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Preface

Objectives

The main objective of a basic mechanics course should be to develop in
the engineering student the ability to analyze a given problem in a simple
and logical manner and to apply to its solution a few fundamental and
well-understood principles. This text is designed for a course that com-
bines statics and mechanics of materials—or strength of materials—
offered to engineering students in the sophomore year.

General Approach

In this text the study of statics and mechanics of materials is based on the
understanding of a few basic concepts and on the use of simplified models.
This approach makes it possible to develop all the necessary formulas in
a rational and logical manner, and to clearly indicate the conditions under
which they can be safely applied to the analysis and design of actual
engineering structures and machine components.

Practical Applications Are Introduced Early. One of the character-
istics of the approach used in this text is that mechanics of particles is clearly
separated from the mechanics of rigid bodies. This approach makes it pos-
sible to consider simple practical applications at an early stage and to post-
pone the introduction of the more difficult concepts. As an example, statics
of particles is treated first (Chap. 2); after the rules of addition and subtrac-
tion of vectors are introduced, the principle of equilibrium of a particle is
immediately applied to practical situations involving only concurrent forces.
The statics of rigid bodies is considered in Chaps. 3 and 4. In Chap. 3, the
vector and scalar products of two vectors are introduced and used to define
the moment of a force about a point and about an axis. The presentation of
these new concepts is followed by a thorough and rigorous discussion of
equivalent systems of forces, leading, in Chap. 4, to many practical applica-
tions involving the equilibrium of rigid bodies under general force systems.

New Concepts Are Introduced in Simple Terms. Because
this text is designed for the first course in mechanics, new concepts are
presented in simple terms and every step is explained in detail. On the
other hand, by discussing the broader aspects of the problems considered
and by stressing methods of general applicability, a definite maturity of
approach is achieved. For example, the concepts of partial constraints and
statical indeterminacy are introduced early and are used throughout.

Fundamental Principles Are Placed in the Context of Simple
Applications. The fact that mechanics is essentially a deductive sci-
ence based on a few fundamental principles is stressed. Derivations have
been presented in their logical sequence and with all the rigor warranted



at this level. However, the learning process being largely inductive, simple
applications are considered first.

As an example, the statics of particles precedes the statics of rigid
bodies, and problems involving internal forces are postponed until Chap. 6.
In Chap. 4, equilibrium problems involving only coplanar forces are con-
sidered first and solved by ordinary algebra, while problems involving three-
dimensional forces and requiring the full use of vector algebra are discussed
in the second part of the chapter.

The first four chapters treating mechanics of materials (Chaps. 8§, 9,
10, and 11) are devoted to the analysis of the stresses and of the corre-
sponding deformations in various structural members, considering succes-
sively axial loading, torsion, and pure bending. Each analysis is based on
a few basic concepts, namely, the conditions of equilibrium of the forces
exerted on the member, the relations existing between stress and strain in
the material, and the conditions imposed by the supports and loading of
the member. The study of each type of loading is complemented by a large
number of examples, sample problems, and problems to be assigned, all
designed to strengthen the students’ understanding of the subject.

Free-body Diagrams Are Used Extensively. Throughout the
text, free-body diagrams are used to determine external or internal forces.
The use of “picture equations™ will also help the students understand the
superposition of loadings and the resulting stresses and deformations.

Design Concepts Are Discussed Throughout the Text
Whenever Appropriate. A discussion of the application of the
factor of safety to design can be found in Chap. 8, where the concept of
allowable stress design is presented.

The SMART Problem-Solving Methodology Is Employed.
New to this edition of the text, students are introduced to the SMART
approach for solving engineering problems, whose acronym reflects the
solution steps of Strategy, Modeling, Analysis, and Reflect & Think. This
methodology is used in all Sample Problems, and it is intended that
students will apply this in the solution of all assigned problems.

A Careful Balance Between Sl and U.S. Customary Units Is
Consistently Maintained. Because it is essential that students be
able to handle effectively both SI metric units and U.S. customary units,
half the examples, sample problems, and problems to be assigned have been
stated in SI units and half in U.S. customary units. Since a large number of
problems are available, instructors can assign problems using each system
of units in whatever proportion they find most desirable for their class.

It also should be recognized that using both SI and U.S. customary
units entails more than the use of conversion factors. Because the SI system
of units is an absolute system based on the units of time, length, and mass,
whereas the U.S. customary system is a gravitational system based on the
units of time, length, and force, different approaches are required for the
solution of many problems. For example, when SI units are used, a body is
generally specified by its mass expressed in kilograms; in most problems
of statics it will be necessary to determine the weight of the body in new-
tons, and an additional calculation will be required for this purpose. On the
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other hand, when U.S. customary units are used, a body is specified by its
weight in pounds and, in dynamics problems (such as would be encountered
in a follow-on course in dynamics), an additional calculation will be required
to determine its mass in slugs (or lb'szlft). The authors, therefore, believe
that problem assignments should include both systems of units.

Optional Sections Offer Advanced or Specialty Topics. A
number of optional sections have been included. These sections are indi-
cated by asterisks and thus are easily distinguished from those that form
the core of the basic first mechanics course. They may be omitted with-
out prejudice to the understanding of the rest of the text.

The material presented in the text and most of the problems require
no previous mathematical knowledge beyond algebra, trigonometry, and
elementary calculus; all the elements of vector algebra necessary to the
understanding of mechanics are carefully presented in Chaps. 2 and 3. In
general, a greater emphasis is placed on the correct understanding of the
basic mathematical concepts involved than on the nimble manipulation of
mathematical formulas. In this connection, it should be mentioned that the
determination of the centroids of composite areas precedes the calculation
of centroids by integration, thus making it possible to establish the concept
of the moment of an area firmly before introducing the use of integration.

Chapter Organization and
Pedagogical Features

Each chapter begins with an introductory section setting the purpose and
goals of the chapter and describing in simple terms the material to be
covered and its application to the solution of engineering problems.

Chapter Lessons. The body of the text has been divided into units,
each consisting of one or several theory sections followed by sample prob-
lems and a large number of problems to be assigned. Each unit corresponds
to a well-defined topic and generally can be covered in one lesson.

Concept Applications and Sample Problems. Many theory
sections include concept applications designed to illustrate the material
being presented and facilitate its understanding. The sample problems pro-
vided after all lessons are intended to show some of the applications of
the theory to the solution of engineering problems. Because they have
been set up in much the same form that students will use in solving the
assigned problems, the sample problems serve the double purpose of
amplifying the text and demonstrating the type of neat and orderly work
that students should cultivate in their own solutions.

Homework Problem Sets. Most of the problems are of a practical
nature and should appeal to engineering students. They are primarily
designed, however, to illustrate the material presented in the text and help
the students understand the basic principles used in engineering mechan-
ics. The problems have been grouped according to the portions of material
they illustrate and have been arranged in order of increasing difficulty.
Answers to problems are given at the end of the book, except for those
with a number set in red italics.



Chapter Review and Summary. Each chapter ends with a review
and summary of the material covered in the chapter. Notes in the margin
have been included to help the students organize their review work, and
cross references are provided to help them find the portions of material
requiring their special attention.

Review Problems. A set of review problems is included at the end
of each chapter. These problems provide students further opportunity to
apply the most important concepts introduced in the chapter.

New to the Second Edition

We’ve made some significant changes from the first edition of this text.
The updates include:

o Complete Rewrite. The text has undergone a complete edit of the
language to make the book easier to read and more student-friendly.

o New Photographs Throughout. We have updated many of the pho-
tos appearing in the second edition.

o The SMART Problem-Solving Methodology is Employed. Stu-
dents are introduced to the SMART approach for solving engineering
problems, which is used in all Sample Problems and is intended for
use in the solution of all assigned problems.

» Revised or New Problems. Over 55% of the problems are revised or
new to this edition.

o Connect with SmartBook. The second edition is now equipped with
Connect, our one-of-a-kind teaching and learning platform that boosts
student learning through our adaptive SmartBook and includes access
to ALL of the more than 1200 homework problems in the text. In-
structors will appreciate having access through Connect to a complete
instructor’s solutions manual, lecture PowerPoint slides to facilitate
classroom discussion of the concepts in the text, and textbook images
for repurposing in personalized classroom materials.
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Introduction

The tallest skyscraper in the Western Hemisphere, One World
Trade Center is a prominent feature of the New York City skyline.
From its foundation to its structural components and mechanical
systems, the design and operation of the tower is based on the
fundamentals of engineering mechanics.




2 Introduction

~ N

Introduction ObJGCtlves
e Define the science of mechanics and examine its
1.1 WHAT IS MECHANICS? L.
fundamental principles.
1.2 FUNDAMENTAL CONCEPTS . .
AND PRINCIPLES * Discuss and compare the International System of
1.2A Mechanics of Rigid Bodies Units and U.S. Customary Units.
1.2B Mechanics of Deformable e Discuss how to approach the solution of mechanics
Bodies roblems, and introduce the SMART problem-solvin
p p g
1.3 SYSTEMS OF UNITS methodology.
1.4 CONVERTING BETWEEN e Examine factors that govern numerical accuracy in the
TWO SYSTEMS OF UNITS solution of a mechanics problem.
1.5 METHOD OF SOLVING K ./
PROBLEMS

1.6 NUMERICAL ACCURACY 1.1 WHAT IS MECHANICS?

Mechanics is defined as the science that describes and predicts the condi-
tions of rest or motion of bodies under the action of forces. It consists of
the mechanics of rigid bodies, mechanics of deformable bodies, and
mechanics of fluids.

The mechanics of rigid bodies is subdivided into statics and dynamics.
Statics deals with bodies at rest; dynamics deals with bodies in motion. In
this text, we assume bodies are perfectly rigid. In fact, actual structures and
machines are never absolutely rigid; they deform under the loads to which
they are subjected. However, because these deformations are usually small,
they do not appreciably affect the conditions of equilibrium or the motion
of the structure under consideration. They are important, though, as far as
the resistance of the structure to failure is concerned. Deformations are
studied in a course in mechanics of materials, which is part of the mechanics
of deformable bodies. The third division of mechanics, the mechanics of
fluids, is subdivided into the study of incompressible fluids and of com-
pressible fluids. An important subdivision of the study of incompressible
fluids is hydraulics, which deals with applications involving water.

Mechanics is a physical science, since it deals with the study of
physical phenomena. However, some teachers associate mechanics with
mathematics, whereas many others consider it as an engineering subject.
Both these views are justified in part. Mechanics is the foundation of most
engineering sciences and is an indispensable prerequisite to their study.
However, it does not have the empiricism found in some engineering sci-
ences, i.e., it does not rely on experience or observation alone. The rigor
of mechanics and the emphasis it places on deductive reasoning makes it
resemble mathematics. However, mechanics is not an abstract or even a
pure science; it is an applied science.

The purpose of mechanics is to explain and predict physical phenom-
ena and thus to lay the foundations for engineering applications. You need
to know statics to determine how much force will be exerted on a point in
a bridge design and whether the structure can withstand that force. Deter-
mining the force a dam needs to withstand from the water in a river requires
statics. You need statics to calculate how much weight a crane can lift, how
much force a locomotive needs to pull a freight train, or how much force a
circuit board in a computer can withstand. The concepts of dynamics enable
you to analyze the flight characteristics of a jet, design a building to resist



earthquakes, and mitigate shock and vibration to passengers inside a vehicle.
The concepts of dynamics enable you to calculate how much force you need
to send a satellite into orbit, accelerate a 200,000-ton cruise ship, or design
a toy truck that doesn’t break. You will not learn how to do these things in
this course, but the ideas and methods you learn here will be the underlying
basis for the engineering applications you will learn in your work.

1.2 FUNDAMENTAL CONCEPTS
AND PRINCIPLES

1.2A Mechanics of Rigid Bodies

Although the study of mechanics goes back to the time of Aristotle (384—
322 B.C.) and Archimedes (287-212 B.C.), not until Newton (1642-1727) did
anyone develop a satisfactory formulation of its fundamental principles.
These principles were later modified by d’Alembert, Lagrange, and Hamilton.
Their validity remained unchallenged until Einstein formulated his theory of
relativity (1905). Although its limitations have now been recognized, new-
tonian mechanics still remains the basis of today’s engineering sciences.

The basic concepts used in mechanics are space, time, mass, and
force. These concepts cannot be truly defined; they should be accepted on
the basis of our intuition and experience and used as a mental frame of
reference for our study of mechanics.

The concept of space is associated with the position of a point P.
We can define the position of P by providing three lengths measured from
a certain reference point, or origin, in three given directions. These lengths
are known as the coordinates of P.

To define an event, it is not sufficient to indicate its position in
space. We also need to specify the time of the event.

We use the concept of mass to characterize and compare bodies
on the basis of certain fundamental mechanical experiments. Two bodies
of the same mass, for example, are attracted by the earth in the same man-
ner; they also offer the same resistance to a change in translational motion.

A force represents the action of one body on another. A force can
be exerted by actual contact, like a push or a pull, or at a distance, as in
the case of gravitational or magnetic forces. A force is characterized by
its point of application, its magnitude, and its direction, a force is repre-
sented by a vector (Sec. 2.1B).

In newtonian mechanics, space, time, and mass are absolute con-
cepts that are independent of each other. (This is not true in relativistic
mechanics, where the duration of an event depends upon its position and
the mass of a body varies with its velocity.) On the other hand, the concept
of force is not independent of the other three. Indeed, one of the funda-
mental principles of newtonian mechanics listed below is that the resultant
force acting on a body is related to the mass of the body and to the manner
in which its velocity varies with time.

In this text, you will study the conditions of rest or motion of par-
ticles and rigid bodies in terms of the four basic concepts we have intro-
duced. By particle, we mean a very small amount of matter, which we
assume occupies a single point in space. A rigid body consists of a large
number of particles occupying fixed positions with respect to one another.

1.2 Fundamental Concepts and Principles

3



4 Introduction

Fig. 1.1 From Newton’s law of gravitation,
two particles of masses M and m exert
forces upon each other of equal magnitude,
opposite direction, and the same line of
action. This also illustrates Newton’s third
law of motion.

The study of the mechanics of particles is clearly a prerequisite to that of
rigid bodies. Besides, we can use the results obtained for a particle directly
in a large number of problems dealing with the conditions of rest or
motion of actual bodies.

The study of elementary mechanics rests on six fundamental prin-
ciples, based on experimental evidence.

o The Parallelogram Law for the Addition of Forces. Two forces
acting on a particle may be replaced by a single force, called their
resultant, obtained by drawing the diagonal of the parallelogram
with sides equal to the given forces (Sec. 2.1A).

o The Principle of Transmissibility. The conditions of equilibrium
or of motion of a rigid body remain unchanged if a force acting at
a given point of the rigid body is replaced by a force of the same
magnitude and same direction, but acting at a different point, pro-
vided that the two forces have the same line of action (Sec. 3.1B).

o Newton’s Three Laws of Motion. Formulated by Sir Isaac Newton
in the late seventeenth century, these laws can be stated as follows:

FIRST LAW. If the resultant force acting on a particle is zero,
the particle remains at rest (if originally at rest) or moves with con-
stant speed in a straight line (if originally in motion) (Sec. 2.3B).

SECOND LAW. If the resultant force acting on a particle is not
zero, the particle has an acceleration proportional to the magnitude
of the resultant and in the direction of this resultant force.

This law can be stated as
F = ma (1.1

where F, m, and a represent, respectively, the resultant force acting
on the particle, the mass of the particle, and the acceleration of the
particle expressed in a consistent system of units.

THIRD LAW. The forces of action and reaction between bodies
in contact have the same magnitude, same line of action, and oppo-
site sense (Chap. 6, Introduction).

o Newton’s Law of Gravitation. Two particles of mass M and m
are mutually attracted with equal and opposite forces F and —F of
magnitude F (Fig. 1.1), given by the formula

Mm

F = G7 1.2
where r = the distance between the two particles and G = a uni-
versal constant called the constant of gravitation. Newton’s law of
gravitation introduces the idea of an action exerted at a distance and
extends the range of application of Newton’s third law: the action F
and the reaction —F in Fig. 1.1 are equal and opposite, and they
have the same line of action.

A particular case of great importance is that of the attraction of the
earth on a particle located on its surface. The force F exerted by the earth
on the particle is defined as the weight W of the particle. Suppose we set
M equal to the mass of the earth, m equal to the mass of the particle, and
r equal to the earth’s radius R. Then introducing the constant



GM
g§= 2 1.3)

we can express the magnitude W of the weight of a particle of mass m as’

W = mg 1.4)

The value of R in formula (1.3) depends upon the elevation of the point
considered; it also depends upon its latitude, since the earth is not truly
spherical. The value of g therefore varies with the position of the point
considered. However, as long as the point actually remains on the earth’s
surface, it is sufficiently accurate in most engineering computations to
assume that g equals 9.81 m/s® or 32.2 ft/s”.

The principles we have just listed will be introduced in the course
of our study of mechanics as they are needed. The statics of particles
carried out in Chap. 2 will be based on the parallelogram law of addition
and on Newton’s first law alone. We introduce the principle of transmis-
sibility in Chap. 3 as we begin the study of the statics of rigid bodies, and
we bring in Newton’s third law in Chap. 6 as we analyze the forces exerted
on each other by the various members forming a structure.

As noted earlier, the six fundamental principles listed previously are
based on experimental evidence. Except for Newton’s first law and the prin-
ciple of transmissibility, they are independent principles that cannot be derived
mathematically from each other or from any other elementary physical prin-
ciple. On these principles rests most of the intricate structure of newtonian
mechanics. For more than two centuries, engineers have solved a tremendous
number of problems dealing with the conditions of rest and motion of rigid
bodies, deformable bodies, and fluids by applying these fundamental prin-
ciples. Many of the solutions obtained could be checked experimentally, thus
providing a further verification of the principles from which they were
derived. Only in the twentieth century has Newton’s mechanics found to be
at fault, in the study of the motion of atoms and the motion of the planets,
where it must be supplemented by the theory of relativity. On the human or
engineering scale, however, where velocities are small compared with the
speed of light, Newton’s mechanics have yet to be disproved.

1.2B Mechanics of Deformable Bodies

The concepts needed for mechanics of deformable bodies, also referred to
as mechanics of materials, are necessary for analyzing and designing vari-
ous machines and load-bearing structures. These concepts involve the
determination of stresses and deformations.

In Chaps. 8 through 16, the analysis of stresses and the corresponding
deformations will be developed for structural members subject to axial load-
ing, torsion, and bending. This requires the use of basic concepts involving
the conditions of equilibrium of forces exerted on the member, the relations
existing between stress and deformation in the material, and the conditions
imposed by the supports and loading of the member. Later chapters expand
on these subjects, providing a basis for designing both structures that are
statically determinant and those that are indeterminant, i.e., structures in
which the internal forces cannot be determined from statics alone.

"A more accurate definition of the weight W should take into account the earth’s rotation.

1.2 Fundamental Concepts and Principles 5

Photo 1.1 When in orbit of the earth,
people and objects are said to be weightless
even though the gravitational force acting

is approximately 90% of that experienced
on the surface of the earth. This apparent
contradiction can be resolved in a course on
dynamics when Newton’s second law is
applied to the motion of particles.

© NASA
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a=1m/s2
—_—

Fig. 1.2 A force of 1 newton applied to
a body of mass 1 kg provides an acceleration

of 1 m/s%.
m=1kg ]

W=981N

a=9.81m/s2

 /

Fig. 1.3 A body of mass 1 kg experiencing
an acceleration due to gravity of 9.81 m/s?
has a weight of 9.81 N.

1.3 SYSTEMS OF UNITS

Associated with the four fundamental concepts just discussed are the
so-called kinetic units, i.e., the units of length, time, mass, and force.
These units cannot be chosen independently if Eq. (1.1) is to be satisfied.
Three of the units may be defined arbitrarily; we refer to them as basic
units. The fourth unit, however, must be chosen in accordance with
Eq. (1.1) and is referred to as a derived unit. Kinetic units selected in
this way are said to form a consistent system of units.

International System of Units (SI Units)." In this system, which
will be in universal use after the United States has completed its conversion
to SI units, the base units are the units of length, mass, and time, and they
are called, respectively, the meter (m), the kilogram (kg), and the second
(s). All three are arbitrarily defined. The second was originally chosen to
represent 1/86 400 of the mean solar day, but it is now defined as the dura-
tion of 9 192 631 770 cycles of the radiation corresponding to the transition
between two levels of the fundamental state of the cesium-133 atom. The
meter, originally defined as one ten-millionth of the distance from the equa-
tor to either pole, is now defined as 1 650 763.73 wavelengths of the orange-
red light corresponding to a certain transition in an atom of krypton-86. (The
newer definitions are much more precise and with today’s modern instru-
mentation, are easier to verify as a standard.) The kilogram, which is approxi-
mately equal to the mass of 0.001 m® of water, is defined as the mass of a
platinum-iridium standard kept at the International Bureau of Weights and
Measures at Sevres, near Paris, France. The unit of force is a derived unit.
It is called the newton (N) and is defined as the force that gives an accelera-
tion of 1 m/s” to a body of mass 1 kg (Fig. 1.2). From Eq. (1.1), we have

IN = (1 kg)(1 m/s*) = 1 kg-m/s* 1.5)
The ST units are said to form an absolute system of units. This means that
the three base units chosen are independent of the location where measure-
ments are made. The meter, the kilogram, and the second may be used
anywhere on the earth; they may even be used on another planet and still
have the same significance.

