forcing function > @(1)

0( ) 1 cos ( )f t h t t � : H  is given by 
 
  > @(1) (1) (1)

1 2 0( ) cos sin 1 cosc px t x x A t A t h tZ Z E �  � � � :  (i) 
 
Imposing the quiescent initial conditions 0)0()0(   xx � gives 
 
   � � EZ 2

01 : hA ,     02  A  
Hence, 
 
   � �2(1)

0( ) 1 cos cos ( )x t h t t tZ E Z Eª º � : � :¬ ¼ H  (j) 

 
Similarly, the second forcing function, > @(2)

0( ) 1 cos ( ) ( )L Lf t h t t t t � � : � �H , in-
duces the corresponding response, (2) ( )x t , given by 
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 � �2(2)
0( ) 1 cos ( ) cos ( ) ( )L L Lx t h t t t t t tZ E Z Eª º � � : � � : � �¬ ¼ H  (k) 

 
The total response to the bump is then obtained by superposition. Hence, adding Eqs. 
(j) and (k) gives 
 
 (1) (2)( ) ( ) ( )x t x t x t �  
 
         � �2

0 1 cos cos ( )h t t tZ E Z Eª º � : � :¬ ¼H   (l) 

 
    � � � � � �2

0  1 cos cos ( )L L Lh t t t t t tZ E Z Eª º� � : � � : � �¬ ¼H  

 
which is identical to Eq. (g) obtained using the convolution integral. The explicit 
form of the response is then 
 

 
� �

� � ^ `
^ `

2
0

2
0

( ) 0    ( 0)

( ) 1 cos cos     (0 )

( ) cos cos ( )

                           cos cos ( )     ( )

L

L

L L

x t t

x t h t t t t

x t h t t t

t t t t t

Z E Z E

E Z Z Z

 �

ª º � : � : � �¬ ¼
ª : � �¬

º� : � : � !¼

 � (m)    

 
 
 
 

4.6.2   Linear Transition to a Constant Load Level 

We next consider loading that consists of a linear transition over time W to a constant load 
level, 0F , as depicted in Figure 4.9. For this case, the loading function may be constructed 
as the sum of two opposing ramp functions. Thus, 

 

    0 0( )  ( ) ( ) ( )
F FF t t t t tW W
W W

 � � �H H  (4.44) 

 

 
           Figure 4.9  Linear transition to a constant level of force. 

F 

F 0 
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The response of a single degree of freedom system to this loading is then the sum of the 
responses to the individual ramp functions. Hence, 
 

    > @0( ) ( ) ( )
fx t t t W
W

 � �R R  (4.45) 

 
where R (t) is given by Eq. (4.39) and, for a mass-spring-damper system, 
 
 0 0f F k  (4.46) 
 
Expanding Eq. (4.45) gives the explicit form of the response of the system as 
 

 

            

� �

� �

2
0

( )
0 0

2
( )

0

( ) 0    ( 0)

1 22 2( ) cos sin    (0 )

2( ) cos cos ( )

1 2
                  sin sin ( )  (

t
d d

d

t t
d d

t t
d d

d

x t t

f
x t t e t t t

x t f f e t e t

f e t e t

]Z

]Z ]Z W

]Z ]Z W

]] ] Z Z W
W Z Z Z

] Z Z W
ZW

]
Z Z W

Z W

�

� � �

� � �

 �

 ½ª º�° °« » � � � � �® ¾
« »° °¬ ¼¯ ¿

ª º � � �¬ ¼

�
ª º� � �¬ ¼ )t W!

 (4.47) 

 
 
 

Example 4.8 
Determine the motion of the raft of Problem 4.5 if the loading of the rope is com-
pleted 20 seconds after the first of it touches down. 
 
Solution 
For the present problem W�  20 seconds and, from Eq. (b) of Example 4.5,  
 
 4 2

0 6.68 10  ft/secf fW �  u�  (a) 
 
Substituting these values into Eqs. (4.45) and (4.47) gives the response  
 

 
> @^
> @ `

5( ) 6.07 10 11 sin(11 ) ( )

                            11( 20) sin11( 20) ( 20)  ft

x t t t t

t t t

� u �

� � � � �

H

H
 (b) 

 
It is seen from Eq. (b) that during the 20 second drop of the rope, the motion of the 
raft is identical to that described by Eq. (c) of Example 4.5. After the drop is com-
pleted, that is for 20t t seconds, the vertical motion of the raft is described by  
   
 > @5( ) 0.0134 6.07 10 sin11( 20) sin(11 )  ft   ( 20 secs)x t t t t� � u � � t  � (c) 
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Note that the static deflection due to the weight of the entire rope is  
 

 4(6.68 10 )(20) 0.0134 ftrope
static

eff eff

W F f
k k

W W �'     u  
� �  (d) 

 
Since x(t) is measured from the equilibrium position of the man and raft it may be 
seen from Eq. (c) that, after the rope has completed its drop, the system oscillates 
about the new equilibrium position of the combined raft, man and rope system. 

 
 
 
 In this section we have demonstrated the use of superposition to obtain the response 
of linear systems to pulses that can be constructed by adding together other pulses for which 
we already know, or can easily obtain, the response to. This technique was used to obtain 
the response of single degree of freedom systems to two sample pulse forms: the rectangu-
lar pulse and the linear transition to a constant load level. It should be emphasized that this 
technique is not restricted to these sample pulse forms, but rather can be applied to many 
other pulse forms as well. In the next section we study a procedure to characterize and 
compare the response of systems to various forms of short duration pulses, and the sensi-
tivities of different systems to a given pulse.  
 
 

4.7 SHOCK SPECTRA 

Engineering systems are often subjected to loads possessing large magnitudes acting over 
short periods of time. Excitations for which the duration is on the order of, or shorter than, 
the natural period of the system upon which they act are referred to as shocks. As shocks 
may have detrimental effects on engineering systems, compromising their effectiveness or 
causing significant damage, the sensitivity of a system to shocks must generally be taken 
into account in its design. It is therefore of interest to characterize the response of a given 
system to shocks of various forms, and also to compare the sensitivities of different systems 
(or the same system with different values of the system parameters) to a given type of 
shock. This is generally accomplished by determining and interpreting the shock spectrum 
for a given type of pulse and system. This is the subject of the present section. 
 In the present section we consider the response of single degree of freedom systems 
to shock, and establish a measure for comparison. To do this we must first identify the pa-
rameters that characterize a shock and the parameters that describe the system of interest. In 
this context, a shock of a given type may be distinguished by its magnitude and duration. 
Alternatively, the shock may be characterized by its impulse. Since the effects of damping 
generally accrue over time, and since damping tends to retard motion, damping is typically 
neglected when considering the severity of the response of systems to shock. The system 
may thus be defined by its natural frequency for vanishing damping, or equivalently by the 
corresponding natural period. The severity of the response of a system, and hence the sensi-
tivity of that system, to a given shock may be characterized by the magnitude of the maxi-
mum deflection of the mass. Evaluations can then be made by comparing the maximum 
peak response for different values of the shock and system parameters. 
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 For the purposes of comparison, a natural timescale (normalized time) is obtained by 
dividing the time by the natural period of the system in question. Similarly, a natural length 
scale (normalized response) is obtained by dividing the dynamic deflection of the mass by 
the characteristic static deflection (the ratio of the magnitude of the applied force to the 
stiffness of the system). The sensitivity of various systems to a given type of shock may 
then be characterized by plotting the normalized maximum peak response (the maximax) of 
the system as a function of the normalized duration of the pulse. In this way a “universal” 
plot is created. Such a plot is referred to as the Shock Spectrum or Shock Response Spec-
trum. 
 In general, the maximum peak response for an initially quiescent undamped single 
degree of freedom system subjected to a shock, F, of duration t*, may be obtained using the 
convolution integral of Section 4.3. When this is done the maximax may generally be found 
from the convolution integral 
 

    
 

max
 0 max

1 ( )sin ( )
t

x F t d
m

W Z W W
Z

 �³  (4.48) 

 
The plot of 0maxx f  vs. SZ 2** tTt   is the Shock Response Spectrum for pulses of 
the form of F. It should be noted that the peak response as defined above is not unique to 
any particular shock, but rather may be the same for various cases. 
 We shall next generate the shock spectra for two sample shock types; those in the 
form of a rectangular pulse, and those in the form of a half-sine pulse. The spectra for other 
pulse types may be found in a similar manner.  

 
 

Example 4.9 – Shock Spectrum for a Rectangular Pulse 
Consider a single degree of freedom system subjected to a rectangular pulse of mag-
nitude F0 and duration t* (Figure E4.9-1). Determine the shock spectrum for this 
type of pulse.   
 

   Figure E4.9-1 
 
Solution 
The response of a single degree of freedom system to a rectangular pulse was estab-
lished in Section 4.6.1. If we neglect the effects of damping, the response of the sys-
tem to the rectangular pulse is obtained from Eq. (4.43) as 
 
   )0(0)( � ttx  (a) 
 

F 

t 0 

F 
0 

t* 
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   > @0( ) 1 cos (0 *)x t f t t tZ � � d  (b) 
 
   > @ *)(cos*)(cos)( 0 tttttftx !�� ZZ  (c) 
 
where 2 TZ S is the natural frequency of the system and T is the corresponding 
natural period. The peak response may occur either (i) during the time interval that 
the applied pulse is active (0 < t < t*), or (ii) after the pulse subsides (t ! t*). 
 
(i) 0 < t < t* : Initial Spectrum  
The maximum response of the system, while the applied pulse is active is deter-
mined by consideration of Eq. (b). For short duration pulses ( * 0.5 )t T� it is seen 
from Eq. (b) that 
 

   2max

0

1 cos * 2sin ( * ) ( * 0.5 )
x

t t T t T
f

Z S �  �  � (d-1) 

 
For long duration pulses ( * 0.5 )t Tt , it is seen that 
 

 max
max

0

2    ( * 0.5 )
x

x t T
f

{  !  � (d-2) 

 
It may be seen from Eqs. (d-1) and (d-2) that the initial shock spectrum for the rec-
tangular pulse increases monotonically as the duration of the pulse increases, and 
reaches a plateau when the duration of the pulse is at least half the natural period of 
the system (Figure E4.9-2). 
 
(ii) *t t! : Residual Spectrum 
We next consider the maximum response achieved by the system after the pulse sub-
sides. To find the time (t   tpk) at which the peak response occurs for this case, and 
hence to find the peak response when t ! t*, we take the derivative of Eq. (c), set it to 
zero and solve for the time. Hence, 
 

   > @
pk

pk

tt
tt

tttf
dt
dx

 
 

���  ZZZ sin*)(sin0 0  (e) 

 
With the aid of the identity sin(a) – sin(b)   2 cos{(a ��b)/2} sin{(a ��b)/2}, Eq. (e) 
takes the form 
 
   ^ ` ^ `1 1

0 2 22 cos (2 *) sin * 0pkf t t tZ Z Z�   (f) 

 
Hence, 
 

 * (2 1)
2 2pk
tt nZ SZ  � �  (g) 
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Evaluating Eq. (c) at t   tpk and substituting Eq. (g) into the resulting expression 
gives the maximum response 
 

   max
max

0

*2sin
x tx

f T
S§ ·{  ¨ ¸

© ¹
 � (h) 

 
A plot of Eq. (h) (the residual shock spectrum) is displayed in Figure 4.9-2 along 
with the initial shock spectrum described by Eq. (d). It may be seen that the maxi-
mum displacements are larger and hence the residual spectrum dominates for short 
duration pulses while the initial spectrum dominates for large duration pulses. It may 
also be seen that the most sensitive systems are those for which the duration of the 
pulse is at least as large as half the natural period of the system (i.e., those for which 

5.0* tTt ). The complete shock spectrum is indicated by solid lines in Figure 
E4.9-2. 
 

    Figure E4.9-2  Shock spectrum for a rectangular pulse. 
 

 

 

Example 4.10 – Response Spectrum for Rectangular Support Motion 
Determine the shock spectrum for a single degree of freedom system when the time 
history of the motion of the support is in the form of a rectangular pulse of amplitude 
h0 and duration t* (Figure E4.10-1). 

   Figure E4.10-1 
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Solution 
The motion of the support shown in Figure E4.10-1 may be expressed in the form 
 
 > @0( ) ( ) ( *)Fx t h t t t � �H H  (a) 
 
Substitution of Eq. (a) into Eq. (3.122) gives the equation governing absolute motion 
as 
 
 > @2 2

0 ( ) ( *)x x h t t tZ Z�  � ��� H H  (b) 
 
Thus, the present problem is identical in form with that of Example 4.9, with f0 re-
placed by h0. The absolute motion of the mass then follows from Eq. (4.43) or Eqs. 
(a)–(c) of Example 4.9 with f0 replaced by h0. For the present problem, the exten-
sion/compression of the equivalent elastic spring is described by the motion of the 
mass relative to the support, 
 
 ( ) ( ) ( )Fu t x t x t �  (c) 
 
Hence, 
 
   ( ) ( ) 0 ( 0)u t x t t  �  (d) 
 
   0( ) cos (0 *)u t h t t tZ � � d  (e) 
 
   > @0( ) ( ) cos ( *) cos ( *)u t x t h t t t t tZ Z  � � � !  (f) 
 
We see from Eq. (e) that the maximum relative deflection of the mass while the 
pulse is active is 
 

 max
max

0

1
u

u
h

{   � (g) 

 
Equation (g) describes the initial shock spectrum. Since the deflection of the support 
vanishes for t ! t* the relative motion and absolute motion are the same during this 
interval. The residual spectrum is thus described by Eq. (h) of Example 4.9 with f0 
replaced by h0. Hence,  
  

   max
max

0

*2sin
u tu
h T

S§ ·{  ¨ ¸
© ¹

 � (h) 

 
The complete shock spectrum is formed by taking the larger of the values computed 
from Eqs. (g) and (h) for a given value of the pulse duration. The shock spectrum is 
displayed in Figure E4.10-2. 
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  Figure E4.10-2  Shock spectrum for rectangular support motion. 

 
 
 
 

Example 4.11 – Shock Spectrum for a Half-Sine Pulse 
Consider a single degree of freedom system subjected to a pulse in the form of a 
half-sine wave (Figure E4.11-1). For this case the duration of the pulse is t* = T*/2, 
where T* is the period of the sine function. Determine the shock spectrum for this 
type of pulse. 

   Figure E4.11-1  A half-sine pulse. 
 
 
Solution 
The forcing function for this pulse takes the form 
 

   
> @0

0 0

( ) sin  ( ) ( *)
       sin ( ) sin ( *) ( *)
F t F t t t t

F t t F t t t t
 : � �
 : � : � �

H H

H H
 (a) 

where  
   2 * / *T tS S:    (b) 
 
(see Figure E4.11-2). Substitution of Eq. (a) into Eq. (4.48) gives 
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          Figure E4.11-2  Pulse represented as superposition of sine waves. 
 
 
 
Carrying through the integration gives the response to the half-sine pulse as 
 

 
� �

� �

^ `

2
0

( ) 1 sin * sin ( )
2 *1 2 *

                               sin ( *) * sin ( *) ( *)
2 *

x t Tt t t t
f tT t

Tt t t t t t t
t

S Z

S Z

ª º �®« »¬ ¼� ¯

½ª º� � � � � ¾« »¬ ¼ ¿

H

H

 (d) 

 
We must next determine the maximum values of the response and when they occur. 
We shall consider two intervals; (i) the time interval during which the pulse is still 
active (t < t*) and (ii) the interval after the pulse subsides (t > t*). The maximum 
displacements will then be plotted as a function of the duration of the pulse, con-
structing the shock spectrum for the half-sine pulse. 
 
(i) 0 < t < t* : Initial Spectrum 
To determine the time at which the maximum deflection occurs we take the deriva-
tive of the response, set it to zero and solve for the time. The response of the system 
while the pulse is active is, from Eq. (d),  
 

 
� �

� �2
0

( ) 1 sin * sin
2 *1 2 *

x t Tt t t
f tT t

S Zª º �« »¬ ¼�
 (e) 

 
Differentiating Eq. (e) and setting the resulting expression to zero gives 
 
 cos cos 0t tZ: �   
 
Now, using the identity cos(a) � cos(b)   �2 sin{(a ��b)/2} sin{(a ��b)/2} in the 
above expression gives the equivalent statement 
 
 ^ ` ^ `1 1

2 2sin ( ) sin ( ) 0t tZ Z:� :�   (f) 
 
It may be seen that Eq. (f) is satisfied if either 
 

t 

F 
F 0 

t* 
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     or    
2 2

t n t nZ ZS S:� :�§ · § ·  ¨ ¸ ¨ ¸
© ¹ © ¹

    (n   0, 1, 2, …) (g) 

 
Equation (g) thus yields two sets of peak times (times that render the response an 
extremum), 

 ( ) 2    ( 0,1,2,...)
pk

a nt nS
Z

  
:�

 (h-1) 

and 

 ( ) 2    ( 0,1, 2,...)
pk

b nt nS
Z

  
:�

 (h-2) 

 
It remains to establish which set renders the response the true maximum. 
 Substituting Eq. (h-1) into Eq. (e) and noting that sin( 2 ) sint n tZ S Z B  and 
that 

 ( ) 2 22 2a
pk

n nt n nS Z SZ S S
Z Z

:�  �  �
:� :�

 

 
gives the responses at the first set of extrema as 
 

 � �( )
( )

0
1 sin

1a
pk

a
pkt t

x f t
Z 

 :
� :

 (i) 

 
Similarly, substituting Eq. (h-2) into Eq. (e) and noting that 
 

 ( ) 2 22 2b
pk

n nt n nS Z SZ S S
Z Z

:�  �  
:� :�

 

 
gives the second set of extrema as 
 

 
� �( )

( )
0

1 sin
1

b
pk

b
pkt t

x f t
Z 

 :
ª º� :¬ ¼

 (j) 

 
It may be seen by comparing Eqs. (i) and (j) that 
 
 ( ) ( )a b

pk pkt t t t
x x

  
!  

 
and hence that 
 ( )max a

pkt t
x x

 
  (k) 

 
Substituting Eqs. (h-1) and (i) into Eq. (e) gives the maximum response during the 
interval for which the pulse is active as 
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� � � �

max
max

0

1 2sin
1 2 *1 2 *

x nx
f t TT t

S ½° °{  ® ¾�ª º� ° °¯ ¿¬ ¼
 � (l) 

 
where tpk < t* and, from Eq. (h-1), 
 

 1 *
2

tn
T

� �  � (m) 

 
Since n must be an integer, it is seen from Eq. (m) that no maxima occur when the 
duration of the pulse is less than half the natural period of the system. 
  
(ii) t > t* : Residual Spectrum 
Evaluating Eq. (e) for t > t* gives the response of the system after the pulse has sub-
sided as 
 

 
� �

> @2
0

( ) 2 * sin sin ( *)
2 * 1

x t T t t t t
f T t

Z Z � �
ª º�¬ ¼

 (n) 

 
Differentiating Eq. (n) and setting the resulting expression to zero gives 
 
 > @cos cos ( *) 0

pkt t
t t tZ Z

 
� �    

 
which, after using the identity cos(a) + cos(b)   2cos{(a � b)/2}cos{(a ��b)/2}, takes 
the alternate form 
 
 � �^ ` ^ `1 1

2 2cos * cos * 0t t tZ Z�   (o) 

It follows that 

 * (2 1)
2 2pk
tt nZ SZ  � �  (p) 

 
Substituting Eq. (p) into Eq. (n) gives the maximum response after the pulse has sub-
sided as 
 

 
� �

� �
� �max

max 2
0

2 *
2 cos *

2 * 1

x t T
x t T

f t T
S{  

ª º�¬ ¼

 � (q) 

 
A plot of the residual spectrum is displayed in Figure E4.11-3, along with the initial 
spectrum. For a given range of the pulse duration ratio t*/T, the greater of the initial 
or residual maxima form the shock spectrum. It may be seen that the residual spec-
trum dominates when the duration of the pulse is less than half the natural period of 
the system while the initial spectrum governs for t* > T / 2.  
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 Figure E4.11-3  Shock spectrum for a half-sine pulse. 
 

 
 
 
 
 

Example 4.12 – Motion of the Support in Form of a Half-Sine Wave 
Consider a shock in the form of a sudden motion of the support of a mass-spring-
damper system (such as in Example 4.10). Set up the equations that describe the 
shock spectrum of the system if the time history of the displacement of the support is 
in the form of a half-sine pulse of amplitude h0 and duration t*.  
 
Solution 
The motion of the support is of the form 
 

 0

0 ( 0)
( ) sin   (0 *)

0 ( *)
F

t
x t h t t t

t t

�
° : � �®
° !¯

 (a) 

where 
 2 * / *T tS S:    (b) 
 
The motion can be described formally by the equation 
 

 
> @

> @
0

0

( ) sin ( ) ( *)

        sin ( ) sin ( *) ( *)
Fx t h t t t t

h t t t t t t

 : � �

 : � : � �

H H

H H
 (a') 

 
The equation that governs the absolute motion of the mass is, from Eq. (3.122), 
 
 ( ) ( ) ( )Fm x t k x t k x t�  ��  (c) 
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0

0.5

1

1.5

2

x max 

t*/T 
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(i) 0 � t � t* :  Initial Spectrum 
During the interval that the pulse is active the equation of motion takes the form 
 
 0( ) ( ) sinm x t k x t kh t�  :��  (d) 
 
The absolute response may be determined directly from Eq. (e) of Example 4.11 by 
letting F0 = kh0. Hence, 
 

 
� �

� �2
0

( ) 1 sin * sin
2 *1 2 *

x t Tt t t
h tT t

S Zª º �« »¬ ¼�
 (e) 

 
The relative displacement of the mass with respect to the support is then 
 

 
� �
� �

� � � �2
0 0

2 *( ) ( )( ) 2 * sin * sin
1 2 *

F T tx t x tu t T t t t t
h h T t

S Z�
ª º  �¬ ¼�

 � (f) 

 
To determine the corresponding extrema, we next take the derivative of Eq. (f) with 
respect to t and set the resulting expression to zero. Hence, 
 
 � � � � � �20 2 * cos * cos 2pk pku T t t t t TS S  ��  � (g) 
 
The roots of Eq. (g) yield the times tpk � t* at which the relative displacement is an 
extremum for a given value of the pulse duration. These values can be substituted in-
to Eq. (f) to determine the corresponding maximum displacement. The plot of the 
corresponding maximum displacement as a function of the pulse duration then yields 
the initial shock spectrum.  
  
(ii) t > t* : Residual Spectrum 
For this time interval, the absolute displacement of the mass may be obtained direct-
ly from Eq. (n) of Example 4.11 by letting F0 = kh0. Since xF   0 after the pulse sub-
sides, it follows that u(t) = x(t) and hence, from Eq. (q) of Example 4.11, that 
 

 
� �

� �
� �max max

2
0 0

2 *
2 cos *

2 * 1

u x t T
t T

h h t T
S  

ª º�¬ ¼

  � (h) 

 
The larger of the values of the initial and residual spectra form the shock spectrum 
for the system under support shock. The generation of the shock spectrum for this 
case is left as a project for the reader (Problem 4.20). 
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4.8  CONCLUDING REMARKS 

In this chapter we have focused our attention on single degree of freedom systems subjected 
to transient loads of various types. We began by introducing two generalized functions and 
their properties, operations and relations. These functions allowed us to formally obtain the 
response of single degree of freedom systems to impulse loading. A representation of the 
response of initially quiescent systems to arbitrary loading was developed based on the re-
sponse to impulse loading and took the form of the convolution integral. The convolution 
integral can be used to determine the response of a system to any loading, given the time 
history of the load. This formulation was used to determine the response of systems to the 
specific forms of step loading and ramp loading. For linear systems superposition may be 
used to construct solutions of complex loading types from the known responses of loads 
that, together, comprise the loading of interest. This was done explicitly for two loading 
types, step loading and linear transition to constant load level. The method may, of course, 
be used to obtain solutions of other load types. The chapter finished with a discussion of 
shock spectra, a characterization of the severity of the response of a system to a given type 
of pulse or shock. Specific spectra were presented for rectangular pulses and half-sine puls-
es. The methodology outlined could be used to develop the response spectra for other types 
of pulses as well. 
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PROBLEMS 

4.1 Consider the function 4( ) 2 .f t t  Evaluate the following integrals: 

(a) 
10

0
( ) ( 3)f t t dtG �³
�

           (b)      
10

0
( ) ( 3)f t t dtG �³
��   

(c) 
10

0
( ) ( 3)f t t dtG �³
���            (d)     

10

0
( ) ( 3)f t t dtG �³
���  

 
4.2 Consider the function 4( ) 2 .f t t  Evaluate the following integrals: 

(a) 
10

0
( ) ( 3)f t t dt�³ H           (b)     

10

0
( ) ( 3)f t t dt�³ �H  

(c) 
10

0
( ) ( 3)f t t dt�³ ��H           (d)     

10

0
( ) ( 3)f t t dt�³ �� H  
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4.3 The mass of the system of Problem 2.25 is subjected to an impulse of amplitude 20 
N-sec. Determine the response history of the system. 

 
4.4 A 12 inch wrench is attached to the hub of the wheel of Example 2.3 and extends 

horizontally, as indicated. Determine the rotational history of the wheel if a tool sud-
denly falls on the free end of the wrench, imparting an impulse of magnitude 10 lb-
sec at that point. (The wrench may be treated as rigid for the purposes of the present 
problem.)  
                                                                                                
        
 
 
 
 
 
 
    Fig. P4.4/P4.5 
 

4.5 A 12 inch wrench is attached to the hub of the wheel of Example 2.3 and extends 
horizontally, as indicated. After a tool suddenly falls and strikes the free end of the 
wrench, the wheel is observed to oscillate at its natural frequency with an amplitude 
of 0.15 radians. Determine the impulse imparted by the tool. 

                                                                                      
4.6 The timing device of Problem 2.19 is tapped to initiate motion. Determine the magni-

tude of the impulse required so that the motion of the device has an amplitude 40. 
 
4.7 A 10 N dead load is suddenly applied to the mass of the system of Problem 2.26a. 

Determine the response history of the system. 
  
4.8 A flat 225 lb raft with a 6 ft u  6 ft surface floats in a fresh water lake. Determine the 

response history for vertical motion of the system when a 120 lb boy suddenly jumps 
onto the float. Assume that the jump is primarily horizontal so that the vertical com-
ponent of the boy’s velocity is negligible as he lands on the raft. Also assume that the 
boy doesn’t “bounce” on the raft after landing. 

 

 
   Fig. P4.8 
 
4.9 Determine the motion of the one-story building of Example 3.13 if the base suddenly 

moves 2 inches to the right. 
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4.10 The diving board of Problem 2.30 is at rest when a 110 lb boy stands at its edge. De-
termine the response of the diving board after the boy jumps into the pool. 

 
 
 
                                                             
 
 
 
 
 
 
 
 
 
    Fig. P4.10 
 
 
4.11 The spool of the system of Problem 2.27 is initially at rest when it is pulled on by a 

force whose magnitude increases linearly with time at the rate of 0.1 N/sec. Deter-
mine the motion of the spool assuming that no slipping occurs between the spool and 
the ground. 

 
 
4.12 Solve Problem 4.11 if damping is negligible and the magnitude of the force increases 

parabolically with time such that the rate of application of the load increases at the 
rate of 0.1 N/sec2. 

 
 
4.13 Determine the yawing motion of the aircraft mock-up of Problem 3.7 if the thrust 

supplied by one of the engines suddenly deviates from the norm by a factor of H for a 
time interval of duration W.  

 
 
4.14 Determine the time history of the response of the system of Problem 2.21 when, over 

the interval 0 t W� � , the flywheel is loaded at a constant rate to the ultimate level M0 
and then maintained at that level. 

 
 
4.15 Differential settlement of a segment of roadway causes a small drop of magnitude h, 

as shown in Figure P4.15. Repairs are performed effecting a transition ramp of length 
L between the two segments of the roadway, as indicated. A vehicle travels at con-
stant speed v0 along a flat road when it encounters the drop. Assuming that the driver 
maintains the same horizontal speed throughout his motion, determine the vertical 
motion of the vehicle during and after it encounters the drop. The vehicle never 
leaves the roadway and the vertical speed due to gravity is negligible. 
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   Fig. P4.15 

 
 

4.16 Determine the response of the system of Problem 3.1 when it is subjected to a half-
sine pulse of 250 dyne amplitude and 0.25S�seconds duration. 

 
 
4.17 Determine the response of a standard mass-spring-damper system when it is subject-

ed to a sinusoidal transition of duration t* to a constant load of magnitude F0.  
 

   Fig. P4.17 
 
 
4.18 Determine the time history of the response of a standard mass-spring-damper system 

when it is subjected to a triangular pulse of magnitude F0 and total duration 2W, when 
the ramp-up and ramp-down times are of the same duration. 

  Fig. P4.18 
 

F(t)

Fo

t* t

F(t)

Fo

2 t
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4.19 Determine the shock spectrum for a linear system subjected to the transition loading 
of Section 4.6.2. 

 
4.20 (Project) Use Eqs. (f), (g) and (h) of Example 4.12 to generate the shock spectrum for 

a system whose base undergoes a motion in the form of a half-sine pulse. 
 
4.21 (Project) Determine the shock spectrum for a linear system subjected to a triangular 

pulse of magnitude F0 and total duration t*, when the ramp-up and ramp-down times 
are of the same duration.  
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5 
Operational Methods 

 
 
 
 
 
 
 
 
In this chapter we shall study an alternate approach to solving vibration problems for me-
chanical systems. This approach is used in various situations, particularly with regard to 
systems analysis and vibration control. (The reader may bypass this chapter and continue on 
to subsequent chapters without any loss of continuity.) 
 Operational methods, in the present context, refer to techniques associated with inte-
gral operators and are also known as integral transform techniques. We shall here be inter-
ested in the particular transform attributed to Laplace. When applied, an integral transform 
maps an ordinary differential equation (o.d.e.) to an algebraic equation in terms of a trans-
formed dependent variable. The algebraic equation may then be solved directly for the 
transformed dependent variable, and that variable may then be inverted (mapped back) to 
give the solution to the original problem. We first review the Laplace transform and some 
of its properties.  
 

5.1 THE LAPLACE TRANSFORM 

Consider some real function ξ of a real variable t. The Laplace transform of ( )tξ , which we 
shall denote as ( ) ,sξ

�
 is defined by the relation 

   

 { }
0

( ) ( ) ( )sts t e t dtξ ξ ξ
∞

−= ≡ ³
�
� $  (5.1) 

 
where s is a complex variable such that  Re(s) > s0 > 0, and ${ξ} is read “$ operating on 
ξ .” Equation (5.1) maps the function ξ(t) to the function ( ).sξ

�
 In all applications of the 

Laplace transform considered in this text, the inversions (i.e., the inverse mappings) may be 
accomplished by algebraic manipulation and inspection, as will be discussed shortly. In this 
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regard, many pertinent Laplace transforms are evaluated below as examples. The Laplace 
transforms of many other functions may be found in published mathematical tables and 
software.  
 Though we shall have no need to employ it in our present study of vibrations, the 
formal inverse Laplace transform is presented for completeness, and for situations where 
functions are encountered such that their inverses are not readily available. For these situa-
tions, the associated inverse transform that maps ( ) ( )s tξ ξ→

�
 is given by 

 

 { }1 1( ) ( ) ( )
2

i
st

i
t s e s ds

i

β

β
ξ ξ ξ

π
+ ∞

−

− ∞
= ≡ ³

� �
$  (5.2) 

 
where the integration is performed in the complex plane and β > s0 defines what is referred 
to as the Bromwich line. The reader is referred to the variety of applied mathematics texts 
for discussion of  the evaluation of the inversion integral for arbitrary functions. In the re-
mainder of this section we shall evaluate the Laplace transforms of a variety of pertinent 
functions. We will then apply this technique to vibration analysis in subsequent sections. 
 

5.1.1 Laplace Transforms of Basic Functions 

We next evaluate the Laplace transform of some basic functions of interest. These functions 
include the generalized functions introduced in Chapter 4 (the unit impulse function, the 
unit step function and the unit ramp function), as well as the exponential and harmonic 
functions. All are easily evaluated by straightforward integration and may be verified by the 
reader. 

The Unit Impulse  
The Laplace transform of the Dirac delta function (the unit impulse) is obtained by setting 

( ) ( )t tξ δ=
�

 in Eq. (5.1) and using Eq. (4.7). Doing this, we find that 
  

 { }
0

( ) ( ) 1stt e t dtδ δ
∞

−= =³
� �

$  (5.3) 

Similarly, 

 { }
0

( ) ( )st st e t dt e τδ τ δ τ
∞

− −− = − =³
� �

$  (5.4) 

 

The Unit Step Function  
The Laplace transform of the Heaviside step function (the unit step function) is obtained by 
setting ( ) ( )t tξ = H  in Eq. (5.1) and evaluating the resulting integral. This gives 
  

 { }
0 0

1 1( ) st stt e dt e
s s

∞∞
− −= = − =³$ H  (5.5) 

Similarly,  

 { }
0

( ) ( )
s

st st et e t dt e dt
s

τ

τ
τ τ

−∞ ∞
− −− = − = =³ ³$ H H  (5.6) 
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The Unit Ramp Function   
The Laplace transform of the unit ramp function is obtained by substituting the function 

( ) ( )t t tξ = H (the unit ramp function) into Eq. (5.1) and evaluating the resulting integral. 
Carrying out this calculation gives 
  

 { } 2
0 00

1 1( ) 0
st

st sttet t te dt e dt
s s s

∞−∞ ∞
− −= = − + = +³ ³H$   

Hence, �

 { } 2

1( )t t
s

=H$  (5.7) 

 

The Exponential Function 
The Laplace transform of the exponential function ( ) att eξ =  is obtained by direct evalua-
tion as 

 { } ( )

0

1( ) at s a ts e e dt
s a

ξ
∞

− −= = =
−³

�
$  (5.8) 

The Harmonic Functions 
The Laplace transform of the harmonic functions cos tω  and sin tω  can be evaluated with 
the aid of Eq. (5.8) and the two identities  
 

 cos     and    sin
2 2

i i i ie e e e
i

ψ ψ ψ ψ

ψ ψ
− −+ −= =  (5.9) 

 
(see Problem 1.19).  Now, from Eqs. (5.8) and (5.9), 
 

 { } { } { } 2 2

1 1 1cos
2 2( ) 2( )

i t i t st e e
s i s i s

ω ωω
ω ω ω

−ª º= + = + =¬ ¼ − + +
$ $ $      

Hence, 

 { } 2 2cos st
s

ω
ω

=
+

$  (5.10) 

Similarly,  

 { } 2 2sin t
s

ωω
ω

=
+

$  (5.11) 

 

Harmonic Functions with Exponential Amplitudes 
Two more functions of evident interest for our study of vibrations are the combinations 

( ) cosatt e tξ ω=  and .( ) sinatt e tξ ω=  The Laplace transform of these composite functions 
are evaluated in a manner similar to that for the harmonic functions alone. Hence,  
 

 { } { } { }( ) ( )1 1 1cos
2 2( ) 2( )

at a i t a i te t e e
s a i s a i

ω ωω
ω ω

+ −ª º= + = +¬ ¼ − − − +
$ $ $  
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Combining the two fractions gives the desired transform 
 

 { } 2 2cos
( )

at s ae t
s a

ω
ω

−=
− +

$  (5.12) 

 
A similar calculation gives the companion transform 
 

 { } 2 2sin
( )

ate t
s a

ωω
ω

=
− +

$  (5.13) 

 

5.1.2  Shifting Theorem 

Consider a function f (t) that is shifted by time τ, as shown in Figure 5.1, but is otherwise 
arbitrary. Let us evaluate the Laplace transform of such a function. The shifted function 
may be represented as 

 
 ( ) ( ) ( )f t f t tτ τ τ= − −H  (5.14) 
 
where H (t) is the Heaviside step function defined in Chapter 4. We wish to evaluate 

{ }( )f tτ$ . Thus, letting ( ) ( )t f tτξ = in Eq. (5.1) gives 
 

 { }
0

( ) ( ) ( ) ( )st stf t e f t t dt e f t dtτ
τ

τ τ τ
∞ ∞

− −= − − = −³ ³H$  (5.15) 

 
Next, let us introduce the time shift 
 
 t̂ t τ= −  (5.16) 
 
from which it follows that ˆdt dt= . Incorporating Eq. (5.16) into Eq. (5.15) gives 
 

 ˆ ˆ( )

0 0

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )s t s st sf s e f t dt e e f t dt e f sτ τ τ
τ

∞ ∞
− + − − −= = =³ ³

� �
 

 
  
 

  
         Figure 5.1  Generic function shifted by time τ.  
 

f 

t τ
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Hence, 
 { } { }( ) ( ) ( )sf t t e f tττ τ −− − =H$ $  (5.17) 
 
 

5.1.3  Laplace Transforms of the Derivatives of Functions 

We have seen that establishing the dynamic response of a mechanical system generally 
involves solving a differential equation. It is therefore of interest to evaluate the Laplace 
transform of the derivatives of a function. The Laplace transform of the derivative of a 
function is determined by substituting that derivative into Eq. (5.1) and performing integra-
tion by parts. Doing this we find that  

 

 { } 00 0
( ) (0) ( )st st stdt e dt e s e dt s s

dt
ξξ ξ ξ ξ ξ

∞ ∞∞− − −ª º= = + = − +¬ ¼³ ³
��$   

Hence, 
 { } (0) ( )s sξ ξ ξ= − +

��$  (5.18) 
 
The Laplace transform of the second derivative of a function is similarly obtained by defin-
ing a second function equal to the derivative of the first and applying Eq. (5.18). This gives 
the Laplace transform of the second derivative as 
 
 { } 2( ) (0) (0) ( )t s s sξ ξ ξ ξ= − − +

��� �$  (5.19) 
 
This process can be continued to obtain the Laplace transform of any order derivative. It is 
seen that the Laplace transforms of the derivatives of a function are simply functions of the 
transform of the function itself and of the associated initial conditions. We can therefore 
anticipate that taking the Laplace transform of an ordinary differential equation results in an 
algebraic equation involving these parameters.  
 

5.1.4  Convolution 

In the previous section we evaluated the Laplace transforms of the product of harmonic 
functions and exponential functions directly, with the aid of Euler’s Formula. In this section 
we develop a general expression for the determination of the Laplace transforms and the 
associated inverses of the products of arbitrary functions. 
 Consider two functions, ( )f t and ( )g t , and their respective Laplace transforms, 

( )f s
�

and ( ).g s�  It follows from Eq. (5.1) that 
 

 
0 0

( ) ( ) ( ) ( ) ( ) ( )s sg s f s g s e f d f e g s dτ ττ τ τ τ
∞ ∞

− −= =³ ³
�� � �  (5.20) 

 
Expressing ( )g s� in terms of its definition in the right most integral of Eq. (5.20) and em-
ploying the shifting theorem, Eq. (5.17), gives 
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 { } { }
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )sg s f s f e g t d f g t t dττ τ τ τ τ τ
∞ ∞

−= = − −³ ³
�� $ $ H  

 
and thus, 
 

 
0 0

( ) ( ) ( ) ( ) ( )stf s g s f e g t t dt dτ τ τ τ
∞ ∞

−= − −³ ³
� � H   

 
Now, interchanging the order of integration gives 
 

 
0 0

( ) ( ) ( ) ( ) ( )stf s g s e f g t t d dtτ τ τ τ
∞ ∞

−= − −³ ³
� � H  

 
which may be written as 
 

 0 0
( ) ( ) lim ( ) ( ) ( )

                     lim ( ) ( ) ( )

st

st

f s g s e f g t t d dt

e f g t t d dt

τ τ τ τ

τ τ τ τ

Τ Τ
−

Τ→∞

∞ ∞
−

Τ→∞ Τ Τ

= − −

+ − −

³ ³
³ ³

� � H

H
 

 
The second term on the right-hand side is seen to vanish in the limit. Finally, from the defi-
nition of the Heaviside step function, Eq. (4.11), it is noted that H (t – τ) = 0 for τ  > t. 
Hence, we finally have the relation 
 

 
0 0

( ) ( ) ( ) ( )
t

stf s g s e f g t d dtτ τ τ
∞

−= −³ ³
� �  (5.21) 

 
Equation (5.21) may be expressed in the form 
 
 { }( ) ( ) ( ) ( )*f s g s f t g t=

� � $  (5.22) 
where 

 
0

( ) ( ) ( ) ( )*
t

f t g t f g t dτ τ τ≡ −³  (5.23) 

 
is referred to as the convolution of f and g, and the integral on the right-hand side as the 
convolution integral, also known as the Faltung Integral. It follows that the inverse Laplace 
transform of a product of two functions is given by 
 
 { }1 ( ) ( ) ( ) ( )*f s g s f t g t− =

� �$  (5.24) 

 
Equation (5.24) is very useful in a variety of applications. 
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5.2 FREE VIBRATIONS 

Recall the standard form of the equation of motion pertaining to single degree of freedom 
systems, Eq. (2.64),  
 
 22 0x x xωζ ω+ + =�� �  

 
and the associated initial conditions 
 
 0 0(0)  ,   (0)x x x v= =�  
 
Taking the Laplace transform of the governing equation, exploiting the property that the 
Laplace transformation is a linear operation and using Eqs. (5.18) and (5.19), results in the 
algebraic equation for the transformed displacement 
 
 [ ]2 2(0) (0) ( ) 2 (0) ( ) ( ) 0x s x s x s x s x s x sωζ ωª º− − + + − + + =¬ ¼

� � ��  (5.25) 
 
Equation (5.25) may be solved for ( )x s�  to give 
 

 
( )0 0

2 2

2
( )

2
v s x

x s
s s

ωζ
ωζ ω

+ +
=

+ +
�  (5.26) 

 
If we compare the denominator of  Eq. (5.26) with the characteristic function 2(s), the left-
hand side of Eq. (2.67), it is seen that the denominator corresponds to the characteristic 
function. Further, let us recall that the roots of the characteristic equation 2(s) = 0 yield the 
exponents of Eq. (2.66) and hence the general form of the solution. Let us next factor the 
denominator of Eq. (5.26) to give the form 
 

 
( )

( ) ( )
0 02

( )
d d

v s x
x s

s i s i
ωζ

ζω ω ζω ω
+ +

=
+ + + −ª º ª º¬ ¼ ¬ ¼

�  (5.27) 

 
where ωd is defined by Eq. (2.70) for underdamped systems. It may be seen that the singu-
larities of the transformed displacement, the values of s for which the bracketed expressions 
in the denominator of Eq. (5.27) vanish, correspond to the roots of the characteristic equa-
tion 2(s) = 0. In order to invert the transformed displacement, and hence to obtain the re-
sponse x(t), it is desirable to express Eq. (5.27) in a form, or combination of forms, that 
corresponds to the Laplace transform of functions that we have already established or are 
listed elsewhere. This may be accomplished by multiplying the respective factors in the 
denominator back again, and regrouping terms. The transformed displacement then takes 
the form 
 

 
( )

( )
( )

( )
0 0

0 2 22 22
( )

1
d

d d

s v x
x s x

s s

ζω ω ζ ω
ζω ω ζω ωζ

ª º+ +
= + « »

+ + + +« »−¬ ¼

�  (5.28) 
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Equation (5.28) may now be inverted by direct application of Eqs. (5.12) and (5.13).  This 
gives the free vibration response as 
 

 { } ( )0 01
0 2

( ) ( ) cos sin
1

t t
d d

v x
x t x s x e t e tζω ζωω ζ

ω ω
ζ

− − −
ª º+

= = + « »
« »−¬ ¼

�$  (5.29) 

 
Substituting Eqs. (2.6)–(2.11) puts the response in the form identical to Eq. (2.74). 
 

5.3 FORCED VIBRATIONS 

We next consider the response of single degree of freedom systems when they are subjected 
to externally applied forces.  
 

5.3.1  The Governing Equations 

Recall the general equation of motion in standard form, Eq. (3.1), 
 
 2 22 ( )x x x f tωζ ω ω+ + =�� �  (5.30) 
 
The right-hand side of Eq. (5.30), 2 ( )f tω , is seen to correspond to the specific applied 
force (the force per unit mass acting on the system). Taking the Laplace transform of Eq. 
(5.30) results in the algebraic equation 
 
 2

0( ) ( ) ( ) ( )s x s s f sω− =
��2 2  (5.31) 

where 
 2 2( ) 2s s sωζ ω= + +2  (5.32) 
 
 ( )0 0 0( ) 2s v s xωζ= + +2  (5.33) 
 
and { }( ) ( ) .f s f t≡

�
$  The function 2(s) is referred to as the mechanical impedance of the 

system. Equation (5.31) may be solved for ( )x s�  to give 
 

 
2

0( ) ( )
( )

( )
f s s

x s
s

ω +=
�

� 2
2

 (5.34) 

 
which may then be inverted for a given ( )f s

�
. It may be noted that the inverse transform of 

20(s)/2(s) is given by Eq. (5.29). Also note that Eq. (5.34) reduces to Eq. (5.26) when 
0f =

�
. If the system is initially at rest it may be seen that 20(s) = 0, and hence that 

 
 2( ) ( ) ( )s f s x sω=

� �2  (5.35) 
 
In this context, the mechanical impedance is seen to correspond to the (specific) force per 
unit displacement in the space of the transformed variables. The inverse of the impedance,  
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         Figure 5.2  Block diagram for forced vibration problem. 
 
 
 
 1 2( ) ( ) ( ) ( )s s x s f sω−= =

��) 2  (5.36) 
 
is referred to as the mechanical admittance (transfer function) and, in the present context, is 
seen to correspond to the displacement per unit (specific) force in the transformed space. 
From a systems perspective, ( )f s

�
and ( )x s� may be viewed as input-output pairs, with )(s) 

the corresponding transfer function as depicted in the block diagram of Figure 5.2. Both 
2(s) and )(s) characterize the system and are important parameters in certain applications 
(such as control theory). 
 

5.3.2  Steady State Response 

Let us next consider the response of single degree of freedom systems to external time de-
pendent forces. In particular, let us first consider the response to harmonic forcing. Thus, let 
us consider the external force of the form 
 
    [ ]0 0( ) cos sini tf t f e f t i tΩ= = Ω + Ω   (5.37)   
 
It follows from Eq. (5.8), or equivalently from Eqs. (5.10) and (5.11), that 
  

 0( )
f

f s
s i

=
− Ω

�
 (5.38) 

 
The transform of the response is then readily obtained by substituting Eq. (5.38) into Eq. 
(5.34). This gives 
 

 
2 2

0 0 0 0
2 2 2 2 2 2

( )( ) ( )
( )

( )( 2 ) ( ) ( ) ( )d d

f s s i f s
x s

s i s s s i s s
ω ω

ωζ ω ζω ω ζω ω
+ − Ω= = +

− Ω + + ª º ª º− Ω + + + +¬ ¼ ¬ ¼

� 2 2
 

  (5.39) 
 
The physical response is found by inverting Eq. (5.39). This can be done by expanding the 
denominator and using partial fractions. However, it is expedient as well as instructive to 
perform the inversion using the convolution theorem. To do this we first partition Eq. (5.39) 
using Eqs. (5.8), (5.12) and (5.13). We then incorporate the resulting expression into Eq. 
(5.23) to get 
 

 { }
2

1 ( )0

0
( ) ( ) sin ( )

t
i t t

d b
d

f
x t x s e e d e x tτ ζωτ ζωω ω τ τ

ω
− Ω − − −= = +³�$  (5.40) 

 

( )x s�  )(s) ( )f s
�
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where the last term on the right-hand side of Eq. (5.40) is given by Eq. (5.29). Evaluating 
the integral in Eq. (5.40) gives the response of the system as 
 

 ( ) [ ]0
2

( ) ( ) ( )
1 2

i t
t

b a
f e

x t e x t x t
i

ζω

ζ

Ω
−= + −

− Ω + Ω
 (5.41) 

where 
 ωΩ ≡ Ω  (5.42) 
  

 ( )2 2
0 2

( ) 1 2 cos sin
1

a d d
ix t f i t tζζ ω ω
ζ

ª º+ Ωª º « »= Γ − Ω − Ω +¬ ¼ « »−¬ ¼
 (5.43) 

 

 
( )0 0

0 2
( ) cos sin

1
b d d

v x
x t x t t

ω ζ
ω ω

ζ

ª º+
« »= +
« »−¬ ¼

 (5.44) 

 
and Γ is given by Eq. (3.50). The second term in Eq. (5.41) may be seen to tend to zero for 
large t, and thus will become negligible after sufficient time has elapsed following the start-
up of the system. Therefore, neglecting the decaying term in that expression gives the 
steady state response as 

 
 ( ) ( )

0( ) ; i t
ssx t f eζ Ω −Φ= Γ Ω  (5.45) 

 
where Γ and Φ respectively correspond to the magnification factor and phase angle of the 
steady state response, as discussed in Section 3.3.3. The response given by Eq. (5.45) is 
seen to be identical with that described by Eq. (3.52) as, of course, it should be. 
 

5.3.3  Transient Response 

We next consider the response of initially quiescent systems to short duration loads (puls-
es). It is seen from Eq. (5.33) that 20 = 0 for systems that are initially at rest. 

Impulse Response 
Consider a single degree of free system, say a mass-spring-damper system that is subjected 
to an impulse of the form 
 

 ( ) ( )f t t
k

δ=
�!  (5.46) 

 
where k is the stiffness of the spring, ! is the magnitude of the impulse, and ( )tδ

�
 is the 

Dirac delta function. The Laplace transform of the excitation is found directly from Eq. 
(5.3) to be 
 
 ( )f s k=

�
!  (5.47) 
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The response is found by substituting Eq. (5.47) into Eq. (5.34) and inverting the resulting 
expression. Then, using the inversion results of the free vibration analysis performed earlier 
in this chapter, with mv0 replaced by !, gives the response to an impulse as 
 
 ( ) ( )x t t= !G  (5.48) 
where 

 1( ) sin ( )t
d

d

t e t t
m

ζω ω
ω

−=G H  (5.49) 

 
It is seen that Eq. (5.48) compares directly with Eq. (4.22). The response to step loading 
may be similarly obtained using the Laplace transform approach. The calculation is left as 
an exercise for the reader. 

Ramp Loading  
Consider next a transient load that varies linearly with time. We thus consider an excitation 
of the form 
 ( ) ( )f t f t t= � H  (5.50) 

 
where f�  is a constant. The Laplace transform of this forcing function is given by Eq. (5.7). 
Hence, for the given loading function, 
 

 2( ) ff s
s

=
��

 (5.51) 

 
The transform of the displacement is then obtained by substituting Eq. (5.51) into Eq. (5.34). 
This gives 

 
2

2( )
( )
fx s

s s
ω=
��

2
 (5.52) 

 
The response may be obtained by inverting Eq. (5.52) using the convolution theorem. Thus, 
 

 2

0

sin
( ) ( )

t
d

d

ex t f t d
ζωτ ω τω τ τ

ω

−

= −³�  (5.53) 

 
Evaluating the integral, we obtain the response to the ramp loading as 
 
 ( ) ( )x t f t= �R  (5.54) 
where 

 
( )21 22 2( ) cos sin ( )t

d d
d

t t e t t tζω
ζζ ζ ω ω

ω ω ω
−

 ½ª º−° °« »= − + −® ¾
« »° °¬ ¼¯ ¿

R H  (5.55) 

 
is the unit ramp response. Equation (5.55) compares directly with Eq. (4.39) as, of course, it 
should. 
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5.4 CONCLUDING REMARKS 

In this chapter we introduced an alternate approach to vibration problems using Laplace 
transforms. The basic definition was established, the shifting theorem established and the 
convolution integral derived. The transforms of fundamental relevant functions were de-
termined and the solutions for free and forced vibration problems were developed. The con-
cepts of mechanical impedance and admittance were also introduced. 
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PROBLEMS 

5.1 Evaluate the Laplace transform of the step function 0 .( )F tH  
 
5.2 Evaluate the Laplace transform of the step function 0 .( )F t τ−H  
 
5.3 Evaluate the Laplace transform of the ramp function 0( ) ( ) ( )f t f t tτ τ= ⋅ − ⋅ −� H  

where 0 constant .f =�  
 
5.4 Verify Eq. (5.11) by evaluating { }sin .tω$  
 
5.5 Verify Eq. (5.13) by evaluating { }sin .ate tω$  
 
5.6 Evaluate the mechanical impedance and the mechanical admittance of the simple 

pendulum. 
 
5.7 Evaluate the mechanical impedance and the mechanical admittance of the system of 

Problem 3.6 when one wheel is fixed. 
 
5.8 Evaluate the mechanical impedance and the mechanical admittance of the structure of 

Example 3.13. 
 
5.9 Use the Laplace transform approach to obtain the solution to Example 3.1 if the sys-

tem is initially at rest. 
 
5.10 Use the Laplace transform approach to determine the motion of the mass of Example 

3.5 if it is subjected to the applied force 2( ) 0.05F t t= N. 
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6 
Dynamics of Multi-Degree of Freedom 
Systems 

 
 
 
 
 
 
 
Actual mechanical systems generally possess many, if not an infinite number, of degrees of 
freedom. Further, many continuous systems may be adequately modeled as discrete systems 
with many degrees of freedom. It is therefore of practical, as well as fundamental, interest 
to understand the nature of such systems. The next three chapters are devoted to the study 
of vibrations of discrete multi-degree of freedom systems. Examples of such systems in-
clude the multi-story building shown in Figure 6.1a, the motorcycle frame shown in Figure 
6.1b and the compound pendulum displayed in Figure 6.1c. The analysis of multi-degree of 
freedom systems requires the introduction of many new concepts that will be used in con-
junction with the ideas and concepts presented thus far. Before we can examine the vibrato-
ry behavior of these rather complex systems, we must first develop the facility to derive the 
equations of motion that describe them. Acquisition of this capability will allow for the 
representation and characterization of the various systems, as well. Toward this end, we 
first introduce multi-degree of freedom systems by example and derive the governing equa-
tions for selected systems using Newtonian Mechanics in Section 6.1. Though a useful ap-
proach, and most certainly a fundamentally correct one, the derivation of the equations of 
motion by direct application of Newton’s laws is often cumbersome and tedious for systems 
other than relatively simple assemblages. To facilitate the derivation of equations of motion 
for all multi-degree of freedom systems we introduce aspects of a subject area known as 
Analytical Dynamics in Section 6.2. In particular, we focus our attention on the develop-
ment and application of Lagrange’s equations as an alternate, and often more convenient, 
approach for deriving the governing equations of complex systems. 
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        Figure 6.1  Examples of multi-degree of freedom systems. 
 

6.1  NEWTONIAN MECHANICS OF DISCRETE SYSTEMS 

In this chapter, and in the two chapters that follow, we shall be interested in the behavior of 
systems possessing many degrees of freedom. We will introduce the topic through several 
representative examples using the principles of elementary dynamics discussed in Section 
1.5. Sample systems include mass-spring systems, multiple pendulum systems and rigid 
frames. We begin with a discussion of a simple two degree of freedom system, the results 
of which are then generalized to systems with any number of degrees of freedom. 
 

6.1.1  Mass-Spring Systems 

Mass-spring systems, with or without damping, are appropriate representations for many 
physical systems such as the multi-story building shown in Figure 1.10 and other elastic 
structures from submarines to aircraft. The derivation of the equations of motion for simple 
systems, such as masses and springs in series, is easily accomplished by direct application 
of Newton’s Laws of Motion. In this section, we demonstrate how this is done by first in-
troducing two examples; a two degree of freedom system consisting of two masses subject-
ed to external forces and three springs, and a three degree of freedom system consisting of 
three masses and three springs excited by the motion of its base. We then extend these re-
sults to the formulation for analogous N-degree of freedom systems, where N is any integer.  
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Example 6.1 
Consider a system consisting of two masses, m1 and m2, connected by three elastic 
springs with stiffnesses k1, k2 and k3 respectively, as indicated in Figure E6.1-1. Let 
the masses be subjected to the externally applied forces F1 and F2, respectively, and 
let u1 and u2 represent the correspond-
ing displacements from equilibrium of 
the masses, as shown. We wish to de-
rive the equations of motion for this 
system using Newton’s Laws of Mo-
tion.  
 
                                                            Figure E6.1-1  Two-mass three-spring system. 
 
Solution 
To derive the equations of motion for the system, we must derive the equation of 
motion for each mass individually. To do this we first isolate each mass and draw its 
kinetic diagram as shown in Figure E6.1-2. Note that Newton’s Third Law is implied 
in the figure. For the sake of convention, we take u2 > u1 > 0 throughout our deriva-
tion. This renders all but the third spring to be in tension as a reference. Results to 
the contrary in subsequent analyses may then be interpreted accordingly.  
  

   Figure E6.1-2  Kinetic diagram. 
 
With the individual kinetic diagrams drawn, we may directly apply Newton’s Se-
cond Law to each mass of the system. We then have 
 
 1 1 1 2 2 1 1 1( )F k u k u u m u− + − = ��   
 2 2 2 1 3 2 2 2( )F k u u k u m u− − − = ��   
 
which when rearranged gives the equations of motion for mass 1 and mass 2, respec-
tively, as 
 

 1 1 1 2 1 2 2 1

2 2 2 1 2 3 2 2

( )
( )

m u k k u k u F
m u k u k k u F

+ + − =
− + + =

��
��

 (a)  

 
Note that the equation governing m1 depends on the displacement of m2 as well as 
the displacement of m1, while the equation governing the second mass also involves 
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the displacements of both masses. The equations, and hence the motions of each 
mass, are said to be coupled. This, of course, makes physical sense since we might 
anticipate that the motion of one mass is dependent on the motion of the other since 
they are connected through the springs. This particular type of coupling is referred to 
as stiffness coupling since the coupling is manifested through the stiffness elements 
of the system (in this case the elastic springs). We shall elaborate on this and other 
types of coupling later in this section.  
 It is seen that this two degree of freedom system is governed by two (coupled) 
equations of motion. This is the case for two degree of freedom systems, in general. 
A three degree of freedom system will be governed by three equations of motion, 
and so on. Thus, an N-degree of freedom system will be governed by N equations of 
motion. While it is cumbersome to work with many equations individually, the gov-
erning equations, and hence any analysis and interpretation is made easier and clean-
er by writing the equations in matrix form. Analyses may then be performed using 
the methods of matrix analysis, and of linear algebra in general. Toward this end, 
Eqs. (a) may be easily written in matrix form as 
 

 1 2 21 1 1 1

2 2 32 2 2 2

0
0

k k km u u F
k k km u u F
+ −ª ºª º  ½  ½  ½

+ =® ¾ ® ¾ ® ¾« »« » − +¬ ¼ ¯ ¿ ¯ ¿ ¯ ¿¬ ¼

��
��

 (b) 

 
or, in the compact form 
 
 + =��mu ku F  (c) 
where 

 1

2

0
0

m
m

ª º
= =« »
¬ ¼

Tm m  (d) 

 
is referred to as the mass matrix of the system,  
 

 1 2 2

2 2 3

k k k
k k k
+ −ª º

= =« »− +¬ ¼
Tk k  (e) 

 
is referred to as the stiffness matrix of the system, and a superposed “T” implies the 
transpose of the matrix. The matrices m and k are seen to contain the properties of 
the system. Similarly, 
 

 1

2

( )
( )

F t
F t

 ½
= ® ¾
¯ ¿

F  (f) 

 
is the force matrix for the system,  
 

 1

2

( )
( )

u t
u t
 ½

= ® ¾
¯ ¿

u  (g) 

 
is the displacement matrix, and  
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 1

2

( )
( )

u t
u t
 ½

= ® ¾
¯ ¿

��
��

��
u  (h) 

 
is the acceleration matrix. In general, we wish to solve Eq. (b), or equivalently Eq. 
(c), for u(t). 
 Consideration of Eqs. (d) and (e) indicates that both the mass matrix and the 
stiffness matrix for this system are symmetric. This is typical of such systems and 
will be found to apply generally. It may also be seen that, for this particular system, 
the mass matrix is diagonal while the stiffness matrix is not. This is because, as dis-
cussed earlier, this particular type of system is coupled through the stiffnesses but 
not through the masses. As we will see, coupling can occur through the masses or 
through the stiffnesses, or through both. 

 
 
 
  

Example 6.2 
Consider the system comprised of three masses and three springs shown in Figure 
E6.2-1. Further, let the support/base of the system be subjected to a “prescribed” mo-
tion u0(t). Derive the equations of motion for this system. 

   Figure E6.2-1  Three-mass three-spring system. 
 
 
Solution 
The procedure will be similar to that of Example 6.1. However, for this case, the 
masses of the system are not subjected to explicit applied forces. Rather, the forcing 
enters the problem through the motion of the support.  
 As in the previous example, we first isolate each mass and draw the corre-
sponding kinetic diagram for each (Figure E6.2-2). We note that the displacement of 
the support, u0, does not vanish identically for this case, and hence the stretch in 
spring 1 and the associated spring force are then (u1 − u0) and k1(u1 − u0), respective-
ly. We next write Newton’s Second Law for each mass as follows, 
 

 
1 1 2 2 1 1 1 0

2 2 3 3 2 2 2 1

3 3 3 3 2

( ) ( )
( ) ( )

( )

m u k u u k u u
m u k u u k u u
m u k u u

= − − −
= − − −
= − −

��
��
��

 (a) 
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   Figure E6.2-2  Kinetic diagram. 
 
Regrouping terms in each of Eqs. (a) and bringing all terms except that associated 
with the base motion to the left hand-side of the equations results in  
 
 1 1 1 2 1 2 2 1 0( ) ( )m u k k u k u k u t+ + − =��  
 2 2 2 1 2 3 2 3 3( ) 0m u k u k k u k u− + + − =��  (b) 
 3 3 3 2 3 3 0m u k u k u− + =��  
 
The above equations governing the displacements of the masses of the system may 
be written in matrix form as 
 
 + =��mu ku F  (c) 
where 

 
1

2

3

0 0
0 0
0 0

m
m

m

ª º
« »= « »
« »¬ ¼

m  (d) 

 

 
1 2 2

2 2 3 3

3 3

( ) 0
( )

0

k k k
k k k k

k k

+ −ª º
« »= − + −« »
« »−¬ ¼

k  (e) 

 

 
1 0 ( )

0
0

k u t ½
° °= ® ¾
° °
¯ ¿

F  (f) 

 and 

 
1 1

2 2

3 3

 ,    
u u
u u
u u

 ½  ½
° ° ° °= =® ¾ ® ¾
° ° ° °
¯ ¿ ¯ ¿

��
�� ��

��
u u  (g, h) 

 

k2(u2-u1 )k1(u1-u0 )

k2(u2-u1 )

k3(u3-u2  )

m1u1

m2u2k3(u3-u2 )

m3u3

=

=

=
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           Figure 6.2  N-mass, N+1-spring, N+1-damper system. 
 

N-Degree of Freedom Mass-Spring-Damper Systems 
The formulations of Examples 6.1 and 6.2 can be generalized to a system comprised of any 
number of masses, say N, connected in series by a system of springs and dampers as shown 
in Figure 6.2. For this particular system the state of the system is known if the position, or 
equivalently the displacement, of each of the N masses is known as a function of time. By 
definition (see Section 1.1), a system that requires N “coordinates” to describe its state, pos-
sesses N degrees of freedom. The system presently under consideration is, therefore, an N-
degree of freedom system. The equations of motion for this system are relatively simple to 
derive using Newton’s Laws of Motion. (This, however, will not always be the case.) 

The kinetic diagram for mass mj (j = 1, 2, …, N) is depicted in Figure 6.3. Writing 
Newton’s Second Law for this generic mass gives 
 
 ( ) ( ) ( ) ( )1 1 1 1 1 1j j j j j j j j j j j j j j jF k u u c u u k u u c u u m u− − + + + +− − − − + − + − =� � � � ��  
 
which, after rearranging terms, takes the form 
 
 1 1 1 1 1 1 1 1( ) ( )j j j j j j j j j j j j j j j j jm u c u c c u c u k u k k u k u F− + + + − + + +− + + − − + + − =�� � � �  (6.1) 
 
The motion of the system is therefore described by N equations of the form of Eq. (6.1). We 
here present a general case, so we shall consider the displacement of the left support to be a 
prescribed function, 0 0 ( )u u t= , and we shall consider the right support to be fixed 
( 1 1 0N Nu u+ += =� ). The equations for each mass, and hence for the entire system can be ar-
ranged in matrix form as 
 
 + + =�� �mu cu ku F  (6.2) 
 
where 
 
 
 
 

 
 
    Figure 6.3  Kinetic diagram for N-mass system. 
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1

2

0 0
0 0

0 0 N

m
m

m

ª º
« »
« »= =
« »
« »
¬ ¼

"
"

# # % #
"

Tm m  (6.3) 

is the mass matrix, 
 

 

1 2 2

2 2 3 3

3 3 4

1

( ) 0 0
( )

0 ( ) 0

0 0 ( )
N

N N N

k k k
k k k k

k k k
k

k k k +

+ −ª º
« »− + −« »
« »= − + =
« »−« »
« »− +¬ ¼

!
% #
%

# % % %
!

Tk k  (6.4) 

 
is the stiffness matrix, 
 
  

 

1 2 2

2 2 3 3

3 3 4

1

( ) 0 0
( )

0 ( ) 0

0 0 ( )
N

N N N

c c c
c c c c

c c c
c

c c c +

+ −ª º
« »− + −« »
« »= − + =
« »−« »
« »− +¬ ¼

!
% #
%

# % % %
!

Tc c  (6.5) 

 
is the damping matrix, and 
 

 

1 1 1

2 2 2

( ) ( ) ( )
( ) ( ) ( )

,     ,     ,

( ) ( ) ( )N N N

u t u t u t
u t u t u t

u t u t u t

 ½  ½  ½
° ° ° ° ° °
° ° ° ° ° °= = =® ¾ ® ¾ ® ¾
° ° ° ° ° °
° ° ° ° ° °¯ ¿ ¯ ¿ ¯ ¿

�� �
�� �

�� �
# # #

�� �

u u u  (6.6) 

 
are the acceleration, velocity and displacement matrices, respectively, and 
 

 

1 1 0 1 0

2

( ) ( ) ( )
( )

( )N

F t k u t c u t
F t

F t

+ + ½
° °
° °= ® ¾
° °
° °¯ ¿

�

#
F  (6.7) 

 
is the force matrix. Note that if the left base is fixed, then we set 0 0 0u u= =� in the force 
matrix, Eq. (6.7). If the right end is free (there is no spring or damper at the right end of the 
system), then we respectively set kN+1 = 0 in the stiffness matrix, Eq. (6.4), and cN+1 = 0 in 
the damping matrix, Eq. (6.5). The reader may wish to verify that the equations for the sys-
tem of Example 6.1 may be obtained by setting c = 0, N = 2 and 0 0 0u u= =� in the above 
formulation. Similarly, the equations for the system of Example 6.2 may be obtained by 
setting c = 0, N = 3 and k4 = 0 in the above formulation. 
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 It may be noted that for this class of system, the stiffness and damping matrices are 
banded. That is, nonzero elements occur along or near the diagonal of the matrix. This is so 
because, for this system, the springs and dampers are connected in series and therefore a 
given mass is only directly acted upon by the springs and dampers connected to its neigh-
boring masses. The matrices would not be banded if nonadjacent masses were connected 
(for example if a spring connected m1 with mN , etc., as well as m2). Banding of matrices 
provides a computational advantage for the analysis of large systems. However, for general 
systems, such convenient banding does not always occur directly. 
 
 

6.1.2  The Double Pendulum 

Another exemplary problem is that of a multiple pendulum. We here consider the double 
pendulum (Figure 6.4) for simplicity. The pendulum is comprised of two masses m1 and m2 
that are pinned to rigid rods (or cords) of length L1 and L2, respectively. One end of the first 
rod is pinned to a rigid support, as indicated. For this system the coordinates θ1 and θ2 
measure the displacement of the two masses. The system therefore possesses two degrees of 
freedom. In this section we will derive the equations of motion for the double pendulum 
using Newton’s Laws of Motion. It will be seen that, even for this relatively simple two 
degree of freedom system, the derivation is quite complex and must be carefully imple-
mented. (The difficulty in deriving the governing equations for systems of this type pos-
sessing more than two degrees of freedom, say the triple or quadruple pendulum, is com-
pounded accordingly.) The governing equations for the double pendulum are considered 
again in Section 6.2, where the advantage of Lagrange’s equations will become apparent. 
For the moment, however, let us derive the corresponding equations of motion using tradi-
tional vector mechanics. To do this, we must first evaluate the acceleration of each mass 
with respect to a common, and convenient, reference frame. 

Kinematics 
Consider the coordinates (ξ, η) aligned with the deflected position of the first rod at the 
instant of observation. Since mass m1 moves along a circular path, its acceleration is easily 
expressed in terms of polar coordinates (see Section 1.5.1), and is thus of the same form as 
that for the mass of the simple pendulum of Section 2.1.4. Hence,  
 
 

 
    Figure 6.4  The double pendulum. 
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 (1) 2

1 1 1 1a L e L eξ ηθ θ= +G G G�� �  (6.8) 
 
where eξ

G and eη
G  correspond to unit vectors in the axial and normal directions of the first 

rod, respectively. The acceleration of mass m2 may be expressed as the sum of the accelera-
tion of mass m1 and the acceleration of mass m2 as seen by an observer translating, but not 
rotating, with mass m1 (see Section 1.5.1). Thus,  
  
 (2) (1) (2 /1)a a a= +G G G  
 
The above form may be decomposed into its components along the (ξ, η) directions, and 
may be expressed in terms of the angular coordinates θ1 and θ2 as follows: 
 
 (2) (2) (2)a a e a eξ ξ η η= +G G G  (6.9) 
where 

 
(2) 2

1 1 2 2 2 2

(2) 2 2
1 1 2 2 2 2

cos sin

sin cos

a L L L

a L L L
ξ

η

θ θ ψ θ ψ
θ θ ψ θ ψ

= + −

= + +

�� �� �

� �� �  (6.10) 

and 
 2 1ψ θ θ= −  (6.11) 
 

Kinetics 
With the expressions for the acceleration established, we may now derive the equations of 
motion for the system. To do this we first isolate each mass and draw the associated kinetic 
diagram (Figure 6.5). Once this is done we can express Newton’s Second Law for each 
mass. For this system, it is more expedient to take the moment of Newton’s Second Law 
about the common origin, O, for each mass individually.  
 
 

 Figure 6.5  Kinetic diagram for the double pendulum. 

www.konkur.in



6│ Dynamics of Multi-Degree of Freedom Systems 277 

We then have, for the first mass,  
  

(1) (1) (1)
0 1M r m a= ×¦
G G G : 

 1 1 1 1 1 1 1 2 1 1 1 1sin cos sinL m g L F L P L m Lθ θ ψ θ− + + = ��  
 
or, after rearranging, 
 
 2

1 1 1 1 1 1 1 2 1 1 1sin sin cosm L m gL L P F Lθ θ ψ θ+ − =��  (6.12) 
 
It may be seen that the unknown internal force P2 appears in Eq. (6.12). To find this force in 
terms of the chosen coordinates and their derivatives, we write out the ξ component of 
Newton’s Second Law for mass m2. Thus, 
 

(2) (2)
2F m aξ ξ=¦ : 

 2
2 2 1 2 1 2 1 1 2 2 2 2sin sin cos ( cos sin )P m g F m L L Lψ θ θ θ θ ψ θ ψ− − + = + −�� �� �  (6.13) 

 
Solving Eq. (6.13) for P2 and substituting the resulting expression into Eq. (6.12) eliminates 
the unknown internal force and gives the equation of motion for mass m1 as 
 
 2 2

1 2 1 1 2 1 2 2 2 1 2 2 1 2 1 1 1 2 1 1( ) cos sin ( ) sin ( ) cosm m L m L L m L L m m gL F F Lθ θ ψ θ ψ θ θ+ + − + + = +�� �� �   
  (6.14) 
 
Linearization of Eq. (6.14) about θ1 = θ2 = 0, as discussed in Section 2.1.4, renders the cor-
responding equation of motion for mass m1 to the form 
 
 2

1 2 1 1 2 1 2 2 1 2 1 1 1 2 1( ) ( ) ( )m m L m L L m m gL F F Lθ θ θ+ + + + = +�� ��  (6.15) 
 
To obtain the equation of motion for mass m2 we proceed in a similar manner. We thus take 
the moment about the origin of the statement of Newton’s Second Law for mass m2. Hence, 
 

(2) (2) (2)
0 2M r m a= ×¦
G G G :

 
2 2 2 1 2 2 1 1 2 2

(2) (2)
2 1 1 2 2 2 1 2 2 2

cos sin sin ( cos ) ( cos cos )

( sin sin ) ( cos ) sin

P L P L L F L L
m g L L m a L L m a Lξ η

ψ ψ ψ ψ θ θ
θ θ ψ ψ

− + + +
− + = + +

 

 
Substituting Eqs. (6.10) and (6.13) into the above expression then gives the desired form of 
the governing equation as 
 

2 2 2
2 1 2 1 1 2 2 2 2 2 2 2 2 2 2cos sin sin (1 cos ) sin cosm L L m L m gL F Lθ ψ θ ψ θ θ ψ ψ θ θª º ª º+ + − − + =¬ ¼ ¬ ¼

�� � �� �

  (6.16) 
 
Linearization of Eq. (6.16) about θ1 = θ2 = 0 renders the corresponding equation of motion 
for mass m2 as 
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 2
2 1 2 1 2 2 2 2 2 2 2 2m L L m L m g L F Lθ θ θ+ + =�� ��  (6.17) 

 
Equations (6.15) and (6.17) describe the coupled motion of the double pendulum. As for the 
class of mass-spring systems discussed previously, it is of interest to express these equa-
tions in matrix form. When this is done, the equation of (small angle) motion for the double 
pendulum takes the form 
 

 
2

1 2 1 1 1 2 11 2 1 2 1 2 1
2

2 2 2 2 22 1 2 2 2 2

( ) 0 ( )( )
0

m m gL F F Lm m L m L L
m gL F Lm L L m L

θθ
θθ

 ½ª º + +ª º  ½  ½+ ° °+ =® ¾ ® ¾ ® ¾« » « »
° ° ¬ ¼ ¯ ¿ ¯ ¿¬ ¼ ¯ ¿

��
��  

  (6.18) 
 
or, equivalently, 
 + =��mu ku F  
 
where 

 
2

1 2 1 2 1 2
2

2 1 2 2 2

( )m m L m L L
m L L m L

ª º+
= « »
¬ ¼

m  (6.19) 

 

 1 2 1

2 2

( ) 0
0

m m gL
m gL

+ª º
= « »
¬ ¼

k  (6.20) 

 

 1 2 1

2 2

( )F F L
F L
+ ½

= ® ¾
¯ ¿

F  (6.21) 

 

 1

2

θ
θ
 ½

= ® ¾
¯ ¿

u  (6.22) 

 
Note that, for this system, the elements of the displacement matrix are actually angular dis-
placements and the elements of the force matrix are actually moments. Thus, we speak of 
the “displacement matrix” and of the “force matrix” in the most general sense, with their 
elements interpreted accordingly. It may be seen that this system is coupled through the 
mass matrix. Such coupling is referred to as inertial coupling. 
 
 

6.1.3  Two-Dimensional Motion of a Rigid Frame 

Consider the motorcycle frame shown in Figure 6.6. The frame has mass m and length L = 
L1 + L2, as indicated. Its center of mass G is located a horizontal distance L1 from the rear of 
the bike, as shown, and its moment of inertia about an axis through the center of mass is IG. 
The tires are modeled as elastic springs, with the respective stiffnesses k1 and k2, that resist 
vertical motion as shown. We shall derive the equations of motion for this twice, using dif-
ferent sets of coordinates. It will be seen that the type of coupling is dependent on the coor-
dinates chosen to describe the motion of the system. 
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    Figure 6.6  Motorcycle frame. 
 

Case 1: Translation of, and Rotation About, the Center of Mass 
A natural set of coordinates to describe the motion of the frame is the coordinate that de-
scribes the vertical position of the center of mass, and the coordinate that measures the rota-
tion about an axis through that point (both measured with respect to the equilibrium config-
uration of the system). These measures are denoted as yG and θ, respectively, as shown on 
the kinetic diagram of Figure 6.7a. Writing Newton’s Second Law for the vertical motion of 
the frame gives 
 

y yF ma=¦ : 
   1 1 2 2( sin ) ( sin )G G Gk y L k y L myθ θ− − − + = ��  
 
which for small angle motion simplifies to 
 
 1 2 2 2 1 1( ) ( ) 0G Gmy k k y k L k L θ+ + + − =��  (6.23) 
 
We next write the equation of  rotational motion of the frame about its center of mass. 
Hence, applying Eq. (1.162), 
 

G GM I α=¦ : 

 2 2 2 1 1 1( sin ) ( sin )G G Gk y L L k y L L Iθ θ θ+ − − = − ��   
 
which for small angle motion simplifies to 
 
 2 2

2 2 1 1 1 1 2 2( ) ( ) 0G GI k L k L y k L k Lθ θ+ − + + =��  (6.24) 
 
Eqs. (6.23) and (6.24) can be combined and represented in matrix form as 
 

 1 2 2 2 1 1
2 2

2 2 1 1 1 1 2 2

( ) ( )0 0
( ) ( )0 0

G G

G

k k k L k Lm y y
k L k L k L k LI θ θ

+ −ª ºª º  ½  ½  ½+ =® ¾ ® ¾ ® ¾« »« » − +¯ ¿ ¯ ¿ ¯ ¿¬ ¼ ¬ ¼

��
��  (6.25) 

 
or 
 + =��mu ku 0  
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 Figure 6.7  Kinetic diagram for motorcycle frame. 
 
 
where 

 
0

0 G

m
I

ª º
= « »
¬ ¼

m  (6.26) 

 

 1 2 2 2 1 1
2 2

2 2 1 1 1 1 2 2

( ) ( )
( ) ( )

k k k L k L
k L k L k L k L

+ −ª º
= « »− +¬ ¼

k  (6.27) 

and 

 Gy
θ

 ½= ® ¾
¯ ¿

u  (6.28) 

 
It may be seen from Eqs. (6.23) and (6.24), or Eq. (6.25), or Eqs. (6.26) and (6.27) that the 
system is coupled through the stiffnesses for this choice of coordinates. Note that the equa-
tions completely decouple if the parameters of the system are such that k1L1 = k2L2. 

Case 2: Translation of, and Rotation About, an Arbitrary Point 
Consider the vertical translation of some arbitrary point “P” located a distance L3 from the 
rear of the frame as shown in the corresponding kinetic diagram of Figure 6.7b, and the 
rotation about an axis through that point. Let L4 locate the same point from the front end of 
the frame and LP locate that point with respect to the center of mass, as indicated. In this 
case we choose the vertical displacement of point P, yP, and the angular displacement, θ, to 
describe the motion of this two degree of freedom system. We next parallel the develop-
ment of Case 1, but with the present set of coordinates. 
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We first note that the vertical displacement of the center of mass may be expressed in 
terms of the vertical displacement of point P and the rotational displacement. Hence, 

  
 sin   G P Py y L θ= +  (6.29) 
 
and, after differentiating twice with respect to time, 
 
 ( )2 cos sinG P Py y L θ θ θ θ= + −�� ��� ��  (6.30) 

 
Newton’s Second Law then gives the equation of vertical motion as 

 
 ( )2

1 3 2 4( sin ) ( sin ) cos sinP P P Pk y L k y L m y Lθ θ θ θ θ θª º− − − + = + −¬ ¼
�� ���  

 
where LP is the distance between points P and G, as indicated in Figure 6.7b. For small an-
gle motion, the above equation of translational motion simplifies to 

 
 1 2 2 4 1 3( ) ( ) 0P P Pmy mL k k y k L k Lθ θ+ + + + − =����  (6.31) 
 
We next write the equation of rotational motion about an axis through P. Applying Eq. 
(1.163) for the present system gives the equation of rotational motion of the frame as 
 

 2 4 4 1 3 3( sin ) cos ( sin ) cos

cos
P P

G G P

k y L L k y L L

I my L

θ θ θ θ
θ θ

+ − −
= − −�� ��

 (6.32) 

 
For small angle motion, the equation of rotational motion simplifies to 
 
 2 2

2 4 1 3 2 4 1 3( ) ( ) 0P G G PmL y I k L k L y k L k Lθ θ+ + − + + =����  (6.33) 
 
Equations (6.31) and (6.33) may be combined and expressed in matrix form as 
 

 1 2 2 4 1 3
2 2

2 4 1 3 2 4 1 3

( ) ( ) 0
( ) ( ) 0

P P P

P G

m mL k k k L k Ly y
mL I k L k L k L k Lθ θ

+ −ª º ª º ½  ½  ½+ =® ¾ ® ¾ ® ¾« » « »− +¯ ¿ ¯ ¿ ¯ ¿¬ ¼ ¬ ¼

��
��  (6.34) 

 
It may be seen from Eq. (6.34) that the system is coupled both inertially and elastically. 
However, if the location of point P (and hence the ratio L3/L4) is chosen such that 

3 4 2 1L L k k= , then the stiffness matrix will be diagonal, and the system will only be cou-
pled inertially. For this case the equation of motion reduces to the form 
 
 + =��mu ku 0  
 
where 

 P

P G

m mL
mL I
ª º

= « »
¬ ¼

m  (6.35) 
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 1 2 2 4 1 3 1 2
2 2 2 2

2 4 1 3 2 4 1 3 2 4 1 3

( ) ( ) ( ) 0
( ) ( ) 0 ( )

k k k L k L k k
k L k L k L k L k L k L

+ − +ª º ª º
= →« » « »− + +¬ ¼ ¬ ¼

k  (6.36) 

and 

 Py
θ

 ½
= ® ¾
¯ ¿

u  (6.37) 

 
Note that if point P corresponds to one of the edges of the frame, say the left edge, then L3 = 
L and L4 = 0. It may be seen that, for this choice of coordinates, the equations that govern 
the system cannot be decoupled. 
 We thus see that, in general, the equations of motion of a system may be coupled 
through the mass matrix, the stiffness matrix, or through both. (For damped systems, cou-
pling may occur through the damping matrix as well.) We also see that a proper choice of 
coordinates can simplify the equations of motion.  
 
 

6.2  LAGRANGE’S EQUATIONS 

The equation of motion for the N-degree of freedom system comprised of a series of 
springs, dampers and masses in rectilinear motion considered in the previous section was 
easily derived by direct application of Newton’s Laws of Motion. This, however, will not 
usually be the case when one considers complex systems that exhibit multi-dimensional 
motion. For such situations the vector approach is generally cumbersome and a scalar tech-
nique is often desirable. An approach from an area of mechanics known as Analytical Dy-
namics will help in this regard. This is the utilization of Lagrange’s equations. Though the 
development is somewhat abstract, the implementation is rather straightforward. Once it is 
mastered, the application of Lagrange’s equations for the derivation of the equations of 
motion for complex multi-degree of freedom systems can be accomplished with a fair 
amount of ease. In this section we develop Lagrange’s equations and demonstrate their uti-
lization in deriving the equations of motion for multi-degree of freedom systems. We first 
introduce the concept of virtual work. 
 

6.2.1  Virtual Work 

To begin, let {q1, q2, …, qN} represent the set of independent “generalized coordinates” 
used to describe the motion of some N-degree of freedom system. These may be, for exam-
ple, the linear coordinates (u1, u2) used to describe the displacements of the two mass sys-
tem connected in series, the angular coordinates (θ1, θ2, θ3) employed to describe the mo-
tion of a triple pendulum, the combination of linear and angular coordinates (y,θ ) adopted 
to describe the motion of the motorcycle frame discussed earlier, or some other type of co-
ordinate description. Further, let 
 
 1 2( , ,..., , )l l Nr r q q q t=G G  (6.38) 
 
denote the position vector of mass ml (l = 1, 2, …, M). Consider a set of virtual increments 
in position (virtual displacements) of the various mass elements of the system that are con-
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sistent with the constraints of the system, but are otherwise arbitrary. That is, consider the 
increments 
     ( 1,2,..., )lr l Mδ =G  
 
such that the constraints of the system are not violated. The operator δ  is used to denote the 
differential increment rather than d since the increments are considered virtual (possible, 
but not actual). The virtual increments in position are thus referred to as virtual displace-
ments. [As an example, suppose we were to consider the virtual motion of the ladder/rod 
that is constrained to move along the vertical wall and horizontal wall, as indicated in Fig-
ure 6.8. For this system, the virtual displacement (the increment in position) of mass A must 
be vertical and that of mass B must be horizontal in order to comply with the constraints 
imposed on the system due to the wall, the floor, and the rigid rod. Thus, virtual displace-
ments through the walls or off the tracks are not permitted. Further, the possible displace-
ments of the two masses/rod ends cannot be independent of one another but, rather, must be 
related through the geometry of the rigid rod. Thus, for the constrained rod, 
  
 2 2 2

A         2s 2 0A B A B Bs s L s s sδ δ+ = → + =  
 
where sA and sB respectively locate the positions of mass A and mass B, as indicated.] Re-
turning to the discussion of a general N-degree of freedom system, the virtual work done by 
the external force and by the resultant internal force acting on mass ml , as the mass moves 
through the corresponding virtual displacement lrδ G , is then 
 
 ( )( ) ( )ext int

l l l lF F rδ δ= +
G G G<�/  (6.39) 

where 

 ( )

1

M
int

l lj
j

F
=

=¦
G G

P  (6.40) 

 
lj
G
P  is the internal force exerted on mass ml by mass mj, and it is understood that 

11 22 ... 0MM= = = =
GG G G

P P P  (i.e., no mass exerts a force on itself). It follows from Newton’s 
Third Law that jl lj= −

G G
P P  (l, j = 1, 2, …, M), and hence that 

 
 

 
    Figure 6.8  Example of a constrained system. 

sA

A

L

B

sB
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 ( )
11 12 1 1 2

1 1 1

( ... ) ... ( ... ) 0
M M M

int
l lj M M M MM

l l j

F
= = =

= = + + + + + + + + =¦ ¦¦
GG G G G G G G G

P P P P P P P  (6.41) 

 
Thus, adding the work done by the forces acting on each particle of the system as expressed 
by Eq. (6.39), and noting that the internal forces of the system sum to zero as expressed by 
Eq. (6.41), gives the total virtual work done on the system as 
 

 
1 1

M M

l l l
l l

F rδ δ δ
= =

= =¦ ¦
G G</ /  (6.42) 

 
where lF

G
 includes external forces, and those internal forces for which the associated dis-

placement can differ from that of the force’s mirror image.  
 

6.2.2  The Canonical Equations 

Now that the concepts of generalized coordinates and virtual work have been established, 
we proceed to develop the general statement of Lagrange’s equations. This is done by writ-
ing Newton’s Second Law of Motion for the individual particles, implementing a virtual 
work type operation for the system, and converting the corresponding expressions to an 
energy statement.  
 Writing Newton’s Second Law for mass ml, we have 

 

 
2

( ) ( )
2

ext int l
l l l

d r
F F m

dt
+ =

GG G
 

or 

 
2

( ) ( )
2 0     ( 1, 2,..., )ext int l

l l l
d r

F F m l M
dt

+ − = =
GG G

 (6.43) 

 
Taking the scalar dot product of Eq. (6.43) with its corresponding virtual displacement 
gives 

 
2

( ) ( )
2 0     ( 1,2,..., )ext int l

l l l l
d r

F F m r l M
dt

δ
ª º

+ − = =« »
¬ ¼

GG G G<  (6.44) 

 
Summing the equations for all masses that comprise the system and noting Eqs. (6.41) and 
(6.42) results in the statement 
 

 ( )
1

0
M

l l l l
l

F m r rδ
=

ª º− =¬ ¼¦
G G G�� <  (6.45) 

 
which is seen to be a work type statement. We next wish to convert this statement to work-
energy form. 
 It follows from Eq. (6.38) that 
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 1 2
1 2 1

...
N

l l l l
l N j

N jj

r r r r
dr dq dq dq dq

q q q q=

∂ ∂ ∂ ∂= + + + =
∂ ∂ ∂ ∂¦
G G G GG  (6.46) 

 
which, after dividing through by dt becomes 
 

 1 2
1 2 1

...
N

l l l l l
l N j

N jj

dr r r r rr q q q q
dt q q q q=

∂ ∂ ∂ ∂≡ = + + + =
∂ ∂ ∂ ∂¦

G G G G GG� � � � �  (6.47) 

 
It follows from Eq. (6.47) that 
 

     ( 1, 2,..., ; 1,2,..., )l l

j j

r r
l M j N

q q
∂ ∂= = =
∂ ∂

G G�

�
 (6.48) 

Since the virtual displacements correspond to possible displacements and therefore possess 
the functional properties of actual displacements, it follows that the virtual increment in 
position can be expressed in the form of Eq. (6.46). Hence, 
 

 1 2
1 2 1

...
N

l l l l
l N j

N jj

r r r r
r q q q q

q q q q
δ δ δ δ δ

=

∂ ∂ ∂ ∂= + + + =
∂ ∂ ∂ ∂¦
G G G GG  (6.49) 

 
With the identities stated by Eqs. (6.48) and (6.49) established, we now return to the evalua-
tion of Eq. (6.45). We shall perform this evaluation term by term and in reverse order.  
 Let us take the second expression in Eq. (6.45), substitute Eq. (6.49), and interchange 
the order of summation. This gives 
 

 
1 1 1 1 1

1 1

                 

M M N N M
l l

l l l l l j l l j
j jl l j j l

N M
l l

l l l l j
j jj l

r r
m r r m r q m r q

q q

r rd dm r m r q
dt q dt q

δ δ δ

δ

= = = = =

= =

§ ·∂ ∂= = ¨ ¸¨ ¸∂ ∂© ¹
ª º§ · § ·∂ ∂= « − »¨ ¸ ¨ ¸¨ ¸ ¨ ¸∂ ∂« »© ¹ © ¹¬ ¼

¦ ¦ ¦ ¦ ¦

¦¦

G GG G G G�� �� ��< < <

G GG G� �< <

 

 
If we next incorporate the identity specified by Eq. (6.48) in the first term of the last brack-
eted expression, and interchange the order of differentiation in the second term, the above 
equation takes the form 
 

 

( ) ( )
1 1 1

1 1
2 2

1 1

                 

M N M
l l

l l l l l l l j
j jl j l

N M

l l l l l l j
j jj l

r rdm r r m r m r q
dt q q

d m r r m r r q
dt q q

δ δ

δ

= = =

= =

ª º§ ·∂ ∂= « − »¨ ¸¨ ¸∂ ∂« »© ¹¬ ¼
ª º∂ ∂= −« »

∂ ∂« »¬ ¼

¦ ¦¦

¦¦

G G� �G G G G�� � �< < <
�

G G G G� � � �< <
�

 

Finally, 

 
1 1

M N

l l l j
j jl j

dm r r q
dt q q

δ δ
= =

§ ·∂ ∂= −¨ ¸¨ ¸∂ ∂© ¹
¦ ¦G G�� <

�
, ,  (6.50) 
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where 

 1
1 2 1 2 2

1

( , ,..., ; , ,..., )
M

N N l l l
l

q q q q q q m r r
=

= =¦ G G� �� � � <, ,  (6.51) 

 
is the total kinetic energy of the system. To evaluate the first term in Eq. (6.45), let us first 
decompose the resultant force acting on a given mass into the sum of resultant conservative 
and nonconservative forces (see Sections 1.5.2 and 1.5.3). Thus, let 
 
 ( ) ( )     ( 1,2,..., )C NC

l l lF F F l M= + =
G G G

 (6.52) 
 
where ( )C

lF
G

 is the resultant conservative force acting on mass ml and ( )NC
lF
G

 is the corre-
sponding resultant nonconservative force. The total work done on the system as it moves 
through the virtual displacements lrδ G (l = 1, 2, …, M) may then be similarly partitioned as 
 

 ( ) ( ) ( ) ( )

1 1 1

M M M
C NC C NC

l l l l l l
l l l

F r F r F rδ δ δ δ δ δ
= = =

= = + = +¦ ¦ ¦
G G GG G G< < </ / /  (6.53) 

 
where ( )Cδ/  and ( )NCδ/  represent the increment in total work done on the system by the 
conservative and by the nonconservative forces, respectively. As discussed in Section 1.5.2, 
the (change in) potential energy of a system is the negative of the work done by the con-
servative forces in moving the system between two configurations. The increment in poten-
tial energy then follows accordingly. Hence, 
 
 ( )Cδ δ= −/ -  (6.54) 
where   
 1 2( , ,..., )Nq q q=- -  (6.55) 
 
is the total potential energy of the system. Upon, substitution of Eq. (6.54), Eq. (6.53) takes 
the form 

 ( )

1

M
NC

l l
l

F rδ δ δ
=

= − +¦
G G< - /  (6.56) 

 
where it follows from Eq. (6.55) that 
 

 1 2
1 2 1

...
N

N j
N jj

q q q q
q q q q

δ δ δ δ δ
=

∂ ∂ ∂ ∂= + + + =
∂ ∂ ∂ ∂¦- - - -

-  (6.57) 

 
Lastly, we wish to express the increment in total work of the nonconservative forces in 
terms of the generalized coordinates. This includes the work of any forces that are not in-
cluded in the total potential energy. It follows from Eqs. (6.49) and (6.53) that   
 

 ( )
1 1 2 2

1

...
N

NC
N N j j

j

Q q Q q Q q Q qδ δ δ δ δ
=

= + + + =¦/  (6.58) 

where 
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 ( )

1

  ( 1, 2,... )
M

NC l
j l

jl

r
Q F j N

q=

∂= =
∂¦
GG

<  (6.59) 

 
The set {Q1, Q2, …, QN} represents the set of “generalized” forces associated one to one 
with the elements of the set of generalized coordinates {q1, q2, …, qN}. Substitution of Eqs. 
(6.57) and (6.58) into Eq. (6.56) gives 
 

 
1 1

M N

l l j j
jl j

F r Q q
q

δ δ
= =

§ ·∂= −¨ ¸¨ ¸∂© ¹
¦ ¦

G G< -  (6.60) 

 
Having evaluated both expressions of Eq. (6.45) in terms of the generalized coordinates, we 
may now substitute back to obtain an alternate form of that equation. Doing this results in 
 

 
1

0
N

j j
j j jj

dQ q
dt q q q

δ
=

 ½ª º§ ·∂ ∂ ∂° °− « − + » =¨ ¸® ¾¨ ¸∂ ∂ ∂« »° °© ¹¬ ¼¯ ¿
¦ �

, , -  (6.61) 

 
Now, recall that the only restriction on the virtual displacements was that they must be 
compatible with the constraints imposed on the system. They are otherwise arbitrary. Since 
each δqj (j = 1, 2, …, N) appearing in Eq. (6.61) is arbitrary, that equation is identically 
satisfied only if the corresponding coefficients (the expressions within braces in that equa-
tion) vanish identically. This results in N equations of the form 
 

     ( 1, 2,..., )j
j j

d Q j N
dt q q
§ ·∂ ∂− = =¨ ¸¨ ¸∂ ∂© ¹�

L L  (6.62) 

where 
 ≡ −, -L  (6.63) 
 
is referred to as the Lagrangian. The equations defined by Eq. (6.62) are referred to as La-
grange’s equations and may be used to derive the equations of motion for multi-particle 
systems. 
  
 

6.2.3  Implementation 

The governing equations for any discrete system can be derived directly from Lagrange’s 
equations. A simple procedure for this purpose is delineated below. 
  

1. Establish a set of independent generalized coordinates to describe the motion of 
the system. 

2. Form the potential and kinetic energy functionals for the system and the virtual 
work of the applied forces. 

3. Express the virtual work and potential and kinetic energy of the system in terms of 
the chosen set of independent coordinates. 
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4. Determine the generalized forces for each degree of freedom. The corresponding 
generalized forces may be identified as the coefficients of the variations (virtual 
increments) of the chosen set of generalized coordinates, as per Eq. (6.58). 

5. Substitute the generalized forces and the pertinent potential and kinetic energy ex-
pressions into Eqs. (6.62) and perform the indicated operations for each degree of 
freedom. The result is the equations of motion for the system. 

6. Express the equations of motion of the system in matrix form.  
 
Several examples are presented next to elucidate this process.   
 

Example 6.3 
Use Lagrange’s equations to derive the equations of motion for the 3-mass 3-spring 
system depicted in Figure E6.2-1, when u0 = 0 and each mass is forced.  
  
Solution 
The system is easily identified as having three degrees of freedom, and the dis-
placements of the three masses, u1, u2 and u3, respectively, are the obvious choice of 
generalized coordinates for this case. Hence, for the system under consideration, N = 
3 and we have chosen { } { }1 2 31 2 3, , , ,q q q u u u↔ . The virtual displacements are thus 
readily identified as δu1, δu2 and δu3. The corresponding virtual work done by the 
applied forces as the masses move through these virtual displacements is then simply 
 
 ( )

1 1 2 2 3 3
NC F u F u F uδ δ δ δ= + +/  (a) 

 
where the generalized forces are identified as simply the applied forces.  (What 
would the generalized forces be if we were to include damping? – See Example 6.4.) 
Thus, for the present case, we have the simple correspondence  
 
   { } { }1 2 3 1 2 3, , , ,Q Q Q F F F↔  (b) 
 
Next, the total potential and kinetic energies of the system are easily expressed in 
terms of the chosen coordinates as 
 
 2 2 21 1 1

1 2 3 1 1 2 2 1 3 3 22 2 2( , , ) ( ) ( )u u u k u k u u k u u= = + − + −-�-  (c) 
 

 2 2 21 1 1
1 2 3 1 1 2 2 3 32 2 2( , , )u u u m u m u m u= = + +� � � � � �, ,  (d) 

 
Recall that the Lagrangian is defined as the difference between the kinetic and poten-
tial energy of the system. Hence, = −, -L . 
 Now, substituting Eqs. (b)–(d) into Eq. (6.63) and evaluating Lagrange’s equa-
tions (6.62) gives 
 
j = 1: 

   ( ) [ ]1 1 1 1 1 2 2 1 1
1 1

    ( )d dQ m u k u k u u F
dt q q dt
§ ·∂ ∂− = → − − + − =¨ ¸∂ ∂© ¹

�
�
L L  
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Regrouping terms results in the equation of motion for the first mass, 
 
 1 1 1 2 1 2 2 1( )m u k k u k u F+ + − =��  (e) 
 
j = 2: 

      ( )2 2 2 2 2 1 3 3 2 2
2 2

    ( ) ( )( 1)d dQ m u k u u k u u F
dt q q dt
§ ·∂ ∂− = → + − + − − =¨ ¸∂ ∂© ¹

�
�
L L  

 
This results in the equation of motion for the second mass, 
 
 2 2 2 1 2 3 2 3 3 2( )m u k u k k u k u F− + + − =��  (f) 
 
j = 3: 

 ( ) [ ]3 3 3 3 3 2 3
3 3

    ( )d dQ m u k u u F
dt q q dt
§ ·∂ ∂− = → − − − =¨ ¸∂ ∂© ¹

�
�
L L  

 
which gives the equation of motion for the third mass, 
 
 3 3 3 2 3 3 3m u k u k u F− + =��  (g) 
 
Eqs. (e)–(f) may be combined in matrix form as 
 

 
1 1 1 2 2 1 1

2 2 2 2 3 3 2 2

3 3 3 3 3 3

0 0 ( ) 0
0 0 ( )
0 0 0

m u k k k u F
m u k k k k u F

m u k k u F

+ −ª º  ½ ª º  ½  ½
° ° ° ° ° °« » « »+ − + − =® ¾ ® ¾ ® ¾« » « »
° ° ° ° ° °« » « »−¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿ ¯ ¿

��
��
��

 � (h) 

 
Equation (h) may be compared directly with Eqs. (6.2)–(6.6) for the case where N = 
3, 0 0u ≡ , k4 = 0 and c = 0. 

 
 
 

Example 6.4 
Use Lagrange’s equations to derive the equations of motion for the 3-mass, 3-spring, 
3-damper system of Figure E6.4-1. 
 

  
   Figure E6.4-1 
 

www.konkur.in



290 Engineering Vibrations 

 
   Figure E6.4-2  Kinetic diagram. 
 
Solution 
To derive the equations of motion for this system we must add the virtual work of 
the viscous damping forces to the virtual work of the applied forces when evaluating 
the total virtual work done by the nonconservative forces that act on the system. We 
may then proceed as we did for the undamped 3-mass system of Example 6.3. Thus, 
with the aid of the kinetic diagram depicted in Figure E6.4-2, the virtual work done 
by the nonconservative forces is given by 
 

 [ ] [ ]
[ ]

( )
1 1 2 2 3 3

1 1 1 2 2 1 1 2 2 2 1 3 3 2 2

3 3 3 2 3

        ( ) ( ) ( )

                                                       ( )

NC Q u Q u Q u
F c u c u u u F c u u c u u u

F c u u u

δ δ δ δ
δ δ

δ

= + +
= − + − + − − + −

+ − −

� � � � � � �

� �

/

 (a) 

 
The generalized forces are then given by the coefficients of the virtual displacements 
in Eq. (a). Hence, 
 1 1 1 2 1 2 2( )Q F c c u c u= − + +� �  (b) 
 2 2 2 1 2 3 2 3 3( )Q F c u c c u c u= + − + +� � �  (c) 
 3 3 3 2 3 3Q F c u c u= + −� �  (d) 
 
The potential and kinetic energies for the damped system are the same as for the 
undamped system of the previous example. Therefore, incorporating the damping 
forces into the generalized forces in the development put forth in Example 6.3 modi-
fies the right hand side of the resulting matrix equation of that example to the form 
 

 
1 1 1 2 2 1

2 2 2 2 3 3 2

3 3 3 3 3

( ) 0
( )

0

F F c c c u
F F c c c c u
F F c c u

+ − ½  ½ ª º  ½
° ° ° ° ° °« »→ − − + −® ¾ ® ¾ ® ¾« »
° ° ° ° ° °« »−¯ ¿ ¯ ¿ ¬ ¼ ¯ ¿

�
�
�

 (e) 

 
Replacing Eq. (e) for the right-hand side of Eq. (h) of Example 6.3, then bringing the 
damping terms to the left-hand side of the resulting matrix equation, renders the gov-
erning equation for the damped three mass system to the form 
 

 

1 1 1 2 2 1

2 2 2 2 3 3 2

3 3 3 3 3

1 2 2 1 1

2 2 3 3 2 2

3 3 3 3

0 0 ( ) 0
0 0 ( )
0 0 0

( ) 0
                                ( )

0

m u c c c u
m u c c c c u

m u c c u

k k k u F
k k k k u F

k k u F

+ −ª º  ½ ª º  ½
° ° ° °« » « »+ − + −® ¾ ® ¾« » « »
° ° ° °« » « »−¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿

+ −ª º  ½
° °« »+ − + − =® ¾« »
° °« »−¬ ¼ ¯ ¿

�� �
�� �
�� �

 ½
° °
® ¾
° °
¯ ¿

 � (f) 
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Equation (f) may be compared directly with Eqs. (6.2)–(6.6) for the case where N = 
3, 0 0u ≡ and c4 = k4 = 0. 

 
 
 
 

Example 6.5 
Use Lagrange’s equations to derive the equations of motion for the double pendulum 
of Figure 6.4. Use the angular displacements θ1 and θ2 as the generalized coordinates 
for this two degree of freedom system.  
 
Solution 
For the current system N = 2 and{q1, q2} ↔ {θ1 ,θ2}. Before proceeding to form the 
energy functional and evaluate the virtual work of the applied forces it is convenient 
to relate the Cartesian and polar coordinates of each of the two masses of the system. 
It may seen from the figure that  
 
 1 1 1 1 1 1sin  ,     cosx L y Lθ θ= =  (a-1,2) 
and 
 2 1 1 2 2 2 1 1 2 2sin sin  ,     cos cosx L L y L Lθ θ θ θ= + = +  (b-1,2) 
 
These expressions will be helpful in implementing and interpreting what follows. 
 We next form the potential energy functional. Since the potential energy is de-
fined in terms of its change (Section 1.5.2) we must first choose a datum. We shall 
choose the point corresponding to the rest configuration of the lower mass, m2, as the 
common datum for both masses. The potential energy for the system is then given by 
 
 1 1 2 2 1 1 2 1 2 1 2 2( ) ( )m gh m gh m g L L y m g L L y= + = + − + + −-  (c) 
 
Substituting the coordinate transformation described by Eqs. (a) and (b) into Eq. (c) 
gives the potential energy in terms of the angular coordinates θ1 and θ2  as 
 
 [ ] [ ]1 1 1 2 2 1 1 2 2(1 cos ) (1 cos ) (1 cos )m g L L m g L Lθ θ θ= − + + − + −-  (d) 
 
The kinetic energy of the system is easily written as 
 
 ( ) ( )2 2 2 2 2 21 1 1 1

1 1 2 2 1 1 1 2 2 22 2 2 2m v m v m x y m x y= + = + + +� � � �,  (e) 
 
Substituting Eqs. (a) and (b) into Eq. (e) gives 
 

 
( ) ( )

( ) ( )

2 2

1 1 1 1 1 1 1

2 2

2 1 1 1 2 2 2 1 1 1 2 2 2

1 cos sin
2

1     cos cos sin sin
2

m L L

m L L L L

θ θ θ θ

θ θ θ θ θ θ θ θ

ª º= + −« »¬ ¼

ª º+ + + − −« »¬ ¼

� �

� � � �

,
 (f) 
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which, when expanded, takes the simple form 
 
 2 2 2 21 1

1 2 1 1 2 2 2 2 1 2 1 2 1 22 2( ) cos( )m m L m L m L Lθ θ θ θ θ θ= + + + −� � � �,  (g) 
 
It is instructive to note that Eq. (f) could be obtained directly by calculating the rela-
tive velocity of m2 with respect to m1 and adding it to the velocity of the first mass 
using the reference frame depicted in Figure 6.5 and discussed in Section 6.1.2. 
Hence, expressing the velocity of each mass in terms of its components with respect 
to the path coordinates of the first mass at a given instant in time, we have 
 
 1 1 1v L eξθ=G G�  (h) 
 
 2 1 2 /1 1 1 2 2 2 1 2 1cos( ) sin( )v v v L e L e eξ ξ ηθ θ θ θ θ θª º= + = + − + −¬ ¼

G G G G G G� �  (i) 
 
It follows directly that 
 
 2 2 2

1 1 1 1 1v v v L θ= =G G �<  (j) 
and 
 2 2 2 2 2 2 2

2 2 2 1 1 1 2 1 2 2 1 2 22 cos( )v v v L L L Lθ θ θ θ θ θ= = + − +G G � � � �<  (k) 
 
Substitution of Eqs. (j) and (k) into Eq. (e) then gives the kinetic energy in the form 
of Eq. (f). 
 The last things we must determine before we can apply Lagrange’s equations 
are the generalized forces Q1 and Q2. To do this we must evaluate the virtual work of 
the applied forces F1 and F2. Since the indicated forces act along the horizontal, the 
virtual work of these forces is simply 
 
 ( )

1 1 2 2
NC F x F xδ δ δ= +/  (l) 

 
However, we must express everything in terms of the chosen generalized coordi-
nates, θ1 and θ2. Now, it follows from Eqs. (a) and (b) that 
 
 1 1 1 1cosx Lδ θ δθ=  (m-1) 
and 
 2 1 1 1 2 2 2cos cosx L Lδ θ δθ θ δθ= +  (m-2) 
 
Substitution of Eqs. (m-1) and (m-2) into Eq. (l) gives the virtual work of the applied 
forces in the desired form. Hence, 
 
 ( )( )

1 1 2 2 1 2 1 1 1 2 2 2 2cos cosNC Q Q F F L F Lδ δθ δθ θ δθ θ δθ= + = + +/  (n) 
 
From Eq. (6.58), the generalized forces associated with the chosen coordinates are 
the coefficients of the virtual displacements δθ1 and δθ2. These may be read directly 
from Eq. (n) to give 
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 ( )1 1 2 1 1cosQ F F L θ= +  (o-1) 
 
 2 2 2 2cosQ F L θ=  (o-2) 
 
[Note that the generalized forces may have also been computed by direct application 
of Eq. (6.59).] It may be seen that, for this case, the generalized forces are actually 
moments. This is, of course, as it should be since the virtual displacements are angu-
lar. Equations (d), (g) and (o) may now be substituted directly into Eqs. (6.62) and 
(6.63). Carrying through the required calculations, with {q1, q2} ↔ {θ1 ,θ2}, gives 
the equations of motion for the double pendulum. Hence,  
 
j = 1: 

 1
1 1

 d Q
dt q q
§ ·∂ ∂− = �¨ ¸∂ ∂© ¹�

L L   

  

   

2
1 2 1 1 2 1 2 2 2 1

2
2 1 2 2 2 1 1 2 1 1

1 2 1 1

( ) cos( )

sin( ) ( ) sin
( ) cos

m m L m L L

m L L m m gL
F F L

θ θ θ θ
θ θ θ θ

θ

+ + −
− − + +

= +

�� ��

�  (p) 

 
j = 2: 

 2
2 2

 d Q
dt q q
§ ·∂ ∂− = �¨ ¸∂ ∂© ¹�

L L  

 

 { }

2
2 1 2 1 2 1 1 2 1

2 2
2 2 2 2 2 1 2 1

2 2 2 2 2 2

cos( ) sin( )

   sin( ) 1 cos( )

                                                  sin cos

m L L

m L

m gL F L

θ θ θ θ θ θ

θ θ θ θ θ θ
θ θ

ª º− + −¬ ¼
ª º+ − − − −¬ ¼

+ =

�� �

�� �  (q) 

 
which are identical with Eqs. (6.14) and (6.16), respectively. Linearizing about θ1 
= θ2 = 0 and putting the resulting expressions in matrix form gives the governing 
equation for small angle motion, 
 

2
1 2 1 1 1 2 11 2 1 2 1 2 1

2
2 2 2 2 22 1 2 2 2 2

( ) 0 ( )( )
0

m m gL F F Lm m L m L L
m gL F Lm L L m L

θθ
θθ

 ½ª º + +ª º  ½  ½+ ° °+ =® ¾ ® ¾ ® ¾« » « »
° ° ¬ ¼ ¯ ¿ ¯ ¿¬ ¼ ¯ ¿

��
��  � (r) 

 
which is, of course, identical to Eq. (6.18). 

 
 
 
 
 
 
 

www.konkur.in



294 Engineering Vibrations 

Example 6.6 
A docked utility tram consists of a barrow of mass m2 suspended from an overhead 
frame of mass m1 by rods of length L as shown. The frame is latched to a rigid wall 
by an elastic coupler of effective stiffness k. A cable exerts a tension force F1 on the 
frame and a controller exerts a torque M about the pivot point. Environmental forces 
are represented by the horizontal force F2 acting though the attachment point of the 
barrow as indicated. If the stretch of track 
in the vicinity of the docking station is 
horizontal and the mass of the connecting 
rods and the spin of the barrow, as well as 
its moment of inertia about its own axis, 
are negligible derive the equations of mo-
tion for the system using Lagrange’s 
equations. Linearize the resulting equa-
tions by assuming small relative motion 
of the suspended car.                                    Figure E6.6-1  Docked utility tram.  
 
 
Solution 
The two body system evidently possesses two de-
grees of freedom. The horizontal coordinate u and 
the angular coordinate θ, shown in the adjacent 
figure, are the obvious choices for our generalized 
coordinates. The former measures the absolute 
displacement of the frame with respect to the fixed 
track and the latter measures the relative displace-
ment of the barrow with respect to the frame. 
                      
                                                                                     Figure E6.6-2  Coordinates. 
 
 Since we have both pure translation of the frame and combined translation and 
rotation of the barrow it is convenient to partition the motion of the latter in terms of 
its horizontal and vertical components. We shall take our origin at the equilibrium 
position of the frame. For consistency we shall set our datum to coincide with our 
datum at the level of the frame as well. Thus, let (x1 = u, 0) locate the frame and let 
(x2, y2) locate the car. It then follows that 
 
 2 2sin  ,     cosx u L y Lθ θ= + = −  (a-1,2) 
 
The kinetic energy is then easily computed as 
 

 { }
( )

2 2 21 1
1 2 2 22 2

2 221 1
1 22 2

2 2 21 1
1 2 22 2

   cos sin

   2 cos

m u m x y

m u m u L L

m m u m L uL

θ θ θ θ

θ θ θ

ª º= + +¬ ¼

ª º ª º= + + +¬ ¼ ¬ ¼

ª º= + + +¬ ¼

� � �

� �� �

� �� �

,

 (b) 
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The potential energy of the system at some generic configuration is 
 
 21

2 cosku mgL θ= −-  (c) 
 
Next, we determine the generalized forces associated with our chosen coordinates. 
To do this, we evaluate the virtual work done by the applied forces and moment and 
express the work in terms of the chosen coordinates u and θ. The generalized forces 
then correspond to the respective coefficients of the variations (virtual increments) of 
the generalized coordinates. Now, for a small virtual motion of the system it is clear 
that the virtual work done by the applied actions is 
 
 1 2 2F u F x Mδ δ δ δθ= + +/  (d) 
 
We wish to express Eq. (d) in terms of the two independent coordinates u and θ.  
This is accomplished by first evaluating the variation (“virtual differential”) of Eq. 
(a-1), which gives the relation  
 
 2 cosx u Lδ δ θ δθ= +  (e) 
 
Substituting Eq. (e) into Eq. (d) and regrouping terms gives the virtual work in the 
desired form 
 
 ( ) ( )1 2 2 cosF F u F L Mδ δ θ δθ= + + +/�  (f) 
 
It follows from Eqs. (f) and (6.58) that 
 
 1 1 2Q F F= +  (g-1) 
and 
 2 2 cosQ F L Mθ= +  (g-2) 
 
With the kinetic and potential energies expressed in terms of the chosen generalized 
coordinates, and the corresponding generalized forces evaluated, we can now substi-
tute these expressions into Lagrange’s equations and determine the sought after 
equations of motion for the system. Thus, substituting Eqs. (b), (c), (g-1) and (g-2) 
into Eqs. (6.62) and (6.63) and carrying through the indicated operations, with {q1, 
q2} ↔ {u, θ}, gives the equations of motion for the system. Hence,  
 

j = 1:  1
1 1

 d Q
dt q q
§ ·∂ ∂− = �¨ ¸∂ ∂© ¹�

L L  

 
 ( ) 2

1 2 2 1 2  cos sinm m u m L ku F Fθ θ θ θª º+ + − + = +¬ ¼
�� ���  � (h-1) 

 

j = 2:  2
2 2

 d Q
dt q q
§ ·∂ ∂− = �¨ ¸∂ ∂© ¹�

L L  
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2
2 cos sinm L L u uθ θ θ θ+ −�� ��� �( ) 2 sinm uLθ θª º +« »¬ ¼

�� 2sin cosgL F L Mθ θª º+ = +
¬ ¼

  

  � (h-2) 
 

Linearizing Eqs. (h) and expressing the resulting equations in matrix form gives the 
equation of motion 

 

 1 2 2 1 2
2

2 2 2 2

( ) 0 ( )
0 ( )

m m m L k F Fu u
m L m L m gL F L Mθ θ
+ +ª º ª º  ½ ½  ½+ =® ¾ ® ¾ ® ¾« » « » +¯ ¿ ¯ ¿¬ ¼ ¬ ¼ ¯ ¿

��
��  � (i) 

 
 
 
 

Example 6.7 
Consider the motorcycle frame of Section 
6.1.3. Suppose a rider of mass mb sits rear 
of the center of mass a distance ℓ and that 
the padding and support for the seat is rep-
resented as a spring of stiffness kb attached 
to the frame at that point, as shown. In ad-
dition, let the road conditions be such that 
the bases undergo the prescribed vertical 
deflections y01(t) and y02(t), respectively, 
and let the frame be subjected to dynamic 
loading represented by the vertical forces 
F1(t) and F2(t) applied at the indicated 
ends of the frame and directed downward 
and the force Fb(t) applied to the rider. 
Use Lagrange’s equations to derive the 
equations of motion of the system. Linear-
ize the equations for small rotations and 
express them in matrix form. 
 
                                    Figure E6.7-1  Motorcycle and rider. Equivalent system. 
 
 
Solution 
We shall choose the vertical deflection of the center 
of mass, yG, the rotation of the frame, θ, and the verti-
cal deflection of the rider, yb, as our generalized coor-
dinates for the present analysis. Thus, (q1, q2, q3) ↔  
(yG, θ, yb). (See Figure E6.7-2.) Further, we shall 
measure all deflections from their equilibrium posi-
tions. The deflections of the end points of the frame 
and of the point of the frame at which the seat is at-
tached, y1, y2 and yℓ are expressed in terms of the cho-
sen coordinates as follows:                                      Figure E6.7-2  Coordinates.             
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 1 1 2 2sin ,     sin ,     sinG G Gy y L y y L y yθ θ θ= − = + = −A A  (a-1, 2, 3) 
 
It follows that 
 
 1 1 2 2cos ,     cosG Gy y L y y Lδ δ θ δθ δ δ θ δθ= − = +  (b-1, 2) 
 
The virtual work of the applied forces is then 
 

 1 1 2 2

1 2 2 2 1 1      ( ) ( ) cos
b b

G b b

F y F y F y
F F y F L F L F y

δ δ δ δ
δ θ δθ δ

= + +
= + + − +

/�
 (c) 

 
from which we deduce the generalized forces 
 
 1 1 2 2 2 2 1 1 3,    ( ) cos ,     bQ F F Q F L F L Q Fθ= + = − =  (d-1, 2, 3) 
 
The kinetic and potential energies for the system are, respectively, 
 
 2 2 21 1 1

2 2 2G G b bmy I m yθ= + +�� �,  (e) 
and 
 

2 2 21 1 1
1 1 01 2 2 022 2 2( sin ) ( sin ) ( sin )G G b G bk y L y k y L y k y yθ θ θ= − − + + − + − −A-  (f) 

 
Substituting Eqs. (d), (e), and (f) into Eqs. (6.62) and (6.63) and carrying through the 
indicated operations, with (q1, q2, q3) ↔  (yG, θ, yb), gives the equations of motion 
for the system. Hence,  
 

j = 1:  1
1 1

 d Q
dt q q
§ ·∂ ∂− = �¨ ¸∂ ∂© ¹�

L L  

 
1 2 2 2 1 1 1 2 1 01 2 02( ) ( )sinG b G b b bmy k k k y k L k L k k y F F k y k yθ+ + + + − − − = + + +�� A   

   � (g-1) 
 

j = 2: 2
2 2

 d Q
dt q q
§ ·∂ ∂− = �¨ ¸∂ ∂© ¹�

L L  

 

( )
2 2 2

2 2 1 1 2 2 1 1

2 2 1 1 1 1 01 2 2 02

( ) cos ( )sin cos cos
cos

G b G b b bI k L k L k y k L k L k k y
F L F L k L y k L y

θ θ θ θ θ
θ

+ − − + + + +
= − + −

�� A A A
  

   � (g-2) 
 

j = 3:  3
3 3

 d Q
dt q q
§ ·∂ ∂− = �¨ ¸∂ ∂© ¹�

L L  

 
 sinb b b G b b b bm y k y k k y Fθ− − − =�� A  � (g-3) 
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Linearizing equations (g-1)–(g-3) for 1θ � and expressing the resulting equations in 
matrix form gives 
 

1 2 2 2 1 1
2 2 2

2 2 1 1 2 2 1 1

1

0 0 ( ) ( )
0 0 ( ) ( )
0 0

(
                                                      

G b b b G

G b b b

b b b b b b

m y k k k k L k L k k y
I k L k L k k L k L k k

m y k k k y

F

θ θ
+ + − − −ª º  ½ ª º  ½

° ° ° °« » « »+ − − + + +® ¾ ® ¾« » « »
° ° ° °« » « »− +¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿

=

�� A
�� A A A
�� A

( )
2 1 01 2 02

2 2 1 1 1 1 01 2 2 02

)

b

F k y k y
F L F L k L y k L y

F

+ + + ½
° °− + −® ¾
° °
¯ ¿

 

  � (h) 
 
It may be seen that if we let mb, kb and Fb →  0 in Eqs. (g) and (h) we obtain the 
equations for the frame derived in Section 6.1.3 using Newton’s Law’s of Motion di-
rectly. If we let the excitations vanish identically, as well, Eq. (h) becomes identical 
with Eq. (6.25). 

 
 
 
 

6.2.4  The Rayleigh Dissipation Function 

In Example 6.4 we derived the equations of motion for a viscously damped system using 
Lagrange’s equations and included the effects of damping by calculating the virtual work of 
the damping forces to obtain the corresponding generalized forces. For systems with linear 
viscous damping it is possible to formulate a dissipation function which may be included on 
the left-hand side of Lagrange’s equations in the spirit of the kinetic and potential energies 
to augment that formulation. This would replace the calculation of the virtual work and 
inclusion of the associated generalized forces due to damping. To develop this formulation 
we separate the forces due to damping from the remaining forces in Eq. (6.45) and thereaf-
ter. Equation (6.45) then takes the form 
  

 ( )( )

1

0
M

d
l l l l l

l

F F m r rδ
=

ª º+ − =¬ ¼¦
G G G G�� <  (6.64) 

where 
 ( ) ˆd

l l lF c r= −
G G�  (6.65) 

 
and l̂c  is a linear combination of the coefficients of the dampers attached to mass l. In con-
trast to its interpretation in Eq. (6.45), lF

G
 now represents all active forces that impinge on 

mass l except those due to damping. With this distinction, let us now proceed as in Section 
6.2.2. All computations are the same, but now we shall evaluate the contributions of the 
damping forces separately. Toward this end, we determine the product 
 

 ( ) 1
2

1 1 1

ˆ ˆ
M M M

d l l
l l l l l l

j j jl l l

r r
F c r c r r

q q q= = =

∂ ∂ ∂= − = −
∂ ∂ ∂¦ ¦ ¦
G G�G G G G� � �< < <

� �
 (6.66) 
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Thus, 

 ( )

1

M
d l

l
j jl

r
F

q q=

∂ ∂= −
∂ ∂¦
GG

<
�
*  (6.67) 

where 

 1
1 2 2

1

ˆ( , ,..., )
M

N l l l
l

q q q c r r
=

= =¦ G G� �� � � <* *  (6.68) 

 
is called the Rayleigh dissipation function. Paralleling the development of Section 6.2.2, 
and incorporating Eq. (6.67), results in the alternate statement of Lagrange’s equations giv-
en by 
 

     ( 1,2,..., )j
j j j

d Q j N
dt q q q
§ ·∂ ∂ ∂− + = =¨ ¸¨ ¸∂ ∂ ∂© ¹� �

*L L  (6.69) 

 
The equations of motion for a discrete system with viscous damping may be derived by 
formulating the Rayleigh dissipation function for that system, in addition to the potential 
and kinetic energies of the system and the virtual work of the applied forces, and substitut-
ing each into Eq. (6.69) and performing the indicated operations. Such a formulation may 
be advantageous when using certain numerical techniques for large scale systems. In this 
case we would construct the function from the damping forces. In the present context, the 
above approach provides an alternative to the basic formulation of Section 6.2.2 where the 
equations of motion for discrete systems are derived by computing the virtual work of the 
damping forces, identifying the corresponding generalized forces, formulating the kinetic 
and potential energies and utilizing the fundamental form of Lagrange’s equations given by 
Eq. (6.62), as was done in a very straightforward manner in Example 6.4. 
 
 
 

Example 6.8 
Formulate the Rayleigh dissipation function for the system of Example 6.4 and use it 
to derive the equations of motion for that system. 
 
Solution 
For this problem the generalized coordinates are simply the displacements of the 
masses from their equilibrium positions. Thus, (q1, q2, q3) ↔ (u1, u2, u3). We seek a 
function whose derivatives with respect to the velocities of the masses will yield the 
corresponding damping forces. Toward this end let us consider the function    
 
 ( ) ( )2 221 1 1

1 1 2 2 1 3 3 22 2 2c u c u u c u u= + − + −� � � � �*  (a) 
 
Evaluating the derivatives of * with respect to each velocity gives the following: 
 

 1 2 1 2 2
1

( )c c u c u
u

∂ = + −
∂

� �
�
*  (b-1) 
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 2 1 2 3 2 3 3
2

( )c u c c u c u
u

∂ = − + + −
∂

� � �
�
*  (b-2) 

 

 3 2 3 3
3

c u c u
u

∂ = − +
∂

� �
�
*  (b-3) 

 
The kinetic and potential energies are given by Eqs. (c) and (d) of Example 6.3. The 
virtual work done for the present case is simply 
 
 1 1 2 2 3 3F u F u F uδ δ δ δ= + +/  (c) 
 
The generalized forces may be read directly from Eq. (c) and are seen to be simply 
the applied forces themselves. Substituting all of the above into Eq. (6.69) and carry-
ing through the calculations gives the equations of motion stated in Eq. (f) of Exam-
ple 6.4. 

 
 
 

6.3  SYMMETRY OF THE SYSTEM MATRICES 

The physical properties of linear mechanical systems were seen to be described by the 
mass, stiffness and damping matrices appearing in the general equation of motion 
 
 + + =�� �mu cu ku F  (6.70) 
 
For each of the representative systems considered in Sections 6.1 and 6.2 these matrices 
were seen to be symmetric. In this section we show that the system matrices of all linear 
mechanical systems are symmetric when the corresponding motions are expressed in terms 
of a set of linearly independent coordinates. 
 

6.3.1  The Stiffness Matrix 

For the moment, let us restrict our attention to linear elastic systems subjected to quasi-
static loading. Under these circumstances Eq. (6.70) reduces to the algebraic form 
 
 =ku F  (6.71) 
 
Pre-multiplying Eq. (6.71) by k-1 gives the relation 
 
 =u aF  (6.72) 
where 
 1−=a k  (6.73) 
 
is the compliance matrix, also known as the flexibility matrix. The symmetry of the stiffness 
matrix will be established by considering the work done by the applied loads. 
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            Figure 6.9  Load-deflection paths. 
 
 
 The constitutive (stress-strain) relations, and hence the load-deflection relations, for a 
linear elastic solid are, by definition, linear. Likewise, the load-deflection relations for a 
system comprised of linear elastic springs, Eq. (6.72), are linear as well. If we consider a 
single generalized force Q applied to a linear system, and the associated generalized dis-
placement q of the system at the load point, the corresponding load-deflection path will plot 
as a straight line as shown in Figure 6.9. If the system is initially in the undeformed state 
when the force Q is applied, and Q is increased slowly from 0 to Q(A) the load-point deflec-
tion increases accordingly to the value q(A). The work done as the state of the system pro-
gresses along path OA is, by Eq. (1.85), 
 

 
( )

( ) ( ) ( )1
2

0

Aq
A A A

OA
F dr Q dq Q q= = =³ ³
G G</  (6.74) 

 
That is, the work done by the force Q in bringing the system to state A corresponds to the 
area under the curve OA (the area of triangle OAq(A)). Suppose now that the system is de-
formed further, say by some other force, so that the deflection under the first force increases 
to say q(B) while Q is maintained at the value Q(A) throughout the subsequent deformation 
process. During this process the system progresses along path AB in the Qq-plane (Figure 
6.9). The additional work done by the constant force Q during this process is then 
 

 
( )

( )

( ) ( ) ( )
B

A

q
AB A BA

AB q
F dr Q dq Q q= = =³ ³
G G</  (6.75) 

 
where  
 ( ) ( ) ( )BA B Aq q q= −  (6.76) 

 
(The integral is seen to correspond to area q(A)AB q(B).) The total work done by the force 
applied at the point in question in bringing the system to state B is thus 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )1

2
OB OA AB A A A BAQ q Q q= + = +/ / /  (6.77) 

A

1

2 BQ(A)

Q

0
q(A) q(B)0
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        Figure 6.10  Physical example of load-deflection scenario. 
 
 
With the work of a given load during the segmented process established, let us next consid-
er an arbitrary elastic system subjected to generalized forces at any two points l and j (j,l = 
1, 2, …). Let Ql and Qj represent these forces and let ql and qj represent the corresponding 
generalized displacements (generalized coordinates). Suppose that the force Qj is first ap-
plied, increasing from zero and deforming the system from the reference (undeformed) state 
so that the point of application deflects to the value ( )j

jq  and point l deflects by the amount 
( ) .j
lq  (See, for example, the frame in Figure 6.10a-1.) Next let a load be applied at point l. 

Let it increase slowly from zero deforming the system further so that the additional deflec-
tions at points j and l due to the load at point l are, respectively, ( )l

jq and ( ) .l
lq  (See, for ex-

ample, the frame in Figure 6.10a-2.) With the aid of Eq. (6.77), the total work done by both 
forces in bringing the system to its current state is calculated as 
 
 ( , ) ( ) ( ) ( )1 1

2 2
j l j l l

j j j j l lQ q Q q Q q= + +/  (6.78) 
 
Now, from Eq. (6.72),  
 
 ( ) ( ) ( ) ( ),   ,    ,    j j l l

j jj j l lj j j jl l l ll lq a Q q a Q q a Q q a Q= = = =  (6.79) 
 
Substituting Eqs. (6.79) into Eq. (6.78) gives the work to the present state as 
 
 ( , ) 2 21 1

2 2
j l

jj j jl j l ll la Q a Q Q a Q= + +/  (6.80) 
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Let us next reverse the order of application of the forces and compute the work done in 
bringing the system to its present state. Paralleling the development for the previous case, 
but with the order reversed as demonstrated for the example frame in Figures 6.10b-1 and 
6.10b-2, the work done in bringing the system to the current state is 
 
 ( , ) ( ) ( ) ( )1 1

2 2
l j l j j

l l l l j jQ q Q q Q q= + +/  (6.81) 
 
This is also found by simply interchanging the indices in Eq. (6.78). Substituting Eqs. 
(6.79) into Eq. (6.81) gives the work for this load order as 

  
 ( , ) 2 21 1

2 2
l j

ll l lj l j jj ja Q a Q Q a Q= + +/  (6.82) 
 
By definition of an elastic system all work is recoverable and the work done in bringing the 
system to its current configuration is independent of the loading path. That is, it is inde-
pendent of the order in which the loads are applied. Thus, 
 
 ( , ) ( , )l j j l=/ /  (6.83) 
 
Substituting Eqs. (6.80) and (6.82) into Eq. (6.83) gives the identity 
 
 lj jla a=  (6.84) 
 
Equation (6.84) is valid for any pair of points (j,l = 1, 2, …) in the system and implies that 
the deflection at one point of an elastic system due the force at a second point of the system 
is equal to the deflection at the second point due to a force of equal magnitude applied at the 
first point. This is known as Maxwell’s Reciprocal Theorem and is applicable to continuous 
as well as discrete systems. Since we are presently interested in discrete systems, we shall 
take j,l = 1, 2, …, N. Hence, when written in matrix form, Eq. (6.84) implies that 
 
 =a aT  (6.85) 
 
It then follows from Eq. (6.73) that 
 
 =k kT  (6.86) 
 
The stiffness matrix is thus symmetric, which is what we set out to show.  
 

6.3.2  The Mass Matrix 

The inherent symmetry of the mass matrix, when written in terms of a set of linearly inde-
pendent coordinates, may be shown by consideration of the kinetic energy of the system. 
Let the position vector of a generic mass of the system be described in terms of some set of 
generalized coordinates as described by Eq. (6.38). Substituting Eq. (6.47) into Eq. (6.51) 
gives the kinetic energy of the system as 
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1 1 1 1

1 1
2 2

M M N N
n n

n n n n j l
j ln n j l

r r
m r r m q q

q q= = = =

 ½∂ ∂° °= = ® ¾∂ ∂° °¯ ¿
¦ ¦ ¦ ¦

G G� �G G� � � �< <,  (6.87) 

 
Changing the order of summation renders the kinetic energy to the form 
 

 
1 1 1

1
2

N N M
n n

n j l
j lj l n

r r
m q q

q q= = =

 ½∂ ∂° °= ® ¾∂ ∂° °¯ ¿
¦¦ ¦

G G� �
� �<,  

 
Hence, the kinetic energy of an N-degree of freedom system is 
 

 1 1
2 2

1 1

N N

jl j l
j l

m q q
= =

= =¦¦ � �� �, q mqT  (6.88) 

where 

 
1

M
n n

jl n
j ln

r r
m m

q q=

∂ ∂=
∂ ∂¦
G G� �
<  (6.89) 

 

 
11 1

1

N

N NN

m m

m m

ª º
« »= « »
« »¬ ¼

"
# % #

"
m  (6.90) 

and 

 
1

N

q

q

 ½
° °= ® ¾
° °
¯ ¿

�
� #

�
q  (6.91) 

 
It is evident from Eq. (6.89) that 
 
   ( , 1,2,..., )jl ljm m l j N= =  (6.92) 
Thus,     
 =m mT  (6.93) 
 
for any linear system whose motion is described by a set of generalized coordinates. 
 
 

6.3.3  The Damping Matrix 

To show the symmetry of the damping matrix for linear systems whose motions are ex-
pressed in terms of a set of generalized coordinates we shall proceed in an analogous man-
ner as for the mass matrix, but with the Rayleigh dissipation function replacing the kinetic 
energy. Thus, 
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 1 1 1 1

1 1 1

1 1ˆ ˆ
2 2

1 ˆ                            
2

M M N N
n n

n n n n j l
j ln n j l

N N M
n n

n j l
j lj l n

r r
c r r c q q

q q

r r
c q q

q q

= = = =

= = =

 ½∂ ∂° °= = ® ¾∂ ∂° °¯ ¿
 ½∂ ∂° °= ® ¾∂ ∂° °¯ ¿

¦ ¦ ¦ ¦

¦¦ ¦

G G� �G G� � � �< <

G G� �
� �<

*

 (6.94) 

Hence, 

 1 1
2 2

1 1

N N

jl j l
j l

c q q
= =

= =¦¦ � �� �* q cqT  (6.95) 

where 

 
1

ˆ
M

n n
jl n

j ln

r r
c c

q q=

∂ ∂=
∂ ∂¦
G G� �
<  (6.96) 

and 

 
11 1

1

N

N NN

c c

c c

ª º
« »= « »
« »¬ ¼

"
# % #

"
c  (6.97) 

 
It is evident, from Eq. (6.96), that 
 
      ( , 1, 2,..., )jl ljc c l j N= =   (6.98) 
 
and hence that  
    =c cT  (6.99) 
 
The symmetry of the system matrices will be of great importance in our studies of both free 
and forced vibrations of multi-degree of freedom systems. 
  
 

6.4  CONCLUDING REMARKS 

In this chapter we considered the mathematical description of multi-degree of freedom sys-
tems. We first used the Newtonian approach to derive the equations of motion for certain 
representative systems. We then introduced the notions of generalized coordinates and vir-
tual work and, with these, derived Lagrange’s equations — a general statement of the equa-
tions of motion expressed in terms of the potential and kinetic energies of the system and 
the virtual work of forces for which a potential function is not or cannot be written. Thus, 
once the generalized forces are identified for a given problem through the virtual work of 
the actual forces and moments, Lagrange’s equations basically provide a recipe for the der-
ivation of the equations of motion for the specific system of interest. Derivations for select-
ed systems were performed by direct application of Newton’s Laws of Motion and by La-
grange’s equations and compared. It was seen that the derivation of the equations of motion 
for complex systems is simplified a great deal when implemented using Lagrange’s equa-
tions. Once the technique is mastered, Lagrange’s equations provide a convenient and rela-
tively simple scalar procedure for deriving the equations of motion for complex mechanical 
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systems. The chapter concluded with a proof of Maxwell’s Reciprocal Theorem which, for 
discrete systems, implies that the stiffness matrix is symmetric for all linear systems. Final-
ly, it was shown that the mass and damping matrices for all linear mechanical systems 
whose motions are expressed in terms of a set of linearly independent coordinates are sym-
metric as well. 
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PROBLEMS 

6.1 Use Lagrange’s equations to derive the equation of motion for a simple mass-spring-
damper system. 

 
6.2 Use Lagrange’s equations to derive the equation of motion of the simple pendulum. 
 
6.3 Use Lagrange’s equations to derive the equation of motion for the timing device of 

Problem 2.19. 
 
6.4 Use Lagrange’s equations to derive the equation of motion for the constrained rod 

shown in Figure P6.4. 
 

 
        Fig. P6.4                                                    Fig. P6.5 
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6.5 The pendulum with elastic constraint shown in Fig. P6.5 is subjected to a horizontally 
directed force applied to the mid-span of the rod as indicated. Use Lagrange’s equa-
tions to derive the equation of motion for the system. The spring is unstretched when 
θ = 0. The masses of the rod, roller and spring are negligible.  

 
 
6.6 Derive the equations of motion for the 

crankshaft system shown in Figure 
P6.6 using Lagrange’s equations. The 
spring is undeformed when the con-
necting pin A is directly above or be-
low the hub of the wheel.  Fig. P6.6 

 
 
6.7 Use Lagrange’s equations to derive the 

equations of motion for the constrained 
hook and ladder shown. The spring is 
untorqued when θ = 0 and the tip of the 
ladder is subjected to a downward ver-
tical force F2 as indicated.  
    Fig. P6.7                       

 
6.8 A tram consists of a rigid frame of mass mf from which a passenger compartment of 

mass mc and radius of gyration rG is pinned to the frame at the car’s center of mass as 
shown in Figure P6.8. The wheels of the tram frame are of radius R and negligible 
mass mw and roll without slip during motion. A motor applies a torque M to one of 
the wheels, thus driving the system, and the passenger compartment is subjected to a 
wind force whose resultant acts through a point that lies a distance a below the pin, as 
indicated. If an elastic guide cable of effective stiffness k is attached to the frame as 
shown, derive the equations of motion for the system using Lagrange’s equations. 

2
0( )c GI m r=  

 

 
                                 Fig. P6.8                                                 Fig. P6.9 
 
6.9 Use Lagrange’s equations to derive the equations of motion for the coupled pendu-

lum shown in Figure P6.9. 
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6.10 A conveyor belt system consists of two flywheels of mass m1 and radius R1, and mass 
m2 and radius R2, respectively. The wheels are connected by an elastic belt as shown 
in Figure P6.10. If no slip occurs between the wheels and belt, the effective stiffness 
of each leg is k, as indicated. Finally, a motor applies a torque M1 to the left wheel 
and a torque M2 to the right wheel as shown. (a) Use Lagrange’s equations to derive 
the equations of motion for the system. (b) Check your answer using Newton’s Laws 
of Motion. 

            
                                                             Fig. P6.10 
 
6.11 A square raft of mass m and side L sits in water of specific gravity γw. A uniform ver-

tical line force of intensity P acts downward at a distance a left of center of the span. 
(a) Use Lagrange’s equations to derive the 2-D equations of motion of the raft. (b) 
Check your answers using Newton’s Laws of Motion. 

 
 
6.12 Two identical bodies of mass m are connected by a 

spring of stiffness k and constrained to move in rectilin-
ear motion as shown. Derive the equations of motion 
for the system. 

              Fig. P6.12 
 
6.13 Use Lagrange’s equations to derive the governing equations for two dimensional mo-

tion of the elastic dumbbell satellite shown in Figure P6.13. 

 
   Fig. P6.13  Fig. P6.14 
 
6.14 Use Lagrange’s equations to derive the equations of motion for the inverted elastic 

pendulum shown in Figure P6.14 if the massless rod is of length L. 
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6.15 Use Lagrange’s equations to derive the equations of motion for the pulley system 

shown in Figure P6.15. The wheel has radius R and I = mR2. 

    Fig. P6.15  Fig. P6.16  
 
                       
6.16 A motor supplies a torque M through a drive shaft whose moment of inertia is I1. The 

shaft of radius R is connected to the pulley system shown in Figure P6.16. If the cable 
is elastic with effective stiffness k, as indicated, the moment of inertia of the pulley is 
I2 and the cable supports a suspended mass m as indicated, derive the equations of 
motion of the system using Lagrange’s equations. 

   
                                                                            
6.17 Use Lagrange’s equations to derive the equations of motion for the pulley system 

shown in Figure P6.17. 
 
 

                  Fig. P6.17  Fig. P6.18 
  
 
6.18 The elastic fan-belt system shown is restrained by an elastic rod of effective stiffness 

k1 while a motor supplies a torque M to the right flywheel, as indicated. The mass of 
each wheel is m. Use Lagrange’s equations to derive the equations of motion for the 
system. 
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6.19 A rigid rod of length L, and mass ma is connected to a rigid base of 

mass mb  through a torsional spring of stiffness kT as shown. The 
base sits on an elastic support of stiffness k as indicated. Derive the 
equations of motion of the system using Lagrange’s equations. 

 
 
                                                                                                                        
                                                                                                     
    Fig. P6.19 
 
6.20 A crane is attached to the geometric center of an offshore platform as shown. The 

total mass of the crane and platform is m and the mass of the boom is negligible. The 
square platform has side L and sits atop four identical floats of radius R. If the length 
of the horizontal projection of the boom is LB, derive the equations that govern planar 
motion of the structure. 
 

          
                                           Fig. P6.20 
 
 
6.21 A certain submarine is modeled as shown, for simple calculations of longitudinal 

motion. The mass of the hull and frame structure is 2ms and that of the interior com-
partment is mc. The hull and interior compartment are separated by springs of stiff-
ness k, and the longitudinal stiffness of the hull is ks as indicated. Derive the equations 
that govern longitudinal motion of the boat. 

 

  
                                                             Fig. P6.21 
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6.22 Use Lagrange’s equations to derive the equations of (small angle) motion for the sys-
tem shown in Figure P6.22. The coil is untorqued when θ = 0. (The guide for the two 
block masses and their associated springs is rigid and massless.)  

 
 
 
 
 
 
 
 
 
 
 
 
   Fig. P6.22                                                    
 
6.23 A rigid spoke of negligible mass extends radially from the periphery of a solid wheel 

of mass mw and radius R, as shown. The hub of the wheel is attached to an elastic axle 
of negligible mass and equivalent torsional stiffness kT. A sleeve of mass m is fitted 
around the spoke and connected to the wheel by an elastic spring of stiffness k and 
unstretched length L, and a transverse force F(t) is applied to the end of the rod of 
length L + R.  The spoke is sufficiently lubricated so that friction is not a concern. 
Use Lagrange’s equations to derive the equations of motion for the wheel system.  

 

 
   Fig. P6.23 
 
6.24 A rigid rod of length L and negligible mass connects two identical cylindrical floats, 

each possessing radius R and mass ma. The system floats in a fluid of mass density ρf. 
A block of mass mb is suspended from the center of the span by an elastic spring of 
stiffness k as shown, and a downward vertical force of magnitude F is applied to the 
suspended mass, as indicated. Derive the equations of motion of the system using La-
grange’s equations. 

 
                                                      Fig. P6.24 
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6.25 Three identical rigid disks, each of mass m and radius R, are attached at their centers 
to an elastic shaft of area polar moment of inertia J and shear modulus G. The ends of 
the rod are embedded in rigid supports as shown. The spans between the disks and 
between the disks and the supports are each of length L. Derive the equations of an-
gular motion for the system if the disks are subjected to the twisting moments M1, M2 
and M3, respectively.  

 

    
                                                           Fig. P6.25 
 
 
6.26 Use Lagrange’s equations to derive the equations of motion for the triple pendulum 

whose bobs are subjected to horizontal forces F1, F2 and F3, respectively. 
 

 
 Fig. P6.26  Fig. P6.27 
 
6.27 The assembly of Problem 6.23 is mounted on a movable base of mass mb as shown. 

Use Lagrange’s equations to derive the equations of motion for the augmented sys-
tem.  
 

 

 
   Fig. P6.28 
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6.28 Two wheels, each of mass m and radius rw, are connected by an elastic coupler of 
effective stiffness k and undeformed length L. The system rolls without slip around a 
circular track of radius R, as shown in Figure P6.28. Derive the equations of motion 
of the wheel system.  

 
6.29 Use Lagrange’s equations to derive the equations of motion for the coupled trio of 

pendulums shown.  
      

   Fig. P6.29 
 
6.30 A system consists of a rigid frame of mass ma and length L that is supported at each 

end by elastic springs of stiffness k. Two identical blocks of mass mb are mounted at 
either end of the frame atop mounts of stiffness k as shown. Use Lagrange’s equa-
tions to derive the equations of motion for the system. 

   Fig. P6.30 
 
 
6.31 Consider an aircraft traveling at constant altitude and speed as it undergoes tight peri-

odic rolling motion of the fuselage. Let the wings be modeled as equivalent rigid bod-
ies with torsional springs of stiffness kT at the fuselage wall. In addition, let each wing 
possess moment of inertia Ic about its respective connection point and let the fuselage 
of radius R have moment of inertia Io about its axis. Derive the equations of rolling 
motion for the aircraft.  

 

 
   Fig. P6.31 
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6.32 Derive the equation of motion for the system of Problem 

6.19 if the support possesses damping of coefficient c.  
 
 
 
 
 
 
 
 
 
    Fig. P6.32 
  
                                                                                                          
6.33 Derive the equations of motion for the elastically coupled wheel system of Problem 

6.28 if a damper of coefficient c is attached as shown in Figure P6.33. 
 
 

 
   Fig. P6.33 
 
 
6.34 Derive the equations of motion for the compound mass-spring-damper system shown 

in Figure P6.34. 
 
 
 
 
 
 
 
 
   Fig. P6.34 
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6.35 Derive the equations of motion for the conveyor belt system of Problem 6.10 if the 
elastic belt is replaced by a viscoelastic belt of the same stiffness and damping coeffi-
cient c as shown. 

 
 
 
 
 
 
 
 
 
 
 
    Fig. P6.35 
 
 
6.36 Derive the equations of motion for the 

system of Problem 6.15 if a damper of 
coefficient 2c is inserted into the left 
support as shown, and the elastic cable 
is replaced by a viscoelastic cable of 
the same stiffness and damping coeffi-
cient c as indicated. 

 
 
 
 
 
 
 
                                                                   
    Fig. P6.36 
 
 
6.37 Derive the equations of motion for longitudinal motion of the submarine of Problem 

6.21 if damping of effective coefficient cs is introduced to the hull and damping of 
coefficient c is introduced to the compartment mounts, as shown. 

 

 
   Fig. P6.37 
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7 
Free Vibration of Multi-Degree of Freedom 
Systems 

 
 
 
 
 
 
In this chapter we consider the behavior of discrete multi-degree of freedom systems that 
are free from externally applied dynamic forces. That is, we examine the response of such 
systems when each mass of the system is displaced and released in a manner that is con-
sistent with the constraints imposed on it. We are thus interested in the behavior of the sys-
tem when left to move under its own volition. As for the case of single degree of freedom 
systems, it will be seen that the free vibration response yields fundamental information and 
parameters that define the inherent dynamical properties of the system. 
 

7.1 THE GENERAL FREE VIBRATION PROBLEM FOR UNDAMPED SYSTEMS 
AND ITS SOLUTION 

It was seen in Chapter 6 that the equations that govern discrete multi-degree of freedom 
systems take the general matrix form of Eq. (6.2). We shall here consider the fundamental 
class of problems corresponding to undamped systems that are free from applied (external) 
forces. For this situation, Eq. (6.2) reduces to the form 
 
 + =��mu ku 0  (7.1) 
 
where, for an N degree of freedom system, m and k are the N N×  mass and stiffness ma-
trices of the system, respectively, and u is the corresponding 1N ×  displacement matrix. To 
solve Eq. (7.1), we parallel the approach taken for solving the corresponding scalar problem 
for single degree of freedom systems. We thus assume a solution of the form 
 
 i te ω=u U  (7.2) 
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where U is a column matrix with N, as yet, unknown constants, and ω is an, as yet, un-
known constant as well. The column matrix U may be considered to be the spatial distribu-
tion of the response while the exponential function is the time dependence. Based on our 
experience with single degree of freedom systems, we anticipate that the time dependence 
may be harmonic. We therefore assume solutions of the form of Eq. (7.2). If we find har-
monic forms that satisfy the governing equations then such forms are, by definition, solu-
tions to those equations. 
 Substitution of Eq. (7.2) into Eq. (7.1), and factoring common terms, results in the 
form 
 2 i te ωωª º− =¬ ¼k m U 0  
 
Assuming that 0ω ≥ , we can divide through by the exponential term. This results in the 
equation 
 2ωª º− =¬ ¼k m U 0  (7.3) 
 
which may also be stated in the equivalent forms, 
 
 2ω=kU mU  (7.3') 
and 
 λ=

�
kU U  (7.3") 

where 
 1 2   and     =λ ω−=

�
k m k  

 
Thus, solving Eq. (7.1) for u(t) is reduced to finding 2( , )ω U  pairs that satisfy Eq. (7.3), or 
equivalently Eq. (7.3'). A problem of this type may be recognized as an eigenvalue prob-
lem, with the scalar parameter 2ω  identified as the eigenvalue and the column matrix U as 
the corresponding eigenvector. An N degree of freedom system will generally possess N 
eigenvalues and N eigenvectors. The solutions of the eigenvalue problem, when substituted 
into Eq. (7.2), will give the solution to Eq. (7.1) and hence the free vibration response of the 
system of interest. 

Natural Frequencies 
One obvious solution of Eq. (7.3) is the trivial solution U = 0. This corresponds to the equi-
librium configuration of the system. Though this is clearly a solution corresponding to a 
physically realizable configuration, it is evidently uninteresting as far as vibrations are con-
cerned. We are thus interested in physical configurations associated with nontrivial solu-
tions. From linear algebra we know that a matrix equation Ax = b may be row reduced. If 
the rows or columns of the matrix A are linearly independent (that is, no row can be ex-
pressed as a linear combination of the other rows) then the corresponding matrix equation 
can be reduced to diagonal form, and the solution for x can be read directly. In matrix form, 
 

 
1 1 1 1 1 1

 :           =
0

0 N N N N Nn

a x b x b a

x b x b aa

§ ·  ½  ½ ½  ½
¨ ¸ ° ° ° °° ° ° °= → = = �¨ ¸® ¾ ® ¾ ® ¾ ® ¾
¨ ¸° ° ° ° ° ° ° °¨ ¸¯ ¿ ¯ ¿¯ ¿ ¯ ¿© ¹

% # # # #Ax b Ax b  
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It is evident that det 0.≠A  A matrix A whose rows are linearly independent is said to be 
nonsingular. Similarly, if Eq. (7.3) is row reduced to diagonal form then the matrix 

2ωª º−¬ ¼k m  is nonsingular and the solution, U, can be read directly. However, since the 
right-hand side of Eq. (7.3) is the null matrix, this will yield the trivial solution U = 0. 
Therefore, for nontrivial solutions we require that the matrix 2ωª º−¬ ¼k m  be singular. That 
is, we require that at least one of the rows (or columns) of the matrix can be expressed as a 
linear combination of the others. This means that the set of linear equations represented by 
Eq. (7.3) corresponds to, at most, N – 1 equations for the N unknowns Uj (j = 1, 2, …, N). 
(The importance of this property will become apparent later in our analysis.) If the rows of 
the matrix 2ωª º−¬ ¼k m  are linearly dependent (i.e., at least one row can be written as a line-
ar combination of the others) then when the corresponding system of equations is row re-
duced, at least one row will become all zeros. The determinant of such a matrix clearly van-
ishes identically. Thus, if A is a singular matrix, then 
 

 

11 12 1

21 22 2det 0

0 0 0

N

N

a a a
a a a

= =

"
"

# # % #
"

A  

 
(This property is often taken as the definition of a singular matrix.) Therefore, for Eq. (7.3) 
to yield nontrivial solutions, we require that  
 
 2 2( ) det 0ω ωª º≡ − =¬ ¼k m�  (7.4) 
 
If the elements of the mass and stiffness matrices, k and m, are specified then Eq. (7.4) 
results in an Nth order polynomial equation (the characteristic equation) in terms of the pa-
rameter ω2 of the form 
  
 2 2 2 1 2

1 1 0( ) ( ) ( ) ... ( ) 0N N
N Nω µ ω µ ω µ ω µ−

−= + + + + =�  (7.5) 
 
where µj (j = 0, 1, 2, …, N) are functions of the mass and stiffness parameters for the partic-
ular system. The characteristic equation will yield N roots,  
 
 2 2 2 2

1 2, ,..., Nω ω ω ω=  (7.6) 
 
(It is customary to label the frequencies in ascending order, according to their magnitude. 
That is, ω1

2 < ω2
2 < … < ωN

2.) Since the assumed form of the solution given by Eq. (7.2) is 
harmonic, the roots of Eq. (7.5) correspond to frequencies, and the characteristic equation is 
referred to as the frequency equation for the system. Recall that we are presently consider-
ing systems that are not subjected to applied dynamic forces. These frequencies are there-
fore referred to as the natural frequencies of the system. An N degree of freedom system is 
seen to possess N natural frequencies, each of which are dependent upon the parameters of 
the system through Eq. (7.4). The eigenvalues that satisfy Eq. (7.3) (the eigenvalues of 

�
k = 

m-1 k) thus correspond to the squares of the natural frequencies of the system. Recall that 
we seek the (ω2, U) pairs that satisfy Eq. (7.3). We must therefore determine the eigenvec-
tor associated with each eigenvalue (frequency). This is discussed following Example 7.1.  
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Example 7.1 
The system shown consists of two 
identical bodies of mass m connect-
ed by three identical elastic springs 
of stiffness k. If the outer springs are 
fixed at one end, as shown, deter-
mine the natural frequencies of the 
system.                                                                        Figure E7.1 
 
Solution 
The equation of motion for this system is obtained from Eq. (b) of Example 6.1 by 
setting m1 = m2 = m and k1 = k2 = k3 = k, or equivalently from Eq. (6.2) by letting N = 
2 and c = 0 and inputting the given mass and stiffnesses into the resulting expres-
sion. Since we are interested in free vibrations, the force matrix is the null array F = 
0. This gives 
  
 + =��mu ku 0  (a) 
with 

   1

2

u
u
 ½

= ® ¾
¯ ¿

u  (b) 

 

 
0 1 0

0 0 1
m

m
m

ª º ª º= =« » « »
¬ ¼ ¬ ¼

m  (c) 

and 

 
2 2 1

2 1 2
k k

k
k k

− −ª º ª º= =« » « »− −¬ ¼ ¬ ¼
k  (d) 

 
The frequency equation for the system is then obtained as follows: 
 

 
2

2 2
2

(2 )
( ) det 0

(2 )
k m k

k k m
ωω ω

ω
− −ª º= − = =¬ ¼ − −

k m�  (e) 

 
or 
 2 2 2 2( ) (2 ) 0k m kω ω= − − =�  
 
After rearranging, the above relation results in the algebraic equation 
 

 
2

2 2 2( ) 4 ( ) 3 0k k
m m

ω ω § ·− + =¨ ¸
© ¹

 (f) 

 
Equation (f) is readily solved for ω2 to give the two roots (eigenvalues) 
 

 2 , 3k k
m m

ω =  (g) 
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The natural frequencies of the system under consideration are then  
 
 1 2 ,     3k m k mω ω= =  � (h) 

 
 
 

Natural Modes 
Each natural frequency ωj (j = 1, 2, …, N) corresponds to a solution of Eq. (7.5). The asso-
ciated eigenvector, the matrix U(j), for the frequency ωj is found by substituting that particu-
lar frequency into Eq. (7.3) and solving the resulting algebraic system of equations. Note 
that if the matrix U(j) satisfies Eq. (7.3) then the matrix αU(j), where α is an arbitrary scalar, 
satisfies that equation as well. That is  
 
 2ω αª º− =¬ ¼k m U 0  
 
The eigenvectors are thus, at most, unique to within a scalar multiplier. (Graphically this 
means that the length of the vector in N dimensional space is arbitrary. Hence, only the ori-
entation of the vector in that space is determined.)  
 Recall that the matrix 2ωª º−¬ ¼k m  is singular and therefore has, at most, N − 1 inde-
pendent rows. Thus there are, at most, N − 1 independent algebraic equations to determine 
the N elements of the matrix U(j). In matrix form, 
 

 

2 ( )
11 11 12 1 1

2 ( )
21 22 22 2 2

2 ( )
1 2

( ) 0
( ) 0

( ) 0

j
j N

j
j N

j
N N NN j NN N

k m k k U
k k m k U

k k k m U

ω
ω

ω

ª º  ½−  ½
« » ° ° ° °− ° ° ° °« » =® ¾ ® ¾« » ° ° ° °« » ° ° ° °−« » ¯ ¿¯ ¿¬ ¼

"
"

# # % # ##
"

 (7.7) 

 
It follows that, when expanded, the above matrix equation will yield, at most, N − 1 inde-
pendent equations. This means that we can, at most, determine the relative magnitudes (the 
ratios) of the elements of U(j). Therefore the direction, but not the length, of U(j) is deter-
mined. Solving Eq. (7.7) for the elements of U(j), gives  
 

 

( )
1
( )

( ) 2

( )

j

j
j

j
N

U
U

U

 ½
° °
° °= ® ¾
° °
° °¯ ¿

#
U  (7.8) 

 
to within a scalar multiplier. The lack of determinacy of an eigenvector is typically resolved 
by choosing the magnitude of one element, say the first, as unity. Alternatively the elements 
are normalized so as to render the length of the vector as unity. We shall discuss this pro-
cess, in detail, later in this chapter. Since the eigenvectors that satisfy Eq. (7.3) define the 
relative motion of the various mass elements for a given frequency of the system they are 
referred to as the modal vectors, modal matrices, mode shapes, natural modes, or simply the 
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modes of the system. When normalized (their lengths made unity) they are referred to as 
normal modes. It may be seen from Eq. (7.2) that the motion of the system associated with 
each 2 ( )( , )j

jω U  pair corresponds to oscillations at the rate of that natural frequency, with 
the masses moving relative to one another in the proportions described by the modal matrix. 
It will be seen that any motion of the system consists of a linear combination of these fun-
damental motions. 
 