The weight of a body, or the force of gravity exerted on that body,
like any other force, should be expressed in newtons. From Eq. (1.4), it
follows that the weight of a body of mass 1 kg (Fig. 1.3) is

W = mg
= (1kg)(9.81 m/s?)
=981N

Multiples and submultiples of the fundamental SI units are denoted
through the use of the prefixes defined in Table 1.1. The multiples and sub-
multiples of the units of length, mass, and force most frequently used in
engineering are, respectively, the kilometer (km) and the millimeter (mm); the
megagram* (Mg) and the gram (g); and the kilonewton (kN). According to

Table 1.1, h
able we have 1km = 1000m 1mm = 0.001 m

1Mg = 1000kg 1g = 0.001 kg
1 kN = 1000 N

*SI stands for Systeme International d’Unités (French).
*Also known as a metric ton.



Table 1.1 Sl Prefixes

Multiplication Factor Prefix' Symbol
1 000 000 000 000 = 10" tera T
1 000 000 000 = 10° giga G
1 000 000 = 10° mega M
1 000 = 10° kilo k
100 = 10? hecto* h
10 = 10! deka® da
0.1 =10" decit d
0.01 = 1072 centi? c
0.001 = 1073 milli m
0.000 001 = 10°° micro u
0.000 000 001 = 107° nano n
0.000 000 000 001 = 1012 pico p
0.000 000 000 000 001 = 10" femto f
0.000 000 000 000 000 001 = 10~ '* atto a

"The first syllable of every prefix is accented, so that the prefix retains its identity. Thus, the
preferred pronunciation of kilometer places the accent on the first syllable, not the second.

"The use of these prefixes should be avoided, except for the measurement of areas and volumes
and for the nontechnical use of centimeter, as for body and clothing measurements.

The conversion of these units into meters, kilograms, and newtons, respec-
tively, can be effected by simply moving the decimal point three places
to the right or to the left. For example, to convert 3.82 km into meters,
move the decimal point three places to the right:

3.82 km = 3820 m

Similarly, to convert 47.2 mm into meters, move the decimal point three
places to the left:
472 mm = 0.0472 m

Using engineering notation, you can also write

3.82km = 3.82 X 10°m
472mm = 472 X 10 > m

The multiples of the unit of time are the minute (min) and the hour (h).
Since 1 min = 60 s and 1 h = 60 min = 3600 s, these multiples cannot
be converted as readily as the others.

By using the appropriate multiple or submultiple of a given unit,
you can avoid writing very large or very small numbers. For example, it
is usually simpler to write 427.2 km rather than 427 200 m and 2.16 mm
rather than 0.002 16 m.

Units of Area and Volume. The unit of area is the square meter (m?),
which represents the area of a square of side 1 m; the unit of volume is
the cubic meter (m3), which is equal to the volume of a cube of side 1 m.
In order to avoid exceedingly small or large numerical values when com-
puting areas and volumes, we use systems of subunits obtained by respec-
tively squaring and cubing not only the millimeter, but also two intermediate

"Note that when more than four digits appear on either side of the decimal point to express
a quantity in SI units—as in 427 000 m or 0.002 16 m—use spaces, never commas, to sepa-
rate the digits into groups of three. This practice avoids confusion with the comma used in
place of a decimal point, which is the convention in many countries.

1.3 Systems of Units

7
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submultiples of the meter: the decimeter (dm) and the centimeter (cm).
By definition,

ldm=01m=10"m
lem=00lm=102m
Imm = 0.00lm=10">m

Therefore, the submultiples of the unit of area are

1dm?> = (1dm)* = (10 'm)? = 107> m?
lem?> = (1em)? = (10 °m)> = 10 * m?
I mm? = (1 mm)?> = (10 m)? = 107° m?

Similarly, the submultiples of the unit of volume are

1dm® = (1dm)’ = (107'm)’> = 10° m’
lem®= (1em)® = (107%m)* = 10 % m®
Ilmm’ = (1mm)’ = (107m)’=10"m?

Note that when measuring the volume of a liquid, the cubic decimeter (dm3)
is usually referred to as a liter (L).

Table 1.2 shows other derived SI units used to measure the moment
of a force, the work of a force, etc. Although we will introduce these units
in later chapters as they are needed, we should note an important rule at

Table 1.2 Principal SI Units Used in Mechanics

Quantity Unit Symbol Formula
Acceleration Meter per second squared R m/s’
Angle Radian rad T
Angular acceleration Radian per second squared R rad/s’
Angular velocity Radian per second . rad/s
Area Square meter .. m?
Density Kilogram per cubic meter - kg/m’
Energy Joule J N-m
Force Newton N kg m/s’
Frequency Hertz Hz s
Impulse Newton-second . kg-m/s
Length Meter m oo
Mass Kilogram kg kS
Moment of a force Newton-meter R, N-m
Power Watt W I/s
Pressure Pascal Pa N/m?
Stress Pascal Pa N/m?
Time Second S oo
Velocity Meter per second - m/s
Volume

Solids Cubic meter R m’

Liquids Liter L 10° m?
Work Joule J N-m

Supplementary unit (1 revolution = 27 rad = 360°).

2 .
“Base unit.



this time: When a derived unit is obtained by dividing a base unit by
another base unit, you may use a prefix in the numerator of the derived
unit, but not in its denominator. For example, the constant k of a spring
that stretches 20 mm under a load of 100 N is expressed as

100N 100N

= = = N =5k
Omm  0.020m 5000 N/m or k = 5kN/m

but never as k = 5 N/mm.

U.S. Customary Units. Most practicing American engineers still
commonly use a system in which the base units are those of length, force,
and time. These units are, respectively, the foor (ft), the pound (Ib), and
the second (s). The second is the same as the corresponding SI unit. The
foot is defined as 0.3048 m. The pound is defined as the weight of a
platinum standard, called the standard pound, which is kept at the National
Institute of Standards and Technology outside Washington D.C., the mass
of which is 0.453 592 43 kg. Since the weight of a body depends upon
the earth’s gravitational attraction, which varies with location, the standard
pound should be placed at sea level and at a latitude of 45° to properly
define a force of 1 Ib. Clearly the U.S. customary units do not form an
absolute system of units. Because they depend upon the gravitational
attraction of the earth, they form a gravitational system of units.
Although the standard pound also serves as the unit of mass in com-
mercial transactions in the United States, it cannot be used that way in
engineering computations, because such a unit would not be consistent
with the base units defined in the preceding paragraph. Indeed, when acted
upon by a force of 1 Ib—that is, when subjected to the force of gravity—
the standard pound has the acceleration due to gravity, g = 32.2 ft/s’
(Fig. 1.4), not the unit acceleration required by Eq. (1.1). The unit of mass
consistent with the foot, the pound, and the second is the mass that
receives an acceleration of 1 ft/s> when a force of 1 Ib is applied to it
(Fig. 1.5). This unit, sometimes called a slug, can be derived from the
equation F = ma after substituting 1 Ib for F and 1 ft/s* for a. We have

F=ma 11b= (1slug)(l ft/s?)

This gives us

1 slug = llf—:/bsz = 1 Ib-s¥/ft (1.6)
Comparing Figs. 1.4 and 1.5, we conclude that the slug is a mass 32.2
times larger than the mass of the standard pound.

The fact that, in the U.S. customary system of units, bodies are
characterized by their weight in pounds rather than by their mass in slugs
is convenient in the study of statics, where we constantly deal with weights
and other forces and only seldom deal directly with masses. However, in
the study of dynamics, where forces, masses, and accelerations are
involved, the mass m of a body is expressed in slugs when its weight W
is given in pounds. Recalling Eq. (1.4), we write
a.n

m=—
8

where g is the acceleration due to gravity (g = 32.2 ft/s?).

1.3 Systems of Units 9

F=1Ib

a =322 ft/s?

Fig. 1.4 A body of 1 pound mass acted
upon by a force of 1 pound has an
acceleration of 32.2 ft/s°.

a=1ft/s2
—_—
m =1 slug F=11b

(=11b - s2/ft)

Fig. 1.5 A force of 1 pound applied to a
body of mass 1 slug produces an acceleration
of 1 ft/s?.
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Other U.S. customary units frequently encountered in engineering
problems are the mile (mi), equal to 5280 ft; the inch (in.), equal to
(1/12) ft; and the kilopound (kip), equal to 1000 Ib. The fon is often used
to represent a mass of 2000 Ib but, like the pound, must be converted into
slugs in engineering computations.

The conversion into feet, pounds, and seconds of quantities expressed
in other U.S. customary units is generally more involved and requires
greater attention than the corresponding operation in SI units. For exam-
ple, suppose we are given the magnitude of a velocity v = 30 mi/h and
want to convert it to ft/s. First we write

V=

Since we want to get rid of the unit miles and introduce instead the unit feet,
we should multiply the right-hand member of the equation by an expression
containing miles in the denominator and feet in the numerator. However,
since we do not want to change the value of the right-hand side of the equa-
tion, the expression used should have a value equal to unity. The quotient
(5280 ft)/(1 mi) is such an expression. Operating in a similar way to trans-
form the unit hour into seconds, we have

_(3Omi)(5280ft)< 1h )
' h/\ 1mi /\3600s

Carrying out the numerical computations and canceling out units that
appear in both the numerator and the denominator, we obtain

v = 44t = 44 ys
S

1.4 CONVERTING BETWEEN
TWO SYSTEMS OF UNITS

In many situations, an engineer might need to convert into SI units a
numerical result obtained in U.S. customary units or vice versa. Because
the unit of time is the same in both systems, only two kinetic base units
need be converted. Thus, since all other kinetic units can be derived from
these base units, only two conversion factors need be remembered.

Units of Length. By definition, the U.S. customary unit of length is
1 ft = 0.3048 m 1.8
It follows that
1 mi = 5280 ft = 5280(0.3048 m) = 1609 m
or
1 mi = 1.609 km 1.9
Also,

= L= L _
Lin = — ft = (03048 m) = 0.0254 m



or

1 in. = 25.4 mm (1.10)

Units of Force. Recall that the U.S. customary unit of force (pound)
is defined as the weight of the standard pound (of mass 0.4536 kg) at sea
level and at a latitude of 45° (where g = 9.807 m/sz). Then, using Eq. (1.4),
we write

W = mg
11b = (0.4536 kg)(9.807 m/s®) = 4.448 kg-m/s

From Eq. (1.5), this reduces to

11b = 4448 N (1.11)

Units of Mass. The U.S. customary unit of mass (slug) is a derived
unit. Thus, using Egs. (1.6), (1.8), and (1.11), we have

11b 4.448 N

5= 5 = 1459 N-s/m
1 fs*> 03048 m/s

1 slug = 1 Ib-s¥/ft =

Again, from Eq. (1.5),

1slug = 1 Ib-s¥/ft = 14.59 kg 1.12)

Although it cannot be used as a consistent unit of mass, recall that the
mass of the standard pound is, by definition,

1 pound mass = 0.4536 kg (1.13)

We can use this constant to determine the mass in SI units (kilograms) of
a body that has been characterized by its weight in U.S. customary units
(pounds).

To convert a derived U.S. customary unit into SI units, simply
multiply or divide by the appropriate conversion factors. For example, to
convert the moment of a force that is measured as M = 47 Ib-in. into
ST units, use formulas (1.10) and (1.11) and write

M = 47 1b-in. = 47(4.448 N)(25.4 mm)
= 5310 N°omm = 5.31 N-m

You can also use conversion factors to convert a numerical result
obtained in SI units into U.S. customary units. For example, if the moment
of a force is measured as M = 40 N-m, follow the procedure at the end
of Sec. 1.3 to write

11b )( 1 ft )
4.448 N/ \ 0.3048 m

M = 40 N-m = (40 N-m)(

Carrying out the numerical computations and canceling out units that
appear in both the numerator and the denominator, you obtain

M = 29.5 Ib-ft

The U.S. customary units most frequently used in mechanics are
listed in Table 1.3 with their SI equivalents.

1.4 Converting Between Two Systems of Units

1

Photo 1.2
entered orbit around Mars at too low an
altitude and disintegrated. Investigation
showed that the software on board the probe
interpreted force instructions in newtons, but
the software at mission control on the earth
was generating those instructions in terms of
pounds.

© NASA/JPL-Caltech
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Table 1.3 U.S. Customary Units and Their SI Equivalents

Quantity U.S. Customary Unit S| Equivalent
Acceleration ft/s* 0.3048 m/s”

in./s? 0.0254 m/s*
Area ft? 0.0929 m?

in’ 645.2 mm’
Energy ft-1b 1.356 ]
Force kip 4.448 kN

b 4.448 N

oz 0.2780 N
Impulse Ib-s 4.448 N-s
Length ft 0.3048 m

in. 25.40 mm

mi 1.609 km
Mass 0z mass 2835 ¢g

Ib mass 0.4536 kg

slug 14.59 kg

ton 907.2 kg
Moment of a force Ib-ft 1.356 N-m

Ib-in. 0.1130 N'm
Moment of inertia

Of an area in* 0.4162 X 10°® mm*
Of a mass Ib-ft-s? 1.356 kg-m?

Momentum Ib-s 4.448 kg-m/s
Power ft-1b/s 1.356 W

hp 7457 W
Pressure or stress 1b/f? 47.88 Pa

1b/in” (psi) 6.895 kPa
Velocity ft/s 0.3048 m/s

in./s 0.0254 m/s

mi/h (mph) 0.4470 m/s

mi/h (mph) 1.609 km/h
Volume ft’ 0.02832 m’

in’ 16.39 cm®
Liquids gal 3785 L

qt 0.9464 L
Work ft-1b 1.356 ]

1.5 METHOD OF SOLVING
PROBLEMS

You should approach a problem in mechanics as you would approach an
actual engineering situation. By drawing on your own experience and intu-
ition about physical behavior, you will find it easier to understand and for-
mulate the problem. Once you have clearly stated and understood the problem,
however, there is no place in its solution for arbitrary methodologies.

The solution must be based on the six fundamental principles stated
in Sec. 1.2A or on theorems derived from them.

Every step you take in the solution must be justified on this basis. Strict
rules must be followed, which lead to the solution in an almost automatic
fashion, leaving no room for your intuition or “feeling.” After you have



obtained an answer, you should check it. Here again, you may call upon
your common sense and personal experience. If you are not completely
satisfied with the result, you should carefully check your formulation of
the problem, the validity of the methods used for its solution, and the
accuracy of your computations.

In general, you can usually solve problems in several different ways;
there is no one approach that works best for everybody. However, we have
found that students often find it helpful to have a general set of guidelines
to use for framing problems and planning solutions. In the Sample
Problems throughout this text, we use a four-step method for approaching
problems, which we refer to as the SMART methodology: Strategy,
Modeling, Analysis, and Reflect and Think.

1. Strategy. The statement of a problem should be clear and precise, and
it should contain the given data and indicate what information is
required. The first step in solving the problem is to decide what concepts
you have learned that apply to the given situation and to connect the
data to the required information. It is often useful to work backward
from the information you are trying to find: Ask yourself what quantities
you need to know to obtain the answer, and if some of these quantities
are unknown, how can you find them from the given data.

2. Modeling. The first step in modeling is to define the system; that is,
clearly define what you are setting aside for analysis. After you have
selected a system, draw a neat sketch showing all quantities involved
with a separate diagram for each body in the problem. For equilibrium
problems, indicate clearly the forces acting on each body along with
any relevant geometrical data, such as lengths and angles. (These
diagrams are known as free-body diagrams and are described in detail
in Sec. 2.3C and the beginning of Chap. 4.)

3. Analysis. After you have drawn the appropriate diagrams, use the
fundamental principles of mechanics listed in Sec. 1.2 to write equa-
tions expressing the conditions of rest or motion of the bodies considered.
Each equation should be clearly related to one of the free-body diagrams
and should be numbered. If you do not have enough equations to solve
for the unknowns, try selecting another system, or reexamine your strat-
egy to see if you can apply other principles to the problem. Once you
have obtained enough equations, you can find a numerical solution by
following the usual rules of algebra, neatly recording each step and the
intermediate results. Alternatively, you can solve the resulting equations
with your calculator or a computer. (For multipart problems, it is some-
times convenient to present the Modeling and Analysis steps together,
but they are both essential parts of the overall process.)

4. Reflect and Think. After you have obtained the answer, check it
carefully. Does it make sense in the context of the original problem?
For instance, the problem may ask for the force at a given point of a
structure. If your answer is negative, what does that mean for the force
at the point?

You can often detect mistakes in reasoning by checking the units.
For example, to determine the moment of a force of 50 N about a point
0.60 m from its line of action, we write (Sec. 3.3A)

M = Fd = (30 N)(0.60 m) = 30 N'm

1.5 Method of Solving Problems
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The unit N-m obtained by multiplying newtons by meters is the correct
unit for the moment of a force; if you had obtained another unit, you
would know that some mistake had been made.

You can often detect errors in computation by substituting the
numerical answer into an equation that was not used in the solution and
verifying that the equation is satisfied. The importance of correct compu-
tations in engineering cannot be overemphasized.

1.6 NUMERICAL ACCURACY

The accuracy of the solution to a problem depends upon two items: (1) the
accuracy of the given data and (2) the accuracy of the computations per-
formed. The solution cannot be more accurate than the less accurate of
these two items.

For example, suppose the loading of a bridge is known to be 75 000 Ib
with a possible error of 100 Ib either way. The relative error that measures
the degree of accuracy of the data is

100 Ib

———— =0.0013 = 0.13
75000 1b 0013 = 0.13%

In computing the reaction at one of the bridge supports, it would be mean-
ingless to record it as 14 322 1b. The accuracy of the solution cannot be
greater than 0.13%, no matter how precise the computations are, and the
possible error in the answer may be as large as (0.13/100)(14 322 1b) ~ 20 Ib.
The answer should be properly recorded as 14 320 = 20 Ib.

In engineering problems, the data are seldom known with an accu-
racy greater than 0.2%. It is therefore seldom justified to write answers
with an accuracy greater than 0.2%. A practical rule is to use four figures
to record numbers beginning with a “1” and three figures in all other
cases. Unless otherwise indicated, you should assume the data given in a
problem are known with a comparable degree of accuracy. A force of
40 1b, for example, should be read as 40.0 Ib, and a force of 15 1b should
be read as 15.00 Ib.

Electronic calculators are widely used by practicing engineers and
engineering students. The speed and accuracy of these calculators facili-
tate the numerical computations in the solution of many problems. How-
ever, you should not record more significant figures than can be justified
merely because you can obtain them easily. As noted previously, an accu-
racy greater than 0.2% is seldom necessary or meaningful in the solution
of practical engineering problems.
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Statics of Particles

Many engineering problems can be solved by considering the
equilibrium of a “particle.” In the case of this beam that is being
hoisted into position, a relation between the tensions in the various
cables involved can be obtained by considering the equilibrium of
the hook to which the cables are attached.




16

Statics of Particles

Introduction

2.1

2.1A
2.1B
2.1C

2.1D

2.1E

2.2

2.2A

2.2B

2.3
2.3A

2.3B
2.3C

2.4
2.4A

2.4B

2.4C

2.5

ADDITION OF PLANAR
FORCES

Force on a Particle: Resultant
of Two Forces

Vectors

Addition of Vectors

Resultant of Several
Concurrent Forces

Resolution of a Force into
Components

ADDING FORCES BY
COMPONENTS

Rectangular Components of a
Force: Unit Vectors

Addition of Forces by
Summing X and Y
Components

FORCES AND
EQUILIBRIUM IN A PLANE
Equilibrium of a Particle
Newton'’s First Law of Motion
Free-Body Diagrams and
Problem Solving

ADDING FORCES IN SPACE
Rectangular Components of a
Force in Space

Force Defined by Its
Magnitude and Two Points on
Its Line of Action

Addition of Concurrent Forces
in Space

FORCES AND
EQUILIBRIUM IN SPACE

~ Objectives R
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Introduce the concept of the free-body diagram.

Use free-body diagrams to assist in the analysis of
\ planar and spatial particle equilibrium problems.
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Introduction

In this chapter, you will study the effect of forces acting on particles. By
the word “particle” we do not mean only tiny bits of matter, like an atom
or an electron. Instead, we mean that the sizes and shapes of the bodies
under consideration do not significantly affect the solutions of the problems.
Another way of saying this is that we assume all forces acting on a given
body act at the same point. This does not mean the object must be tiny—if
you were modeling the mechanics of the Milky Way galaxy, for example,
you could treat the Sun and the entire Solar System as just a particle.