Example 7.2 
Determine the modal vectors for the two-mass, three-spring, system of Example 7.1. 
 
Solution 
Recall from Example 7.1 that, for the system under consideration, 
 

 
0

0
m

m
ª º= « »
¬ ¼

m  (a) 

 

 
2

2
k k
k k

−ª º= « »−¬ ¼
k  (b) 

 
 1 2 ,     3k m k mω ω= =  (c-1,2) 
 
Substitution of the elements of the mass and stiffness matrices of Eqs. (a) and (b) in-
to Eq. (7.7) with N = 2 gives 
 

 
2 ( )

1
2 ( )

2

(2 ) 0
,      ( 1, 2)

(2 ) 0

j
j

j
j

k m k U
j

k k m U
ω

ω
ª º  ½− −  ½° ° = =« » ® ¾ ® ¾− − ° °« » ¯ ¿¯ ¿¬ ¼

 (d) 

 
Each natural frequency – modal matrix pair ( )( ), j

jω U must satisfy Eq. (d). 
 
j = 1:  
The modal matrix associated with the frequency ω1 is found by setting j = 1 in Eq. 
(d) and substituting Eq. (c-1). This gives 
  

 
(1)
1
(1)
2

0
0

k k U
k k U

 ½−ª º  ½° ° =® ¾ ® ¾« »− ° °¬ ¼ ¯ ¿¯ ¿
 (e) 

 
or, after expanding the matrix equation, 
 

 
(1) (1)
1 2

(1) (1)
1 2

0

0

kU kU
kU kU

− =
− + =

 (f) 

 
It follows that 
 (1) (1)

2 1U U=  (g) 
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Consider the square matrix, 2
1ωª º−¬ ¼k m , of Eq. (e). Note that the second row of that 

matrix is simply the negative of the first. Correspondingly, we observe that the se-
cond equation of Eq. (f) is simply the first equation multiplied by −1. This occurs 
because we rendered this matrix singular by setting its determinant to zero in order to 
obtain nontrivial solutions. Recall that when a matrix is singular, then at least one 
row can be expressed as a linear combination of the others. Since this singular matrix 
has only two rows then one is a scalar multiple of the other. We thus have only one 
distinct equation for the two unknowns (1)

1U  and (1)
2 .U  Therefore the modal matrix is 

unique to within a scalar multiple. Hence, from Eq. (g), 
 

 
(1)

(1) 1
1(1)

2

1
1

U
U

α
 ½  ½° °= =® ¾ ® ¾
° ° ¯ ¿¯ ¿

U  (h) 

 
where α1 is an arbitrary scalar constant. For definiteness, we shall choose α1 = 1. 
The modal vector associated with the frequency 1 k mω =  is then given by 
 

 (1) 1
1
 ½= ® ¾
¯ ¿

U  � (i) 

 
Note that, as an alternative, we could have chosen the value of α1 so that the corre-
sponding vector has unit magnitude in some sense of normalization. If we do this in 
the conventional sense (we shall discuss normalization in Section 7.3.3), the modal 
matrix takes the form 

 (1) 11
12
 ½= ® ¾
¯ ¿

U  � (i') 

 
j = 2: 
The modal matrix associated with the frequency ω2 is found by setting j = 2 in Eq. 
(d) and substituting Eq. (c-2). This gives 
 

 
(2)
1
(2)
2

0
0

k k U
k k U

 ½− −ª º  ½° ° =® ¾ ® ¾« »− − ° °¬ ¼ ¯ ¿¯ ¿
 (j) 

 
Expanding Eq. (j) gives 
 

 
(2) (2)
1 2
(2) (2)
1 2

0

0

kU kU
kU kU

− − =
− − =

 (k) 

 
Hence, 
 (2) (2)

2 1U U= −  (l) 
 
and 

 
(2)

(2) 1
2(2)

2

1
1

U
U

α
 ½  ½° °= =® ¾ ® ¾−° ° ¯ ¿¯ ¿

U  (m) 
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where α2 is an arbitrary scalar constant. If we choose α2 = 1 for definiteness, the 
modal vector associated with the frequency 2 3k mω =  is given by 
 

 (2) 1
1

 ½
= ® ¾−¯ ¿

U  � (n) 

 
Alternatively, we could choose α2 so that the associated vector has unit magnitude. 
Doing this gives 

   (2) 11
12

 ½= ® ¾−¯ ¿
U  � (n') 

 
The depictions of the system for each of the modes are shown in Figure E7.2-1. It 
may be seen that when the system vibrates in the first mode, it does so at the fre-
quency 1 k mω = , and with both masses moving in the same direction (left or 
right) with the same magnitude. During this motion, the center spring is unstretched, 
and so the two masses behave as if they are a single mass of magnitude 2m as indi-
cated in Figure E7.2-2. The combined stiffness of the outer springs during this mode 
is 2k. Thus, for the first mode, the system behaves as a single degree of freedom sys-
tem of mass 2m and stiffness 2k and hence ω1 is given by Eq. (c-1).  
 

                                                      
         Figure E7.2-1  Natural modes of the system depicted in Figure E7.1.  
 
 

 
      Figure E7.2-2  Effective behavior of the system in first mode. 
 
When the system vibrates in the second mode it does so at the frequency 

2 3k mω = , and the motion of the second mass is the reflection of the motion of 
the first. When vibrating in this “accordion mode,” the two masses move together 
and apart symmetrically about the center of the middle spring. The midpoint of the 
center spring remains stationary (and is referred to as a node). Thus, the motion is 
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equivalent to that of two independent bodies of mass m attached to a fixed spring of 
half the actual length and hence twice the stiffness, 2k [see Eq. (1.8) of Section 
1.2.1], as well as to an outer spring of stiffness k as shown in Figure 7.2-3. This, in 
turn, is equivalent to two independent masses of mass m attached to single fixed 
springs of stiffness 3k, as indicated. The natural frequency of each of these single 
degree of freedom systems is then given by Eq. (c-2). 
 
 

     
    Figure E7.2-3  Effective behavior of the system in second mode. 

 
 
 

Free Vibration Response 
Once the set of frequency-mode pairs{ }( )2 , | 1, 2,...,j

j j Nω =U  is determined, then the set 
of solutions of the form of Eq. (7.2) is determined. Recall that the eigenvalues are the 
squares of the frequencies. Therefore, both +ωj  and −ωj , together with the modal vector 
U(j), provide solutions of the desired form. Since the governing equation, Eq. (7.1), is linear 
the general solution consists of a linear combination of the individual modal solutions. 
Hence, 

 ( )( ) ( ) ( ) ( )
1 2

1 1

( ) ( ) j j

N N
i t i tj j j j

j j

t t C e C eω ω−

= =

= = +¦ ¦u u U  (7.9) 

 
where ( )

1
jC and ( )

2
jC   (j = 1, 2, …, N) are constants of integration. Alternate forms of the 

response are found by substituting Euler’s formula, Eq. (1.61), into Eq. (7.9) and paralleling 
the development for the free vibration solution of single degree of freedom systems (see 
Section 2.1). This gives the response for the N-degree of freedom system in the equivalent 
forms 

 ( )( ) ( ) ( )
1 2

1

( ) cos sin
N

j j j
j j

j

t A t A tω ω
=

= +¦u U  (7.10) 

and 

 ( )( ) ( )

1

( ) cos
N

j j
j j

j

t A tω φ
=

= −¦u U  (7.11) 

 
where the various integration constants are related as follows: 
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2 2( ) ( ) ( )

1 2
j j jA A A= +  (7.12) 

 
 ( )1 ( ) ( )

2 1tan j j
j A Aφ −=  (7.13) 

 
 ( ) ( ) ( )

1 1 2
j j jA C C= +  (7.14) 

 
 ( )( ) ( ) ( )

2 1 2
j j jA i C C= −  (7.15) 

 
Consideration of Eq. (7.11) indicates that any free vibration response consists of  the super-
position of a harmonic vibration of each mode oscillating at its particular natural frequency. 
The constants A(j) (j = 1, 2, …, N) are seen to correspond to the amplitudes of the modes and 
indicate the relative participation of each mode in the total response of the system. Similar-
ly, the constants φj (j = 1, 2, …, N)  are seen to correspond to the phase angles of the indi-
vidual modes during free vibration. The set of constants {A(j), φj; (j = 1, 2, …, N)} are de-
termined from the initial conditions  
 

 

1 1

2 2

(0) (0)
(0) (0)

(0)  ,     (0)

(0) (0)N N

u u
u u

u u

 ½  ½
° ° ° °
° ° ° °= =® ¾ ® ¾
° ° ° °
° ° ° °¯ ¿ ¯ ¿

�
�

�
# #

�

u u  (7.16) 

 
imposed on the system. The initial displacements and initial velocities of each mass element 
of the system must be specified to determine the explicit form of the free vibration re-
sponse. 
 
 

Example 7.3 
Determine the free vibration response of the two-mass, three-spring, system of Ex-
amples 7.1 and 7.2 if it is released from rest with the second mass held at its equilib-
rium position and the first mass held 1 unit of distance from its equilibrium position. 
 
Solution 
The specified initial conditions may be written in matrix form as  
 

 
1 0

(0)  ,     (0)
0 0
 ½  ½= =® ¾ ® ¾
¯ ¿ ¯ ¿

�u u  (a-1, 2) 

 
Substituting the modal vectors given by Eqs. (i) and (n) of Example 7.2 into Eq. 
(7.11) with N = 2 gives the general free vibration response of the system as 
 

 1 (1) (2)
1 1 2 2

2

( ) 1 1
cos( ) cos( )

( ) 1 1
u t

A t A t
u t

ω φ ω φ ½  ½  ½= − + −® ¾ ® ¾ ® ¾−¯ ¿ ¯ ¿¯ ¿
 (b) 
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where 
    1 2 ,     3k m k mω ω= =  (c-1, 2) 
 
Imposing Eq. (a-1) on Eq. (b) gives 
 

 (1) (2)
1 2

1 1 1
cos( ) cos( )

0 1 1
A Aφ φ ½  ½  ½= − + −® ¾ ® ¾ ® ¾−¯ ¿ ¯ ¿ ¯ ¿

 (d) 

 
which, when expanded and noting that cos(−φ) = cos φ , takes the form 
 

 
(1) (2)

1 2
(1) (2)

1 2

1 cos cos

0 cos cos

A A
A A

φ φ
φ φ

= +
= −

 (e) 

 
Adding and subtracting Eqs. (e) with one another gives the alternate pair of equa-
tions 

 
(1)

1
(2)

2

1 2 cos

1 2 cos

A
A

φ
φ

=
=

 (f) 

 
If we next impose Eq. (a-2) on Eq. (b), and proceed in a similar manner, we obtain 
 

 (1) (2)
1 2

0 1 1
(0) sin( ) 3 sin( )

0 1 1
k kA A
m m

φ φ ½  ½  ½= = − − − −® ¾ ® ¾ ® ¾−¯ ¿ ¯ ¿ ¯ ¿
u�  (g) 

 
which, when expanded and noting that sin(−φ) = −sin(φ), takes the form 
 

 
(1) (2)

1 2

(1) (2)
1 2

0 sin 3 sin

0 sin 3 sin

A A

A A

φ φ
φ φ

= +

= −
 (h) 

 
Adding and subtracting Eqs. (h) with one another gives the alternate pair of equa-
tions 

 
(1)

1
(2)

2

0 2 sin

0 2 sin

A
A

φ
φ

=
=

 (i) 

 
The first of Eqs. (i) is satisfied if either A(1) = 0 or sinφ1 = 0. Since the first of Eqs. (f) 
cannot be satisfied if A(1) = 0, we conclude that 
 
 1sin 0φ =  
and hence that 
 1     ( 0,1, 2,...)n nφ π= =  (j) 
 
Similarly, the second of Eqs. (i) is satisfied if either A(2) = 0 or sinφ2 = 0. However, 
the second of Eqs. (f) cannot be satisfied if A(2) = 0. We thus conclude that 
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 2sin 0φ =  
and hence that 
 2     ( 0,1, 2,...)n nφ π= =  (k) 
 
Substituting Eqs. (j) and (k) into Eqs. (f) we find that,  
 

 
(1) (2)

(1) (2)

1 2 ( 0,2,4,...)
1 2 ( 1,3,5,...)

A A n
A A n

= = + =
= = − =

 (l) 

 
Substitution of Eqs. (l) and (c) into Eq. (b) gives the free vibration response of the 
system resulting from the given initial conditions as 
 

 1 3

2

( ) 1 11 1( ) cos cos
( ) 1 12 2

k k
m m

u t
t t t

u t
 ½  ½  ½= = +® ¾ ® ¾ ® ¾−¯ ¿ ¯ ¿¯ ¿

u  � (m) 

 
Equation (m) can also be expressed in the equivalent form 
 

 1 3

2

( ) 1 2 1 21 1( ) cos cos
( ) 2 21 2 1 2

k k
m m

u t
t t t

u t
 ½  ½ ½ ° ° ° °= = +® ¾ ® ¾ ® ¾

−¯ ¿ ° ° ° °¯ ¿ ¯ ¿
u  � (m') 

 
for which the modal vectors have unit magnitude [that is, they have the alternate 
forms stated by Eqs. (i') and (n') of Example 7.2)]. It may be seen from either Eq. 
(m) or Eq. (m') that, for the given initial conditions, the amplitudes of both modes are 
the same. Thus, the degree of participation of each mode is the same. 

 
 
 
 

Example 7.4 
Consider the system of the previous example when each mass is initially displaced 
and held a unit distance from its equilibrium position and then both are released from 
rest simultaneously. That is, consider an initial displacement of the system in the 
form of the first modal vector and let the system be released from rest from this con-
figuration. Determine the response of the system. 
 
Solution 
The initial conditions of the two-mass, three-spring, system for the present case are 
written in matrix form as 
 

 
1 0

(0)  ,     (0)
1 0
 ½  ½= =® ¾ ® ¾
¯ ¿ ¯ ¿

�u u  (a-1, 2) 

 
Recall from Eqs. (b) and (c) of Example 7.3 that the general form of the free vibra-
tion response of the system under consideration is 
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 1 (1) (2)
1 1 2 2

2

( ) 1 1
cos( ) cos( )

( ) 1 1
u t

A t A t
u t

ω φ ω φ ½  ½  ½= − + −® ¾ ® ¾ ® ¾−¯ ¿ ¯ ¿¯ ¿
 (b) 

 
where 
    1 2 ,     3k m k mω ω= =  (c-1, 2) 
 
Imposing  Eq. (a-1) on Eq. (b) results in the pair of algebraic equations 
 

 
(1) (2)

1 2
(1) (2)

1 2

1 cos cos

1 cos cos

A A
A A

φ φ
φ φ

= +
= −

 (d) 

 
Adding and subtracting Eqs. (d) with one another gives the alternate pair of algebraic 
equations 

 
(1)

1
(2)

2

2 2 cos

0 2 cos

A
A

φ
φ

=
=

 (e) 

 
Similarly, imposing Eq. (a-2) on Eq. (b) and adding and subtracting the resulting ex-
pressions gives the pair of algebraic equations 
 

 
(1)

1
(2)

2

0 2 sin

0 2 sin

A
A

φ
φ

=
=

 (f) 

 
The first of Eqs. (f) is satisfied if either A(1) = 0 or sinφ1 = 0. Since the first of Eqs. (e) 
cannot be satisfied if A(1) = 0, we conclude that 
 
 1sin 0φ =  
and hence that 
 
 1     ( 0,1, 2,...)n nφ π= =  (g) 
 
Substitution of Eq. (g) into the first of Eqs. (e) gives the amplitude of the first mode 
as 
 

 (1) 1 ( 0,2,4,...)1
1 ( 1,3,5,...)cos

n
A

nnπ
+ == = ®− =¯

 (h) 

 
Upon consideration of the second of Eqs. (e) and the second of Eqs. (f) it may be 
concluded that both equations are satisfied only if  
 
 (2) 0A =  (i) 
 
Substitution of Eqs. (g), (h) and (i) into Eq. (b) gives the free vibration response for 
the given initial conditions as 
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1 1 2

( ) cos 2 cos
1 1 2

k k
m mt t t

 ½ ½ ° °= =® ¾ ® ¾
¯ ¿ ° °¯ ¿

u  � (j) 

 
It is seen that when the initial displacement is in the form of the first mode, then the 
response of the system is solely comprised of that mode. The other mode does not 
participate. If the initial displacement was of the form of the second mode, the re-
sponse of the system would be solely comprised of the second mode (see Problem 
7.9).  

  
 
 
 

Example 7.5 
Consider the uniform double pendulum shown in Figure 
E7.5-1. (a) Determine the natural frequencies of the sys-
tem. (b) Determine the corresponding natural modes, and 
sketch the mode shapes. (c) Determine the free vibration 
response of the pendulum. 
 
 
Solution 
The equations of motion for the double pendulum were 
derived in Chapter 6. (See Section 6.1.2 and Example 
6.5.) The corresponding displacement matrix is 
                                                                                                     Figure E7.5-1 

 1

2

( )
( )

( )
t

t
t

θ
θ
 ½

= ® ¾
¯ ¿

u  

 
where θ1 and θ2 are measured from the vertical (rest) configuration, as indicated. For 
the particular system shown the masses are of equal magnitude, as are the lengths of 
the rods. Thus, m1 = m2 = m and L1 = L2 = L. Substitution of these values into the 
mass and stiffness matrices of Eq. (6.18), or equivalently of Eq. (r) of Example 6.5, 
gives the mass and stiffness matrices for the present system as 
 

 
2

21 2 1 2 1 2
2

2 1 2 2 2

2 1( )
1 1

m m L m L L
mL

m L L m L
ª º+ ª º= =« » « »

¬ ¼¬ ¼
m  (a) 

 

 1 2 1 2

2 2

( ) 0 2 0
0 0

m m L g g L
mL

m L g g L
+ª º ª º= =« » « »

¬ ¼¬ ¼
k  (b) 

 
 
(a) 
We first establish the frequency equation for the system. Hence, 
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2 2

2 2
2 2

2( )
det 0

( )

g
L

g
L

mL
ω ωω

ω ω
− −

ª º− = =¬ ¼ − −
k m  (c) 

 
Expanding the determinant in Eq. (c) and dividing through by mL2 gives the fre-
quency equation 
 

 
2

2 2 2( ) 4 ( ) 2 0g g
L L

ω ω § ·− + =¨ ¸
© ¹

 (d) 

 
The natural frequencies are next determined from this equation. Equation (d) is easi-
ly solved to give the two distinct roots 
 

 ( )2 2 2g
L

ω = B  

Thus, 
 1 20.765  ,     1.85g L g Lω ω= =  (e-1,2) 
 
(b) 
Substituting the mass and stiffness matrices given by Eqs. (a) and (b) into the equa-
tion 
 2 ( )    ( 1,2)j

j jωª º− = =¬ ¼k m U 0  
 
gives the equations for the modal matrices as 
 

 
2 2 ( )

2 1
2 2 ( )

2

02( )
,    ( 1, 2)

0( )

g j
j jL

g j
j jL

U
mL j

U
ω ω

ω ω
ª º  ½− −  ½° ° = =« » ® ¾ ® ¾− − ° °« » ¯ ¿¯ ¿¬ ¼

 (f) 

 
j = 1: 
Setting j = 1 in Eq. (f), substituting Eq. (e-1) and expanding the matrix equation 
gives two algebraic equations. The first is 
 

 (1) (1)
1 22 (2 2) (2 2) 0g g gU U

L L L
§ ·− − − − =¨ ¸
© ¹

 

 
which simplifies to the relation 
 
 (1) (1)

2 12U U=  (g) 
 
(Note that the second equation corresponding to the second row of Eq. (f) reduces to 
Eq. (g) as well. Why?) The modal matrix associated with frequency ω1 is then 
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 (1)
1

1

2
α

 ½° °= ® ¾
° °¯ ¿

U  � (h) 

 
where α1 is arbitrary. For definiteness we shall set α1 = 1. Thus 
 

 (1)
1

2

 ½° °= ® ¾
° °¯ ¿

U  � (h') 

 
j = 2: 
Following the same procedure for j = 2 as we did for j = 1, we obtain the algebraic 
equation 
 

 (2) (2)
1 22 (2 2) (2 2) 0g g gU U

L L L
§ ·− + − + =¨ ¸
© ¹

 

 
which, upon performing the indicated additions, simplifies to the relation 
 
 (2) (2)

2 12U U= −  (i) 
It follows that  

 (2)
2

1

2
α

 ½° °= ® ¾
−° °¯ ¿

U  � (j) 

 
where α2 is arbitrary. Setting α2 = 1 for definiteness gives the modal matrix associat-
ed with natural frequency ω2 as  
 

 (2)
1

2

 ½° °= ® ¾
−° °¯ ¿

U  � (j') 

 
The two mode shapes are depicted in Figure E7.5-2. 
  

 
          Figure E7.5-2  Natural modes for the double pendulum. 
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(c) 
The general form of the free vibration response of the double pendulum is found by 
substituting the above natural frequencies and modal matrices into Eq. (7.11), with N 
= 2. This gives 
 

 ( ) ( )1 (1) (2)
1 2

2

1 1( )
cos 0.765 cos 1.85

( ) 2 2
g g
L L

t
A A

t
θ

φ φ
θ

 ½  ½ ½ ° ° ° °= − + −® ¾ ® ¾ ® ¾
−° ° ° °¯ ¿ ¯ ¿ ¯ ¿

 (k) 

 
Hence, 
 

 
( ) ( )

( ) ( )
(1) (2)

1 1 2

(1) (2)
2 1 2

( ) cos 0.765 cos 1.85

( ) 2 cos 0.765 2 cos 1.85

g g
L L

g g
L L

t A A

t A A

θ φ φ

θ φ φ

= − + −

= − − −
 � (l) 

 
The values of the amplitudes, A(1) and A(2), and the phase angles, φ1 and φ2, are found 
from the specific initial conditions imposed on the system.  

 
 
 
 

Example 7.6 
Determine the free vibration response associated with side-sway motion of the three-
story building shown in Figure E7.6-1. The 3 floors are each of mass m, and the 12 
identical elastic columns are each of length L and have bending stiffness EI. 

 
   Figure E7.6-1  Three-story building. 
 
Solution 
We first establish the equivalent discrete system shown in Figure E7.6-2. It is evi-
dent that the equivalent system has three degrees of freedom. 
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   Figure E7.6-2  Equivalent system. 
 
 
The stiffnesses of the equivalent elastic springs can be obtained directly from Eq. 
(1.19) by setting N = 3, E1I1 = E2I2 = E3I3 = EI and L1 = L2 = L3 = L. We thus have 
that 
 3

1 2 3 48k k k k EI L= = = =  (a) 
  
The discrete representation for this structure therefore consists of three masses (the 
floors and roof), each of mass m, connected by three identical springs whose 
stiffnesses are given by Eq. (a).  
 The equation of motion for the equivalent system is easily determined by set-
ting m1 = m2 = m3 = m, k1 = k2 = k3 = k and F1 = F2 = F3 = 0 in Eqs. (d)–(f) of Exam-
ple 6.2 or in Eq. (h) of Example 6.3. (Alternatively, the equation of motion could be 
derived directly using one of the methods discussed in Chapter 6.) Doing this we ar-
rive at the governing equation given by 
 
 + =��mu ku 0  (b) 
 
where 

 
1 0 0
0 1 0
0 0 1

m
ª º
« »= « »
« »¬ ¼

m ,   
2 1 0
1 2 1

0 1 1
k

−ª º
« »= − −« »
« »−¬ ¼

k  (c, d) 

 
The eigenvalue problem, 2 ,ωª º− =¬ ¼k m U 0  for the system under consideration is 
then 
 

 

2
1

2
2

2
3

(2 ) 0 0
(2 ) 0

0 ( ) 0

k m k U
k k m k U

k k m U

ω
ω

ω

ª º− −  ½  ½
« » ° ° ° °− − − =® ¾ ® ¾« »

° ° ° °« »− − ¯ ¿ ¯ ¿¬ ¼

 (e)  

 
Since the numerical values of the parameters k and m are not specified it is conven-
ient to express Eq. (e) in an alternate form by factoring out k. This gives  
 

 

2
1

2
2

2
3

(2 ) 1 0 0
1 (2 ) 1 0

0 1 (1 ) 0

U
k U

U

ω
ω

ω

ª º− −  ½  ½
« » ° ° ° °− − − =® ¾ ® ¾« »

° ° ° °« »− − ¯ ¿ ¯ ¿¬ ¼

 (f) 

where 
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2

2

k m
ωω =  (g) 

 
Once the eigenvalues 2ω  are determined, the corresponding natural frequencies 2ω  
may be obtained using Eq. (g).  
 The characteristic equation (frequency equation) is found by requiring that the 
determinant of the square matrix of Eq. (f) vanish. Hence,  
 

 

2

2 2 2 3 2 2 2

2

(2 ) 1 0
( ) 1 (2 ) 1 ( ) 5( ) 6( ) 1 0

0 1 (1 )

ω
ω ω ω ω ω

ω

− −
= − − − = − + − + =

− −
�  (h) 

 
The roots of Eq. (h) may be found by classical means, or by using a root solving rou-
tine, or by using software that solves the complete eigenvalue problem defined by 
Eq. (f) directly, such as the MATLAB function “eig.” We here use the MATLAB poly-
nomial solver, “roots,”  to determine the zeros of the characteristic equation. This is 
done by constructing the matrix of coefficients of the polynomial appearing in Eq. 
(h), P = [−1, 5, −6, 1], and invoking the MATLAB command roots(P). We thus obtain 
the zeroes of Eq. (h), 

 
   2 0.1981,  1.555,  3.247ω =   (i) 
 
Substitution of each eigenvalue of Eq. (i) into Eq. (g) gives the corresponding natural 
frequencies for the three-story structure,  
 
 3

1 0.4451 3.08k m EI mLω = =  (j-1) 
 
 3

2 1.247 8.64k m EI mLω = =  (j-2) 
 
 3

3 1.802 12.5k m EI mLω = =  (j-3) 
 
To determine the associated modal vectors, we substitute a frequency from Eq. (j), or 
equivalently Eq. (i), into Eq. (f) and solve for the components of the corresponding 
modal vector. Since the matrix 2ωª º− =¬ ¼k m U 0  was rendered singular by requiring 
that its determinant vanish, (at most) only two of the three scalar equations of Eq. (f) 
will be independent. We shall choose to solve the first and third equations since they 
each have a vanishing term. Hence,  
 

 
2 ( ) ( )

1 2
( ) 2 ( )
2 3

 (2 ) 0

(1 ) 0

j j
i

j j
i

U U
U U

ω
ω

− − =
− + − =

   ( 1,2,3)j =  (k) 

 
(1)U : 

Substitution of the first value of Eq. (i) into Eqs. (k), with j = 1, gives 
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 (1) (1) (1) (1)
1 2 2 1(2 0.1981) 0    1.802U U U U− − = � =  

 
 (1) (1) (1) (1) (1)

2 3 3 2 1(1 0.1981) 0    1.247 2.247U U U U U− + − = � = =  
 
Hence, 

 (1)
1

1
1.802
2.247

α
 ½
° °= ® ¾
° °
¯ ¿

U  (l) 

 
where α1 is an arbitrary scalar. The scalar multiplier can be chosen as anything we 
like, such as unity as was done in prior examples. For this case, however, we shall 
choose α1 so that U(1) has unit magnitude in the conventional sense (i.e., we shall di-
vide the above vector by its magnitude). Thus, let 
 

   1 2 2 2

1

1 1.802 2.247
α =

+ +
 

 
This gives the first natural mode as the normal mode 
 

 (1)

0.328
0.591
0.737

 ½
° °= ® ¾
° °
¯ ¿

U  (l') 

 
(2)U : 

Proceeding as for the first modal vector, 
  
  (2) (2) (2) (2)

1 2 2 1(2 1.555) 0    0.4450U U U U− − = � =  
 
 (2) (2) (2) (2) (2)

2 3 3 2 1(1 1.555) 0    1.802 0.8019U U U U U− + − = � = − = −  
 
Hence, 

 (2) (2)
2

1 0.737
0.4450         0.328
0.8019 0.591

α
 ½  ½
° ° ° °= → =® ¾ ® ¾
° ° ° °− −¯ ¿ ¯ ¿

U U  (m) 

 
(3)U : 

The third modal vector is obtained in the same manner as the first two. Thus, 
 
  (3) (3) (3) (3)

1 2 2 1(2 3.247) 0    1.247U U U U− − = � = −  
 
 (3) (3) (3) (3) (3)

2 3 3 2 1(1 3.247) 0    0.4450 0.5550U U U U U− + − = � = − =  
 
Solving the above system gives 

www.konkur.in



7│ Free Vibration of Multi-Degree of Freedom Systems 337 

 

 (3) (3)
3

1 0.591
1.247         0.737

0.5550 0.328
α

 ½  ½
° ° ° °= − → = −® ¾ ® ¾
° ° ° °
¯ ¿ ¯ ¿

U U  (n) 

 
Depictions of the three-story structure in each of its three natural modes are dis-
played in Figures E7.6-3(a)–(c). We are now ready to determine the general response 
of the structure. 
 

 
           Figure E7.6-3  Natural modes of three-story building. 
 
 
 The general form of the free vibration response of a three degree of freedom 
system is given by Eq. (7.11) with N = 3. Hence, 
 

 
3

( )

1

( , ) cos( )j
j j

j

x t tω φ
=

= −¦u U  

 
Substituting the calculated frequencies and modes into the above expression gives 
the free vibration response of the three-story building as 
 

( ) ( )
1

(1) (2)
2 0 1 0 2

3

(3)

( , ) 0.328 0.737
( , ) 0.591 cos 3.08 0.328 cos 8.64
( , ) 0.737 0.591

0.591
                                                0.737 cos

0.328

u x t
u x t A t A t
u x t

A

ω φ ω φ
 ½  ½  ½
° ° ° ° ° °= − + −® ¾ ® ¾ ® ¾
° ° ° ° ° °−¯ ¿ ¯ ¿ ¯ ¿

 ½
° °+ −® ¾
° °
¯ ¿

( )0 312.5 tω φ−

 (o) 

where 

 0 3

EI
mL

ω =  (p) 
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It is seen that, from a vibrations perspective, the particular system is defined by the 
single parameter ω0. The amplitudes and phase angles, A(j) and φj, (j = 1, 2, 3) are de-
termined from the specific initial conditions imposed on the structure.  

 
 
 

Example 7.7 
Consider free vibrations of the tram system of Exam-
ple 6.6. (a) Determine the frequency equation for the 
general system. (b) Independent measurements of the 
natural frequency of the frame and spring alone, and 
of the barrow and support rod when attached to a 
fixed frame, are found to yield identical values. De-
termine the natural frequencies and modes of the 
coupled tram system if the mass of the barrow is 
twice that of the frame. (c) Determine the free vibra-
tion response for the system of part (b). Express your 
answers to (b) and (c) in terms of the common natural 
frequency measured for the detached subsystems.                  Figure E7.7-1   
 
Solution 
(a) 
Setting F = 0 in Eq. (i) of Example 6.6 gives the pertinent equation of motion, 

 

 1 2 2
2

2 2 2

( ) 0 0
0 0

m m m L ku u
m L m L m gLθ θ
+ª º ª º ½  ½  ½+ =® ¾ ® ¾ ® ¾« » « »

¯ ¿ ¯ ¿ ¯ ¿¬ ¼ ¬ ¼

��
��  (a) 

 
The corresponding eigenvalue problem, 2ωª º− =¬ ¼k m U 0 , is then 
 

 
{ }

{ }
2 2

1 2 2 1

2 2 2
22 2 2

( ) 0
0

k m m m L U
Um L m gL m L

ω ω

ω ω

ª º− + −  ½  ½« » =® ¾ ® ¾« »− − ¯ ¿¯ ¿¬ ¼
 (b) 

 
Setting the determinant of the square matrix of Eq. (b) to zero and rearranging terms 
gives the frequency equation for the system as  
 

 ( )22 2 2

1 1 1

1 0
m g k k g
m L m m L

ω ω
ª º§ ·

− + + + =« »¨ ¸
« »© ¹¬ ¼

 � (c) 

 
(b) 
Let ω0 be the measured natural frequency of the detached subsystems. Hence, 
  

 2
0 1g L k mω = =  (d) 
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Substituting Eq. (d) and the given mass ratio into Eq. (c) renders the frequency equa-
tion to the form 
 

 ( )22 24 1 0ω ω− + =   (e) 
 where 
 0ω ω ω=  (f) 

 
The roots of Eq. (e) are easily found to be  
 

 2 2 3 0.268,  3.73ω = =B  (g) 
 
Substituting these roots into Eq. (f) gives the natural frequencies, 
 

 1 0 2 00.518 ,   1.93ω ω ω ω= =  � (h) 
 
To determine the natural modes let us expand Eq. (b) and divide the second equation 
by m2L. This gives the relation 
 

 ( )2 2
1 21 0U LUω ω− + − =  (i) 

 
Substituting the first root stated in Eq. (g) into Eq. (i) and solving for (1)

2U  in terms of 
(1)
1U  gives the first natural mode as 

 

 (1)
1 2

0

11 1
0.3660.366 0.366 gL L

α
ω

 ½ ½  ½= → =® ¾ ® ¾ ® ¾
¯ ¿ ¯ ¿ ¯ ¿

U  � (j) 

 
where we have chosen the arbitrary scalar multiple α1 to have unit value. Substituting 
the second root stated in Eq. (g) into Eq. (i) and proceeding in a similar manner gives 
the second natural mode as 
 

 (2)
2 2

0

11 1
1.371.37 1.37 gL L

α
ω

 ½ ½  ½= → =® ¾ ® ¾ ® ¾−− −¯ ¿ ¯ ¿ ¯ ¿
U  � (k) 

 
The natural modes for the system are depicted in Figure E7.7-2. 
 
(c) 
Substitution of Eqs. (h), (j) and (k) into Eq. (7.11) with N = 2 results in the free vibra-
tion response of the system, 
 

 

(1)
0 12

0

(2)
0 22

0

1( , )
( , ) cos(0.518 )

0.366( , )

1
                                              cos(1.93 )

1.37

u x t
x t A t

gx t

A t
g

ω φ
ωθ

ω φ
ω

 ½ ½= = −® ¾ ® ¾
¯ ¿ ¯ ¿

 ½
+ −® ¾−¯ ¿

u
 � (l) 
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where the amplitudes and phase angles are found from the particular initial conditions 
imposed on the system. 
 

    
 
   Figure E7.7-2  Natural modes of tram system. 

 
 
 
 

Example 7.8 
Determine the free vibration response of 
the motorcycle frame of Example 6.7 for 
the case where the stiffness supplied by 
each wheel is identical and the rider sits 
over the center of mass. The mass of the 
rider is 1/3 the mass of the bike, and the 
stiffness of the seat assemblage is 2/3 the 
effective stiffness of the tire and suspen-
sion system combination. For simplicity, 
assume that the frame can be treated as 
uniform.                                                                        Figure E7.8-1 
 
 

 
   Figure E7.8-2  Equivalent system. 
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Solution 
For the given frame and rider, k1 = k2 = k, kb = 2k/3, mb = m/3, ℓ = 0 and L1 = L2 = 
L/2. The moment of inertia about an axis through the center of mass of the uniform 
frame (Figure E7.8-2) is then IG = mL2/12.   
 Recall that the vertical displacement of the center of mass of the frame, yG, the 
rotational displacement, θ, and the vertical displacement of the rider, yb, are chosen 
as the generalized coordinates. The corresponding displacement matrix is then 
 

 
( )

( ) ( )
( )

G

b

y t
t t

y t
θ

 ½
° °= ® ¾
° °
¯ ¿

u  (a) 

 
For the given parameters, the system matrices of Example 6.7 reduce to 
 

 2

8 3 0 2 3
0 2 0

2 3 0 2 3

k k
kL

k k

−ª º
« »→ « »
« »−¬ ¼

k  (b) 

  

 
0 0

0 0
0 0 3

G

m
I

m

ª º
« »→ « »
« »¬ ¼

m  (c) 

 
The corresponding eigenvalue problem is then 
 

 

( )
( )

( )

2

1
2 2

2

2 3

8 3 0 2 3 0
0 2 0 0

02 3 0 2 3

G

k m k U
kL I U

Uk k m

ω

ω

ω

ª º− −  ½  ½« »
° ° ° °« »− =® ¾ ® ¾« » ° ° ° °« » ¯ ¿ ¯ ¿− −¬ ¼

 (d) 

 
We next determine the frequency equation for the system. Hence, 
 

 

( )
( )

( )

2

2 2

2

8 3 0 2 3

0 2 0 0

2 3 0 2 3

G

k m k

kL I

k k m

ω

ω

ω

− −

− =

− −

 (e) 

 
Expanding the above determinant gives the desired frequency equation, 
 
 ( )2 2 2 2 2 2 22 12 4 ( ) 3 ( ) 0GkL I k k m mω ω ωª º− −1 + =¬ ¼  (f) 
 
Equation (f) is easily factored to yield the natural frequencies, 
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 2 2 2 2
1 2 31.132 ,     3.535 ,     2 6Gk m k m kL I k mω ω ω= = = =  � (g) 

 
We next determine the associated modal vectors. Substituting the first frequency into 
the first row of Eq. (d) gives 
 

 8 1.132
3

kk
m

− m (1) (1) (1) (1)
1 3 3 1

2 0        2.302
3

U kU U U
§ ·

− = � =¨ ¸
© ¹

 (h) 

 
[The third row of Eq. (d) gives the identical relation.] Substituting the first natural 
frequency into the second row of Eq. (d) gives 
 

 
2

1.132
2

k L k
m

− m 2
(1) (1)
2 20        0

12
L U U

§ ·
= � =¨ ¸

© ¹
 (i) 

 
Combining Eqs. (h) and (i) in matrix form gives the modal vector associated with the 
first natural frequency, 
 

 (1)

1
0

2.302

 ½
° °= ® ¾
° °
¯ ¿

U  � (j) 

 
A physical depiction of the modal vector is shown in Figure E7.8-3a. Similar calcu-
lations give the modal vector associated with the second natural frequency. Hence,  
 

 8 3.535
3

kk
m

− m (2) (2) (2) (2)
1 3 3 1

2 0        1.303
3

U kU U U
§ ·

− = � = −¨ ¸
© ¹

 (k) 

 
and 
 

 
2

3.535
2

k L k
m

− m 2
(2) (2)
2 20        0

12
L U U

§ ·
= � =¨ ¸

© ¹
 (l) 

 
which, when combining in matrix form gives the modal vector associated with the 
second natural frequency, 
 

 (2)

1
0

1.303

 ½
° °= ® ¾
° °−¯ ¿

U  � (m) 

 
A physical depiction of the modal vector is shown in Figure E7.8-3b. To obtain the 
third modal vector we substitute the third natural frequency into the first and third 
rows of Eq. (d) to get 
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 Figure E7.8-3  Natural modes of motorcycle frame. 
 
 

 

 8 6
3

kk
m

− m (3) (3)
1 3

2 0
3

U kU
§ ·

− =¨ ¸
© ¹

 (n)   

and 

 (3)
1

2 1 2 6
3 3

kkU k
m

− + − m (3)
3 0U

§ ·
=¨ ¸

© ¹
 (o) 

 
These two equations may be solved to give 
 
 (3) (3)

1 3 0U U= =  (p) 
 
Since Eqs. (n) and (o) yielded definite values, the second row of Eq. (d) will reflect 
the lack of determinacy. Substituting the third natural frequency into the second row 
of Eq. (d) gives the relation 
 

 
2 2

2 2 G

kL kL
I

− GI (3) (3) (3)
2 2 20        0 0       anything U U U

§ ·
¨ ¸ = → ⋅ = � =
¨ ¸
© ¹

 (q) 

 
as we would expect since the square matrix of Eq. (d) must be singular. [For this fre-
quency, all elements of the second row of the square matrix of Eq. (d) vanish.] The 
third modal vector is thus of the form 
 

 (3)

0
1
0

 ½
° °= ® ¾
° °
¯ ¿

U  � (r) 
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As seen in the depiction of the mode shown in Figure E7.8-3c, the third mode corre-
sponds to pure rotation. Finally, the free vibration response of the motorcycle frame 
is 
 

 

( ) ( )

( )

(1) (2)
0 1 0 2

(3)
0 3

( ) 1 1
( ) 0 cos 1.06 0 cos 1.88
( ) 2.30 1.30

0
                                                 1 cos 2.45

0

G

b

y t
t A t A t

y t

A t

θ ω φ ω φ

ω φ

 ½  ½  ½
° ° ° ° ° °= − + −® ¾ ® ¾ ® ¾
° ° ° ° ° °−¯ ¿ ¯ ¿ ¯ ¿

 ½
° °+ −® ¾
° °
¯ ¿

 � (s) 

where 
 0 k mω =  (t) 

 
 
 

7.2 UNRESTRAINED SYSTEMS 

Systems such as an aircraft in flight or a railroad train in transit are said to be unrestrained 
in the sense that they are free to translate and, in the case of the airplane, free to rotate. Even 
though the systems are not restrained in an overall sense, we know that such systems exhib-
it vibrations and we must be able to understand, predict and characterize their motions for 
engineering and performance purposes. Systems that are not fixed with respect to transla-
tion or rotation at one or more points are referred to as unrestrained, or semi-definite, sys-
tems. (Simple examples of such systems include the two mass, one-spring system of Figure 
7.1a or the rotating elastic system depicted in Figure 7.1b.) With regard to vibrations, such 
systems have specific characteristics associated with them. The lack of constraint manifests 
itself as a set of “rigid body modes” for which there is no oscillatory behavior, together with 
the pure vibration modes that we have studied to this point. The occurrence of rigid body 
modes, their properties and implications, is best demonstrated by example.  
 
 

 
             Figure 7.1  Examples of unrestrained (semi-definite) systems. 
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Example 7.9 
Consider rectilinear motion of the system 
comprised of two identical masses of mass m 
connected by a single linear spring of stiff-
ness k, as shown in Figure E7.9-1. Determine 
(a) the natural frequencies, (b) the natural 
modes, and (c) the free vibration response of 
the system.                                                                       Figure E7.9-1 
 
Solution 
(a) 
The equation of motion and mass and stiffness matrices may be found directly from 
Eqs. (b)–(e) of Example (6.1), with m1 = m2 = m, k2 = k, k1 = k3 = 0 and F = 0. This 
gives 
 + =��mu ku 0  (a) 
where 

 
0

0
m

m
ª º= « »
¬ ¼

m     and    
k k
k k

−ª º= « »−¬ ¼
k  (b, c) 

 
Note that the second row of the stiffness matrix is simply the negative of the first 
row, and hence that the matrix k is singular. This is characteristic of unrestrained 
systems. Next, assuming a solution of the form 
 
 i te ω=u U  (d) 
 
and substituting into Eq. (a) results in the eigenvalue problem 
 

 
2

12
2

2

0( )
0( )

Uk m k
Uk k m

ωω
ω

ª º  ½  ½− −ª º− = =® ¾ ® ¾« »¬ ¼ − − ¯ ¿¯ ¿¬ ¼
k m U  (e) 

 
The frequency equation is then 
 

 
2

2 2 2 2
2

( )
( ) ( ) ( ) 0

( )
k m k

k m k
k k m

ωω ω
ω

− −= = − − − =
− −

�  (f) 

 
which, when expanded, takes the form 
 
 2 2 2 0m m kω ωª º− =¬ ¼  (g) 
 
The roots of Eq. (g) may be read directly as 
 
 2 0,2k mω =  (h) 
 
from which we obtain the natural frequencies 
 

www.konkur.in



346 Engineering Vibrations 

 1 2
20,   k
m

ω ω= =  � (i-1, 2) 

 
We see that the first natural frequency is zero, indicating no oscillation for that 
mode. This is due to the lack of constraint of the system. We shall see its implica-
tions in what follows. Let us first determine the associated natural modes.  
 
(b) 

(1)U :  
Substitution of Eq. (i-1) into Eq. (e) gives the algebraic relation 
 
 2 (1) (1) (1) (1)

1 2 1 2( 0 ) 0    k m U kU U U− − = � =  (j) 
Hence,  

 (1)
1

1 1
1 1

α  ½  ½= →® ¾ ® ¾
¯ ¿ ¯ ¿

U  � (k) 

 
where α1 is any scalar and we have chosen its value to be unity. Note that this is the 
“rigid body” mode seen in Example 7.2. However, in this case there is no oscillation 
(ω1 = 0) for the rigid body mode due to the lack of constraint. Thus, the first mode 
simply corresponds to a rigid body translation of the entire system. (See Figure E7.9-
2a.) 
 

(2)U : 
Substitution of Eq. (i-2) into Eq. (e) gives the algebraic relation 
 

 (2) (2) (2) (2)
1 2 2 1

2 0    kk m U kU U U
m

§ ·− − = � = −¨ ¸
© ¹

 (l) 

Hence, 

 (2)
2

1 1
1 1

α  ½  ½= →® ¾ ® ¾− −¯ ¿ ¯ ¿
U  � (m) 

 
where α2 is arbitrary and we have chosen it to have unit value. This is the accordion 
mode discussed in Example 7.2, but with the oscillations now at the frequency given 
by Eq. (i-2). (See Figure E7.9-2b.) 
 

 
   Figure E7.9-2  Natural modes of system. 
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(c) 
Substitution of the roots 1,2ω±  given by Eqs.(i) and the associated modal matrices 
given by Eqs. (k) and (m) into Eq. (d) and superposing these solutions gives the solu-
tion of Eq. (a) for the unrestrained system. Note that both ω = + 0 and ω = − 0 give 
the same solution, a constant. In addition, note that multiplying a constant by t also 
yields a solution corresponding to vanishing ω. The free vibration response of the 
unrestrained two-mass, one-spring system is thus  
 

 ( ) ( )1 (1) (1) (2) 2
1 2 2

2

( ) 1 1
( ) cos

( ) 1 1
k

m

u t
t A A t A t

u t
φ ½  ½  ½= = + + −® ¾ ® ¾ ® ¾−¯ ¿ ¯ ¿¯ ¿

u  (n) 

 
Consideration of Eq. (n) shows that the free vibration response of the unrestrained 
system consists of a rigid body displacement of the entire system, with the corre-
sponding rigid body displacement increasing linearly with time, together with the 
two masses moving harmonically relative to the center of the translating spring and 
180 degrees out of phase with one another (i.e., moving toward and away from one 
another at the same rate). The rigid body translation is a result of the lack of restraint. 
Note that since the system is constrained to translate in one dimension there is only 
one rigid body mode. Thus, imagine that the mass-spring system is sitting on a fric-
tionless surface or track when it is suddenly tossed, or struck with a baseball bat or a 
golf club. Equation (n) tells us that, after being released (or struck), the system will 
move off in the direction of the initial velocity and will vibrate relative to the posi-
tion of the center of the spring (the center of mass of the system) with frequency 

2 2 /k mω = . (See Figure E7.9-3.) 
 
 

 
   Figure E7.9-3  Motion of system. 

  
 

7.3  PROPERTIES OF MODAL VECTORS 

In this section we shall study the general properties of the modal vectors of discrete multi-
degree of freedom systems. These properties will be central to our study of forced, as well 
as free, vibrations of mechanical systems. We first introduce the concept of the scalar prod-
uct of two modal vectors. 

7.3.1  The Scalar Product 

Fundamental to the characterization of the natural modes of a system is the scalar product 
of two modal vectors. We introduce this concept in the present section. Though we are in-
terested in general N-degree of freedom systems, and hence in N-dimensional space, it is 
instructive to first discuss vectors in three-dimensional space since such vectors are familiar 
to us and easier to visualize. 
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 Figure 7.2  Vectors and coordinate system. 
 
 

The Conventional Scalar Product 
Consider the Cartesian reference frame with axes (x1, x2, x3) in three-dimensional space, and 
let 1 2 3, ,e e eG G G  be corresponding unit vectors directed along these axes, as shown in Figure 7.2. 
Further, let uG and vG  be two vectors in that space as indicated. The two vectors may be ex-
pressed in terms of their components with respect to the particular coordinate system cho-
sen as follows; 

 1 1 2 2 3 3

1 1 2 2 3 3

u u e u e u e
v v e v e v e

= + +
= + +

G G G G
G G G G  (7.17) 

 
Taking the scalar dot product of  uG  and vG  results in the familiar relation 
 
 1 1 2 2 3 3u v u v u v u v v u= + + =G G G G< <  (7.18) 
 
Let us next construct two column matrices, u and v, whose elements correspond to the 
components of uG  and vG , respectively. Hence, let 
 

 
1 1

2 2

3 3

 ,     
u v
u v
u v

 ½  ½
° ° ° °= =® ¾ ® ¾
° ° ° °
¯ ¿ ¯ ¿

u v  (7.19) 

 
We shall define the scalar product of u and v as follows; 
 

 [ ]
1

1 2 3 2 1 1 2 2 3 3

3

, ,
v

u u u v u v u v u v
v

 ½
° °≡ = = + + = =® ¾
° °
¯ ¿

u v u v v u v uT T  (7.20) 

 
Comparison of Eqs. (7.20) and (7.18) shows the two to be equivalent statements. 

v

u

x2e2

e1
x1

e3

x3
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Orthogonality in the Conventional Sense 
The basic definition and geometric interpretation of the scalar dot product between two 
vectors is given by the relation 
 
 cosu v u v θ=G G G G<  (7.21) 
 
where θ is the angle between the vectors. It follows that 
 
 if   0   then   u v u v= ⊥G G G G<  (7.22) 
 
Likewise, we say that,  
 
    if  , 0=u v  then ⊥u v . 

 

The Weighted Scalar Product 
It is useful for our study of vibrations, as well as for fundamental purposes, to extend the 
concept of the scalar product beyond the elementary definition and operation discussed 
above. Therefore, let us consider some square symmetric matrix A = AT and two column 
matrices u and v. The weighted scalar product of u and v with respect to the weight matrix 
A is defined as 
 , ≡

A
u v u A vT  (7.23) 

  
The operation described by Eq. (7.23) may be interpreted algebraically as taking a scalar 
product of the two vectors u and v, but weighting the contributions of the various products 
of the elements (components) differently according to the weight matrix A. The operation 
may be interpreted geometrically as first stretching and rotating the vector v to obtain a new 
vector ,=

�v Av  then taking the conventional dot product between the vectors u and .
�v  

Orthogonality of two vectors with respect to the weight matrix is defined accordingly. 
 

Orthogonality With Respect to the Weight Matrix 
If the weighted scalar product of u and v vanishes, then u and v are said to be orthogonal 
(with respect to A). Stated symbolically, 
 
    if 0=

A
u,v  then ⊥

A
u v   

 
 All of the concepts and operations discussed above for three-dimensional vectors are 
applicable to vectors of any dimension, say N. Hence, 
 

 
1

,
N

j j
j

u v
=

≡ = =¦u v u v v uT T  (7.24) 

and 
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1 1 1 1

,
N N N N

l lj j l jl j
l j l j

u a v u a v
= = = =

≡ = = =¦¦ ¦¦A
u v u A v v AuT T  (7.25) 

where 

   

1

2

N

u
u

u

 ½
° °
° °= ® ¾
° °
° °¯ ¿

#
u  ,    

1

2

N

v
v

v

 ½
° °
° °= ® ¾
° °
° °¯ ¿

#
v  ,     

11 12 1

21 22 2

1 2

N

N

N N NN

a a a
a a a

a a a

ª º
« »
« »= =
« »
« »
¬ ¼

"
"

# # % #
"

A AT  

 
It may be seen that the conventional scalar product corresponds to the weighted scalar 
product with A = I (the N × N identity matrix). With the scalar product and orthogonality 
defined, we are now ready to establish the properties and characteristics of the normal 
modes. 
 

7.3.2  Orthogonality of the Modes 

The mutual orthogonality of the modal vectors for multi-degree of freedom systems is an 
important property that is central to the understanding and solution of vibration problems. 
In this section we establish the mutual orthogonality of the modes associated with distinct 
roots of the frequency equation, and examine the characteristics of the modes associated 
with repeated roots of the frequency equation and the manner in which they can be rendered 
mutually orthogonal. 
 Consider a set of frequency-mode pairs, { }2 ( ), | 1, 2,...,j

j j Nω =U  for a given N-
degree of freedom system. Let us focus our attention on two generic frequency-mode pairs, 
say the lth and jth, and recall that each pair satisfies Eq. (7.3). Hence, 
 

 
( ) 2 ( )

( ) 2 ( )

l l
l

j j
j

ω
ω

=
=

kU mU
kU mU

 (7.26) 

 
Pre-multiplying the first equation by ( )jU T results in the equality 
 
 ( ) ( ) 2 ( ) ( )j l j l

lω=U kU U mUT T  (7.27) 
 
Taking the transpose of the second of Eqs. (7.26) gives 
 
 ( ) 2 ( )j j

jω=U k U mT T T T  
 
Now, post-multiplying the above expression by U(l) and using the fact that the mass and 
stiffness matrices are symmetric (m = mT, k = kT) results in the equality 
 
 ( ) ( ) 2 ( ) ( )j l j l

jω=U kU U mUT T  (7.28) 
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Distinct Frequencies 
Subtracting Eq. (7.28) from Eq. (7.27) results in the relation 
 
 2 2 ( ) ( )0 ( ) ,j l

l jω ω= −
m

U U  (7.29) 

where 
 ( ) ( ) ( ) ( ),j l j l=

m
U U U mUT  (7.30) 

 
is the weighted scalar product of the lth and jth modal vectors with respect to the mass matrix 
m. It is seen from Eq. (7.29) that the modal vectors are mutually orthogonal with respect to 
the mass matrix provided that the corresponding frequencies are distinct (i.e., they are not 
equal). Thus, 
 
    ( ) ( )l j⊥

m
U U  provided that  2 2

l jω ω≠  (7.31) 

 
It may be seen from Eq. (7.27) that if the scalar product of the two modal vectors with re-
spect to m vanishes, then it also vanishes with respect to k. Thus,  
 
   ( ) ( )l j⊥

k
U U  provided that  2 2

l jω ω≠  (7.32) 

 
We have thus proven the following theorem: modal vectors associated with distinct natural 
frequencies are mutually orthogonal with respect to both the mass matrix and the stiffness 
matrix. 
 
 

Example 7.10 
Verify that the natural modes for the double pendulum of Example 7.5 are mutually 
orthogonal.  
 
Solution 
From the solution of Example 7.5, the natural frequencies and associated modal ma-
trices for the double pendulum are 
 

 ( )2 (1)
1

1
2 2  ,    

2
g
L

ω
 ½° °= − = ® ¾
° °¯ ¿

U  (a-1, 2) 

and 

 ( )2 (2)
2

1
2 2  ,    

2
g
L

ω
 ½° °= + = ® ¾

−° °¯ ¿
U  (b-1, 2) 

 
Clearly 2 2

1 2ω ω≠  and so, from the theorem of this section, we know that U(1) and 
U(2) are mutually orthogonal with respect to both the mass matrix for the system and 
the stiffness matrix for the system. This may be verified by direct substitution of the 
modal matrices and mass and stiffness matrices into the corresponding weighted sca-
lar products. Upon carrying through the calculations, we see that 
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 (1) (2) (1) (2) 2
12 1

, 1 2 0
1 1 2

mL
 ½ª º ° °ª º= = =® ¾« »¬ ¼ −° °¬ ¼ ¯ ¿m

U U U mUT  (c) 

 
therefore, 
 (1) (2)⊥

m
U U  �  

Similarly, 
 

 (1) (2) (1) (2) 2
12 0

, 1 2 0
0 2

g L
mL

g L
 ½ª º ° °ª º= = =® ¾« »¬ ¼ −° °¬ ¼ ¯ ¿k

U U U kUT  (d) 

 
which implies that 
 
 (1) (2)⊥

k
U U  �  

  
Equations (c) and (d) verify that the modal vectors are mutually orthogonal with re-
spect to both the mass and the stiffness matrices. 

 
 
 

Repeated Frequencies 
Suppose now that two roots of the frequency equation are repeated. For example, for a three 
degree of freedom system the frequency equation would take the form 
 
 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) 0 , ,ω ω α ω β ω α α β= − − = � =�  
 
For the purpose of this discussion, and ease of visualization, let us consider such a case for 
a three degree of freedom system. The corresponding results and interpretations can then be 
abstracted to systems with any number of degrees of freedom. 
 

 
 

 
Figure 7.3  Vectors associated with repeated roots (lying in horizontal plane) and vector associated 
with differing root (perpendicular to plane). 

U(1)

U(2)

U(3)
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 Consider a three degree of freedom system with two repeated frequencies, as dis-
cussed above. Thus, let  
 
    2 2 2

1 2ω ω α= = , and 2 2
3ω β=  

 
Then, from the theorem of the previous section, we know that U(3) is orthogonal (with re-
spect to both m and k) to the modal vectors associated with the repeated frequency. We 
therefore know that the latter vectors lie in the plane whose normal is parallel to U(3), as 
depicted in Figure 7.3). However, the aforementioned theorem gives us no further infor-
mation about the modal vectors associated with the repeated frequencies. Nevertheless, we 
do know that the repeated frequencies and associated modal vectors must satisfy Eq. (7.3). 
Hence, 

 
(1) 2 (1)

(2) 2 (2)

α
α

=
=

kU mU
kU mU

 (7.33) 

 
where U(1) and U(2) are two such vectors. Let us multiply the first equation by a scalar con-
stant a, and the second equation by a scalar constant b, where a and b are otherwise arbi-
trary, and add the resulting equations. We then have that 
 
 2α=� �kU mU  (7.34) 
where 
 (1) (2)a b= +�U U U  (7.35) 
 
It is seen that if U(1) and U(2) are modal vectors associated with the repeated frequency α 
then, since a and b are arbitrary, any linear combination of them is also a modal vector. 
Therefore, any vector that is orthogonal to U(3), and hence lies in the plane whose normal is 
parallel to U(3), is a modal vector associated with the repeated frequency. This lack of de-
terminacy is explained algebraically by recalling the nature of the matrix 2ωª º− =¬ ¼k m U 0 . 
Recall that this matrix is singular – that is, at least one row of the matrix can be expressed 
as a linear combination of the other rows. However, when two roots are repeated it implies 
that two rows are linearly dependent on the other rows. This adds an additional degree of 
indeterminacy. For a three degree of freedom system there are thus at most two independent 
rows of 2ωª º− =¬ ¼k m U 0 , but this is reduced to one when two frequencies are repeated. 
This lack of determinacy is reflected in the result that any vector orthogonal to the third 
modal vector is a modal vector associated with the repeated frequency. The above discus-
sion is readily extended to N-degree of freedom systems. Therefore, for systems possessing 
N degrees of freedom, any vector lying in the hyperplane that is orthogonal to the remaining 
modal vectors is a modal vector corresponding to the repeated frequency. For the purpose 
of analysis, it is convenient to choose two mutually orthogonal vectors lying in that 
hyperplane as the modal vectors for the repeated frequency. 
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Example 7.11 
A floating platform is comprised of a board of length L that sits atop two identical 
floats, each of mass m/2 and cross-sectional area A, as indicated. The mass of the 
board is negligible compared with the mass of the floats and the mass density of the 
fluid is ρf. Determine the natural frequencies and natural modes for the floating plat-
form. Assume small rotations of the platform. 
 
 
 
 
 
 
   Figure E7.11-1  Floating platform. 
 
Solution 
The effects of buoyancy may be accounted for through equivalent springs of stiff-
ness k = ρf gA, as shown in Figure E7.11-2, where g is the gravitational acceleration 
(see Section 1.2.4). The equations of motion for the equivalent system can then be 
derived by direct application of Newton’s laws, or by using Lagrange’s equations. 
As the present system is a simple one, the former approach is easily implemented. In 
either case, let us choose the centerspan vertical deflection, yG (positive downward), 
and the rotational displacement, θ (positive clockwise), as the generalized coordi-
nates to describe the motion of this system. Νewton’s Second Law and the corre-
sponding angular momentum principle are then, respectively, expressed for the cur-
rent system as 
 ,    G G GF m y M I θ= =¦ ¦ ����  (a-1, 2) 
 
The kinetic diagram for the deflected system is shown in Figure E7.11-3. Upon im-
plementing Eq. (a-1), we have 
 

 sin sin
2 2G G G
L Lk y k y myθ θ§ · § ·− + − − =¨ ¸ ¨ ¸

© ¹ © ¹
��  

 
which simplifies to the standard form 
 

 2 0G G
ky y

m
+ =��  (b) 

 
 

 
 Figure E7.11-2  Equivalent system. 
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   Figure E7.11-3  Kinetic diagram. 
 
 
Taking moments about point G and implementing Eq. (a-2) gives the relation 
 

 
2

sin cos sin cos 2
2 2 2 2 2 2G G
L L L L m Lk y k yθ θ θ θ θ§ · § · § ·+ − − = −¨ ¸ ¨ ¸ ¨ ¸

© ¹ © ¹ © ¹
��  

 
which, after regrouping terms, reduces to the form   
 
 2 sin cos 0m kθ θ θ+ =��  (c) 
 
For small angle motions of the platform, we may linearize Eq. (c). The equation for 
rotational motion then simplifies to the standard form 
 

 2 0k
m

θ θ+ =��  (d) 

 
Equations (b) and (d) may be expressed in matrix form as 
 

 
0 2 0 0

0 0 2 0
G Gm y k y

m kθ θ
ª º  ½ ª º  ½  ½+ =® ¾ ® ¾ ® ¾« » « »
¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿ ¯ ¿

��
��  (e) 

 
A comparison of the equations for translational and rotational motion, Eqs. (b) and 
(d), reveals two interesting properties of the system. First, we may note that the two 
equations are uncoupled for the chosen generalized coordinates. (Coordinates which 
have this property are referred to as principal, or modal, coordinates and will be dis-
cussed formally in the next chapter.) Second, it is readily seen that 
 

 1 2
2k
m

ω ω= =  � (f) 

 
That is, the natural frequencies for the two motions are the same. Formally, the ei-
genvalue problem for this system takes the form 
 

 
2

2

0(2 ) 0
00 (2 )

Yk m
k m

ω
ω

ª º  ½  ½− =® ¾ ® ¾« » Θ− ¯ ¿ ¯ ¿¬ ¼
 (g) 

 
The corresponding frequency equation is then 
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 2 2 2 2( ) det (2 ) 0k mω ω ωª º= − = − =¬ ¼k m�  (h) 
 
which yields the roots 

 2 2 2,k k
m m

ω =  (i) 

 
The roots of the frequency equation are clearly repeated (not distinct) and, of course, 
yield the identical frequencies stated in Eq. (f). 
 To determine the modal matrices we substitute the frequencies into Eq. (g) and 
solve for U(j) = [Y(j) Θ(j)]T  (j = 1, 2). Since the roots are repeated (the two natural fre-
quencies are the same) this gives, for both modes, 
 

 

(1,2) (1,2)

(1,2) (1,2)

22 0 0

20 2 0

kk m Y
m

kY k m
m

§ ·− + ⋅Θ =¨ ¸
© ¹

§ ·⋅ + − Θ =¨ ¸
© ¹

 (j) 

  
Each of which reduces to 
 
 (1,2) (1,2)0 0 0Y⋅ + ⋅Θ =  (k) 
 
It is seen from Eq. (k) that both of the components of the modal vectors can take on 
any value. Thus, any 2 row column matrix will satisfy Eq. (g) and, therefore, corre-
spond to a modal matrix. Two convenient pairs are given by 
 

 (1) (2)1 0
,   

0 1
 ½  ½= =® ¾ ® ¾
¯ ¿ ¯ ¿

U U  

or 

 (1) (2)1 11 1,   
1 12 2
 ½  ½= =® ¾ ® ¾−¯ ¿ ¯ ¿

U U  

 
Physical depictions of each of the two pairs of modal vectors are sketched in Figure 
E7.11-4. 

 
   Figure E7.11-4  Natural modes for floating platform. 
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7.3.3  Normalization 

It was shown in Section 7.1 that the modal matrices are determined to within, at most, a 
scalar multiple. One way to introduce definiteness to the modal matrix is to set an element 
of the matrix, typically the first element, to one. Alternatively, we can normalize the corre-
sponding vector so that its magnitude is unity. That is, we can render the modal vectors unit 
vectors. When this is done to a set of modal vectors, the modes are said to be normalized 
and the resulting vectors are referred to as the normal modes of the system. In the present 
section, we shall discuss several options for constructing a set of normal modes.  
 A unit vector is a vector whose scalar product with itself is one. In this regard, the 
scale or metric may be defined in several ways. We can set the conventional scalar product 
of a modal vector with itself to unity, or we can set a weighted scalar product of the modal 
vector with itself to unity. For the latter case we have two obvious candidates for the weight 
matrix; the mass matrix or the stiffness matrix. The problem may be stated mathematically 
as follows; since a modal matrix is determined to within a scalar multiplier, a typical modal 
vector for an N-degree of freedom system will be of the form 
 

 

1

2

N

U
U

U

α

 ½
° °
° °= ® ¾
° °
° °¯ ¿

#
U  (7.36) 

 
where α is arbitrary. To construct the corresponding normal mode, we take the scalar prod-
uct of this vector with itself, set the resulting expression to one and solve for α. Then, sub-
stitute the calculated value of α back into Eq. (7.36) to obtain the corresponding normal 
mode. 

Conventional Scalar Product 
To normalize the modal vector in terms of the conventional scalar product, we take the 
product as 
 
 , 1= =U U U UT  (7.37) 
or 

 [ ]
1

2
1 2 1N

N

U
U

U U U

U

α α

 ½
° °
° ° =® ¾
° °
° °¯ ¿

"
#

 

 
Solving for α  and substituting this value back into Eq. (7.37) gives the corresponding nor-
mal mode as 

 

1

2

2 2 2
1 2

1

... N

N

U
U

U U U
U

 ½
° °
° °= ® ¾

+ + + ° °
° °¯ ¿

#
U  (7.38) 
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It may be seen that this result would be obtained by simply dividing the original vector by 
its magnitude. (See Example 7.6.) Equivalently, the arbitrary multiplier, α, is eliminated if 
we simply divide U by its magnitude (the square root of the scalar product of the modal 
vector with itself). Thus, 
 

 1
,

= =UU U
U U U

 (7.39) 

Weighted Scalar Product 
The modal vectors may also be normalized in terms of a weighted scalar product. The arbi-
trary scalar multiplier is eliminated for a given modal vector if we normalize with respect to 
some weight matrix, say the mass matrix or the stiffness matrix. Hence, 
 

 1 1
,

= = =
m m

UU U U
U U U U mUT

 (7.40) 

or 

 1 1
,

= = =
k k

UU U U
U U U U kUT

 (7.41) 

 
Normalizing the modal vectors in a consistent manner allows for the evaluation of the rela-
tive contribution of each mode in a given response. For the analysis of forced vibrations, it 
is often convenient to normalize with respect to the mass matrix as described by Eq. (7.40). 
 
 

Example 7.12 
Determine the normal modes for the two-mass, three-spring, system of Examples 7.1 
and 7.2. Use the mass matrix as the weighting measure. 
 
Solution 
The modes for the system of interest were determined in Example 7.2 to be 
 

 (1) (2)1 1
 ,    

1 1
 ½  ½= =® ¾ ® ¾−¯ ¿ ¯ ¿

U U  (a-1, 2) 

 
The corresponding scalar products with respect to the mass are then 
 

 [ ](1) (1) 0 1
, 1 1 2

0 1
m

m
m

ª º  ½= =® ¾« »
¬ ¼ ¯ ¿m

U U  (b) 

 

 [ ](2) (2) 0 1
, 1 1 2

0 1
m

m
m

ª º  ½= − =® ¾« » −¬ ¼ ¯ ¿m
U U  (c) 
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Substituting Eqs. (a-1) and (b), and Eqs. (a-2) and (c), into Eq. (7.40) gives the de-
sired normal modes, 
 

 (1) (2)1 11 1 ,    
1 12 2m m
 ½  ½= =® ¾ ® ¾−¯ ¿ ¯ ¿

U U  � (d-1,2) 

 
 
 
 

7.4 SYSTEMS WITH VISCOUS DAMPING 

To this point, we have considered the fundamental problem of free vibrations of multi-
degree of freedom systems without damping. The problem is an important one, both as a 
basis for analysis and because we know from our discussions of single degree of freedom 
systems that damped oscillations eventually die out. Nevertheless, there are situations in 
which the effects of damping are important and/or the understanding of these effects is 
germane. We now consider free vibrations of multi-degree of freedom systems with viscous 
damping.  
 Recall from Chapter 6 that the equation of motion for an, unforced, N-degree of free-
dom system with viscous damping is of the general form 
 
 + + =�� �mu cu ku 0  (7.42) 
 
We shall first obtain the free vibration response of an arbitrary N-degree of freedom system 
by solving Eq. (7.42) directly. We will then gain further insight by considering the system 
response in state space. 
 

7.4.1 System Response 

We shall here approach the problem for damped systems in a manner similar to that for 
undamped systems. We thus assume a solution of the form 
 
 ( ) tt eα=u U  (7.43) 
 
where α and the elements of U are constants to be determined. Substituting Eq. (7.43) into 
Eq. (7.42) results in the characteristic value problem 
 
 2α αª º+ + =¬ ¼m c k U 0  (7.44) 
 
The free vibration problem is thus reduced to finding (α, U) pairs that satisfy Eq. (7.44). 
For nontrivial solutions we require that 
 
 2det ( ) 0α α αª º+ + = =¬ ¼m c k �  (7.45) 
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which, when expanded, results in a characteristic equation for the unknown exponent α in 
the form of a polynomial of order 2N. For dissipative systems, the roots of the characteristic 
equation will be complex with negative real parts or, for large damping, they will be real 
and negative. That is  
 
    ( 1, 2,..., )j j ji j Nα µ ω= − ± =  (7.46) 
 
or, for large damping, 
 
    ( 1, 2,..., 2 )j j j Nα µ= − =  (7.47)  
 
where µj > 0. The characteristic equation could also yield roots of both of the aforemen-
tioned types. We shall first consider the case of complex roots of the characteristic equation.  
 For each complex αj there corresponds a U(j) which will, in general, be complex. That 
is,  
 ( ) ( ) ( )    ( 1,2,..., )j j j

R Ii j N= ± =U U U  (7.48) 
 
[For the conjugate root, the matrix operator in Eq. (7.44) is the complex conjugate of the 
original operator. The corresponding vector is then the complex conjugate of the original 
vector.] Substitution of Eqs. (7.46) and (7.48) into Eq. (7.43) gives the corresponding solu-
tion 
 
 { } { }( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ( ) j j j ji t i tj j j j j j j

R I R It i A e i B eµ ω µ ω− + − −= + + −u U U U U  (7.49) 
 
which, after using Euler’s formula, takes the alternate form 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) cos sin cos sinj jt tj j j j j j j

R j j I j jt e A t B t e B t A tµ µω ω ω ω− −ª º ª º= + + −¬ ¼ ¬ ¼
� �� �

u U U  

  (7.50)  
where  
 ( )( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ,    j j j j j jA A B B i A B= + = −

� �
  

 
Proceeding as in Section 2.1 renders the solution to the form 
 
 { }( ) ( ) ( ) ( )( ) cos( ) cos( )j tj j j j

R j j I j jt A e t tµ ω φ ω φ−= − + −
�

u U U  (7.51)  

 
where 
 ( )2 2( ) ( ) ( ) 1 ( ) ( ) ,    tanj j j j j

jA A B B Aφ −= + =
� �� �

  

 
 ( )1 ( ) ( )tan 2j j

j jA Bφ φ π−= − = −
� � �

   

 
The general free vibration response is comprised of a linear combination of all solutions of 
the above form. Hence, 
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 { }( ) ( ) ( ) ( )

1 1

( ) ( ) cos( ) sin( )j

N N
tj j j j

R j j I j j
j j

t t A e t tµ ω φ ω φ−

= =

= = − + −¦ ¦u u U U  (7.52) 

 
where the constants A(j) and φj are determined from the initial conditions. It may be seen that 
the motion of the system at a given frequency consists of two motions that are out of phase 
with one another. It is also seen that a separate rate of decay is associated with each 
(damped) natural frequency. 
  For large damping the characteristic values are all real and negative and the corre-
sponding response is of the form 
 

 
2

( ) ( )

1

( ) j

N
tj j

j

t A e µ−

=

=¦u U  (7.53) 

 
More generally, the response of a damped system may be comprised of some combination 
of the elemental solutions stated in Eqs. (7.52) and (7.53).  
 The analysis and behavior of viscously damped systems that are free from external 
forces is demonstrated by the following example. 
 
 

Example 7.13 
Consider the uniform frame of mass m and length L supported at its ends as shown. 
(a) Determine the free vibration response of the frame if k1 = k2 = k , and no damping 
exists, and (b) when the stiffnesses and dampers are such that k1 = k2 = k , c2 = 2c1 
and 1 2 0.1c km = . (c) Repeat part (b) if c2 = 2c1 and 1 2 1.0c km = . (d) Obtain 
the characteristic values and the general form of the free vibration response if c2 = 
2c1 and 1 2 0.5c km = . 

  
                 Figure E7.13  Uniform frame with viscoelastic supports. 
 
Solution 
The equation of motion for the system is obtained by including the damping forces 
in the development of Section 6.1.3. This gives, for the system under consideration, 
 

1 2 2 1
2 2

2 1 1 2

0 ( ) ( ) 2 2 0 0
0 ( ) 2 ( ) 4 0 2 0

G G G

G

m c c c c Ly y k y
I c c L c c L kLθ θ θ

+ −ª º ª º ½  ½ ª º  ½  ½+ + =® ¾ ® ¾ ® ¾ ® ¾« » « » « »− +¯ ¿ ¯ ¿ ¬ ¼ ¯ ¿ ¯ ¿¬ ¼¬ ¼

�� �
�� �  

  (a) 
 
where, for a uniform frame, IG = mL2/12. The system is seen to be coupled through 
the damping matrix. 
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(a) 
For vanishing damping (c1 = c2 = 0) the natural frequencies and modal vectors are 
easily seen to be 
 

 (1)
1

1
2  ,    

0
k mω  ½= = ® ¾

¯ ¿
U  (b-1, 2) 

 

 2 (2)
2

0
2 6  ,    

1GkL I k mω  ½= = = ® ¾
¯ ¿

U  (b-3, 4) 

 
(Note that the second natural frequency and mode shape correspond to the third 
mode of Example 7.8 since, in that example, the rider was over the center of mass of 
the frame and so did not influence the rotation of the system.) The response of the 
system is then 
 

 ( ) ( )(1) (2)2 6
1 2

1 0
cos cos

0 1
G k k

m m

y
A t A tφ φ

θ
 ½  ½  ½= − + −® ¾ ® ¾ ® ¾
¯ ¿ ¯ ¿ ¯ ¿

 � (c) 

 
 
(b) 
The characteristic value problem for the damped system takes the form 
 

 
{ }

{ }
2

1 2 2 1 1

2 2 2
22 1 1 2

( ) 2 ( ) 2 0
0( ) 2 ( ) 4 2G

m c c k c c L U
Uc c L I c c L kL

α α α

α α α

ª º+ + + −  ½  ½« » =® ¾ ® ¾« »− + + + ¯ ¿¯ ¿¬ ¼

 (d) 

 
Setting the determinant of the square matrix of Eq. (d) to zero (and dividing the re-
sulting equation by mIGω0

4) gives the characteristic equation 
 
 [ ] [ ] [ ]4 3 2

1 2 1 2 1 2ˆ ˆ ˆ ˆ ˆ( ) 4( ) 4(1 3 ) 6( ) 3 0α α α η η α η η α η η= + + + + + + + =�  (e) 
 
where 
 0α̂ α ω=  (f) 
  
 0 2k mω =  (g) 
 
 1 1 2 22  ,    2c mk c mkη η= =  (h-1, 2) 
 
For η2 = 2η1 and η1 = 0.1 we find, using the MATLAB solver “roots,” that  
 

 
(1)
,

(2)
,

ˆ 0.1499 0.9964

ˆ 0.4501 1.6590
a b

a b

i

i

α
α

= − ±

= − ±
 (i)  

 
The first row of Eq. (d) gives, for 2 1c c≠ , 
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 ( )
2 ( ) ( )( )

( ) ( ) ( ) ( )1 2 1
2 1( )

2 1

( ) 2
2

( )

j jj
j j j j

j

m c c k UU P iQ U L
Lc c

α α
α
+ + += − = − +

−
 (j) 

 
where 

 
2( )

1 2( )
2( )

2 1

ˆ ˆ ˆ( )
2

ˆ ( )

j
j jj

j
P

α µ η η µ

α η η

ª º− + + −¬ ¼=
−

 (k) 

 

 

2( )

( )
2( )

2 1

ˆ ˆ2 1

ˆ ( )

j
j

j

j
Q

ω α

α η η

ª º−« »¬ ¼=
−

 (l) 

 
 

2( ) 2 2ˆ ˆˆj
j jα µ ω= +  (m) 

 
Substituting the given parameters and the first of Eq. (i) into Eqs. (j)–(l) gives, for     
j = 1, 
   
 ( )(1) (1)

2 10.0491 0.300U i U L= − +  (n) 
Hence,  

 (1) (1) (1) 0
0.0491 0.300R I

L
i i

 ½  ½= + = +® ¾ ® ¾− −¯ ¿ ¯ ¿
U U U  (o) 

 
Similarly, for j = 2, 
 
 ( )(2) (2)

2 16.05 22.0U i U L= −  (p) 
and hence 
 

 (2) (2) (2) 0
6.05 22.0R I

L
i i

 ½  ½= + = +® ¾ ® ¾−¯ ¿ ¯ ¿
U U U  (q) 

 
Substituting Eqs. (o) and (q) into Eq. (7.52) gives the free vibration response of the 
system, 

 

0

0

0.150(1)
0 1 0 1

0.450(2)
0 2 0 2

( ) 1 0
cos(0.996 ) sin(0.996 )

( ) 0.0491 0.300

1 0
  cos(1.66 ) sin(1.66 )

6.05 22.0

G t

t

y t L
A e t t

t

A e t t

ω

ω

ω φ ω φ
θ

ω φ ω φ

−

−

ª º ½  ½  ½= − + −® ¾ «® ¾ ® ¾ »− −¯ ¿ ¯ ¿ ¯ ¿¬ ¼
ª º ½  ½+ − + −«® ¾ ® ¾ »−¯ ¿ ¯ ¿¬ ¼

  � (r) 
 
where ω0 is defined by Eq. (g). The system is seen to move with damped harmonic 
vibrations that decay exponentially with time. 
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(c) 
Substituting η2 = 2.0 and η1 = 1.0 into Eq. (e) and finding the corresponding zeros of 
the characteristic equation using the MATLAB solver “roots,” we obtain 
 
 ˆ 0.2611, 0.6470, 1.9406, 9.1514α = − − − −  (s) 
 
In this case the characteristic values are all real. To obtain the associated vectors for 

2 1c c≠  we have, from the first row of Eq. (d),  
 

 
2 ( )( )

( ) ( )1 2
2 1( )

2 1

ˆ ˆ ( ) 1
   ( 1 4)

ˆ ( ) 2

jj
j j

jU U j
L

α α η η
α η η

+ + += − = −
−

 (t) 

 
Substitution of each root listed in Eq. (s) into Eq. (t) gives the corresponding vectors 
 

 (1) (2) (3) (4), , ,
2.182 1.615 1.088 12.52

L L L L ½  ½  ½  ½= = = =® ¾ ® ¾ ® ¾ ® ¾− −¯ ¿ ¯ ¿ ¯ ¿ ¯ ¿
U U U U  (u) 

 
Finally, we substitute each (α, U) pair into Eq. (7.53) to obtain the free vibration re-
sponse 
 

 

0 0

0 0

0.261 0.647(1) (2)

1.94 9.15(3) (4)

1 1
2.18 1.62

1 1
                        

1.09 12.5

G t t

t t

y L
A e A e

A e A e

ω ω

ω ω

θ
− −

− −

 ½  ½  ½= +® ¾ ® ¾ ® ¾−¯ ¿ ¯ ¿ ¯ ¿
 ½  ½+ +® ¾ ® ¾−¯ ¿ ¯ ¿

 � (v) 

 
For this case we see that the system response is a purely decaying motion. 
 
(d) 
Substituting η2 = 1.0 and η1 = 0.5 into Eq. (e) and finding the corresponding zeros of 
the characteristic equation using the MATLAB solver “roots,” we obtain 
 
 ˆ 0.6129, 4.0251, 0.6810 0.8673iα = − − − ±  (w) 
 
We see that for this case we have both real and complex roots. The free vibration re-
sponse is then  

 

0 0

0

0.613 4.03(1) (2)

0.681(3)
0 3 0 3

1 1
2.98 11.1

1 0
  cos(0.867 ) sin(0.867 )

1.04 0.616

G t t

t

y L
A e A e

A e t t

ω ω

ω

θ

ω φ ω φ

− −

−

 ½  ½  ½= +® ¾ ® ¾ ® ¾
¯ ¿ ¯ ¿ ¯ ¿

ª º ½  ½+ − + −«® ¾ ® ¾ »− −¯ ¿ ¯ ¿¬ ¼
  � (x) 
 
where the corresponding vectors are obtained by substituting each of the two real 
roots listed in Eq. (w) into Eq. (t) and substituting the real and imaginary parts of the 
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complex roots into Eq. (j). For this last case we see that the system response is com-
prised of a purely decaying motion together with decaying harmonic oscillations.  

 
 
 
 To offset the lack of determinacy of the characteristic vectors, an element of the vec-
tor can be set to unity. However, as for undamped systems, it is often desirable to introduce 
a common scale and thus to normalize the vectors in some way. One approach is to extend 
the procedures employed for undamped systems. In this regard, complex characteristic vec-
tors can be normalized by setting the Hermitian scalar product of the vector with itself to 
unity. That is we set the scalar product of a vector with its complex conjugate to unity. Stat-
ed mathematically, to normalize U(j) we may set 
  
 { }( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1j j j j j j j j j j

R I R I R R I Ii iª º= − + = + =¬ ¼U U U U U U U U U U
TC T T  (7.54) 

 
where UC represents the complex conjugate of U. Equivalently, to obtain the normalized 
vector, the characteristic vector may be divided by the square root of the aforementioned 
product (its Hermitian length). Hence, 
  

 
( )

( )

( ) ( ),

j
j

j j
= UU

U UC
 (7.55) 

 
The characteristic vectors can be similarly scaled by dividing each by the square root of the 
corresponding weighted scalar product of the vector and its conjugate, taken with respect to 
a real symmetric system matrix such as m or k. Hence,   
 

 
( )

( )

( ) ( ),

j
j

j j
=

m

UU
U UC

 (7.56) 

 
Characteristic vectors associated with real characteristic values will be real and therefore 
can be normalized as discussed in Section 7.3.3. Other means of normalization for damped 
systems are suggested in the next section. Finally, in contrast to the modal vectors of sys-
tems with no damping, the characteristic vectors associated with damped systems are gen-
erally not mutually orthogonal in the conventional sense. To understand their relation we 
next examine the corresponding problem in the context of its state space representation. 
This will yield more general orthogonality relations and also suggest procedures of normal-
izing vectors, both of which will be pertinent to forced vibration of damped systems. 
 
 

7.4.2  State Space Representation 

As an alternative to the approach of Section 7.4.1 we may consider the vibration problem in 
the context of its state space (the space of the generalized displacements and velocities). It 
will be seen that the two approaches lead to the same results and that additional insight into 
the nature of the characteristic vectors is gained from the latter formulation.  
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Formulation and Solution 
To formulate the problem in its state space let us first write the velocity matrix as 
 
 =� �u Iu  (7.57) 
 
where I represents the N N×  identity matrix. Next, let us pre-multiply Eq. (7.42) by m-1 
and solve for ��u . This gives 
 
 1 1− −= − −�� �u m ku m cu  (7.58) 
 
Equations (7.57) and (7.58) may be combined in matrix form as 
 
 =�z Sz  (7.59) 
where 

 
 ½= ® ¾
¯ ¿�
u

z
u

 (7.60) 

is the 2 1N ×  state vector, and 
 

 1 1− −

ª º= « »− −¬ ¼

0 I
S

m k m c
 (7.61) 

 
is the 2 2N N× system matrix. (Note that, in general, S is not symmetric.) The free vibra-
tion problem is now recast in terms of the state vector z. We wish to solve Eq. (7.59).  
 To solve for the state vector as a function of time let us seek solutions of the form 
 
 ˆ teα=z U  (7.62) 
where 

 ˆ  ½= ® ¾
¯ ¿

U
U

V
 (7.63) 

 
is a 2 1N ×  array of, as yet, unknown (complex) constants that we have partitioned into two 

1N ×  vectors U and V for convenience. It is evident that V = αU. We next substitute Eq. 
(7.62) into Eq. (7.59) and arrive at the (complex) eigenvalue problem 
 
 ˆ ˆαª º− =¬ ¼S I U 0  (7.64) 

where 

 ˆ ª º= « »
¬ ¼

I 0
I

0 I
 

 
is the 2 2N N× identity matrix. The characteristic equation for the above eigenvalue prob-
lem is then 
 
 ˆdet ( ) 0α αª º− = =¬ ¼S I �  (7.65) 
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which yields 2N roots, α = α1, α2, ... α2N. For each eigenvalue αj (j = 1, 2, …, 2N) there is 
an associated eigenvector ( )ˆ .jU  More precisely, ( )ˆ jU  is said to be the right eigenvector of 
the nonsymmetric matrix S. The solution of Eq. (7.59) is then comprised of a linear combi-
nation of all such solutions. Hence, 
 

 
2

( ) ( )

1

ˆˆ( ) j

N
tj j

j

t A eα

=

=¦z U  (7.66) 

 
It follows from Eqs. (7.60), (7.63) and (7.66) that 
 

 
2

( ) ( )

1

ˆ( ) j

N
tj j

j

t A eα

=

=¦u U  (7.67) 

 
The response corresponding to complex roots with negative real parts or to negative real 
roots follows directly from the development of the preceding section beginning with Eqs. 
(7.46) and (7.47), and leading to Eqs. (7.52) and (7.53). It is pertinent to note that the eigen-
values, αj (j = 1, 2, …, 2N), and the associated subeigenvectors, U(j), of S correspond direct-
ly with the roots and vectors of the solution described in Section 7.4.1. This may be seen by 
utilizing the identity  
 

 11 12 1
11 22 21 11 12

21 22

−= −
A A

A A A A A
A A

 (7.68) 

 
for the determinant of a partitioned matrix in Eq. (7.65) and noting that [ ] 1 1 .α α− −=I I  Do-
ing this results in a characteristic equation that is identical to Eq. (7.45). The roots of Eq. 
(7.45) therefore correspond to the eigenvalues of S. It follows that the vector comprised of 
the first N rows of the eigenvector of the system matrix S, the subvector U appearing in Eq. 
(7.63), corresponds to the characteristic vector U of Eq. (7.44) for the same value of α. The 
various forms of Eq. (7.67) for complex and real eigenvalues therefore correspond directly 
to the forms derived in the previous section by way of direct solution of the equation of 
motion, Eq. (7.42).  
 
 

Example 7.14 
Determine the response of the system of Example 7.13(d) using the approach of this 
section. 
 
Solution 
It is convenient to nondimensionalize the equations of motion before beginning. (We 
effectively did this for Example 7.13 when we expressed the characteristic equation 
in terms of ratios of the system parameters and divided the translation of the center 
of mass by the length of the frame.) Formally, let us introduce the normalized dis-
placement 
 G Gy y L=  (a) 
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and the normalized time scale 
 

 0
2kt t
m

τ ω= =  (b) 

 
It follows that for any function f, 
  

 0
df df d df
dt d dt d

τ ω
τ τ

= =  (c) 

 
Introducing Eqs. (a)–(c) into Eq. (a) of Example 7.13 and dividing the first row by m 
and the second row by IG = mL2/12 renders the equation of motion to the 
nondimensional form 
 

2 2
1 2 2 1

2 2
2 1 1 2

( ) ( ) 21 0 1 0 0
6( ) 3( )0 1 0 3 0

G GG dy d yd y d
d dd d

η η η η ττ
η η η η θ τ θθ τ

+ − ½ ª ºª º  ½ ª º  ½  ½° °+ + =® ¾ ® ¾ ® ¾ ® ¾« »« » « »− +° °¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿ ¯ ¿¬ ¼¯ ¿
 (d) 

 
We next construct the pertinent system matrix S by substituting the nondimensional 
mass, damping and stiffness matrices into Eq. (7.61). Hence, 
 

 
1 2 2 1

2 1 1 2

0 0 1 0
0 0 0 1
1 0 ( ) ( ) 2
0 3 6( ) 3( )

η η η η
η η η η

ª º
« »
« »=
« »− − + − −
« »− − − − +¬ ¼

S  (e) 

 
The eigenvalue problem for the free vibration problem is then 
 

 

1

2

11 2 2 1

22 1 1 2

ˆ 0 1 0 0
ˆ0 0 1 0

ˆ1 0 ( ) ( ) 2 0
ˆ0 3 6( ) 3( ) 0

U
U
V
V

α
α

η η α η η
η η η η α

−ª º  ½  ½
« » ° ° ° °− ° ° ° °« » =® ¾ ® ¾« »− − + + − − ° ° ° °« » ° ° ° °− − − − + − ¯ ¿¯ ¿¬ ¼

 (f) 

 
We next require that the determinant of the square matrix of Eq. (f) vanishes. This 
results in the characteristic equation 
 
 [ ] [ ] [ ]4 3 2

1 2 1 2 1 2ˆ ˆ ˆ ˆ ˆ( ) 4( ) 4(1 3 ) 6( ) 3 0α α α η η α η η α η η= + + + + + + + =�  (g) 
 
which is seen to be identical to the characteristic equation of Example 7.13, as it 
should be. The roots of the characteristic equation, for η2 = 1.0 and η1 = 0.5, are then 
  
 ˆ 0.6129, 4.0251, 0.6810 0.8673iα = − − − ±  (h) 
 
Substituting the first two rows of Eq. (f) into the third row and solving the resulting 
expression for U2 in terms of U1 gives, for each respective characteristic value, 
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 (1) (2) (3,4)1 1 1
, ,

2.98 11.1 1.04 0.616i
 ½  ½  ½= = =® ¾ ® ¾ ® ¾−¯ ¿ ¯ ¿ ¯ ¿B

U U U  (i) 

  
The response of the system is then 
 

0 0

0

0.613 4.03(1) (2)

0.681(3)
0 3 0 3

1 1
2.98 11.1

1 0
  cos(0.867 ) sin(0.867 )

1.04 0.616

G t t

t

y L
A e A e

A e t t

ω ω

ω

θ

ω φ ω φ

− −

−

 ½  ½  ½= +® ¾ ® ¾ ® ¾
¯ ¿ ¯ ¿ ¯ ¿

ª º ½  ½+ − + −«® ¾ ® ¾ »− −¯ ¿ ¯ ¿¬ ¼
  � (j) 

 
 

Orthogonality 
The (right) eigenvectors ( )ˆ jU (j = 1, 2, …, 2N) of the system matrix S are not, in general, 
mutually orthogonal in the conventional sense. However, a broader view of the problem 
reveals an orthogonality relation between the right eigenvectors and the corresponding 
members of a related set of vectors, the left eigenvectors of S. We establish this relation in 
the following development. Toward this end, let us consider the eigenvalue problem 
 
 ˆ ˆα=W S WT T  (7.69) 
 
where S is the system matrix defined by Eq. (7.61) and we wish to determine ˆ( , )α W  pairs 
that satisfy this equation. The 2 1N ×  (complex) vector Ŵ is referred as the left eigenvector 
of S, due to its positioning in Eq. (7.69). Taking the transpose of Eq. (7.69) gives the equiv-
alent relation 
 ˆ ˆα=S W WT    
 
which may also be written in the form 
 
 ˆ ˆαª º− =¬ ¼S I W 0T  (7.70)  

 
The problem is therefore equivalent to the determination of the eigenvalues and eigenvec-
tors of ST. Since the determinant of a matrix is equal to the determinant of its transpose, we 
have that 
 ˆ ˆ ( ) 0α α α− = − = =S I S I �T  (7.71)  

 
Thus, the eigenvalues of ST are the same as those of S (α = α1, α2, ... α2N ). Substitution of 
each eigenvalue into Eq. (7.64) and solving for the corresponding vector components gen-
erates the associated right eigenvectors ( )ˆ jU (j = 1, 2, …, 2N). Likewise, substitution of each 
eigenvalue into Eq. (7.70) and solving for the corresponding vector components generates 
the associated left eigenvectors ( )ˆ jW (j = 1, 2, …, 2N). It follows that ( )ˆ jU and ( )ˆ lW respec-
tively satisfy the equations 
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 ( ) ( )ˆ ˆj j
jα=SU U  (7.72) 

 
 ( ) ( )ˆ ˆl l

lα=W S WT T  (7.73) 
 
Let us multiply Eq. (7.72) on the left by ( )ˆ lW T and multiply Eq. (7.73) on the right by 

( )ˆ ,jU and then subtract the latter from the former. Doing this gives the relation 
 
 ( ) ( )ˆ ˆ0 ( ) l j

j lα α= − W UT  (7.74)  
 
It follows that if j lα α≠  then 
 
 ( ) ( )ˆ ˆ0 l j= W UT  (7.75) 
 
Hence, for distinct eigenvalues, the left eigenvectors of S are mutually orthogonal to the 
right eigenvectors and vice versa. The modal vectors are thus orthogonal in this sense. In 
addition, it follows from Eq. (7.72) or (7.73) that 
 
 ( ) ( )ˆ ˆ 0l j =W S UT  (7.76)  
 
That is, for distinct eigenvalues, the weighted scalar product with respect to S of the left 
eigenvectors with the right eigenvectors vanishes. Thus, for distinct eigenvalues, the left 
and right eigenvectors are orthogonal to one another in this sense as well. The above 
orthogonality relations will prove useful when considering forced vibration of damped sys-
tems.  
 

Normalization 
The othogonality relations of Eqs. (7.75) and (7.76) suggest normalization of the eigenvec-
tors by setting 
 
 ( ) ( )ˆ ˆ 1j j =W UT  (7.77)  
 
or by setting 
 ( ) ( )ˆ ˆ 1j j =W S UT  (7.78)  
 
The state space formulation and the associated orthogonality conditions and normalization 
procedure will prove useful when considering forced vibration of damped multi-degree of 
freedom systems. 
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7.5  EVALUATION OF AMPLITUDES AND PHASE ANGLES 

It was shown in this chapter that the free vibration response of discrete systems consists of a 
linear combination of the modal vectors with harmonic time signatures (undamped sys-
tems), or exponentially decaying time signatures – harmonic or otherwise (damped sys-
tems), the amplitudes and phase angles of which are evaluated by imposing the initial con-
ditions. For an N-degree of freedom system this results in a system of 2N equations in the 
2N unknowns A(j), φj (j = 1, 2, …, N), which may be solved by conventional algebraic 
means as demonstrated in Examples 7.3 and 7.4. As an alternative to solving simultaneous 
algebraic equations, whether for numerical reasons or for fundamental purposes, the ampli-
tudes and phase angles can be evaluated explicitly by exploiting the mutual orthogonality of 
the modal vectors. This procedure is discussed in the present section. We will first discuss 
this for undamped systems. 
 
 

7.5.1  Undamped Systems 
Consider an N-degree of freedom system which is in the initial configuration 
 
 0 0(0) , (0)= =�u u u v   
 
at the instant it is released. Let us recall the general forms of the free vibration response for 
N-degree of freedom systems without damping, Eqs. (7.10) and (7.11): 
 

 ( ) ( ) ( ) ( ) ( )
1 2

1 1

( ) cos sin cos( )
N N

j j j j j
j j j j

j j

t A t A t A tω ω ω φ
= =

ª º= + = −¬ ¼¦ ¦u U U   

 
where 
 2 2( ) ( ) ( )

1 2
j j jA A A= +  

 
 ( )1 ( ) ( )

2 1tan j j
j A Aφ −=  

 
and ωj and U(j) correspond to the jth frequency-mode pair of the undamped system. Impos-
ing the initial conditions on the above modal expansion results in the identities 
 

 ( ) ( )
0 1

1

N
j j

j

A
=

=¦u U   

 

 ( ) ( )
0 2

1

N
j j

j
j

Aω
=

=¦v U   

 
When expanded, the above equalities represent 2N equations in 2N unknowns that may be 
solved for the indicated amplitudes and phase angles. Let us next multiply the above rela-
tions by ( ) .lU mT  Hence, 

www.konkur.in

Niraj


Niraj




372 Engineering Vibrations 

 

 ( ) ( ) ( ) ( )
0 1

1

N
l l j j

j

A
=

=¦U mu U mUT T   

 

 ( ) ( ) ( ) ( )
0 2

1

N
l l j j

j
j

Aω
=

=¦U mv U mUT T   

 
Exploiting the mutual orthogonality of the modal vectors, Eq. (7.29), renders the above 
expressions to the forms 
 
 ( ) ( )

1
j jA = 0  (7.79) 

and 
 ( ) ( )

2
j jA = 1  (7.80) 

where 

 
( )

( ) 0
2( )

j
j

j
=

m

U mu

U

T

0  (7.81)  

 

 
( )

( ) 0
2( )

j
j

j
jω

=
m

U mv

U

T

1  (7.82) 

 
In doing this we have decoupled the modes, and have thus reduced the problem to evaluat-
ing the above expressions. It should be noted that if the above development is paralleled 
with the mass matrix replaced by the stiffness matrix, we again arrive at Eqs. (7.79) and 
(7.80) but with the equivalent statements 
 

 
( )

( ) 0
2( )

j
j

j
=

k

U ku

U

T

0  (7.83) 

 

 
( )

( ) 0
2( )

j
j

j
jω

=
k

U k v

U

T

1  (7.84) 

 
Either form, Eqs. (7.81) and (7.82) or Eqs. (7.83) and (7.84) may be used. The former form 
would evidently be advantageous when the particular system is coupled through the stiff-
ness matrix while the latter form would be advantageous when the system is coupled 
through the mass matrix. The amplitudes and phase angles are then respectively evaluated 
as 
 2 2( ) ( ) ( )j j jA = +0 1  (7.85) 
and 
 ( )1 ( ) ( )tan j j

jφ −= 1 0  (7.86) 
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Finally, for a system that is released from rest, v0 = 0. It follows that φj = 0 (j = 1, 2, …, N) 
and   

 
( ) ( )

( ) ( ) 0 0
2 2( ) ( )

( 1, 2,..., )
j j

j j

j j
A j N= = = =

m k

U mu U ku

U U

T T

0  (7.87) 

 
The expressions established in this section allow for the direct evaluation of the amplitudes 
and phase angles for any and all modes of a given undamped N-degree of freedom system 
in free vibration. 
 
 

7.5.2 Systems with General Viscous Damping 

The evaluation of the amplitudes and phase angles for systems with general (linear) viscous 
damping is achieved in an analogous manner to that for undamped systems. It is convenient 
to consider the evaluation in state space. Toward this end, consider a damped N-degree of 
freedom system that is in the initial configuration  
 
 0(0) =z z   
where 

 0
0

0

 ½
= ® ¾
¯ ¿

u
z

v
  

 
is the state vector at t = 0. Let us next recall the general form of the response in state space 
given by Eq. (7.66). Hence, 
 

 
2

( ) ( )

1

ˆˆ( ) j

N
tj j

j

t A eα

=

=¦z U   

 
where αj and ( )ˆ jU correspond to the jth (complex) eigenvalue and corresponding (complex) 
right eigenvector of the system matrix S and A(j) is a complex amplitude. Imposing the ini-
tial conditions on the above expansion yields the identity 
 

 
2

( ) ( )
0

1

ˆˆ
N

j j

j

A
=

=¦z U   

 
When expanded, the above equality represents 2N equations in 2N unknowns that may be 
solved for the indicated (complex) amplitudes. Let us next multiply the above expression on 
the left by the product ( )ˆ ,lW ST  where ( )ˆ lW is the lth left eigenvector of S. This results in 
the identity 
 

 
2

( ) ( ) ( ) ( )
0

1

ˆ ˆ ˆˆ
N

l j l j

j

A
=

=¦W Sz W SUT T   
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Exploiting the statement of orthogonality of the left eigenvectors of S with the correspond-
ing right eigenvectors of S, Eq. (7.76), and solving for ( )ˆ jA  gives the relation 
 

 
( )

( ) 0
( ) ( )

ˆ
ˆ ( 1,2,..., 2 )ˆ ˆ

j
j

j j
A j N= =W Sz

W SU

T

T
 (7.88) 

 
The expressions established in this section allow for the direct evaluation of the complex 
amplitudes, and hence of the amplitudes and phase angles associated with any and all 
modes of a given viscously damped N-degree of freedom system in free vibration. 
 
 
 

7.6  CONCLUDING REMARKS 

The vibration of multi-degree of freedom systems is germane to a variety of applications 
and engineering systems. In this chapter we laid the groundwork for the study of such sys-
tems by considering the motion of systems when they are free from externally applied dy-
namic forces and moments. It was seen that the free vibration problem reduces to the solu-
tion of an eigenvalue problem, the eigenvalues of which correspond to the squares of the 
natural frequencies for an undamped system and the eigenvectors of which correspond to 
the associated natural modes (modal matrices/vectors). The characteristic equation for such 
problems is therefore referred to as the frequency equation for the system. Through this 
analysis it was seen that a discrete system will possess the same number of natural frequen-
cies and modes as degrees of freedom, with their values and form dependent upon the val-
ues of the physical parameters that describe the system. Each mode represents a natural 
motion of the system that oscillates at the corresponding natural frequency, and the individ-
ual elements of the modal vector physically represent the relative amplitudes of the motions 
of the individual members that comprise the system when vibrating in that mode. The free 
vibration response of a discrete system is comprised of a linear combination of the natural 
modes undergoing harmonic vibration. The degree of participation of the various modes is 
measured by their amplitudes and associated phase angles, which depend on the specific 
initial conditions imposed on the system. For systems with viscous damping the characteris-
tic values and associated vectors are generally complex, with the imaginary part of each 
eigenvalue corresponding to a (damped) natural frequency and the (negative) real part of 
the eigenvalue being an associated damping factor. A discussion of the general properties of 
modal vectors, including normalization and orthogonality, was presented. These properties 
will be central to the understanding of vibrations of discrete systems subjected to applied 
dynamic loading, which is studied in the next chapter. 
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PROBLEMS 

7.1 Consider the constrained hook and ladder system of Problem 6.7 when kT = kL2 and 
mc = 10mL = 10m. (a) Determine the natural frequencies and modal vectors for the 
system. (b) Sketch and label the physical configuration of the system for each mode. 
(c) Establish the free vibration response of the system.  

     

 
                     Fig. P7.1     Fig. P7.2 
 
 
7.2 Consider the tram of Problem 6.8 when mC = 5mF. (a) Determine the natural frequen-

cies and modal vectors for the system. (b) Sketch and label the physical configuration 
of the system for each mode. (c) Establish the free vibration response of the system. 
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7.3 Consider the coupled pendulums of Problem 6.9. (a) Determine the natural frequen-
cies and modal vectors for the system. (b) Sketch and label the physical configuration 
of the system for each mode. (c) Establish the free vibration response of the system. 

 

 
    Fig. P7.3 
 
 
7.4 Consider the special case where the pendulum system of Problem 7.3 has the proper-

ty that k m g L� . If the pendulums are released from rest when in the configura-
tion θ1(0) = θ0 and θ2(0) = 0, show that the response is of the form 

 

 1 1 0

2 2 0

( ) ( )cos cos cos
( ) ( )sin sin sin

a b a

a b a

t A t t t t
t A t t t t

θ ω θ ω ω
θ ω θ ω ω

≅ =
≅ =

  

where 
 2 1 2 1( ) 2, ( ) 2a bω ω ω ω ω ω= + = −   

 
 Plot the response. What type of behavior does the pendulum system exhibit? 
 
 
7.5 Consider the system of Problem 6.15. 

(a) Determine the natural frequencies 
and modal vectors for the system if 
the wheel is of radius R and I = 2mR2. 
(b) Sketch and label the physical con-
figuration of the system for each 
mode. (c) Establish the free vibration 
response of the system. 

 
 
 
                                Fig. P7.5 
 
 
7.6 Suppose each mass of the system of Problem 7.5 is displaced a distance u0 and held 

in that position. If the masses are subsequently released from rest, what is the re-
sponse of the system? 
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7.7 The brakes of the truck of Problem 7.1 are engaged and hold it stationary while a 
fireman slowly mounts the ladder, bringing it to equilibrium at an angle of deflection 
θ0. At a certain instant, the fireman jumps off the ladder and the brakes are simultane-
ously released by the driver. Determine the response of the system. 

 
7.8 The coupled pendulums of Problem 7.3 are at rest when the right bob is struck, giving 

it a velocity v0. Determine the response of the system. 
 
7.9 Consider the two-mass three-spring system of Example 7.2. Suppose a rigid brace is 

slowly inserted between the two masses so that one mass is displaced a distance u0 to 
the left and the other a distance u0 to the right. Determine the response of the system 
if the brace is suddenly removed. 

 
7.10 Consider the inverted pendulum of Problem 6.14. (a) Determine the natural frequen-

cies and modal vectors for the system if m1 = 5m2 and the length of the massless rod 
is L. (b) Sketch and label the physical configuration of the system for each mode. (c) 
Establish the free vibration response of the system. 
 

 
           Fig. P7.10            Fig. P7.11 
 
7.11 Consider the system of Problem 6.16. (a) Determine the natural frequencies and 

modal vectors for the system if I2 = 2I1= 2mR2. (b) Sketch and label the physical con-
figuration of the system for each mode. (c) Establish the free vibration response of the 
system.  

 
 
 
 
 
7.12 Consider the system of Problem 6.17 (R2 = 2R1 = 2R, I0 = mR2). 

(a) Determine the natural frequencies and modal vectors for the 
system. (b) Sketch and label the physical configuration of the 
system for each mode. (c) Establish the free vibration response 
of the system.                                                         
                                        Fig. P7.12 
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7.13 Consider the elastically restrained fan belt of Problem 6.18, with k2 = 2k1 = 2k, m2 = 
m1 = m. (a) Determine the natural frequencies and modal vectors for the system. (b) 
Sketch and label the physical configuration of the system for each mode. (c) Establish 
the free vibration response of the system.              
 

   Fig. P7.13 
 
 
7.14 Consider the system of Problem 6.19 when mb = 2ma = 2m and kT = kL2. (a) Deter-

mine the natural frequencies and modal vectors for the system. (b) Sketch and label 
the physical configuration of the system for each mode. (c) Establish the free vibra-
tion response of the system. 

 

 
                  Fig. P7.14    Fig. P7.15                                                
 
 
7.15 Consider the offshore platform of Problem 6.20. (a) Determine the natural frequen-

cies and modal vectors for the platform when L = 10R. (b) Sketch and label the phys-
ical configuration of the system for each mode. (c) Establish the free vibration re-
sponse of the platform. 

 
 
7.16 Consider the system of Problem 6.22 (Figure P7.16) for the case where kT/L2 = k2 = k3 

= k and m1/2 = m2 = m3 =m. (a) Determine the natural frequencies and modal vectors 
for the system. (b) Sketch and label the physical configuration of the system for each 
mode. (c) Establish the free vibration response of the system. 
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     Fig. P7.16 
 
 
 
7.17 Consider the mechanism of Problem 6.23 when mw = 3m and kT = kR2 and R = L (the 

unstretched spring length). (a) Determine the natural frequencies and modal vectors 
for the system. (b) Sketch and label the physical configuration of the system for each 
mode. (c) Establish the free vibration response of the system. 

 

 
    Fig. P7.17 
 
 
 
7.18 Consider the floating system of Problem 6.24 when mb = ma /2 and k = ρf gR2 /2, (a) 

Determine the natural frequencies and modal vectors for the system. (b) Sketch and 
label the physical configuration of the system for each mode. (c) Establish the free 
vibration response of the system. 

 

          Fig. P7.18 
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7.19 Consider the shaft system of Problem 6.25. (a) Determine the natural frequencies and 
modal vectors for the system. (b) Sketch and label the physical configuration of the 
system for each mode. (c) Establish the free vibration response of the system. 

 

 
   Fig. P7.19 
 
 
7.20 Consider the triple pendulum of Problem 6.26. (a) Determine the natural frequencies 

and modal vectors for the system. (b) Sketch and label the physical configuration of 
the system for each mode. (c) Establish the free vibration response of the system. 

 

 
          Fig. P7.20                                                        Fig. P7.21 
 
7.21 Consider the system of Problem 6.27, when mb = mw = 3m and kT = kR2 and R = L. (a) 

Determine the natural frequencies and modal vectors for the system. (b) Sketch and 
label the physical configuration of the system for each mode. (c) Establish the free 
vibration response of the system. 

 
 
 
7.22 Consider the coupled pendulums of Problem 

6.29. (a) Determine the natural frequencies 
and modal vectors for the system. (b) Sketch 
and label the physical configuration of the 
system for each mode. (c) Establish the free 
vibration response of the system. 

 
                                                                                     
                           
                                                        Fig. P7.22 
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7.23 Consider the frame system of Problem 6.30 with mb/ma = 0.25. (a) Determine the 
natural frequencies and modal vectors for the system. (b) Sketch and label the physi-
cal configuration of the system for each mode. (c) Establish the free vibration re-
sponse of the system. 

         
                                                           Fig. P7.23 
 
7.24 Consider the conveyor belt system of Problem 6.10 with m2 = m1 = m and R1 = R2 = 

R. (a) Determine the natural frequencies and modal vectors for the system. (b) Sketch 
and label the physical configuration of the system for each mode. (c) Establish the 
free vibration response of the system. 

 
 

 
                                                            Fig. P7.24 
 
7.25 Consider the dumbbell satellite of Problem 6.13, where the undeformed length of the 

access tube is L. (a) Determine the natural frequencies and modal vectors for two di-
mensional motion of the system. (b) Sketch and label the physical configuration of 
the system for each mode. (c) Establish the free vibration response of the system. 

 
   Fig. P7.25 
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7.26 The submarine of Problem 6.21 is modeled as shown, for simple calculations of lon-
gitudinal motion. The mass of the hull and frame structure is 2ms and that of the inte-
rior compartment is mc = 0.5ms. The hull and interior compartment are separated by 
springs of stiffness k, and the longitudinal stiffness of the hull is ks (= 2k) as indicated. 
(a) Determine the natural frequencies and modes for the boat. (b) Sketch and label the 
physical configuration of the structure for each mode. (c) Establish the free (longitu-
dinal) vibration response of the submarine. 

 

 
    Fig. P7.26 
 
 
7.27 Consider the elastically coupled two wheel system of Problem 6.28. The vehicle is 

comprised of two wheels, each of mass m and radius rw, that are connected by an 
elastic coupler of effective stiffness k and undeformed length L. The system rolls 
without slip around a circular track of radius R, as shown. (a) Determine the natural 
frequencies and modal vectors for the specific vehicle where L = 4rw and R = 20rw. 
(b) Sketch and label the physical configuration of the structure for each mode. (c) De-
termine the small angle motion of the vehicle if it is released from rest when the front 
wheel is in the position θ01 and the rear wheel is in the position θ02, where the angles 
are measured from the bottom of the valley. 

 
 

 
   Fig. P7.27 
 
 
7.28 Consider the aircraft of Problem 6.31 where the wings are modeled as equivalent 

rigid bodies with torsional springs of stiffness kT at the fuselage wall, each wing pos-
sesses moment of inertia Ic about its respective connection point and the fuselage has 
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moment of inertia Io = Ic about its axis. Determine the natural frequencies and modal 
vectors for pure rolling motion of the fuselage of radius R.  

 

 
   Fig. P7.28 
 
7.29 Normalize the modes for the hook and ladder system of Problem 7.1, (a) in the con-

ventional sense and (b) with respect to the mass matrix. 
 
 
7.30 Normalize the modes for the tram system of Problem 7.2, (a) in the conventional 

sense and (b) with respect to the mass matrix. 
 
 
7.31 Normalize the modes for the conveyor belt system of Problem 7.24, (a) in the con-

ventional sense and (b) with respect to the mass matrix. 
 
 
7.32 Normalize the modes for the shaft system of Problem 7.19, (a) in the conventional 

sense and (b) with respect to the mass matrix. 
 
 
7.33 Verify that the modes computed in Problem 7.1 are mutually orthogonal with respect 

to both m and k. 
 
 
7.34 Verify that the modes computed in Problem 7.2 are mutually orthogonal with respect 

to both m and k. 
 
 
7.35 Verify that the modes computed in Problem 7.24 are mutually orthogonal with re-

spect to both m and k. 
 
 
7.36 Verify that the modes computed in Problem 7.19 are mutually orthogonal with re-

spect to both m and k. 
 
 
7.37 Determine the general free vibration response of a two-mass three-spring three-

damper system where m1 = m2 = m, k1 = k2 = k3 = k, c1 = c2 = c3 = c and c2/km = 0.04. 
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7.38 Determine the general free vibration response of the system of Problem 6.32 when mb

 

= 2ma = 2m, kT = kL2 and c2/km = 0.04.  
 

 
                    Fig. P7.38                              Fig. P7.39 
 
7.39 Determine the general free vibration response of the system of Problem 6.34 when m1 

= m2 = m3 = m, k1 = k2 = k3 = k4 = 0.5 k5 = k and c2/km = 0.04. 
 
 
 
7.40 Determine the general free vibration 

response of the system of Problem 
6.36 for c2/km = 0.04 and I = 2mR2. 

    
 
 
 
 

 
              Fig. P7.41                               Fig. P7.40 

 
7.41 Determine the general free vibration response of the submarine of Problem 6.37 when 

ks = 2k, cs = 2c, ms = 2mc and c2/kmc = 0.01. 
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8 
Forced Vibration of Multi-Degree of 
Freedom Systems 

 
 
 
 
 
 
 
Mechanical systems are generally subjected to a variety of forces and force types during the 
course of their operation. Such forces may cause desirable or undesirable motions of the 
system, with the former required for its effective operation and the latter having detri-
mental, if not catastrophic, consequences. In any event, it is clearly of interest to understand 
and predict the effects that time dependent forces have on mechanical and structural sys-
tems. In the previous chapter we discussed the motion of discrete multi-degree of freedom 
systems when they are free to move under their own volition. It was seen therein that each 
system has fundamental motions associated with it called modes, and that each mode oscil-
lates at its own natural frequency. It was also shown that any free vibration of the system is 
comprised of some combination of these fundamental motions. In this chapter we will ex-
amine the behavior of discrete multi-degree of freedom systems that are subjected to exter-
nal forces. It will be seen that, as for free vibrations, the response of such systems to time 
dependent forcing is described by a combination of the basic motions, or modes, as well. In 
this light, the general approach that we shall take to study the behavior of multi-degree of 
freedom systems to forces of all types will be via the fundamental method known as modal 
analysis. This approach not only provides a vehicle for solving forced vibration problems 
for any type of excitation but it also unveils important physical characteristics of the excited 
system and the basic mechanisms involved. After an extensive discussion for undamped 
systems, the procedure is extended to systems possessing a restricted type of viscous damp-
ing (Rayleigh damping). The chapter finishes with an abstraction of modal analysis to state 
space for multi-degree of freedom systems with general linear viscous damping. To prepare 
for our study, we introduce the concept of modal coordinates in Section 8.2. We begin, 
however, with a simple solution for the steady state response of undamped systems subject-
ed to harmonic excitation, and a discussion of the vibration absorber for elementary sys-
tems.  
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8.1 INTRODUCTION 

In this section we present a simple solution for the steady state response of undamped mul-
ti-degree of freedom systems subjected to external excitations possessing a (synchronous) 
harmonic time signature. The same approach is then employed to examine a simple applica-
tion — that of a vibration absorber appended to a single degree of freedom system. 
 

8.1.1  Steady State Response to Harmonic Excitation 

Consider an N-degree of freedom system subjected to external forces, all of which possess 
the same harmonic time signature. The equation of motion for such a system will be of the 
general form 
 
 ( ) ( ) i tt t e Ω+ =��

0mu ku F  (8.1) 
 
where Ω is the excitation frequency. We wish to obtain the particular solution to Eq. (8.1). 
Toward this end, let us assume a solution of the form 
 
 ( ) i tt e Ω=pu H  (8.2) 
 
Substituting Eq. (8.2) into Eq. (8.1) and solving for H gives 
 
 

12 −
ª º= − Ω¬ ¼ 0H k m F  (8.3) 

 
We now substitute Eq. (8.3) into Eq. (8.2) to obtain the steady state response, 
 
 

12( ) i tt e
− Ωª º= − Ω¬ ¼p 0u k m F  (8.4) 

 
Employing Cramer’s rule results in the equivalent form 
 

 
2

2

adj
( )

det
i tt e Ω

ª º− Ω¬ ¼=
ª º− Ω¬ ¼

p 0

k m
u F

k m
 (8.5) 

 
(A similar solution is found for damped systems in Section 8.8.1.) We know from our dis-
cussions of free vibrations (Chapter 7) that 2det 0ωª º− =¬ ¼k m  is the characteristic equation 
that yields the natural frequency of the system. We thus see that when Ω = ω we have a 
resonance condition and the above solution is no longer valid. (Calculation of the resonance 
solution will be demonstrated in Example 8.6b-ii of Section 8.5.)  The solution defined by 
Eq. (8.4) or Eq. (8.5) is mathematically equivalent to that which would be obtained using 
modal analysis (Sections 8.2–8.5), though it does not reveal the fundamental characteristics 
of the response to the extent that modal analysis does. It is simple to apply in principle, but 
requires computation of the inverse of an N× N matrix. This can prove cumbersome for 
large scale systems. The response is, however, readily obtained for simple systems as seen 
in the following example.     
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Example 8.1 
Consider the two-mass, three-spring, system of Example 6.1. (a) Determine the 
steady state response of the system when each mass is subjected to a force that varies 
harmonically in time with frequency Ω and the corresponding magnitudes are 

0
1F and 0

2F , respectively. (b) Use the 
results from Part (a) to evaluate the re-
sponse of a system for which k1 = k2 = 
k3 = k and m1 = m2 = m, for the excita-
tion 1 0( ) sinF t F t= Ω , F2 = 0. 
 
Solution 
(a) 
Substituting the specific force system under consideration into Eq. (b) of Example 
6.1 gives the equation of motion for the system as 
 

 
0

1 2 21 1 1 1
0

2 2 32 2 2 2

0
0

i tk k km u u F
e

k k km u u F
Ω ½+ −ª ºª º  ½  ½ ° °+ =® ¾ ® ¾ ® ¾« »« » − + ° °¬ ¼ ¯ ¿ ¯ ¿¬ ¼ ¯ ¿

��
��

 (a) 

 
Now, the determinant and the adjoint for the simple two degree of freedom system 
under consideration are easily computed as  
 
 2 2 2 2

1 2 1 2 3 2 2det ( )( )k k m k k m kª º− Ω = + − Ω + − Ω −¬ ¼k m  (b) 
and 

 
2

2 2 3 2 2
2

2 1 2 1

( )
adj

( )
k k m k

k k k m
ª º+ − Ωª º− Ω = « »¬ ¼ + − Ω¬ ¼

k m  (c) 

 
Substitution of Eqs. (b) and (c) into Eq. (8.5) gives the steady state response 
 

 
2 0 0

2 3 2 1 2 2
1 2 2 2

1 2 1 2 3 2 2

( )
( )

( )( )
i tk k m F k F

u t e
k k m k k m k

Ω+ − Ω +=
+ − Ω + − Ω −

 � (d-1) 

 

 
0 2 0

2 1 1 2 1 2
2 2 2 2

1 2 1 2 3 2 2

( )
( )

( )( )
i tk F k k m Fu t e

k k m k k m k
Ω+ + − Ω=

+ − Ω + − Ω −
 � (d-2) 

 
(b) 
For the case where k1 = k2 = k3 = k and m1 = m2 = m and F2 = 0 the response of the 
system simplifies to the form 
 

 
( )

( ) ( )

2
1

0
1 2 2

1 2

2
( ) sin

3 1 1

F
u t t

k

ω

ω ω

ª º− Ω¬ ¼= Ω
ª º ª º− Ω − Ω¬ ¼ ¬ ¼

 � (e-1) 

 
( ) ( )

0
2 2 2

1 2

1( ) sin
3 1 1

F
u t t

k ω ω
= Ω

ª º ª º− Ω − Ω¬ ¼ ¬ ¼

 � (e-2) 
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where 
 1 2 ,     3k m k mω ω= =  (f) 
 
are the natural frequencies of the system (see Example 7.1).  

 
 
 
 
 

8.1.2  The Simple Vibration Absorber 

It was seen in Sections 3.3.2 and 8.1.1 that when an undamped system is excited harmoni-
cally at one of its natural frequencies a resonance condition occurs whereby large amplitude 
vibrations occur. It was also seen that if the excitation frequency of a single degree of free-
dom system is sufficiently above (or below) the natural frequency then the oscillations are 
well behaved. In fact, when operating at excitation frequencies sufficiently above the reso-
nance frequency the amplitude of the steady state oscillations are lower than the deflection 
that would be induced by a static load of the same magnitude. If vibrations are to be avoid-
ed then the system can be designed to operate in this range. (It then becomes a practical 
issue as to how to ramp up an initially quiescent system past the resonance frequency to the 
desired operating range.) Suppose, however, that the normal operating range is at, or near, 
the resonance frequency. In addition, suppose that the machine or device cannot be rede-
signed. That is, we wish to use the system as is. How may we resolve this issue? We know 
from our studies of free vibrations in Chapter 7 and related discussions of the present chap-
ter that a multi-degree of freedom system will have the same number of natural frequencies, 
and hence the same number of resonance conditions, as the number of degrees of freedom. 
Therefore, one practical solution is to add an extra degree of freedom to the system. This 
will shift the natural frequencies and hence the conditions for resonance. Alternatively, we 
may wish to induce large motions of the added mass, leaving the original mass undergoing 
relatively small motions, in effect isolating it from vibration. We examine this situation for 
an originally single degree of freedom system in the present section. 
 Consider a single degree of freedom system represented as the mass-spring system 
shown in Figure 8.1a. Suppose the system operates in an environment where it is subjected 
to a harmonic force F(t), as indicated. Let us further suppose that the operating frequency is 
close to the natural frequency of the system. One approach to remedy the situation is to 
change the mass or stiffness. However, suppose that this is not an option, say for reasons of 
functionality, practicality, economics or aesthetics. As an alternative, let us attach a spring 
of stiffness kab and mass mab to the original system of mass m and stiffness k as shown in 
Figure 8.1b. Let us examine the response of the augmented system compared with that of 
the original system. 
 The equation of motion for the augmented system is easily derived, or is obtained 
directly from Eq. (b) of Example 6.1 by setting m1 = m, m2 = mab, k1 = k, k2 = kab, k3 = 0, F1 
= F(t) and F2 = 0. Hence, 
 

 1 1

2 2

0 ( )( ) ( ) ( )
0 ( ) ( ) 0

ab ab

ab ab ab

m k k ku t u t F t
m k ku t u t

+ −ª º ª º ½  ½  ½+ =® ¾ ® ¾ ® ¾« » « »− ¯ ¿¯ ¿ ¯ ¿¬ ¼ ¬ ¼

��
��

 (8.6) 
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Figure 8.1  Single degree of freedom system and vibration absorber: (a) the system alone, (b) system 
with absorber. 
 
 
We seek the steady state response (i.e., the particular solution) of the augmented, now two 
degree of freedom, system for excitations of the form 
 
 0( ) i tF t F e Ω=  (8.7) 
 
For the purposes of the present discussion we bypass modal analysis for this very simple 
system and loading, and seek a particular solution to Eq. (8.6) of the form 
 

 1 1

2 2

( )
( )

i t

p

u t H
e

u t H
Ω ½  ½

=® ¾ ® ¾
¯ ¿ ¯ ¿

 (8.8) 

 
where H1 and H2 are to be determined. Substituting Eqs. (8.7) and (8.8) into Eq. (8.6) re-
sults in the pair of equations   

 

 
2

1 2 0

2
1 2

( )

0

ab ab

ab ab ab

k k m H k H F

k H k m H

ª º+ − Ω − =¬ ¼
ª º− + − Ω =¬ ¼

 (8.9)  

 
which are easily solved for the unknown amplitudes H1 and H2. Hence, 
 

 
( )

( )( )
22

0
1 2 2 221

f
H

k

ω

ω

− Ω
=

− Ω − Ω − Ω
 (8.10)  

and 

 ( )( )
2

0
2 2 2 221

fH
k

ω
ω

=
− Ω − Ω − Ω

 (8.11)  

 
where 
 0 0f F k=  (8.12) 
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 ωΩ = Ω  (8.13) 
 
 2 k mω =  (8.14)  

 
 2 k mω =  (8.15) 
 
 abk k k=  (8.16)  

 
 abm m m=  (8.17) 
  
Substituting Eqs. (8.10) and (8.11) into Eq. (8.8) gives the steady state response of the sys-
tem as 
 

 ( )( )
22

1 0
22 2 22

2

( )
( ) 1

i tu t f e
u t k

ω
ωω

Ω  ½ ½ − Ω° °=® ¾ ® ¾
− Ω − Ω − Ω ° °¯ ¿ ¯ ¿

 (8.18)  

 
Now, we are interested in the effect of the added mass and spring on the steady state re-
sponse of the original (base) mass. The augmented magnification factor for the motion of 
the base mass is then 
 

 
( )

( )( )
22

1
2 2 22

0 1

H
f k

ω

ω

− Ω
Γ = =

− Ω − Ω − Ω

�
 (8.19)  

 
 

       Figure 8.2  Augmented magnification factor .( 0.2, 1)k ω= =  

� ��� � ��� �
�

�

�

�

�
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�

�

�

�

��

Γ 

) 

Ω/ω 
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Figure 8.3  Vector shown with various coordinate systems: (a) arbitrary, (b) vector lies in a coordi-
nate plane, (c) vector parallel to a coordinate axis. 
 
 
When the augmented magnification factor is expressed in the above form it is seen that the 
added mass and spring modify the original magnification factor, and hence influence the 
steady state response of the system, through the ratios of the added mass to the original 
mass and the added stiffness to the original stiffness. (It is readily seen that the magnifica-
tion factor for the original single degree of freedom system is recovered when 0kω = = .)  
 The augmented magnification factor is displayed along with the original magnifica-
tion factor in Figure 8.2 for the case where 0.2k =  and .1ω =  It is seen from the figure 
that the resonance condition at 1Ω =  has been removed and that there is no motion of the 
base mass at this excitation frequency. Furthermore, there is a finite range of excitation fre-
quencies near 1Ω =  for which the amplitude of the displacement of the base mass is less 
than that which would be induced by a static load of the same magnitude. The drawback is, 
of course, that since the augmented system has two degrees of freedom there are now two 
resonance conditions, as indicated by the two peaks appearing in the figure. The practical 
problem of passing through the lower resonance frequency to get to the operating range 
when starting up an initially quiescent system would still have to be addressed.  
 
 

8.2  MODAL COORDINATES 

To study the forced vibration of multi-degree of freedom systems it is often convenient, as 
well as informative, to express a given problem in terms of its most fundamental set of co-
ordinates known as modal coordinates. We introduce the definition and nature of these co-
ordinates in the present section. 
 Let us consider a vector vG  in some three-dimensional space. If we express the vector 
in terms of its components with respect to some coordinate system then the vector will gen-
erally have three nonvanishing components (Figure 8.3a). If the coordinate system is cho-
sen so that the same vector lies in a coordinate plane, then the vector will generally have 
only two nonvanishing components (Figure 8.3b). Lastly, if the coordinate system is chosen 
so that one of the axes is aligned with the vector, then the vector will have only one 
nonvanishing component (Figure 8.3c). This property will also be true for a vector in a 
space of any number of dimensions, say N. Suppose now that we have a set of mutually 
orthogonal vectors of a given dimension (say N) in some space. If we choose a coordinate 
system whose axes are parallel to the vectors of the given set then each of the mutually or-
thogonal vectors will possess only one nonvanishing component, the one corresponding to 

(a) (b) (c)

x3

x1

x2

v
x3

      

x1
x2

v x3
 

x1

x2
       

v
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the coordinate axis aligned with the vector. Such coordinates are referred to as principal 
coordinates and find application in many fields. From our study of free vibrations, we know 
that the modal vectors for an undamped system form a mutually orthogonal set of vectors. 
The corresponding principle coordinates for this case are referred to as modal coordinates.  
These concepts may be generalized for the case of damped systems. In the present section 
we introduce modal coordinates and examine their important implications. 
 

8.2.1  Principal Coordinates 

The following discussion is presented for vectors in three dimensions for ease of visualiza-
tion. However, the concepts and results are readily extended to N-dimensional space and are 
thus applicable to systems with any number of degrees of freedom. With this in mind, let us 
consider a Cartesian reference frame with axes (x1, x2, x3) in three-dimensional space and let 

(1) (2) (3), and e e eG G G  represent the corresponding unit vectors directed along these axes as 
shown in Figure 8.4a. Consider, also, three mutually orthogonal, but otherwise arbitrary, 
vectors ,  and u v wG G G , as indicated. The three vectors may be expressed in terms of their com-
ponents with respect to the given set of axes in the form  
 

 

(1) (2) (3)
1 2 3

(1) (2) (3)
1 2 3

(1) (2) (3)
1 2 3

u u e u e u e
v v e v e v e
w w e w e w e

= + +
= + +
= + +

G G G G
G G G G
G G G G

 

 
The corresponding matrices of the components of these vectors with respect to the given 
coordinate system are then 
 

 
1 1 1

2 2 2

3 3 3

 ,     ,    
u v w
u v w
u v w

 ½  ½  ½
° ° ° ° ° °= = =® ¾ ® ¾ ® ¾
° ° ° ° ° °
¯ ¿ ¯ ¿ ¯ ¿

u v w  

 
Consider next a second set of coordinate axes 1 2 3( , , )x x x� � �  that are obtained from the first 
set of axes (x1, x2, x3) by a rotation about some axis through the origin, and that are aligned 
with the three orthogonal vectors as shown in Figure 8.4b. Consider also, the same mutually 
orthogonal vectors expressed in terms of their components with respect to this second set of 
axes. Hence, 
 
 (1) (2) (3), ,u u n v v n w wn= = =G G G G G G  
 
where (1) (2) (3), and n n nG G G  represent the unit vectors along the second set of axes, as shown. 
The corresponding matrices of components of these vectors expressed with respect to the 
coordinates 1 2 3( , , )x x x� � �  are then 
 

 
0 0

0  ,     ,    0
0 0

u
v

w

 ½  ½  ½
° ° ° ° ° °= = =® ¾ ® ¾ ® ¾
° ° ° ° ° °
¯ ¿ ¯ ¿ ¯ ¿

� � �u v w  
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Figure 8.4  Three mutually orthogonal vectors: (a) shown with arbitrary coordinate system, (b) 
shown with principal coordinate system. 
 
 
In this context the coordinates 1 2 3( , , )x x x� � �  are referred to as the principal coordinates for 
the given set of vectors. The obvious advantage of choosing to express the vectors in terms 
of the principle coordinates is that the associated matrices have only one nonzero element. 
The matrices are thus decoupled in this sense. 
 

8.2.2  Coordinate Transformations  

The components of a vector expressed in terms of one set of coordinates can be related to 
the components of that same vector expressed in terms of another set of coordinates by a 
system of linear equations whose coefficients are dependent on the angles between the two 
sets of axes. This is readily seen when we consider a three-dimensional vector uG  and the 
two coordinate systems (x1, x2, x3) and 1 2 3( , , )x x x� � � , as depicted in Figure 8.5. Hence,   
 

 
(1) (2) (3)

1 2 3
(1) (2) (3)

1 2 3

u e u e u e
u

u n u n u n
 + +°= ® + +°̄

G G G
G

G G G� � �
 

 
 

 
Figure 8.5  Vector displayed with two coordinate systems. (Unit basis vectors for each system 
shown at left.) 
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                                        (a)                                                    (b) 
 
 Figure 8.6  Vector under coordinate transformation. 
 
 
Taking the successive scalar products of the unit vectors of the second coordinate system 
with the first equation gives the set of linear equations 
 

 
1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

u r u r u r u
u r u r u r u
u r u r u r u

= + +
= + +
= + +

�
�
�

 

 
where ( ) ( ) cos( , )  ( , 1 3)l j

j l jlr n e x x l j= = = −G G �<  is the cosine of the angle between the lx� axis 
and the xj axis. This system of linear equations can be expressed in matrix form as 
 
 =�u Ru  (8.20) 
 
where { }lu=� �u  ljrª º= ¬ ¼R  and { }.ju=u  In the matrix equation, the column matrix �u  cor-
responds to the matrix of components of the vector uG  obtained by rotating and stretching 
the original vector, as shown in Figure 8.6a. (If the columns/rows of R are orthonormal, 
then the length of the vector is preserved during the operation and R represents a pure rota-
tion.) Alternatively, the operation defined by Eq. (8.20) represents a rotation (and stretch) of 
the axes, as shown in Figure 8.6b, and �u  corresponds to the matrix of components of the 
same vector expressed with respect to the set of coordinates obtained by rotation (and 
stretch) of the original set of coordinates as discussed earlier. The above discussion can be 
extended to vectors of any dimension, say N. 
 
 

Example 8.2 
The vector shown in Figure E8.2-1 is of magnitude A, lies in the x2 x3-plane and 
makes equal angles between these two axes. Determine the components of the vector 
A
G

 with respect to the given coordinate system, and also with respect to a coordinate 
system related to the first by the transformation  
 

   

1 0 0

0 2 2 2 2

0 2 2 2 2

ª º
« »

= « »
« »−¬ ¼

R  

 R  u

 R

 u

 u ~
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How is the second coordinate system aligned? 
 
 
 
 
 
 
 
 
 
                                                             
                                                                               
     
   Figure E8.2-1 
 
 
Solution 
The given vector may be expressed in matrix form as 
 

 

0

1 2

1 2

A
 ½
° °

= ® ¾
° °
¯ ¿

v  (a) 

 
Thus, 1 2 30,  2v v v A= = = . To determine the components of the vector with re-
spect to the second system we employ the coordinate transformation defined by Eq. 
(8.20). Hence, 
 

 

1 0 0 0 0
0 2 2 2 2 2 1

00 2 2 2 2 2

A A

A

ª º  ½  ½
« » ° ° ° °= = =® ¾ ® ¾« »

° ° ° °« »− ¯ ¿¬ ¼ ¯ ¿

�v R v  (b) 

 
The components of the same vector with respect to the 
new coordinates are thus 1 0,v =� 2 ,v A=�  and 3 0.v =�  
The new coordinates for this particular case are evi-
dently principle coordinates and correspond to a set of 
axes oriented with respect to the original coordinate 
axes as shown in Figure E8.2-2. It is seen that the giv-
en coordinate transformation, R, corresponds to a 45˚ 
rotation of the x2 and x3 axes about the x1 axis. 
 
                                                                                           
 
                                                                                                    Figure E8.2-2 

   
 
 

x3

x2

A

x1

x3

x2
~

~

A
45

x1,x1

45

~
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8.2.3 Modal Coordinates 

In the previous section it was seen that the components of a vector expressed in two differ-
ent coordinate systems are related by a simple matrix operation. We next consider a particu-
lar transformation based on the modal vectors of an undamped multi-degree of freedom 
system, and the coordinates associated with this transformation. 
 Consider the set of modal vectors of an N-degree of freedom system, and let us ex-
tend the interpretation of Eqs. (8.20) to N-dimensional space. Further, let us construct a 
particular matrix B such that the elements of each column correspond to the components of 
a modal vector for the system of interest. Hence, let 
 

 

(1) (2) ( )
1 1 1
(1) (2) ( )

(1) (2) ( ) 2 2 2

(1) (2) ( )

N

N
N

N
N N N

U U U
U U U

U U U

ª º
ª º « »
« » « »≡ =« » « »
« » « »¬ ¼ « »¬ ¼

"
"

"
# # % #

"

B U U U  (8.21) 

 
The matrix B is called the modal matrix of the given system. It follows that the rows of the 
transpose of the modal matrix correspond to the transposes of the modal vectors. Hence,   
 

 

(1)

( )N

ª º
« »= « »
« »
¬ ¼

#
U

B
U

T

T

T

 (8.22)  

 
Equivalently, 
 
 ( ) ( ),     ( , 1,2,..., )j l

lj l lj jb U b U l j N= = =T  (8.23) 
 
 Let us now consider the motion of an N-degree of freedom system and the transfor-
mation 
 ( ) ( )t t= ηu B  (8.24) 
 
where u(t) is some matrix that characterizes the motion, say the displacement matrix, and B 
is the modal matrix for the system as defined by Eq. (8.21). The inverse transformation 
follows directly as 
 1( ) ( )t t−=η B u   
 
It is seen, upon comparison with Eq. (8.20), that Eq. (8.24) represents the relation between 
the displacements of the system expressed in two different coordinate systems. Since the 
elements of the matrix u(t) correspond to the physical displacements of the system ex-
pressed in terms of the (generalized) physical coordinates chosen to describe the motion, 
then the elements of the matrix η(t) correspond to the displacements expressed in terms of a 
different set of coordinates. These latter coordinates are referred to as the modal coordi-
nates for the system. It will be seen that modal coordinates are, in fact, principal coordinates 
for a multi-degree of freedom system and that the implications of transforming to modal 
coordinates are profound. 
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In general, a mapping of the form of Eq. (8.24) corresponds to a transformation from modal 
coordinates to physical coordinates. The transformation to modal coordinates and its in-
verse is central to the solution and fundamental understanding of forced vibration problems. 
We discuss this process and its ramifications in detail in the next section. 
 

Example 8.3 – Free Vibration of an N-Degree of Freedom System 
Express the general form of the free vibration response of a discrete N-degree of 
freedom system in the form of Eq. (8.24) and identify the modal coordinates for this 
case. 
 
Solution 
The general form of the free vibration response for the system under consideration is 
given by Eq. (7.11) as 
 

 ( ) ( )

1

( ) cos( )
N

j j
j j

j

t A tω φ
=

= −¦u U  (a) 

 
The summation appearing in Eq. (a) may be written as the product of a square matrix 
and a column vector as follows: 
 

 

(1)
1 1 1

(2)
2 (1) (2) ( ) 2 2

( )

( ) cos( )
( ) cos( )

( ) cos( )

N

N
N N N

u t A t
u t A t

u t A t

ω φ
ω φ

ω φ

 ½ ½ −
ª º ° °° ° −« »° ° ° °=® ¾ ® ¾« »

° ° ° °« »
¬ ¼° ° ° °−¯ ¿ ¯ ¿

"
# #

U U U  (b) 

 
If we compare Eq. (b) with Eq. (8.24) we see that the square matrix is the modal ma-
trix for the system and 
 

 

1 1 1 1

2 2 2 2

( ) cos( )
( ) cos( )

( )

( ) cos( )N N N N

t A t
t A t

t

t A t

η ω φ
η ω φ

η ω φ

− ½  ½
° ° ° °−° ° ° °= =® ¾ ® ¾
° ° ° °
° ° ° °−¯ ¿ ¯ ¿

η
# #

 (c) 

 
It follows from Eq. (c) that the time dependent coefficients 
 
    ( )( ) cos( )  ( 1, 2,..., )j

j j jt A t j Nη ω φ= − =  (d) 
  

 correspond to the modal displacements for the free vibration problem. 
 

Example 8.4 
Consider the floating platform of Example 7.11. Suppose the platform is impacted in 
such a way that a downward directed impulse of magnitude ! is imparted to the left 
edge of the platform, as shown in Figure E8.4. Determine the motion of the platform.  
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   Figure  E8.4 
 
 
Solution 
For this case, we chose the vertical deflection of the center, yG(t) (positive down-
ward), and the rotation of the float, ( ) ,tθ as our generalized coordinates to describe 
the motion of the system. If we include the force F1(t) (positive downward) applied 
at the left edge of the float in the derivation of the governing equations in Example 
7.11 we obtain the equations of motion 
 

 1

2 2
1

2 ( )

2 ( )
G Gm y k y F t

mL k L L F tθ θ
+ =
+ =

��
��  (a) 

  
which may be stated in matrix form as 
 

 1
2 2

1

( )0 2 0
( )0 0 2

G G F tm y k y
LF tmL kLθ θ

 ½ª º  ½ ª º  ½+ =® ¾ ® ¾ ® ¾« » « »
¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿ ¯ ¿

��
��  (a') 

 
where, for the given loading, 
 
 1( ) ( )F t tδ= !  (b) 
 
It is easily shown from the above equations (as was done in Example 7.11) that the 
natural frequencies and modes for the system are 
 
 1 2 2k mω ω= =  (c) 
 
and 

 (1) (2)1 0
,

0 1
 ½  ½= =® ¾ ® ¾
¯ ¿ ¯ ¿

U U  (d) 

 
Now, it is seen that the governing equations (a) or (a') are uncoupled. This allows us 
to solve for each coordinate separately. In this regard, the solution of each equation 
follows directly from Eq. (4.22). The response of the impacted platform is thus 
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 ( )2( ) sin ( )
2

k
G my t t t

km
= !

H  (e-1) 

 

 ( )2( ) sin ( )
2

k
mt t t

L km
θ = !

H  (e-2) 

 
For this particular problem the governing equations were very easy to solve because 
they were uncoupled. They were uncoupled because of the particular set of coordi-
nates that we chose to describe the motion of the platform. Let’s examine this a bit 
more closely. 
 Let us form the modal matrix B from the modal vectors stated in Eq. (d). 
Hence, 

 
1 0
0 1
ª º= « »
¬ ¼

B  (f) 

 
That is, the modal matrix is simply the identity matrix. Let us next apply the trans-
formation defined by Eq. (8.24) to the chosen coordinates. Doing this we see that 
 

 1 1

2 2

( ) ( ) ( )( ) 1 0
( ) ( ) ( )( ) 0 1

GG t y t ty t
t t tt

η η
η θ ηθ

= ½ ½ ª º= �® ¾ ® ¾« » =¯ ¿ ¬ ¼ ¯ ¿
 (g) 

 
It is seen that the chosen set of coordinates yG(t) and ( )tθ  are, in fact, the modal 
(principal) coordinates for the system. We could have deduced this at the outset since 
the governing equations are completely decoupled. In this example we formulated 
the problem in terms of modal coordinates by “chance.” A natural choice of dis-
placement measures happened to correspond to modal coordinates. This is not usual-
ly the case. In general, the equations of motion for multi-degree of freedom systems 
are coupled and it is generally desirable to transform to the modal coordinates for a 
given system. The modal coordinates are not typically obvious or necessarily physi-
cal displacements. A rational procedure for transforming a given problem to modal 
coordinates is presented in the next section. 

  
 
 

8.3  GENERAL MOTION IN TERMS OF THE NATURAL MODES 

When the N vectors that comprise a set in some N-dimensional space are linearly independ-
ent and mutually orthogonal then any vector in that space can be expressed as a linear com-
bination of the vectors of that set. This is, in fact, what is done when we express a three-
dimensional vector in terms of the unit vectors aligned with the coordinate axes. From a 
vibrations perspective, this means that if the modal vectors for a given system are linearly 
independent then the response of the system under any loading (the solution for any prob-
lem) can be expressed as a linear combination of the modal vectors for that system. This 
property of the modal vectors will be central to the analysis of forced vibration problems. In 
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this section we show that the modal vectors for an undamped system are indeed linearly 
independent and, therefore, that any displacement array is comprised of a linear combina-
tion of the natural modes of the system. 
 

8.3.1  Linear Independence of the Set of Modal Vectors 

The vectors of a given set are said to be linearly independent if no vector of that set can be 
expressed as a linear combination of the other vectors of that set. Equivalently, the vectors 
of a given set, say the set of modal vectors {U(1), U(2), …, U(N)} for an undamped system, 
are linearly independent if the equation 
 

 ( )

1

N
l

l
l

a
=

=¦ U 0  (8.25) 

 
can only be satisfied if all of the scalar coefficients al (l = 1, 2, …, N) vanish. That is, if 

0 ( 1, 2,..., )la l N∀ = = . We must show that this is the case for a set of modal vectors. To 
do this, let us first premultiply each term of Eq. (8.25) by U(j)Tm. This gives 
 

 ( ) ( )

1

0
N

j l
l

l

a
=

=¦ U mUT  (8.26) 

  
Recall from Section 7.3.2 that the modal vectors corresponding to distinct natural frequen-
cies of an undamped system are mutually orthogonal with respect to the mass matrix. 
Hence, 
 ( ) ( ) 0   for all j l l j= ≠U mUT  (8.27) 
 
Substitution of Eq. (8.27) into Eq. (8.26) results in the simple statement 
 
 ( ) ( ) 0j j

ja =U mUT  (8.28) 
Now, 
 

2( ) ( ) ( ) ( ) ( ), 0j j j j j= = ≠
m m

U mU U U UT  

 
It follows from Eq. (8.28) that aj = 0. Since Eqs. (8.26)–(8.28) hold for each and every 
mode U(j) (j = 1, 2, …, N)  then  
 
 0ja =  for all  j = 1, 2, …, N (8.29) 
 
The modal vectors are therefore linearly independent. 
 

8.3.2  Modal Expansion 

It was shown in Section 8.3.1 that the mutually orthogonal modal vectors of an undamped 
system are linearly independent. This suggests that the modal vectors form a basis in their 
vector space in much the same way as the standard unit vectors along a set of coordinate 
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axes do in three-dimensional physical space. It follows that, just as a physical vector can be 
expressed as a linear combination of the basis vectors in physical 3-D space, the N × 1 dis-
placement vector (matrix of displacements) for a given system may be expressed as a linear 
combination of its modal vectors in the corresponding N-dimensional space. The response 
of an undamped system may therefore be expressed in the general form 
 

 ( )

1

( ) ( )
N

j
j

j

t tη
=

=¦u U  (8.30) 

 
where u is the array of displacements, U(j) is the jth modal vector and ηj is a corresponding 
time dependent coefficient. Equation (8.30) basically tells us that the motion of an 
undamped system, whether free or forced, is comprised of some combination of the natural 
modes. If we expand Eq. (8.30) and regroup terms, we see that the series representation can 
be written in matrix form as 
 

 

1

2(1) (2) ( ) (1) (2) ( )
1 2

( )
( )

( ) ( ) ( ) ( )

( )

N N
N

N

t
t

t t t y

t

η
η

η η η

η

 ½
ª º ° °
« » ° °= + + + = ® ¾« »

° °« »
¬ ¼ ° °¯ ¿

! "
#

u U U U U U U  

 
The square matrix in the above representation is seen to be the modal matrix defined by Eq. 
(8.21). The modal expansion, Eq. (8.30), can thus be written in the equivalent form  
 
 ( ) ( )t t= ηu B  (8.31) 
where 

 

1

2

( )
( )

( )

( )N

t
t

t

t

η
η

η

 ½
° °
° °= ® ¾
° °
° °¯ ¿

η
#

 (8.32) 

 
It may be seen that Eq. (8.31) is identical to Eq. (8.24). It follows that the coefficients of the 
modal expansion correspond to the modal coordinates of the system. The elements of η are 
then the modal displacements. With Eq. (8.30), and equivalently Eq. (8.31), established we 
now proceed to the problem of forced vibrations of discrete systems. 
 