Our first step is to explain how to replace two or more forces acting
on a given particle by a single force having the same effect as the original
forces. This single equivalent force is called the resultant of the original
forces. After this step, we will derive the relations among the various forces
acting on a particle in a state of equilibrium. We will use these relations
to determine some of the forces acting on the particle.

The first part of this chapter deals with forces contained in a single
plane. Because two lines determine a plane, this situation arises any time
we can reduce the problem to one of a particle subjected to two forces
that support a third force, such as a crate suspended from two chains or
a traffic light held in place by two cables. In the second part of this
chapter, we examine the more general case of forces in three-dimensional
space.

2.1 ADDITION OF PLANAR

FORCES

Many important practical situations in engineering involve forces in the
same plane. These include forces acting on a pulley, projectile motion,
and an object in equilibrium on a flat surface. We will examine this situ-
ation first before looking at the added complications of forces acting in
three-dimensional space.



2.1A Force on a Particle: Resultant
of Two Forces

A force represents the action of one body on another. It is generally char-
acterized by its point of application, its magnitude, and its direction.
Forces acting on a given particle, however, have the same point of applica-
tion. Thus, each force considered in this chapter is completely defined by
its magnitude and direction.

The magnitude of a force is characterized by a certain number of units.
As indicated in Chap. 1, the SI units used by engineers to measure the mag-
nitude of a force are the newton (N) and its multiple the kilonewton (kN),
which is equal to 1000 N. The U.S. customary units used for the same pur-
pose are the pound (Ib) and its multiple the kilopound (kip), which is equal
to 1000 1b. We saw in Chapter 1 that a force of 445 N is equivalent to a
force of 100 1b or that a force of 100 N equals a force of about 22.5 1b.

We define the direction of a force by its line of action and the sense
of the force. The line of action is the infinite straight line along which the
force acts; it is characterized by the angle it forms with some fixed axis
(Fig. 2.1). The force itself is represented by a segment of that line; through
the use of an appropriate scale, we can choose the length of this segment
to represent the magnitude of the force. We indicate the sense of the force
by an arrowhead. It is important in defining a force to indicate its sense.
Two forces having the same magnitude and the same line of action but a
different sense, such as the forces shown in Fig. 2.1a and b, have directly
opposite effects on a particle.

(@) (b)
Fig. 2.1 The line of action of a force makes an angle with a given fixed axis.
(a) The sense of the 10-lb force is away from particle A; (b) the sense of the
10-Ib force is toward particle A.

Experimental evidence shows that two forces P and Q acting on a
particle A (Fig. 2.2a) can be replaced by a single force R that has the
same effect on the particle (Fig. 2.2¢). This force is called the resultant
of the forces P and Q. We can obtain R, as shown in Fig. 2.2b, by con-
structing a parallelogram, using P and Q as two adjacent sides. The diago-
nal that passes through A represents the resultant. This method for
finding the resultant is known as the parallelogram law for the addition
of two forces. This law is based on experimental evidence; it cannot be
proved or derived mathematically.

2.1B Vectors

We have just seen that forces do not obey the rules of addition defined in
ordinary arithmetic or algebra. For example, two forces acting at a right
angle to each other, one of 4 1b and the other of 3 Ib, add up to a force of

- Fixed axis - Fixed axis
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P
490
(@)
Parallelogram

7

Resultant

(b)

A

(©)
Fig. 2.2 (a) Two forces P and Q
act on particle A. (b) Draw a
parallelogram with P and Q as the
adjacent sides and label the diagonal
that passes through A as R. (c) R is
the resultant of the two forces P and
Q and is equivalent to their sum.
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Photo 2.1 In its purest form, a tug-of-war
pits two opposite and almost-equal forces
against each other. Whichever team can
generate the larger force, wins. As you can
see, a competitive tug-of-war can be quite
intense.

© DGB/Alamy

Fig. 2.3 Equal vectors have the same
magnitude and the same direction, even if
they have different points of application.

P

-P

Fig. 2.4 The negative vector of a given
vector has the same magnitude but the
opposite direction of the given vector.

Fig. 2.5 Using the parallelogram law to add
two vectors.

5 Ib acting at an angle between them, not to a force of 7 1b. Forces are not
the only quantities that follow the parallelogram law of addition. As you
will see later, displacements, velocities, accelerations, and momenta are
other physical quantities possessing magnitude and direction that add
according to the parallelogram law. All of these quantities can be repre-
sented mathematically by vectors. Those physical quantities that have mag-
nitude but not direction, such as volume, mass, or energy, are represented
by plain numbers often called scalars to distinguish them from vectors.

Vectors are defined as mathematical expressions possessing
magnitude and direction, which add according to the parallelogram
law. Vectors are represented by arrows in diagrams and are distinguished
from scalar quantities in this text through the use of boldface type (P). In
longhand writing, a vector may be denoted by drawing a short arrow above
the letter used to represent it ( P ). The magnitude of a vector defines the
length of the arrow used to represent it. In this text, we use italic type to
denote the magnitude of a vector. Thus, the magnitude of the vector P is
denoted by P.

A vector used to represent a force acting on a given particle has a
well-defined point of application—namely, the particle itself. Such a vec-
tor is said to be a fixed, or bound, vector and cannot be moved without
modifying the conditions of the problem. Other physical quantities, how-
ever, such as couples (see Chap. 3), are represented by vectors that may
be freely moved in space; these vectors are called free vectors. Still other
physical quantities, such as forces acting on a rigid body (see Chap. 3),
are represented by vectors that can be moved along their lines of action;
they are known as sliding vectors.

Two vectors that have the same magnitude and the same direction
are said to be equal, whether or not they also have the same point of
application (Fig. 2.3); equal vectors may be denoted by the same letter.

The negative vector of a given vector P is defined as a vector having
the same magnitude as P and a direction opposite to that of P (Fig. 2.4);
the negative of the vector P is denoted by —P. The vectors P and —P are
commonly referred to as equal and opposite vectors. Clearly, we have

P+ (-P)=0

2.1C Addition of Vectors

By definition, vectors add according to the parallelogram law. Thus, we
obtain the sum of two vectors P and Q by attaching the two vectors to
the same point A and constructing a parallelogram, using P and Q as two
adjacent sides (Fig. 2.5). The diagonal that passes through A represents
the sum of the vectors P and Q, denoted by P + Q. The fact that the
sign + is used for both vector and scalar addition should not cause any
confusion if vector and scalar quantities are always carefully distinguished.
Note that the magnitude of the vector P + Q is not, in general, equal to
the sum P + Q of the magnitudes of the vectors P and Q.

Since the parallelogram constructed on the vectors P and Q does
not depend upon the order in which P and Q are selected, we conclude
that the addition of two vectors is commutative, and we write

P+Q=Q+P @2.1)



From the parallelogram law, we can derive an alternative method
for determining the sum of two vectors, known as the triangle rule.
Consider Fig. 2.5, where the sum of the vectors P and Q has been deter-
mined by the parallelogram law. Since the side of the parallelogram oppo-
site Q is equal to Q in magnitude and direction, we could draw only half
of the parallelogram (Fig. 2.6a). The sum of the two vectors thus can be
found by arranging P and Q in tip-to-tail fashion and then connecting
the tail of P with the tip of Q. If we draw the other half of the parallelo-
gram, as in Fig. 2.6b, we obtain the same result, confirming that vector
addition is commutative.

We define subtraction of a vector as the addition of the correspond-
ing negative vector. Thus, we determine the vector P — Q, representing
the difference between the vectors P and Q, by adding to P the negative
vector —Q (Fig. 2.7). We write

P-Q=P+(-Q 2.2

(b) (@) )

Fig. 2.6 The triangle rule of Fig. 2.7 Vector subtraction:
vector addition. (a) Adding vector Subtracting vector Q from vector P
Q to vector P equals (b) adding is the same as adding vector —Q to
vector P to vector Q. vector P.

Here again we should observe that, although we use the same sign to
denote both vector and scalar subtraction, we avoid confusion by taking
care to distinguish between vector and scalar quantities.

We now consider the sum of three or more vectors. The sum of three
vectors P, Q, and S is, by definition, obtained by first adding the vectors
P and Q and then adding the vector S to the vector P + Q. We write

P+Q+S=®P+Q)+S @2.3)

Similarly, we obtain the sum of four vectors by adding the fourth vector
to the sum of the first three. It follows that we can obtain the sum of any
number of vectors by applying the parallelogram law repeatedly to suc-
cessive pairs of vectors until all of the given vectors are replaced by a
single vector.

If the given vectors are coplanar, i.e., if they are contained in the
same plane, we can obtain their sum graphically. For this case, repeated
application of the triangle rule is simpler than applying the parallelogram
law. In Fig. 2.8a, we find the sum of three vectors P, Q, and S in this
manner. The triangle rule is first applied to obtain the sum P + Q of the
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Fig. 2.8 Graphical addition of vectors.

(a) Applying the triangle rule twice to add
three vectors; (b) the vectors can be added
in one step by the polygon rule; (c) vector
addition is associative; (d) the order of
addition is immaterial.
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P 1.5P
Fig. 2.9 Multiplying a vector by a scalar
changes the vector’s magnitude, but not its

direction (unless the scalar is negative, in
which case the direction is reversed).

2P

()

Fig. 2.10 Concurrent forces can be added
by the polygon rule.

vectors P and Q; we apply it again to obtain the sum of the vectors P + Q
and S. However, we could have omitted determining the vector P + Q
and obtain the sum of the three vectors directly, as shown in Fig. 2.8b,
by arranging the given vectors in tip-to-tail fashion and connecting
the tail of the first vector with the tip of the last one. This is known
as the polygon rule for the addition of vectors.

The result would be unchanged if, as shown in Fig. 2.8¢, we had
replaced the vectors Q and S by their sum Q + S. We may thus write

P+Q+S=P+Q +S=P+@Q+Y9S) 2.4

which expresses the fact that vector addition is associative. Recalling that
vector addition also has been shown to be commutative in the case of two
vectors, we can write

P+Q+S=P+Q+S=8+P+Q 2.5)
=S+@Q+P)=S+Q+P

This expression, as well as others we can obtain in the same way, shows
that the order in which several vectors are added together is immaterial
(Fig. 2.84d).

Product of a Scalar and a Vector. It is convenient to denote the
sum P + P by 2P, the sum P + P + P by 3P, and, in general, the sum
of n equal vectors P by the product nP. Therefore, we define the product nP
of a positive integer n and a vector P as a vector having the same direction
as P and the magnitude nP. Extending this definition to include all scalars
and recalling the definition of a negative vector given earlier, we define
the product kP of a scalar k and a vector P as a vector having the same
direction as P (if k is positive) or a direction opposite to that of P (if & is
negative) and a magnitude equal to the product of P and the absolute value
of k (Fig. 2.9).

2.1D Resultant of Several Concurrent
Forces

Consider a particle A acted upon by several coplanar forces, i.e., by several
forces contained in the same plane (Fig. 2.10a). Since the forces all pass
through A, they are also said to be concurrent. We can add the vectors
representing the forces acting on A by the polygon rule (Fig. 2.10b). Since
the use of the polygon rule is equivalent to the repeated application of the
parallelogram law, the vector R obtained in this way represents the resul-
tant of the given concurrent forces. That is, the single force R has the
same effect on the particle A as the given forces. As before, the order in
which we add the vectors P, Q, and S representing the given forces is
immaterial.

2.1E Resolution of a Force into
Components

We have seen that two or more forces acting on a particle may be replaced
by a single force that has the same effect on the particle. Conversely, a single



force F acting on a particle may be replaced by two or more forces that,
together, have the same effect on the particle. These forces are called
components of the original force F, and the process of substituting them
for F is called resolving the force F into components.

Clearly, each force F can be resolved into an infinite number of
possible sets of components. Sets of two components P and Q are the
most important as far as practical applications are concerned. However,
even then, the number of ways in which a given force F may be resolved
into two components is unlimited (Fig. 2.11).

Fig. 2.11 Three possible sets of
components for a given force vector F.

In many practical problems, we start with a given vector F and want
to determine a useful set of components. Two cases are of particular
interest:

1. One of the Two Components, P, Is Known. We obtain the second
component, Q, by applying the triangle rule and joining the tip of P to
the tip of F (Fig. 2.12). We can determine the magnitude and direction
of Q graphically or by trigonometry. Once we have determined Q, both
components P and Q should be applied at A.

2. The Line of Action of Each Component Is Known. We obtain the
magnitude and sense of the components by applying the parallelogram
law and drawing lines through the tip of F that are parallel to the given
lines of action (Fig. 2.13). This process leads to two well-defined com-
ponents, P and Q, which can be determined graphically or computed
trigonometrically by applying the law of sines.

You will encounter many similar cases; for example, you might know the
direction of one component while the magnitude of the other component
is to be as small as possible (see Sample Prob. 2.2). In all cases, you need
to draw the appropriate triangle or parallelogram that satisfies the given
conditions.

2.1 Addition of Planar Forces 21

F
A

Fig. 2.12 When component P is known, use
the triangle rule to find component Q.

Fig. 2.13 When the lines of action are
known, use the parallelogram rule to
determine components P and Q.
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Q=60N

P=40N

Fig. 1 Parallelogram law
applied to add forces P and Q.

A

Fig. 2 Triangle rule applied to
add forces P and Q.

Fig. 3 Geometry of triangle rule
applied to add forces P and Q.

i

Fig. 4 Alternative geometry of
triangle rule applied to add forces P
and Q.

-

Sample Problem 2.1

Two forces P and Q act on a bolt A. Determine their resultant.

STRATEGY: Two lines determine a plane, so this is a problem of
two coplanar forces. You can solve the problem graphically or by
trigonometry.

MODELING: For a graphical solution, you can use the parallelogram
rule or the triangle rule for addition of vectors. For a trigonometric solu-
tion, you can use the law of cosines and law of sines or use a right-triangle
approach.

ANALYSIS:

Graphical Solution. Draw to scale a parallelogram with sides equal
to P and Q (Fig. 1). Measure the magnitude and direction of the resultant.
They are

R =98N o =35 R =98N «35°

You can also use the triangle rule. Draw forces P and Q in tip-to-tail
fashion (Fig. 2). Again measure the magnitude and direction of the resul-
tant. The answers should be the same.

R =98N o =35 R =98N «35°

Trigonometric Solution. Using the triangle rule again, you know
two sides and the included angle (Fig. 3). Apply the law of cosines.

R* = P* + Q> — 2PQ cos B

R* = (40 N)* + (60 N)* — 2(40 N)(60 N) cos 155°

R =9773 N

Now apply the law of sines:

sinA _ sinB sinA _ sin155°

= 1
0 R 60N  97.73N @
Solving Eq. (1) for sin A, you obtain
. (60 N) sin155°
SinA = ———————
97.73 N

Using a calculator, compute this quotient, and then obtain its arc sine:
A = 15.04° a = 20° + A = 35.04°
Use three significant figures to record the answer (cf. Sec. 1.6):
R = 977 N 4235.0°

Alternative Trigonometric Solution.
BCD (Fig. 4) and compute

Construct the right triangle

CD = (60 N) sin 25° = 25.36 N
BD = (60 N) cos 25° = 54.38 N

(continued)

y
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Then, using triangle ACD, you have
_2536N

A= A = 15.04°
A = 0438 N 30
25.
R=236  pr_9773N
sinA

Again,
a=20°+A=23504° R =97.7N £235.0°

REFLECT and THINK: An analytical solution using trigonometry pro-
vides for greater accuracy. However, it is helpful to use a graphical solu-
tion as a check.

N

Sample Problem 2.2

Two tugboats are pulling a barge. If the resultant of the forces exerted by
the tugboats is a 5000-Ib force directed along the axis of the barge, deter-
mine (a) the tension in each of the ropes, given that o = 45°, (b) the
value of « for which the tension in rope 2 is minimum.

STRATEGY: This is a problem of two coplanar forces. You can solve
the first part either graphically or analytically. In the second part, a graphi-
cal approach readily shows the necessary direction for rope 2, and you
can use an analytical approach to complete the solution.

MODELING: You can use the parallelogram law or the triangle rule to
solve part (a). For part (b), use a variation of the triangle rule.

ANALYSIS: a. Tension for a = 45°.

Graphical Solution. Use the parallelogram law. The resultant (the
diagonal of the parallelogram) is equal to 5000 1b and is directed to the
right. Draw the sides parallel to the ropes (Fig. 1). If the drawing is done
to scale, you should measure

T, = 3700 Ib T, = 2600 1b

Fig. 1 Parallelogram law
applied to add forces T,
and T,.
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Trigonometric Solution. Use the triangle rule. Note that the triangle
in Fig. 2 represents half of the parallelogram shown in Fig. 1. Using the
law of sines,

T, T, _ 50001Ib
sin45°  sin30°  sin105°

5000 Ib

45° 30°\
105°

Fig. 2 Triangle rule applied
to add forces T; and T,.

With a calculator, compute and store the value of the last quotient. Mul-
tiply this value successively by sin 45° and sin 30°, obtaining

T, = 3660 Ib T, = 2590 Ib

b. Value of a for Minimum T,. To determine the value of « for
which the tension in rope 2 is minimum, use the triangle rule again. In
Fig. 3, line /-1’ is the known direction of T,. Several possible directions
of T, are shown by the lines 2-2". The minimum value of 7, occurs when
T, and T, are perpendicular (Fig. 4). Thus, the minimum value of 7, is

T, = (5000 Ib) sin 30° = 2500 Ib

2
2 21
\
\\ \ 1’
NV 5000 Ib -7
! Ll
I\ N i
AN 7
[\ N Pl
I \\ L
RN 5000 Ib
/ >/ N\ ’
I \ 2
/// \\
7 =
Y
Fig. 3 Determination of direction of Fig. 4 Triangle rule applied
minimum T,. for minimum T,.

Corresponding values of 7 and « are

T, = (5000 1b) cos 30° = 4330 Ib
a = 90° — 30° a = 60°
REFLECT and THINK: Part (a) is a straightforward application of

resolving a vector into components. The key to part (b) is recognizing that
the minimum value of 7, occurs when T; and T, are perpendicular.
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2.7

2.8

[
\‘ 300
| A
: o

Fig. P2.8 and P2.10 2.9

2.10

2.11

A trolley that moves along a horizontal beam is acted upon by two
forces as shown. (@) Knowing that a = 25°, determine by trigonom-
etry the magnitude of the force P so that the resultant force exerted
on the trolley is vertical. (b) What is the corresponding magnitude
of the resultant?

Fig. P2.7 and P2.11

A disabled automobile is pulled by means of two ropes as shown. The
tension in rope AB is 2.2 kN and the angle « is 25°. Knowing that
the resultant of the two forces applied at A is directed along the axis
of the automobile, determine by trigonometry (@) the tension in rope
AC, (b) the magnitude of the resultant of the two forces applied at A.

Two forces are applied as shown to a hook support. Knowing that
the magnitude of P is 35 N, determine by trigonometry (a) the
required angle « if the resultant R of the two forces applied to the
support is to be horizontal, (b) the corresponding magnitude of R.

50N

Fig. P2.9

A disabled automobile is pulled by means of two ropes as shown.
Knowing that the tension in rope AB is 3 kN, determine by trigo-
nometry the tension in rope AC and the value of « so that the resul-
tant force exerted at A is a 4.8-kN force directed along the axis of
the automobile.

A trolley that moves along a horizontal beam is acted upon by two
forces as shown. Determine by trigonometry the magnitude and
direction of the force P so that the resultant is a vertical force of
2500 N.



2.12 For the hook support shown, determine by trigonometry the magni-
tude and direction of the resultant of the two forces applied to the
hook.

300 1b

200 1b
Fig. P2.12

2.13 The cable stays AB and AD help support pole AC. Knowing that the
tension is 120 1b in AB and 40 1b in AD, determine by trigonometry
the magnitude and direction of the resultant of the forces exerted by
the stays at A.

10 ft

| 8 ft | 6 ft |
Fig. P2.13

2.14 Solve Prob. 2.4 by trigonometry.

2.15 For the hook support of Prob. 2.9, determine by trigonometry
(a) the magnitude and direction of the smallest force P for which the
resultant R of the two forces applied to the support is horizontal,
(b) the corresponding magnitude of R.
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Fig. 2.14 Rectangular components of a
force F.

2.2 ADDING FORCES BY
COMPONENTS

In Sec. 2.1E, we described how to resolve a force into components. Here we
discuss how to add forces by using their components, especially rectangular
components. This method is often the most convenient way to add forces
and, in practice, is the most common approach. (Note that we can readily
extend the properties of vectors established in this section to the rectangular
components of any vector quantity, such as velocity or momentum.)

2.2A Rectangular Components of a
Force: Unit Vectors

In many problems, it is useful to resolve a force into two components that
are perpendicular to each other. Figure 2.14 shows a force F resolved into
a component F, along the x axis and a component F, along the y axis.
The parallelogram drawn to obtain the two components is a rectangle, and
F, and F, are called rectangular components.

The x and y axes are usually chosen to be horizontal and vertical,
respectively, as in Fig. 2.14; they may, however, be chosen in any two
perpendicular directions, as shown in Fig. 2.15. In determining the

“\
Fig. 2.15 Rectangular components of a force F
for axes rotated away from horizontal and vertical.

rectangular components of a force, you should think of the construction
lines shown in Figs. 2.14 and 2.15 as being parallel to the x and y axes,
rather than perpendicular to these axes. This practice will help avoid mis-
takes in determining oblique components, as in Sec. 2.1E.

Force in Terms of Unit Vectors. To simplify working with rect-
angular components, we introduce two vectors of unit magnitude, directed
respectively along the positive x and y axes. These vectors are called unit
vectors and are denoted by i and j, respectively (Fig. 2.16). Recalling the

y

J i :Magnitude =1

i

Fig. 2.16 Unit vectors along the x and y axes.



definition of the product of a scalar and a vector given in Sec. 2.1C, note
that we can obtain the rectangular components F, and F, of a force F by
multiplying respectively the unit vectors i and j by appropriate scalars
(Fig. 2.17). We have

F, = F, F, = Fj 2.6)
and

F =F,i+Fj Q@.7)

The scalars F, and F, may be positive or negative, depending upon the
sense of F, and of F,, but their absolute values are equal to the magnitudes
of the component forces F, and F,, respectively. The scalars F, and F, are
called the scalar components of the force F, whereas the actual component
forces F, and F, should be referred to as the vector components of F.
However, when there exists no possibility of confusion, we may refer to
the vector as well as the scalar components of F as simply the components
of F. Note that the scalar component F, is positive when the vector com-
ponent F, has the same sense as the unit vector i (i.e., the same sense as
the positive x axis) and is negative when F, has the opposite sense. A
similar conclusion holds for the sign of the scalar component F.

Scalar Components. Denoting by F the magnitude of the force F
and by 6 the angle between F and the x axis, which is measured counter-
clockwise from the positive x axis (Fig. 2.17), we may express the scalar
components of F as

F. = Fcos 6 F, = F sin 0 2.8)
These relations hold for any value of the angle ¢ from 0° to 360°, and
they define the signs as well as the absolute values of the scalar compo-

nents F, and F),.
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F,=F,j= Fsin 0j

| i F,=Fi=Fcosfi *

Fig. 2.17 Expressing the components of F in
terms of unit vectors with scalar multipliers.

p
Concept Application 2.1

the horizontal and vertical components of the force.

Solution

A force of 800 N is exerted on a bolt A as shown in Fig. 2.18a. Determine

In order to obtain the correct sign for the scalar components F, and F,,
we could substitute the value 180° — 35° = 145° for 6 in Egs. (2.8).
However, it is often more practical to determine by inspection the signs
of F, and F, (Fig. 2.18b) and then use the trigonometric functions of the
angle o = 35°. Therefore,

F.,= —F cos @« = —(800 N) cos 35° = —655 N

F, = +F sin o = +(800 N) sin 35° = +459 N

The vector components of F are thus
F. = —(655 N)i

and we may write F in the form

F, = +(459 N)j

F = —(655 N)i + (459 N)j

F =3800N

F =800N F

a257
F, A *
(b)

Fig. 2.18 (a) Force F exerted on a bolt;
(b) rectangular components of F.

-

/
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4

Concept Application 2.2

A man pulls with a force of 300 N on a rope attached to the top of a
building, as shown in Fig. 2.19a. What are the horizontal and vertical
components of the force exerted by the rope at point A?

Solution

You can see from Fig. 2.19b that
F, = +(@300 N) cos « F, = —(300 N) sin «

| 8 m

(a) (b)
Fig. 2.19 (a) A man pulls on a rope attached to a building; (b) components
of the rope's force F.

Observing that AB = 10 m, we find from Fig. 2.19a

8m 8m 4 . 6m 6m 3
s =—=——=— sinog=—=——=—
AB 10m 5 AB 10m 5

We thus obtain

4 3
F. = +(3OON)§ = +240N 7y = —(300N)g = —180N

This gives us a total force of
F = (240 N)i — (180 N)j

/

Direction of a Force. When a force F is defined by its rectangular
components F, and F, (see Fig. 2.17), we can find the angle 6 defining

its direction from

tanf = —
F

X

2.9

We can obtain the magnitude F' of the force by applying the Pythagorean

theorem,
F=\F;+F;

or by solving for F' from one of the Egs. (2.8).

(2.10)



2.2 Adding Forces by Components

31

Concept Application 2.3

magnitude of the force and the angle 6 it forms with the horizontal.

Solution

A force F = (700 lb)i + (1500 1b)j is applied to a bolt A. Determine the

and the angle 6 (Fig. 2.20). From Eq. (2.9), you obtain

F, 15001b
tanf = — =
F, 700 1b

Egs. (2.8) for F to get

7 1500 1b
F = =——=16551b
sinf  sin 65.0°

entered; you may then recall it and divide it by sin 6.

N

First draw a diagram showing the two rectangular components of the force

Using a calculator, enter 1500 Ib and divide by 700 Ib; computing the
arc tangent of the quotient gives you 6 = 65.0°. Solve the second of

The last calculation is easier if you store the value of F, when originally

F, = (1500 1b)

-
'

F,=(7001b)i *

S

Fig. 2.20 Components of a force F
exerted on a bolt.

~

2.2B Addition of Forces by Summing
X and Y Components

We described in Sec. 2.1A how to add forces according to the parallelo-
gram law. From this law, we derived two other methods that are more
readily applicable to the graphical solution of problems: the triangle rule
for the addition of two forces and the polygon rule for the addition of
three or more forces. We also explained that the force triangle used to
define the resultant of two forces could be used to obtain a trigonometric
solution.

However, when we need to add three or more forces, we cannot
obtain any practical trigonometric solution from the force polygon that
defines the resultant of the forces. In this case, the best approach is to
obtain an analytic solution of the problem by resolving each force into
two rectangular components.

Consider, for instance, three forces P, Q, and S acting on a particle A
(Fig. 2.21a). Their resultant R is defined by the relation

R=P+Q+S 2.11)
Resolving each force into its rectangular components, we have

Ri+ Rj=Pi+ Pj+ Qi+ Q,j+Si+Sj
=P+ 0, +S )i+ (P, + 0, + 8)j

(@)

Fig. 2.21 (a) Three forces
acting on a particle.
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(d)

Fig. 2.21 (d) Determining the
resultant from its components.

From this equation, we can see that
R, =P + 0, +5, R, =P, +0,+35, (2.12)
or for short,
R, = 3F, R, = 3F, (2.13)

We thus conclude that when several forces are acting on a particle, we
obtain the scalar components R, and R, of the resultant R by adding
algebraically the corresponding scalar components of the given forces.
(Clearly, this result also applies to the addition of other vector quantities,
such as velocities, accelerations, or momenta.)

In practice, determining the resultant R is carried out in three steps,
as illustrated in Fig. 2.21.

1. Resolve the given forces (Fig. 2.21a) into their x and y components
(Fig. 2.21b).

()
Fig. 2.21 (b) Rectangular
components of each force.

2. Add these components to obtain the x and y components of R
(Fig. 2.21¢).

R, i

(o)

Fig. 2.21 (c¢) Summation of
the components.

3. Apply the parallelogram law to determine the resultant R = R,i + R,j
(Fig. 2.21d).

The procedure just described is most efficiently carried out if you
arrange the computations in a table (see Sample Problem 2.3). Although
this is the only practical analytic method for adding three or more forces,
it is also often preferred to the trigonometric solution in the case of adding
two forces.
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Sample Problem 2.3

Four forces act on bolt A as shown. Determine the resultant of the forces
on the bolt.

STRATEGY: The simplest way to approach a problem of adding four
forces is to resolve the forces into components.

MODELING: As we mentioned, solving this kind of problem is usually
easier if you arrange the components of each force in a table. In the table
below, we entered the x and y components of each force as determined by
trigonometry (Fig. 1). According to the convention adopted in this section,
the scalar number representing a force component is positive if the force
component has the same sense as the corresponding coordinate axis. Thus,
x components acting to the right and y components acting upward are
represented by positive numbers.

ANALYSIS:

Force Magnitude, N x Component, N y Component, N

F, 150 +129.9 +75.0

F, 80 —27.4 +75.2

F; 110 0 —110.0

F, 100 +96.6 —259
R, = +199.1 R, = +143

Thus, the resultant R of the four forces is
R =Ri + R,j R = (199.1 N)i + (14.3 N)j

You can now determine the magnitude and direction of the resultant.
From the triangle shown in Fig. 2, you have

R, 143 N
== =41°
e = e = 1991 N
R = 14.'3 N_ 199.6 N R = 199.6 N £4.1°
S1in &

3=

R, = (143 N)j /RX:(199.1 N)i

Fig. 2 Resultant of the given force
system.

REFLECT and THINK: Arranging data in a table not only helps you
keep track of the calculations, but also makes things simpler for using a
calculator on similar computations.

N

~

F, =8N F, = 150N

(F, cos 20°)j

—(F, sin 15°)j

—F3j
Fig. 1 Rectangular components of
each force.




Problems

2.16 and 2.17 Determine the x and y components of each of the forces

shown.
y y
28 in.
800 i 84 in.
Dimensions —_— \ _
. ' \
n mm 800N _ -~ //
600 6in.
%61\ 501 80.in.
0
T x 291b
' 424N 408 N
ON\sip *
900
J \ 90 in.
/ \
\
| 560—~|~—a80— \
Fig. P2.16 | 48 in~]
Fig. P2.17

2.18 and 2.19 Determine the x and y components of each of the forces
shown.

120N

60 1b

Cc @ e) D
35°
Y, 50 1b
Fig. P2.18 .
2 ig. P2.
A
Q 2.20 Member BD exerts on member ABC a force P directed along line

BD. Knowing that P must have a 300-1b horizontal component, deter-
Fig. P2.20 mine (a) the magnitude of the force P, (b) its vertical component.



2.21 Member BC exerts on member AC a force P directed along line BC.
Knowing that P must have a 325-N horizontal component, determine
(a) the magnitude of the force P, () its vertical component.

720 mm

© B
|F650 mm

Fig. P2.21

2.22 Cable AC exerts on beam AB a force P directed along line AC.
Knowing that P must have a 350-Ib vertical component, determine
(a) the magnitude of the force P, () its horizontal component.

C
A
& ) | oF]
B
Fig. P2.22

2.23 The hydraulic cylinder BD exerts on member ABC a force P directed
along line BD. Knowing that P must have a 750-N component per-
pendicular to member ABC, determine (a) the magnitude of the force
P, (b) its component parallel to ABC.

Fig. P2.23



400 1b 200 1b
Fig. P2.29 and P2.30

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

Determine the resultant of the three forces of Prob. 2.16.
Determine the resultant of the three forces of Prob. 2.17.
Determine the resultant of the three forces of Prob. 2.18.
Determine the resultant of the three forces of Prob. 2.19.
For the collar loaded as shown, determine (a) the required value of

« if the resultant of the three forces shown is to be vertical, (b) the
corresponding magnitude of the resultant.

Fig. P2.28

A hoist trolley is subjected to the three forces shown. Knowing that
a = 40°, determine (a) the required magnitude of the force P if the
resultant of the three forces is to be vertical, (b) the corresponding
magnitude of the resultant.

A hoist trolley is subjected to the three forces shown. Knowing that
P = 250 Ib, determine (@) the required value of « if the resultant of
the three forces is to be vertical, (b) the corresponding magnitude of
the resultant.

For the post loaded as shown, determine (a) the required tension in

rope AC if the resultant of the three forces exerted at point C is to
be horizontal, (b) the corresponding magnitude of the resultant.

500 N

Fig. P2.31



2.3 FORCES AND EQUILIBRIUM
IN A PLANE

Now that we have seen how to add forces, we can proceed to one of the
key concepts in this course: the equilibrium of a particle. The connection
between equilibrium and the sum of forces is very direct: a particle can
be in equilibrium only when the sum of the forces acting on it is zero.

2.3A Equilibrium of a Particle

In the preceding sections, we discussed methods for determining the resul-
tant of several forces acting on a particle. Although it has not occurred in
any of the problems considered so far, it is quite possible for the resultant
to be zero. In such a case, the net effect of the given forces is zero, and
the particle is said to be in equilibrium. We thus have the definition:

When the resultant of all the forces acting on a particle is zero, the
particle is in equilibrium.

A particle acted upon by two forces is in equilibrium if the two
forces have the same magnitude and the same line of action but opposite
sense. The resultant of the two forces is then zero, as shown in Fig. 2.22.

Another case of equilibrium of a particle is represented in Fig. 2.23a,
where four forces are shown acting on particle A. In Fig. 2.23b, we use
the polygon rule to determine the resultant of the given forces. Starting
from point O with F; and arranging the forces in tip-to-tail fashion, we
find that the tip of F, coincides with the starting point O. Thus, the
resultant R of the given system of forces is zero, and the particle is in
equilibrium.

F, = 400 Ib

F, =3001b
0
F,=17321b
F, = 300 Ib
A . F, =4001b
F;= Fy =200 1b
F,=17321b
(@) (b)
Fig. 2.23 (a) Four forces acting on particle A; (b) using the polygon law to

find the resultant of the forces in (a), which is zero because the particle is
in equilibrium.

The closed polygon drawn in Fig. 2.23b provides a graphical expres-
sion of the equilibrium of A. To express algebraically the conditions for
the equilibrium of a particle, we write

Equilibrium of a particle R=2F =0 2.19)

2.3 Forces and Equilibrium in a Plane
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Photo 2.2 Forces acting on the carabiner
include the weight of the girl and her
harness, and the force exerted by the pulley
attachment. Treating the carabiner as a
particle, it is in equilibrium because the
resultant of all forces acting on it is zero.

© Michael Doolittle/Alamy

100 Ib

A

100 Ib

Fig. 2.22 When a
particle is in equilibrium,
the resultant of all forces
acting on the particle

is zero.



38 Statics of Particles

F,=4001b

o

30
/‘ F, =300 Ib

S

F; =200 1b

F,=17321b
(@)

Fig. 2.23(a) (repeated)

=
'

Resolving each force F into rectangular components, we have
Z(Fi+ Fj)=0 or EF)i+ CF)j=0

We conclude that the necessary and sufficient conditions for the equilib-
rium of a particle are

Equilibrium of a particle
(scalar equations)

2F, =0 2F, =0 (2.15)

Returning to the particle shown in Fig. 2.23, we can check that the equi-
librium conditions are satisfied. We have

2F, =300 1b — (200 Ib) sin 30° — (400 1b) sin 30°
=3001b — 100 1b — 200 1b = 0

ZF, = —173.21b — (200 Ib) cos 30° + (400 Ib) cos 30°

—17321b — 1732 1b + 3464 1b = 0

2.3B Newton’s First Law of Motion

As we discussed in Section 1.2, Sir Isaac Newton formulated three fun-
damental laws upon which the science of mechanics is based. The first of
these laws can be stated as:

If the resultant force acting on a particle is zero, the particle will
remain at rest (if originally at rest) or will move with constant speed
in a straight line (if originally in motion).

From this law and from the definition of equilibrium just presented,
we can see that a particle in equilibrium is either at rest or moving in a
straight line with constant speed. If a particle does not behave in either
of these ways, it is not in equilibrium, and the resultant force on it is not
zero. In the following section, we consider various problems concerning
the equilibrium of a particle.

Note that most of statics involves using Newton’s first law to analyze
an equilibrium situation. In practice, this means designing a bridge or a
building that remains stable and does not fall over. It also means under-
standing the forces that might act to disturb equilibrium, such as a strong
wind or a flood of water. The basic idea is pretty simple, but the applica-
tions can be quite complicated.

2.3C Free-Body Diagrams and Problem
Solving

In practice, a problem in engineering mechanics is derived from an actual
physical situation. A sketch showing the physical conditions of the problem
is known as a space diagram.

The methods of analysis discussed in the preceding sections apply
to a system of forces acting on a particle. A large number of problems
involving actual structures, however, can be reduced to problems concern-
ing the equilibrium of a particle. The method is to choose a significant
particle and draw a separate diagram showing this particle and all the



forces acting on it. Such a diagram is called a free-body diagram. (The
name derives from the fact that when drawing the chosen body, or particle,
it is “free” from all other bodies in the actual situation.)

As an example, consider the 75-kg crate shown in the space diagram
of Fig. 2.24a. This crate was lying between two buildings, and is now
being lifted onto a truck, which will remove it. The crate is supported by
a vertical cable that is joined at A to two ropes, which pass over pulleys
attached to the buildings at B and C. We want to determine the tension
in each of the ropes AB and AC.

In order to solve this problem, we first draw a free-body diagram
showing a particle in equilibrium. Since we are interested in the rope ten-
sions, the free-body diagram should include at least one of these tensions or,
if possible, both tensions. You can see that point A is a good free body for
this problem. The free-body diagram of point A is shown in Fig. 2.24b. It
shows point A and the forces exerted on A by the vertical cable and the two
ropes. The force exerted by the cable is directed downward, and its magni-
tude is equal to the weight W of the crate. Recalling Eq. (1.4), we write

W = mg = (75 kg)(9.81 m/s*) = 736 N

and indicate this value in the free-body diagram. The forces exerted by
the two ropes are not known. Since they are respectively equal in magni-
tude to the tensions in rope AB and rope AC, we denote them by T,z and
Tyc and draw them away from A in the directions shown in the space
diagram. No other detail is included in the free-body diagram.

Since point A is in equilibrium, the three forces acting on it must
form a closed triangle when drawn in tip-to-tail fashion. We have drawn
this force triangle in Fig. 2.24¢. The values T, and T,¢ of the tensions
in the ropes may be found graphically if the triangle is drawn to scale, or
they may be found by trigonometry. If we choose trigonometry, we use
the law of sines:

Thp - Tsc . 736 N
sin60°  sin40°  sin80°
T, = 647 N Tyc = 480 N

When a particle is in equilibrium under three forces, you can solve
the problem by drawing a force triangle. When a particle is in equilibrium
under more than three forces, you can solve the problem graphically by
drawing a force polygon. If you need an analytic solution, you should
solve the equations of equilibrium given in Sec. 2.3A:

3SF, =0 (2.15)
These equations can be solved for no more than two unknowns. Similarly,
the force triangle used in the case of equilibrium under three forces can
be solved for only two unknowns.

The most common types of problems are those in which the two
unknowns represent (1) the two components (or the magnitude and direc-
tion) of a single force or (2) the magnitudes of two forces, each of known
direction. Problems involving the determination of the maximum or mini-
mum value of the magnitude of a force are also encountered (see Probs. 2.43
through 2.47).

2.3 Forces and Equilibrium in a Plane
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736 N

(b) Free-body diagram (c¢) Force triangle

Fig. 2.24 (a) The space diagram shows the
physical situation of the problem; (b) the
free-body diagram shows one central particle
and the forces acting on it; (c) the force
triangle can be solved with the law of sines.
Note that the forces form a closed triangle
because the particle is in equilibrium and the
resultant force is zero.

Photo 2.3 As illustrated in Fig. 2.24, it is
possible to determine the tensions in the cables
supporting the shaft shown by treating the hook
as a particle and then applying the equations of
equilibrium to the forces acting on the hook.

© Flirt/SuperStock
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3500 Ib

Fig. 1 Free-body
diagram of particle A.

Sample Problem 2.4

In a ship-unloading operation, a 3500-1b automobile is supported by a
cable. A worker ties a rope to the cable at A and pulls on it in order to
center the automobile over its intended position on the dock. At the
moment illustrated, the automobile is stationary, the angle between the
cable and the vertical is 2°, and the angle between the rope and the hori-
zontal is 30°. What are the tensions in the rope and cable?

STRATEGY: This is a problem of equilibrium under three coplanar
forces. You can treat point A as a particle and solve the problem using a
force triangle.

MODELING and ANALYSIS:

Free-Body Diagram. Choose point A as the particle and draw the
complete free-body diagram (Fig. 1). 7,5 is the tension in the cable AB,
and T is the tension in the rope.

Equilibrium Condition. Since only three forces act on point A, draw
a force triangle to express that it is in equilibrium (Fig. 2). Using the law
of sines,

Typg Tac  35001b
sin120°  sin2° sin58°

With a calculator, compute and store the value of the last quotient.
Multiplying this value successively by sin 120° and sin 2°, you obtain

Ty = 3570 Ib Ty = 144 1b

REFLECT and THINK: This is a common problem of knowing one
force in a three-force equilibrium problem and calculating the other forces
from the given geometry. This basic type of problem will occur often as
part of more complicated situations in this text.