 

8.4 DECOMPOSITION OF THE FORCED VIBRATION PROBLEM 

In this section, the forced vibration problem for an a general undamped N-degree of free-
dom system expressed in terms of the physical displacements of the mass elements is trans-
formed to its statement in terms of modal coordinates. We will see that, when this is done, 
the governing system of equations decouples into a system of N uncoupled equivalent sin-
gle degree of freedom systems.   
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 Consider an undamped N-degree of freedom system. It was seen in Chapter 6 that the 
equation of motion for any system of this class is of the general form  
 
 + =��mu ku F  (8.33) 
 
where 

 

1

2

( )
( )

( )

( )N

u t
u t

t

u t

 ½
° °
° °= = ® ¾
° °
° °¯ ¿

#
u u  (8.34) 

 
is the displacement matrix, 
 

 

1

2

( )
( )

( )

( )N

F t
F t

t

F t

 ½
° °
° °= = ® ¾
° °
° °¯ ¿

#
F F  (8.35) 

 
is the force matrix, 
 

 

11 12 1

21 22 2

1 2

N

N

N N NN

m m m
m m m

m m m

ª º
« »
« »= =
« »
« »
¬ ¼

"
"

# # % #
"

m mT  (8.36) 

 
is the mass matrix, and 
 

 

11 12 1

21 22 2

1 2

N

N

N N NN

k k k
k k k

k k k

ª º
« »
« »= =
« »
« »
¬ ¼

"
"

# # % #
"

k kT  (8.37) 

 
is the stiffness matrix. In general, we wish to determine the response, u(t), due to a given 
system of generalized forces F(t). In order to do this we shall take advantage of the proper-
ties of the modes associated with the system as discussed in Sections 7.3, 8.2 and 8.3. Using 
these properties, we will transform the governing equation so that it is expressed in terms of 
the modal (principal) coordinates. In doing so, we shall decouple the individual equations 
from one another, effectively isolating a set of uncoupled single degree of freedom systems 
each of which corresponds to an individual mode. The response of these effective 1 d.o.f. 
systems will be seen to correspond to the response of the individual modes. Once the re-
sponses of these effective 1 d.o.f. systems are determined, we can transform back to the 
original coordinates and obtain the displacements of the system as a function of time.   
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 Recall from our discussions in Section 8.2.3 that the modal expansion described by 
Eq. (8.31) is equivalent to a transformation between the displacements described by the 
physical coordinates of the system and the displacements expressed in terms of the modal 
coordinates of the system. It will be seen that writing the forced vibration problem in terms 
of the modal coordinates greatly simplifies the analysis and offers insight into the nature of 
the response. With this in mind, let us substitute Eq. (8.31) into Eq. (8.33), and then multi-
ply the resulting equation on the left by BT. This gives the equation 
 
 + =η η��B mB B kB B FT T T   
 
which may be written in the familiar form 
 
 + =η η� �� ��m k F  (8.38) 
where 
 ≡�m B mBT  (8.39) 
 
 ≡�k B kBT  (8.40) 
and 
 ≡�F B FT  (8.41) 
 
Equation (8.38) is the equation of motion expressed in terms of modal coordinates. The 
matrices �m  and �k  shall be referred to as the associated (modal) mass and (modal) stiffness 
matrices, respectively, and �F  as the corresponding (modal) force matrix. We next examine 
their form and their implications. 
 Consider the transformed mass matrix defined by Eq. (8.39) and let us express it in 
expanded form by substituting Eqs. (8.21),  (8.22) and (8.36). Hence, 
 

 

(1)
11 1

(1) ( )

( )
1

N
N

N
N NN

m m

m m

ª º ª º ª º
« » « » « »= « » « » « »
« » « » « »¬ ¼ ¬ ¼¬ ¼

"
� # # % # "

"

U
m U U

U

T

T

 

 
which, after multiplying through, gives 
 

    

(1) (1) (1) (2) (1) ( )

(2) (1) (2) (2) (2) ( )

( ) (1) ( ) (2) ( ) ( )

N

N

N N N N

ª º
« »
« »= « »
« »
« »¬ ¼

"
"�

# # % #
"

U mU U mU U mU
U mU U mU U mUm

U mU U mU U mU

T T T

T T T

T T T

 (8.42) 

 
Let us next recall that the modal vectors are mutually orthogonal with respect to the mass 
and stiffness matrices. (See Section 7.3.2.) That is, 
 
 ( ) ( ) ( ) ( ) 2 20, 0; ( , 1, 2,..., )l j l j

l j l j Nω ω= = ≠ =U mU U kUT T  
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Upon incorporating these properties into Eq. (8.42), it is seen that the transformed mass 
matrix takes the diagonal form 
  

 

1

2

0 0
0 0

0 0 N

m
m

m

ª º
« »
« »=
« »
« »
¬ ¼

� "
� "�

# # % #
�"

m  (8.43) 

where 
 ( ) ( ) ( 1, 2,..., )j j

jm j N= =� U mUT  (8.44) 
 
The modal mass matrix is seen to be diagonal due to the mutual orthogonality of the modal 
vectors as discussed in Section 7.3. It is useful to note that if we choose to normalize the 
modal vectors with respect to m, as discussed in Section 7.3.3, then all of the nonvanishing 
elements of the transformed mass matrix are unity. That is, if we normalize the modal vec-
tors such that 
 
 ( ) ( ) ( ) ( ), 1    ( 1, 2,... )j j j j j N≡ = =

m
U U U mUT  

then 

 
1 0

0 1
N N×

ª º
« »= =« »
« »¬ ¼

"
� # % #

"
m I  

 
Consider next the transformed stiffness matrix defined by Eq. (8.40). Paralleling the discus-
sion for the mass matrix, we find that  
 

    

(1)
11 1

(1) ( )

( )
1

N
N

N
N NN

k k

k k

ª º ª º ª º
« » « » « »= « » « » « »
« » « » « »¬ ¼ ¬ ¼¬ ¼

"
� # # % # "

"

U
k U U

U

T

T

  (8.45) 

 
Performing the indicated multiplications and incorporating the mutual orthogonality of the 
modal vectors gives the modal stiffness matrix as 
 

 
1 0

0 N

k

k

ª º
« »

= « »
« »
¬ ¼

� !
� # % #

�"

k  (8.46) 

where 
 ( ) ( )    ( 1, 2,..., )j j

jk j N= =� U kUT  (8.47) 
 
The transformed stiffness matrix is thus seen to be diagonal as well. Further, if we choose to 
normalize the modal vectors such that 
 
 ( ) ( ) ( ) ( ), 1    ( 1,2,..., )j j j j j N≡ = =

k
U U U kUT  
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(i.e., with respect to k rather than with respect to m), then 
 

 
1 0

0 1
N N×

ª º
« »= =« »
« »¬ ¼

"
� # % #

"
k I  

 
The choice of normalization is at the discretion of the analyst. Each form may offer certain 
advantages when performing modal analysis for a particular system.  
 Now that we have established that the modal mass and modal stiffness matrices are of 
diagonal form we return to our discussion of the transformed equation of motion, Eq. (8.38). 
Substituting Eqs. (8.43) and (8.46) into Eq. (8.38), gives 
 

 
1 1 1 1 10 0

0 0N N N NN

m k F

m Fk

η η

η η

ª º  ½ª º  ½  ½
« » ° °° ° ° °« » + =® ¾ ® ¾ ® ¾« »« »

° ° ° ° ° °« »« »¬ ¼ ¯ ¿ ¯ ¿ ¯ ¿¬ ¼

� ���� " "
# % # # # % # # #

�����" "

  

 
which, when expanded, results in the (uncoupled) system of equations of the form 
 

 

1 1 1 1 1

2 2 2 2 2

( )

( )

( )N N N N N

m k F t

m k F t

m k F t

η η
η η

η η

+ =
+ =

+ =

� ����
� ����
#
� ����

 (8.48) 

 
Recall that each frequency-mode pair satisfies Eq. (7.3). Therefore, for the jth mode,  
 
 ( ) 2 ( )j j

jω=kU mU   
It follows that 
 
 ( ) ( ) 2 ( ) ( )j j j j

jω=U kU U mUT T  
 
Incorporating the definitions of Eqs. (8.44) and (8.47) into the above identity gives the rela-
tion, 
 2    ( 1, 2,..., )j j jk m j Nω= =� �  (8.49) 
 
Hence, 
 = Λ� �k m  (8.50) 
 
where 

 

2
1

2

0

0 N

ω

ω

ª º
« »= « »
« »
¬ ¼

Λ
"

# % #
"

 (8.51) 
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  Figure 8.7  Equivalent system of uncoupled single degree of freedom systems. 
 
 
 
With the aid of Eq. (8.49), the transformed system of equations (8.48) may be expressed in 
the “standard form”  
 

 

2 2
1 1 1 1 1

2 2
2 2 2 2 2

2 2

                    

N N N N N

f

f

f

η ω η ω

η ω η ω

η ω η ω

+ =

+ =

+ =

���
���

# # #
���

 (8.52) 

 
where 

 2

( ) ( )
( )    ( 1,2,..., )j j

j
j jj

F t F t
f t j N

mk ω
= = =
� �

�
� �

 (8.53) 

 
The above system may also be written in the matrix form 
 
 + =η Λη Λ ��� f  (8.54) 
 
where 

 

1

11 2

( )

( )

( )N

f t

f t

f t

−−

 ½
° °
° °= = =ª º ® ¾¬ ¼
° °
° °
¯ ¿

Λ

�

�� � � ��
#
�

f k F m F  (8.55) 

 
 It may be seen that Eqs. (8.48), and equivalently Eqs. (8.52), are completely decou-
pled. Each individual equation therefore corresponds to the response of each individual 
mode acting as an independent single degree of freedom system of mass jm�  and stiffness 
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jk�  subjected to the force ( )jF t� . A physical representation of this equivalence is depicted in 
Figure 8.7. Since the quantities ηj (j = 1, 2, …, N) are seen to correspond to the displace-
ments of the modal masses, the corresponding forces may be interpreted as the portion of 
the external forces that is distributed to the particular mode indicated. This occurs since 
each modal vector is aligned with its corresponding coordinate (as in Figure 8.4b) when the 
problem is expressed in terms of the modal coordinates. Each of Eqs. (8.48) may be solved 
using the techniques established in Chapters 3, 4 and 5 for single degree of freedom sys-
tems. Once the response for each mode is determined, these values comprise the matrix 
η(t), which may be substituted back into Eq. (8.31) to give the desired physical response. 
 
 

Example 8.5 
Consider the double pendulum of Example 7.5. (a) Com-
pute the modal mass matrix and modal stiffness matrix for 
the system. (b) Use Eq. (8.49) to compute the corresponding 
natural frequencies and compare them with those computed 
in Example 7.5.   
 
 
Solution 
From Examples 6.5 and 7.5, the mass, stiffness and dis-
placement matrices for the double pendulum are 
 

 12 2

2

( )2 1 2 0
, , ( )

( )1 1 0 1
tgmL mL t
tL

θ
θ
 ½ª º ª º= = = ® ¾« » « »

¬ ¼ ¬ ¼ ¯ ¿
m k u  (a) 

 
The corresponding modal vectors were calculated to be 
 

 (1) (2)
1 1

 ,    
2 2

 ½  ½° ° ° °= =® ¾ ® ¾
−° ° ° °¯ ¿ ¯ ¿

U U  (b) 

 
(a) 
Substituting the modal vectors into Eq. (8.21), with N = 2, gives the modal matrix for 
the pendulum as 
 

 
1 1

2 2

ª º
= « »

−« »¬ ¼
B  (c) 

We next compute the transformed mass and stiffness matrices for the double pendu-
lum by incorporating the pertinent system matrices stated in Eq. (a) and the modal 
matrix of Eq. (c) into Eqs. (8.39) and (8.40), respectively. We thus find the modal 
mass and stiffness matrices 
 

 2 2
1 11 2 2 1 2 2 0

2
1 1 2 21 2 0 2 2

mL mL
ª º ª ºª º +ª º= =« » « »« »« » −« »− −« » « »¬ ¼ ¬ ¼¬ ¼ ¬ ¼

�m  � (d) 
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 2 2
1 11 2 2 0 1 0

4
0 1 0 12 21 2

g gmL mL
L L

ª º ª ºª º ª º= =« » « »« » « »−« »−« » ¬ ¼ ¬ ¼¬ ¼¬ ¼

�k  � (e) 

 
(b) 
We see that both �m and �k  are diagonal as they should be. The natural frequencies of 
the uncoupled equivalent single degree of freedom systems are then, from Eq. (8.49), 
 

 ( )
2

1
1 2

1

4 / 2 0.765
2 22 2 2

k mL g L g g
m L LmL

ω = = = =
++

�

�
 3 � (f-1) 

 

 ( )
2

2
2 2

2

4 / 2 1.85
2 22 2 2

k mL g L g g
m L LmL

ω = = = =
−−

�

�
 3 � (f-2) 

 
It may be seen that the frequencies computed above are identical with those comput-
ed in Example 7.5, as they should be. 

 
 
 
 

8.5  SOLUTION OF FORCED VIBRATION PROBLEMS 

It was shown in Section 8.4 that the forced vibration problem may be mapped to modal 
coordinates and stated in the form of Eqs. (8.48), or equivalently Eqs. (8.52) or (8.54). We 
next establish an algorithm for the solution of such problems based on this transformation. 
The resulting procedure is referred to as modal analysis. In this regard, we first identify the 
generalized coordinates to describe the motion of the particular system of interest and then 
derive the corresponding equations of motion. We next solve the free vibration problem for 
the system and determine the natural frequencies and the associated natural modes. Once 
the set of modal vectors is determined we then form the modal matrix and compute its 
transpose. The transformed mass, stiffness and force matrices may then be determined us-
ing Eqs. (8.39)–(8.41). It should be noted that Eq. (8.49) may be substituted for either Eq. 
(8.39) or Eq. (8.40) to render the computation more efficient. At this point the problem is 
expressed as a system of uncoupled single degree of freedom systems as defined by Eqs. 
(8.48), or equivalently by Eqs. (8.52) or (8.54). The associated modal forces correspond to 
the portions of the external forces distributed to the individual modes. These equations can 
be solved for the modal displacements directly, using the methods of Chapters 3–5, as ap-
propriate. Once the modal displacements have been determined, we may substitute them 
into Eq. (8.31) to obtain the physical response of the system. The recipe for this procedure 
is summarized in the flow chart displayed in Figure 8.8. 
 

 
 

www.konkur.in



8│ Forced Vibration of Multi-Degree of Freedom Systems 409 

 
 
 

 
  
 
    Figure 8.8  Recipe for modal analysis of discrete systems subjected to external forcing. 
 
 

Identify the generalized coordinates that will be used to 
describe the motion of the system.  
Derive the equations of motion for the system.

Solve the free vibration problem (eigenvalue problem) 
to obtain the natural frequencies and modal vectors. 
 
    2 2 ( )   ,  ( 1, 2,..., )j

j j Nω ωª º− = � =¬ ¼k m U 0 U  

Form the modal matrix. 

(1) ( )N

ª º
« »= « »
« »¬ ¼

"B U U  
Determine  

     BT  

       Evaluate the transformed (modal) mass, stiffness and force matrices. 
 
                    1 ;   ;   ;  −= = = = =�� � � �� �m B mB k B kB m F B F f k FT T TΛ  

Solve the uncoupled equations (for the effective 1 d.o.f. systems) using 
the methods discussed in Chapters 3–5 as appropriate, or other methods of 
choice, to obtain the modal response.  
 
 2 2 ( )      ( )  ( 1, 2,..., )j j j j j jf t t j Nη ω η ω η+ = � =���  

 

Transform back to obtain the physical response. 
 
  ( ) ( )t t= ηu B  
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Example 8.6 
Consider the system comprised of two identical masses and three identical springs of 
Examples 7.1 and 7.2. (a) Determine the steady state response of the system if the 
left mass is subjected to a harmonic force 1( ) sina aF t F t= Ω , as indicated in Figure 
8.6-1. (b) Evaluate the motion of the forced system (i) when 4a k mΩ = , (ii) 
when 3a k mΩ =  and (iii) when 2a k mΩ = . 
 
   
 
                                                        
                           
 
 
 
     Figure E8.6-1 
 
Solution 
(a) 
For the given two degree of freedom system we have, from Example 7.1, 
 

 1

2

( )0 2
, , ( )

( )0 2
u tm k k

t
u tm k k

−  ½ª º ª º= = = ® ¾« » « »−¬ ¼ ¬ ¼ ¯ ¿
m k u  (a) 

 
For the present problem the force array is of the form 
 

   1

2

( ) sin
( )

( ) 0
a aF t F t

t
F t

Ω ½  ½= =® ¾ ® ¾
¯ ¿¯ ¿

F  (b) 

 
To solve the problem using modal analysis we must first determine the natural fre-
quencies and modal vectors for the system in question. Fortunately we have already 
determined these quantities in Examples 7.1 and 7.2, respectively. Thus, 
 

 (1)
1

1
,    

1
k
m

ω ½= =® ¾
¯ ¿

U  (c-1, 2) 

and 

 (2)
2

1 3,    
1

k
m

ω ½= =® ¾−¯ ¿
U  (d-1, 2) 

 
The modal matrix for the current system is obtained by substituting the above modes 
into Eq. (8.21) (with N = 2). This gives the modal matrix as 
 

 
1 1
1 1
ª º= « »−¬ ¼

B  (e) 
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Note that BT = B for the present case. We next compute the modal force matrix, 
modal mass matrix and modal stiffness matrix. The modal force matrix is found by 
substituting Eqs. (b) and (e) into Eq. (8.41). This gives 
 

 
sin1 1 sin
sin1 1 0

a aa a

a a

F tF t
F t

ΩΩ  ½ª º  ½= = =® ¾ ® ¾« » Ω−¬ ¼ ¯ ¿ ¯ ¿
�F B FT  (f) 

 
It is seen from Eq. (f) that the applied force is distributed equally between the two 
modes. We next evaluate the modal mass and modal stiffness matrices by substitut-
ing Eq. (e) together with the pertinent matrices of Eq. (a) into Eqs. (8.39) and (8.40), 
respectively. We then get 
 

 
1 1 0 1 1 2 0
1 1 0 1 1 0 2

m m
m m

ª º ª º ª º ª º= = =« » « » « » « »− −¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼
�m B mBT  (g) 

and 

 
1 1 2 1 1 2 0
1 1 2 1 1 0 6

k k k
k k k

−ª º ª º ª º ª º= = =« » « » « » « »− − −¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼
�k B kBT  (h) 

 
Alternatively, we can compute the modal stiffness matrix using Eqs. (8.50) and 
(8.51). Hence,  
  

 
0 2 0 2 0

0 3 0 2 0 6
k m m k

k m m k
ª º ª º ª º= = =« » « » « »
¬ ¼ ¬ ¼ ¬ ¼

Λ� �k m  (h') 

 
It is seen that the latter computation of �k  is simpler since, for the present system, m 
is diagonal. Note that both �m  and �k  are diagonal, as they should be according to 
Eqs. (8.43) and (8.46). The modal equations are then obtained by substituting the el-
ements of the matrices of Eqs. (f), (g) and (h) into Eqs. (8.52) and (8.53). Doing this 
results in the uncoupled pair of equations 
 

 
2 2

1 1 1 1 1

2 2
2 2 2 2 2

sin

sin
a a

a a

f t

f t

η ω η ω
η ω η ω

+ = Ω

+ = Ω

���
���

 (i-1, 2) 

 
where ω1 and ω2 are given by Eqs. (c-2) and (d-2), and  
 

 1 2
1 2

1 2

    and     
2 6

a a
a a

F FF Ff f
k kk k

= = = =
� �� �
� �  (j-1, 2) 

 
It may be seen that Eq. (i-1) corresponds to an effective single degree of freedom 
system whose mass is 2m and whose spring stiffness is 2k, while Eq. (i-2) represents 
a single degree of freedom system whose mass is 2m and whose spring stiffness is 
6k. In each case the mass is subjected to a force sina aF tΩ . (See Figure E8.6-2.) We 
now proceed to obtain the modal responses. 
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Figure E8.6-2  Equivalent uncoupled system expressed in modal coordinates. 

 
 

 The steady state response of each effective single degree of freedom (modal) 
system may be obtained by direct application of the solution for harmonic excitation 
given by Eq. (3.28). We thus have that  
 

 
( ) ( )

( ) ( )

1
1 2 2

1

2
2 2 2

2

2
( ) sin sin

11

6
( ) sin sin

1 31

a a
a a

aa

a a
a a

aa

f F k
t t t

m k

f F kt t t
m k

η
ω

η
ω

= Ω = Ω
− Ω− Ω

= Ω = Ω
− Ω− Ω

�

�  (k) 

 
The matrix of modal displacements is then  
 

 
( )

( )

2

2

1
1

( ) sin
1/ 32

1 3

aa
a

a

m kF
t t

k
m k

 ½
° °− Ω° °= Ω ® ¾
° °
° °− Ω¯ ¿

η  (l) 

 
Finally, the steady state response of the two degree of freedom system of interest is 
obtained by transforming back to physical coordinates using Eq. (8.31). Substituting 
the modal matrix, Eq. (e), into Eq. (8.31) and carrying through the indicated multi-
plication gives the relation between the physical displacements and the modal coor-
dinates for the given system as   
 

 1 1 1 2

2 2 1 2

( ) ( ) ( ) ( )1 1
( ) ( ) ( ) ( )1 1

u t t t t
u t t t t

η η η
η η η

+ ½  ½  ½ª º= =® ¾ ® ¾ ® ¾« » −−¬ ¼¯ ¿ ¯ ¿ ¯ ¿
 (m) 

 
Inserting the specific values of the modal displacements from Eqs. (k) or (l) gives the 
explicit form of the response, 
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( ) ( )

( ) ( )

1 2 2

2 2 2

1 1/ 3( ) sin
2 1 1 3

1 1/ 3( ) sin
2 1 1 3

a
a

a a

a
a

a a

F
u t t

k m k m k

F
u t t

k m k m k

ª º
« »= Ω +
« »− Ω − Ω¬ ¼
ª º
« »= Ω −
« »− Ω − Ω¬ ¼

 � (n) 

 
It is easily verified that the responses given by Eq. (e) of Example 8.1 and by Eq. (n) 
of the present example are identical as, of course, they should be. 
 
(b-i) 
Substituting 4a k mΩ =  into Eq. (n) gives the motion of the system for this exci-
tation frequency as 
 

 
( ) ( )

( )

4 4
1

4
2

2 2( ) sin sin
3 3

( ) sin
3

a ak k
m m

a k
m

F F
u t t t

k k
F

u t t
k

π= − = −

=
 � (o) 

 
The motion of the first mass is seen to be 180˚ out of phase with the applied force, 
while the motion of the second mass is seen to be in phase with the excitation. 
 
(b-ii) 
For this case 23a k m ωΩ = = . This evidently corresponds to a resonance condi-
tion and the solution for the second modal displacement given by Eq. (k) is not valid. 
For this excitation frequency Eq. (i-2) takes the form 
 
 2 2

2 2 2 2 2 2sinaf tη ω η ω ω+ = ���  (p) 
 
The resonance solution for this case follows directly from Eq. (3.34). Hence, 
 

 ( )3
2 2 2 2

1 3( ) sin( / 2) cos
2 12

a k
a m

F kt f t t t t
k m

η ω ω π= − = −�  (q) 

 
Substituting Eqs. (k-1) and (q) into Eq. (m) gives the motion of the system for this 
excitation frequency as 
 

 
( ) ( )

( ) ( )

3 3
1

3 3
2

( ) cos sin
4 3

( ) cos sin
4 3

a k k
m m

a k k
m m

F ku t t t t
k m

F ku t t t t
k m

ª º
= − +« »

« »¬ ¼
ª º

= −« »
« »¬ ¼

 � (r) 

 
(b-iii) 
Substituting 2a k mΩ =  into Eq. (n) gives the motion of the system for this exci-
tation frequency as 
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 ( ) ( )
1

2 2
2

( ) 0

( ) sin sina ak k
m m

u t
F F

u t t t
k k

π

=

= − = −
 � (s) 

 
It is seen that for this excitation frequency the first mass remains stationary and is, in 
effect, “isolated” from the influence of the applied force. In addition, the motion of 
the second mass is 180˚ out of phase with the applied force. 

 
 
 
 

Example 8.7 
Consider the two degree of freedom system of Example 8.6 when the left and right 
masses are subjected to the forces F1(t) and F2(t), respectively, as shown. Determine 
the steady state response of the system if (a) F1(t) = 0 and 2 ( ) sinb bF t F t= Ω  and (b) 

1( ) sina aF t F t= Ω  and 2 ( ) sinb bF t F t= Ω . 
 
 
 
 
 
 
 
 
   Figure E8.7 
 
Solution 
(a) External force applied to right mass. 
Since the system under consideration is the same as the system of Example 8.6, the 
natural frequencies and modal vectors, and the mass and stiffness matrices are those 
identified in that example. It also follows that the modal matrix, and hence the modal 
mass and modal stiffness matrices are those computed in Example 8.6. The problem 
differs only in the force matrix. For the present problem, 
 

 
0

( )
sinb

t
F t

 ½
= ® ¾Ω¯ ¿

F  (a) 

 
The modal force matrix is then 
 

 
0 sin1 1

( )
sin sin1 1

b b

b b b b

F t
t

F t F t
Ω ½  ½ª º= =® ¾ ® ¾« » Ω − Ω−¬ ¼ ¯ ¿ ¯ ¿

�F  (b) 

 
and hence, 
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 1 1

2 2

1sin
( )

1 32
b bF k F t

t
kF k

 ½  ½Ω° °= =® ¾ ® ¾−¯ ¿° °¯ ¿

��
�

��f  (c) 

 
The equations that govern the modal displacements are then  
 

 
2 2

1 1 1 1 1

2 2
2 2 2 2 2

sin

sin
b b

b b

f t

f t

η ω η ω
η ω η ω

+ = Ω

+ = − Ω

���
���

 (d) 

 
where 

 1 2
1 2

1 2

    and    
2 6

b b
b b

F FF Ff f
k kk k

= = = =
� �� �
� �  (e) 

 
The solutions to Eqs. (d) are obtained by direct application of Eq. (3.28). This gives 
the modal response as 
 

 
( )

( )

2

1

2
2

1
1( )

( ) sin
( ) 1/ 32

1 3

bb
b

b

m kt F
t t

t k
m k

η
η

 ½
° °− Ω ½ ° °= = Ω® ¾ ® ¾−¯ ¿ ° °
° °− Ω¯ ¿

η  (f) 

 
The physical displacements are next found by substituting Eq. (f) into Eq. (m) of Ex-
ample (8.6). Doing this, we obtain the displacements 
 

 
( ) ( )

( ) ( )

1 2 2

2 2 2

1 1/ 3( ) sin
2 1 1 3

1 1/ 3( ) sin
2 1 1 3

b
b

b b

b
b

b b

F
u t t

k m k m k

F
u t t

k m k m k

ª º
« »= Ω −
« »− Ω − Ω¬ ¼
ª º
« »= Ω +
« »− Ω − Ω¬ ¼

 � (g) 

 
 
(b) External forces applied to both masses. 
Since the governing equations are linear, the response to the combined loading may 
be superposed. Thus, adding Eq. (n) of Example 8.6 and Eq. (g) of the present ex-
ample gives the response to the combined loading as 
 

 
( ) ( )

( ) ( )

1 2 2

2 2

1 1/ 3( ) sin
2 1 1 3

1 1/ 3             sin
2 1 1 3

a
a

a a

b
b

b b

F
u t t

k m k m k

F
t

k m k m k

ª º
« »= Ω +
« »− Ω − Ω¬ ¼

ª º
« »+ Ω −
« »− Ω − Ω¬ ¼

 � (h-1) 
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( ) ( )

( ) ( )

2 2 2

2 2

1 1/ 3( ) sin
2 1 1 3

1 1/ 3             sin
2 1 1 3

a
a

a a

b
b

b b

F
u t t

k m k m k

F
t

k m k m k

ª º
« »= Ω −
« »− Ω − Ω¬ ¼

ª º
« »+ Ω +
« »− Ω − Ω¬ ¼

 � (h-2) 

 
 
 
 

Example 8.8 
Consider the three-story building comprised of 12 identical columns, each of length 
L and bending stiffness EI shown in Figure E8.8-1. The three floors supported by the 
columns are each of mass m as indicated. Determine the steady state response of the 
structure if the base is excited harmonically in the form 0 0( ) sinu t h t= Ω . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure E8.8-1 Three-story building subjected to base motion. 
 
 
Solution 
This is the structure of Example 7.6 subjected to base excitation. As such, the three 
story building under consideration may be represented as the equivalent three-mass, 
three-spring, system shown in Figure 8.8-2, where the stiffness of each equivalent 
spring is obtained directly from Eq. (1.19) as 
 
 348k EI L=  (a) 
 
The equivalent discrete system corresponds to the system considered in Example 6.2. 
Hence, the equations of motion that govern the equivalent system are, from Eq. (c) 
of Example 6.2,  
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   Figure E8.8-2  Equivalent system. 
 
 

 
1 1 0 0

2 2

3 3

0 0 2 0 ( ) sin
0 0 2 0 0
0 0 0 0 0

m u k k u k u t k h t
m u k k k u

m u k k u

− Ωª º  ½ ª º  ½  ½  ½
° ° ° ° ° ° ° °« » « »+ − − = =® ¾ ® ¾ ® ¾ ® ¾« » « »
° ° ° ° ° ° ° °« » « »−¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿ ¯ ¿ ¯ ¿

��
��
��

 (b) 

 
The governing equations could have also been obtained by direct application of Eqs. 
(6.2)–(6.7) for N = 3, with m1 = m2 = m3 = m,  k1 = k2 = k3 = k  and k4 = 0. 
 The natural frequencies and corresponding modes for the system under consid-
eration are, from Example 7.6, 
  

 (1)
1 0

0.328
0.445 3.08  ,     0.591

0.737
k mω ω

 ½
° °= = = ® ¾
° °
¯ ¿

U  (c) 

 

 (2)
2 0

0.737
1.25 8.64  ,     0.328

0.591
k mω ω

 ½
° °= = = ® ¾
° °−¯ ¿

U  (d) 

 

 (3)
3 0

0.591
1.80 12.5  ,     0.737

0.328
k mω ω

 ½
° °= = = −® ¾
° °
¯ ¿

U  (e) 

 
where 

 0 3

EI
mL

ω =  (f) 

 
The modal matrix is then 
 

 
0.328 0.737 0.591
0.591 0.328 0.737
0.737 0.591 0.328

ª º
« »= −« »
« »−¬ ¼

B  (g) 

 
and the modal mass, stiffness and force matrices are computed as follows. 
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The modal mass matrix is computed directly as 
  

 
1 0 0
0 1 0
0 0 1

m
ª º
« »= = « »
« »¬ ¼

�m B mBT  (h) 

 
Since the mass matrix m is diagonal, and the stiffness matrix k is full (stiffness cou-
pling), the computation of the modal stiffness matrix for this system is simplified 
somewhat by using Eq. (8.50). Hence,  
  

 
0.198 0 0 1 0 0 0.198 0 0

0 1.56 0 0 1 0 0 1.56 0
0 0 3.25 0 0 1 0 0 3.25

k m k
m

ª º ª º ª º
« » « » « »= = =« » « » « »
« » « » « »¬ ¼ ¬ ¼ ¬ ¼

Λ� �k m  (i) 

 
The modal force matrix is easily computed as 
 

 0

0.328
sin 0.737

0.591
kh t

 ½
° °= = Ω ® ¾
° °
¯ ¿

�F B FT  (j) 

 
Having computed the modal mass, modal stiffness and modal force matrices, the 
modal equations for the three-story building are then 
 
 1 1 00.198 0.328 sinm k k h tη η+ = Ω��  (k-1) 

 
 2 2 01.56 0.737 sinm k k h tη η+ = Ω��  (k-2) 
 
 3 3 03.25 0.591 sinm k k h tη η+ = Ω��  (k-3) 
 
or, in standard form, 
  

 2 2 (1) (1) 0
1 1 1 1 0 0 0

0.328
sin  ;   1.66

0.198
k h

f t f h
k

η ω η ω+ = Ω = =� ���  (l-1) 

 

 2 2 (2) (2) 0
2 2 2 2 0 0 0

0.737
sin  ;   0.472

1.56
k h

f t f h
k

η ω η ω+ = Ω = =� ���  (l-2) 

 

 2 2 (3) (3) 0
3 3 3 3 0 0 0

0.591
sin  ;   0.182

3.25
k h

f t f h
k

η ω η ω+ = Ω = =� ���  (l-3) 

 
The steady state response for each mode (i.e., the solutions to Eqs. (l-1)–(l-3)) can be 
written directly from Eq. (3.28). Hence, letting j jωΩ ≡ Ω (j = 1, 2, 3), we obtain 
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 ( )
(1)

0 0
1 2 2 2

1 0

1.66
( ) sin sin

1 1 0.105
f h

t t tη
ω

= Ω = Ω
− Ω − Ω

�
 (m-1) 

 

 ( )
(2)

0 0
2 2 2 2

2 0

0.472
( ) sin sin

1 1 0.0134
f h

t t tη
ω

= Ω = Ω
− Ω − Ω

�
 (m-2) 

 

 ( )
(3)

0 0
3 2 2 2

3 0

0.182
( ) sin sin

1 1 0.00640
f h

t t tη
ω

= Ω = Ω
− Ω − Ω

�
 (m-3) 

 
Finally, the response of the structure is obtained by mapping back to physical coor-
dinates using Eq. (8.30). Hence, 
 

 
3

( )

1

( ) ( )j
j

j

t tη
=

=¦u U  

 
which gives the steady state response of the three story building as 
 

 
( )1 1 0 0

02 2 2
0 0 0

( ) sin

0.544 0.348 0.108       sin
1 0.105 1 0.0134 1 0.00640

u t h t

h t

χ= Ω Ω

§ ·
= + + Ω¨ ¸− Ω − Ω − Ω© ¹

 � (n-1) 

 

 
( )2 2 0 0

02 2 2
0 0 0

( ) sin

0.981 0.155 0.134       sin
1 0.105 1 0.0134 1 0.00640

u t h t

h t

χ= Ω Ω

§ ·
= + − Ω¨ ¸− Ω − Ω − Ω© ¹

 � (n-2) 

 

 
( )3 3 0 0

02 2 2
0 0 0

( ) sin

1.22 0.279 0.0597       sin
1 0.105 1 0.0134 1 0.00640

u t h t

h t

χ= Ω Ω

§ ·
= − + Ω¨ ¸− Ω − Ω − Ω© ¹

 � (n-3) 

 
where 
 0 0ωΩ = Ω  (o) 
 
and ω0 is given by Eq. (f). It may be seen that the amplitude of the response of each 
mass is dependent upon the normalized forcing frequency, 0.Ω  Plots of the normal-
ized amplitudes χj (j = 1, 2, 3) as a function of the normalized excitation frequency 
are displayed in Figure E8.8-3. 
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Figure E8.8-3  Normalized amplitudes of side-sway motion for each floor of three-story 
building subjected to base excitation. 
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Example 8.9 
Two identical railroad cars, each of mass m, are attached by an elastic coupler of ef-
fective stiffness k, as shown. The cars are initially at rest when a third car collides 
with the system and imparts an impact of magnitude ! to the left car, as indicated. 
Determine the motion of the coupled cars following impact. 

 
    
Solution 
The equation of motion for the system is easily derived, or may be found directly 
from Eq. (b) of Example 6.1 by setting m1 = m2 = m, k2 = k, k1 = k3 = 0, F2 = 0 and 

1( ) ( )F t tδ=
�

! . The resulting equation is 
 

 1 1

2 2

( ) ( )0 ( )
( ) ( )0 0

u t u tm k k t
u t u tm k k

δ ½− ½  ½ª º ª º ° °+ =® ¾ ® ¾ ® ¾« » « »− ° °¬ ¼ ¬ ¼¯ ¿ ¯ ¿ ¯ ¿

���
��

!  (a) 

 
The free vibration problem for the system corresponds to that for the unrestrained 
system of Example 7.9. The natural frequencies and modal vectors were computed 
therein as 

 (1)
1

1
0,

1
ω  ½

= = ® ¾
¯ ¿

U  (b) 

 

 (2)
2

1
2 ,

1
k mω  ½= = ® ¾−¯ ¿

U  (c) 

 
Recall that the first mode corresponds to a rigid body mode. The modal matrix fol-
lows directly as 
 

 
1 1
1 1
ª º= =« »−¬ ¼

B BT  (d) 

 
We next compute the modal mass, stiffness and force matrices. Hence, 
 

 
1 1 0 1 1 2 0
1 1 0 1 1 0 2

m m
m m

ª º ª º ª º ª º
= =« » « » « » « »− −¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

�m  (e) 

 

 
1 1 1 1 0 0
1 1 1 1 0 4

k k
k k k

−ª º ª º ª º ª º= =« » « » « » « »− − −¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼
�k  (f) 

 
and 
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ˆ1 1 1( ) ˆ( ) ( )

1 1 10
I tt I tδ δ

 ½ª º  ½° °= =® ¾ ® ¾« »− ° °¬ ¼ ¯ ¿¯ ¿

� ��F  (g) 

 
It is seen from Eq. (g) that the applied force excites both modes. Note also, from Eq. 
(f), that the equivalent 1 d.o.f. system associated with the first mode (i.e., the rigid 
body mode) possesses vanishing stiffness. The corresponding modal equations are 
 

 1

2 2

2 ( ) ( )

2 ( ) 4 ( ) ( )

m t t

m t k t t

η δ
η η δ

=
+ =

�
��

�
��

!

!
 (h) 

 
Integrating the first of Eqs. (h) and incorporating Eq. (4.21) gives 
 

 1( ) ( )
2

t t t
m

η = !
H  (i-1) 

 
It is seen that the first modal displacement corresponds to a rectilinear motion at con-
stant velocity. The solution to the second of Eqs. (h) is found by direct application of 
Eq. (4.22). We thus obtain the second modal displacement as 
 

 2
2 ( ) sin ( )

8
k

mt t t
km

η = !
H  (i-2) 

 
Mapping back to physical space gives the response of the system as 
 

 1 1 1 2

2 2 1 2

( ) ( ) ( ) ( )1 1
( ) ( ) ( ) ( )1 1

u t t t t
u t t t t

η η η
η η η

+ ½  ½  ½ª º= =® ¾ ® ¾ ® ¾« » −−¬ ¼¯ ¿ ¯ ¿ ¯ ¿
 (j) 

 
Substituting Eqs. (i-1) and (i-2) into Eq. (j) gives the motion of the railroad cars as 

 2
1

1( ) sin ( )
2 2

k
mu t t t t

m k m

§ ·
= +¨ ¸¨ ¸

© ¹

!
H  � (k-1) 

 

 2
2

1( ) sin ( )
2 2

k
mu t t t t

m k m

§ ·
= −¨ ¸¨ ¸

© ¹

!
H  � (k-2) 

 
The motion of the system is seen to be comprised of a rigid body translation of both 
cars traveling together at constant speed 0 2v m= !  combined with the two cars vi-
brating relative to one another in an “accordion mode” at frequency 2 .k mω =  
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Example 8.10 
Determine the response of the double pendulum of Examples 6.5 and 7.5 if the bot-
tom mass is subjected to the horizontally directed triangular pulse indicated. 
 

 
     Figure E8.10-1  Double pendulum subjected to triangular pulse. 
 
 
Solution 
From the development in Section 6.1.2, and from Examples 6.5 and 7.5, the govern-
ing equations for the pendulum are  
 
 + =��mu ku F  
where 

 1

2

( )
( )

( )
t

t
t

θ
θ
 ½

= = ® ¾
¯ ¿

u u   

 
and the mass and stiffness matrices for the uniform pendulum are, respectively, 
 

 2 22 1 2 0
 ,    

1 1 0 1
gmL mL
L

ª º ª º= =« » « »
¬ ¼ ¬ ¼

m k  (a, b) 

 
Further, the natural frequencies and associated modal vectors are, from Example 7.5, 
 

 (1)
1

1
0.765  ,  

2
g Lω

 ½° °= = ® ¾
° °¯ ¿

U  (c-1, 2) 

 

 (2)
2

1
1.85  ,  

2
g Lω

 ½° °= = ® ¾
−° °¯ ¿

U  (c-3, 4) 

 
For the present problem, the force matrix is  
 

 1 2 1

2 2

( ) ( ) 1
( ) ( )

( ) 1
F F L P t L

t P t L
F L P t L
+ ½  ½  ½= → =® ¾ ® ¾ ® ¾

¯ ¿ ¯ ¿¯ ¿
F  (d) 
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It follows from Eqs. (c-2) and (c-4) that the modal matrix for the system is 
 

 
1 1

2 2

ª º
= « »

−« »¬ ¼
B  (e) 

 
The modal mass, modal stiffness and modal force matrices are next obtained using 
Eqs. (8.39), (8.40) and (8.41), respectively. Hence, 
 

 2 2
1 11 2 2 1 2 2 0

2
1 1 2 21 2 0 2 2

mL mL
ª º ª ºª º +ª º= =« » « »« »« » −« »− −« » « »¬ ¼ ¬ ¼¬ ¼ ¬ ¼

�m  (f) 

 

 2 2
1 11 2 2 0 1 0

4
0 1 0 12 21 2

g gmL mL
L L

ª º ª ºª º ª º= =« » « »« » « »−« »−« » ¬ ¼ ¬ ¼¬ ¼¬ ¼

�k  (g) 

 
Since the present system has only two degrees of freedom, it was simple enough to 
compute the modal mass matrix directly. It may be seen, however, that the stiffness 
matrix for this system is diagonal while the mass matrix is full (inertia coupling). 
The computation of the modal mass matrix for systems of this type is generally sim-
plified by using Eq. (8.50). Thus, we may also compute the modal mass as follows: 
 

1 2 21 (2 2) 0 1 0 2 2 0
4 2

0 10 1 (2 2) 0 2 2
L gmL mL
g L

−
ª º ª º− +ª º= = =« » « »« »

+ −¬ ¼« » « »¬ ¼ ¬ ¼
Λ ��m k  

 
Finally, the modal force matrix is computed as 
 

 1

2

1 2 ( )
( ) ( )

( )1 2

P t L Lt P t
P t L L

ª º  ½ ½ ° °= =« » ® ¾ ® ¾
° °−« » ¯ ¿ ¯ ¿¬ ¼

��
�F  (h) 

where 
 ( ) ( )1 21 2  ,    1 2L L L L= + = −� �  (i) 

 
With the modal mass, modal stiffness and modal force matrices for the system estab-
lished, the transformed (modal) equations for the double pendulum take the specific 
form 
 1 1 1 1 1( )m k P t Lη η+ =� ����  

and 
 2 2 2 2 2( )m k P t Lη η+ =� ����  

 
or, equivalently, 
 2 2

1 1 1 1 1( )f tη ω η ω+ = ���  (j-1) 
and 

 2 2
2 2 2 2 2 ( )f tη ω η ω+ = ���  (j-2) 
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Figure E8.10-2  Decomposition of triangular pulse into the sum of three pulses. 
 
 
where 
 1 1 1 2 2 2( ) ( ) , ( ) ( )f t P t L k f t P t L k= =� � � �� �  (k) 
 
Equations (j-1) and (j-2) may be solved for the modal displacements once we estab-
lish an analytical form for the pulse P(t). Toward this end, the given triangular pulse 
may be constructed as the sum of two ramp loads and a step load as shown in Figure 
E8.10-2. Mathematically, 
 
 ( ) ( ) ( )( ) ( ) ( ) ( )a b cP t P t P t P t= + +  (l) 
where 

 ( ) 0

0

( ) ( )a P
P t t t

t
= H  (m-1) 

 
 ( )( )

0 0 0( ) 1 ( )bP t P t t t tª º= − −¬ ¼H  (m-2) 
 
 ( )

0 0( ) ( )cP t P t t= − −H  (m-3) 
 
The response of each 1 d.o.f. system (the solutions to Eqs. (j)) is then the sum of the 
responses to the individual pulses (m-1), (m-2) and (m-3).  From the discussions of 
Sections 4.4, 4.5 and 4.6 we thus have that 
 

 [ ]( ) ( ) ( ) 0 1 1
1 1 1 1 1 1 0

0

( ) ( ) ( ) ( ) ( ) ( )a b c P L k
t t t t t t t

t
η η η η= + + = − −

��
R R  (n-1) 

and 

 [ ]( ) ( ) ( ) 0 2 2
2 2 2 2 2 2 0

0

( ) ( ) ( ) ( ) ( ) ( )a b c P L k
t t t t t t t

t
η η η η= + + = − −

��
R R  (n-2) 

 
where, from Eqs. (4.32) and (4.39), 
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sin

( ) ( )   ( 1, 2)j
j

j

t
t t t j

ω
ω

ª º
= − =« »
« »¬ ¼

R H  (o) 

 
The response of the double pendulum to the triangular pulse imparted on the bottom 
mass is then found by substituting Eqs. (e) and (n) into Eq. (8.31). Doing this, we 
find that 

 
( )

( )
1 21 1

2 2 1 2

1 1( ) ( )
( ) ( ) 22 2
t t
t t

η ηθ η
θ η η η

 ½+ª º ½  ½ ° °= =« »® ¾ ® ¾ ® ¾
−−« »¯ ¿ ¯ ¿ ° °¬ ¼ ¯ ¿

 (p) 

 
and hence that 
 

0 1 2 1 1 2 2
1

0 1 21 2 1 2

0 1 0 2 01 2 1 2
0 0

0 1 21 2 1 2

sin sin
( ) ( )

sin ( ) sin ( )
          ( ) ( )

P L L L t L tt t t
t k k k k

P t t t tL L L Lt t t t
t k k k k

ω ωθ
ω ω

ω ω
ω ω

ª º§ ·
= + − −« »¨ ¸¨ ¸« »© ¹¬ ¼

ª º§ · − −− − + − − −« »¨ ¸¨ ¸« »© ¹¬ ¼

� � � �
� � � �

� � � �
� � � �

H

H

  

  (q-1) 
 

    

0 1 2 1 1 2 2
2

0 1 21 2 1 2

0 1 0 2 01 2 1 2
0 0

0 1 21 2 1 2

sin sin
( ) 2 ( )

sin ( ) sin ( )
          2 ( ) ( )

P L L L t L tt t t
t k k k k

P t t t tL L L Lt t t t
t k k k k

ω ωθ
ω ω

ω ω
ω ω

ª º§ ·
= − − +« »¨ ¸¨ ¸« »© ¹¬ ¼

ª º§ · − −− − − − + −« »¨ ¸¨ ¸« »© ¹¬ ¼

� � � �
� � � �

� � � �
� � � �

H

H

 

    (q-2) 
 
Finally, upon substituting Eqs. (g) and (i) into Eqs. (q-1) and (q-2), we have 
 

( ) ( )

( ) ( )

0
1 1 2

0 1 0 2 0

0 0 1 0 2 0
0

0 1 0 2 0

2 1 2 1
( ) sin sin ( )

2 2 2

2 1 2 1( ) sin ( ) sin ( )
          ( )

2 2 2

P tt t t t
mg t t t

P t t t t t t t t
mg t t t

θ ω ω
ω ω

ω ω
ω ω

ª º+ −
« »= − +
« »
« »¬ ¼
ª º+ −− − −« »− − + −
« »
« »¬ ¼

H

H

  

  � (r-1)  

( ) ( )

( ) ( )

0
2 1 2

0 1 0 2 0

0 0 1 0 2 0
0

0 1 0 2 0

2 2 2 22( ) sin sin ( )
2 2 2

2 2 2 22( ) sin ( ) sin ( )
          ( )

2 2 2

P tt t t t
mg t t t

P t t t t t t t t
mg t t t

θ ω ω
ω ω

ω ω
ω ω

ª º+ −
« »= − −
« »
« »¬ ¼
ª º+ −− − −« »− − − −
« »
« »¬ ¼

H

H

  � (r-2) 
where ω1 and ω2 are given by Eqs. (c-1) and (c-3), respectively.  
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 It may be seen from Eqs. (r-1) and (r-2) that once the pulse subsides (i.e., when 
t > t0) the linear time dependence in the response cancels. It may be noted that this 
also occurs for the sine terms in the expression for either θ1 or θ2 if the duration of 
the pulse, t0, is a multiple of the corresponding natural period. That is, the corre-
sponding sine terms of Eq. (r-1) or Eq. (r-2) will cancel if t0 = 2nπ/ω1 or if t0 = 
2nπ/ω2, respectively, where n is any integer.  

 
 
 

Example 8.11 
The tram of Examples 6.6 
and 7.7 is shut down and 
at rest and, as a conse-
quence, the cable is slack 
and the controller is off 
when a wind gust strikes 
the structure. Determine 
the motion of the tram if 
the effect of the wind gust 
may be modeled as a rec-
tangular pulse of magni-
tude F0 and duration τ. 
                                      Figure E8.11  Tram subjected to wind load. 
 
Solution 
For the specific system in question, the mass of the barrow is twice the mass of the 
frame. That is, m2 = 2m1 = 2m. Further, for the present conditions, F1 = 0, M = 0 and  
 
 [ ]2 0( ) ( ) ( )F F t F t t τ= = − −H H  (a) 
 
The equation of motion of the system is then, from Example 6.6, 
 

 2

3 2 0 ( )
2 2 0 2 ( )

m mL u k u F t
mL mL mgL L F tθ θ

ª º  ½ ª º  ½  ½+ =® ¾ ® ¾ ® ¾« » « »
¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿ ¯ ¿

��
��  (b) 

 
The natural frequencies and modes for this system were computed in Example 7.7 as 
 

 (1)
1 0 2

0

1
0.518 ,

0.366 g
ω ω

ω
 ½

= = ® ¾
¯ ¿

U  (c-1, 2) 

 

   (2)
2 0 2

0

1
1.93 ,

1.37 g
ω ω

ω
 ½

= = ® ¾−¯ ¿
U  (d-1, 2) 

 
where the properties of the particular system under consideration are such that 
  
 2

0 k m g Lω = =  (e) 
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The corresponding modal matrix is then 
  

 2 2
0 0

1 1
0.366 1.37g gω ω
ª º

= « »−¬ ¼
B  (f) 

 
With the modal matrix established, we next compute the modal stiffness and modal 
force matrices. Hence, 
 

2
0

2 22
0 00

1 10 1.27 01 0.366
0.366 1.370 2 0 4.761 1.37

k kg
g gmgL kg

ω
ω ωω

ª º ª ºª º ª º= =« » « »« » « »−− ¬ ¼ ¬ ¼¬ ¼¬ ¼
�k   

   (g) 
 
and 

 
2

0
2

0

( ) 1.37 ( )1 0.366
( ) 0.366 ( )1 1.37

F t F tg
L F t F tg

ω
ω

ª º  ½  ½= =® ¾ ® ¾« » −− ¯ ¿ ¯ ¿¬ ¼
�F  (h) 

 
The modal equations are then 
 
 [ ]2 2 (1)

1 1 1 1 0( ) ( ) ( ) ( )t t f t tη ω η ω τ+ = − −��� H H  (i-1) 
 

 [ ]2 2 (2)
2 2 2 2 0( ) ( ) ( ) ( )t t f t tη ω η ω τ+ = − −��� H H  (i-2) 

 
where 
 (1) (1)

0 0 1 01.08f F k F k= =� ��  (j-1) 
and 
 (2) (2)

0 0 2 00.0769f F k F k= = −� ��  (j-2) 
 
The solutions to equations (i-1) and (i-2) follow directly from Eq. (4.43). The modal 
displacements are therefore 
 
 { } { }(1)

1 0 1 1( ) 1 cos ( ) 1 cos ( ) ( )t f t t t tη ω ω τ τª º= − − − − −¬ ¼
� H H  (k-1) 

 
 { } { }(2)

2 0 2 2( ) 1 cos ( ) 1 cos ( ) ( )t f t t t tη ω ω τ τª º= − − − − −¬ ¼
� H H  (k-2) 

 
Mapping back to physical space gives the desired response. Hence, 
 

1 21
2 2 2

0 0 1 2 02

1 1 ( ) ( )( )( )
0.366 1.37 (0.366 1.37 )( )( )

t ttu t
g g gtt

η ηη
ω ω η η ωηθ

+ª º  ½ ½ ½ = =® ¾ ® ¾ ® ¾« »− −¯ ¿ ¯ ¿¬ ¼ ¯ ¿
 (l) 

 
 
Finally, substituting Eqs. (k) into Eqs. (l) gives the response of the tram as 
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[ ]

[ ]

[ ]

0

0
0 0

0
0 0

( ) ( ) ( )

1.08cos(0.518 ) 0.0769cos(1.93 ) ( )

1.08cos{0.518 ( )} 0.0769cos{1.93 ( )} ( )

F
u t L t t

mg
F

t t t
mg
F

t t t
mg

τ

ω ω

ω τ ω τ τ

= − −

− −

+ − − − −

H H

H

H

  

    � (m-1)  

[ ]

[ ]

[ ]

0

0
0 0

0
0 0

( ) ( ) ( )
2

0.395cos(0.518 ) 0.105cos(1.93 ) ( )

0.395cos{0.518 ( )} 0.105cos{1.93 ( )} ( )

F
t t t

mg
F

t t t
mg
F

t t t
mg

θ τ

ω ω

ω τ ω τ τ

= − −

− +

+ − + − −

H H

H

H

  

   � (m-2) 
 
 
 
 

Example 8.12 
The motorcycle of Examples 6.7 and 7.8 is traveling at constant speed v0 on a hori-
zontal road when it encounters a small depression in the road. (See Figure 8.12-1.) If 
the depression is described by the function [ ]0( ) 1 cos(2 )y hξ πξ λ= − , determine 
the response of the motorcycle that results from riding through the dip. 

 
       Figure E8.12-1  Motorcycle approaching depression in road. 
 
 
Solution 
The problem is similar to Example 4.7, but now for a three-degree of freedom sys-
tem with two wheels (Figure E8.12-2). The spatial equation that describes the geom-
etry of the depression is given as 
 
 [ ]0( ) 1 cos(2 )y hξ πξ λ= −  (a) 
 
where h0 is the depth of the depression and λ is the corresponding length as shown in 
Figure E8.12-1.  

www.konkur.in



430 Engineering Vibrations 

 
   Figure E8.12-2  Equivalent system. 
 
 
 
Since the motorcycle moves at constant speed v0 the problem may be viewed as if 
the vehicle is fixed and each base undergoes a prescribed vertical motion, where the 
motion of the second base lags the first by the time increment 
 
 0lagt v L=  (b) 
 
If the first wheel encounters the depression at t = 0 then, while passing through the 
dip, the horizontal motion of the first wheel is 
 
   0v tξ =  (c) 
 
Similarly, while passing through the depression, the horizontal motion of the second 
wheel is  
   0 0 ( )lagv t v t tξ ′= = −  (d) 
 
Substituting Eq. (c) into Eq. (a) gives the vertical motion of the front wheel as 
 
 [ ][ ]01 0( ) 1 cos ( ) ( )y t h t t t tλ= − Ω − −H H  (e) 
where 
 2 tλπΩ =  (f) 
and 
 0t vλ λ=  (g) 
 
is the time it takes for the wheel to traverse the depression. Likewise, the vertical 
motion of the second wheel is given by  
 
 02 0( ) 1 cos ( ) ( ) ( )lag lag lagy t h t t t t t t tλª º ª º= − Ω − − − − −¬ ¼ ¬ ¼H H  (h) 
 
Now, the equations of motion for the particular system under consideration are found 
by substituting the given system parameters into Eq. (h) of Example 6.7. We then 
have 
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01 02

2
01 02

0 0 8 3 0 2 3 ( )
0 0 0 2 0 ( ) 2
0 0 3 2 3 0 2 3 0

G G

G

b b

m y k k y k y y
I kL kL y y

m y k k y
θ θ

− +ª º  ½ ª º  ½  ½
° ° ° ° ° °« » « »+ = −® ¾ ® ¾ ® ¾« » « »
° ° ° ° ° °« » « »−¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿ ¯ ¿

��
��

��
 (i) 

 
where 
 2 12GI mL=  (j) 
 
We wish to solve Eq. (i) subject to the base motions defined by Eqs. (e) and (h). To 
do this we first recall the natural frequencies and modal vectors that were computed 
in Example 7.8. Thus, 
 

 2 (1)
1

1
1.132 , 0

2.302
k mω

 ½
° °= = ® ¾
° °
¯ ¿

U  (k) 

 

 2 (2)
2

1
3.535 , 0

1.303
k mω

 ½
° °= = ® ¾
° °−¯ ¿

U  (l) 

 

 2 (3)
3

0
6 , 1

0
k mω

 ½
° °= = ® ¾
° °
¯ ¿

U  (m) 

 
The corresponding modal matrix is then 
 

 
1 1 0
0 0 1

2.302 1.303 0

ª º
« »= « »
« »−¬ ¼

B  (n) 

 
We next compute the modal mass, modal stiffness and modal force matrices. Hence, 
 

 
1 0 2.302 0 0 1 1 0
1 0 1.303 0 0 0 0 1
0 1 0 0 0 3 2.302 1.303 0

G

m
I

m

ª º ª º ª º
« » « » « »= −« » « » « »
« » « » « »−¬ ¼ ¬ ¼ ¬ ¼

�m  

 
which, after carrying through the indicated operations, gives 
 

 
2

2.766 0 0
0 1.566 0
0 0 12

m
m

mL

ª º
« »= « »
« »¬ ¼

�m  (o) 
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Similarly, 
 

 
1.132 0 0 2.766 0 0

0 3.535 0 0 1.566 0
0 0 6 0 0 G

m
k m
m

I

ª º ª º
« » « »= = « » « »
« » « »¬ ¼ ¬ ¼

Λ� �k m  

 
which gives 

 
2

3.131 0 0
0 5.536 0
0 0 2

k
L

ª º
« »= « »
« »¬ ¼

�k  (p) 

 
Likewise, 
 

 
01 02 01 02

01 02 01 02

01 02

1 0 2.302 ( ) ( )
1 0 1.303 ( ) 2 ( )
0 1 0 0 ( ) 2

k y y k y y
kL y y k y y

kL y y

+ +ª º  ½  ½
° ° ° °« »= − − = +® ¾ ® ¾« »
° ° ° °« » −¬ ¼ ¯ ¿ ¯ ¿

�F  (q) 

 
It is seen from Eq. (q) that all three modes are excited. Substituting the above values 
into Eq. (8.52) gives the corresponding equations for the modal displacements, 
 
 { }2 2 2

1 1 1 1 1 1 01 02( ) ( ) ( ) 0.3194 ( ) ( )t t f t y t y tη ω η ω ω ª º+ = = +¬ ¼
���  (r-1) 

 
 { }2 2 2

2 2 2 2 2 2 01 02( ) ( ) ( ) 0.1806 ( ) ( )t t f t y t y tη ω η ω ω ª º+ = = +¬ ¼
���  (r-2) 

 
 { }2 2 2

3 3 3 3 3 3 01 02( ) ( ) ( ) ( ) ( )t t f t y t y t Lη ω η ω ω ª º+ = = −¬ ¼
���  (r-3) 

 
where y01(t) and y02(t) are given by Eqs. (e) and (h), respectively. Equations (r-1), (r-
2) and (r-3) can be solved using the methods of Chapter 4. For this particular case, 
we can simplify our analysis by taking advantage of calculations already performed 
in a previous example and using superposition. In this regard, the solution to Exam-
ple 4.7 can be utilized by incorporating the current values of the parameters. Doing 
this we obtain 
 

( )

( )

( )

( )

2(1)
1 1 1 1 1

2(1)
1 1 1 1

2(1)
1 1 1 1

2(1)
1 1 1 1

( ) 1 cos cos ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) (

lag lag lag

lag lag la

t h t t t

h t t t t t t

h t t t t t t

h t t t t t t t t

λ λ λ

λ λ

η ω β ω β

ω β ω β

ω β ω β

ω β ω β

ª º= + Ω − Ω¬ ¼
ª º− + Ω − − Ω − −¬ ¼
ª º+ + Ω − − Ω − −¬ ¼
ª º− + Ω − − − Ω − − −¬ ¼

H

H

H

H )g tλ−

 

    (s-1) 
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( )

( )

( )

( )

2(2)
2 2 2 2 2

2(2)
2 2 2 2

2(2)
2 2 2 2

2(2)
2 2 2 2

( ) 1 cos cos ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) (

lag lag lag

lag lag la

t h t t t

h t t t t t t

h t t t t t t

h t t t t t t t t

λ λ λ

λ λ

η ω β ω β

ω β ω β

ω β ω β

ω β ω β

ª º= + Ω − Ω¬ ¼
ª º− + Ω − − Ω − −¬ ¼
ª º+ + Ω − − Ω − −¬ ¼
ª º− + Ω − − − Ω − − −¬ ¼

H

H

H

H )g tλ−

  (s-2) 
 

( )

( )

( )

( )

2(3)
3 3 3 3 3

2(3)
3 3 3 3

2(3)
3 3 3 3

2(3)
3 3 3 3

( ) 1 cos cos ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) ( )

1 cos ( ) cos ( ) (

lag lag lag

lag lag la

t h t t t

h t t t t t t

h t t t t t t

h t t t t t t t t

λ λ λ

λ λ

η ω β ω β

ω β ω β

ω β ω β

ω β ω β

ª º= + Ω − Ω¬ ¼
ª º− + Ω − − Ω − −¬ ¼
ª º− + Ω − − Ω − −¬ ¼
ª º+ + Ω − − − Ω − − −¬ ¼

H

H

H

H )g tλ−

 

    (s-3) 
where 

 
( )2

1 ( 1, 2,3)
1

j

j

jβ
ω

= =
− Ω

 (t) 

 
 (1) (2) (3)

0 0 00.3194 , 0.1806 ,h h h h h h L= = =  (u-1, 2, 3) 
 
The physical displacements are finally obtained by transforming back to the original 
coordinates using Eq. (8.31). Hence, 
 

 
1

2

3

( ) 1 1 0 ( )
( ) 0 0 1 ( )
( ) 2.302 1.303 0 ( )

G

b

y t t
t t

y t t

η
θ η

η

 ½ ª º  ½
° ° ° °« »=® ¾ ® ¾« »
° ° ° °« »−¯ ¿ ¬ ¼ ¯ ¿

 (v) 

 
which when expanded gives 
 
 1 2( ) ( ) ( )Gy t t tη η= +  � (w-1) 
 
 3( ) ( )t tθ η=  � (w-2) 
 
 1 2( ) 2.302 ( ) 1.303 ( )by t t tη η= −  � (w-3) 
 
where η1(t), η2(t) and η3(t) are given by Eqs. (s-1), (s-2) and (s-3), respectively. It is 
seen that the rotational coordinate is a modal coordinate. Let’s examine the motion 
of the rider in detail. 
 The detailed response of  the rider is found by substituting Eqs. (s-1) and (s-2) 
into Eq. (w-3) and evaluating the resulting expression when the front wheel is rolling 
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through the depression (0 < t < tλ), after it passes the dip but before the second wheel 
encounters the depression (tλ < t < tlag), when the second wheel rolls through the de-
pression (tlag < t < tlag + tλ) and after the second wheel passes the dip (t > tlag). The 
explicit forms are detailed below. 
 
0 < t < tλ :  
During the interval when the first wheel is going through the depression, the motion 
of the rider is 
 

 
( ) ( ) ( )

( ) ( )

0 02 2
0 0 0

2 2
0 0

0 02 2
0 0

( ) 1 0.7353 0.2353 cos 2
2 1 34.87 1 11.17

25.64 2.628
cos(1.064 ) cos(1.880 )

1 34.87 1 11.17

by t
v t

h v v

v v
t t

v v

π ω

ω ω

ª º
« »= − −
« »− −¬ ¼

+ −
− −

  

    �  (x-1) 
where 

 0
0

0

v
v

ω λ
=  (y)  

and 
 0 k mω =  (z) 

 
tλ < t < tlag : 
After the first wheel has gone through the depression, but before the second wheel 
begins its transversal, the motion of the rider is 
   

 
( ) [ ]

( ) [ ]

2
0

0 02
0 0

2
0

0 02
0

( ) 25.64
cos(1.064 ) cos{1.064 ( )}

1 34.87

2.628
cos(1.880 ) cos{1.880 ( )}

1 11.17

by t v
t t t

h v

v
t t t

v

λ

λ

ω ω

ω ω

= − −
−

− − −
−

  

  � (x-2) 
 
tlag < t < tlag + tλ : 
As the second wheel rolls through the depression the motion of the rider is given by 
 

( ) ( )

( )

( )

0 02 2
0 0 0

2
0

0 0 02
0

2
0

0 02
0

( ) 1 0.7353 0.2353 cos{2 ( )}
2 1 34.87 1 11.17

25.64
cos(1.064 ) cos{1.064 ( )} cos{1.064 ( )}

1 34.87

2.628
cos(1.880 ) cos{1.880 ( )} c

1 11.17

b
lag

lag

y t v t t
h v v

v t t t t t
v

v t t t
v

λ

λ

π ω

ω ω ω

ω ω

ª º
« »= − − −
« »− −¬ ¼

ª º+ − − + −¬ ¼−

− − − +
− 0os{1.880 ( )}lagt tωª º−¬ ¼

  

    � (x-3) 
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t > tlag : 
After the second wheel has passed the depression the motion of the rider is 
 

( ) [ ]{

}

( ) [ ]{

2
0

0 02
0 0

0 0

2
0

0 02
0

0 0

( ) 25.64
cos(1.064 ) cos{1.064 ( )}

1 34.87

cos{1.064 ( )} cos{1.064 ( )}

2.628
cos(1.880 ) cos{1.880 ( )}

1 11.17

cos{1.880 ( )} cos{1.880 (

b

lag lag

lag lag

y t v
t t t

h v

t t t t t

v
t t t

v

t t t t t

λ

λ

λ

ω ω

ω ω

ω ω

ω ω

= − −
−

ª º+ − − − −¬ ¼

− − −
−

+ − − − − })}λª º¬ ¼

  

    � (x-4) 
 
 
 
 
 

8.6 MODE ISOLATION 

In certain situations it may be desirable to excite one particular mode of a system, but none 
of the other modes. In the present section we examine how this may be accomplished. 
 Recall from Section 8.2.2 that when a vector v is operated on by a linear transfor-
mation R, it results in a vector ,�v such that 
 
 =�v R v  
 
As discussed earlier, the matrix v may be considered to be the matrix of components of a 
vector with respect to a certain set of coordinates, and the matrix �v  may be thought of as 
the matrix of components of that same vector expressed in terms of a different set of coor-
dinates. With this in mind, let us consider an N-degree of freedom system with mass matrix 
m and stiffness matrix k, and let us focus on a particular modal vector, say U(j). Further, let 
us consider the transformed modal vector ( ) ,j�U  where either 
 
 ( ) ( )j j=�U mU  (8.56) 
or 
 ( ) ( )j j=�U kU  (8.57) 
 
Next, let us consider the specific class of force systems whose matrices are proportional to 
the transformed modal vector. That is, let us consider force matrices of the form 
 
 ( )( ) ( ) jt tλ= �F U  (8.58) 
 
where λ(t) is a scalar function with appropriate units. The corresponding matrix of modal 
forces is then obtained by substituting Eq. (8.58) into Eq. (8.41) to obtain 
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 ( )( ) ( ) jt tλ=� �F B UT  (8.59) 
 
Recalling the definition of the modal matrix B, Eq. (8.21), and expressing this in Eq. (8.59), 
we see that 
 

 

(1) (1) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

j

j

N N j

t t tλ λ
 ½ª º
° °« »= = ® ¾« »
° °« »

¬ ¼ ¯ ¿

�
� �# #

�

U U U
F U

U U U

T T

T T

 (8.60) 

 
If the transformation defined by Eq. (8.56) is used in Eq. (8.60), and if we exploit the mutu-
al orthogonality of the modal vectors and also incorporate Eq. (8.44), then  
 

 

(1) ( )

( ) ( )

( ) ( )

0 0

0 0
( ) ( ) ( ) 1

0 0

0 0

j

j j
j j

N j

mt t t mλ λ λ

 ½  ½
° ° ° ° ½ ° ° ° °° ° ° ° ° °° ° ° ° ° °° °= = =® ¾ ® ¾ ® ¾

° ° ° ° ° °
° ° ° ° ° °
° ° ° ° ° °¯ ¿

° ° ° °
¯ ¿¯ ¿

# #
#

� � �
#

# #

U mU

F U mU

U mU

T

T

T

 (8.61) 

 
Similarly, if the transformation defined by Eq. (8.57) is used and we incorporate Eq. (8.47), 
then 
 

 

(1) ( )

( ) ( )

( ) ( )

0 0

0 0
( ) ( ) ( ) 1

00

00

j

j j
jj

N j

t t t kkλ λ λ

 ½
 ½° °
° °° ° ½ ° °° °° ° ° °° °° ° ° °° ° ° °= = =® ¾ ® ¾ ® ¾

° ° ° ° ° °
° ° ° ° ° °
° ° ° ° ° °¯ ¿

° ° ° °
¯ ¿° °

¯ ¿

# #
#

� ��

#
##

U kU

F U kU

U kU

T

T

T

 (8.62) 

 
In each case, it may be seen that the matrix of modal forces has only one nonvanishing 
component; that corresponding to the jth mode. It is thus seen, from Eqs. (8.48), that when 
the matrix of applied forces is of the form of Eq. (8.58), with ( )j�U  given by either Eq. 
(8.56) or Eq. (8.57), then only the jth mode is excited by the given set of forces. Finally, it 
may be seen that for those systems for which the mass matrix or the stiffness matrix is a 
scalar matrix (a matrix that is proportional to the identity matrix) then a single mode will be 
excited if the force matrix is directly proportional to that mode. 
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Example 8.13 
Consider a system that may be modeled as the 
double pendulum of Examples 7.5 and 8.10. Sup-
pose that we wish to examine the response of the 
system to impulses applied to the masses of the 
system, as indicated. In addition, suppose that it is 
desired to observe the motion of each mode indi-
vidually, and that we have a mechanism that will 
pulse each mass simultaneously. (a) How should 
we choose the relative magnitudes of the pulses so 
that the system responds in the first mode only? (b) Demonstrate that the chosen 
forcing does, in fact, activate the desired mode in each case. (c) Determine the re-
sponse of the system to the chosen forcing function.  
 
 
Solution 
This is evidently a mode isolation problem. We would therefore configure the forc-
ing mechanism to apply the pulses so that, in each case, the matrix of applied forces 
is proportional to either Eq. (8.56) or Eq. (8.57).  
 Let us recall from Example (7.5) that the two modes for this system are 
 

 (1) (2)
1 1

 ,    
2 2

 ½  ½° ° ° °= =® ¾ ® ¾
−° ° ° °¯ ¿ ¯ ¿

U U  (a-1, 2) 

 
and hence that the modal matrix is 
  

 
1 1

2 2

ª º
= « »

−« »¬ ¼
B  (b) 

 
Let us also recall that the mass and stiffness matrices for the system are, respectively, 
 

 2 2 1 2 0
 ,    

1 1 0 1
mL mgL

ª º ª º= =« » « »
¬ ¼ ¬ ¼

m k  (c-1, 2) 

 
For the loading under consideration, the time dependence of the forces corresponds 
to an impulse. Hence, 
 
 0( ) ( )t tλ δ

� �
� !  (d) 

 
(a)  
Since, for this particular system, the stiffness matrix is diagonal, let’s design our 
forcing using Eq. (8.57). Hence, 
 

 (1) (1)
0

1 22 0
( ) ( ) ( ) ( ) ( )

0 1 2 2
t t t t mgL tλ λ λ δ

 ½  ½ª º ° ° ° °= = = =® ¾ ® ¾« »
° ° ° °¬ ¼ ¯ ¿ ¯ ¿

� ��F U kU !  � (e) 
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where, from Eq. (d), we have taken 0( ) ( ) .t t mgLλ δ=

� �
!  

  
(b)  
Now, to demonstrate that the pair of pulses given by Eq. (e) will excite only the first 
mode, let us compute the corresponding modal forces. Thus, 
 

 0 0

21 2 1
( ) ( ) ( ) 4 ( )

021 2
t t t tδ δ

ª º  ½  ½° °= = =« » ® ¾ ® ¾
° °−« » ¯ ¿¯ ¿¬ ¼

� � � ��F B F ! !T  � (f) 

 
It is seen from Eq. (f) that only the first element of the modal force matrix, that cor-
responding to the first mode, is nonzero. Therefore, only the first mode is excited.  
 
(c) 
Paralleling the analysis of Example 8.10 for the present loading, the modal equations 
for this system are   
 

 1 1 1 1 0

2 2 2 2 2

4 ( )

0  ( ) 0

m k t

m k t

η η δ
η η η

+ =
+ = � =

� �����
����

!
 (g) 

 
where the modal mass and modal stiffness matrices for the double pendulum are 
given by Eqs. (f) and (g) of Example 8.10. Equation (g-2) clearly yields the trivial 
solution since the second mode is not forced as concluded in Part (b). The solution to 
Eq. (g-1) is obtained directly from Eqs. (4.22) and (4.23). Identifying 04=

�
! ! , 

ζ = 0, and the mass and stiffness as the modal mass and modal stiffness for the mode 
in question gives 
 

 0
1 1

1 1

4
( ) sin ( )t t t

m
η ω

ω
=

�

�
!

H  (h) 

 
Transforming to physical coordinates gives the response of the pendulum as 
 

 1 1 0
1 1

2 1 1

1 1 1 1( ) ( ) 4
( ) sin ( )

( ) 02 2 2 2
t t

t t t
t m

θ η
η ω

θ ω
ª º  ½  ½ ½  ½ ° ° ° °= = =® ¾ ® ¾ ® ¾ ® ¾« »

− ° ° ° °¯ ¿¯ ¿ ¬ ¼ ¯ ¿ ¯ ¿

�

�
!

H  (i) 

 
and finally, 
 

 1 0

3
2

1( ) 0.766
sin(0.765 ) ( )

( ) 2
t

g L t t
t m gL

θ
θ

 ½ ½ ° °=® ¾ ® ¾
° °¯ ¿ ¯ ¿

�
!

H  � (j) 
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 Example 8.14 
Consider the two degree of freedom 
mass-spring system of Example 8.7(b) 
for the case where Ωa = Ωb = Ω. (a) 
Determine the relative amplitudes of 
the applied forces, Fa and Fb, if we 
wish to excite (i) the first mode alone 
or (ii) the second mode alone. (b) De-
termine the corresponding response 
for each case. 
 
Solution 
(a) 
For the loading under consideration,  the force system is of the form 
 

 ( ) sina

b

F
t t

F
 ½= Ω® ¾
¯ ¿

F  (a) 

Hence  
 0( ) sint tλ λ= Ω  (b) 
 
where the amplitude λ0 may be any scalar. Since, for this particular system, the mass 
matrix is diagonal, we shall choose to construct the force matrix using Eq. (8.56) for 
ease of computation. 
 
(i) Response in the form of Mode 1: 
For this case, 
 

 (1) 1 0 1 1
( ) ( ) ( ) ( )

0 1 1 1
t t t tλ λ λª º  ½  ½= = =® ¾ ® ¾« »

¬ ¼ ¯ ¿ ¯ ¿
F mU  (c) 

 
We thus see that only the first mode will be excited if we apply a force system that is 
proportional to the first mode. For the particular case of harmonic loading described 
by Eq. (a), we see from Eqs. (b) and (c) that 
 
 0a bF F λ= =  (d) 
 
and any force system such that 1b aF F =  will accomplish our objective. 
 
(ii) Response in the form of Mode 2: 
For this case, 
 

 (2) 1 0 1 1
( ) ( ) ( ) ( )

0 1 1 1
t t t tλ λ λª º  ½  ½= = =® ¾ ® ¾« » − −¬ ¼ ¯ ¿ ¯ ¿

F mU  (e) 
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It is seen that, as for the previous case, the second mode alone will be excited if the 
force matrix is constructed to be proportional to the second mode. For the particular 
loading under consideration it is seen that  
 
 0b aF F λ= − = −  � (f) 
 
and any force system such that 
 
   1b aF F = −  
 
will achieve the desired response. The results for this system should have been antic-
ipated since the mass matrix for the system is a scalar matrix. That is, it is propor-
tional to the identity matrix. 
 
(b)  
The response to the harmonic loadings described by Eqs. (c) and (d), and by Eqs. (e) 
and (f), may be found directly from the solution of Example 8.7 by setting Ωa = Ωb 
= Ω, and also setting 0a bF F λ= = or 0b aF F λ= − = −  accordingly. Thus, for the first 
case, 
 

 
( )

1 0
2

2 1

( ) 1
sin

( ) 11

u t k
t

u t
λ

ω
 ½  ½= Ω® ¾ ® ¾

− Ω ¯ ¿¯ ¿
 � (g) 

 
where we recall from Example 8.6 that 1 .k mω =  For the second case, 
 

   
( )

1 0
2

2 2

( ) 13
sin

( ) 11

u t k
t

u t
λ

ω
 ½  ½= Ω® ¾ ® ¾−− Ω ¯ ¿¯ ¿

 � (h) 

 
where 2 3 .k mω =  

 
 
 
 

8.7 RAYLEIGH DAMPING 

To this point we have restricted our attention to the ideal case of undamped systems sub-
jected to external dynamic loading. In this and the next section we relax this restriction and 
consider the behavior of systems that possess viscous damping. We defer our discussion of 
the general case to Section 8.8 and presently consider a specific class of systems with vis-
cous damping, those for which the damping matrix is proportional to the mass and/or stiff-
ness matrices. Damping of this type is known as Rayleigh damping, and is also referred to 
as proportional damping. It will be seen that damping of this type allows decoupling of the 
equations of motion through modal analysis of forced systems, based on the natural modes 
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of the corresponding undamped systems. We first recall the general equations of motion for 
damped systems.  
 Systems with linear damping are governed by equations of the form of Eq. (6.2). We 
repeat them here for clarity of the present discussion. Hence, 
 
 + + =�� �mu cu ku F  (8.63) 
 
We next introduce proportional damping, that is damping where the matrix of damping 
coefficients (the damping matrix), c, is linearly proportional to the mass and stiffness ma-
trices. We thus consider systems for which 
 
 α β= +c m k  (8.64) 
 
where α and β are scalar material constants. We shall seek a solution in the form of an ex-
pansion in terms of the modal vectors of the undamped system. That is we assume a solu-
tion in the form of Eq. (8.31). Substituting Eq. (8.31) into Eq. (8.63) and pre-multiplying 
the resulting expression by BT results in the transformed equation of motion 
 
 ª º ª º ª º+ + =¬ ¼ ¬ ¼ ¬ ¼η η η�� �B mB B cB B mB B FT T T T  
 
which may be written as 
 
 + + =mη cη k η F� �� �� � �  (8.65) 
 
where, from the development in Section 8.4, 
  

 

1

2

0 0
0 0

0 0 N

m
m

m

ª º
« »
« »= =
« »
« »
¬ ¼

� "
� "�

# # % #
�"

m B mBT  

is the modal mass matrix, 
 

 

1

2

0 0

0 0

0 0 N

k

k

k

ª º
« »
« »= = « »
« »
« »¬ ¼

� "
� "�

# # % #
�"

k B kBT  

 
is the modal stiffness matrix, and  
 

 

1

2

N

F
F

F

 ½
° °
° °= = ® ¾
° °
° °¯ ¿

�
��
#
�

F B FT  
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is the modal force matrix. Further, incorporating Eq. (8.64) into the transformation of the 
damping matrix gives  
 
 α β α β= = + = + �� �c B cB B mB B kB m kT T T  (8.66) 
  
Thus, the modal damping matrix for a system with proportional damping takes the diagonal 
form 

 

1

2

0 0
0 0

0 0 N

c
c

c

ª º
« »
« »=
« »
« »
¬ ¼

� "
� "�

# # % #
�"

c  (8.67) 

 
where 
    ( 1, 2,..., )j j jc m k j Nα β= + =�� �  (8.68) 
 
Since the damping matrix is a linear combination of the mass and stiffness matrices of the 
system, the transformed damping matrix is diagonal like the modal mass and modal stiff-
ness matrices. Therefore, the transformed equations of motion for systems with Rayleigh 
damping are decoupled in the same way as those for undamped systems. Expanding Eq. 
(8.65) gives the system of N uncoupled differential equations for the modal displacements 
ηj  (j = 1, 2, …, N), 
 

 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

                       

N N N N N N N

m c k F

m c k F

m c k F

η η η
η η η

η η η

+ + =
+ + =

+ + =

� ��� �� �
� ��� �� �

#
� ��� �� �

 (8.69) 

 
which may be thought of as corresponding to the governing equations of the N equivalent 
single degree of freedom systems shown in Figure 8.7, with viscous damping. These equa-
tions may be put in the standard form, 
 

 

2 2
1 1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2 2

2 2

2

2
                

2N N N N N N N N

f

f

f

η ω ζ η ω η ω
η ω ζ η ω η ω

η ω ζ η ω η ω

+ + =
+ + =

+ + =

���� �
���� �

#
���� �

 (8.70) 

 
where 
 2j j j jc mζ ω=� � �  (8.71) 
and 
 ( ) ( )j j jf t F t k=� ��  (8.72) 
 
For given forcing, each of Eqs. (8.70) may be solved using the techniques already discussed 
for single degree of freedom systems in Chapters 3–5. Once the modal displacements (the 
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solutions to the above equations) have been obtained, they may be mapped back to physical 
coordinates using Eq. (8.31). This gives the forced response of the proportionally damped 
system. 
 
 
 

Example 8.15 
Consider the system of Example 8.6, but let it now 
possess three identical viscous dampers with coef-
ficient 0.2c mk= as shown. Determine the steady 
state response of the system if the left mass is sub-
jected to the harmonic force 1 .( ) sina aF t F t= Ω  
 
Solution 
The equation of motion for the system is easily derived directly, or by using Eq. (6.2) 
with N = 2, k1 = k2 = k3 = k , c1 = c2 = c3 = c and m1 = m2 = m. Hence, 
 

 1 1

2 2

( ) ( )0 2 sin
, , ,

( ) ( )0 2 0
a au t F tm k k F t

u t F tm k k
− Ω ½  ½ª º ª º  ½= = = = =® ¾ ® ¾ ® ¾« » « »−¬ ¼ ¬ ¼ ¯ ¿¯ ¿ ¯ ¿

m k u F  (a) 

 
and 
 

 
2 2

2 2
c c k kc
c c k kk

β
− −ª º ª º= = =« » « »− −¬ ¼ ¬ ¼

c k  (b)  

 
where 

 0.20, c
k k m

α β= = =  (c) 

 
This is clearly a system with Rayleigh (proportional) damping. 
 The analysis for the present system is identical to that for the undamped system 
of Example 8.6 up to Eq. (h) of that example. Thus, the modal mass, modal stiffness 
and modal force matrices remain the same. However, the modal equations must now 
be modified to include the effects of proportional damping. For the present system 
we have, after substituting the given and calculated material parameters into Eq. 
(8.67),  
 

 
2 0 0.4 00.20
0 6 0 1.2

k mk
kk m mk

α β
ª ºª º= + = + = « »« »

¬ ¼ « »¬ ¼
�� �c m k  (d) 

 
Hence, 

 1
1

1 1

0.4 0.1
2 2 (2 )

c mk
m k m m

ζ
ω

= = =
��
�

 (e-1) 
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 2
2

2 2

1.2 0.1732
2 2 3 (2 )

c mk
m k m m

ζ
ω

= = =
��
�

 (e-2) 

 
Applying Eqs. (8.70) to the present problem gives the equations governing the modal 
displacements, 
 

 2 2 2
1 1 1 1 1 1 1 1 12 sin sin

2
a

a a a
Ff t t
k

η ω ζ η ω η ω ω+ + = Ω = Ω���� �  (f-1) 

 

 2 2 2
2 2 2 2 2 2 2 2 22 sin sin

6
a

a a a
F

f t t
k

η ω ζ η ω η ω ω+ + = Ω = Ω���� �  (f-2) 

 
where 21, ζ ζ� � and 1 2, ω ω are respectively given by Eqs. (e-1) and (e-2) above, and 
Eqs. (c-2) and (d-2) of Example 8.6, respectively. The solutions of Eqs. (f-1) and (f-
2) are obtained by direct application of Eqs. (3.54), (3.50) and (3.51) for each case. 
We thus obtain 
 

 1 1 1 1( ) ( , ) sin( )
2

a
a

F
t t

k
η ζ= Γ Ω Ω − Φ�  (g-1) 

and 

 2 2 2 2( ) ( , ) sin( )
6

a
a

F
t t

k
η ζ= Γ Ω Ω − Φ�  (g-2) 

 
where 

 ( )
222

1,
1 2

j j

j j j

ζ
ζ

Γ Ω =
ª ºª º− Ω + Ω¬ ¼ ¬ ¼

�
�

 ( 1, 2)j =  (h) 

 

 1
2

2
tan

1
j j

j
j

ζ−
§ ·Ω

Φ = ¨ ¸¨ ¸− Ω© ¹

�
  ( 1,2)j =  (i) 

and 
 j a jωΩ = Ω  (j) 
 
Mapping back to physical coordinates gives the desired steady state response. Hence, 
 
 (1) (2)

1 2( ) ( )t tη η= = +ηu B U U  
 
which, after substituting Eqs. (g), gives 
 

( ) ( ) ( ) ( )1
1 1 1 2 2 2

2

( ) 1 1
, sin , sin

( ) 1 12 6
a a

a a

u t F Ft t
u t k k

ζ ζ ½  ½  ½= Γ Ω Ω − Φ + Γ Ω Ω − Φ® ¾ ® ¾ ® ¾−¯ ¿ ¯ ¿¯ ¿
� �  (k) 

 
Expanding Eq. (k) and substituting Eqs. (e) and (h) gives the explicit form of the 
displacements as functions of time, 
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( ) ( )

( ) ( )

1 122 2

222 2

1( ) sin( )
2 1 0.0400

1          sin( )
6 1 3 0.1200 3

a
a

a a

a
a

a a

F
u t t

k m k m k

F
t

k m k m k

= Ω − Φ
ª º− Ω + Ω¬ ¼

+ Ω − Φ
ª º− Ω + Ω¬ ¼

 � (l-1) 

 

 
( ) ( )

( ) ( )

2 122 2

222 2

1( ) sin( )
2 1 0.0400

1          sin( )
6 1 3 0.1200 3

a
a

a a

a
a

a a

F
u t t

k m k m k

F
t

k m k m k

= Ω − Φ
ª º− Ω + Ω¬ ¼

− Ω − Φ
ª º− Ω + Ω¬ ¼

 � (l-2) 

 
 
 
 

8.8 SYSTEMS WITH GENERAL VISCOUS DAMPING 

To this point we have considered forced vibration of undamped systems and the special 
case of systems with proportional damping. It was seen that the modal vectors were linearly 
independent and mutually orthogonal and therefore that any response is comprised of a 
linear combination of the modal vectors. This property formed the basis of modal analysis, 
which we proceeded to apply to problems of forced vibration. Because of the special prop-
erty of the damping matrix for systems with Rayleigh damping, we were able to apply the 
same approach to these systems as well. That is, we were able to determine a solution in 
terms of the modal vectors for the undamped system. It was seen in Section 7.4 that the 
characteristic vectors for a system with viscous damping, are not, in general, mutually or-
thogonal in the conventional sense.  However, when the motion of such systems is repre-
sented in state space then the right eigenvectors of the 2N × 2N  system matrix S are mutu-
ally orthogonal with respect to their counterparts, the left eigenvectors of S. It is this prop-
erty that will allow us to establish a generalization of modal analysis for damped systems. 
We first show that the response of any N-degree of freedom system can be expressed as a 
linear combination of the right eigenvectors of the system matrix S. Before proceeding to 
the general problem in state space, we first determine a simple solution for damped multi-
degree of freedom systems subjected to harmonic excitation. 
 

8.8.1  Steady State Response to Harmonic Excitation 

In this section we determine a simple solution for damped multi-degree of freedom systems. 
To accomplish this we shall parallel the related development for undamped systems dis-
cussed in Section 8.1.1. Toward this end, let us consider an N-degree of freedom system 
with general linear viscous damping subjected to external forces, all of which possess the 
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same harmonic time signature. The equation of motion for such a system is of the general 
form 
 ( ) ( ) ( ) i tt t t e Ω+ + =�� �

0mu cu ku F  (8.73)  
 
where Ω is the excitation frequency. We wish to obtain the particular solution to Eq. (8.73). 
Let us therefore assume a solution of the form 
 
 ( ) i tt e Ω=pu H  
 
and substitute it into Eq. (8.73). Solving the resulting expression for H gives the particular 
solution, and hence the steady state response,  
 
 

12( ) i tt i e
− Ωª º= − Ω + Ω¬ ¼p 0u k m c F  (8.74)  

 
or, equivalently,  

 
2

2

adj
( )

det
i t

i
t e

i
Ω

ª º− Ω + Ω¬ ¼=
ª º− Ω + Ω¬ ¼

p 0

k m c
u F

k m c
 (8.75)  

 
The use of the above solution is demonstrated by the following example. We then proceed 
to a more general technique, applicable to any type of excitation. 
 
 
 

Example 8.16 
Consider the compliantly supported frame of mass m and length L of Examples 
7.13(d) and 7.14 , where the stiffnesses of the two identical springs at each end of 
the frame have the magnitude k = mg/L, and the damping coefficients have the val-
ues c2 = 2c1 and 1 2 0.5.c km =  
Let a force 0( ) sinF t F t= Ω  
(positive downward) be applied to 
the left edge of the frame, as 
shown. Determine the steady state 
motion of the frame when F0 = 
2mg and 1.5 2g LΩ = .  
 
                                                                              Figure E8.16 
Solution 
We shall describe the motion of the system in terms of the rotation of the frame, θ (t) 
(positive clockwise), and the transverse deflection of the center of mass, yG(t) (posi-
tive downward). To solve the problem, we shall normalize the deflection and the 
time, and hence the system parameters and equations of motion, as we did in Exam-
ple 7.14. We thus introduce the normalized deflection  
 
 G Gy y L=  (a) 
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of the center of mass, and the normalized timescale 
 

 0
2kt t
m

τ ω= =  (b) 

where,  
 2

0 2 2k m g Lω = =  (c) 
 
Hence, for any function f, 
  

 0
df df d df
dt d dt d

τ ω
τ τ

= =  (d) 

 
Introducing Eqs. (a)–(d) and F = [F  MG]T into Eq. (a) of Example 7.13, and dividing 
the first row by m and the second row by IG = mL2/12, renders the equation of motion 
to the nondimensional form 
 

2 2
1 2 2 1

2 2
2 1 1 2

( ) ( ) 21 0 1 0
6( ) 3( )0 1 0 3

G GG

G

dy d y Fd y d
d d Md d

η η η η ττ
η η η η θ τ θθ τ

 ½+ − ½ ª ºª º  ½ ª º  ½° ° ° °+ + =® ¾ ® ¾ ® ¾ ® ¾« »« » « »− +° ° ° °¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿¬ ¼¯ ¿ ¯ ¿
  

  (e)  
 
where 
 2

0( ) ( ) sin(1.5 )F F mLτ τ ω τ= =  (f-1)  
 
and 
 2 2 2

0 0( ) ( ) 12 ( ) 6sin(1.5 )G G G GM M I M mLτ τ ω τ ω τ= = =  (f-2)  
 
are the normalized resultant applied force and moment about an axis through G. For 
the particular system in question, η1 = 0.5 and η2 = 1.0. It then follows that, for the 
system of interest, the complex form of the normalized force vector is 
 

 1.51
( )

6
it e τ ½= ® ¾

¯ ¿
F  (g) 

 
Further, for the given parameters, 
 

 2 ( 1.25 2.25 ) 0.375
4.5 (0.75 6.75 )

i i
i

i i
− +ª ºª º− Ω + Ω = « »¬ ¼ +¬ ¼

k m c  (h) 

 
We next compute the inverse of the above matrix using the MATLAB “inv” facility. 
Hence, 
 

 
12 (0.2220 0.3637 ) (0.0100 0.0213 )

(0.1196 0.2558 ) (0.0113 0.1611 )
i i

i
i i

− − + +ª ºª º− Ω + Ω = « »¬ ¼ + −¬ ¼
k m c  (i) 
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The complex form of the response is then found by substituting Eqs. (g) and (i) into 
Eq. (8.74). Doing this we obtain 
 

 

1.5

1.5

( ) (0.2220 0.3637 ) (0.0100 0.0213 ) 1
( ) (0.1196 0.2558 ) (0.0113 0.1611 ) 6

(0.1622 0.2358 )
(0.1871 0.7109 )

G i

i

y t i i
e

t i i

i
e

i

τ

τ

θ
− + + ½ ª º  ½=® ¾ ® ¾« »+ −¯ ¿ ¬ ¼ ¯ ¿
− − ½= ® ¾−¯ ¿

 (j) 

 
Restating the exponential using Euler’s formula and carrying through the indicated 
multiplications gives 
 

 
( ) [ 0.1622cos(1.5 ) 0.2358sin(1.5 )]

[0.2358cos(1.5 ) 0.1622sin(1.5 )]
Gy t

i
τ τ

τ τ
= − +

− +
 (k-1) 

 

 
( ) [0.1871cos(1.5 ) 0.7109sin(1.5 )]

[ 0.7109cos(1.5 ) 0.1871sin(1.5 )]
t

i
θ τ τ

τ τ
= +

+ − +
 (k-2) 

 
Since the excitation is a sine function, the imaginary part of the above solution corre-
sponds to the response of the system. The steady state response of the system is then 
 
 0 0( ) / [0.2358cos(1.5 ) 0.1622sin(1.5 )]Gy t L t tω ω= − +  � (l-1) 
 
 0 0( ) 0.7109cos(1.5 ) 0.1871sin(1.5 )t t tθ ω ω= − +  � (l-2) 

 
 
 
 

8.8.2  Eigenvector Expansion  

The solution presented in Section 8.8.1 is restricted to harmonic excitation. In this section 
we develop a procedure for damped systems that is a generalization of modal analysis, and 
is applicable to any type of loading. To accomplish this we must represent the forced vibra-
tion problem in its corresponding state space, as we did for free vibrations of damped sys-
tems in Section 7.4.2. We then seek to express the response of the forced system in terms of 
the (right) eigenvectors of the state space system matrix computed for the associated free 
vibration problem.   
 In order to express the state vector in terms of the right eigenvectors of the system 
matrix S defined by Eq. (7.61) we must first show that the vectors are linearly independent. 
This is done by generalizing the development of Section 8.3.1 in the context of the state 
space representation. Toward this end, let us consider the sets of 2N ×  1 (complex) right 
and left eigenvectors of the (nonsymmetric) system matrix S, 
 

 { } { }( ) ( )ˆ ˆ1,2,..., 2 and 1,2,..., 2j jj N j N= =U W   
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respectively, where S is defined by Eq. (7.61) and Û  and Ŵ are defined by Eqs. (7.63), 
(7.64) and (7.69). If the right eigenvectors are linearly independent then the equation 
 

 
2

( )

1

ˆ 0
N

j
j

j

a
=

=¦ U  (8.76)  

 
is satisfied only if all aj = 0 (j = 1, 2, …, 2N) . We proceed to show that this is the case. Let 
us next multiply Eq. (8.76) by ( )ˆ .lW T  This gives 
 

 
2

( ) ( )

1

ˆ ˆ 0
N

l j
j

j

a
=

=¦ W UT  (8.77)  

 
We next incorporate the orthogonality relation stated by Eq. (7.75) into Eq. (8.77). This 
results in the statement 
 ( ) ( )ˆ ˆ 0l l

la =W UT  (8.78) 
 
from which we conclude that al = 0 for all l = 1, 2, …, 2N. The right eigenvectors are there-
fore linearly independent. The linear independence of the right eigenvectors and their 
orthogonality with the left eigenvectors suggests that a 2N ×  1 complex vector z defined in 
the same vector space may be expressed as a linear combination of the eigenvectors of S. 
That is, 

 
2

( )

1

ˆ ˆ( ) ( )
N

j
j

j

t tη
=

=¦z U  (8.79)  

 
where the time dependent coefficients of the eigenvectors are, in general, complex. We 
shall use such an expansion in the following development. 
 
 

8.8.3  Decomposition of the Forced Vibration Problem 

Let us consider the forced vibration problem  
 
 + + =�� �mu cu ku F  (8.80)  
 
for a damped N-degree of freedom system, where m, c and k are the N × N mass, damping 
and stiffness matrices of the system and u and F are the N × 1 displacement and force ma-
trices, respectively. We shall approach the problem by consideration of the corresponding 
representation in state space. Hence, paralleling the development of Section 7.4.2, we first 
write  
 =� �u Iu  (8.81)  
 
where I is the N × N  identity matrix. Multiplying Eq. (8.80) by m-1 and solving for ��u  gives 
 
 1 1 1− − −= − − +�� �u m ku m cu m F  (8.82)  
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We next combine Eqs. (8.81) and (8.82) in matrix form giving the state space representation 
of the forced vibration problem as 
 
 ˆ− =�z Sz F  (8.83)  
 
where 

 
( )

( )
( )
t

t
t

 ½= ® ¾
¯ ¿�
u

z
u

 (8.84)   

 
is the 2N ×  1 state vector, 
 

 1
ˆ

−

ª º= « »
¬ ¼

0
F F

m
 (8.85)  

 
is the corresponding 2N ×  1 force vector and 
 

 1 1− −

ª º= « »− −¬ ¼

0 I
S

m k m c
 (8.86)    

 
is the 2N × 2N  system matrix. In the remainder of this development we shall normalize the 
eigenvectors according to Eq. (7.77). That is, we shall eliminate a degree of indeterminacy 
of the eigenvectors by enforcing the relation 
  
 ( ) ( )ˆ ˆ 1 ( 1, 2,..., 2 )j j j N= =W UT  (8.87)  
 
It then follows, from either Eq. (7.72) or Eq. (7.73), that 
 
 ( ) ( )ˆ ˆ ( 1, 2,..., 2 )j j

j j Nα= =W SUT  (8.88)  
 
where αj is the jth eigenvalue of S. Let us next introduce the 2N × 2N  right and left “mod-
al” matrices 
 

 (1) (2 ) (1) (2 )ˆ ˆ ˆ ˆ ˆ ˆ  and  N N

ª º ª º
« » « »

= =« » « »
« » « »
¬ ¼ ¬ ¼

" "B U U A W W  (8.89) 

 
respectively. With the aid of these matrices and the orthogonality relations, Eqs. (7.75) and 
(7.76), Eqs. (8.87) and (8.88) can be expressed in the equivalent matrix forms 
 
 ˆ ˆ ˆ=A B IT  (8.90)  
 
and 
 ˆ ˆ ˆ= ΛA SBT  (8.91)  
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where 

 
1

2

0
ˆ

0 N

α

α

ª º
« »= « »
« »¬ ¼

Λ %  (8.92)  

 
is the 2N ×  2N diagonal matrix of eigenvalues and 
 

 ˆ ª º= « »
¬ ¼

I 0
I

0 I
  

 
is the 2N ×  2N identity matrix. It follows from Eq. (8.90) that, for the adopted normaliza-
tion, 
 1ˆ ˆ −=A BT  (8.93) 
 
 With the above established, we shall seek a solution to Eq. (8.83) as an expansion of 
the right eigenvectors of S. Hence, let 
 

 
2

( )

1

ˆ ˆˆ ˆ( ) ( ) ( )
N

j
j

j

t t tη
=

= =¦z U Bη  (8.94) 

where 

 

1

2

2

ˆ ( )
ˆ ( )ˆ ( )

ˆ ( )N

t
t

t

t

η
η

η

 ½
° °
° °= ® ¾
° °
° °¯ ¿

#
η   

 
is the 2N ×  1 matrix of the, as yet unknown, time dependent coefficients of the right eigen-
vectors. Let us next substitute Eq. (8.94) into Eq. (8.83) and multiply the resulting expres-
sion on the left by ˆ .AT  This results in the relation 
 
 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )t t t− =�A B A S B A FT T Tη η   
 
Substituting Eqs. (8.90) and (8.91) into the above identity reduces the transformed equation 
of motion to the form 
 
 ˆˆˆ ˆ( ) ( ) ( )t t t− =η Λη� f  (8.95)  
where 
 -1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )t t t= =f A F B FT  (8.96)  
 
Recall that Λ̂  is diagonal. We thus see that the transformed (“modal”) equations of motion 
are decoupled. If we expand Eq. (8.95) we have the 2N uncoupled first order ordinary dif-
ferential equations 
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1 1 1 1

2 2 2 2

2 2 2 2

ˆˆ ˆ( ) ( ) ( )
ˆˆ ˆ( ) ( ) ( )

ˆˆ ˆ( ) ( ) ( )N N N N

t t f t

t t f t

t t f t

η α η
η α η

η α η

− =

− =

− =

�

�

#
�

 (8.97) 

 
where ˆ ( )jf t  is the jth element of ˆ( ).tf  Each equation of the above system can be solved 
directly for the corresponding transformed (“modal”) displacement ˆ ( ).j tη   Once these have 
been found for a given system with specified forcing, their values can be substituted back 
into Eq. (8.94) to obtain the state vector as a function of time. The physical displacements 
of the system are then the first N elements of z(t). The last N rows of z(t) are the corre-
sponding velocities. 
 

8.8.4 Solution of Forced Vibration Problems 

The decomposition developed in the previous section allows for solution of forced vibration 
problems of damped N-degree of freedom systems. The general procedure is summarized 
below. 
 

1. Identify a system of generalized coordinates to describe the motion of the system. 
Derive the equations of motion in terms of these coordinates. 

2. Construct the system matrix S from the mass, damping, and stiffness matrices. 
Solve the (right) eigenvalue problem to obtain the associated eigenvalues and cor-
responding (right) eigenvectors of S. 

3. Formulate the (right) “modal matrix” B̂  from the eigenvectors and compute its 
inverse. The latter corresponds to the transpose of the left “modal matrix” of S. 
That is -1ˆ ˆ .=B AT  

4. Evaluate the state space force vector ˆ ( )tF  from the physical force array and then 
determine the transformed forces ˆ ( ) ( 1, 2,..., 2 )jf t j N= . Solve the uncoupled 
transformed equations of motion to obtain the corresponding transformed state 
variables ˆ ( ).j tη   

5. Map back to the state space to obtain the state vector z(t). The first N rows of z(t) 
correspond to the physical displacements u(t). 

 
The complementary solutions of Eq. (8.97) correspond to the free vibration solution dis-
cussed in Section 7.4. The particular solutions to Eq. (8.97) depend, of course, on the spe-
cific form of the transformed force. The above procedure is applicable to any type of dy-
namic loading. We consider impulse loading and general harmonic forcing below. 

Impulse Loading 
Let us take the Laplace transform of the jth equation of Eq. (8.97). Doing this, using Eq. 
(5.18) and solving for { }ˆ ( )j tη$  gives 
 

 { } { }ˆ ˆ( ) (0)
ˆ ( )

j j

j
j

f t
t

s

η
η

α

+
=

−

$�
$  (8.98) 
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For a system that is initially at rest, ˆ (0) 0jη = . Now, let us suppose that the system is sub-
jected to impulse loading. We therefore consider forces of the form 
 
 0ˆ ˆ( ) ( )j jf t f tδ=

�
 (8.99) 

 
where ( )tδ

�
 is the Dirac delta function. The Laplace transform of this force is, from Eq. 

(5.3), 
 { } { }0 0ˆ ˆ ˆ( ) ( )j j jf t f t fδ= =

�
$� $�  (8.100) 

 
Substituting this specific force into Eq. (8.98) gives the Laplace transform of the “modal” 
displacement as 

 { }
0ˆ ˆ (0)

ˆ ( ) j j
j

j

f
t

s
η

η
α

+
=

−
$�  (8.101) 

 
Equation (8.101) is inverted by direct application of Eq. (5.8) to give 
 
 ( )0 0ˆ ˆˆ ˆ ˆ( ) (0) ( ) (0) ( )j j jt t

j j j j jt f e t f e tα µ ωη η η − ±ª º ª º= + = +¬ ¼ ¬ ¼H H  (8.102) 

 
where H (t) is the Heaviside step function. Mapping back to the state space using Eq. (8.94) 
gives the general form of the state vector as 
 

 
2

0

1

ˆ ˆ ˆ( ) (0) ( ) ( 1, 2,..., 2 )j

N
t

l lj j j
j

z t b f e t l Nαη
=

ª º= + =¬ ¼¦ H  (8.103) 

 
The physical displacements of the system correspond to the first N elements of the state 
vector. That is, uj(t) = zj(t) (j = 1, 2, …, N). 
 

Example 8.17 
Consider the compliantly supported frame of mass m and length L of Examples 
7.13d, 7.14 and 8.16, where the stiffnesses of the two identical springs at each end of 
the frame have the magnitude k = mg/L and the damping coefficients have the  val-
ues c2 = 2c1 and 1 2 0.5c km = . Let the frame be struck above the left support in 
such a way that an impulse of magnitude 02mg ω=!  is imparted to the upper sur-
face, as shown in Figure E8.17. Determine the response of the frame. 
 
 
 
 
 
 
  
 
 
   Figure E8.17 
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Solution  
In keeping with our prior analyses of this system we choose the rotation of the frame, 
θ (t) (positive clockwise), and the transverse deflection of the center of mass, yG(t) 
(positive downward), as our generalized coordinates and normalize them according-
ly. The equations of motion are then  
 

2 2
1 2 2 1

2 2
2 1 1 2

( ) ( ) 21 0 1 0
6( ) 3( )0 1 0 3

G GG

G

dy d y Fd y d
d d Md d

η η η η ττ
η η η η θ τ θθ τ

 ½+ − ½ ª ºª º  ½ ª º  ½° ° ° °+ + =® ¾ ® ¾ ® ¾ ® ¾« »« » « »− +° ° ° °¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿¬ ¼¯ ¿ ¯ ¿
  

  (a)  
 
where 
 G Gy y L=  (b) 
 

 0
2kt t
m

τ ω= =  (c) 

 
 2

0 2 2k m g Lω = =  (d) 
 
For the present loading condition, 
 
 2

0 0( ) ( ) ( )F F mLτ τ ω δ τ ω= =
�

 (e-1)  
and 
 
 2 2 2

0 0 0( ) ( ) 12 ( ) 6 ( )G G G GM M I M mLτ τ ω τ ω δ τ ω= = =
�

 (e-2)  
 
are the normalized resultant applied force and moment about an axis through point 
G. We next construct the pertinent system matrix S by substituting the 
nondimensional mass, damping and stiffness matrices into Eq. (7.61). For the partic-
ular system in question, η1 = 0.5 and η2 = 1.0. Hence, 
 

 
1 2 2 1

2 1 1 2

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 ( ) ( ) 2 1 0 1.5 0.25
0 3 6( ) 3( ) 0 3 3.0 4.5

η η η η
η η η η

ª º ª º
« » « »
« » « »= =
« » « »− − + − − − − −
« » « »− − − − + − − −¬ ¼¬ ¼

S  (f)  

 
The state space force vector is then 
 

 
0

00 0 0
00 0 0( ) ( )ˆ ( )
( )1 0 1( )
( )0 1 6

G

G

F
FM

M

τ δ ττ
τ ωτ
τ

 ½ª º  ½
° °« » ° ° ½° ° ° ° ° °« »= = =® ¾ ® ¾ ® ¾« » ° °¯ ¿ ° ° ° °« » ° ° ° °¬ ¼ ¯ ¿¯ ¿

�
F  (g)  
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With the problem formulated, we next proceed to calculate the response. Using the 
MATLAB “eig” routine to solve the eigenvalue problem gives the eigenvalues of S, 
 
 ˆ 4.025, (0.6810 0.8673 ), (0.6810 0.8673 ), 0.6129i iα = − − − − + −  (h) 
 
and the corresponding matrix of (right) eigenvectors 
 

 

0.0216 (0.4001 0.1545 ) (0.4001 0.1545 ) 0.2714
0.2401 (0.3193 0.4066 ) (0.3193 0.4066 ) 0.8082ˆ
0.0871 (0.4065 0.2418 ) (0.4065 0.2418 ) 0.1664
0.9666 0.5701 0.5701 0.4954

i i
i i
i i

+ −ª º
« »− + − −« »=
« »− − − − + −
« »− −¬ ¼

B  (i) 

 
[Note that MATLAB normalizes the eigenvectors in the conventional sense, as per Eq. 
(7.39).] We next compute the inverse of the “modal matrix” using the MATLAB “inv” 
routine. Hence,  
 

1

0.3068 0.8508 1.235 1.142

(0.3644 1.052 ) ( 0.2564 0.2162 ) (0.6640 1.032 ) (0.0043 0.1232 )

(0.3644 1.052 ) (0.2564 0.2162 ) ( 0.6640 1.032 ) (0.0043 0.1232 )

1.437 1.070 0.8809 0.2186

ˆ i i i i

i i i i
−

− − − −
− − + − + +
+ − + − + −

ª º
« »
« »=
« »
« »
¬ ¼

B    

    (j) 
 
With the above established, we now compute the “modal” forces, using Eq. (8.96). 
Hence, 
 

       

0.3068 0.8508 1.235 1.142

(0.3644 1.052 ) ( 0.2564 0.2162 ) (0.6640 1.032 ) (0.0043 0.1232 )

(0.3644 1.052 ) (0.2564 0.2162 ) ( 0.6640 1.032 ) (0.0043 0.1232 )

1.437 1.070 0.8809 0.2186

0
0ˆ( )
1
6

i i i i

i i i i
t

− − − −

− − + − + +

+ − + − + −

ª º
« »
« »= ®« »
« »
¬ ¼

f
0

( )δ τ
ω

½
° °
° °
¾

° °
° °¯ ¿

�
    

 
which gives 

   
0

8.0839
0.6381 0.2929 ( )ˆ( )
0.6381 0.2929

2.1925

i
t

i
δ τ
ω

− ½
° °− −° °= ® ¾− +° °
° °¯ ¿

�
f  (k) 

 
The “modal” displacements are next found by substituting Eq. (k) into Eq. (8.102). 
Hence,  

 

4.025
0 1

(0.6810 0.8673 )
0 2

(0.6810 0.8673 )
0 3

0.6129
0 4

ˆ ( ) 8.084 ( )
ˆ ( ) (0.6381 0.2929 ) ( )
ˆ ( ) (0.6381 0.2929 ) ( )
ˆ ( ) 2.193 ( )

i

i

e
i e
i e

e

τ

τ

τ

τ

ω η τ τ
ω η τ τ
ω η τ τ
ω η τ τ

−

− −

− +

−

= −
= − +
= − −
=

H

H

H

H

 (l) 
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To obtain the physical displacements, we map back to the state space as follows:  
 

 

4

0 0 1
1

4.025

(0.6810 0.8673 )

(0.6810 0.8673 )

0.6129

ˆ ˆ( ) ( )

0.02160( 8.084) ( )
(0.4001 0.1545 )(0.6381 0.2929 ) ( )
(0.4001 0.1545 )(0.6381 0.2929 ) ( )

0.2714(2.193) ( )

G j j
j

i

i

y b

e
i i e
i i e
e

τ

τ

τ

τ

ω τ ω η τ

τ
τ
τ

τ

=

−

− −

− +

−

=

= −
− + +
− − −

+

¦
H

H

H

H

  

 

 

4

0 0 2
1

4.025

(0.6810 0.8673 )

(0.6810 0.8673 )

0.6129

ˆ ˆ( ) ( )

0.2401( 8.084) ( )
(0.3193 0.4066 )( 0.6381 0.2929 ) ( )
(0.3193 0.4066 )( 0.6381 0.2929 ) ( )
0.8082(2.193) ( )

j j
j

i

i

b

e
i i e
i i e

e

τ

τ

τ

τ

ω θ τ ω η τ

τ
τ
τ

τ

=

−

− −

− +

−

=

= −
− + − −
− − − +
+

¦
H

H

H

H

 

   
Carrying through the indicated multiplication gives the response of the frame as 
 

[ ]
0 0

0

4.025 0.6129
0

0.6810
0 0

( ) 0.1746 ( ) 0.5952 ( )

0.4200cos(0.8673 ) 0.4316sin(0.8673 ) ( )

t t
G

t

y t L e t e t

e t t t

ω ω

ω

ω
ω ω

− −

−

= − +
− −

H H

H
  

    � (m-1) 
 

 [ ]
0 0

0

4.025 0.6129
0

0.6810
0 0

( ) 1.941 ( ) 1.772 ( )

0.1692cos(0.8673 ) 0.7060sin(0.8673 ) ( )

t t

t

t e t e t

e t t t

ω ω

ω

ω θ
ω ω

− −

−

= − +
+ −

H H

H
  

  � (m-2)  
 
 
 

Arbitrary Loading 
The response of a system to arbitrary loading is found by paralleling the arguments of Sec-
tion 4.3, and incorporating the impulse response defined earlier, to obtain the corresponding 
“modal displacements.” Doing this we find that, for a system initially at rest,  
 

 ( )

0

ˆˆ ( ) ( ) ( )j
t

t
j jt f e d tα τη τ τ−= ³ H  (8.104) 

 
The above expression may be evaluated for any given ˆ ( ).jf τ  Once the “modal displace-
ments” are determined for a given set of forces, they may be mapped back to the state space 
using Eq. (8.94) to obtain the state vector z(t). The physical displacements of the system 
then correspond to the first N elements of this vector. Equation (8.104) is evaluated for step 
loading and ramp loading below. 
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Step Loading 
Consider forces of the form 
 

 0ˆ ˆ( ) ( )j jf t f t= H  (8.105) 
 
where 0ˆ

jf = (complex) constant. Substituting the above step load function into Eq. 
(8.104) and evaluating the resulting integral gives the corresponding displacements  
 

 
0ˆ

ˆ ( ) 1 ( )j tj
j

j

f
t e tαη

α
ª º= −¬ ¼H  (8.106) 

 

Ramp Loading 
Consider forces of the form 
 

 0ˆ ˆ( ) ( )j jf t f t t= H  (8.107) 
 
where 0ˆ

jf = (complex) constant. Substituting the above ramp load function into Eq. 
(8.104) and evaluating the resulting integral gives the corresponding displacements 
 

 
0

2

ˆ
ˆ ( ) (1 ) ( )j tj

j j
j

f
t e t tαη α

α
ª º= − +¬ ¼H  (8.108) 

 

Harmonic Excitation 
We close out the section by considering the state space representation of damped systems 
subjected to harmonic excitation. Since such an analysis involves inversion of the matrix of 
(right) eigenvectors of the system matrix it does not have the computational advantage over 
the procedure of Section 8.8.1 for large systems as does modal analysis over the approach 
of Section 8.1.1 for undamped systems in this regard. Further, since the eigenvectors are 
complex, the procedure does not offer the physical interpretation of its counterpart for 
undamped systems either. It is nevertheless instructive to apply this approach to harmonic 
loading of damped systems for the purposes of continuity and comparison, as well as for 
utility.  
 Suppose a multi-degree of freedom system is subjected to a system of generalized 
forces that vary harmonically in time with the same excitation frequency. Let the “modal” 
forces be of the form 
 
 0ˆ ˆ( ) i t

j jf t f e Ω=  (8.109)  
 
where 0ˆ

jf  = complex constant. The corresponding differential equation is then, from Eq. 
(8.97), 
 
 0ˆˆ ˆ( ) ( ) i t

j j j jt t f eη α η Ω− =�  (8.110)  
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To obtain the particular solution, let us assume a solution of the form 
 
 0ˆ ( ) i t

j jt H eη Ω=  (8.111) 
 
Substituting the above form into Eq. (8.110) and solving for 0

jH  gives 
 

 
0

0
ˆ

j
j

j

f
H

iα
= −

− Ω
 (8.112)  

Thus, 

 
0ˆ

ˆ ( ) j i t
j

j

f
t e

i
η

α
Ω= −

− Ω
 (8.113)  

 
As discussed in Section 7.4, for dissipative systems, the eigenvalues of S will be either neg-
ative and real or complex with negative real parts. We thus consider eigenvalues of the gen-
eral form 
 j j jiα µ ω= − ±  (8.114)  
 
where ωj is a damped natural frequency. Further, the magnitude of the “modal” force will 
generally be complex. Let us therefore write the complex magnitude of the transformed 
force in terms of its real and imaginary parts as 
 
 0 0 0ˆ ˆ ˆR I

j j jf f i f= +  (8.115) 
 
Substituting Eqs. (8.114) and (8.115) into Eq. (8.113) gives the solution 
 
 0 ( )ˆ ( ) i t

j jt H eη Ω +Ψ=  (8.116)  
 
where 
 ( ) ( )2 220 R I

j j jH H H= +  (8.117)  
 
 ( )1tan I R

j jH H−Ψ =  (8.118) 
  

 
0 0

2 2

ˆ ˆ( )
( )

R I
j j j jR

j
j j

f f
H

µ ω
µ ω

− Ω ±
=

+ Ω ±
 (8.119)  

and 

 
0 0

2 2

ˆ ˆ( )
( )

I R
j j j jI

j
j j

f f
H

µ ω
µ ω

+ Ω ±
=

+ Ω ±
 (8.120)  

 
With the solutions for the "modal" displacements established, we may then transform back 
to the state space using Eq. (8.94). The first N rows of the resulting state vector correspond 
to the physical displacements uj(t) (j = 1, 2, …, N). Euler’s formula can then be used to ex-
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press the displacements in terms of harmonic functions. Then, as per the related discussions 
of Section 3.3.3, if the time dependence of the applied force F(t) is a cosine function, then 
the displacements due to this force correspond to the real part of the solution. That is, uj(t) = 
Re zj(t) (j = 1, 2, …, N). Likewise, if the same applied force is a sine function, then the dis-
placements due to that force correspond to the imaginary part of the solution. That is, uj(t) = 
Im zj(t) (j = 1, 2, …, N). When considering force systems with multiple time dependencies, 
the results for each may be superposed. 
 
 

Example 8.18 
Consider once again the compli-
antly supported frame of Examples 
8.16 and 8.17. The frame of mass 
m and length L is supported at each 
edge by identical springs and dis-
parate dampers. The springs each 
possess stiffness k = mg/L and the 
dampers have the properties c2 = 
2c1 and 1 2 0.5.c km =  If a force 0( ) sinF t F t= Ω  (positive downward) is applied 
to the left edge of the frame, as shown, determine the steady state motion of the 
frame when F0 = 2mg and 1.5 2g LΩ = . 
 
Solution 
The formulation of the problem is identical to that for Example 8.17 except for the 
time dependence of the excitation. Hence, 
 

2 2
1 2 2 1

2 2
2 1 1 2

( ) ( ) 21 0 1 0
6( ) 3( )0 1 0 3

G GG

G

dy d y Fd y d
d d Md d

η η η η ττ
η η η η θ τ θθ τ

 ½+ − ½ ª ºª º  ½ ª º  ½° ° ° °+ + =® ¾ ® ¾ ® ¾ ® ¾« »« » « »− +° ° ° °¬ ¼ ¯ ¿ ¬ ¼ ¯ ¿¬ ¼¯ ¿ ¯ ¿
  

  (a) 
 
where 
 G Gy y L=  (b) 
 

 0
2kt t
m

τ ω= =  (c) 

 
 2

0 2 2k m g Lω = =  (d) 
 
For the present loading condition, 
 
 2

0( ) ( ) sin(1.5 )F F mLτ τ ω τ= =  (e-1)  
and 
 
 2 2 2

0 0( ) ( ) 12 ( ) 6sin(1.5 )G G G GM M I M mLτ τ ω τ ω τ= = =  (e-2)  
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are the normalized resultant applied force and moment about an axis through G. The 
state space force vector is then 
 

 1.5

00 0 0
00 0 0( )ˆ ( )
( )1 0 1( )
( )0 1 6

i

G

G

F
e

FM
M

τττ
ττ
τ

 ½ª º  ½
° °« » ° ° ½° ° ° ° ° °« »= = =® ¾ ® ¾ ® ¾« » ° °¯ ¿ ° ° ° °« » ° ° ° °¬ ¼ ¯ ¿¯ ¿

F  (f)  

 
where we have adopted the exponential form for the harmonic time dependence to 
facilitate the calculation. We will extract the appropriate portion of the solution at the 
end of our computations. For the particular system in question, η1 = 0.5 and η2 = 1.0. 
Hence, the system matrix is 
 

 
1 2 2 1

2 1 1 2

0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 ( ) ( ) 2 1 0 1.5 0.25
0 3 6( ) 3( ) 0 3 3.0 4.5

η η η η
η η η η

ª º ª º
« » « »
« » « »= =
« » « »− − + − − − − −
« » « »− − − − + − − −¬ ¼¬ ¼

S  (g)  

 
as computed in Example 8.17. Now that the problem has been formulated, we pro-
ceed to calculate the response. 
 The eigenvalues of S, the matrix of the associated right eigenvectors B̂  and its 
inverse were computed in Example 8.17 as  
 
 ˆ 4.025, (0.6810 0.8673 ), (0.6810 0.8673 ), 0.6129i iα = − − − − + −  (h) 
 

 

0.0216 (0.4001 0.1545 ) (0.4001 0.1545 ) 0.2714
0.2401 (0.3193 0.4066 ) (0.3193 0.4066 ) 0.8082ˆ
0.0871 (0.4065 0.2418 ) (0.4065 0.2418 ) 0.1664
0.9666 0.5701 0.5701 0.4954

i i
i i
i i

+ −ª º
« »− + − −« »=
« »− − − − + −
« »− −¬ ¼

B  (i) 

 
and  
 

-1

0.3068 0.8508 1.235 1.142

(0.3644 1.052 ) ( 0.2564 0.2162 ) (0.6640 1.032 ) (0.0043 0.1232 )

(0.3644 1.052 ) (0.2564 0.2162 ) ( 0.6640 1.032 ) (0.0043 0.1232 )

1.437 1.070 0.8809 0.2186

ˆ i i i i

i i i i

− − − −
− − + − + +
+ − + − + −

ª º
« »
« »=
« »
« »
¬ ¼

B    

    (j) 
 
respectively. The “modal” forces for the present loading are computed using Eq. 
(8.96). Thus,  
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0.3068 0.8508 1.235 1.142

(0.3644 1.052 ) ( 0.2564 0.2162 ) (0.6640 1.032 ) (0.0043 0.1232 )

(0.3644 1.052 ) (0.2564 0.2162 ) ( 0.6640 1.032 ) (0.0043 0.1232 )

1.437 1.070 0.8809 0.2186

0
0ˆ( )
1
6

i i i i

i i i i
τ

− − − −

− − + − + +

+ − + − + −

ª º
« »
« »= ®« »
« »
¬ ¼

f 1.5ie τ

½
° °
° °
¾

° °
° °¯ ¿

  
which, after carrying through the indicated multiplications, gives 
 

 1.5

8.0839
0.6381 0.2929ˆ( )
0.6381 0.2929

2.1925

ii
e

i
ττ

− ½
° °− −° °= ® ¾− +° °
° °¯ ¿

f  (k) 

 
 Substituting Eq. (k) into Eq. (8.113) gives the matrix of modal displacements 
 

 1.5

1.7635 0.6572
0.7174 0.2364

( )
0.0427 0.2818
0.5118 1.2525

i

i
i

e
i
i

ττ

− + ½
° °− +° °= ® ¾+° °
° °−¯ ¿

η  (l) 

 
We next map back to the state space to obtain the state vector as a function of time. 
Substituting Eqs. (i) and (l) into Eq. (8.94) gives 
 

0.0216 (0.4001 0.1545 ) (0.4001 0.1545 ) 0.2714
0.2401 (0.3193 0.4066 ) (0.3193 0.4066 ) 0.8082

( )
0.0871 (0.4065 0.2418 ) (0.4065 0.2418 ) 0.1664
0.9666 0.5701 0.5701 0.4954

1.7635 0.6572
0.

i i
i i
i i

i

τ

+ −ª º
« »− + − −« »=
« »− − − − + −
« »− −¬ ¼

− +
−

×

z

1.57174 0.2364
0.0427 0.2818
0.5118 1.2525

ii
e

i
i

τ

 ½
° °+° °
® ¾+° °
° °−¯ ¿

  

  
Carrying through the indicated matrix multiplication results in the state vector 
 

 1.5

0.1622 0.2358
0.1871 0.7109

( )
0.3538 0.2433
1.0663 0.2807

i

i
i

e
i
i

ττ

− − ½
° °−° °= ® ¾−° °
° °+¯ ¿

z  (m) 

 
We now extract the first two rows of the state vector to obtain the displacements 
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 1.5( ) 0.1622 0.2358
( ) 0.1871 0.7109

G iy i
e

i
ττ

θ τ
− − ½  ½=® ¾ ® ¾−¯ ¿ ¯ ¿

 (n) 

 
Expanding Eq. (n) and using Euler’s formula gives the complex response of the sys-
tem, 

 
[ ]

[ ]
( ) 0.1622cos(1.5 ) 0.2358sin(1.5 )

0.2358cos(1.5 ) 0.1622sin(1.5 )
Gy

i

τ τ τ
τ τ

= − +

− +
  (o-1) 

and 

 
[ ]

[ ]
( ) 0.1871cos(1.5 ) 0.7109sin(1.5 )

0.7109cos(1.5 ) 0.1871sin(1.5 )i

θ τ τ τ
τ τ

= +

+ − +
  (o-2) 

 
Finally, since the excitation is a sine function, the physical response corresponds to 
the imaginary part of the computed displacements. The steady state motion of the 
frame is thus 
 
 [ ]0 0( ) 0.2358cos(1.5 ) 0.1622sin(1.5 )Gy t L t tω ω= − +  � (p-1) 
 
 0 0( ) 0.7109cos(1.5 ) 0.1871sin(1.5 )t t tθ ω ω= − +  � (p-2) 
 
The response calculated above compares exactly with the response calculated in Ex-
ample 8.16 as, of course, it should. 

 
 
 
 
 

8.9 CONCLUDING REMARKS 

In this chapter we have considered the vibration of systems possessing multiple degrees of 
freedom when they are subjected to a variety of dynamic load conditions. We studied the 
behavior of systems with no damping, systems with a special type of viscous damping 
known as Rayleigh damping, and systems with general viscous damping. For the undamped 
case we began by developing a simple solution for systems subjected to harmonic loading. 
The advantage of such an approach was in its conceptual simplicity. Its implementation, 
however, requires the inversion of an N× N matrix, which may be computationally inten-
sive for large systems. In addition, while this approach provides a convenient mathematical 
solution, little is gained in the way of detailing the fundamental mechanisms involved when 
a system is forced. The concepts of coordinate transformations, principal coordinates and 
specifically modal coordinates were introduced. A fundamental approach called modal 
analysis was developed based on these ideas. In this approach, the response of the system is 
expressed as a linear combination of the corresponding modal vectors. Such an approach 
may be applied to study systems subjected to any type of forcing, including but not limited 
to harmonic excitation. The governing equations are transformed so that they are expressed 
in terms of modal coordinates (the time dependent coefficients of the modal vectors). When 
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this is done, the governing equations map to a system of uncoupled ordinary differential 
equations of the individual modal coordinates and time. In the process, the manner in which 
the applied load is distributed to the individual modes is revealed and the modal coordinates 
are seen to correspond to the displacements of equivalent single degree of freedom systems 
associated with each mode. These equations may be solved by established methods and 
then mapped back to the physical space yielding the time response of the system. In this 
form the contribution of each individual mode to the overall response is unveiled. It is also 
seen how particular modes may be excited individually. In addition to the obvious physical 
significance of this procedure, the computations do not involve matrix inversion but rather 
involve simple matrix multiplication. Modal analysis was extended to systems with Ray-
leigh damping. In this case the damping matrix is proportional to the mass and stiffness 
matrices of the system, the constants of proportionality being properties of the system. Be-
cause of this special form, the response of such systems to forcing may be expressed in 
terms of the modal vectors for the corresponding undamped system. As a consequence of 
this, the analysis and results maintain all the benefits seen for the undamped systems. The 
chapter finished with a discussion of forced multi-degree of freedom systems possessing 
general viscous damping. For these systems a solution for harmonic excitation was first 
presented. This approach was seen to possess the simplicity and convenience, as well as the 
drawbacks, of the corresponding analysis for undamped systems considered in the introduc-
tion. For general loading, the concept of modal analysis was generalized and applied to the 
case of damped systems. To do this, the equations of motion were represented in the corre-
sponding state space. Though analogous to that for undamped systems, the analysis for 
damped systems is much more cumbersome. The system matrix for the N-degree of free-
dom system in this case is not symmetric and the associated (right) eigenvectors of the as-
sociated 2N× 2N system matrix are not mutually orthogonal. They are, however, orthogonal 
to their counterparts — the left eigenvectors of the system matrix. Further, the procedure 
involves the inversion of a 2N× 2N matrix of eigenvectors.  
 To this point we have studied discrete systems. That is, systems with a discrete distri-
bution of mass. In the remaining chapters we abstract the present discussion to infinite de-
gree of freedom systems possessing a continuous distribution of mass.  
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PROBLEMS 

8.1 Consider the system of Problems 6.15 and 7.5. Use the method of Section 8.1.1 to 
determine the steady state response of the system if 0 .( ) cosF t F t= Ω  

 

 
                      Fig. P8.1                                                      Fig. P8.2 
 
8.2 Consider the system of Problems 6.19 and 7.14 when mb = 2ma = 2m and kT = kL2. 

Use the method of Section 8.1.1 to determine the steady state response of the system 
for small angle motion of the rod if a force 0( ) sinF t F t= Ω is applied to the base 
mass. 

 
8.3 Design a vibration absorber for the beam and mass structure of Example 3.4. 
 
8.4 A machine is placed on the pontoon of Problem 3.4. At its operating frequency, the 

machine excites the pontoon near its resonance frequency. Design a vibration absorb-
er for the pontoon. The mass of the machine is small compared with the mass of the 
float. 
 

8.5 Show that the results of Examples 8.1b and 8.6a are the same. 
 
8.6 Consider the constrained hook and ladder system of Problems 6.7 and 7.1 when kL2 = 

kT and m1 = 10m2 = 10m. Determine the response of the system when a fireman of 
weight W suddenly mounts the end of the ladder.  

 
 
 
 
 
   
                                                          Fig. P8.6 
 
8.7 Consider the tram of Problems 6.8 and 7.2 when mC = 5mF. Determine the response 

of the system if, when at rest, a horizontal impulse of magnitude ! strikes the bottom 
of the car as shown in Figure P8.7. 
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   Fig. P8.7 
 

8.8 Consider the coupled pendulums of Problems 6.9 and 7.3. Determine the steady state 
response of the system when the left mass is subjected to the horizontal force F(t) = 
F0sinΩt (Figure P8.8.) 
 
 
 
 
 
 
 
 
 
 
 

 
         Fig. P8.8 
 
8.9 Consider the system of Problem 6.15, 7.5 and 8.1. Use modal analysis to determine 

the steady state response of the system when 0 .( ) cosF t F t= Ω  
 
8.10 An automobile is traveling at constant speed v0 over a buckled road. Determine the 

motion of the car if the buckle is described as ( )0( ) sin 2y x h xπ λ=  where λ is the 
wavelength of the buckle and h0 is its rise. Assume that the frame of the car may be 
modeled as a uniform rod of mass m and length L and the combined stiffness of the 
tires and suspension in both the front and the back is k. 
 

 
                Fig. P8.10 
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8.11 An automobile is traveling at constant speed v0 along a flat road when it encounters a 
speed bump described by ( )0( ) 1 cos 2y hξ πξ λª º= − −¬ ¼  where λ is the wavelength of 
the bump and h0 is the height. Determine the motion of the car as it traverses the 
bump. Assume that the frame of the car may be modeled as a uniform rod of mass m 
and length L and the combined stiffness of the tires and suspension in both the front 
and the back is k.  

         

                               Fig. P8.11 
 
8.12 The conveyor belt system of Problems 6.10 and 7.24 (m1 = m2 = m, R1 = R2 = R) is at 

rest when a constant torque M0 is suddenly applied to the left flywheel. Determine the 
response of the system. 

 

 
     Fig. P8.12/P8.13 
 
8.13 The conveyor belt system of Problems 6.10 and 7.24 (m1 = m2 = m, R1 = R2 = R) is at 

rest when it is loaded by a torque applied to the right flywheel. Determine the motion 
of the system if the magnitude of the applied torque is increased at the constant rate 
M� to the level M0 where it remains thereafter. 

 
8.14 Consider the offshore platform of Problems 6.20 and 7.15. Each side of the square 

platform of mass m has length L = 10R. The cable of a small crane is fixed to the cen-
ter of the platform and is attached to a diving bell of mass mb that floats on the calm 
surface of the ocean (see Figure P8.14). If the hoist suddenly engages and lifts the 
bell at constant speed, determine the motion of the platform. The boom of the crane is 
aligned so that its horizontal projection is of length L and coincides with the central 
axis of the platform. The dominant motion of the platform may, therefore, be consid-
ered planar. Assume that the effects of small angle motion of the bell on the tension 
in the cable can be neglected and that the mass of the boom and cable is negligible 
compared with the mass of the platform and crane base. 
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   Fig. P8.14 
 
 
8.15 Consider the pulley system of Problems 6.17 and 7.12 when R2 = 2R1 = 2R and I0 = 

mR2. Determine the steady state response of the system if the block is subjected to the 
periodic rectangular pulse of magnitude F0 and duration TF shown. 
 

 

 
                                                   Fig. P8.15 
 

 
8.16 Consider the simple model of the submarine of Problems 6.21 and 7.26. Let the mass 

of the hull and frame structure be 2ms and the mass of the internal compartment be mc 
= ms/2. In addition, let the stiffness of each of the elastic mounts between the internal 
compartment and the frame be k, and let the longitudinal stiffness of the hull be ks = 
2k. The propeller exerts a force F0 that is sufficient to overcome the drag force and 
maintain the constant speed v0. An imperfection in the propeller shaft induces a small 
harmonic perturbation in the thrust of frequency Ω. The actual thrust applied is then 
of the form 0 0( ) [1 sin ]F t F tε= + Ω  where 0 1ε � . If we neglect the corresponding 
perturbation of the drag force, determine the response of the submarine (Figure 8.16).  
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                                       Fig. P8.16 
 
 
 
8.17 Consider the aircraft of Problems 6.31 and 7.28 where the wings are modeled as 

equivalent rigid bodies with torsional springs of stiffness kT at the fuselage wall, each 
wing possesses moment of inertia Ic about its respective connection point and the fu-
selage of radius R has moment of inertia Io = Ic about its axis. Let the plane be travel-
ing at constant altitude and speed as it undergoes a maneuver inducing a tight period-
ic rolling motion of the fuselage with the sawtooth time history shown. Determine the 
(perturbed) steady state motion of the aircraft under these conditions.  

 

                                                              Fig. P8.17 
 
 
 
8.18 The dumbbell satellite of Problems 6.13 and 7.25 spins about its axis at the constant 

rate ϖ0 as it travels in a fixed orbit at constant speed v0, as shown in Figure P8.18. 
The orbit is maintained such that the spin axis is always perpendicular to the surface 
of the earth during the orbit. The two compartments are each of mass m and an elastic 
access tube of undeformed length L, effective stiffness k and negligible mass con-
nects them. To prepare for a docking maneuver thrusters are suddenly activated ap-
plying a couple of magnitude M0 for time duration τ and are then suddenly shut off. 
Determine the motion of the satellite during this maneuver. Assume that deformations 
of the access tube do not significantly alter the moment inertia of the system about the 
spin axis.  
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                                                          Fig. P8.18 
 
 
8.19 Consider the elastically restrained conveyor belt of Problems 6.18 and 7.13 when k2 = 

2k and m1 = m2 = m. Determine the steady state response if a torque 
0( ) sinM t M t= Ω is applied to the right flywheel as shown. 

                                                                                                                                                     

                                                    Fig. P8.19 
 
 
8.20 Consider the system of Problems 6.19 and 7.14 when 

mb = 2ma = 2m and kT = kL2. Use modal analysis to 
determine the steady state response of the system if a 
force 0( ) sinF t F t= Ω is applied to the base mass.      
                                                                                         
                                                                                   

                                                                                                            
     
 
 
 
                                      Fig. P8.20 
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8.21 The bob of the inverted pendulum of the system of Problem 7.16 (and 6.22) is sub-
jected to the (temporally) symmetric triangular pulse of magnitude F0 and duration 
τ 2 = m/k, as shown in Figure P8.21. Determine the response of the system for the case 
where kT/L2 = k2 = k3 = k and m1/2 = m2 = m3 =m. 
 

 

 
 
                                       

   Fig. P8.21 
 
8.22 Consider the mechanism of Problems 6.23 and 7.17 when mw = 3m, kT = kR2 and the 

undeformed length of the coil equals the radius of the disk (i.e., L = R). Determine the 
steady state response of the system if the end of the arm is excited by the transverse 
harmonic load 0 .( ) sinF t F t= Ω  

 
                                          Fig. P8.22 
 
8.23 Actuators apply torques to each wheel of the conveyor belt system of Problems 6.10 

and 7.24 (m2 = m1 = m and R2 = R1 = R). Determine the torques that should be applied 
if, in the steady state, the system is to vibrate in the form of the second mode, but os-
cillate at 1.5 times the corresponding natural frequency. 

 
   Fig. P8.23 
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8.24 Consider the floating platform of Problems 6.24 and 7.18 when mb = ma /2 and k = ρf 
gR2 /2. Determine the response of the system if 0 .( ) sinF t F t= Ω   

 

   Fig. P8.24 
 
8.25 Consider the shaft system of Problems 6.25 and 7.19. Determine the response of the 

system if the center disk is initially at rest when it is suddenly twisted by a constant 
torque of magnitude M0. 

 

 
   Fig. P8.25 
 
8.26 Consider the triple pendulum of Problems 6.26 and 7.20. Determine the response of 

the system if it is initially at rest when the bottom most bob is impacted horizontally 
by an impulse of magnitude !. 
 

     
                     Fig. P8.26    Fig. P8.27  
 
8.27 Consider the mechanism of Problems 6.27 and 7.21 (Figure P8.27) when mw = mb = 

3m, kT R2 = kb = k and the undeformed length of the coil equals the radius of the disk 
(i.e., L = R). Determine the steady state response of the system if the end of the arm is 
excited by the transverse harmonic load 0 .( ) sinF t F t= Ω  
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8.28 Consider the coupled pendulums 
of Problems 6.29 and 7.22. Deter-
mine the response of the system 
when the leftmost bob is subjected 
to a horizontally directed rectangu-
lar pulse of magnitude F0 and du-
ration 2L g . 

 
 
                                Fig. P8.28 
 
 
8.29 Consider the frame system of Problems 6.30 and 7.23, where mb/ma = 0.25. Deter-

mine the motion of the system when 1 01 1( ) sinF t F t= Ω  (and F2 = 0). 
 

 
                                                            Fig. P8.29 
 
 
8.30 Consider the system of Problems 6.36 and 7.40 (c2/km = 0.04, I = 2mR2). Determine 

the steady state response of the system if 0 .( ) cosF t F t= Ω  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
   Fig. P8.30 
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8.31 Determine the response of the two-mass three-spring three-damper system of Prob-
lem 7.37 when the left mass is subjected to the pulse ( ) ( ).F t tδ=

�
!  

 
 
 
8.32 Consider the system of Problem 6.32 and 7.38 when mb = 

2ma = 2m, kT = kL2 and c2/km = 0.04. Determine the steady 
state response of the system if a force 0( ) sinF t F t= Ω is 
applied to the base mass. 

 
 
 
 
 
 

                                  
                                                         Fig. P8.32 
 
 
8.33 Repeat Problem 8.16, this time taking into account the effect of the perturbation on 

the drag force where the corresponding coefficient is cd = c. 
 
 
8.34 Consider the simple model of the submarine of Problem 6.37, where the mass of the 

internal compartment is mc, the mass of the hull and frame structure is ms = 2mc, the 
stiffness of each of the elastic mounts between the internal compartment and the hull 
frame is k, the damping factor for each of the mounts is 0.1 ,cc km=  the longitudi-
nal stiffness of the hull is ks = 2k and the effective damping factor of the hull is cs = 
2c. The propeller exerts a force F0 that is sufficient to overcome the drag force and 
maintain the constant speed v0. An imperfection in the propeller shaft induces a small 
harmonic perturbation in the thrust of frequency Ω. The actual thrust applied is then 
of the form 0 0( ) [1 sin ]F t F tε= + Ω  where 0 1ε � . If we neglect the corresponding 
perturbation of the drag force, determine the response of the submarine. 

 

                                                          
                                                            Fig. P8.34 
 
 
8.35 Determine the response of the frame of Example 8.17 if it is struck at the left support 

by a rectangular pulse of amplitude F0 and duration tp. 
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8.36 The conveyor belt system of Problem 6.35 has the properties m1 = m2 = m, R1 = R2 = 
R and c2/km = 0.16. It is at rest when a constant torque M0 is suddenly applied to the 
left flywheel. Determine the response of the system. 

 

 
       Fig. P8.36 
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9 
Dynamics of One-Dimensional Continua 

 
 
 
 
 
 
 
 
A material continuum is a medium or body that possesses a continuous, not necessarily 
uniform, distribution of mass and other material properties over its domain of definition. At 
the macroscopic scale many engineering systems lie in this category. One-dimensional con-
tinua are the simplest types of continua and correspond to bodies whose deformations are 
determined in terms of one spatial variable and time. Such bodies include elastic rods, 
strings and cables, and elastic beams and columns. To this point we have restricted our at-
tention to systems for which an elastic rod or beam was a part, and for which the mass of 
the rod or beam was negligible compared with other mass measures of the total system. In 
this and subsequent chapters we shall study the motion of the elastic body itself. It will be 
seen that much, if not all, of the capabilities that were developed for discrete systems can be 
abstracted and generalized for continuous systems with the introduction of a few new con-
cepts. As such, the study of vibrations of continuous systems will be seen to be completely 
analogous to that of discrete systems. In this chapter we derive the equations of motion of 
the systems of interest using elementary means. We begin by discussing the correlations 
between the mathematical representations of discrete systems and mathematically one-
dimensional continua. 
 

9.1  MATHEMATICAL DESCRIPTION OF 1-D CONTINUA 

In the previous three chapters it was seen that the properties, external forces and motion of 
discrete systems are described by matrices. In contrast, the properties, external forces and 
behavior of continuous systems are naturally described by continuous functions. The pur-
pose of this section is to provide a smooth and logical segue from discrete to continuous 
systems. In this section we view discrete and continuous systems from a unified perspec-
tive, with one being viewed as a limiting case of the other. This correlation will allow for a 
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smooth extension of previously established concepts that will aid in the transition to, and in 
our interpretation of the behavior of, continuous systems. 
 
 

9.1.1  Correspondence Between Discrete and Continuous Systems 

Consider the discrete system of masses and springs aligned in series as shown in Figure 
9.1a, and let the coordinate xj (j = 1, 2, …, N) correspond to the equilibrium position of 
mass mj (j = 1, 2, …, N) as indicated. The coordinate, x, originates at the left boundary of 
the system, and the system is defined on the domain 0 x L≤ ≤ . Let uj (j = 1, 2, …, N) cor-
respond to the displacement of the indicated mass and let Fj (j = 1, 2, …, N) be the corre-
sponding external force acting on that mass as defined in the previous three chapters. With 
the introduction of the coordinate system x, the displacements and external forces may be 
thought of as values of the functions u(x,t) and F(x,t) defined at the discrete equilibrium 
coordinates as follows: 
 
 ( , ) ( ) ,    ( , ) ( )    ( 1, 2,..., )j j j ju x t u t F x t F t j N= = =  (9.1) 
 
The forms displayed in Eq. (9.1) are thus alternative forms of the matrix representations 
 

 

1 1

2 2

( ) ( )
( ) ( )

( )  ,    ( )

( ) ( )N N

u t F t
u t F t

t t

u t F t

 ½  ½
° ° ° °
° ° ° °= =® ¾ ® ¾
° ° ° °
° ° ° °¯ ¿ ¯ ¿

# #
u F  (9.2) 

 
 Let us next consider the system to be comprised of a progressively increasing number 
of masses distributed over the fixed domain defined earlier. It follows that the distance be-
tween adjacent masses, 
 
 1 0     ( 0,1, 2,..., ;  0)j j jx x x j N x+∆ ≡ − = ≡  (9.3) 
 
decreases accordingly. Let ℓ denote the average axial length of the masses. It then follows 
that, in the limit as N → ∞  and jx dx∆ →   (j = 0, 1, 2, …, N),  
 
 ( ) ( , )    and    ( ) ( , )t u x t t p x t→ →Au F  (9.4) 
 
where p(x,t) is the applied force per unit length of the continuous body. 
 Let us next consider the stiffness matrix for the system of Figure 9.1a and the product 
ku as it appears in the corresponding equation of motion, Eq. (8.33). In the spirit of Eq. 
(9.1), let us introduce the notation 
 
 ( )     ( 1, 2,..., )j jk x k j N= =A  (9.5) 
and 
 1    ( 1,2,..., )j j jk k k j N+∆ ≡ − =  (9.6) 
 

www.konkur.in



9│ Dynamics of One-Dimensional Continua 477 

 
Figure 9.1  Discrete and continuous systems exhibiting longitudinal motion: (a) N-degree of freedom 
system, (b) continuous rod. 
 
 
Now, let us consider the jth row of the matrix product ku. Noting that 
 
    1( ) ( ) ( ) ( )j j j j jk x k x x k x k x+ = + ∆ = + ∆  (9.7) 
 
and substituting Eqs. (9.5)–(9.7) into the jth row of ku gives 
 

 
{ }

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
j

j j j j j j j j j jk x u x u x k x k x u x k x k x u x u x− +

=

ª º ª º ª º ª º− − ∆ + + − + ∆ + ∆¬ ¼ ¬ ¼ ¬ ¼ ¬ ¼

A ku
 

 
which, after rearranging terms, takes the form  
 

 
{ }

( ) ( )

1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j j

j

u x k x

j j j j j j j j j jk x u x u x k x k x u x k x u x k x u x

∆∆ ∆

− +

=

ª º ª º− ∆ − ∆ + − − ∆ − ∆ ∆¬ ¼ ¬ ¼

A

�������� ������

ku
  

 
Hence, 
 { } ( ) ( ) ( ) ( )j j j jj

k x u x k x u x= − ∆∆ − ∆ ∆A ku  (9.8) 

 
Dividing Eq. (9.8) by ℓ 2, and multiplying and dividing by 2( ) ,jx∆ gives 
 

 { }
2

2

( ) ( ) ( )1 ( )
( )

j j j j
jj

j jj

x u x k x u x
k x

x xx
 ½∆ ∆∆ ∆ ∆§ · ° °= − +¨ ¸ ® ¾∆ ∆∆° °© ¹ ¯ ¿A A

ku   

 
Letting N → ∞  and 0jx∆ →  simultaneously, 1jx∆ →A  and we find that 
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 1 ( , ) ( ) ( , )u x t k x u x t
x x

∂ ∂→ = −
∂ ∂A

ku k  (9.9) 

 
where ku(x,t) is read “k operating on u(x,t).” It follows that 
 

 1 ( )k x
x x

∂ ∂→ = −
∂ ∂A

k k�  (9.10) 

 
It is thus seen that, in the limit, the stiffness matrix tends to the differential stiffness opera-
tor k. With the limit of the stiffness matrix established, we next evaluate the limit of the 
mass matrix. 
 It was seen in Section 6.1.1 that the mass matrix for the system of Figure 9.1a is of 
diagonal form. If we write the masses of the system as 
 
 ( )    ( 1,2,..., )j jm x j N= =Am  (9.11) 
 
then the corresponding mass matrix takes the form 
 

 

1 1

2 2

0 0 ( ) 0 0
0 0 0 ( ) 0

0 0 0 0 ( )N N

m x
m x

m x

ª º ª º
« » « »
« » « »= =
« » « »
« » « »
¬ ¼ ¬ ¼

" "

A
# % # # % #

" "

m
m

m

m  (9.12) 

 
It is seen that the elements of m are such that 
 
 ˆ( )     ( , 1, 2,..., )lj j ljm x l j Nδ= =Am  (9.13) 
 
where l̂jδ  is known as Kronecker’s delta and has the property that 
 

    
1    (when )ˆ
0    (when )lj

l j
l j

δ
== ® ≠¯

 (9.14) 

 
In the limit, 
 

 

1 1 1

2 2 2

( ) ( , )
( ) ( , )1  ( , ) ( ) ( , )

( ) ( , )N N N

m x u x t
m x u x t

u x t m x u x t

m x u x t

 ½
° °
° °= → =® ¾
° °
° °¯ ¿

��
��

�� �� ��
#A
��

mu m  (9.15) 

 
Hence, for the present system, 
 

 1 ( )m x→ =
A

m m  (9.16) 
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Figure 9.2  Discrete and continuous systems exhibiting torsional motion: (a) N-degree of freedom 
system, (b) continuous rod. 
 
 
where m(x) is interpreted as the mass per unit length of the structure. In general, the mass 
matrix for a discrete system will not be diagonal. For such systems, the limit of the mass 
matrix will be a differential operator, m, in the spirit of the stiffness operator.  
 With the above limits established, the limit of the matrix equation that governs the 
system of Figure 9.1a, Eq. (8.33), takes the form 
 
 ( , ) ( , ) ( , )u x t u x t p x t+ =��m k  (9.17) 
 
We thus see that, in the present context, a function is simply a limiting case of a column 
matrix or vector. We also see that the limiting case of a matrix operator (square matrix) is a 
differential operator. The limiting case of the discrete system of Figure 9.1a corresponds to 
the representation that describes longitudinal motion of an elastic rod (Figure 9.1b) and will 
be considered in detail in Section 9.3. The correlation between certain other discrete sys-
tems and their continuous counterparts discussed in later sections is described below. 
 Suppose now that the masses of the discrete system of Figure 9.1a are replaced by 
rigid disks of known mass moment of inertia that are attached to massless rigid axles that 
are connected in series by torsional springs that rotate about the axis of the collinear axles 
as shown in Figure 9.2a. Correspondingly, let the linear displacements, uj(t), of the original 
system be replaced by angular displacements, θj(t), and let the external forces Fj(t) be re-
placed by externally applied torques, Tj (t). If we then proceed as we did for the original 
system, we arrive at a representation for the torsion of elastic rods in terms of the angular 
displacement field ( , )x tθ  and the applied distributed torque ( , )x tµ  shown in Figure 9.2b. 
This system will be considered in detail in Section 9.4.  
 Finally, consider a system of collinear rigid rods of known length and mass density, 
whose centers are located at the coordinates xj, and let the rods be connected in series by 
torsional springs, as shown in Figure 9.3a. For this system, the torsional springs rotate about 
axes that are perpendicular to the axes of the rods as indicated. Let the rods be subjected to 
externally applied transverse forces, Qj(t), (forces that act perpendicular to the axis of the 
rods) and let us use the transverse displacement wj(t) = ∆xj sinψj, as the measure of dis-
placement, where ψj(t) is the angle of rotation of the rod, and ∆xj is defined by Eq. (9.3). If 
we proceed as we did for the two systems discussed previously we arrive at the representa-
tion for flexure of elastic beams in terms of the transverse displacement field w(x,t) and the  
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Figure 9.3  Discrete and continuous systems exhibiting flexural motion: (a) N-degree of freedom 
system, (b) continuous beam. 
 
 
distributed transverse load q(x,t) (Figure 9.3b). This system will be considered in detail in 
Sections 9.6–9.8. 
 To conclude, it is seen that, in the limit, column matrices tend to functions and the 
corresponding matrix operators tend to differential operators. The detailed derivation of the 
mathematical models for the systems discussed above and others, including the associated 
mass and stiffness operators, will be considered in later sections of this chapter. 
 
 

9.1.2  The Scalar Product and Orthogonality 

It was seen in Chapter 8 that the orthogonality of the modal vectors is central to the analysis 
and comprehension of forced vibration of discrete systems. Since continua and their mo-
tions are described by continuous functions, and since it was shown in the previous section 
that functions are generalizations of column matrices and vectors, it may be anticipated that 
the orthogonality of functions will be important in our study of continuous systems and that 
the definitions and operations pertaining to scalar products and orthogonality, etc., can be 
abstracted/extended to functions. We next establish the corresponding definitions and oper-
ations. Other properties, such as normalization, will be established in later chapters as need-
ed. 

The Conventional Scalar Product 
Consider two vectors u and v expressed in the forms of Eqs. (9.1) and (9.2). It follows from 
Eq. (7.24) that the scalar product of u and v is given by 
 

 
1 1

, ( ) ( ) ( , ) ( , )
N N

j j j j
j j

u t v t u x t v x t
= =

= = =¦ ¦u v u vT  (9.18) 
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We next expand Eq. (9.18), multiply by ℓ, note that u(xj+1) = u(xj + ∆xj) and take the limit as 
N → ∞ and ∆xj → dx. Recognizing that in the limit summation becomes integration, we see 
that the scalar product of two functions defined on the domain 0 x L≤ ≤  is given by 
 

 
0

, ( , ) ( , )
L

u v u x t v x t dx= ³  (9.19) 

 
As for the case of discrete vectors, two functions are said to be mutually orthogonal if their 
scalar product vanishes. Stated mathematically, 
 
 if , 0  then  ( , ) ( , )u v u x t v x t= ⊥  (9.20) 
 
 

Example 9.1 
Determine the scalar product of the functions f(x) = sin(2nπx/L) and g(x) = 
sin(2pπx/L) on the domain 0 x L≤ ≤ , where n p≠ are positive integers greater than 
zero. 
 
Solution 
From Eq. (9.19), 
 

 
( ) ( )

{ } { }
0 0

, ( ) ( ) sin 2 sin 2

sin 2 ( ) sin 2 ( )
          0 0 0

4 ( ) 4 ( )

L L

f g f x g x dx n x L p x L dx

n p n p
n p L n p L

π π

π π
π π

= =

− +
= − = − =

− +

³ ³
 �  

 
Thus, f g⊥ on [0, L].  
 Note that the given functions would be orthogonal on the domain [−L, L] as 
well. Compare the above functions with the functions used as the basis for a conven-
tional Fourier series (Section 3.6). It may be seen that a Fourier series is an expan-
sion in terms of a set of mutually orthogonal functions.   

 
 
 
 

The Weighted Scalar Product 
It follows from Eq. (7.25), that the weighted scalar product of two vectors u and v with 
respect to a matrix m is given by 
 

 
1 1 1 1

, ( ) ( ) ( , ) ( , )
N N N N

l lj j l lj j
l j l j

u t v t u x t v x t
= = = =

= = =¦¦ ¦¦m
u v u mvT m m  (9.21) 

 
It is seen, upon incorporating Eq. (9.13) into Eq. (9.21), that the weighted scalar product 
with respect to a diagonal mass matrix simplifies to the form  
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1

, ( , ) ( ) ( , )
N

j j j
j

u x t m x v x t
=

= ¦Am
u v  (9.22) 

 
Taking the limit as N → ∞  and , jx dx∆ →A  gives the scalar product of the two functions 
u(x,t) and v(x,t) with respect to the weight function m(x). Hence,  
 

 
0

, ( , ) ( ) ( , )
L

m
u v u x t m x v x t dx= ³  (9.23) 

 
If the weighted scalar product vanishes, the functions u(x,t) and v(x,t) are said to be orthog-
onal with respect to the weight function m(x). Stated mathematically, 
 
 if  , 0    then    ( , ) ( , )

m m
u v u x t v x t= ⊥  (9.24) 

 
 The weighted scalar product of two vectors, u and v, with respect to the stiffness ma-
trix k is defined as discussed in Section 7.3.1. Hence, 
 

  
1 1 1 1

, ( ) ( ) ( , ) ( , )
N N N N

l lj j l lj j
l j l j

u t v t u x t v x t
= = = =

= = =¦¦ ¦¦k
u v u k vT k k  (9.25) 

 
It follows from prior discussions that taking the limit as N → ∞  and ∆xj → dx gives the 
weighted scalar product of the two functions u(x,t) and v(x,t) with respect to the stiffness 
operator k. Hence, 

 
0

, ( , ) ( , )
L

u v u x t v x t dx≡ ³k
k  (9.26) 

 
If the weighted scalar product vanishes, the functions u(x,t) and v(x,t) may be said to be 
orthogonal with respect to the stiffness operator k. Stated mathematically, 
 
    if  , 0    then    ( , ) ( , )u v u x t v x t= ⊥

k k
 (9.27) 

 
The general case of the scalar product and corresponding statement of orthogonality, with 
respect to a differential mass operator follows as for the stiffness, with the mass function 
being the operator as a special case as discussed below.  
 In general, the scalar product of two functions u(x,t) and v(x,t) with respect to some 
linear differential operator d is defined in an analogous fashion to that for the case above. 
The mutual orthogonality of the two functions with respect to the differential operator fol-
lows directly. Thus, in general, the weighted scalar product of two functions, u(x,t) and 
v(x,t), with respect to a differential operator 
 

 ( )
n p

n pS x
x x

∂ ∂=
∂ ∂

d  (9.28) 

  
where S(x) represents some system property, is defined as 
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0

, ( , ) ( , )
L

u v u x t v x t dx≡ ³d
d  (9.29) 

 
The corresponding statement of orthogonality follows directly. Hence, 
 
    if  , 0    then    ( , ) ( , )u v u x t v x t= ⊥

d d
 (9.30) 

 
It is seen that the scalar product and orthogonality with respect to weight functions follows 
directly from Eqs. (9.28)–(9.30) for operators where the order of the spatial derivatives is 
reduced to zero (i.e., when n = p = 0). Finally, it is evident that , ,u v u v=d d . 
 