Fig. 2 Force triangle of the
forces acting on particle A.
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Fig. 1 Free-body diagram

W = (30 kg)(9.81 m/s2)
=294 N

of package, treated as a
particle.

Fig. 2 Force triangle of the
forces acting on package.

N

204N | [p

/]/

Sample Problem 2.5

Determine the magnitude and direction of the smallest force F that main-
tains the 30-kg package shown in equilibrium. Note that the force exerted
by the rollers on the package is perpendicular to the incline.

STRATEGY: This is an equilibrium problem with three coplanar forces
that you can solve with a force triangle. The new wrinkle is to determine
a minimum force. You can approach this part of the solution in a way
similar to Sample Problem 2.2.

MODELING and ANALYSIS:

Free-Body Diagram. Choose the package as a free body, assuming
that it can be treated as a particle. Then draw the corresponding free-body
diagram (Fig. 1).

Equilibrium Condition. Since only three forces act on the free body,
draw a force triangle to express that it is in equilibrium (Fig. 2). Line /-1’
represents the known direction of P. In order to obtain the minimum value
of the force F, choose the direction of F to be perpendicular to that of P.
From the geometry of this triangle,

F = (294 N) sin 15° = 76.1 N o = 15°
F =76.1 N 15°

REFLECT and THINK: Determining maximum and minimum forces
to maintain equilibrium is a common practical problem. Here the force
needed is about 25% of the weight of the package, which seems reasonable
for an incline of 15°.

|—7ft—>| |
B

G

~—1.5ft

Sample Problem 2.6

|
a

o

Flow I

A

f
4t
|
fi

4ft

1
!

For a new sailboat, a designer wants to determine the drag force that may
be expected at a given speed. To do so, she places a model of the proposed
hull in a test channel and uses three cables to keep its bow on the center-
line of the channel. Dynamometer readings indicate that for a given speed,
the tension is 40 Ib in cable AB and 60 1b in cable AE. Determine the
drag force exerted on the hull and the tension in cable AC.

STRATEGY: The cables all connect at point A, so you can treat that as
a particle in equilibrium. Because four forces act at A (tensions in three
cables and the drag force), you should use the equilibrium conditions and
sum forces by components to solve for the unknown forces.

(continued)

/
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-

N

T, =40 1b

Fig. 1
particle A.

a= 60.26°

Y

T,z =60 1b

Ty =4291b

B =20.56 /1

T,z =401b

Free-body diagram of

Fig. 2 Rectangular components of
forces acting on particle A.

F, = 19.66 b
T,z =60 Ib
o =60.26

Fig. 3 Force polygon of forces
acting on particle A.

MODELING and ANALYSIS:

Determining the Angles. First, determine the angles o and 3 defin-
ing the direction of cables AB and AC:

t 475 tang=2 0375
n = — = ll, n = —= U,
M= a 41t

a = 60.26° B = 20.56°

Free-Body Diagram. Choosing point A as a free body, draw the free-
body diagram (Fig. 1). It includes the forces exerted by the three cables
on the hull, as well as the drag force F;, exerted by the flow.

Equilibrium Condition. Because point A is in equilibrium, the resul-
tant of all forces is zero:

R=Tp + Tyc + Tpr + Fp =0 @

Because more than three forces are involved, resolve the forces into x and
y components (Fig. 2):
T,z = —(40 Ib) sin 60.26°1 + (40 Ib) cos 60.26°]
= —(34.73 Ib)i + (19.84 1b)j
Tyc = Tyesin 20.56°1 + Tye cos 20.56°)
= 0.3512T,ci + 0.9363T¢j
T,z = —(60 1b)j
F, = Fji

Substituting these expressions into Eq. (1) and factoring the unit vectors i
and j, you have

(=34.73 b + 0.3512T4¢ + Fp)i + (19.84 b + 0.9363T, — 60 1b)j = 0

This equation is satisfied if, and only if, the coefficients of i and j are
each equal to zero. You obtain the following two equilibrium equations,
which express, respectively, that the sum of the x components and the sum
of the y components of the given forces must be zero.

(SF, =0)  —34731b + 03512Tyc + Fp = 0 @
CF, = 0:) 19.84 1b + 0.9363T,c — 60 1b = 0 3)
From Eq. (3), you find
Tyc = +429 1b
Substituting this value into Eq. (2) yields
Fp = +19.66 1b

REFLECT and THINK: In drawing the free-body diagram, you assumed
a sense for each unknown force. A positive sign in the answer indicates
that the assumed sense is correct. You can draw the complete force poly-
gon (Fig. 3) to check the results.







Fig. P2.37 and P2.38

2.36

2.37

2.38

2.39

2.40

Two cables are tied together at C and are loaded as shown. Knowing
that P = 500 N and o = 60°, determine the tension in (a) in cable
AC, (b) in cable BC.

Fig. P2.36

Two forces of magnitude 7, = 8 kips and 7T = 15 Kkips are applied
as shown to a welded connection. Knowing that the connection is in
equilibrium, determine the magnitudes of the forces T and Tp.

Two forces of magnitude 7, = 6 kips and T = 9 kips are applied
as shown to a welded connection. Knowing that the connection is in
equilibrium, determine the magnitudes of the forces Ty and 7).

Two cables are tied together at C and are loaded as shown. Knowing
that P = 300 N, determine the tension in cables AC and BC.

A B
300 30°
200N
c 45°
P
Fig. P2.39

Two forces P and Q are applied as shown to an aircraft connection.
Knowing that the connection is in equilibrium and that P = 500 Ib
and Q = 650 Ib, determine the magnitudes of the forces exerted on
the rods A and B.

Fig. P2.40



2.41

2.42

2.43

2.44

2.45

2.46

2.47

A sailor is being rescued using a boatswain’s chair that is suspended
from a pulley that can roll freely on the support cable ACB and is
pulled at a constant speed by cable CD. Knowing that a = 30° and
[ = 10° and that the combined weight of the boatswain’s chair and
the sailor is 200 lb, determine the tension (a) in the support cable
ACB, (b) in the traction cable CD.

A sailor is being rescued using a boatswain’s chair that is suspended
from a pulley that can roll freely on the support cable ACB and is
pulled at a constant speed by cable CD. Knowing that o = 25° and
(8 = 15° and that the tension in cable CD is 20 Ib, determine (a) the
combined weight of the boatswain’s chair and the sailor, (b) the ten-
sion in the support cable ACB.

For the cables of Prob. 2.32, find the value of « for which the ten-
sion is as small as possible (@) in cable BC, (b) in both cables simul-
taneously. In each case determine the tension in each cable.

For the cables of Prob. 2.36, it is known that the maximum allowable
tension is 600 N in cable AC and 750 N in cable BC. Determine
(a) the maximum force P that can be applied at C, (b) the corre-
sponding value of «.

Two cables tied together at C are loaded as shown. Knowing that
the maximum allowable tension in each cable is 800 N, determine
(a) the magnitude of the largest force P that can be applied at C,
(b) the corresponding value of a.

Two cables tied together at C are loaded as shown. Knowing that
the maximum allowable tension is 1200 N in cable AC and 600 N
in cable BC, determine (a) the magnitude of the largest force P that
can be applied at C, (b) the corresponding value of a.

Two cables tied together at C are loaded as shown. Determine the
range of values of Q for which the tension will not exceed 60 1b in
either cable.

Fig. P2.47

Fig. P2.41 and P2.42

Fig. P2.45 and P2.46



2.48 Collar A is connected as shown to a 50-1b load and can slide on a
frictionless horizontal rod. Determine the magnitude of the force P
required to maintain the equilibrium of the collar when (a) x = 4.5 in.,
(b) x = 15 in.

Fig. P2.48 and P2.49

Collar A is connected as shown to a 50-1b load and can slide on a
frictionless horizontal rod. Determine the distance x for which the
collar is in equilibrium when P = 48 lb.

A movable bin and its contents have a combined weight of 2.8 kN.
! : Determine the shortest chain sling ACB that can be used to lift the
Fig. P2.50 loaded bin if the tension in the chain is not to exceed 5 kN.

A 600-1b crate is supported by several rope-and-pulley arrangements
as shown. Determine for each arrangement the tension in the rope.
(Hint: The tension in the rope is the same on each side of a simple
pulley. This can be proved by the methods of Chap. 4.)

Fig. P2.51

2.52 Solve parts b and d of Prob. 2.51, assuming that the free end of the
rope is attached to the crate.




2.53 A 200-kg crate is to be supported by the rope-and-pulley arrangement
shown. Determine the magnitude and direction of the force P that
must be exerted on the free end of the rope to maintain equilibrium.
(See the hint for Prob. 2.51.)

0.75 m

200 kg
Fig. P2.53

2.54 A load Q is applied to pulley C, which can roll on cable ACB. The
pulley is held in the position shown by a second cable CAD, which
passes over pulley A and supports a load P. Knowing that P = 750 N,
determine (a) the tension in cable ACB, (b) the magnitude of
load Q.

Fig. P2.54 and P2.55

2.55 An 1800-N load Q is applied to pulley C, which can roll on cable
ACB. The pulley is held in the position shown by a second cable
CAD, which passes over pulley A and supports a load P. Determine
(a) the tension in cable ACB, (b) the magnitude of load P.
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(b)

Fig. 2.25 (a) A force F in an xyz coordinate
system; (b) components of F along the y axis
and in the xz plane; (c¢) components of F
along the three rectangular axes.

2.4 ADDING FORCES IN SPACE

The problems considered in the first part of this chapter involved only two
dimensions; they were formulated and solved in a single plane. In the last
part of this chapter, we discuss problems involving the three dimensions
of space.

2.4A Rectangular Components of a
Force in Space

Consider a force F acting at the origin O of the system of rectangular
coordinates x, y, and z. To define the direction of F, we draw the vertical
plane OBAC containing F (Fig. 2.25a). This plane passes through the
vertical y axis; its orientation is defined by the angle ¢ it forms with the
xy plane. The direction of F within the plane is defined by the angle 0,
that F forms with the y axis. We can resolve the force F into a vertical
component F, and a horizontal component F,; this operation, shown in
Fig. 2.25b, is carried out in plane OBAC according to the rules developed
earlier. The corresponding scalar components are

F, = F cos 0, Fy, = Fsin 0, (2.16)

However, we can also resolve F, into two rectangular components F, and
F. along the x and z axes, respectively. This operation, shown in Fig. 2.25¢,
is carried out in the xz plane. We obtain the following expressions for the
corresponding scalar components:

F, = F,cos ¢ = F sin 0, cos ¢
F. = Fj,sin ¢ = F sin 0, sin ¢ 2.17)

The given force F thus has been resolved into three rectangular vector
components F,, F, F_, which are directed along the three coordinate axes.

We can now apply the Pythagorean theorem to the triangles OAB
and OCD of Fig. 2.25:

F?> = (0A)’ = (OB)* + (BA)’ = F; + F;,
Fi = (0C)* = (OD)* + (DC)* = F* + F?

Eliminating F; from these two equations and solving for F, we obtain the
following relation between the magnitude of F and its rectangular scalar
components:

Magnitude of a
force in space F = 3\F>+ F§ IF Ff (2.18)

The relationship between the force F and its three components F,,
F,, and F, is more easily visualized if we draw a “box” having F,, F,,
and F, for edges, as shown in Fig. 2.26. The force F is then represented
by the main diagonal OA of this box. Figure 2.26b shows the right triangle



% c /F c

: @ (b)

Fig. 2.26 (a) Force F in a three-dimensional box, showing its angle with the x axis; (b) force F and its angle with

the y axis; (c) force F and its angle with the z axis.

OAB used to derive the first of the formulas (2.16): F, = F cos 0,. In
Fig. 2.26a and c, two other right triangles have also been drawn: OAD
and OAE. These triangles occupy positions in the box comparable with
that of triangle OAB. Denoting by 6, and 6., respectively, the angles that
F forms with the x and z axes, we can derive two formulas similar to
F, = F cos 0,. We thus write

Scalar components
of a force F

F, = F cos 0, F, = F cos 0, F, = F cos 6, 2.19)

The three angles 6., ¢, and 0, define the direction of the force F; they
are more commonly used for this purpose than the angles 6, and ¢ intro-
duced at the beginning of this section. The cosines of 6., 0, and 0, are
known as the direction cosines of the force F.

Introducing the unit vectors i, j, and k, which are directed respec-
tively along the x, y, and z axes (Fig. 2.27), we can express F in the form

Vector expression
of a force F F=F,+F,j+FKk 2.20)

where the scalar components F,, F,, and F, are defined by the relations
in Eq. (2.19).

Fig. 2.27 The three unit vectors i, j, k lie
along the three coordinate axes x, y, z,
respectively.

2.4 Adding Forces in Space
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Concept Application 2.4

A force of 500 N forms angles of 60°, 45°, and 120°, respectively, with
the x, y, and z axes. Find the components F,, F, and F of the force and
express the force in terms of unit vectors.

Solution

Substitute F = 500 N, 6, = 60°, 6, = 45°, and 0, = 120° into formulas
(2.19). The scalar components of F are then

F,. = (500 N) cos 60° +250 N

F, = (500 N) cos 45° +354 N

F, = (500 N) cos 120° = =250 N

Carrying these values into Eq. (2.20), you have
F = (250 N)i + (354 N)j — (250 N)k

As in the case of two-dimensional problems, a plus sign indicates that the
component has the same sense as the corresponding axis, and a minus
sign indicates that it has the opposite sense.

Fj

y

A(Magnitude = 1)

cos 6,
s Ways
M
cos ('-):k//
cos 6,i
F.k

/

Z

Fig. 2.28 Force F can be expressed as the
product of its magnitude F and a unit vector
A in the direction of F. Also shown are the

components of F and its unit vector.

The angle a force F forms with an axis should be measured from
the positive side of the axis and is always between 0 and 180°. An angle 6,
smaller than 90° (acute) indicates that F (assumed attached to O) is on
the same side of the yz plane as the positive x axis; cos 6, and F, are then
positive. An angle 6, larger than 90° (obtuse) indicates that F is on the
other side of the yz plane; cos 6, and F, are then negative. In Concept
Application 2.4, the angles ¢, and 6, are acute and 6, is obtuse; conse-
quently, F, and F, are positive and F; is negative.

Substituting into Eq. (2.20) the expressions obtained for F,, F, and
F, in Eq. (2.19), we have

F = F(cos 0,i + cos 6,j + cos 0.k) 2.21)

This equation shows that the force F can be expressed as the product of
the scalar F and the vector

A = cos 0,i + cos 0,j + cos 0.k 2.22)

Clearly, the vector A is a vector whose magnitude is equal to 1 and whose
direction is the same as that of F (Fig. 2.28). The vector A is referred to
as the unit vector along the line of action of F. It follows from Eq. (2.22)
that the components of the unit vector A are respectively equal to the
direction cosines of the line of action of F:

A, = cos 0, Ay, = cos 0, A, = cos 0, 2.23)



Note that the values of the three angles 0,, 6,, and ¢, are not inde-
pendent. Recalling that the sum of the squares of the components of a
vector is equal to the square of its magnitude, we can write

N+ +r=1

Substituting for A, 4,, and A, from Eq. (2.23), we obtain

Relationship among
direction cosines cos’f, + cos’, + cos’0, = 1 (2.24)

In Concept Application 2.4, for instance, once the values 6, = 60° and
6, = 45° have been selected, the value of 6, must be equal to 60° or 120°
in order to satisfy the identity in Eq. (2.24).

When the components F,, F,, and F_ of a force F are given, we can
obtain the magnitude F of the force from Eq. (2.18). We can then solve
relations in Eq. (2.19) for the direction cosines as

Fx FV FZ
cosf, = T cosf, = F cosf, = F 2.25)

From the direction cosines, we can find the angles 0,, 6,, and ¢, character-
izing the direction of F.

2.4

Adding Forces in Space
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p
Concept Application 2.5

coordinate axes.

Solution

A force F has the components F, = 20 Ib, F, = =30 Ib, and F, = 60 Ib.
Determine its magnitude F and the angles 0,, 6, and 0, it forms with the

You can obtain the magnitude of F from formula (2.18):

F=\Fi+F,+F:

= 1/(201b)* + (—301b)*> + (60 Ib)*

= 4/49001b = 70 1b

Egs. (2.25), the direction cosines are

Calculating each quotient and its arc cosine gives you
0, = 73.4° 0, = 115.4° 0, = 31.0°

These computations can be carried out easily with a calculator.

Substituting the values of the components and magnitude of F into

. F, 201b 0 F,  —=301b 9 F. 601b
cost, = — = —— cost, = — = cost, = — = ———
*F 701b > F 70 1b *F 701
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2.4B Force Defined by Its Magnitude
and Two Points on Its Line
of Action

In many applications, the direction of a force F is defined by the coordi-
nates of two points, M(x,, y;, z;) and ﬂ)(xz, Y2, Z2), located on its line of
action (Fig. 2.29). Consider the vector MN joining M and N and of the same

N(xy, ¥25 22)

dy=y,-y

M(xy, ¥y, 21) de=x,- X,

Z

Fig. 2.29 A case where the line of action of force F is
determined by the two points M and N. We can
calculate the components of F and its direction cosines
from the vector M.

sense as a force F. Denoting its scalar components by d,, d,, and d.,
respectively, we write

MN = dji + d,j + dk (2.26)

We can obtain a unit vector A along the line of action of F (i.e., along the
line MN) by dividing the vector MN by its magnitude MN. Substituting
for MN from Eq. (2.26) and observing that MN is equal to the distance d
from M to N, we have

MN 1 . .
=y - g T it dk) @2.27)

Recalling that F is equal to the product of F and A, we have
F_ . .
F=F\= E(dxl +d,j + d.k) (2.28)

It follows that the scalar components of F are, respectively,

Scalar components
of force F

d
F, = =—r = 2.29)

The relations in Eq. (2.29) considerably simplify the determination
of the components of a force F of given magnitude F when the line of
action of F is defined by two points M and N. The calculation consists of



first subtracting the coordinateic))f M from those of N, then determining
the components of the vector MN and the distance d from M to N. Thus,

d, = x; — X dy:y2_)’| d, =172, -1z

d=\di+d;+d:
Substituting for F and for d,, d,, d., and d into the relations in Eq. (2.29),
we obtain the components F,, F,, and F_ of the force.
We can then obtain the angles 0,, 0,, and 0, that F forms with the
coordinate axes from Egs. (2.25). Comparing Egs. (2.22) and (2.27), we
can write

Direction cosines
of force F

dx dy dz
cosf, = ] cosf, = ] cost, = 7 2.30)

In other words, we can determine the angles ., 6, and ¢, directly from the
components and the magnitude of the vector MN.

2.4C Addition of Concurrent Forces

in Space
We can determine the resultant R of two or more forces in space by sum-
ming their rectangular components. Graphical or trigonometric methods
are generally not practical in the case of forces in space.

The method followed here is similar to that used in Sec. 2.2B with
coplanar forces. Setting

R = 2F
we resolve each force into its rectangular components:
Ri+ Rj+ Rk =Z(Fi+ Fj+ Fk)
= CF)i + CF)j + CF)k
From this equation, it follows that

Rectangular components
of the resultant

R, = SF, R, = 3F, R, = SF, 2.31)
The magnitude of the resultant and the angles 0,, 0,, and 0, that the resul-
tant forms with the coordinate axes are obtained using the method dis-

cussed earlier in this section. We end up with

Resultant of concurrent
forces in space

R= \R; +R; + R (2.32)
Rx Ry Rz

cosf, = — cosf, = — cosf, = — 2.33)
R R R

2.4 Adding Forces in Space
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/
__ & Sample Problem 2.7
{iil, A tower guy wire is anchored by means of a bolt at A. The tension in the
f'l, wire is 2500 N. Determine (@) the components F,, F,, and F_ of the force
80 m E? acting on the bolt and () the angles 0,, 6, and 0, defining the direction
(2

=

40
< m// of the force.
STRATEGY: From the given distances, we can determine the length of

2/ 30m the wire and the direction of a unit vector along it. From that, we can find
the components of the tension and the angles defining its direction.