Vector Functions and Differential Matrix Operators 
For more complex systems the above definitions may be generalized. For certain types of 
structures the displacement field may be described by more than one scalar function. In this 
case the displacement is described by a vector (matrix) function of the form 
 

 

1

2

( , )
( , )

( , )

( , )N

u x t
u x t

x t

u x t

 ½
° °
° °= ® ¾
° °
° °¯ ¿

#
u  

 
and the corresponding mass and stiffness operators are of the general form 
 

 

11 12 1

21 22 2

1 2

N

N

N N NN

ª º
« »
« »=
« »
« »
¬ ¼

"
"

# # % #
"

d

d d d

d d d

d d d

 

 
where dlj (l,j = 1, 2, …, N) are differential operators. For such systems we extend the defini-
tion of scalar product between two vector functions. In this case we define the scalar prod-
uct between two vector functions u(x,t) and v(x,t) as 
 

 
0

,
L

dx≡ ³d
u v u dvT  (9.31) 

 
Correspondingly the vector functions are said to be orthogonal with respect to the differen-
tial operator if the scalar product vanishes. That is 
  

 
0

if   , 0    then    
L

dx≡ = ⊥³d d
u v u dv u vT  (9.32) 

 
Finally, it is evident that , , .=du v u dv  The above definitions can be extended to in-
clude multi-dimensional domains as well.  
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.  

 
          Figure 9.4  Deformation of material line element in pure translation. 
 
 

9.2  CHARACTERIZATION OF LOCAL DEFORMATION 

To study the motion of continua, in particular the vibrations of continua, we are interested 
in the relative motion of adjacent material particles. Such relative motion is generally 
termed deformation of a material body. In the present and the next two chapters we shall be 
concerned with one-dimensional continua. Such systems typically correspond to continua 
that are geometrically long and thin. More precisely, we shall consider structures for which 
one dimension, the axial, is much larger than the others. We shall herein be interested in 
two types of deformation, stretching and distortion, and shall limit our discussion to those 
measures pertinent to one-dimensional continua. 
 

9.2.1  Relative Extension of a Material Line Element 

One mode of deformation can be characterized by examination of the relative exten-
sion/contraction of a line element in a continuous medium or body. This measure is often 
referred to as the normal strain. When the strain is measured in a direction parallel to the 
major axis of a long thin body, the normal strain is also referred to as the axial strain. In all 
of our discussions we shall consider infinitesimal strains. That is, we shall consider strains 
whose magnitudes are small compared with unity. 

Pure Translation 
We first consider an element of a material line that is originally aligned parallel to a coordi-
nate axis, say the x-axis, and remains oriented parallel to that axis throughout its motion. 
Thus, let us consider a line element of initial length dx emanating from coordinate x, as 
shown in Figure 9.4. During the course of its motion, the element translates and stretches so 
that the left end of the element is currently located at coordinate x  and the current length of 
the element is dx  as indicated. Let u(x,t) correspond to the displacement of the left end of 
the element. For continuous displacements of the material line, the right end then displaces 
an amount ( )u u x dx+ ∂ ∂ , as shown. It then follows, as may be seen from Figure 9.4, that 
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        Figure 9.5  Deformation of material line element in translation and local rotation. 
 
 

 udx dx dx
x

∂= +
∂

 

 
The relative extension, εxx, is then 
 

 xx
dx dx u

dx x
ε − ∂= =

∂
 (9.33) 

 
and is typically referred to as the normal strain. 
 

Translation and Local Rotation 
Let us now consider the same material line initially emanating from coordinate (x,z)  and of 
initial length dx as shown in Figure 9.5. However, we now remove the restriction of mo-
tions of pure translation and allow small rotations in a plane, say the xz-plane, as well as 
extension and contraction. Let  u and w respectively correspond to the displacements in the 
x and z directions of the left end of the element as shown. The right end then displaces cor-
respondingly, as indicated. Since the element is no longer parallel to the x-axis when in the 
current configuration, let the current length of the element be denoted as ds, and the projec-
tions of ds onto the coordinate axes be denoted as dx  and dz , respectively. We wish to 
evaluate the relative extension of the line element in terms of the displacements and their 
spatial gradients. It may be seen from Figure 9.5 that 
 

 
2 2 2 2

2 2 1 2u w u u wds dx dz dx dx dx dx
x x x x x

∂ ∂ ∂ ∂ ∂§ · § · § · § ·= + = + + = + + +¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸∂ ∂ ∂ ∂ ∂© ¹ © ¹ © ¹ © ¹
 

 
which, after expressing the radical by its series expansion gives the relation 
 

 
2 21 11

2 2
u u wds dx
x x x

ª º∂ ∂ ∂§ · § ·= + + + +« »¨ ¸ ¨ ¸∂ ∂ ∂© ¹ © ¹« »¬ ¼
!  (9.34) 
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The relative extension of the material line element is then, to second order, 
 

 
2 2 21 1 1

2 2 2
ds dx u u w u w

dx x x x x x
− ∂ ∂ ∂ ∂ ∂§ · § · § ·= + + ≅ +¨ ¸ ¨ ¸ ¨ ¸∂ ∂ ∂ ∂ ∂© ¹ © ¹ © ¹

 (9.35)  

 
where, for small displacement gradients, the square of a quantity is neglected when com-
pared with that quantity to the first power. We shall consider two classifications of infinites-
imal strain: small strain with “moderate” rotations, and small strain with “small” rotations. 

 

Small Strain, Moderate Rotations 
We here consider infinitesimal extension ratios. We, therefore, consider deformations 
where the magnitude of each term in Eq. (9.35) is small compared with unity. If  

 

    
2w uO

x x
∂ ∂§ · § ·

¨ ¸ ¨ ¸∂ ∂© ¹ © ¹
�   

 
then the nonlinear term must be retained and the infinitesimal strain εxx is given by 

 

 
21

2xx
u w
x x

ε ∂ ∂§ ·= + ¨ ¸∂ ∂© ¹
 (9.36) 

 
The nonlinear term in the above expression may be identified as the angle of rotation 
of the line element in the xz-plane since, for small angles, the tangent is approximated 
by the angle itself and vice-versa. It is seen that the axial motion and transverse mo-
tion are coupled through this term. If we considered the element to move out of the 
plane as well as in it, and we paralleled the above development, an analogous nonlin-
ear term corresponding to out of plane rotation would be added to the right-hand side 
of Eq. (9.36). 
 

Small Strain, Small Rotations 
When the nonlinear term in Eq. (9.36) is small compared to the first, the rotations are 
said to be “small.” In this case the nonlinear term is often neglected, resulting in a 
common definition of infinitesimal strain. Stated mathematically, if  

  

    w uO
x x

∂ ∂§ ·
¨ ¸∂ ∂© ¹

�   

 
 then the infinitesimal strain is often taken as 
 

 xx
u
x

ε ∂≈
∂

 (9.37) 

 
This is the common form of infinitesimal normal strain used in linear problems. It 
may be seen that, for this case, the current length, ds, is approximated by its projec-
tion, dx  (Figure 9.5). When this approximation is made, all coupling between axial 
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and transverse motion is ignored. The modeler should be aware of this limitation as 
such omissions can have significant ramifications in certain settings, even for small 
rotations. 

 
 

9.2.2  Distortion 

Consider a differential element whose faces are initially parallel to the coordinate planes. In 
particular, let us focus on the face parallel to the xz-plane, as shown in Figure 9.6. During 
motion, the element will generally translate, rotate, stretch and distort. We shall here be 
concerned with the distortion of the face shown. Thus, let the edges of the element, original-
ly perpendicular to one another, be currently oriented at angles φxz and ψxz with respect to 
the coordinate planes as indicated. We shall label the corresponding subtended angle as θxz. 
For small angle changes, 1xzφ � and 1xzψ � , it follows that 
 

 tan     and    tanxz xz xz xz
w u
x z

φ φ ψ ψ∂ ∂≈ = ≈ =
∂ ∂

 (9.38) 

 
The change in angle parallel to the xz-plane is then 
 

 
2xz xz

w u
x z

πγ θ ∂ ∂= − ≈ +
∂ ∂

 (9.39) 

 
The corresponding shear strain is formally defined as half the angle change, hence 
 

 1
2xz

w u
x z

ε ∂ ∂§ ·= +¨ ¸∂ ∂© ¹
 (9.40) 

 
Analogous measures are defined for distortion on other planes. With the relation between 
discrete and continuous systems understood, and the measures of characterizing defor-
mation established, we now examine several models for studying various motions of one-
dimensional continua. 
 
 
 

 
             Figure 9.6  Distortion of differential material element.  
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9.3  LONGITUDINAL MOTION OF ELASTIC RODS 

In this section we derive the equation of motion, and the general boundary and initial condi-
tions that govern the longitudinal motion of elastic rods. That is, we shall here be interested 
in motions of material particles that ensue parallel to the axis of the rod. For small defor-
mations of thin rods, rods whose axial deformations as well as lateral dimensions are small 
compared with the overall length of the rod, the axial motion and associated stress may be 
considered to be approximately uniform over a given cross section. Similarly, the Poisson 
effect (the lateral contraction/extension that accompanies axial stretching/compression) may 
also be neglected, rendering the problem mathematically one-dimensional in nature. In 
what follows, we shall consider a moderately general case, where the material properties of 
the rod may vary smoothly along its length but are invariant over a given cross section. We 
thus consider an orthotropic rod in this sense. Similarly, the shape of the rod is arbitrary and 
the cross-sectional area may vary in the axial direction. The case of a uniform isotropic rod 
is thus recovered as a special case.  
 Consider an elastic rod of length L and cross-sectional area A(x), where the coordi-
nate x parallels the axis of the rod and originates at its left end as shown in Figure 9.7a. Let 
the rod be comprised of material of mass density ρ(x) and elastic modulus E(x). The mass 
per unit length of the rod is then m(x) = ρ(x)A(x). In addition, let the rod be subjected to the 
externally applied distributed axial force p(x,t) as depicted in Figure 9.1b. As discussed in 
the preceding paragraph, we assume that the stress and deformation is uniform over a cross 
section and, therefore, that they each are a function of the axial coordinate x and time t only. 
Since we neglect the Poisson effect as well, the axial stress σ(x,t) is solely dependent on 
the axial strain ε(x,t) through the elementary form of Hooke’s Law. Hence, 
 

 ( , ) ( ) ( , ) ( ) ux t E x x t E x
x

σ ε ∂= =
∂

 (9.41) 

 
where u(x,t) corresponds to the axial displacement of the cross section located at coordi-
nate x when in the rest configuration. Since the stress is assumed to be uniform over a cross 
section, the resultant membrane force, N(x,t), acting on a cross section is then 
 

 ( , )( , ) ( )a
u x tN x t k x

x
∂=

∂
 (9.42) 

where 
 ( ) ( ) ( )ak x E x A x=  (9.43) 
 
is identified as the axial stiffness (per unit length) of the rod. 
 With the internal force measure for the rod established, we now proceed to derive the 
equation of motion. Toward this end, we first examine the kinetic diagram for a generic 
differential element of the rod shown in Figure 9.7b. We next apply Newton’s Second Law 
to the element, which takes the form 
 

 
2

2

( , )( , ) ( , ) ( , ) ( )N x t up x t dx N x t dx N x t m x dx
x t

∂ ∂ª º+ + − =« »∂ ∂¬ ¼
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Figure 9.7  Longitudinal motion of rod: (a) kinematical description, (b) kinetic diagram of differen-
tial rod element.  
 
 
Rearranging terms and incorporating Eq. (9.42) gives the local form of the equation of mo-
tion for the rod as 
 

 
2

2

( , )( ) ( ) ( , ) ( , )a
u x tm x k x u x t p x t

x xt
∂ ∂ ∂− =

∂ ∂∂
 (9.44) 

 
Equation (9.44) is seen to be a second order partial differential equation for the axial dis-
placement and may be identified as the one-dimensional wave equation. As such, the solu-
tion of this equation requires the specification of two boundary conditions and two initial 
conditions. We consider the boundary conditions first. 
 To obtain a solution to the equation of motion, one term (but not both terms) of the 
work /�= Nu must be prescribed at two points on the structure, typically at the boundaries. 
(Note that if one term, N or u, is prescribed then its conjugate represents the corresponding 
response or reaction and therefore cannot be specified independently.) The general forms of 
the boundary conditions for the elastic rod are stated below. At the left edge of the rod, we 
must specify either 
 

 0 0
0

(0, ) ( )    or    (0, ) ( )a
x

uN t k t u t t
x =

∂= = =
∂

N h  (9.45) 

 
where N0(t) is a prescribed edge load and h0(t) is a prescribed edge displacement. Similar-
ly, at the right edge of the rod, we must specify either 
 

 ( , ) ( )    or    ( , ) ( )a L L
x L

uN L t k t u L t t
x =

∂= = =
∂

N h  (9.46) 

 
where NL(t) is a prescribed edge load and hL(t) is a prescribed edge displacement. 
 In addition to the boundary conditions, the initial displacement and initial velocity of 
each material point in the rod must be specified as well. The solution of the equation of 
motion therefore requires the initial conditions 
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 0( ,0) ( )u x u x=  (9.47) 
and 

 0
0

( )
t

u v x
t =

∂ =
∂

 (9.48) 

 
where u0(x) and v0(x) are prescribed functions that describe the initial state of the rod. The 
boundary value problem corresponding to longitudinal motion of an elastic rod is defined 
by Eqs. (9.44)–(9.48). 
 Before leaving our discussion of elastic rods it is useful to rewrite the equation of 
motion, Eq. (9.44), in operator form. This will aid in the comparison of various systems as 
well as with the interpretation and solution in this and subsequent chapters. Hence, let us 
define the stiffness operator for the rod as 
 

 ( )ak x
x x

∂ ∂= −
∂ ∂

k  (9.49) 

 
Comparison of Eq. (9.49) with Eq. (9.10) shows the stiffness operator for the rod to be of 
the identical form as that via the limiting process of Section 9.1. For completeness, let us 
similarly define the mass operator m for the present system as 
 
 ( )m x=m  (9.50) 
 
Incorporating Eqs. (9.49) and (9.50) into Eq. (9.44) gives the equation of motion for the rod 
in operator form. The alternate form of the equation of motion governing longitudinal mo-
tion of elastic rods is then 
  

 
2

2 ( , )u u p x t
t

∂ + =
∂

m k  (9.51) 

 
where k and m for the rod are defined above. Comparison of Eq. (9.51) with Eq. (8.33) 
shows the mass and stiffness operators to be completely analogous to the mass and stiffness 
matrices for discrete systems. In fact, the operators for longitudinal motion of a rod were 
shown to be limiting cases of these matrices in Section 9.1. 
 
 

Example 9.2 
State the boundary conditions 
for longitudinal motion of an 
elastic rod for the two cases 
shown in Figure E9.2. 
 
 
 
    
    Figure E9.2 
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Solution  
In both case (i) and case (ii) the left end of the rod is fixed. Thus, for both cases, 
 
 (0, ) 0u t =  (a) 
 
For case (i) the right end of the rod is subjected to the force 0( ) sin .F t F t= Ω  Hence, 
 

 0 0( , ) sin         sin
x L

uN L t F t EA F t
x =

∂= Ω � = Ω
∂

 (b) 

 
For case (ii) the right end of the rod is free. That is the applied load is zero on this 
edge. Since the right edge is stress free, the  boundary condition is 
 

 0
x L

uEA
x =

∂ =
∂

 (c) 

 
 
 
 
 

Example 9.3 
Determine the boundary conditions for an elastic rod contained between two elastic 
walls of stiffness kw. 
 
 
 
 
 
 
 
   Figure E9.3 
 
Solution 
To establish the boundary conditions for this system, consider the displacements at 
the edges of the rod to be positive. Then, the spring at the left edge of the rod is ex-
tended and the spring at the right end of the rod is compressed. It follows that a ten-
sile load is applied at x = 0 while a compressive load is applied to the rod at x = L. 
The boundary conditions are then 
 

 
0

(0, ) (0, )        (0, )w w
x

uN t k u t EA k u t
x =

∂= � =
∂

 (a) 

and 

 ( , ) ( , )        ( , )w w
x L

uN L t k u L t EA k u L t
x =

∂= − � = −
∂

 (b) 
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Example 9.4 
Determine the boundary conditions for the elastic rod shown in Figure E9.4-1 if the 
support undergoes the horizontal motion ∆0sinΩt and a rigid block of mass m is at-
tached to the right end. 
 
                                                          
 
 
 
 
                                                                  
                                                                  
               
   Figure E9.4-1 
 
Solution 
The left edge of the rod is affixed to the support. Therefore, the displacement at the 
left edge is prescribed. The corresponding boundary condition is then 
 
 0(0, ) sinu t t= ∆ Ω  (a) 
 
To establish the boundary condition at the right edge of the rod, it is helpful to con-
sider the kinetic diagram for the block and rod (Figure E9.4-2). From Newton’s 
Third Law, the force acting on the rigid mass is equal and opposite to the resultant 
membrane force acting on the edge of the rod, as indicated.  
 
 

   Figure E9.4-2  Kinetic diagram of end mass. 
 
 
Applying Newton’s Second Law to the block gives  
 

 
2

2( , )
x L

uN L t
t =

∂− =
∂

�m  

Hence, 

 
2

2
x L x L

u uEA
x t= =

∂ ∂− =
∂ ∂

m  (b) 
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9.4  TORSIONAL MOTION OF ELASTIC RODS 

In this section we derive the equation of motion and general boundary and initial conditions 
that govern the torsional motion of solid elastic rods of circular cross section. The small 
strain theory of torsion of elastic rods attributed to St. Venant predicts that no warping of 
cross sections or axial extension accompanies twisting of rods with circular cross sections. 
Though we restrict our attention to rods of circular cross section, we shall allow the radius, 
mass density and shear modulus of the rod to vary in the axial direction.  
 Consider the circular elastic rod of length L, radius R(x), shear modulus G(x), and 
mass density ρ(x), where the axial coordinate x originates at the left end of the rod as 
shown in Figure 9.8a. In addition, let the rod be subjected to the distributed twisting mo-
ment (torque per unit length) P(x,t) as indicated. The St. Venant assumption holds that a 
cross section rotates uniformly about its axis. The angular displacement of a cross section is 
then simply a function of the axial coordinate and time, while the axial and radial displace-
ments vanish identically. It follows that the linear displacement, uφ , of a material particle in 
the plane of the cross section varies linearly with the radial coordinate r measured from the 
axis of the rod (Figure 9.8b). Hence, 
 
    ( , , ) ( , )u x r t r x tφ θ=  (9.52) 
  
 ( , , ) 0,     ( , , ) 0x ru x r t u x r t≡ ≡  (9.53) 
 
where ( , )x tθ  is the angular displacement of the cross section and r is the radial coordinate 
measured from the axis of the rod. 
 
 

 
Figure 9.8  Torsional motion of circular rod: (a) deformation and loading, (b) rotation of cross sec-
tion, (c) kinetic diagram of differential rod element. 
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 With the linear displacement defined in terms of the rotational displacement, the 
shear stress, ( , )x tτ , acting on the cross section is readily obtained in terms of the rotation 
of the cross section using Hooke’s law. Hence, 
 

 1 ( , )( , , ) 2 x
x

u u x tx r t G G Gr
x r x
φ

φ
θτ ε

φ
∂§ ·∂ ∂= = + =¨ ¸∂ ∂ ∂© ¹

 (9.54) 

 
Multiplying the shear stress by rdA, where dA is the differential area on the cross section, 
substituting Eq. (9.54), and integrating the resulting expression over the area of the cross 
section gives the resultant torque, ,�(x,t) (positive counterclockwise), that acts on the cross 
section. We thus obtain the constitutive relation  
 

 ( , ) ( )Tx t k x
x
θ∂=

∂
,  (9.55) 

where 
 ( ) ( ) ( )Tk x G x J x=  (9.56) 

 
is the torsional stiffness (per unit length) of the circular rod and  
 

 2 41
2

( )
( ) ( )

A x
J x r dA R xπ≡ =³  (9.57) 

 
is the geometric polar moment of inertia of the cross section. In this sense, the rod is de-
fined in terms of the parameters kT, ρ and L. With the constitutive relation for the rod estab-
lished, we now proceed to derive the equation of torsional motion for elastic rods of circular 
cross section.  
 We first consider the kinetic diagram of a differential element of the rod shown in 
Figure 9.8c. Note that the mass polar moment of inertia of the uniform circular cross section 
is simply 
 ( ) ( ) ( )J x x J xρ ρ=  (9.58) 
 
We now express Eq. (1.162) for the element and obtain 
 

 
2

2( , ) ( , ) ( , ) ( )x t dx x t dx x t J x dx
x tρ

θµ ∂ ∂ª º+ + − =« »∂ ∂¬ ¼

,
, ,  

 
Rearranging terms and incorporating Eq. (9.55) gives the local equation of motion for the 
rod as 
 

 
2

2

( , )( ) ( ) ( , ) ( , )T
x tJ x k x x t x t

x xtρ
θ θ µ∂ ∂ ∂− =

∂ ∂∂
 (9.59) 

 
which is seen to correspond to the one-dimensional wave equation in terms of the rotational 
displacement. As for the case of longitudinal motion, the solution requires the specification 
of two boundary conditions and two initial conditions. 
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 To obtain a solution to the equation of motion we must specify one term of the tor-
sional work /�= ,θ at two points along the rod, typically at the boundaries. Thus, at the left 
edge, we must specify either 
 

 0 0
0

(0, ) ( )    or    (0, ) ( )T
x

t k t t t
x
θ θ

=

∂= = =
∂

, , h  (9.60) 

 
where ,0(t) is a prescribed torque or h0(t) is a prescribed rotation. Similarly, at the right 
edge of the rod, we must specify either 
 

 ( , ) ( )    or    ( , ) ( )T L L
x L

L t k t L t t
x
θ θ

=

∂= = =
∂

h, ,  (9.61) 

 
where ,L(t) is a prescribed torque or hL(t) is a prescribed rotation. 
 The solution of the equation of motion also requires the specification of the initial 
angular displacement and initial angular velocity of each cross section of the rod. The initial 
conditions for torsional motion of the rod are thus of the form 
 
 0( ,0) ( )x xθ θ=  (9.62) 
and 

 0
0

( )x
t θ

θ χ
=

∂ =
∂

 (9.63) 

 
where θ0(x) and χ0(x) are prescribed functions that describe the initial state of the rod. It 
may be see that the problem of torsional motion defined above is directly analogous to the 
problem of longitudinal motion defined in Section 9.2, with the axial displacement replaced 
by the rotation θ(x,t), the axial force replaced by the resultant torque ,�(x,t) and the dis-
tributed axial load replaced by the distributed twisting moment µ(x,t). 
 To complete our discussion, we rewrite the equation of motion in operator form. We 
thus identify the stiffness operator and mass operators, k and m, for the present system as 
 

 ( )Tk x
x x

∂ ∂= −
∂ ∂

k  (9.64) 

and 
 ( )J xρ=m  (9.65) 
 
Incorporation of the above relations into Eq. (9.59) gives the alternate form of the equation 
of torsional motion, 
 

 
2

2 ( , )x t
t
θ θ µ∂ + =

∂
m k  (9.66) 

 
The correspondence between Eq. (9.66) and its associated operators with the equation of 
motion for discrete systems and its associated matrices is evident. 
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Example 9.5 
Determine the boundary conditions for the rod 
supported by identical torsional springs of stiffness 
kθ at each edge. 
 
 
 
Solution 
Recall that the torques are taken as positive in the counterclockwise sense. Thus, if 
the angle of rotation is positive at the left end of the rod, then the restoring torque 
applied by the spring is positive. In contrast, if the angle of rotation at the right end 
of the rod is positive, then the restoring torque produced by the spring is negative. 
(Compare with the extension/compression of the linear springs in Example 9.3.) It 
follows that the boundary conditions for this system are then 
 

 
0

(0, )
x

GJ k t
x θ
θ θ

=

∂ =
∂

 (a) 

and 

 ( , )
x L

GJ k L t
x θ
θ θ

=

∂ = −
∂

 (b) 

 
 
 
 
 
 

9.5 TRANSVERSE MOTION OF STRINGS AND CABLES 

Strings and cables are employed in musical instruments and many engineering systems 
where flexible tension carrying members are needed. Strings and cables are long thin con-
tinua possessing negligible resistance to bending compared with their resistance to axial 
deformation. As such, they are idealized mathematically as structures with vanishing bend-
ing stiffness and hence with no global resistance to axial compression. Correspondingly, the 
stress distribution over a cross section is characterized by the resultant axial force. From a 
vibrations perspective, we are primarily interested in the dominant transverse motion of 
these systems. Since strings and cables are extremely flexible, their transverse motion and 
axial effects are coupled, primarily through the axial tension. We must therefore examine 
the equation of axial motion as well as the equation of transverse motion for these systems. 
As for the elastic rods discussed earlier, we shall consider the properties of the string to be 
uniform through a cross section, but allow them to vary along the axis of the structure. We 
shall neglect the Poisson effect as well. 
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Figure 9.9  Transverse motion of a string: (a) deformation and loading, (b) kinetic diagram of differ-
ential element. 
 
 
 Consider a string of length L, cross-sectional area A(x) and mass density ρ(x), where 
the coordinate x originates at the left end of the structure as shown in Figure 9.9a. Let the 
string be subjected to the external distributed transverse force (force per unit length) q(x,t) 
and external distributed axial force p(x,t). In addition, let w(x,t) represent the transverse 
displacement of a material particle originally located at coordinate x when the string is un-
deformed, as indicated, and let N(x,t) ≥ 0 represent the internal tension acting on the corre-
sponding cross section. The kinetic diagram for a representative differential element of the 
string is depicted in Figure 9.9b. We shall apply Newton’s Second Law to the generic string 
element shown, first in the transverse direction and then in the axial direction. In what fol-
lows, we restrict our attention to smooth motions of the string with “moderate rotations” of 
the cross section. That is, we restrict our attention to motions for which the angle of rota-
tion, ϕ (Figure 9.9b), at any cross section is such that  
 

 sin tan 1w
x

ϕ ϕ ∂≈ =
∂
�  (9.67) 

 
Applying Newton’s Second Law of Motion in the transverse direction then gives 
 

 
2

2( , ) ( , ) ( )w w N w w wq x t dx p x t dx N N dx dx m x dx
x x x x x x t

ª º∂ ∂ ∂ ∂ ∂ ∂ ∂§ · § ·+ − + + + =« »¨ ¸ ¨ ¸∂ ∂ ∂ ∂ ∂ ∂ ∂© ¹ © ¹¬ ¼
 

     (9.68) 
where 
 ( ) ( ) ( )m x x A xρ=  (9.69) 
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is the mass per unit length of the string. Expanding Eq. (9.68), neglecting terms of order 
(dx)2 compared with dx and rearranging the resulting expression gives the equation of 
transverse motion for the string as 
 

 
2 2

2 2 ( , ) ( , )w w N wm N p x t q x t
x xt x

∂ ∂ ∂ ∂ª º− − + =« »∂ ∂∂ ∂ ¬ ¼
 (9.70) 

 
Insight into the internal tension is obtained by considering the equation of motion for the 
axial direction. Newton’s Second Law gives 
 

 x
Npdx N dx N mdx a
x

∂§ ·+ + − =¨ ¸∂© ¹
 (9.71) 

 
which, after rearranging terms, takes the form 
 

 ( , )x
Nma p x t
x

∂− =
∂

 (9.72) 

 
where ax represents the axial acceleration of a material particle originally located at coordi-
nate x. Since the string has negligible bending stiffness, it may be anticipated that the trans-
verse motion of a given point on the string will be much greater than the axial motion of 
that point. If, for example, we consider the motion of a guitar string during a cycle, the dis-
tance traversed in the transverse direction by a material particle will be much larger than the 
distance traveled in the axial direction by that same particle. The particle will necessarily 
travel much more rapidly in the transverse direction. It follows that the kinetic energy of 
transverse motion is much greater than the kinetic energy of axial motion. Likewise, the 
axial component of the acceleration will be negligible compared with the corresponding 
transverse component. If we neglect the kinetic energy of axial motion and, equivalently, 
the axial component of the acceleration in our formulation, then Eq. (9.72) reduces to the 
statement 

 N p
x

∂ ≅ −
∂

 (9.73) 

  
Incorporation of Eq. (9.73) into Eq. (9.70) reduces the equation of transverse motion of the 
string to the form 
 

 
2 2

2 2 ( , )w wm N q x t
t x

∂ ∂− =
∂ ∂

 (9.74) 

 
It is seen from Eq. (9.73) that the tension in the string is effectively equal to a spatial inte-
gral of the axial body force p(x,t). It is further seen that if the distributed axial load is inde-
pendent of time then the tension in the string is effectively independent of time as well. 
That is, 
 
 if    ( )    then    ( )p p x N N x= =  
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It follows, as a special case, that if the axial body force is uniform, as well as independent of 
time then the internal tension is effectively constant.  
 The equation of transverse motion for strings and cables, Eq. (9.74), is seen to be of 
the same form as the equations that govern longitudinal motion and torsional motion of 
uniform elastic rods, the one-dimensional wave equation. It is also seen that the internal 
tension supplies the stiffness per unit length of the string. Regardless, we must specify two 
boundary conditions and two initial conditions to complete our formulation. For the highly 
flexible string under consideration, the internal force acting in the transverse direction is the 
projection of the corresponding internal tension in that direction (see Figure 9.9b). We must 
therefore specify one term of the transverse work, ( ) ,N w x w= ∂ ∂/  at two points of the 
string, say the end points. The boundary conditions for the string are thus 
 

 0 0
0

( )    or    (0, ) ( )
x

wN Q t w t t
x =

∂ = =
∂

h  (9.75) 

and 

 ( )    or    ( , ) ( )L L
x L

wN Q t w L t t
x =

∂ = =
∂

h  (9.76) 

 
where Q0(t) and QL(t) are prescribed transverse edge loads, and h0(t) and hL(t) are pre-
scribed edge displacements. To finish our formulation for transverse motion we must speci-
fy the initial transverse displacement and the initial transverse velocity for each point on the 
string. The corresponding initial conditions thus take the form 
 
 0( ,0) ( )w x w x=  (9.77) 
and 

 0
0

( )
t

w v x
t =

∂ =
∂

 (9.78) 

 
where w0(x) and v0(x) are prescribed functions that describe the initial state of the string. 
 We complete our discussion by writing the equation of motion in operator form. We 
thus introduce the stiffness and mass operators 
 

 
2

2N
x

∂= −
∂

k  (9.79) 

and 
 ( )m x=m  (9.80) 
 
respectively, into Eq. (9.74). This results in the familiar form 
 

 
2

2 ( , )w w q x t
t

∂ + =
∂

m k  (9.81) 
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Example 9.6 
A sign of mass m hangs from a uniform chain of length L and mass per unit length 

.m L�m  Determine the explicit form of the equation of (small) transverse mo-
tion for the cable. Also determine the associated boundary conditions if (i) the lateral 
motion of the sign is restricted as shown, and (ii) if the sign hangs freely (Figure 
E9.6-1). Assume that the weight of the sign is much greater than the weight of the 
chain.                                                 

   Figure E9.6-1                                        Figure E9.6-2 
 
Solution 
The tension in the cable is easily obtained by considering the kinetic diagram of a 
section of the cable and sign (Figure E9.6-2). In keeping with earlier discussions, we 
assume that the axial acceleration of the system is negligible. Further-
more, ( )m L x− �m  and hence p = mg is negligible. We thus have that 
 
  N g= m  (a) 
 
Substitution of Eq. (a) into Eq. (9.79) gives the stiffness operator as 
 

   
2

2g
x

∂= −
∂

mk  (b) 

 
Equation (9.74), or equivalently Eq. (9.81), gives the explicit form of the equation of 
motion as 

 
2 2

2 2 0w wm g
t x

∂ ∂− =
∂ ∂

m  (c) 

 
For both case (i) and case (ii), the boundary condition at the fixed support at x = 0 is  
 
 (0, ) 0w t =  (d) 
 
The boundary condition at the end of the chain that is attached to the sign depends on 
the restraints on the sign.  
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Case (i): 
For this case the sign cannot move laterally. Hence, the boundary condition for the 
string is 
 ( , ) 0w L t =  (e-i) 
 
Case (ii): 
In this case, the sign is free to move laterally. The corresponding boundary condition 
is thus  

 0    0
x L x L

w wg
x x= =

∂ ∂= � =
∂ ∂

m  (e-ii) 

 
Therefore, for small motions the sign may swing laterally, but any rotation of the 
sign is neglected. 

 
 
 
 

9.6  TRANSVERSE MOTION OF ELASTIC BEAMS 

Long thin structural elements that are primarily excited by end moments and/or transverse 
loading are encountered in many practical situations. Unlike strings and cables, such bodies 
possess substantial resistance to bending and are utilized for this purpose. These objects are 
referred to as beams and their mathematically one-dimensional representations are referred 
to as beam theories. In this section we develop and discuss several fundamental beam theo-
ries often employed in linear vibration analysis. The section also includes discussions of 
geometrically nonlinear beam theory and translating beams. We begin with an account of 
the basic geometrical assumptions and material relations.  
 

9.6.1  Kinematical and Constitutive Relations 

A beam theory is a mathematically one-dimensional representation of a long and thin three-
dimensional body that undergoes flexure. Such a theory is developed by exploiting the fact 
that the thickness and width of the beam are small compared with the overall length of the 
beam. Standard theories incorporate a linear variation of the strain and stress through the 
thickness that is strictly true for pure bending (i.e., when the structure is subjected to stress 
distributions applied at its edges that are statically equivalent to only a moment). The beam 
theory similarly incorporates the assumption that the variations of the stress, strain and dis-
placement through the width of the beam are negligible. Such theories have been quite suc-
cessful in predicting the behavior of these structures for many other loading conditions, 
when the stresses acting on surfaces with normals perpendicular to the axis of the beam are 
small compared with the stresses acting on the cross sections of the beam. With the varia-
tion through the thickness and width assumed apriori, the problem is reduced to finding the 
deflection of the neutral axis of the beam and is thus transformed into a mathematically 
one-dimensional boundary value problem as discussed in what follows.  
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       Figure 9.10  Kinematical measures of the motion of a beam. 

 
 
 Consider an elastic beam, and let the x-axis coincide with the centroid of the beam in 
the rest configuration, as shown in Figure 9.101. In addition, let the z-axis originate at the x-
axis, and run perpendicular to it in the thickness direction. Let ( , , )xu x z t  and ( , , )zu x z t re-
spectively correspond to the axial and transverse displacements of the material particle orig-
inally located at the indicated coordinates. Further, let u(x,t) and w(x,t) represent the cor-
responding displacements of the material particles on the neutral surface z = 0. We next 
assume the kinematical relations attributed to Kirchhoff, 
 
 ( , , ) ( , ) ( , )xu x z t u x t z x tϕ= −  (9.82) 
 
 ( , , ) ( , )zu x z t w x t≅  (9.83) 
 
where ( , )x tϕ represents the in-plane rotation of the cross section of the beam originally 
located at coordinate x (Figure 9.102). An analogous relation between the infinitesimal axial 
strain ( , , ) ,xx x z tε  where 
 

 ( , , ) x
xx

u
x z t

x
ε ∂=

∂
 (9.84) 

 
and its counterpart at the neutral surface 
 

 ( , ) ux t
x

ε ∂=
∂

 (9.85) 

 
is found by substituting Eq. (9.82) into Eq. (9.84). This gives the strain distribution  
 
 ( , , ) ( , ) ( , )xx x z t x t z x tε ε κ= −  (9.86) 
where 

 ( , )x t
x
ϕκ ∂=

∂
 (9.87) 
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is the curvature of the neutral axis of the beam at the point originally located at coordinate 
x. (In the future, we shall simply say the displacement, strain, curvature, etc., “at x,” with 
the interpretation being taken to mean at the point originally located at coordinate x.)  
 With the basic kinematical assumptions established we next introduce alternate 
measures of the internal stress distribution. Based on the Kirchhoff assumptions, we implic-
itly neglect the Poisson effect in the beam. The axial stress, ,( , , )xx x z tσ σ=  is therefore 
related to the strain by the one-dimensional statement of Hooke’s Law, 
 
 ( , , ) ( ) ( , , )xxx z t E x x z tσ ε=  (9.88) 
 
Since we wish to construct a mathematically one-dimensional theory, we shall express the 
stress distribution acting on a cross section by statically equivalent forces and moments. In 
this regard, the normal stress distribution acting on a cross section is statically equivalent to 
a resultant normal force and moment, while the associated shear stress distribution is stati-
cally equivalent to a resultant transverse shear force. The resultant membrane (axial) force, 
N(x,t), acting on the cross section at x is found by integrating the axial stress over the area 
of the cross section. Hence, 
 

 ( , ) ( , , )
A

N x t x z t dAσ= ³  (9.89) 

 
Substituting Eq. (9.86) and (9.88) into Eq. (9.89) gives 
 

 ( , ) ( ) ( , , ) ( ) ( , ) ( ) ( , )xx
A A A

N x t E x x z t dA E x x t dA E x x t z dAε ε κ= = −³ ³ ³  

 
Recall that z originates at the x-axis, the area centroid. Therefore, by definition of the area 
centroid,  

 
( )

0
A x

z dA =³  (9.90) 

 
The resultant membrane force is thus given by the constitutive relation 

 ( , ) ( , ) uN x t EA x t EA
x

ε ∂= =
∂

 (9.91) 

 
The resultant moment produced by the axial stress field about an axis that passes through 
the centroidal axis and is perpendicular to it is obtained by taking the moment of each indi-
vidual differential force, σ dA, and summing all such moments. The resultant moment, re-
ferred to as the bending moment, acting on cross section x is then 
 

 ( , ) ( , , )
A

M x t x z t z dAσ= ³  (9.92) 

 
Substituting Eqs. (9.86) and (9.88) into Eq. (9.92) gives the relation 
 

 2( , ) ( ) ( , ) ( ) ( , )
A A

M x t E x x t z dA E x x t z dAε κ= −³ ³  
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Substituting Eq. (9.90) into the above expression gives the bending moment about the axis 
perpendicular to the neutral axis as 
 
 ( , ) ( , )M x t EI x tκ= −  (9.93) 
where 

 2

( )
( )

A x
I I x z dA= ≡ ³  (9.94) 

 
The resultant shear force, Q(x,t), on cross section x is simply 
 

 
( )

( , ) ( , , )
A x

Q x t x z t dAτ= ³  (9.95) 

 
where τ (x,z,t) is the transverse shear stress acting on that cross section. With the kinemati-
cal assumptions and force measures introduced in this section, the description of the beam 
is given in terms of the displacements and strains of the centroidal surface and the resultant 
forces and moments at a cross section, all of which are functions of one spatial variable and 
time. We now derive the equations of motion in terms of these variables.  
  

 9.6.2 Kinetics 

Consider a beam that is loaded by both normal and shear stresses over its upper and lower 
surfaces. In keeping with the resultant internal forces and moments discussed in the previ-
ous section, the external forces may be expressed as distributed transverse loads and dis-
tributed (body) couples, the latter taken about axes that go through the neutral surface and 
are perpendicular to the xz-plane (i.e., that are parallel to the y-axis). The distributed trans-
verse forces, q(x,t), may be considered to be the sum of any body forces acting in the 
transverse direction and the difference (jump) in the normal stresses applied on the outer 
surfaces, while the body couples, b(x,t), may be considered as the moments about axes 
parallel to the y-axis of the shear stresses acting on the outer surfaces of the beam plus any 
intrinsic body couples (see Figure 9.11). To derive the equations of motion for the beam let 
us consider a generic differential element of length dx. The corresponding kinetic diagram 
is expressed in terms of the displacement and force parameters defined in the previous sec-
tion and is depicted in Figure 9.12. We consider both translation in the transverse direction 
and rotation of the element. Since the bending stiffness for beams is finite, as is the re-
sistance to shear, the corresponding rotations and distortions are relatively small. Because 
of this, the projection of the membrane force in the transverse direction is generally much 
smaller than the resultant transverse shear and is neglected in elementary (linear) beam the-
ory. Recall that the reverse was true for strings and cables. The reader should be aware, 
however, that such terms must be retained in situations where the coupling of axial and 
transverse motions is important, such as for predicting dynamic, as well as static, buckling. 
For the present theories, the statement of Newton’s Second Law in the transverse direction 
may be written directly from the kinetic diagram as  
 

 
2

2( , ) ( , ) ( , ) ( )Q wq x t dx Q x t dx Q x t m x dx
x t

∂ ∂ª º+ + − =« »∂ ∂¬ ¼
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             Figure 9.11  Beam with distributed transverse force and body couples. 
 
 
 
which reduces to 

 
2

2( , ) ( )Q wq x t m x
x t

∂ ∂+ =
∂ ∂

 (9.96) 

 
The pertinent statement of Eq. (1.162) about an axis through the center of the element fol-
lows from the kinetic diagram (Figure 9.12) as well. Hence, assuming the right-hand rule, 
 

 
2

2( , ) ( , ) ( , ) ( , ) ( , ) ( )
2 2

M Q dx dxx t dx M x t dx M x t Q x t dx Q x t I x dx
x x tρ

ϕ∂ ∂ ∂ª º ª º− + + + + + =« » « »∂ ∂ ∂¬ ¼ ¬ ¼
b  

 
which, neglecting terms of O(dx)2, reduces to 
 

 
2

2( , ) ( ) ( , )MQ x t I x x t
x tρ

ϕ∂ ∂= + −
∂ ∂

b  (9.97) 

 
where 
 ( ) ( ) ( )I x x I xρ ρ=  (9.98) 
 
is typically referred to as the rotatory inertia of the beam and corresponds to the mass mo-
ment of inertia of the element per unit length about an axis perpendicular to the neutral axis. 
Substitution of Eq. (9.97) into Eq. (9.96), and incorporating Eqs. (9.87) and (9.93), elimi-
nates the internal forces and moments and results in the single equation 
 
 

 
   Figure 9.12  Kinetic diagram for beam element. 
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2 2 2

2 2 2( , ) ( ) wq x t EI m x I
x x xx t tρ

ϕ ϕ∂ ∂ ∂ ∂ ∂ ∂− − = −
∂ ∂ ∂∂ ∂ ∂

b  (9.99) 

 
expressed in terms of the transverse displacement, w, and in-plane rotation, ϕ. The particu-
lar form of this equation depends upon further kinematical assumptions. 
 
 

9.6.3  Euler-Bernoulli Beam Theory 

The simplest and most common beam theory is that attributed to Euler and Bernoulli. For 
this model the assumptions and developments of Sections 9.6.1 and 9.6.2 are incorporated, 
with the exception that the rotatory inertia is not taken into account. That is, the effects of 
the rotatory inertia are neglected compared with those of the linear inertia (the mass per unit 
length). This omission, in effect, treats the mass distribution as if it is concentrated along 
the neutral axis of the beam. The deformations associated with transverse shear are not in-
cluded as well. These assumptions are reasonable provided that the beam is thin and, for 
vibratory behavior, that the effective wave lengths of the individual modes are sufficiently 
large compared with the thickness.  

Kinematics and the Equation of Motion 
For small and smooth deflections, the angle of rotation (the tangent angle) of the neutral 
axis may be approximated by the tangent itself (the small angle approximation). We thus 
have that 

 ( , ) wx t
x

ϕ ∂≅
∂

 (9.100) 

from which it follows that 

 
2

2( , ) wx t
x x
ϕκ ∂ ∂= ≅

∂ ∂
 (9.101) 

 
2

2( , ) ( , ) wM x t EI x t EI
x

κ ∂= − ≅ −
∂

 (9.102) 

and 

 
2 2 2

2 2 2

w w
x xt t t

ϕ∂ ∂ ∂ ∂ ∂≅ =
∂ ∂∂ ∂ ∂

 (9.103) 

 
Substituting Eqs. (9.100)–(9.103) into Eq. (9.99), and setting Iρ = 0 gives the equation of 
motion for Euler-Bernoulli beams,  
 

 
2 2 2

2 2 2( ) ( ) ( , )b
wm x k x w q x t

xt x x
∂ ∂ ∂ ∂+ = −

∂∂ ∂ ∂
b  (9.104) 

where 
 ( ) ( ) ( )bk x E x I x=  (9.105) 
 
is the bending stiffness of the beam. It may be seen that the governing equation is expressed 
solely in terms of the transverse displacement, the external distributed load and the proper-
ties of the beam. Equation (9.104) is known as the Euler-Bernoulli beam equation. 
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Boundary and Initial Conditions 
The equation of motion is seen to be a fourth order partial differential equation in space and 
second order in time. A solution will therefore require the specification of four boundary 
conditions and two initial conditions.  
 For the boundary conditions, we must specify one term from the work of transverse 
translational motion and one term from the work of rotational motion at two points on the 
beam. That is, we must specify one term from each of the work functionals /Q = Qw and 
/M = Mϕ. The boundary conditions at the left end of a beam of length L are thus 
 

 
2

0 02
0

(0, ) ( )    or    (0, ) ( )
x

wQ t EI t w t t
x x =

ª º∂ ∂= − + = =« »∂ ∂¬ ¼
Q hb  (9.106) 

 

 
2

0 02
00

(0, ) ( )    or    ( )
xx

w wM t EI t t
xx ==

∂ ∂= − = =
∂∂

M f  (9.107) 

 
where Q0(t) or h0(t), and M0(t) or f0(t) are prescribed functions. Similarly, the boundary 
conditions at the right end of the beam are 
 

 
2

2( , ) ( )    or    ( , ) ( )L L
x L

wQ L t EI t w L t t
x x =

ª º∂ ∂= − + = =« »∂ ∂¬ ¼
Q hb  (9.108) 

 

 
2

2( , ) ( )    or    ( )L L
x Lx L

w wM L t EI t t
xx ==

∂ ∂= − = =
∂∂

M f  (9.109) 

 
where QL(t) or hL(t), and ML(t) or fL(t) are prescribed functions. 
 In addition to the boundary conditions, the initial transverse displacement and trans-
verse velocity of each point in the beam must be specified. The initial conditions therefore 
take the form 
 
 0( ,0) ( )w x w x=  (9.110) 
and 

 0
0

( )
t

w v x
t =

∂ =
∂

 (9.111) 

 
where w0(x) and v0(x) are prescribed functions that describe the initial state of the beam. 
Note that when the initial transverse displacement, w0(x), is specified for each point on the 
beam then the initial rotation, w0'(x), of each point is specified as well. Similarly, when the 
initial transverse velocity, v0(x), is specified for each point on the beam then the initial an-
gular velocity, v0'(x), of each point is also specified. 
 

Mass and Stiffness Operators 
The equation of transverse motion for Euler-Bernoulli beams can be written in compact 
form by introducing the stiffness and mass operators, k and m respectively, as follows 
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2 2

2 2( )bk x
x x

∂ ∂=
∂ ∂

k  (9.112) 

 
 ( )m x=m  (9.113) 
 
Incorporating the above operators into Eq. (9.104) renders the equation of transverse mo-
tion for Euler-Bernoulli beams to the familiar form 
 

 
2

2 ( , )w w q x t
xt

∂ ∂+ = −
∂∂

m k
b  (9.114) 

 
 

Example 9.7 
State the boundary conditions for a cantilever beam that is fixed at its left end, as 
shown in Figure E9.7, if the beam is modeled using Euler-Bernoulli theory.  
 

   Figure E9.7 
 
Solution 
The left end of the beam is fixed with regard to both translation and rotation. There-
fore, the corresponding boundary conditions at the support are 
 

 
0

(0, ) 0    and    0
x

ww t
x =

∂= =
∂

 (a-1,2) 

 
Since the right end of the beam is unsupported and no external load acts on that 
edge, the exposed cross section is stress free. It follows that the bending moment and 
resultant transverse shear force both vanish on this surface. The boundary conditions 
at the right end of the beam are therefore 
 

 
2 2

2 20    and    0
x L x L

w wEI EI
xx x= =

∂ ∂ ∂− = − =
∂∂ ∂

 (b-1,2) 
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Example 9.8 
The beam shown in Figure E9.8 is pinned at its left end and is embedded in an elas-
tic wall of rotational stiffness kϕ and translational stiffness kw. Deduce the boundary 
conditions for the beam if it is modeled using Euler-Bernoulli beam theory.  

   Figure E9.8 
Solution 
The support at the left edge is such that the beam is free to rotate about an axis 
through that point, but it cannot translate in the transverse direction. The correspond-
ing boundary conditions are thus 
 

 
2

2
0

0    and    (0, ) 0
x

wEI w t
x =

∂− = =
∂

 (a-1,2) 

 
The elastic wall exerts a restoring moment and restoring force on the right end of the 
beam. The latter is in the form of a transverse shear force. Therefore, the correspond-
ing boundary conditions are 
 

 
2

2 ( , )
x L

w wEI k L t
xx ϕ

=

∂ ∂− =
∂∂

 (b-1) 

and 

 
2

2 ( , )w
x L

wEI k w L t
x x =

∂ ∂− = −
∂ ∂

 (b-2) 

 
 
 

Example 9.9 
State the boundary conditions for the problem 
of flexural motion of a uniform beam support-
ing a small block of mass m at its edge if the 
support undergoes the prescribed lateral motion 
indicated. The dimensions of the block and the 
weight of the beam may be neglected.  
 
       Figure E9.9-1 
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Solution 
The boundary conditions at the support follow directly as 
 

 0
0

(0, ) sin     and    0
x

ww t t
x =

∂= ∆ Ω =
∂

 (a-1, 2) 

 
Since the dimensions of the block may be neglected, the moment of inertia of the 
block is neglected as well. The edge of the beam is thus free to rotate. Hence, 
 

 
2

2 0
x L

wEI
x =

∂− =
∂

 (b-1) 

 
The last boundary condition follows directly from the kinetic diagram of the sup-
ported mass (Figure E9.9-2) and gives 
 

 
3 2

3 2( , )
x L x L

w wQ L t EI
x t= =

∂ ∂− = =
∂ ∂

m  (b-2) 

 
 
    

 
   Figure E9.9-2  Kinetic diagram of supported mass. 

 
 
 

9.6.4  Rayleigh Beam Theory 

We next study the beam theory attributed to J. W. S. Rayleigh. This model incorporates the 
rotatory inertia into the model already established for the Euler-Bernoulli beam theory.  

Equation of Motion 
To derive the equation of motion for Rayleigh beams, we parallel the development of the 
previous section but now include the effects of rotatory inertia. Substituting Eqs. (9.100)–
(9.103) into Eq. (9.99) and retaining the rotatory inertia gives the equation of motion for 
Rayleigh Beams as 
 

 
2 2 2 2

2 2 2 2( ) ( ) ( ) ( , )b
w wm x I x k x w q x t

x x xt t x xρ
∂ ∂ ∂ ∂ ∂ ∂ ∂− + = −

∂ ∂ ∂∂ ∂ ∂ ∂
b  (9.115)  
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Boundary and Initial Conditions 
The equation of transverse motion for Rayleigh beams is a fourth order partial differential 
equation in space and second order in time. Therefore, as for Euler-Bernoulli beams, we 
must specify one term from the work of transverse translational motion and one term from 
the work of rotational motion at two points on the beam. That is, we must specify one term 
of each of the work functionals /Q = Qw and /M = Mϕ. For Rayleigh beams, however, we 
must be careful to account for the rotatory inertia in these conditions. Specifically, the rota-
tory inertia enters the condition for transverse shear through Eq. (9.97). The remaining con-
ditions are the same as for Euler-Bernoulli beams. Hence, the boundary conditions for a 
Rayleigh beam of length L are, at the left end of the beam, 
 

         
2 3

0 02 2
0

(0, ) ( )    or    (0, ) ( )
x

w wQ t EI I t w t t
x x t xρ

=

ª º∂ ∂ ∂= − − + = =« »∂ ∂ ∂ ∂¬ ¼
Q hb  (9.116) 

 

 
2

0 02
00

(0, ) ( )    or    ( )
xx

w wM t EI t t
xx ==

∂ ∂= − = =
∂∂

M f  (9.117) 

 
and, at the right end of the beam, 
 

        
2 3

2 2( , ) ( )    or    ( , ) ( )L L
x L

w wQ L t EI I t w L t t
x x t xρ

=

ª º∂ ∂ ∂= − − + = =« »∂ ∂ ∂ ∂¬ ¼
Q hb  (9.118) 

 

 
2

2( , ) ( )    or    ( )L L
x Lx L

w wM L t EI t t
xx ==

∂ ∂= − = =
∂∂

M f  (9.119) 

 
where Q0(t) or h0(t), M0(t) or f0(t), QL(t) or hL(t), and ML(t) or fL(t) are prescribed functions. 
 The initial conditions are of the form 
 
 0( ,0) ( )w x w x=  (9.120) 
and 

 0
0

( )
t

w v x
t =

∂ =
∂

 (9.121) 

 
where w0(x) and v0(x) are prescribed functions that describe the initial state of the beam. As 
for Euler-Bernoulli Beams, when these two functions are specified, the initial rotations and 
rotation rates are specified as well. 

Mass and Stiffness Operators 
The equations of transverse motion for Rayleigh beams can be written in compact form by 
introducing the stiffness and mass operators, k and m respectively, as follows; 
 

 
2 2

2 2( )bk x
x x

∂ ∂=
∂ ∂

k  (9.122) 
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 ( ) ( )m x I x
x xρ

∂ ∂= −
∂ ∂

m  (9.123) 

 
Incorporating the above operators in Eq. (9.115) renders the equation of transverse motion 
for Rayleigh beams to the familiar form 
 

 
2

2 ( , )w w q x t
xt

∂ ∂+ = −
∂∂

m k
b  (9.124) 

 

Example 9.10 
Deduce the boundary conditions for the beam of Example 9.9 if it has local mass 
moment of inertia Iρ and is modeled using Rayleigh beam theory. 
 
Solution 
The boundary conditions for displacement and moment are the same as for Euler-
Bernoulli theory. The first three conditions, Eqs. (a-1), (a-2) and (b-1), established in 
Example 9.9 hold for the present model as well. The condition for transverse shear 
does, however, differ. The last boundary condition of Example 9.9, Eq. (b-2), is re-
placed by the condition 
 

 
3 3 2

3 2 2( , )
x L x L

w w wQ L t EI I
x t x tρ

= =

ª º∂ ∂ ∂− = − =« »∂ ∂ ∂ ∂¬ ¼
m  � (b-2)  

 
 

 
 The beam theories presented herein are predicated on the assumption that the thick-
ness deformations are negligible. The transverse deflections therefore arise from the rota-
tions of the cross sections. In the next section we consider modifications of the current 
beam theory to include a measure of deformation due to transverse shear. 
 
 

9.6.5 Timoshenko Beam Theory 

The beam theories discussed in Sections 9.6.3 and 9.6.4 are very successful at predicting 
the flexural behavior of structures whose thicknesses are very small compared with their 
lengths. From a vibrations perspective, such beam theories yield satisfactory results for 
situations where the wave lengths of the deformation are relatively large compared with the 
thickness of the beam. For shorter beams, or for situations where we are interested in vibra-
tions whose wavelengths are not so restricted, a modified beam theory is needed. Alterna-
tively, or if the behavior of interest was such that the thickness vibrations and associated 
behavior is pertinent, we would investigate the problem from the much more complex two 
or three-dimensional elastodynamics point of view. We here present the former approach, 
and include the effects of transverse shear as a correction to classical beam theory con-
sistent with the desired mathematically one-dimensional representations discussed to this 
point. 
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         Figure 9.13  Transverse shear stress distribution on cross sections of beam element. 
 
 
 Both the Euler-Bernoulli and the Rayleigh beam theories discussed in Sections 9.6.3 
and 9.6.4, respectively, each neglect the contribution of shear deformation. This may be 
seen by substituting Eqs. (9.82) and (9.83) into Eq. (9.39), which yields vanishing angle of 
distortion, identically. This omission is satisfactory provided the ratio of the flexural wave 
length to the thickness of the vibrating structure is sufficiently large. (For static problems 
the critical ratio is less acute and corresponds to the ratio of the overall length of the beam 
to its thickness.) Typically, the shear stresses and transverse normal stresses in the struc-
tures of interest are much smaller than the axial normal stress, which justifies the basic as-
sumptions of the elementary beam theories. However, a static analysis of a cantilever beam 
of rectangular cross section shows that the maximum value of the average shear stress act-
ing on a cross section becomes the same order of magnitude as the corresponding maxi-
mum normal stress when the length to thickness ratio is less than about three.  On this basis, 
we anticipate that shear deformation will become important in vibration problems for which 
the wave length is correspondly small as well. The following theory adds a correction for 
shear deformation to the basic beam theories discussed to this point. 
 

Correction for Transverse Shear 
Let us consider the transverse shear stress, σxz = τ (x,z,t), acting on a cross section, and the 
associated shear strain, εxz(x,z,t), where 
 
    ( , , ) ( , , ) 2xz xzx z t x z tε γ=   (9.125) 
 
and ( , , )xz x z tγ  represents the corresponding angle change (shear distortion) as discussed in 
Section 9.2.2. Hooke’s Law for shear then gives the relation 
 
 ( , , ) 2 ( ) ( , , ) ( ) ( , , )xz xzx z t G x x z t G x x z tτ ε γ= =  (9.126) 
 
where G(x) is the shear modulus of the elastic material that comprises the beam. The shear 
stress acting on a cross section of a beam will generally vary through the thickness, as sug-
gested by the partial kinetic diagram for the beam element shown in Figure 9.13. It follows 
that the associated shear distortion will be nonuniform over a cross section as well. Never-
theless, since a beam theory is a mathematically one-dimensional representation of a three-
dimensional body, we shall represent the effects of shear distortion by a single “shear an-
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gle” associated with transverse shear for a given cross section. We thus define the shear 
angle for a beam as 
 

 
( )

1( , ) ( , , )
( ) xz

A x
x t x z t dA

A x
γ γ= ³k

 (9.127) 

  
where k is a “shape factor” that depends on the geometry of the cross section and is some-
times referred to as the Timoshenko shear coefficient. Specific values of the shape factor 
may be determined, for example, by matching results predicted by the above beam theory 
with results predicted by an “exact” three-dimensional elastodynamics analysis, or deduced 
from a static elasticity solution, or measured from experiments.1 The shear angle defined 
above is seen to correspond to a weighted average of the shear strain over the cross section. 
 To incorporate the above shear description into a mathematically one-dimensional 
theory we express the shear stress, τ,  distribution acting on the cross section in terms of the 
corresponding resultant transverse shear force, Q, and the shape factor, k . Substitution of 
Eqs. (9.126) and (9.127) into Eq. (9.95) results in the constitutive relation 
 
 ( , ) ( ) ( , )sQ x t k x x tγ=  (9.128) 
where 
 ( ) ( ) ( )sk x A x G x= k  (9.129) 
 
is the shear stiffness of the beam. With the introduction of the shear deformation described 
above, the total angle of rotation, ψ, of the centroidal axis is now comprised of that due to 
bending, ϕ, and that due to shear, γ (Figure 9.14). Hence, 
 

 ( , ) ( , ) ( , ) wx t x t x t
x

ϕ γ ψ ∂+ = ≅
∂

 (9.130) 

 
Substitution of Eq. (9.130) into Eq. (9.128) gives the useful identity 
 

 ( , )( , ) ( , )
( )s

w Q x tx t x t
x k x

γ ϕ∂= − =
∂

 (9.131) 

 
Substitution of Eqs. (9.130) and (9.131) into Eq. (9.93) gives the constitutive relation 
 

 
2

2( , ) ( , )
s

w w QM x t EI x t EI
x x x kx

γ
ª º∂ ∂ ∂ ∂ª º= − − = − −« »« »∂ ∂ ∂∂¬ ¼ ¬ ¼

 (9.132) 

                                                           
1 If γ is interpreted as the shear angle at z = 0, Eq. (9.127) yields k =2/3 (which is what Timoshenko 

originally assumed) for a rectangular cross section with a parabolic shear distribution. Alternatively, 
if the work of the average shear stress inducing γ is matched with the corresponding strain energy, it 
can be shown that k  = 5/6 and 9/10 for rectangular and circular cross sections, respectively. Many 
formulae have been developed for k  by numerous investigators, for these and other cross section 
shapes. Timoshenko inferred that k = (5+5ν)/(6+5ν) and k = (6+12ν+6ν2)/(7+12ν+4ν2) for rec-
tangular and circular cross sections, respectively, by comparison with elastodynamic results for long 
wave length Rayleigh waves. Various relations have since been developed by many others. 
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 Figure 9.14  Rotation of element due to transverse shear and bending. 
 
 
 
The constitutive relation for the membrane force for the present case remains the same as 
for the beam theories discussed previously, and is given by Eq. (9.91). With the kinematical 
and constitutive relations established, we proceed to derive the equations of motion. 
 

Governing Equations, Boundary Conditions and Initial Conditions 
Substitution of Eqs. (9.128), (9.131) and (9.132) into Eqs. (9.96) and (9.97) gives the equa-
tions of motion 
 

 
2

2( ) ( ) ( , ) ( , )s
w wm x k x x t q x t

x xt
ϕª º∂ ∂ ∂ ½− − =® ¾« »∂ ∂∂ ¯ ¿¬ ¼

 (9.133) 

 

 
2

2 ( ) ( , ) ( , )s
wI k x x t EI x t
x x xtρ

ϕ ϕϕ∂ ∂ ∂ ∂ ½− − − =® ¾∂ ∂ ∂∂ ¯ ¿
b  (9.134) 

 
The above equations can be written in operator/matrix form as follows 
 

 
2

2t
∂ + =
∂

um ku F  (9.135) 

where 

 
0

0
m

Iρ

ª º
= « »
¬ ¼

m  (9.136) 

 

 
s s

s s

k k
x x x

k k EI
x x x

∂ ∂ ∂ª º−« »∂ ∂ ∂= « »
∂ ∂ ∂« »− −« »∂ ∂ ∂¬ ¼

k  (9.137) 

 

 
( , )
( , )

w x t
x tϕ

 ½= ® ¾
¯ ¿

u  (9.138) 

and 
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( , )
( , )

q x t
x t

 ½= ® ¾
¯ ¿

F
b

 (9.139) 

 
Beams whose descriptions include both the shear correction and rotatory inertia are referred 
to as Timoshenko beams. Beams whose descriptions include the shear correction but neglect 
the rotatory inertia are generally referred to as shear beams.  
 By incorporating the shear angle into the mathematical model, we have added an 
additional degree of freedom at each cross section. Consequently, the governing equations, 
Eqs. (9.133) and (9.134), are seen to be coupled second order partial differential equations 
of two dependent variables, the transverse displacement w and the bending rotation (of the 
cross section) ϕ. The associated boundary conditions follow from the work of rotation and 
the work of transverse translation as discussed for the elementary beam theories. For the 
present beam theory, the boundary conditions take the general forms 
 

 0 0
0

(0, ) ( )    or    (0, ) ( )
x

M t EI t t t
x
ϕ ϕ

=

∂= − = =
∂

M f  (9.140) 

 

 0 0
0

(0, ) ( )    or    (0, ) ( )s
x

wQ t k t w t t
x

ϕ
=

∂ª º= − = =« »∂¬ ¼
Q h  (9.141) 

 

 ( , ) ( )    or    ( , ) ( )L L
x L

M L t EI t L t t
x
ϕ ϕ

=

∂= − = =
∂

M f  (9.142) 

 

 ( , ) ( )    or    ( , ) ( )s L L
x L

wQ L t k t w L t t
x

ϕ
=

∂ª º= − = =« »∂¬ ¼
Q h  (9.143) 

 
where M0(t) or f0(t), Q0(t) or h0(t), ML(t) or fL(t), and QL(t) or hL(t) are prescribed functions.  
 Since the governing equations are both second order in time, and since we now have 
two dependent variables, we must independently specify two initial conditions for each 
variable. In particular, we must specify the initial transverse displacement and velocity for 
each particle on the centroidal surface and the initial rotation and rate of rotation of each 
cross section. The initial conditions thus take the general forms 
 

 0 0
0

( ,0) ( ) ,    ( )
t

ww x w x v x
t =

∂= =
∂

 (9.144) 

 

 0 0
0

( ,0) ( ) ,    ( )
t

x x x
t
ϕϕ ϕ χ

=

∂= =
∂

 (9.145) 

 
where 0 0 0 0( ),  ( ),  ( ) and ( )w x v x x xϕ χ are prescribed functions. 
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Example 9.11 
Deduce the boundary conditions for the beam of Example 9.8 if it has local mass 
moment of inertia Iρ , shape factor k , and is modeled using Timoshenko beam theo-
ry. 
 
Solution 
To determine the appropriate  boundary conditions, we parallel the discussion of the 
beam of Example 9.8, but now apply Eqs. (9.140)–(9.143). Doing this gives the 
boundary conditions at the left end of the beam as 
 

 
0

0    and    (0,t)=0
x

EI w
x
ϕ

=

∂− =
∂

 (a-1,2) 

 
Similarly, the boundary conditions at the elastic wall are then 
 

 ( , )
x L

EI k L t
x ϕ
ϕ ϕ

=

∂− =
∂

 (b-1) 

and 

 ( , )w
x L

wAG k w L t
x

ϕ
=

∂ª º− = −« »∂¬ ¼
k  (b-2) 

 
 
 

Uniform Beams 
The coupled equations of motion, Eqs. (9.133) and (9.134), or the equivalent matrix form, 
Eq. (9.135), correspond to the fundamental description for Timoshenko beams. It is readily 
solved for uniform beams, and it is this form that will be employed in the remainder of this 
text. The governing equations can, however, be simplified to a single equation. We there-
fore present the following development for completeness.  
 For beams whose material properties are constant, the equations of motion, Eqs. 
(9.133) and (9.134), can be consolidated and simplified to some degree. Toward this end, 
for b = 0, let us first substitute Eq. (9.134) into Eq. (9.133) to get  
 

 
2 2 2

2 2 2( ) ( , )wm x I EI q x t
x xt t xρ

ϕ ϕ§ ·∂ ∂ ∂ ∂ ∂§ ·− + =¨ ¸ ¨ ¸∂ ∂∂ ∂ ∂ © ¹© ¹
 (9.146) 

 
which may replace either equation in the general formulation. Next, for uniform beams 
(beams whose material properties are independent of x), Eq. (9.146) may be rewritten in the 
form 
 

 
2 2 2

2 2 2 ( , )wm EI I q x t
xt x tρ
ϕ§ ·∂ ∂ ∂ ∂+ − =¨ ¸ ∂∂ ∂ ∂© ¹

 (9.147) 
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Solving Eq. (9.133) for xϕ∂ ∂  gives  
 

 
2 2

2 2

( , )

s s

q x t w m w
x k kx t
ϕ∂ ∂ ∂= + −

∂ ∂ ∂
 (9.148) 

 
Substituting Eq. (9.148) into Eq. (9.147) gives a single equation of motion in terms of the 
transverse deflection. Hence, 
 

 
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2( , )
s s s s

I m Iw w mEI w w q EI qm I EI q x t
k k k kt t t x t x x t x
ρ ρ

ρ
§ ·∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − + + = + −¨ ¸∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂© ¹

 

  (9.149) 
 
Equation (9.149) is often referred to as the Timoshenko Beam Equation. Once this equation 
is solved and w(x,t) is determined, the resulting function can be substituted into Eq. (9.148) 
and integrated to give the corresponding rotations due to bending. The bending moments 
and shear forces can then be calculated using previously defined formulae. 
 The Timoshenko Beam Equation, Eq. (9.149), is written in operator form as  
 

 
2

2 ( , )w w F x t
t

∂ + =
∂

m k  (9.150) 

where 

 
2 2

2 2
s s

mImEIm I
k kx t

ρ
ρ

§ · ∂ ∂= − + +¨ ¸ ∂ ∂© ¹
m  (9.151) 

 

 
4

4EI
x

∂=
∂

k  (9.152) 

and 

 
2 2

2 2( , ) ( , )
s s

I q EI qF x t q x t
k kt x

ρ ∂ ∂= + −
∂ ∂

 (9.153) 

 
 
As discussed earlier, the coupled equations presented in matrix form correspond to the fun-
damental description for Timoshenko beams and is readily solved for uniform systems. The 
reduced form for uniform systems discussed above allows an alternate approach and is pre-
sented here for completeness.  
 
 

9.7 GEOMETRICALLY NONLINEAR BEAM THEORY 

In many situations, the coupling between the transverse motion and axial motion of a beam 
is important. This may occur in problems of static or dynamic buckling, or simply when the 
rotations of the beam’s axis are sufficiently large as described in Section 9.2. Thin straight 
structures that carry compressive axial loads as well as transverse loads are referred to as 
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beam-columns. For problems of this nature, the linear beam theories discussed in Sections 
9.6.3–9.6.5 are inadequate. In fact, linear beam theory cannot predict buckling behavior at 
all. We must therefore construct, or extend the beam theories discussed in prior sections to 
include the effects of geometric nonlinearities. For simplicity, compactness, and utility, we 
shall neglect the effects of shear deformation and rotatory inertia. Those effects may be 
added on directly if desired. 
 To derive the geometrically nonlinear beam theory we must incorporate the strain-
displacement relation for moderate rotations, Eq. (9.36), into our development. We next 
parallel the development presented in Section 9.6.1, proceeding exactly as we did for linear 
beam theory. Everything then follows identically as in Section 9.6.1, with the exception that 
the constitutive relation for the membrane force given by Eq. (9.91) is now replaced by the 
constitutive relation 
 

 
21( , ) ( , )

2
u wN x t EA x t EA
x x

ε
ª º∂ ∂§ ·= = +« »¨ ¸∂ ∂© ¹« »¬ ¼

 (9.154) 

 
We next derive the equations of motion for the beam based on the kinetic diagram for a 
generic beam element shown in Figure 9.11. To derive the equation of transverse motion, 
we parallel the corresponding development in Sections 9.6.2 and 9.6.3. However, for the 
present case, we include the projections of the membrane force in the transverse direction as 
was done for strings and cables in Section 9.5. This is necessarily consistent with Eq. 
(9.154). Adding the contribution of the membrane force to the equation of transverse mo-
tion, Eq. (9.96), and to the equation of rotational motion, Eq. (9.97), respectively gives the 
relations 

 
2

2( , ) ( , ) ( )w Q wq x t p x t m x
x x t

∂ ∂ ∂+ + =
∂ ∂ ∂

 (9.155) 

 

 ( , ) M wQ x t N
x x

∂ ∂= +
∂ ∂

 (9.156) 

 
Substituting Eqs. (9.102) and (9.156) into Eq. (9.155) and paralleling the rest of the devel-
opment of Section 9.6.2 gives the equation of transverse motion for the structure as 
 

 
2 2 2 2

2 2 2 2( ) ( ) ( , ) ( , ) ( , )b
w w w N wm x k x N x t p x t q x t

x xt x x x
∂ ∂ ∂ ∂ ∂ ∂ª º+ − − + =« »∂ ∂∂ ∂ ∂ ∂ ¬ ¼

 (9.157) 

 
where N(x,t) is given by Eq. (9.154). Application of Newton’s Second Law in the axial 
direction gives the equation of longitudinal motion 
 

 
2

2( ) ( , )u Nm x p x t
xt

∂ ∂− =
∂∂

 (9.158) 

 
which is of the same form as for strings and cables (Section 9.5). Paralleling the arguments 
made for strings and cables, in many situations, the longitudinal component of the accelera-
tion may be neglected compared with the transverse component. In this case, Eq. (9.158) 
simplifies to the form   
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 ( , )N p x t
x

∂ ≈ −
∂

 (9.159) 

 
Substitution of Eq. (9.159) into Eq. (9.157) renders the equation of transverse motion to the 
form 
 

 
2 2 2 2

2 2 2 2( ) ( ) ( , ) ( , )b
w wm x k x w N x t q x t

t x x x
∂ ∂ ∂ ∂+ − =
∂ ∂ ∂ ∂

 (9.160) 

 
The boundary conditions follow as 
 

 
2

0 02
00

(0, ) ( )  or   (0, ) ( )
xx

w wQ t EI N t w t t
x xx ==

∂ ∂ ∂= − + = =
∂ ∂∂

Q h  (9.161)  

 

 
2

0 02
00

(0, ) ( )    or    ( )
xx

w wM t EI t t
xx ==

∂ ∂= − = =
∂∂

M f  (9.162)  

 

 
2

2( , ) ( )  or   ( , ) ( )L L
x Lx L

w wQ L t EI N t w L t t
x xx ==

∂ ∂ ∂= − + = =
∂ ∂∂

Q h  (9.163)  

 

 
2

2( , ) ( )    or    ( )L L
x Lx L

w wM L t EI t t
xx ==

∂ ∂= − = =
∂∂

M f  (9.164)  

 
where Q0(t) or h0(t), M0(t) or f0(t), QL(t) or hL(t), and ML(t) or fL(t) are prescribed functions. 
As for Euler-Bernoulli beams, the initial conditions are of the form 
 
 0( ,0) ( )w x w x=  (9.165) 
and 

 0
0

( )
t

w v x
t =

∂ =
∂

 (9.166) 

 
 If no distributed axial load (axial body force) acts on the structure (p = 0) then, from 
Eq. (9.159), 
 0( ) or constantN N t N N= = =  (9.167) 
 
For this case, Eq. (9.160) may be written in the form of Eq. (9.124) with m = m(x) and 
 

 
2 2 2

02 2 2EI N
x x x

∂ ∂ ∂= −
∂ ∂ ∂

k  (9.168) 

 
Thus, if N0 is prescribed, the motion of the geometrically nonlinear beam is seen to be gov-
erned by a linear differential equation of standard operator form. 
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Example 9.12 
Determine the equation of motion and associated boundary conditions for the uni-
form beam-column subjected to a compressive edge load, P(t), as shown in Figure 
E9.12.  

 
   Figure E9.12 
 
Solution 
For the problem at hand, q = p = 0. The membrane force may be determined by con-
sideration of the kinetic diagram for the beam element at the loaded edge. If we ne-
glect the axial component of the acceleration, the membrane force in the beam is 
simply 
 ( )N P t= −  (a) 
 
Inserting Eq. (a) into Eq. (9.160) gives the explicit form of the equation of transverse 
motion as 

 
4 2 2

4 2 2( ) 0w w wEI P t m
x x t

∂ ∂ ∂+ + =
∂ ∂ ∂

 � (b) 

 
It is seen that, in this problem, the forcing function enters the equation as a pre-
scribed time dependent coefficient of the second term of the governing differential 
equation. The boundary conditions follow directly from Eqs. (9.161)–(9.164) as 
 

 
2

2
0

(0, ) 0 ,    0
x

ww t EI
x =

∂= − =
∂

 � (c-1,2) 

 

 
2

2( , ) 0 ,    0
x L

ww L t EI
x =

∂= − =
∂

 � (d-1,2) 

 
 
 

9.8 TRANSLATING 1-D CONTINUA 

In many situations, a structure or device is in overall motion and that motion, as well as 
other sources, induces vibrations of the system. Such situations include vehicular structures, 
support excited structures and parts of mechanisms, to name but a few. When the base mo-
tion of a structure is in the transverse direction alone, the base motion may be introduced as 
a boundary condition as discussed earlier. However, when the support motion includes mo-
tion in the axial direction, the reference frame for measuring deformation in the convention-
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al sense is accelerating, or is at least translating with constant velocity. This is so since it is 
natural to choose a coordinate system that travels with the moving base so that the defor-
mation measures defined in Section 9.2 may be employed directly. When this is done, the 
motion of the reference frame must be accounted for when evaluating time rates of change. 
This alters the form of the kinematical measures that describe the motion of a material par-
ticle and, ultimately, the equations of motion. In this section we examine the motion of a 
geometrically nonlinear beam-column that is translating in a given plane. The case of a 
moving string or cable is obtained as a special case by letting the bending stiffness vanish, 
and so is treated in this context. We begin by establishing a description of velocity and ac-
celeration with respect to a translating reference frame for material particles that comprise a 
translating beam-column. 
 

9.8.1  Kinematics of a Material Particle 

Consider the translating elastic beam-column of initial length L, shown in Figure 9.15. Let a 
point on the structure, say at its base, be moving with the prescribed motion in the xz-plane 
described by χ(t) = (χx ,χ z), where χx(t) and χz(t) respectively correspond to the longitudinal 
and transverse components of the displacement, as indicated. Let each particle along the 
axis of the structure be labeled by its coordinates in the rest configuration, X = (X ,0) . To 
describe the motion of the individual particles of the structure, let us follow a generic mate-
rial particle X as the structure translates and deforms. Let the particle X move to its present 
position ξ = (ξx ,ξ z) at time t. Hence, 
  
 ( ,0) ( , )x zX ξ ξ= → =X ȟ  
 
To measure the deformation, let us introduce the (fictitious) intermediate configuration cor-
responding to the rigid body translation of the entire undeformed structure. (Since the struc-
ture is elastic, its deformation is independent of the deformation history and thus independ-
ent of the path traversed by a material particle as it moves from the point (X ,0)  to the point 
(ξ x ,ξ z) . Deformations can therefore be measured relative to this convenient configuration.) 
Let the point x = (x,z) correspond to the location of the image of particle X in the interme-
diate configuration at time t. The coordinates x thus correspond to the projection of ξ onto 
the rigidly displaced image of the rod at time t. Hence, 
 
 

 
           Figure 9.15  Deformation of translating beam-column. 
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 = +x X Ȥ  (9.169) 
or, in component form, 
 
 ( ), ( )x zx X t z tχ χ= + =  (9.170) 
 
The relative deflection, the displacement of particle X at time t measured relative to the 
intermediate configuration, is then 
 
 ( , )u w= = −u ȟ x  (9.171) 
 
The velocity of particle X is then 
 

 
t t t

∂ ∂ ∂≡ = +
∂ ∂ ∂X X X

ȟ x uv  (9.172) 

 
Now, from Eq. (9.169), 
 

 ( )t
t

∂ =
∂ X

x Ȥ�  (9.173) 

In component form, 
 

 ( ) ,    ( )x z
x zt t
t t

χ χ∂ ∂= =
∂ ∂

� �  (9.174) 

 
Further, applying the chain rule to the second term on the right-hand side of Eq. (9.172) and 
incorporating Eq. (9.173), we have that 
 

 xt t x
χ∂ ∂ ∂= +

∂ ∂ ∂X x

u u u�  (9.175) 

 
In Eq. (9.175), t∂ ∂u  corresponds to the time rate of change of u for any material particle 
as seen by an observer fixed at x, while 
 

 xt x
χ∂ ∂+

∂ ∂
u u�  

 
corresponds to the velocity of a material particle as seen by an observer translating with the 
support. The convective term, x xχ ∂ ∂u�  accounts for the fact that the particle at point x is 
changing, and we are following the particular particle X. 
 Substituting Eqs. (9.173) and (9.175) into Eq. (9.172) gives the velocity in terms of 
the intermediate coordinates as 
 

 ( , ) ( ) xx t t
t x

χ∂ ∂= + +
∂ ∂x

u uv Ȥ ��  (9.176) 

In component form,  
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 ( , )z z x
w wv x t
t x

χ χ∂ ∂= + +
∂ ∂

� �  (9.177) 

 

 ( , )x x x x
u u uv x t
t x t

χ χ χ∂ ∂ ∂= + + ≅ +
∂ ∂ ∂

� � �  (9.178) 

 
If the kinetic energy of relative axial motion is small compared with the kinetic energy of 
transverse motion, or if it is small compared with the bulk kinetic energy of axial motion, 
then we may make the approximation that 
 
 ( )x xv tχ≈ �  (9.179) 
 
which is consistent with similar approximations discussed for strings and cables in Section 
9.5 and for geometrically nonlinear beams in Section 9.7.  
 To evaluate the acceleration, we proceed in an analogous fashion to the evaluation of 
the velocity. Thus, taking the time derivative of the velocity of a material particle, holding 
the particle constant and employing the chain rule, we obtain the acceleration of particle X 
as   

 xt t x
χ∂ ∂ ∂≡ = +

∂ ∂ ∂X x

v v va �  (9.180) 

 
The transverse and axial components of the acceleration are then, respectively, 
 

 
2 2 2

2
2 22z z x x x
w w w wa

x x tt x
χ χ χ χ∂ ∂ ∂ ∂= + + + +

∂ ∂ ∂∂ ∂
�� �� � �  (9.181) 

 

    

2 2 2
2

2 2

2 2 2
2

2 2

1 2

    2

x x x x

x x x

u u u ua
x x tt x

u u u
x tt x

χ χ χ

χ χ χ

∂ ∂ ∂ ∂§ ·= + + + +¨ ¸∂ ∂ ∂∂ ∂© ¹
∂ ∂ ∂≅ + + +

∂ ∂∂ ∂

�� � �

�� � �
 (9.182) 

 
If the axial acceleration relative to the support is neglected, in keeping with approximations 
made in Sections 9.5 and 9.7, then the axial component of the acceleration simplifies to 
 
 x xa χ≈ ��  (9.183)  
 
Now that the expressions for velocity and acceleration of a material particle have been es-
tablished, we may proceed to derive the equations of motion of the translating structure. 
 

9.8.2 Kinetics 

To derive the equations of motion, we consider the kinetic diagram of a generic element at 
the current time t and parallel the development of Section 9.7 (Figure 9.12). Application of 
Newton’s Second Law in the coordinate directions gives the equations 
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2 2 2

2 2 2( , ) ( ) ( , ) ( , ) ( ) ( , )b z
w w N wq x t k x N x t p x t m x a x t

x xx x x
∂ ∂ ∂ ∂ ∂ª º− + + + =« »∂ ∂∂ ∂ ∂ ¬ ¼

 (9.184) 

 

    ( , ) ( ) ( , )x
Np x t m x a x t
x

∂+ =
∂

 (9.185) 

 
where N is given by Eq. (9.154). Substituting Eqs. (9.181) and (9.182) into Eqs. (9.184) and 
(9.185) and rearranging terms gives the equations of transverse and longitudinal motion, 
respectively, as 
 

 
( )

2 2 2
2

2 2 2

2 2

2

( , )

2 ( , ) ( )

x x

x z

w N wEI w N m p x t m
x xx x x

w wm q x t m t
x tt

χ χ

χ χ

∂ ∂ ∂ ∂ ∂ª º− − − + −« »∂ ∂∂ ∂ ∂ ¬ ¼
ª º∂ ∂+ + = −« »∂ ∂∂¬ ¼

� ��

� ��
 (9.186) 

and 

 
2 2 2

2
2 22 ( , )x x x

N u u um p x t
x x tt x

χ χ χª º∂ ∂ ∂ ∂− + + + + =« »∂ ∂ ∂∂ ∂¬ ¼
�� � �  (9.187) 

 
If the longitudinal motion relative to the support is neglected, then the longitudinal equation 
of motion simplifies to the form 
 

 ( , )x
N m p x t
x

χ∂ − ≈ −
∂

��  (9.188) 

 
Incorporating Eq. (9.188) into Eq. (9.186) renders the equation of transverse motion to the 
form 
 

 ( )
2 2 2 2 2

2
2 2 2 2 2 ( , ) ( )x x z

w w w wEI N m m q x t m t
x tx x x t

χ χ χ§ ·∂ ∂ ∂ ∂ ∂− − + + = −¨ ¸∂ ∂∂ ∂ ∂ ∂© ¹
� � ��  (9.189) 

 
If we consider an observer moving with a beam element, then the above equation may be 
thought of as representing an equivalent beam with stationary supports subjected to the ef-
fective distributed transverse load 
 
 ˆ( , ) ( , ) ( )xq x t q x t m tχ= − ��  
 
and effective membrane force 
 
 2ˆ ( , ) ( , ) ( )xN x t N x t m tχ= − �  
 
The quantity N̂  may be viewed as an analog of the “stagnation pressure” in fluid mechan-
ics, with 2

xmχ�  the analog of the “dynamic pressure” and N the analog of the “static pres-
sure.” For an observer moving with the beam element, and thus rotating with it as the beam 
bends, the second term in the effective acceleration, 
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2

2 2x x
w

x t t
ϕχ χ∂ ∂=

∂ ∂ ∂
� �  

 
may be interpreted as a Coriolis-like acceleration. 
    

Boundary Conditions 
The boundary conditions follow from the interpretation of the effective membrane force. (A 
derivation using the Calculus of Variations and Hamilton’s Principle yields the above equa-
tions of motion and the boundary conditions below, and thus gives credence to this interpre-
tation.) The associated boundary conditions are thus 
 

 ( )
2

2
02 ( )  or   0

x

x

x x
x

w wEI N m Q t w
x xx χ

χ

χ
=

=

ª º§ ·∂ ∂ ∂− + − = =« »¨ ¸∂ ∂∂« »© ¹¬ ¼
�  (9.190) 

 

 
2

02 ( )    or    0
xx xx

w wEI M t
xx χχ ==

∂ ∂− = =
∂∂

 (9.191) 

 

 ( )
2

2
2 ( )  or   0

x

x

x L x L
x L

w wEI N m Q t w
x xx χ

χ

χ
= +

= +

ª º§ ·∂ ∂ ∂− + − = =« »¨ ¸∂ ∂∂« »© ¹¬ ¼
�  (9.192) 

 

 
2

2 ( )    or    0
xx

L
x Lx L

w wEI M t
xx χχ = += +

∂ ∂− = =
∂∂

 (9.193) 

 
where Q0(t), M0(t), QL(t) and ML(t) are prescribed functions. For the special case of strings 
and cables, 0EI →  in Eq. (9.189) and the boundary conditions for shear, Eqs. (9.190) and 
(9.192), while the boundary conditions defined by Eqs. (9.191) and (9.193) are omitted.  
 
 

Example 9.13 
Consider a fan belt operating at steady state as shown in Figure E9.13. If the constant 
speed of the belt is v0 and the constant tension in the belt is N0, establish the govern-
ing equation and boundary conditions for the upper straight segment of the belt be-
tween the rollers. 

 
   Figure E9.13 
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Solution 
For the present problem, EI = 0, 0zχ ≡  and 0 .x vχ =�  Substituting these values into 
Eq. (9.189) gives the equation of motion of the belt as 
 

 ( )
2 2 2

2
0 0 02 22 0w w wm v N mv

x tt x
§ ·∂ ∂ ∂+ − − =¨ ¸∂ ∂∂ ∂© ¹

 � (a) 

 
  The boundary conditions are simply 
 
 (0, ) 0    and    ( , ) 0w t w L t= =  � (b-1,2) 

 
 
 
 

Example 9.14 
Determine the equation of motion and associated boundary conditions for a uniform 
cantilevered beam-column supporting a large point mass mL�m  if the support 
undergoes the elliptical motion described parametrically by the equations 
 
    0 0( ) (1 cos )u t tα= ∆ − Ω ,    0 0 sinw t= ∆ Ω  
 
where 0 1L∆ �  and α < 1. 
 
Solution 
For the problem at hand, p = q = 0. The  kinetic diagram and associated equation of 
motion for the point mass show that 
 
 [ ]

x
xL

N gχ χ
+

≅ + ��m  (a) 

 
Integrating the equation of longitudinal motion, Eq. (9.188), and incorporating Eq. 
(a) gives the (compressive) membrane force as 
 

 

[ ]
[ ] [ ]( ) [ ]

2
0

( , )

cos

x

x

L

xL x

x x x x

N x t N m g a dx

g m g L x g

g t

χ

χ

χ χ χ χ

α

+

+
= + +

≅ + + + + − ≈ +

ª º= + Ω ∆ Ω¬ ¼

³
�� �� ��m m

m

 (b) 

or 
 0 0( , ) cosN x t N n t= + Ω  (c) 
where 
 0N g= m  (d) 
and 
 2

0 0n α= ∆ Ωm  (e) 
Next, 
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( )
( ) ( ) ( )

( )

2 2 2 2 2 2
0 0

22 2 2 2
0 0

2
0

cos sin

              cos sin

              cos

xN m g t m t

L g L L t mL L t

g t

χ α α

α α

α

− = + ∆ Ω Ω − ∆ Ω Ω

ª º= + Ω ∆ Ω − ∆ Ω Ω¬ ¼

≈ + ∆ Ω Ω

� m

m

m

 (f) 

 
Substituting Eq. (f) into Eq. (9.189) gives the desired equation of motion, 
 

 
( )

4 2 2 2
2

0 04 2 2

2
0

cos 2 sin

cos

w w w wEI g t m t
t xx x t

m t

α α§ ·∂ ∂ ∂ ∂− + ∆ Ω Ω + + ∆ Ω Ω¨ ¸∂ ∂∂ ∂ ∂© ¹
= ∆ Ω Ω

m
 � (g) 

 
The boundary conditions of the cantilevered structure follow from Eqs. (9.190)–
(9.193). Hence,  

 0
x

x

x
x

ww
xχ

χ
=

=

∂= =
∂

 � (h-1,2) 

 

 
2

2 0
xx L

wEI
x χ= +

∂− =
∂

 � (h-3) 

 
and, after incorporaing Eq. (f) in the boundary condition for transverse shear,  

 
:

x xzx L x LQ aχ χ= + = +− = m  

 

 

2
2

02 coswEI g t
x x

α§ ·∂ ∂− − + + ∆ Ω Ω¨ ¸∂ ∂© ¹
m( )

2 2
2

0 02 sin 2 cos

xx L

w
x

w w wt t
t x xt

χ

α α

= +

ª º∂ =« »∂¬ ¼

 ½∂ ∂ ∂+ ∆ Ω Ω − Ω + ∆ Ω Ω® ¾∂ ∂ ∂∂ ¯ ¿
m

2
2 2 2 2

0 2sin
xx L

wt
x

χ

α
= +

ª º∂+ ∆ Ω Ω« »∂¬ ¼

 

   � (h-4) 
 

Alternatively, we may consider the point mass to be part of the beam-column. In this 
case, the mass per unit length of the nonuniform structure may be expressed in the 
form 

 ( ) ( )xx m x Lδ χ= + − −
�

m m  � (i) 
 
For this case, the uniform mass per unit length, m, is replaced by m(x) in Eq. (g) giv-
ing the equation of transverse motion as  
 

 
( )

4 2 2 2
2

0 04 2 2

2
0

cos ( ) 2 sin

( ) cos

w w w wEI g t x t
t xx x t

x t

α α§ ·∂ ∂ ∂ ∂− + ∆ Ω Ω + + ∆ Ω Ω¨ ¸∂ ∂∂ ∂ ∂© ¹
= ∆ Ω Ω

m

m

m
 (g') 
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where m(x) is given by Eq. (i). In addition, the boundary condition for transverse 
shear now takes the form  
 

 ( )
2

2
02 cos 0

xx L

w wEI g t
x xx

χ

α
= +

ª º§ ·∂ ∂ ∂− + + ∆ Ω Ω =« »¨ ¸∂ ∂∂© ¹¬ ¼
m  � (h-4') 

 
in lieu of Eq. (h-4), while the first three boundary conditions (h-1,2,3) remain the 
same. 

 
 
 
 

9.9 CONCLUDING REMARKS 

In this chapter we defined measures to characterize the local behavior of continua and de-
veloped a number of representations that describe the motion of mathematically one-
dimensional continua. These mathematical models pertain to long, thin bodies. That is, they 
represent structures where one characteristic length is much larger than the others. We stud-
ied both linear and geometrically nonlinear structures. These included longitudinal motion 
of elastic rods, torsional motion of rods of circular cross section, the motion of strings and 
cables, and several representations for flexural motion of elastic structures possessing vari-
ous degrees and types of complexity, including the coupling of flexural and axial motions. 
The linear systems of Sections 9.3– 9.6 were seen to each be described by equations of mo-
tion of the general form 
   

 
2

2 ( , )F x t
t

∂ + =
∂

m k
u u  (9.194) 

 
where m and k are differential (or scalar) operators, u(x,t) is a displacement function that 
characterizes the motion of the body and F(x,t) corresponds to an appropriate distributed 
external force. For Timoshenko beam theory, a matrix equation of the same general form 
governs the motion of the structure. For this case, the mass and stiffness operators are 2 2×  
matrices of differential operators, the motion is characterized by a 2 1×  matrix of displace-
ment functions and the applied force is characterized by a 2 1×  matrix of force distribu-
tions. The mathematical representation of each linear system is summarized in Table 9.1. It 
was seen that the parameters and operators that describe the motion of continuous systems 
are abstractions of those that describe discrete systems, and that both classes of systems lie 
within the same general framework. 
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    Table 9.1  Parameters for Various 1-D Continua 
         ( , )x tu                  k                 m     ( , )F x t  
Longitudinal Motion of 
Rods: 
             ( , )u x t  

    EA
x x

∂ ∂
= −

∂ ∂
k  

 
     ( ) ( ) ( )m x x A xρ=  

 
    ( , )p x t  
 

Torsional Motion of   
Rods: 
            ( , )x tθ  
 

     GJ
x x

∂ ∂
= −

∂ ∂
k  

 
     ( ) ( ) ( )J x x J xρ ρ=  

 
    ( , )x tµ  

Transverse Motion of 
Strings and Cables: 
         ( , )w x t  
 

     
2

2
N

x
∂

= −
∂

k  
 
     ( ) ( ) ( )m x x A xρ=  

 
   ( , )q x t  

Euler-Bernoulli Beams: 
 
         ( , )w x t  
 

  

    
2 2

2 2
EI

x x
∂ ∂

=
∂ ∂

k  

 
  
    ( ) ( ) ( )m x x A xρ=  

 

( , )q x t
x

∂−
∂

b  

Nonlinear E.-B. Beams 
with const. axial force: 
         ( , )w x t  
 

 
2 2 2

02 2 2
EI N

x x x
∂ ∂ ∂

= −
∂ ∂ ∂

k  

 
      
     ( ) ( ) ( )m x x A xρ=  

 
    
   ( , )q x t       
   (p = 0) 

Rayleigh Beams: 
 
         ( , )w x t  

  

    
2 2

2 2
EI

x x
∂ ∂

=
∂ ∂

k   

 

( ) ( )m x I x
x xρ

∂ ∂
= −

∂ ∂
m

 
 

 

( , )q x t
x

∂−
∂

b  

Timoshenko Beams: 

    
( , )

( , )

w x t

x tϕ
=
 ½
® ¾
¯ ¿

u  

   lj= ª º¬ ¼kk where  

   11 12 x= − ∂ ∂k k  

   12 21 sk x= − = ∂ ∂k k  

   22 sk EI
x x

∂ ∂
= −

∂ ∂
k  

 
 

   
( ) 0

0 ( )

m x
I xρ

=
ª º
« »
¬ ¼

m  

 

 
 

   
q

=
 ½
® ¾
¯ ¿

F
b
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PROBLEMS 

9.1 Determine the scalar product of the functions ( )( ) cos 2f x n x Lπ=  and 
( )( ) cos 2g x p x Lπ=  on the domain 0 x L≤ ≤ , where n p≠ are positive integers 

greater than zero.  
 
9.2 Determine the scalar product of the functions ( )( ) sin 2f x n x Lπ= and 

( )( ) cos 2g x p x Lπ=  on the domain 0 x L≤ ≤ , where n p≠ are positive integers 
greater than zero. 

 
9.3 State the equation of motion and deduce the boundary conditions for longitudinal 

motion of the rod shown in Figure P9.3. 
 

                                    Fig. P9.3                                                  Fig. P9.4                          
 
9.4 State the equation of motion and deduce the boundary conditions for longitudinal 

motion of the rod shown in Figure P9.4. 
                                                                                                    
9.5 State the equation of motion and deduce the boundary conditions for longitudinal 

motion of the rod shown in Figure P9.5. 

 
                                   Fig. P9.5                                                   Fig. P9.6 
 
9.6 State the equation of motion and deduce the boundary conditions for longitudinal 

motion of the rod shown in Figure P9.6. 
 

9.7 State the equation of motion and deduce the boundary conditions for torsional motion 
of the rod shown in Figure P9.7. 

 

                                   Fig. P9.7                                                    Fig. P9.8 
       
9.8 State the equation of motion and deduce the boundary conditions for torsional motion 

of the rod shown in Figure P9.8. 
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9.9 State the equation of motion and deduce the boundary conditions for torsional motion 

of the rod shown in Figure P9.9. 

                                Fig. P9.9                                                  Fig. P9.10 
                      
9.10 State the equation of motion and boundary conditions for torsional motion of an elas-

tic rod that is fixed at one end and is attached to a rigid disk of mass moment of iner-
tia ID at its free end (Figure P9.10).  

 
 
9.11 State the governing equation and boundary conditions for transverse motion of the 

active segment of a guitar string of mass density ρ and cross-sectional area A that is 
under static tension N, when a musician presses on the string with his finger at a fret 
located a distance L from the bridge. The stiffness of the musician’s finger is k.  

 
 
9.12 State the governing equation and boundary conditions for transverse motion of a ca-

ble of mass density ρ and cross-sectional area A that is under static tension N and is 
adhered to elastic mounts of stiffness k at each end. 

 
 
9.13 State the equation of motion and deduce the boundary conditions for flexural motion 

of the simply supported beam shown in Figure P9.13 when it is modeled mathemati-
cally using Euler-Bernoulli beam theory. 

 

                                  Fig. P9.13                                                Fig. P9.14 
 
 
9.14 State the equation of motion and deduce the boundary conditions for flexural motion 

of the cantilevered beam shown in Figure P9.14 when it is modeled mathematically 
using Euler-Bernoulli beam theory. 

 
 
9.15 State the equation of motion and deduce the boundary conditions for flexural motion 

of the beam supported by elastic hinges at each end, as shown in Figure P9.15, when 
it is modeled mathematically using Euler-Bernoulli beam theory. 
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   Fig. P9.15 
 
 
9.16 State the equation of motion and 

deduce the boundary conditions for 
flexural motion of the elastically 
clamped beam shown in Figure 
P9.16 when it is modeled mathe-
matically using Euler-Bernoulli 
beam theory. 

 
    Fig. P9.16 
 
 
9.17 State the equation of motion 

and deduce the boundary 
conditions for flexural motion 
of the beam supported at one 
end by an elastic clamp and at 
the other by an elastic mount, 
as shown in Figure P9.17, 
when the structure is modeled 
mathematically using Euler-
Bernoulli beam theory. 

    Fig. P9.17 
 
 
 
9.18 State the equation of motion and 

deduce the boundary conditions 
for flexural motion of the beam 
supported by elastic mounts at 
each end, as shown in Figure 
P9.18, when it is modeled math-
ematically using Euler-Bernoulli 
beam theory. 

    Fig. P9.18 
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9.19 State the equation of motion and deduce the boundary conditions for flexural motion 

of an elastic beam that is embedded in a rigid wall at one end and sits on an elastic 
foundation at the other (Figure 9.19) when the structure is modeled mathematically 
using Euler-Bernoulli beam theory. 

 

   Fig. P9.19 
 
9.20 Repeat Problem 9.13 for a beam of local mass moment of inertia Iρ if the structure is 

modeled using Rayleigh beam theory. 
 
9.21 Repeat Problem 9.14 for a beam of local mass moment of inertia Iρ if the structure is 

modeled using Rayleigh beam theory. 
 
9.22 Repeat Problem 9.15 for a beam of local mass moment of inertia Iρ if the structure is 

modeled using Rayleigh beam theory. 
 
9.23 Repeat Problem 9.16 for a beam of local mass moment of inertia Iρ if the structure is 

modeled using Rayleigh beam theory. 
 
9.24 Repeat Problem 9.17 for a beam of local mass moment of inertia Iρ if the structure is 

modeled using Rayleigh beam theory. 
 

9.25 Repeat Problem 9.18 for a beam of local mass moment of inertia Iρ if the structure is 
modeled using Rayleigh beam theory. 

 
9.26 Repeat Problem 9.19 for a beam of local mass moment of inertia Iρ if the structure is 

modeled using Rayleigh beam theory. 
 
9.27 Repeat Problem 9.13 for a beam of local mass moment of inertia Iρ and shear stiff-

ness ks if the structure is modeled using Timoshenko beam theory. 
 
9.28 Repeat Problem 9.14 for a beam of local mass moment of inertia Iρ and shear stiff-

ness ks if the structure is modeled using Timoshenko beam theory. 
 
9.29 Repeat Problem 9.15 for a beam of local mass moment of inertia Iρ and shear stiff-

ness ks if the structure is modeled using Timoshenko beam theory. 
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9.30 Repeat Problem 9.16 for a beam of local mass moment of inertia Iρ and shear stiff-
ness ks if the structure is modeled using Timoshenko beam theory. 

 
9.31 Repeat Problem 9.17 for a beam of local mass moment of inertia Iρ and shear stiff-

ness ks if the structure is modeled using Timoshenko beam theory. 
 
9.32 Repeat Problem 9.18 for a beam of local mass moment of inertia Iρ and shear stiff-

ness ks if the structure is modeled using Timoshenko beam theory. 
 
9.33 Repeat Problem 9.19 for a beam of local mass moment of inertia Iρ and shear stiff-

ness ks if the structure is modeled using Timoshenko beam theory. 
 
 
9.34 State the equation of transverse 

motion and the associated bound-
ary conditions for the elastic 
beam-column shown in Figure 
P9.34. The mass of the movable 
support is negligible. 

    Fig. P9.34 
 
9.35 State the equation of transverse motion 

and the associated boundary conditions 
for the beam-column with elastic clamp 
shown in Figure P9.35.  

 
 
    Fig. P9.35 
 
 
9.36 Determine the equation of lateral motion and 

establish the corresponding boundary condi-
tions for the inner segments of cable of the 
pulley system shown in Figure 9.36, if the 
cable has mass per unit length m and the 
mass of the pulley wheels is negligible com-
pared with that of the suspended weight. 

 
 
 
 
 
 
    Fig. P9.36 
 
9.37 Determine the equation of lateral motion for the inner segments of cable of the pulley 

system of Problem 9.36 after the left most segment of the cable is cut and before its 
free end passes through the first pulley wheel. 
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9.38 Show that, for the case of lateral motion of the support of a beam, the linearized ver-
sion of Eq. (9.189) converges to Eq. (9.104) for proper change of variables. (Hint: 
Note that in Example 9.9 w corresponds to “absolute displacement.”) 

 
 
9.39 Determine the equation of motion and boundary conditions for the translating beam 

shown in Figure P9.39. 
 

   Fig. P9.39 
 
 
9.40 Determine the equation of motion and boundary conditions for the translating beam 

shown in Figure P9.40. 

   Fig. P9.40 
 
 
9.41 Determine the equation of motion and boundary conditions for the translating beam 

shown in Figure P9.41. 
 

 
   Fig. P9.41 
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10 
Free Vibration of One-Dimensional 
Continua 

 
 
 
 
 
 
One-dimensional continua are three-dimensional bodies or media whose deformations and 
motions are described mathematically as functions of a single spatial variable. In this chap-
ter we consider the motion of mathematically one-dimensional continua when they are free 
from externally applied dynamic forces. That is, we examine free vibrations of one-
dimensional continua. The study of free vibrations reveals fundamental characteristics of 
the system, as well as behavior that is of interest in its own right. The presentation and dis-
cussion will parallel earlier discussions pertaining to discrete systems. We specifically con-
sider the behavior of linear continua, including longitudinal motion of elastic rods, torsional 
motion of elastic rods, transverse motion of strings and cables, and the flexural motion of 
elastic beams based on Euler-Bernoulli, Rayleigh and Timoshenko theories. We also study 
the free vibrations of geometrically nonlinear beams and beam-columns with constant axial 
load. We begin with a discussion of the general free vibration problem for mathematically 
one-dimensional continua. 
 

10.1  THE GENERAL FREE VIBRATION PROBLEM 

The equations of motion for linear one-dimensional continua are described by the general 
form of Eq. (9.194). For free vibrations, the distributed external load vanishes and the equa-
tions of motion take the general form  
 

 
2

2 0
t

∂ + =
∂

m k
u u  (10.1) 

 
where u(x,t) represents the appropriate displacement field, m is a scalar or differential mass 
operator and k is a differential stiffness operator. The motion of Timoshenko beams is gov-
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erned by a matrix equation of the form of Eq. (10.1), where the displacement measure con-
sists of a column matrix whose two elements are functions that correspond to the transverse 
displacement and the rotation of the cross section, respectively. In addition, the mass and 
stiffness operators for Timoshenko beams are each 2 by 2 matrices whose elements are sca-
lar and differential operators, respectively.  
 Equation (10.1), together with an appropriate set of boundary and initial conditions, 
defines the free vibration problem. To solve this problem, we proceed in an analogous fash-
ion to that for discrete systems. We thus seek a response of the form 
 
 ( , ) ( ) i tx t x e ω=u U  (10.2) 
 
Note that the spatial function U(x) is completely analogous to the corresponding column 
vector for discrete systems introduced in Eq. (7.2). Substituting the assumed form, Eq. 
(10.2), into the general equation of motion, Eq. (10.1), and recalling that m and k operate 
only on the spatial variable x, gives 
 
 2 ( ) i tx e ωω− mU ( ) i tx e ω+kU 0=   
 
 which results in the eigenvalue problem 
 
 2 ( ) 0xωª º− =¬ ¼k m U  (10.3) 
 
The free vibration problem is thus reduced to the determination of { }2 , ( )xω U  pairs that 
satisfy Eq. (10.3), where the parameter 2ω  is identified as the eigenvalue and the function 
U(x) is identified as the corresponding eigenfunction. Since deformable continua possess an 
infinite number of degrees of freedom, the eigenvalue problem yields an infinity of fre-
quency-modal function pairs. It may be seen from Eq. (10.3) that the modal functions are 
unique to within, at most, a constant multiplier. The value of this constant is arbitrary and is 
typically chosen as unity, or it is chosen so as to render the magnitude of the modal function 
unity. The latter option is discussed in Section 10.7 and the mutual orthogonality of the 
modal functions is discussed in Section 10.8.  
 The solution of the eigenvalue problem depends on the specific stiffness and mass 
operators, as well as the boundary conditions, for a particular system under consideration. 
Each frequency-mode pair,{ }( )2 , ( ) | ( 1, 2,...)j

j x jω =U , obtained in this way corresponds to 
a solution of Eq. (10.1) in the form of Eq. (10.2). The general solution then consists of a 
linear combination of all such solutions. Thus, the free vibration response takes the general 
form 

 ( ) ( ) ( ) ( )

1 1

( , ) ( ) ( ) cos( )ji tj j j j
j j

j j

x t C x e x A tω ω φ
∞ ∞

= =

= = −¦ ¦u U U  (10.4) 

 
where the modal amplitudes and associated phase angles, A(j) and φj (j = 1, 2, …) respec-
tively, are determined from the initial conditions. In the next five sections we consider vari-
ous second order and fourth order systems and analyze the corresponding types of motion.  
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10.2  FREE VIBRATION OF UNIFORM SECOND ORDER SYSTEMS 

We next consider the free vibration problem for systems with a second order stiffness oper-
ator. In particular, we consider longitudinal motion of uniform rods, torsional motion of 
uniform rods with circular cross sections and the transverse motion of uniform strings and 
cables under constant tension. As all of these systems are governed by the same differential 
equation, the one-dimensional wave equation, the general solution is the same. We there-
fore consider the common problem first and then present specific results for each case.  
 

10.2.1  The General Free Vibration Problem and Its Solution 

For systems with uniform properties the local mass and stiffness measures, m and k, are 
constants. The stiffness operator then takes the form 
 

 
2

2k
x

∂= −
∂

k  (10.5)  

 
and the equation of motion is given by the one-dimensional wave equation, 
 

 
2 2

2
2 2 0c

t x
∂ ∂− =
∂ ∂

u u  (10.6) 

where 
 2c k m=  (10.7) 
 
is a characteristic wave speed. Substitution of Eq. (10.2) into Eq. (10.6), or equivalently 
substituting Eq. (10.5) into Eq. (10.3), results in the eigenvalue problem defined by the or-
dinary differential equation 
 
 2( ) ( ) 0x xβ′′ + =U U  (10.8) 
where 

 
2 2

2
2 k mc

ω ωβ = =  (10.9) 

 
and superposed primes denote total differentiation with respect to x. Equation (10.8) is seen 
to correspond to the harmonic equation in space. It therefore yields the solution 
 
 1 2( ) cos sinx A x A xβ β= +U  (10.10) 
 
which corresponds to the general form of the modal functions for uniform second order 
systems. The parameter β is referred to as the wave number and is interpreted as a spatial 
frequency. To complement this parameter we introduce the corresponding wave length  
 
 2λ π β=  (10.11) 
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which is interpreted as the corresponding spatial period. The parameter β, and hence ω, as 
well as the integration constants A1 and A2 depend on the specific boundary conditions for 
the particular system under consideration. In general there will be an infinite number of 
values of β, and hence of ω. Once these values have been determined, each may be substi-
tuted into Eq. (10.10) to give the associated modal function. The resulting expression may 
then be substituted back into Eq. (10.2) to give the corresponding solution. The sum of all 
such solutions, Eq. (10.4), then corresponds to the free vibration response of the given sys-
tem. In the remainder of this section we shall apply the above results to study three types of 
vibratory motion of second order one-dimensional continua.  
 
 

10.2.2  Longitudinal Vibration of Elastic Rods 

Consider a uniform elastic rod of length L, mass per unit length m = ρA and axial stiffness 
ka = EA. For longitudinal motion (Section 9.3) the displacement measure is the axial dis-
placement u(x,t) (Figure 10.1) and, from Eq. (9.44) or (9.51), the equation of motion for 
free vibrations is 

 

 
2 2

2 2 0u um EA
t x

∂ ∂− =
∂ ∂

 (10.12) 

 
Letting u(x,t) → u(x,t), U(x) → U(x), k → ka = EA and m = ρA (Section 9.3) in the general 
analysis of Sections 10.1 and 10.2.1 gives the free vibration response for longitudinal mo-
tion of rods as   

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

u x t U x A tω φ
∞

=

= −¦  (10.13) 

 
where  
 ( ) ( ) ( )

1 2( ) cos sinj j j
j jU x A x A xβ β= +  (10.14) 

 
 
is the jth modal function,  
 

 
2 2

2
2

j j
j

a ak m c
ω ω

β = =  (10.15) 

 
 

 
 Figure 10.1  Longitudinal motion of a thin rod. 
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and 

 a
EA Ec
m ρ

= =  (10.16) 

 
are, respectively, the jth wave number and wave speed for axial motion. (The axial wave 
speed is the speed of a longitudinal wave in an elastic medium with vanishing Poisson’s 
ratio.) The specific wave numbers, and hence the specific natural frequencies and corre-
sponding modal functions, are determined by the particular boundary conditions imposed 
on a given structure as demonstrated in the following examples. 
 
 

Example 10.1 
Consider a uniform elastic rod of length L, mem-
brane stiffness EA and mass per unit length m. (a) 
Determine the natural frequencies and modal func-
tions when the structure is fixed at its left end, as 
shown in Figure E10.1-1. (b) Plot and label the 
first three modal functions. (c) Determine the gen-
eral form of the free vibration response of the rod.  
    Figure E10.1-1 
Solution 
(a) 
The physical boundary conditions for this rod are, from Example 9.2-ii,  
 

 (0, ) 0 ,    0
x L

uu t EA
x =

∂= =
∂

 (a-1,2) 

 
To obtain the boundary conditions for the modal functions we substitute the assumed 
harmonic response,  
 ( , ) ( ) i tu x t U x e ω=  
 
as per Eq. (10.2), into Eqs. (a-1) and (a-2) to get 
 
 (0) 0    (0) 0i tU e Uω = � =  (b-1) 
 
 ( ) 0    ( ) 0i tEA U L e U Lω′ ′= � =  (b-2) 
 
To determine the natural frequencies and modal functions, we next impose condi-
tions (b-1) and (b-2) on the general form of the modal function given by Eq. (10.14) 
to get 
 1 2 1(0) 0 cos(0) sin(0)U A A A= = + =  (c-1) 
and 
 1 2( ) 0 sin cosU L A L A Lβ β β β′ = = − +  (c-2) 
 
Substituting Eq. (c-1) into Eq. (c-2) results in the identity  
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 2 cos 0A Lβ β =  (d) 
 
It is seen from Eq. (d) that if either β = 0 or A2 = 0 then Eq. (10.14) yields the trivial 
solution. Hence, for vibratory motion, we must have that 2 0Aβ ≠ . Equation (d) then 
reduces to the frequency equation for the given rod,  
 
 cos 0Lβ =  (e) 
 
It is seen that any value of β such that 
 
 (2 1) 2   ( 1, 2,...)L j jβ π= − =  (f) 
 
satisfies Eq. (e). We thus have an infinite number of wave numbers, 
 

 (2 1) ( 1,2,...)
2j j j

L
πβ = − =  (g) 

 
The corresponding frequencies are found from Eq. (10.15) and Eq. (g) as 
 

 0(2 1) ( 1,2,...)
2j j jπω ω= − =  � (h) 

where 

 0 2
acEA

LmL
ω ≡ =  (i) 

 
Substituting Eqs. (c-1) and (g) into Eq. (10.14) gives the corresponding modal func-
tions as 
 
 { }( ) ( ) ( )

2 2( ) sin sin (2 1) 2 ( 1,2,...)j j j
jU x A x A j x L jβ π= = − =   

 
The value of the integration constant ( )

2
jA is arbitrary so we shall set it equal to one. 

(Alternatively, we can normalize the modal functions so that their magnitudes are 
one.) The modal functions for the rod under consideration are then 
 
 { }( ) ( ) sin sin (2 1) 2 ( 1,2,...)j

jU x x j x L jβ π= = − =  � (j) 
 
The first three modal functions are displayed in Figure E10.1-2 and are discussed be-
low. 
 
(b) 
The graphs depicted in Figure E10.1-2 are plots of the axial deformation as a func-
tion of x. Since the wave number, βj, for a given mode is the spatial frequency for 
that mode, the corresponding wave length, λj, (the spatial period) is found by substi-
tuting Eq. (g) into Eq. (10.11) giving 
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Figure E10.1-2  The first three longitudinal modes of an elastic rod with one edge fixed. 

 
 

 2 4   ( 1, 2,...)
2 1j

j

L j
j

πλ
β

≡ = =
−

 (k) 

  
To interpret these results we note, from Eq. (9.37), that the slopes of these curves at 
any point correspond to the axial modal strain at that point. Let us consider the first 
mode, U(1), displayed in Figure E10.1-2. Since the wavelength for the first mode is 
greater than the length of the rod (λ1 = 4L), the entire rod will be either in tension or 
compression when oscillating in that mode. It is seen that the maximum deformation 
occurs at the origin and the strain vanishes at the free end of the rod, x = L. It follows 
from Eq. (h), that the rod oscillates at the rate ω1 = πω0/2 in this mode. Let us next 
consider the second mode. For this case the wavelength is calculated to be λ2 = 4L/3, 
which is slightly larger than the length of the rod. It is seen that a “node” occurs (U(2) 
= 0) at x = 2L/3. It is observed from Figure E10.1-2 that the slope, and hence the axi-
al strain for the second mode, is positive (negative) for 0 < x < L/3 and therefore that 
the rod is in tension (compression) in this region, with the maximum extension (con-
traction) occurring as we approach the origin. Conversely, the rod is seen to be in 
compression (extension) on L/3 < x < L with the maximum deformation occurring as 
we approach the node. (Note that an inflection point of the U vs. x curve occurs at 
the node.) The magnitude of the deformation is seen to decrease monotonically as 
x → L/3 and as x → L. It follows from Eq. (h) that, in the second mode, the rod oscil-
lates at the frequency ω2 = 3πω0/2 with the regions of the structure alternating be-
tween tension and compression as indicated. For the third mode displayed in Figure 
E10.1-2, U(3), the wave length is calculated as λ3 = 4L/5 and is seen to be less than 
the total length of the rod. For this case we observe nodes at two points, x = 2L/5 and 
x = 4L/5, and inflection points at both locations. In this mode, the structure is seen to 
be in tension (compression) on 0 < x < L/5, in compression (tension) on L/5 < x < 
3L/5, and in tension (compression) on 3L/5 < x < L. It is also seen that the maximum 

0 0.2 0.4 0.6 0.8 1
0

1

0 0.2 0.4 0.6 0.8 1
−1

0

1

0 0.2 0.4 0.6 0.8 1
−1

0

1
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x/L 
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deformation occurs as x approaches the origin and as x approaches the nodes, and 
that the minimum deformation occurs at the relative maxima and minima at x =  L/5, 
3L/5 and L. In this mode the structure oscillates at the frequency ω3 = 5πω0/2, with 
the regions defined earlier alternating between tension and compression as indicated. 
 
(c) 
Substituting each mode defined by Eq. (j) into Eq. (10.13) gives the free vibration 
response of the rod as 
 

 { }( )

1

( , ) sin (2 1) 2 cos( )j
j j

j

u x t A j x L tπ ω φ
∞

=

= − −¦  � (l) 

 
where ωj is given by Eq. (h) and the amplitudes and phase angles, A(j) and φj (j = 1, 2, 
…), are determined from the initial conditions. The calculation of the amplitudes and 
phase angles is facilitated by the mutual orthogonality of the modal functions, which 
is discussed in Section 10.8. We therefore defer discussion and implementation of 
this calculation to Section 10.9.        

 
 
 
 

Example 10.2 
Consider the elastic rod of length L, ax-
ial stiffness EA and mass per unit length 
m that is fixed at its left end and is at-
tached to a block of mass mLα=m  on 
its right end  as shown, where α is a 
dimensionless number. (a) Determine 
the frequency equation and the general 
form of the corresponding mode shapes 
for the structure. (b) Evaluate the first three frequencies for a structure with mass ra-
tio 2α = . (c) Evaluate the general free vibration response of the rod for the structure 
of case (b). 
 
Solution 
(a) 
The left end of the rod is fixed. Hence, 
 
 (0, ) 0 (0)     (0) 0i tu t U e Uω= = � =  (a) 
 
The boundary condition at the right end follows directly from Eq. (b) of Example 
9.4. Substitution of the assumed form of the response, ( , ) ( ) i tu x t U x e ω= , into that 
boundary condition gives the modal boundary condition. Hence, 
 

 
2

2
2    ( ) ( )i t i t

x L x L

u uEA EAU L e U L e
x t

ω ωω
= =

∂ ∂ ′− = � − = −
∂ ∂

m m  
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or 

 2( ) ( ) 0U L U L
m

β′ − =m  (b) 

  
Now that the boundary conditions for the modal functions have been established, the 
frequencies and modal functions can be determined by imposing them on the general 
form of the modal function given by Eq. (10.14). Imposing condition (a) gives 
 
 1(0) 0U A= =  (c) 
 
After substituting back into the general form of Eq. (10.14) we have that 
 
 2( ) sinU x A xβ=  (d) 
 
Imposing condition (b) on Eq. (d) results in the statement 
 

 2 cos sin 0A L L
m

β β β βª º− =« »¬ ¼

m   

 
It is evident from Eq. (d) that both β = 0 and A2 = 0 result in the trivial solution. 
Hence, for nontrivial solutions 2 0,Aβ ≠  which gives the frequency equation as 
 
 cos sin 0L L Lβ α β β− =  � (e) 
 
The roots of Eq. (e) can be determined numerically for a given value of the mass ra-
tio α. The corresponding mode shapes are then of the form 
 
 ( ) ( )

2( ) sin   ( 1,2,...)j j
jU x A x jβ= =   

 
where βj corresponds to the jth root of Eq. (e). Since ( )

2
jA is arbitrary we shall set it 

equal to one, rendering the modal function for the rod to the form 
 
 ( ) ( ) sin   ( 1, 2,...)j

jU x x jβ= =  � (f) 
 
(b) 
The first three roots of Eq. (e) for α = 2 are obtained using the MATLAB routine 
“fzero.” Hence, 
 
 0.6533, 3.292, 6.362, ...Lβ =  (g) 
 
The natural frequencies then follow from Eq. (10.15) as 
 
 2

j j L EA mLω β=  (h) 
 
from which we obtain 
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 1 0 2 0 3 00.6533 , 3.292 , 6.362 , ...ω ω ω ω ω ω= = =  � (i) 
 
where 
 2

0 EA mLω =  (j) 
 
(c) 
The general free vibration response is found by substituting Eq. (f) into Eq. (10.13). 
This gives the response of the rod as 
 

 

( )

1

(1)
0 1

(2)
0 2

(3)
0 3

( , ) sin cos( )

sin(0.6533 )cos(0.6533 )

sin(3.292 )cos(3.292 )

sin(6.362 )cos(6.362 )
...

j
j j j

j

u x t A x t

A x L t
A x L t

A x L t

β ω φ

ω φ
ω φ

ω φ

∞

=

= −

= −
+ −

+ −
+

¦

 � (k) 

 
where A(j) and φj (j = 1, 2, …) are determined from the specific form of the initial 
conditions. 

 
 
 
 
 

Example 10.3 
Evaluate the first three natural frequen-
cies for the rod structure of Example 
10.2 for the mass ratios α = 1, 2, 5, 10, 
20 and 50. Use these results to assess 
the validity of the equivalent single de-
gree of freedom system described in 
Section 1.2.1 to model structures of this 
type.  
 
Solution 
The stiffnesses of the “massless” springs of the equivalent single degree of freedom 
systems introduced in Chapter 1 were based on the assumption that the mass of the 
elastic body, in this case a uniform rod, is small compared with the mass of the at-
tached body. They were then calculated using a static analysis (i.e., neglecting the 
inertia of the structure). It was argued, on physical grounds, that the behavior pre-
dicted by such simple mathematical models should approximate the fundamental 
mode of the elastic structure. We here assess the applicability of such a simplified 
model by comparing the natural frequencies computed using the 1 d.o.f. model with 
those computed by using the rod solution of Example 10.2. We first interpret the pa-
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rameters of the equivalent single degree of freedom system of Section 1.2.1 in the 
context of the present structure. 
 From Eq. (1.8), the stiffness of the equivalent single degree of freedom system 
is eqk EA L= . It follows that the natural frequency, *,ω  of the equivalent mass-
spring system is 
 

 0* EA
L

ωω
α

= =
m

 (a) 

where  

 0 2

EA
mL

ω =  (b) 

 
With the above established, we next compute the values of the natural frequencies 
for different mass ratios, for the simple one degree of freedom model and for the rod 
model of Example 10.2. A comparison of the two will allow us to assess to what ex-
tent the simple model represents the rod model.  
 The first three natural frequencies are computed for the given values of the 
mass ratio α by calculating the roots of Eq. (e) of Example 10.2 using the MATLAB 
routine “fzero.” These values are displayed in the Table E10.3 along with the corre-
sponding values of the approximate single degree of freedom system. It is seen that 
the frequency predicted by the simple single degree of freedom model approximates 
that of the first mode of the rod system and converges to within two significant fig-
ures when the attached mass is twenty times larger than the mass of the rod. It is fur-
ther seen that the frequency predicted by the single degree of freedom system model 
converges to within three significant figures of the rod model when the attached 
mass is fifty times the mass of the structure. 
 
  
   Table E10.3  
The first three natural frequencies of an elastic rod with a concentrated end mass for various 
values of the mass ratio together with the natural frequencies of the corresponding “equiva-
lent” single degree of freedom systems 

mLα = m  0*ω ω  1 0ω ω  2 0ω ω  3 0ω ω  
1 1.000 0.8603 3.426 6.437 
2 0.7071 0.6533 3.292 6.362 
5 0.4472 0.4328 3.204 6.315 
10 0.3162 0.3111 3.173 6.299 
20 0.2236 0.2218 3.157 6.291 
50 0.1414 0.1410 3.148 6.286 

*equivalent 1 d.o.f. system 
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10.2.3 Torsional Vibration of Elastic Rods 

Consider a uniform elastic rod of circular cross section, length L, geometric polar moment 
of inertia J, mass polar moment of inertia Jρ = ρJ and torsional stiffness kT = GJ. For tor-
sional motion of rods (Section 9.4) the displacement measure is the cross-sectional rotation 
θ (x,t) (Figure 10.2) and, from (Eq. 9.59), the equation of motion for free vibrations is given 
by 

 
2 2

2 2 0J GJ
t xρ
θ θ∂ ∂− =

∂ ∂
 (10.17) 

 
Letting ( , ) ( , )x t x tθ→u , ( ) ( )x x→ ΘU  and m → Jρ = ρJ in the general analysis of Sec-
tions 10.1 and 10.2.1 gives the free vibration response for torsional motion of rods as 
 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

x t x A tθ ω φ
∞

=

= Θ −¦  (10.18) 

where 
 ( ) ( ) ( )

1 2( ) cos sinj j j
j jx A x A xβ βΘ = +  (10.19) 

 
is the jth modal function. Furthermore, 
 

 
2 2

2
2

j j
j

T Tk J cρ

ω ω
β = =  (10.20) 

and  

 T
GJ Gc
Jρ ρ

= =  (10.21) 

 
are, respectively, the jth wave number and wave speed for torsional motion. (It may be noted 
that the torsional wave speed corresponds to the speed of shear waves in an elastic body.) 
The specific wave numbers, and hence the specific natural frequencies and corresponding 
modal functions, are determined by the particular boundary conditions imposed on a given 
structure as demonstrated in the following example. 
 
 
 
 

 
    Figure 10.2  Torsional motion of a thin circular rod. 
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Example 10.4 
Consider torsional motion of a uniform elastic rod of circular cross section, stiffness 
GJ, length L and mass density ρ, when it is fixed at its right end and is supported at 
its left end by a torsional spring of stiffness kθ = αGJ/L, where α is a dimensionless 
number, as shown in Figure E10.4-1. (a) Derive 
the frequency equation and general form of the 
mode shapes for the rod, and establish the gen-
eral free vibration response of the structure. (b) 
Determine the first three natural frequencies for 
the case where α = 1 and plot the corresponding 
modes. (c) Evaluate the general free vibration re-
sponse of the rod of part (b).  Figure E10.4-1 
 
Solution 
(a) 
Substituting the value of the spring stiffness into Eq. (a) of Example 9.5 gives the 
boundary condition at the left end of the rod as 
 

 
0

(0, )
x

L t
x
θ αθ

=

∂ =
∂

 (a-1) 

 
Since the right end of the rod is fixed, the corresponding boundary condition is 
 
 ( , ) 0L tθ =  (a-2) 
 
Substitution of the assumed form of the solution for free torsional vibrations,  
 
 ( , ) ( ) i tx t x e ωθ = Θ  
 
as per Eq. (10.2), into Eqs. (a-1) and (a-2) gives the boundary conditions for the 
modal functions as 
 
 (0) (0)     (0) (0)i t i tL e e Lω ωα α′ ′Θ = Θ � Θ = Θ  (b-1) 
and 
 ( ) 0    ( ) 0i tL e LωΘ = � Θ =  (b-2) 
 
To obtain the natural frequencies and corresponding modal functions we impose the 
boundary conditions on the general form of the modal function given by Eq. (10.19). 
Imposing condition (b-1) gives the relation 
 
 2 1L A Aβ α=  (c) 
 
Imposing condition (b-2) on the general form of the modal function and substituting 
Eq. (c) into the resulting expression gives 
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 [ ]2 cos sin 0
A L L Lβ β α β
α

+ =  

 
It may be seen from Eq. (10.19) and Eq. (c) that A2 = A1 = 0 yields the trivial solu-
tion, as does β = 0. Hence, for nontrivial solutions, the expression within the brackets 
must vanish. We thus obtain the frequency equation for the rod in question, 
 
 cos sin 0L L Lβ β α β+ =  � (d) 
 
Equation (d) may be solved numerically to obtain the natural frequencies of the rod. 
Substituting Eq. (c) into Eq. (10.19) gives the modal function associated with the  jth 
natural frequency as  
 

 
( )
2( ) ( ) cos sin

j
j

j j j

A
x L x xβ β α β

α
ª ºΘ = +¬ ¼   

 
Since the value of ( )

2
jA is arbitrary we shall set ( )

2 .jA α=  The jth modal function is 
then 
 
 ( ) ( ) cos sinj

j j jx L x xβ β α βΘ = +  � (e) 
 
With the frequencies determined from Eq. (d), substituting Eq. (e) into Eq. (10.18) 
gives the free vibration response of the rod as 
 

 ( )

1

( , ) cos sin cos( )j
j j j j j

j

x t A L x x tθ β β α β ω φ
∞

=

ª º= + −¬ ¼¦  � (f) 

 
(b) 
The first three roots of Eq. (d) are determined numerically using the MATLAB routine 
“fzero.” We thus find, for systems with α = 1, that 
 
 1 2 32.029 ,    4.913 ,    7.979, ...L L Lβ β β= = =  (g) 
 
The associated natural frequencies are obtained by substituting the above roots into 
Eq. (10.20). Hence, 
 
 1 0 2 0 3 02.029 , 4.913 , 7.979 , ...ω ω ω ω ω ω= = =  � (h) 
 
where 

 0 2T
Gc L
L

ω
ρ

= =  (i) 

 
The first three modes are displayed in Figure E10.4-2. The values shown correspond 
to the rotational displacement as a function of x and are interpreted in this context.  
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Figure E10.4-2  The first three torsional modes of elastic rod with one elastic support and 
one fixed support. 
 
 
The wave lengths for the first three modes are calculated as 
 

 1 2 3
2 2 23.097 , 1.279 , 0.7875
2.029 4.913 7.979

L L LL L Lπ π πλ λ λ= = = = = =   (j) 

 
The displacement measure is the rotation of the cross section located at coordinate x, 
measured positive counterclockwise. The first mode then corresponds to defor-
mations of the rod where all rotations are in the same sense. The sense of the mo-
tions alternate between positive and negative as the structure oscillates at the first 
natural frequency, but maintains the same proportion of the relative rotations of the 
cross sections throughout the motion. The second mode is seen to correspond to de-
formations where part of the rod, say that adjacent to the left support, rotates in the 
positive (negative) sense while the remaining segment of the structure rotates in the 
negative (positive) sense. The deformations alternate in direction as the rod oscillates 
at the second natural frequency, with the proportions of the relative rotation of the 
cross sections maintained throughout the motion. Lastly, the third mode consists of 
three regions, with the middle segment deformed in the opposite sense of the outer 
segments. The sense of the rotation of each segment alternates between positive and 
negative as the structure oscillates at the third natural frequency and maintains the 
same relative proportions throughout the motion. 
 
(c) 
The free vibration response of the structure with stiffness ratio 1α =  is then deter-
mined by substituting the wave numbers and natural frequencies stated in Eqs. (g) 
and (h) into Eq. (f). We thus have that 
 

0 0.2 0.4 0.6 0.8 1
0

 

0 0.2 0.4 0.6 0.8 1

0

 

0 0.2 0.4 0.6 0.8 1

0

Θ 
(1) 

Θ (2) 

Θ (3) 

x/L 

x/L 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

(1)
0 1

(2)
0 2

(3)
0 3

( , ) 2.029cos 2.029 sin 2.029 cos 2.029

4.913cos 4.913 sin 4.913 cos 4.913

7.979cos 7.979 sin 7.979 cos 7.979

...

x t A x L x L t

A x L x L t

A x L x L t

θ ω φ

ω φ

ω φ

ª º= + −¬ ¼
ª º+ + −¬ ¼
ª º+ + −¬ ¼

+

 � (k) 

 

 

10.2.4 Transverse Vibration of Strings and Cables 

Consider a string or cable of length L and mass per unit length m = ρA. In addition,  let the 
string be under uniform tension N0. For these systems (Section 9.5) the displacement meas-
ure is the transverse displacement w(x,t) (Figure 10.3) and, from Eq. (9.74), the equation of 
motion for free vibrations is  
  

 
2 2

02 2 0w wm N
t x

∂ ∂− =
∂ ∂

 (10.22) 

 
Letting u(x,t) →  w(x,t), U(x) →  W(x), and k →  N0 in the analysis of Sections 10.1 and 
10.2.1 gives the free vibration response of the string or cable as 
 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

w x t W x A tω φ
∞

=

= −¦  (10.23) 

where 
 ( ) ( ) ( )

1 2( ) cos sinj j j
j jW x A x A xβ β= +  (10.24) 

 
is the jth modal function. In addition, 
 

 
2 2

2
2

0

j j
j k m c

ω ω
β = =  (10.25) 

and 
 2

0 0c N m=  (10.26) 
 

 
   Figure 10.3  Transverse motion of a string. 
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are, respectively, the jth wave number and the wave speed of a transverse disturbance prop-
agating along the length of the string. The specific wave numbers, and hence the specific 
natural frequencies and corresponding modal functions, are determined by the particular 
boundary conditions imposed on a given structure as demonstrated in the following exam-
ple. 
 

Example 10.5 
Consider a string that is under uniform ten-
sion and is fixed at both ends, as shown. (a) 
Determine the natural frequencies and corre-
sponding modes. (b) Plot the first three 
modes. (c) Establish the general free vibra-
tion response of the string. (d) Apply the re-
sults of part (c) to the chain of Example 9.6-i. 
                                                                                     Figure E10.5-1 
Solution  
(a) 
We first determine the boundary conditions for the modal functions from the physi-
cal boundary conditions. Since the string is fixed at both ends, the boundary condi-
tions for the transverse displacement are simply  
 
 (0, ) 0,     ( , ) 0w t w L t= =  (a-1, 2) 
 
Substitution of the assumed form of the solution, 
 
 ( , ) ( ) i tw x t W x e ω=  
 
as per Eq. (10.2), into Eqs. (a-1) and (a-2) gives the modal boundary conditions as 
follows: 
 (0) 0        (0) 0i tW e Wω = � =  (b-1) 
 
 ( ) 0        ( ) 0i tW L e W Lω = � =  (b-2) 
 
To determine the natural frequencies and the corresponding modal functions we im-
pose the boundary conditions on the general form of the modal function given by Eq. 
(10.24). Imposing Eq. (b-1) gives 
 
 1 0A =  (c) 
  
Imposing Eq. (b-2) yields the relation 
 
 1 2cos sin 0A L A Lβ β+ =  
 
which, upon incorporating Eq. (c), reduces to 
 
 2 sin 0A Lβ =  (d) 
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It may be seen from Eq. (10.24) and Eq. (d) that A2 = 0 yields the trivial solution. 
Thus, for nontrivial solutions, we require that 
 
 sin 0Lβ =  (e) 
 
This is the frequency equation for the string, which has the roots 
 
  ( 1,2,...)j L j jβ π= =  (f) 
 
Substitution of Eq. (f) into Eq. (10.25) gives the natural frequencies for the string as 
 

 0
2  ( 1, 2,...)j

N
j j

mL
ω π= =  � (g) 

 
Substitution of Eq. (f) into Eq. (10.24) gives the corresponding modal functions 
 
 ( ) ( )

2( ) sin   ( 1, 2,...)j j
jW x A x jβ= =   

 
Since the value of ( )

2
jA is arbitrary we shall set it equal to one. The modal functions 

then take the form 
 
 ( ) ( ) sin( )   ( 1, 2,...)jW x j x L jπ= =  � (h) 
 
 
(b) 
The first three mode shapes are displayed in Fig. E10.5-2. The corresponding wave 
lengths are calculated from Eq. (f) and Eq. (10.11) to be, λ1 = 2L, λ2 = L and λ3 = 
2L/3, respectively. Since the deflections are in the transverse direction the plots dis-
played in the figure are, in fact, physical depictions of the first three modes. Each 
mode oscillates at the associated frequency, ω1 = πω0, ω2 = 2πω0 and ω3 = 3πω0, 
with the deflections alternating over the corresponding period T1 = 2/ω0, T2 = 
1/ω0 and T3 = 2/3ω0. 
 
(c) 
Substitution of Eq. (h) into Eq. (10.23) gives the free vibration response 
 

 ( )( ) 2
0

1

( , ) sin( ) cosj
j

j

w x t A j x L j N mL tπ π φ
∞

=

= −¦  � (i) 

 
(d) 
For the system of Example 9.6 the tension in the cable is due to the weight of the 
hanging sign. Hence, N0 = mg, where mL�m  is the mass of the sign. It then fol-
lows from Eq. (g) that 
 
 0j jω π ω=  (j) 
where 
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 0 g Lω α=  (k) 
and 
 1mLα = �m  (l) 
 
The free vibration response of the chain is then, from Eq. (i), 
  

 ( )( )

1

( , ) sin( )cosj
j

j

w x t A j x L j g L tπ π α φ
∞

=

= −¦  � (m)   

    Figure E10.5-2  The first three modes for a string that is fixed at both ends. 
 
 
 
 

10.3 FREE VIBRATION OF EULER-BERNOULLI BEAMS 

Consider a uniform Euler-Bernoulli beam (Section 9.6.3) of length L, bending stiffness EI 
and mass per unit length m = ρA. For this structure the displacement measure is the trans-
verse displacement w(x,t) (Figure 10.4) and the stiffness operator is a fourth order differen-
tial operator. For uniform beams the stiffness operator takes the form 
 

 
4

4EI
x

∂=
∂

k  

 
The equation of motion for an unforced beam follows from Eq. (9.104) as 
 

 
2 4

2 4 0w wm EI
t x

∂ ∂+ =
∂ ∂

 (10.27) 
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   Figure 10.4  Transverse motion of a beam. 
 
 
 
Further, for these structures, u(x,t) →  w(x,t) in the analysis of Section 10.1. We thus seek 
solutions of the form 
 ( , ) ( ) i tw x t W x e ω=  (10.28) 
 
as per Eq. (10.2). Substituting Eq. (10.28) into Eq. (10.27) results in the specific form of the 
eigenvalue problem for uniform Euler-Bernoulli beams defined by the differential equation 
 
 4( ) ( ) 0W x W xβ′′′′ − =  (10.29) 
where 
 4 2 m EIβ ω=  (10.30) 
 
To solve Eq. (10.29) we assume a solution of the form 
 
 ( ) sxW x Ae=  (10.31) 
 
where the constants A and s are to be determined. Substituting Eq. (10.31) into Eq. (10.29) 
and solving the resulting equation for s gives the values 
 
 ,  s iβ β= ± ±  (10.32) 
 
where β is defined by Eq. (10.30). Each value of s corresponds to a solution of the form of 
Eq. (10.31). The general solution of Eq. (10.29) is then comprised of a linear combination 
of all such solutions. Summing these solutions and using Eqs. (1.61) and (1.63) gives the 
general form of the modal functions for uniform Euler-Bernoulli beams, 
 
 1 2 3 4( ) cosh sinh cos sinW x A x A x A x A xβ β β β= + + +  (10.33) 
 
The integration constants and the parameter β, and hence the frequency ω, are determined 
from the specific boundary conditions for a given system. As for the second order systems 
discussed in Section 10.2, the modal functions are seen to be unique to within a constant 
multiplier. This constant is typically set to one, or chosen so as to render the magnitude of 
the modal function unity (Section 10.7). Once the specific frequencies are determined they 
may be substituted into Eq. (10.33) to evaluate the corresponding modal functions, with 
each frequency-mode pair yielding a solution of the form of Eq. (10.28). The sum of these 
solutions, as per Eq. (10.4), corresponds to the free vibration response of the beam given by 
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 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

w x t W x A tω φ
∞

=

= −¦  (10.34) 

 
 

Example 10.6 
Consider the simply supported uniform beam of Figure E10.6-1 and its representa-
tion using Euler-Bernoulli Theory. Determine the frequency equation, the natural 
frequencies, the natural modes and the general free vibration response.  
 

    
   Figure E10.6-1  Simply supported beam. 
 
Solution 
The boundary conditions for the modal functions are determined by substituting the 
assumed form of the solution, Eq. (10.28), into the physical boundary conditions. 
Hence, 
 
 (0, ) 0 (0)     (0) 0i tw t W e Wω= = � =  (a-1) 
 

 
2

2
0

(0, ) 0 (0)     (0) 0i t

x

wM t EI EIW e W
x

ω

=

∂ ′′ ′′= − = = − � =
∂

 (a-2) 

 
 ( , ) 0 ( )     ( ) 0i tw L t W L e W Lω= = � =  (a-3) 
 

 
2

2( , ) 0 ( )     ( ) 0i t

x L

wM L t EI EIW L e W L
x

ω

=

∂ ′′ ′′= − = = − � =
∂

 (a-4) 

 
Imposing the above boundary conditions on the general form of the modal function, 
Eq. (10.33), gives the following system of algebraic equations for the integration 
constants: 
 1 3 0A A+ =  (b-1) 
 
 ( )2

1 3 0A Aβ − =  (b-2) 

 
 1 2 3 4cosh sinh cos sin 0A L A L A L A Lβ β β β+ + + =  (b-3) 
 
 ( )2

1 2 3 4cosh sinh cos sin 0A L A L A L A Lβ β β β β+ − − =  (b-4) 
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It is seen from Eq. (10.33) that β = 0 corresponds to the trivial solution. It follows 
from Eqs. (b-1) and (b-2) that, for nontrivial solutions ( 0),β ≠  
 
 1 3 0A A= =  (c-1, 2) 
Substituting Eqs. (c-1) and (c-2) into Eqs. (b-3) and (b-4) and adding and subtracting 
the resulting expressions gives the relations 
 
 22 sinh 0A Lβ =  (d-1) 
 
 42 sin 0A Lβ =  (d-2) 
 
 It follows from Eqs. (d-1) and (d-2) that, for nontrivial solutions ( 0),β ≠  
 
 2 0A =  (e) 
and  
 sin 0Lβ =  � (f) 
 
Equation (f) is the frequency equation for the simply supported Euler-Bernoulli 
beam and yields the roots 
 
 ( 1, 2,...)j L j jβ π= =  (g) 
 
It follows from Eq. (10.30) that 
 
 2

0( )j jω π ω=  � (h) 
where 

 0 4

EI
mL

ω =  (i) 

 
Substitution of Eqs. (c-1), (c-2), (e) and (g) into Eq. (10.33) gives 
 
 ( ) ( )

4( ) sin ( )j jW x A j x Lπ=  � (j) 
 
Since ( )

4
jA is arbitrary we shall set it equal to one. Alternatively, we could choose 

( )
4

jA so that the modal function has unit magnitude (Section 10.7). The modal func-
tions for the simply supported Euler-Bernoulli beam are seen to be of identical form 
with those of the string of Example 10.5 (though the natural frequencies of the beam 
and string, of course, differ). The plots of the first three modes of the simply sup-
ported beam are shown in Figure E10.6-2 for the benefit of the reader. Since the de-
flections are transverse to the axis of the beam, the plots displayed in the figure cor-
respond to physical depictions of the first three mode shapes. The free vibration re-
sponse is obtained by substituting each of the modes and frequencies into Eq. (10.34). 
Doing this gives the response as 
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 { }( ) 2
0

1

( , ) sin( )cos ( )j
j

j

w x t A j x L j tπ π ω φ
∞

=

= −¦  (k) 

 
where ω0 is given by Eq. (i) and the amplitudes and phase angles, A(j) and φj  (j = 1, 
2, …), are determined from the initial conditions. 
 
 

Figure E10.6-2  The first three modes for a simply supported Euler-Bernoulli beam. 
 
 
 
 

Example 10.7 
Consider the uniform cantilever beam of Figure E10.7-1 and its representation using 
Euler-Bernoulli theory. Determine the frequency equation, the first three natural fre-
quencies, the natural modes and the general free vibration response for the structure. 
Plot and label the first three modes of the beam. 

  Figure E10.7-1  Cantilevered beam. 
 
Solution 
The boundary conditions for the modal functions are determined by substituting the 
assumed form of the solution, Eq. (10.28), into the physical boundary conditions es-
tablished in Example 9.7. Hence, 
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 (0, ) 0 (0)     (0) 0i tw t W e Wω= = � =  (a-1) 
 

 
0

0 (0)     (0) 0i t

x

w W e W
x

ω

=

∂ ′ ′= = � =
∂

 (a-2) 

 

 
2

2( , ) 0 ( )     ( ) 0i t

x L

wM L t EI EIW L e W L
x

ω

=

∂ ′′ ′′= − = = − � =
∂

 (a-3) 

 

 
3

3( , ) 0 ( )     ( ) 0i t

x L

wQ L t EI EIW L e W L
x

ω

=

∂ ′′′ ′′′= − = = − � =
∂

 (a-4) 

 
Imposing the above boundary conditions on the general form of the modal function, 
Eq. (10.33), gives the following system of algebraic equations for the integration 
constants: 
 1 3 0A A+ =  (b-1) 
 
 ( )2 4 0A Aβ + =  (b-2) 

 
 ( )2

1 2 3 4cosh sinh cos sin 0A L A L A L A Lβ β β β β+ − − =  (b-3) 
 
 ( )3

1 2 3 4sinh cosh sin cos 0A L A L A L A Lβ β β β β+ + − =  (b-4) 
 
Upon noting Eq. (b-1), it is seen from Eq. (10.33) that β = 0 corresponds to the trivial 
solution. We are therefore interested in nonvanishing values of β and can divide Eqs. 
(b-2), (b-3) and (b-4) by β, β 2 and β 3, respectively. The remainder of the analysis is 
simplified if we eliminate A3 and A4 for the above system. Substituting Eqs. (b-1) 
and (b-2) into Eqs. (b-3) and (b-4) results in the pair of algebraic equations 
 
 1 2(cosh cos ) (sinh sin ) 0A L L A L Lβ β β β+ + + =  (c-1) 
 
 1 2(sinh sin ) (cosh cos ) 0A L L A L Lβ β β β− + + =  (c-2) 
 
or, in matrix form, 
 

 1

2

(cosh cos ) (sinh sin ) 0
(sinh sin ) (cosh cos ) 0

AL L L L
AL L L L

β β β β
β β β β

+ +  ½ª º  ½=® ¾ ® ¾« »− +¬ ¼ ¯ ¿¯ ¿
 (d) 

 
For nontrivial solutions, we require that the determinant of the square matrix in Eq. 
(d) vanish. This gives the transcendental equation 
 
 2 2 2(cosh cos ) (sinh sin ) 0L L L Lβ β β β+ − − =  
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Expanding the above relation and utilizing simple trigonometric identities results in 
the frequency equation for the uniform cantilever beam, 
 
 cosh cos 1 0L Lβ β + =  � (e) 
 
which may be solved numerically for βL. The values of the first three roots are found 
using MATLAB’s “fzero” routine to be 
 
 1 2 31.875,   4.694,   7.855, ...L L Lβ β β= = =  (f) 
 
Substituting each root into Eq. (10.30) and solving for ω gives the first three natural 
frequencies, 
 
 4 4 4

1 2 33.516 ,  22.03 ,   61.70 , ...EI mL EI mL EI mLω ω ω= = =  � (g) 
 
Solving Eq. (c-1) for A2 and substituting the result, along with Eqs. (b-1), (b-2) and 
(e), into Eq. (10.33) gives the corresponding modal functions 
 

( ){ }
( ){ }

( ) ( )
1( ) sinh sin cosh cos

               cosh cos sinh sin   ( 1,2,...)

j j
j j j j

j j j j

W x A L L x x

L L x x j

β β β β

β β β β

ª= + −¬
º− + − =¼

�

  

where 

 
( )
1( )

1 sinh sin

j
j

j j

A
A

L Lβ β
=

+
�

  

 
Since the value of A1 is arbitrary it may be set equal to one. When this is done, the jth 
modal function for the uniform cantilevered beam takes the form 
 

( ){ }
( ){ } ( )

( ) ( ) sinh sin cosh cos

cosh cos sinh sin sinh sin

 ( 1,2,...)

j
j j j j

j j j j j j

W x L L x x

L L x x L L

j

β β β β

β β β β β β

ª= + −¬
º− + − +¼

=

 � (h) 

 
The first three modal functions are displayed in Figure E10.7-2. Since the deflections 
are transverse to the axis of the beam the plots displayed in the figure are, in fact, 
physical depictions of the first three mode shapes. 
 The free vibration response is obtained by substituting each of the modes and 
frequencies into Eq. (10.34). Doing this gives 
 

( ){ }

( ){ } ( )

1

( )

( , ) sinh sin cosh cos

cos( )
                cosh cos sinh sin

sinh sin

j j j j
j

j
j j

j j j j
j j

w x t L L x x

A t
L L x x

L L

β β β β

ω φ
β β β β

β β

∞

=

ª= + −¬

−
º− + − ¼ +

¦
 � (i) 
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where βj and ωj (j = 1, 2, …) are given by the roots of Eq. (e), Eq. (f), together with 
Eq. (10.30). 
 
 

    Figure E10.7-2  The first three flexural modes for a cantilevered Euler-Bernoulli beam  
    (shown scaled by their maximum values).  

 
 
 
 

Example 10.8 
Consider a uniform cantilevered Euler-Bernoulli beam of length L, bending stiffness 
EI and mass per unit length m that supports a concentrated mass m = α mL at its 
free end, as shown in Figure E10.8. (a) Determine the frequency equation and the 
general form of the mode shapes for the structure. (b) Evaluate the first three natural 
frequencies and modes for a structure with mass ratio α = 2. (c) Establish the general 
free vibration response of the beam for α = 2. 
  

   Figure E10.8  
 
Solution 
(a) 
The boundary conditions for the modal functions are determined by substituting the 
assumed form of the solution, Eq. (10.28), into the physical boundary conditions es-
tablished in Examples 9.9 and 10.7. The two boundary conditions at the support fol-

0 0.2 0.4 0.6 0.8 1
0

1

0 0.2 0.4 0.6 0.8 1
−1

0

1

0 0.2 0.4 0.6 0.8 1
−1

0
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low from Example 10.7. If the physical dimensions of the concentrated mass are 
negligible, the boundary condition for moment at the far end of the beam is also the 
same as for Example 10.7. The fourth boundary condition, the condition for shear at 
the far end of the beam, is obtained by inspection of the kinetic diagram of the con-
centrated mass (see Example 9.9) and proceeding as for the others. Hence, 
 
 (0) 0, (0) 0, ( ) 0W W W L′ ′′= = =  (a-1, 2, 3) 
 
From Eq. (b-2) of Example 9.9, the boundary condition for transverse shear in the 
rod is 
 

 
3 2

3 2     ( ) i t

x L x L

w wEI EI W L e
x t

ω

= =

∂ ∂ ′′′= �
∂ ∂

m 2 ( ) i tW L e ωω= − m   

 
The frequency appears explicitly in the above condition due to the presence of the 
inertia of the concentrated mass in the boundary condition. However, the frequency 
and wave number are directly related through Eq. (10.30). Incorporating this relation 
into the right-hand side of the last boundary condition renders the boundary condi-
tion for transverse shear to the form 
 
 4( ) ( ) 0W L LW Lβ α′′′ + =  (a-4) 
  
Imposing the above boundary conditions on the general form of the modal function, 
Eq. (10.33), gives the following system of algebraic equations for the integration 
constants:  
 1 3 0A A+ =  (b-1) 
 
 ( )2 4 0A Aβ + =  (b-2) 

 
 ( )2

1 2 3 4cosh sinh cos sin 0A L A L A L A Lβ β β β β+ − − =  (b-3) 
 

 
( )

( )
3

1 2 3 4

3
1 2 3 4

sinh cosh sin cos

cosh sinh cos sin 0

A L A L A L A L

L A L A L A L A L

β β β β β
β αβ β β β β

+ + −

+ + + + =
 (b-4) 

 
As for the previous example, it is seen from Eqs. (b-1) and (10.33) that β = 0 corre-
sponds to the trivial solution. We can therefore divide Eqs. (b-2), (b-3) and (b-4) by 
β, β 2 and β 3, respectively. Eliminating A3 and A4 in the above system by substitut-
ing Eqs. (b-1) and (b-2) into Eqs. (b-3) and (b-4) results in the pair of algebraic equa-
tions 
 1 2(cosh cos ) (sinh sin ) 0A L L A L Lβ β β β+ + + =  (c-1) 
 

 
[ ]

[ ]
1

2

(sinh sin ) (cosh cos )

(cosh cos ) (sinh sin ) 0

A L L L L L

A L L L L L

β β αβ β β
β β β β β

− + −

+ + + − =
 (c-2) 
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Arranging Eqs. (c-1) and (c-2) in matrix form and, since we are interested in nontriv-
ial solutions, setting the determinant of the coefficients of the integration constants to 
zero results in the frequency equation 
 
 ( ) ( )1 cosh cos sinh cos cosh sin 0L L L L L L Lβ β αβ β β β β+ + − =  � (d) 
 
The roots of the above equation yield the wave numbers, and hence the natural fre-
quencies, for the given structure. 
 Equation (c-1) gives A2 in terms of A1. Substituting this expression into Eqs. (b-
1) and (b-2) gives the remaining constants, A3 and A4, in terms of A1. Substituting the 
resulting expressions into Eq. (10.33) then gives the modal functions for the struc-
ture. We thus obtain,  
 

 
{ }

{ }

( ) ( )
1( ) (sinh sin ) cosh cos

(cosh cos ) sinh sin

j j
j j j j

j j j j

W x A L L x x

L L x x

β β β β

β β β β

ª= + −¬
º− + − ¼

�

  

  ( 1, 2,...)j =   
where 
 ( ) ( )

1 1 (sinh sin )j j
j jA A L Lβ β= +

�
  

 
Since ( )

1
jA is arbitrary we shall choose it equal to one. The jth modal function for the 

structure is then 
 

{ }
{ }

( ) ( ) (sinh sin ) cosh cos

(cosh cos ) sinh sin (sinh sin )

j
j j j j

j j j j j j

W x L L x x

L L x x L L

β β β β

β β β β β β

ª= + −¬
º− + − +¼

 

  � (e) 
 
The general form of the response of the Euler-Bernoulli beam with tip mass then fol-
lows as 
 

{ }

{ } ( )

1

( )

( , ) (sinh sin ) cosh cos

cos( )
(cosh cos ) sinh sin

sinh sin

j j j j
j

j
j j

j j j j
j j

w x t L L x x

A t
L L x x

L L

β β β β

ω φ
β β β β

β β

∞

=

ª= + −¬

−
º− + − ¼ +

¦
  

  �  (f) 
 
It is seen that the form of the modal functions for the present case is the same as for 
the cantilevered beam without the tip mass. This is because the two boundary condi-
tions at the support are the same for both structures. The difference in the two struc-
tures, that is the effect of the tip mass, is manifested through Eq. (d) and hence 
through the natural frequencies and wave numbers which we calculate next. 
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(b) 
The first three roots of Eq. (d) are obtained for a structure with α = 2 using the 
MATLAB routine “fzero” as 
 
 1.076, 3.983, 7.103, ...Lβ =  (g) 
 
From Eq. (10.30),  
 ( )2

0 ( 1,2,...)j j L jω β ω= =  (h) 
where 
 4

0 EI mLω =  (i) 
 
The natural frequencies corresponding to the roots stated in Eq. (g) are then 
 
 0 0 01.158 , 15.86 , 50.45 , ...ω ω ω ω=  � (j) 
 
The first three modal functions follow from Eq. (e) as 
 

 
( ) ( ){ } ( ) ( ){ }(1) ( ) cosh 1.076 cos 1.076 0.971 sinh 1.076 sin 1.076W x x L x L x L x L= − − −

  �  (k-1) 
 

( ) ( ){ } ( ) ( ){ }(2) ( ) cosh 3.983 cos 3.983 sinh 3.983 sin 3.983W x x L x L x L x L= − − −  
  �  (k-2) 
 

( ) ( ){ } ( ) ( ){ }(3) ( ) cosh 7.103 cos 7.103 sinh 7.103 sin 7.103W x x L x L x L x L= − − −   
  �  (k-3) 
 
(c) 
The response of the structure with α = 2 is found by substituting the computed fre-
quencies and modes into Eq. (f). Thus, 
 

 

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( )

(1)

0 1

(2)

0 2

(3)

( , ) cosh 1.076 cos 1.076

0.971 sinh 1.076 sin 1.076 cos(1.158 )

cosh 3.983 cos 3.983

sinh 3.983 sin 3.983 cos(15.86 )

cosh 7.103 cos 7.103

sinh 7.103 sin 7.10

w x t A x L x L

x L x L t

A x L x L

x L x L t

A x L x L

x L

ω φ

ω φ

ª= −¬
º− − −¼

ª+ −¬
º− − −¼

ª+ −¬

− − ( ){ } 0 33 cos(50.45 )

...

x L tω φº −¼
+

  

    � (l) 
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Example 10.9 
Evaluate the first three natural frequencies for 
the beam structure of Example 10.8 for the 
mass ratios α = 1, 2, 5, 10, 20, 50 and 100. 
Use these results to assess the validity of the 
equivalent single degree of freedom system 
described in Section 1.2.2 to model beam 
structures of this type. 
 