MODELING and ANALYSIS:

a. Components of the Force. The line of action of the force
acting on the bolt passes through points A and B, and the force is directed
from A to B. The components of the vector AB, which has the same
direction as the force, are

d, = —40 m d, = +80 m d,= +30m

===

=

The total distance from A to B is

F
/4—407 AB=d = y/d; +d, +d=943m

AT

b
o<

80 m

SN

o

A Denoting the unit vectors along the coordinate axes by i, j, and K,

%, 30 m you have
A i = x

A

AB = —(40 m)i + (80 m)j + (30 m)k

k

/ Introducing the unit vector A = AB/AB (Fig. 1), you can express F in

7 terms of AB as

Fig. 1 Cable force acting on bolt at A, AB  2500N —

and its unit vector. F=F\.=F AB 943 m

y Substituting the expression for AB gives you
2500 N
B F = [— (40 m)i + (80 m)j + (30 m)k|

94.3 m

= —(1060 N)i + (2120N)j + (795 N)k

N

The components of F, therefore, are

VU NUNNV

F, = —1060 N Fy, = +2120 N F,= +795 N

=]

b. Direction of the Force. Using Egs. (2.25), you can write the
- direction cosines directly (Fig. 2):

0 F, —1060 N 0 Fy  +2120N
cost, = —=——— cost, = —=———
Y F 2500 N Y F 2500 N
z F, +795N

i A cosf, = — =
Fig. 2 Direction angles for cable AB. F 2500 N

-
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Calculating each quotient and its arc cosine, you obtain
0, = 115.1° 0, = 32.0° 0. = 71.5°

(Note. You could have obtained this same result by using the components
and magnitude of the vector AB rather than those of the force F.)

REFLECT and THINK: It makes sense that, for a given geometry, only
a certain set of components and angles characterize a given resultant force.
The methods in this section allow you to translate back and forth between
forces and geometry.

27 ft

Sample Problem 2.8

A wall section of precast concrete is temporarily held in place by the
cables shown. If the tension is 840 Ib in cable AB and 1200 Ib in cable
AC, determine the magnitude and direction of the resultant of the forces
exerted by cables AB and AC on stake A.

STRATEGY: This is a problem in adding concurrent forces in space.
The simplest approach is to first resolve the forces into components and
to then sum the components and find the resultant.

MODELING and ANALYSIS:

Components of the Forces. First resolve the force exerted by each
cable on stake A into x, y, and z components. To do_t)his, determine the
components and magnitude of the vectors AB and AC, measuring them
from A toward the wall section (Fig. 1). Denoting the unit vectors along
the coordinate axes by 1, j, k, these vectors are

AB = —(16f0)i + (8f0)j + (11 f)k  AB = 21 ft
AC = —(16f0)i + (8f1)j — (16f)k  AC = 24 ft
€

Y l T, = (1200 1b) Ay

T\B

Fig. 1 Cable forces acting on stake at A, and
their unit vectors.
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Denoting by A,z the unit vector along AB, the tension in AB is

AB  8401b _,
Ty =T = Ty— = AB
AB AB;"AB ABAB 21 ft

Substituting the expression found for AB, the tension becomes

_ 8401b

= [—(16 ft)i + (8 ft)j + (11 f)k|

T,z = —(640 1b)i + (320 Ib)j + (440 Ib)k
Similarly, denoting by A, the unit vector along AC, the tension in AC is

T T 1 @_1200113/‘—»
AC ACMMAC ACAC 24 ft

Tyc = —(800 Ib)i + (400 1b)j — (800 Ib)k

Resultant of the Forces. The resultant R of the forces exerted by
the two cables is

R = Ty + Tye = —(1440 Ib)i + (720 Ib)j — (360 Ib)k

You can now determine the magnitude and direction of the resultant as

R = R+ R: + R: = \/(—1440)* + (720)* + (—300)*

R = 1650 1b
The direction cosines come from Egs. (2.33):
g _ R —14401b B _ 47201
TR T 1650 b TR T 165016
R, —3601b
cosf, = — =
R 1650 1b

Calculating each quotient and its arc cosine, the angles are
0, = 150.8° 0, = 64.1° 0. = 102.6°
REFLECT and THINK: Based on visual examination of the cable

forces, you might have anticipated that 6, for the resultant should be
obtuse and 6, should be acute. The outcome of 6, was not as apparent.
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Dimensions in mm

Fig. P2.68 and P2.69

Fig. P2.70 and P2.71

2.63

2.64

2.65

2.66

2.67

2.68

2.69

2.70

2.71

2.72

2.73

Determine the magnitude and direction of the force F = (650 N)i
- (320 N)j + (760 N)k.

A force acts at the origin of a coordinate system in a direction
defined by the angles 6, = 69.3° and 0, = 57.9°. Knowing that the
y component of the force is —174.0 1b, determine (a) the angle 6,,
(b) the other components and the magnitude of the force.

A force acts at the origin of a coordinate system in a direction
defined by the angles 0, = 70.9° and 6, = 144.9°. Knowing that the
z component of the force is —52.0 lb, determine (a) the angle 6,
(b) the other components and the magnitude of the force.

A force acts at the origin of a coordinate system in a direction
defined by the angles ¢, = 55° and 6, = 45°. Knowing that the x
component of the force is —500 Ib, determine (a) the angle 0.,
(b) the other components and the magnitude of the force.

A force F of magnitude 1200 N acts at the origin of a coordinate
system. Knowing that 6, = 65°, 6, = 40°, and F, > 0, determine
(a) the components of the force, (b) the angle 6..

A rectangular plate is supported by three cables as shown. Knowing
that the tension in cable AB is 408 N, determine the components of
the force exerted on the plate at B.

A rectangular plate is supported by three cables as shown. Knowing
that the tension in cable AD is 429 N, determine the components of
the force exerted on the plate at D.

In order to move a wrecked truck, two cables are attached at A and
pulled by winches B and C as shown. Knowing that the tension in
cable AB is 2 kips, determine the components of the force exerted
at A by the cable.

In order to move a wrecked truck, two cables are attached at A and
pulled by winches B and C as shown. Knowing that the tension in
cable AC is 1.5 kips, determine the components of the force exerted
at A by the cable.

Find the magnitude and direction of the resultant of the two forces
shown knowing that P = 300 N and Q = 400 N.

Y

P 50°
20°

30° X

15¢,

z
Fig. P2.72 and P2.73

Find the magnitude and direction of the resultant of the two forces
shown knowing that P = 400 N and Q = 300 N.



2.74

2.75

2.76

2.77

2.78

2.79

Knowing that the tension is 425 1b in cable AB and 510 Ib in cable
AC, determine the magnitude and direction of the resultant of the
forces exerted at A by the two cables.

Knowing that the tension is 510 Ib in cable AB and 425 1b in cable
AC, determine the magnitude and direction of the resultant of the
forces exerted at A by the two cables.

60 in.

A frame ABC is supported in part by cable DBE that passes through a
frictionless ring at B. Knowing that the tension in the cable is 385 N,
determine the magnitude and direction of the resultant of the forces
exerted by the cable at B.

60 in.

Fig. P2.74 and P2.75

Fig. P2.76

For the plate of Prob. 2.68, determine the tensions in cables AB and
AD knowing that the tension in cable AC is 54 N and that the resul-
tant of the forces exerted by the three cables at A must be vertical.

The boom OA carries a load P and is supported by two cables as
shown. Knowing that the tension in cable AB is 183 Ib and that the
resultant of the load P and of the forces exerted at A by the
two cables must be directed along OA, determine the tension in
cable AC.

For the boom and loading of Prob. 2.78, determine the magnitude
of the load P.

Fig. P2.78
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2.5 FORCES AND EQUILIBRIUM
IN SPACE

According to the definition given in Sec. 2.3, a particle A is in equilibrium
if the resultant of all the forces acting on A is zero. The components R,,
R,, and R, of the resultant of forces in space are given by equations (2.31);
when the components of the resultant are zero, we have

SF, =0 SF, =0 SF. =0 2.39)

Equations (2.34) represent the necessary and sufficient conditions for the
equilibrium of a particle in space. We can use them to solve problems
dealing with the equilibrium of a particle involving no more than three
unknowns.

The first step in solving three-dimensional equilibrium problems is
to draw a free-body diagram showing the particle in equilibrium and all
of the forces acting on it. You can then write the equations of equilibrium
(2.34) and solve them for three unknowns. In the more common types of
problems, these unknowns will represent (1) the three components of
a single force or (2) the magnitude of three forces, each of known
direction.

Photo 2.4 Although we cannot determine
the tension in the four cables supporting the
car by using the three equations (2.34), we
can obtain a relation among the tensions by
analyzing the equilibrium of the hook.

© WIN-Initiative/Neleman/Getty Images
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Sample Problem 2.9

A 200-kg cylinder is hung by means of two cables AB and AC that are
attached to the top of a vertical wall. A horizontal force P perpendicular
to the wall holds the cylinder in the position shown. Determine the mag-
nitude of P and the tension in each cable.

STRATEGY: Connection point A is acted upon by four forces, including
the weight of the cylinder. You can use the given geometry to express the
force components of the cables and then apply equilibrium conditions to
calculate the tensions.

MODELING and ANALYSIS:

Free-Body Diagram. Choose point A as a free body; this point is
subjected to four forces, three of which are of unknown magnitude.
Introducing the unit vectors i, j, and K, resolve each force into rectangular
components (Fig. 1):

P = Pi

W = —mgj = —(200 kg)(9.81 m/s?)j = —(1962 N)j @

Fig. 1 Free-body diagram of particle A.
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For T,z and Ty, it is first St necessary to determine the components and
magnitudes of the vectors AB and AC. Denoting the unit vector along AB
by A4p, you can write T,z as

AB=—(12m)i + (10m)j + (8mk  AB = 12.862m
AB
12.862 m
Ty = Tughap = —0.09330T 51 + 0.7775T5j + 0.62207 @)

Ap = = —0.09330i + 0.7775j + 0.6220k

Similarly, denoting the unit vector along AC by A,¢, you have for Ty

AC = —(12m)i+ (10m)j — (10mk  AC = 14.193 m
AC
14.193 m
Ty = Tachac = —0.08455T,d + 0.7046T,cj — 0.7046T,k A3)

Aac = = —0.08455i + 0.7046j — 0.7046k

Equilibrium Condition. Since A is in equilibrium, you must have
ZFZOZ TAB+TAC+P+W:0

or substituting from Egs. (1), (2), and (3) for the forces and factoring i, j,
and k, you have

(—0.09330T,; — 0.08455T, + P)i
+ (0.7775T,5 + 0.7046T,c — 1962 N)j
+ (0.6220T,; — 0.7046T, )k = 0

Setting the coefficients of i, j, and k equal to zero, you can write three
scalar equations, which express that the sums of the x, y, and z components
of the forces are respectively equal to zero.

(SF, = 0) —0.09330T,; — 0.08455T,c + P = 0
CF, = 0) +0.7775T,5 + 0.7046T,c — 1962 N = 0
(SF, = 0) +0.6220T,5 — 0.7046T,c = 0

Solving these equations, you obtain

P =235N Ty = 1402 N Tyc = 1238 N

REFLECT and THINK: The solution of the three unknown forces
yielded positive results, which is completely consistent with the physical
situation of this problem. Conversely, if one of the cable force results had
been negative, thereby reflecting compression instead of tension, you
should recognize that the solution is in error.
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2.86 Three wires are connected at point D, which is located 18 in. below
the T-shaped pipe support ABC. Determine the tension in each wire
when a 180-1b cylinder is suspended from point D as shown.

B/<\24 in.
167,

22 in.

Fig. P2.86

2.87 A 36-1b triangular plate is supported by three wires as shown. Deter-
mine the tension in each wire, knowing that ¢ = 6 in.

Fig. P2.87

2.88 A rectangular plate is supported by three cables as shown. Knowing
that the tension in cable AC is 60 N, determine the weight of the
plate.

Dimensions in mm

Fig. P2.88 and P2.89

2.89 A rectangular plate is supported by three cables as shown. Knowing
that the tension in cable AD is 520 N, determine the weight of the
plate.



2.90 In trying to move across a slippery icy surface, a 175-1b man uses
two ropes AB and AC. Knowing that the force exerted on the man
by the icy surface is perpendicular to that surface, determine the
tension in each rope.

Fig. P2.90

2.91 Solve Prob. 2.90, assuming that a friend is helping the man at A by
pulling on him with a force P = —(45 1b)k.

2.92 Three cables are connected at A, where the forces P and Q are

applied as shown. Knowing that Q = 0, find the value of P for which
the tension in cable AD is 305 N.

220 mm

Fig. P2.92 and P2.93

2.93 Three cables are connected at A, where the forces P and Q are
applied as shown. Knowing that P = 1200 N, determine the values
of Q for which cable AD is taut.



2.94 A container of weight W is suspended from ring A. Cable BAC passes
through the ring and is attached to fixed supports at B and C. Two
forces P = Pi and Q = Qk are applied to the ring to maintain the
container in the position shown. Knowing that W = 376 N, determine
P and Q. (Hint: The tension is the same in both portions of cable BAC.)

Fig. P2.94

2.95 For the system of Prob. 2.94, determine W and Q knowing that
P = 164 N.

2.96 Cable BAC passes through a frictionless ring A and is attached to fixed
supports at B and C, while cables AD and AE are both tied to the
ring and are attached, respectively, to supports at D and E. Knowing
that a 200-1b vertical load P is applied to ring A, determine the ten-
sion in each of the three cables.

Fig. P2.96

2.97 Knowing that the tension in cable AE of Prob. 2.96 is 75 1b, deter-
mine (a) the magnitude of the load P, (b) the tension in cables BAC
and AD.



2.98 A container of weight W is suspended from ring A, to which cables
AC and AE are attached. A force P is applied to the end F of a third
cable that passes over a pulley at B and through ring A and that is
attached to a support at D. Knowing that W = 1000 N, determine
the magnitude of P. (Hint: The tension is the same in all portions
of cable FBAD.)

0.86 m/>\ 0.40 m
1.20m>&

Fig. P2.98

2.99 Using two ropes and a roller chute, two workers are unloading a
200-1b cast-iron counterweight from a truck. Knowing that at the
instant shown the counterweight is kept from moving and that the
positions of points A, B, and C are, respectively, A(0, =20 in., 40 in.),
B(-40 in., 50 in., 0), and C(45 in., 40 in., 0), and assuming that no
friction exists between the counterweight and the chute, determine
the tension in each rope. (Hint: Because there is no friction, the force
exerted by the chute on the counterweight must be perpendicular to
the chute.)




2.100 Collars A and B are connected by a 25-in.-long wire and can slide

2.101

2.102

2.103

freely on frictionless rods. If a 60-1b force Q is applied to collar B
as shown, determine (a) the tension in the wire when x = 9 in.,
(b) the corresponding magnitude of the force P required to maintain
the equilibrium of the system.

Fig. P2.100 and P2.701

Collars A and B are connected by a 25-in.-long wire and can slide
freely on frictionless rods. Determine the distances x and z for which
the equilibrium of the system is maintained when P = 120 Ib and
Q0 =60 1b.

Collars A and B are connected by a 525-mm-long wire and can slide
freely on frictionless rods. If a force P = (341 N)j is applied to collar
A, determine (a) the tension in the wire when y = 155 mm, (b) the
magnitude of the force Q required to maintain the equilibrium of the
system.

Fig. P2.102

Solve Prob. 2.102 assuming that y = 275 mm.



In this chapter, we have studied the effect of forces on particles, i.e., on bodies ————

of such shape and size that we may assume all forces acting on them apply
at the same point.

Forces are vector quantities; they are characterized by a point of application,
a magnitude, and a direction, and they add according to the parallelogram law  Fig. 2.30
(Fig. 2.30). We can determine the magnitude and direction of the resultant R

of two forces P and Q either graphically or by trigonometry using the law of

cosines and the law of sines [Sample Prob. 2.1].

Any given force acting on a particle can be resolved into two or more com-
ponents, i.e., it can be replaced by two or more forces that have the same
effect on the particle. A force F can be resolved into two components P and Q
by drawing a parallelogram with F for its diagonal; the components P and Q
are then represented by the two adjacent sides of the parallelogram (Fig. 2.31).
Again, we can determine the components either graphically or by trigonom-
etry [Sec. 2.1E].

Fig. 2.31

A force F is resolved into two rectangular components if its components F,
and F, are perpendicular to each other and are directed along the coordinate
axes (Fig. 2.32). Introducing the unit vectors i and j along the x and y axes,
respectively, we can write the components and the vector as [Sec. 2.2A] ¥y

F, = Fii F, = F,j 2.6)

and
F=Fi+Fj 2.7)

. 6
where F, and F), are the scalar components of F. These components, which \
can be positive or negative, are defined by the relations |

F, = F cos 0 F, = F sin 0 (2.8) Fig. 2.32




Fig. 2.33

(@)

When the rectangular components F, and F), of a force F are given, we
can obtain the angle 6 defining the direction of the force from

Fy
tan 0 = F 2.9

We can obtain the magnitude F of the force by solving one of the equations
(2.8) for F or by applying the Pythagorean theorem:

F=\F.+F, (2.10)

When three or more coplanar forces act on a particle, we can obtain the rect-
angular components of their resultant R by adding the corresponding compo-
nents of the given forces algebraically [Sec. 2.2B]:

R, = SF, R, = 3F, 2.13)

The magnitude and direction of R then can be determined from relations
similar to Egs. (2.9) and (2.10) [Sample Prob. 2.3].

A force F in three-dimensional space can be resolved into rectangular com-
ponents F,, F,, and F, [Sec. 2.4A]. Denoting by 6., 0, and 0., respectively,
the angles that F forms with the x, y, and z axes (Fig. 2.33), we have

F, = F cos 60, F, = F cos 0, F. = F cos 0, (2.19)

y y

B B

5 A A
"\
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D % 4/\49 D X
/ E c / E c
% %
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The cosines of 0,, 0, and 6, are known as the direction cosines of the force F.
Introducing the unit vectors i, j, and k along the coordinate axes, we can write
F as

F=Fi+Fj+Fk (2.20)
or

F = F(cos 0,i + cos 0,j + cos 0.k) 2.21)



This last equation shows (Fig. 2.34) that F is the product of its magnitude F
and the unit vector expressed by

A = cos 0,i + cos 6,j + cos 0k

Y

// *
/

Z
Fig. 2.34

Since the magnitude of A is equal to unity, we must have
cos® 0, + cos’ 0, + cos? 0. =1 2.24)

When we are given the rectangular components F,, F,, and F_ of a force
F, we can find the magnitude F of the force by

F=\F:+F,+F. (2.18)

and the direction cosines of F are obtained from Egs. (2.19). We have

&

Fx F\" Z
cost, = — cosfy = — cost, = — 2.25)
F F

e

When a force F is defined in three-dimensional space by its magnitude F
and two points M and N on its line of action [Sec. 2.4B], we can obtain its
rectangular components by first expressing the vector MN joining points M
and N in terms of its components d,, d,, and d, (Fig. 2.35):

MN = dj + d,j + dk (2.26)

We next determine the unit vector A along the line of action of F by dividing
MN by its magnitude MN = d:

MN 1 . .
A== it d+ dk) 2.27)

Recalling that F is equal to the product of F and A, we have

Fo .
F=F\= ’ (di + dyj + dk) (2.28)

/ 1 N(xy, y2, 25)
|
I
: | dy, =y~
|
s —
// !
s : d,=2-7<0
M(xy, y1, 21) ‘ \d)(_x2 x|
0}
b4
Fig. 2.35



From this equation it follows [Sample Probs. 2.7 and 2.8] that the scalar
components of F are, respectively,

p=t% 55 p I .29
x d y d z d o )

When two or more forces act on a particle in three-dimensional space, we can
obtain the rectangular components of their resultant R by adding the corre-
sponding components of the given forces algebraically [Sec. 2.4C]. We have

R, = 3F, R, = SF, R, = 3F, 2.31)

We can then determine the magnitude and direction of R from relations simi-
lar to Egs. (2.18) and (2.25) [Sample Prob. 2.8].

A particle is said to be in equilibrium when the resultant of all the forces
acting on it is zero [Sec. 2.3A]. The particle remains at rest (if originally at
rest) or moves with constant speed in a straight line (if originally in motion)
[Sec. 2.3B].

To solve a problem involving a particle in equilibrium, first draw a free-body
diagram of the particle showing all of the forces acting on it [Sec. 2.3C]. If
only three coplanar forces act on the particle, you can draw a force triangle
to express that the particle is in equilibrium. Using graphical methods of
trigonometry, you can solve this triangle for no more than two unknowns
[Sample Prob. 2.4]. If more than three coplanar forces are involved, you
should use the equations of equilibrium:

SF, =0 SF, =0 2.15)

y

These equations can be solved for no more than two unknowns [Sample
Prob. 2.6].

When a particle is in equilibrium in three-dimensional space [Sec. 2.5], use
the three equations of equilibrium:

SF, =0 SF, =0 SF, =0 2.39)

5
These equations can be solved for no more than three unknowns [Sample
Prob. 2.9].
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Rigid Bodies: Equivalent
Systems of Forces

Four tugboats work together to free the oil tanker Coastal Eagle
Point that ran aground while attempting to navigate a channel
in Tampa Bay. It will be shown in this chapter that the forces
exerted on the ship by the tugboats could be replaced by an
equivalent force exerted by a single, more powerful, tugboat.
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~ Objectives R

® Discuss the principle of transmissibility that enables a
force to be treated as a sliding vector.

* Define the moment of a force about a point.

* Examine vector and scalar products, useful in analysis
involving moments.

* Apply Varignon’s Theorem to simplify certain moment
analyses.