Solution 
The stiffnesses of the “massless” springs of the equivalent single degree of freedom 
systems introduced in Chapter 1 were based on the assumption that the mass of the 
elastic body, in this case a uniform beam, is small compared with the mass of the at-
tached body. They were then calculated using a static analysis (i.e., neglecting the 
inertia of the structure). It was argued, on physical grounds, that the behavior pre-
dicted by such simple mathematical models should approximate the fundamental 
mode of the elastic structure. We here assess the applicability of such a simplified 
model by comparing the natural frequencies computed using the 1 d.o.f. model with 
those computed by using the cantilever beam solution of Example 10.8. We first in-
terpret the parameters of the equivalent single degree of freedom system of Section 
1.2.2 in the context of the present structure. 
 From Eq. (1.14), the stiffness of the equivalent single degree of freedom system 
is 3 .3eqk EI L=  It follows that the natural frequency, ω∗, of the equivalent mass-
spring system is 
 

 03

3 3* EI
L

ω ω
α

= =
m

 (a) 

where  

 0 4

EI
mL

ω =  (b) 

Hence, 
 0* 3ω ω α=  (c) 
 
With the above established, we next compute the values of the natural frequencies, 
for different mass ratios, for the simple model and for the beam model of Example 
10.8. A comparison of the two will allow us to assess to what extent the simple mod-
el represents the beam model.  
 The first three natural frequencies are computed for the given values of the 
mass ratio α by calculating the roots of Eq. (d) of Example 10.8 using the MATLAB 
routine “fzero.” These values are displayed in Table E10.9 along with the corre-
sponding values of the approximate single degree of freedom system. It is seen that 
the frequency predicted by the simple, single degree of freedom, model approxi-
mates that of the first mode of the beam system and converges to within two signifi-
cant figures when the attached mass is ten times larger than the mass of the beam. It 
is further seen that the frequency predicted by the single degree of freedom system 
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model converges to within three significant figures of the beam model when the at-
tached mass is one hundred times the mass of the beam. 

  
    Table E10.9  

The first three natural frequencies of a uniform cantilevered Euler-Bernoulli beam with a con-
centrated end mass for various values of the mass ratio, and the natural frequency predicted for 
the “equivalent” 1 d.o.f. system 

mLα = m  0*ω ω  1 0ω ω  2 0ω ω  3 0ω ω  
1 1.732 1.558 16.25 50.89 
2 1.225 1.158 15.86 50.45 
5 0.7746 0.7569 15.60 50.16 
10 0.5477 0.5414 15.52 50.07 
20 0.3873 0.3850 15.46 50.01 
50 0.2449 0.2443 15.43 49.98 
100 0.1732 0.1730 15.43 49.97 

*equivalent 1 d.o.f. system 
 
 
 
 

Example 10.10 
Consider the (transversely) free-free beam shown in Figure E10.10-1. (a) Establish 
the modal boundary conditions, determine the frequency equation and the general 
form of the modal functions, and the general free vibration response. (b) Determine 
the first three natural frequencies and corresponding modal functions. Plot the first 
three modes. 

 
   Figure E10.10-1  A (transversely) free-free beam. 
 
Solution 
The structure is evidently an unrestrained system in that it can move freely in the 
vertical direction. From our discussion of unrestrained discrete systems (Section 7.2) 
we anticipate the existence of a “rigid body mode” along with modes that describe 
the deformation of the beam. 
  
(a) 
The beam is clearly free to rotate and free to translate in the vertical direction at the 
end points x = 0 and x = L. The support therefore exerts no moment or transverse 
force at these points. Therefore, the bending moment and transverse shear in the 
beam must vanish at the boundaries. Hence, 
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2 3

2 3
0 0

0, 0
x x

w wEI EI
x x= =

∂ ∂− = − =
∂ ∂

 (a-1, 2) 

and 

 
2 3

2 30, 0
x L x L

w wEI EI
x x= =

∂ ∂− = − =
∂ ∂

 (a-3, 4) 

 
Substitution of the harmonic form 
 
 ( , ) ( ) i tw x t W x e ω=   
 
into Eqs. (a-1)–(a-4) and dividing through by i te ω gives the modal boundary condi-
tions 
 (0) 0, (0) 0W W′′ ′′′= =  (b-1, 2) 
and 
 ( ) 0, ( ) 0W L W L′′ ′′′= =  (b-3, 4) 
 
Imposing Eqs. (b-1)–(b-4) on the general form of the modal function, Eq. (10.33), 
results in the system of equations 
 
 ( )2

1 3 0A Aβ − =  (c-1) 
 
 ( )3

2 4 0A Aβ − =  (c-2) 
 
 ( )2

1 2 3 4cosh sinh cos sin 0A L A L A L A Lβ β β β β+ − − =  (c-3) 
 
 ( )3

1 2 3 4sinh cosh sin cos 0A L A L A L A Lβ β β β β+ + − =  (c-4) 
 
In each of Eqs. (c-1)–(c-4), either β = 0 or the terms in parentheses vanish. Let’s 
consider each case.  
  

0 :β =  
For this case, Eqs. (10.30) and (10.33) give the corresponding natural frequency and 
associated mode as 
 
 0RBω ω= =  (d-1) 
 
 ( )

1 3( ) constantRBW x W A A= = + =  (d-2) 
 
This is evidently the rigid body mode and corresponds to a rigid body displacement 
with no oscillations. 
 

0 :β ≠  
For this case, Eqs. (c-1) and (c-2) yield 

www.konkur.in



10│ Free Vibration of One-Dimensional Continua 569 

 
 3 1 4 2,A A A A= =  (e-1, 2) 
 
Substituting Eqs. (e-1) and (e-2) into Eqs. (c-3) and (c-4) and arranging the resulting 
expressions in matrix form gives 
 

 
( ) ( )
( ) ( )

1

2

cosh cos sinh sin 0
sinh sin cosh cos 0

L L L L A
L L L L A

β β β β
β β β β

ª º− −  ½  ½=« » ® ¾ ® ¾+ −« » ¯ ¿¯ ¿¬ ¼
 (f) 

 
For nontrivial solutions, we require that the determinant of the square matrix of Eq. 
(f) vanish. Imposing this condition yields the frequency equation, 
 
 cosh cos 1L Lβ β =  (g) 
 
Equation (g) yields an infinite number of roots βj (j = 1, 2, …) and hence, via Eq. 
(10.30), an infinite number of frequencies 
 
 ( )2

0j j Lω ω β=  (h) 
where 
 4

0 EI mLω =  (i) 
 
Substituting Eqs. (e-1), (e-2) and the second row of Eq. (f) into Eq. (10.33) gives the 
corresponding modal functions for the beam as 
 

( ) ( )
( ) ( )( ) ( )

sinh sin
( ) cosh cos sinh sin

cosh cos

( 1, 2,...)

j jj j
j j j j

j j

L L
W x A x x x x

L L

j

β β
β β β β

β β

ª º+
« »= + − +
« »−¬ ¼

=

�
(j) 

 
The value of ( )jA

�
is arbitrary. We shall set it equal to one. The free vibration re-

sponse is then given by 
 

 ( ) ( )
0 0

1

( , ) ( ) cos( )j j
j j

j

w x t A t B W x A tω φ
∞

=

= + + −¦  (k) 

 
where the constants A0, B0, A(j) and φj (j = 1, 2, …) are determined from the initial 
conditions (Section 10.9). 
 
(b) 
Since the first mode is the rigid body mode described earlier, the second and third 
modes will correspond to the first two roots of Eq. (g). These are found using the 
MATLAB routine “fzero” and give 
 
 1 24.730, 7.853L Lβ β= =  (l) 
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The corresponding natural frequencies are then computed using Eq. (h) to give 
 
 1 0 2 022.37 , 61.67ω ω ω ω= =  �  (m) 
 
where ω0 is defined by Eq. (i). The first three modes — the rigid body mode, W(RB), 
and the first two deformation modes, W(1) and W(2) — are displayed in Figure 
E10.10-2.  
 
 

 
 Figure E10.10-2  The first three natural modes of the free-free beam. 
 
 
 
 
 

Beam on Elastic Foundation 
In certain situations a beam rests on a support throughout its span, such as when a railroad 
track sits on soil or other deformable media. The simplest mathematical model that ac-
counts for the elastic compliance of the supporting media is the representation of the foun-
dation as a continuous distribution of elastic springs, as shown in Figure 10.5. For such a 
model, let the stiffness per unit surface area of the elastic foundation be denoted as kf. If we 
include the restoring force imparted on a deflected beam in the development of Sections 
9.6.1–9.6.3, the corresponding equation of motion for free vibration of a uniform Euler-
Bernoulli beam on a uniform elastic foundation takes the form 
 

 
2 4

2 4 0f
w wm k w EI

t x
∂ ∂+ + =
∂ ∂

 (10.35) 
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    Figure 10.5  Beam on an elastic foundation. 
 
 
 
To solve the free vibration problem we proceed as for prior structures and assume a solution 
in the form 
 ( , ) ( ) i tw x t W x e ω=   
 
and substitute it into the equation of motion. This results in the identical eigenvalue prob-
lem as that for all other Euler-Bernoulli beams considered to this point, 
 
 4( ) ( ) 0W x W xβ′′′′ − =   
but now, 

 4 2 fkm
EI EI

β ω= −  (10.36) 

 
The corresponding modal functions are therefore of the general form given by Eq. (10.33). 
Thus, for a given beam and set of boundary conditions the roots βj ( 1, 2,...)j =  of the char-
acteristic equation, and the corresponding modal functions W(j)(x), will be identical to their 
counterparts for beams without foundation. Similarly, the free vibration response of the 
structure is given by Eq. (10.34). However, from Eq. (10.36), the natural frequencies asso-
ciated with each mode for the present type of structure are given by 
 

 ( ) ( )4 4
0 ( 1,2,...)j j fL k L EI jω ω β= + =  (10.37) 

where  
 4

0 EI mLω =  (10.38) 
 
Comparing Eq. (10.37) with Eq. (10.30) we see that the effect of the presence of the elastic 
foundation is to raise the natural frequencies of the beam. In addition, if we consider a beam 
with free-free edges, such as that of Example 10.10, we see that the added constraints im-
posed by the foundation render the rigid body mode (β = 0) bounded and oscillatory 
( 0)RBω ≠ , as may be anticipated on physical grounds. Thus, a beam on an elastic founda-
tion that possesses the same material properties and the same boundary conditions as its 
counterpart without the foundation will freely vibrate in the same forms as its less con-
strained counterpart, but at higher natural frequencies. 
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10.4  FREE VIBRATION OF EULER-BERNOULLI BEAM-COLUMNS  

In this section we consider the free vibrations of uniform Euler-Bernoulli beam-columns. 
These are beams for which the geometrically nonlinear term in the strain-displacement rela-
tion, Eq. (9.36), is retained. This causes the membrane force to appear in the equation of 
motion as well, thus accounting for bending-stretching coupling effects. As discussed at the 
end of Section 9.7, the membrane force may be treated as constant when no body force acts 
on the structure in the axial direction. If we consider the case where the membrane force is 
compressive, N0 = −P0, then the structure is referred to as a beam-column and, from Eq. 
(9.160), the equation of motion is  
 

 
2 4 2

02 4 2 0w w wm EI P
t x x

∂ ∂ ∂+ + =
∂ ∂ ∂

 (10.39) 

 
As for the linear beam of the previous section, we seek a solution of the form of Eq. (10.28) 
and substitute that expression into Eq. (10.39). Doing this results in the eigenvalue problem 
defined by the differential equation 
 
 2

0 0EI W PW mWω′′′′ ′′+ − =  (10.40) 
 
To solve the above equation we proceed as for the linear Euler-Bernoulli beam problem and 
assume a solution of the form of Eq. (10.31). We then substitute that expression into Eq. 
(10.40) and solve the resulting equation for s. Summing solutions for each root gives the 
general form of the modal function for Euler-Bernoulli beam-columns as 
 
 1 2 3 4( ) cosh sinh cos sinW x A x A x A x A xα α β β= + + +  (10.41) 
 
where 
 ( )1

02 a P EIα ª º= −¬ ¼  (10.42) 

 
 ( )1

02 a P EIβ ª º= +¬ ¼  (10.43) 

and 

 ( ) ( )2 2
0 4a P EI m EIω= +  (10.44) 

 
The integration constants and the natural frequencies are found by imposing the boundary 
conditions for the particular structure in question on Eq. (10.41). Once the specific frequen-
cies are determined they may be substituted into Eq. (10.41) to evaluate the corresponding 
modal functions. Each frequency-modal function pair evaluated in this way yields a solu-
tion of the form of Eq. (10.28). The sum of these solutions, as per Eq. (10.4), is the free 
vibration response of the beam-column given by 
 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

w x t W x A tω φ
∞

=

= −¦  (10.45) 
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Example 10.11 
Consider the cantilevered beam-column subjected to a constant compressive load of 
magnitude P0 at its free end, as shown in Figure E10.11-1, where P0 is less than the 
critical static buckling load. (a) Determine the frequency equation, general form of 
the mode shapes and general free vibration response of the structure. (b) Assess the 
effects of the axial load on the natural frequencies of the structure. (c) Plot the first 
three modes for the case where the applied load is half the static buckling load. 
 
 
 
 
 
 
 
   Figure E10.11-1 
 
Solution 
(a) 
The boundary conditions for the beam-column follow from Eqs. (9.161)–(9.164) as 
 

 
0

(0, ) 0,     0
x

ww t
x =

∂= =
∂

 (a-1, 2) 

 

 
2 3

02 30,     0
x L x L

w w wEI EI P
xx x= =

ª º∂ ∂ ∂− = − + =« »∂∂ ∂¬ ¼
 (a-3, 4) 

 
Substituting Eq. (10.28) into the above conditions gives the corresponding boundary 
conditions for the modal functions as 
 
 (0) 0,     (0) 0W W ′= =  (b-1, 2) 
 
 0( ) 0,     ( ) ( ) 0W L EIW L PW L′′ ′′′ ′= + =  (b-3, 4) 
 
We next impose the modal boundary conditions, Eqs. (b-1)–(b-4), on Eq. (10.41). 
This gives the following system of algebraic equations for the integration constants: 
 
 1 3 0A A+ =  (c-1) 
 
 2 4 0A Aα β+ =  (c-2) 
 
 2 2 2 2

1 2 3 4cosh sinh cos sin 0A L A L A L A Lα α α α β β β β+ − − =  (c-3) 
 
 [ ] [ ]2 2

1 2 3 4sinh cosh sin cos 0A L A L A L A Lαβ α α α β β β+ + − =  (c-4) 
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The computations can be simplified somewhat by substituting Eqs. (c-1) and (c-2) 
into Eqs. (c-3) and (c-4) and writing the resulting equations in matrix form as 
 

 
2 2 2

1
2 2 2 3

2

0( cosh cos ) ( sinh sin )
0( sinh sin ) ( cosh cos )

AL L L L
AL L L L

α α β β α α αβ β
αβ α α β β αβ α α β

ª º  ½  ½+ + =® ¾ ® ¾« »− + ¯ ¿¯ ¿¬ ¼
 (d) 

 
For nontrivial solutions we require that the determinant of the matrix of coefficients 
in Eq. (d) vanish. This results in the frequency equation for the beam-column, 
 

( ) ( ) ( )2 4 4 2
02 cosh cos sinh sin 0m EI L L P EI L Lαω α α β α β α β α β+ + − =  � (e) 

 
which may be solved numerically to obtain the associated set of natural frequencies.  
 Solving the first of Eqs. (d) for A2 in terms of A1 and substituting the resulting 
expression, along with equations (c-1) and (c-2), into Eq. (10.41) gives the modal 
functions for the beam-column as 
 

( ){ }
( ) ( ){ }

( ) ( ) 2
1

2 2

( ) sinh sin cosh cos

                   cosh cos sinh sin

j j
j j j j j j j

j j j j j j j j

W x A L L x x

L L x x

α α α β β α β

α α β β α α β β

ª= + −¬
º− + − ¼

�

  ( 1, 2, )j = !  
where 
 ( )1

( ) ( ) 2
1 sinh sinj j

j j j j jA A L Lα α α β β= +
�

 ( 1, 2, )j = !   
 
and αj and βj correspond to the values of α and β, Eqs. (10.42) and (10.43), evaluat-
ed at the  jth natural frequency, ωj. Since its value is arbitrary, we shall set ( )

1 1jA = . 
The modal function for the beam-column is then  
 
 

{ } ( )
( ) ( ){ }

( )

2 2

2

( )

cosh cos
cosh cos sinh sin

sinh sin

j

j j j j
j j j j j j

j j j j j

W x

L L
x x x x

L L

α α β β
α β α α β β

α α α β β

=

+
− − −

+

 

    � (f) 
 
Substitution of Eq. (f) into Eq. (10.45) gives the free vibration response of the beam-
column as 
 

 ( ) ( )

1
( , ) ( ) cos( )j j

j j
j

w x t W x A tω φ
∞

=
= −¦  � (g) 

  
where W(j) is given by Eq. (f) and ωj is the jth root of Eq. (e). The modal amplitudes, 
A(j), and corresponding phase angles, φj, depend on the specific initial conditions im-
posed on the structure. 
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(b) 
For a cantilevered beam-column, the critical load is 
  

 
2

24crP EI
L

π=  

 
We thus consider applied loads, P0, for which 
 

 
2

0
2 ( 1)

4
P
EI L

πλ λ= <     (h) 

 
where λ (< 1) is a constant. The frequency equation, Eq. (e), can now be rewritten in 
the form  
 

 
( ) ( ) ( )

( ) ( )( )

2 4 4
0

2 2

2 cosh cos

                                  4 sinh sin 0

L L L L L L

L L L L

α ω ω α α β α β

α β λπ α β

ª º+ +¬ ¼

− =
  (i) 

 
with 

 ( )2 21
2 4L aLα λπª º= −¬ ¼  (j-1) 

 

 ( )2 21
2 4L aLβ λπª º= +¬ ¼  (j-2) 

and 

 ( ) ( )2 22 2
04 4aL λπ ω ω= +  (j-3) 

 
The first three roots of Eq. (i) are evaluated for a range of values of λ using the 
MATLAB routine “fzero.” The results are summarized in Table E10.11. It is seen that 
the compressive load makes the structure more flexible. (Conversely, a tensile load 
makes the structure stiffer – that is, it makes it more resistant to bending.) We also 
remark that for compressive loads greater than or equal to the static buckling 
load ( 1)λ ≥ , the branch corresponding to the first natural frequency disappears. 
 

    Table E10.11  
The first three natural frequencies of a cantilevered beam-column for various values of the axial 
loading parameter. 

 λ 1 0ω ω  2 0ω ω  3 0ω ω  
0 3.516 22.03 61.70 

0.005 3.508 22.03 61.69 
0.01 3.500 22.02 61.68 
0.05 3.433 21.94 61.62 
0.10 3.348 21.85 61.54 
0.20 3.168 21.67 61.39 
0.50 2.535 21.11 60.92 
0.99 0.3662 20.15 60.15 
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(c) 
The first three natural modes of an elastic beam-column are displayed in Figure 
E10.11-2, for the case where the applied load is half the static buckling load. 
 
 

   
 Figure E10.11-2  The first three modes for a cantilevered beam-column with λ = 0.5. 

 
 
 
 

10.5 FREE VIBRATION OF RAYLEIGH BEAMS 

Rayleigh beam theory adds a correction to Euler-Bernoulli beam theory to account for the 
effects of rotatory inertia on the motion of a beam. The governing equation for free vibra-
tion of Rayleigh beams (Section 9.6.4) is obtained by letting the right-hand side of Eq. 
(9.115) vanish. In this section we consider the motion of uniform Rayleigh beams (beams 
whose material and geometric properties are invariant throughout the length of the beam). 
The corresponding equation of motion is then 
 

 
2 4 4

2 2 2 4 0w w wm I EI
t x t xρ

∂ ∂ ∂− + =
∂ ∂ ∂ ∂

 (10.46) 

 
where Iρ = ρI is the mass moment of inertia of the cross section. All other parameters are 
the same as those for Euler-Bernoulli beams. We remark that, for the general analysis of 
Section 10.1, u(x,t) → w(x,t), U(x) → W(x)  and 
 

 
2

2m I
xρ

∂= −
∂

m  

0 0.2 0.4 0.6 0.8 1
0

2

0 0.2 0.4 0.6 0.8 1
−2

0

2

0 0.2 0.4 0.6 0.8 1
−2

0

2

(1) 

W (2) 

W 
(3) 

x/L 

W 

www.konkur.in



10│ Free Vibration of One-Dimensional Continua 577 

 
For free vibrations, we seek solutions of the form 
 
 ( , ) ( ) i tw x t W x e ω=  (10.47) 
 
Substituting the assumed form of the response, Eq. (10.47), into the equation of motion, Eq. 
(10.46), results in the eigenvalue problem defined by the differential equation 
 
 ( )2 2 2 0GW W r Wϖ ϖ′′′′ ′′+ − =  (10.48) 
where 
 2 2 2

acϖ ω≡  (10.49) 
 
 2

ac E ρ=  (10.50) 
from Eq. (10.16),  
 2

Gr I A=  (10.51) 
 
is the radius of gyration of the cross section and ρ is the mass density. A comparison of Eq. 
(10.48) with Eq. (10.40) shows that the eigenvalue problem for Rayleigh beams is governed 
by the same equation as that for Euler-Bernoulli beam-columns, with suitable changes in 
parameters. We could therefore write the solution directly from Eq. (10.41). However, to 
keep the section self contained, it is useful to establish the solution once again. Hence, we 
assume a solution of the form 
 
 ( ) sxW x Ae=  (10.52) 
 
and substitute the above form into Eq. (10.48). This results in the characteristic equation 
 
 ( )4 2 2 2 2 0Gs s rϖ ϖ+ − =  (10.53) 
 
which yields the roots 
 ,s iα β= ± ±  (10.54) 
where 
 ( 1) 2Rα ϖ= −  (10.55) 
 
 ( 1) 2Rβ ϖ= +  (10.56) 
and 

 ( )2 21 4 GR rϖ= +  (10.57) 

 
Each root corresponds to a solution to Eq. (10.48) of the form of Eq. (10.52). Summing all 
four solutions and employing the trigonometric identities introduced in Section 1.4 gives 
the general form of the modal functions for uniform Rayleigh beams as 
 
 1 2 3 4( ) cosh sinh cos sinW x A x A x A x A xα α β β= + + +  (10.58) 
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Note the similarity with the modal functions for Euler-Bernoulli beams and beam-columns. 
The integration constants and the natural frequencies are found by imposing the boundary 
conditions for the particular structure in question on Eq. (10.58). Once the specific frequen-
cies are determined they may be substituted into Eq. (10.58) to evaluate the corresponding 
modal functions. Each frequency-mode pair evaluated in this way yields a solution of the 
form of Eq. (10.47). The sum of these solutions, as per Eq. (10.4), corresponds to the free 
vibration response of the beam-column given by 
 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

w x t W x A tω φ
∞

=

= −¦  (10.59) 

  

Example 10.12 
Consider a uniform cantilevered elastic beam and its representation using Rayleigh 
beam theory (Figure E10.12). (a) Determine the frequency equation for a uniform 
beam that is supported at its left end. (b) Evaluate the first five values of the natural 
frequency of the beam for various values of the rotatory inertia (expressed in terms 
of its radius of gyration) and compare the results with those computed in Example 
10.7 using Euler-Bernoulli beam theory.  

 
   Figure E10.12 
Solution 
(a) 
The boundary conditions for a beam that is fixed at the origin and is completely free 
at x = L follow from Eqs. (9.116)–(9.119) as 
 

  
0

(0, ) 0,     0
x

ww t
x =

∂= =
∂

 (a-1, 2) 

 

 
2 3 3

2 3 20,     0
x L x L

w w wEI EI I
x x t xρ

= =

ª º∂ ∂ ∂− = − − =« »∂ ∂ ∂ ∂¬ ¼
 (a-3, 4) 

 
Substituting Eq. (10.47) into the above conditions gives the corresponding boundary 
conditions for the modal functions, 
 
 (0) 0,     (0) 0W W ′= =  (b-1, 2) 
 
 2( ) 0,     ( ) ( ) 0W L W L W Lϖ′′ ′′′ ′= + =  (b-3, 4) 
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Note that since the rotatory inertia is included in the present model, the frequency 
appears in the boundary condition for shear, Eq. (b-4), through the parameter ϖ. Im-
posing conditions (b-1)–(b-4) on Eq. (10.58) results in the system of algebraic equa-
tions for the integration constants given by 
 
 1 3 0A A+ =  (c-1) 
 
 2 4 0A Aα β+ =  (c-2) 
 
 2 2 2 2

1 2 3 4cosh sinh cos sin 0A L A L A L A Lα α α α β β β β+ − − =  (c-3) 
 
 [ ] [ ]2 2

1 2 3 4sinh cosh sin cos 0A L A L A L A Lαβ α α α β β β+ + − =  (c-4) 
 
The ensuing computations are simplified somewhat by substituting Eqs. (c-1) and (c-
2) into Eqs. (c-3) and (c-4) and writing the resulting equations in matrix form as 
 

 
2 2 2

1
2 2 2 3

2

0( cosh cos ) ( sinh sin )
0( sinh sin ) ( cosh cos )

AL L L L
AL L L L

α α β β α α αβ β
αβ α α β β αβ α α β

ª º  ½  ½+ + =® ¾ ® ¾« »− + ¯ ¿¯ ¿¬ ¼
 (d) 

 
For nontrivial solutions we require that the determinant of the matrix of coefficients 
in Eq. (d) vanish. This results in the frequency equation for the Rayleigh beam, 
 

 ( )
2

4 4 2 2
22 cosh cos sinh sin 0

G

L L L L
r
ϖα α α β α β α βϖ α β+ + − =  � (e) 

 
Equation (e) may be solved numerically to obtain the set of natural frequencies for 
the Rayleigh beam. The modal functions for the beam are then  
 

{ } ( )
( ) ( ){ }

( )

2 2

2

( )

cosh cos
cosh cos sinh sin

sinh sin

j

j j j j
j j j j j j

j j j j j

W x

L L
x x x x

L L

α α β β
α β α α β β

α α α β β

=

+
− − −

+

    ( 1, 2,...)j = � (f) 
 
where αj and βj correspond to the values of α and β, Eqs. (10.55) and (10.56), evalu-
ated at the jth natural frequency, ωj. Substitution of Eq. (f) into Eq. (10.59) gives the 
free vibration response of the cantilevered Rayleigh beam as 
 

 ( ) ( )

1
( , ) ( ) cos( )j j

j j
j

w x t W x A tω φ
∞

=
= −¦  � (g) 

  
where W(j) is given by Eq. (f) and ωj is the jth root of Eq. (e). The modal amplitudes, 
A(j), and corresponding phase angles, φj, depend on the specific initial conditions im-
posed on the beam. 
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(b) 
The frequency equation for the cantilevered beam, Eq. (e), can be rewritten in a form 
convenient for computation by multiplying it by L5 and grouping terms accordingly. 
Doing this renders the frequency equation to the form  
 

( ) ( ) ( )4 4 22 2 22 cosh cos sinh sin 0GL L L L L L L L r L Lα ω α α β α β α β ω α βª º+ + − =¬ ¼
  (h) 
where 
 0ω ω ω=  (i-1) 
 
 G Gr r L=  (i-2) 
 
 ( )1 2GL r Rα ω= −  (j-1) 
 
 ( )1 2GL r Rβ ω= +  (j-2) 
 
 2 41 4 GR rω − −= +  (j-3) 

 
The first five natural frequencies of the cantilevered Rayleigh beam, the first five 
roots of Eq. (h), are evaluated using the MATLAB “fzero” routine for various values of 
the normalized radius of gyration. The results are tabulated in Table E10.12 and are 
compared with the first five natural frequencies computed using Euler-Bernoulli 
beam theory ( 0)Gr =  as per Example 10.7.  It is seen that the rotatory inertia influ-
ences the higher modes significantly, within the range of inertias considered.  

 
 
     Table E10.12 

The first five natural frequencies of a uniform cantilevered Rayleigh beam for various values 
of rotatory inertia (radius of gyration). 
 

G Gr r L=  1 0ω ω  2 0ω ω  3 0ω ω  4 0ω ω  5 0ω ω  
 0.000*  3.516*   22.03*   61.70*   120.8*       199.7* 

0.010 3.515 22.00 61.46 120.0 197.6 

0.050 3.496 21.19 56.48 103.8 159.7 

0.100 3.437 19.14 46.49 78.21 111.8 

0.150 3.344 16.75 37.81 60.20 82.92 

0.200 3.226 14.58 31.38 48.27 65.15 
*Euler-Bernoulli theory 
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10.6  FREE VIBRATION OF TIMOSHENKO BEAMS 

In this section we discuss the vibration of Timoshenko beams when moving under their 
own volition. Recall from Section 9.6.5 that Timoshenko beams include a correction for 
transverse shear deformation in an average sense through the thickness and also include the 
effects of rotatory inertia as for Rayleigh beams. Beams that include the correction for 
transverse shear but not the effects of rotatory inertia are referred to as shear beams.  
 Timoshenko beams and shear beams differ from Euler-Bernoulli beams and Rayleigh 
beams in that there is an additional set of degrees of freedom corresponding to the shear 
deformations. Two of the three displacement measures (transverse displacement, rotation 
due to bending, and distortion due to shear deformation) are independent. We shall use the 
transverse displacement, w(x,t), and the cross-sectional rotation due to bending, ϕ(x,t), to 
describe the motion of the beam. For free vibrations, the governing equations for Timo-
shenko beams, Eq. (9.135), reduce to the form 
 

 
2

2t
∂ + =
∂

0um ku  (10.60) 

where 

 
0

0
m

Iρ

ª º
= « »
¬ ¼

m  (10.61) 

 

 
s s

s s

k k
x x x

k k EI
x x x

∂ ∂ ∂ª º−« »∂ ∂ ∂= « »
∂ ∂ ∂« »− −« »∂ ∂ ∂¬ ¼

k  (10.62) 

 

 
( , )
( , )

w x t
x tϕ

 ½= ® ¾
¯ ¿

u  (10.63) 

 
and, recalling Eq. (9.129), 
 
 sk AG= k  (10.64) 
 
where k is a shape factor (see Section 9.6.5). For free vibrations we seek solutions to Eq. 
(10.60) of the form 
 
 ( , ) ( ) i tx t x e ω=u U  (10.65) 
where 

 
( )

( )
( )

W x
x

xϑ
 ½= ® ¾
¯ ¿

U  (10.66) 

 
Substitution of Eq. (10.65) into Eq. (10.60) gives the corresponding eigenvalue problem 
 
 2ωª º− =¬ ¼ 0k m U  
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or, in explicit form, 
 

 

2
2

2

2
2

2

( ) 0
( ) 0

s s

s s

d dk m k
dxdx W x

xd dk k EI I
dx dx ρ

ω

ϑ
ω

ª º§ ·
− +« »¨ ¸

 ½  ½© ¹« » =® ¾ ® ¾« »§ · ¯ ¿ ¯ ¿« »− − −¨ ¸« »© ¹¬ ¼

 (10.67) 

 
which, after expanding, yields the coupled equations 
  

 
2

2

0

( ) 0
s s

s s

k W mW k
k W EI k Iρ

ω ϑ
ϑ ω ϑ

′′ ′− − + =
′ ′′− − + − =

 (10.68) 

 
To solve the above system let us assume a solution of the form 
 

 ( ) sx sxA
x e e

B
 ½= = ® ¾
¯ ¿

U A  (10.69) 

 
Substitution of Eq. (10.69) into Eq. (10.67) gives the algebraic equation 
 

 
2 2

2 2

( )
( )

s s sx

s s

k s m k s A
e

k s k EIs I Bρ

ω
ω

ª º− +  ½
« » ® ¾− − −« » ¯ ¿¬ ¼

0
0
 ½= ® ¾
¯ ¿

 (10.70) 

 
For nontrivial solutions we require that the determinant of the square matrix in the above 
equation vanish. This results in the characteristic equation for s, 
 
 ( ) ( )4 2 2 2 2 21 0Gs E s E rϖ ϖ ϖ −+ + + − =  (10.71) 

where 

 EE
G

=
k

 (10.72) 

 
and ϖ and rG are as defined in Eqs. (10.49) and (10.51) respectively. Solving Eq. (10.71) 
for s gives the roots 
 
 ,s iα β= ± ±  (10.73) 
where 

 { }
1

21
2 (1 )R Eα ϖ ª º= − +¬ ¼  (10.74) 

 

 { }
1

21
2 (1 )R Eβ ϖ ª º= + +¬ ¼  (10.75) 

 

 ( ) ( )2 2 21 4 GR E rϖ= − +  (10.76) 

www.konkur.in



10│ Free Vibration of One-Dimensional Continua 583 

Note that for infinite shear modulus 0E → , and the characteristic equation and the param-
eters α, β and R reduce to the corresponding expressions for Rayleigh beams, as they 
should. Substituting each root back into Eq. (10.69) and summing all such solutions gives 
the general form of the modal functions as 
 
 * * * *

1 2 3 4( ) x x i x i xW x A e A e A e A eα α β β− −= + + +  (10.77) 
 
 * * * *

1 2 3 4( ) x x i x i xx B e B e B e B eα α β βϑ − −= + + +  (10.78) 
 
The constants of integration of the modal rotation, ϑ(x), are related to the constants of inte-
gration of the associated modal deflection, W(x), through Eq. (10.70). Since the matrix of 
coefficients was rendered singular, both rows of that matrix equation yield the same infor-
mation. From the first row we find that 
  

 
2

* *EB s A
s

ϖ§ ·
= +¨ ¸
© ¹

 (10.79) 

 
Evaluating Eq. (10.79) for each root of the characteristic equation for s gives the corre-
sponding relations 

 
2

* *
1,2 1,2

EB Aϖα
α

§ ·
= ± +¨ ¸

© ¹
 (10.80) 

and 

 
2 2

* * 2 *
3,4 3,4 3,4

iE EB i A e Aπϖ ϖβ β
β β

±§ · § ·
= ± − = −¨ ¸ ¨ ¸

© ¹ © ¹
 (10.81) 

 
Substituting Eqs. (10.80) and (10.81) into Eq. (10.78) gives the modal rotation as 
 

 ( ) ( ) ( ) ( )2 22 2 * * 2 2 * *
1 2 3 4

1 1( ) i x i xx xx E A e A e E A e A eβ π β πα αϑ α ϖ β ϖ
α β

+ − +− ª ºª º= + − + − +¬ ¼ ¬ ¼  

  (10.82) 
 
Using Eqs. (1.61) and (1.63) in Eqs. (10.77) and (10.82) renders the modal functions to the 
forms 
 
 1 2 3 4( ) cosh sinh cos sinW x A x A x A x A xα α β β= + + +  (10.83) 
and 
 [ ] [ ]1 2 3 4( ) sinh cosh sin cosx g A x A x g A x A xα βϑ α α β β= + − −  (10.84) 
 
where 

 ( ) ( )2 2 2 21 1 ,     g E g Eα βα ϖ β ϖ
α β

= + = −  (10.85) 

and 
 ( )* * * * * * * *

1 1 2 2 1 2 3 3 4 4 3 4,   ,   ,   A A A A A A A A A A i A A= + = − = + = −  (10.86) 
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The remainder of the analysis proceeds as for the free vibration analysis of Euler-Bernoulli 
beams, etc. and depends upon the particular support conditions imposed on the structure. 
Once the natural frequencies are obtained they are substituted into Eqs. (10.83) and (10.84) 
for each mode. The general response is then found by substituting the modes and corre-
sponding frequencies into Eq. (10.65) and summing over all such solutions. The free vibra-
tion response of the Timoshenko beam is then 
 

 
( )

( )
( )

1

( , ) ( )
( , ) cos( )

( , ) ( )

j
j

j jj
j

w x t W x
x t A t

x t x
ω φ

ϕ ϑ

∞

=

 ½ ½ ° °= = −® ¾ ® ¾
° °¯ ¿ ¯ ¿

¦u  (10.87) 

 
 

Example 10.13 
Consider a uniform cantilevered elastic beam and its representation using Timoshen-
ko beam theory (Figure E10.13). (a) Determine the frequency equation and modal 
functions for a uniform beam that is supported at its left end. (b) Evaluate the first 
five values of the natural frequency of a beam with 0.1Gr L = , for various values of 
the  modulus ratio 0.1E G =k . Compare the results with those computed in Exam-
ple 10.12 using Rayleigh beam theory. 
 
 
 
 
 
 
 
 
   Figure E10.13 
 
Solution 
(a) 
The boundary conditions follow from Eqs. (9.140)–(9.143) as 
 
  (0, ) 0,     (0, ) 0w t tϕ= =  (a-1, 2) 
 

 0,     0s
x L x L

wEI k
x x
ϕ ϕ

= =

∂ ∂ª º− = − =« »∂ ∂¬ ¼
 (a-3, 4) 

 
Substitution of Eq. (10.65) into Eqs. (a-1)–(a-4) gives the corresponding boundary 
conditions for the modal functions, 
 
 (0) 0,     (0) 0W ϑ= =  (b-1, 2) 
 
 ( ) 0,     ( ) ( ) 0L W L Lϑ ϑ′ ′= − =  (b-3, 4) 
 
We next impose Eqs. (b-1)–(b-4) on the general form of the modal functions given 
by Eqs. (10.83) and (10.84). This gives the set of algebraic equations  
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 1 3 0A A+ =  (c-1) 
 
 2 4 0g A g Aα β+ =  (c-2) 
 
 [ ] [ ]1 2 3 4cosh sinh cos sin 0g A L A L g A L A Lα βα α α β β β+ − + =  (c-3) 
 
 [ ] [ ]1 2 3 4( ) sinh cosh ( ) sin cos 0g A L A L g A L A Lα βα α α β β β− + − − − =  (c-4) 
 
where gα and gβ are given by Eqs. (10.85). Substituting Eqs. (c-1) and (c-2) into Eqs. 
(c-3) and (c-4) simplifies the calculation and gives two algebraic equations in the 
two constants A1 and A2. The equations are expressed in matrix form as 
 

 11 12 1

21 22 2

0
0

H H A
H H A
ª º  ½  ½=® ¾ ® ¾« »

¯ ¿¬ ¼ ¯ ¿
 (d) 

where 
 11 cosh cosH g L g Lα βα α β β= +  (e-1) 
 
 ( )12 sinh sinH g L Lα α α β β= +  (e-2) 
 
 21 ( )sinh ( )sinH g L g Lα βα α β β= − + −  (e-3) 
 
 22 ( ) cosh ( )( ) cosH g L g g g Lα β α βα α β β= − − −  (e-4) 
 
Now, for nontrivial solutions the determinant of the matrix of coefficients of Eq. (d) 
must vanish. This results in the frequency equation, 
 
 11 22 12 21( ; ) 0E H H H Hϖ = − =�  (f) 
  
which, after expanding, takes the form 
 

 
( ) ( )

( )

2 2 212 cosh cos

                                          2 sinh sin 0

g E g g g g L L
g

g g g L L

α β α α β
β

α α β

ϖ β α α β α β

αβ β α α β

ª º− + − − −¬ ¼

ª º− − + =¬ ¼

 (f') 

 
Equation (f) may be solved numerically for ϖ, for given material and geometric pa-
rameters. Then, for each root ϖj (j = 1, 2, …) of the frequency equation, the natural 
frequencies are found from Eq. (10.49) as 
  
  ( 1,2,...)j j ac jω ϖ= =  (g) 
 
The first row of Eq. (d) gives A2 in terms of A1 as 
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 11
2 1

12

HA A
H

= −  (h) 

 
Now, substituting Eq. (h) into Eq. (c-2) gives A4 in terms of A1. Hence,  
 

 11
4 1

12

g H
A A

g H
α

β

=  (i) 

  
Incorporating Eqs. (c-1), (h) and (i) into Eqs. (10.83) and (10.84) gives the modal 
functions for the cantilevered Timoshenko beam in the form 
 

 ( ){ }
( )

( ) ( ) ( ) ( )11
1 ( )

12

( ) cosh cos sinh sin
j

j j j j
j j j jj

HW x A x x x g g x
H α βα β α β

ª º
= − − −« »

¬ ¼
 � (j-1) 

    ( 1, 2, )j = !  

 { }
( )

( ) ( ) ( ) ( ) ( ) 11
1 ( )

12

( ) sinh sin cosh cos
j

j j j j j
j j j jj

Hx A g x g x g x x
Hα β αϑ α β α β

ª º
= + − −« »

¬ ¼
 � (j-2) 

 
where we will choose ( )

1 1jA =  when 1R E> +  and ( )
1

jA i=  when 1R E< + . 
 
(b) 
The frequency equation, Eq. (f), can be rewritten in a form convenient for computa-
tion by multiplying the first row of Eq. (d) by L2 and the second row by L and noting 
that 

 { }
1

21
2 (1 )GL r R Eα ω ª º= − +¬ ¼  (k-1) 

 

 { }
1

21
2 (1 )GL r R Eβ ω ª º= + +¬ ¼  (k-2) 

 

 ( ) ( )2 2 41 4 GR E rω= − +  (k-3) 

where 
 0ω ω ω=  (l-1) 
 
 4

0 EI mLω =  (l-2) 
and 
 G Gr r L=  (m) 
 
The first five roots of the frequency equation are computed for various values of 
E using the MATLAB routine “fzero.” The results are summarized in Table E10.13. 
It is seen that the inclusion of transverse shear deformation lowers the predicted nat-
ural frequencies of the structure and that the effects are significant for frequencies 
other than the fundamental frequency, even for moderate values of the modulus ra-
tio. It is also seen that the fundamental frequency predicted when the shear defor-
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mation is neglected (Rayleigh theory) differs from that predicted by the Timoshenko 
theory by 20% when the elastic modulus is larger than the effective shear modulus 
by a factor of ten. The data for the case study of a uniform cantilevered beam, con-
tained in Tables E10.12 and E10.13, when taken together, provides a characteriza-
tion of the influence of rotatory inertia and shear deformation.  
 
 
   Table E10.13 
The first five natural frequencies of a uniform cantilevered Timoshenko beam with 0.1Gr = , 
for various values of the modulus ratio   

E E G= k     1 0ω ω     2 0ω ω     3 0ω ω      4 0ω ω     5 0ω ω  
       0.0*     3.437*     19.14*     46.49*      78.21*     111.8* 
       0.1     3.430     18.92     45.73      76.73     109.7 
       1.0     3.366     17.23     39.79      64.35     89.89 
       5.0     3.116     12.90     27.41      40.38     50.75 
     10.0     2.864     10.48     21.46      30.52     37.29 
*Rayleigh theory 

 
 
 
 

10.7  NORMALIZATION OF THE MODAL FUNCTIONS 

It was seen in Section 10.1 that the modal functions are unique to within a constant multi-
plier. In prior sections we implicitly set the constant equal to one. To alleviate this arbitrari-
ness, and to allow for a uniform measure of the modal functions, we may choose to normal-
ize the modal functions in a fashion that is analogous to that used for discrete modal vec-
tors. That is, we shall divide the modal functions by their magnitudes, thus rendering them 
unit functions. As for the discrete case, this may be done in the conventional sense or in the 
weighted sense as delineated below. 
 

Conventional Scalar Product as Metric 
To render a modal function a unit function (a function of unit magnitude) in the conven-
tional sense, we divide the function by its magnitude as measured by the square root of its 
conventional scalar product with itself. Thus, when defined in this manner, the correspond-
ing normal mode is related to the original modal function by the relation 
 

 
( ) ( )

( )
( ) ( ) ( )

( ) ( )( )
( ) ,

j j
j

j j j

x xx
x

= =U UU
U U U

 (10.88) 

 
where, from Eq. (9.19), the conventional scalar product of the original modal function with 
itself is given by 

 2( ) ( ) ( )

0
, ( )

L
j j j x dx= ³U U U  (10.89) 
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It is customary to drop the over-bar when consistently using normal modes. 
 

Weighted Scalar Product as Metric 
It is often convenient to choose the weighted scalar product to provide the metric (i.e., 
“length scale”) of a function. If this is done, then the corresponding normal mode is given 
by 

 
( ) ( )

( )
( ) ( ) ( )

( ) ( )( )
,

j j
j

j j j

x xx = =U UU
U U Um m

 (10.90) 

 
where, from Eq. (9.29), the scalar product of the modal function with itself, measured with 
respect to the mass operator m, is given by 
  

 ( ) ( ) ( ) ( )

0
, ( ) ( )

L
j j j jx x dx= ³U U U U

m
m  (10.91)  

 
As for the conventional case discussed earlier, it is customary to drop the over-bar when 
consistently using normal modes.  
 
 
 

Example 10.14 
Determine the normal modes for the elastic rod of Example 10.1, (a) by normalizing 
in the conventional sense and (b) by normalizing with respect to the mass. 
 
Solution 
From Example 10.1, the modal functions for the rod are 
 
 ( ) ( )

2( ) sin    ( 1, 2,...)j j
jU x A x jβ= =  (a) 

(a) 
We first compute the magnitude of the jth modal function. Hence, 
 

 
( )22( ) ( )2 ( )2 2 2

2
0 0

( ) sin
2

jL L
j j j

j
A LU U x dx A x dxβ= = =³ ³  (b) 

 
We next divide the modal function of Eq. (a) by its magnitude to obtain the jth nor-
mal mode, 

 
( )
2( )

( )2
2

sin 2( ) sin
2

j
jj

jj

A x
U x x

LA L

β
β= =  �  (c) 

 
(b) 
Computing the magnitude of the jth modal function using the weighted scalar product 
gives 
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( )22( ) ( ) ( ) ( )2 2 2

2
0 0

( ) ( ) sin
2

jL L
j j j j

jm

A mLU U x mU x dx A m x dxβ= = =³ ³  (d) 

 
The jth normal mode is then 
 

 
( )
2( )

( )2
2

sin 2( ) sin
2

j
jj

jj

A x
U x x

mLA mL

β
β= =  � (e) 

 
 
 
 

10.8 ORTHOGONALITY OF THE MODAL FUNCTIONS 

The modal functions for a given system correspond to fundamental motions that constitute 
the response of that system. It will be seen that any motion, forced or free, can be described 
as a linear combination of the modal functions. To establish this we must first establish the 
mutual orthogonality, as defined in Section 9.1.2, of the modal functions for the systems of 
interest. In particular, we shall consider the class of one-dimensional continua that includes 
the mathematical models for longitudinal motion of elastic rods, torsional motion of elastic 
rods, transverse motion of flexible strings and cables, transverse motion of Euler-Bernoulli 
beams and beam-columns, Rayleigh beams and Timoshenko beams. 
 
  

10.8.1 Systems Whose Mass Operators Are Scalar Functions 

In this section we establish the general condition of orthogonality of the modal functions for 
continuous systems whose mass operator corresponds to a single scalar function of the spa-
tial coordinate. These systems include the mathematical models for longitudinal motion of 
elastic rods, torsional motion of elastic rods, transverse motion of strings and cables, and 
transverse motion of Euler-Bernoulli beams. 
  

Systems Described by a Smooth Mass Distribution 
To establish the conditions for the mutual orthogonality of the modal functions for the class 
of systems under consideration we proceed in a manner analogous to that which was done 
in Section 7.3.2 for discrete systems.  
 It was seen in Section 10.1 that the general free-vibration problem is reduced to find-
ing the frequency-mode pairs that satisfy the eigenvalue problem defined by Eq. (10.3). Let 
us consider the lth and jth natural frequencies and corresponding modal functions 
 
 2 ( ) 2 ( ), ( )   and    , ( )l j

l jx xω ωU U  
 
Each pair represents a solution to Eq. (10.3). Therefore 
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 ( ) 2 ( )( ) ( )l l
lx xω=U Uk m  (10.92) 

and 
 ( ) 2 ( )( ) ( )j j

jx xω=U Uk m  (10.93) 
 
Let us multiply Eq. (10.92) by U(j)(x)dx and Eq. (10.93) by U(l)(x)dx. Integrating the result-
ing expressions over [0, L] results in the identities 
 

 ( ) ( ) 2 ( ) ( )

0 0

L L
j l j l

ldx dxω=³ ³U U U Uk m  (10.94) 

and 

 ( ) ( ) 2 ( ) ( )

0 0

L L
l j l j

jdx dxω=³ ³U U U Uk m  (10.95) 

 
Subtracting Eq. (10.95) from Eq. (10.94) gives 
 

 ( ) ( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

0 0 0 0

L L L L
j l l j j l l j

l jdx dx dx dxω ω− = −³ ³ ³ ³k k m mU U U U U U U U  

  (10.96) 
where 

 ( ) ( ) ( ) ( ) ( )

0 0

L L
jl j l l jB dx dx≡ −³ ³U U U Uk k k  (10.97) 

 
will depend on the boundary conditions for the modal functions. The development to this 
point applies to systems with differential mass operators as well as scalar function mass 
operators. In the remainder of this section we restrict our attention to systems whose mass 
operators are single scalar functions. More complex systems are considered in Sections 
10.8.4 and 10.8.5. 
 For systems whose mass operator is given by a smooth scalar function, m = m(x), Eq. 
(10.96) reduces to the form 
 

 ( )( ) 2 2 ( ) ( )

0
( ) ( ) ( )

L
jl j l

l jB x m x x dxω ω= − ³k U U  (10.98) 

 
where ( )jlBk is defined by Eq. (10.97). Therefore, if 
 
    ( ) 0jlB =k  (10.99) 
 
then, for distinct frequencies ( 2 2

l jω ω≠ ),  
 

 ( ) ( ) ( ) ( )

0
, ( ) ( ) ( ) 0

L
l j l j

m
x m x x dx≡ =³U U U U  (10.100) 

and 
 ( ) ( )( ) ( )l j

m
x x⊥U U  
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It follows from Eq. (10.94) that if Eq. (10.100) holds then 
 

 ( ) ( ) ( ) ( )

0
, 0

L
l j l j dx≡ =³U U U U

k
k  (10.101) 

and 
 ( ) ( )( ) ( )l jx x⊥U U

k

 

 
as well. The question of mutual orthogonality of the modal functions is thus reduced to 
demonstrating that the boundary conditions for a given system satisfy Eq. (10.99). 
  

Continuous Systems with One or More Concentrated Mass Points 
The conditions for, and statements of, orthogonality described above hold equally well for 
one-dimensional continua that are described by a smooth mass distribution except at one or 
more isolated points, and require only minor differences in representation and interpreta-
tion. To demonstrate this, consider a continuous structure such as a rod or beam whose 
mass distribution is smooth except at a single point, say at x = L, where the mass at that 
point is .m  This situation corresponds to a smooth structure with a point mass attached to 
its edge (Figure 10.6). For this case the mass operator may be expressed in the form 
 
 ( ) ( ) ( )x m x x Lδ= = + −

�
mm m  (10.102) 

 
where m(x) is the mass distribution of the structure on 0 < x < L and ( )xδ

�
 is the Dirac delta 

function (see Chapter 4). Substitution of  Eq. (10.102) into Eq. (10.100) gives the evalua-
tion of the scalar product and corresponding statement of orthogonality for a structure pos-
sessing a point mass as 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0
, ( ) ( ) ( ) ( ) 0

L L
l j l j l j l jx dx m x dx L L≡ = + =³ ³ m

m
U U U m U U U U U  

  (10.103) 
 
Thus, for such situations, all prior discussions concerning the conditions of orthogonality 
hold, with the scalar product taken with respect to the mass distribution being interpreted in 
this sense. Similar statements may be made if the concentrated mass is located at an interior 
point of the structure. 
 
 

 
          Figure 10.6  Smooth structure with attached mass. 
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 The above development is applied to second order systems and to Euler-Bernoulli 
beams and beam-columns in Sections 10.8.2 and 10.8.3. The conditions for, and interpreta-
tion of, the mutual orthogonality of the modes for systems with more complex mass opera-
tors, specifically Rayleigh beams and Timoshenko beams, are developed separately in Sec-
tions 10.8.4 and 10.8.5.  
 

10.8.2  Second Order Systems 

In this section we examine the mutual orthogonality of the modal functions corresponding 
to the longitudinal motion of elastic rods, torsional motion of elastic rods and transverse 
motion of flexible strings and cables. In each case, the mass operator is a scalar function of 
the axial coordinate, and the weighted scalar product with respect to the stiffness operator is 
of the form 

 
( )

( ) ( ) ( )

0 0
( )

lL L
j l j d ddx k x dx

dx dx
= −³ ³ UU U Uk  (10.104) 

 
Integrating by parts twice gives the relation 
 

 ( ) ( ) ( ) ( ) ( )

0 0

L L
j l l j jldx dx B= −³ ³U U U U kk k  (10.105) 

where 

 
( ) ( )

( ) ( ) ( )

0 0

L L
l j

jl j ld dB k k
dx dx

ª º ª º ½  ½
= −« » « »® ¾ ® ¾
« » « »¯ ¿ ¯ ¿¬ ¼ ¬ ¼

U UU Uk  (10.106) 

 
It follows from Eqs. (10.99) and (10.106) that the modal functions for the continuous sys-
tems under consideration are mutually orthogonal if the boundary conditions are such that 
the terms in brackets of Eq. (10.106) sum to zero. The problem of orthogonality is thus re-
duced to properties of the boundary conditions for a given system. We next examine these 
conditions for individual types of motion. 
 

Longitudinal Motion of Elastic Rods 
Let us recall from Section 9.3 that, for axial motion of elastic rods, u(x,t) → u(x,t), 
U(x) → U(x), k → ka = EA and m = m(x) = ρA. Let us also recall that the membrane force, 
N, is related to the displacement gradient as 
 

    a
u uN k EA
x x

∂ ∂= =
∂ ∂

 (10.107) 

 
Further, from our discussions in this chapter, the free vibration response is of the form 
 

 ( )

1

( , ) ( ) ji tj

j

u x t U x e ω
∞

=

=¦  (10.108) 
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It follows, upon substitution of Eq. (10.108) into Eq. (10.107), that 
 

 ( )

1

( , ) ( ) ji tj

j

N x t N x e ω
∞

=

=¦ �  (10.109) 

where 

 
( )

( ) ( )
j

j
a

dUN x k
dx

≡�  (10.110) 

 
will be referred to as the modal membrane force. Incorporating this identification into Eqs. 
(10.99) and (10.106) gives the condition for the mutual orthogonality of the modal func-
tions for longitudinal motion of elastic rods as 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) (0) (0) (0) (0) 0j l l j j l l jN L U L N L U L N U N Uª º ª º− − − =¬ ¼ ¬ ¼

� � � �  

  (10.111) 
 
It may be seen that Eq. (10.111) will be satisfied if, at each boundary, the work of the modal 
membrane force of the jth mode going through the deflections of the lth mode is equal to the 
work of the modal membrane force of the lth mode going through the deflections of the jth 
mode. It is readily seen that this condition is satisfied trivially for the homogeneous bounda-
ry conditions  
 (0) 0  or  (0) 0U N= =�  (10.112) 
and 
 ( ) 0  or  ( ) 0U L N L= =�  (10.113) 
 
In summary, if the boundary conditions of an elastic rod are such that Eq. (10.111) is satis-
fied, then the modal functions are orthogonal as follows: 
 

 ( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) ( ) 0    ( )

L
l j l j

l jm
U U U x m x U x dx ω ω= = ≠³  (10.114) 

 

 { }( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) 0    ( )

L
l j l j

l j
dU U U x EAU x dx
dx

ω ω′= = ≠³k
 (10.115) 

 
 

Example 10.15 
Consider the elastic rod with a concentrated mass at its free end discussed in Exam-
ple 10.2. Show that the modal functions for longitudinal motion of the rod are mutu-
ally orthogonal. 
 
Solution 
To establish the othogonality of the modal functions we must show that the bracket-
ed terms of Eq. (10.111) sum to zero. For the given support condition 
 
 U(0) = 0 (a) 
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so the second bracketed expression of Eq. (10.111) is seen to vanish identically. If 
we consider the concentrated mass to be part of the rod, as discussed at the end of 
Section 10.8.1, then the mass operator and distribution is given by Eq. (10.102). 
Viewing the structure in this sense, the boundary condition at the right of the point 
mass (at x L+= ) is then 
 
 ( ) 0N L+ =�  (b) 
 
The first bracketed expression of Eq. (10.111) is thus seen to vanish as well.  The 
modal functions are therefore mutually orthogonal with respect to the mass in the 
sense of Eq. (10.103), and are therefore orthogonal with respect to the stiffness oper-
ator in this sense as well. 
 Suppose, instead, that we had considered the rod and point mass as separate 
structures. From Eq. (10.107) and Eq. (b) of Example 10.2, the boundary condition 
at x = L−  is now 
 

 2 2( ) ( ) ( ) ( )a aN L k U L k U L U L
m

β ω′= = =� m
m  (c) 

 
Substitution of Eqs. (a) and (c) into Eq. (10.111) results in the statement  
 
 2 2 ( ) ( )( ) ( ) ( ) 0j l

j l U L U Lω ω− =m  (d) 
 
which is not generally satisfied if the tip mass is free to move. On this basis, we 
might conclude that the modal functions are not mutually orthogonal. However, this 
simply means that the modal functions do not satisfy Eq. (10.100) on the interval 0 < 
x < L−. We would find, by direct calculation, that the modal functions do satisfy Eq. 
(10.103) and are thus mutually orthogonal on the domain [0, L+] in that sense. 

 
 
 
 

Torsional Motion of Elastic Rods 
For the case of torsional motion of rods, the vibration problem is described by the angular 
displacement and the internal torque. We recall from Section 9.4 that, for such motion, k = 
kT = GJ and m = Jρ . Thus, in the conditions for general and second order systems described 
in Section 10.1 and at the beginning of this section, u(x,t) → θ(x,t), U(x) →  Θ(x), and m 
→  Jρ = ρJ. Recall from Section 9.4 that the internal torque, ( , )x tT , is related to the gradi-
ent of the angular displacement, ( , )x tθ , by the relation 
 

 ( , ) Tx t k GJ
x x
θ θ∂ ∂= =

∂ ∂
,  (10.116) 

 
Further, from earlier discussions, the free vibration response is of the general form 
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 ( )

1

( , ) ( ) ji tj

j

x t x e ωθ
∞

=

= Θ¦  (10.117) 

 
It is seen, upon substitution of Eq. (10.117) into Eq. (10.116), that 
 

 ( )

1

( , ) ( ) ji tj

j

x t x e ω
∞

=

=¦ �, ,  (10.118) 

where 

 
( ) ( )

( ) ( )
j j

j
T

d dx k GJ
dx dx
Θ Θ≡ =�,  (10.119) 

 
will be referred to as the modal torque. Incorporating this identification into Eqs. (10.99) 
and (10.106) gives the condition for the mutual orthogonality of the modal functions for 
torsional motion of elastic rods as 
 
     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) (0) (0) (0) (0) 0j l l j j l l jL L L Lª º ª ºΘ − Θ − Θ − Θ =¬ ¼ ¬ ¼

� � � �, , , ,  

     (10.120) 
 
It is seen that Eq. (10.120) will be satisfied if, at each boundary, the work of the modal 
torque of the jth mode going through the rotations of the lth mode is equal to the work of the 
modal torque of the lth mode going through the rotations of the jth mode. The condition of 
orthogonality, Eq. (10.120), is satisfied trivially for the homogeneous boundary conditions 
  
 (0) 0  or  (0) 0Θ = =�,  (10.121) 
and 
 ( ) 0  or  ( ) 0L LΘ = =�,  (10.122) 
 
In summary, if the boundary conditions of an elastic rod are such that Eq. (10.120) is satis-
fied, then the modal functions are mutually orthogonal as follows: 
 

  ( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) 0    ( )

L
l j l j

l jm
x J x dxρ ω ωΘ Θ = Θ Θ = ≠³  (10.123)  

 

 { }( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) 0    ( )

L
l j l j

l j
dx GJ x dx
dx

ω ω′Θ Θ = Θ Θ = ≠³k
 (10.124)  

 
 

Example 10.16 
Show that the modal functions corresponding to the system of Example 10.4 are mu-
tually orthogonal. 
 
Solution 
From Eq. (a-1) of Example 10.4, the boundary condition at the elastic wall gives 
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0

0 (0) (0)i t i t

x

L L e e
x

ω ωθ αθ α
=

∂ª º ′− = = Θ − Θ« »∂¬ ¼
  

  
The corresponding modal boundary condition at the left end of the rod is thus 
 
 (0) (0)L α′Θ = Θ  (a) 
 
From condition (a-2) of Example 10.4, the boundary condition arising from the pres-
ence of the rigid wall at the right end of the rod follows as 
 
 ( , ) 0 ( )     ( ) 0i tL t L e Lωθ = = Θ � Θ =  (b) 
 
Substituting Eq. (a) into Eq. (10.119) gives the relation 
 
 ( ) ( )(0) (0)j j

Tk Lα= Θ�,  (c) 
 
Finally, substituting Eqs. (b) and (c) into the left-hand side of Eq. (10.120) gives 
 
 [ ] ( ) ( ) ( ) ( ) ( )0 0 (0) (0) (0) (0) 0j i i j

Tk Lα ª º− − Θ Θ − Θ Θ =¬ ¼  (d) 
 
It is seen that Eq. (10.120) is satisfied, and thus that the modal functions are mutually 
orthogonal with respect to both m and k. 

 
 
 
 

Transverse Motion of Strings and Cables 
When considering the transverse motion of flexible strings and cables, the motion is charac-
terized by the transverse displacement and the mass by the mass per unit length. Hence, for 
these systems, u(x,t) → w(x,t), U(x) →  W(x) and m = m(x) in the general statements of 
Section 10.1. We also recall from Section 9.5 that the transverse shear force, Q, is related to 
the displacement gradient by the relation 
 

 ( , ) wQ x t N
x

∂=
∂

 (10.125) 

 
where N is the tension (tensile membrane force). Substituting the free vibration response 
 

 ( )

1

( , ) ( ) ji tj

j

w x t W x e ω
∞

=

=¦  (10.126) 

 
into Eq. (10.125) gives the transverse shear force as 
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 ( )

1

( , ) ( ) ji tj

j

Q x t Q x e ω
∞

=

=¦ �  (10.127) 

where 
 ( ) ( )( ) ( )j jQ x N W x′=�  (10.128) 
 
will be referred to as the modal shear force. Incorporating this identification into Eqs. 
(10.99) and (10.106) gives the condition for the mutual orthogonality of the modal func-
tions for transverse motion of strings and cables as 
 
       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) (0) (0) (0) (0) 0j l l j j l l jQ L W L Q L W L Q W Q Wª º ª º− − − =¬ ¼ ¬ ¼

� � � �  

     (10.129) 
 
It is seen that this condition will be satisfied if, at each boundary, the work of the modal 
shear force of the jth mode going through the deflections of the lth mode is equal to the work 
of the modal shear force of the lth mode going through the deflections corresponding to the 
jth mode. Equation (10.129) is satisfied trivially for the homogeneous boundary conditions 
 
 (0) 0  or  (0) 0W Q= =�  (10.130) 
and 
 ( ) 0  or  ( ) 0W L Q L= =�  (10.131) 
 
In summary, if the boundary conditions for a string or cable are such that Eq. (10.129) is 
satisfied, then the modal functions are mutually orthogonal as follows 
 

 ( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) ( ) 0    ( )

L
l j l j

l jm
W W W x m x W x dx ω ω= = ≠³  (10.132) 

 

 ( ) ( ) ( ) ( ) 2 2

0
, ( ) ( ) 0    ( )

L
l j l j

l jW W W x N W x dx ω ω′′= = ≠³k
 (10.133) 

 
 

Example 10.17 
Show that the modal functions for the system of Example 9.6-ii are mutually orthog-
onal. 
 
Solution 
From Eq. (10.125) and (10.128), and Eqs. (d) and (e-ii) of Example 9.6, 
 
 (0, ) 0 (0)     (0) 0i tw t W e Wω= = � =  (a) 

 
 ( , ) 0 ( )     ( ) 0i tQ L t Q L e Q Lω= = � =� �  (b) 
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Conditions (a) and (b) respectively correspond to the first condition of  Eq. (10.130) 
and the second condition of Eq. (10.131). It is readily seen that Eq. (10.129) is satis-
fied. This in turn shows that Eq. (10.99) is satisfied and, therefore, that Eqs. (10.100) 
and (10.101) are satisfied. Hence, 
 

 ( ) ( ) ( ) ( )

0
, 0  ( , 1, 2,3,...)

L
j l j l

m
W W W mW dx l j≡ = =³  (c) 

 
 ( ) ( )    ( ) ( )   ( , 1, 2,3,...)j l

m
W x W x l j� =⊥  

and 

 ( ) ( ) ( ) ( )

0
, 0  ( , 1,2,3,...)

L
j l j lW W W W dx l j≡ = =³k

k  (d) 

 
 ( ) ( )  ( ) ( )   ( , 1, 2,3,...)j lW x W x l j� =⊥

k

  

 
 
 
 
 

10.8.3  Euler-Bernoulli Beams and Beam-Columns 

The flexural motion of beams and beam-columns is characterized by the transverse dis-
placement of the neutral axis of the structure. In this section we consider the mutual 
orthogonality of the modal functions for Euler-Bernoulli beams and Euler-Bernoulli beam-
columns with constant axial load. For these systems, u(x,t) → w(x,t) and U(x) → W(x) in 
the general statements of Section 10.1 and the mass distribution is characterized by the 
mass per unit length, m(x). 
 

Euler-Bernoulli Beams 
For Euler-Bernoulli beams the local stiffness corresponds to the bending stiffness k = kb = 
EI  and the stiffness operator is the fourth order differential operator defined by 
  

 
2 2

2 2EI
x x

∂ ∂=
∂ ∂

k   

 
Therefore, the weighted scalar product taken with respect to the stiffness operator is given 
by 

 
2 2

( ) ( ) ( ) ( )
2 2

0 0

L L
l j l jd dW W dx W EI W dx

dx dx
=³ ³k  (10.134) 

 
Integrating Eq. (10.134) by parts four times results in the identity 
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 ( ) ( ) ( ) ( ) ( )

0 0

L L
l j j l ljW W dx W W dx B= +³ ³ kk k  (10.135) 

where 

 
{ }

{ }

( ) ( ) ( ) ( ) ( )

00

( ) ( ) ( ) ( )

0 0

                            

L L
lj l j l j

LL
l j j l

dB W EI W W EI W
dx

dEI W W W W EI
dx

ª º ª º′′ ′ ′′= −« » « »¬ ¼¬ ¼

ª ºª º′′ ′ ′′+ − « »« »¬ ¼ ¬ ¼

k

 (10.136) 

 
From the discussion of Section 10.8.1 for systems with a scalar mass operator, we need 
only show that ( ) 0ljB =k  to establish the mutual orthogonality of the modal functions for 
Euler-Bernoulli beams. Recall from Section 9.6 that for Euler-Bernoulli beams the bending 
moment and transverse shear force are related to the transverse displacement by the identi-
ties 

 
2

2( , ) wM x t EI
x

∂= −
∂

 (10.137) 

 

 
2

2( , ) M wQ x t EI
x x x

 ½∂ ∂ ∂= = − ® ¾∂ ∂ ∂¯ ¿
 (10.138) 

 
Further, the free vibration response is of the general form 
 

 ( )

1

( , ) ( ) j

N
i tj

j

w x t W x e ω

=

=¦  (10.139) 

 
where W(j)(x) corresponds to the jth modal function. Substitution of Eq. (10.139) into Eqs. 
(10.137)  and (10.138) results in the relations 
 

 ( )

1

( , ) ( ) ji tj

j

M x t M x e ω
∞

=

=¦ �  (10.140) 

and 

 ( )

1

( , ) ( ) ji tj

j

Q x t Q x e ω
∞

=

=¦ �  (10.141) 

where 
 ( ) ( )( ) ( )j jM x EI W x′′= −�  (10.142) 
 
is the modal bending moment and 
 

 { }( ) ( ) ( )( ) ( ) ( )j j jdQ x M x EI W x
dx

′ ′′= = −� �  (10.143) 

 
is the modal shear force. Incorporating Eqs. (10.142) and (10.143) into Eqs. (10.136) and 
(10.99) yields the condition for orthogonality, 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0
0

lj j i i j j i i j

x L x

j i i j j i i j

x L x

B Q W Q W Q W Q W

M W M W M W M W

= =

= =

ª º ª º= − − −¬ ¼ ¬ ¼

ª º ª º′ ′ ′ ′− − + − =« » « »¬ ¼ ¬ ¼

� � � �

� � � �

k

 (10.144) 

 
The modal functions for an Euler-Bernoulli beam are mutually orthogonal if Eq. (10.144) is 
satisfied. It may be seen that this is so if the work of the modal shear and modal moment for 
the lth mode going through the deflections and rotations for the jth mode is equal to the work 
of the modal shear and moment for the jth mode going through the deflections and rotations 
for the lth mode. It is observed that Eq. (10.144) is identically satisfied for the homogeneous 
boundary conditions 
 
 (0) 0  or  (0) 0W Q= =�  (10.145) 
 
 (0) 0  or  (0) 0W M′ = =�  (10.146) 
 
 ( ) 0  or  ( ) 0W L Q L= =�  (10.147) 
 
 ( ) 0  or  ( ) 0W L M L′ = =�  (10.148) 
 
Structures with other boundary conditions must be considered individually.  
 In summary, if the boundary conditions of an Euler-Bernoulli beam are such that Eq. 
(10.144) is satisfied, then the modal functions are mutually orthogonal as follows: 
 

 ( ) ( ) ( ) ( )

0
, ( ) ( ) ( ) 0

L
l j l j

m
W W W x m x W x dx= =³  (10.149) 

                                                                                           2 2( )l jω ω≠  

    { }2
( ) ( ) ( ) ( )

2
0

, ( ) ( ) 0
L

l j l jdW W W x EI W x dx
dx

′′= =³k
 (10.150) 

 
 
 

Example 10.18 
Consider an Euler-Bernoulli beam that is clamped-fixed on its left edge and sits on 
an elastic foundation of stiffness kL at its right edge, as shown in Figure E10.18. 
Show that the modal functions are mutually orthogonal. 

   Figure E10.18 

www.konkur.in



10│ Free Vibration of One-Dimensional Continua 601 

Solution 
The physical boundary conditions for the beam are  
 

 
0

(0, ) 0 ,    0
x

ww t
x =

∂= =
∂

 (a-1, 2) 

 
 ( , ) 0 ,    ( , ) ( , )LM L t Q L t k w L t= = −  (a-3, 4) 
 
The spring force imparted by the deflected spring on the right edge of the beam is 
equivalent to an applied shear force. The last condition then follows from the sign 
convention introduced in Section 9.6 (Figure 9.12). This condition also arises for the 
structure of Example 9.8. The boundary conditions for the modal functions are de-
termined by substituting the assumed form of the solution, Eq. (10.28), into the phys-
ical boundary conditions established above. Hence,  
 
 (0)     (0) 0i tW e Wω � =  (b-1) 
 
 (0)     (0) 0i tW e Wω′ ′� =  (b-2) 
 
 ( , ) 0 ( )     ( ) 0i tM L t M L e M Lω= = � =� �  (b-3) 
 
 ( ) ( )     ( ) ( )i t i t

L LQ L e k W L e Q L k W Lω ω= − � = −� �  (b-4) 
 
Substituting Eqs. (b-1)–(b-4) into the left-hand side of Eq. (10.144) gives 
 

 
( ) ( )( ) ( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

0 0

                0 0 0 0 0

l j l j j l
L Lx x L

j l l j

xx L

Q Q k W W k W W

W W M M

= =

==

ª ºª º⋅ − ⋅ − − − −¬ ¼ ¬ ¼

ª º′ ′ ª º+ ⋅ − ⋅ − ⋅ − ⋅ =¬ ¼« »¬ ¼

� �

� �
 (c) 

 
The left-hand side of Eq. (c) clearly vanishes. Equation (10.144) is therefore satisfied 
and the corresponding modal functions are thus mutually orthogonal with respect to 
both m and k. 

   
 
 
 

Beam-Columns with Constant  Membrane Force 
We next consider geometrically nonlinear beams with constant membrane force. (Structures 
for which the membrane force is negative are typically referred to as beam-columns.) For 
structures of this type, the coupling between the axial forces and transverse motion is ac-
counted for, though the axial motion is considered much smaller than the transverse motion 
as discussed in Section 9.7. For these structures, the stiffness operator for the linear beam is 
augmented by the contribution of the component of the constant membrane force, N0, in the 
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transverse direction (Section 9.7). From Eq. (9.168), the stiffness operator for the geometri-
cally nonlinear beam is 
 

 
2 2 2

02 2 2EI N
x x x

∂ ∂ ∂= −
∂ ∂ ∂

k   

 
Using this operator in Eq. (10.135) and integrating by parts adds the following terms to Eq. 
(10.136), 
 

 ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

0 0

LL
l j l j l jW N W W N W W N W dxª º′ ′ ′′− −« »¬ ¼ ³  (10.151) 

 
For the nonlinear beam, the transverse shear is given by 
 

 
2

02( , ) w wQ x t EI N
x xx

∂ ∂ ∂= − +
∂ ∂∂

 (10.152) 

 
(See Section 9.7.) Substitution of the free vibration response, Eq. (10.139), into Eq. 
(10.152) gives the corresponding modal shear force 
 

 { }( ) ( ) ( )
0( ) ( ) ( )j j jdQ x EI W x N W x

dx
′′ ′= − +�  (10.153) 

 
The modal moment remains as given by Eq. (10.142). Paralleling the remainder of the de-
velopment for linear beams yields the identical form for the modal moment given by Eq. 
(10.142) and the corresponding condition for orthogonality, Eq. (10.144). However, it is 
understood that the modal shear is now given by Eq. (10.153). This also applies to the ho-
mogeneous conditions defined by Eqs. (10.145) – (10.148). 
 In summary, if the boundary conditions of a beam-column are such that Eq. (10.144) 
is satisfied, then the modal functions are mutually orthogonal as follows: 
 

 ( ) ( ) ( ) ( )

0
, ( ) ( ) ( ) 0

L
l j l j

m
W W W x m x W x dx= =³  (10.154)  

                                                                                           2 2( )l jω ω≠  

 { }2
( ) ( ) ( ) ( ) ( )

02
0

, ( ) 0
L

l j l j jdW W W x EI W N W dx
dx
ª º′′ ′′= − =« »
¬ ¼³k

 (10.155)  

 
 

Example 10.19 
Let the simply supported beam-column of 
Example 9.12 be subjected to the static 
compressive load P0 as indicated. Show that 
the corresponding modal functions are mu-
tually orthogonal. 
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Solution 
To obtain the modal boundary conditions we substitute the general form of the free 
vibration response of the beam-column into Eqs. (c-1)–(d-2) of Example 9.12. 
Hence, 
 (0, ) 0 (0)     (0) 0i tw t W e Wω= = � =  (a) 
 
 (0, ) 0 (0)     (0) 0i tM t M e Mω= = � =� �  (b) 
 
 ( , ) 0 ( )     ( ) 0i tw L t W L e W Lω= = � =  (c) 
 
 ( , ) 0 ( )     ( ) 0i tM L t M L e M Lω= = � =� �  (d) 
  
Upon substitution of Eqs. (a)–(d) into Eq. (10.144) it is seen that the identity is satis-
fied. Therefore, the modal functions are mutually orthogonal in the sense of Eqs. 
(10.154) and (10.155). 

 
 
 
 
 

10.8.4  Rayleigh Beams 

In this section we establish the definitions of, and conditions for, the mutual orthogonality 
of the modal functions for Rayleigh beams. Since the mass operator for these structures is a 
differential, rather than a scalar, operator we must also establish the explicit condition for 
the corresponding scalar product to be commutative. From Section 9.6.4 we have that the 
mass operator for Rayleigh beams is 
  

 ( ) ( )m x I x
x xρ

∂ ∂= −
∂ ∂

m  (10.156) 

 
The weighted scalar product of the lth and jth modal functions taken with respect to the mass 
operator is then 
 

 ( )( ) ( ) ( ) ( ) ( ) ( )

0 0 0

L L L
l j l j l jW W dx W mW dx W I W dxρ

′′= −³ ³ ³m  (10.157) 

 
Integrating the second expression on the right-hand side by parts gives the identity 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

00 0

L LL
l j l j l j l jW W dx W I W W mW W I W dxρ ρ

ª º ª º′ ′ ′= − + +« » « »¬ ¼ ¬ ¼³ ³m  

  (10.158) 
 
Similarly, 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

00 0

L LL
j l j l j l j lW W dx W I W W mW W I W dxρ ρ

ª º ª º′ ′ ′= − + +« » « »¬ ¼ ¬ ¼³ ³m  

  (10.159) 
 
The bending moment for a Rayleigh beam is given by the same constitutive relation as for 
Euler-Bernoulli beams, Eq. (10.137). Recall from Section 9.6.2, however, that the constitu-
tive relation for the transverse shear force is modified due to the effects of the rotatory iner-
tia. Rewriting Eq. (9.97) we have 
 

 
2

2

( , )( , ) M x t wQ x t I
x xtρ

∂ ∂ ∂= +
∂ ∂∂

 (10.160) 

 
Substituting the general form of the free vibration response, Eq. (10.139), into Eq. (10.160) 
results in a relation of the form of Eq. (10.141), where now 
 
 ( ) ( ) 2 ( )( ) ( ) ( )j j j

jQ x M x I W xρω′ ′= −� �  (10.161) 
 
and ( )jM� is defined by Eq. (10.142). Substituting Eqs. (10.135), (10.136), (10.158) and  
(10.159) into Eq. (10.96) and incorporating Eqs. (10.142) and (10.161) results in the identi-
ty  

 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

2 2 ( ) ( ) ( ) ( )

0
                   

LLj l l j j l l j

L
j l j l

j l

Q W Q W M W M W

W mW W I W dxρω ω

ª º′ ′ª º− − + −¬ ¼ « »¬ ¼

ª º′ ′= − +« »¬ ¼³

� � � �

 (10.162) 

 
It may be seen that if  
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

00
0

L Lj l l j j l l jM W M W Q W Q Wª º′ ′ ª º− − − =¬ ¼« »¬ ¼
� �� �  (10.163) 

 
where the modal shear force is defined by Eq. (10.161), then Eq. (10.162) reduces to the 
statement 

 ( )2 2 ( ) ( ) ( ) ( )

0
0

L
j l j l

j l W mW W I W dxρω ω ª º′ ′− + =« »¬ ¼³   

 
It then follows that, for distinct natural frequencies,  
 

 ( ) ( ) ( ) ( )

0
0

L
j l j lW mW W I W dxρ

ª º′ ′+ =« »¬ ¼³  (10.164) 

 
The modal functions for Rayleigh beams are mutually orthogonal with respect to the mass 
in this sense. It is convenient to express Eq. (10.164) in the equivalent matrix form 
 

 ( ) ( ) ( ) ( )

0
, 0

L
j l j l dx= =³m

W W W mWT  (10.165) 
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where 

 
0

0
m

Iρ

ª º
= « »
¬ ¼

m  (10.166) 

and 

 
( )

( )

( )

( )

( )

j
j

j

W x

W x

 ½° °= ® ¾′° °¯ ¿
W  (10.167) 

 
The matrix form reveals the general nature of the statement of orthogonality with respect to 
the mass for Rayleigh beams. The corresponding statement of orthogonality with respect to 
the stiffness operator is obtained next.  
 The eigenvalue problem for Rayleigh beams may be stated in the form 
 
 ( ) 2 ( )j j

jW Wω=k m  (10.168) 
where 

 
2 2

2 2EI
x x

∂ ∂=
∂ ∂

k  (10.169) 

 
and m is given by Eq. (10.156). Multiplying Eq. (10.168) by W(l) and integrating over the 
domain of definition of the beam gives the identity  
 

 ( ) ( ) 2 ( ) ( )

0 0

L L
l j l j

jW W dx W W dxω=³ ³k m  (10.170) 

 
Integrating the left-hand side of Eq. (10.170) by parts twice results in the relation  
 

 ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

0 0

L L
l j lj j l j l

jW EI W dx B W mW W I W dxρω ª º′′ ′′ ′ ′+ = +« »¬ ¼³ ³�
k  

  (10.171) 
where 

 ( ) ( ) ( ) ( ) ( )

0

L
lj l j l jB W Q W Mª º′= +« »¬ ¼

�� �
k   

 
Now, the condition for the modal functions to be orthogonal with respect to the mass, Eq. 
(10.163), is equivalent to the statement ( ) 0ljB =�

k . Furthermore, when this condition holds, 
the right-hand side of Eq. (10.171) vanishes by virtue of Eq. (10.164). Equation (10.171) 
therefore reduces to the statement 
 

 ( ) ( )

0
0

L
l jW EI W dx′′ ′′ =³  (10.172) 

 
The modal functions of Rayleigh beams are mutually orthogonal with respect to the stiff-
ness in this sense. Specifically, the modal curvatures are seen to be mutually orthogonal 
with respect to the bending stiffness of the beam. In summary, if the boundary conditions of 
a given beam are such that Eq. (10.163) is satisfied, where the modal shear force is given by 

www.konkur.in



606 Engineering Vibrations 

Eq. (10.161), then the modal functions are mutually orthogonal with respect to the mass in 
the sense of Eq. (10.164), or equivalently Eq. (10.165), and with respect to the stiffness in 
the sense of Eq. (10.172). 
 
 

Example 10.20 
Consider a Rayleigh beam that is clamped-fixed at its left edge and sits on an elastic 
mount of stiffness kL at its right edge, as shown in Figure E10.20. Show that the 
modal functions are mutually orthogonal. 

 
   Figure E10.20 
 
Solution 
The analysis directly parallels that of Example 10.18. We first obtain the boundary 
conditions for the modal functions from the physical boundary conditions. Hence,  
 
 (0, ) 0 (0)     (0) 0i tw t W e Wω= = � =  (a) 
 

 
0

0 (0)     (0) 0i t

x

w W e W
x

ω

=

∂ ′ ′= = � =
∂

 (b) 

 
 ( , ) 0 ( )     ( ) 0i tM L t M L e M Lω= = � =� �  (c) 
 
 ( , ) ( , )   ( ) ( )   ( ) ( )i t i t

L L LQ L t k w L t Q L e k W L e Q L k W Lω ω= − → = − � = −� �  (d) 
 
Substituting Eqs. (a)–(d) into the left-hand side of Eq. (10.163) gives 
 

 
( ) ( )( ) ( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

0 0

                0 0 0 0 0

l j l j j l
L Lx x L

j l l j

xx L

Q Q k W W k W W

W W M M

= =

==

ª ºª º⋅ − ⋅ − − − −¬ ¼ ¬ ¼

ª º′ ′ ª º+ ⋅ − ⋅ − ⋅ − ⋅ =¬ ¼« »¬ ¼

� �

� �
 (e) 

 
Equation (10.163) is clearly satisfied, therefore the corresponding modal functions 
for the Rayleigh beam are mutually orthogonal in the sense of Eqs. (10.164) and 
(10.172). 
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10.8.5  Timoshenko Beams 

The motion of Timoshenko beams is characterized by the displacement function matrix 
defined by Eq. (10.63) whose elements correspond to the transverse displacement function 
and the cross section rotation function. The corresponding mass operator is the diagonal 
matrix operator defined by Eq. (10.61) and the stiffness operator is the differential matrix 
operator defined by Eq. (10.62). Establishment of the definitions and conditions for 
orthogonality of the modal functions therefore requires a generalization of the concepts 
introduced to this point, in the spirit of those introduced for Rayleigh beams.  
 The eigenvalue problem for Timoshenko beams defined by Eq. (10.67) may be writ-
ten in the compact form 
  
 2 ( )xωª º− =¬ ¼ 0k m U  (10.173) 
 
where m, k and U are defined by Eqs. (10.61), (10.62) and (10.63), respectively. Let us 
consider any two frequency-mode pairs for a generic Timoshenko beam. Since they corre-
spond to solutions of the eigenvalue problem, the lth and jth frequency-mode pairs must each 
satisfy Eq. (10.173). Hence, 
 
 ( ) 2 ( )( ) ( )l l

lx xω=kU mU  (10.174) 
and 
 ( ) 2 ( )( ) ( )j j

jx xω=kU mU  (10.175) 
 
Multiplying Eq. (10.174) by ( )jU T , Eq. (10.175) by ( ) ,lU T  and integrating the resulting ex-
pressions over [0, L] results in the identities 
  

 ( ) ( ) 2 ( ) ( )

0 0

L L
j l j l

ldx dxω=³ ³U kU U mUT T  (10.176) 

and 

 ( ) ( ) 2 ( ) ( )

0 0

L L
l j l j

jdx dxω=³ ³U kU U mUT T  (10.177) 

 
Note that, since m is a diagonal matrix it follows that 
 
 ( ) ( ) ( ) ( )l j j l=U mU U mUT T  (10.178) 
 
Subtracting Eq. (10.177) from Eq. (10.176) and incorporating Eq. (10.178) results in the 
identity 
 

 ( )( ) ( ) ( ) ( ) 2 2 ( ) ( )

0 0 0

L L L
j l l j j l

l jdx dx dxω ω− = −³ ³ ³U kU U kU U mUT T T  (10.179) 

 
It may be seen that if 
 

 ( ) ( ) ( ) ( )

0 0

L L
j l l jdx dx=³ ³U kU U kUT T  (10.180) 
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then Eq. (10.179) reduces to the statement 
 

 ( )2 2 ( ) ( )

0
0

L
j l

l j dxω ω− =³ U mUT  (10.181) 

 
Thus, for distinct frequencies, 
 

 ( ) ( ) ( ) ( )

0
, 0

L
j l j l dx≡ =³m

U U U mUT  (10.182) 

 
and the modal functions are mutually orthogonal with respect to the mass operator in this 
sense. Substitution of Eq. (10.182) into Eq. (10.176) results in the related statement 
 

 ( ) ( ) ( ) ( )

0
, 0

L
j l j l dx≡ =³k

U U U kUT  (10.183) 

 
Hence, if Eq. (10.180) is satisfied then, the modal functions are mutually orthogonal with 
respect to the stiffness operator in the above sense as well. To examine the details and im-
plications for specific systems we next evaluate the above conditions for the pertinent mass 
and stiffness operators. 
 Substitution of Eqs. (10.61) and (10.66) into Eq. (10.182) and substituting Eqs. 
(10.62) and (10.66) into Eq. (10.183) and carrying through the matrix multiplication in each 
gives the explicit forms of the statements of orthogonality for the modal functions of Timo-
shenko beams as 
  

  ( ) ( ) ( ) ( ) ( ) ( )

0
, ( ) ( ) ( ) ( ) ( ) ( ) 0

L
l j l j l jW x m x W x x I x x dxρϑ ϑª º= + =¬ ¼³m

U U  (10.184) 

 
and 

 
( )

( ) ( )

( ) ( ) ( ) ( ) ( )

0 0

( ) ( ) ( ) ( )

0
                          + 0

L L
l j l j j

s s

L
l j j j

s

dx W k k W dx

k W EI dx

ϑ

ϑ ϑ ϑ

 ½′° °′ ′= −® ¾
° °¯ ¿

 ½′° °′ ′− − =® ¾
° °¯ ¿

³ ³

³

U kU

 (10.185) 

 
From Eqs. (9.130), (9.131) and (9.132) the constitutive relations for the bending moment 
and the transverse shear force for a Timoshenko beam are respectively given by the rela-
tions 

 ( , )( , ) x tM x t EI
x

ϕ∂= −
∂

 (10.186) 

and 

 ( , )( , ) ( , )s
w x tQ x t k x t

x
ϕ∂ª º= −« »∂¬ ¼

 (10.187) 

 
From Eq. (10.65), the free vibration response is of the form 
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( , ) ( )
( , ) ( )

i tw x t W x
e

x t x
ω

ϕ ϑ
 ½  ½=® ¾ ® ¾
¯ ¿ ¯ ¿

 (10.188) 

 
Substitution of the above form into Eqs. (10.186) and (10.187) gives 
 
 ( , ) ( ) i tM x t M x e ω= �  (10.189) 
and 
 ( , ) ( ) i tQ x t Q x e ω= �  (10.190) 
where 
 ( ) ( )M x EI xϑ′= −�  (10.191) 
is the modal moment, and 
 
 [ ]( ) ( ) ( )sQ x k W x xϑ′= −�  (10.192) 
 
is the modal shear force. With the modal moment and modal shear established, we may 
proceed to evaluate the explicit form of the condition for the modes to be mutually orthogo-
nal. Substitution of Eqs. (10.62) and (10.66) into Eq. (10.180), integrating the resulting ex-
pression by parts and incorporating Eqs. (10.191) and (10.192) renders the explicit condi-
tion for mutual orthogonality of the modal functions for Timoshenko beams to the familiar 
form 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

00
0

L Ll j l j l j l jW Q Q W M Mϑ ϑª º ª º− − − =¬ ¼¬ ¼
� � � �  (10.193) 

 
If the boundary conditions for a Timoshenko beam are such that Eq. (10.193) is satisfied, 
then the corresponding modal functions are mutually orthogonal in the sense of Eqs. 
(10.182) and (10.183), or equivalently Eqs. (10.184) and (10.185). 
 
 

Example 10.21 
Consider a Timoshenko beam supported as in Examples 10.18 and 10.20. Show that 
the modal functions for the beam are mutually orthogonal. 
 
Solution 
Proceeding identically as in Examples 10.18 and 10.20 we first state the physical 
boundary conditions for the beam. They are 
 
 (0, ) 0 ,    (0, ) 0w t tϕ= =  (a-1, 2) 
 
 ( , ) 0 ,    ( , ) ( , )LM L t Q L t k w L t= = −  (a-3, 4) 
 
The boundary conditions for the modal functions are obtained by substituting the as-
sumed form of the modal functions, Eq. (10.188), into Eqs. (a-1)–(a-4). We thus 
have the corresponding conditions 
 
 (0) 0 ,    (0) 0W ϑ= =  (b-1, 2) 
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 ( ) 0 ,    ( ) ( )LM L Q L k W L= = −��  (b-3, 4) 
 
Substituting Eqs. (b-1)–(b-4) into the left-hand side of Eq. (10.193) results in the 
statement 
 

 
( ) ( )( ) ( ) ( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

0 0

                0 0 0 0 0

l j l j j l
L Lx x L

j l l j

x L x

Q Q k W W k W W

M Mϑ ϑ
= =

= =

ª ºª º⋅ − ⋅ − − − −¬ ¼ ¬ ¼

ª ºª º+ ⋅ − ⋅ − ⋅ − ⋅ =¬ ¼ ¬ ¼

� �

� �
 (c)  

 
Equation (10.193) is clearly satisfied. The corresponding modal functions of the Ti-
moshenko beam are therefore mutually orthogonal with respect to both m and k. 

 
 
 
 

10.9  EVALUATION OF AMPLITUDES AND PHASE ANGLES 

The free vibration response of one-dimensional continua was seen to be expressed as a se-
ries of the modal functions with harmonic time signatures. In each case the amplitudes and 
phase angles are a function of the specific initial conditions imposed on the particular sys-
tem under consideration. In this section we establish the relations between the amplitudes 
and phase angles for the systems considered in this chapter. We begin by establishing the 
relations for systems with a single scalar mass operator. These systems include second or-
der systems and Euler-Bernoulli beams and geometrically nonlinear beams with constant 
axial loads. We then establish the conditions for Rayleigh beams and Timoshenko beams in 
separate sections. 
 
 

10.9.1 Systems Possessing a Single Scalar Mass Operator 

We here consider systems whose mass description corresponds to a single scalar function. 
These include mathematical models that describe the longitudinal and torsional motion of 
elastic rods, the transverse motion of strings and cables, and the flexural motion of Euler-
Bernoulli beams and geometrically nonlinear beams with constant membrane force. In each 
case, the free vibration response is of the general form 
  

 ( ) ( ) ( ) ( ) ( )
1 2

1 1

( , ) ( ) cos sin ( ) cos( )j j j j j
j j j j

j j

x t x A t A t x A tω ω ω φ
∞ ∞

= =

ª º= + = −¬ ¼¦ ¦u U U  

  (10.194) 
where 
 ( )2 2( ) ( ) ( ) 1 ( ) ( )

1 2 2 1, tanj j j j j
jA A A A Aφ −= + =  (10.195) 
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u(x,t) is the pertinent displacement measure, ωj and U(j)(x) respectively correspond to the jth 
natural frequency and modal function, and A(j) and φj are the associated amplitude and phase 
angle.  
 

General Initial Conditions 
We wish to evaluate the amplitudes and phase angles in terms of the initial conditions 
 

 0 0
0

( ,0) ( ) and ( )
t

x x x
t =

∂= =
∂
uu u v  (10.196) 

 
Imposing the initial conditions on the general form of the response, Eq. (10.194), gives the 
relations 

 ( ) ( ) ( ) ( )
0 1 0 2

1 1

( ) ( ) , ( ) ( )j j j j
j

j j

x x A x x Aω
∞ ∞

= =

= =¦ ¦u U v U    

 
Let us next multiply the above relations by the product of the lth modal function, U(l)(x), and 
the scalar mass operator, m(x), and integrate the resulting expressions over the domain of 
definition of the structure [0, L]. Doing this yields the identities 
 

 ( ) ( ) ( ) ( )
0 1

0 01

( ) ( ) ( ) ( ) ( ) ( )
L L

l l j j

j

x m x x dx x m x x dx A
∞

=

 ½= ® ¾
¯ ¿¦³ ³U u U U   

 

 ( ) ( ) ( ) ( )
0 2

0 01

( ) ( ) ( ) ( ) ( ) ( )
L L

l l j j
j

j

x m x x dx x m x x dx Aω
∞

=

 ½= ® ¾
¯ ¿¦³ ³U v U U  

 
In each of the above identities, the term in brackets may be recognized as the scalar product 
of the lth and jth modal functions. If the modal functions are mutually orthogonal, that prod-
uct vanishes for all terms in the series except for the term where j = l. The nonvanishing 
term is the square of the magnitude of the modal function. The above identities therefore 
reduce to the relations 
 
 ( ) ( )

1
j jA = Λ  (10.197) 

 
 ( ) ( )

2
j jA = Χ  (10.198) 

where 

 ( ) ( )
02( ) 0

1 ( ) ( ) ( )
L

j j

j

m

x m x x dxΛ = ³ U u
U

 (10.199) 

 

 ( ) ( )
02( ) 0

1 ( ) ( ) ( )
L

j j

j
j m

x m x x dx
ω

Χ = ³ U v
U

 (10.200) 

and 
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2( ) ( ) ( )

0
( ) ( ) ( )

L
j j j

m
x m x x dx= ³U U U  (10.201) 

 
Substituting Eqs. (10.197) and (10.198) into Eqs. (10.195) gives the amplitudes and phase 
angles as 
 2 2( ) ( ) ( )j j jA = Λ + Χ  (10.202) 
and 
 ( )1 ( ) ( )tan j j

jφ −= Χ Λ  (10.203) 

 
where Λ(j) and Χ(j) are defined by Eqs. (10.199) and (10.200), and are evaluated for given 
initial displacements and velocities u0(x) and v0(x). 
 

Systems Released from Rest 
As a special case, let us consider systems that are initially at rest. For this case 0 ( ) 0x =v and 
thus, from Eq. (10.200), Χ(j) = 0 (j = 1, 2, …). We then have, from Eqs. (10.202) and 
(10.203) that 
 

 ( ) ( ) ( )
02( ) 0

1 ( ) ( ) ( ) ( 1, 2,...)
L

j j j

j

m

A x m x x dx j= Λ = =³ U u
U

 (10.204) 

and 
 0jφ =  (10.205) 
 
Substituting these expressions into Eq. (10.194) gives the free vibration response of a sys-
tem released from rest as 
 

 ( ) ( )

1

( , ) ( ) cosj j
j

j

x t U x tω
∞

=

= Λ¦u  (10.206) 

 
 

Systems Initially in Motion at the Reference Configuration 
Let us next consider the special case where the system is initially in motion while in the 
reference (undeformed) configuration. This may correspond to the situation where we start 
monitoring the motion at an instant when the body is in motion as it passes through the un-
deformed configuration, or when the system is “launched” from this initial configuration. 
The latter may occur, for example, when a javelin is thrown, when a rocket is launched or 
when a vehicle is impacted and we monitor the motion of the body from the instant after it 
is released. In the present context, we thus consider a continuous system for which the ini-
tial displacement vanishes but the initial velocity is finite. For this case, u0(x) = 0. It then 
follows from Eqs. (10.197) and (10.199) that ( ) ( )

1 0j jAΛ = = and hence, from Eqs. (10.194), 
(10.198) and (10.200), that the free vibration response of the structure is given by 
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 ( ) ( ) ( ) ( )

1 1

( , ) ( ) sin ( ) cos( / 2)j j j j
j j

j j

x t x t x tω ω π
∞ ∞

= =

= Χ = Χ −¦ ¦u U U  (10.207) 

 
It is seen that, for this case, ( ) ( )j jA = Χ and 2 ( 1,2,...).j jφ π= =  
 
 

Example 10.22 
Determine the amplitudes and phase angles for the rod of Example 10.1 if it is re-
leased from rest from the configuration 0( ,0)u x xε= , where 0 0P EAε =  is the uni-
form axial strain. This initial state corresponds to the deformation induced by a static 
tensile load of magnitude P0 at the free end of the rod. 
 
Solution  
From Example 10.1, the modal functions for the rod are 
 
 ( ) ( ) sin ( 1,2,...)j

jU x x jβ= =  (a-1) 
where 
 (2 1) 2 ( 1,2,...)j j L jβ π= − =  (a-2) 
 
Further, the magnitude of the modal function was computed in Example 10.14 as 
 

 
2( ) ( 1,2,...)

2
j mLU j= =  (b) 

 
Now, the initial conditions for the present case are 

 
   0 0 0( ) , ( ) 0u x x v xε= =  (c-1, 2) 
 
It follows from Eqs. (10.204) and (10.205) that 
 
 0 ( 1,2,...)j jφ = =  � (d) 
 and 
 

 ( ) 0
0 2

0

22 sin sin cos
L

j
j j j j

j

A x m x dx L L L
mL L

εβ ε β β β
β

ª º= = −¬ ¼³   

 
The above expression is simplified when we recall the frequency equation for the 
rod, Eq. (e) of Example 10.1, 
 
 cos 0j Lβ =   
 
The amplitudes of the vibrating rod are then  
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 ( ) 0
2

2
sin ( 1, 2,...)j

j
j

A L j
L

ε β
β

= =  � (e) 

 
 
 
  

Example 10.23 
Determine the amplitudes and phase angles for the cantilevered Euler-Bernoulli 
beam of Example 10.7 if it is released from rest from the configuration 

2
0( ,0) 2w x xκ= − . Evaluate the resulting free vibration response. This initial con-

figuration corresponds to the deflections produced by a bending moment, M0, ap-
plied to the free end of the beam. The parameter 0 0M EIκ =  is the initial, uniform, 
curvature of the beam. 
 
Solution 
The modal functions for the beam were determined in Example 10.7 to be  
 
 ( ) ( ) cosh cos sinh sinj

j j j j jW x x x Y x xβ β β βª º= − − −¬ ¼  (a) 
 
where 

 
cosh cos
sinh sin

j j
j

j j

L L
Y

L L
β β
β β

+
=

+
 (b) 

 
The initial conditions are 
  
 21

0 0 02( ) , ( ) 0w x x v xκ= − =  (c-1, 2) 
 
Since the structure is initially at rest, we have from Eq. (10.205) that 
 
 0jφ =  � (c) 
  
Further, substituting Eq. (c-1) into Eq. (10.204) gives 
 

 { }( ) 2 ( )1
022( ) 0

1 ( )
L

j j

j

m

A x mW x dx
W

κ= −³   

 
The amplitudes of the vibrating cantilevered beam are then 
 

 

2 ( )

0( ) 0

2( )

0

( )
( 1, 2,...)

2 ( )

L
j

j
L

j

x W x dx
A j

W x dx

κ= − =
³
³

 � (d) 

where 
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( )
( ){ }
{ }

3 2 ( ) 3 2 ( )

0

2

2

( ) ,

sinh sin 2 cosh cos

2 cosh cos

2 1 sinh sin

L
j j

j j

j j j j j j

j j j j j

j j j j

x W x dx x W

L L L Y L L

L L Y L L

LY L L

β β

β β β β β

β β β β

β β β

=

ª º ª º= − − −¬ ¼ ¬ ¼

ª º− + +¬ ¼

ª º+ + +¬ ¼

³
  

  (e) 
and 
 

22( ) ( )

0

2

4 ( ) 4

sinh 2 sin 2 4 4sinh cos 4cosh sin

2 cos 2 cosh 2 4sinh sin

sinh 2 sin 2 4sinh cos 4cosh sin

L
j j

j j

j j j j j j j

j j j j j

j j j j j j j

W x dx W

L L L L L L L

Y L L L L

Y L L L L L L

β β

β β β β β β β

β β β β

β β β β β β

=

= + + − −

ª º+ − +¬ ¼
ª º+ − + −¬ ¼

³
  

  (f) 
 
Let us now evaluate the response of the beam. To do this we recall that the first three 
roots of the frequency equation were computed in Example 10.7 to be 
 
 1.875, 4.694, 7.855, ...Lβ =  
 
Substitution of these values into Eqs. (e) and (f) and then substituting the resulting 
numbers into Eq. (d) gives the corresponding amplitudes 
 
 (1) 2 (2) 2 (3) 2

0 0 00.2227 , 0.0197 , 0.0042 , ...A L A L A Lκ κ κ= − = = −   
 
The explicit form of the free vibration response of the beam is then 
 

 
( )

( )
2 (1)

0 0

2 (2)
0 0

( , ) 0.2227 ( )cos 3.516

0.0197 ( )cos 22.03 ...

w x t L W x t

L W x t

κ ω
κ ω

= −

+ +
 � (g) 

 
 
 
 
 

10.9.2  Rayleigh Beams 

The free vibration response for Rayleigh beams, and the associated initial conditions, are of 
the same general form as for the systems considered thus far. Hence, 
  

 ( ) ( ) ( ) ( ) ( )
1 2

1 1

( , ) ( ) cos sin ( ) cos( )j j j j j
j j j j

j j

w x t W x A t A t W x A tω ω ω φ
∞ ∞

= =

ª º= + = −¬ ¼¦ ¦   
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where w(x,t) is the transverse displacement, ωj and W(j)(x) are the jth natural frequency and 
modal function, and A(j) and φj are the associated amplitude and phase angle. We wish to 
evaluate the amplitudes and phase angles in terms of the initial conditions 
 

 0 0
0

( ,0) ( ) and ( )
t

ww x w x v x
t =

∂= =
∂

  

 
For these structures, however, we have the added mass measure of the rotatory inertia as 
well as the mass per unit length of the beam. Because of this, it is convenient to describe the 
mass operator in the matrix form of Eq. (10.166), and to express the initial conditions in a 
similar form. Let us therefore introduce the displacement matrix 
 

 
( , )

( , )
w x t

x t w
x

 ½
° °= ∂® ¾
° °∂¯ ¿

w  (10.208) 

 
and the corresponding statement of the initial conditions 
 

 
0

0
0

( )
( )

( )

w x
x

w x

 ½° °= ® ¾
′° °¯ ¿

w  (10.209) 

and 

 
0

0
0

( )
( )

( )

v x
x

v x

 ½° °= ® ¾
′° °¯ ¿

v  (10.210)  

 
where ( ) ( ) .d dx′ =  The free vibration response of the beam is expressed in matrix form 
as 

 ( ) ( )

1

( , ) ( ) cos( )j j
j j

j

x t x A tω φ
∞

=

= −¦w W  (10.211) 

 
where the matrix W(j) is defined by Eq. (10.167). Imposing the initial conditions on the ma-
trix form of the free vibration response gives the relations 
 

 ( ) ( )
0 1

1

( ) ( )j j

j

x x A
∞

=

=¦w W   

and 

 ( ) ( )
0 2

1

( ) ( )j j
j

j

x x Aω
∞

=

=¦v W   

 
Let us next multiply the above equations by the matrix product ( ) ( ) ( )l x xTW m and inte-
grate the resulting expressions over the domain of definition of the beam. Doing this and 
utilizing the orthogonality relation, Eq. (10.165), results in the relations 
 

www.konkur.in



10│ Free Vibration of One-Dimensional Continua 617 

 ( ) ( )
1

j jA = Λ  (10.212) 
 
 ( ) ( )

2
j jA = Χ  (10.213) 

where 

 

{ }

( ) ( )
02( ) 0

( ) ( )
0 02( ) 0

1 ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( )

L
l l

l

L
l l

l

x x x dx

W x m x w x W x I x w x dxρ

Λ =

′ ′= +

³

³
m

m

W m w
W

W

 (10.214) 

 

 

{ }

( ) ( )
02( ) 0

( ) ( )
0 02( ) 0

1 ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( )

L
l l

l
l

L
l l

l
l

x x x dx

W x m x v x W x I x v x dxρ

ω

ω

Χ =

′ ′= +

³

³
m

m

W m v
W

W

 (10.215) 

and 

 

{ }

2( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

L
l l l

L
l l l l

x x x dx

W x m x W x W x I x W x dxρ

=

′ ′= +

³
³

m
W W m W

 (10.216) 

 
The amplitudes and phase angles are then given by the relations 
 
 2 2( ) ( ) ( )j j jA = Λ + Χ  (10.217) 
and 
 ( )1 ( ) ( )tan j j

jφ −= Χ Λ  (10.218) 
 
and may be evaluated for given initial displacements and velocities w0(x) and v0(x).  
 For Rayleigh beams that are released from rest it follows, from the pertinent argu-
ments of the previous section, that 
 
 0 ( 1,2,...)j jφ = =  (10.219) 
and 
 

 { }( ) ( ) ( )
0 02( ) 0

1 ( ) ( ) ( ) ( ) ( ) ( )
L

j l l

l
A W x m x w x W x I x w x dxρ

′ ′= +³
m

W
 (10.220) 

 
The free vibration response for a Rayleigh beam released from rest is then 
 

 ( ) ( )

1

( , ) ( ) cosj j
j

j

w x t W x tω
∞

=

= Λ¦  (10.221) 
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Example 10.24 
Determine the amplitudes and phase angles for the cantilevered beam of Example 
10.12 if it is released from rest from the configuration 2

0( ,0) 2w x xκ= − . As for 
the Euler-Bernoulli beam of Example 10.23, this initial configuration corresponds to 
the deflections produced by a bending moment, M0, applied to the free end of the 
beam and the parameter 0 0M EIκ =  corresponds to the initial, uniform, curvature 
of the structure. 
 
Solution 
The modal functions for the beam were determined in Example 10.12 to be  
 
 ( ) ( )( ) cosh cos sinh sinj j

j j j j j jW x x x Y x xα β β α α βª º= − − −¬ ¼  (a) 
 
where 

 
( )
( )

2 2
( )

2

cosh cos1
sinh sin

j j j jj

j j j j j j

L L
Y

L L

α α β β
β α α α β β

+
=

+
 (b) 

 
The initial conditions are 
  
 21

0 0 02( ) , ( ) 0w x x v xκ= − =  (c-1, 2) 
 
Since the structure is initially at rest, we have from Eq. (10.219) that 
 
 0jφ =  � (d) 
  
Further, substituting Eq. (c-1) into Eq. (10.220) gives 
 

 { } { }( ) 2 ( ) ( )1
0 022( ) 0

1 ( ) ( )
L

j j j

j
A x mW x x I W x dxρκ κª º′= − + −« »¬ ¼³

m
W

  

 
The amplitudes of the freely vibrating cantilevered Rayleigh beam are then 
 

 

2 ( ) 2 ( )1
2

0( )
0

2 2( ) 2 ( )

0

( ) ( )
( 1,2,...)

( ) ( )

L
j j

G
j

L
j j

G

x W x r xW x dx
A j

W x r W x dx
κ

ª º′+« »¬ ¼
= − =

ª º′+« »¬ ¼

³
³

 � (e) 

 
where W(j) is given by Eq. (a) and rG is the radius of gyration of the cross section. 
The integrals can be evaluated analytically to give the explicit forms of the ampli-
tudes. 
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10.9.3  Timoshenko Beams 

The development for Timoshenko beams is similar to that for Rayleigh beams. However, 
for the present case, the motion is characterized by two displacement functions. Recall that 
the displacement matrix for Timoshenko beams is  
    

 
( , )

( , )
( , )

w x t
x t

x tϕ
 ½= ® ¾
¯ ¿

u  (10.222) 

 
where ( , )w x t  and ( , )x tϕ , correspond to the transverse deflection and cross section rota-
tion respectively. Since we now have two displacement functions, we must specify two 
initial conditions for each. Hence,  
 

 0 0
0

( ,0) ( ), ( )
t

ww x w x v t
t =

∂= =
∂

  

 

 0 0
0

( ,0) ( ), ( )
t

x x x
t
ϕϕ ϕ χ

=

∂= =
∂

  

 
which is written in matrix form as 
 

 0
0

0

( )
( ,0) ( )

( )
w x

x x
xϕ

 ½
= = ® ¾

¯ ¿
u u  (10.223) 

and 

 0
0

00

( )
( )

( )t

v x
x

xt χ=

 ½∂ = = ® ¾∂ ¯ ¿

u v  (10.224)  

 
Now, the free vibration response of the beam is of the general form 
 

 ( ) ( ) ( ) ( ) ( )
1 2

1 1

( , ) ( ) cos sin ( ) cos( )j j j j j
j j j j

j j

x t x A t A t x A tω ω ω φ
∞ ∞

= =

ª º= + = −¬ ¼¦ ¦u U U  

  (10.225) 
 
Imposing the initial conditions on the time history of the response results in the identities   
 

 ( ) ( )
0 1

1

( ) ( )j j

j

x x A
∞

=

=¦u U   

 

 ( ) ( )
0 2

1

( ) ( )j j
j

j

x x Aω
∞

=

=¦v U   

where 

 
( )

( )
( )

( )
( )

( )

j
j

j

W x
x

xϑ
 ½° °= ® ¾
° °¯ ¿

U  (10.226) 
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Paralleling the development for Rayleigh beams with the present displacement variables, 
modal matrices and initial conditions gives the relations 
 
 ( ) ( )

1
j jA = Λ  (10.227) 

 
 ( ) ( )

2
j jA = Χ  (10.228) 

 
where, for Timoshenko beams, 
 

 
{ }

( ) ( )
02( ) 0

( ) ( )
0 02( ) 0

1 ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( )

L
l l

l

L
l l

l

x x x dx

W x m x w x x I x x dxρϑ ϕ

Λ =

= +

³

³
m

m

U m u
U

U

 (10.229) 

 

 
{ }

( ) ( )
02( ) 0

( ) ( )
0 02( ) 0

1 ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( ) ( )

L
l l

l
l

L
l l

l
l

x x x dx

W x m x v x x I x x dxρ

ω

ϑ χ
ω

Χ =

= +

³

³
m

m

U m v
U

U

 (10.230) 

 
and 

  
{ }

2( ) ( ) ( )

0

( ) ( ) ( ) ( )

0

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

L
l l l

L
l l l l

x x x dx

W x m x W x x I x x dxρϑ ϑ

=

= +

³
³

m
U U m U

 (10.231) 

 
The amplitudes and phase angles are then given by 
 
 2 2( ) ( ) ( )j j jA = Λ + Χ  (10.232) 
and  
 ( )1 ( ) ( )tan j j

jφ −= Χ Λ  (10.233) 

 
and may be evaluated as described above for given initial displacements, rotations, veloci-
ties and rotation rates, w0(x), ϕ0(x), v0(x) and χ0(x). It follows from the same reasoning as 
for the other structures considered in this chapter that, for Timoshenko beams that are re-
leased from rest, 
 
 0jφ =  (10.234) 
and 

 { }( ) ( ) ( )
02( ) 0

1 ( ) ( ) ( ) ( ) ( ) ( )
L

j l l

l
A W x m x w x x I x x dxρϑ ϕ= +³

m
U

0  (10.235) 
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The free vibration response of a Timoshenko beam released from rest then follows as 
 

 ( ) ( )

1

( , ) ( ) cosj j
j

j

x t x tω
∞

=

= Λ¦u U  (10.236) 

 

 

Example 10.25 
Determine the amplitudes and phase angles for the cantilevered beam of Example 
10.13 if it is released from rest from the configuration 2

0( ,0) 2,w x xκ= −  
0( ,0) .x xϕ κ= −  As for the beams of Examples 10.23 and 10.24, this initial configu-

ration corresponds to the deflections produced by a bending moment, M0, applied to 
the free end of the beam and the parameter 0 0M EIκ =  corresponds to the uniform 
curvature of the structure. [Note that, for this particular case, 0 0( ) ( )x dw x dxϕ =  
since there is no transverse shear in the structure initially (since it is loaded in pure 
bending) and hence no shear deformation in the beam at that time. See Section 9.6.5, 
 Eq. (9.131).] 
 
Solution 
The modal functions for the beam were determined in Example 10.13 to be  
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where 
 
 ( ) ( )( ) ( ) ( ) ( )cosh cos sinh sinj j j j

j j j j j j j jY g L g L g L Lα β αα α β β α α β β= + +  (b) 
 
and gα and gβ are defined by Eqs. (10.85). The initial conditions are 
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2
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x x

x
κ
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° °¯ ¿
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Since the beam is initially at rest we have from Eqs. (10.234) and (10.235)  that 
 
 0 ( 1,2,...)j jφ = =  � (d) 
and 
 

 { } { }( ) 2 ( ) ( )1
0 022( ) 0

1 ( ) ( )
L

j j j

j
A x mW x x I x dxρκ κ ϑª º= − + −¬ ¼³
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The amplitudes of the freely vibrating cantilevered Timoshenko beam are then 
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where W(j) and ϑ(j) are given by Eq. (a) and rG is the radius of gyration of the cross 
section. The integrals can be evaluated analytically to give the explicit forms of the 
amplitudes.  

 
 
 
 

10.10 CONCLUDING REMARKS 

In most engineering systems the components are effectively continuous distributions of 
matter at the macroscopic level. In earlier chapters mechanical systems were treated as dis-
crete systems, typically based on the assumption that the mass of the structure was negligi-
ble when compared with “dominant” mass concentrations attached to the body, and the 
focus was on the corresponding “dominant” motions associated with these conditions. The 
legitimacy of the assumptions and the accuracy of the predicted motions were, to this point, 
accepted on the basis of the aforementioned physical arguments. In the discrete models the 
inertia of the structure is neglected and the application of such models is limited in this re-
gard. When the mass of the structure is comparable with other mass measures, when the 
assumption of vanishing mass of the structure is relaxed, or when the detailed motion of the 
structure itself is of interest, representation of the physical system as a continuum is war-
ranted. Case studies for the longitudinal motion of elastic rods and the flexural motion of 
elastic beams were performed and the corresponding results give quantitative assessments 
of the limitation of the discrete model as an approximation to the first mode of the continu-
um. One-dimensional continua are mathematical representations of three-dimensional bod-
ies or media for which one spatial dimension, the axial dimension, is large compared with 
the other two. Mathematical models for various types of motion of such structures were 
developed and discussed in detail in Chapter 9. In all, the thinness of the structures was 
central to the simplifications adopted. In the present chapter we studied the motion of vari-
ous one-dimensional continua under their own volition. It was seen that the description of 
the system, and of the corresponding motion, is an abstraction of the parallel representations 
of discrete systems. In this regard it was seen that, for one-dimensional continua, the dis-
placement and force matrices become functions of a single spatial variable and time, and 
the mass and stiffness matrix operators become differential operators. In one of the theories 
considered, “Timoshenko beam theory,” the motion of the structure is described by two 
“displacement” functions that comprise a 2 1×  displacement  matrix and, correspondingly, 
a 2 1×  force matrix whose elements are comprised of forcing functions. In addition, the 
mass and stiffness operators each take the form of 2 2×  matrices of scalar functions and 
differential operators respectively.  
 The free vibration problem for one-dimensional continua was seen to reduce to an 
eigenvalue problem, where the infinity of eigenvalues correspond to the squares of the natu-
ral frequencies of the structure and the eigenfunctions are the associated modal functions. 
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The fundamental motions of one-dimensional continua were seen to be described by a line-
ar combination of the infinity of modal functions. Since, as mentioned above, one-
dimensional continua are mathematically one-dimensional representations of three-
dimensional bodies as described in Chapter 9, the accuracy of the results predicted by these 
models is limited by the geometrical restrictions implicit to these models. From a vibrations 
perspective, these simplifications restrict the suitability of the predicted results to those 
modes for which the “wavelength” (the distance between nodes) is large compared with the 
thickness of the body. This, in turn, restricts the accuracy to the lowest modes of the system 
predicted by these mathematical models. To extend these models to a wider range of fre-
quencies and modes for the case of flexural motion of beams, “corrections” are made to the 
basic Euler-Bernoulli theory to account for the effects of rotatory inertia of the cross section 
(Rayleigh theory) and deformation due to transverse shear in an average sense (shear beam 
theory) and to both transverse shear deformation and rotatory inertia (Timoshenko Theory). 
It was demonstrated by comparative studies for the case of the cantilevered beam that the 
inclusion of the shear deformation has the most pronounced contribution. If Timoshenko 
beam theory is taken to be the most accurate of those considered, the limitations of the re-
sults of the simpler models is demonstrated and quantified by the results of those examples. 
 The modal functions for a given structure were shown to be mutually orthogonal, 
with the interpretation being a clear extension of earlier definitions in terms of the scalar 
product of the modal functions. The basic definitions were abstracted for the Rayleigh and 
Timoshenko beam theories. Regardless of the model, in each case, the mutual orthogonality 
of the modal functions was seen to be a function of the boundary conditions imposed on the 
structure. The general response of a freely vibrating structure was shown to correspond to a 
linear combination of the modal functions with harmonic time signatures. The correspond-
ing amplitudes and phase angles are computed by imposing the initial conditions on the 
general form of the response, and are simplified by capitalizing on the mutual orthogonality 
of the modal functions. In the next chapter we consider the response of one-dimensional 
continua to external dynamic forcing. The mutual orthogonality of the modal functions will 
be seen to be important in the corresponding analysis and response of any given system. 
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PROBLEMS 

10.1 Consider free longitudinal vibration of the elastic rod that is attached to an elastic 
wall, as shown. (a) Establish the modal boundary conditions for the structure. (See, 
also, Problem 9.4.) (b) Derive the frequency equation for the rod. (c) Determine the 
first three natural frequencies and modal functions for a system where 

0.5k kL EA= = . Plot the modal functions.                                                                  

   Fig. P10.1 
 
 
10.2 Consider free longitudinal vibration of the elastic rod with rigid and elastic supports, 

as shown. (a) Establish the modal boundary conditions for the structure. (See, also, 
Problem 9.5.) (b) Derive the frequency equation for the rod. (c) Determine the first 
three natural frequencies and modal functions for a system where 0.5k kL EA= = . 
Plot the modal functions.        

  

    Fig. P10.2    
 
                                       
10.3 Consider free longitudinal vibration of a uniform elastic rod of length L, membrane 

stiffness EA and mass per unit length m, that is constrained by elastic walls of stiff-
ness k at each end. (a) Establish the modal boundary conditions for the structure. 
(Hint: See Example 9.3.) (b) Derive the frequency equation for the rod. (c) Deter-
mine the first three natural frequencies and modal functions for a structure where 

0.5wk k L EA= = . Plot the modal functions. 
 

   Fig. P10.3 
 
10.4 Case Study. Perform a parameter study for the rod of Problem 10.3 in which you 

compare the first three natural frequencies for various values of the stiffness ratio 
.k  
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10.5 Consider longitudinal vibrations of the free-free uniform elastic rod of length L, 

membrane stiffness EA and mass per unit length m shown in the figure. (a) Estab-
lish the modal boundary conditions for the structure. (b) Derive the frequency equa-
tion for the rod. (c) Determine the first three natural frequencies and modal func-
tions. Plot the first three modes.            

 

                                    Fig. P10.5                                                 Fig. P10.6 
 
 
10.6 Consider free torsional vibration of a uniform circular elastic rod of length L, tor-

sional stiffness GJ and mass per unit length m, that is free at its left end and fixed at 
its right end. (a) Establish the modal boundary conditions for the structure. (b) De-
rive the frequency equation for the rod. (c) Determine the first three natural fre-
quencies and modal functions. Plot the first three modes. 

 
 
10.7 Consider free torsional vibrations of a uniform circular elastic rod of length L, tor-

sional stiffness GJ and mass per unit length m, that is free at its left end and embed-
ded in an elastic wall of stiffness kθ = GJ/L at its right end, as shown. (a) Establish 
the modal boundary conditions for the structure. (Hint: See Problem 9.8). (b) Derive 
the frequency equation for the rod. (c) Determine the first three natural frequencies 
and modal functions. Plot the first three modes.                              

 

                               Fig. P10.7                                                   Fig. P10.8 
 
 
10.8 Consider free torsional vibrations of the uniform circular elastic rod of length L, 

torsional stiffness GJ , mass density ρ and cross-sectional area A, that has a rigid 
disk of mass moment of inertia ID attached to its free end, as shown in Figure P10.8. 
(a) Establish the modal boundary conditions for the structure. (Hint: See Problem 
9.10.) (b) Derive the frequency equation for the rod in terms of the inertia ratio 
α = ID/Jρ L. (c) Determine the first three natural frequencies and modal functions for 
the case where α = 2. Plot the first three modal functions. 
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10.9 Case Study. Conduct a comparative study of the rod of Problem 10.8 and its “equiv-
alent” single degree of freedom model of Section 1.2.3, in the spirit of Example 
10.3. Which mode does the 1 d.o.f. system simulate? At what value of the inertia ra-
tio does the 1 d.o.f. system simulate the continuous system to within 2 significant 
figures? To within 3 significant figures? 

 
10.10 Consider free lateral vibrations of the chain of Example 9.6-ii. (a) Determine the 

natural frequencies and modal functions for the system. (b) Plot the first three 
modes. 

 
10.11 Consider the pulley system of Problem 

9.36. (a) Determine the natural frequen-
cies and modal functions for the free lat-
eral vibration of the inner sections of the 
cable. (b) Plot the first three modes. 

                
 
 
 
 
 
                                                      

                                           
        Fig. P10.11 
 
10.12 Consider the free flexural vibrations of a uniform elastic beam of length L, bending 

stiffness EI and mass per unit length m that is clamped at both edges, as shown, and 
is represented mathematically using Euler-Bernoulli theory. (a) Establish the modal 
boundary conditions for the structure. (b) Derive the frequency equation for the 
beam. (c) Determine the first three natural frequencies and modal functions. Plot the 
modal functions.  

       
                               Fig. P10.12   Fig. P10.13 
 
10.13 Consider the free flexural vibrations of a uniform elastic beam of length L, bending 

stiffness EI and mass per unit length m that is clamped at its left edge and is pin-free 
supported at its right edge, as shown. Let the beam be represented mathematically 
using Euler-Bernoulli theory. (a) Establish the modal boundary conditions for the 
structure. (b) Derive the frequency equation for the beam. (c) Determine the first 
three natural frequencies and modal functions. Plot the modal functions. 
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10.14 Consider the free flexural vibrations of the uniform elastic beam of length L, bend-
ing stiffness EI and mass per unit length m that is supported by elastic clamps of 
(rotational) stiffness kϕ at each end, as shown. Let the beam be represented mathe-
matically using Euler-Bernoulli theory. (a) Establish the modal boundary conditions 
for the structure. (Hint: See Problem 9.15.) (b) Derive the frequency equation for 
the beam. (c) Determine the first three natural frequencies and modal functions for 
the case where 1k k L EIϕ ϕ= = . Plot the modal functions. 

 

 
   Fig. P10.14 
 
 
 
10.15 Consider the free flexural vibrations of the uniform elastic beam of length L, bend-

ing stiffness EI and mass per unit length m that is supported by an elastic clamp of 
(rotational) stiffness kϕ at one end, as shown. Let the beam be represented mathe-
matically using Euler-Bernoulli theory. (a) Establish the modal boundary conditions 
for the structure. (Hint: See Problem 9.16). (b) Derive the frequency equation for 
the beam. (c) Determine the first three natural frequencies and modal functions for 
the case where 1k k L EIϕ ϕ= = . Plot the modal functions. 

  

   Fig. P10.15 
 
 
 
10.16 Consider the free flexural vibrations of the uniform elastic beam of length L, bend-

ing stiffness EI and mass per unit length m that is supported by an elastic clamp at 
one end and an elastic mount at the other, as shown. Let the beam be represented 
mathematically using Euler-Bernoulli theory. (a) Establish the modal boundary 
conditions for the structure. (Hint: See Problem 9.17) (b) Derive the frequency 
equation for the beam. (c) Determine the first three natural frequencies and modal 
functions if the supports are such that 1k k L EIϕ ϕ= =  and 3 1wwk k L EI= = . Plot 
the modal functions. 
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   Fig. P10.16 
 
 
10.17 Consider the free flexural vibrations of the uniform elastic beam of length L, bend-

ing stiffness EI and mass per unit length m that is supported by linear springs of 
stiffness kw at each end, as shown. Let the beam be represented mathematically us-
ing Euler-Bernoulli theory. (a) Establish the modal boundary conditions for the 
structure. (Hint: See Problem 9.18.) (b) Derive the frequency equation for the beam. 
(c) Determine the first three natural frequencies and modal functions for the case 
where 3 1wwk k L EI= = . Plot the modal functions. 

 

   Fig. P10.17 
 
10.18 Consider the free flexural vibrations of the cantilevered uniform elastic beam of 

length L, bending stiffness EI, and mass per unit length m that is supported by an 
elastic mount of stiffness kw at its free end, as shown. Let the beam be represented 
mathematically using Euler-Bernoulli theory. (a) Establish the modal boundary 
conditions for the structure. (Hint: See Problem 9.19.) (b) Derive the frequency 
equation for the beam. (c) Determine the first three natural frequencies and modal 
functions for the case where 3

wwk k L EI= = 1. Plot the modal functions. 
 

   Fig. P10.18 
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10.19 Consider the free flexural vibrations of a simply supported uniform elastic beam-
column of length L, bending stiffness EI, and mass per unit length m that is subject-
ed to a constant compressive end load P0. (See Example 9.12.) Determine the first 
three natural frequencies and modal functions for the case where the applied load is 
half the static buckling load. Plot the modal functions. 

  

    Fig. P10.19 
 
 
10.20 Case Study. Parallel the parameter study of Example 10.10 for the simply supported 

structure of Problem 10.19. 
 
 
10.21 Consider the free flexural vibrations of the uniform elastic beam-column of length 

L, bending stiffness EI, and mass per unit length m that is pinned-fixed supported at 
its left end and is clamped-free supported at its right end, as shown. The structure is 
subjected to a constant compressive end load P0, as indicated. (a) Establish the 
modal boundary conditions for the structure. (Hint: See Problem 9.34.) (b) Derive 
the frequency equation for the beam. (c) Determine the first three natural frequen-
cies and modal functions for the case where the applied load is half the static buck-
ling load. Plot the modal functions. 

  

    Fig. P10.21 
 
 
10.22 Consider the free flexural vibrations of a simply supported uniform elastic beam of 

length L, bending stiffness EI, radius of gyration rG and mass per unit length m, and 
let it be represented mathematically using Rayleigh beam theory. (a) Establish the 
modal boundary conditions for the structure. (b) Derive the frequency equation for 
the beam. (c) Determine the first three natural frequencies and modal functions for a 
beam with 0.1Gr L = . Plot the modal functions. 

 
 
10.23 Case Study. Parallel the study of Example 10.12 for the simply supported beam of 

Problem 10.22. 
 
10.24 Solve Problem 10.12 if the beam is modeled as a Rayleigh beam with  rG/L = 0.1. 
 

www.konkur.in



630 Engineering Vibrations 

10.25 Solve Problem 10.13 if the beam is modeled as a Rayleigh beam with rG/L = 0.1. 
 
10.26 Solve Problem 10.22 if the beam is modeled as a Timoshenko beam with rG/L = 0.1 

and E/kG = 5. 
 
10.27 Solve Problem 10.12 if the beam is modeled as a Timoshenko beam with rG/L = 0.1 

and E/kG = 5. 
 
10.28 Solve Problem 10.13 if the beam is modeled as a Timoshenko beam with rG/L = 0.1 

and E/kG = 5. 
 
10.29 The elastic rod of Problem 10.6 is twisted and held in place such that 0 ( )x axθ =  

where a is a constant. Determine the amplitudes and phase angles for the free vibra-
tion response if the rod is released from rest when in this configuration. 

 
10.30 A string of mass per unit length m and length L is under tension N0 and held in place 

in the configuration 0 ( ) ( )w x ax L x= −  where 0 02a q N=  is a constant. Determine 
the amplitudes and phase angles for the free vibration response of the string if the 
string is released from rest. 

 
10.31 Solve problem 10.30 if the string is released from the given configuration with the 

velocity 0 0 0( ) ( )v x c w x= , where c0 is a constant. 
 
10.32 A simply supported Euler-Bernoulli beam of length L, bending stiffness EI and 

mass per unit length m is deflected by a static load and held in the configuration 
( )3 2 3

0 ( ) 2w x ax L Lx x= − + , where 0 24a q EI=  is a constant. Determine the am-
plitudes and phase angles for the free vibration response of the structure if it is re-
leased from rest when in this configuration.  

 
10.33 Determine the amplitudes and phase angles for free vibration of the simply support-

ed beam of Problem 10.32 if the beam is represented using Rayleigh theory.  
 
10.34 The cantilevered Timoshenko beam of Example 10.12 is released from rest from the 

configuration 
  
 2 2 11 1

0 0 0 06 2( ) , ( ) sw x Q x L x x Q x Lx kϕ −ª º= − = − −ª º¬ ¼ ¬ ¼   
 

where Q0 is constant. Determine the amplitudes and phase angles for the free vibra-
tion response of the beam. 
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11 
Forced Vibration of One-Dimensional 
Continua 

 
 
 
 
 
 
The dynamic response of mechanical and structural systems to external loads is of primary 
importance in a variety of applications. Excessive vibrations of a structure such as an air-
plane wing or a highway overpass can lead to catastrophic failure, while the bowing of a 
violin string, the plucking of a guitar string or the pounding of a drum head can produce 
desirable effects. The controlled vibration of structures is germane to the performance of 
telephones, stereo speakers and SONAR, to name but a few examples. The behavior of con-
tinua under dynamic loading is central to the understanding and implementation in all of 
these applications. It is therefore of interest to study the vibrations of continua under applied 
dynamic forcing. In this chapter we study the forced vibration of the mathematically one-
dimensional continua discussed in Chapters 9 and 10. Specifically, we discuss the forced 
longitudinal and torsional motions of elastic rods, the transverse motion of externally excit-
ed strings and cables, and the transverse motion of Euler-Bernoulli beams, Rayleigh beams 
and Timoshenko beams to dynamic transverse loads and applied moments. We also discuss 
the forced response of such structures when they possess internal friction.   
 It was shown in Chapter 9 that the mathematical description of a continuous system is 
an abstraction of the description of a discrete system. This abstraction was utilized in Chap-
ter 10 to study the free vibrations of one-dimensional continua, and the concepts of normal-
ization and mutual orthogonality of the modes were similarly advanced. In a similar man-
ner, the modal decomposition introduced to study the forced vibration of discrete systems 
can be extended to continuous systems, allowing for a fundamental and comprehensive 
approach to forced vibration problems for one-dimensional continua. Modal analysis of 
forced vibration problems is based on an expansion of the displacement function in terms of 
the modal functions found for the corresponding free vibration problem. The justification 
for such a modal expansion is discussed in the next section. The methodology and applica-
tions to the various systems considered to this point follow in subsequent sections of this 
chapter. 
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11.1  MODAL EXPANSION 

In order to solve forced vibration problems it is of fundamental, as well as practical, interest 
to first express the displacements in terms of the fundamental motions of the system de-
scribed by the modal functions. The advantage of this approach was clearly seen when we 
studied forced vibration of discrete systems in Chapter 8. As discussed at the beginning of 
Section 8.3, a vector may be expressed as a linear combination of other vectors provided 
those vectors are linearly independent. It was demonstrated in Chapters 9 and 10 that a 
function is an abstraction of a finite dimensional vector. That is, functions may be viewed 
as vectors with an infinite number of components or elements that are densely packed and 
continuously distributed. To show that a set of functions forms a basis for a given space, 
and hence that any other function in that space can be expressed as a linear combination of 
the functions of the given set, we must show that the functions that comprise the set are 
linearly independent. We do this for the class of modal functions described in the previous 
chapter.   
 

11.1.1  Linear Independence of the Modal Functions 

We wish to establish the linear independence of the modal functions for the class of contin-
ua discussed in Chapters 9 and 10. To accomplish this we must show that, for a given struc-
ture, no one modal function can be expressed as a linear combination of the other modal 
functions. The mutually orthogonality of the modal functions, as discussed in Section 10.8, 
is central to establishing this property. 
 The motion of each of the systems discussed in Chapters 9 and 10 was seen to be 
described by a displacement function or functions and the governing equation or equations 
by the associated mass and stiffness operators. Since the case of a single displacement func-
tion and scalar mass and stiffness differential operators is a special case of multiple dis-
placement functions and corresponding mass and stiffness operators, we shall establish the 
desired condition for the more general case. Let us, therefore, consider continuous systems 
for which the displacements are described by the column array u(x,t) with corresponding 
modes U(j)(x) (j = 1, 2, …) and associated mass and stiffness operators described by the 
square matrices m and k, respectively. For the case of a single displacement function, the 
column arrays reduce to single element arrays (functions) u(x,t) and U(x), and the square 
matrices reduce to single element operators m and k.  
 The functions that comprise the set of modal functions {U(1)(x), U(2)(x), …} are line-
arly independent if no function of that set can be expressed as a linear combination of the 
other functions of the set. Equivalently, the modal functions for a given structure are linear-
ly independent if the equation 
 

 ( )

1

( )l
l

l

a x
∞

=

=¦ 0U  (11.1) 

 
is satisfied only when all al = 0 (l = 1, 2, …). We shall show that this is the case for a set of 
mutually orthogonal modal functions. To do this, we first multiply the above equation by 
U(j)Tmdx and integrate the resulting expression over the domain [0, L]. Hence, 
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 ( ) ( )

0 1

( ) ( ) 0
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a x x dx
∞
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We next interchange the order of summation and integration in the above expression to 
obtain 

 ( ) ( )

01

( ) ( ) 0
L
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l
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∞
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=¦ ³ U mUT  (11.2) 

 
Now, if the modal functions are mutually orthogonal then 
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Accounting for the mutual orthogonality of the modal functions in Eq. (11.2) reduces that 
statement to the form 
 
 

2( ) 0     ( 1, 2,...)j
ja j= =

m
U  (11.3) 

 
Since the square of the magnitude of a modal function does not vanish we have that 
 
 0     ( 1, 2,...)ja j= =  (11.4) 
 
which is what we set out to show. The modal functions for a given structure are thus linear-
ly independent if they are mutually orthogonal. 
 

11.1.2  Generalized Fourier Series 

Since the mutually orthogonal modal functions of a given set are linearly independent, any 
function u(x,t) defined on the domain of definition of the modal functions can be expressed 
as a linear combination of these functions. That is, 
 

    ( )

1

( , ) ( ) ( )j
j

j

x t t xη
∞

=

=¦u U  (11.5) 

 
where the time dependent coefficients, ηj (j = 1, 2, …) depend upon the particular loading 
applied to the system and the parameters that define the system. Note that if the set of func-
tions corresponds to a sequence of harmonic functions whose wave numbers differ by mul-
tiples of 2π then Eq. (11.5) reduces to a standard Fourier series, Eq. (3.163). A general ex-
pansion of the form of Eq. (11.5) is thus referred to as a generalized Fourier series. The 
modal expansion tells us that the response of a given system to external forcing is com-
prised of a linear combination of the responses of the individual modes. 
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11.2 DECOMPOSITION OF THE FORCED VIBRATION PROBLEM 

The solution of forced vibration problems for one-dimensional continua is facilitated by the 
results of the last section. It was seen therein that the response of a given structure may be 
expressed as a linear combination of the modal functions. It will be shown in the present 
section that the governing equations for a given structure can be decomposed into the gov-
erning equations for an infinite system of uncoupled, single degree of freedom, systems 
whose displacements correspond to the modal coordinates. As in the previous section, we 
carry out the development for the general case where several displacement functions may 
characterize the motion of the system. Structures for which a single displacement function 
characterizes the motion are interpreted as a special case.  
 The governing equation for the class of structures under consideration takes the gen-
eral form   

 
2

2t
∂ + =
∂

um ku F  (11.6) 

 
where F = F(x,t) represents the distributed external loads applied to the structure (see Chap-
ter 9). Let us express the array of displacement functions as a linear combination of the ar-
rays of the corresponding modal functions. Upon substituting Eq. (11.5) into Eq. (11.6) we 
have 
 

 ( ) ( )

1

( ) ( ) ( ) ( ) ( , )j j
j j

j

x t x t x tη η
∞

=

ª º+ =¬ ¼¦ ��mU kU F  (11.7) 

 
Multiplying (11.7) on the left by U(l)Tdx and integrating over [0, L] then results in the identi-
ty  
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 (11.8) 

 
Let us now interchange the order of integration and summation in Eq. (11.8) and note the 
relations for the mutual orthogonality of  the modal functions, 
 

 ( ) ( ) ( ) ( )

0
, ( ) ( ) 0    ( )

L
l j l jx x dx j l≡ = ≠³m

U U U mUT  

 

 ( ) ( ) ( ) ( )

0
, ( ) ( ) 0    ( )

L
l j l jx x dx j l≡ = ≠³k

U U U kUT  

 
After doing this, Eq. (11.8) reduces to the system of uncoupled ordinary differential equa-
tions in ηj, 
 
 ( ) ( ) ( )    ( 1,2,...)j j j j jm t k t F t jη η+ = =� ����  (11.9) 
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where 

 
2( ) ( ) ( )

0
( ) ( )     ( 1, 2,...)

L
j j j

jm x x dx j= = =³�
m

U U mUT  (11.10) 

 

 
2( ) ( ) ( )

0
( ) ( )     ( 1,2,...)

L
j j j

jk x x dx j= = =³�
k

U U kUT  (11.11) 

and 

 ( ) ( )

0
( ) , ( ) ( , )     ( 1,2,...)

L
j j

jF t x x t dx j= = =³� U F U FT  (11.12) 

 
respectively correspond to the modal mass, modal stiffness and modal force for the jth 
mode. Note that if we choose to normalize the modal functions with respect to the mass, 
then the modal masses are all equal to one. Equations (11.9) are seen to correspond to the 
equations of motion for an infinite number of uncoupled single degree of freedom systems 
whose displacements are the modal coordinates η j(t) (Figure 8.7). Each equation describes 
the amplitude of an individual mode. The corresponding masses and stiffnesses of these 
single degree of freedom systems are the modal masses and modal stiffnesses defined by 
Eqs. (11.10) and (11.11). The modal forces (the forces acting on the modal masses) defined 
by Eq. (11.12) correspond to the portion of the applied force system distributed to the indi-
vidual mode. Before proceeding it is useful to identify the natural frequencies for each of 
the equivalent single degree of freedom systems.     
 Recall from Chapter 10 that natural frequencies and modal functions for a given 
structure each satisfy the relation 
 
 ( ) 2 ( ) ( 1, 2,...)j j

j jω− = =kU mU 0  (11.13) 
 
where ωj is the jth natural frequency of the structure. If we multiply Eq. (11.13) on the left 
by U(j)Tdx and integrate the resulting expression over the domain of definition of the struc-
ture [0, L] we arrive at the identity 
 
 2 0    ( 1,2,...)j j jk m jω− = =� �   (11.14) 
 
With the relation between the frequencies of the equivalent single degree of freedom sys-
tems seen, perhaps not surprisingly, to correspond to the natural frequencies of a given 
structure we return to the problem defined by Eq. (11.9). 
 Dividing Eq. (11.9) by jm�  and incorporating Eq. (11.14) puts the uncoupled system 
of equations for the modal coordinates in the standard form (Chapter 3)  
 
 2 2( ) ( ) ( )    ( 1,2,...)j j j j jt t f t jη ω η ω+ = =���  (11.15) 
where 

 2

( ) ( )
( ) j j

j
j jj

F t F t
f t

mk ω
≡ =
� �

�
� �

 (11.16) 

 
The equations are seen to be a system of uncoupled forced harmonic equations which may 
be solved for ηj(t) using the methods of Chapters 3–5. The solutions correspond to the dis-
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placements of effective single degree of freedom systems and are the modal coordinates. 
Once these modal displacements are determined for a given system and applied forces, they 
may be substituted into Eq. (11.5) giving the forced vibration response in the form 
 

 ( )

1

( , ) ( ) ( )j
j

j

x t t xη
∞

=

=¦u U  

 
The above development may be applied to the various one-dimensional continua discussed 
in Chapter 10. In particular, the modal analysis described above may be applied directly to 
problems concerning the longitudinal motion of elastic rods, torsional motion of elastic 
rods, transverse vibration of strings and cables, flexural motion of Euler-Bernoulli beams 
and beam-columns, and Timoshenko beams, with proper identification of the mass and 
stiffness operators and structural parameters for the system of interest. The general proce-
dure holds for Rayleigh beams as well, though the definitions for modal mass and modal 
stiffness differ slightly from those stated above and will be introduced in Section 11.3.5. In 
the next section we use modal analysis to solve forced vibration problems for various one-
dimensional continua. 
 
 

11.3  SOLUTION OF FORCED VIBRATION PROBLEMS 

The forced vibration problem for any of the one-dimensional continua described in Chap-
ters 9 and 10 can be solved by way of the modal decomposition discussed in the previous 
section. This procedure is referred to as modal analysis. To perform such an analysis for a 
given structure we must first solve the corresponding free vibration problem, confirm that 
the modal functions are mutually orthogonal by checking that the boundary conditions sat-
isfy the requisite conditions defined in Section 10.8, and then compute the modal masses 
and/or modal stiffnesses for the system and the modal forces for the particular forces ap-
plied to the structure. We then solve the system of differential equations for the modal dis-
placements. Once the modal displacements are determined we substitute them, along with 
the corresponding modal functions, into the modal expansion defined by Eq. (11.5) to ob-
tain the forced response of the structure. The general procedure is outlined in Figure 11.1.  
 Examples pertaining to each of the structures discussed in Chapters 9 and 10 are pre-
sented in the remainder of this section.   
 

11.3.1  Axially Loaded Elastic Rods 

We first consider the longitudinal vibrations of elastic rods due to applied forces. Recall the 
equation of longitudinal motion, Eq. (9.44), 
 

    
2

2 ( , )um EA u p x t
x xt

∂ ∂ ∂− =
∂ ∂∂

 

 
where u(x,t) is the axial displacement of the cross section originally at x and p(x,t) is the 
distributed axial load applied to the rod. Thus, for the present type of structure, u(x,t) →  
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u(x,t), F(x,t) →  p(x,t) and m → m(x) in the development and formulation presented in Sec-
tions 11.1–11.2. 
 
 
 

 
 
 
 
          Figure 11.1 Recipe for modal analysis of 1-D continua subjected to external forcing. 

Identify mass and stiffness operators and b.c.s.  

  
2

2 ( , ) ;   [0, ]x t x L
t

∂ + = ∈
∂

um ku F  

Solve the free vibration problem (eigenvalue problem) 
to obtain natural frequencies and modal functions. 
    2 2 ( )   , ( )  ( 1,2,...)j

j x jω ωª º− = � =¬ ¼ 0k m U U  

Normalize the modal functions (optional). 

  
2( ) ( ) ( )

0
( ) ( ) 1

L
j j jx x dx= =³m

U U mUT  

Solve the modal equations using the methods discussed in Chapters 3–5 
or a method of choice to obtain the modal displacements.  
 2 2 ( )      ( )  ( 1, 2,...)j j j j j jf t t jη ω η ω η+ = � =���  

Substitute the modal displacements into the modal 
expansion to obtain the physical response. 

  ( )

1
( , ) ( ) ( )j

j
j

x t t xη
∞

=
=¦u U  

Confirm that the pertinent orthogonality condition is 
satisfied by the given boundary conditions. 

Evaluate the modal masses and modal forces. 
  
 ( ) ( ) ( ), ,  ( ) ( ), ( , )j j j

j jm F t x x t= =��
m

U U U F  

  
   ( ) ( )j j j jf t F t mω=� � �2  
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Example 11.1 
A uniform elastic rod of mass density 
ρ, Young’s Modulus E, cross-sectional 
area A and length L is fixed at its left 
end and free to translate at its right end, 
as shown in Figure E11.1. Determine 
the steady state response of the rod if a 
harmonic force P(t) = P0sinΩt is ap-
plied at its free end as indicated. 
    Figure E11.1 
 
Solution 
The natural frequencies and modal functions for this structure were determined in 
Example 10.1 to be 
 

 0(2 1)     ( 1, 2,...)
2j j jπω ω= − =  (a-1) 

where 

 0 2 a
EA c L

mL
ω = =  (a-2) 

 
 ( ) ( ) sin     ( 1, 2,...)j

jU x x jβ= =  (b-1) 
where 
 (2 1) 2j j Lβ π= −  (b-2) 
 
The applied force may be represented as a distributed axial force with the aid of the 
Dirac delta function (Chapter 4) as 
 
 0( , ) sin ( )p x t P t x Lδ= Ω −

�
 (c) 

 
To determine the response of the rod, u(x,t), in the form of Eq. (11.5) we must de-
termine the modal displacements, ηj(t), which are solutions to Eq. (11.15) evaluated 
for the present system. To determine the modal displacements, we must first calcu-
late the modal masses (or modal stiffnesses) and the modal forces. Substituting Eq. 
(b-1) into Eq. (11.10) and performing the indicated integration gives the modal 
masses as 
 

 ( ) ( ) 2 1
2

0 0
( ) ( ) ( ) sin

L L
j j

j jm U x m x U x dx m x dx mLβ= = =³ ³�  (d) 

 
The corresponding modal forces are determined by substituting Eqs. (c) and (b-1) in-
to Eq. (11.12). Doing this we find that 
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( )

0

0 0
0

( ) ( ) ( , )

        sin sin ( ) sin sin

L
j

j

L

j j

F t U x p x t dx

P t x x L dx P t Lβ δ β

=

= Ω − = Ω

³
³

�

�   

Thus, 
 0( ) sinj jF t F t= Ω� �  (e-1) 
where 
 0 1

0 0sin ( 1) j
j jF P L Pβ += = −�  (e-2) 

 
Hence, for the present system, Eq. (11.15) takes the specific form 
 
 2 2 0( ) ( ) sin t    ( 1, 2,...)j j j j jt t f jη ω η ω+ = Ω =���  (f) 
where 

 
0 1

0 0
2 2 2

8 ( 1)
(2 1)

j
j

j
j j

F P L
f

EAm jω π

+−= =
−

�
�

�
 (g) 

 
The solutions to Eq. (f) may be written directly from Eq. (3.28). In this way, the  jth 
modal displacement is found to be  
 

 
( ) ( )

0 1
0

2 22 2
0

8( 1)( ) sin sin
(2 1) 41

j
j

j

j

f P L
t t t

EAj
η

π ωω

+−= Ω = Ω
ª º− − Ω− Ω ¬ ¼

�
 (h) 

  
where 0ω  is given by Eq. (a-2). Substitution of Eq. (h) into Eq. (11.5) gives the 
steady state response of the rod to the harmonic edge load as 
 

 
( )

{ }
1

0
22 2

1 0

8 ( 1)( , ) sin sin (2 1) 2
(2 1) 4

j

j

P L
u x t t j x L

EA j
π

π ω

∞ +

=

−= Ω −
ª º− − Ω¬ ¼

¦  � (i) 

 
 
 
 

11.3.2  Torsion of Elastic Rods 

We next consider the vibrations of elastic rods due to applied torques. Recall that for a rod 
of circular cross section with geometric polar moment of inertia J(x), the equation of tor-
sional motion, Eq. (9.59), is 
 

    
2

2 ( , ) ( , )J GJ x t x t
x xtρ

θ θ µ∂ ∂ ∂− =
∂ ∂∂

 

 
where θ(x,t) is the rotational displacement of the cross section at coordinate x. Correspond-
ingly µ(x,t) represents the distributed (body) torque applied along the axis of the rod. Thus, 
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for structures of this type, u(x,t) → θ(x,t), F(x,t) → µ(x,t) and m(x) → Jρ(x) = ρ(x)J(x) in 
the development and formulation presented in Sections 11.1–11.2.  
 
 

Example 11.2 
A sleeve of negligible mass fits around a circular 
elastic rod of length L, radius R, shear modulus G 
and mass density ρ. The structure is fixed at its 
right end, as shown in Figure E11.2. At a certain 
instant the sleeve is quickly rotated such that it ex-
erts a sudden uniformly distributed torque of mag-
nitude µ0 along the shaft. Determine the response 
of the shaft and the reaction at the support.  Figure E11.2 
 
Solution 
The frequency equation, natural frequencies and modal functions for a rod fixed at 
its right end are determined by solving the corresponding free vibration problem 
(Problem 10.6). These quantities may also be determined from the corresponding 
expressions of Example 10.4 by setting α = 0. The natural frequencies and modal 
functions for the shaft are thus, respectively, 
 
 (2 1) 2    ( 1,2,...)j Tc j L jω π= − =  (a-1) 
and 
 ( ) ( ) cos    ( 1, 2,...)j

jx x jβΘ = =  (a-2) 
where 
 (2 1) 2    ( 1,2,...)j j L jβ π= − =  (a-3) 
 
and Tc G ρ= . The modal masses are then calculated as 
 

 

( ) ( )

0

2 1
2

0

( ) ( )

    cos    ( 1, 2,...)