* Define the mixed triple product and use it to
determine the moment of a force about an axis.

* Define the moment of a couple, and consider the
particular properties of couples.

* Resolve a given force into an equivalent force-couple
system at another point.

* Reduce a system of forces into an equivalent force-
couple system.

° Examine circumstances where a system of forces can

\_ be reduced to a single force. _

Introduction

In Chapter 2, we assumed that each of the bodies considered could be
treated as a single particle. Such a view, however, is not always possible.
In general, a body should be treated as a combination of a large number
of particles. In this case, we need to consider the size of the body as well
as the fact that forces act on different parts of the body and thus have
different points of application.

Most of the bodies considered in elementary mechanics are assumed
to be rigid. We define a rigid body as one that does not deform. Actual
structures and machines are never absolutely rigid and deform under the
loads to which they are subjected. However, these deformations are usually
small and do not appreciably affect the conditions of equilibrium or the
motion of the structure under consideration. They are important, though,
as far as the resistance of the structure to failure is concerned and are
considered in the study of mechanics of materials.

In this chapter, you will study the effect of forces exerted on a rigid
body, and you will learn how to replace a given system of forces by a
simpler equivalent system. This analysis rests on the fundamental assump-
tion that the effect of a given force on a rigid body remains unchanged if
that force is moved along its line of action (principle of transmissibility).
It follows that forces acting on a rigid body can be represented by sliding
vectors, as indicated earlier in Sec. 2.1B.



78 Rigid Bodies: Equivalent Systems of Forces

(b)

Fig. 3.1 (a) Three people pulling on a truck
with a rope; (b) free-body diagram of the
truck, shown as a rigid body instead of a
particle.

Two important concepts associated with the effect of a force on a
rigid body are the moment of a force about a point (Sec. 3.1E) and the
moment of a force about an axis (Sec. 3.2C). The determination of these
quantities involves computing vector products and scalar products of two
vectors, so in this chapter, we introduce the fundamentals of vector algebra
and apply them to the solution of problems involving forces acting on
rigid bodies.

Another concept introduced in this chapter is that of a couple, i.e.,
the combination of two forces that have the same magnitude, parallel lines
of action, and opposite sense (Sec. 3.3A). As you will see, we can replace
any system of forces acting on a rigid body by an equivalent system con-
sisting of one force acting at a given point and one couple. This basic
combination is called a force-couple system. In the case of concurrent,
coplanar, or parallel forces, we can further reduce the equivalent force-
couple system to a single force, called the resultant of the system, or to
a single couple, called the resultant couple of the system.

3.1 FORCES AND MOMENTS

The basic definition of a force does not change if the force acts on a point
or on a rigid body. However, the effects of the force can be very different,
depending on factors such as the point of application or line of action of
that force. As a result, calculations involving forces acting on a rigid body
are generally more complicated than situations involving forces acting on
a point. We begin by examining some general classifications of forces
acting on rigid bodies.

3.1A External and Internal Forces

Forces acting on rigid bodies can be separated into two groups:
(1) external forces and (2) internal forces.

1. External forces are exerted by other bodies on the rigid body under
consideration. They are entirely responsible for the external behavior of
the rigid body, either causing it to move or ensuring that it remains at
rest. We shall be concerned only with external forces in this chapter and
in Chaps. 4 and 5.

2. Internal forces hold together the particles forming the rigid body. If
the rigid body is structurally composed of several parts, the forces hold-
ing the component parts together are also defined as internal forces. We
will consider internal forces in Chaps. 6 and 7.

As an example of external forces, consider the forces acting on a
disabled truck that three people are pulling forward by means of a rope
attached to the front bumper (Fig. 3.1a). The external forces acting on the
truck are shown in a free-body diagram (Fig. 3.10). Note that this free-
body diagram shows the entire object, not just a particle representing the
object. Let us first consider the weight of the truck. Although it embodies
the effect of the earth’s pull on each of the particles forming the truck, the
weight can be represented by the single force W. The point of application
of this force—that is, the point at which the force acts—is defined as the



center of gravity of the truck. (In Chap. 5, we will show how to determine
the location of centers of gravity.) The weight W tends to make the truck
move vertically downward. In fact, it would actually cause the truck to
move downward, i.e., to fall, if it were not for the presence of the ground.
The ground opposes the downward motion of the truck by means of
the reactions R; and R,. These forces are exerted by the ground on the
truck and must therefore be included among the external forces acting
on the truck.

The people pulling on the rope exert the force F. The point of appli-
cation of F is on the front bumper. The force F tends to make the truck
move forward in a straight line and does actually make it move, since no
external force opposes this motion. (We are ignoring rolling resistance
here for simplicity.) This forward motion of the truck, during which each
straight line keeps its original orientation (the floor of the truck remains
horizontal, and the walls remain vertical), is known as a translation.
Other forces might cause the truck to move differently. For example, the
force exerted by a jack placed under the front axle would cause the truck
to pivot about its rear axle. Such a motion is a rotation. We conclude,
therefore, that each external force acting on a rigid body can, if unop-
posed, impart to the rigid body a motion of translation or rotation, or both.

3.1B Principle of Transmissibility:
Equivalent Forces

The principle of transmissibility states that the conditions of equilibrium
or motion of a rigid body remain unchanged if a force F acting at a given
point of the rigid body is replaced by a force F’ of the same magnitude
and same direction, but acting at a different point, provided that the two
forces have the same line of action (Fig. 3.2). The two forces F and F’
have the same effect on the rigid body and are said to be equivalent
forces. This principle, which states that the action of a force may be
transmitted along its line of action, is based on experimental evidence. It
cannot be derived from the properties established so far in this text and
therefore must be accepted as an experimental law. Therefore, our study
of the statics of rigid bodies is based on the three principles introduced
so far: the parallelogram law of vector addition, Newton’s first law, and
the principle of transmissibility.

We indicated in Chap. 2 that we could represent the forces acting on
a particle by vectors. These vectors had a well-defined point of application—
namely, the particle itself—and were therefore fixed, or bound, vectors. In
the case of forces acting on a rigid body, however, the point of application
of the force does not matter, as long as the line of action remains unchanged.
Thus, forces acting on a rigid body must be represented by a different kind
of vector, known as a sliding vector, since forces are allowed to slide along
their lines of action. Note that all of the properties we derive in the fol-
lowing sections for the forces acting on a rigid body are valid more gener-
ally for any system of sliding vectors. In order to keep our presentation
more intuitive, however, we will carry it out in terms of physical forces
rather than in terms of mathematical sliding vectors.

Returning to the example of the truck, we first observe that the line
of action of the force F is a horizontal line passing through both the front

3.1 Forces and Moments 79

Fig. 3.2 Two forces F and F’ are equivalent
if they have the same magnitude and
direction and the same line of action,

even if they act at different points.
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Equivalent
forces

Fig. 3.3 Force F' is equivalent to force F, so the motion of the truck is
the same whether you pull it or push it.

and rear bumpers of the truck (Fig. 3.3). Using the principle of transmis-
sibility, we can therefore replace F by an equivalent force F' acting on
the rear bumper. In other words, the conditions of motion are unaffected,
and all of the other external forces acting on the truck (W, R;, R,) remain
unchanged if the people push on the rear bumper instead of pulling on
the front bumper.

The principle of transmissibility and the concept of equivalent forces
have limitations. Consider, for example, a short bar AB acted upon by
equal and opposite axial forces P; and P,, as shown in Fig. 3.4a. According

!

A B A B A B
; =~ = =
(a) ) ()
A B A B A B
P, -
(e)

P, P
f

Fig. 3.4 (a-c) A set of equivalent forces acting on bar AB; (d-f) another
set of equivalent forces acting on bar AB. Both sets produce the same
external effect (equilibrium in this case) but different internal forces and
deformations.

to the principle of transmissibility, we can replace force P, by a force P,
having the same magnitude, the same direction, and the same line of
action but acting at A instead of B (Fig. 3.4b). The forces P, and P; acting
on the same particle can be added according to the rules of Chap. 2, and
since these forces are equal and opposite, their sum is equal to zero. Thus,
in terms of the external behavior of the bar, the original system of forces
shown in Fig. 3.4a is equivalent to no force at all (Fig. 3.4c¢).

Consider now the two equal and opposite forces P, and P, acting on
the bar AB as shown in Fig. 3.4d. We can replace the force P, by a force
P; having the same magnitude, the same direction, and the same line of
action but acting at B instead of at A (Fig. 3.4¢). We can add forces P, and
P}, and their sum is again zero (Fig. 3.4f ). From the point of view of the
mechanics of rigid bodies, the systems shown in Fig. 3.4a and d are thus
equivalent. However, the internal forces and deformations produced by the
two systems are clearly different. The bar of Fig. 3.4a is in tension and, if
not absolutely rigid, increases in length slightly; the bar of Fig. 3.4d is in
compression and, if not absolutely rigid, decreases in length slightly. Thus,
although we can use the principle of transmissibility to determine the



conditions of motion or equilibrium of rigid bodies and to compute the
external forces acting on these bodies, it should be avoided, or at least used
with care, in determining internal forces and deformations.

3.1C Vector Products

In order to gain a better understanding of the effect of a force on a rigid
body, we need to introduce a new concept, the moment of a force about
a point. However, this concept is more clearly understood and is applied
more effectively if we first add to the mathematical tools at our disposal
the vector product of two vectors.

The vector product of two vectors P and Q is defined as the vector V
that satisfies the following conditions.

1. The line of action of V is perpendicular to the plane containing P and
Q (Fig. 3.5a).

2. The magnitude of V is the product of the magnitudes of P and Q and
of the sine of the angle 6 formed by P and Q (the measure of which is
always 180° or less). We thus have

Magnitude of a
vector product
V = PQ sin 0 3.1
3. The direction of V is obtained from the right-hand rule. Close your
right hand and hold it so that your fingers are curled in the same sense
as the rotation through @ that brings the vector P in line with the
vector Q. Your thumb then indicates the direction of the vector V
(Fig. 3.5b). Note that if P and Q do not have a common point of appli-
cation, you should first redraw them from the same point. The three

vectors P, Q, and V—taken in that order—are said to form a right-
handed triad.’

As stated previously, the vector V satisfying these three conditions
(which define it uniquely) is referred to as the vector product of P and Q.
It is represented by the mathematical expression

Vector product

V=PXQ 3.2)

Because of this notation, the vector product of two vectors P and Q is
also referred to as the cross product of P and Q.

It follows from Eq. (3.1) that if the vectors P and Q have either the
same direction or opposite directions, their vector product is zero. In the
general case when the angle 6 formed by the two vectors is neither 0° nor
180°, Eq. (3.1) has a simple geometric interpretation: The magnitude V
of the vector product of P and Q is equal to the area of the parallelogram
that has P and Q for sides (Fig. 3.6). The vector product P X Q is

"Note that the x, y, and z axes used in Chap. 2 form a right-handed system of orthogonal axes
and that the unit vectors i, j, and k defined in Sec. 2.4A form a right-handed orthogonal triad.
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(a)

Fingers curl V points in the

direction of the

in the direction /.

g

from P to Q 4 g4 thumb
—1
(®)
Fig. 3.5 (a) The vector product V has the

magnitude PQ sin 6 and is perpendicular
to the plane of P and Q; (b) you can
determine the direction of V by using the
right-hand rule.

‘7

Fig. 3.6 The magnitude of the vector
product V equals the area of the
parallelogram formed by P and Q. If you
change Q to Q' in such a way that the
parallelogram changes shape but P and the
area are still the same, then the magnitude
of V remains the same.



82 Rigid Bodies: Equivalent Systems of Forces

therefore unchanged if we replace Q by a vector Q' that is coplanar with
P and Q such that the line joining the tips of Q and Q' is parallel to P:

V=PXQ=PXQ 3.3)

From the third condition used to define the vector product V of P
and Q—namely, that P, Q, and V must form a right-handed triad—it fol-
lows that vector products are not commutative; i.e., Q X P is not equal
to P X Q. Indeed, we can easily check that Q X P is represented by the
vector —V, which is equal and opposite to V:

QXP=—-PXQ 3.4)

Q

/NA '
60°
P

%

Fig. 3.7 Two vectors P and Q with angle
between them.

~
Concept Application 3.1

Let us compute the vector product V.= P X Q, where the vector P
is of magnitude 6 and lies in the zx plane at an angle of 30° with the
x axis, and where the vector Q is of magnitude 4 and lies along the
x axis (Fig. 3.7).

Solution

It follows immediately from the definition of the vector product that
the vector V must lie along the y axis, directed upward, with the
magnitude

V = PQsin 6 = (6)4)sin 30° =12 W

/

(@)

(b

Fig. 3.8 (a) The vector product of the i and
j unit vectors is the k unit vector; (b) the
vector product of the j and i unit vectors is
the —k unit vector.

We saw that the commutative property does not apply to vector
products. However, it can be demonstrated that the distributive property

PXQ +Q)=PXQ +PXQ, 3.5)

does hold.
A third property, the associative property, does not apply to vector
products; we have in general

PXQXS#PX(QXS) (3.6)

3.1D Rectangular Components
of Vector Products

Before we turn back to forces acting on rigid bodes, let’s look at a more
convenient way to express vector products using rectangular components.
To do this, we use the unit vectors 1, j, and k that were defined in Chap. 2.

Consider first the vector product i X j (Fig. 3.8a). Since both vectors
have a magnitude equal to 1 and since they are at a right angle to each
other, their vector product is also a unit vector. This unit vector must be
k, since the vectors i, j, and k are mutually perpendicular and form a



right-handed triad. Similarly, it follows from the right-hand rule given in
Sec. 3.1C that the product j X i is equal to —k (Fig. 3.8b). Finally, note
that the vector product of a unit vector with itself, such as i X i, is equal
to zero, since both vectors have the same direction. Thus, we can list the
vector products of all the various possible pairs of unit vectors:

ixi=0 jxi=—k K Xi=]j
ixj=k ixj=0 kKxXj=—-i @7
ixXk=—j jX k=i kxk=0

We can determine the sign of the vector product of two unit vectors simply
by arranging them in a circle and reading them in the order of the multi-
plication (Fig. 3.9). The product is positive if they follow each other in
counterclockwise order and is negative if they follow each other in clock-
wise order.

Unit vector
products read
in this direction
are negative

Unit vector
products read
in this direction
are positive

Fig. 3.9 Arrange the three letters i, j, k in a
counterclockwise circle. You can use the order of
letters for the three unit vectors in a vector
product to determine its sign.

We can now easily express the vector product V of two given vectors P
and Q in terms of the rectangular components of these vectors. Resolving
P and Q into components, we first write

V=PXQ=(Pi+ Pj+ PKk) X (Qd+ 0+ 0Kk

Making use of the distributive property, we express V as the sum of vector
products, such as P,i X Q,j. We find that each of the expressions obtained
is equal to the vector product of two unit vectors, such as i X j, multiplied
by the product of two scalars, such as P,Q,. Recalling the identities of
Eq. (3.7) and factoring out i, j, and k, we obtain

V= (Psz - PzQ})i + (PzQx - PxQz)j + (Pny - P)Qv)k (3°8)
Thus, the rectangular components of the vector product V are

Rectangular components
of a vector product

Vx:Psz_PzQy
Vy = PzQx - PxQz (3'9)
V.= PO, — PO,

3.1
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(@)

M,
Fingers curl ™ Vector M,
in the direction L { ?\‘ points in the
fromr to F = )} direction of
J the thumb

()

Fig. 3.10 Moment of a force about a point.

(a) The moment My, is the vector product of
the position vector r and the force F; (b) a
right-hand rule indicates the sense of M.

Returning to Eq. (3.8), notice that the right-hand side represents the
expansion of a determinant. Thus, we can express the vector product V in
the following form, which is more easily memorized:’

Rectangular components
of a vector product (determinant form)

i j k
v=|P. P, P, (3.10)
0. 0, 0.

3.1E Moment of a Force about a Point

We are now ready to consider a force F acting on a rigid body (Fig. 3.10a).
As we know, the force F is represented by a vector that defines its mag-
nitude and direction. However, the effect of the force on the rigid body
depends also upon its point of application A. The position of A can be
conveniently defined by the vector r that joins the fixed reference point O
with A; this vector is known as the position vector of A. The position
vector r and the force F define the plane shown in Fig. 3.10a.

We define the moment of F about O as the vector product of r and F:

Moment of a force
about a point O

My=r XF 3.11)

According to the definition of the vector product given in Sec. 3.1C,
the moment M, must be perpendicular to the plane containing O and force F.
The sense of M, is defined by the sense of the rotation that will bring vector r
in line with vector F; this rotation is observed as counterclockwise by an
observer located at the tip of M,. Another way of defining the sense of M,
is furnished by a variation of the right-hand rule: Close your right hand and
hold it so that your fingers curl in the sense of the rotation that F would
impart to the rigid body about a fixed axis directed along the line of action
of My. Then your thumb indicates the sense of the moment M,, (Fig. 3.10b).

Finally, denoting by 6 the angle between the lines of action of the
position vector r and the force F, we find that the magnitude of the
moment of F about O is

Magnitude of the
moment of a force

M, = rF sin § = Fd 3.12)
"Any determinant consisting of three rows and three columns can be evaluated by repeating
the first and second columns and forming products along each diagonal line. The sum of

the products obtained along the red lines is then subtracted from the sum of the products
obtained along the black lines.
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where d represents the perpendicular distance from O to the line of action
of F (see Fig. 3.10). Experimentally, the tendency of a force F to make a
rigid body rotate about a fixed axis perpendicular to the force depends upon
the distance of F from that axis, as well as upon the magnitude of F. For
example, a child’s breath can exert enough force to make a toy propeller
spin (Fig. 3.11a), but a wind turbine requires the force of a substantial wind
to rotate the blades and generate electrical power (Fig. 3.11b). However,
the perpendicular distance between the rotation point and the line of action
of the force (often called the moment arm) is just as important. If you want
to apply a small moment to turn a nut on a pipe without breaking it, you
might use a small pipe wrench that gives you a small moment arm

(@) Small force (b) Large force
© Gavela Montes Productions/Getty Images RF © Image Source/Getty Images RF

(¢) Small moment arm (d) Large moment arm
© Valery Voennyy/Alamy RF © Monty Rakusen/Getty Images RF

Fig. 3.11 (a, b) The moment of a force depends on the magnitude of the force; (c, d) it
also depends on the length of the moment arm.
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M,
0

(@M, =+ Fd

7

()M, = — Fd

Fig. 3.12 (a) A moment that tends to
produce a counterclockwise rotation is
positive; (b) a moment that tends to produce
a clockwise rotation is negative.

(Fig. 3.11¢). But if you need a larger moment, you could use a large wrench
with a long moment arm (Fig. 3.11d). Therefore,

The magnitude of M, measures the tendency of the force F to make
the rigid body rotate about a fixed axis directed along M.

In the SI system of units, where a force is expressed in newtons (N)
and a distance in meters (m), the moment of a force is expressed in new-
ton-meters (N-m). In the U.S. customary system of units, where a force
is expressed in pounds and a distance in feet or inches, the moment of a
force is expressed in 1b-ft or Ib-in.

Note that although the moment M, of a force about a point depends
upon the magnitude, the line of action, and the sense of the force, it does
not depend upon the actual position of the point of application of the force
along its line of action. Conversely, the moment M, of a force F does not
characterize the position of the point of application of F.

However, as we will see shortly, the moment M,, of a force F of a
given magnitude and direction completely defines the line of action of F.
Indeed, the line of action of F must lie in a plane through O perpendicular
to the moment My; its distance d from O must be equal to the quotient
My/F of the magnitudes of M, and F; and the sense of M, determines
whether the line of action of F occurs on one side or the other of the point O.

Recall from Sec. 3.1B that the principle of transmissibility states
that two forces F and F' are equivalent (i.e., have the same effect on a
rigid body) if they have the same magnitude, same direction, and same
line of action. We can now restate this principle:

Two forces F and F' are equivalent if, and only if, they are equal (i.e.,
have the same magnitude and same direction) and have equal
moments about a given point O.

The necessary and sufficient conditions for two forces F and F’ to be
equivalent are thus

F=F and M, = M, (3.13)

We should observe that if the relations of Eqgs. (3.13) hold for a given
point O, they hold for any other point.

Two-Dimensional Problems. Many applications in statics deal
with two-dimensional structures. Such structures have length and breadth
but only negligible depth. Often, they are subjected to forces contained in
the plane of the structure. We can easily represent two-dimensional struc-
tures and the forces acting on them on a sheet of paper or on a blackboard.
Their analysis is therefore considerably simpler than that of three-dimensional
structures and forces.