L
j j

j

L

j

m x J x dx

J x dx JL j

ρ

ρ β ρ

= Θ Θ

= = =

³
³

�
 (b) 

 
For the given problem, the applied torque takes the form 
 
 0( , ) ( )x t tµ µ= H  (c) 
 
The modal forces are then 
 

 ( ) 0

0

2 ( 1)( ) ( ) ( , ) ( )
(2 1)

jL
j

j
L

F t x x t dx t
j

µµ
π

−= Θ =
−³� H  (d) 

 
Hence, 
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 0
2

( )
( ) ( )j

j j
j j

F t
f t f t

mω
= =
�

� �
�

H  (e) 

where 

 
2 21 1

0 0 0
3 3 4 4 3

16 32( 1) ( 1)
(2 1) (2 1)

j j

j
L Lf
GJ j R G j

µ µ
π π

+ +− −= =
− −

�  (f) 

 
Thus, for the present problem, Eq. (11.15) takes the form 
 
   2 2 0 ( )j j j j jf tη ω η ω+ = ��� H  (g) 
 
The solution of Eq. (g) follows directly from Eqs. (4.31) and (4.32) as 
 

 
2 1

0 0
4 4 3

32 ( 1)( ) ( ) 1 cos ( )
(2 1)

j

j j j j
L

t f t t t
R G j

µη ω
π

+− ª º= = −¬ ¼−
� S H  (h) 

 
The response is then obtained by summing the contributions of each of the modes, as 
per Eq. (11.5). We thus have 
 

 
2 1

( ) 0
4 4 3

1 1

32 ( 1)( , ) ( ) ( ) cos 1 cos ( )
(2 1)

j
j

j j j
j j

L
x t t x x t t

R G j
µθ η β ω

π

∞ ∞ +

= =

− ª º= Θ = −¬ ¼−¦ ¦ H  � (i) 

 
The reaction at the support is equal to the internal torque at x = L. Hence, from Eq. 
(9.55) and Eq. (i), 
 

 0
2 2

1

8 1( , ) 1 cos ( )
(2 1)L j

x L j

L
L t GJ t t

x j
µθ ω

π

∞

= =

∂ ª º= = = − −¬ ¼∂ −¦ H, ,  � (j) 

 
 
 
 

11.3.3  Strings and Cables 

We now apply the formulation presented in Sections 11.1 and 11.2 to the forced vibration 
of strings and cables. The corresponding equation of motion, Eq. (9.74), is 
 

 
2 2

2 2 ( , )w wm N q x t
t x

∂ ∂− =
∂ ∂

 

 
where w(x,t) is the transverse displacement of the point on the axis of the string originally at 
x and q(x,t) represents a distributed transverse load. Thus, for the present class of structure, 
u(x,t) →  w(x,t), F(x,t) →  q(x,t) and m → m(x) in the development and formulation pre-
sented in Sections 11.1–11.2.  
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Example 11.3 
The cable and sign system of Example 9.6-(i) un-
dergoes a sudden wind load that varies parabolically 
along the length of the string as 
 
               ( )2ˆ( , ) ( )q x t q t x L= ⋅  
 
and then abruptly dies off. Determine the motion of 
the cable if the time dependent amplitude of the 
wind load may be represented by a half sine wave of 
magnitude q0 and duration t*. 
 
 
Solution 
The wind load is represented mathematically as 
 
 ( )2ˆ( , ) ( )q x t q t x L= ⋅  (a-1)  
where 
 [ ]0ˆ( ) sin( *) ( ) ( *)q t q t t t t tπ= − −H H  (a-2) 
 
and m = ρA. The natural frequencies and modal functions for a cable under uniform 
tension and fixed at its ends were determined in Example 10.5. Setting N g= m in 
those results gives the frequencies and modal functions for the present system as 
 

 2j
gj

mL
ω π= m  (b-1) 

and  
   ( )( ) ( ) sinjW x j x Lπ=  (b-2) 
 
respectively. The modal mass is then 
 

 ( )( ) ( ) 2

0 0
( ) ( ) sin

2

L L
j j

j
mLm W x mW x dx m j x L dxπ= = =³ ³�  (c) 

 
The corresponding modal forces are calculated as 
 

 ( ) [ ] [ ]

{ } [ ]

( )

0

2
0

0

20
3

( ) ( ) ( , )

        sin sin( *) ( ) ( *)

        2 ( ) 2 ( 1) sin( *) ( ) ( *)
( )

L
j

j

L

j

F t W x q x t dx

j x L q x L t t t t t dx

q L
j t t t t t

j

π π

π π
π

=

= − −

ª º= − + − − − −¬ ¼

³
³

�

H H

H H

 (d) 

 
from which it follows that 
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 [ ]0( ) sin( *) ( ) ( *)j jf t f t t t t tπ= − −� � H H  (e-1) 
where 

 
{ }22

0 0
5

2 ( ) 2 ( 1)2
( )

j

j

jq Lf
g j

π
π

ª º+ − −¬ ¼= −�
m

 (e-2) 

 
Therefore, for the present problem, Eq. (11.15) takes the form 
 
 [ ]2 2 0( ) ( ) sin( *) ( ) ( *)j j j j jt t f t t t t tη ω η ω π+ = − −��� H H  (f) 
 
The solution to Eq. (f) is obtained by using the convolution integral, Eq. (4.27), with 
Ω = π /t*. Doing this gives 
 

 
{ }

{ }

0

2( ) sin( ) sin( ) ( )
1

sin( ) sin ( *) ( *)

j
j j j

j

j j

f
t t t

t t t t t

η ω

ω

ª= Ω − Ω¬− Ω

º− Ω − Ω − − ¼

�
t H

H

 (g) 

where 
 ( ) ( )222 2 2 2*j j mL j t gωΩ = Ω = m  (h) 

 
The response of the cable is then 
  
 ( , ) 0    ( 0)w x t t= <  � (i-1) 
 

 
( )0

2
1

sin
( , ) sin( ) sin( )  (0 *)

1
j

j j
jj

f j x L
w x t t t t

π
ω

∞

=

ª º= Ω − Ω ≤ ≤¬ ¼− Ω¦
�

t  � (i-2) 

     

 
( )0

2
1

sin
( , ) sin( ) sin ( *)     ( *)

1
j

j j j
jj

f j x L
w x t t t t t t

π
ω ω

∞

=

ª º= − Ω + − >¬ ¼− Ω¦
�

 � (i-3) 

 
 
 

11.3.4  Euler-Bernoulli Beams 

In this section we apply the formulation presented in Sections 11.1 and 11.2 to determine 
the dynamic response of Euler-Bernoulli beams to externally applied forces. The corre-
sponding equation of motion, Eq. (9.104), is 
 

 
2 2 2

2 2 2 ( , )w wEI m q x t
xx x t

∂ ∂ ∂ ∂+ = −
∂∂ ∂ ∂

b  

 
where w(x,t) is the transverse displacement of the point on the axis of the beam originally at 
x, q(x,t) represents a distributed transverse load and b(x,t) is a distributed couple. Thus, for 
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the present type of structure, u(x,t) →  w(x,t), F(x,t) →  q(x,t) − ∂b/∂x and m(x) → m(x) in 
the development and formulation of Sections 11.1 and 11.2.  
 
 

Example 11.4 
Consider the simply supported uniform Euler-
Bernoulli beam shown in Figure E11.4. De-
termine the response of the beam if a distribut-
ed transverse load that varies linearly along the 
length of the beam is suddenly applied, main-
tained at a constant level over a time duration 
t*, and is then suddenly unloaded. Also, com-
pute the reactions of the supports during the 
time that the distributed load is present.  Figure E11.4 
 
Solution 
The free vibration problem for a simply supported beam was considered in Example 
10.6. The corresponding natural frequencies and normal modes are found to be  
 

 2
4( )j

EIj
mL

ω π=  (a-1) 

and 

 ( )( ) 2( ) sinjW x j x L
mL

π=  (a-2) 

 
respectively, where we have normalized the latter as described in Section 10.7. To 
solve the problem using modal analysis we seek a solution in the form 
 

 ( )

1

( , ) ( ) ( )j
j

j

w x t t W xη
∞

=

=¦  

 
where the modal displacements ηj(t) are solutions to the problems 
 
 2 2 ( )j j j j jf tη ω η ω+ = ���  
 
To solve for the modal displacements we must first determine the modal forces. The 
applied loading may be expressed mathematically as 
 

 0( , ) ( )xq x t q t
L

= g  (b-1) 

where 
 ( ) ( ) ( *)t t t t= − −g H H  (b-2) 
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is a rectangular pulse (Section 4.6.1) and H (t) is the Heaviside step function (Section 
4.1.2). The modal force is then determined using Eq. (11.12). Hence, 
 

 ( )( )
0

0 0

2( ) ( ) ( , ) sin ( )
L L

j
j

xF t W x q x t dx j x L q t dx
mL L

π= =³ ³� g  

 
Performing the integration gives the jth modal force as 
 

 
1

0 0
2 ( 1) 2( ) ( ) cos( ) ( )

j

j
L LF t q t j q t

mL j j m
π

π π

+−= − ⋅ =� g g  (c) 

 
Since the modal functions have been normalized with respect to m, the modal mass-
es are equal to one. Therefore 
 

 2 2 4
4    ( )

1
j j

j j j
j

k k EIk j
m mL

ω ω π= = � = =
� �

�
�

 (d) 

 
It then follows that 
 

 0( )
( ) ( )j

j j
j

F t
f t f t

k
≡ =
�

� �
� g  (e-1) 

where 

 
41 1

0 0
0 2 5

22 ( 1) ( 1)
( )

j j

j
j

q L mLLf q
m EIj jπω π

+ +− −= =�  (e-2) 

 
To determine the modal displacements, we must solve the problem 
 
 [ ]2 2 0 ( ) ( *)j j j j jf t t tη ω η ω+ = − −��� H H  (f) 
 
Each mode is seen to behave as a single degree of freedom system subjected to a 
step load (Section 4.6.1). The solution of Eq. (f) follows directly from Eqs. (4.41)–
(4.43) giving the modal displacements as 
 
 0 0( ) 1 cos ( ) 1 cos ( *) ( *)j j j j jt f t t f t t t tη ω ωª º ª º= − − − − −¬ ¼ ¬ ¼

� �H H  (g) 

 
Hence, 
 

 
1

0 2

2 ( 1)( ) 1 cos     (0 *)
j

j j
j

Lt q t t t
m j

η ω
π ω

+− ª º= − ≤ <¬ ¼  (h-1) 

 

 
1

0 2

2 ( 1)( ) cos ( *) cos     ( *)
j

j j j
j

Lt q t t t t t
m j

η ω ω
π ω

+− ª º= − − ≥¬ ¼  (h-2) 

www.konkur.in



646 Engineering Vibrations 

The forced response of the beam is then 
 

 ( )
4 1

0 5
1

2 ( 1)( , ) 1 cos sin     (0 *)
( )

j

j
j

Lw x t q t j x L t t
EI j

ω π
π

∞ +

=

− ª º= − ≤ <¬ ¼¦  � (i-1) 

 

 ( )
4 1

0 5
1

2 ( 1)( , ) cos ( *) cos sin ( *)
( )

j

j j
j

Lw x t q t t t j x L t t
EI j

ω ω π
π

∞ +

=

− ª º= − − ≥¬ ¼¦    � (i-2) 

  
To determine the reactions we must first determine the transverse shear in the beam. 
This is accomplished by substituting Eqs. (i-1) and (i-2) into Eqs. (9.102) and (9.97). 
Hence, 
 

 ( )
3 1

03 2
1

2 ( 1)( , ) 1 cos cos   (0 *)
( )

j

j
j

w LQ x t EI q t j x L t t
EIx j

ω π
π

∞ +

=

∂ − ª º= − = − ≤ <¬ ¼∂ ¦  (j-1) 

 

 
( )

3

3

1

0 2
1

( , )

2 ( 1)    cos ( *) cos cos   ( *)
( )

j

j j
j

wQ x t EI
x

Lq t t t j x L t t
EI j

ω ω π
π

∞ +

=

∂= −
∂

− ª º= − − ≥¬ ¼¦
 (j-2) 

 
We can compute the reactions during the first phase of the loading using Eq. (j-1) as 
follows:  
 

 0 0 2
1

2 ( 1)( ) (0, ) 1 cos     (0 *)
( )

j

j
j

LR t Q t q t t t
EI j

ω
π

∞

=

− ª º= − = − ≤ <¬ ¼¦  � (k-1) 

 

 
1

0 2
1

2 ( 1)( ) ( , ) 1 cos     (0 *)
( )

j

L j
j

LR t Q L t q t t t
EI j

ω
π

∞ +

=

− ª º= = − ≤ <¬ ¼¦  � (k-2) 

 
 
 

 

Example 11.5 
A simply supported Euler-Bernoulli beam is 
impacted from above at a point located a dis-
tance a from the left support, as shown in Fig-
ure E11.5. Determine the response of the beam 
if the magnitude of the impact is !0. 
 
 
 
    Figure E11.5 
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Solution 
The impact force may be expressed as an equivalent distributed load by using the Di-
rac delta function (Section 4.1.1) in space as well as in time. The applied force is 
then 
 
 0( , ) ( ) ( )q x t t x aδ δ= − −

� �
!  (a) 

 
The frequencies and normal modes were presented in Eqs. (a-1) and (a-2) of Exam-
ple 11.4. Since the modes were normalized with respect to the mass, the modal 
masses are all equal to one. The modal forces for the present problem are computed 
as follows: 
 

 ( )( )
0

0 0

2( ) ( ) ( , ) sin ( ) ( )
L L

j
jF t W x q x t dx j x L t x a dx

mL
π δ δ= = − −³ ³

� �� !  (b) 

 
Hence, 
 ( ) ( )j jF t tδ=

�� !  (c-1) 
where 

 ( )0
2 sinj j a L

mL
π= −! !  (c-2) 

 
Since the modal masses are unity, Eq. (11.9) takes the form 
 

 
P1

( )j j j j jm k tη η δ+ =
����� !  (d) 

 
The modal response follows directly from Eq. (4.22) as 
 

 ( )
3

0
2

2( ) sin ( ) sin sin ( )
( )

j
j j j

j j

Lt t t j a L t t
m EIj

η ω π ω
ω π

= = −
�
! !

H H  (e) 

 
The response of the beam is then 
 

 

( ) ( )

( )

1

0
2

1

( , ) ( ) ( )

2 1          sin sin sin( ) ( )
( )

j
j

j

j
j

w x t t W x

L
j a L j x L t t

jmEI

η

π π ω
π

∞

=

∞

=

=

= −

¦

¦!
H

 � (f) 
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Example 11.6 
Consider a simply supported Euler-Bernoulli 
beam subjected to a moving point load of mag-
nitude Q0 that is directed downward, as shown 
in Figure E11.6. Determine the response of the 
beam if the load moves with velocity cQ. 
 
 
 
    Figure E11.6 
Solution 
The point load may be represented as a distributed load by using the Dirac delta 
function in space, as in Example 11.5, and letting a = cQ t. Hence, 
 
 0( , ) ( )Qq x t Q x c tδ= − −

�
 (a) 

 
The modal forces are then, 
 

 ( ) ( )
0 0

0
( ) ( ) ( ) ( )

L
j j

j Q QF t Q W x x c t dx Q W c tδ= − − = −³
��  (b) 

 
The normalized modal functions and natural frequencies are, from Example 11.4, 
 

 ( )( ) 2 2
0 4

2( ) sin  ,     ( ) ( )j
j

EIW x j x L j j
mL mL

π ω π ω π= = =  (c-1, 2)  

 
respectively. Thus, 

 ( ) 2( ) sinj
Q jW c t t

mL
= Ω  (d) 

where 
 j Qj c LπΩ =  (e) 
 
Then, for the present problem, Eq. (11.15) takes the form 
 
 2 2 0 sinj j j j j jf tη ω η ω+ = Ω���  (f) 
where 

 
3

0 0
4

2
( )j

Q L mLf
EI jπ

= −�  (g) 

 
The solution to Eq. (f) is written directly from Eq. (3.28) as 
 
 ( )0 0( ) sin sinj j j j j j Qt f t f j c t Lη π= Γ Ω = Γ� �  (h) 

where 
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( ) ( )

2

2 22

1 ( )

1 ( )
j

j j Q G

j

j c r

π
ω π

Γ = =
− Ω −

 (i) 

 

 Q Q
Q

a

c c
c

c E ρ
= =  (j) 

 
 G Gr r L=  (k) 
and 
 2

Gr I A=  (l) 
 
The response of the beam to the moving point load is then 
 

 
( )

( ) ( )
3

0
22 2

1

2 1( , ) sin sin
( ) ( )

Q
j Q G

Q L
w x t j x L j c t L

EI j j c r
π π

π π

∞

=

= −
ª º−« »¬ ¼

¦  � (m) 

   
It is seen that a resonance condition exists when Q Gc j rπ=  or, equivalently, when 

0Qc j Lπω= . 
 

 
 

 

Example 11.7 
A cantilevered Euler-Bernoulli beam is 
loaded by a time dependent moment, 
ML(t), at its free end (Figure E11.7). 
Determine the steady state response of 
the beam if the applied moment is of 
the form ML(t) = M0 cos Ωt. 
 
    Figure E11.7 
Solution 
The frequencies for a uniform cantilevered beam are, from Example 10.7, 
 
 1 0 2 0 3 03.516 ,    22.03 ,    61.70 , ...ω ω ω ω ω ω= = =  (a) 
 
where 

 0 4 2
a Gc rEI

mL L
ω = =  (b) 

 
The corresponding modal functions were found to be 
 
 ( ) ( ) cosh cos sinh sinj

j j j j jW x x x Y x xβ β β βª º= − − −¬ ¼  (c) 
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where 
 ( ) ( )cosh cos sinh sinj j j j jY L L L Lβ β β β= + +  (d)  

and 
 1 2 31.875,  4.694,  7.855,  ...L L Lβ β β= = =  (e) 
 
The loading for the present problem, the applied moment at x = L, may be expressed 
as a distributed moment with the aid of the Dirac delta function. The corresponding 
body couple is then 
 
 ( , ) ( ) ( )Lx t M t x Lδ= −

�
b  (f) 

 
Since there is no distributed transverse load, we have that 
 

 ( , ) ( , )F x t q x t=
x x

∂ ∂− = −
∂ ∂

b b  (g) 

 
The modal forces for the cantilever beam are then found as 
 

 ( ) ( )
0

0 0

( , )( , ) ( ) cos ( ) ( )
L L

j j
j

x tF x t W x dx M t W x x L dx
x

δ∂ ′= − = − Ω −
∂³ ³

�� b  

 
The integral in the above expression is evaluated using Eq. (4.8) to give 
  

 ( )
0 0

sinh sin
( ) cos ( ) 2 cos

sinh sin
j j jj

j
j j

L L
F t M tW L M t

L L
β β β

β β
ª º′= Ω = Ω « »

+« »¬ ¼
�  (h) 

 
Hence, 

 0
2

( )
( ) cosj

j j
j j

F t
f t f t

mω
= = Ω
�

� �
�

 (i-1) 

 
where 

 ( )
0 0

3

sinh sin12
sinh sin

j j
j

j jj j

L LM
f

EI L Lm m

β β
β ββ

ª º
= « »

+« »¬ ¼
�

�
 (i-2) 

and 
 

 
( )

2( ) ( ) ( )

0

2

0

( ) ( )

    cosh cos sinh sin

L
j j j

j

L

j j j j j

m W x mW x dx m W

m x x Y x x dxβ β β β

= =

ª º= − − −¬ ¼

³
³

�
 (j) 

 
Thus, for the present problem, Eq. (11.15) takes the form 
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 2 2 0( ) ( ) cosj j j jt t f tη ω η ω+ = Ω���  (k) 
 
where 0

jf�  is given by Eq. (i-2). The solution is then written directly from Eq. (3.27) 
as 

 
( )

3
0

2

( )2
( ) cos

1

j
j

j

LM L
t t

EI
β

η
ω

= Ω
ª º− Ω« »¬ ¼

�G
 (l) 

 
where 

 
( ) ( )2 3( )

sinh sin
( )

sinh sin
j j

j j
j j j

L L
L

W L L L

β β
β

β β β
=

+
�G  (m)  

 
and 
 

 

2( )

2

4 sinh 2 sin 2 4 4sinh cos

4cosh sin

2 cos 2 cosh 2 4sinh sin

sinh 2 sin 2 4sinh cos

4cosh sin

j
j j j j j j

j j

j j j j j

j j j j j

j j

W L L L L L

L L

Y L L L L

Y L L L L

L L

β β β β β β

β β

β β β β

β β β β

β β

= + + −

º− ¼
ª º+ − +¬ ¼
ª+ − +¬

º− ¼

 (n) 

 
The steady state response of the beam is then 
 

( )
( )

2
0

2
1

( )
( , ) 2 cos

1

                 cosh cos sinh sin

j

j j

j j j j j

LM Lw x t t
EI

x x Y x x

β

ω

β β β β

∞

=

= Ω
ª º− Ω« »¬ ¼
ª º× − − −¬ ¼

¦
�G

  

  � (o) 
  
We now compute ( )Lβ�G for the first three modes using Eqs. (m) and (n) to get 
 
 1( ) (1.875) 0.1114Lβ = =� �G G  (p-1) 

 
 2( ) (4.694) 0.0098Lβ = = −� �G G  (p-2) 

 
 3( ) (7.855) 0.0021Lβ = =� �G G  (p-3) 
 
from which it is seen that the first mode is dominant (except near resonance condi-
tions other than Ω = ω1). Substitution of Eqs. (p) into Eq. (o) gives the explicit 
steady state response 

www.konkur.in



652 Engineering Vibrations 

( )
( ) ( )

( ) ( ){ }

2
0

2
0

0.2228( , ) cos
1 0.08089

cosh 1.875 cos 1.875

0.7341 sinh 1.875 sin 1.875 ...

M L
w x t t

EI

x L x L

x L x L

ω
= Ω ×

ª º− Ω¬ ¼
ª −¬

º− − +¼

  

  � (q) 
 
 
 
 

Example 11.8 
The support of a uniform cantilevered 
elastic beam of bending stiffness EI, 
length L, and mass per unit length m 
undergoes the prescribed lateral motion 
h(t) = h0 sinΩt, where h0 is a constant 
(Figure E11.8). Determine the steady 
state motion of the beam when mod-
eled using Euler-Bernoulli theory.   Figure E11.8 
 
Solution 
The equation of motion for the beam can be written directly from Eq. (9.186) with 
χz(t) = h(t). For the present problem, N = χx = p = 0. We also have no distributed 
transverse load or body couple as well (q = b = 0), so that the equation of transverse 
motion takes the form 

 
4 2

4 2 ( )w wEI m m t
x t

∂ ∂+ = −
∂ ∂

��h  (a) 

 
where w(x,t) represents the displacement relative to the support. It should be pointed 
out that if we neglect geometric nonlinearities, as is done for Euler-Bernoulli theory 
(presently) and for the Rayleigh and Timoshenko theories, then the nonlinear terms 
appearing in Eqs. (9.184) and (9.185) are neglected even when they do not vanish, 
and the equation of motion takes the form of Eq. (a), but with nonvanishing q when 
appropriate. That is, the equations for transverse and longitudinal motion decouple. 
Equation (a) could also be derived directly for this relatively simple problem by re-
placing w(x,t) with the total deflection ξz(x,t) = h(t) + w(x,t) in Eq. (9.104) (which 
was restated in the beginning of the current section). That is, Eq. (9.104) is derived 
with respect to a fixed reference frame. Thus, if ξz(x,t) measures the absolute dis-
placement then Eq. (9.104) takes the form 
 

 
2 22

2 2 2
z zEI m q

x x t
ξ ξ∂ ∂∂ + =

∂ ∂ ∂ x
∂−
∂

b   

Substituting ξz(x,t) = h(t) + w(x,t) into the above equation, with EI = constant, re-
sults in Eq. (a). 
 Now, for the given excitation, 
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 ( , )F x t q=
x

∂−
∂

b
0 sinm F t− = Ω��h  (b-1) 

where 
 2

0 0F mh= Ω  (b-2) 
 
From this point on, the problem proceeds as for a fixed beam subjected to a uniform-
ly distributed harmonic excitation. The natural frequencies and modal functions for 
the structure were established in Example 10.7 and employed in Example 11.7. We 
employ those same functions for the present problem. The modal forces are then 
 

 
( ){ }

( ) ( )
0

0

0

( ) ( ) sin

sin
sinh sin 2 cosh cos

L
j j

j j j j j
j

F t W x F t dx

F t
L L Y L Lβ β β β

β

= Ω

Ω ª º= − + − +¬ ¼

³�

 (c) 

Let 
 
 ( ){ }1( ) sinh sin 2 cosh cosj j j j j j jx x x Y x xβ β β β β β− ª º= − + − +¬ ¼J  (d) 

 
where Yj is given by Eq. (d) of Example 11.7. It follows that 
 
 ( ) 0( ) sinj

jf t f t= Ω� �  (e-1) 
where 

 
0

00
2 24 ( )

( )j j
j j

j j

F F L
f

m EI W

β
ω β

= =
�

�
�

J
 (e-2) 

 
and 

2( )jW is given by Eq. (n) of Example 11.7. For the present system, Eq. (11.15) 
takes the form 
 
 2 2 0( ) ( ) sin t    ( 1, 2,...)j j j j jt t f jη ω η ω+ = Ω =���  (f) 
 
The modal displacements are written directly from Eq. (3.28) as 
 

 
( )

0

2( ) sin
1

j
j

j

f
t tη

ω
= Ω

− Ω

�
 (g) 

 
The steady state response of the beam then follows from Eq. (11.5) as 
 

 
( ) ( )

( )4
2

0 22 4 ( )
1

( ) ( )
( , ) sin

1

j
j

j
j j j

L W xmLw x t h t
EI L W

β

ω β

∞

=

= Ω Ω
ª º− Ω« »¬ ¼

¦ J
 � (h) 
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Recall that w(x,t) is measured relative to the support. The motion of the beam meas-
ured with respect to a fixed coordinate system is then 
  

( ) ( )
( )4

2
0 22 4 ( )

1

( ) ( )
( , ) ( ) ( , ) sin 1

1

j
j

z
j

j j j

L W xmLx t t w x t h t
EI L W

β
ξ

ω β

∞

=

 ½
° °

= + = Ω + Ω® ¾
ª º° °− Ω« »¬ ¼¯ ¿

¦ J
h   

  � (i) 
 
 
 
 

11.3.5  Rayleigh Beams 

In this section we apply the formulation presented in Sections 11.1 and 11.2 to determine 
the dynamic response of Rayleigh beams to externally applied forces. For this model there 
are slight differences in the form of the statements for orthogonality of the modal functions, 
and hence for the definitions of the modal mass and modal stiffness, from those pertaining 
to the other systems considered in this chapter. We therefore parallel the development and 
formulation of Section 11.1 in detail for the particular case of Rayleigh beams. 
 The equation of motion for these structures, Eq. (9.115), is 
 

 
2 4 2 2

2 2 2 2 2 ( , )w w wm I EI q x t
xt x t x xρ

∂ ∂ ∂ ∂ ∂− + = −
∂∂ ∂ ∂ ∂ ∂

b  

 
where Iρ is the rotatory inertia and, as for Euler-Bernoulli beams, w(x,t) is the transverse 
displacement of the point on the axis of the beam originally at x, q(x,t) represents a distrib-
uted transverse load, b (x,t) is a distributed couple and m(x) is the mass per unit length. 
 We seek a solution in the form of an expansion in terms of the modal functions. For 
the present case, Eq. (11.5) takes the explicit form 
 

 ( )

1

( , ) ( ) ( )j
j

j

w x t t W xη
∞

=

=¦  

 
Substituting the above modal expansion into the equation of motion, multiplying the result-
ing expression by W(l)dx and integrating over the domain of definition of the beam gives 
 

 

( ) ( ) ( ) ( )

01

( ) ( ) * ( )

0 01

( )

            ( ) ( ) ( , )

L
l j l j

j
j

L L
l j l

j l
j

t W mW W I W dx

t W EI W dx B W x F x t dx

ρη

η

∞

=

∞

=

′ ′ª º+« »¬ ¼

′′ ′′+ + =

¦ ³

¦ ³ ³

��

 (11.17) 

where 

 ( , ) ( , )F x t q x t
x

∂= −
∂

b  (11.18) 
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and 

 * ( ) ( ) ( )

01
( ) ( ) ( , ) ( ) ( , )

L
lj l l

l j
j

B t B W x Q x t W x M x tη
∞

=

ª º′= = +« »¬ ¼¦ k  

 
If the boundary conditions are such that  
 
 ( ) 0 ( )ljB j l= ≠k  (11.19) 
 
which is consistent with the conditions for orthogonality, Eq. (10.163), and we exploit the 
mutual orthogonality of the modal functions as per Eqs. (10.164) and (10.172), Eq. (11.17) 
reduces to the familiar system of uncoupled differential equations for the modal displace-
ments 
 ( ) ( ) ( ) ( 1, 2,...)j j j j jm t k t F t jη η+ = =� ����  (11.20) 
 
where, for Rayleigh beams, 
 

  2 2( ) ( )

0
( ) ( ) ( ) ( )   ( 1, 2,...)

L L
j j

jm m x W x dx I x W x dx jρ
0

′= + =³ ³�  (11.21) 

 

 2( ) ( )

0
   ( 1,2,...)

L
j jj

jk EI W dx B j′′= + =³�
k  (11.22) 

and 

 [ ]( )

0
( ) ( ) ( , )     ( 1,2,...)

L
j

jF t W x q x t x dx j= − ∂ ∂ =³� b  (11.23) 

 
Now, it follows from Eqs. (10.171), (11.21) and (11.22) that 
 
 2    ( 1, 2,...)j j jk m jω= =� �  (11.24) 
 
Equations (11.20) can thus be rewritten in the standard form of Eqs. (11.15) and (11.16), 
 
 2 2 ( )    ( 1, 2,...)j j j j jf t jη ω η ω+ = =���   
where 

 2

( ) ( )
( )     ( 1, 2,...)j j

j
j jj

F t F t
f t j

mk ω
= = =
� �

�
� �

  

At this stage the analysis proceeds as for previous systems.  
 
 
 

Example 11.9 
Set up the solution for a uniform cantilevered Rayleigh beam of bending stiffness EI, 
mass m, rotatory inertia Iρ and length L, that is loaded by a moment on its free edge 
as in Example 11.7. 
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Solution 
From Example 10.12, the modal functions for the beam are of the form  
 
 { } ( ){ }( ) ( )( ) cosh cos sinh sinj j

j j j j j jW x x x h x xα β α α β β= − − −  (a) 

 
where  

 
2 2

( )
2

cosh cos
sinh sin

j j j jj

j j j j j

L L
h

L L
α α β β
α α α β β

+
=

+
 (b) 

 
In the above expressions, αj and βj correspond to the values of the parameters de-
fined by Eqs. (10.55) and (10.56) evaluated at the  jth natural frequency ωj, which 
corresponds to the jth root of Eq. (e) of Example 10.12. Next, substituting Eq. (a) into 
Eq. (11.21) allows for the evaluation of the  jth modal mass. Hence, 
 

 
{ } ( ){ }

{ } { }

2
( )

0

2
( )

0

cosh cos sinh sin

sinh sin cosh cos

L
j

j j j j j j j

L
j

j j j j j j j

m m x x h x x dx

I x x h x x dxρ

α β α α β β

α α β β α α β

ª º= − − −¬ ¼

ª º+ + − −¬ ¼

³
³

�
  

  (c) 
The corresponding modal force for the cantilever beam is calculated as  
 

 

( )

0

( ) ( )
0 0

0

( , )( , ) ( )

           cos ( ) ( ) cos ( )

L
j

j

L
j j

x tF x t W x dx
x

M t W x x L dx M tW Lδ

∂= −
∂

′′= − Ω − = Ω

³
³

�

�

b

 

 
Hence, 
 

{ } { }( )
0( ) cos sinh sin cosh cosj

j j j j j j j jF t M t L L h L Lα α β β α α βª º= Ω + − −¬ ¼
�  (d) 

 
It follows that 
 0( ) cosj jf t f t= Ω� �  (e-1) 
where 
 

 
{ } { }( )

00
2

sinh sin cosh cosj
j j j j j j j

j
j j

M L L h L L
f

m

α α β β α α β
ω

ª º+ − −¬ ¼=�
�

 (e-2) 

 
Thus, for the present problem, Eq. (11.15) takes the form 
 
 2 2 0( ) ( ) cosj j j jt t f tη ω η ω+ = Ω���  (f) 
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where 0
jf�  is given by Eq. (e-2). The solution to this equation is then written directly 

from Eq. (3.27) as 
 

{ } { }
( )

( )

0 2 2

sinh sin cosh cos
( ) cos

j
j j j j j j j

j
j j

L L h L L
t M t

m

α α β β α α β
η

ω

ª º+ − −¬ ¼= Ω
− Ω�

 (g) 

 
The steady state response of the beam then follows as 
 

{ } { }
( )

0

( )

( )
2 2

1

( , ) cos

sinh sin cosh cos
( )

j
j j j j j j j j

j j j

w x t M t

L L h L L
W x

m

α α β β α α β

ω

∞

=

= Ω
ª º+ − −¬ ¼×

− Ω¦ �

  

  � (h) 
where W(j)(x) is given by Eq. (a). 

 
 
 

11.3.6 Timoshenko Beams 

We now apply the formulation presented in Sections 11.1 and 11.2 to determine the dynam-
ic response of Timoshenko beams to externally applied forces. The corresponding equation 
of motion is, from Eq. (9.135), 
 

 
2 2

2 2

0 ( , )
0 ( , )

s s

s s

k k
x x x

k k EI
x x x

m w q x tw t
I x ttρ ϕϕ

∂ ∂ ∂
−

∂ ∂ ∂
∂ ∂ ∂

− −
∂ ∂ ∂

ª º
ª º « » ½  ½  ½∂ ∂° °+ =® ¾ ® ¾ ® ¾« » « »∂ ∂° ° ¯ ¿ ¯ ¿¯ ¿¬ ¼ « »

¬ ¼
b

 

 
where w(x,t) is the transverse displacement of the point on the axis of the beam originally at 
x, ϕ(x,t) is the rotation of the cross section at x, q(x,t) represents a distributed transverse load 
and b (x,t) is a distributed couple. Thus, for the present type of structure, u →  [w ϕ]T,        
F → [q b ]T, and m and k are given by the square matrices in the above equation of motion. 

Inserting the mass and displacement matrices for the Timoshenko beam into Eq. 
(11.10) gives the explicit expression for the modal masses as   
 

 2 2( ) ( )

0
( ) ( ) ( ) ( )     ( 1, 2,...)

L L
j j

jm m x W x dx I x x dx jρ ϑ
0

= + =³ ³�  (11.25) 

 
Note that if we normalize with respect to the mass operator this quantity is one for each 
mode. Likewise, inserting the force and displacement matrices for the Timoshenko beam 
into Eq. (11.12) gives the explicit expression for the modal forces as 
 

 ( ) ( )

0 0
( ) ( ) ( , ) ( ) ( , )

L L
j j

jF t W x q x t dx x x t dxϑ= +³ ³� b  (11.26) 
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Example 11.10 
Set up the solution for a uniform cantilevered Timoshenko beam of bending stiffness 
EI, modulus ratio E/kG, mass per unit length m, rotatory inertia Iρ and length L, that 
is loaded by a moment on its free edge as in Examples 11.7 and 11.9. 
 
Solution 
From Example 10.13, the modal functions for the beam are of the form 
 

( )

( )
( )

( )

( ) ( ) ( ) ( )
12 11

( ) ( ) ( ) ( ) ( )
12 11

( )
( )

( )

cosh cos sinh sin
  

sinh sin cosh cos

j
j

j

j j j j
j j j j

j j j j j
j j j j

W x
x

x

H x x H x g g x

H g x g x g H x x

α β

α β α

ϑ

α β α β

α β α β

 ½° °= ® ¾
° °¯ ¿
 ½ª ºª º− − −¬ ¼° °¬ ¼= ® ¾

ª º ª º+ − −° °¬ ¼¬ ¼¯ ¿

U

 

    (a) 
 
where ( ) ( )( ) and ( )j j

j jg gα βω ω are defined by Eqs. (10.85), the natural frequencies are 
the roots of Eq. (f) of Example 10.13, and the values of ( ) ( )j

nl jH ω (n,l = 1, 2, …) are 
defined by Eqs. (e-1)–(e-4) of that example. The modal masses for the uniform beam 
are then, from Eq. (11.25), 
 
 

2 2( ) ( )    ( 1,2,...)j j
jm m W I jρ ϑ= + =�  (b) 

 
where W(j)(x) and ϑ(j)(x) are given by the first and second rows of Eq. (a), respective-
ly. 
 For the problem at hand, ( , ) 0q x t =  and 0( , ) sin ( ).x t M t x Lδ= Ω −

�
b  Hence, 

for a Timoshenko beam loaded in this manner, 
 

 
0

0
( , )

sin ( )
x t

M t x Lδ
 ½° °= ® ¾Ω −° °¯ ¿

�F  (c) 

 
Substituting Eq. (c) into Eq. (11.26) gives the modal force for the jth mode as 
 

 ( ) ( )
0 0

0
( ) sin ( ) ( ) sin ( )

L
j j

jF t M t x x L dx M t Lϑ δ ϑ= Ω − = Ω³
��  (d) 

 
It follows that 
 

 0
2

( )
( ) sinj

j j
j j

F t
f t f t

m ω
= = Ω
�

� �
�

 (e-1) 

where 
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( ) 2

00
2 2( ) ( )

( )j
j

j j j

M L
f

m W Iρ

ϑ ω

ϑ
=

+
�  (e-2) 

 
For the present problem, Eq. (11.15) thus takes the form 
 
 2 2 0 sinj j j jf tη ω η ω+ = Ω���  (f) 
 
The particular solution to Eq. (f), and hence the steady state amplitude for the jth 
mode, follows directly from Eq. (3.28) as 
 

 
( )

0

2( ) sin
1

j
j

j

f
t tη

ω
= Ω

− Ω

�
 (g) 

 
Substituting Eq. (g) into Eq. (11.5) gives the steady state response of the cantilevered 
Timoshenko beam subjected to a harmonic edge moment as 
 

 

( )

( )

1

( )( )

0 ( )2 22 2 ( ) ( )
1

( , )
( ) ( )

( , )

( )( )              sin
( )

j
j

j

jj

jj j
j j

w x t
t x

x t

W xLM t
xm W Iρ

η
ϕ

ϑ
ϑω ϑ

∞

=

∞

=

 ½ =® ¾
¯ ¿

 ½
= Ω ® ¾

ª º ¯ ¿− Ω +« »¬ ¼

¦

¦

U

 � (h) 

 
where W(j)(x) and ϑ(j)(x) are given by the first and second rows of Eq. (a), respec-
tively. 

 
 
 

11.4  STEADY STATE RESPONSE OF ONE-DIMENSIONAL CONTINUA WITH 
STRUCTURAL DAMPING 

The rods and beams studied to this point have been purely elastic. As all structures possess 
some damping, it is pertinent to study the effects of internal friction on the response of these 
systems. In this section, we study the steady state response of structurally damped rods and 
beams under harmonic excitation. We begin by applying the theory for materials with 
memory discussed in Section 3.4 to the mathematically one-dimensional structures of inter-
est.  
  

11.4.1  Stiffness Operators for 1-D Continua with Structural Damping   

The fundamental background for systems that possess structural damping was established 
in Section 3.4, as were the corresponding constitutive relations. In this section, we incorpo-
rate those relations into the theories for the rod and beam structures studied thus far.  
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 We first recall, from Section 3.4.2, that the moduli for linear hereditary materials that 
are subjected to harmonic excitation are comprised of the complex sum of the storage (elas-
tic) moduli and the loss moduli. Hence, with minor changes in notation, we restate Eqs. 
(3.98) and (3.99) as 
 
 ˆˆ ( ) ( ), ( ) ( )L LE E iE G G iGΩ = + Ω Ω = + Ω  (11.27) 
 
where E and G correspond to the elastic and shear moduli (the storage moduli), respective-
ly, EL and GL are the associated frequency dependent loss moduli, and Ω is the excitation 
frequency. The loss moduli can often be expressed in the form  
 
 ( ) ( ) , ( ) ( )L E L GE E G Gλ λΩ = Ω Ω = Ω  (11.28) 
 
where λE(Ω) and λG(Ω) are the structural loss factors. The loss moduli may be decomposed 
as in Eq. (11.28) if the structures are isotropic. This may also be done for structures that are 
not isotropic when the dependence of the loss moduli on the excitation frequency and the 
spatial coordinate is separable. 
 To obtain the stiffnesses for the thin structures of interest we replace the elastic 
moduli by the corresponding complex moduli of Eq. (11.27) in the developments, constitu-
tive relations and governing equations of Sections 9.3, 9.4 and 9.6−9.8. It follows that in 
each development, the pertinent structural stiffness or stiffnesses, ka = EA, kT  = GJ and kb = 
EI, are replaced by the corresponding complex stiffness or stiffnesses. Thus,   
 
for axial motion of rods,   
 
 ( )ˆ ( ) ( ) ( )a

a a L Lk k ik EA iE AΩ = + Ω = + Ω  (11.29) 
 
for torsional motion of circular rods, 
 
 ( )ˆ ( ) ( ) ( )T

T T L Lk k ik GJ iG JΩ = + Ω = + Ω  (11.30) 
  
for transverse motion of Euler-Bernoulli beams, Rayleigh beams, geometrically nonlinear 
beams (and beam-columns) with constant membrane force, and Timoshenko beams, 
 
 ( )ˆ ( ) ( ) ( )b

b b L Lk k ik EI iE IΩ = + Ω = + Ω  (11.31) 
 
In addition, it follows that the shear stiffness, ks, for Timoshenko beams is similarly replaced 
by the complex shear stiffness, 
  
 ( )ˆ ( ) ( ) ( )s

s s L Lk k ik AG i AGΩ = + Ω = + Ωk k  (11.32) 
 
For geometrically nonlinear beams (and beam-columns) with prescribed constant mem-
brane force, N0, the bending stiffness is replaced by the complex bending stiffness defined 
in Eq. (11.31), as stated earlier. However, the added effective stiffness provided by the con-
stant membrane force remains real since the corresponding membrane strain is also constant 
and, therefore, internal friction is not activated for the inert axial deformation.  
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 The governing equation for each viscoelastic structure considered is of a form similar 
to that for the corresponding elastic structure, but with the complex stiffnesses established 
above replacing the elastic stiffnesses in the stiffness operators of the corresponding gov-
erning equation. Hence, for a structurally damped system whose motion is described by one 
dependent variable, the equation of motion takes the operator form 
 

 
2

2
ˆ ( , )F x t

t
∂ + =
∂

m k
u u  (11.33) 

  
where, for longitudinal motion of rods, 
 

 ˆ ( ) ( ) ( )L Li EA i E A
x x x x

∂ ∂ ∂ ∂ ½Ω = + Ω = − + Ω® ¾∂ ∂ ∂ ∂¯ ¿
k k k  (11.34) 

 
for torsional motion of rods, 
 

 ˆ ( ) ( ) ( )L Li GJ i G J
x x x x

∂ ∂ ∂ ∂ ½Ω = + Ω = − + Ω® ¾∂ ∂ ∂ ∂¯ ¿
k k k  (11.35) 

  
for transverse motion of Euler-Bernoulli beams and Rayleigh beams with internal friction, 
 

 
2 2 2 2

2 2 2 2
ˆ ( ) ( ) ( )L Li EI i E I

x x x x
∂ ∂ ∂ ∂Ω = + Ω = + Ω
∂ ∂ ∂ ∂

k k k  (11.36) 

 
and for transverse motion of geometrically nonlinear beams (and beam-columns) with pre-
scribed constant membrane force, 
 

 
2 2 2 2 2

02 2 2 2 2
ˆ ( )L Li EI N i E I

x x x x x
 ½∂ ∂ ∂ ∂ ∂= + = − + Ω® ¾∂ ∂ ∂ ∂ ∂¯ ¿

k k k  

   (11.37) 
 
For transverse motion of Timoshenko beams with structural damping, the equation of mo-
tion takes the form 

 
2

2
ˆ

t
∂ + =
∂

um ku F  (11.38) 

where 
 ˆ ( ) ( )Li→ Ω = + Ωk k k k  (11.39) 
  
and, from Eq. (9.137),  
 

 
s s

s s

k k
x x x

k k EI
x x x

∂ ∂ ∂
−

∂ ∂ ∂
∂ ∂ ∂

− −
∂ ∂ ∂

ª º
« »

= « »
« »
¬ ¼

k  (11.40) 
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It follows that 
 

 
( ) ( )

( ) ( )

s s
L L

s s
L L

L

k k
x x x

k k EI
x x x

∂ ∂ ∂
−

∂ ∂ ∂
∂ ∂ ∂

− −
∂ ∂ ∂

ª º
« »

= « »
« »
¬ ¼

k   (11.41) 

 
With the pertinent stiffness operators established, we proceed to the general forced vibra-
tion problem for the class of viscoelastic structures of interest.  
 
 

11.4.2  Steady State Response of 1-D Continua with Structural Damping 

We next parallel the development of Section 11.2, but with a complex stiffness operator 
ˆ ( )Ωk  replacing the stiffness operator k in that development. As in Section 11.2, we present 

the development for an equation of motion expressed in matrix form. The development 
holds equally well for systems whose equations are expressed in terms of scalar mass and 
scalar differential stiffness operators and a single dependent variable, by considering all 
matrices to possess a single element − the operators, displacements and forces for those 
structures. Of the specific one-dimensional structures considered, all but Timoshenko 
beams with structural damping fall into the latter category.  
 The equation of motion for the class of viscoelastic structures of interest takes the 
general form 

 
2

2
ˆ

t
∂ + =
∂

um ku F  (11.42) 

where 
 ˆ ( ) ( )LiΩ = + Ωk k k  (11.43) 
 
represents the stiffness operator of any of the systems of interest, and m represents the cor-
responding mass operator. 
 We wish to obtain the steady state response of the mathematically one-dimensional 
structures of interest to harmonic excitation. We thus consider structures for which the ap-
plied loading is of the general form 
 
 ( ) ( ), ( ) cos        or       , ( ) sinx t x t x t x t= Ω = ΩF P F P  (11.44) 
 
Modal analysis for continuous systems with structural damping follows in a manner similar 
to that for discrete systems with proportional damping. We therefore express the response 
of the damped structure as an expansion in terms of the modes of the structure with no 
damping. We thus express the response in the form of Eq. (11.5). Hence,  
 

 ( )

1

( , ) ( ) ( )j
j

j

x t x tη
∞

=

=¦u U  (11.45) 
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Next, paralleling the development of Section 11.2, with the governing equation given by 
Eq. (11.42) in lieu of Eq. (11.6), we arrive at the modal equations of motion 
 
   ( ) 1 ( ) ( ) ( ) ( 1, 2, )j j j j j jm t k i t F t jη λ ηª º+ + Ω = =¬ ¼

� � ���� !  (11.46) 

 
or, equivalently, 
 
   2 2( ) 1 ( ) ( ) ( ) ( 1,2, )j j j j j jt i t f t jη ω λ η ωª º+ + Ω = =¬ ¼

���� !  (11.47) 

 
where  ( )jF t�  is given by Eq. (11.12), ( )jf t�  is given by Eq.(11.16), jm�  is given by Eq. 
(11.10), jk�  is given by Eqs. (11.11) and (11.14), and   
 

 ( ) ( )

0

1( ) ( ) ( ) ( ) ( 1, 2, )
L

j j
j L

j

x x dx j
k

λ Ω = Ω =³� !� U k UT  (11.48) 

 
is the loss factor for the jth mode.  
 For longitudinal and torsional motion of rods, and for flexural motion of Euler-
Bernoulli beams and Rayleigh beams, the loss stiffness for the structure will be proportional 
to the elastic stiffness if the structure is comprised of material for which the loss moduli 
may be expressed as in Eq. (11.28). That is, for such structures 
 
 ( ) ( )L λΩ = Ωk k  (11.49) 
 
where λ(Ω) is a scalar function of the excitation frequency, Ω. For Timoshenko beams, the 
loss stiffness will take the the form of Eq. (11.49) if, in addition, the loss factor is the same 
for both tension/compression and for shear. That is, if λE(Ω) = λG(Ω) = λ(Ω). Substitution 
of Eq. (11.49) into Eq. (11.48), and recalling Eq. (11.11), gives 
 
 ( ) ( ) ( 1, 2, )j jλ λΩ = Ω =� !  (11.50) 
 
Hence, for such systems, the loss factor is the same for every mode. It is simply equal to the 
loss factor for the structure. 
 Once the modal masses, modal stiffnesses, modal forces and modal loss factors are 
determined for a given structure and applied force system, the solution to Eq. (11.47) fol-
lows directly from Eqs. (3.109) and (3.110). Thus, 
 

( )
0if ( ) cos  thenj

jF t F t= Ω� �  
 
    ( )( )

0( ) ( ) cos ( 1,2, )j
j j jt f t jη = Γ Ω Ω − Φ =� � � !  (11.51)  

 
 
or, ( )

0if ( ) sin  thenj
jF t F t= Ω� �  

 
    ( )( )

0( ) ( )sin ( 1,2, )j
j j jt f t jη = Γ Ω Ω − Φ =� � � !  (11.52)  
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where 

 

( ){ } { }
2 22

1( ) ( 1, 2, )
1 ( )

j

j j

j
ω λ

Γ Ω = =
− Ω + Ω

� !
�

 (11.53) 

 

 
( )

1
2

( )
tan ( 1,2, )

1
j

j

j

j
λ

ω
−
 ½Ω° °Φ = =® ¾

− Ω° °¯ ¿

�
� !  (11.54) 

and  

 
( ) ( )

( ) 0 0
0 2

( ) ( )
( ) ( 1,2, )

j j
j

j jj

F t F t
f t j

mk ω
= = =
� �� !� �

 (11.55) 

 
where jλ�  is given by Eq. (11.48), or Eq. (11.50) if appropriate, jm� is given by Eq. (11.10) 
and jk� is given by Eq. (11.14). Substitution of the appropriate form of the modal response, 
Eq. (11.51) or Eq. (11.52), into Eq. (11.45) gives the steady state response of the structure 
with internal friction. Hence, 
 

( )if , ( ) cos  thenx t x t= ΩF P  
 

 ( )( ) ( )
0

1

( , ) ( ) ( ) cosj j
ss j j

j

x t x f t
∞

=

= Γ Ω Ω − Φ¦ � � �u U  (11.56) 

 
or, ( )if , ( ) sin  thenx t x t= ΩF P  
 

 ( )( ) ( )
0

1

( , ) ( ) ( )sinj j
ss j j

j

x t x f t
∞

=

= Γ Ω Ω − Φ¦ � � �u U  (11.57) 

 
The explicit steady state response of any structure of the class considered can be readily 
determined using the pertinent formulae presented in Section 11.4.1 together with those of 
the current section. 
 
 

Example 11.11 
Consider the cantilevered beam and applied harmonic edge moment of Example 
11.7. Determine the steady state response of the beam if it possesses structural damp-
ing and the loss modulus is given by EL = λ(Ω)E.  
 
 
Solution 
Clearly ELI = λ(Ω)EI. The loss stiffness is evidently of the form of Eq. (11.49) and, 
therefore, the loss factor is given by Eq. (11.50). Hence, for this structure, 
 

 ( ) ( ) ( 1, 2, )j jλ λΩ = Ω =� !  (a) 
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The time signature of the excitation is a cosine function and, therefore, the modal re-
sponse is given by Eq. (11.51). Following the calculations in Example 11.7,  the so-
lution for the modal response, Eq. (l) of that example, is augmented by the inclusion 
of the loss factor for the damped structure. The amplification factor for the present 
case is given by Eq. (11.53), and the response now lags the excitation by the phase 
angle described by Eq. (11.54). The modal response for the damped structure is thus 
found to be 
 

 

( ){ } { }
( )

3
0

22 2

( )2
( ) cos ( 1,2 )

1 ( )

j
j j

j

LM L
t t j

EI
β

η
ω λ

= Ω − Φ =
− Ω + Ω

�
� !

G
 (b) 

 
where 

 
( )

1
2

( )tan ( 1,2, )
1

j

j

jλ
ω

−
 ½Ω° °Φ = =® ¾

− Ω° °¯ ¿

� !  (c) 

 
The natural frequencies and modes for the undamped cantilevered structure were 
found in Example 10.7 and restated in Eqs. (a) and (c) of Example 11.7. The steady 
state response of the damped structure is found upon substitution of Eq. (b), and the 
frequencies and modes of the undamped structure, into Eq. (11.56). Doing this gives 
the steady state response of the damped structure as 
 

 

( )
( ){ } { }

( )

2
0

22 21

( ) cos
( , ) 2

1 ( )

                 cosh cos sinh sin

j j

j
j

j j j j j

L tM L
w x t

EI

x x Y x x

β

ω λ

β β β β

∞

=

Ω − Φ
=

− Ω + Ω

ª º× − − −¬ ¼

¦
� �G

 � (d) 

 
where ( )j Lβ�G is given by Eq. (m) of Example 11.7.  

 
 
 

11.5  CONCLUDING REMARKS 

In this chapter the response of one-dimensional continua to time dependent forcing was 
studied. It was shown that the response of such systems is comprised of the sum of the 
modal functions with time dependent amplitudes. In this context, the modal expansion cor-
responds to a generalized Fourier series. It was further shown that, when expressed in terms 
of such an expansion, the equations of motion reduce to a system of uncoupled forced har-
monic equations in time for each mode. The dependent variables in these equations corre-
spond to the modal displacements which, in turn, correspond to the coefficients of the mod-
al expansion. The decomposition for continua was seen to be a generalization of the modal 
analysis introduced in Chapter 8 for discrete systems and offers the same interpretation. 
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Namely, that each of the uncoupled harmonic equations corresponds to an effective single 
degree of freedom system for which the modal displacement is the displacement of the ef-
fective (modal) mass and the modal force measures the degree and manner in which the 
applied forces are distributed to the individual mode. The procedure applies to all continua 
considered in Chapters 9 and 10 and may be extended to more general continua. This is 
done in Chapter 14 for membrane and plate structures. In the last section of the present 
chapter, the stiffnesses and corresponding operators were developed for structures pos-
sessing internal friction that are subjected to harmonic loading. The chapter finished with 
the application of modal analysis to obtain the steady state response of those structures.  
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PROBLEMS 

11.1 Solve the problem of Example 11.1 using the normal modes computed in Example 
10.14(b). 

 
11.2 Compare the magnitude of the edge deflection computed in Example 11.1 and Prob-

lem 11.1 with the corresponding edge deflection due to a static load of the same 
magnitude as discussed in Section 1.2. 

 
11.3 Determine the response of the rod of Example 11.1 if it is struck on its right end by 

an impulse of magnitude !0. 
11.4 A rocket lies at rest on a frictionless bed when the thruster is activated. The resultant 

thrust acts at a distance a from the nozzle, as shown in Figure P11.4, and the geo-
metrical and material properties of the structure may be treated as approximately 
uniform. The casing is of effective length L, 
effective area A, and is made of elastic material 
of Young’s modulus E and mass density ρ. 
Determine the motion of the rocket if the en-
gine is ramped up to a constant thrust of mag-
nitude P0 over the time integral τ.   Fig. P11.4 
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11.5 An external field exerts the body force ( , ) ( )sinp x t mg L x t= − Ω  on the uniform 
rod of Problem 10.2. Determine the steady state response of the structure. 

                                                                                                                                                      

    Fig. P11.5   
                                       
11.6 A uniform elastic rod of length L, membrane stiffness EA and mass per unit length 

m is attached to a rigid base at its left end, as shown in Figure P11.6. Determine the 
steady state motion of the rod if a motor causes the base to undergo the prescribed 
motion 0 .( ) sinx t h tχ = Ω  

                Fig. P11.6 
 
11.7 A torque of magnitude T0 is suddenly applied to the free end of the elastic rod 

shown in Figure P11.7. Determine the response of the rod. 

                                                                                                        
                                Fig. P11.7                              Fig. P11.8 
 
11.8 Determine the response of the fixed-free rod shown in Figure P11.8 if the base sud-

denly undergoes a rotation of magnitude θ0 as shown. 
             
 
11.9 A piano wire of length L, cross-sectional area 

A and mass density ρ is tuned to a tension of 
magnitude N0. Determine the response of the 
wire if the string is struck at its quarter point 
by a hammer that imparts an impulse of mag-
nitude !0                          
                                                                         Fig. P11.9 
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11.10 A simply supported uniform beam of length L, bending stiffness EI and mass per 
unit length m is subjected to the uniform distributed load p(x,t) = q0sinΩt. Deter-
mine the bending moment at the center of the span if the behavior of the beam is 
predicted using Euler-Bernoulli theory. 
   

11.11 The end of a seven foot diving board is bolted to the support as shown. The board is 
2 feet wide and 1.5 inches thick, has a specific weight of 36 lb/ft3 and an elastic 
modulus of 106 psi. A 200 lb man stands at the edge of the board preparing for a di-
ve, and then jumps once before leaving the board. If the time history of the jump is 
as described in the figure, use Euler-Bernoulli theory to determine the response of 
the board after the dive has ensued.  

       Fig. P11.11 
 
 
11.12 The clamped-clamped beam shown in 

Figure P11.12 is subjected to a concen-
trated load P(t) = P0 that is suddenly ap-
plied to the center of the span. Determine 
the response of the beam after the load is 
suddenly removed. 

 
 
     Fig. P11.12     
11.13 The beam shown in Figure P11.13 

is subjected to the time dependent 
moment M(t) = M0 sinΩt applied 
at its right end. Determine the 
steady state response of the beam. 

                                                         
 
     Fig. P11.13 
 
 

www.konkur.in



11│ Forced Vibration of One-Dimensional Continua 669 

11.14 The beam shown in Figure P11.14 is subjected to the time dependent body couple 
distribution whose magnitude varies linearly over the span from 0 to b0, as shown. 
Determine the steady state response of the structure if the body couple distribution 
varies harmonically in time with an excitation frequency that is twice the fundamen-
tal frequency of the beam.  

 
                                 Fig. P11.14                                        Fig. P11.15 
 
11.15 A concentrated load of magnitude P0 is suddenly applied to the right edge of the 

beam of Figure P11.15. Determine the response of the structure.  
 
11.16 The beam shown in Figure P11.16 is subjected to a concentrated harmonic load at 

its right end. If the magnitude of the applied load is P0 and its frequency is equal to 
half of the fundamental frequency of the structure, determine the transverse shear at 
the left edge of the beam.    

                Fig. P11.16   Fig. P11.17 
 
11.17 The beam shown in Figure P11.17 is impacted at its left end. If the magnitude of the 

impulse imparted to the structure is !0, determine the response of the beam.  
  
11.18 The beam shown in Figure P11.18 is impacted at its right end. If the magnitude of 

the impulse imparted to the structure is !0, determine the reactions of the beam. 
 

    Fig. P11.18 
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11.19 A simply supported uniform beam of length L, bending stiffness EI and mass per 
unit length m is subjected to the uniform distributed load p(x,t) = q0sinΩt. Deter-
mine the bending moment at the center of the span if the behavior of the beam is 
predicted using Rayleigh beam theory with rG/L = 0.1. 

   
11.20 Let the clamped-clamped beam of Problem 11.12 possess radius of gyration 

rG/L = 0.1. Determine the response of the beam if its behavior is now represented 
using Rayleigh beam theory. 

 
11.21 Let the clamped-pinned beam of Problem 11.13 possess radius of gyration 

rG/L = 0.1. Determine the response of the beam if its behavior is now represented 
using Rayleigh beam theory. 

 
11.22 A simply supported uniform beam of length L, bending stiffness EI and mass per 

unit length m is subjected to the uniform distributed load p(x,t) = q0sinΩt. Deter-
mine the bending moment at the center of the span if the behavior of the beam is 
predicted using Timoshenko beam theory for a structure where rG/L = 0.1 and E/kG 
= 5. 

 
11.23 Let the clamped-clamped beam of Problem 11.12 possess radius of gyration 

rG/L = 0.1 and modulus ratio E/kG = 5. Determine the response of the beam if its 
behavior is now represented using Timoshenko beam theory. 

 
11.24 Let the clamped-pinned beam of Problem 11.13 possess radius of gyration 

rG/L = 0.1 and modulus ratio E/kG = 5. Determine the response of the beam if its 
behavior is now represented using Timoshenko beam theory. 
 

11.25 Determine the steady state response of the rod of Problem 11.5 if the rod possesses 
structural damping and the loss modulus is given by EL = λ(Ω)E. 
 

11.26 Determine the steady state response of the rod of Problem 11.6 if the rod possesses 
structural damping and the loss modulus is given by EL = λ(Ω)E. 
 

11.27 Determine the steady state response of the simply supported beam of Problem 11.10 
if the beam possesses structural damping and the loss modulus is given by EL 
= λ(Ω)E. 
 

11.28 Determine the steady state response of the elastically restrained beam of Problem 
11.15 if the beam possesses structural damping and the loss modulus is given by EL 
= λ(Ω)E. 
 

11.29 Determine the steady state response of the simply supported Rayleigh beam of 
Problem 11.19 if the beam possesses structural damping and the loss modulus is 
given by EL = λ(Ω)E. 
 

11.30 Determine the steady state response of the simply supported Timoshenko beam of 
Problem 11.22 if the beam possesses structural damping and the loss moduli are 
given by EL(Ω)/E = GL(Ω)/G = λ(Ω). 
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12 
Dynamics of Two-Dimensional Continua 

 
 
 
 
 
 
Two-dimensional continua are representations of three-dimensional bodies or media whose 
deformations and motions are described mathematically as functions of two spatial varia-
bles. The lengths of such continua are typically much smaller in one direction, the thickness 
direction, than the characteristic lengths of the other two spatial directions. Structures of this 
type are found in many applications, from the hulls of ships and skins of aircraft to comput-
er boards, diaphragms and drum heads, to name but a few. Because of the small thickness 
to characteristic length ratio, simplifying assumptions are typically made with regard to the 
variation of the displacements with the thickness coordinate. Implementation of these as-
sumptions then renders the mathematical description of the structures to be two-
dimensional. Solid continua in this category are generally referred to as "thin" structures. In 
this chapter we study the dynamics of mathematically two-dimensional continua. We out-
line the basic assumptions and measures, and derive the fundamental equations of motion 
and the associated boundary conditions for selected types of flat structures. Specifically, we 
present the fundamental background and develop the pertinent equations for membranes, 
and for various characterizations of elastic plates. 
 
 

12.1  CHARACTERIZATION OF LOCAL DEFORMATION 

We are interested in the motion of structures for which the thickness is small compared with 
the characteristic dimensions of the major planes of the structure. (See Figure 12.1.) In this 
regard, the measures of deformation that were discussed in Chapter 9 for one-dimensional 
continua are readily extended to two-dimensional (and three-dimensional) continua. These 
include relative extension of a material line, distortion of an element within its plane as well 
as transverse to that plane, and coupled in-plane and out-of-plane deformation. We discuss 
these measures in the current section. Descriptions are given in both Cartesian coordinates 
and in cylindrical polar coordinates. In all cases, the reference surface of the undeformed 
structure is taken to lie in the xy-plane, with the z-axis oriented in the thickness direction. 
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  Figure 12.1  Thin structure of characteristic length L and thickness h� L. 
 

12.1.1  In-Plane Deformation 

In this section, we consider deformations which are planar in nature. That is, we consider 
deformations for which the faces of a differential element remain parallel to their original 
orientation. Consider a differential area element with sides parallel to the x and y axes of 
length dx and dy, respectively, when in the undeformed configuration. (See Figure 12.1.) 
Let the components of the displacement of a material particle located at the point (x, y, z) in 
the reference configuration be ux, uy, and uz along the x, y, and z directions, respectively. 
 

Pure In-Plane Extension and Translation 
Consider an area element that lies within a plane that is parallel to the xy-plane when in the 
reference (undeformed) configuration. Let us restrict our attention to deformations and mo-
tion such that each edge of the element remains parallel to its original orientation. For this 
case, the element remains in its original plane or has moved to a parallel plane when in the 
current (deformed) configuration. In this regard, let each edge of the element extend such 
that dx dx→ and dy dy→  (see Figure 12.2), where dx corresponds to the current length 
of the side that was originally of length dx, and dy is the current length of the side that was 
originally of length dy. Paralleling the development of Section 9.2.1 for each side of the 
element gives the corresponding relative extensions of the sides as 
 

 , yx
xx yy

uudx dx dy dy
dx x dy y

ε ε
∂∂− −= = = =

∂ ∂
 (12.1) 

These measures correspond to the normal strains for the conditions stated. 
 

Pure In-Plane Distortion 
Proceeding as we did for relative extension, we first consider the distortion of a material 
area element that remains in its original plane, or moves to a parallel plane, as it deforms.  
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  Figure 12.2  In-plane extension and translation of differential element. 
 
 
The change in angle between the sides of the element then follows from the development of 
Section 9.2.2 for small changes of the subtended angle, with appropriate change of coordi-
nates and variables. This gives 
 

 
2

y x
xy xy

u u
x y

πγ θ
∂ ∂= − ≈ +
∂ ∂

 (12.2) 

 
The corresponding shear strain is then defined as 
 

 1 1
2 2

y x
xy xy yx

u u
x y

ε γ ε
∂§ ·∂≡ = + =¨ ¸∂ ∂© ¹

 (12.3) 

 

Transverse (Contra-Plane) Extension and Distortion 
We next consider the deformation of area elements that lie in planes perpendicular to the 
major plane of the structure. Specifically, we consider extension and distortion of area ele-
ments that lie in planes that are parallel to the xz-plane and to the yz-plane.  
 The relative extension of edges of a differential element that are parallel to the z-axis 
when undeformed follows directly from the arguments of Eq. (12.1). Hence, if dz dz→ , 
then 

 z
zz

udz dz
dz z

ε ∂−= =
∂

 (12.4) 

 
The associated measures of distortion of the element, for small changes of the subtended 
angle, follow directly from the discussion of Section 9.2.2. Thus, from Eq. (9.39), the 
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changes in angle between the differential line dx and the differential line dz and, similarly, 
between the differential line dy and the differential line dz are, respectively,  
 

 
2

2

xz
xz xz

yz
yz yz

uu
x z

uu
y z

πγ θ

πγ θ

∂∂= − ≈ +
∂ ∂

∂∂= − ≈ +
∂ ∂

 (12.5) 

 
The corresponding shear strains are formally defined as half the associated angle change, 
giving 

 1 1,
2 2

yxz z
xz zx yz zy

uuu u
x z y z

ε ε ε ε
∂§ ·∂∂ ∂§ ·= + = = + =¨ ¸¨ ¸∂ ∂ ∂ ∂© ¹ © ¹

 (12.6) 

 
The strain measures presented thus far characterize deformations of elements that remain in 
their reference planes or, at most, translate to parallel planes, after deformation. We relax 
this restriction in the next section. 
 

12.1.2  Deformation with Out-of-Plane Rotation 

In general, a structure will deflect and rotate out of its major plane. In this section we con-
sider deformations that include out-of-plane rotation coupled with stretch and distortion. To 
characterize such behavior we first consider the deformation of a generic differential line 
element. The resulting description will then be used to characterize stretching and distor-
tion.  
  

General Deformation of a Material Line Element 
In general, a material area element will not remain in its original plane, nor move to a plane 
that is parallel to it. Rather the deforming element will generally rotate out of its plane as 
well as translate from it. We wish to develop measures of deformation for this more general 
case. Toward this end, we first consider the deformation, translation and rotation of a gener-
ic material line element and then specialize it to differential line segments parallel to the 
coordinate axes. We, ultimately, seek the pertinent strain-displacement relations. Therefore, 
we first seek a relation between the current configuration of a material line element and its 
reference configuration in terms of the displacements of the corresponding material parti-
cles. 
  Consider a material line element that emanates from the point (x,y,z) of a material 
body and is oriented in an arbitrary direction when in the reference (undeformed) configura-
tion. Let the length of the undeformed line element be dS and let the deformed length of the 
element be ds. Thus, dS → ds. (See Figure 12.3.)  In addition, let R

G
represent the position 

vector of the material particle that is located at the point (x,y,z) when in the reference con-
figuration. The vector dR

G
 then corresponds to the directed differential line element whose 

magnitude is dS. Similarly, let rG  represent the position of the current configuration of the 
material particle that was originally located at the point (x,y,z). The vector drG  then repre-
sents the directed differential line element whose magnitude is ds. The displacement vector, 
uG , for the point in question  is then, by definition, 
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  Figure 12.3  Deformation and motion of a material line element. 
 
 
 u r R= −

GG G  (12.7) 
 
(Figure 12.3). The corresponding matrix form of Eq. (12.7) is 
 
 = −u r R  (12.8) 
 
where u is the matrix of components of uGwith respect to the given coordinate system, r is 
the matrix of components of ,rG  and R is the matrix of components of .R

G
 

For continuous displacements ( , , , )x y z tu we have, via the implicit function theorem, that 
 
 d d=u D R  (12.9) 
where 

 
( , , , )
( , , , )
( , , , )

x

y

z

du x y z t
d du x y z t

du x y z t

 ½
° °= ® ¾
° °
¯ ¿

u  (12.10) 

 

 
x x x

y y y

z z z

u x u y u z
u x u y u z
u x u y u z

∂ ∂ ∂ ∂ ∂ ∂ª º
« »≡ ∂ ∂ ∂ ∂ ∂ ∂« »
« »∂ ∂ ∂ ∂ ∂ ∂¬ ¼

D  (12.11) 

 
is the displacement gradient matrix and, for the general case,  
 

 
dx

d dy
dz

 ½
° °= ® ¾
° °
¯ ¿

R  (12.12) 
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It follows from Eq. (12.8) that 
 
 d d d= +r R u  (12.13) 
 
Substitution of Eq. (12.9) into Eq. (12.13) gives the desired relation between the current and 
reference configurations of the material line element in terms of the displacement gradients 
as 
 
 [ ]d d= +r I D R  (12.14) 
 
where I is the 3× 3 identity matrix.  
 Now that we have obtained the relation for the deformation of a generic line element, 
let us consider the specific line elements that correspond to the sides of the differential area 
element that lies in a plane parallel to the xy-plane when undeformed. For the particular line 
element that is originally parallel to the x-axis, 
 

 ( ) 0
0

x

dx
d d

 ½
° °= = ® ¾
° °
¯ ¿

R S  (12.15) 

 
Let ( )xds represent the matrix of components of the specific line element in question when 
in the current configuration. Hence, for the present case, 
 
 ( )xd d=r s  (12.16) 
 
Substitution of Eqs. (12.11), (12.15) and (12.16) into Eq. (12.14) gives the relation for the 
deformed element as 
 

 ( )

1 x

yx

z

u
x

u
d dx

x
u
x

∂ ½+° °∂° °
∂° °= ® ¾∂° °
∂° °

° °∂¯ ¿

s  (12.17) 

 
Similarly, for the specific line element that is originally parallel to the y-axis, 
 

 ( )

0

0

yd d dy
 ½
° °= = ® ¾
° °
¯ ¿

R S  (12.18) 

and 
 ( )yd d=r s  (12.19) 
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Substitution of Eqs. (12.11), (12.18) and (12.19) into Eq. (12.14) gives the relation for the 
deformed element as 
 

 ( ) 1

x

yy

z

u
y
u

d dy
y

u
y

∂ ½
° °∂° °
° °∂° °= +® ¾∂° °
° °∂
° °

∂° °¯ ¿

s  (12.20) 

 
The above relations will be central in establishing the strain measures, as well as their inter-
pretation, for the general deformation of differential area elements.  
 

Extension, Translation and Local Rotation  
We next consider the case where an area element expands and translates, but also deflects 
and rotates out of a plane parallel to the xy-plane. For this case, the edges of the element 
extend such that ( )xdx ds→ and ( )ydy ds→ (Figure 12.4). It follows from Eqs. (12.17) and 
(12.20) that the lengths of the deformed line elements are  
 

 

 

22 2
( ) ( ) ( )

22 2
( ) ( ) ( )

1 2

1 2

yx x x x x z

y yy y y x z

uu u uds d d dx
x x x x

u uu uds d d dy
y y y y

∂§ ·∂ ∂ ∂§ · § ·= = + + + +¨ ¸ ¨ ¸¨ ¸∂ ∂ ∂ ∂© ¹© ¹ © ¹

∂ ∂§ ·∂§ · § ·∂= = + + + +¨ ¸¨ ¸ ¨ ¸∂ ∂ ∂ ∂© ¹ © ¹© ¹

s s

s s

T

T

 (12.21) 

  
 
 

 
 Figure 12.4  Extension, translation and local rotation of an area element. 
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Now, for "small" displacement gradients, that is, when 
 

 , , , , , 1y yx x z zu uu u u u
x y x y x y

∂ ∂∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

�   

 
the radicals in Eqs. (12.21)  may be represented by their series expansions. Doing this gives 
 

 

22 2
( )

22 2
( )

1 1 11
2 2 2

1 1 11
2 2 2

yx x x z

y yy x z

uu u uds dx
x x x x

u uu uds dy
y y y y

ª º∂§ ·∂ ∂ ∂§ · § ·« »= + + + + +¨ ¸ ¨ ¸¨ ¸∂ ∂ ∂ ∂« »© ¹© ¹ © ¹¬ ¼
ª º∂ ∂§ ·∂§ · § ·∂
« »= + + + + +¨ ¸¨ ¸ ¨ ¸∂ ∂ ∂ ∂« »© ¹ © ¹© ¹¬ ¼

!

!

 (12.22) 

 
The relative extensions of differential material lines that are initially parallel to the x and y 
axes then follow directly as 
 

 

22 2( )

22 2( )

1
2

1
2

x
yx x z

y
y yx z

uu u uds dx
dx x x x x

u uu uds dy
dy y y y y

ª º∂§ ·∂ ∂ ∂− § · § ·« »= + + + +¨ ¸ ¨ ¸¨ ¸∂ ∂ ∂ ∂« »© ¹© ¹ © ¹¬ ¼
ª º∂ ∂§ ·∂§ · § ·∂− « »= + + + +¨ ¸¨ ¸ ¨ ¸∂ ∂ ∂ ∂« »© ¹ © ¹© ¹¬ ¼

!

!

 (12.23) 

respectively. 
 

Small Strain, Moderate (Out-Of-Plane) Rotations 
The gradients of the in-plane displacement components are assumed to be of the same 
order. That is, 
 

 1y yx xu uu u
O O O

x y x y
∂ ∂§ · § ·∂ ∂§ ·

¨ ¸ ¨ ¸ ¨ ¸∂ ∂ ∂ ∂© ¹© ¹ © ¹
� � � �  (12.24)

 
 

 
For thin structures, the out-of-plane rotations due to deformation are often larger in 
magnitude than the corresponding rotations in the plane. If we allow the squares and 
products of the gradients of the out-of-plane displacement component to be of the 
same order as the gradients of the in-plane displacement components to first order – 
that is, 
  

        
22

, , 1y yx xz z z z u uu uu u u u O O O O
x y x y x y x y

∂ ∂§ · § ·∂ ∂§ · § ·∂ ∂ ∂ ∂ § ·§ ·
¨ ¸ ¨ ¸¨ ¸ ¨ ¸¨ ¸ ¨ ¸∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂© ¹ © ¹© ¹ © ¹ © ¹ © ¹

� � � � �
 

  (12.25) 
 
then the relative extensions given in Eq. (12.23) yield the geometrically nonlinear 
strains 
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221 1,

2 2
yx z z

xx yy

uu u u
x x y y

ε ε
∂∂ § ·∂ ∂§ ·= + = + ¨ ¸¨ ¸∂ ∂ ∂ ∂© ¹ © ¹

 (12.26) 

 
The gradients of the out-of-plane displacement components correspond to the tan-
gents of the corresponding angles of rotation of the edges of the element, as discussed 
for 1-D continua in Section 9.2.1. For small angles, the tangents likewise approximate 
the angles of rotation themselves. Hence the terminology small strain and moderate 
rotation. 
 

Small Strain, Small Rotations 
If we consider the gradients of the out-of-plane displacements to be of the same order 
as the gradients of the in-plane displacements – that is, 
 

 , 1y yx xz z
u uu uu u O O O O

x y x y x y
∂ ∂§ · § ·∂ ∂§ ·∂ ∂ § ·

¨ ¸ ¨ ¸¨ ¸¨ ¸∂ ∂ ∂ ∂ ∂ ∂© ¹ © ¹ © ¹ © ¹
� � � � �  (12.27) 

 
then the rotations are said to be “small.” In this case, the higher order terms in Eq. 
(12.26) are often neglected. This results in what are commonly referred to as the in-
finitesimal strains, 
 

 , yx
xx yy

uu

x y
ε ε

∂∂
= =

∂ ∂
 (12.28) 

 
Upon comparison of Eq. (12.28) with Eq. (12.1) it is seen that, in this approximation, 
the coupling between the in-plane motion and the out-of-plane motion is not account-
ed for. Moreover, the relative extension of an element is approximated by its projec-
tion onto the reference plane.  

 

Distortion and Local Out-of-Plane Rotation 
In general, the two-dimensional structure will deflect out of its major plane, as well as 
stretch, contract, and distort within its own plane. To account for this behavior, we proceed 
as we did for extension and account for the individual out-of-plane rotation of each of the 
sides of the differential area element originating in the major plane of the structure. This 
then affects the measure of the angle change in terms of the gradients of the displacement 
components, as the face of the deformed element will be skewed from its original plane. 
(See Figure 12.5.)   
 Consider the area element with sides dx and dy in the reference configuration. Let the 
sides of the element be stretched such that ( )xdx ds→  and ( )ydy ds→ , and let them each 
be rotated such that the subtended angle between the sides of the deformed element is φxy, 
as shown in Figure 12.5.  Let ( )xnG represent the unit vector directed parallel to ds(x) and let 

( )ynG represent the unit vector directed parallel to ds(y). It follows that ( ) ( )cos ,x y
xy n nφ = G G< and 

hence that 
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 Figure 12.5  Distortion and local out-of-plane rotation of area element. 
 

 
 
 ( ) ( )sin x y

xy n nγ = G G<  (12.29) 
where 

 
2xy xy
πγ φ= −  (12.30) 

 
Let us define the directed line elements in the current configuration as 
 
 ( ) ( ) ( ) ( ) ( ) ( ),x x x y y yds ds n ds ds n= =G G G G

 (12.31) 
 
Incorporation of Eq. (12.31)  into Eq. (12.29) gives the relation 
 

 
( ) ( )

( ) ( )sin
x y

xy x y

ds ds
ds ds

γ =
G G

<  (12.32) 

 
Equation (12.32) is expressed in matrix form as 
 

 
( ) ( )

( ) ( )sin
x y

xy x y

d d
ds ds

γ = s sT

 (12.33) 

where 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

,

x y
x x

x x y y
y y
x y

z z

ds ds
d ds d ds

ds ds

 ½  ½
° ° ° °= =® ¾ ® ¾
° ° ° °
¯ ¿ ¯ ¿

s s  (12.34) 

 
and ( )x

yds corresponds to the component of ( )xdsG along the y-axis, etc. Substitution of Eqs. 
(12.17), (12.20) and (12.21) into Eq. (12.33) gives the relation for the change of subtended 
angle in terms of the displacement components as 
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2 22 22 2

sin

1 2 1 2

y y yx x x z z

xy

y y yx x xz z

u u uu u u u u
x y x y x y x y

u u uu u uu u
x x x x y y y y

γ

∂ ∂ ∂ª º∂ ∂ ∂ ∂ ∂+ + + +« »∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂¬ ¼=
∂ ∂ ∂§ · § ·∂ ∂ ∂§ · § ·∂ ∂§ · § ·+ + + + + + + +¨ ¸ ¨ ¸¨ ¸ ¨ ¸¨ ¸¨ ¸∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂© ¹© ¹ © ¹ © ¹© ¹ © ¹

 

  (12.35) 
  

Small Strain, Moderate Rotations 
We next employ the series expansion for the radicals in the denominator of the ex-
pression on the right-hand side of Eq. (12.35) and retain terms to second order. In ad-
dition, we consider the squares and products of the gradients of the transverse com-
ponents of the displacement to be of the same order as the gradients of the in-plane 
components of the displacement to the first power, per Eq. (12.25). Under these con-
ditions, the change in angle between the sides of the element reduces to 
 

 
2

y x z z
xy xy

u u u u
x y x y

πγ φ
∂ ∂ ∂ ∂= − ≅ + +
∂ ∂ ∂ ∂

 (12.36) 

 
where the sine of the (small) angle has been approximated by the angle itself. The 
corresponding geometrically nonlinear shear strain is then defined as 
 

 1 1
2 2

y x z z
xy xy yx

u u u u
x y x y

ε γ ε
∂§ ·∂ ∂ ∂≡ = + + =¨ ¸∂ ∂ ∂ ∂© ¹

 (12.37) 

 
This quantity is paired with the strain measures of Eq. (12.26). 
    

Small Strain, Small Rotations 
When the gradients of the transverse components of the displacement are of the same 
order as the gradients of the in-plane components of the displacement, as stated in Eq. 
(12.27), then Eq. (12.37) is often simplified to give the infinitesimal shear strain  
 

 1 1
2 2

y x
xy xy yx

u u
x y

ε γ ε
∂§ ·∂= ≈ + =¨ ¸∂ ∂© ¹

 (12.38) 

 
This quantity is paired with the strain measures of Eq. (12.28). Upon comparison of 
Eq. (12.38) with Eq. (12.3) it is seen that, when this simplification is implemented, 
the angle change is approximated by its projection into the plane of the undeformed 
element. 
 

Transverse (Contra-Plane) Extension and Distortion 
The measures of contra-plane deformation for both small strain, moderate rotation defor-
mation, Eqs. (12.25), and for small strain, small rotation deformation, Eqs. (12.27), are the 
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same, and follow directly from Eqs. (12.4) and (12.6). Hence, for both cases, the strain 
measures are approximated as 
 

 z
zz

u
z

ε ∂=
∂

 (12.39) 
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xz xz zx

yz
yz yz zy
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x z

uu
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ε γ ε

ε γ ε

∂∂§ ·≡ ≈ + =¨ ¸∂ ∂© ¹
∂§ ·∂≡ ≈ + =¨ ¸∂ ∂© ¹

 (12.40) 

  
which approximate the indicated deformation by its projection into the original plane of the 
area element.  
 
 

12.1.3  Polar Coordinates 

Many structures are of circular shape and therefore lend themselves to descriptions in terms 
of cylindrical-polar coordinates. In this case, we take the radial and angular coordinates, r 
and θ, in the reference plane of the structure and the z-coordinate in the thickness direction 
(Figure 12.6). For such structures, the corresponding displacement components will be de-
noted as ur , uθ , and uz , respectively. As for the descriptions expressed in terms of Cartesian 
coordinates, we consider both infinitesimal strain and geometrically nonlinear strain 
measures.  

Infinitesimal Strain  
Consider the relative extension of a differential line element originally oriented along the 
radial direction when in the undeformed configuration (Figure 12.7). For this situation, the 
development parallels the corresponding discussion of Section 12.1.1 for relative extension 
along the coordinate directions and results in the strain measure given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 12.6  Thin circular structure described by polar coordinates. 
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 Figure 12.7  In-plane deformation and motion of a radial line element. 
 
 

 

 r
rr

u
r

ε ∂=
∂

 (12.41) 

 
The above relation is seen to be similar to the corresponding measures for Cartesian coordi-
nates. The relative extension of a differential element along the θ direction, however, differs 
somewhat since the undeformed line element is a differential circular arc (Figure 12.8). To 
assess the relative extension of the arc element, let us first consider the uniform expansion 
of a circle. For this case, each particle of the circle displaces radially outward the same dis-
tance, ur, as shown in Figure 12.8a. The relative extension of the circle, or any arc of the 
circle including a differential arc, is then ur/r. In general, the element will stretch or con-
tract along its original circular arc (imagine an arc of material particles that are constrained 
to move along a circular surface – Figure 12.8b), as well as stretch or contract as a result of 
translation of its contituent particles along its radial generators. For this case (see Figure 
12.8c), the resulting relative extension of the differential arc is then 
 

 1 ru u
r r

θ
θθε

θ
∂= +
∂

 (12.42) 

 
Consideration of the distortion of a differential element in its plane (Figure 12.9) results in 
the corresponding shear strain 
 

 1 1 1
2 2

r
r r r

u uu
r r r

θ θ
θ θ θε γ ε

θ
∂∂§ ·≡ = + − =¨ ¸∂ ∂© ¹

 (12.43) 

 
The third term on the right-hand side of Eq. (12.43) arises due to the annular shape of the 
element within the major planes of the structure. The strains that describe transverse (con-
tra-plane) extension and distortion assume the familiar forms 
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 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) 
 
 
 
 
 
 

 
 

 
 
 
 

 
Figure 12.8  In-plane deformation and motion of a circular arc element; (a) uniform expansion, (b) 
pure extension, (c) general in-plane deformation. 
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 Figure 12.9  In-plane distortion and translation of polar area element. 
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 (12.44) 

 

Small Strain with Moderate Rotations 
We next consider the more general case for which the in-plane elements are permitted to 
rotate out of the major planes of the structure. For this case, the corresponding geometrical-
ly nonlinear strains follow as discussed in Section 12.1.2 for Cartesian coordinates, and take 
the forms 
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and 
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 (12.46) 

 
The measures for the contra-plane deformations are the same as those given by Eq. (12.44). 
 

12.1.4  Summary of Strain Measures 

We finish this section by presenting a summary and grouping of the strain-displacement 
relations for both infinitesimal strain (small strain with small rotations) and for nonlinear 
strain (small strain with "moderate" rotations). The relations are displayed in Tables 12.1 
and 12.2. 
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Table 12.1  Summary of in-plane strain-displacement relations 

       Infinitesimal normal strain                      Infinitesimal shear strain 
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  Table 12.2  Summary of contra-plane strain-displacement relations 

       Transverse normal strain                      Transverse shear strain 
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 Now that the requisite measures of deformation have been defined, we can proceed to 
develop the governing equations for two-dimensional continua. We formulate the problems 
for membranes in the next section, and for several  theories of elastic plates in subsequent 
sections.  
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12.2  MEMBRANES 

Thin structures that possess very little resistance to bending (and transverse shear) are re-
ferred to as membranes. Examples include drum heads, soap films, diaphragms and certain 
biological structures. Mathematically, a membrane is a thin structure that exhibits negligible 
resistance to bending and shear. For such structures, the in-plane tensile forces provide the 
dominant resistance to transverse deflection. In this sense, a membrane is the two-
dimensional analog of a string. In the present section we develop the governing equations 
and boundary conditions for such structures and, in doing so, formulate the mathematical 
problem for the dynamics of membranes. 
 
 

12.2.1  The Infinitely Flexible Structure 

Consider a thin flat structure whose central major surface lies in the xy-plane when in the 
undeformed configuration. Let the structure be subjected to distributed loads (loads per unit 
area) whose components in the x, y and z directions are, respectively, px(x, y, t), py(x, y, t) 
and q(x, y, t). To derive the local equations of motion, let us consider a differential element 
emanating from the coordinates (x, y) and having sides of length dx and dy as shown in Fig-
ure 12.10. Let Nxx(x, y, t), Nxy(x, y, t), Nyy(x, y, t) and Nyx(x, y, t) respectively correspond to 
the membrane force per unit length in the indicated direction and the corresponding in-
plane shear force. That is, let 
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 (12.47) 

 
where h is the thickness of the membrane, σxx is the normal stress acting on the plane whose 
normal is parallel to the x-axis at point (x,y,z), σyy is the normal stress acting on the plane 
whose normal is parallel to the y-axis, and σxy = σyx represent the corresponding shear 
stresses. Let ( , , )w x y t correspond to the transverse displacement of the material particle that 
was located on the surface z = 0 of the membrane at the given coordinates when in the ref-
erence configuration. (We shall assume that the variation of the displacement through the 
thickness is negligible.) In addition, let ϕx(x,y,t) represent the rotation of the surface of the 
membrane whose normal is parallel to the x-axis at the given point and let ϕy(x,y,t) repre-
sent the rotation of the surface of the membrane whose normal is parallel to the y-axis. We 
next write the components of Newton's Second Law of Motion for a volume element of the 
structure along the two in-plane directions. This gives, with the aid of Figure 12.10, 
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  (12.48) 
and 
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  (12.49) 
where  
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m dzρ

−
= ³  (12.50) 

 
is the mass per unit surface area of the membrane and ρ is the mass density, and 

(0) ( , , )xu x y t , (0) ( , , )yu x y t  correspond to the displacement components in the x, y directions, 
respectively, of a material particle originally located in the plane, z = 0. If we restrict our-
selves to “moderate” rotations 2 2( , , 1)x y x yϕ ϕ ϕ ϕ �  then the relations in Eqs. (12.48) and 
(12.49) reduce to the forms 
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Writing Newton's Second Law of Motion in the transverse direction gives, with the aid of 
Figure 12.10, 
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For 2 1,ϕ � sin tan .ϕ ϕ ϕ≈ ≈  Hence, 
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 Figure 12.10  Deflected membrane element, showing membrane forces. 
 
 
 
Utilizing the approximations of Eq. (12.54) in Eq. (12.53) reduces the transverse equation 
of motion to the form 
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 (12.55) 

 
As for strings (Section 9.5), the transverse motion of the membrane will generally be much 
larger than the in-plane motion. It, likewise, follows that the in-plane components of the 
displacements, velocities and accelerations will be much smaller than their counterparts for 
transverse motion. Under these conditions, we have from Eqs. (12.51) and (12.52) that 
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Substitution of Eqs. (12.56) and (12.57) into Eq. (12.55) simplifies the equation of trans-
verse motion to the form 
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Equation (12.58) may be written in operator form as 
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m k  (12.59) 

where 
 ( , )m x y=m  (12.60) 
 
is the mass operator and 
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is the stiffness operator. To complete the formulation, we must specify the boundary and 
initial conditions. 
 The boundary conditions follow from the work of the internal forces. For the struc-
ture described to this point, one term of the work of the in-plane motion along the normal 
direction, /(n)�= Nnnun, must be specified at each point on the periphery of the structure. 
Similarly, one term of the work of the in-plane motion along the tangential direction, 
/(s)�= Nnsus, and one term of the work of the transverse motion, /(z)�= Qnw, must be 
specified at each point on the periphery of the structure. In the expressions for work, Nnn 
and Nns are, respectively, the normal and tangential components of the resultant membrane 
force per unit length around the edge of the structure, un and us are, respectively, the normal 
and tangential components of the in-plane displacement of the edge of the structure, and Qn 
is the transverse projection of the resultant membrane force per unit length along the edge. 
It follows that either 
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where s is a path coordinate that runs around the periphery of the structure (see Figure 
12.11), and &n, hn, &s, hs, ) and f  are prescribed functions. 
 To complete the formulation, the initial conditions for each point on the structure 
must be specified. For the membrane under consideration, the initial conditions are of the 
form 
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where 0 ( , )u x yG

and 0 ( , )v x yG
are prescribed vector functions. 
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 Figure 12.11  Path coordinate, s, and unit outer normal, ( ),snG along membrane boundary, S. 
 
 
 

12.2.2  The Ideal Membrane 

We next simplify the equations developed in Section 12.2.1 to those for the case of an ideal 
membrane.  

Cartesian Coordinates 
An ideal membrane is one that offers no resistance to in-plane shear, as well as to bending 
and transverse shear. It follows that, for such structures, 
 
 0xy yxN N= ≡  (12.66) 
 
If, in addition, we consider body forces that are uniform, ( )p p t=G G , or, at most, vary spa-
tially as px = px(y,t) and py = py(x,t), then it follows from Eqs. (12.56) and (12.57) that 
 
 ( , )      and      ( , )xx xx yy yyN N y t N N x t= =  (12.67) 
 
Since no shear is present on the surfaces whose normals are parallel to the x and y axes 
throughout the structure then, at any point, Nxx and Nyy are resultant principle stresses. It 
follows that the maximum shear force in the major plane of the structure is equal to half the 
magnitude of the difference between Nxx and Nyy. If no shear stress, and hence no resultant 
shear force, exists in the major plane of the membrane, it is concluded that 
 
 0 ( )xx yyN N N t= =  (12.68) 
 
That is, the membrane force is uniform throughout the structure. We are typically interested 
in the transverse motion of such structures when they are subjected to time dependent 
transverse loading. Furthermore, if the in-plane components, px and py, of the applied body 
force are independent of time, or if they vanish, then it follows from Eqs. (12.56), (12.57) 
and (12.68) that 
 0 constantxx yyN N N= = =  (12.69) 
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For these situations, the equation of transverse motion, Eq. (12.58), simplifies to the form 
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 (12.70) 

where 
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 (12.71) 

 
is the two-dimensional Laplacian operator. Equation (12.70) is often referred to as the 
membrane equation and governs the transverse motion of what is termed an “ideal” mem-
brane. The boundary conditions and initial conditions defined in Eqs. (12.62), (12.64) and 
(12.65) are pertinent for the ideal membrane, as well. The conditions expressed in Eq. 
(12.63) are not relevant, since the in-plane shear vanishes identically. Therefore, for an ideal 
membrane the boundary conditions 
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must be satisfied, as must the initial conditions 
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Equation (12.70) can be written in operator form as 
 

 
2

2 ( , , )w w q x y t
t

∂ + =
∂

m k  (12.75) 

where 
 ( , )m x y=m  (12.76) 
and 
 2

0N= − ∇k  (12.77) 
 
Equation (12.70), or equivalently Eq. (12.75), and Eq. (12.69) together with the boundary 
and initial conditions described by Eqs. (12.72)–(12.74), define the problem of transverse 
motion of an ideal membrane subjected to a distributed transverse load. 
 
 

Example 12.1 
A rectangular membrane occupies the region 0 ≤ x ≤ a, 0 ≤ y ≤ b and is stretched be-
tween rigid supports by applied distributed tensile loads N0 on all four of its edges, as 
shown in Figure E12.1. Establish the boundary conditions for the membrane, and 
confirm that the membrane force is uniform.  
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 Figure E12.1 
 
Solution 
Since the applied in-plane force is prescribed along each edge of the membrane we 
impose the first condition of Eq. (12.72). This gives the in-plane boundary condi-
tions 

   
 00 0xx xx yy yyx x a y y b

N N N N N= = = =
= = = =  � (a) 

 
Thus, from Eq. (12.69), 

 
 0( , , ) ( , , )xx yyN x y t N x y t N= =  (b) 

 
In addition, the membrane sits on rigid supports along each of its edges. We there-
fore impose the second condition of Eq. (12.73) to arrive at the transverse boundary 
conditions, 

 
 (0, , ) ( , , ) ( ,0, ) ( , , ) 0w y t w a y t w x t w x b t= = = =  � (c) 
 
 
 

Example 12.2 
A rectangular membrane occupies 
the region 0 ≤ x ≤ a, 0 ≤ y ≤ b and 
is attached atop elastic supports 
of stiffness k along each of its 
edges. In addition, the membrane 
is stretched between the supports 
by applied distributed tensile 
loads N0 on all four of its edges, 
as shown in Figure E12.2-1. Es-
tablish the boundary conditions 
for the membrane.  
  Figure E12.2-1 
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Solution 
As for the membrane of Example 12.1, the applied in-plane force is prescribed along 
each edge of the membrane. Hence, we impose the first condition of Eq. (12.72) and 
arrive at the in-plane boundary conditions, 

   
 00 0xx xx yy yyx x a y y b

N N N N N= = = =
= = = =  � (a) 

 
Thus, from Eq. (12.69), 

 
 0( , , ) ( , , )xx yyN x y t N x y t N= =  � (b) 

 
The evaluation of the boundary conditions for the transverse displacements is aided 
by the force diagrams displayed in Figure E12.2-2. If we assume that both the dis-
placement and rotation of the edge are positive, the boundary conditions for the 
transverse displacements are, from the first condition of Eq. (12.73), 
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Substitution of Eq. (b) into Eq. (c) gives the final form of the transverse boundary 
condition as 
 

 0 0 0 0
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0
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 � (d) 

 

 
 Figure E12.2-2 

 
 
 

Cylindrical-Polar Coordinates 
In many situations we will be interested in membranes that are circular in geometry. These 
may include shapes such as circles, annuli, semi-circles, circular segments or annular seg-
ments. For such structures, the motion is more readily described in terms of cylindrical-
polar coordinates. In this event, the in-plane coordinates will be taken as the radial and an-
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gular coordinates, r and θ respectively, while the z-coordinate will be taken as transverse to 
the major plane of the structure. (See Figure 12.6.) The development for Cartesian coordi-
nates is readily converted to polar coordinates. For this case, the membrane forces are 
 
 0 ( )rrN N N tθθ= =  (12.78) 
 
For vanishing in-plane body force, we again have that 
 
 0 constantN =  (12.79) 
 
and the equation of transverse motion takes the form 
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where, in polar coordinates, 
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The boundary conditions stated in Eqs. (12.72) and (12.73) must be imposed, with the nor-
mal and tangential coordinates interpreted accordingly. On a circular boundary, n = r and s 
= rθ.  The reverse is true on a boundary that is part of a radial generator. The pertinent ini-
tial conditions take the form 
 

 0 0
0

( , ,0) ( , ), ( , )
t

ww r w r v r
t

θ θ θ
=

∂= =
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 (12.82) 

 
where w0(r,θ) and v0(r,θ) are prescribed functions. 
 
 

Example 12.3 
A drum head of radius a is fixed around its periphery, as shown in Figure E12.3. The 
drum head is stretched by the tightening of clamps which, in turn, exert a uniform 
tension of magnitude N0 around the edge of the head. If the drum head is modeled as 
an ideal membrane, establish the boundary conditions for the structure.   

 
 
  
 
 
 
 
 
 
  Figure E12.3 
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Solution 
The membrane is solid, therefore we can formally apply boundary conditions around 
the periphery of the structure. However, there are only two boundary conditions that 
can be imposed around the edge of the drum head; one associated with the mem-
brane force and the other with the constraint imposed on the transverse displacement. 
Hence, imposing the first condition of Eq. (12.72) gives the boundary condition 

 
 0rr r a

N N= =  � (a) 
 
We next impose the second condition of Eq. (12.73), which results in the kinematic 
boundary condition 

 
 ( , , ) 0w a tθ =  � (b) 

 
Upon consideration of the equation of motion for the membrane, Eq. (12.80), it is 
seen that the spatial differential operator described by Eq. (12.81) requires four 
boundary conditions. It will be seen in Section 13.3.2 that an implicit “boundary 
condition” for finiteness of the displacements at the origin must be imposed, as well 
as the boundary conditions described by Eqs. (a) and (b). This will complete the 
formulation for “solid” membranes. 

 
 
 
 In this section we have developed the equations that govern the motion of mem-
branes. That is, we considered thin structures that have negligible resistance to bending and 
shear. In the next section we consider analogous structures that possess finite resistance to 
both bending and shear. 
 
 
 

12.3  ELASTIC PLATES 

Plates are thin flat structures that resist bending, transverse shear and in-plane shear, as well 
as in-plane tension and compression. Such structures appear in a variety of applications 
ranging from vehicular skins to computer boards. Mathematically, plates are the two-
dimensional analogs of beams. As such, they are two-dimensional mathematical representa-
tions of three-dimensional bodies. We shall see that the added dimension increases the 
complexity of the theory considerably over that for beams, and likewise restricts the allow-
able range of transverse deflections, particularly for the elementary theory. In this section, 
we first present the basic kinematical and constitutive relations pertinent to the theories to 
be discussed. The fundamental kinetics of plates is then discussed in Section 12.3.2. “Clas-
sical” (Kirchhoff) plate theory is presented in Section 12.3.3 while a plate theory that in-
cludes transverse shear deformation and rotatory inertia (Mindlin theory) is presented in 
Section 12.3.4. Finally, a geometrically nonlinear theory (von Karman theory) is discussed 
in Section 12.3.5. We begin with a discussion of the basic kinematical assumptions.  
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 Figure 12.12  Rectangular plate with coordinate system. 
 
 

12.3.1  Kinematical and Constitutive Relations 

Consider a flat structure of thickness h and characteristic length L within its major plane. 
We shall consider thin plates. That is, we shall consider structures for which 1h L � . Let 
us introduce a Cartesian coordinate system such that the xy-plane coincides with the central 
major plane of the structure when in the undeformed configuration. Correspondingly, let the 
z-axis run in the thickness direction of the plate so that the x, y, z system forms a right-
handed triad as shown in Figure 12.12. The bounding major planes are then 2z h= ± . 

Kinematics 
In the spirit of the beam theories of Section 9.6, let (0) ( , , )xu x y t , (0) ( , , )yu x y t  and w(x,y,t) 
correspond to the displacement components in the x, y and z directions, respectively, of a 
material particle originally located in the reference plane, z = 0. Since 1h L � we next 
adopt the kinematical assumptions attributed to Kirchhoff which, for the present case, take 
the form 

 

(0)

(0)

( , , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , )

( , , , ) ( , , )

x x x

y y y

z

u x y z t u x y t z x y t
u x y z t u x y t z x y t
u x y z t w x y t

ϕ
ϕ

= −
= −
=

 (12.83) 

 
where ϕx and ϕy each represent the rotation of the cross section whose normal is in the di-
rection indicated by the subscript at the coordinates (x,y) when in the undeformed configu-
ration. It follows from Eqs. (12.83) and the strain-displacement relations of Section 12.1.1 
that the in-plane strains vary through the thickness as  
 

 

(0)

(0)

(0)

( , , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , ) ( , , , )
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xy xy xy yx

x y z t x y t z x y t
x y z t x y t z x y t

x y z t x y t z x y t x y z t

ε ε κ
ε ε κ
ε ε κ ε

= −
= −

= − =

 (12.84) 

 
where 
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( , , ) , ( , , ) ,

1( , , ) ( , , )
2

yx
xx yy

y x
xy yx

x y t x y t
x y

x y t x y t
x y

ϕϕκ κ

ϕ ϕκ κ

∂∂= =
∂ ∂

∂ª º∂= + =« »∂ ∂¬ ¼

 (12.85) 

 
are the curvatures of the central surface of the plate at the coordinates (x,y) in the direction 
indicated by the subscript, and (0)

xxε , (0)
yyε and (0)

xyε correspond to the indicated strains at the 
reference surface. Further, the transverse (contra-plane) shear trains take the form 
 

 

(0)

(0)

1( , , , ) ( , , )
2
1( , , , ) ( , , )
2

xz xz x

yz yz y

wx y z t x y t
x
wx y z t x y t
y

ε ε ϕ

ε ε ϕ

∂ª º= = −« »∂¬ ¼
ª º∂= = −« »∂¬ ¼

 (12.86) 

 
In addition, the normal strain in the thickness direction is seen to vanish identically. That is, 
 

 ( , , , ) 0z
zz

u wx y z t
z z

ε ∂ ∂= = =
∂ ∂

 (12.87) 

 
We next incorporate the material behavior of the plate. 
 

Hooke's Law 
Let the plate be comprised of linear elastic, isotropic material possessing Young's modulus, 
E, and Poisson's ratio, ν. For such materials, Hooke's Law expressed for stress and strain 
components within the major planes of the plate takes the form 
 

 
( ) ( ), ,

1
2

yyxx
xx yy zz yy xx zz

xy
xy xy

E E E E

E G

σσ ν νε σ σ ε σ σ

σνε σ

= − + = − +

+= =
 (12.88) 

 
where σxx, σyy  and σzz correspond to the normal stress in the directions indicated by the sub-
scripts, σxy = σyx is the in-plane shear stress (the stress component in the y-direction acting 
on the surface whose normal is parallel to the x-axis and vice versa), and 2(1 )G E ν= + is 
the shear modulus of the plate material. 
 In most applications of plate structures, the transverse normal stress is negligible 
compared with the in-plane normal stress. Thus, the membrane and bending stresses domi-
nate. Formal plate theory assumes this to be the case. We therefore consider situations in 
which zz xxσ σ�  and zz yyσ σ� . Under these conditions, the stress-strain relations of Eq. 
(12.88) simplify to the forms 
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( ) ( )2 2, ,

1 1

1

xx xx yy yy yy xx

xy xy

E E

E

σ ε νε σ ε νε
ν ν

σ ε
ν

= + = +
− −

=
+

 (12.89) 

Stress Resultants 
Our aim is to establish a mathematically two-dimensional representation of a thin three-
dimensional body. Toward this end, we shall express the stress distribution through the 
thickness of the structure by the corresponding, statically equivalent, resultant forces and 
moments. These are referred to as the stress resultants. 
 The stress resultants (membrane forces, bending moments and twisting moments) per 
unit width are obtained by integrating the stresses and the moments of the stresses through 
the thickness of the structure. Hence, substituting Eqs. (12.84) into Eqs. (12.89) and inte-
grating the resulting expression through the thickness gives the membrane forces in terms 
of the membrane strains as 
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 (12.90) 

where  

 21
EhC

ν
=

−
 (12.91) 

 
is the membrane stiffness of the plate. The bending and twisting moments per unit length 
are similarly found to be given in terms of the curvatures of the reference surface as 
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 (12.92) 

where 

 ( )
3 2

2 1212 1
Eh ChD

ν
= =

−
 (12.93) 

 
is the bending stiffness of the plate. Note that the twisting moment Mxy is positive clockwise 
about the normal to the surface upon which it acts, while the moment Myx is positive coun-
terclockwise about the normal to the surface upon which it acts. (See Figure 12.13.) 
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 Figure 12.13  Plate element showing bending and twisting moments per unit length. 
 
 
 It is seen from Eq. (12.83)3, or equivalently from Eq. (12.87), that the kinematic as-
sumptions artificially render the plate to be infinitely stiff through the thickness. Conse-
quences of this will be seen later when we discuss boundary conditions. Nevertheless, the 
resultant transverse shear forces per unit width do not, in general, vanish and are defined as 
 

 
2 2

2 2
( , , ) , ( , , )

h h

x xz y yz
h h

Q x y t dz Q x y t dzσ σ
− −

= =³ ³  (12.94) 

 
With the basic kinematics and constitutive relations established, we can proceed to derive 
the equations of motion. This is done in the next section. 
 

12.3.2  Kinetics 

In this section, we derive the equations of motion for an elastic plate subjected to in-plane 
body forces px(x,y,t) and py(x,y,t), transverse distributed load q(x,y,t), and body couples 
bx(x,y,t) and by(x,y,t). The development is facilitated by the kinetic diagram of a plate 
element shown in Figure 12.14. Writing Newton's Second Law of Motion along the x and y 
directions, respectively, gives the corresponding equations of in-plane motion, 
 

 
2 (0)

2( , , )yxxx x
x

NN u
p x y t m

x y t
∂∂ ∂+ + =

∂ ∂ ∂
 (12.95) 

 
2 (0)

2( , , )xy yy y
y

N N u
p x y t m

x y t
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (12.96) 

   
Equations (12.95) and (12.96) are seen to be identical to Eqs. (12.51) and (12.52). Similar-
ly, writing Newton's Second Law in the thickness direction, and employing the small angle 
approximation, sinϕ ≈ ϕ, etc., gives the geometrically nonlinear equation of transverse 
motion, 
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Figure 12.14  Deflected plate showing membrane forces, angles of rotation, bending and twisting 
moments and transverse shear forces. 
 
 

 
2

2( , , ) ( , , ) ( , , )

x xx x xy y y yx x yy y

x x y y

Q N N Q N N
x y

wp x y t p x y t q x y t m
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ϕ ϕ

∂ ∂ª º ª º+ + + + +¬ ¼ ¬ ¼∂ ∂
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∂

 (12.97) 

 
Consideration of Eqs. (12.26) and (12.37) shows that Eq. (12.97) is consistent with the ge-
ometrically nonlinear strain-displacement relations. However, consideration of Eqs. (12.28) 
and (12.38) suggest that, when employing the geometrically linear strain-displacement rela-
tions, the product terms appearing in Eq. (12.97) are of higher order and must be dropped. 
Linearization of Eq. (12.97) results in the geometrically linear equation of transverse mo-
tion, 

 
2

2( , , )yx QQ wq x y t m
x y t

∂∂ ∂+ + =
∂ ∂ ∂

 (12.98) 

 
Evidently, when doing this, we are neglecting the projection of the membrane forces with 
respect to the corresponding resultant transverse shear force on a given surface, and neglect-
ing the projections of the in-plane components of the body forces with respect to the trans-
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verse body force components. The choice of Eq. (12.97) or Eq. (12.98) will therefore de-
pend upon the strain-displacement relations incorporated in the particular plate theory of 
interest, as discussed in this and subsequent sections of this chapter. 
 We next consider rotational motion of an element and, thus, take moments about axes 
through the center of the element that are parallel to the coordinate axes. Doing this about 
the axis that is parallel to the y-axis, and applying Eq. (1.162), gives  
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where ( )xIρ  is the rotatory inertia (mass moment of inertia per unit area) of the plate pertain-
ing to rotations in the sense of ϕx. Proceeding in a similar manner for rotations about the 
axis that is parallel to the x-axis gives 
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where ( )yIρ  is the rotatory inertia of the plate pertaining to rotations in the sense of ϕy. Re-
grouping terms in the above expressions, dividing through by dxdy and neglecting differen-
tials when compared with unity, gives the equations of rotational motion as 
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Substitution of Eqs. (12.99) and (12.100) into Eqs. (12.97) and (12.98) gives the respective 
equation of transverse motion in terms of the bending and twisting moments. Hence, the 
geometrically nonlinear equation of transverse motion takes the form 
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 (12.101) 
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while the linear equation of transverse motion takes the form 
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 (12.102) 

 
Equations (12.95), (12.96) and (12.101) or (12.102), together with appropriate boundary 
and initial conditions to be discussed later in this section, constitute the force formulation 
statement for the plate theories to be considered. The equations associated with the corre-
sponding displacement formulation may be obtained from those of the force formulation 
upon substitution of the appropriate constitutive relations, strain-displacement relations and 
curvature-displacement relations. This is done for uniform isotropic plates next. 
 

12.3.3  Kirchhoff Plate Theory 

We here present the elementary (“classical”) plate theory attributed to G. R. Kirchhoff. In 
this linear theory, small strains and small rotations are assumed throughout, transverse shear 
deformation is neglected, and the effects of rotatory inertia are assumed to be negligible. It 
follows from Eqs. (12.28) and (12.38) that, for infinitesimal strains, 
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 (12.103) 

 
Further, from Eq. (12.87) and the assumption that transverse shear deformation is negligi-
ble, we have that 
 
 ( , , , ) ( , , , ) ( , , , ) 0zz zx zyx y z t x y z t x y z tε ε ε= = =  (12.104) 
 
In addition, for infinitesimal rotations, the angles may be approximated by their tangents. 
Hence, 

 ( , , ) ( , , )( , , ) , ( , , )x y
w x y t w x y tx y t x y t

x y
ϕ ϕ∂ ∂≅ ≅

∂ ∂
 (12.105) 

 
Incorporating the approximations of Eq. (12.105) into Eqs. (12.85) gives the following rela-
tions for the curvature changes and rotational accelerations, 
 

 
2 2 2
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  (12.106) 
and 
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 (12.107) 

 
Substitution of the strain-displacement relations given by Eq. (12.103) into the constitutive 
relations of Eq. (12.90) gives the membrane force-displacement relations for the Kirchhoff 
plate as 
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Substitution of the curvature-displacement relations of Eq. (12.106) into the constitutive 
relations of Eq. (12.92) gives the moment-displacement relations for the Kirchhoff plate as 
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 (12.113) 

 
The governing equations of in-plane motion for a uniform isotropic elastic plate may be 
expressed in terms of the displacements by substituting Eqs. (12.108)−(12.110)  into Eqs. 
(12.95) and (12.96) and setting ( , )m x y m= . The equation of transverse motion may simi-
larly be expressed in terms of the displacements by substituting Eqs. (12.111)−(12.113) into 
Eq. (12.102) and by setting ( ) ( )( , ) ( , ) 0x yI x y I x yρ ρ= = . Doing this gives the corresponding 
displacement formulation for vibrations of uniform isotropic Kirchhoff plates as 
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 (12.114) 

and 
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where 

 
2 2

2
2 2x y

∂ ∂∇ = +
∂ ∂

 (12.116) 

 
is the two-dimensional Laplacian operator. Equations (12.114) and (12.115), together with 
appropriate boundary and initial conditions, constitute the displacement formulation for 
linear plate theory. It is seen that, for this theory, the out-of-plane motion is decoupled from 
the in-plane motion. It is important to point out that the magnitudes of the transverse dis-
placements for plate theory are more restricted, 1w h � , than those for beam theory, 
except for the special case of cylindrical bending. This is because bending-stretching cou-
pling of the centroidal surface is inherent with deformations of plates, unless that plane is 
deformed into a “developable” surface (one for which the Gaussian curvature – the product 
of the principal curvatures – vanishes, such as for a segment of a cylinder or a cone). The 
uncoupled equations of motion that govern linear plate theory are therefore valid only when 
these coupling effects are negligible. It is also instructive to remark that there is an implicit 
lower bound on the deflections as well, in order for the through-the-thickness assumption of 
the Kirchhoff hypothesis, Eq. (12.83), to remain valid. 
 

Boundary Conditions 
The boundary conditions arise from the work of the internal forces, as discussed in Chapter 
9 for one-dimensional continua and in Section 12.2 for membranes. For the present struc-
ture, one expression in each of the pairs  Nnnun, Nnsus, Mnnϕn and nQ w�  must be specified on 
the bounding edge, S, of the plate. The boundary conditions for the plate thus take the gen-
eral forms 
 
 ( , ) ( , )      or      ( , ) ( , )nn n n nS S

N s t s t u s t s t= =& f  (12.117) 
 
 ( , ) ( , )      or      ( , ) ( , )ns s s sS S

N s t s t u s t s t= =& f  (12.118) 
 

 ( , )( , ) ( , )      or      ( , )nn S
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w s tM s t s t s t
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S

M s t
Q s t Q s t s t w s t s t

s
∂ª º≡ + = =« »∂¬ ¼

� ) f  (12.120) 

 
where ( , )nQ s t� is the effective transverse shear on the boundary S with normal coordinate n 
and tangential coordinate s, and &n(s,t), fn(s,t), &s(s,t), fs(s,t), %(s,t), Ψ(s,t), )(s,t) and fz(s,t) 
are prescribed functions. The second term in the bracketed expression of Eq. (12.120) arises 
from the assumption that the transverse shear deformation is negligible, rendering the struc-
ture artificially “rigid” in this sense (εxz = εyz = εnz ≈ 0). The corresponding gradient of the 
twisting moment on the edge of the plate cannot then be specified independently, as there is 
no associated rotation induced by that moment. Rather, under these conditions, the gradient 
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of the twisting moment acts as an effective distribution of shear stress, as argued by Kirch-
hoff (see Figure 12.15). In addition, it is seen from Figure 12.15 that, for structures with 
corners, concentrated shears of magnitude Mxy and Myx act at those locations. Thus, upon 
summing the concentrations from each face, the corners are seen to possess concentrated 
internal transverse forces of magnitude 2Mxy, as shown in Figure 12.16. 
 The normal and tangential components of the moments at each point on the boundary 
are related to the components associated with the coordinate planes at that point by the 
transformation 
 ′ =N BNBT  (12.121) 
where 

 , xx xynn ns

yx yysn ss

N NN N
N NN N
ª ºª º′ = = « »« »

¬ ¼ ¬ ¼
N N  (12.122) 

and 

 x y

y x

n n
n n

ª º
= « »−¬ ¼

B  (12.123) 

 
In addition, the quantities nx and ny appearing in the transformation matrix, B, correspond to 
the x and y components of the unit outer normal, nG , to the plate edge. Similarly, the normal 
and tangential components of the bending and twisting moments at each point on the 
boundary are related to the components associated with the coordinate planes by the trans-
formation 
 ′ =M BMBT  (12.124) 
where 

 , xx xynn ns

yx yysn ss

M MM M
M MM M
ª ºª º′ = = « »« »

¬ ¼ ¬ ¼
M M  (12.125) 

 
and B is given by Eq. (12.123). 
 

Initial Conditions 
To complete the formulation for the dynamics of Kirchhoff plates, the initial conditions 
must be specified. That is, the displacement and velocity of each material particle compris-
ing the structure must be specified at some initial reference time. For plate theory, it is suf-
ficient to specify the velocities of the centroidal surface. Since, for the present theory, the 
in-plane and transverse motions are decoupled, we specify the corresponding initial condi-
tions separately. For in-plane motion, the initial conditions are of the general form 
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 (12.126) 

 
where (0) (0) (0) (0)( , ), ( , ), ( , ) and ( , )y yx xx y x y x y x yU V U V  are prescribed functions. Similarly, 
for transverse motion, the initial conditions take the general form 
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Figure 12.15   Effective transverse shear corresponding to twisting moments: (i) twisting moments, 
(ii) equivalent couples, (iii) effective transverse shear distribution for a Kirchhoff plate. 
 
 
 

 0 0
0

( , ,0) ( , ), ( , )
t

ww x y w x y v x y
t =

∂= =
∂

 (12.127) 

 
where w0(x,y) and v0(x,y) are prescribed functions. The problem of in-plane motion is de-
scribed by Eqs. (12.114)1,2 together with the boundary conditions stated in Eqs. (12.117)–
(12.118), and the initial conditions defined in Eqs. (12.126)1-4. The problem of transverse 
vibrations of Kirchhoff plates is described by Eq. (12.115) together with the boundary con-
ditions stated in Eqs. (12.119)–(12.120) and the initial conditions stated in Eqs. (12.127)1,2. 
 

 Figure 12.16  Effective concentrated corner forces due to twisting moments. 
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Mass and Stiffness Operators 
The equations of motion may be written in operator form, as was done for one-dimensional 
continua. In particular, the equation of transverse motion, Eq. (12.115), can be rewritten as 
 

 ( )
2

2 , ,w w q x y t
t

∂ + = − ∇
∂

G
<m k b  (12.128) 

where 
 m=m  (12.129) 
 
is the mass operator, 
 2 2D= ∇ ∇k  (12.130) 
 
is the stiffness operator, 2∇ is the two-dimensional Laplacian operator and ∇ is the two-
dimensional gradient operator. The equations of in-plane motion are coupled to one another 
and may be rewritten in the form 
 

 
2

2t
∂ + =
∂

um ku F  (12.131) 

where 

 2 2

0 1 0
0 0 1
m

m m
m ×

ª º ª º= = =« » « »
¬ ¼ ¬ ¼

m I  (12.132) 
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ª º ½∂ − ∂ + ∂+® ¾« »∂ ∂∂ ∂¯ ¿« »= − « » ½+ ∂ ∂ − ∂« »+® ¾« »∂ ∂ ∂ ∂¯ ¿¬ ¼

k  (12.133) 

 

 
(0)

(0)

( , , )
( , , )

x

y

u x y t
u x y t
 ½° °= ® ¾
° °¯ ¿

u  (12.134) 

and 

 
( , , )
( , , )

x

y

p x y t
p x y t

 ½° °= ® ¾
° °¯ ¿

F  (12.135) 

 
For completeness, Eqs. (12.128) and (12.131) can be merged to give a general statement of 
the equations of motion in operator form. Thus, 
 

 
2

2t
∂ + =
∂

um ku F  (12.136) 

 where 

 3 3

0 0
0 0
0 0

m
m m

m
×

ª º
« »= =« »
« »¬ ¼

m I  (12.137) 
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and 

 

( )

( , , )
( , , )

, ,

x

y

p x y t
p x y t

q x y t

 ½
° °

= ® ¾
° °− ∇¯ ¿

G
<b

F  (12.140) 

 
 
 

Example 12.4  
Consider the Kirchhoff plate defined over the domain 0 ≤ x ≤ a, 0 ≤ y ≤ b, where 
each edge of the plate is simply supported (Figure E12.4). Establish the boundary 
conditions for the plate. 

  
  Figure E12.4 
 
Solution 
Each edge of the plate is prohibited from deflecting transversely, but is free to rotate. 
Since there is no resistance to rotation, the bending moment vanishes along each 
edge. The boundary conditions for the fully simply supported plate thus follow as 
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 (0, , ) 0w y t =  � (a-1) 
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 ( ,0, ) 0w x t =  � (c-1) 
 

 
2 2

2 20
0

( ,0, ) 0yy yy xx y
y

w wM x t D D
y x

κ νκ ν
=

=
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 ( , , ) 0w x b t =  � (d-1) 

 

 
2 2

2 2( , , ) 0yy yy xx y b
y b

w wM x b t D D
y x

κ νκ ν
=

=

ª º∂ ∂ª º= − + = − + =« »¬ ¼ ∂ ∂¬ ¼
 � (d-2) 

 
where we have employed Eqs. (12.92), (12.111) and (12.112) in Eqs. (a-2), (b-2), (c-
2) and (d-2). 

 
 
 

Example 12.5 
Consider a rectangular Kirchhoff plate defined over the domain 0 ≤ x ≤ a, 0 ≤ y ≤ b. 
If the plate is simply supported along the edges x = 0 and x = a, and is clamped along 
the edges y = 0 and y = b (Figure E12.5), establish the boundary conditions for the 
structure.  

 Figure E12.5 
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Solution 
All four edges of the plate are prohibited from deflecting transversely. In addition, 
the edges x = 0 and x = a are free to rotate, while the edges y = 0 and y = b are pro-
hibited from rotating. The transverse deflections therefore vanish along all four edg-
es. However, since the plate is free to rotate along the edges x = 0 and x = a, the 
bending moments vanish along those edges. The boundary conditions for the plate 
along the simply supported edges are thus  

 

 
2 2

2 2
0

(0, , ) 0, (0, , ) 0xx
x

w ww y t M y t D
x y

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 � (a-1,2) 

 

 
2 2

2 2( , , ) 0, ( , , ) 0xx
x a

w ww a y t M a y t D
x y

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 � (b-1,2) 

 
where we have employed Eq. (12.111) in Eqs. (a-2) and (b-2). Since the plate is 
clamped along the edges y = 0 and y = b, the corresponding rotations vanish along 
these edges, as well as the deflections. The boundary conditions along these edges 
then follow as 

 
0

( ,0, ) 0, 0
y

ww x t
y =

∂= =
∂

 � (c-1,2) 

 

 ( , , ) 0, 0
y b

ww x b t
y =

∂= =
∂

 � (d-1,2) 

 
 
 

Example 12.6 
Consider a rectangular Kirchhoff plate defined over the domain 0 ≤ x ≤ a, 0 ≤ y ≤ b. 
If the plate is simply supported along the edges x = 0 and x = a and is free along the 
edges y = 0 and y = b (Figure E12.6), establish the boundary conditions for the struc-
ture.  

 
 
 
 
 
 
 
 
 
 
 
 

 Figure E12.6 
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Solution  
The edges of the plate at x = 0 and at x = a are prohibited from deflecting transverse-
ly but are each free to rotate.  The transverse deflections thus vanish along these edg-
es and, since the plate is free to rotate there, the bending moments vanish as well. 
The corresponding boundary conditions for these edges are thus  

 

 
2 2

2 2
0
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where we have employed Eq. (12.111) in Eqs. (a-2) and (b-2). The plate is free to 
translate as well as to rotate along the edges at y = 0 and y = b. Therefore, the effec-
tive transverse shear force must vanish along these edges as well as the bending 
moments. The corresponding boundary conditions along these edges are then   
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w wM x b t D
y x

ν
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 � (d-2) 

 
where we have incorporated Eqs. (12.100), (12.112) and (12.113) into Eqs. (c-1) and 
(d-1) and have employed Eq. (12.112) in Eqs. (c-2) and (d-2).   

 
 
 

Circular Plates (Polar Coordinates) 
In many situations, such as for circular and annular plates or segments, the behavior of the 
structure is best described using polar coordinates. We next convert the development and 
problem statement for Kirchhoff plates presented thus far into cylindrical-polar coordinates. 
In what follows, the rθ -plane corresponds to the major central plane of the plate and the z-
axis runs in the thickness direction. A typical plate element is shown in Figure 12.17, along 
with the coordinate system. 
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 Figure 12.17  Circular plate, differential area element and coordinates. 
 
 
 
 The equations developed to this point are readily converted into polar coordinates 
using the transformation 
 
 cos , sinx r y rθ θ= =  (12.141) 
 
which is easily seen from the figure. Employing the chain rule of differentiation and letting 
the x-axis coincide with the radial generator of interest gives the relations for the pertinent 
curvature changes as 
 

 
2 2 2

2 2 2 2

1 1 1 1, ,rr r r
w w w w w

r r r rr r rθθ θ θκ κ κ κ
θ θθ

∂ ∂ ∂ ∂ ∂= = + = − =
∂ ∂ ∂ ∂∂ ∂

 (12.142) 

 
 
 

 
Figure 12.18  Circular plate in undeformed configuration (lower) and deflected symmetrically 
(“dishing”), showing unit normal, nG , to major surface. 
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[The first term in Eq. (12.142)2 may be interpreted as arising from the change in curvature 
due to the “dishing effect.” That is, even for an axisymmetric deflection of, say, a circular 
plate, the structure may bend into the shape of a shallow bowl. The normal to the major 
plane of the plate is then reoriented, inducing a change in curvature (Figure 12.18). The 
second term in that expression is the familiar relation associated with transverse “wiggles” 
around the arc.] The constitutive relations for the bending and twisting moments then fol-
low as 

 
[ ]
[ ]

( , , ) ,

( , , ) ,
( , , ) ( , , ) (1 )

rr rr

rr

r r r

M r t D

M r t D
M r t M r t D

θθ

θθ θθ

θ θ θ

θ κ νκ
θ κ νκ
θ θ ν κ

= − +
= − +
= = − −

 (12.143) 

 
where the indicated curvature changes are given by Eq. (12.142). It then follows from the 
equations of rotational motion expressed in polar coordinates that the transverse shear forc-
es are expressed in terms of the transverse displacement field as follows, 
 

 
( )

( )

2

2

1 ,

12

rr rrr
r r r

r r

M M MMQ D w
r r r r

M M MQ D w
r r r
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− ∂∂ ∂= + + − = − ∇ −
∂ ∂ ∂

∂ ∂ ∂= + + − = − ∇ −
∂ ∂ ∂

b b

b b
 (12.144) 

 
where br(r,θ,t) and bθ(r,θ,t) are body couples about the in-plane axes perpendicular to the 
direction indicated by the subscript. For a plate subjected to the distributed transverse load 
q(r,θ,t), the equation governing transverse motion takes the form 
 

 ( )
2

2 2
2

1, , rwm D w q r t
r rt

θθ
θ

∂∂∂ + ∇ ∇ = − −
∂ ∂∂

bb  (12.145) 

where 

 
2 2

2
2 2 2

1 1
r rr r θ

∂ ∂ ∂∇ = + +
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 (12.146) 

 
The general boundary conditions stated in Eqs. (12.119) and (12.120) must be imposed, 
with the normal and tangential coordinates interpreted accordingly. On a circular boundary, 
n = r and s = rθ.  The reverse is true on a boundary that is part of a radial generator. Specifi-
cally, for a boundary that is a circular arc at r = R, the boundary conditions are of the form 
 

          ( , , )( , , ) ( , )      or      ( , )rr R Rr R
r R

w r tM r t t t
r
θθ θ θ=

=

∂= = Ψ
∂

%  (12.147) 

and 
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Q r t Q r t t w r t t
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θ θθ θ θ θ θ

θ ==
=

∂ª º≡ + = =« »∂¬ ¼
� ) f  

  (12.148) 
  
For a boundary that is part of a radial generator at θ = Θ, the boundary conditions are of 
the form 
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 1 ( , , )( , , ) ( , )      or      ( , )w r tM r t r t r t
rθθ θ

θ
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θΘ Θ=Θ

=Θ

∂= = Ψ
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and 
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  (12.150) 
 
where %R(θ, t), ΨR(θ, t), )R(θ, t), fR(θ, t), %Θ(r, t), ΨΘ(r, t), )Θ(r, t) and fΘ(r, t) are 
prescribed functions. The pertinent initial conditions take the form 
 

 0 0
0

( , ,0) ( , ), ( , )
t

ww r w r v r
t

θ θ θ
=

∂= =
∂

 (12.151) 

 
where w0(r,θ) and v0(r,θ) are prescribed functions. 
 

Example 12.7 
Consider a solid circular Kirchhoff plate of radius R. Establish the boundary condi-
tions for the plate if it is clamped around its outer edge (Figure E12.7). 

 

 Figure E12.7 
 

Solution  
The plate is prohibited from translating as well as rotating, therefore the vertical dis-
placement and rotation vanish at each point along the edge. The conditions at the ex-
ternal boundary of the plate are thus 

 

 ( , , ) 0, 0
r R

r R

ww r t
r

θ =
=

∂= =
∂

 � (a,b) 

 
It may be seen from the equation of motion, Eq. (12.145), that the spatial differential 
operator requires eight boundary conditions, four radial and four azimuthal, yet we 
have specified only two. This occurs with solid circular structures, as was seen for 
the membrane of Example 12.3. It will be seen in Section 13.4.2 that two implicit 
“boundary conditions” for finiteness of the displacements at the origin must be im-
posed, in addition to the boundary conditions described by Eqs. (a) and (b). Moreo-
ver, those conditions associated with the azimuth direction will be seen to arise from 
the symmetry of the structure.  

 

www.konkur.in



716 Engineering Vibrations 

12.3.4  Mindlin Plate Theory 

It was seen in Chapters 9 and 10 that elementary beam theory becomes inaccurate when the 
wave lengths of the flexural modes are not large compared with the thickness of the struc-
ture. This shortcoming was addressed slightly by including the effects of rotatory inertia 
(Rayleigh beam theory), and to a larger extent by accounting for the effects of transverse 
shear deformation as well as rotatory inertia (Timoshenko beam theory). The same short-
comings may be anticipated for plate theory. To address these issues, R. D. Mindlin con-
structed a theory for mathematically two-dimensional structures that is analogous to Timo-
shenko beam theory. This theory is generally referred to as Mindlin plate theory.  
 Mindlin plate theory adds corrections for transverse shear deformation and rotatory 
inertia to the elementary plate theory discussed thus far. As for elementary plate theory, as 
well as for Euler-Bernoulli and Timoshenko beam theories, the flexural motion for Mindlin 
plate theory is decoupled from the in-plane motion. Moreover, the equations that govern the 
in-plane motion are identical with those for the elementary theory, and therefore will not be 
discussed here. The formulation for transverse motion of Mindlin plates is presented in this 
section. 
 

Correction for Transverse Shear 
As discussed in Section 12.1.2, the shear strains are defined as half of the associated (local) 
angle changes. Hence, the transverse shear strains are related to the respective angle chang-
es as 
 ( , , , ) ( , , , ) 2xz xzx y z t x y z tε γ=  (12.152) 
 
 ( , , , ) ( , , , ) 2yz yzx y z t x y z tε γ=  (12.153) 
 
The corresponding transverse shear stresses for a linear elastic isotropic material are then, 
from Hooke's Law, 
 
 ( , , , ) 2 ( , ) ( , , , ) ( , ) ( , , , )xz xz xzx y z t G x y x y z t G x y x y z tσ ε γ= =  (12.154) 
 
 ( , , , ) 2 ( , ) ( , , , ) ( , ) ( , , , )yz yz yzx y z t G x y x y z t G x y x y z tσ ε γ= =  (12.155) 
 
Since we are interested in a thin structure theory, where all measures are related to the be-
havior of the centroidal surface, we next introduce the global shear angles 
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1( , , ) ( , , , )
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h

x xz
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x y t x y z t dz
h x y

γ γ
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= ³k
 (12.156) 

and 

 
2

2

1( , , ) ( , , , )
( , )

h

y yz
h

x y t x y z t dz
h x y

γ γ
−

= ³k
 (12.157) 

 
where the coefficient k is a constant that is analogous to the “shape factor” for Timoshenko 
beams. As for the corresponding terms for Timoshenko beam theory, the global shear an-
gles are seen to be weighted averages of the associated local angle changes. Substitution of 
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Eqs. (12.156) and (12.157) into Eq. (12.94) gives the constitutive relations for the resultant 
transverse shear force components per unit length, 
 
 ( , , ) ( , ) ( , , )x Q xQ x y t k x y x y tγ=  (12.158) 
and 
 ( , , ) ( , ) ( , , )y Q yQ x y t k x y x y tγ=  (12.159) 
where 
 ( , ) ( , ) ( , )Qk x y h x y G x y= k  (12.160) 
 
is the shear stiffness of the plate1. The total angle of rotation, ψx, of the cross section whose 
normal is in the direction of increasing x is then comprised of the associated shear an-
gle, ,xγ  and the corresponding rotation due to bending, ϕx. Likewise, the total angle of rota-
tion, ψy, of the cross section whose normal is in the direction of increasing y is comprised of 
the associated shear angle, ,yγ and the corresponding rotation due to bending, ϕy. Thus, 
 

 ( , , ) ( , , ) ( , , )x x x
wx y t x y t x y t
x

ϕ γ ψ ∂+ = ≅
∂

 (12.161) 

 

 ( , , ) ( , , ) ( , , )y y y
wx y t x y t x y t
y

ϕ γ ψ ∂+ = ≅
∂

 (12.162) 

 
We next incorporate the decomposition defined by Eqs. (12.161) and (12.162) into the ex-
pressions for curvature change, Eq. (12.85), and the expressions for bending and twisting 
moments, Eqs. (12.92). Doing this gives the constitutive relations 
 

 

( , , )

( , , ) ( , , )

yx
xx

x y

M x y t D
x y

w wD x y t x y t
x x y y

ϕϕ ν

γ ν γ

∂ª º∂= − +« »∂ ∂¬ ¼
ª º ½∂ ∂ ∂ ∂ ½= − − + −® ¾ ® ¾« »∂ ∂ ∂ ∂¯ ¿ ¯ ¿¬ ¼

 (12.163) 
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 (12.164) 

and  
                                                           

1 Mindlin deduces the relation 416(1 )(1 ) (2 ) 0,ν− − − − =�k k k for k in terms of Poisson's ratio, where 
(1 2 ) 2(1 ).ν ν ν= − −�  This gives the range of values 0.764 ≤ k ≤ 0.913 for 0 ≤ ν ≤ 0.5. He deter-

mines this relation by substituting the functional form for a sinusoidal flexural wave propagating in 
an infinite structure into the equations of motion for his plate theory. He then argues, as Timsohenko 
did for beams, that in the short wave length limit, the wave speed in the resulting expression should 
correspond to that of Rayleigh surface waves predicted by 3-D elastodynamics. Wittrick deduces the 
simpler relation 5 (6 )ν= −k  based on quasi-static considerations, which yields essentially the 
same range of values as Mindlin's relation. Others suggest still different relations.  
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Governing Equations 
Substituting Eqs. (12.158), (12.159), (12.163), (12.164) and (12.165) into Eqs. (12.98), 
(12.99) and (12.100) with ( ) ( )( , ) ( , ) ( , ),x yI x y I x y I x yρ ρ ρ= =  and incorporating the decompo-
sitions of Eqs. (12.161) and (12.162), gives the local equations of transverse motion and 
rotational motion in terms of the transverse displacement, w, and the bending rotations, ϕx 
and ϕy. Hence, 
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  (12.168) 
 
Equations (12.166)–(12.168) are seen to be coupled in terms of the dependent variables w, 
ϕx and ϕy. It will be useful to express these equations in matrix form. Doing this gives 
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where 
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m  (12.170) 

 
rgyr is the radius of gyration per unit width of the cross section, 
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( , , )
( , , )
( , , )

x

y

w x y t
x y t
x y t

ϕ
ϕ

 ½
° °= ® ¾
° °
¯ ¿

u  (12.172) 

and 

 
( , , )
( , , )
( , , )

x

y

q x y t
x y t
x y t

 ½
° °= ® ¾
° °
¯ ¿

b
b

F  (12.173) 

 

Boundary Conditions 
To complete the formulation, boundary conditions and initial conditions must be specified. 
As for the elementary theory, one expression in each of the pairs Mnnϕn and Qnw must be 
specified on the bounding edge, S, of the plate. In addition, because of the additional de-
grees of freedom, we must now specify one term of the product Mnsϕs, the work of the 
twisting moment. The boundary conditions for the plate thus take the general forms 
 

 ( , ) ( , ) or ( , ) ( , )n s
nn n nS S

S

M s t D s t s t s t
n s

ϕ ϕν ϕ∂ ∂ª º= − + = = Φ« »∂ ∂¬ ¼
%  (12.174) 

 

 (1 )( , ) ( , ) or ( , ) ( , )
2

s n
ns s sS S

S

M s t D s t s t s t
n s

ϕ ϕν ϕ∂ ∂− ª º= − + = = Φ« »∂ ∂¬ ¼
,  

  (12.175) 
  

 ( , ) ( , )      or      ( , ) ( , )n Q n zS S
S

wQ s t k s t w s t s t
n

ϕ∂ª º= − = =« »∂¬ ¼
) f  (12.176) 

 
where %(s,t), Φn(s,t), ,(s,t), Φs(s,t), )(s,t) and fz(s,t) are prescribed functions. The nor-
mal and tangential components at each point on the boundary are related to the components 
associated with the coordinate planes at that point by Eqs. (12.124) and (12.125). 
 

Initial Conditions 
To complete the formulation, the position and velocity of each point in the structure must 
be specified at some reference time. For the plate theory under consideration, these condi-
tions take the form 
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 (12.177) 

 
where w0(x,y), v0(x,y), Jx(x,y), Jy(x,y), Gx(x,y) and Gy(x,y) are prescribed functions. The 
initial conditions may be expressed in matrix form as 
 

 0 0
0

( , ,0) ( , ), ( , )
t

x y x y x y
t =

∂= =
∂
uu u v  (12.178) 

 
where the matrix u is defined by Eq. (12.172) and the elements of the matrices u0 and v0 
are given by Eq. (12.177).  
 Equations (12.166)–(12.168), or equivalently Eq. (12.169), together with the bounda-
ry conditions, Eqs. (12.174)–(12.176), and the initial conditions described by Eqs. (12.177), 
or equivalently Eq. (12.178), constitute the statement of the problem of transverse vibra-
tions of Mindlin plates. 
 
 

Example 12.8 
Consider the Mindlin plate defined over the domain 0 ≤ x ≤ a, 0 ≤ y ≤ b, where each 
edge of the rectangular plate is simply supported (Figure E12.8). Establish the 
boundary conditions for the plate. 

  Figure E12.8 
 
Solution 
The structure is prohibited from deflecting along each edge, but is free to rotate 
along them. The corresponding displacements thus vanish along the edge. In addi-
tion, because the structure is free to rotate along each of the edges, the bending mo-
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ments vanish there. The boundary conditions for the simply supported plate then fol-
low as 

 

           
0

(0, , ) 0, (0, , ) 0, (0, , ) 0yx
xx y

x

w y t M y t D y t
x y

ϕϕ ν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
 � (a-1,2,3) 

 

 ( , , ) 0, ( , , ) 0, ( , , ) 0yx
xx y

x a

w a y t M a y t D a y t
x y

ϕϕ ν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
 � (b-1,2,3) 

 

 
0

( ,0, ) 0, ( ,0, ) 0, ( ,0, ) 0y x
yy x

y

w x t M x t D x t
y x

ϕ ϕν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
 � (c-1,2,3) 

 

 ( , , ) 0, ( , , ) 0, ( , , ) 0y x
yy x

y b

w x b t M x b t D x b t
y x

ϕ ϕν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
 � (d-1,2,3) 

 
where we have used Eqs. (12.174) in Eqs. (a-2), (b-2), (c-2) and (d-2). 

 
 
 
 

Example 12.9  
Consider the Mindlin plate defined over the domain 0 ≤ x ≤ a, 0 ≤ y ≤ b. The plate is 
simply supported along the edges x = 0 and x = a and is clamped along the edges y = 
0 and y = b (Figure E12.9). Establish the boundary conditions for the structure.  

  Figure E12.9 
 
Solution 
The boundary conditions for the simply supported edges, x = 0 and x = a, follow 
from Eqs. (a-1,2) and (b-1,2) of Example 12.8. We thus have that 
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xx y

x

w y t M y t D y t
x y

ϕϕ ν ϕ
=
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 ( , , ) 0, ( , , ) 0, ( , , ) 0yx
xx y

x a

w a y t M a y t D a y t
x y

ϕϕ ν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
� (b-1,2,3) 

 
In addition, the clamped edges of the plate prohibit both transverse deflection and ro-
tation. The corresponding boundary conditions are then 

 
 ( ,0, ) 0, ( ,0, ) 0, ( ,0, ) 0y xw x t x t x tϕ ϕ= = =  � (c-1,2,3) 
 
 ( , , ) 0, ( , , ) 0, ( , , ) 0y xw x b t x b t x b tϕ ϕ= = =  � (d-1,2,3) 
 
 
 
 

12.3.5  Geometrically Nonlinear (von Karman) Plate Theory 

In this section we consider the geometrically nonlinear plate theory attributed to T. von 
Karman. In this theory, transverse shear deformation is neglected, as was done for the ele-
mentary (Kirchhoff) theory introduced in Section 12.3.3. However, the current theory in-
corporates the (geometrically nonlinear) small strain, moderate rotation relations introduced 
in Section 12.1 and, thus, includes bending-stretching coupling effects as for the analogous 
beam theory (Section 9.7). Though the geometric nonlinearities are included, the transverse 
deflections are limited to be of the order of the thickness of the plate, unless the structure is 
deformed into a developable surface in which case the restrictions are similar to those for 
the corresponding beam theory. It is important to note that there is also a lower bound on 
acceptable deflections in order to insure that the Kirchhoff assumption regarding the ne-
glecting of transverse strain remains valid. 
 

Governing Equations  
We begin the development by consideration of the strains at the centroidal surface, z = 0. It 
follows from Eqs. (12.26) and (12.37), respectively, that for small strains and moderate 
rotations, 
 

 

22 (0)(0)
(0) (0)

(0) (0)
(0) (0)

1 1( , , ) , ( , , ) ,
2 2

1( , , ) ( , , )
2

yx
xx yy

y x
xy yx

uu w wx y t x y t
x x y y

u u w wx y t x y t
x y x y

ε ε

ε ε

∂∂ § ·∂ ∂§ ·= + = + ¨ ¸¨ ¸∂ ∂ ∂ ∂© ¹ © ¹
§ ·∂ ∂ ∂ ∂= = + +¨ ¸¨ ¸∂ ∂ ∂ ∂© ¹

 (12.179) 

 
Substitution of Eqs. (12.179) into Eqs. (12.90) gives the membrane force components in 
terms of the displacement components. We thus have,  
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(0) (0)(1 )( , , ) ( , , )
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y x

xy yx

u uC w wN x y t N x y t
x y x y

ν § ·∂ ∂− ∂ ∂= = + +¨ ¸¨ ¸∂ ∂ ∂ ∂© ¹
 (12.182) 

 
The moment-displacement relations are identical to those for Kirchhoff plates as given by 
Eqs. (12.111)−(12.113). The relations are repeated here for completeness of the formula-
tion. Hence, 

 
2 2

2 2( , , )xx
w wM x y t D

x y
νª º∂ ∂= − +« »∂ ∂¬ ¼

 (12.183) 

 

 
2 2

2 2( , , )yy
w wM x y t D

y x
νª º∂ ∂= − +« »∂ ∂¬ ¼

 (12.184) 

 

 
2

( , , ) ( , , ) (1 )xy yx
wM x y t M x y t D

x y
ν ∂= = − −

∂ ∂
 (12.185) 

 
The local equation of transverse motion is obtained by substituting the small angle approx-
imations for the rotations due to bending assumed for Kirchhoff plate theory, Eq. (12.105), 
into the geometrically nonlinear equation of motion, Eq. (12.97). Doing this gives     
 

 
2

2( , , ) ( , , ) ( , , )

x xx xy y yx yy

x y

w w w wQ N N Q N N
x x y y x y

w w wp x y t p x y t q x y t m
x y t

ª º ª º∂ ∂ ∂ ∂ ∂ ∂+ + + + +« » « »∂ ∂ ∂ ∂ ∂ ∂¬ ¼ ¬ ¼
∂ ∂ ∂+ + + =
∂ ∂ ∂

 (12.186) 

 
Upon rearranging terms, the above equation takes the convenient form 
 

 

2 2 2 2

2 2 22

( , , ) ( , , ) ( , , )

yx
xx xy yy

yx xy yyxx
x y

QQw w w wm N N N
x y x yt x y

N N NN w wp x y t p x y t q x y t
x y x x y y

∂∂∂ ∂ ∂ ∂− − − − −
∂ ∂ ∂ ∂∂ ∂ ∂

∂ ∂ ∂ª º ª º∂ ∂ ∂− + + − + + =« » « »∂ ∂ ∂ ∂ ∂ ∂¬ ¼ ¬ ¼

 

  (12.187) 
 
Equation (12.187) can be simplified by first considering the equations that govern in-plane 
motion. The development of these local equations exactly parallels the development of Eqs. 
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(12.51) and (12.52) of Section 12.2.1, and yields the same results. The governing equations 
for in-plane motion are thus  
 

 
2 (0)

2
yxx xx

x

Nu N
m p

x yt
∂∂ ∂− − =

∂ ∂∂
 (12.188) 

 
2 (0)

2
y xy yy

y

u N N
m p

x yt
∂ ∂ ∂

− − =
∂ ∂∂

 (12.189) 

 
As for strings (Section 9.5), geometrically nonlinear beams (Section 9.7) and membranes 
(Section 12.2.1), we anticipate that during an oscillation the transverse displacement will be 
much greater than the associated in-plane displacement over the same time interval. The 
corresponding transverse velocity and transverse acceleration will therefore be much great-
er than their in-plane counterparts as well. If we neglect the in-plane components of the 
acceleration and rearrange terms, the equations of in-plane motion, Eqs. (12.188) and 
(12.189), reduce to the forms 
 

 0yxxx
x

NN
p

x y
∂∂ + + ≈

∂ ∂
 (12.190) 

 0xy yy
y

N N
p

x y
∂ ∂

+ + ≈
∂ ∂

 (12.191) 

 
Substituting Eqs. (12.190) and (12.191) into Eq. (12.187) renders the equation of transverse 
motion to the form 
 

 
2 2 2 2

2 2 22 ( , , )yx
xx xy yy

QQw w w wm N N N q x y t
x y x yt x y

∂∂∂ ∂ ∂ ∂− − − − − =
∂ ∂ ∂ ∂∂ ∂ ∂

 (12.192) 

 
Substitution of Eqs. (12.99) and (12.100) with ( ) ( )( , ) ( , ) 0,x yI x y I x yρ ρ= =  Eq. (12.92) and 
Eq. (12.106) into Eq. (12.192) gives the equation of transverse motion as 
 

 
2 2 2 2

2 2
2 2 22 ( , , )xx xy yy
w w w wm D w N N N q x y t

x yt x y
∂ ∂ ∂ ∂+ ∇ ∇ − − − = − ∇

∂ ∂∂ ∂ ∂
G
<b  (12.193) 

 
Note that Eq. (12.193) converges to Eq. (12.58) as D → 0 (and b = 0), as we might expect. 
For the case of uniform membrane force, Nxx = Nyy = N0, Nxy = Nyx = 0, Eq. (12.193) reduces 
to the form 
 

 ( )
2

2 2
02 ( , , )wm D N w q x y t

t
∂ + ∇ − ∇ = − ∇
∂

G
<b  (12.194) 

 
It is seen that the problem is mathematically linear when N0 is prescribed. To complete the 
formulation we must specify the boundary and initial conditions. 
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Boundary Conditions 
The boundary conditions are similar to those for Kirchhoff plate theory (Section 12.3.3), 
but now include the contribution of the membrane force in the transverse shear condition. 
Thus, along the periphery of the plate, 
 
 ( , ) ( , )      or      ( , ) ( , )nn n n nS S

N s t s t u s t s t= =& f  (12.195) 
 
 ( , ) ( , )      or      ( , ) ( , )ns s s sS S

N s t s t u s t s t= =& f  (12.196) 
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∂= = Ψ
∂
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M w wQ s t N N s t w s t s t
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∂ ∂ ∂ª º+ + + = =« »∂ ∂ ∂¬ ¼
) f  (12.198) 

 
where &n(s,t), fn(s,t), &s(s,t), fs(s,t), %(s,t), Ψ(s,t), )(s,t) and fz(s,t) are prescribed functions. 
 

Initial Conditions 
As for Kirchhoff plate theory, the position and velocity of each point of the structure must 
be specified at some reference time. Thus, for in-plane motion, 
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where (0) (0) (0)( , ), ( , ), ( , )yx xx y x y x yU V U and (0) ( , )y x yV are prescribed functions. Likewise, 
for transverse motion, 
 

 0 0
0

( , ,0) ( , ), ( , )
t

ww x y w x y v x y
t =

∂= =
∂

 (12.200) 

 
where w0(x,y) and v0(x,y) are prescribed functions. 
 To conclude the development, Eq. (12.193) may be written in operator form as 
 

 
2

2 ( , , )w w q x y t
t

∂ + = − ∇
∂

G
<m k b  (12.201) 

 
where 
 m=m  (12.202) 
 
is the mass operator and 
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2 2 2

2 2
2 22xx xy yyD N N N

x yx y
∂ ∂ ∂= ∇ ∇ − − −

∂ ∂∂ ∂
k  (12.203) 

 
is the stiffness operator. For uniform membrane force, Nxx = Nyy = N0 (Nxy = Nyx = 0) the 
stiffness operator reduces to the form 
 
 ( )2 2

0D N= ∇ − ∇k  (12.204) 
 
rendering the mathematical problem linear when N0 is prescribed. Equation (12.193), or 
equivalently Eq. (12.201), and Eqs. (12.190) and (12.191), together with the boundary con-
ditions described by Eqs. (12.195)–(12.198), and the initial conditions defined by Eqs. 
(12.199)–(12.200), define the boundary value problem for von Karman plates. The re-
strictions on the maginitudes of the transverse deflections inherent in the Kirchhoff theory 
of plates, as discussed in Section 12.3.3, are relaxed somewhat for the geometrically non-
linear plate theory of von Karman as it accounts for a certain degree of bending-stretching 
coupling. For structures in this category, the allowable displacements have an upper bound 
of (1)w h O�  when the structure is deformed into a non-developable surface, but still 
retain an implicit lower bound due to the fundamental Kirchhoff assumptions adopted in the 
theory. When deformed into a developable surface, the upper bounds on the transverse de-
flections are similar to those for beams. 
 
 

Example 12.10  
Consider the von Karman plate defined over the domain 0 ≤ x ≤ a, 0 ≤ y ≤ b, where 
each edge of the plate is simply supported (Figure E12.10). If the structure is sub-
jected to a uniform membrane force, N0, establish the boundary conditions for the 
plate. 

  Figure E12.10 
 
Solution 
Each edge of the plate is prohibited from deflecting transversely, but is free to rotate. 
Since there is no resistance to rotation, the bending moment vanishes along each 
edge. The boundary conditions for the simply supported plate thus follow as 
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y x

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 � (c-1,2) 

 

 
2 2

2 2( , , ) 0, ( , , ) 0yy
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w ww x b t M x b t D
y x

ν
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ª º∂ ∂= = − + =« »∂ ∂¬ ¼
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where we have employed Eqs. (12.111) and (12.112) in Eqs. (a-2), (b-2), (c-2) and 
(d-2). The boundary conditions for the fully simply supported plate are seen to be the 
same as those for the Kirchhoff plate of Example 12.4. 

 
 
 
 

Example 12.11  
Consider the von Karman plate defined over the domain 0 ≤ x ≤ a, 0 ≤ y ≤ b. The 
plate is clamped along the edges x = 0 and x = a and is free along the edges y = 0 and 
y = b. If the structure is subjected to a uniform membrane force, N0, establish the 
boundary conditions for the structure.  

    Figure E12.11 
 
Solution 
The plate is prohibited from deflecting and rotating along the edges x = 0 and x = a. 
The corresponding boundary conditions along these edges follow as 
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The plate is free to translate as well as to rotate along the edges y = 0 and y = b. 
Therefore, the effective transverse shear force vanishes along these edges, as well as 
the bending moments. The corresponding boundary conditions along these edges are 
then   
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 � (d-2) 

 
where we have incorporated Eqs. (12.100), (12.112) and (12.113) into Eqs. (c-1) and 
(d-1) and have employed Eq. (12.112) in Eqs. (c-2) and (d-2).   

 
 
 
 

12.4  CONCLUDING REMARKS  

In this chapter, fundamental measures that characterize deformation of the mathematically 
two-dimensional continua of interest were derived. Theories of various mathematically 
two-dimensional structures, including membranes, Kirchhoff plates, Mindlin plates and von 
Karman plates were carefully developed, and the assumptions and limitations of each theo-
ry were elucidated.  
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 Kirchhoff plate theory assumes small strains and small rotations, and through the 
thickness deformations, as well as rotatory inertia, are taken as negligible. The assumptions 
on transverse deformation are seen to have implications with regard to transverse shear, 
twisting moments, and the associated boundary conditions. In fact, there is much contention 
regarding the correctness of Kirchhoff's theory, particularly as it pertains to the concentrat-
ed forces that occur at corners as a consequence of reconciling the transverse shear forces 
and twisting moments at the boundary. Many contend that the inaccuracies are local to the 
boundary, and that the theory is correct in the sense of St. Venant (i.e., with regard to stati-
cally equivalent force systems at the edge of the structure). They also contend that the inac-
curacies are highly localized in the vicinity of the edge. Since boundary conditions are typi-
cally approximations of reality, this may vindicate the theory for the static case. However, 
the assumption of small strain and small rotations, as well as the two dimensional geometry 
of the structure, is seen to impose significant limitations on the allowable range of the mag-
nitudes of the transverse deflections. In particular, the deflections must be small compared 
with the thickness of the plate, when the structure is deformed into a non-developable sur-
face, though there is a lower bound as well. Finally, from a vibrations perspective, since 
Kirchhoff plate theory is restricted to transverse deflections that are very small compared 
with the characteristic length of the structure, the accuracy of the theory is limited to modes 
that correspond to wavelengths that are large compared to the thickness of the plate, and 
hence is limited to low frequencies. Nevertheless, Kirchhoff's theory (often referred to as 
“classical plate theory”) is widely used in practice.  
 Mindlin plate theory advances on the elementary theory of Kirchhoff in that it allows 
for a uniform shear deformation through the thickness of the plate as well as for rotatory 
inertia of the cross sections. The former “relaxation” in implicit kinematic constraints is 
seen to alleviate certain of the inconsistencies of the elementary theory. In particular, it calls 
for explicit boundary conditions for the twisting moments, and thus removes the gradient of 
the twisting moment from the boundary conditions for the transverse shear force present in 
the Kirchhoff theory. Mindlin shows that results for flexural waves in an infinite plate cal-
culated using his theory match up well with those predicted using 3-D elastodynamic theo-
ry, even for higher frequencies (short wavelength modes). He also shows that the correction 
for transverse shear is far more influential, in this regard, than that of rotatory inertia. This 
is similar to what was shown explicitly for the beam theories discussed in Chapter 10, via 
examples where the natural frequencies for Euler-Bernoulli beams, Rayleigh beams and 
Timoshenko beams were evaluated and compared.  
 The chapter finished with a presentation of von Karman plate theory. The von Kar-
man theory retains the restrictions of the elementary theory that pertain to transverse shear 
deformation and rotatory inertia, but extends the characterization of deformation to include 
geometrically nonlinear small strain with “moderate” rotations. This, in turn, diminishes the 
restrictions on the size of the allowable deflections, requiring them be of the order of the 
thickness of the plate, or smaller, when the structure is deflected in the form of a non-
developable surface. The development finshed with a discussion of the special case of a 
unformly stretched von Karman plate.  
 The equations of motion, boundary conditions and initial conditions were established 
for ideal membranes, and for each of the aforementioned plate theories. The transverse vi-
brations of each of these important structures will be studied in detail in subsequent chap-
ters.  
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PROBLEMS 

12.1 An annular membrane of inner radius a and outer radius b is fixed about both of its 
edges. A uniform tension of magnitude N0 is applied around the periphery of each 
edge. Establish the boundary conditions for the structure if it is modeled as an ideal 
membrane. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Fig. P12.1    Fig. P12.2 
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12.2 An annular membrane of inner radius a and outer radius b is fixed about its inner 
edge. A uniform force per unit length of magnitude P0 oriented at an angle β from 
the plane of the membrane is applied around the periphery of the outer edge. Estab-
lish the boundary conditions for the structure if it is modeled as an ideal membrane. 

 
12.3   A solid semi-circular membrane of radius R, is fixed about its curved edge and is 

free along its flat edge. Establish the boundary conditions for the structure if it is 
modeled as an ideal membrane. 

 
 
 
 
 
 
 
 
 
  Fig. P12.3    Fig. P12.4 
 
12.4 A rectangular Kirchoff plate with sides of length a and b is clamped on all four 

edges. Establish the boundary conditions for the structure. 
 
12.5 A rectangular Kirchhoff plate is clamped along its edges at x = 0 and y = 0, and is 

free along the edges x = a and y = b. Establish the boundary conditions for the struc-
ture. 

 
 
 
 
 
 
 
 
 
  Fig. P12.5    Fig. P12.6 
 
12.6 A rectangular Kirchhoff plate sits atop elastic supports possessing stiffness k per 

unit length along all four edges, x = 0, y = 0, x = a and y = b. Establish the boundary 
conditions for the structure. 

   
12.7 A rectangular Kirchhoff plate is pinned 

along its edges at x = 0 and x = a, and 
sits atop elastic supports possessing 
stiffness k per unit length  along the 
edges y = 0 and y = b. Establish the 
boundary conditions for the structure.  

  
    Fig. P12.7  
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12.8 A rectangular Kirchhoff plate is pinned along its edges at x = 0 and x = a, and is 
constrained by elastic supports possessing torsional stiffness kT per unit length along 
its edges at y = 0 and y = b. Establish the boundary conditions for the structure.  

 
 
 
 
 
 
 
 
 
  
  Fig. P12.8    Fig. P12.9 
 
12.9   Consider a Kirchhoff plate whose major plane has the shape of a right isosceles 

triangle with legs of length L. Establish the boundary conditions for the structure if 
it is simply supported along the edge y = 0, clamped along the edge x = 0, and free 
along the edge x + y = L. 

 
12.10   A solid circular Kirchhoff plate of radius R is simply supported about its edge. Es-

tablish the boundary conditions for the structure. 

 
  Fig. P12.10    Fig. P12.11 
 
12.11 A solid circular Kirchhoff plate of radius R sits atop elastic supports of stiffness k 

per unit length about its edge. Establish the boundary conditions for the structure. 
 
12.12 A solid circular Kirchhoff plate of radius R is constrained by elastic supports pos-

sessing torsional stiffness kT per unit length about its edge. Establish the boundary 
conditions for the structure. 

 
 
 
 
 
 
  Fig. P12.12 
 
12.13 An annular Kirchhoff plate of inner radius a and outer radius b is simply supported 

about both of its edges. Establish the boundary conditions for the structure.  
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  Fig. P12.13 
 
 
12.14 An annular Kirchhoff plate of inner radius a and outer radius b is fixed about both 

of its edges. Establish the boundary conditions for the structure. 
 
 
 
 
 
 
 
 
 
 
 
 
  Fig. P12.14 
 
12.15 An annular Kirchhoff plate of inner radius a and outer radius b is fixed about its 

outer edge and is free about its inner edge. Establish the boundary conditions for the 
structure. 

 
 
 
 
 
 
 
 
 
  Fig. P12.15 
 
 
12.16   A solid semi-circular Kirchhoff plate of radius R, is 

fixed about its curved edge and is free along its flat 
edge. Establish the boundary conditions for the 
structure.  

 
  Fig. P12.16 
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12.17 A rectangular Mindlin plate with sides of length a and b is clamped on all four edg-
es. Establish the boundary conditions for the structure. 

 
 
 
 
 
 
 
 
 
 
  Fig. P12.17    Fig. P12.18 
 
12.18 A rectangular Mindlin plate is pinned along its edges at x = 0 and x = a, and is free 

along the edges y = 0 and y = b. Establish the boundary conditions for the structure. 
  
  
12.19 A rectangular Mindlin plate is pinned along its edges at x = 0 and x = a, and sits 

atop elastic supports possessing stiffness k per unit length along the edges y = 0 and 
y = b. Establish the boundary conditions for the structure.  

 
 
 
 
 
 
 
 
 
 
  Fig. P12.19    Fig. P12.20 
 
12.20  A rectangular Mindlin plate is pinned along its edges at x = 0 and x = a, and is con-

strained by elastic supports possessing torsional stiffness kT along its edges at y = 0 
and y = b. Establish the boundary conditions for the structure.   

 
 
12.21 Consider a Mindlin plate whose major 

plane has the shape of a right isosceles 
triangle with legs of length L. Establish 
the boundary conditions for the structure 
if it is clamped along the edge x = 0, 
simply supported along the edge y = 0, 
and free along the edge x + y = L. 

 
 
  Fig. P12.21 
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12.22 A rectangular von Karman plate is 

pinned along its edges at x = 0 and x 
= a, and is free along the edges y = 0 
and y = b. Establish the boundary 
conditions for the structure. 

 
 
  Fig. P12.22 
 
 
 
 
12.23 A rectangular von Karman plate is 

pinned along its edges at x = 0 and x 
= a, and sits atop elastic supports 
possessing stiffness k per unit length 
along the edges y = 0 and y = b. Es-
tablish the boundary conditions for 
the structure.  

 
  Fig. P12.23 
 
 
12.24  A rectangular von Karman plate is 

pinned along its edges at x = 0 and 
x = a, and is constrained by elastic 
supports possessing torsional stiff-
ness kT along its edges at y = 0 and 
y = b. Establish the boundary con-
ditions for the structure.   

 
 
  Fig. P12.24 
 
 
12.25   Consider a von Karman plate whose 

major plane has the shape of a right 
isosceles triangle with legs of length 
L. Establish the boundary conditions 
for the structure if it is clamped 
along the edge x = 0, simply sup-
ported along the edge y = 0, and free 
along the edge x + y = L. 

  
  Fig. P12.25 
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13 
Free Vibration of Two-Dimensional 
Continua 

 
 
 
 
 
 
Two-dimensional continua are three-dimensional bodies or media whose deformations and 
motions are described mathematically as functions of two spatial variables and time. In this 
chapter we study the motion of mathematically two-dimensional continua when they are 
free from externally applied dynamic forces. That is, we study free vibrations of thin two-
dimensional structures. In particular, we study the vibration of membranes and several 
types of elastic plates. The latter include elementary/classical linear (Kirchhoff) plates, ge-
ometrically nonlinear (von Karman) plates with uniform membrane force, and geometrical-
ly linear plates that include the effects of transverse shear deformation and rotatory inertia 
(Mindlin Plates). We begin the chapter with a brief discussion of the scalar product and 
orthogonality of functions of two (spatial) variables. 
 
 

13.1  THE SCALAR PRODUCT AND ORTHOGONALITY 

The deformation of a two-dimensional continuum is generally described by functions of 
two spatial variables and time. In this section we define the scalar product for functions of 
two spatial variables and their mutual orthogonality. This is easily done by extending the 
discussions of Section 9.1.2 to systems defined over two-dimensional domains. 
   

13.1.1  Systems with One Dependent Variable 

The scalar product of continuous functions discussed in Section 9.1.2 is readily extended to 
functions of two spatial variables defined over the two-dimensional domain ( , )x y ∈* . In 
this case, the value of the function at a particular pair of spatial coordinates, say (x,y), may 
be thought of as corresponding to an element of an infinite-dimensional vector. The product 
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of individual elements of two such vectors, and the corresponding summation of all such 
products of the elements of the two vectors is then carried out as an integration of the prod-
uct of the two functions over the two-dimensional domain *.  
 

The Conventional Scalar Product 
In light of the preceding discussion, the conventional scalar product of two functions, 
u(x,y,t) and v(x,y,t), takes the form 
 

 , ( , , ) ( , , )x y t x y t d= ³u v u v
*

*  (13.1) 

 
As for discrete vectors and functions of a single variable, two functions of two spatial vari-
ables are said to be mutually orthogonal if their scalar product vanishes. Stated mathemati-
cally, 
 
 if  , 0  then  ( , , ) ( , , )x y t x y t= ⊥u v u v  (13.2) 
 

The Weighted Scalar Product 
The scalar product of two functions with respect to some differential operator d is  
 

 , ( , , ) ( , , )x y t x y t d= ³u v u v
*

*
d

d  (13.3) 

 
Note that, as for 1-D continua, , ,=u v u v

d
d . If the weighted scalar product of the two 

functions vanishes, the functions are said to be mutually orthogonal with respect to the op-
erator d. Stated mathematically, 
 
 if  , 0  then  ( , , ) ( , , )x y t x y t= ⊥u v u v

d d
 (13.4) 

 
We next consider matrices of functions of two spatial variables. 
 
 

13.1.2  Systems with Multiple Dependent Variables 

The scalar product of two column matrices whose elements are functions of two spatial 
variables is directly analogous to that for the column matrices whose elements are functions 
of a single variable discussed in Section 9.1.2. The details are discussed in the remainder of 
this section. We first discuss the conventional scalar product. 
 

The Conventional Scalar Product 
The conventional scalar product of two N × 1 column matrices, U(x,y,t) and V(x,y,t), de-
fined over the two-dimensional domain, *, follows as 
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 , d= ³* *U V U VT  (13.5) 

 
The two matrix functions are said to be mutually orthogonal if their scalar product vanishes. 
Stated mathematically, 
 
 if  , 0  then  ( , , ) ( , , )x y t x y t= ⊥U V U V  (13.6) 
 

The Weighted Scalar Product 
The scalar product with respect to an N × N  matrix operator, d,  of two N × 1 column ma-
trices, U(x,y,t) and V(x,y,t), defined over the two-dimensional domain, *, is 
 
 , d= ³ T

*
*dU V U dV  (13.7) 

 
where d = [dlj] and dlj (l,j = 1, 2, ..., N) are differential operators. It is evident that 

, ,=dU V U dV . The two matrix functions are said to be mutually orthogonal with re-
spect to the matrix operator, d, if their weighted scalar product vanishes. Stated mathemati-
cally, 
 
 if  , 0  then  ( , , ) ( , , )x y t x y t= ⊥d d

U V U V  (13.8) 

 
The definitions presented in this section will be seen to be very important in our characteri-
zation of vibrations of two-dimensional continua. In the next section, we begin our study 
with a discussion of the general approach to free vibration problems.  
 
 
 

13.2  THE GENERAL FREE VIBRATION  PROBLEM 

In this section, we outline the general free vibration problem and its solution for two classes 
of systems. The first class corresponds to structures whose deformation is described by a 
single dependent variable. This includes transverse motion of ideal membranes, of Kirch-
hoff plates, and of von Karman plates with a uniform membrane force. The second class of 
system corresponds to structures with multiple dependent variables; in particular, the de-
flection and rotation measures that characterize the transverse motion of Mindlin plates. 
 

13.2.1  Systems with One Dependent Variable 

Consider a structure whose reference plane is defined on the domain ( , )x y ∈* with 
boundary +. The equations of transverse motion for linear two-dimensional continua are 
described by the general form of Eqs. (12.70), (12.115) and (12.194). For free vibrations, 
the distributed external load vanishes and the governing equations take the general form 
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2

2
0

w
w

t

∂
+ =

∂
m k  (13.9) 

 
where w(x,y,t) is the transverse displacement of a material particle embedded in the 
centroidal surface of the structure,  
 
 ( , )m x y=m  (13.10) 
 
is the mass operator, and k is the stiffness operator for the particular type of structure. Spe-
cifically, 
 2

0N= − ∇k  (13.11) 
 
is the stiffness operator for an ideal membrane under tension N0, 
 
 2 2( , )D x y= ∇ ∇k  (13.12) 
 
is the stiffness operator for a Kirchhoff plate with bending stiffness D, 
 
 2 2

0[ ( , ) ]D x y N= ∇ − ∇k  (13.13) 
 
is the stiffness operator for a von Karman plate with uniform membrane force, N0. In each 
of the stiffness operators above, 2∇ corresponds to the two-dimensional Laplacian operator. 

To solve the free vibration problem, we proceed in a manner analogous to that for 
one-dimensional continua. Hence, we first assume a solution of the form 
 
 ( , , ) ( , ) i tw x y t W x y e ω=  (13.14) 
 
where the function W(x,y) and the scalar ω are to be determined. Substitution of Eq. 
(13.14) into Eq. (13.9) results in the eigenvalue problem 
 
 2 ( , ) 0W x yωª º− =¬ ¼k m  (13.15) 

 
In this way, the free vibration problem is reduced to the determination of {ω2,W(x,y)} 
pairs that satisfy Eq. (13.15). Each frequency-mode pair yields a solution to Eq. (13.9) of 
the form of Eq. (13.14). The general response then corresponds to the superposition of all 
such solutions. Hence, the free vibration response is of the general form 
 
 ( ) ( ) ( ) ( )( , , ) ( , ) ( , ) cos( )lji tlj lj lj lj

lj lj
l j l j

w x y t C W x y e A W x y tω ω φ= = −¦¦ ¦¦  

  (13.16) 
 
where the amplitudes and phase angles, A(lj) and φlj (l, j = 1, 2,...), are determined from ini-
tial conditions. The dual indices and double sum arise from the two-dimensional nature of 
the system. 
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13.2.2  Systems with Multiple Dependent Variables 

For free vibration of systems with more than one dependent variable, such as Mindlin 
plates, the equation of motion, Eq. (12.169), reduces to the form 
 

 
2

2
0

t

∂
+ =

∂
u

m k u  (13.17) 

 
where u is an N × 1 matrix of displacement functions, m and k are N × N matrix operators 
with differential operators as elements, and N is the number of displacement functions 
needed to describe the motion. For Mindlin Plates specifically, the mass operator, m, is a 
diagonal 3 × 3 matrix of scalar elements, and the stiffness operator, k, is a 3×3 matrix of 
differential operators. Further, the displacement matrix, u, is a 3 × 1 matrix whose elements 
consist of the transverse deflection and the two rotations due to bending associated with the 
planes whose normals are parallel to the in-plane coordinate axes as discussed in Section 
12.3.4.  
 To obtain a solution for a structure whose reference plane is defined on the domain 
( , )x y ∈* with boundary +, we assume a displacement field of the form 
 
 ( , , ) ( , ) i tx y t x y e ω=u U  (13.18) 
 
and substitute this expression into Eq. (13.17). Doing this results in the eigenvalue problem 
 
 2 ( , ) 0x yωª º− =¬ ¼k m U  (13.19) 

 
which, when solved, gives the frequency mode pairs { }2 ( ), ( , ) , 1, 2,...lj

lj x y l jω =U , and 
leads to the general form of the free vibration response as 
 
 ( ) ( ) ( ) ( )( , , ) ( , ) ( , ) cos( )lji tlj lj lj nj

lj lj
l j l j

x y t C x y e A x y tω ω φ= = −¦¦ ¦¦u U U  (13.20) 

 
The amplitudes and phase angles, A(lj)and φlj (l, j = 1, 2,...), are determined from initial con-
ditions. We study the free vibration of several particular types of structures in the next five 
sections. 
 
 

13.3  FREE VIBRATION OF IDEAL MEMBRANES 

An ideal membrane is a thin, mathematically two-dimensional structure that offers no re-
sistance to in-plane shear, transverse shear and bending. The equation of transverse motion 
for free vibration of ideal membranes follows directly from Eq. (12.70) as 
 

 
2

2
02 0wm N w

t
∂ − ∇ =
∂

 (13.21) 
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where N0 is the (prescribed) uniform membrane force (tension per unit width), m is the 
mass per unit area of the membrane and 2∇ is the two-dimensional Laplacian operator. In 
addition, w(ξ,η,t) is the transverse displacement of a membrane whose major plane is par-
allel to the ξ-η plane when at rest, and (ξ,η)  represents some set of spatial coordinates. To 
solve Eq. (13.21), as outlined in Section 13.2, we proceed in a manner analogous to that 
which was done for one-dimensional continua in Chapter 10. Toward this end, we first as-
sume a solution of the form 
 ( , , ) ( , ) i tw t W e ωξ η ξ η=  (13.22) 
 
where W is a function of the spatial coordinates and ω is a constant, both to be determined. 
Substitution of Eq. (13.22) into Eq. (13.21) yields the equation for the spatial function, W, 
as 
 2 2 0W Wβ∇ + =  (13.23) 
where 
 2 2

0m Nβ ω=  (13.24) 
 
The solution of Eq. (13.23) depends upon the specific boundary conditions associated with 
the particular structure of interest. 
 
 

13.3.1  Rectangular Membranes 

Consider a rectangular membrane defined on 0 ≤ x ≤ a, 0 ≤ y ≤ b, where the edges of the 
structure are fixed around its periphery, as shown in Figure 13.1. The membrane is subject-
ed to the uniform tension, N0, and possesses the uniform mass per unit area, m. For this 
structure, it is clearly advantageous to work in terms of Cartesian coordinates. Thus, for this 
case, (ξ,η) ĺ (x,y) and Eq. (13.22) takes the form 
 
 ( , , ) ( , ) i tw x y t W x y e ω=  (13.25) 
 
The Laplacian operator expressed in terms of Cartesian coordinates is simply 
 

 
2 2

2
2 2x y

∂ ∂∇ = +
∂ ∂

 (13.26) 

 
Incorporating the operator of Eq. (13.26) into Eq. (13.23) gives the expanded form of the 
equation for the modal function, W(x,y), as 
 

 
2 2

2
2 2 0W W W

x y
β∂ ∂+ + =

∂ ∂
 (13.27) 

 
where β 2 is given by Eq. (13.24). Equation (13.27) is the explicit statement of the eigenval-
ue problem for rectangular membranes. To solve Eq. (13.27) we seek a separable solution 
of the form 
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    Figure 13.1  Rectangular membrane. 
 
 
 ( , ) ( ) ( )W x y X x Y y=  (13.28) 
 
where X(x) and Y(y) are functions to be determined. Substitution of Eq. (13.28) into Eq. 
(13.27) and rearranging terms results in the equality 
 

 
2 2

2
2 2

1 1
( ) ( )

d X d Y
X x Y ydx dy

β+ = −  (13.29) 

 
The left-hand side of  Eq. (13.29) is, evidently, a function of x only, and the right-hand side 
is a function of y only. For the equality to hold, it follows that both sides must be equal to, 
at most, a constant. If we label this constant as 2γ then the functions X(x) and Y(y) must 
satisfy the equations 

 
2

2
2 0d X X

dx
α+ =  (13.30)  

and 

 
2

2
2 0d Y Y

dy
γ+ =  (13.31) 

where 
 2 2 2α β γ= −  (13.32) 
 
Equations (13.30) and (13.31) are clearly harmonic in space and admit the solutions 
 
 1 2( ) cos sinX x A x A xα α= +  (13.33) 
and 
 1 2( ) cos sinY y C y C yγ γ= +  (13.34) 
 
Substitution of Eqs. (13.33) and (13.34) into Eq. (13.28) renders the modal function for the 
rectangular membrane to the form 
 
 [ ][ ]1 2 1 2( , ) cos sin cos sinW x y A x A x C y C yα α γ γ= + +  (13.35) 
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Since the membrane is fixed around its periphery, the boundary conditions for the mathe-
matical problem take the form 
 
 

0
( , , ) 0, ( , , ) 0

x x a
w x y t w x y t= == =  (13.36) 

and 
 

0
( , , ) 0, ( , , ) 0y y bw x y t w x y t= == =  (13.37) 

 
Imposition of Eqs. (13.36)1 and (13.37)1 on Eq. (13.35) gives  
 
 1 10, 0A C= =  (13.38) 
 
Subsequent imposition of Eq. (13.36)2 yields the frequency equation 
 
 sin 0aα =  (13.39) 
 
In light of Eqs. (13.35) and (13.38), α = 0 yields the trivial solution. Hence, for nontrivial 
solutions, 

 ( 1, 2,...)n
n n
a
πα α= = =  (13.40) 

 
Similarly, imposition of Eq. (13.37)2 yields the frequency equation 
 
 sin 0bγ =  (13.41) 
 
from which it follows that, for nontrivial solutions, 
 

 ( 1, 2,...)j
j j
b
πγ γ= = =  (13.42) 

 
Substitution of Eqs. (13.40) and (13.42) into Eq. (13.32) gives 
 

 
2 2

( , 1, 2,...)nj
n j n j
a b
π πβ β § · § ·= = + =¨ ¸ ¨ ¸

© ¹ © ¹
 (13.43) 

 
Incorporating Eqs. (13.38), (13.40) and (13.42) into Eq. (13.35) renders the modal function 
to the form 
 
 ( ) ( )( ) ( , ) sin sin ( , 1, 2,...)njW x y n x a j y b n jπ π= =  (13.44) 
 
where we have chosen to set the arbitrary constant to unity for each mode. The general form 
of the free vibration response then follows from Eq. (13.25) as 
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 ( ) ( ) ( )( )

1 1

( , , ) sin sin cosnj
nj nj

n j

w x y t A n x a j y b tπ π ω φ
∞ ∞

= =

= −¦¦  (13.45) 

where, from Eqs. (13.24) and (13.43), the corresponding natural frequencies of the rectan-
gular membrane are 
 

 
2 2

0 0 ( 1,2,...)nj nj
N Nn j n
m a b m

π πω β
 ½° °§ · § ·= = + =® ¾¨ ¸ ¨ ¸
© ¹ © ¹° °¯ ¿

 (13.46) 

 

Example 13.1 
Consider a square membrane of side L that is fixed around its periphery. The mem-
brane is slowly stretched, and clamps at the support are subsequently tightened so 
that a uniform tension of magnitude N0 is imposed throughout the structure, keeping 
it in place. (a) Determine the first 3 × 3 natural frequencies, ωlj (l,j = 1–3), for the 
membrane. (b) Plot the corresponding modes.  
 
Solution 
(a) 
Setting a = b = L in Eq. (13.46) gives the natural frequencies of the square mem-
brane as 
 2 2

0nj n jω ω π= +  (a) 
where 
 2

0 0N mLω =  (b) 
  
The first nine natural frequencies for the square membrane are easily calculated us-
ing Eq. (a). The results are presented in Table E13.1. 
 
(b) 
Six of the nine modes for the square membrane are displayed in Figures E13.1 and 
E13.2. Since W(ji) and W(ij) are similar due to the rotational symmetry of the structure, 
W(21), W(31) and W(32) are not shown.  
      
 Table E13.1  The first nine natural frequencies of a square membrane 

n   1 0nω πω   2 0nω πω  3 0nω πω  

 
1 
 

 
2 1.414=  

 
5 2.236=  

 
10 3.162=  

 
2 
 

 
5 2.236=  

 
2 2 2.828=  

 
13 3.606=  

 
3 
 

 
10 3.162=  

 
13 3.606=  

 
3 2 4.243=  
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 Figure E13.1-1  Modes W(11), W(12) and W(13). 
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   Figure E13.1-2  Modes W(22), W(23) and W(33). 
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13.3.2  Circular Membranes 

For circular membranes it is convenient to work in terms of cylindrical-polar coordinates 
(r,θ) in the plane, with the origin at the geometric center of the membrane. (See Figure 
13.2.) For this case, (ξ,η) ĺ (r,θ) and Eq. (13.22) takes the form 
 
 ( , , ) ( , ) i tw r t W r e ωθ θ=  (13.47) 
 
The Laplacian operator expressed in terms of polar coordinates takes the form 
 

 
2

2
2 2

1 1r
r r r r θ

∂ ∂ ∂§ ·∇ = +¨ ¸∂ ∂ ∂© ¹
 (13.48) 

 
where r is the radial coordinate and θ is the angular coordinate. Expanding Eq. (13.23) us-
ing Eq. (13.48) results in the form 
 

 
2 2

2
2 2 2

1 1 0W W W W
r rr r

β
θ

∂ ∂ ∂+ + + =
∂∂ ∂

 (13.49) 

 
where W = W(r,θ) and β is defined by Eq. (13.24). Equation (13.49) is the explicit state-
ment of the eigenvalue problem for circular membranes. To solve Eq. (13.49) we seek a 
separable solution of the form 
 
 ( , ) ( ) ( )W r R rθ θ= Θ  (13.50) 
 
where R(r) and Θ(θ) are functions to be determined. Substitution of Eq. (13.50) into Eq. 
(13.49) and rearranging terms gives 
 

 
2 2 2

2 2
2 2

1
( ) ( ) ( )
r d R r dR dr

R r R r drdr d
β

θ θ
Θ+ + = −

Θ
 (13.51) 

 
 

 
 Figure 13.2  Circular membrane and coordinate system. 
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It is seen that the left-hand side of Eq. (13.51) is a function of r only and that the right-hand 
side is a function of θ only. It follows that, for the left-hand and right-hand sides to be 
equal, they must each be equal to a constant. If we call this constant n2 then 
 

 
2 2 2

2 2 2
2 2

1
( ) ( ) ( )
r d R r dR dr n

R r R r drdr d
β

θ θ
Θ+ + = = −

Θ
 (13.52) 

 
Hence, 

 
2

2
2 0d n

dθ
Θ + Θ =  (13.53) 

and 

 
2

2 2 2
2( ) ( ) ( ) 0

( )( )
d R dRr r r n R

d rd r
β β β

ββ
ª º+ + − =¬ ¼  (13.54) 

 
Equation (13.53) is seen to be the harmonic equation and Eq. (13.54) is identified as Bes-
sel’s equation. Equation (13.53) yields the solution 
 

 
( ) (0) (0)

( ) ( ) ( )

( ) ( 0)

( ) cos sin ( 0)

n
c s

n n n
c s

A A n

A n A n n

θ θ
θ θ θ

Θ = + =
Θ = + >

 (13.55) 

 
where ( )n

cA and ( )n
sA are constants of integration. The parameter n is identified as the azi-

muth wave number. That is, n is the number of spatially harmonic periods as we proceed 
once around the membrane in the θ direction. Incorporating Eq. (13.55) into Eqs. (13.50) 
and (13.47) gives 
 

 
0

( ) ( ) ( )

0 0

(0) (0) (0) ( ) ( ) ( )

1

( , , ) ( , ) ( ) ( )

( ) ( ) cos sin

n n

n

i t i tn n n

n n

i t i tn n n
c s c s

n

w r t W r e R r e

R r A A e R r A n A n e

ω ω

ω ω

θ θ β θ

β θ β θ θ

∞ ∞

= =
∞

=

= = Θ

ª º ª º= + + +¬ ¼ ¬ ¼

¦ ¦

¦
 

  (13.56) 
 
It is seen from Eq. (13.56) that, for the displacement to be continuous as we proceed about 
an azimuth from θ to θ + 2π, or any integer multiple of 2π, the constant (0)

sA must van-
ish (0)( 0)sA = and the parameter n must be an integer (n = 0,1,2,...). To complete the solu-
tion, we note that Eq. (13.54) is Bessel’s equation and yields the solution 
 
 ( ) ( ) ( )( ) ( ) ( )n n n

J n Y nR r C J r C Y rβ β β= +  (13.57) 
 
where Jn (βr) and Yn (βr)  are Bessel functions of order n of the first and second kind, re-
spectively, and CJ and CY are constants of integration. Substitution of Eqs. (13.55) and 
(13.57) into Eq. (13.50) gives the general form of the nth modal function for an ideal circu-
lar membrane as 
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( ) ( ) ( ) ( ) ( )( , ) ( ) ( ) cos sin

( 0,1,2...)

n n n n n
J n Y n c sW r C J r C Y r A n A n

n

θ β β θ θª º ª º= + +¬ ¼ ¬ ¼
=

 (13.58) 

 
The constants of integration are found by imposing the boundary conditions associated with 
the geometry of the specific structure. 

Solid Membranes 
Solid membranes (i.e., those that occupy a simply connected region that includes the origin) 
require special attention. The function Yn (βr) is singular at the origin. However, it is re-
quired, on physical grounds, that the deflections remain finite. Therefore, for membranes 
that occupy the origin, the constant ( )n

YC must vanish. For such structures, the modal func-
tion given by Eq. (13.58) reduces to the form 
 
 ( ) ( ) ( )( , ) ( ) cos sin ( 0,1,2...)n n n

n c sW r J r A n A n nθ β θ θª º= + =¬ ¼  (13.59) 

or, 
 ( ) ( ) ( )( , ) ( , ) ( , ) ( 0,1,2...)n n n

c sW r W r W r nθ θ θ= + =  (13.60) 
where 
 ( ) ( )( , ) ( ) cos ( 0,1,2...)n n

c c nW r A J r n nθ β θ= =  (13.61) 
and 
 ( ) ( )( , ) ( )sin ( 0,1, 2...)n n

s s nW r A J r n nθ β θ= =  (13.62) 
 
 
 

Example 13.2 
Consider a drum head (circular membrane) of radius a that is fixed around its pe-
riphery, as shown in Figure E13.2-1. The drum head (membrane) is slowly stretched, 
and clamps at the support are subsequently tightened so that a uniform tension of 
magnitude N0 is ultimately imposed throughout the membrane, keeping it in place. 
(a) Derive the frequency equation and the general form of the natural frequencies 
and the corresponding mode shapes. (b) Evaluate the first ten natural frequencies as-
sociated with each of the first three azimuthal wave numbers. Plot the lowest eight of 
these modes. (c) Evaluate the general free vibration response of the drum head 
(membrane). 
 

   Figure E13.2-1 
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Solution 
(a)  
The boundary condition around the edge of the membrane is clearly 

 
 ( , , ) 0w a tθ =  (a) 

 
Imposing Eq. (a) on Eq. (13.47) gives the corresponding modal boundary condition 
as 

 ( , ) 0W a θ =  (b) 
 

We next impose the modal boundary condition given by Eq. (b) on each mode de-
scribed by Eq. (13.59). This yields the (characteristic) frequency equation for the 
drum head (membrane), 
 

 ( ) 0 ( 0,1,2,...)nJ a nβ = =  � (c) 
 
For each value of n = 0,1,2,... there is an infinity of roots βa = βnja (n,j = 1,2,...) 
which, from Eq. (13.24), correspond to the normalized natural frequencies 
 

 0 ( 0,1, 2,...; 1, 2,...)nj nj nja n jω ω ω β≡ = = =  (d) 
 
where 

 2
0 0N maω =  (e) 

 
Once the roots of Eq. (c) have been computed, the corresponding modal functions 
are of the form 
 

 
( ) ( )

( ) ( )

( , ) ( ) cos

( , ) ( )sin

nj nj
c c n nj

nj nj
s s n nj

W r A J r n

W r A J r n

θ β θ
θ β θ

=

=
 (n = 0,1,2,...; j = 1,2,...) � (f) 

 
It is seen from Eq. (f) that there are two modes, ( )nj

cW and ( )nj
sW , for each natural 

frequency, ωnj = ω0βnja. If we take the scalar product of any such mode pair we see 
that 
 

 

( ) ( ) ( ) ( )

2
( ) ( )

0 0

2
( ) ( ) 2

0 0

,

( ) cos ( )sin

( ) cos sin 0

nj nj nj nj
c s c s

a
nj nj

c n nj s n nj

a
nj nj

c s n nj

W W W mW d

A J r n m A J r n r drd

m A A J r n n d rdr

π

π

β θ β θ θ

β θ θ θ

=

=

ª º= =« »¬ ¼

³
³ ³

³ ³

*
*

  

  (g) 
 
Hence, ( ) ( )nj nj

c sm
W W⊥ (for all n = 0,1,2,...; j = 1,2,...). The general form of the free 

vibration response follows from Eq. (13.56) as 
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 ( )( ) ( )

0 1

( , , ) cos sin ( )cosnj nj
c s n nj nj nj

n j

w r t A n A n J r tθ θ θ β ω φ
∞ ∞

= =

ª º= + −¬ ¼¦¦  � (h) 

 
where the constants ( ) ,nj

cA ( )nj
sA and φnj are found from initial conditions. 

 
(b) 
The first ten natural frequencies associated with each of the first three azimuthal 
wave numbers have been computed using the MATLAB 'fzero' routine to determine 
the roots of Eq. (c) for n = 0,1,2, in conjunction with Eq. (d). The results are sum-
marized in Table E13.2. The natural modes, ( ) ,nj

cW corresponding to the lowest eight 
natural frequencies associated with the first three azimuthal wave numbers are dis-
played in Figure E13.2-2. 
 
 (c) 
The free vibration response is obtained by evaluating the modes of Eq. (f) using the 
results of Table E13.2 and substituting the resulting expressions into Eq. (h). This 
gives 
 

 

( )
( )

( )
( )

( )

(01)
0 0 01

(02)
0 0 02

(03)
0 0 03

(11) (11)
1 0 11

(12) (12)
1

( , , ) 2.405 cos(2.405 )

5.520 cos(5.520 )

8.654 cos(8.654 )...

cos sin 3.832 cos(3.832 )

cos sin 7.016 cos

c

c

c

c s

c s

w r t A J r a t

A J r a t

A J r a t

A A J r a t

A A J r a

θ ω φ
ω φ

ω φ

θ θ ω φ

θ θ

= −

+ −

+ −

ª º+ + −¬ ¼
ª º+ +¬ ¼

( )
( )

0 12

(21) (21)
2 0 21

(22) (22)
2 0 22

(7.016 ) ...

cos 2 sin 2 5.136 cos(5.136 )

cos2 sin 2 8.417 cos(8.417 ) ...

...

c s

c s

t

A A J r a t

A A J r a t

ω φ

θ θ ω φ

θ θ ω φ

− +

ª º+ + −¬ ¼
ª º+ + − +¬ ¼

+

 

  � (i) 
 
   Table E13.2 
    The first ten natural frequencies for each of the first three azimuthal wave numbers. 

0 0 0( ) 0 j jJ a aβ β ω= � =  1 1 1( ) 0 j jJ a aβ β ω= � =  2 2 2( ) 0 j jJ a aβ β ω= � =  

ω01/ω0 = β01a = 2.405 ω11/ω0 = β11a = 3.832 ω21/ω0 = β21a = 5.136 
   ω02/ω0 = β02a = 5.520  ω12/ω0 = β12a = 7.016 ω22/ω0 = β22a = 8.417 

ω03/ω0 = β03a = 8.654 ω13/ω0 = β13a = 10.17 ω23/ω0 = β23a = 11.62 
ω04/ω0 = β04a = 11.79 ω14/ω0 = β14a = 13.32 ω24/ω0 = β24a = 14.80 
ω05/ω0 = β05a = 14.93 ω15/ω0 = β15a = 16.47 ω25/ω0 = β25a = 17.96 
ω06/ω0 = β06a = 18.07 ω16/ω0 = β16a = 19.62 ω26/ω0 = β26a = 21.12 
ω07/ω0 = β07a = 21.21 ω17/ω0 = β17a = 22.76 ω27/ω0 = β27a = 24.27 
ω08/ω0 = β08a = 24.35 ω18/ω0 = β18a = 25.90 ω28/ω0 = β28a = 27.42 
ω09/ω0 = β09a = 27.49 ω19/ω0 = β19a = 29.05 ω29/ω0 = β29a = 30.57 

ω0,10/ω0 = β0,10a = 30.63 ω1,10/ω0 = β1,10a = 32.19 ω2,10/ω0 = β2,10a = 33.72 
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 Figure E13.2-2  Modes corresponding to the eight lowest frequencies of Table 13.2. 
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13.4  FREE VIBRATION OF KIRCHHOFF PLATES 

In this section we examine free transverse vibration of the isotropic Kirchhoff (classical) 
plates discussed in Section 12.3.3. The equation of motion follows from Eq. (12.115) with 
no external loading, 0q − ∇ =

G
<b , and takes the form 

 

 
2

2 2
2 0wm D w

t
∂ + ∇ ∇ =
∂

 (13.63) 

 
We consider plates of rectangular and circular geometries. We first consider rectangular 
plates. 

 

13.4.1  Rectangular Plates 

In this section we examine the free vibration of Kirchhoff plates with rectangular geome-
tries. To solve the general problem, we first assume a solution of the form 
 
 ( , , ) ( , ) i tw x y t W x y e ω=  (13.64) 
 
Substituting Eq. (13.64) into Eq. (13.63) yields the eigenvalue problem 
 
 2 2 2 0D m Wωª º∇ ∇ − =¬ ¼  (13.65) 

 
The problem is simplified if we normalize the eigenvalue problem in a convenient manner. 
Normalizing length scales with respect to some characteristic length, L, of the plate (say the 
length of an edge or the diagonal) yields the non-dimensional form of the eigenvalue prob-
lem as 
 2 2 2 0Wωª º∇ ∇ − =¬ ¼  (13.66) 

 
where, for Cartesian coordinates x and y, 
 
 ,x x L y y L= =  (13.67) 
 
are the normalized coordinates, 
 
 ( , ) ( , )W x y W x y L=  (13.68) 
 
is the non-dimensional modal function, 
 

 
2 2

2
2 2x y

∂ ∂∇ = +
∂ ∂

 (13.69) 

 
is the non-dimensional Laplacian, 
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 0ω ω ω=  (13.70) 
 
is the normalized natural frequency, and 
 

 ( )

1
23

0 4 212 1
D E mL h

LmL
ω

ν

ª º§ ·« »= = ¨ ¸−« © ¹ »¬ ¼
 (13.71) 

 
is a parameter that depends upon the material and geometry of the structure. The associated 
natural time scale is then 
 
 0t tω=  (13.72) 
 
To solve Eq. (13.66), let us first assume a solution of separable form. Hence, let 
 
 ( , ) ( ) ( )W x y X x Y y=  (13.73) 
 
Substitution of Eq. (13.73) into Eq. (13.66) renders the eigenvalue problem to the corre-
sponding form 
 

 2( ) ( ) ( ) ( )2
( ) ( ) ( ) ( )

X x X x Y y Y y
X x X x Y y Y y

ω′′′′ ′′ ′′ ′′′′
+ + =  (13.74) 

 
where a superposed primed indicates total differentiation with respect to the independent 
variable indicated. To solve Eq. (13.74), we assume solutions of the form 
 
 ( ) ( ) yx yxX x Y y Ae eηη=  (13.75) 
 
Substituting Eq. (13.75) into Eq. (13.74) results in the equality 
 
 ( )22 2 2

x yη η ω+ =  (13.76) 

 
Let us consider exponents that are real or imaginary. That is, 
 

 
ˆ,
ˆ,

x

y

i
i

η α α
η γ γ

= ± ±
= ± ±

 (13.77) 

  
We thus, have the four basic solution functions 
 

 
ˆ

ˆ

( ) ,
( ) ,

x i x

y i y

X x e e
Y y e e

α α

γ γ

± ±

± ±

=
=

 (13.78) 
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This gives sixteen solutions of the form of Eq. (13.75). A general solution may be ex-
pressed as a linear combination of these solutions. Hence,  
 

 

1 2 3 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

5 6 7 8
ˆ ˆ ˆ ˆ

9 10 11 12
ˆ ˆ ˆ ˆ

13 14 15 16

( , ) x y x y x y x y

i x i y i x i y i x i y i x i y

x i y x i y x i y x i y

i x y i x y i x y i

W x y K e e K e e K e e K e e
K e e K e e K e e K e e

K e e K e e K e e K e e
K e e K e e K e e K e

α γ α γ α γ α γ

α γ α γ α γ α γ

α γ α γ α γ α γ

α γ α γ α γ α

− − − −

− − − −

− − − −

− − −

= + + +
+ + + +

+ + + +
+ + + + x ye γ−

 (13.79) 

 
or, equivalently, 
 

 
[ ] [ ]
[ ][ ]

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
a a b b a b b a

a b a b

W x y X x Y x X x Y x X x Y x X x Y x

X x X x Y y Y y

= + + +
= + +

 (13.80) 

 
where 
 1 2 1 2( ) cosh sinhx x

aX x A e A e A x A xα α α α−= + = +  (13.81) 
 
 ˆ ˆ

3 4 3 4ˆ ˆ( ) cos sini x i x
bX x A e A e A x A xα α α α−= + = +  (13.82) 

 
 1 2 5 6( ) cosh sinhy y

aY y C e C e A y A yγ γ γ γ−= + = +  (13.83) 
 
 ˆ ˆ

3 4 7 8ˆ ˆ( ) cos sini y i y
bY y C e C e A y A yγ γ γ γ−= + = +  (13.84) 

 
Explicitly, 
 

 
{ } { }

{ } { }
1 2 3 4

5 6 7 8

ˆ ˆ( , ) cosh sinh cos sin

ˆ ˆcosh sinh cos sin

W x y A x A x A x A x

A y A y A y A y

α α α α

γ γ γ γ

= + + +ª º¬ ¼
× + + +ª º¬ ¼

 

  (13.85) 
 
The constants, A1−A8 are determined from the boundary conditions for a particular structure 
of interest. Note that the constant coefficients, Kj (j = 1−16), appearing in Eq. (13.79) are 
determined when these eight constants are known. The exponents ˆ ˆ( , , , )α α γ γ depend upon 
the boundary conditions as well. The specific relations between the exponents and the nor-
malized natural frequency are obtained via Eq. (13.76) and are readily deduced by inspec-
tion after substituting the various terms of Eq. (13.77) and requiring that .0ω ≥  Hence, 
  

 ( ) ( )2 2 2 2 2 2 2 2ˆ ˆ ˆ ˆ, , ,

( , 1, 2,3, )
jl j l jl j l jl j l jl j l

j l

ω α γ ω α γ ω α γ ω α γ= + = + = ± − = ± −

= !
 (13.86) 

 
where the specific sign for each of the last two expressions depends on the relative magni-
tudes of the associated terms in parentheses and is such that the corresponding natural fre-
quency is positive. Alternatively, substitution of the real and imaginary forms of ηx given in 
Eq. (13.77) into Eq. (13.76) and solving for ηy or, conversely, substitution of the real and 
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imaginary forms of ηy given in Eq. (13.77) into Eq. (13.76) and solving for ηx gives the 
above relations as well. If one thinks of the relations of Eq. (13.86) in this way, the relations 
that apply for a given problem will be evident. Upon consideration of the relations delineat-
ed in Eq. (13.86), it is seen that they are not all mutually compatible (unless ˆlj ljiα α= ±  
and l̂j ljiγ γ= ± , which violates Eq. (13.77) and renders the corresponding expressions in 
Eqs. (13.79) and (13.85) redundant). This suggests that, in general, there will be different 
values of ˆ( , )γ γ associated with α and with α̂  This, in turn, suggests that there will be as-
sociated pairings of these parameters in the corresponding products indicated in Eqs. 
(13.80) and (13.85). (The special case of repeated roots, should it arise, is not considered 
here and must be dealt with accordingly for a given problem.) Each of the relations of Eq. 
(13.86) is seen to give an expression for the exponents in terms of the natural frequencies 
for a given system. Substitution of the pertinent relations into Eq. (13.85) and imposition of 
the boundary conditions for a given structure allow for the determination of the correspond-
ing natural frequencies. In summary, the values of ˆ ˆ, , , ,α γ α γ and hence of ω  (and thus ω), 
depend upon the particular boundary conditions imposed on the structure of interest. The 
constants A1−A8 are dependent upon the boundary conditions as well. 
 Before proceeding, we note that the solution for the modal functions of the plate can 
also be obtained by the following, alternate, approach. Equation (13.66) can be rewritten in 
the form 
 ( )( ) ( )( )2 2 2 2 2 2 2 2 0W Wβ β β β∇ − ∇ + = ∇ + ∇ − =  (13.87) 

where 
 2β ω=  (13.88) 
 
It is seen that functions, ( , )W x y , that satisfy either 
 
 ( ){ }22 0i Wβ∇ + =  (13.89) 

or 
 { }2 2 0Wβ∇ + =  (13.90) 

 
are solutions to Eq. (13.87). The general solution is then a linear combination of all such 
solutions. To obtain the solution for the modal function, we note that Eq. (13.90) is identical 
in form to Eq. (13.27), with β interpreted accordingly. The general form of the solution for 
the modal function for the plate can therefore be written directly from Eq. (13.35) with ap-
propriate interpretation of the arguments of the trigonometric and hyperbolic functions. 
Doing this gives a solution of the form 
  

 
[ ] [ ]
[ ][ ]

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
a a b b a b b a

a b a b

W x y X x Y x X x Y x X x Y x X x Y x

X x X x Y y Y y

= + + +
= + +

 (13.91) 

 
which is identical to Eq. (13.80).  
 Once the specific natural frequencies and modal functions are obtained for a given 
structure, the free vibration response can be determined. The free vibration response of the 
plate is comprised of a linear combination of all solutions of the form of Eq. (13.64). Sub-
stituting each of the modal functions and their associated frequencies into Eqs. (13.64) 
gives the general form of the response as 
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 ( ) ( )

1 1

( , ) ( , ) cos( )lj lj
lj lj

l j

w x t A W x y tω φ
∞ ∞

= =

= −¦¦  (13.92) 

 
where each ( ) ( , )ljW x y is determined from Eq. (13.85). The amplitudes and phase angles for 
each mode, ( )ljA and ljφ respectively, are determined from the particular initial conditions 
imposed on the system. 
 

Example 13.3 
Consider the rectangular Kirchhoff plate whose sides are of length a and b, where 
each edge of the plate is simply supported (Figure E13.3-1). (a) Establish the modal 
boundary conditions for the plate. 
(b) Determine the natural modes of 
the plate and the corresponding nat-
ural frequencies. (c) Assess the first 
3 × 3 frequencies and modes for a 
square plate (b = a), and plot the lat-
ter. (d) Repeat Part (c) for a plate 
where b = a/2, except for plotting. 
(e) Determine the general form of 
the free vibration response, and use 
it to express the explicit forms for 
the plates of Parts (c) and (d).  Figure E13.3-1  
    
Solution 
(a) 
The boundary conditions for the simply supported plate are, from Example 12.4, 
 

 
2 2

2 2
0

(0, , ) 0, (0, , ) 0xx
x

w ww y t M y t D
x y

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 (a-1,2) 

 

 
2 2

2 2( , , ) 0, ( , , ) 0xx
x a

w ww a y t M a y t D
x y

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 (a-3,4) 

 

 
2 2

2 2
0

( ,0, ) 0, ( ,0, ) 0yy
y

w ww x t M x t D
y x

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 (a-5,6) 

 

 
2 2

2 2( , , ) 0, ( , , ) 0yy
y b

w ww x b t M x b t D
y x

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 (a-7,8) 

 
It follows from Eq. (12.106)2 and Eqs. (a-1) and (a-3) that 
 

 
2 2

2 2
0

0 (0 )
x x a

w w y b
y y= =

∂ ∂= = ≤ ≤
∂ ∂

 (b-1,2) 
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It similarly follows from Eqs. (12.106)1, (a-5) and (a-7) that 
 

 
2 2

2 2
0

0 (0 )
y y b

w w x a
x x= =

∂ ∂= = ≤ ≤
∂ ∂

 (b-3,4) 

 
Substitution of Eq. (13.64) and Eqs. (b-1)–(b-4) into Eqs. (a-1)–(a-8) gives the 
boundary conditions for the modal functions as 
 
 (0, ) 0 (0, ) 0 (0 )i tW y e W y y bω = � = ≤ ≤  � (c-1) 
 

 
2 2 2

2 2 2
0 0

0 0 (0 )i t

x x

W W WD e y b
x y x

ων
= =

ª º∂ ∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-2) 

 
 ( , ) 0 ( , ) 0 (0 )i tW a y e W a y y bω = � = ≤ ≤  � (c-3) 
 

 
2 2 2

2 2 20 0 (0 )i t

x a x a

W W WD e y b
x y x

ων
= =

ª º∂ ∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-4) 

 
 ( ,0) 0 ( ,0) 0 (0 )i tW x e W x x aω = � = ≤ ≤  � (c-5) 
 

 
2 2 2

2 2 2
0 0

0 0 (0 )i t

y y

W W WD e x a
y x y

ων
= =

ª º∂ ∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-6) 

 
 ( , ) 0 ( , ) 0 (0 )i tW x b e W x b x aω = � = ≤ ≤  � (c-7) 
 

 
2 2 2

2 2 20 0 (0 )i t

y b y b

W W WD e x a
y x y

ων
= =

ª º∂ ∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-8) 

 
where we have introduced the nondimensionalization of Eqs. (13.66)–(13.72) in the 
above expressions, and a and b are given by 
  
 ,a a L b b L= =  (d) 
 
The length scale L will be chosen later, but natural candidates are L = a or L = b or 

2 2L a b= + .  
 
(b) 
Imposing the conditions of Eqs. (c-1) and (c-2) on the general form of the modal 
function, Eq. (13.85), gives 
 1 3 0A A+ =  (e-1) 
and 
 2 2

1 3ˆ 0A Aα α− =  (e-2) 
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Substituting Eq. (e-2) into Eq. (e-1) yields 
 
 2 2

1ˆ( ) 0Aα α+ =  (f) 
 
Hence, either 1 0A =  or 2 2ˆ ˆ0 iα α α α+ = � = ± . Since it is implicitly assumed in 
Eq. (13.77) that α̂  and α are both real, the first condition holds. It follows from this 
and from Eq. (e-1) that 
 1 3 0A A= =  (g) 
 
We next incorporate Eq. (g) into Eq. (13.85) and impose the conditions of Eqs. (c-3) 
and (c-4) on the resulting expression. This gives 
 
 2 4 ˆsinh sin 0A a A aα α+ =  (h-1) 
and 
 2 2

2 4ˆ ˆsinh sin 0A a A aα α α α− =  (h-2) 
 
Now, let us multiply Eq. (h-1) by 2α̂ and add Eq. (h-2) to the result. This gives 
 
 2 2

2ˆ( ) sinh 0A aα α α+ =  (i) 
 
We've already argued that 2 2ˆ 0α α+ ≠ . Hence, 
 
 2 sinh 0A aα =  (j) 
 
It follows from Eq. (j) that either A2 = 0 or sinh 0aα = . The latter implies that α = 0 
since the function sinhθ  vanishes at the origin. Regardless of whether A2 = 0 or 
α = 0, the term 2 sinhA xα  will vanish identically in Eq. (13.85). For definiteness, 
we shall take A2 = 0. (In this case α is immaterial.) Hence, 
 
 2 0A =  (k) 
  
We next substitute Eq. (j) into Eq. (h-1) to obtain 
 
 4 ˆsin 0A aα =  (l) 
 
Upon substitution of Eqs. (g) and (k) into Eq. (13.85), it is seen that the modal func-
tion is reduced to the form 
 
 ( )4 5 6 7 8ˆ ˆ ˆ( , ) sin cosh sinh cos sinW x y A x A y A y A y A yα γ γ γ γ= + + +  (m) 
 
We see from Eq. (m) that A4 = 0 corresponds to the trivial solution. Therefore, 

4 .0A ≠ It then follows from Eq. (l) that 
 
 ˆsin 0aα =  (n) 
 and, hence, that 
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 ˆ ˆ ( 1, 2, )j j a jα α π= = = !  (o) 
 
Imposing Eqs. (c-5)–(c-8) on Eq. (l) and proceeding as we have to this point yields 
the analogous results 
 
 5 6 7 0A A A= = =  (p) 
 
 ˆsin 0bγ =  (q) 
and 
 ˆ ˆ ( 1,2, )l l b lγ γ π= = = !  (r) 
 
Equations (n) and (q) are the frequency equations for the simply supported plate. 
Substituting Eqs. (o) and (r) into Eq. (13.86) gives the non-dimensional natural fre-
quencies of the plate as 
 

 
2 2

( , 1, 2,3, )jl
j l j l
a b
π πω § · § ·= + =¨ ¸ ¨ ¸

© ¹ © ¹
!  (s) 

 
The corresponding dimensional frequencies then follow from Eq. (13.70) and Eq. (d) 
as  

 
2 2

0 ( , 1,2,3, )jl
j L l L j l
a b
π πω ω

ª º§ · § ·= + =« »¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

!  � (t) 

 
where ω0 is defined by Eq. (13.71). Incorporating Eqs. (d), (g), (l), (o), (p) and (r) in 
Eq. (m) gives the final, dimensional, form of the modal function as 
 

 ( ) ( )( , ) sin sin ( , 1, 2,3, )jl jl j x l yW x y A j l
a b
π π§ · § ·= =¨ ¸ ¨ ¸

© ¹ © ¹
!  � (u) 

 
 
(c)  
The natural frequencies for a square plate (b = a = L) are easily found from Eq. (t). 
The first 3 × 3 frequencies are summarized in Table E13.3-1. The corresponding 
modes are displayed in Figures E13.3-2 and E13.2-3. 
 
 
                            Table E13.3-1 
    Selected natural frequencies for a square Kirchoff plate (b = a = L).  

j 2
1 0jω π ω  2

2 0jω π ω  2
3 0jω π ω  

1 2 5 10 
2 5 8 13 
3 10 13 18 
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 Figure E13.3-2  Modes W(11), W(12) and W(13) for square plate. 
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 Figure E13.3-3  Modes W(22), W(23) and W(33) for square plate. 
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(d)  
The natural frequencies for a rectangular Kirchoff plate (b = a/2 = L/2) are easily 
found from Eq. (t). The first 3 × 3 frequencies are summarized in Table E13.3-2. 
 
                            Table E13.3-2   
 Selected natural frequencies for a rectangular Kirchoff plate (b = a/2 = L/2).  

j 2
1 0jω π ω  2

2 0jω π ω  2
3 0jω π ω  

1 5 17 37 
2 8 20 40 
3 13 25 45 

 
(e)  
Substitution of the Eq. (u) into Eq. (13.92) gives the free vibration response of the 
simply supported plate as 
 

 ( )( )

1 1

( , , ) sin sin cosjl
jl jl

j l

j x l yw x y t A t
a b
π π ω φ

∞ ∞

= =

§ · § ·= −¨ ¸ ¨ ¸
© ¹ © ¹¦¦  � (v) 

 
where ωjl is given by Eq. (t) and ( )jlA and φjl (j,l = 1, 2, 3, ...) are determined from in-
itial conditions. 
For the square plate of Part (c), the response of the simply supported plate takes the 
explicit form 
 

 

( )

( )

( )

(11) 2
0 11

(12) 2
0 12

(13) 2
0 13

( , , ) sin sin cos 2

2sin sin cos 5

3sin sin cos 10

x yw x y t A t
a a

x yA t
a a

x yA t
a a

π π π ω φ

π π π ω φ

π π π ω φ

§ · § ·= −¨ ¸ ¨ ¸
© ¹ © ¹

§ · § ·+ −¨ ¸ ¨ ¸
© ¹ © ¹

§ · § ·+ − +¨ ¸ ¨ ¸
© ¹ © ¹

!

 � (w) 

 
For the rectangular plate of Part (d), the response of the of the simply supported plate 
takes the explicit form 
  

  

( )

( )

( )

(11) 2
0 11

(12) 2
0 12

(13) 2
0 13

2( , , ) sin sin cos 5

4sin sin cos 17

6sin sin cos 37

x yw x y t A t
a a

x yA t
a a

x yA t
a a

π π π ω φ

π π π ω φ

π π π ω φ

§ · § ·= −¨ ¸ ¨ ¸
© ¹ © ¹

§ · § ·+ −¨ ¸ ¨ ¸
© ¹ © ¹

§ · § ·+ − +¨ ¸ ¨ ¸
© ¹ © ¹

!

 � (x) 

 
where the material and geometric parameter ω0 is given by Eq. (13.71). 
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Example 13.4 
Consider the rectangular Kirchhoff plate whose sides are of length a and b. The plate 
is simply supported along the edges at  x = 0 and x = a and is clamped along the edg-
es at y = 0 and y = b (as shown in 
Figure E13.4-1). (a) Establish the 
modal boundary conditions for the 
structure. (b) Determine the fre-
quency equation for the plate. (c) 
Evaluate the first 3 × 3  frequencies 
for a square plate (b = a = L). (d) 
Determine the corresponding modal 
functions and plot them. (e) Write 
down the general free vibration re-
sponse of the plate. 
  Figure E13.4-1 
Solution 
(a)  
The boundary conditions for the plate are, from Example 12.5,  
 

 
2 2

2 2
0

(0, , ) 0, (0, , ) 0xx
x

w ww y t M y t D
x y

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 (a-1,2) 

 

 
2 2

2 2( , , ) 0, ( , , ) 0xx
x a

w ww a y t M a y t D
x y

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 (a-3,4) 

 

 
0

( ,0, ) 0, 0
y

ww x t
y =

∂= =
∂

 (a-5,6) 

 

 ( , , ) 0, 0
y b

ww x b t
y =

∂= =
∂

 (a-7,8) 

 
It follows from Eq. (12.106)2 and Eqs. (a-1) and (a-3) that 
 

 
2 2

2 2
0

0 (0 )
x x a

w w y b
y y= =

∂ ∂= = ≤ ≤
∂ ∂

 (b-1,2) 

 
Substitution of Eq. (13.64) and Eqs. (b-1) and (b-2) into Eqs. (a-1)–(a-8) gives the 
boundary conditions for the modal functions as 
 
 (0, ) 0 (0, ) 0 (0 )i tW y e W y y bω = � = ≤ ≤  � (c-1) 
 

 
2 2 2

2 2 2
0 0

0 0 (0 )i t

x x

W W WD e y b
x y x

ων
= =

ª º∂ ∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-2) 
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 ( , ) 0 ( , ) 0 (0 )i tW a y e W a y y bω = � = ≤ ≤  � (c-3) 
 

 
2 2 2

2 2 20 0 (0 )i t

x a x a

W W WD e y b
x y x

ων
= =

ª º∂ ∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-4) 

 
 ( ,0) 0 ( ,0) 0 (0 )i tW x e W x x aω = � = ≤ ≤  � (c-5) 
 

 
0 0

0 0 (0 )i t

y y

W We x a
y y

ω

= =

∂ ∂= � = ≤ ≤
∂ ∂

 � (c-6) 

 
 ( , ) 0 ( , ) 0 (0 )i tW x b e W x b x aω = � = ≤ ≤  � (c-7) 
 

 0 0 (0 )i t

y b y b

W We x a
y y

ω

= =

∂ ∂= � = ≤ ≤
∂ ∂

 � (c-8) 

 
where 
    a a L= , b b L=   (d) 
 
The length scale L will be chosen later, but natural candidates are L = a or L = b or 

2 2L a b= + .  
 
(b) 
The analysis pertaining to the simply supported edges at x = 0 and x = a, imposition 
of Eqs. (c-1)–(c-4) above, follows directly from Eqs. (e)–(o) of Example 13.3 and 
yields 
 
 ( )4 5 6 7 8ˆ ˆ ˆ( , ) sin cosh sinh cos sinW x y A x A y A y A y A yα γ γ γ γ= + + +  (e) 
 
where 
 ˆ ˆ ( 1,2, )j j a jα α π= = = !  (f) 
 
It remains to assess the influence of the clamped edges at y = 0 and y = b. Imposition 
of Eqs. (c-5)–(c-8)  gives 
 
 5 7 0A A+ =  (g-1)  
 
 6 8ˆ 0A Aγ γ+ =  (g-2) 

 5 6 7 8ˆ ˆcosh sinh cos sin 0A b A b A b A bγ γ γ γ+ + + =  (g-3) 
  
 5 6 7 8ˆ ˆ ˆ ˆsinh cosh sin cos 0A b A b A b A bγ γ γ γ γ γ γ γ+ − + =  (g-4) 
 
Substitution of Eqs. (g-1) and (g-2) into Eqs. (g-3) and (g-4) and expressing the re-
sulting expressions in matrix form gives 
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 5

6

0ˆ ˆ ˆ ˆ(cosh cos ) ( sinh sin )
0ˆ ˆ ˆ( sinh sin ) (cosh cos )

Ab b b b
Ab b b b

γ γ γ γ γ γ γ
γ γ γ γ γ γ γ

ª º  ½− −  ½=® ¾ ® ¾« »+ − ¯ ¿¯ ¿¬ ¼
 (h) 

 
For nontrivial solutions, the determinant of the square matrix of Eq. (h) must vanish. 
This results in the transcendental equation 
 
 ( ) ( )2 2ˆ ˆ ˆ ˆ2 1 cosh cos sinh sin 0b b b bγγ γ γ γ γ γ γ− − − =  (i) 

  
Since α̂ is known, the pertinent expressions that relate γ, γ̂ andω are the second and 
fourth relations of Eq. (13.86). Hence,   
 
 2ˆγ ω α= +  (j-1) 
and 
 2ˆ ˆγ ω α= −  (j-2) 
 
where α̂  is given by Eq. (f). (Substitution of ˆx iη α=  into Eq. (13.76) and solving 
for ηy gives Eqs. (j-1) and (j-2) as well.) Substitution of Eqs. (j-1) and (j-2) into Eq. 
(i) yields the frequency equation 
 

 
( ) ( )

( ) ( )
2 ˆ ˆ1 1 cosh 1 cos 1

ˆ ˆsinh 1 sin 1 0 ( 1, 2, )

j j j j j

j j j j

b b

b b j

ω ω α ω α

ω α ω α

ª º− − + −¬ ¼

+ + − = =

� � �

� � !
 � (k) 

 
where 

 
( )2 2 ( 1, 2, )

ˆ
j j

j
j

j
j a

ω ω
ω

α π
= = =� !   (l) 

 
and the normalized natural frequency jω is related to its dimensional counterpart by 
Eq. (13.70). For each value of the index j, Eq. (k) will yield an infinity of roots, jlω�   
(j = 1, 2,..., l = 1, 2, ...). We will next evaluate the first several roots numerically. 
 
(c) 
The first 3 × 3 natural frequencies of the square Kirchhoff plate are found by compu-
ting the roots of Eq. (k) using the MATLAB “fzero” routine. The frequencies are pre-
sented in Table E13.4.  
 
 

 Table E13.4  The first 3 × 3 natural frequencies for a square Kirchhoff plate (b = a = L) 

j 1 0jω ω  2 0jω ω  3 0jω ω  

1 28.95 69.33 129.1 
2 54.74 94.59 154.8 
3 102.2 140.2 199.8 
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(d) 
The corresponding natural modes are then 
 

( )
2 2

( ) ( )

2 2

2 2

( , ) sin cosh cos

sinh

sin

jl jl
jl jl

jl jl jl

jl jl

j jW x y A j x a y y
a a

j jS y
a a

j j y
a a

π ππ ω ω

π πω ω

π πω ω

ª § · § ·§ · § ·« ¨ ¸ ¨ ¸= + − −¨ ¸ ¨ ¸« ¨ ¸ ¨ ¸© ¹ © ¹© ¹ © ¹¬
 § ·° § · § ·¨ ¸− − +® ¨ ¸ ¨ ¸¨ ¸© ¹ © ¹° © ¹¯

º½§ ·°§ · § · »¨ ¸− + − ¾¨ ¸ ¨ ¸ »¨ ¸© ¹ © ¹ °© ¹¿¼
 
  � (m) 
where 
 

2 2

2 2 2 2

cosh cos

sinh sin

jl jl

jl

jl jl jl jl

j jb b
a a

S
j j j jb b
a a a a

π πω ω

π π π πω ω ω ω

 ½  ½° ° ° °§ · § ·+ − −® ¾ ® ¾¨ ¸ ¨ ¸
© ¹ © ¹° ° ° °¯ ¿ ¯ ¿=

 ½  ½  ½° ° ° ° ° °§ · § · § · § ·− + − + −® ¾ ® ¾ ® ¾¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹° ° ° ° ° °¯ ¿ ¯ ¿ ¯ ¿

  (n) 
 
The first 3 × 3 modes are displayed in Figures E13.4-2, E13.4-3 and E13.4-4.  
 
(e) 
The free vibration response of the plate follows as 
 

( ) ( )( )

1 1

2 2

2 2

2 2

( , , ) cos sin

cosh cos

sinh

sin

jl
jl jl

j l

jl jl

jl jl jl

jl jl

w x y t A t j x a

j jy y
a a

j jS y
a a

j j y
a a

ω φ π

π πω ω

π πω ω

π πω ω

∞ ∞

= =

= −

ª § · § ·§ · § ·« ¨ ¸ ¨ ¸× + − −¨ ¸ ¨ ¸« ¨ ¸ ¨ ¸© ¹ © ¹© ¹ © ¹¬
 § ·° § · § ·¨ ¸− − +® ¨ ¸ ¨ ¸¨ ¸© ¹ © ¹° © ¹¯

º½§ ·°§ · § · »¨ ¸− + − ¾¨ ¸ ¨ ¸¨ ¸© ¹ © ¹ °© ¹¿¼

¦¦

»

  
  � (o) 
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 Figure E13.4-2  Modes W(11), W(12) and W(13). 
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 Figure E13.4-3  Modes W(21), W(22) and W(23). 
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 Figure E13.4-4  Modes W(31), W(32) and W(33). 
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Example 13.5 
Consider the rectangular Kirchhoff plate whose sides are of length a and b. The plate 
is simply supported along the edges x = 0 and x = a and is free along the edges y = 0 
and y = b. (a) Establish the modal boundary conditions for the structure. (b) Deter-
mine the frequency equation for the plate and the associated modal functions. (c) 
Evaluate the first 3 × 3 frequencies and plot the corresponding modes for a square 
plate with ν = 0.3. (d) Write down the general free vibration response of the plate. 
 
 
 
 
 
 
 
 
    
 
 Figure E13.5-1   
Solution 
(a)  
The boundary conditions for the plate are, from Example 12.6,  
 

 
2 2

2 2
0

(0, , ) 0, (0, , ) 0xx
x

w ww y t M y t D
x y

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 (a-1,2) 

 

 
2 2

2 2( , , ) 0, ( , , ) 0xx
x a

w ww a y t M a y t D
x y

ν
=

ª º∂ ∂= = − + =« »∂ ∂¬ ¼
 (a-3,4) 

 

 
3 3

2 30
00

(2 ) 0yx
y yy

yy

M w wQ Q D
x y x y

ν
=

==

∂ª º ª º∂ ∂= + = − − + =« » « »∂ ∂ ∂ ∂¬ ¼¬ ¼
�  (a-5) 

 

 
2 2

2 2
0

( ,0, ) 0yy
y

w wM x t D
y x

ν
=

ª º∂ ∂= − + =« »∂ ∂¬ ¼
 (a-6) 

 

 
3 3

2 3(2 ) 0yx
y yy b

y by b

M w wQ Q D
x y x y

ν
=

==

∂ª º ª º∂ ∂= + = − − + =« » « »∂ ∂ ∂ ∂¬ ¼¬ ¼
�  (a-7) 

 

 
2 2

2 2( , , ) 0yy
y b

w wM x b t D
y x

ν
=

ª º∂ ∂= − + =« »∂ ∂¬ ¼
 (a-8) 

 
where we have employed Eqs. (12.111) and (12.112) in Eqs. (a-2), (a-4), (a-6) and 
(a-8), and we have incorporated Eqs. (12.100), (12.112) and (12.113) into Eqs. (a-5) 
and (a-7).   
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It follows from Eq. (12.106)2 and Eqs. (a-1) and (a-3) that 
 

 
2 2

2 2
0

0 (0 )
x x a

w w y b
y y= =

∂ ∂= = ≤ ≤
∂ ∂

 (b-1,2) 

 
Substitution of Eq. (13.64) and Eqs. (b-1) and (b-2) into Eqs. (a-1)–(a-8) gives the 
boundary conditions for the modal functions as 
 
 (0, ) 0 (0, ) 0 (0 )i tW y e W y y bω = � = ≤ ≤  � (c-1) 
 

 
2 2 2

2 2 2
0 0

0 0 (0 )i t

x x

W W WD e y b
x y x

ων
= =

ª º∂ ∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-2) 

 
 ( , ) 0 ( , ) 0 (0 )i tW a y e W a y y bω = � = ≤ ≤  � (c-3) 
 

 
2 2 2

2 2 20 0 (0 )i t

x a x a

W W WD e y b
x y x

ων
= =

ª º∂ ∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-4) 

  

 

3 3

2 3
0

(2 ) i t

y

W WD e
y x y

ων
=

ª º∂ ∂− − +« »∂ ∂ ∂¬ ¼
3 3

2 3
0

0

(2 ) 0 (0 )
y

W W x a
y x y

ν
=

=

ª º∂ ∂
� − + = ≤ ≤« »∂ ∂ ∂¬ ¼

 � (c-5) 

 

 

2 2

2 2
0

i t

y

W WD e
y x

ων
=

ª º∂ ∂− +« »∂ ∂¬ ¼
2 2

2 2
0

0

0 (0 )
y

W W x a
y x

ν
=

=

ª º∂ ∂
� + = ≤ ≤« »∂ ∂¬ ¼

 � (c-6) 

 

 

3 3

2 3(2 ) i t

y b

W WD e
y x y

ων
=

ª º∂ ∂− − +« »∂ ∂ ∂¬ ¼
3 3

2 3

0

(2 ) 0 (0 )
y b

W W x a
y x y

ν
=

=

ª º∂ ∂
� − + = ≤ ≤« »∂ ∂ ∂¬ ¼

 � (c-7) 

 

 

2 2

2 2
i t

y a

W WD e
y x

ων
=

ª º∂ ∂− +« »∂ ∂¬ ¼
2 2

2 2

0

0 (0 )
y b

W W x a
y x

ν
=

=

ª º∂ ∂
� + = ≤ ≤« »∂ ∂¬ ¼

 � (c-8) 
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(b) 
The portion of the analysis that pertains to the simply supported edges along x = 0 
and x = a, which involves imposition of Eqs. (c-1)–(c-4) above, follows directly 
from Eqs. (e)–(o) of Example 13.3 and yields 
 
 ( )4 5 6 7 8ˆ ˆ ˆ( , ) sin cosh sinh cos sinW x y A x A y A y A y A yα γ γ γ γ= + + +  (d) 
 
where 
 ˆ ˆ ( 1,2, )j j a jα α π= = = !  (e) 
 
It remains to assess the influence of the free edges at y = 0 and y = b. Imposing the 
conditions of Eqs. (c-5), (c-6), (c-7) and (c-8) on the form given by Eq. (d) yields the 
system of algebraic equations    
 
 { } { }2 2 2 2

6 8ˆ ˆ ˆ ˆ(2 ) (2 ) 0A Aγ γ ν α γ γ ν α− − − + − =  (f-1) 
 
 ( ) ( )2 2 2 2

5 7ˆ ˆ ˆ 0A Aγ να γ να− − + =  (f-2) 
 

 
{ }

{ }
2 2

5 6

2 2
7 8

ˆ(2 ) sinh cosh

ˆ ˆ ˆ ˆ ˆ(2 ) sin cos 0

A b A b

A b A b

γ γ ν α γ γ

γ γ ν α γ γ

ª º− − +¬ ¼
ª º+ + − − =¬ ¼

 (f-3) 

 

 
( )

( )
2 2

5 6

2 2
7 8

ˆ cosh sinh

ˆ ˆ ˆ ˆcos sin 0

A b A b

A b A b

γ να γ γ

γ να γ γ

ª º− +¬ ¼
ª º− + + =¬ ¼

 (f-4) 

 
Substituting Eqs. (f-1) and (f-2) into Eqs. (f-3) and (f-4) and expressing the resulting 
expressions in matrix form gives 
 

 
( )

( )
5

6

ˆ
ˆ ˆcosh cos sinh sinˆˆ 0

0ˆ ˆ ˆˆ ˆ ˆsinh sin cosh cos

HH b b H b F b
AF
AHH b F b H b b

F

γγ γ γ γ
γ

γ γ γ γ γ γ γ

ª º§ ·
− −« »¨ ¸¨ ¸  ½  ½« »© ¹ =® ¾ ® ¾« » ¯ ¿¯ ¿§ ·« »+ −¨ ¸« »© ¹¬ ¼

 (g) 

 
where 
 2 2ˆ( , )H H γ ν γ να= ≡ −  (h-1) 
 
 2 2ˆ ˆ ˆ( , )F F γ ν γ να= ≡ +  (h-2) 
 
 2 2 2 2ˆ ˆ ˆ ˆ ˆ( , ) (2 )H H γ ν γ να γ ν α= = − ≡ − −  (h-3) 
 
 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) (2 )F F γ ν γ να γ ν α= = + ≡ + −  (h-4) 
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For nontrivial solutions we require the determinant of the square matrix in Eq. (g) to 
vanish. This gives the transcendental equation 
 
 { } 1ˆ ˆ2 1 cosh cos sinh sin 0b b b bγ γ γ γ−ª º− + − =¬ ¼� �  (i) 

 
where 
 ˆ ˆˆHF HFγ γ=�  (j) 
 
The paramaters γ and γ̂ are expressed in terms of ω and the known parameter α̂  by 
the second and fourth relations of Eq. (13.86), respectively. Hence,  
 
 2ˆ ˆγ ω α= −  (k-1) 
and 
 2ˆγ ω α= +  (k-2) 
 
where α̂  is given by Eq. (e). (These same relations can also be obtained by direct 
substitution of ˆx iη α=  into Eq. (13.76) and solving for ηy.) Substitution of Eqs. (k-
1) and (k-2) into Eq. (i) yields the frequency equation for the plate. Hence,  
 

 

( ) ( ){ }
{ } ( ) ( )

2 2

4

ˆ ˆ2 1 1 cosh 1 cos 1

ˆ ˆ( 1) ( 1) sinh 1 sin 1 0

( 1, 2, )

j j j j j j

j j j j j j j

Z b b

Z b b

j

ω ω α ω α

ω ω ω α ω α

− − + −

+ + − − + − =

=

�
� � �

�
� � � �

!

 � (l) 

where 

 
(1 )

( ; ) ( 1, 2, )
(1 )

j
j j j

j

Z Z j
ω ν

ω ν
ω ν
ª º− −

= = =« »+ −« »¬ ¼

�� �
� !

�
 (m) 

and 

 
( )2 2 ( 1, 2, )

ˆ
j j

j
j

j
j a

ω ω
ω

α π
= = =� !  (n) 

 
The normalized natural frequency jω is related to its dimensional counterpart by Eq. 
(13.70). For each value of the index j, Eq. (l) will yield an infinity of roots, jlω�  (j = 1, 
2,..., l = 1, 2, ...). The corresponding natural modes are then 
 

( ) ( )( ) ( )( )
( )( ) ( )( ){ }

( )

2 2( )

2 2

( , )

sin cosh cos

sinh sin

( , 1, 2,3 )

jl

jl
jl jl jl

jl jl jl jl

W x y

A j x a Z j a y j a y

S j a y R j a y

j l

π ω π ω π

ω π ω π

=
ª + + −«¬

º+ + + − »¼
=

�

� �

!

 

   (o) 
where 
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 ( ){ } ( ){ }2 2 ( , 1,2,3 )jl jl jl jlR Z j a j a j lω π ω π= + − =
� �

!  (p) 

 

( )( ) ( )( )
( )( ) ( )( )

2 2

2 2

cosh cos
( , 1,2,3 )

sin sinh

jl jl jl

jl

jl jl jl jl

Z j a b j a b
S j l

R Z j a b j a b

ω π ω π

ω π ω π

ª º+ − −« »¬ ¼= =
− − +

�
�

!� �  (q) 

and Zjl is defined by Eq. (m).   
  
Beam modes: Consider the special case of a plate with vanishing Poisson's ratio (ν = 
0). For this case, it is seen that  1jω =�  is a root of Eq. (l) and thus, from Eq. (n), that 
 
 ( )22ˆ ( 1, 2, )j j j a jω α π= = = !  (r) 
 
It is also seen from Eqs. (m), (p) and (q) that, 0 0 0 0j j jZ R S= = =

�� �
 for this root, and 

thus that 
 
 ( )( 0) ( 0)( , ) sinj jW x y A j x aπ=  ( 1,2, )j = ! � (s)                                                     
 
These frequencies and modal functions correspond to the natural frequencies and 
natural modes for a simply supported beam. (See Example 10.6.)  
 We next evaluate several roots of Eq. (l), and hence, several natural frequencies 
of the simply supported/free Kirchhoff plate. We also plot the corresponding modes. 
 
 (c) 
The first 3 × 3 natural frequencies for a square  plate are summarized in Table E13.5. 
The corresponding modes are displayed in Figures E13.5-2, E13.5-3 and E13.5-4. 
 
(d) 
Substitution of Eq. (o) into Eq. (13.92) gives the free vibration response of the simp-
ly supported/free Kirchhoff plate as 
 

( )

( )( ) ( )( )
( )( ) ( )( ){ }

( )

1 0

2 2

2 2

( , ) cos( )sin

cosh cos

sinh sin

jl
jl jl

j l

jl jl jl

jl jl jl jl

w x t A t j x a

Z j a y j a y

S j a y R j a y

ω φ π

ω π ω π

ω π ω π

∞ ∞

= =

= −

ª× + + −«¬
º+ + + − »¼

¦¦
�

� �

  

  � (t) 
 Table E13.5  The first 3 × 3 natural frequencies for a square Kirchhoff plate (ν = 0.3). 

j 1 0jω ω  2 0jω ω  3 0jω ω  
1 16.13 36.73 75.28 
2 46.74 70.74 111.0 
3 96.04 122.0 164.7 

www.konkur.in



13│ Free Vibration of Two-Dimensional Continua 777 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure E13.5-2  Modes W(11), W(12) and W(13). 
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 Figure E13.5-3  Modes W(21), W(22) and W(23). 

0
0��

0��
0��

0��
�

0

0��

0��

0��

0��

�

 

 

0

 

 

[�/
\�/

W (21)

0
0��

0��
0��

0��
�

0

0��

0��

0��

0��

�

 

 

0

 

 

[�/
\�/

W (22)

0
0��

0��
0��

0��
�

0

0��

0��

0��

0��

�

 

 

0

 

 

[�/
\�/

W (23)

www.konkur.in



13│ Free Vibration of Two-Dimensional Continua 779 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure E13.5-4  Modes W(31), W(32) and W(33). 
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13.4.2  Circular Plates 

For plates with circular geometries it is advantageous to express the problem in terms of 
cylindrical-polar coordinates. In this case, we assume a solution of the form 
 
 ( , , ) ( , ) i tw r t W r e ωθ θ=  (13.93) 
 
Substitution of Eq. (13.93) into Eq. (13.63) yields the eigenvalue problem 
 
 2 2 2 0D m Wωª º∇ ∇ − =¬ ¼  (13.94) 

where 

 
2

2
2 2

1 1r
r r r r θ

∂ ∂ ∂§ ·∇ = +¨ ¸∂ ∂ ∂© ¹
 (13.95) 

 
As for rectangular plates, we shall normalize the length scales with respect to a characteris-
tic length, say the (outer) radius, R, of the plate. We thus introduce the non-dimensional 
radial coordinate,  
 r r R=  (13.96) 
 
and the non-dimensional transverse deflection 
 
 w w R=  (13.97) 
 
The eigenvalue problem of Eq. (13.94) then takes the form 
 
 2 2 2 0Wωª º∇ ∇ − =¬ ¼  (13.98) 

 
where 
 ( , ) ( , )W r W r Rθ θ=  (13.99) 
 
and  

 
2

2
2 2

1 1r
r r r r θ

∂ ∂ ∂§ ·∇ = +¨ ¸∂ ∂ ∂© ¹
 (13.100) 

 
is the non-dimensional Laplacian. As for rectangular plates, Eqs. (13.70)–(13.72), 
 
 ( )22

0ω ω ω=  (13.101) 
 
is the normalized frequency, where 
 

 ( )

1
23

0 4 212 1
D E mR h

RmR
ω

ν

ª º§ ·« »= = ¨ ¸−« © ¹ »¬ ¼
 (13.102) 
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h is the thickness of the plate, and 
 
 
 0t tω=  (13.103) 
 
is the corresponding normalized time. 
 To solve the free vibration problem, we note that Eq. (13.98) can be written as 
 
 ( )( ) ( )( )2 2 2 2 0W Wω ω ω ω∇ − ∇ + = ∇ + ∇ − =  (13.104) 

 
Thus, functions that satisfy 
 ( )2 0Wω∇ + =  (13.105) 

 
and functions that satisfy 
 ( )2 0Wω∇ − =  (13.106) 

 
will each be solutions to Eq. (13.104), and hence to Eq. (13.98). The solution for a particu-
lar value of ω will then be comprised of the sum of both corresponding solutions. Now, 
Eqs. (13.105) and (13.106) are of the same form as Eq. (13.49) for ideal membranes, with 
β 2 = ω and β 2 = −ω, respectively. (See Section 13.3.2.) We can thus adopt those solutions 
directly. This gives the general form of the modal functions as 
 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( , ) ( ) ( ) ( ) ( )

cos sin

( 0,1,2...)

n n n n n
J n n Y n n I n n K n n

n n
c s

W r C J r C Y r C I r C K r

A n A n

n

θ β β β β

θ θ

ª º= + + +¬ ¼
ª º× +¬ ¼

=

 (13.107) 

where 
 n nβ ω=  (13.108) 
 
In Eq. (13.107), ( )n nJ rβ  and ( )n nY rβ  are Bessel functions, of order n, of the first and se-
cond kind, respectively, and ( ) ( )n n n nI r J i rβ β= and ( ) ( )n n n nK r Y i rβ β= are Modified 
(Hyperbolic) Bessel functions, of order n, of the first and second kind, respectively. The 
constants of integration, as well as the natural frequencies, are found by imposing the 
boundary conditions associated with the geometry and support conditions of the specific 
structure of interest. 

Solid Plates 
For plates that are solid through the origin, special boundary conditions apply. The func-
tions ( )n nY rβ and ( )n nK rβ appearing in Eq. (13.107) are singular at the origin. Thus, for 
the deflections of the plate to remain finite, we require that the coefficients of ( )n nY rβ  and 

( )n nK rβ  vanish. That is, on physical grounds we have, from the “boundary conditions” at 
the origin for solid plates that 
 
 ( ) ( ) 0 ( 0,1,2, )n n

Y KC C n= = = !  (13.109) 
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Hence, for solid plates (only) – plates that occupy the origin (r = 0) – the general form of 
the modal function reduces to the form 
 
 ( ) ( ) ( ) ( ) ( )( , ) ( ) ( ) cos sin ( 0,1, 2...)n n n n n

J n n I n n c sW r C J r C I r A n A n nθ ω ω θ θª º ª º= + + =¬ ¼¬ ¼  

  (13.110) 
 
The remaining constants are determined from the support conditions of the plate of interest. 
 
 

 

Example 13.6 
Consider a solid circular plate of radius R, that is clamped around its outer edge 
(Figure E13.6-1). (a) Determine the frequency equation and general form of the 
modal functions. (b) Evaluate the first 4 × 3 frequencies and modal functions, and 
plot the latter. (c) Determine the general free vibration response of the structure. 

 Figure E13.6-1 
 
Solution  
(a) The conditions at the external boundary of the plate are 
 
 ( , , ) ( , ) 0 ( , ) 0 (1, ) 0i t

r R
w r t W R e W R Wωθ θ θ θ= = = � = ↔ =  (a) 
 

 
1

0 0 0 0i t

r R r R r R r

w W W We
r r r r

ω

= = = =

∂ ∂ ∂ ∂= � = � = ↔ =
∂ ∂ ∂ ∂

 (b) 

 
Imposing conditions (a) and (b) on Eq. (13.110) yields the coupled equations 
 

 
( )

{ } { }
( )

( )
1 1 1 1

( ) 0
( ) ( ) ( ) ( ) 0

( 0,1,2...)

n
n n n n J

n
n n n n n n n n n n I

J I C
J J I I C

n

β β
β β β β β β− + − +

ª º  ½  ½° ° =® ¾ ® ¾« »− + ° ° ¯ ¿¯ ¿¬ ¼
=

 (c) 

  
where β ω= . For non-trivial solutions, the determinant of the square matrix of 
Eq. (c) must vanish. Imposing this condition yields the frequency equation for the 
plate as  
  
 { } { }1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) 0n n n n n n n n n n n n nJ I I I J Jβ β β β β β β− + − ++ − − =ª º¬ ¼  � (d) 
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where βn = 0  corresponds to the rigid body mode. Equivalently, the frequency equa-
tion takes the form 
 

 
[ ] [ ]1 1( ) ( ) ( ) ( ) ( ) ( ) 0

( 0,1,2...)
n n n n n n n n n n n n n nJ nI I I nJ J

n
β β β β β β β β+ ++ − − =

=
 � (e) 

 
Solution of Eq. (d) or (e) yields a set of natural frequencies for each value of n, 
 
 2 ( 1, 2, )nj nj jω β= = !  (f) 
 
We do this next using root solving techniques. 
 
(b) 
The natural frequencies of the plate are found using the MATLAB routine “fzero.” 
The first 4 × 3 frequencies are displayed in Table E13.6. The corresponding modal 
functions are then, from Eq. (c-1), 
 

( ) ( ) ( ) ( )( , ) ( ) ( ) ( ) ( ) cos sin

( 0,1,2, ; 1, 2, )

nj nj n n
n nj n nj n nj n nj c sW r C I J r J I r A n A n

n j

θ β β β β θ θª ºª º= − +¬ ¼ ¬ ¼
= =! !

 

  � (g)  
 
where, it is seen that the rigid body modes vanish, as they should for the given sup-
port conditions. That is, 
 
 ( 0) ( , ) 0 ( 1, 2,3, )nW r jθ = = !  (h) 
 
 
(c) 
The steady state response of the plate then follows from Eq. (13.110) as 
 

{ }

{ } ( )

( ) ( )

1 1

( , , ) cos sin

( ) ( ) ( ) ( ) cos

nj nj
c s

n j

n nj n nj n nj n nj nj nj

w r t A n A n

I J r J I r t

θ θ θ

β β β β ω φ

∞ ∞

= =

= +

× − −

¦¦  

   � (i) 
 
 
 

 Table E13.6  The first 4 × 3 natural frequencies for a clamped circular Kirchhoff Plate. 
n 1 0nω ω  2 0nω ω  3 0nω ω  
0 10.22  39.77  89.10  
1 21.26  60.83  120.1 
2 34.88  84.58  153.8  
3 51.03  111.0  190.3  
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 Figure E13.6-2  Selected modes for a clamped circular Kirchhoff plate. 
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13.5  FREE VIBRATION OF UNIFORMLY STRETCHED VON KARMAN 
PLATES 

In this section, we consider the free vibration of isotropic von Karman plates subjected to 
uniform membrane force. That is, we consider the transverse vibrations of geometrically 
nonlinear plates for the special case where Nxx(x,y,t) = Nyy(x,y,t) = N0 throughout the plate, 
where N0 is independent of the spatial coordinates, as discussed in Section 12.3.5. For this 
structure, and this situation, the equation of transverse motion is obtained directly from Eq. 
(12.194) upon setting 0q − ∇ =

G
<b . This, gives the equation of free vibration as 

  

 ( )
2

2 2
02 0wm D N w

t
∂ + ∇ − ∇ =
∂

 (13.111) 

 
To solve the free vibration problem, we first assume a solution of the form 
 
 ( , , ) ( , ) i tw x y t W x y e ω=  (13.112) 
 
Substitution of Eq. (13.112) into Eq. (13.111) results in the eigenvalue problem 
 
 ( )2 2 2

0 0D N m Wωª º∇ − ∇ − =¬ ¼  (13.113) 

 
It is advantageous to normalize the problem before proceeding. This will minimize the 
number of free parameters and quantify appropriate scaling, as well as simplify the analysis. 
Normalizing length scales with respect to some characteristic length, L, of the plate (say the 
length of an edge, the diameter of the structure, or the thickness of the plate) yields the non-
dimensional form of the eigenvalue problem as 
 
 ( )2 2 2

0 0N Wωª º∇ − ∇ − =¬ ¼  (13.114) 

 
where, for Cartesian coordinates x and y, 
 
 ,x x L y y L= =  (13.115) 
 
are the normalized spatial coordinates, 
 
 ( , ) ( , )W x y W x y L=  (13.116) 
 
is the non-dimensional modal function, 
 

 
2

0
0

N LN
D

=  (13.117) 

 
is the normalized (uniform) membrane force, 
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2 2

2
2 2x y

∂ ∂∇ = +
∂ ∂

 (13.118) 

 
is the non-dimensional Laplacian, 
 
 0ω ω ω=  (13.119) 
 
is the normalized natural frequency, and 
 

 ( )

1
23

0 4 212 1
D E mL h

LmL
ω

ν

ª º§ ·« »= = ¨ ¸−« © ¹ »¬ ¼
 (13.120) 

 
is a parameter that possesses units of frequency and depends upon the material and geome-
try of the structure. The associated natural time scale is then 
 
 0t tω=  (13.121) 
 
To solve Eq. (13.114) let us first assume a solution of separable form. Hence, let 
 
 ( , ) ( ) ( )W x y X x Y y=  (13.122) 
 
Substitution of Eq. (13.122) into Eq. (13.114) renders the eigenvalue problem to the form 
 

 2
0

( ) ( ) ( ) ( ) ( ) ( )2
( ) ( ) ( ) ( ) ( ) ( )

X x X x Y y Y y X x Y yN
X x X x Y y Y y X x Y y

ω′′′′ ′′ ′′ ′′′′ ′′ ′′ ½+ + − + =® ¾
¯ ¿

 (13.123) 

 
Let us next assume solutions of the form 
 
    ( ) ( ) yx yxX x Y y Ae eηη=  (13.124) 
 
Substitution of Eq. (13.124) into Eq. (13.123) gives 
 
 4 2 2

0 0Nη η ω− − =  (13.125) 
where 
 2 2 2

x yη η η= +  (13.126) 
 
Solving Eq. (13.125) for η2 yields 
 
 2 2 2 2,x y a bη η β β+ = −  (13.127) 
where 

 2 0

2a
Nλβ +=  (13.128) 
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 2 0

2b
Nλβ −=  (13.129) 

and 
 ( ) 2 2

0 0; 4N Nλ λ ω ω= = +  (13.130) 

 
It is seen from Eqs. (13.128)–(13.130) that βa

2 > 0 and βb
2 > 0. Now, as for Kirchhoff 

plates, Eq. (13.124) is satisfied by both real and imaginary exponents. Hence,  
 

 
ˆ,
ˆ,

x

y

i
i

η α α
η γ γ

= ± ±
= ± ±

 (13.131) 

 
It then follows from Eqs. (13.127) and (13.131) that 
 

 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

ˆ ˆ, ,
ˆ ˆ or  ,
ˆ ˆ  or  

a b

a b

a b

α γ β α γ β
α γ β γ α β
γ α β α γ β

+ = + =
− = − =
− = − =

 (13.132) 

 
It is seen that the relations between the exponents given in Eq. (13.132) are not all mutually 
compatible. This has ramifications similar to those for the analogous situation for Kirchhoff 
plates discussed in the previous section. The general solution for the modal function follows 
from Eqs. (13.124) and (13.131) as 
 

 
[ ]

[ ]
1 2 3 4

5 6 7 8

ˆ ˆ( , ) cosh sinh cos sin
ˆ ˆcosh sinh cos sin

W x y A x A x A x A x

A y A y A y A y

α α α α
γ γ γ γ

= + + +
× + + +

 (13.133) 

 
 Before proceeding, it is useful to note that the solution to the eigenvalue problem can 
also be obtained using an alternate approach. In this regard, Eq. (13.114) can be rewritten in 
the form 
 
 ( )( ) ( )( )2 2 2 2 2 2 2 2 0a b b aW Wβ β β β∇ − ∇ + = ∇ + ∇ − =  (13.134) 

 
where βa

2, βb
2 and λ are given by Eqs. (13.128), (13.129) and (13.130), respectively. It fol-

lows that functions that satisfy 
 
 ( ){ }22 0ai Wβ∇ + =  (13.135) 

or 
 { }2 2 0b Wβ∇ + =  (13.136) 

 
are solutions to Eq. (13.134). The general solution will be a linear combination of all such 
solutions. Equation (13.136) is seen to be of the identical form of Eq. (13.23). We can thus 
adopt the pertinent solutions directly, with appropriate interpretation of the parameters βa 
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and βb.  Doing this gives the general solution for a rectangular plate in the form of Eq. 
(13.133). 
 
 

Example 13.7 
Consider the rectangular von Karman plate whose sides are of length a and b, where 
each edge of the plate is simply supported. (a) Determine natural frequencies of the 
plate and the corresponding natural modes, if the plate maintains a uniform mem-
brane force of magnitude N0 (Figure E13.7). Evaluate the first 3 × 3 frquencies for 
the case when 0 .10N =  (b) Determine the general form of the free vibration re-
sponse. 

 Figure E13.7 
 
Solution 
(a) 
The boundary conditions for this particular problem are identical to those for the 
simply supported Kirchhoff plate of Example 13.3. Substituting the general form of 
the modal function given by Eq. (13.133) and proceeding as in Example 13.3 gives 
 

 ˆ ˆ ˆsin 0 ( 1,2, )j
ja j
a
πα α α= � = = = !  (a) 

 ˆ ˆ ˆsin 0 ( 1, 2, )l
lb l
b
πγ γ γ= � = = = !  (b) 

and 
 

 ( ) ( )( , ) sin sin ( , 1,2,3, )jl jl j x l yW x y A j l
a b
π π§ · § ·= =¨ ¸ ¨ ¸

© ¹ © ¹
!  � (c) 

 
Substitution of Eqs. (a), (b) and (13.129) into Eq. (13.132)2 and solving for jlω  
yields the non-dimensional natural frequencies. Hence,  
 

 
2 2 2 2

0 ( , 1,2,3 )jl
j l j lN j l
a ab b
π π π πω

ª º ½  ½° ° ° °§ · § · § · § ·= + + + =« »® ¾ ® ¾¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹« »° ° ° °¯ ¿ ¯ ¿¬ ¼

!  � (d) 
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It is seen that as 0 0N →  
 

 
2 2

( , 1,2,3 )jl
j l j l
a b
π πω § · § ·→ + =¨ ¸ ¨ ¸

© ¹ © ¹
!  (e) 

 
Upon comparison of Eqs. (d) and (e) with the corresponding frequencies of the simp-
ly supported Kirchhoff plate of Example 13.3, it is seen that the effect of  the mem-
brane force is to increase the natural frequencies, as may have been anticipated on 
physical grounds. The values for a square plate (b = a = L ) with a normalized mem-
brane force of 0 10N =  are summarized in Table E13.7 for comparison. The dimen-
sional form of the natural frequencies are then, from Eqs. (d), (13.115), (13.117) and 
(13.119),  
 

 
2 2 2 2

2 0
0 ( , 1, 2,3 )jl

Nj l j lL j l
a b D a b
π π π πω ω

ª º ½  ½° ° ° °§ · § · § · § ·= + + + =« »® ¾ ® ¾¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹« »° ° ° °¯ ¿ ¯ ¿¬ ¼

!  

    � (f) 
 
The dimensional modal functions similarly follow from Eq. (13.116) as 
  

 ( ) ( )( , ) sin sin ( , 1, 2,3, )jl jl j x l yW x y A j l
a b
π π§ · § ·= =¨ ¸ ¨ ¸

© ¹ © ¹
!   � (g) 

 
 

 Table E13.7  
  The first 3 × 3 natural frequencies for a square von Karman plate ( 0 10N = ). 

n 1 0jω ω  2 0jω ω  3 0jω ω  

1 24.23 54.12  103.6  
2 54.12  83.81 133.2  
3 103.6  133.2  182.6  

 
 
(b) 
The general form of the free vibration response for the simply supported von Kar-
man plate is obtained by substituting Eq. (g) into Eq. (13.92). This gives the trans-
verse deflection of the plate as 
 

 ( )( )

1 1

( , , ) sin sin cosjl
jl jl

j l

j x l yw x y t A t
a b
π π ω φ

∞ ∞

= =

§ · § ·= −¨ ¸ ¨ ¸
© ¹ © ¹¦¦  � (h) 

 
where ωjl is given by Eq. (f) and the modal amplitudes and phase angles, ( )jlA and φjl 
(j,l = 1, 2, 3, ...), are determined from initial conditions. 
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13.6  FREE VIBRATION OF MINDLIN PLATES 

In this section we consider free vibration of isotropic Mindlin plates. Toward this end, a 
general analytical solution, as well as the associated frequency spectrum, is developed and 
applied to specific examples. Recall from the discussion of Section 12.3.4 that Mindlin 
plates are the two-dimensional abstractions of Timoshenko beams. That is, Mindlin plates 
include the effects of transverse shear deformation and of the rotatory inertia of the cross 
section. 
  

13.6.1  The General Solution 

The equation of motion for free vibration of an isotropic Mindlin plate follows directly 
from Eq. (12.169) for vanishing external excitation (F = 0). Thus, for free vibrations of a 
Mindlin plate, 
 

 
2

2t
∂ + =
∂

um ku 0  (13.137) 

where 
 

 2

2

0 0
0 0
0 0

gyr

gyr

m
mr

mr

ª º
« »= « »
« »¬ ¼

m  (13.138) 

 

 { }
{ }

(1 ) (1 )

2 2

(1 ) (1 )

2 2

Q Q Q Q

Q Q

Q Q

k k k k
x x y y x y

D D
k k D D

x x x y y x y y x

D D
k D k D

y x y y x x x y y

ν ν
ν

ν ν
ν

∂ ∂ ∂ ∂ ∂ ∂
− +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ − ∂
− − + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ − ∂ ∂ ∂ ∂ − ∂ ∂ ∂
− − + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

ª º§ ·¨ ¸« »© ¹« »
« »§ · § ·= ¨ ¸ ¨ ¸« »© ¹ © ¹« »
« »§ · § ·¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

k  

  (13.139) 
 
and 

 
( , , )
( , , )
( , , )

x

y

w x y t
x y t
x y t

ϕ
ϕ

 ½
° °= ® ¾
° °
¯ ¿

u  (13.140) 

 
In the above matrices, m is the mass per unit area of the centroidal surface of the plate, rgyr 
is the radius of gyration of the cross section, D is the bending stiffness of the plate, ν is 
Poisson's ratio, and 
 
 Qk hG= k  (13.141) 
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is the shear stiffness, where h is the thickness of the plate, G is the shear modulus, E is 
Young's modulus, and k is the shear coeffient. In addition, w is the transverse deflection of 
the centroidal surface of the plate, ϕx is the rotation due to bending of the cross section 
whose normal is parallel to the x-axis, and ϕy is the corresponding rotation of the cross sec-
tion whose normal is parallel to the y-axis. 
 To solve the free vibration problem, we first assume a solution to Eq. (13.137) of the 
form 
 
 ( , , ) ( , ) i tx y t x y e ω=u U  (13.142) 
 
where 

 
( , )
( , )
( , )

x

y

W x y
x y
x y

ϑ
ϑ

 ½
° °= ® ¾
° °
¯ ¿

U  (13.143) 

 
Substitution of Eq. (13.142) into Eq. (13.137)  results in the corresponding eigenvalue prob-
lem 
 
 2ωª º− =¬ ¼k m U 0  (13.144) 

 
where W, ϑx and ϑy are the modal deflection and rotations in the directions indicated by the 
subscripts, respectively. 
 To solve the eigenvalue problem, it is advantageous to recast it in a non-dimensional 
form. Toward this end, we introduce the scaled coordinates 
 
 ,x x L y y L= =  (13.145) 
 
where L is some characteristic length of the plate, say the length of an edge or of a diagonal, 
or the thickness. We also introduce the corresponding non-dimensional modal deflection, 
 
 ( , ) ( , )W x y W x y L=  (13.146) 
 
and the non-dimensional Laplacian 
 

 
2 2

2
2 2x y

∂ ∂∇ = +
∂ ∂

 (13.147) 

 
In addition, we introduce the associated natural time scale 
 
 0ˆt tω=  (13.148) 
 
where 
 0 0ˆ kω ω=  (13.149) 
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and 

 0 4

D
mL

ω =  (13.150) 

 
is the time scale factor for a Kirchhoff plate, as defined by Eq. (13.71). The non-
dimensional form of the eigenvalue problem for an isotropic plate then takes the form 
 
 2ωª º− =¬ ¼k m U 0  (13.151) 

 
or, explicitly, 

 

( )2 2

2 2 2

2 2

2 2

2 2 2

2 2

2 2

1 1 1
1

2 2

1 1 1
1

2 2

0
0
0

gyr

gyr

x

y

x y

r
x k k x yx y

r
y k x y k x y

W
ω

ν ν
ω

ν ν
ω

ϑ
ϑ

∂ ∂
− ∇ +

∂ ∂

∂ ∂ − ∂ + ∂
− − + − −

∂ ∂ ∂∂ ∂

∂ + ∂ − ∂ ∂
− − − + −

∂ ∂ ∂ ∂ ∂

ª º
« »
« »  ½  ½« » ° ° § · ½ ° °=« »® ¾ ® ¾ ® ¾¨ ¸

¯ © ¹ ¿« » ° ° ° °
¯ ¿¯ ¿« » § · ½« »® ¾¨ ¸« »¯ © ¹ ¿¬ ¼

  (13.152) 
 
which, when expanded, takes the form 
 

 

( )2 2

22 2
2 2

2 2

2 2 2
2 2

2 2

0

1 1 11 0
2 2

1 1 11 0
22

yx

y
gyr x

x
gyr y

W
x y

W r
x x yx yk k

W r
y x y x yk k

ϑϑω

ϑν νω ϑ

ϑν ν ω ϑ

∂∂− ∇ + + + =
∂ ∂

∂ ½§ ·∂ ∂ − ∂ +° °− + − + − − =® ¾¨ ¸∂ ∂ ∂∂ ∂° °© ¹¯ ¿
 ½§ ·∂∂ + − ∂ ∂° °− − + − + − =® ¾¨ ¸∂ ∂ ∂ ∂ ∂° °© ¹¯ ¿

 (13.153) 

 
where 
 0ˆω ω ω=  (13.154) 
 
is the non-dimensional natural frequency, and 0ω̂ is given by Eq. (13.149). In addition, 
 

 
2

2
2

12(1 )
Qk k L D

Eh
ν−= =  (13.155) 

 
is the non-dimensional shear stiffness, 
 
 E E G= k  (13.156) 
 
is the normalized elastic modulus,  
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 h h L=  (13.157) 
 
is the normalized thickness of the plate and 
 
 gyr gyrr r L=  (13.158) 
 
is the non-dimensional radius of gyration.  

To solve the non-dimensional eigenvalue problem we abstract our approach for Ti-
moshenko beams (Section 10.6). We thus assume a solution in the form 
 

 ( , ) ( ) ( ) yx yx

A A
x y B X x Y y B e e

C C

ηη

 ½  ½
° ° ° °= =® ¾ ® ¾
° ° ° °
¯ ¿ ¯ ¿

U  (13.159) 

 
Substitution of Eq. (13.159) into Eq. (13.152) yields the algebraic system 
 

 

( ){ }2 2 2

0
1 0
2

01
2

x y x y

x xy x y

y x y yx

A
F B

k
C

F
k

η η ω η η

νη η η

νη η η

ª º− + +« »  ½  ½« »+ ° ° ° °« »− − =® ¾ ® ¾« » ° ° ° °« » ¯ ¿¯ ¿+« »− −
¬ ¼

 (13.160) 

 
where 

 2 2 2 21 11
2xy gyr x yF r

k
νω η η−§ ·= − − +¨ ¸

© ¹
 (13.161) 

and 

 2 2 2 21 11
2yx gyr y xF r

k
νω η η−§ ·= − − +¨ ¸

© ¹
 (13.162) 

 
It is readily shown that 
 

 2 2
0

(1 ) (1 ) ( , ; )
2 2xy y yx x x yF F

k k
ν νη η η η ω+ +− = − = �  (13.163) 

and 

 2 2
0

(1 ) (1 ) ( , ; )
2 2xy x yx y x yF F

k k
ν νη η η η ω+ ++ = + = (  (13.164) 

where 

 ( )2 2 2 2
0

1( , ; ) (1 )x y x yr
k

η η ω ω η η= − − +�  (13.165) 

and 

 ( )2 2 2 2
0

(1 )( , ; ) (1 )
2x y x yr

k
νη η ω ω η η−= − − +(  (13.166) 
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To initiate the solution of Eq. (13.160), we multiply the second line of that equation by ηx 
and the third line by ηy. We next take the difference between the resulting expressions. This 
gives 
 0 0y xB Cη ηª º− =¬ ¼(  (13.167) 
Thus,  
 0 0    or    0y xB Cη η= − =(  (13.168) 
 
We consider the latter case first. 

Case 1: 
We first consider the case where 

 
 0y xB Cη η− =  (13.169) 
 
Substituting Eq. (13.169) into the first equation of Eq. (13.160) gives 
 
 ( ) ( )2 2 2 2 2 0x y x x yA Bη η ω η η η− + + + + =  (13.170) 

 
Substituting Eq. (13.169) into the second equation of Eq. (13.160), incorporating Eq. 
(13.163), and multiplying the resulting expression by ( )2 2 2

x yη η ω+ +  gives 
 
 ( ) ( )2 2 2 2 2 2

0 0x y x x yA Bη η ω η η η ω− + + + + + =�  (13.171) 

 
Now, subtracting Eqs. (13.170) from Eq. (13.171) yields the identity 
 
 ( ) ( )2 2 2 2 2

0 0x y x y Bη η ω η ηª º+ + − + =¬ ¼�  (13.172) 

 
For nontrivial solutions, the expression in brackets must vanish. Setting that expression to 
zero and rearranging terms results in the polynomial 
 
 ( ) ( )2 22 2 2 21 0gyr gyrkr k rλ λ ω −ª º ª º+ + − − =¬ ¼¬ ¼  (13.173) 

where 

 
2 2

2
2

x yη η
λ

ω
+

≡  (13.174) 

 
Solving Eq. (13.173) for λ2 gives the relations between the spatial exponents and the natural 
frequencies for this case as 
 

 
2 2 2

2 2 2

x y a

x y b

R

R

η η ω
η η ω

+ =

+ = −
 (13.175) 

where 
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( ) ( )

( ) ( )

2 22 2

2 22 2

1( ) 1 4 1
2
1( ) 1 4 1
2

a a gyr gyr

b b gyr gyr

R R kr k kr

R R kr k kr

ω ω

ω ω

−

−

ª º= = − + − +« »¬ ¼
ª º= = − + + +« »¬ ¼

 (13.176) 

 
It is seen that Rb > Ra > 0. Thus, for real and imaginary exponents, 
 
 ˆ ˆ, , ,x yi iη α α η γ γ= ± ± = ± ±  (13.177) 
 
where α, γ, α̂ and γ̂ are real, it follows from Eq. (13.175) that admissible relations between 
these exponents are 
  

 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

ˆ ˆ, ,
ˆ ˆ or  ,
ˆ ˆ  or  

a b

a b

a b

R R
R R
R R

α γ ω α γ ω
α γ ω γ α ω
γ α ω α γ ω

+ = + =
− = − =
− = − =

 (13.178) 

 
Of these relations, only one associated with Ra and one associated with Rb can hold for a 
given structure without violating the condition that α, γ, α̂ and γ̂ are each real. Finally, sub-
stituting Eq. (13.169) into the first equation of Eq. (13.160) and solving for B and C in 
terms of A  gives 
 ( , ; )x x yB g Aη η η ω=  (13.179) 
 and 
 ( , ; )y x yC g Aη η η ω=  (13.180) 
where 

 
2 2 2

2 2( , ; ) x y
x y

x y

g
η η ω

η η ω
η η

+ +
=

+
 (13.181) 

Case 2: 
We next consider the remaining condition specified in Eq. (13.168); 
 
 0 ( , ; ) 0x yη η ω =(  (13.182) 
 
We thus have, from Eqs. (13.166) and (13.182), that 
 
 2 2

x y cRη η+ =  (13.183) 
where 

 2 22( ) 1
(1 )c c gyr

kR R rω ω
ν

ª º= = −¬ ¼−
 (13.184) 

 
Thus, for real and imaginary exponents, 
 
 ˆˆ, ; ,x yi iη µ µ η β β= ± ± = ± ±  (13.185) 
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The admissible relations between the natural frequencies and the real and imaginary expo-
nents for this case follow from Eq. (13.183). Hence, 
 
when ( )2 2 1 0gyr cr Rω < > : 
 
 ( ) ( )2 2 2 2 2 2 2 2 2 2ˆ ˆ ˆ ˆ, ,c c cR R Rµ β µ β µ β β µ β µ+ = − = > − = >  (13.186) 

 
when ( )2 2 1 0gyr cr Rω > < : 
 
 ( ) ( )2 2 2 2 2 2 2 2 2 2ˆ ˆ ˆˆ ˆ ˆ, ,c c cR R Rµ β µ β µ β β µ β µ+ = − = < − = <  (13.187) 

 
      We next evaluate the relations between the constants of integration for this case. Solv-
ing the first equation of Eq. (13.160) for C and substituting the resulting expression along 
with Eqs. (13.166) and (13.182) into the second equation of Eq. (13.160) results in the 
statement 

 ( )2 2 211 0
2x x yA

k
νη η η ω+ª º+ + + =« »¬ ¼

 (13.188) 

 
The identical relation, with ηx replaced by ηy, results upon operating on the third equation 
of Eq. (13.160) in lieu of the second equation in the preceding calculation. Since Mindlin 
plate theory does not allow for thickness deformations, the exponents ηx  and ηy will not 
vanish simulatenously, except for rigid body motion or as a limiting case. Therefore, for Eq. 
(13.188) to be satisfied, either A must vanish or the expression within the square brackets 
must vanish. Letting the latter vanish and solving the resulting equation simultaneously 
with Eq. (13.182) results in the wave number parameter, η2 = ηx

2 + ηy
2, and the frequency 

being mutually independent. We dismiss this possibility on physical grounds and, therefore, 
conclude that 
 0A =  (13.189) 
 
for this case. Substituion of Eq. (13.189) into the first equation of Eq. (13.160) results in the 
relation between the remaining coefficients, 
 
 0x yB Cη η+ =  (13.190) 
 
Equations (13.189) and (13.190) specify the relations between the coefficients of the trans-
verse deflection and the two bending rotations for Case 2. With the general form of the ex-
ponents and their relations ascertained, as well as the relations between the coefficients for 
the two rotation functions and the displacement function for both Case 1 and Case 2, we 
proceed to establish the explicit forms of the transverse deflection and rotations for vibrat-
ing Mindlin plates. 
 
The General Solution  
Substitution of the exponents described by Eqs. (13.178) and Eq. (13.186) or Eq. (13.187)  
into the assumed form of the solution given by Eq. (13.159), and superposing all such solu-
tions, gives the general form of the modal functions. Each combination of the exponents 
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described by Eq. (13.177) and Eq. (13.185) yields a solution of the form of Eq. (13.159). 
The general solution consists of a linear combination of all such solutions. However, not all 
are required to form a basis. The exponents described by Eq. (13.177) yield eight such solu-
tions, as do the exponents described by Eq. (13.185). However, as discusssed in Section 12. 
3.4, only twelve boundary conditions can be specified for a Mindlin plate. It was seen earli-
er in this section that the constants A associated with the solutions for Case 2, those associ-
ated with the exponents described by Eq. (13.185), all vanish. It was established in Section 
12.3.4 that the boundary conditions associated with the transverse displacement, w, or the 
transverse shear, Qn = kQ [(∂w/∂n) − ϕn], must be specified along each boundary of the 
plate. Therefore, all eight of the solutions associated with the exponents of Eq. (13.177) 
must be included in the general solution. This leaves four solutions from the group generat-
ed by the exponents of Eq. (13.185) to be included in the general solution. The solutions 
associated with ηx imaginary and ηy real, ˆx iη µ= ±  and ,yη β= ±  are incorporated in what 
follows. The other possible solutions (exponents both real, or both imaginary, or ηx real and 
ηy imaginary) are readily generated from this one with suitable changes of parameters, 
when needed. 
 Superposing all pertinent solutions as described above yields the general solution for 
the Mindlin plate. Hence1,  
 

 

1 2 3 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

5 6 7 8
ˆ ˆ ˆ ˆ

9 10 11 12
ˆ ˆ ˆ ˆ

13 14 15 16

( , ) x y x y x y x y

i x i y i x i y i x i y i x i y

x i y x i y x i y x i y

i x y i x y i x y i

W x y A e e A e e A e e A e e

A e e A e e A e e A e e
A e e A e e A e e A e e

A e e A e e A e e A e

α γ α γ α γ α γ

α γ α γ α γ α γ

α γ α γ α γ α γ

α γ α γ α γ α

− − − −

− − − −

− − − −

− − −

= + + +
+ + + +

+ + + +
+ + + + x ye γ−

 (13.191) 

 

 

1 2 3 4
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

5 6 7 8
ˆ ˆ ˆ ˆ

9 10 11 12
ˆ ˆ ˆ ˆ

13 14 15 16

( , ) x y x y x y x y
x

i x i y i x i y i x i y i x i y

x i y x i y x i y x i y

i x y i x y i x y i

x y B e e B e e B e e B e e
B e e B e e B e e B e e

B e e B e e B e e B e e
B e e B e e B e e B e

α γ α γ α γ α γ

α γ α γ α γ α γ

α γ α γ α γ α γ

α γ α γ α γ

ϑ − − − −

− − − −

− − − −

− − −

= + + +
+ + + +

+ + + +
+ + + +

ˆ ˆ ˆ ˆ
17 18 19 20

x y

i x y i x y i x y i x y

e
B e e B e e B e e B e e

α γ

µ β µ β µ β µ β

−

− − − −+ + + +

 (13.192) 

 

 

1 2 3 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
5 6 7 8

ˆ ˆ ˆ ˆ
9 10 11 12

ˆ ˆ ˆ ˆ
13 14 15 16

( , ) x y x y x y x y
y

i x i y i x i y i x i y i x i y

x i y x i y x i y x i y

i x y i x y i x y i

x y C e e C e e C e e C e e

C e e C e e C e e C e e
C e e C e e C e e C e e

C e e C e e C e e C e

α γ α γ α γ α γ

α γ α γ α γ α γ

α γ α γ α γ α γ

α γ α γ α γ

ϑ − − − −

− − − −

− − − −

− − −

= + + +

+ + + +
+ + + +

+ + + +
ˆ ˆ ˆ ˆ

17 18 19 20

x y

i x y i x y i x y i x y

e
C e e C e e C e e C e e

α γ

µ β µ β µ β µ β

−

− − − −+ + + +

 (13.193) 

 
 
The above solution may be expressed in an alternate form, in terms of trigometric and hy-
perbolic functions, as given by Eqs. (13.239)–(13.241). We next determine that form. 

                                                           
1 As discussed earlier, two or four of the last four terms of Eqs. (13.192) and (13.193) may be replaced 

by the corresponding expressions with real or imaginary exponents when warranted. However, it is 
not necessary to make such substititutions during the development. 
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 The solution for the transverse modal displacement given by Eq. (13.191) can be writ-
ten in the alternate, physically interpretable, form 
 

 
{ } { }

{ } { }
1 2 3 4

5 6 7 8

ˆ ˆ( , ) cosh sinh cos sin

ˆ ˆcosh sinh cos sin

W x y A x A x A x A x

A y A y A y A y

α α α α

γ γ γ γ

= + + +ª º¬ ¼
× + + +ª º¬ ¼

 

  (13.194) 
where 

 1 5 1 2 3 4 1 6 1 2 3 4

2 5 1 2 3 4 2 6 1 2 3 4

,

,

A A A A A A A A A A A A
A A A A A A A A A A A A

= + + + = + − −
= − + − = − − +

 (13.195) 

 

 
{ }

{ } { }
3 7 5 6 7 8 3 8 5 6 7 8

4 7 5 6 7 8 4 8 5 6 7 8

,

,

A A A A A A A A i A A A A

A A i A A A A A A A A A A

= + + + = + − −

= − + − = − − − +
 (13.196) 

 

 
{ }
{ }

1 7 9 10 11 12 1 8 9 10 11 12

2 7 9 10 11 12 2 8 9 10 11 12

,

,

A A A A A A A A i A A A A

A A A A A A A A i A A A A

= + + + = + − −

= − + − = − − +
 (13.197) 

 

 { } { }
3 5 13 14 15 16 3 6 13 14 15 16

4 5 13 14 15 16 4 6 13 14 15 16

,

,

A A A A A A A A A A A A

A A i A A A A A A i A A A A

= + + + = + − −

= − + − = − − +
 (13.198) 

 
We wish to express the solutions for the modal rotations, ϑx and ϑy, given by Eqs. (13.192) 
and (13.193) in forms consistent with Eq. (13.194). We first consider ϑx. It follows from 
Eqs. (13.179) and (13.181) that 
 

 

1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

( , ; ) ( )

( , ; ) ( , ; ) ( )

( , ; ) ( , ; ) ( )

( , ; ) ( , ; ) ( )

a

a

a

a

B g A g A
B g A g A g A
B g A g A g A
B g A g A g A

α α γ ω α ω
α α γ ω α α γ ω α ω

α α γ ω α α γ ω α ω
α α γ ω α α γ ω α ω

= =
= − − = − = −
= − = =
= − − − = − = −

  

  (13.199) 
and 

 

5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

ˆ ˆ ˆ ˆ( , ; ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; ) ( )

b

b

b

b

B i g i i A i g A
B i g i i A i g i i A i g A
B i g i i A i g i i A i g A
B i g i i A i g i i A i g A

α α γ ω α ω
α α γ ω α α γ ω α ω

α α γ ω α α γ ω α ω
α α γ ω α α γ ω α ω

= =
= − − = − = −
= − = =
= − − − = − = −

  

  (13.200) 
 
where, from Eqs. (13.175) and (13.181), 
  

 
( ) 1

( , ; ) ( )
( )

a
a

a

R
g g

R
ωα γ ω ω

ω
+= ≡  (13.201) 
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and 

 
( ) 1ˆ ˆ( , ; ) ( )

( )
b

b
b

R
g g

R
ωα γ ω ω

ω
−= ≡  (13.202) 

Similarly, 

 

9 9 9

10 10 10 10

11 11 11 11

12 12 12 12

ˆ( , ; )
ˆ ˆ( , ; ) ( , ; )

ˆ ˆ( , ; ) ( , ; )
ˆ ˆ( , ; ) ( , ; )

c

c

c

c

B g i A g A
B g i A g i A g A
B g i A g i A g A
B g i A g i A g A

α α γ ω α
α α γ ω α α γ ω α

α α γ ω α α γ ω α
α α γ ω α α γ ω α

= =
= − − = − = −
= − = =
= − − − = − = −

 (13.203) 

and 

 

13 13 13

14 14 14 14

15 15 15 15

16 16 16 16

ˆ ˆ ˆ( , ; )
ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; )

ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; )
ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; )

d

d

d

d

B i g i A i g A
B i g i A i g i A i g A
B i g i A i g i A i g A
B i g i A i g i A i g A

α α γ ω α
α α γ ω α α γ ω α

α α γ ω α α γ ω α
α α γ ω α α γ ω α

= =
= − − = − = −
= − = =
= − − − = = −

 (13.204) 

 
where 
 ˆ( , ; )cg g iα γ ω≡  (13.205) 
 
 ˆ( , ; )dg g iα γ ω≡  (13.206) 
 
and ( , ; )x yg η η ω is defined by Eq. (13.181). Let us next evaluate the first four terms of Eq. 
(13.192). This portion of the solution shall be referred to as ( ) .x

αγϑ  Grouping terms and em-
ploying the identities of Section 1.4 gives  
 

 
( ) ( )

( ) ( )
[ ][ ]

( )
1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 5 6

( , )

cosh cosh cosh sinh

sinh cosh sinh sinh

cosh sinh cosh sinh

x x y x x y
x x y B e B e e B e B e e

B B B B x y B B B B x y

B B B B x y B B B B x y

B x B x B y B y

αγ α α γ α α γϑ

α γ α γ

α γ α γ
α α γ γ

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + + + + + − −

+ − + − + − − +

= + +

  

  (13.207) 
 
where, employing Eqs. (13.195) and (13.199), 
 

 

{ }
{ }
{ }
{ }

1 5 1 2 3 4 1 2 3 4 2 5

1 6 1 2 3 4 1 2 3 4 2 6

2 5 1 2 3 4 1 2 3 4 1 5

2 6 1 2 3 4 1 2 3 4 1 6

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( )

a a

a a

a a

a a

B B B B B B g A A A A g A A

B B B B B B g A A A A g A A

B B B B B B g A A A A g A A

B B B B B B g A A A A g A A

α ω α ω

α ω α ω

α ω α ω

α ω α ω

= + + + = − + − =

= + − − = − − + =

= − + − = + + + =

= − − + = + − − =

 (13.208) 

 
Substituting Eqs. (13.208) into Eq. (13.207) renders the corresponding portion of the solu-
tion to the form  
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 [ ][ ]
[ ][ ]

( )
1 2 3 4

1 2 5 6

1 2 5 6

( , )

cosh sinh cosh sinh

( ) sinh cosh cosh sinh

x x y x x y
x

a

x y B e B e e B e B e e

B x B x B y B y

g A x A x A y A y

αγ α α γ α α γϑ

α α γ γ
α ω α α γ γ

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + +
= + +

 

  (13.209) 
We next evaluate the second four terms of Eq. (13.192). This portion of the solution shall 
be referred as ˆ ˆ( ) .x

αγϑ  Grouping terms and using the identities of Section 1.4 gives 
  

 
( ) ( )

( ) ( )
[ ][ ]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
5 6 7 8

5 6 7 8 5 6 7 8

5 6 7 8 5 6 7 8

3 4 7 8

( , )

ˆ ˆ ˆ ˆcos cos cos sin

ˆ ˆ ˆ ˆsin cos sin sin

ˆ ˆ ˆ ˆcos sin cos sin

i x i x i y i x i x i y
x x y B e B e e B e B e e

B B B B x y i B B B B x y

i B B B B x y B B B B x y

B x B x B y B y

αγ α α γ α α γϑ

α γ α γ

α γ α γ
α α γ γ

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + + + + + − −

+ − + − − − − +

= + +

  

  (13.210) 
where, employing Eqs. (13.196) and (13.200), 
 

 

{ }
{ } { }
{ } { }
{ } { }

3 7 5 6 7 8 5 6 7 8 4 7

3 8 5 6 7 8 5 6 7 8 4 8

4 7 5 6 7 8 5 6 7 8 3 7

4 8 5 6 7 8 5 6 7 8

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ( )

b b

b b

b b

b

B B B B B B i g A A A A g A A

B B i B B B B i g i A A A A g A A

B B i B B B B i g i A A A A g A A

B B B B B B i g A A A A

α ω α ω

α ω α ω

α ω α ω

α ω

= + + + = − + − =

ª º= + − − = − − + =¬ ¼
ª º= − + − = + + + = −¬ ¼
ª º= − − − + = − + − − =¬ ¼ 3 8ˆ ( )bg A Aα ω−

 

  (13.211) 
 
Substitution of Eqs. (13.211) into Eq. (13.210) renders the corresponding portion of the 
solution to the form  
 

 [ ][ ]
[ ][ ]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
5 6 7 8

3 4 3 4

3 4 7 8

( , )

ˆ ˆ ˆ ˆcos sin cos sin
ˆ ˆ ˆ ˆ ˆ( ) sin cos cos sin

i x i x i y i x i x i y
x

b

x y B e B e e B e B e e

B x B x B y B y

g A x A x A y A y

αγ α α γ α α γϑ

α α γ γ
α ω α α γ γ

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + +
= − − +

 

  (13.212) 
 
The part of the solution corresponding to the next four terms in Eq. (13.192) will be referred 
to as ˆ( ) .x

αγϑ  Proceeding as for the prior cases,  
  

( ) ( )
( ) ( )

[ ]

ˆ ˆ ˆ( )
9 10 11 12

9 10 11 12 9 10 11 12

9 10 11 12 9 10 11 12

1 2 7 8

( , )

ˆ ˆcosh cos cosh sin

ˆ ˆsinh cos sinh sin

ˆcosh sinh cos s

x x i y x x i y
x x y B e B e e B e B e e

B B B B x y i B B B B x y

B B B B x y i B B B B x y

B x B x B y B

αγ α α γ α α γϑ

α γ α γ

α γ α γ
α α γ

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + + + + + − −

+ − + − + − − +

= + +[ ]ˆin yγ

 

  (13.213)   
where 
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{ }
{ } { }

{ }
{ } { }

1 7 9 10 11 12 9 10 11 12 2 7

1 8 9 10 11 12 9 10 11 12 2 8

2 7 9 10 11 12 9 10 11 12 1 7

2 8 9 10 11 12 9 10 11 12 1 8

,

,

,

c c

c c

c c

c c

B B B B B B g A A A A g A A

B B i B B B B g i A A A A g A A

B B B B B B g A A A A g A A

B B i B B B B g i A A A A g A A

α α

α α

α α

α α

= + + + = − + − =

ª º= + − − = − − + =¬ ¼

= − + − = + + + =

ª º= − − + = + − − =¬ ¼

 

  (13.214) 
 
Substitution of Eq. (13.214) into Eq. (13.213) renders the corresponding portion of the solu-
tion to the form 
  

 [ ][ ]
[ ][ ]

ˆ ˆ ˆ( )
9 10 11 12

1 2 7 8

1 2 7 8

( , )

ˆ ˆcosh sinh cos sin
ˆ ˆ ˆ( , ; ) sinh cosh cos sin

x x i y x x i y
x x y B e B e e B e B e e

B x B x B y B y

g i A x A x A y A y

αγ α α γ α α γϑ

α α γ γ
α α γ ω α α γ γ

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + +
= + +

 

  (13.215) 
 
We next consider the subsequent four terms of Eq. (13.192). This portion of the solution 
shall be referred as ˆ( ) .x

αγϑ  It follows that 
 

 
( ) ( )

( ) ( )
[ ]

ˆ ˆ ˆ ˆ ˆ( )
13 14 15 16

13 14 15 16 13 14 15 16

13 14 15 16 13 14 15 16

3 4 5

( , )

ˆ ˆcos cosh cos sinh

ˆ ˆsin cosh sin sinh

ˆ ˆcos sin c

i x i x y i x i x y
x x y B e B e e B e B e e

B B B B x y B B B B x y

i B B B B x y i B B B B x y

B x B x B

αγ α α γ α α γϑ

α γ α γ

α γ α γ
α α

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + + + + + − −

+ − + − + − − +

= + [ ]6osh sinhy B yγ γ+

  

  (13.216) 
where 
 

 

{ }
{ }

{ } { }
{ }

3 5 13 14 15 16 13 14 15 16 4 5

3 6 13 14 15 16 13 14 15 16 4 6

4 5 13 14 15 16 13 14 15 16 3 5

4 6 13 14 15 16 13

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ ,

ˆ

d d

d d

d d

d

B B B B B B g i A A A A g A A

B B B B B B g i A A A A g A A

B B i B B B B i g i A A A A g A A

B B i B B B B i g i A

α α

α α

α α

α

ª º= + + + = − + − =¬ ¼
ª º= + − − = − − + =¬ ¼

ª º= − + − = + + + = −¬ ¼

= − − + = +{ }14 15 16 3 6ˆ dA A A g A Aαª º− − = −¬ ¼

 

  (13.217) 
 
Substitution of Eq. (13.217) into Eq. (13.216) renders the corresponding portion of the solu-
tion to the form 
  

 [ ][ ]
[ ][ ]

ˆ ˆ ˆ ˆ ˆ( )
13 14 15 16

3 4 5 6

3 4 5 6

( , )

ˆ ˆcos sin cosh sinh
ˆ ˆ ˆ ˆ( , ; ) sin cos cosh sinh

i x i x y i x i x y
x x y B e B e e B e B e e

B x B x B y B y

g i A x A x A y A y

αγ α α γ α α γϑ

α α γ γ
α α γ ω α α γ γ

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + +
= − − +

 

  (13.218) 
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Lastly, we consider the last four terms of Eq. (13.192). This portion of the solution shall be 
referred as ˆ( ) .x

µβϑ  These terms are readily converted to the desired form. Hence, 
 

 
[ ][ ]

ˆ ˆ ˆ ˆ ˆ( )
17 18 19 20

9 10 11 12

( , )

ˆ ˆcos sin cosh sinh

i x i x y i x i x y
x x y B e B e e B e B e e

B x B x B y B y

µβ µ µ β µ µ βϑ

µ µ β β

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + +

  

  (13.219) 
where 

 { } { }
9 11 17 18 19 20 9 12 17 18 19 20

10 11 17 18 19 20 10 12 17 18 19 20

, ,

,

B B B B B B B B B B B B

B B i B B B B B B i B B B B

= + + + = + − −
= − + − = − − +

 (13.220) 

 
Superposing Eqs. (13.209), (13.212), (13.215), (13.218) and (13.219) gives the general 
form of the modal rotation as  
 

 

[ ][ ]
[ ][ ]

[ ]

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

1 2 5 6

3 4 7 8

1 2 7 8

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
( ) sinh cosh cosh sinh
ˆ ˆ ˆ ˆ ˆ( ) sin cos cos sin

ˆ ˆ ˆ( , ; ) sinh cosh cos sin

x x x x x x

a

b

c

x y x y x y x y x y x y
g A x A x A y A y

g A x A x A y A y

g i A x A x A y A

αγ αγ αγ αγ µβϑ ϑ ϑ ϑ ϑ ϑ
α ω α α γ γ

α ω α α γ γ
α α γ ω α α γ

= + + + +
= + +

− − +
+ + +[ ]

[ ][ ]
[ ][ ]

3 4 5 6

9 10 11 12

ˆ ˆ ˆ ˆ( , ; ) sin cos cosh sinh

ˆ ˆcos sin cosh sinh
d

y

g i A x A x A y A y

B x B x B y B y

γ
α α γ ω α α γ γ

µ µ β β
− − +

+ + +

 

  (13.221) 
 
Finally, after rearranging terms, the modal rotation, ϑx, takes the form 
 

 

[ ]
{ } { }

[ ]
{ } { }

[ ][ ]

1 2

5 6 7 8

3 4

5 6 7 8

9 10 11 12

( , ) sinh cosh

ˆ ˆcosh sinh cos sin

ˆ ˆ ˆsin cos

ˆ ˆcosh sinh cos sin

ˆ ˆcos sin cosh sinh

x

a c

d b

x y A x A x

g A y A y g A y A y

A x A x

g A y A y g A y A y

B x B x B y B y

ϑ α α α
γ γ γ γ

α α α
γ γ γ γ

µ µ β β

= +

× + + +ª º¬ ¼
− −

× + + +ª º¬ ¼
+ + +

 

  (13.222) 
 
To evaluate the compatible form of the companion rotation, ϑy, we proceed in an analogous 
fashion to that which was done above for ϑx. Hence, it follows from Eqs. (13.180) and 
(13.181) that 
 

 

1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

( , ; ) ( )

( , ; ) ( , ; ) ( )

( , ; ) ( , ; ) ( )

( , ; ) ( , ; ) ( )

a

a

a

a

C g A g A
C g A g A g A
C g A g A g A
C g A g A g A

γ α γ ω γ ω
γ α γ ω γ α γ ω γ ω

γ α γ ω γ α γ ω γ ω
γ α γ ω γ α γ ω γ ω

= =
= − = =
= − − = − = −
= − − − = − = −

 (13.223) 
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5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

ˆ ˆ ˆ ˆ( , ; ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; ) ( )

b

b

b

b

C i g i i A i g A
C i g i i A i g i i A i g A
C i g i i A i g i i A i g A
C i g i i A i g i i A i g A

γ α γ ω γ ω
γ α γ ω γ α γ ω γ ω

γ α γ ω γ α γ ω γ ω
γ α γ ω γ α γ ω γ ω

= =
= − = =
= − − = − = −
= − − − = − = −

 (13.224) 

  

 

9 9 9

10 10 10 10

11 11 11 11

12 12 12 12

ˆ ˆ ˆ( , ; )
ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; )

ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; )
ˆ ˆ ˆ ˆ ˆ( , ; ) ( , ; )

c

c

c

c

C i g i A i g A
C i g i A i g i A i g A
C i g i A i g i A i g A
C i g i A i g i A i g A

γ α γ ω γ
γ α γ ω γ α γ ω γ

γ α γ ω γ α γ ω γ
γ α γ ω γ α γ ω γ

= =
= − = =
= − − = − = −
= − − − = − = −

 (13.225) 

and 

 

13 13 13

14 14 14 14

15 15 15 15

16 16 16 16

ˆ( , ; )
ˆ ˆ( , ; ) ( , ; )
ˆ ˆ( , ; ) ( , ; )

ˆ ˆ( , ; ) ( , ; )

d

d

d

d

C g i A g A
C g i A g i A g A
C g i A g i A g A
C g i A g i A g A

γ α γ ω γ
γ α γ ω γ α γ ω γ

γ α γ ω γ α γ ω γ
γ α γ ω γ α γ ω γ

= =
= − = =
= − − = − = −
= − − − = − = −

 (13.226) 

 
In addition, it follows from Eqs. (13.185) and (13.190) that 
 
 ( ) ( ) ( ) ( )17 17 18 18 19 19 20 20ˆ ˆ ˆ ˆ, , ,C i B C i B C i B C i Bµ β µ β µ β µ β= − = = = −  
  (13.227) 
 
Having established the pertinent relations between the coefficients jC  and jA  (j = 1−16), 
as well as between the coeffients jC  and jB  (j = 17−20), we proceed to evaluate ϑy. Par-
alleling the development for ϑx, we evaluate each line of Eq. (13.193). For the first line, we 
find that 
  

 

{ }
{ }
{ }
{ }

5 1 1 2 3 4 1 2 3 4 6 1

5 2 1 2 3 4 1 2 3 4 6 2

6 3 1 2 3 4 1 2 3 4 5 1

6 4 1 2 3 4 1 2 3 4 5 2

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

( ) ( )

a a

a a

a a

a a

C C C C C C g A A A A g A A

C C C C C C g A A A A g A A

C C C C C C g A A A A g A A

C C C C C C g A A A A g A A

γ ω γ ω

α ω γ ω

α ω γ ω

α ω γ ω

= + + + = + − − =

= − + − = − − + =

= − + − = + + + =

= − − + = − + − =

 (13.228) 

 
Thus, the first line of Eq. (13.193) takes the equivalent form 
 

 
[ ][ ]

( )
1 3 2 4

5 6 1 2

( , )

) sinh cosh cosh sinh

y y x y y x
y

a

x y C e C e e C e C e e

g A y A y A x A x

αγ γ γ α γ γ αϑ

γ ω γ γ α α

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= ( + +

 

   (13.229) 
 
For the second line of Eq. (13.193), 
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{ }
{ } { }
{ } { }
{ } { }

7 3 5 6 7 8 5 6 7 8 8 3

7 4 5 6 7 8 5 6 7 8 8 4

8 3 5 6 7 8 5 6 7 8 7 3

8 4 5 6 7 8 5 6 7 8

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ( )

b b

b b

b b

b

C C C C C C i g A A A A g A A

C C i C C C C i g i A A A A g A A

C C i C C C C i g i A A A A g A A

C C C C C C i g A A A A

γ ω γ ω

γ ω γ ω

γ ω γ ω

γ ω

= + + + = + − − =

ª º= − + − = − − + =¬ ¼
ª º= + − − = + + + = −¬ ¼
ª º= − − − + = − − + − =¬ ¼ 7 4ˆ ( )bg A Aγ ω−

 

  (13.230) 
 
Hence, the second line of Eq. (13.193) takes the equivalent form  
 

 
[ ][ ]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )
5 7 6 8

7 8 3 4

( , )

ˆ ˆ ˆ ˆ ˆ) sin cos cos sin

i y i y i x i y i y i x
y

b

x y C e C e e C e C e e

g A y A y A x A x

αγ γ γ α γ γ αϑ

γ ω γ γ α α

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= − ( − +

 (13.231) 

 
We next evaluate the third line of Eq. (13.193). Hence, 
 

 

{ }
{ }

{ } { }
{ } { }

7 1 9 10 11 12 9 10 11 12 8 1

7 2 9 10 11 12 9 10 11 12 8 2

8 1 9 10 11 12 9 10 11 12 7 1

8 2 9 10 11 12 9 10 11 12

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ ,

ˆ

c c

c c

c c

c

C C C C C C i g A A A A g A A

C C C C C C i g A A A A g A A

C C i C C C C i g i A A A A g A A

C C i C C C C i g i A A A A

γ γ

γ γ

γ γ

γ

= + + + = + − − =

= − + − = − − + =

ª º= + − − = + + + = −¬ ¼
ª º= − − + = − + − =¬ ¼ 7 2ˆ cg A Aγ−

 

  (13.232) 
 
It follows that the third line of Eq. (13.193) takes the equivalent form 
 

 
[ ][ ]

ˆ ˆ ˆ ˆ ˆ( )
9 11 10 12

7 8 1 2

( , )

ˆ ˆ ˆsin cos cosh sinh

i y i y x i y i y x
y

c

x y C e C e e C e C e e

g A y A y A x A x

αγ γ γ α γ γ αϑ

γ γ γ α α

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= − − +

 (13.233) 

 
We next evaluate the fourth line of Eq. (13.193). Hence, 
 

 

{ }
{ } { }

{ }
{ } { }

5 3 13 14 15 16 13 14 15 16 6 3

5 4 13 14 15 16 13 14 15 16 6 4

6 3 13 14 15 16 13 14 15 16 5 3

6 4 13 14 15 16 13 14 15 16

,

,

,

d d

d d

d d

d d

C C C C C C g A A A A g A A

C C i C C C C g i A A A A g A A

C C C C C C g A A A A g A A

C C i C C C C g i A A A A g A

γ γ

γ γ

γ γ

γ γ

= + + + = + − − =

ª º= − + − = − − + =¬ ¼

= + − − = + + + =

ª º= − − + = − + − =¬ ¼ 5 4A

 

  (13.234) 
 
It follows that the fourth line of Eq. (13.193) takes the equivalent form 
 

 
[ ][ ]

ˆ ˆ ˆ( )
13 15 14 16

5 6 3 4

( , )

ˆ ˆsinh cosh cos sin

y y i x y y i x
y

d

x y C e C e e C e C e e

g A y A y A x A x

αγ γ γ α γ γ αϑ

γ γ γ α α

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + +

 (13.235) 
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Finally, the coefficients for the fifth line of Eq. (13.193) follow from Eq. (13.227) as 
 

 

( ) { } ( )
{ } ( ){ } ( )

( ) { } ( )
{ } ( )

11 9 17 18 19 20 17 18 19 20 12 10

11 10 17 18 19 20 17 18 19 20 12 9

12 9 17 18 19 20 17 18 19 20 11 10

12 10 17 18 19 20 17

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ ,

ˆ

C C C C C C i B B B B B B

C C i C C C C B B B B B B

C C C C C C i B B B B B B

C C i C C C C B B

µ β µ β

µ β µ β

µ β µ β

µ β

ª º= + + + = − − − + = −¬ ¼

= − + − = + − − =

ª º= + − − = − − + − = −¬ ¼

= − − + = +{ } ( )18 19 20 11 9ˆB B B Bµ β+ + =

 

  (13.236) 
 
The portion of the solution corresponding to the last four terms of Eq. (13.193) shall be 
referred as ˆ( ) .y

µβϑ  These terms are readily converted to the desired form. Hence, 
 

 [ ][ ]
( )[ ][ ]

ˆ ˆ ˆ ˆ ˆ( )
17 18 19 20

9 10 11 12

11 12 9 10

( , )

ˆ ˆcos sin cosh sinh

ˆ ˆ ˆsinh cosh sin cos

i x i x y i x i x y
y x y C e C e e C e C e e

C x C x C y C y

B y B y B x B x

µβ µ µ β µ µ βϑ

µ µ β β
µ β β β µ µ

− − −ª º ª º= + + +¬ ¼ ¬ ¼
= + +
= + −

 (13.237) 

 
The solution for the modal rotation is obtained by summing over the previously established 
relations. Thus, superposing Eqs. (13.229), (13.231), (13.233), (13.235) and (13.237) gives 
the modal rotation, ϑy, as 
 

 

[ ]
{ } { }

[ ]
{ } { }

( )[ ][ ]

5 6

1 2 3 4

7 8

1 2 3 4

11 12 9 10

( , ) sinh cosh

ˆ ˆcosh sinh cos sin

ˆ ˆ ˆsin cos

ˆ ˆcosh sinh cos sin

ˆ ˆ ˆsinh cosh sin cos

y

a d

c b

x y A y A y

g A x A x g A x A x

A y A y

g A x A x g A x A x

B y B y B x B x

ϑ γ γ γ
α α α α

γ γ γ
α α α α

µ β β β µ µ

= +

× + + +ª º¬ ¼
− −

× + + +ª º¬ ¼
+ + −

 

  (13.238) 
 
Alternate forms of the solutions for ϑx and ϑy that correspond to (ηx, ηy) = ˆˆ( , )iµ β  in Eqs. 
(13.185)–(13.187) are readily obtained by replacing β with ˆiβ and redefining B12 as −iB12 
in Eqs. (13.222) and (13.238), respectively. Similarly, forms of the solutions for ϑx and ϑy 
that correspond to (ηx, ηy) = ( , )µ β are obtained by replacing µ̂ with iµ and redefining B10 
as −iB10 in Eqs. (13.222) and (13.238), respectively. Finally, forms of the solutions for ϑx 
and ϑy that correspond to (ηx, ηy) = ˆ( , )µ β are obtained by making both of the stated chang-
es. Each form of the solution is pertinent depending upon the structural parameters and the 
frequency range of interest, per Eqs. (13.186) and (13.187), as well as the support condi-
tions for the structure.  
 In summary, the general forms of the modal functions for Mindlin plates are as fol-
lows;  
 

 
{ } { }

{ } { }
1 2 3 4

5 6 7 8

ˆ ˆ( , ) cosh sinh cos sin

ˆ ˆcosh sinh cos sin

W x y A x A x A x A x

A y A y A y A y

α α α α

γ γ γ γ

= + + +ª º¬ ¼
× + + +ª º¬ ¼

 

  (13.239) 
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[ ]
{ } { }

[ ]
{ } { }

1 2

5 6 7 8

3 4

5 6 7 8

( , ) sinh cosh

ˆ ˆcosh sinh cos sin

ˆ ˆ ˆsin cos

ˆ ˆcosh sinh cos sin ( , )

x

a c

d b x

x y A x A x

g A y A y g A y A y

A x A x

g A y A y g A y A y x y

ϑ α α α
γ γ γ γ

α α α
γ γ γ γ ϑ

= +

× + + +ª º¬ ¼
− −

× + + + +ª º¬ ¼
�

 

  (13.240) 
 

 

[ ]
{ } { }

[ ]
{ } { }

5 6

1 2 3 4

7 8

1 2 3 4

( , ) sinh cosh

ˆ ˆcosh sinh cos sin

ˆ ˆ ˆsin cos

ˆ ˆcosh sinh cos sin ( , )

y

a d

c b y

x y A y A y

g A x A x g A x A x

A y A y

g A x A x g A x A x x y

ϑ γ γ γ
α α α α

γ γ γ
α α α α ϑ

= +

× + + +ª º¬ ¼
− −

× + + + +ª º¬ ¼
�

 

  (13.241) 
where 

 
( ) 1

( )
( )

a
a a

a

R
g g

R
ωω

ω
+= =  (13.242) 

 

 
( ) 1

( )
( )

b
b b

b

R
g g

R
ωω

ω
−= =  (13.243) 

 
 ˆ( , ; )cg g iα γ ω=  (13.244) 
 
 ˆ( , ; )dg g iα γ ω=  (13.245) 
  
the function g is defined by Eq. (13.181) and the expressions for xϑ� and yϑ�  depend upon the 
structural parameters and the frequency range of interest, per Eqs. (13.186) and (13.187), as 
well as the support conditions. For solutions corresponding to (ηx, ηy) = ˆ( , ),µ β   
 

 
[ ][ ]
( )[ ][ ]

ˆ( )
9 10 11 12

ˆ( )
11 12 9 10

ˆ ˆ( , ) ( , ) cos sin cosh sinh ,

ˆ ˆ ˆ( , ) ( , ) sinh cosh sin cos
x x

y y

x y x y B x B x B y B y

x y x y B y B y B x B x

µβ

µβ

ϑ ϑ µ µ β β
ϑ ϑ µ β β β µ µ

= ≡ + +

= ≡ + −

�

�  

  (13.246) 
In addition, for solutions corresponding to (ηx, ηy) = ˆˆ( , ),i iµ β  
 

 
[ ]
( ) [ ]

ˆˆ( )
9 10 11 12

ˆˆ( )
11 12 9 10

ˆ ˆˆ ˆ( , ) ( , ) cos sin cos sin ,

ˆ ˆ ˆˆ ˆ ˆ( , ) ( , ) sin cos sin cos

x x

y y

x y x y B x B x B y B y

x y x y B y B y B x B x

µβ

µβ

ϑ ϑ µ µ β β

ϑ ϑ µ β β β µ µ

ª º= ≡ + +¬ ¼
ª º= ≡ − −¬ ¼

�

�
 

  (13.247) 
and for solutions corresponding to (ηx, ηy) = ( , ),µ β  
 

 
[ ][ ]

( )[ ][ ]
( )

9 10 11 12

( )
11 12 9 10

( , ) ( , ) cosh sinh cosh sinh ,

( , ) ( , ) sinh cosh sinh cosh
x x

y y

x y x y B x B x B y B y

x y x y B y B y B x B x

µβ

µβ

ϑ ϑ µ µ β β
ϑ ϑ µ β β β µ µ

= ≡ + +

= ≡ − + +

�

�  

  (13.248) 
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The constants A1 − A8 and B9 − B12 as well as the parameters α, ˆ ,α γ, ˆ ˆ,γ µ (or µ) and 
β (or ˆ)β and the normalized natural frequencies, ,ω are found by imposing the boundary 
conditions for a particular geometry, along with Eqs. (13.178) and (13.187), on the general 
forms of the modal functions presented in Eqs. (13.239)–(13.241) for a specific structure 
under consideration. In general, the parameters α, ˆ ,α γ, ˆ ˆ,γ µ (or µ) and β (or ˆ)β and/or the 
natural frequencies of a given plate must be obtained numerically. 

The specific geometry, boundary conditions and material properties for a given struc-
ture will dictate the specific form of the modal functions, as well as the corresponding val-
ues of the natural frequencies and spatial exponents. In this regard, a given structure will 
possess an infinity of modes of the form of Eqs. (13.239)–(13.241), with each mode corre-
sponding to a particular combination of frequencies and spatial exponents. The general free 
vibration response is then given by 
 

 ( ) ( )

1 1

( , , ) ( , ) cos( )jl jl
jl jl

j l

x y t x y A tω φ
∞ ∞

= =

= −¦¦u U  (13.249) 

 
per Eq. (13.20), where the rows of U(jl) correspond to the transverse displacement and rota-
tion modal functions for the particular structure. The amplitudes and phase angles, A(jl) and 
φjl respectively, depend upon the specific initial conditions imposed on the plate. Their 
evaluation is discussed in Section 13.9. 
 

13.6.2  The Frequency Spectrum 

We conclude our discussion by presenting the natural frequencies in terms of the exponents, 
and examining their implications. Solving both expressions of Eq. (13.175) for ω2 gives the 
relations 
  

 
( )( )

( )( ) ( ) ( )

2
2 2 2 20

2

2 2 22 22 2 2 2 20
2

1
2

2 1 1
2

gyr x y
gyr

gyr x y gyr x y
gyr

k kr
r

k k kr kr
r

ωω η η

ω η η η η

ª º= − + +¬ ¼

± − + + + − +
 (13.250) 

 
where ηx and ηy correspond to a pair of exponents delineated in Eq. (13.178). It is seen 
from Eq. (13.250) that there are two natural frequencies associated with that equation for 
each value of η2 = ηx

2 + ηx
2. Similarly, solving Eq. (13.183) for ω2 gives the additional rela-

tion 

 ( )
2

2 2 20
2 2 (1 )

2 x y
gyr

k
r
ωω ν η ηª º= − − +¬ ¼  (13.251) 

 
where ηx and ηy correspond to a pair of exponents delineated in Eq. (13.187). Equation 
(13.251) gives a third frequency for each value of η2 (= ηx

2 + ηy
2). There are thus three 

branches of the frequency spectrum for a Mindlin plate. The frequency spectrum for the 
case 50,k = 0.1gyrr =  and ν = 0.3 is displayed in Figure 13.3. The spectrum is also shown 
in terms of the wave number, 2 2ˆ ˆ( ),iη η η η= ± = − in Figure 13.4 to allow for interpretation 
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and comparison with results pertaining to elastic wave propagation2. The frequency spec-
trum for a particular plate depends not only on its material properties, , gyrk r  and ν, but also 
on its support/boundary conditions. Thus, not all points on the paths shown in Figure 13.3 
(or on related paths for plates with different structural properties) correspond to modes for 
every plate. Rather, only selected frequency-wave number pairs that satisfy Eqs. (13.250) 
and (13.251) correspond to the modes for a particular structure. That is, the frequency spec-
trum for a particular plate is comprised of an infinite number of discrete points that lie on 
the continuous paths, such as those shown in Figure 13.3. The boundary conditions for a 
specific structure will dictate which points on the paths comprise the specific spectrum for 
the particular plate of interest. 
 

13.6.3  Implementation 

Consideration of the frequency spectrum shown in Figure 13.3 suggests possible strategies 
and/or procedures for obtaining the particular modes for specific plates. In this regard, im-
position of the specific boundary conditions for a particular structure on the general solution 
will result in a frequency equation(s) for that structure. To obtain roots of that equation 
(specific frequency exponent combinations that correspond to points on the paths of the 
spectrum) one may iterate on the wavenumbers and determine the associated frequencies 
(i.e., move "vertically" along the frequency spectrum). Alternatively, one may iterate on the 
frequencies and determine the corresponding wave numbers that satisfy Eqs. (13.250) and 
(13.251) or, equivalently, Eqs. (13.178) and (13.187) [or (13.186), as appropriate] – i.e., 
move “horizontally” along the frequency spectrum. However, there are several exponents in 
the solution. 
 It is seen from Eqs. (13.250) and (13.251), as well as by consideration of Figure 13.3, 
that the natural frequencies depend on η2 = ηx

2 + ηy
2, or equivalently on the wave number 

ˆ ,iη η= ± and not directly on ηx and ηy individually. Thus, one can choose to vary (iterate 
on) one exponent, say ηx, and express the corresponding exponent, ηy, in terms of ηx and ω 
accordingly. The boundary conditions for a particular structure will dictate the frequency 
equation for that particular structure and, hence, the values of ηx and, in turn, ηy and ω. It is 
seen from Figure 13.3 (and Figure 13.4) that the portion of the frequency spectrum associ-
ated with wave-like solutions, η2 < 0 ˆ( 0),η >  possesses the more robust contributions of 
the three branches. It is also seen that, except for a small range of wave numbers close to 
the origin, one of the upper branches dominates the response of the plate for the portion of 
the spectrum associated with “non-propagating” motion, η2 > 0. However, for both cases, 
the low wave number/ large wave length modes are the most accurate for plate theory and 
must be accounted for. 
 In light of the above discussion, let us consider a solution that is generated from ηx. 
(The procedure can be adjusted accordingly should the geometry and boundary conditions 
for a given problem suggest that the analysis would be more expedient if it would stem 
from ηy.) Without loss of generality, let us take  
 
 ˆµ̂ α=  (13.252) 
 

                                                           
2 Imaginary spatial exponents yield solutions of the form ( ) sin( )i r te r tη ω η ω± ↔ ±

G G< G G<  which represent 
waves propagating in the negative rG direction (+) or in the positive rG direction (−). 
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The companion exponent, ˆ,β  is then found from Eq. (13.187) as  
 
 ( )2 2 2ˆ ˆ( ) 1c gyrR rβ ω α ω= − >  (13.253) 

 
To obtain solutions for which 2 2 1gyrr ω < , β̂ is replaced by iβ in Eqs. (13.240) and (13.241) 
of the general solution, and the companion exponent is found from Eq. (13.186) as 
 
 ( )2 2 2ˆ( ) 1c gyrR rβ ω α ω= + <  (13.254) 

 
For either situation, Eq. (13.178) yields the relation 
 
 2 2ˆ ˆ( )bRγ ω ω α= −  (13.255) 
 
The remaining exponents, α and γ, are expressed in terms of α̂ and γ̂ , if needed, through 
the remaining identities stated in Eq. (13.178), as appropriate. Substituting these relations 
into the frequency equation for a given structure will yield a transcendental equation in 
terms of ω and α̂ which can be solved numerically using root solving techniques. Once 
these pairs are computed, the associated exponents can be calculated using the above rela-
tions. These values can then be substituted into the solution to determine the modes, and the 
general free vibration response.  
   
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 13.3  Frequency spectrum for a Mindlin plate ( 50,k = 0.1,gyrr = ν = 0.3). 
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 Figure 13.4  Frequency spectrum in terms of wave number, ˆ.η  

 

 

Example 13.8 
Consider the rectangular Mindlin plate whose sides are of length a and b, where each 
edge of the plate is simply supported. (a) Establish the modal boundary conditions 
for the plate. (b) Determine the natural modes of the plate. (c) Establish the frequen-
cy equation for the plate. (d) Show that the frequency equation for the fully simply 
supported Mindlin plate reduc-
es to that for the Kirchhoff 
plate of Example 13.3 when the 
shear deformation and rotatory 
inertia are neglected. (e) Assess 
the first 3 × 4 frequencies and 
modes for a square plate (b = a 
= L) with 50k =  and 0.1gyrr =  
and ν = 0.3. Plot the first 3 × 3 
sets of modes. (f) Examine the 
influence of k  and gyrr on the 
natural frequencies of the plate.  
   Figure E13.8-1   
Solution 
(a) 
The boundary conditions for the simply supported plate are, from Example 12.8, 
 

 
0

(0, , ) 0, (0, , ) 0, (0, , ) 0,yx
xx y

x

w y t M y t D y t
x y

ϕϕ ν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
 (a-1,2,3) 

�0 � 0 � �0 �� �0 �� �0
0

�0

�00

��0

�00

��0

Re(η̂)

ω
ω0

Im(η̂)
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 ( , , ) 0, ( , , ) 0, ( , , ) 0,yx
xx y

x a

w a y t M a y t D a y t
x y

ϕϕ ν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
 (a-4,5,6) 

 
0

( ,0, ) 0, ( ,0, ) 0, ( ,0, ) 0,y x
yy x

y

w x t M x t D x t
y x

ϕ ϕν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
 (a-7,8,9) 

 

 ( , , ) 0, ( , , ) 0, ( , , ) 0y x
yy x

y b

w x b t M x b t D x b t
y x

ϕ ϕν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
 

  (a-10,11,12) 
 
We note that, due to the rigidity of the knife edge supports, the rotation ϕy = 0 on the 
edges x = 0 and x = a. It then follows that 
 

 
0

0 (0 )y y

x x a

y b
y y

ϕ ϕ

= =

∂ ∂
= = ≤ ≤

∂ ∂
 (b-1,2) 

 
Similarly, the rotation ϕx = 0 on the edges y = 0 and y = b, from which it follows that 
 

 
0

0 (0 )x x

y y b

x a
x x

ϕ ϕ
= =

∂ ∂= = ≤ ≤
∂ ∂

 (b-3,4) 

 
Substitution of Eq. (13.142) and Eqs. (b-1)–(b-4) into Eqs. (a-1)–(a-12) gives the 
boundary conditions for the modal functions as 
 
 (0, ) 0 (0, ) 0 (0 )i tW y e W y y bω = � = ≤ ≤  � (c-1) 
 

 
00

0 0 (0 )y i tx x

xx

D e y b
x y x

ωϑϑ ϑν
==

∂ª º∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-2) 

 
 (0, ) 0 (0, ) 0 (0 )i t

y yy e y y bωϑ ϑ= � = ≤ ≤  � (c-3) 
 

 
 ( , ) 0 ( , ) 0 (0 )i tW a y e W a y y bω = � = ≤ ≤  � (c-4) 
 

 0 0 (0 )y i tx x

x ax a

D e y b
x y x

ωϑϑ ϑν
==

∂ª º∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-5) 

 
 ( , ) 0 ( , ) 0 (0 )i t

y ya y e a y y bωϑ ϑ= � = ≤ ≤  � (c-6) 
 

 ( ,0) 0 ( ,0) 0 (0 )i tW x e W x x aω = � = ≤ ≤  � (c-7) 
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0 0

0 0 (0 )y yi tx

y y

D e x a
y x y

ωϑ ϑϑν
= =

∂ ∂ª º∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-8) 

 
 ( ,0) 0 ( ,0) 0 (0 )i t

x xx e x x aωϑ ϑ= � = ≤ ≤  � (c-9) 
 
 ( , ) 0 ( , ) 0 (0 )i tW x b e W x b x aω = � = ≤ ≤  � (c-10) 
 

 0 0 (0 )y yi tx

y b y b

D e x a
y x y

ωϑ ϑϑν
= =

∂ ∂ª º∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-11) 

 
 ( , ) 0 ( , ) 0 (0 )i t

x xx b e x b x aωϑ ϑ= � = ≤ ≤  � (c-12) 
 
where we have introduced the nondimensionalization of Eqs. (13.145)–(13.148) in 
the above expressions, and a and b are given by 
  
 ,a a L b b L= =  (d) 
 
The length scale L will be chosen later, but natural candidates are L = a or L = b or 

2 2 .L a b= +  
 
(b) 
Because of the four-fold symmetry of the support conditions, we shall employ the 
the general solution in the form that incorporates ˆˆ( )

x
µβϑ and ˆˆ( ) .y

µβϑ  It will be seen that 
this choice proves to be immaterial for this set of supports. To begin, let 
 

 { }
(1) (2)

5 6 7 8

(3)
11 12

ˆ ˆ( ) cosh sinh , ( ) cos sin ,
ˆ ˆ ˆ( ) sin cos

x x

x

Y y A y A y Y y A y A y

Y y B y B y

γ γ γ γ

β β β

= + = +

= −
 (e) 

 
Imposing the conditions of Eqs. (c-1), (c-2) and (c-3) on Eqs. (13.239), (13.240) and 
(13.241), respectively, with Eq. (13.247) gives the relations 
 
 [ ]{ }(1) (2)

1 3 1 3( ) ( ) 0 0x xA A Y y Y y A A+ + = � + =  (f-1) 

 
 [ ] [ ](1) (2) (3)

1 3 1 3 10ˆ( ) ( ) ( ) 0a d x c b x xg A g A Y y g A g A Y y B Y yα′ ′+ + + − =  
 

 1 3 1 3 10ˆ0, 0, 0a d c bg A g A g A g A Bα� + = + = =  (f-2) 
 

and 
 
 2 2 (1) 2 2 (2) (3)

1 3 1 3 10ˆ ˆ ˆ( ) ( ) ( ) 0a d x c b x xg A g A Y y g A g A Y y B Y yα α α α α ′ª º ª º− + − + =¬ ¼ ¬ ¼  
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 2 2 2 2
1 3 1 3 10ˆ ˆ ˆ, 0, 0a d c bg A g A g A g A Bα α α α α� − − = =  (f-3) 

 
where ( )' indicates total differentiation with respect to the sole independent variable 
of the function, in this case .y Since α, γ, α̂ and γ̂  are assumed to be real and, hence, 
gd ≠ ga  and gb ≠ gc, and since (1) ( ),xY y (2) ( )xY y and (3) ( )xY y  are functions of y and do 
not vanish identically, it follows from Eqs. (f-1), (f-2) and (f-3) that 
 

 1 3 0A A= =  (g-1,2) 
 
We next impose the conditions delineated in Eqs. (c-4), (c-5) and (c-6) on Eqs. 
(13.239), (13.240) and (13.241) respectively, as well as utilize Eqs. (g-1) and (g-2). 
This yields the relations 
 

 2 4 ˆsinh sin 0A a A aα α+ =  (h-1) 
 

 
[ ]

[ ]

(1)
2 4

(2) (3)
2 4 9

ˆsinh sin ( )

ˆ ˆ ˆsinh sin ( ) sin ( ) 0

a d x

c b x x

g A a g A a Y y

g A a g A a Y y B a Y y

α α

α α α α

′+

′+ + + =
 

 

 2 4 2 4

9

ˆ ˆsinh sin 0, sinh sin 0,
ˆ ˆsin 0

a d c bg A a g A a g A a g A a
B a

α α α α
α α

� + = + =
=

 (h-2) 

 

 
{ }

{ }

2 (1) (2)
2

(1) (2) (3)
4 9

sinh ( ) ( )

ˆ ˆ ˆsin ( ) ( ) ( ) 0

a x c x

d x b x x

A a g Y y g Y y

a A g Y y g Y y B Y y

α α

α α α

+

ª º′− + − =
¬ ¼

 

 
 2

2 ˆ ˆsinh 0, sin 0A a aα α α α� = =  (i) 
 
The second condition of Eq. (i) is clearly satisfied if ˆ ˆ .0 or sin 0aα α≡ =  However, 
when coupled with the first condition of Eq. (i), ˆ 0α ≡  yields the trivial solution for 
the transverse displacement. Hence, for non-trivial displacements, 
 

 ˆsin 0aα =  (j) 
and therefore  

 
 ˆ ˆ ( 1, 2, )j j a jα α π= = = !  (k) 

 
It then follows from the third condition of Eq. (f-2) or (f-3) that 
 

 10 0B =  (l) 
 
The remaining conditions of Eqs. (h-1) and (h-2) are satisfied if either A2 or α van-
ishes. We shall take  

 2 0A =  (m) 
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in which case the value of α is arbitrary to the extent that it satisfies Eq. (13.178). 
 Substitution of Eqs. (g), (l) and (m) into Eqs. (13.239)–(13.241), renders the 
modal functions to the forms 
 
 { } { }4 5 6 7 8ˆ ˆ ˆ( , ) sin cosh sinh cos sinW x y A x A y A y A y A yα γ γ γ γ= + + +ª º¬ ¼  
   (n-1) 
  

{ } { }4 5 6 7 8

9 11 12

ˆ ˆ ˆ ˆ( , ) cos cosh sinh cos sin

ˆ ˆˆcos cos sin

x d bx y A x g A y A y g A y A y

B x B y B y

ϑ α α γ γ γ γ

α β β

= + + +ª º¬ ¼
ª º+ +¬ ¼

 

   (n-2) 
  

{ } { }
( )

4 5 6 7 8

9 11 12

ˆ ˆ ˆ ˆ( , ) sin sinh cosh sin cos

ˆ ˆ ˆˆ ˆsin sin cos

y d bx y A x g A y A y g A y A y

B x B y B y

ϑ α γ γ γ γ γ γ

α β α β β

= + − −ª º¬ ¼
ª º+ −¬ ¼

 

   (n-3) 
 
where α̂ is given by Eq. (k). Evaluation of the boundary conditions on the edges 
parallel to the x-axis follows directly as above. Hence, imposition of the remaining 
six boundary conditions, Eqs. (c-7)–(c-12), on Eqs. (n-1)–(n-3), and paralleling the 
above development, yields 
  
 5 6 7 11 12 0A A A B B= = = = =  (0) 
and 
 ˆ ˆ ( 1, 2, )l l b lγ γ π= = = !  (p) 
 
Substitution of Eqs. (k), (o) and (p) into Eqs. (n-1)–(n-3) gives the modal functions 
of the fully simply supported Mindlin plate as   
  

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )
( )

sin sin( , )
( , ) ( , ) cos sin

( , ) sin cos

( , 1, 2,3 )

jl

jl jl jl jl
x b

jl
jly

b

j x a l y bW x y
x y x y A j a g j x a l y b

x y l b g j x a l y b

j l

π π

ϑ π π π
ϑ π π π

 ½ ½ ° °° ° ° °= =® ¾ ® ¾
° ° ° °
¯ ¿ ° °¯ ¿

= !

U
  

  � (q) 
where 

 
( ) ( )

( ) ( )

22 2
( )

22

( ) 1
( )

( )
jl b jljl

b b jl
b jl

j a l b R
g g

Rj a l b

π π ω ω
ω

ωπ π

+ − −
= = =

+
 (r) 

 
The dimensional form of the modal functions are readily found from Eq. (q) as 
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( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

( , ) sin sin
( , ) ( , ) cos sin

( , ) sin cos

( , 1,2,3 )

jl

jl jl jl jl
x b

jl jl
y b

W x y j x a l y b
x y x y A j a g j x a l y b

x y l b g j x a l y b

j l

π π
ϑ π π π
ϑ π π π

 ½  ½
° ° ° °= =® ¾ ® ¾
° ° ° °

¯ ¿¯ ¿
= !

U
  

    (s) 
 
(c) 
Substitution of Eq. (k) and Eq. (p) into Eq. (13.178)2 gives the frequency equation 
for the fully simply supported Mindlin plate as 
 

 
2 22 2

2
0

( ; , )
( , 1, 2,3 )jl b jl gyrR k r j l j l

ak b
ω ω π π
ω

§ · § ·= + =¨ ¸ ¨ ¸
© ¹ © ¹

!  (t) 

 
where Rb is defined by Eq. (13.176) 2. Equation (t) can be solved numerically to ob-
tain the natural frequencies for the plate for given geometric and material parame-
ters.  
 Alternatively, the natural frequencies for the simply supported Mindlin plate 
can be found by substituting Eqs. (k) and (p) into Eq. (13.250) with ˆx iη α=  and 

ˆy iη γ= . Doing this gives 
 
 

( )

( ) ( )

2 22
22 0

2

22 2 2 22 22 220
2

1
2

2 1 1
2

jl gyr
gyr

gyr gyr
gyr

j lk kr
ar b

j l j lk k kr kr
a ar b b

ω π πω

ω π π π π

ª º ½° °§ · § ·= + + +« »® ¾¨ ¸ ¨ ¸
© ¹ © ¹« »° °¯ ¿¬ ¼

ª º ª º§ · § · § · § ·± + + + + − +« » « »¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹« » « »¬ ¼ ¬ ¼

 
   (j,l = 1, 2, 3...) 
   � (u) 
 
where the parameter ω0 is given by Eq. (13.150). The frequencies can be computed 
directly from this relation for specified parameters of the system. It is seen from Eq. 
(u) that there are two frequencies for each (j,l) pair, as was anticipated from Eq. 
(13.150). (The third, intermediate, branch defined by Eq. (13.251) does not yield any 
roots for the fully simply supported plate since the corresponding portion of the solu-
tion vanishes for this case.)   
 
(d) 
We next examine the current results for the limiting case of infinite shear stiffness 
(vanishing transverse shear deformation) and negligible rotatory inertia (vanishing 
radius of gyration), and compare these results with those for the fully simply sup-
ported Kirchhoff plate of Example 13.3. To do this, we first evaluate the left-hand 
side of Eq. (u) for the limiting case. Expanding Eq. (13.176)2, and taking the limit as 
kG → ∞ and rgyr  → 0, we find that  
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 0( )jl jlbR kω ω ω→  (v) 
 
Substituting Eq. (v) into Eq. (t) gives the natural frequencies as 
 

 
2 2

0 ( , 1,2,3 )jl
j l j l
a b
π πω ω

ª º§ · § ·→ + =« »¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

!  (w) 

 
Upon comparison of Eq. (w) of the current example with Eq. (t) of Example 13.3 it 
is seen that, under these conditions, the natural frequencies of the Mindlin plate tend 
toward those of the fully simply supported Kirchhoff plate of Example 13.3, as we 
would expect. 
 
(e) 
The frequencies for a square Mindlin plate (b = a = L) with 50k = and 0.1gyrr = are 
computed using the MATLAB “fzero” routine. As discussed for Eq. (13.250), it is seen 
from Eq. (u) that there are two frequencies for each ˆ ˆ( , )j lα γ pair, and hence for each 
(j,l) pair. The results for both branches of roots of the frequency equation are sum-
marized in Tables E13.8-1 and E13.8-2. The first 3 × 3 modes corresponding to the 
lower branch of frequencies are displayed in Figures E13.8-2 through E13.3-7 in or-
der of ascending frequency. Modes U(12) and U(23) are not shown since, due to the 
symmetry of the structure, they correspond to U(21) and U(32), respectively, with the x 
and y axes interchanged. Finally, the frequency spectrum for the plate is displayed in 
Figure E13.8-8. In that figure, the dots indicate the natural frequencies for the fully 
simply supported plate. The spectrum is superimposed on the general (continuous) 
spectrum of Figure 13.3. It is seen that the simply supported plate has no frequencies 
on the third, intermediate, branch of the general spectrum, as discussed earlier. 
 
 
 
 

 Table E13.8-1  The first 3 × 4 natural frequencies of the first (lower) branch of roots for a 
 square Mindlin plate (b = a = L; 0.1gyrr = ; 50k = ) 

j (1) 1 0jω ω  (1) 2 0jω ω  (1) 3 0jω ω  (1) 4 0jω ω  
1 15.90  32.79  53.64  75.95  
2 32.79  46.01  63.89  84.12  
3 53.64  63.89  78.75  96.48  

  
 
 
 Table E13.8-2  The first 3 × 4  natural frequencies of the second (upper) branch of roots for a 
 square Mindlin plate (b = a = L; 0.1gyrr = ; 50k = ) 

j (2) 1 0jω ω  (2) 2 0jω ω  (2) 3 0jω ω  (2) 4 0jω ω  
1 87.80 106.4 130.1 156.2 
2 106.4 121.4 142.0 165.9 
3 130.1 142.0 159.5 180.8 
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Figure E13.8-2  Modal functions W(11), ϑx

(11) and ϑy
(11) for square Mindlin plate.  
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Figure E13.8-3  Modal functions W(21), ϑx

(21) and ϑy
(21) for square Mindlin plate. 
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Figure E13.8-4  Modal functions W(22), ϑx

(22) and ϑy
(22) for square Mindlin plate. 
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Figure E13.8-5  Modal functions W(31), ϑx

(31) and ϑy
(31) for square Mindlin plate. 
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Figure E13.8-6  Modal functions W(32), ϑx

(32) and ϑy
(32) for square Mindlin plate. 
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 Figure E13.8-7  Modal functions W(33), ϑx
(33) and ϑy

(33) for square Mindlin plate. 
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Figure E13.8-8  Frequency spectrum for square Mindlin plate that is simply supported on all 
four edges, superimposed on continuous spectrum of Fig. 13.3. (Dots correspond to modes of 
the fully simply supported plate.) 

 
 
 
(f) 
The dependence of the natural frequencies on the normalized shear stiffness, k , is shown 
in Tables E 13.8-3(a)–(d) for selected values of the nondimensional radius of gyration, gyrr . 
If we compare the frequencies predicted using Kirchhoff theory  (last line of Table (d)) with 
those using Mindlin theory, it is seen that the influence of shear is much more significant 
than that of rotatory inertia. If we consider case (b), with k = 100, it is seen that the funda-
mental frequency predicted by Kirchhoff theory overestimates that predicted using Mindlin 
theory by about 17%, while higher frequencies differ by a progressively greater margin.  
     
 
 

 Table E13.8-3  Dependence of natural frequency on shear stiffness and radius of gyration 
 for a square Mindlin plate that is simply supported on all four of its edges. 

 (a) 0.2gyrr =  
      k    11 0ω ω    12 0ω ω    22 0ω ω    13 0ω ω    23 0ω ω  
         1.0     4.330     6.952     8.828     9.883     11.28 
       10.0     10.88     19.53     25.75     29.23     33.83 
     100.0     14.30     27.77     37.73     43.35     50.78 
   1000.0     14.71     28.54     38.63     44.28     51.72 
 10000.0     14.75     28.61     38.71     44.36     51.80 
         ∞      14.76     28.62     38.72     44.37     51.81 

 

í�00 í�00 0 �00 �00
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 (b) 0.1gyrr =  
      k    11 0ω ω    12 0ω ω    22 0ω ω    13 0ω ω    23 0ω ω  
         1.0     4.333     6.954     8.829     9.884     11.28 
       10.0     11.32     20.11     26.33     29.80     34.37 
     100.0     16.89     36.23     51.96     61.22     73.82 
   1000.0     17.92     39.94     58.29     69.14     83.86 
 10000.0     18.03     40.34     58.95     69.93     84.81 
         ∞      18.04     40.38     59.02     70.02     84.92 

 
 (c) 0.01gyrr =  

      k    11 0ω ω    12 0ω ω    22 0ω ω    13 0ω ω    23 0ω ω  
         1.0     4.334     6.955      8.830     9.885     11.29 
       10.0     11.45     20.26      26.47     29.93     34.50 
     100.0     18.03     40.34      58.95     69.93     84.81 
   1000.0     19.53     48.07      75.76     93.78     120.2 
 10000.0     19.70     49.11      78.34     97.74     126.7 
         ∞      19.72     49.23      78.65     98.21     127.5 

 
 (d) 0gyrr =  

      k    11 0ω ω    12 0ω ω    22 0ω ω    13 0ω ω    23 0ω ω  
         1.0     4.334     6.955      8.830     9.885     11.29 
       10.0     11.45     20.26      26.47     29.94     34.50 
     100.0     18.04     40.38      59.02     70.02     84.92 
   1000.0     19.55     48.17      76.01     94.16     120.8 
 10000.0     19.72     49.23      78.65     98.21     127.5 
         ∞*       22π       25π        28π      210π      213π  

 (*Kirchhoff plate theory) 
 

 
 
 
 

Example 13.9 
Consider the rectangular Mindlin plate whose sides are of length a and b. The plate 
is simply supported along the edges x = 0 and x = a and is clamped along the edges y 
= 0 and y = b. (a) Establish the modal 
boundary conditions for the structure. 
(b) Determine the frequency equation 
for the plate. Evaluate the first 3 × 3 
natural frequencies for a square plate 
(a = b = L) with 50,k = 0.1gyrr =  and 
ν = 0.3. (c) Determine the correspond-
ing modal functions and plot them. (d) 
Write down the general free vibration 
response of the plate. 
    Figure E13.9-1 
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Solution 
(a) 
The boundary conditions for the plate are, from Example 12.9, 
 

 
0

(0, , ) 0, (0, , ) 0, (0, , ) 0,yx
xx y

x

w y t M y t D y t
x y

ϕϕ ν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
 (a-1,2,3) 

 

 ( , , ) 0, ( , , ) 0, ( , , ) 0,yx
xx y

x a

w a y t M a y t D a y t
x y

ϕϕ ν ϕ
=

∂ª º∂= = − + = =« »∂ ∂¬ ¼
 (a-4,5,6) 

 
 ( ,0, ) 0, ( ,0, ) 0, ( ,0, ) 0,y xw x t x t x tϕ ϕ= = =  (a-7,8,9) 
 
 ( , , ) 0, ( , , ) 0, ( , , ) 0y xw x b t x b t x b tϕ ϕ= = =  (a-10,11,12) 
 
The rotation ϕy vanishes identically along the edges x = 0 and x = a due to the rigidi-
ty of the knife edge supports along the y-direction. It then follows that 
 

 
0

0 (0 )y y

x x a

y b
y y

ϕ ϕ

= =

∂ ∂
= = ≤ ≤

∂ ∂
 (b-1,2) 

 
Substitution of Eq. (13.142) and Eqs. (b-1) and (b-2) into Eqs. (a-1)–(a-12) gives the 
boundary conditions for the modal functions as 
 
 (0, ) 0 (0, ) 0 (0 )i tW y e W y y bω = � = ≤ ≤  � (c-1) 
 

 
00

0 0 (0 )y i tx x

xx

D e y b
x y x

ωϑϑ ϑν
==

∂ª º∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-2) 

 
 (0, ) 0 (0, ) 0 (0 )i t

y yy e y y bωϑ ϑ= � = ≤ ≤  � (c-3) 
 
 ( , ) 0 ( , ) 0 (0 )i tW a y e W a y y bω = � = ≤ ≤  � (c-4) 
 

 0 0 (0 )y i tx x

x ax a

D e y b
x y x

ωϑϑ ϑν
==

∂ª º∂ ∂− + = � = ≤ ≤« »∂ ∂ ∂¬ ¼
 � (c-5) 

 
 ( , ) 0 ( , ) 0 (0 )i t

y ya y e a y y bωϑ ϑ= � = ≤ ≤  � (c-6) 
 
 ( ,0) 0 ( ,0) 0 (0 )i tW x e W x x aω = � = ≤ ≤  � (c-7) 
 
 ( ,0) 0 ( ,0) 0 (0 )i t

y yx e x x aωϑ ϑ= � = ≤ ≤  � (c-8) 
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 ( ,0) 0 ( ,0) 0 (0 )i t
x xx e x x aωϑ ϑ= � = ≤ ≤  � (c-9) 

 
 ( , ) 0 ( , ) 0 (0 )i tW x b e W x b x aω = � = ≤ ≤  � (c-10) 
 
 ( , ) 0 ( , ) 0 (0 )i t

y yx b e x b x aωϑ ϑ= � = ≤ ≤  � (c-11) 
 

 ( , ) 0 ( , ) 0 (0 )i t
x xx b e x b x aωϑ ϑ= � = ≤ ≤  � (c-12) 

 
where we have introduced the nondimensionalization of Eqs. (13.145)–(13.148) into 
the above expressions, and a and b are given by 
  
 ,a a L b b L= =  (d) 
 
The length scale L will be chosen later, but natural candidates are L = a or L = b or 

2 2L a b= + . 
 
(b) 
For this problem we shall employ the general solution in the form that incorporates 

ˆ( )
x

µβϑ and ˆ( ) .y
µβϑ  Imposition of Eqs. (c-1)−(c-6) on Eqs. (13.239) and (13.240) with 

Eq. (13.246), and proceeding as in the first part of Part (b) of Example 13.8 with 
 
    { }(3)

11 12( ) sinh coshxY y B y B yβ β β= +   
 
renders A1 = A2 = A3 = B10 = 0, as in that example. This gives the reduced forms of 
the modal functions for the present case, 
 
  { } { }4 5 6 7 8

ˆˆ ˆ( , ) sin cosh sinh cos sinW x y A x A y A y A y A yα γ γ γ γª º= + + +¬ ¼  

   (e-1) 
  

{ } { }
[ ]

4 5 6 7 8

9 11 12

ˆ ˆ ˆ ˆ( , ) cos cosh sinh cos sin

ˆcos cosh sinh
x d bx y A x g A y A y g A y A y

B x B y B y

ϑ α α γ γ γ γ
α β β

= + + +ª º¬ ¼
+ +

 

   (e-2) 
  

{ } { }
( ) [ ]

4 5 6 7 8

9 11 12

ˆ ˆ ˆ ˆ( , ) sin sinh cosh sin cos

ˆ ˆsin sinh cosh
y d bx y A x g A y A y g A y A y

B x B y B y

ϑ α γ γ γ γ γ γ
α β α β β

= + − −ª º¬ ¼
+ +

 

   (e-3) 
where 
 ˆ ˆ ( 1,2, )j j a jα α π= = = !  (f) 
 
We next impose Eqs. (c-7)–(c-9) on Eqs. (e-1)–(e-3). This results in the relations 
 
 [ ]4 5 7 5 7ˆ( ,0) 0 sin 0W x A x A A A Aα= = + � + =  (g-1) 
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 [ ] ( )4 6 8 9 12ˆ ˆ( ,0) 0 0y d bx A g A g A B Bϑ γ γ α β= � + + =  (g-2) 
 
 [ ]4 5 7 9 11ˆ( ,0) 0 0x d bx A g A g A B Bϑ α= � + + =  (g-3) 

 
Imposing Eqs. (c-10)–(c-12) on Eqs. (e-1)–(e-3), and substituting the relation given 
by Eqs. (g-1) into the resulting expressions gives 
  
 { }5 6 8ˆ ˆ( , ) 0 cosh cos sinh sin 0W x b A b b A b A bγ γ γ γ= � − + + =  (h-1)  
 

{ }
( )

4 5 6 8

9 11 12

( , ) 0

ˆ ˆ ˆ ˆsinh sin cosh cos

ˆ sinh cosh 0

y

d b d b

x b

A A g b g b A g b A g b

B B b B b

ϑ

γ γ γ γ γ γ γ γ

α β β β

= �

ª º+ + +¬ ¼
ª º+ + =¬ ¼

   

  (h-2) 

       { }4 5 6 8

9 11 12

( , ) 0

ˆ ˆ ˆ ˆ ˆcosh cos sinh sin

cosh sinh 0

x

d b d b

x b

A A g b g b A g b A g b

B B b B b

ϑ

α γ γ α γ α γ

β β

= �

ª º− + +¬ ¼
ª º+ + =¬ ¼

  

  (h-3) 
 
Substitution of Eqs. (g-2), (g-3) and (h-1) into Eqs. (h-2) and (h-3) yields the reduced 

 system 
 

 511 12

621 22

0
0

AH H
AH H

 ½ª º  ½=® ¾ ® ¾« »
¯ ¿¬ ¼ ¯ ¿

 (i) 

where 
 

 
( ){ }

{ }{ }
2

11

2

ˆ ˆ ˆsin cosh cos cosh

ˆ ˆ ˆ ˆsin sinh cos cosh

d b b d

b

H b g b g b g g b

g b b b b

α γ γ γ β

α γ γβ β γ γ

= − + −

+ − −
 (j-1) 

 

     
{ }

{ }
2

12

2

ˆ ˆsin sinh sinh

ˆ ˆ ˆsinh sin sinh

d

b

H g b b b

g b b b

γ α γ γβ β

γ α γ γβ β

= −

− −
 (j-2) 

 

 
{ } ( )

{ }{ }
2

21 ˆ ˆ ˆ ˆ ˆsin sinh sin sin sinh

ˆ ˆ ˆcos cosh cos cosh

d b b d

b

H b g b g b g g b b

g b b b b

β γ γ γ γ γ α γ β

γβ γ β γ γ

= + + −

+ − −
 (j-3) 

 
 { } { }22 ˆ ˆ ˆsin cosh cosh sinh cos coshd bH g b b b g b b bγβ γ γ β γβ γ γ β= − − −  (j-4) 

 
For nontrivial solutions, the determinant of the square matrix of Eq. (i) must vanish. 
Doing this results in the frequency equation for the hinged/clamped Mindlin plate.  
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Hence, 
 
 2

11 22 12 21( ) 0H H H Hω = − =F  � (k) 
 
where, from Eqs. (13.178)2, 
 

 ( )22 2 2ˆ ˆ( ) ( ) ( 1, 2, ; 1, 2, )jl jl b jl j jl b jlR R j a j lγ ω ω α ω ω π= − = − = =! !  (l-1) 
 
from Eq. (13.178)5, 
 

 ( )22 2 2ˆ( ) ( ) ( 1,2, ; 1,2, )jl jl a jl j jl a jlR R j a j lγ ω ω α ω ω π= + = + = =! !  (l-2) 

 
and, from Eq. (13.186)3 and (13.187)3, 
 

 ( )22ˆ( ) ( ) ( 1,2, ; 1,2, )jl c jl j c jlR R j a j lβ ω α ω π= + = + = =! !  (l-3) 

 
Further, from Eqs. (13.181), (13.243) and (13.245), 
 

 ( ) 1( ) 1
( )

jl
b b jl

b jl

g g
R

ω
ω

≡ = −  (m-1) 

 
 ( ) ˆ( ) ( , , )jl

d d jl j jl jlg g g iω α γ ω≡ =  (m-2) 
 
where Ra, Rb and Rc are defined by Eqs. (13.176)1, (13.176)2 and (13.184), respec-
tively. Equation (i) can be solved numerically for each value of j (= 1, 2, 3...) as was 
done for one-dimensional continua in Chapter 10, to obtain the natural frequencies 
of the plate, jlω  ( j,l = 1, 2, 3...). The first 3 × 3 natural frequencies for a square 
Mindlin plate are displayed in Table E13.9. It is seen from Eq. (l-3) and Figure 13.3 
that all three branches of the frequency spectrum are active for this structure.  
 
 
 
 

    Table E13.9   
  The first 3 × 3 natural frequencies for a square Mindlin plate b = a = L.   
     ( 0.1, 50, 0.3)gyrr k ν= = =  

j 1 0jω ω  2 0jω ω  3 0jω ω  

1 19.45 36.65 56.09 

2 33.83 47.83 65.24 

3 53.98 64.65 79.38 
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(c) 
The modes are determined by substituting Eqs. (g-1)−(g-3), (h-1) and (h-2) into Eqs. 
(e-1)−(e-3). Doing this, we find that 
 

( )

( ) ( ) ( ) ( )

( ) ( )

( )
( )11

( )
12

( , ) sin

ˆ ˆcosh cos sinh sin

jl jl

jl
jl

jl jl jl jljl

W x y A j x a

Hy y y Z y
H

π

γ γ γ γ

=

ª º
× − − +« »
¬ ¼

 

   � (n-1)   
 

( ) ( )

( ) ( )

( ) ( ){ }
{ } ( ) ( ) ( )

( ) ( )

( )
( ) 11

( )
12

( ) ( )

( ) ( ) ( )
2

( , ) cos

cosh sinh

ˆ ˆcos sin

ˆcosh sinh

jl jl
x

jl
jl

d jl jljl

jl jl
b jl jl

jljl jl jl
b d jl jl

x y A j a j x a

Hg y y
H

g y Z y

g g y Z y
j a

ϑ π π

γ γ

γ γ

β
β β

π

=

ª  ½
× −« ® ¾
« ¯ ¿¬

− −

º
+ − + »

»¼

 

   � (n-2) 
and 

( )

( ) ( )

( ) ( ){ }
( ) { } ( ) ( )

( ) ( )

( )
( ) 11

( )
12

( ) ( )

2
( ) ( ) ( )

( , ) sin

sinh cosh

ˆ ˆ ˆsin cos

ˆsinh cosh

jl jl
y

jl
jl

jl d jl jljl

jl jl
jl b jl jl

jl jl jl
b d jl jl

jl

x y A j x a

Hg y y
H

g y Z y

j a
g g y Z y

ϑ π

γ γ γ

γ γ γ

π
β β

β

=

ª  ½
× −« ® ¾
« ¯ ¿¬

+ +

º
+ − + »

»¼

 

   � (n-3) 
where 
 

 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )11
0 ( )

12

ˆ ˆ,
jl

jl jl jl jl jl jl jl
jl d jl bjl

HZ Z Z Z g g Z
H

γ γ= − = −�   

  (o-1,2) 
 

 
{ }( )

( ) ( )11
0 ( )

12

ˆcosh cossinh
,

ˆ ˆsin sin

jl
jl jljljl jl

jl
jl jl

b bbHZ Z
H b b

γ γγ
γ γ

−
= =�  (o-3,4) 

 
The values of the spatial exponents ˆ, jljlγ γ and βjl, of the coefficients ( )jl

bg and 
( ) ,jl
dg and of the parameters ( )

11
jlH and ( )

12 ,jlH can be assessed using Eqs. (j-1), (j-2), 
Eqs. (l-1)–(l-3), and Eqs. (13.176) and (13.185) for each value of jlω  (j,l  = 1, 2, 
3,...) found by solving Eq. (i).  
 Plots of the first 3 × 3 modes for a square plate are displayed in Figures E13.9-2 
through E13.9-10 in order of ascending frequency (Table E13.9). 
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 Figure E13.9-2  Modal functions W(11), ϑx

(11) and ϑy
(11). 
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 Figure E13.9-3  Modal functions W(21), ϑx

(21) and ϑy
(21). 

0
0��

0��
0��

0��
�

0

0��

0��

0��

0��

�

 

 

0

 

 

[�/
\�/

W (21)

0
0��

0��
0��

0��
�

0

0��

0��

0��

0��

�

 

 

0

 

 

[�/
\�/

ϑ(21)
x

0
0��

0��
0��

0��
�

0

0��

0��

0��

0��

�

 

 

0

 

 

[�/
\�/

ϑ(21)
y

www.konkur.in



832 Engineering Vibrations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure E13.9-4  Modal functions W(12), ϑx

(12) and ϑy
(12). 
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 Figure E13.9-5  Modal functions W(22), ϑx

(22) and ϑy
(22). 
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 Figure E13.9-6  Modal functions W(31), ϑx

(31) and ϑy
(31). 
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 Figure E13.9-7  Modal functions W(13), ϑx

(13) and ϑy
(13). 
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  Figure E13.9-8  Modal functions W(32), ϑx

(32) and ϑy
(32).  
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  Figure E13.9-9  Modal functions W(23), ϑx

(23) and ϑy
(23). 
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 Figure E13.9-10  Modal functions W(33), ϑx

(33) and ϑy
(33). 
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(d) 
The general free vibration response of the plate is then 
 

 ( )
( )

( ) ( )

( )1 1

( , , ) ( , )
( , , ) ( , ) cos
( , , ) ( , )

jl

jl jl
x x jl jl

jlj l
y y

w x y t W x y
x y t x y A t
x y t x y

ϕ ϑ ω φ
ϕ ϑ

∞ ∞

= =

 ½ ½
° °° ° = −® ¾ ® ¾

° ° ° °
¯ ¿ ¯ ¿

¦¦  � (p) 

 
where the modal functions are given by Eqs. (n-1)−(n-3) and the amplitude and 
phase angles are determined from the specific initial conditions imposed on the 
structure. 

 
 

13.7  NORMALIZATION OF THE MODAL FUNCTIONS 

The modal functions of the structures of interest were seen to be unique to within a constant 
coefficient. One approach to alleviate the arbitrariness is to set that coefficient equal to uni-
ty. This is what we did implicitly in the preceding sections. An alternate approach is to 
normalize the modal functions of a system so that each has unit magnitude (“length”). This 
then provides a standard measure for which the relative amplitudes of the modes may be 
compared in a given situation. In this section we extend the discussions of Section 10.7 to 
systems defined over two-dimensional domains. 
   

13.7.1  Systems with One Dependent Variable 

The modal functions may be normalized by dividing them by their magnitudes, where the 
magnitudes are defined utilizing either of the scalar products discussed in Section 13.1. 
That is, normalization of the modal functions may be accomplished using the conventional 
scalar product as the metric, or by employing the weighted scalar product as the metric, in a 
consistent manor for any given system. In either approach, the magnitude is the square root 
of the pertinent scalar product of the function with itself.   

Conventional Scalar Product as Metric 
To normalize the function U(x,y), and hence render it a unit function, we divide the func-
tion by its magnitude. Utilizing the conventional scalar product as metric, the normalized 
counterpart of the function is then  
 

 
2

( , ) ( , ) ( , )( , )
, ( , )

x y x y x yx y
x y d

= = =

³
U U UU

U U U U
*

*
 (13.256) 

Weighted Scalar Product as Metric 
To normalize the function U(x,y) utilizing the weighted scalar product with respect to the 
operator d, we divide the function by its corresponding magnitude. In this context, the nor-
malized counterpart of the function U(x,y) is given as  
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 ( , ) ( , ) ( , )( , )
, ( , ) ( , )

x y x y x yx y
x y x y d

= = =

³
U U UU

U U U U U
*

*d d d
 (13.257) 

 
It is pertinent to point out that, for the structures considered − ideal membranes, Kirchhoff 
plates, and von Karman plates − the mass operator is, at most, a scalar function of the spa-
tial coordinates. It is therefore advantageous to normalize the modal functions with respect 
to the mass for these structures. It is customary to drop the over-bar when consistently using 
normal modes.  
 

Example 13.10 
Normalize the modal functions of the simply supported rectangular Kirchhoff plate 
of Example 13.3 with respect to the mass operator. 
 
Solution 
The mass operator for Kirchhoff plates is simply the mass per unit area, m, which is 
a constant for a uniform isotropic plate. The magnitude of the modal function is thus 
of the general form 
 

2( ) ( ) ( ) ( )

0 0 0 0
( , ) ( , ) ( , )

b a b a
jl jl jl jl

m
W W x y mW x y dxdy m W x y dxdy= =³ ³ ³ ³  (a) 

 
The modal functions for the simply supported Kirchhoff plate are, from Eq. (u) of 
Example 13.3, 
 

 ( ) ( )( , ) sin sin ( , 1, 2,3, )jl jl j x l yW x y A j l
a b
π π§ · § ·= =¨ ¸ ¨ ¸

© ¹ © ¹
!  (b) 

 
Hence, 
 

 ( ) ( )

2 2( ) ( )

0 0

2( ) 2 2

0 0

2( )

( , )

sin sin

4

b a
jl jl

m

b a
jl

jl

W m W x y dxdy

mA j x a l y b dxdy

mabA

π π

=

=

=

³ ³
³ ³  (c) 

 
Substitution of Eq. (c) into Eq. (13.257) gives the normal modes for the simply sup-
ported Kirchhoff plate as 
 

 ( ) 2( , ) sin sin ( , 1, 2,3, )jl j x l yW x y j l
a bmab
π π§ · § ·= =¨ ¸ ¨ ¸

© ¹ © ¹
!  � (d) 
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13.7.2  Systems with Multiple Dependent Variables 

In this section, we discuss normalization of the modal functions for systems with more than 
one dependent variable, such as Mindlin plates. This is accomplished using the pertinent 
scalar products for vector functions discussed in Section 13.1.  

Conventional Scalar Product as Metric 
When employing the conventional scalar product as metric, the normalized counterpart of 
the column matrix U(x,y) is   
 

 ( , ) ( , ) ( , )( , )
,

x y x y x yx y
d

= = =

³* *

U U UU
U U U U UT

 (13.258) 

Weighted Scalar Product as Metric 
When utilizing the weighted scalar product with respect to the operator d as metric, the 
normalized counterpart of the column matrix U(x,y) is   
 

 ( , ) ( , ) ( , )( , )
,

x y x y x yx y
d

= = =

³* *d d

U U UU
U U U U dUT

 (13.259) 

 
Since the mass operator for a Mindlin plate is a scalar matrix, it is most advantageous to 
normalize the modes with respect to the mass for these structures. The mass operator for a 
Mindlin plate is the matrix operator given by Eq. (13.138) and the general form of the mod-
al matrix is that given by Eq. (13.143). The square of the magnitude of the modal matrix of 
an isotropic Mindlin plate is then of the general form 
 

 

2( ) ( ) ( )

( )

( ) ( ) ( ) 2 ( )

0 0 2 ( )

2 2 2( ) 2 ( ) 2 ( )

0 0

( , ) ( , )

0 0
0 0
0 0

( , ) ( , )

jl jl jl

jl
b a

jl jl jl jl
x y gyr x

jl
gyr y

b a
jl jl jl

gyr x gyr y

x y x y d

m W
W mr dxdy

mr

m W x y r x y r dxdy

ϑ ϑ ϑ
ϑ

ϑ ϑ

=

 ½ª º
° °« »ª º= ® ¾« »¬ ¼
° °« »¬ ¼ ¯ ¿

ª º= + +¬ ¼

³

³ ³

³ ³

T

m
U U mU

*
*

 

  (13.260) 

Example 13.11 
Normalize the modal functions of the simply supported rectangular Mindlin plate of 
Example 13.8 with respect to the mass operator. 
 
 
Solution 
The modal functions for the simply supported Mindlin plate are, from Eq. (s) of Ex-
ample 13.8, 
 

www.konkur.in



842 Engineering Vibrations 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( )

( , ) sin sin
( , ) cos sin ( , 1,2,3 )
( , ) sin cos

jl

jl jl jl
x b

jl jl
y b

W x y j x a l y b
x y A j a g j x a l y b j l
x y l b g j x a l y b

π π
ϑ π π π
ϑ π π π

 ½  ½
° ° ° °= =® ¾ ® ¾
° ° ° °

¯ ¿¯ ¿

!   

  (a) 
 
Substitution of Eq. (a) into Eq. (13.260) gives 
 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2( ) ( ) 2 2

0 0

2 222 ( ) ( ) 2 2

0 0

2 222 ( ) ( ) 2 2

0 0

sin sin

cos sin

sin cos

b a
jl jl

b a
jl jl

gyr b

b a
jl jl

gyr b

mA j x a l y b dxdy

mr A j a g j x a l y b dxdy

mr A l b g j x a l y b dxdy

π π

π π π

π π π

=

+

+

³ ³
³ ³
³ ³

m
U

 (b) 

 
After carrying through the indicated integrations we have that 
 

 ( ) ( ){ }2 2 2 2 2( ) ( ) 2 ( )1
4

jl jl jl
gyr b

mab A r g j a l bπ πª º= + +
¬ ¼m

U  (c) 

 
Finally, substituting Eqs. (a) and (c) into Eq. (13.259) gives the normalized modal 
functions for the simply supported Mindlin plate as 
 

( ) ( ){ }
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )

( )

2 2 22 ( )( )

( )

( )

( , )
2 1( , )

1( , )

sin sin
cos sin
sin cos

( , 1,2,3 )

jl

jl
x

jljl
gyr by

jl
b
jl

b

W x y
x y

mab r g j a l bx y

j x a l y b
j a g j x a l y b
l b g j x a l y b

j l

ϑ
π πϑ

π π
π π π
π π π

 ½
° ° =® ¾
° ° + +
¯ ¿

 ½
° °× ® ¾
° °
¯ ¿

= !

 � (e) 

 
 
 
 
 

13.8  ORTHOGONALITY OF THE MODAL FUNCTIONS 

The mutual orthogonality of the modal functions for a given system was seen to be an ex-
tremely important property for discrete systems as well as for one-dimensional continua. It 
is similarly important for two-dimensional continua. In this section we establish the condi-
tions for the modal functions of 2-D continua to be mutually orthogonal. We do this in gen-
eral, and then specialize the conditions and their interpretation for the class of structures of 
interest. 
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13.8.1  Systems with One Dependent Variable 

For systems with one dependent variable, consider the frequency-mode pairs associated 
with the lpth and njth modal functions,  
 
 2 ( ) 2 ( ), ( , ) and , ( , )lp nj

lp njW x y W x yω ω  (13.261) 
 
respectively. By definition, each such pair satisfies Eq. (13.15). Hence,  
 
 ( ) 2 ( )( , ) ( , )lp lp

lpW x y W x yω=k m  (13.262) 
and 
 ( ) 2 ( )( , ) ( , )nj nj

njW x y W x yω=k m  (13.263) 
 
Multiplying Eq. (13.262) by W (nj), multiplying Eq. (13.263) by W (lp), then taking the differ-
ence between the resulting expressions and integrating over the domain of definition, *, of 
the structure gives  
 

 ( )( ) ( ) ( ) ( ) 2 2 ( ) ( )nj lp lp nj nj lp
lp njW W W W d W W dω ωª º− = −¬ ¼³ ³k k m

* *
* *  (13.264) 

 
It follows that, for distinct frequencies ( )2 2

nj lpω ω≠ , 
  

 ( ) ( ) ( ) ( ), ( , ) ( , ) 0lp nj lp njW W W x y W x y d≡ =³m
m

*
*�  (13.265) 

 
and hence that 
 
 ( ) ( )( , ) ( , )lp njW x y W x y⊥

m
 

if 

 ( , ) ( ) ( ) ( ) ( ) 0nj lp nj lp lp njB W W W W dª º≡ − =¬ ¼³k k k
*

*  (13.266) 

 
The conditions for mutual orthogonality of the modal functions are thus seen to be depend-
ent upon the particular stiffness operators associated with the structure, as well as upon the 
region on which the structure is defined. This condition will be seen to be physically inter-
pretable for the specific type of structure considered. Upon multiplying Eq. (13.262) by 
W(nj), integrating over the domain of definition of the structure and incorporating Eq. 
(13.265) we see that if the system is orthogonal with respect to the mass operator it is also 
orthogonal with respect to the stiffness operator. We next examine this property for the spe-
cific classes of structures of interest. 
   

Ideal Membranes 
The governing equations for membranes were developed in Section 12.2. It was shown in 
Section 12.2.2 that the stiffness operator for an ideal membrane is of the form 
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 2
0N= − ∇k  (13.267) 

 
where N0 is the uniform membrane force (tension). Substitution of the operator defined in 
Eq. (13.267) into Eq. (13.266) renders the orthogonality condition for the membrane to the 
form 

 ( ) 2 ( ) ( ) 2 ( )
0 0nj lp lp njN W W W W dª º∇ − ∇ =¬ ¼³* *  (13.268) 

 
Applying Green's Second Identity to Eq. (13.268) gives the orthogonality condition for the 
ideal membrane as 
 

 ( ) ( ) ( ) ( ) 0nj lp lp njW Q W Q dª º− =¬ ¼³ � �
+

+  (13.269) 

 
where 

 ( ) ( )
0( , ) ( , )nj njQ x y N W x y

µ
∂=

∂
�  (13.270) 

 
is the njth  modal transverse shear force (per unit length) and µ is the coordinate along the 
outer normal to the bounding surface S at a given point on that surface. Thus, the modal 
functions for the membrane are mutually orthogonal if the work of the lpth transverse modal 
shear in moving through the displacements of the njth mode on the periphery of the mem-
brane is equal to the work of the njth transverse modal shear in moving through the dis-
placements of the lpth mode over the same boundary. This required reciprocal relationship is 
similar in interpretation to that found for the one-dimensional continua discussed in Chapter 
10.  
 

Kirchhoff Plates 
The stiffness operator for Kirchhoff plates is of the form 
 
 2 2D= ∇ ∇k  (13.271) 
 
where D corresponds to the bending stiffness of the plate. Substitution of Eq. (13.271) into 
Eq. (13.266) renders the condition for orthogonality of the modal functions to the form 
 

 ( ) ( )( ) 2 ( ) ( ) 2 ( ) 0nj lp lp njW W W W dª º∇ ∇ ∇ − ∇ ∇ ∇ =¬ ¼³ < <
*

*  (13.272) 

  
From Green’s Second Identity, 
 

 ( ) 2 ( ) ( ) 2 ( ) ( ) ( ) ( ) ( )nj lp lp nj nj lp lp njd d
d dF W d W F d F W W F dµ µª º∇ = ∇ + −¬ ¼³ ³ ³* * +

* * +  

  (13.273) 
 
where, for the present problem, 
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 ( ) 2 ( )nj njF W= ∇  (13.274) 
 
and µ is the coordinate in the direction normal to the edge of the plate at a given point. Uti-
lizing Eq. (13.273) in Eq. (13.272) gives 
 

 
{ } { }

( ) ( )

( ) 2 ( ) ( ) 2 ( )

2 ( ) ( ) 2 ( ) ( ) 0

nj lp lp nj

nj lp lp nj

W W W W d

W W W W d

µ µ

µ µ

∂ ∂
∂ ∂

∂ ∂
∂ ∂

ª º∇ − ∇¬ ¼

ª º+ ∇ − ∇ =¬ ¼

³
³

+

+

+

+
  

 
or, equivalently, 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0
(1 )

nj lp lp nj nj lp lp njW Q W Q d M M dµ µ λ µ λ µν
ª º ª º− + Φ − Φ =¬ ¼¬ ¼ +³ ³� � � �

+ +
+ +  

  (13.275) 
 
where Qµ

� represents the resultant transverse modal shear force (per unit length) on the edge 
of the plate, xx yyM M Mλ = +� � � corresponds to the first invariant and trace of the modal mo-
ment tensor (i.e., the modal “hydrostatic moment” – or the, so called, modal “moment 
sum”), Φµ is the modal rotation of the cross section whose unit normal is µG , and ν is Pois-
son's ratio for the plate material. Clearly, the modes of an isotropic elastic plate are mutual-
ly orthogonal if, along the edge of the plate, the following conditions hold; (1) the work of 
the modal transverse shear associated with the njth mode in moving through the deflections 
of the lpth mode equals the work of the modal transverse shear of the lpth mode in moving 
through the deflections of the njth mode, and (2) the work of the modal hydrostatic moment 
associated with the njth mode in moving through the rotations of the lpth mode equals the 
work of the modal hydrostatic moment of the lpth mode in moving through the rotations of 
the njth mode. 
 

von Karman Plates with Uniform Membrane Force 
The condition for orthogonality of the modes of transverse vibration for von Karman plates 
with constant membrane force follows directly from the corresponding development for 
linear plates, with the transverse shear augmented by the vertical projection of the mem-
brane force. The condition for orthogonality of the modes of transverse vibration for von 
Karman plates with constant membrane force is then   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0
(1 )

nj lp lp nj nj lp lp njW P W P d M M dµ µ λ µ λ µν
ª º ª º− + Φ − Φ =¬ ¼ ¬ ¼+³ ³� � � �

+ +
+ +  

  (13.276) 

where 

 ( )
( )

( ) ( ) 2 ( )
0 0( , ) ( , )

lp
lp lp lpWP x y Q x y N N Wµ µ µ µ

∂ ∂= − = ∇ −
∂ ∂

��  (13.277) 
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As for linear plates, the modes of an isotropic von Karman plate are seen to be mutually 
orthogonal if, along the edge of the plate, the work of the modal transverse shear associated 
with the njth mode in moving through the deflections of the lpth mode equals the work of the 
modal transverse shear of the lpth mode in moving through the deflections of the njth mode, 
where the modal shear is interpreted as in Eq. (13.277), and if the work of the modal hydro-
static moment associated with the njth mode in moving through the rotations of the lpth 
mode equals the work of the modal hydrostatic moment of the lpth mode in moving through 
the rotations of the njth mode. 
 

13.8.2  Mindlin Plates 

The general statement of the mutual orthogonality of the modal functions for systems with 
multiple dependent variables (displacement measures) parallels the earlier development for 
systems with a single dependent variable.  In this regard, let us consider the frequency-
mode pairs associated with the lpth and njth modal functions,  
 
 2 ( ) 2 ( ), ( , ) and , ( , )lp nj

lp njx y x yω ωU U  (13.278) 
 
respectively. Since they are solutions to the corresponding eigenvalue problem, each such 
pair satisfies Eq. (13.19). Thus,  
 
 ( ) 2 ( )( , ) ( , )lp lp

lpx y x yω=kU mU  (13.279) 
and 
 ( ) 2 ( )( , ) ( , )nj nj

njx y x yω=kU mU  (13.280) 
 
We next multiply Eq. (13.279) by U(nj)T and multiply Eq. (13.280) by U(lp)T to obtain 
 
 ( ) ( ) 2 ( ) ( )( , ) ( , )nj lp nj lp

lpx y x yω=T TU kU U mU  (13.281) 
 
 ( ) ( ) 2 ( ) ( )( , ) ( , )lp nj lp nj

njx y x yω=T TU kU U mU  (13.282) 
 
Taking the transpose of Eq. (13.282), subtracting the resulting expression from Eq. (13.281)
and noting that the mass and stiffness operators for the systems of interest are symmetric 
(mT = m and kT = k), and then integrating over the domain of definition of the structure 
yields the identity 
 

 ( )( ) ( ) ( ) ( ) 2 2 ( ) ( )nj lp lp nj nj lp
lp njd dω ωª º− = −¬ ¼³ ³* *

* *T T TU kU U kU U mU  (13.283) 

 
It is seen that if 

 ( , ) ( ) ( ) ( ) ( ) 0nj lp nj lp lp njB dª º≡ − =¬ ¼³* *T T
k U kU U kU  (13.284) 

then 

 ( )2 2 ( ) ( ) 0nj lp
lp nj dω ω− =³* *TU mU  (13.285) 
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It follows from Eq. (13.285) that, for distinct natural frequencies ( )2 2
lp njω ω≠ ,  

 

 ( ) ( ) ( ) ( ), 0nj lp nj lp d= =³* *�T

m
U U U mU  (13.286) 

 
Hence, the modes of vibration are mutually orthogonal with respect to the mass operator in 
this sense. Substitution of Eq. (13.286) into Eq. (13.281) gives 
 

 ( ) ( ) ( ) ( ), 0nj lp nj lp d= =³k
U U U kUT

*
*�  (13.287) 

 
Thus, the modes are mutually orthogonal with respect to the stiffness operator as well. This 
is true for the modes of all such systems, and for the modes of transverse vibration of 
Mindlin plates in particular. 
 The specific statement of orthogonality of the modes of vibration for Mindlin plates is 
obtained by substituting Eqs. (12.170) and (12.172) into Eq. (13.286). The explicit form of 
the statement of orthogonality with respect to the mass matrix is thus 
 

 ( ) ( ) ( ) ( ) ( ) ( ) 0lp nj lp nj lp nj
x x y yW mW I I dρ ρϑ ϑ ϑ ϑª º+ + =¬ ¼³* *  (13.288) 

 
To assess the conditions for which the modes are mutually orthogonal, we evaluate the in-
tegral of Eq. (13.284). Substituting Eq. (12.171)  [Eq. (13.139)] into Eq. (13.284), incorpo-
rating Eqs. (12.158), (12.159), (12.161) and (12.162), expanding the integrand and rear-
ranging terms gives 
 

  

( ) ( )

( ) ( )( ) ( )
( , ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )
( ) ( )

nj lpnj lp
y ynj lp lp njx x

lp nj lp nj nj lp nj lp
x x y y x x y y

njnj
yxlp lpxx

x y

B
Q QQ Q

W W d
x y x y

Q Q Q Q d

MM
x y

ϑ ϑ ϑ ϑ

ϑ ϑ

ª º§ · § ·∂ ∂∂ ∂= + − +« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸∂ ∂ ∂ ∂« »© ¹ © ¹¬ ¼

ª º+ + − +¬ ¼

§ ·∂∂− + +¨ ¸¨ ¸∂ ∂© ¹

³

³

� �� �

� � � �

��

k
*

*

*

*

( ) ( )

( ) ( ) ( )( )
( ) ( ) 0

nj nj
xy yy

lp lp lplp
yx xy yynj njxx

x y

M M
d

x y

M M MM
d

x y x y
ϑ ϑ

ª º§ ·∂ ∂
+« »¨ ¸¨ ¸∂ ∂« »© ¹¬ ¼

ª º§ · § ·∂ ∂ ∂∂+ + + + =« »¨ ¸ ¨ ¸¨ ¸ ¨ ¸∂ ∂ ∂ ∂« »© ¹ © ¹¬ ¼

³

³

� �

� � ��

*

*

*

*

  

   (13.289) 
It follows from Eqs. (13.18), (12.83)−(12.85) and (12.89)  that 
 
 ( , , , ) ( , , ) i tx y z t x y z e ω�σ = σ  (13.290) 
 
where σ is the 2 × 2 matrix of in-plane stress components. The modal traction vectors act-
ing on the surfaces parallel to the coordinate planes at a given point are then, respectively, 
 
 ( ) ( ),x y

xx xy yx yyi j i jσ σ σ σ= + = +
G GG G G G

� � � �T T  (13.291) 
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where , , ,xx xy yx yyσ σ σ σ� � � �  are the modal stresses and i
G

and j
G

are the unit vectors in the x and 
y directions, respectively. Multiplying each traction vector by zdz, integrating the resulting 
expressions through the thickness of the plate, and utilizing the definitions of Eq. (12.92) 
gives the vectors 
 

 

2 ( )

2

2 ( )

2

h x
x xx xyh

h y
y yx yyh

M zdz M i M j

M zdz M i M j

−

−

≡ = +

≡ = +

³

³

GG G G� �

GG G G� �

T

T
 (13.292) 

 
where ,xxM� ,xyM� yxM�  and yyM�  are the modal moments. Incorporating Eqs. (12.158)− 
(12.162) into the second integral of Eq. (13.289), rearranging terms, and incorporating Eqs. 
(13.292) into the last two integrals and utilizing the identity yx xyM M=� � , reduces the condi-
tion of orthogonality to the statement 
 

 

( ) ( )

( ) ( )

( ) ( )

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (

1 1

nj lp lp nj lp nj
x y

nj lp nj lp
x y

lp nj lp nj nj lp nj lp
x x y y x x y y

lp nj lp nj
x x y y

B W Q W Q d
x y

W Q W Q d
x y

Q Q Q Q Q Q Q Q d
k k

M Mϑ ϑ

ª º∂ ∂= +« »∂ ∂¬ ¼
ª º∂ ∂− +« »∂ ∂¬ ¼

ª º− + − +« »¬ ¼

− ∇ + ∇

³

³
³

� �

� �

� � � � � � � �
� �

G G
< <

*

*

*

*

*

*

k

) ( ) ( ) ( ) ( ) 0nj lp nj lp
x x y yd M M dϑ ϑª º ª º+ ∇ + ∇ =¬ ¼ ¬ ¼³ ³

G G
< <

* *
* *

 

  (13.293) 
 
It is evident that the third integral of Eq. (13.293) vanishes identically. Utilizing that result 
and employing the identity 
  
 ( )M M Mϑ ϑ ϑ∇ = ∇ − ∇

G G G
< < <  

 
renders Eq. (13.293) to the form 
 

 

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

nj lp lp nj lp nj
x y

nj lp nj lp
x y

nj lp lp nj
x x x x

nj lp lp nj
y y y y

lp nj lp
x x y

B W Q W Q d
x y

W Q W Q d
x y

M M d

M M d

M M

ϑ ϑ

ϑ ϑ

ϑ ϑ

ª º∂ ∂= +« »∂ ∂¬ ¼
ª º∂ ∂− +« »∂ ∂¬ ¼

ª º+ ∇ − ∇¬ ¼

ª º+ ∇ − ∇¬ ¼

+ ∇ + ∇

³

³
³
³

� �

� �

G G
< <

G G
< <

G G
< <

k
*

*

*

*

*

*

*

*

( )

( ) ( ) ( ) ( ) 0

nj
y

nj lp nj lp
x x y y

d

M M dϑ ϑ

ª º¬ ¼

ª º− ∇ + ∇ =¬ ¼

³
³

G G
< <

*

*

*

*

 (13.294) 
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Expansion of the last two integrals of Eq. (13.294) shows that 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0lp nj lp nj nj lp nj lp
x x y y x x y yM M d M M dϑ ϑ ϑ ϑª º ª º∇ + ∇ − ∇ + ∇ =¬ ¼ ¬ ¼³ ³

G G G G
< < < <

* *
* *  

  (13.295) 
 
Applying Green's theorem to the first two integrals of Eq. (13.294), the divergence theorem 
to the third and fourth integrals, and incorporating Eq. (13.295), renders the condition for 
orthogonality to  

 

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

nj lp lp nj nj lp lp nj nj lp
y y x x

nj lp lp nj nj lp lp nj
x x x x y y y y

B W Q W Q dx W Q W Q dy

M M d M M dϑ µ ϑ µ ϑ µ ϑ µ

ª º ª º= − − + −¬ ¼ ¬ ¼

ª º ª º+ − + − =¬ ¼ ¬ ¼

³ ³
³ ³

� � � �

G G G GG G G G< < < <

k
+ +

+ +
+ +

 

  (13.296) 
 
where µG  is the unit outer normal to the bounding surface, +.  Now, 
 
 x x y yM Mϑ µ ϑ µ+ =

G GG G �< < ΜTϑ µ  (13.297) 
where 

 , ,x xxx xy

y yyx yy

M M
M M

ϑ µ
ϑ µ

ª º ½  ½° ° ° °= = =« »® ¾ ® ¾
° ° ° °« »¯ ¿ ¯ ¿¬ ¼

� �
�

� �ϑ µM  (13.298) 

 
Applying the coordinate transformation 1−=B BT that maps the coordinates (x, y) to the 
normal and tangential coordinates, (µ, s), on the bounding edge of the plate gives the rela-
tions 
 ,′ ′ ′= = =� �B M BMB BTϑ ϑ,    µ µ  (13.299) 
  
In addition, the components of the unit normal are related to the path coordinate as follows 
(see Figure 13.5), 

 
x x

y y

dy dy ds
ds

dx dx ds
ds

µ µ

µ µ

= → =

= − → = −
 (13.300) 

 
Substituting the identities of Eq. (13.300) into the first two integrals of Eq. (13.296) and 
incorporating Eqs. (13.297)−(13.299) into the third and fourth integrals of that same equa-
tion gives the condition for mutual orthogonality of the modal vectors as 
 

 
( ) ( )

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

nj lp lp nj nj lp

nj lp nj lp lp nj lp nj
s s s s

B W Q W Q d

M M M M d

µ µ

µ µµ µ µ µµ µϑ ϑ ϑ ϑ

ª º= − −¬ ¼

ª º+ + − + =¬ ¼

³
³

� �

� � � �
+

+

+

+

k

 

  (13.301) 
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Figure 13.5  Unit outer normal and its relation to path coordinates and Cartesian coordinates. 

 
 
It is seen that the modes for Mindlin plates are mutually orthogonal in the sense of Eqs. 
(13.286), or equivalently Eq. (13.288), and Eq. (13.287) if the work of the transverse shear 
of the njth mode in moving through the displacements of the lpth mode are equal to the work 
of the transverse shear of the lpth mode in moving through the displacements of the njth 
mode, and if the work of the bending and twisting moments of the lpth mode in moving 
through the corresponding rotations of the njth mode are equal to the twisting moments of 
the njth mode in moving through the corresponding rotations of the lpth mode.  
 As for discrete systems and 1-D continua, the mutual orthogonality of the modes of 
two-dimensional continua are of paramount importance. These properties will be employed 
when considering forced vibrations of such structures in Chapter 14. We first use these 
properties to help us evaluate the amplitudes and phase angles for the free vibration re-
sponse of 2-D continua.  
 
 

13.9  EVALUATION OF AMPLITUDES AND PHASE ANGLES 

The free vibration responses of each of the mathematically two-dimensional structures con-
sidered in this chapter were seen to be expressed as a series of modal function with harmon-
ic time signatures. The amplitudes and phase angles are dependent on the specific initial 
conditions imposed on the particular structure of interest. In this section we establish rela-
tions for the amplitudes and phase angles of each of the modes of the response in terms of 
the initial conditions imposed on a given system. The amplitudes and phase angles for a 
given problem may be readily evaluated using these relations. 
 

13.9.1  Systems Possessing a Single Scalar Mass Operator 

For ideal membranes, Kirchhoff plates and von Karman plates the inertia of the system is 
described by the single scalar operator m(ξ,η), the mass per unit area of the structure, 
where ξ andη are spatial coordinates, say Cartesian or cylindrical polar. The relations for 
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the amplitudes and phase angles of these structures are found by extending the development 
of Section 10.9.1 to a two-dimensional domain. We do this next. 
 

General Initial Conditions 
For each structure, the response is of the form of Eq. (13.16). Hence,  
 

 

( ) ( ) ( )
1 2

1 1

( ) ( )

1 1

( , , ) ( , ) cos sin

( , ) cos( )

lj lj lj
lj lj

l j

lj lj
lj lj

l j

w t W A t A t

W A t

ξ η ξ η ω ω

ξ η ω φ

∞ ∞

= =

∞ ∞

= =

ª º= +¬ ¼

= −

¦¦

¦¦
 (13.302) 

 
where 
 ( )2 2( ) ( ) ( ) 1 ( ) ( )

1 2 2 1, tanlj lj lj lj lj
ljA A A A Aφ −= + =  (13.303) 

 
w(ξ,η,t) is the transverse displacement of the centroidal surface of the structure, W(lj)(ξ,η) 
is the ljth modal displacement function, ωlj is the corresponding natural frequency, A(lj) is the 
amplitude of the ljth mode, and φlj is the associated phase angle. 
 Let the structure be subjected to the following initial conditions, 
 

 0 0
0

( , ,0) ( , ), ( , )
t

ww w v
t

ξ η ξ η ξ η
=

∂= =
∂

 (13.304) 

 
where w0(ξ,η) and v0(ξ,η) are prescribed functions representing the initial displacement 
and initial velocity fields. Imposing the initial conditions, Eq. (13.304), on the general form 
of the response, Eq. (13.302)1, gives the relations 
 

 ( ) ( )
0 1

1 1

( , ) ( , )lj lj

l j

w W Aξ η ξ η
∞ ∞

= =

=¦¦  (13.305) 

 

 ( ) ( )
0 2

1 1

( , ) ( , )lj lj
lj

l j

v W Aξ η ξ η ω
∞ ∞

= =

=¦¦  (13.306) 

 
We next multiply each of Eqs. (13.305) and (13.306) by W(np)(ξ,η) m(ξ,η), integrate the 
resulting expressions over the domain (ξ,η)∈*, and utilize the property of mutual 
orthogonality of the modal functions as defined by Eq. (13.265). This gives the relations 
 
 ( ) ( )

1
lj ljA = Λ  (13.307) 

and 
 ( ) ( )

2
lj ljA = Χ  (13.308) 

where 
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 ( ) ( )
02( )

1 ( , ) ( , ) ( , )lj lj

lj
m

W m w d
W

ξ η ξ η ξ ηΛ = ³* *  (13.309) 

 

 ( ) ( )
02( )

1 ( , ) ( , ) ( , )lj lj

lj
lj m

W m v d
W

ξ η ξ η ξ η
ω

Χ = ³* *  (13.310) 

and 

 
2( ) ( ) ( )( , ) ( , ) ( , )lj lj lj

m
W W m W dξ η ξ η ξ η= ³* *  (13.311) 

 
Substitution of Eqs. (13.307) and (13.308) into Eqs. (13.303)1 and (13.303)2 gives the cor-
responding amplitude and phase angle as 
 
 2 2( ) ( ) ( ) ( , 1,2,3 )lj lj ljA l j= Λ + Χ = !  (13.312) 
and 
 ( )1 ( ) ( )tan ( , 1,2,3 )lj lj

lj l jφ −= Χ Λ = !  (13.313) 

  
where ( )ljΛ and ( )ljΧ are given by Eqs. (13.309) and (13.310), respectively. 
 

Systems Released from Rest 
For the special case when the system is released from rest, v0(ξ,η) = 0. It follows from Eq. 
(13.310) that ( ) 0ljΧ =  (l,j = 1,2,3...) and, thus, from Eqs. (13.312) and (13.313) that 
 

 ( ) ( ) ( )
02( )

1 ( , ) ( , ) ( , )lj lj lj

lj

m

A W m w d
W

ξ η ξ η ξ η= Λ = ³* *  (13.314) 

and 
 0 ( , 1,2,3 )lj l jφ = = !  (13.315) 
 
The free vibration response, Eq. (13.302), then simplifies to 
  

 ( ) ( )

1 1

( , , ) ( , ) coslj lj
lj

l j

w t W tξ η ξ η ω
∞ ∞

= =

= Λ¦¦  (13.316) 

 
for this case. 
 
 

Example 13.12 
The simply supported rectangular Kirchhoff plate of Example 13.3 is deflected to the 
shape given by 0 0( , ) ( )( )w x y xy a x b yλ= − − , where λ0 is a constant. The plate is 
subsequently released from rest from that configuration. Determine the response of 
the structure. 
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Solution 
The natural frequencies and modes for the simply supported classical plate are, re-
spectively, from Example 13.3 
 

 
2 2

2
0 ( , 1, 2,3, )jl

j lL j l
a b
π πω ω

ª º§ · § ·= + =« »¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

!   (a) 

 

 ( ) ( , ) sin sin ( , 1, 2,3, )jl j x l yW x y j l
a b
π π§ · § ·= =¨ ¸ ¨ ¸

© ¹ © ¹
!   (b) 

 
where ω0 is defined by Eq. (13.71). In addition, from Eq. (c) of Example 13.10, 
 

 
2( )

4
jl

m

mabW =  (c) 

 
Now, the given plate occupies the domain 0 ≤ x ≤ a, 0 ≤ y ≤ b. Therefore, for the pre-
sent case, Eq. (13.314) takes the form 
 

 ( ) ( )
02( ) 0 0

1 ( , ) ( , )
b a

jl jl

jl

m

A W x y m w x y dxdy
W

= ³ ³  (d) 

 
where the initial displacement is given in the problem statement as  
 
 0 0( , ) ( )( )w x y xy a x b yλ= − −  (e) 
 
Substitution of Eqs. (b), (c) and (e) into Eq. (d) gives  
    

 ( ) ( )( )
0

0 0

4 ( )( )sin sin
b a

jlA xy a x b y j x a l y b dxdy
ab

λ π π= − −³ ³  (f) 

 
which, after performing the required integrations, gives the amplitude of free vibra-
tion for the ljth mode as 
 

 
( ) ( )

( ) 0
3 3

1 ( 1) 1 ( 1)16
( , 1, 2,3 )

j l
jlA j l

ab j a l b
λ

π π

ª º ª º− − − −¬ ¼ ¬ ¼= = !   (g) 

 
Finally, substitution of Eqs. (b) and (g) into Eq. (13.316) gives the free vibration re-
sponse of the plate as 
 

 
( ) ( )

0
3 3

1 1

1 ( 1) 1 ( 1)16
( , , ) sin sin cos

j l

lj
l j

j x l yw x y t t
ab a bj a l b
λ π π ω

π π

∞ ∞

= =

ª º ª º− − − − § · § ·¬ ¼ ¬ ¼= ¨ ¸ ¨ ¸
© ¹ © ¹¦¦  � (h) 
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13.9.2  Mindlin Plates 

The development for Mindlin plates parallels that for Timoshenko beams of Section 10.9.3. 
For the present case, however, there are two rotations whereas for Timoshenko beams there 
is only one. Recall that the displacement matrix for a Mindlin plate is 
 

 
( , , )
( , , )
( , , )

x

y

w x y t
x y t
x y t

ϕ
ϕ

 ½
° °= ® ¾
° °
¯ ¿

u  (13.317) 

   
where w(x,y,t) is the transverse displacement of the centroidal surface of the plate and ϕx 
and ϕy are the local rotations due to bending of the cross sections whose normals are paral-
lel to the direction indicated by the subscript. 
 Consider the structure to be subjected to the initial conditions given by 
 

 0 0
0

( , ,0) ( , ), ( , )
t

ww x y w x y v x y
t =

∂= =
∂

 (13.318) 

  

 0 0

0

( , ,0) ( , ), ( , )x
x x x

t

x y x y x y
t

ϕϕ ϕ χ
=

∂= =
∂

 (13.319) 

 

 0 0

0

( , ,0) ( , ), ( , )y
y y y

t

x y x y x y
t

ϕ
ϕ ϕ χ

=

∂
= =

∂
 (13.320) 

 
where 0 0 0

0 0( , ), ( , ), ( , ), ( , ), ( , )x x yw x y v x y x y x y x yϕ χ ϕ and 0 ( , )y x yχ are prescribed functions. 
The initial conditions, Eqs. (13.318)–(13.320) may be expressed in matrix form as 
 

 
0
0

0
0

( , )
( , ,0) ( , ) ( , )

( , )
x

y

w x y
x y x y x y

x y
ϕ
ϕ

 ½
° °= = ® ¾
° °
¯ ¿

u u  (13.321) 

and 

 
0
0

0
0 0

( , )
( , ) ( , )

( , )
x

t
y

v x y
x y x y

t
x y

χ
χ=

 ½
∂ ° °= = ® ¾∂ ° °

¯ ¿

u v  (13.322) 

 
The general form of the free vibration response is, from Eq. (13.20) 
 

 

( ) ( ) ( )
1 2

1 1

( ) ( )

1 1

( , , ) ( , ) cos sin

( , ) cos( )

lj lj lj
lj lj

l j

lj lj
lj lj

l j

x y t x y A t A t

x y A t

ω ω

ω φ

∞ ∞

= =

∞ ∞

= =

ª º= +¬ ¼

= −

¦¦

¦¦

u U

U
 (13.323) 

where 
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 ( )2 2( ) ( ) ( ) 1 ( ) ( )
1 2 2 1, tanlj lj lj lj lj

ljA A A A Aφ −= + =  (13.324) 

 
ωlj is the natural frequency of the ljth mode, φlj is the associated phase angle, A(lj) is the am-
plitude of the mode and 

 

( )

( ) ( )

( )

( , )
( , ) ( , )

( , )

lj

lj lj
x

lj
y

W x y
x y x y

x y
ϑ
ϑ

 ½
° °= ® ¾
° °
¯ ¿

U  (13.325) 

 
is the corresponding modal function matrix. We next impose the initial conditions, Eqs. 
(13.321) and (13.322), on the general form of the free vibration response, Eq. (13.323)1, and 
obtain the identities 

 ( ) ( )
0 1

1 1

( , ) ( , )lj lj

l j

x y x y A
∞ ∞

= =

=¦¦u U  (13.326) 

and 

 ( ) ( )
0 2

1 1

( , ) ( , )lj lj
lj

l j

x y x y Aω
∞ ∞

= =

=¦¦v U  (13.327) 

 
Multiplying Eqs. (13.326) and (13.327) by ( ) ( , ) ( , )np x y x yU mT , integrating the resulting 
expressions over the domain of the plate, (x,y)∈*, and exploiting the mutual orthogonality 
of the modes, per Eq. (13.286), results in the relations 
 
 ( ) ( )

1
lj ljA = Λ  (13.328) 

and 
 ( ) ( )

2
lj ljA = Χ  (13.329) 

where 

 
{ }

( ) ( )
02( )

( ) ( ) 0 ( ) 0
02( )

1 ( , ) ( , ) ( , )

1

lj lj

lj

lj lj lj
x x y ylj

x y x y x y d

W m w I I dρ ρϑ ϕ ϑ ϕ

Λ =

= + +

³

³
m

m

U m u
U

U

*

*

*

*

T

 (13.330) 

 

 
{ }

( ) ( )
02( )

( ) ( ) 0 ( ) 0
02( )

1 ( , ) ( , ) ( , )

1

lj lj

lj
lj

lj lj lj
x x y ylj

lj

x y x y x y d

W mv I I dρ ρ

ω

ϑ χ ϑ χ
ω

Χ =

= + +

³

³

*

*

*

*

m

m

U m v
U

U

T

 (13.331) 

 
and 

 
{ }

2( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( , ) ( , ) ( , )lj lj lj

lj lj lj lj lj lj
x x y y

x y x y x y d

W mW I I dρ ρϑ ϑ ϑ ϑ

=

= + +

³
³
*

*

*

*

m
U U m UT

 (13.332) 
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The amplitudes and phase angles then follow from Eq. (13.324) as 
 
 2 2( ) ( ) ( ) ( , 1,2,3 )lj lj ljA l j= Λ + Χ = !  (13.333) 
and 
 ( )1 ( ) ( )tan ( , 1, 2,3 )lj lj

lj l jφ −= Χ Λ = !  (13.334) 

 
respectively, where Λ(lj) and Χ(lj) are given by Eqs. (13.330) and (13.331). 
 

Plate Released from Rest 
For the special case when the Mindlin plate is released from rest, v0 = 0, it follows from 
Eqs. (13.330), (13.331), (13.333) and (13.334) that 
 

 { }( ) ( ) ( ) ( ) 0 ( ) 0
02( )

1lj lj lj lj lj
x x y ylj

A W m w I I dρ ρϑ ϕ ϑ ϕ= Λ = + +³
m

U *
*  (13.335) 

and 
 0ljφ =  (13.336) 
 
For this case, the free vibration response of Eq. (13.323) reduces to the form 
 

 ( ) ( )

1 1

( , , ) ( , ) coslj lj
lj

l j

x y t x y tω
∞ ∞

= =

= Λ¦¦u U  (13.337) 

 
 

Example 13.13 
The simply supported rectangular Mindlin plate of Example 13.8 is deflected to the 
shape given by  

 
0
0

0
0

( , ) ( )( )
( , ) ( 2 ) ( )
( , ) ( )( 2 )

x

y

w x y xy a x b y
x y a x y b y
x y x a x b y

ϕ λ
ϕ

 ½ − − ½
° ° ° °= − −® ¾ ® ¾
° ° ° °− −¯ ¿¯ ¿

 

 
where λ0 is a constant. The plate is subsequently released from rest from that config-
uration. Determine the response of the structure. 
 
Solution 
The natural modes for the simply supported Mindlin plate are, from Example 13.8, 
 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( )

( , ) sin sin
( , ) ( , ) cos sin ( , 1,2,3 )

( , ) sin cos

jl

jl jl jl
x b

jl jl
y b

W x y j x a l y b
x y x y j a g j x a l y b j l

x y l b g j x a l y b

π π
ϑ π π π
ϑ π π π

 ½  ½
° ° ° °= = =® ¾ ® ¾
° ° ° °

¯ ¿¯ ¿

!U

  (a)  
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where the corresponding natural frequencies are given by Eq. (u) of that example. In 
addition, the square of the magnitude of the modes were evaluated in Example 
13.11. Thus, from Eq. (c) of Example 13.11, 
 

 ( ) ( ){ }2 2 2 2( ) 2 ( )1 ( , 1,2,3 )
4

jl jl
gyr b

mab r g j a l b j lπ πª º= + + =
¬ ¼

!
m

U  (b) 

 
Now, for the given initial displacements and rotations, 
 

( ) ( )

( ) ( )

( )
0 0

0 0 0 0

0 3 3

( , ) ( )( )sin sin

1 ( 1) 1 ( 1)
4

b a b a
jl

j l

W mw x y dxdy xy a x b y j x a l y b dxdy

m
j a l b

λ π π

λ
π π

= − −

ª º ª º− − − −¬ ¼ ¬ ¼=

³ ³ ³ ³
 

   (c) 

( ) ( ) ( )

( ) ( )

( ) 0

0 0

( ) 2
0

0 0

2 ( )
0 3

( , ) ( , )

cos sin ( 2 ) ( )

1 ( 1) 1 ( 1)
4

b a
jl

x x

b a
jl

b gyr

j l
jl

gyr b

x y I x y dxdy

j a g j x a l y b mr a x y b y dxdy

mr g
j a l b

ρϑ ϕ

π π π λ

λ
π π

= − −

ª º ª º− − − −¬ ¼ ¬ ¼=

³ ³
³ ³    

  (d)   
and 
 

( ) ( ) ( )

( ) ( )

( ) 0

0 0

( ) 2
0

0 0

2 ( )
0 3

( , ) ( , )

sin cos ( )( 2 )

1 ( 1) 1 ( 1)
4

b a
jl

y y

b a
jl

b gyr

j l
jl

gyr b

x y I x y dxdy

l b g j x a l y b mr x a x b y dxdy

mr g
l bj a

ρϑ ϕ

π π π λ

λ
ππ

= − −

ª º ª º− − − −¬ ¼ ¬ ¼=

³ ³
³ ³  

    (e) 
 
Substitution of Eqs. (b)−(e) into Eq. (13.335) gives the amplitudes of free vibration 
for the simply supported Mindlin plate. Hence, 
 

 
( ) ( )

( ) 0
3 3

1 ( 1) 1 ( 1)16
( , 1,2,3 )

j l
jl

jlA j l
ab j a l b
λ

π π

ª º ª º− − − −¬ ¼ ¬ ¼= = !�  (f) 

where 
 

 ( ) ( ){ } ( ) ( ){ }22 2 2 22 ( ) 2 ( )1 1jl jl
jl gyr b gyr br g j a l b r g j a l bπ π π πª º ª º= + + + +

¬ ¼ ¬ ¼
�  (g) 

 
Substitution of Eqs. (a) and (f) into Eq. (13.337) gives the free vibration response of 
the simply supported Mindlin plate as 
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( ) ( )

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0
3 3

1 1

( )

( )

( , , ) 1 ( 1) 1 ( 1)16
( , , ) cos
( , , )

sin sin
cos sin
sin cos

j l

x jl jl
l j

y

jl
b
jl

b

w x y t
x y t t

ab j a l bx y t

j x a l y b
j a g j x a l y b
l b g j x a l y b

λϕ ω
π πϕ

π π
π π π
π π π

∞ ∞

= =

 ½
ª º ª º− − − −° ° ¬ ¼ ¬ ¼=® ¾

° °
¯ ¿

 ½
° °×® ¾
° °
¯ ¿

¦¦ �

  

  � (g) 
 
 A comparison of the response predicted for the simply supported Mindlin plate 
to the response predicted for the similarly configured Kirchhoff plate of Example 
13.12, to the same initial conditions, shows the form of the deflections to be the 
same. However, the rotations and natural frequencies predicted by the two models 
are seen to differ due to the presence of transverse shear deformation, as well as the 
inclusion of rotatory inertia, for the Mindlin plate.  

 
 
 

13.10  CONCLUDING REMARKS 

In this chapter we studied the free vibration of various two-dimensional continua. In partic-
ular, we studied the vibrations of ideal membranes, Kirchhoff plates, Mindlin plates and 
von Karman plates. The simplest mathematically two-dimensional model for which its free 
vibrations were studied is that of ideal membranes. This theory pertains to structures pos-
sessing negligible resistance to bending and transverse shear, and is useful in that context. 
For most engineering structures, bending stiffness is appreciable, and plate theory is appro-
priate. In this regard, Kirchhoff plate theory is the simplest for vibrations and the most 
commonly used theory. However the accuracy of this theory is limited to the lowest fre-
quencies/longest wavelengths of the structure in the spirit of Euler-Bernoulli beam theory 
for one-dimensional continua, but Kirchhoff theory warrants greater restrictions on the 
magnitudes of the amplitudes (small compared to the thickness of the plate, but with a low-
er limit as well). The geometrically nonlinear von Karman plate theory allows for larger 
deflections (of the order of the thickness of the plate), but its accuracy is still restricted to 
low frequency/long wavelength vibrations. In contrast, Mindlin plate theory, which is a 
generalization of Timoshenko beam theory to two dimensional domains, incorporates 
transverse shear deformation, as well as rotatory inertia, and is thus much more accurate, 
particularly for higher frequencies/short wave lengths. In his original paper, Mindlin shows 
that his plate theory yields results whose accuracy, even at high frequencies/short wave-
lengths, compares very well with those predicted using exact, three-dimensional elasticity 
for plates of infinite domain. Mutual orthogonality of the modes for the structures of inter-
est were established and conditions for orthogonality were presented. Finally, the mutual 
orthogonality of the modes was utilized to present algorithms for determining the ampli-
tudes and phase angles of each mode for given initial conditions. In this way, the full free 
vibration response is readily determined for a given structure and initial conditions.  
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PROBLEMS 

13.1 Consider the annular membrane of Problem 12.1. The membrane has inner radius a 
and outer radius b, and is fixed about both of its edges. A uniform tension of magni-
tude N0 is present throughout the structure (Figure P13.1). (a) Establish the modal 
boundary conditions for the membrane. (b) Determine the natural frequencies and 
modes for the structure. (c) Plot six of the lowest modes. (d) Establish the general 
free vibration response of the membrane. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Fig. P13.1    Fig. P13.2 
 
13.2 Consider the annular membrane of Problem 12.2. The membrane has inner radius a 

and outer radius b, and is fixed about its inner edge. The outer edge is subjected to 
the distributed load P0 sin β ≈ P0β, where β describes an angle in the r − z plane and 
is measured from the horizontal plane of the plate (Figure P13.2). (a) Establish the 
modal boundary conditions for the membrane. (b) Determine the natural frequen-
cies and modes for the structure. (c) Plot six of the lowest modes. (d) Establish the 
general free vibration response of the membrane. 

www.konkur.in



860 Engineering Vibrations 

13.3 Consider the rectangular Kirchhoff plate of Problem 12.4. (a) Establish the modal 
boundary conditions for the plate. (b) Derive the frequency equation for the plate 
and determine the corresponding modal functions. 

 

  Fig. P13.3    Fig. P13.4 
 
13.4 Consider the rectangular Kirchhoff plate of Problem 12.5. The plate is clamped 

along its edges at x = 0 and y = 0, and is free along the edges x = a and y = b. (a) Es-
tablish the modal boundary conditions for the plate. (b) Derive the frequency equa-
tion for the plate and determine the corresponding modal functions. 

 
13.5 Consider the rectangular Kirchhoff plate of Problem 12.6. The plate, whose sides 

are of length a and b, sits atop elastic supports possessing stiffness k per unit length 
along all four of its edges (Figure P13.5). (a) Establish the modal boundary condi-
tions for the plate. (b) Derive the frequency equation for the plate and determine the 
corresponding modal functions.  

   
 
 
 
 
 
 
 
 
 
  Fig. P13.5    Fig. P13.6 
 
13.6 Consider the rectangular Kirchhoff plate of Problem 12.7. The plate is pinned along 

its edges at x = 0 and x = a, and sits atop elastic supports possessing stiffness k per 
unit length along the edges y = 0 and y = b (Figure P13.6). (a) Establish the modal 
boundary conditions for the plate. (b) Derive the frequency equation for the plate 
and determine the corresponding modal functions. 

 
13.7 Consider the rectangular Kirchhoff plate of Problem 12.8. The plate is pinned along 

its edges at x = 0 and x = a, and is constrained by elastic supports possessing tor-
sional stiffness kT per unit length along its edges at y = 0 and y = b (Figure P13.7). 
(a) Establish the modal boundary conditions for the plate. (b) Derive the frequency 
equation for the plate and determine the corresponding modal functions. 
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  Fig. P13.7 Fig. P13.8 
 
13.8 Consider the triangular Kirchhoff plate of Problem 12.9. The major plane of the 

plate has the shape of a right isosceles triangle with legs of length L. The plate is 
pinned along the edge y = 0, is clamped along the edge x = 0, and is free along the 
edge x + y = L (Figure P13.8). (a) Establish the modal boundary conditions for the 
plate. (b) Derive the frequency equation for the plate and determine the correspond-
ing modal functions. 

 
13.9 Consider the solid circular Kirchhoff plate of Problem 12.10. The plate has radius R 

and is simply supported about its outer edge. (a) Establish the modal boundary con-
ditions for the plate. (b) Determine the frequency equation and general form of the 
modal functions. (c) Evaluate the first nine frequencies and modal functions and 
plot the latter. (d) Determine the general free vibration response of the structure. 

 
  Fig. P13.9    Fig. P13.10 
 
13.10 Consider the solid circular Kirchhoff plate of Problem 12.11. The plate has radius R 

and sits atop elastic supports of stiffness k per unit length about its edge (Figure 
P13.10). (a) Establish the modal boundary conditions for the plate. (b) Derive the 
frequency equation for the plate and determine the corresponding modal functions. 

 
13.11 Consider the solid circular Kirchhoff plate of Problem 12.12. The plate has radius R 

and is constrained by elastic supports possessing torsional stiffness kT per unit 
length about its edge (Figure 
P13.11). (a) Establish the modal 
boundary conditions for the plate. 
(b) Derive the frequency equation 
for the plate and determine the 
corresponding modal functions. 

 
   Fig. P13.11 
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13.12 Consider the annular Kirchhoff plate of Problem 12.13. The plate has inner radius a 
and outer radius b and is simply supported about both of its edges (Figure P13.12). 
(a) Establish the modal boundary con-
ditions for the plate. (b) Determine the 
frequency equation and general form 
of the modal functions. (c) Evaluate 
the first 9 frequencies and modal func-
tions and plot the latter. (d) Determine 
the general free vibration response of 
the structure.    Fig. P13.12  

 
 
13.13 Consider the annular Kirchhoff plate of Problem 12.14. The plate has inner radius a 

and outer radius b and is clamped about both of its edges (Figure P13.13). (a) Es-
tablish the modal boundary conditions for the plate. (b) Determine the frequency 
equation and general form of the modal functions. (c) Evaluate the first nine fre-
quencies and modal functions and plot the latter. (d) Determine the general free vi-
bration response of the structure. 

 
 
 
 
 
 
 
 
 
 
  
    Fig. P13.13 
 
 
13.14 Consider the annular Kirchhoff plate of Problem 12.15. The plate has inner radius a 

and outer radius b, is clamped about its outer edge and is free about its inner edge 
(Figure P13.14). (a) Establish the modal boundary conditions for the plate. (b) De-
termine the frequency equation and general form of the modal functions. (c) Evalu-
ate the first 9 frequencies and modal functions and plot the latter. (d) Determine the 
general free vibration response of the structure. 

  
 
 
 
 
 
  
  
 
  Fig. P13.14 
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13.15   Consider the annular Kirchhoff plate 
shown. in Figure P13.15. The plate 
has inner radius a and outer radius b, 
and it is clamped about its inner edge 
and is free about its outer edge. (a) Es-
tablish the modal boundary conditions 
for the plate. (b) Determine the fre-
quency equation and general form of 
the modal functions. (c) Evaluate the 
first 9 frequencies and modal functions 
and plot the latter. (d) Determine the 
general free vibration response of the 
structure. 

 
 
 
   Fig. P13.15   
 
 
13.16 Consider the rectangular von Kar-

man plate of Problem 12.22. The 
plate is pinned along its edges at x = 
0 and x = a, and is free along the 
edges y = 0 and y = b (Figure 
P13.16). (a) Establish the modal 
boundary conditions for the plate. 
(b) Determine the natural modes of 
the plate and the corresponding nat-
ural frequencies if the structure 
maintains a uniform membrane 
force of magnitude N0. (c) Deter-
mine the general form of the free 
vibration response of the structure. Fig. P13.16 

 
 
  13.17 Consider the rectangular von Kar-

man plate of Problem 12.23. The 
plate is pinned along its edges at x = 
0 and x = a, and sits atop elastic 
supports possessing stiffness k per 
unit length along the edges y = 0 
and y = b (Figure P12.23). (a) Es-
tablish the modal boundary condi-
tions for the plate. (b) Derive the 
frequency equation for the plate and 
determine the corresponding modal 
functions.  Fig. P13.17 
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13.18  Consider the rectangular von Kar-
man plate of Problem 12.24. The 
plate is pinned along its edges at x 
= 0 and x = a, and is constrained by 
elastic supports possessing torsion-
al stiffness kT along its edges at y = 
0 and y = b (Figure P13.18). (a) Es-
tablish the modal boundary condi-
tions for the plate. (b) Derive the 
frequency equation for the plate 
and determine the modal functions.  Fig. P13.18 

 
 
13.19 Consider the rectangular Mindlin plate of Problem 12.17. The plate has sides of 

length a and b and is clamped on all four edges (Figure P13.19). (a) Establish the 
modal boundary conditions for the plate. (b) Derive the frequency equation for the 
plate and determine the corresponding modal functions. 

 
 
 
 
 
 
 
 
 
 
  Fig. P13.19    Fig. P13.20 
 
 
13.20 Consider the rectangular Mindlin plate of Problem 12.18. The plate is pinned along 

its edges at x = 0 and x = a, and is free along the edges y = 0 and y = b. (a) Establish 
the modal boundary conditions for the plate. (b) Determine the natural modes of the 
structure and derive the frequency equation. (c) Assess the first nine frequencies 
and modes for a square plate (b = a = L) with 50k = , 0.1gyrr =  and ν = 0.3. 

 
 
  13.21 Consider the rectangular Mindlin plate 

of Problem 12.19. The plate is pinned 
along its edges at x = 0 and x = a, and 
sits atop elastic supports possessing 
stiffness k per unit length along the 
edges y = 0 and y = b (Figure 13.21). 
(a) Establish the modal boundary con-
ditions for the plate. (b) Derive the fre-
quency equation for the plate and de-
termine the corresponding modal func-
tions.   Fig. P13.21 
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13.22  Consider the rectangular Mindlin plate of Problem 12.20. The plate is pinned along 
its edges at x = 0 and x = a, and is constrained by elastic supports possessing tor-
sional stiffness kT along its edges at y = 0 and y = b (Figure P13.22). (a) Establish 
the modal boundary conditions for the plate. (b) Derive the frequency equation for 
the plate and determine the corresponding modal functions. 

 
 
 
 
 
 
 
 
 
 
    Fig. P13.22 
 
13.23   The rectangular membrane of Example 13.1 is slowly deflected by a rigid punch 

and then held in the shape 0 0( , ) ( )( )w x y xy a x b yλ= − − , where λ0 is a constant. 
Determine the response of the membrane after the punch is suddenly removed. 

 
 
13.24 The circular drum head of Example 13.2 is slowly deflected by a stick (Figure 

P13.24) and then held in the shape 0 0( , ) ( )w r R rθ λ= − − , where λ0 is a constant. 
Determine the response of the drum head after the stick is suddenly removed. 

 
 
 
 
 
 
 
 
 
 
 
 
    Fig. P13.24    
 
 
13.25 The clamped-hinged rectangular Kirchhoff plate of Example 13.4 is slowly deflect-

ed until it achieves the shape 2 2
0 0( , ) ( )( )w x y xy a x b yλ= − − , where λ0 is a con-

stant. Determine the response of the plate after it is released from rest. 
 
 
13.26 The clamped-hinged rectangular Kirchhoff plate of Example 13.4 is at rest and un-

deformed when a velocity field of the form 2 2
0 0( , ) ( )( )v x y c xy a x b y= − − , where 

c0 is a constant, is suddenly imparted to it. Determine the response of the plate. 
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13.27 The rectangular Mindlin plate of Example 13.9 is slowly deflected until it achieves 
the shape given by 

 

 
2 2 2 2 0 3 2 2

0 0 0
0 2 2 2

0

( , ) ( ) ( ) , ( 2 ) ( ) ,

( ) ( )
x

y

w x y x y a x b y y a x b y
xy a x b y

λ ϕ λ
ϕ λ

= − − = − −
= − −

 

 
 where λ0 is a constant. Determine the response of the plate after it is released from 

rest. 
 
13.28 The rectangular Mindlin plate of Example 13.9 is at rest and undeformed when a 

velocity field of the form 
 

 
( )

0
0 0 0

0
0

( , ) ( )( ), ( 2 )( ),

( )( )
x

y

v x y c xy a x b y c y a x b y
c b xy a x b y

χ
χ

= − − = − −
= − −

 

 
 where c0 is a constant, is suddenly imparted to it. Determine the response of the 

plate. 
 
13.29 The rectangular Mindlin plate of Example 13.9 is deflected and released. At the 

instant it is released, the state of the structure is described by 
 

 
2 2 2 2 0 3 2 2

0 0 0
0 2 2 2

0

( , ) ( ) ( ) , ( 2 ) ( ) ,

( ) ( )
x

y

w x y x y a x b y y a x b y
xy a x b y

λ ϕ λ
ϕ λ

= − − = − −
= − −

 

  

 
( )

0
0 0 0

0
0

( , ) ( )( ), ( 2 )( ),

( )( )
x

y

v x y c xy a x b y c y a x b y
c b xy a x b y

χ
χ

= − − = − −
= − −

 

  
 where λ0 and c0 are constants. Determine the response of the plate. 
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14 
Forced Vibration of Two-Dimensional 
Continua  

 
 
 
 
 
 
We conclude our discussion of the vibrations of two-dimensional continua by studying the 
response of such structures when subjected to time dependent external loads. The approach 
employed is a direct extension of that used in Chapter 11 for one-dimensional continua. In 
this regard, the mutual orthogonality of the modal functions as discussed in Section 13.7 is 
exploited and modal analysis is performed. The decomposition of the equations of motion 
and the associated modal equations and corresponding parameters are established for the 
class of structures of interest. The general methodology to solve forced vibrations problems 
of mathematically two-dimensional continua is given and specific examples that demon-
strate the procedure for such structures are presented. The chapter finishes with the formula-
tion and analysis of the forced response of structures of the class of interest that possess 
structural damping. As the applied loading generally appears in the form of distributed 
forces and moments in the equations of motion for two-dimensional structures, we begin 
our study with a discussion of the mathematical representation of point loads in two-
dimensions. 
 
 

14.1  MATHEMATICAL REPRESENTATION OF POINT LOADS FOR TWO- 
 DIMENSIONAL CONTINUA 

We are often interested in the response of structures to point loads. However, the equations 
of motion for thin structures are generally expressed in terms of distributed forces and dis-
tributed couples. To facilitate solution, we note that a point load can be represented as a 
distributed load by using the spatial forms of the Dirac delta function. This was often done 
in Chapter 11 for mathematically one-dimensional continua. (See Examples 11.5−11.7, 
11.9 and 11.10). We will apply this same approach for two-dimensional continua. In this 
section, we consider such representations in Cartesian coordinates and in polar coordinates. 
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Cartesian Coordinates 
The mathematical representation of a point load for two-dimensional continua follows natu-
rally by employment of a product of Dirac delta functions. We first note, from the discus-
sion of the Dirac delta function of Section 4.1.1 and Eq. (4.7), that  
 

 0 0( ) ( ) 1x x y y dδ δ
∞ ∞

−∞ −∞
− − =³ ³

� �
*  (14.1) 

 
The product 0 0( ) ( )x x y yδ δ− −

� �
 represents the unit spatial “impulse,” or “spike,” function 

in two-dimensions and has the dimension of inverse area (L−2). A point load of magnitude 
F(t) applied to a structure at the coordinates (x,y) = (x0,y0) may therefore be expressed as 
the distributed load 
 
 0 0( , , ) ( ) ( ) ( )q x y t F t x x y yδ δ= − −

� �
 (14.2) 

 
Upon integrating Eq. (14.2) over the domain of definition of the body, and noting Eq. (4.7), 
we obtain 
 

 0 0( , ) ( ) ( ) ( ) ( )q x t dxdy F t x x y y d F tδ δ= − − =³³ ³³
� �

* *
*  (14.3) 

 
We next consider the corresponding representations in polar coordinates.  
 

Polar Coordinates 
For polar coordinates we first note, from the discussion of the Dirac delta function of Sec-
tion 4.1.1 and Eq. (4.7), that 
 

 ( )( ) 1d rd
r

π π

π π

δ θδ θ θ θ
− −

= =³ ³
��

 (14.4) 

  
Since the delta function possesses inverse units of its argument, the function ( )δ θ

�
has units 

of radians-1. However, the function ( ) rδ θ
�

 is seen to have units of inverse length (L−1) 
which, when integrated along the arc length ds = rdθ,  results in a dimensionless quantity of 
unit magnitude. It follows that 
  

 0 0
0 0

0 0

( ) ( )
1 (0 ,0 )

R r r rdrd r R
r

δ δ θ θ θ θ
Θ − − = ≤ ≤ ≤ ≤ Θ³ ³
� �

 (14.5) 

 
and, hence, that the product 0 0( ) ( )r r rδ δ θ θ− −

� �
represents the unit “spike” function in 

two dimensions and has units of inverse area (L−2). A point load of magnitude F(t) that is 
applied at the coordinates (r,θ ) = (r0,θ 0) may thus be represented as the distributed load 
 

 0 0( ) ( )
( , , ) ( )

r rq r t F t
r

δ δ θ θθ − −=
� �

 (14.6) 
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Integrating Eq. (14.6) over the domain (0 ≤ r ≤ R, 0 ≤ θ ≤ Θ), gives 
 

 0 0

0 0

( ) ( )
( , , ) ( ) ( )

R r r
q r t d F t rdrd F t

r
δ δ θ θθ θ

Θ − −= =³³ ³ ³
� �

*
*  (14.7) 

 
With the representation of point loads in two-dimensions established, we proceed to discuss 
modal analysis for two-dimensional continua. 
 
 

14.2  FORCED VIBRATION OF SYSTEMS WITH ONE DEPENDENT VARIABLE 

In this section we consider forced vibration of continuous systems whose motions are de-
scribed by a single dependent variable − the transverse displacement, w(x,y,t). These sys-
tems include ideal membranes, Kirchhoff plates and uniformly stretched von Karman 
plates. As discussed in Sections 12.2.2, 12.3.3 and 12.3.5, the equation of transverse motion 
for each of these systems is of the general form 
 

 
2

( , , )
2
w w q x y t

t

∂ + = − ∇
∂

G
<m k b  (14.8) 

 
where the operator m is given by Eq. (13.10), and the operator k is given by Eq. (13.11) for 
ideal membranes, by Eq. (13.12) for Kirchhoff plates, and by Eq. (13.13) for von Karman 
plates with uniform constant membrane force. It is easily shown, by extending the devel-
opment of Section 11.1.1 to a two-dimensional domain, that the mutually orthogonal modal 
functions for mathematically two-dimensional structures are linearly independent. There-
fore, to solve the forced vibration problem for given applied loading, q(x,y,t), bx(x,y,t) and 
by(x,y,t), we assume a solution in the form of an expansion in terms of the modal functions, 
W(jl)(x,y) (j,l = 1, 2, 3, ...). Hence, 
  

 ( )

1 1

( , , ) ( , ) ( )jl
jl

j l

w x y t W x y tη
∞ ∞

= =

=¦¦  (14.9) 

 
where the time dependent coefficients ηjl(t) (j,l = 1, 2, 3, ...) are to be determined. We next 
substitute Eq. (14.9) into Eq. (14.8), multiply by the npth mode, W(np)(x,y), and integrate 
over the domain, *, of the structure. This gives 
 
 

{ }
{ }

( ) ( )

1 1

( ) ( ) ( )

1 1

( ) ( , ) ( , )

( ) ( , ) ( , ) ( , ) ( , , )

np jl
jl

j l

np jl np
jl

j l

t W x y W x y d

t W x y W x y d W x y q x y t d

η

η

∞ ∞

= =

∞ ∞

= =

ª º+ = − ∇¬ ¼

¦¦ ³³

¦¦ ³³ ³³

��

G
<

*

* *

*

* *

m

k b

 
  (14.10) 
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Next, upon exploiting the mutual orthogonality of the modal functions with respect to the 
operators m and k, as discussed in Section 13.8.1, Eq. (14.10) reduces to the following sys-
tem of uncoupled ordinary differential equations, 
 
 ( ) ( ) ( ) ( , 1,2,3, )np np np np npm t k t F t n pη η+ = =� ���� !  (14.11) 
 
where 
 

 ( ) ( )( , ) ( , )np np
npm W x y W x y d= ³³�

*
*m  (14.12) 

 
is the modal mass for the npth mode, 
 

 ( ) ( )( , ) ( , )np np
npk W x y W x y d= ³³�

*
*k  (14.13) 

 
is the modal stiffness for the npth mode, and 
 

 ( )( ) ( , ) ( , , )np
npF t W x y q x y t dª º= − ∇¬ ¼³³

G� <
*

*b  (14.14) 

 
is the corresponding modal force. Each modal equation of Eq. (14.11) describes an equiva-
lent single degree of freedom system of mass npm� and stiffness npk� . The corresponding 
modal force, npF� , is a measure of the degree that the applied load, q(x,y,t) −∇

G
<b , is distrib-

uted to that particular mode. The evaluation of the modal amplitudes is rendered less cum-
bersome by incorporating the fundamental equation for the free vibration eigenvalue prob-
lem, Eq. (13.15), into Eq. (14.13). This gives the relation 
 
 2 ( , 1,2,3 )np np npk m n pω= =� � !  (14.15) 
 
where ωnp is the natural frequency for the npth mode. The use of Eq. (14.15) in lieu of either 
Eq. (14.12) or Eq. (14.13) reduces the number of integrals to be evaluated. It is generally 
advantageous to replace Eq. (14.13) with Eq. (14.15) since the mass operator for each sys-
tem in question is a simple scalar, m, rendering Eq. (14.12) simpler to evaluate. Substitution 
of Eq. (14.15) into Eq. (14.11) reduces the modal equations to the standard forms 
 
 2 2( ) ( ) ( ) ( , 1, 2,3, )np np np np npt t f t n pη ω η ω+ = =��� !  (14.16) 
 
where 

 2

( ) ( )
( ) ( , 1, 2,3, )np np

np
np npnp

F t F t
f t n p

mk ω
= = =
� �

� !� �
 (14.17) 

 
Thus, for a given system and prescribed distributed transverse forcing function, q(x,y,t), 
and body couples, bx(x,y,t) and by(x,y,t), the integrals given by Eqs. (14.12) and (14.14) 
must first be evaluated and the resulting values substituted into Eq. (14.17). Once this is 
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done, Eq. (14.16) can be readily solved for each ηnp(t)  (n,p = 1, 2, 3, ...) using the methods 
of Chapters 3 and 4. When all the modal displacement functions, ηnp(t)  (n,p = 1, 2, 3, ...), 
have been determined, they are substituted into Eq. (14.9) to obtain the response of the 
structure to the given time dependent loading. 
 
 

Example 14.1 
Consider the circular drum head of radius a of Example 13.2. Determine the re-
sponse of the drum if it is struck at its center by a drum stick that imparts an impulse 
of magnitude !0 (Figure E14.1). 

 
 
 
 
 
 
 
 
 
 
 
 
 Figure E14.1 

Solution 
From Eq. (4.17), the magnitude of the point force is expressed as 
 
 0( ) ( )F t tδ= −

�
!  (a) 

 
Per the discussion of Section 14.1, the point force can be expressed as a distributed 
load using Eq. (14.6). Hence, substituting Eq. (a) into Eq. (14.6) gives the equivalent 
distributed load as 
 

 0
( ) ( ) ( ) ( )( , , ) ( ) ( )r rq r t F t t

r r
δ δ θ δ δ θθ δ= = −
� � � ��

!  (b) 

  
Now, the modal functions for the drum head are, from Example 13.2, 
 
 ( ) ( , ) cos ( ) ( 0,1, 2,...; 1, 2,...)nj

c n njW r n J r n jθ θ β= = =  (c-1) 
 
 ( ) ( , ) sin ( ) ( , 1,2,3...)nj

s n njW r n J r n jθ θ β= =  (c-2) 
 
where 
 ( ) 0n njJ aβ =  (d) 
 
 0 ( 0,1, 2,...; 1, 2,...)nj nj nja n jω ω ω β≡ = = =  (e) 
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and 
 2

0 0N maω =  (f) 
  
The first 10 × 3 natural frequencies are given in Table E13.2 of Example 13.2. We 
next evaluate the corresponding modal masses, modal stiffnesses and modal forces. 
Upon substituting the modal functions of Eqs. (c-1) and (c-2) into Eq. (14.12), we 
have that  
 

 
2

( ) 2
0 0 0 0

0 0
( ) ( 1,2, )

a
c
j j jm m m d J r rdr j

π
θ βª º= = =« »¬ ¼³ ³� � !  (g-1) 

 

 
2

( ) 2 2

0 0
cos ( ) ( , 1,2,3, )

a
c

nj n njm m n d J r rdr n j
π

θ θ βª º= =« »¬ ¼³ ³� !  (g-2) 

and 

 
2

( ) 2 2

0 0
sin ( ) ( , 1,2,3, )

a
s

nj n njm m n d J r rdr n j
π

θ θ βª º= =« »¬ ¼³ ³� !  (g-3) 

 
Now, 
 

 

2
2 2

1 1
0

2
2

1 1

( ) ( ) ( ) ( )
2

2( ) ( ) ( ) ( )
2

a

n nj n nj n nj n nj

n nj n nj n nj n nj
nj

aJ r rdr J a J a J a

a nJ a J a J a J a
a

β β β β

β β β β
β

− +

+ +

ª º= −¬ ¼

ª º ½° °= − −« »® ¾
« »° °¯ ¿¬ ¼

³
 (h)  

 
which, upon substitution of Eq. (d), reduces to 
 

 
2

2 2
1

0
( ) ( ) ( 0,1, 2, ; 1, 2,3, )

2

a

n nj n nj
aJ r rdr J a n jβ β+= = =³ ! !  (i) 

 
Substitution of Eq. (i) into Eqs. (g-1), (g-2) and (g-3), and carrying through the re-
maining integrations, gives the modal masses for the membrane as 
 
 ( ) 2 2

0 0 1 0( ) ( 1, 2, )c
j j jm m a m J a jπ β= = =� � !  (j-1) 

and  
 

 ( ) ( ) 2 2
1

1 ( ) ( , 1, 2,3, )
2

c s
nj nj nj n njm m m a m J a n jπ β+= = = =� � � !  (j-2) 

 
The corresponding modal stiffnesses then follow from Eq. (14.15) as 
 
 2 2 2 2

0 0 0 0 1 0( ) ( 1, 2, )j j j j jk m a m J a jω π ω β= = =� � !  (k-1) 
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and 

 2 2 2 2
1

1 ( ) ( 1,2, )
2nj nj nj nj n njk m a m J a jω π ω β+= = =� � !  (k-2) 

 
The modal forces are next evaluated using Eq. (14.14). Hence, 
 

 
2

( )
0

0 0

( ) ( )( ) cos ( ) (0) ( )

( 0,1,2 ; 1,2,3, )

a
c

nj n nj n
rF F t n J r rdrd J t

r
n j

π δ δ θ θ β θ δ= = −

= =
³ ³

� � ��

! !

!  (l-1) 

and                                                                

 
2

( )

0 0

( ) ( )( ) sin ( ) 0

( , 1,2,3, )

a
s

nj n nj
rF F t n J r rdrd

r
n j

π δ δ θ θ β θ= =

=
³ ³

� �
�

!
 (l-2) 

 
It is seen that only the cosine modes, ( ) ( , )nj

cW r θ , are excited. Substitution of Eqs. 
(j-1,2), (k-1,2) and (l-1,2) into Eq. (14.11) gives the associated modal equations, 
 
 ( ) ( )( ) ( ) ( ) ( 0,1,2 ; 1,2,3, )c c

nj nj nj nj nm t k t t n jη η δ+ = = =
�� ���� ! !!  (m-1) 

and 
 ( ) ( )( ) ( ) 0 ( , 1, 2,3, )s s

nj nj nj njm t k t n jη η+ = =���� !  (m-2) 
 
where 
 0 (0)n nJ= −�! !  (n) 
 
The modal displacements are found directly from Eq. (4.22) and Eq. (4.23) as 
 

 
( ) 0

2 2
10

sin(0)2( ) sin ( ) ( )ˆ ( )(1 )
( 0,1, 2 ; 1,2,3, )

njc n n
nj nj

nj nj njn njn

tJ
t t t t

m a m J a
n j

ω
η ω

ω ωπ βδ +

= = −
+

= =

�

�

! !

! !
H H

 (o-1) 

 
 ( ) ( ) 0 ( , 1,2,3, )s

nj t n jη = = !  (o-2) 
 
where H(t) is the Heaviside step function (see Section 4.1.2) and  
 

 0

1 ( 0)ˆ
0 ( 0)n

n
n

δ
== ® ≠¯

 (p) 

 
which is a form of Kronecker's delta, Eq. (9.14). Finally, the time response of the 
membrane to the impact force imparted by the drum stick is obtained by substituting 
Eqs. (c-1,2) and (o-1,2) into Eq. (14.9). Doing this gives the response of the drum 
head to the impulse imparted by the stick as 
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 0
2 2

100 1

( ) sin2 (0)cos
( , , ) ( )ˆ ( )(1 )

n nj njn

njn njnn j

J r tJ n
w r t t

a m J a
β ωθθ

ωπ βδ

∞ ∞

+= =

= −
+¦ ¦!

H  � (q) 

 
 
 
 

Example 14.2 
Consider a rectangular Kirchhoff plate of mass m per unit area. The structure has 
sides of length a and b, is simply supported along all four edges, and is subjected to 
the harmonic transverse point load F(t) = F0 sinΩt. Determine the steady state re-
sponse of the structure if the force is applied at the geometric center of the plate 
(Figure E14.2). 

 Figure E14.2 

Solution 
The natural frequencies and modal functions for the fully simply supported Kirch-
hoff plate are, from Example 13.3, 
 

 
2 2

0 ( , 1,2,3, )jl
j L l L j l
a b
π πω ω

ª º§ · § ·= + =« »¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

!  (a) 

 

 ( ) ( , ) sin sin ( , 1, 2,3, )jl j x l yW x y j l
a b
π π§ · § ·= =¨ ¸ ¨ ¸

© ¹ © ¹
!  (b) 

 
where ω0 is given by Eq. (13.71) and L is the chosen characteristic length of the 
structure. We first compute the modal masses and modal forces.  
 Substitution of Eq. (b) into Eq. (14.12) gives the modal masses for the plate as 
 

 2 2

0 0
sin sin ( , 1, 2,3, )

4

b a

jl
j x l y mabm m dxdy j l
a b
π π§ · § ·= = =¨ ¸ ¨ ¸

© ¹ © ¹³ ³� !  (c) 
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It is seen from Eq. (c) that, for the fully simply supported Kirchhoff plate, the modal 
masses are identical for each mode. Now, per Eq. (14.2) with (x0, y0) replaced by 
(a/2, b/2), the point load can be expressed as the distributed load   
 
 0( , , ) ( ) ( / 2) ( / 2) sin ( / 2) ( / 2)q x y t F t x a y b F t x a y bδ δ δ δ= − − = Ω − −

� � � �
 (d) 

 
where ( )xδ

�
is the Dirac delta function defined in Section 4.1.1. Substitution of Eqs. 

(b) and (d) into Eq. (14.14) gives the modal forces for the plate as   
 

 0
0 0

( ) sin sin sin ( / 2) ( / 2)
b a

jl
j x l yF t F t x a y b dxdy
a b
π π δ δ§ · § ·= Ω − −¨ ¸ ¨ ¸

© ¹ © ¹³ ³
� ��  (e) 

 
which, after evaluating the integrals, yields 
 
 ( ) ( )0( ) sin sin 2 sin 2 ( , 1,2,3, )jlF t F t j l j lπ π= Ω =� !  (f) 
 
It is seen from Eq. (f) that only the odd numbered modes are excited. Now, upon 
substituting Eqs. (a), (c) and (f) into Eq. (14.17), we have that 
 
 ( )

0( ) sin ( , 1,2,3, )jl
jlf t f t j l= Ω =� � !  (g) 

 
where 
 

 
( ) ( )( ) 0

0 2 22 2
0

sin 2 sin 24
( , 1, 2,3, )jl j lF

f j l
mab j L l L

a b

π π
ω π π

= =
ª º§ · § ·+« »¨ ¸ ¨ ¸
© ¹ © ¹« »¬ ¼

� !  (h) 

 
The modal equations then follow from Eq. (14.16) as 
 
 2 2 ( )

0( ) ( ) sin ( , 1, 2,3, )jl
jl jl jl jlt t f t j lη ω η ω+ = Ω =��� !  (i) 

 
The solution to Eq. (i) is found directly from Eq. (3.28). The modal displacements 
are thus 

 
( )

( )
0

2( ) sin
1

jl

jl

jl

f
t tη

ω
= Ω

− Ω

�
 (j) 

 
Substitution of Eqs. (b) and (j) into Eq. (14.9) gives the transverse displacement of 
the plate. Hence, 
 

 
( )

( )
0

2
1 1

( , , ) sin sin sin
1

jl

j l jl

f j x l yw x y t t
a b
π π

ω

∞ ∞

= =

§ · § ·= Ω¨ ¸ ¨ ¸
© ¹ © ¹− Ω¦¦

�
 (k) 
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Finally, after incorporation of Eq. (h) into Eq. (k), the steady state response of the 
plate is given by 
 

( ) ( )0

22 21 1
2 2

0

( , , )

sin 2 sin 24
sin sin sin

j l

w x y t
j lF j x l yt

mab a b
j L l L
a b

π π π π

π πω

∞ ∞

= =

=

§ · § ·Ω ¨ ¸ ¨ ¸
© ¹ © ¹ª º ½° °§ · § ·« »+ − Ω® ¾¨ ¸ ¨ ¸« »© ¹ © ¹° °¯ ¿¬ ¼

¦¦  � (l) 

 
 
 
 

Example 14.3  
Consider a rectangular von Karman plate of mass m per unit area. The structure has 
sides of length a and b, and is simply supported along all four edges. The plate is 
uniformly stretched by a constant membrane force, N0, and is subjected to a harmon-
ic transverse point load, F(t) = F0 sinΩt. Determine the steady state response of the 
structure if the point load is applied at the geometric center of the plate (Figure 
E14.3). 

 Figure E14.3 

Solution 
The natural frequencies and modal functions for the fully simply supported, uniform-
ly stretched von Karman plate are, from Example 13.7, 
 

 
2 2 2 2

2 0
0 ( , 1, 2,3 )jl

Nj l j lL j l
a b D a b
π π π πω ω

ª º ½  ½° ° ° °§ · § · § · § ·= + + + =« »® ¾ ® ¾¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹« »° ° ° °¯ ¿ ¯ ¿¬ ¼

!  (a) 

 

 ( ) ( , ) sin sin ( , 1, 2,3, )jl j x l yW x y j l
a b
π π§ · § ·= =¨ ¸ ¨ ¸

© ¹ © ¹
!  (b) 
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where ω0 is given by Eq. (13.120) and L is the chosen characteristic length of the 
structure. It is seen upon comparison of Eq. (b) of the present problem with Eq. (b) 
of Example 14.2 that the modal functions are of the identical form as those for the 
fully simply supported Kirchhoff plate. The analysis for the uniformly stretched von 
Karman plate therefore follows exactly from the analysis of Example 14.2, but with 
the natural frequencies given by Eq. (a). The steady state response of the von Kar-
man plate is thus 
 

( ) ( )

0

2 2 2 2
1 1

2 4 20
0

4
( , , ) sin

sin 2 sin 2 sin sin

j l

F
w x y t t

mab
j x l yj l
a b

Nj l j lL
a b D a b

π ππ π

π π π πω

∞ ∞

= =

= Ω

§ · § ·
¨ ¸ ¨ ¸
© ¹ © ¹×

 ½ª º ½  ½° ° ° ° ° °§ · § · § · § ·+ + + − Ω« »® ® ¾ ® ¾ ¾¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹« »° ° ° °° °¯ ¿ ¯ ¿¬ ¼¯ ¿

¦¦
� (c) 

 
 
 
 

14.3  FORCED VIBRATION OF SYSTEMS WITH MULTIPLE DEPENDENT  
VARIABLES: MINDLIN PLATES 

We next consider forced vibration of two-dimensional continua whose motion is described 
by several dependent variables. In particular, we study the forced vibration of Mindlin 
plates, the motion of which is described by three independent variables: the transverse dis-
placement, w(x,y,t), and the rotations due to bending, ϕx(x,y,t) and ϕy(x,y,t). For these 
structures, the approach of the previous section is abstracted to multiple dependent varia-
bles, in the spirit of the extension of Euler-Bernoulli beam theory to Timoshenko beam 
theory presented in Chapter 10. 
 The equations of motion for Mindlin plates were derived in Section 12.3.4 and take 
the form 

 
2

2t

∂
+ =

∂
u

m k u F  (14.18) 

  
where m is the 3 × 3 mass operator defined by Eq. (12.170), k is the 3 × 3 stiffness operator 
defined by (12.171), u is the 3 × 1 displacement matrix defined by Eq. (12.172) and F is the 
3 × 1 matrix of distributed forces and couples defined by Eq. (12.173). To solve Eq. (14.18) 
for a given structure, we assume a solution in terms of the modes, U(jl)(x,y) (j,l = 1, 2, 3, ...). 
Hence, we assume a solution of the form 
 

 ( )

1 1

( , , ) ( , ) ( )jl
jl

j l

x y t x y tη
∞ ∞

= =

=¦¦u U  (14.19) 
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where the time dependent coefficients ηjl(t) (j,l = 1, 2, 3, ...) are to be determined. We next 
substitute Eq. (14.19) into Eq. (14.18), multiply the resulting expression on the left by 
U(np)T(x,y), and then integrate over the domain of definition of the structure. Hence, 
 

 
{ }

{ }
( ) ( )

1 1

( ) ( ) ( )

1 1

( ) ( , ) ( , )

( ) ( , ) ( , ) ( , ) ( , , )

np jl
jl

j l

np jl np
jl

j l

t x y x y d

t x y x y d x y x y t d

η

η

∞ ∞

= =

∞ ∞

= =

+ =

¦¦ ³³

¦¦ ³³ ³³

��
*

* *

*

* *

U mU

U kU U F

T

T T

  

  (14.20) 
 
Utilizing the mutual orthogonality of the modes as discussed in Section 13.7.2 renders Eq. 
(14.20) to the familiar system of uncoupled ordinary differential equations for the modal 
displacements, 
 ( ) ( ) ( ) ( , 1,2,3, )np np np np npm t k t F t n pη η+ = =� ���� !  (14.21) 
 
or, equivalently, 
 2 2( ) ( ) ( ) ( , 1, 2,3, )np np np np npt t f t n pη ω η ω+ = =��� !  (14.22) 
 
where 

 2

( ) ( )
( ) ( , 1, 2,3, )np np

np
np npnp

F t F t
f t n p

mk ω
= = =
� �

� !� �
 (14.23) 

In addition, 
 

 
{ }

2( ) ( ) ( )

2 2 2( ) 2 ( ) ( )

( , ) ( , )

( , ) ( , ) ( , )

np np np
np

np np np
gyr x y

m x y x y d

m W x y r x y x y dϑ ϑ

= =

ª º= + +¬ ¼

³³
³³

�
*

*

*

*

m
U U mUT

 (14.24) 

 
is the modal mass for the npth mode, and  
 

 
2( ) ( ) ( ) 2( , ) ( , )np np np

np np npk x y x y d mω= = =³³� �
*

*U U kUT

k
 (14.25) 

 
is the corresponding modal stiffness, where we have utilized Eq. (13.19) in the integral of 
Eq. (14.25) to obtain the relation between the modal stiffness and the modal mass. Further-
more, 
 

 

( ) ( )

( ) ( )

( )

( ) , ( , ) ( , , )

( , ) ( , , ) ( , ) ( , , )

( , ) ( , , )

np np
np

np np
x x

np
y y

F t x y x y t d

W x y q x y t d x y x y t d

x y x y t d

ϑ

ϑ

= =

= +

+

³³
³³ ³³

³³

�
*

* *

*

*

* *

*

b

b

U F U FT

  

  (14.26) 
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is the modal force for the npth mode. When the modal displacements, ηnp(t)  (n,p = 1, 2, 3, 
...), are determined for a given structure and specified load distribution matrix, F(x,y,t), 
they are substituted into Eq. (14.19) to obtain the response of the plate to the given time 
dependent loading. 
 
 

Example 14.4 
Consider a rectangular Mindlin plate of mass m per unit area. The structure has sides 
of length a and b, and is simply supported along all four edges. Determine the re-
sponse of the plate when a distributed bending moment of uniform magnitude M0 is 
suddenly applied along the edge x = 0 (Figure E14.4). 

 
 Figure E14.4 

Solution 
The natural frequencies for the fully simply supported Mindlin plate are, from Eq. 
(u) of Example 13.8, 
 

( )

( ) ( )

2 22
22 0

2

22 2 2 22 22 220
2

1
2

2 1 1
2

( , 1,2,3 )

jl gyr
gyr

gyr gyr
gyr

j lk kr
ar b

j l j lk k kr kr
a ar b b

j l

ω π πω

ω π π π π

ª º ½° °§ · § ·= + + +« »® ¾¨ ¸ ¨ ¸
© ¹ © ¹« »° °¯ ¿¬ ¼

ª º ª º§ · § · § · § ·± + + + + − +« » « »¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸
© ¹ © ¹ © ¹ © ¹« » « »¬ ¼ ¬ ¼

= !

 (a) 

 
where k is defined by Eq. (13.155) and gyrr is defined by Eq. (13.158). The corre-
sponding modal functions are, from Eq. (s) of Example 13.8, 
 

 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

( , ) sin sin
( , ) ( , ) cos sin

( , ) sin cos

( , 1, 2,3 )

jl

jl jl jl jl
x b

jl jl
y b

W x y j x a l y b
x y x y A j a g j x a l y b

x y l b g j x a l y b

j l

π π
ϑ π π π
ϑ π π π

 ½  ½
° ° ° °= =® ¾ ® ¾
° ° ° °

¯ ¿¯ ¿
= !

U
 (b) 
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 where 
 

 
( ) ( )

( ) ( )

22 2
( )

22

( ) 1
( )

( )
jl b jljl

b b jl
b jl

j a l b R
g g

Rj a l b

π π ω ω
ω

ωπ π

+ − −
= = =

+
 (c) 

 
and Rb is given by Eq. (13.176)2. We first compute the modal masses and modal 
forces for the structure. Substitution of Eq. (b) into Eq. (14.24) gives  
 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

0 0

222 ( ) 2 2

0 0

222 ( ) 2 2

0 0

sin sin

cos sin

sin cos

( , 1,2,3 )

b a

jl

b a
jl

gyr b

b a
jl

gyr b

m m j x a l y b dx dy

mr j a g j x a l y b dx dy

mr l b g j x a l y b dx dy

j l

π π

π π π

π π π

=

+

+

=

³ ³
³ ³
³ ³

�

!

 (d)  

 
which, after performing the indicated integrations, gives the modal masses as 
 

 
2 2

22 ( )1 ( , 1, 2,3, )
4

jl
jl gyr b

mab j lm r g j l
a b
π πª º ½° °§ · § ·= + + =« »® ¾¨ ¸ ¨ ¸

© ¹ © ¹« »° °¯ ¿¬ ¼
� !  (e) 

 
We next compute the modal forces for the plate. Upon substitution of Eq. (b) into 
Eq. (14.26), we have that 
 

 

( ) ( )

( ) ( )

( ) ( )

0 0

( )

0 0

( )

0 0

( ) sin sin ( , , )

cos sin ( , , )

sin cos ( , , )

b a

np

b a
jl

b x

b a
jl

b y

F t j x a l y b q x y t dx dy

j g j x a l y b x y t dx dy
a

l g j x a l y b x y t dx dy
b

π π

π π π

π π π

=

+

+

³ ³
³ ³
³ ³

�

b

b

 (f) 

 
Now, the applied force system can be expressed as 
 

 0

( , , ) 0
( , , ) ( , , ) ( ) ( )

( , , ) 0
x

y

q x y t
x y t x y t M t x

x y t
δ

 ½  ½
° ° ° °= = −® ¾ ® ¾
° ° ° °

¯ ¿¯ ¿

�
F b H

b
 (g) 

 
Substitution of the elements of Eq. (g) into Eq. (f) gives the modal forces for the 
plate. Hence, 
 

 ( ) ( )( )
0

0 0
( ) 0 cos sin ( ) ( ) 0

b a
jl

jl b
jF t g j x a l y b M t x dx dy
a
π π π δ= − +³ ³

�� H  (h) 
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which, after evaluating the indicated integrals, yields 
 

 ( ) { }( ) ( )
0 0( ) ( ) 1 ( 1) ( ) ( , 1,2,3, )jl jl l

jl bF t F t M b a jg l t j lª º= = − − =¬ ¼
� � !H H  (i) 

 
Substitution of Eq. (i) into Eq. (14.21) gives the modal equations for the plate as 
 

 2 2 ( )
0( ) ( ) ( ) ( , 1,2,3, )jl

jl jl jl jlt t f t j lη ω η ω+ = =��� !H  (j) 
 
where jlm� is given by Eq. (e), and 
 

 
{ }( ) 2( )

( ) 0 0
0 2 2 2 2

22 ( )

1 ( 1)4
( , 1,2,3, )

1

jl ljl
b jljl

jl jl jl
gyr b

jg lF Mf j l
m a m j lr g

a b

ω
ω π π

ª º− −¬ ¼= = =
ª º ½° °§ · § ·+ +« »® ¾¨ ¸ ¨ ¸

© ¹ © ¹« »° °¯ ¿¬ ¼

�� !
�

 (k) 

 
The solution to Eq. (j) is easily found using Eq. (4.31). This gives 
 

 ( )
0( ) 1 cos ( ) ( , 1,2,3 )jl

jl jlt f t t j lη ωª º= − =¬ ¼
� !H  (l) 

 
Substitution of Eqs. (b), (k) and (l) into Eq. (14.19) gives the response of the plate to 
the applied moment. Hence, 
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( )

( )
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j a g j x a l y b
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ω
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π πϕ

π π
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π π π
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 ½
ª º− −° ° ¬ ¼=® ¾
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© ¹ © ¹« »° °¯ ¿¬ ¼

 ½
° °×® ¾
° °
¯ ¿

¦¦

1 cos ( )jl t tωª º−¬ ¼H

 

  � (m) 
 
 
 

14.4  STEADY STATE RESPONSE OF TWO-DIMENSIONAL CONTINUA WITH 
STRUCTURAL DAMPING 

To this point, we have studied mathematically two-dimensional elastic structures − that is, 
structures with no damping. In this section we consider the steady state response to harmon-
ic excitation of mathematically two-dimensional structures that possess structural damping. 
The development and application is a direct extension of the discussion presented in Section 
11.4 for one-dimensional continua. We begin with establishing the stiffness operators for 
the structures of interest. 
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14.4.1  Stiffness Operators for 2-D Continua with Structural Damping   

The moduli for harmonically excited structures with internal friction were established in 
Section 11.4.1 and were seen to be comprised of the complex sum of the storage (elastic) 
moduli and the loss moduli. Since the plate structures considered in detail in Chapters 12 
and 13, as well as in the present chapter, are isotropic and homogenous, the corresponding 
loss moduli may be expressed in the forms given in Eq. (11.28). Substituting Eq. (11.28) 
into Eq. (11.27) gives the complex moduli for structures with internal friction in the form 
 
 [ ] [ ]ˆˆ ( ) 1 ( ) , ( ) 1 ( )E GE E i G G iλ λΩ = + Ω Ω = + Ω  (14.27) 
 
where E and G  correspond to the elastic and shear moduli (the storage moduli), respective-
ly, λE(Ω) and λG(Ω) are the associated structural loss factors, and Ω is the excitation fre-
quency.  
 To obtain the corresponding stiffnesses for the thin structures of interest, we replace 
the elastic moduli by the corresponding complex moduli of Eq. (14.27) in the develop-
ments, constitutive relations and governing equations of Section 12.3. It follows that, for 
Kirchhoff plates, for von Karman plates and for Mindlin plates, the bending stiffness, D, is 
replaced by the complex bending stiffness   
 
 [ ]ˆ ( ) 1 ( )ED D iλΩ = + Ω  (14.28) 
  
in the respective development, where the bending stiffness, D, is given by Eq. (12.93). In 
addition, for Mindlin plates, it also follows that the shear stiffness, kQ, is similarly replaced 
by the complex shear stiffness, 
  
 [ ]ˆ ( ) 1 ( )Q Q Gk k iλΩ = + Ω  (14.29) 
 
where kQ is given by Eq. (12.160). Finally, for uniformly stretched von Karman plates, the 
bending stiffness is replaced by the complex bending stiffness defined in Eq. (14.28), as 
stated earlier. However, the added effective stiffness provided by the uniform constant 
membrane force, N0, remains real since the corresponding membrane strain is also constant 
and uniform and, therefore, internal friction is not activated for the inert deformation of the 
centroidal surface of the structure.  
 The equations for transverse motion of each of the viscoelastic structures considered 
are of similar form to those for the corresponding elastic structures, Eqs. (12.128), (12.201) 
and (12.169), but with the complex stiffnesses just established replacing their elastic coun-
terparts in the corresponding stiffness operators given by Eqs. (12.130), (12.204) and 
(12.171), respectively. This, in turn, renders the stiffness operators complex. Hence, for 
Kirchhoff plates with structural damping, the stiffness operator is given by 
 
 [ ] 2 2ˆ ( ) ( ) 1 ( )L Ei D iλΩ = + Ω = + Ω ∇ ∇k k k  (14.30) 
    
and for (uniformly stretched) von Karman plates with structural damping the stiffness op-
erator is given by 
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 ( )2 2 2 2

0
ˆ ( ) ( ) ( )L Ei D N i DλΩ = + Ω = ∇ − ∇ + Ω ∇ ∇k k k  (14.31) 

 
For transverse motion of Mindlin plates with structural damping, the stiffness operator 
takes the form 
 
 ˆ ( ) ( )LiΩ = + Ωk k k  (14.32) 
 
where, from Eq. (12.171),  
 

 { }
{ }

(1 ) (1 )

2 2

(1 ) (1 )

2 2

Q Q Q Q

Q Q

Q Q

k k k k
x x y y x y

D D
k k D D

x x x y y x y y x

D D
k D k D

y x y y x x x y y

ν ν
ν

ν ν
ν

∂ ∂ ∂ ∂ ∂ ∂
− +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ − ∂
− − + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ − ∂ ∂ ∂ ∂ − ∂ ∂ ∂
− − + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

ª º§ ·¨ ¸« »© ¹« »
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  (14.33) 
 
It follows that 
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∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
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« »§ · § ·¨ ¸ ¨ ¸« »© ¹ © ¹« »
« »§ · § ·¨ ¸ ¨ ¸« »© ¹ © ¹¬ ¼

k

 

  (14.34) 
 
where 
 
 ( ) ( ) , ( ) ( )L G Q L Ek k D Dλ λΩ = Ω Ω = Ω  (14.35) 
 
For materials in which the structural loss factor is the same for both tension/compression 
and for shear, that is when 
 
 ( ) ( ) ( )E Gλ λ λΩ = Ω = Ω  (14.36) 
 
Eq. (14.32) reduces to the form  
 
 [ ]ˆ 1 ( )i λ= + Ωk k  (14.37) 
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With the stiffness operators for the various viscoelastic plate structures established, we pro-
ceed to the forced vibration problem. We consider the steady state response of damped 
Kirchhoff plates and damped von Karman plates in the next section, Section 14.4.2, and the 
steady state response of damped Mindlin plates in the subsequent section, Section 14.4.3. 
 
 

14.4.2  Steady State Response of Kirchhoff and von Karman Plates with 
Structural Damping 

For harmonically excited two-dimensional continua with structural damping, we proceed as 
we did in Section 11.4.2 for one-dimensional continua. In this regard, we first parallel the 
developments of Sections 12.3.3 and 12.3.5, but with the the elastic bending stiffness, D, 
replaced by the complex bending stiffness defined by Eq. (14.28). The governing equations 
of motion then take the forms of those stated in Eqs. (12.128) and (12.201) for Kirchhoff 
and for von Karman plates, respectively, but with the stiffness operators defined by Eqs. 
(12.130) and (12.204) replaced by the pertinent complex stiffness operators defined in Sec-
tion 14.4.1. The equation of motion for each structure then takes the general form  
 

 ( )
2

2
ˆ , ,w w q x y t

t
∂ + = − ∇
∂

G
<bm k  (14.38) 

 
where m = m, and ˆ ( )Ωk is given by Eq. (14.30) for viscoelastic Kirchhoff plates and is 
given by Eq. (14.31) for uniformly stretched viscoelastic von Karman plates.  
 We wish to obtain the steady state response of the structures of interest to harmonic 
excitation. We thus consider structures for which the applied loading is of the general form 
 
 ( ) ( ), , ( , ) cos      or     , , ( , ) sinq x y t P x y t q x y t P x y t− ∇ = Ω − ∇ = Ω

G G
< <b b  (14.39) 

 
Modal analysis for structurally damped systems with scalar mass and scalar differential 
stiffness operators follows in a manner similar to that for discrete systems with proportional 
damping. That is, we express the response of the damped structure as an expansion in terms 
of the modes of the corresponding undamped structure. We thus express the response in the 
form of Eq. (14.9). Hence,  
 

 ( )

1 1

( , , ) ( , ) ( )jl
jl

j l

w x y t W x y tη
∞ ∞

= =

=¦¦  (14.40) 

 
We next parallel the development of Section 14.2, with the governing equation given by 
Eq. (14.38) in lieu of Eq. (14.8). This results in the modal equations of motion 
 
 ( ) 1 ( ) ( ) ( ) ( , 1, 2,3, )np np np np np npm t k i t F t n pη λ ηª º+ + Ω = =¬ ¼

� � ���� !  (14.41) 

 
where npm� is given by Eq. (14.12), npk� is given by Eq. (14.13), ( )npF t� is given by Eq. 
(14.14) and 
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 ( ) ( )1( ) ( , ) ( , ) ( , 1, 2,3 )np np
np L

np

W x y W x y d n p
k

λ Ω = =³³� !� k
*

*  (14.42) 

 
is the loss factor for the npth mode.  Alternatively, the modal equations of Eq. (14.41) may 
be written in the equivalent form 
 
 2 2( ) 1 ( ) ( ) ( ) ( , 1, 2,3, )np np np np np npt i t f t n pη ω λ η ωª º+ + Ω = =¬ ¼

���� !  (14.43) 

 
where ( )npf t� is given by Eq. (14.17) and ωnp (n,p = 1,2,3,...) is the natural frequency of the 
npth mode of the undamped system. 
 For Kirchhoff plates with structural damping, it follows from Eq. (14.30) that 
 
 ( ) ( )L EλΩ = Ωk k  (14.44) 
 
Substituting Eq. (14.44) into Eq. (14.42), and recalling Eq. (14.13), yields 
 
 ( ) ( ) ( , 1,2,3 )np E n pλ λΩ = Ω =� !  (14.45) 
 
Thus, the modal loss factor is the same for each mode and is equal to the structural loss 
factor for the plate itself. 
 Once the modal masses, modal stiffnesses, modal forces and modal loss factors are 
determined for a given structure and applied force system, the solution to Eq. (14.43) fol-
lows directly from Eqs. (3.109) and (3.110). Thus, 
 

( )
0if ( ) cos  thennp

npF t F t= Ω� �  
 
 ( )( )

0( ) ( ) cosnp
np np npt f tη = Γ Ω Ω − Φ� � �  (14.46) 

 
or, ( )

0if ( ) sin  thennp
npF t F t= Ω� �  

 
 ( )( )

0( ) ( )sinnp
np np npt f tη = Γ Ω Ω − Φ� � �  (14.47) 

 
where 
 

 

( ){ } { }
2 22

1( ) ( , 1,2,3, )
1 ( )

np

np np

n p
ω λ

Γ Ω = =
− Ω + Ω

� !
�

 (14.48) 

 

 
( )

1
2

( )
tan ( , 1, 2,3, )

1
np

np

np

n p
λ

ω
−
 ½Ω° °Φ = =® ¾

− Ω° °¯ ¿

�
� !  (14.49) 

and 
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( ) ( )

( ) 0 0
0 2 ( , 1, 2,3, )

np np
np

np npnp

F F
f n p

mk ω
= = =
� �� !� �

 (14.50) 

 
where npm� is given by Eq. (14.12), npk� is given by Eq. (14.13) and ( )npλ Ω�  is given by Eq. 
(14.45) for Kirchhoff plates or, more generally, by Eq. (14.42) as appropriate. Substitution 
of the appropriate form of the modal response, Eq. (14.46) or Eq. (14.47), into Eq. (14.40) 
gives the steady state response of the damped structure. Hence, 
 

( )if , , ( , ) cos  thenq x y t P x y t− ∇ = Ω
G
<b  

 

 ( )( ) ( )
0

1 1

( , , ) ( , ) ( ) cosnp np
ss np np

n p

w x y t W x y f t
∞ ∞

= =

= Γ Ω Ω − Φ¦¦ � � �  (14.51) 

 
( )or, if , , ( , ) sin  thenq x y t P x y t− ∇ = Ω

G
<b  

 

 ( )( ) ( )
0

1 1

( , , ) ( , ) ( )sinnp np
ss np np

n p

w x y t W x y f t
∞ ∞

= =

= Γ Ω Ω − Φ¦¦ � � �  (14.52) 

 
The steady state response of any structure of the class considered can be readily determined 
using the pertinent formulae presented in Section 14.4.1 together with those of the current 
section. 
 

14.4.3  Steady State Response of Mindlin Plates with Structural Damping 

The approach for Mindlin plates with structural damping is a generalization of that present-
ed in the previous section for viscoelastic Kirchhoff and von Karman plates. We first paral-
lel the developments of Sections 12.3.1, 12.3.2 and 12.3.4, but with the complex stiffnesses 
defined by Eqs. (14.28) and (14.29) in lieu of the bending and shear stiffnesses defined by 
Eqs. (12.93) and (12.160), respectively. Doing this, we find that the governing equation for 
Mindlin plates with structural damping takes the form 
 

 
2

2
ˆ

t
∂ + =
∂

um ku F  (14.53) 

 
where k̂ is the complex differential stiffness matrix given by Eq. (14.32), m is the mass 
distribution matrix given by Eq. (12.170), u is the displacement field matrix given by Eq. 
(12.172), and F is the applied force field matrix given by Eq. (12.173).  
 We wish to obtain the steady state response of structurally damped Mindlin plates to 
harmonic excitation. We thus consider structures for which the applied loading is of the 
general form 
 
 ( ) ( ), , ( , ) cos        or       , , ( , ) sinx y t x y t x y t x y t= Ω = ΩF P F P  (14.54) 
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Modal analysis for structurally damped systems with matrix mass and matrix differential 
stiffness operators follows in a manner similar to that for discrete systems with proportional 
damping and for continuous systems with scalar mass and scalar differential stiffness opera-
tors. We therefore express the response of the damped structure as an expansion in terms of 
the modes of the structure with no damping. We thus express the response in the form of 
Eq. (14.19). Hence,  
 

 ( )

1 1

( , , ) ( , ) ( )jl
jl

j l

x y t x y tη
∞ ∞

= =

=¦¦u U  (14.55) 

 
Next, paralleling the development of Section 14.3, with the governing equation given by 
Eq. (14.53) in lieu of Eq. (14.18), we arrive at the modal equations of motion 
 
   ( ) 1 ( ) ( ) ( ) ( , 1,2,3, )np np np np np npm t k i t F t n pη λ ηª º+ + Ω = =¬ ¼

� � ���� !  (14.56) 

 
or, equivalently, 
 
   2 2( ) 1 ( ) ( ) ( ) ( , 1, 2,3, )np np np np np npt i t f t n pη ω λ η ωª º+ + Ω = =¬ ¼

���� !  (14.57) 

 
where  ( )npF t�  is given by Eq. (14.26), ( )npf t�  is given by Eq. (14.23), npm�  is given by Eq. 
(14.24), npk� is given by Eq. (14.25),  and   
 

 ( ) ( )1( ) ( , ) ( , )np np
np L

np

x y x y d
k

λ Ω = ³³�
� *

*U k UT  (14.58) 

 
is the loss factor for the npth mode. Once the modal masses, modal stiffnesses, modal forces 
and modal loss factors are determined for a given structure and applied force system, the 
solution to Eq. (14.57) follows directly from Eqs. (3.109) and (3.110). Thus, 
 

( )
0if ( ) cos  thennp

npF t F t= Ω� �  
 
    ( )( )

0( ) ( ) cosnp
np np npt f tη = Γ Ω Ω − Φ� � �  (14.59)  

 
or, ( )

0if ( ) sin  thennp
npF t F t= Ω� �  

 
    ( )( )

0( ) ( )sinnp
np np npt f tη = Γ Ω Ω − Φ� � �  (14.60)  

 
where 
 

 

( ){ } { }
2 22

1( ) ( , 1,2,3, )
1 ( )

np

np np

n p
ω λ

Γ Ω = =
− Ω + Ω

� !
�

 (14.61) 
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( )

1
2

( )
tan ( , 1, 2,3, )

1
np

np

np

n p
λ

ω
−
 ½Ω° °Φ = =® ¾

− Ω° °¯ ¿

�
� !  (14.62) 

and  

 
( ) ( )

( ) 0 0
0 2 ( , 1, 2,3, )

np np
np

np npnp

F F
f n p

mk ω
= = =
� �� !� �

 (14.63) 

 
where ( )npλ Ω� is given by Eq. (14.58), npm� is given by Eq. (14.24) and npk� is given by Eq. 
(14.25). Substitution of the appropriate form of the modal response, Eq. (14.59) or Eq. 
(14.60), into Eq. (14.55) gives the steady state response of the internally damped structure. 
Hence, 
 

( )if , , ( , ) cos  thenx y t x y t= ΩF P  
 

 ( )( ) ( )
0

1 1

( , , ) ( , ) ( ) cosnp np
ss np np

n p

x y t x y f t
∞ ∞

= =

= Γ Ω Ω − Φ¦¦ � � �u U  (14.64) 

 
or, ( )if , , ( , ) sin  thenx y t x y t= ΩF P  
 

 ( )( ) ( )
0

1 1

( , , ) ( , ) ( )sinnp np
ss np np

n p

x y t x y f t
∞ ∞

= =

= Γ Ω Ω − Φ¦¦ � � �u U  (14.65) 

 
If the material that comprises the plate in question is such that Eq. (14.36) holds, then 
 
 ( ) ( ) ( , 1,2,3 )np n pλ λΩ = Ω =� !  (14.66) 
 
and Eqs. (14.61) and (14.62) simplify, accordingly, to the forms 
  

 

( ){ } { }
22 2

1( ) ( , 1, 2,3, )
1 ( )

np

np

n p
ω λ

Γ Ω = =
− Ω + Ω

� !  (14.67) 

and 

 
( )

1
2

( )tan ( , 1, 2,3, )
1

np

np

n pλ
ω

−
 ½Ω° °Φ = =® ¾

− Ω° °¯ ¿

� !  (14.68) 

 
and are substituted into Eqs. (14.64) and (14.65). 
 The explicit steady state response of a given Mindlin plate can be readily determined 
using the formulae of Section 14.4.1 together with those presented in this section. 
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14.5  CONCLUDING REMARKS 

In this chapter we studied forced vibrations of two-dimensional continua. It was seen that 
modal analysis is readily applied to all structures considered. These included structures with 
a single dependent variable, and those with multiple coupled dependent variables. For the 
former class of structures, we considered forced transverse motion of ideal membranes, of 
Kirchhoff plates and of uniformly stretched von Karman plates. For the latter class of struc-
tures we considered the excitation of Mindlin plates, whose motion is described by its 
transverse displacement function and two rotation functions. The methodology presented 
can be extended to any such structure where a set of mutually orthogonal modal functions 
can be determined. We finished the chapter with an exposition of the steady state response 
of Kirchhoff, von Karman, and Mindlin plates that possess structural damping.  
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PROBLEMS 

14.1 The rectangular membrane of Example 13.1 is subjected to the uniform harmonic 
load 0( , , ) sinq x y t q t= Ω . Determine the steady state response of the structure. 

 
14.2 The rectangular membrane of Example 13.1 is subjected to the distributed har-

monic load 0( , , ) sin( / )sin( / )sinq x y t q x a y b tπ π= Ω . Determine the steady state 
response of the structure. 

 
14.3 Determine the response of the rectangular membrane of Example 13.1 when a 

compressive point load of magnitude P0 is suddenly applied at its geometric center 
(Figure P14.3), and is then suddenly removed when 0 02 .t a m Nτ π= =   

 
 
 
 
 
 
 
 
 
  Figure P14.3 
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14.4   The drum head of Examples 13.2 and 14.1 is periodically tapped at its geometric 
center by a step pulse of maginitude F0, duration τ0, and rest interval 2τ0. Deter-
mine the response of the drum head if 0 02 a m Nτ π= (Figure P14.4).  

 

 
  Figure P14.4 
 
 
14.5 The annular membrane of Problem 13.1 is subjected to the uniform transverse load 

0( , , ) sinq x y t q t= Ω . Determine the steady state response of the structure. 
 
 
14.6 The square Kirchhoff plate of Example 13.3(c) is subjected to the uniform har-

monic load 0( , , ) sinq x y t q t= Ω . Determine the steady state response of the struc-
ture. 

 
 
14.7 The square Kirchhoff plate of Example 13.3(c) is subjected to the distributed har-

monic load, 0 .( , , ) sin( / )sin( / )sinq x y t q x a y b tπ π= Ω Determine the steady state 
response of the structure. 

 
 
14.8 A blast hits the simply supported rectangular Kirchhoff plate of Example 13.3(d) 

and imparts a uniform impulse of magnitude !0 over the surface of the plate. De-
termine the response of the structure.  

 
 
14.9 The semi-simply supported Kirchhoff plate of Example 13.5 is subjected to the 

uniform distributed harmonic bending moments 0( ) cosM t M t= Ω  across both of 
its free edges (Figure P14.9). Determine the steady state response of the structure.  

  Figure P14.9 
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14.10 The clamped-pinned rectangular Kirchhoff plate of Example 13.4 is subjected to 
the uniform transverse load 0( , , ) sinq x y t q t= Ω . Determine the steady state re-
sponse of the structure. 

 
 
14.11 A punch impacts the clamped-pinned rectangular Kirchhoff plate of Example 

13.4. Determine the response of the structure if the punch imparts a distributed 
impulse of the form 0 .( , , ) ( )sin( / )sin( / )x y t t x a y bδ π π= −

�
! !  

 
 
14.12 The solid circular Kirchhoff plate of Problem 13.9 is subjected to the harmonic 

point load 0( ) sinP t P t= Ω  applied to its geometric center (Figure P14.12). De-
termine the steady state response of the structure. 

    Figure P14.12 
 
 
14.13 A blast hits the solid circular Kirchhoff plate of Problem 13.9 and imparts an axi-

symmetric impulse of the form ( )0( , , ) ( ) cos 2r t t r Rθ δ π=
�

! ! . Determine the re-
sponse of the structure. 

 
 
14.14 The annular Kirchhoff plate of Problem 13.12 is subjected to the uniform trans-

verse load 0 .( , , ) sinq x y t q t= Ω Determine the steady state response of the struc-
ture. 

 
 
14.15 A compressive point load of magnitude P0 is suddenly applied at the geometric 

center of the clamped circular Kirchhoff plate of Example 13.6. The point load is 
then suddenly removed when 2

0 2 .t L m Dτ π= =  Determine the response of the 
structure. 

 
 
 
 
 
 
 
 
  
  Figure P14.15 
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14.16 A compressive line load of magnitude P0 is suddenly applied around the free edge 
of the clamped-free annular Kirchhoff plate of Problem 13.15. Determine the re-
sponse of the structure. 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
  
  Figure P14.16   Figure P14.17 
 
 
14.17 A uniform distributed load, 0 0( )q t q t τ= where 2

0 2 ,L m Dτ π= is applied to the 
clamped-clamped annular plate of Problem 13.13. Determine the response of the 
structure if the load levels off at time t = 4τ0. 

 
 
 
14.18 The simply supported von Karman plate of Example 13.7 is struck at its geometric 

center by a small pellet. If the pellet imparts an impulse of magnitude !0 (Figure 
P14.18), determine the response of the structure. 

 
 
 
 
  
 
 
 
 
 
 
    Figure P14.18 
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14.19 The hinged-free von Karman plate of Problem 13.16 is subjected to the uniform 
distributed harmonic bending moments 0 cosM M t= Ω across both of its free edg-
es (Figure P14.19). Determine the steady state response of the structure. 

 

   Figure P14.19 
 
 
14.20 The hinged-clamped rectangular Mindlin plate of Example 13.9 is subjected to the 

uniform transverse load 0( , , ) sinq x y t q t= Ω . Determine the steady state response 
of the structure. 

 
 
14.21 A punch impacts the clamped-hinged rectangular Mindlin plate of Example 13.9 

and imparts a distributed impulse of the form 
 
     0( , , ) ( )sin( / )sin( / )x y t t x a y bδ π π= −

�
! !  

 
 Determine the response of the structure. 
 
 
14.22 The hinged-free Mindlin plate of Problem 13.20 is subjected to the uniform dis-

tributed harmonic bending moments 0 cosM M t= Ω across both of its free edges 
(Figure P14.22). Determine the steady state response of the structure.  

 

    Figure P14.22 
 
 
14.23 Repeat Problem 14.7 for a Kirchhoff plate with structural damping that possesses 

a known relation for the structural loss factor as a function of excitation frequency. 
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14.24 Repeat Problem 14.10 for a Kirchhoff plate with structural damping that possesses 
a known relation for the structural loss factor as a function of excitation frequency. 

 
 
14.25 Repeat Problem 14.20 for a Mindlin plate with structural damping that possesses a 

known relation for the structural loss factor as a function of excitation frequency. 
 
 
14.26 Repeat Problem 14.22 for a Mindlin plate with structural damping that possesses a 

known relation for the structural loss factor as a function of excitation frequency. 
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