Consider, for example, a rigid slab acted upon by a force F in the
plane of the slab (Fig. 3.12). The moment of F about a point O, which is
chosen in the plane of the figure, is represented by a vector My, perpen-
dicular to that plane and of magnitude Fd. In the case of Fig. 3.12qa, the
vector My, points out of the page, whereas in the case of Fig. 3.12b, it
points into the page. As we look at the figure, we observe in the first case



that F tends to rotate the slab counterclockwise and in the second case
that it tends to rotate the slab clockwise. Therefore, it is natural to refer
to the sense of the moment of F about O in Fig. 3.12a as counterclockwise ,
and in Fig. 3.12b as clockwise ).

Since the moment of a force F acting in the plane of the figure must
be perpendicular to that plane, we need only specify the magnitude and
the sense of the moment of F about O. We do this by assigning to the
magnitude M, of the moment a positive or negative sign according to
whether the vector My, points out of or into the page.

3.1F Rectangular Components of the
Moment of a Force

We can use the distributive property of vector products to determine the
moment of the resultant of several concurrent forces. If several forces F,
F,, . . . are applied at the same point A (Fig. 3.13) and if we denote by r
the position vector of A, it follows immediately from Eq. (3.5) that

rX (F,+F+ )=rXF +rxXF,+ (3.14)

In words,

The moment about a given point O of the resultant of several
concurrent forces is equal to the sum of the moments of the various
forces about the same point O.

This property, which was originally established by the French mathemati-
cian Pierre Varignon (1654—1722) long before the introduction of vector
algebra, is known as Varignon’s theorem.

The relation in Eq. (3.14) makes it possible to replace the direct
determination of the moment of a force F by determining the moments of
two or more component forces. As you will see shortly, F is generally
resolved into components parallel to the coordinate axes. However, it may
be more expeditious in some instances to resolve F into components that
are not parallel to the coordinate axes (see Sample Prob. 3.3).

In general, determining the moment of a force in space is consider-
ably simplified if the force and the position vector of its point of application
are resolved into rectangular x, y, and z components. Consider, for example,
the moment M,, about O of a force F whose components are F,, F,, and
F, and that is applied at a point A with coordinates x, y, and z (Fig. 3.14).
Since the components of the position vector r are respectively equal to the
coordinates x, y, and z of the point A, we can write r and F as

r=axi+yj+zk (3.15)
F=Fi+Fj+Fk (3.16)

Substituting for r and F from Egs. (3.15) and (3.16) into
My=rXF 3.11)

and recalling Egs. (3.8) and (3.9), we can write the moment M, of F
about O in the form

M, = M + M,j + Mk (3.17)

where the components M,, M,, and M, are defined by the relations
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Z

Fig. 3.13 Varignon’s theorem says that the
moment about point O of the resultant of
these four forces equals the sum of the
moments about point O of the individual
forces.

/

Z

Fig. 3.14 The moment M, about point O
of a force F applied at point A is the vector
product of the position vector r and the
force F, which can both be expressed in
rectangular components.



88 Rigid Bodies: Equivalent Systems of Forces

Oa — )i

Ta/B A '
B S (xy — xp)i

(z4 — zp)k

Zz

Fig. 3.15 The moment M; about the

point B of a force F applied at point A is
the vector product of the position vector ry;
and force F.

A(x,y,0)

Fig. 3.16 In a two-dimensional problem,
the moment M, of a force F applied at A
in the xy plane reduces to the z component
of the vector product of r with F.

Fig. 3.17 In a two-dimensional problem,
the moment M; about a point B of a force F
applied at A in the xy plane reduces to the
z component of the vector product of ru;s
with F.

Rectangular components
of a moment

M, = yF, — ZFy
M, = zF, — xF, (3.18)
M, = xF, — yF,

As you will see in Sec. 3.2C, the scalar components M,, M,, and M, of
the moment M, measure the tendency of the force F to impart to a rigid
body a rotation about the x, y, and z axes, respectively. Substituting from
Eq. (3.18) into Eq. (3.17), we can also write M, in the form of the deter-

minant, as
i j k
Myo=[x y z 3.19)

F, F, F.

To compute the moment My about an arbitrary point B of a force
F applied at A (Fig. 3.15), we must replace the position vector r in
Eq. (3.11) by a vector drawn from B to A. This vector is the position vec-
tor of A relative to B, denoted by r,,3. Observing that r,,; can be obtained

by subtracting rp from r,, we write
Mg=r43 XF=(ry, —13) XF 3.20)

or using the determinant form,

i j k
Mg = |Xu5 Yam  Zass 3.21
F, 175 F,

where x4/, Yap, and z,, denote the components of the vector r,:

XaiB = Xa — Xp YaiB = YA — VB ZAIB = 24 T B

In the case of two-dimensional problems, we can assume without
loss of generality that the force F lies in the xy plane (Fig. 3.16). Setting
z = 0and F, = 0 in Eq. (3.19), we obtain

M, = (-XFy — yFok

We can verify that the moment of F about O is perpendicular to the plane
of the figure and that it is completely defined by the scalar

My = M, = xF, — yF, 3.22)

As noted earlier, a positive value for M, indicates that the vector M, points
out of the paper (the force F tends to rotate the body counterclockwise
about 0), and a negative value indicates that the vector M, points into the
paper (the force F tends to rotate the body clockwise about O).

To compute the moment about B(xp, yp) of a force lying in the
xy plane and applied at A(xy, y,) (Fig. 3.17), we set z43 = 0 and F, = 0
in Eq. (3.21) and note that the vector M is perpendicular to the xy plane
and is defined in magnitude and sense by the scalar

MB = (-xA - xB)Fy - (yA - yB)Fx (3-23)
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100 1b
|

|
60° |
I
a—
Fig. 1 Determination of the

moment of the 100-Ib force about
O using perpendicular distance d.

Fig. 2 Determination of
horizontal force at A that creates
same moment about O.

Fig. 3 Determination of smallest
force at A that creates same
moment about O.

Sample Problem 3.1

A 100-1b vertical force is applied to the end of a lever, which is attached
to a shaft at O. Determine (a) the moment of the 100-1b force about O;
(b) the horizontal force applied at A that creates the same moment
about O; (c) the smallest force applied at A that creates the same moment
about O; (d) how far from the shaft a 240-Ib vertical force must act to
create the same moment about O; (e) whether any one of the forces
obtained in parts b, c, or d is equivalent to the original force.

STRATEGY: The calculations asked for all involve variations on the
basic defining equation of a moment, M, = Fd.

MODELING and ANALYSIS:

a. Moment about O. The perpendicular distance from O to the
line of action of the 100-Ib force (Fig. 1) is

d = (24 in.) cos 60° = 12 in.
The magnitude of the moment about O of the 100-1b force is
My = Fd = (100 1b)(12 in.) = 1200 Ib-in.

Since the force tends to rotate the lever clockwise about O, represent the
moment by a vector M, perpendicular to the plane of the figure and
pointing info the paper. You can express this fact with the notation

M, = 1200 Ib-in. )
b. Horizontal Force. In this case, you have (Fig. 2)
d = (24 in.) sin 60° = 20.8 in.

Since the moment about O must be 1200 1b-in., you obtain

MO = Fd
1200 1b-in. = F(20.8 in.)
F =15771b F=5771b—

c. Smallest Force. Since M, = Fd, the smallest value of F occurs
when d is maximum. Choose the force perpendicular to OA and note that
d = 24 in. (Fig. 3); thus

Mo = Fd
1200 1b-in. = F(24 in.)
F =501b F = 50 1b =% 30°

(continued)

J
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4 N
A d. 240-Ib Vertical Force. In this case (Fig. 4), M, = Fd yields
1200 1b-in. = (240 1b)d d =5 in.
but
201 OB cos 60° = d
M, | SO OB = 10 in.
o, ; —>|
. o . e. None of the forces considered in parts b, c, or d is equivalent to the
ek o [edilion @i eeriicn) 24000 original 100-1b force. Although they have the same moment about O, they
force that creates same moment .
about O. have different x and y components. In other words, although each force
tends to rotate the shaft in the same direction, each causes the lever to
pull on the shaft in a different way.
REFLECT and THINK: Various combinations of force and lever arm can
produce equivalent moments, but the system of force and moment pro-
duces a different overall effect in each case.
. /
4 N
300N Sample Problem 3.2
A 60° A force of 800 N acts on a bracket as shown. Determine the moment of
the force about B.
STRATEGY: You can resolve both the force and the position vector
160 mm from B to A into rectangular components and then use a vector approach
L 5 to complete the solution.
o] MODELING and ANALYSIS: Obtain the moment My of the force F
I«— 200 mm — about B by forming the vector product
MB = Tup X F
where r,3 is the vector drawn from B to A (Fig. 1). Resolving r,3 and F
F,=0BN)J o eion into rectangular components, you have
: 60° Tap = —(0.2 Ill)l + (0.16 m)J
I . F = (800 N) cos 60°1 + (800 N) sin 60°j
A F, = (400 N)i . .
= (400 N)i + (693 N)j
+ (0.16 m)j Ya/m Recalling the relations in Eq. (3.7) for the cross products of unit vectors
(Sec. 3.5), you obtain
\D M, My = 1y X F = [—(0.2 m)i + (0.16 m)j] X [(400 N)i + (693 N)j]
—(02m)i B = —(138.6 N'm)k — (64.0 N-m)k
Fig. 1 The moment M; is = —(202.6 N-m)k M; = 203 N'm )
determined from the vector product . . .
of position vector . and force The moment My is a vector perpendicular to the plane of the figure and
vector F. pointing info the page.
(continued)
. /
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REFLECT and THINK: We can also use a scalar approach to solve this
problem using the components for the force F and the position vector r,p.
Following the right-hand rule for assigning signs, we have

My = SMy = SFd = —(400 N)(0.16 m) — (693 N)(0.2 m) = —202.6 N-m
M, = 203 N'm )

Fig. 1 30-lb force at A resolved into
components P and Q to simplify the
determination of the moment M.

Sample Problem 3.3

A 30-1b force acts on the end of the 3-ft lever as shown. Determine the
moment of the force about O.

STRATEGY: Resolving the force into components that are perpendicu-
lar and parallel to the axis of the lever greatly simplifies the moment
calculation.

MODELING and ANALYSIS: Replace the force by two components:
one component P in the direction of OA and one component Q perpendicu-
lar to OA (Fig. 1). Since O is on the line of action of P, the moment of P
about O is zero. Thus, the moment of the 30-1b force reduces to the moment
of Q, which is clockwise and can be represented by a negative scalar.
0O = (30 1b) sin 20° = 10.26 Ib
My = —Q(@3 ft) = —(10.26 1b)(3 ft) = —30.8 1b-ft

Since the value obtained for the scalar M, is negative, the moment M,
points into the page. You can write it as

M, = 30.8 Ib-ft )

REFLECT and THINK: Always be alert for simplifications that can
reduce the amount of computation.

Sample Problem 3.4

A rectangular plate is supported by brackets at A and B and by a wire CD.
If the tension in the wire is 200 N, determine the moment about A of the
force exerted by the wire on point C.

STRATEGY: The solution requires resolving the tension in the wire and
the position vector from A to C into rectangular components. You will
need a unit vector approach to determine the force components.

MODELING and ANALYSIS: Obtain the moment M, about A of the
force F exerted by the wire on point C by forming the vector product

My =rey XF @

(continued)
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y
y where rc, is the vector from A to C
0.08 m 03m ron = AC = (0.3 m)i + (0.08 m)k Q)
/‘{ and F is the 200-N force directed along CD (Fig. 1). Introducing the unit
Uzt vector
A= CD /CD,
you can express F as
2 CD
F = FA = (200N) D A3

. o .
Resolving the vector CD into rectangular components, you have

CD = —(03m)i + (024 m)j — (032m)k  CD =0.50m

. ] ) Substituting into (3) gives you
Fig. 1 The moment M, is determined

from position vector r¢,, and force — M [—(0.3m)i + (0.24 m)j — (0.32 m)k]
vector F. 0.50m
= —(120N)i + (96 N)j — (128 N)k @)

Substituting for ry, and F from (2) and (4) into (1) and recalling the
relations in Eq. (3.7) of Sec. 3.1D, you obtain (Fig. 2)

M, = reu X F = (0.3i + 0.08k) X (—120i + 96j — 128Kk)
= (0.3)96)k + (0.3)(—128)(—j) + (0.08)(—120)j + (0.08)(96)(—i)

M, = —(7.68 N'-m)i + (28.8 N-m)j + (28.8 N-m)k

D

(28.8 N.m)j

— (7.68 Nem)i

F = (200 N) A
(28.8 N.m) k

€

Fig. 2 Components of moment M,
applied at A.

Alternative Solution. As indicated in Sec. 3.1F, you can also express
the moment My in the form of a determinant:

i j k i J k
My= |xc =X Yc—Ya 2c— 2| = | 03 0 0.08
F, 17, F. —120 96 —128

M, = —(7.68N-m)i + (28.8 N'm)j + (28.8 N-m)k

REFLECT and THINK: Two-dimensional problems often are solved eas-
ily using a scalar approach, but the versatility of a vector analysis is quite
apparent in a three-dimensional problem such as this.
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3.2 MOMENT OF A FORCE
ABOUT AN AXIS

We want to extend the idea of the moment about a point to the often use-
ful concept of the moment about an axis. However, first we need to intro-
duce another tool of vector mathematics. We have seen that the vector
product multiplies two vectors together and produces a new vector. Here
we examine the scalar product, which multiplies two vectors together and
produces a scalar quantity.

3.2A Scalar Products

The scalar product of two vectors P and Q is defined as the product of
the magnitudes of P and Q and of the cosine of the angle 6 formed between
them (Fig. 3.18). The scalar product of P and Q is denoted by P - Q.

Scalar product P-Q = PQcosf 3.24)

Note that this expression is not a vector but a scalar, which explains the
name scalar product. Because of the notation used, P - Q is also referred
to as the dot product of the vectors P and Q.

It follows from its very definition that the scalar product of two
vectors is commutative, i.e., that

P-Q=Q-P 3.25)
It can also be proven that the scalar product is distributive, as shown by

P-(Q +Q)=P-Q +P:Q, (3.26)

As far as the associative property is concerned, this property cannot apply
to scalar products. Indeed, (P - Q) -S has no meaning, because P - Q is
not a vector but a scalar.

We can also express the scalar product of two vectors P and Q in
terms of their rectangular components. Resolving P and Q into compo-
nents, we first write

P-Q=(Pi+ Pj+ PK)-(Qd + Q)+ OKk)

Making use of the distributive property, we express P+ Q as the sum of
scalar products, such as P,i + Qi and P,i - Q,j. However, from the defini-
tion of the scalar product, it follows that the scalar products of the unit
vectors are either zero or one.

ici=1 jj
irj=0 j-k

—_

1 k-k=
0 k-i

Il
=)

3.27)

Thus, the expression for P - Q reduces to

Scalar product

P-Q=PQ + PO, + PO, 3.28)

3.2 Moment of a Force about an Axis 97

P

Fig. 3.18 Two vectors P and Q and the
angle 6 between them.
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y In the particular case when P and Q are equal, we note that

P-P=P.+P,+P. =P (3.29)

Applications of the Scalar Product

X 1. Angle formed by two given vectors. Let two vectors be given in terms
of their components:

Z P=Pi+Pj+Pk
@ Q=0i+0j+Qk

To determine the angle formed by the two vectors, we equate the expres-
sions obtained in Egs. (3.24) and (3.28) for their scalar product,

PQcos = PO, + P,O, + PO,
Solving for cos 6, we have

P.Q, + P,Q, + P.0O,
cos ) = Q 2y Q (3.30)
PQ

0) 2. Projection of a vector on a given axis. Consider a vector P forming
an angle ¢ with an axis, or directed line, OL (Fig. 3.19a). We define
the projection of P on the axis OL as the scalar

Por = P cos 0 3.31)

The projection Py, is equal in absolute value to the length of the seg-
ment OA. It is positive if OA has the same sense as the axis OL—that
is, if 0 is acute—and negative otherwise. If P and OL are at a right
angle, the projection of P on OL is zero.

Now consider a vector Q directed along OL and of the same sense
as OL (Fig. 3.19b). We can express the scalar product of P and Q as

Fig. 3.19 (a) The projection of vector P at P-Q=PQcos 6= PoQ 3:32)

an angle 0 to a line OL; (b) the projection of
P and a vector Q along OL; (c) the projection
of P, a unit vector X\ along OL, and the angles
of OL with the coordinate axes. Py =

from which it follows that

P‘Q _ PxQx+PyQy+PZQZ
0 Q

(3.33)

In the particular case when the vector selected along OL is the unit
vector A (Fig. 3.19¢), we have

Pop = P-A 3.34)

Recall from Sec. 2.4A that the components of A along the coordinate
axes are respectively equal to the direction cosines of OL. Resolving P
and A into rectangular components, we can express the projection of P
on OL as

Py, = P.cos 0, + Pycos 0, + P_cos 0, 3.35)

where 0,, 0, and 6, denote the angles that the axis OL forms with the
coordinate axes.



3.2B Mixed Triple Products

We have now seen both forms of multiplying two vectors together: the
vector product and the scalar product. Here we define the mixed triple
product of the three vectors S, P, and Q as the scalar expression

Mixed triple product
S-(PX Q) (3.36)

This is obtained by forming the scalar product of S with the vector product
of P and Q. [In Chapter 15, we will introduce another kind of triple
product, called the vector triple product, S X (P X Q).]

The mixed triple product of S, P, and Q has a simple geometrical
interpretation (Fig. 3.20a). Recall from Sec. 3.4 that the vector P X Q is
perpendicular to the plane containing P and Q and that its magnitude is
equal to the area of the parallelogram that has P and Q for sides. Also,
Eq. (3.32) indicates that we can obtain the scalar product of S and P X Q
by multiplying the magnitude of P X Q (i.e., the area of the parallelogram
defined by P and Q) by the projection of S on the vector P X Q (i.e., by
the projection of S on the normal to the plane containing the parallelo-
gram). The mixed triple product is thus equal, in absolute value, to the
volume of the parallelepiped having the vectors S, P, and Q for sides
(Fig. 3.20b). The sign of the mixed triple product is positive if S, P, and
Q form a right-handed triad and negative if they form a left-handed triad.
[That is, S+ (P X Q) is negative if the rotation that brings P into line with
Q is observed as clockwise from the tip of S.] The mixed triple product
is zero if S, P, and Q are coplanar.

Since the parallelepiped defined in this way is independent of the
order in which the three vectors are taken, the six mixed triple products
that can be formed with S, P, and Q all have the same absolute value,
although not the same sign. It is easily shown that

S-(P X Q)

P-(Q XS)=Q-(S XP)
-S:QXP)=-P(SXxXQ =-Q-PXS) (3.37)

Arranging the letters representing the three vectors counterclockwise in a
circle (Fig. 3.21), we observe that the sign of the mixed triple product
remains unchanged if the vectors are permuted in such a way that they
still read in counterclockwise order. Such a permutation is said to be a
circular permutation. It also follows from Eq. (3.37) and from the com-
mutative property of scalar products that the mixed triple product of S, P,
and Q can be defined equally well as S-(P X Q) or (S X P)-Q.

We can also express the mixed triple product of the vectors S, P,
and Q in terms of the rectangular components of these vectors. Denoting
P X Q by V and using formula (3.28) to express the scalar product of S
and V, we have

S-:PXQ)=8V=8V,+S8V,+8V,
Substituting from the relations in Eq. (3.9) for the components of V, we obtain

S.(P X Q) = Sx(Psz - PzQy) + Sy(PzQx - PxQz)
+ S(P.Q0, — P,0O) (3.38)
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(b)

Fig. 3.20 (a) The mixed triple product is
equal to the magnitude of the cross product
of two vectors multiplied by the projection
of the third vector onto that cross product;
(b) the result equals the volume of the
parallelepiped formed by the three vectors.

Fig. 3.21 Counterclockwise arrangement for
determining the sign of the mixed triple
product of three vectors P, Q, and S.
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We can write this expression in a more compact form if we observe that
it represents the expansion of a determinant:

Mixed triple product, determinant form

S, S, S.
S‘PxQ)= [P, P, P, (3.39)
Qx Qy Qz

By applying the rules governing the permutation of rows in a determinant,
we could easily verify the relations in Eq. (3.37), which we derived earlier
from geometrical considerations.

3.2C Moment of a Force about
a Given Axis

Now that we have the necessary mathematical tools, we can introduce the
concept of moment of a force about an axis. Consider again a force F
acting on a rigid body and the moment M, of that force about O (Fig. 3.22).
Let OL be an axis through O.

We define the moment My, of F about OL as the projection OC of
the moment M, onto the axis OL.

Z

Fig. 3.22 The moment My, of a force F
about the axis OL is the projection on OL
of the moment My,. The calculation involves
the unit vector A along OL and the position
vector r from O to A, the point upon which
the force F acts.

Suppose we denote the unit vector along OL by A and recall the expres-
sions (3.34) and (3.11) for the projection of a vector on a given axis and
for the moment M, of a force F. Then we can express My, as

Moment about an axis through the origin

M()L:;\.'M():)\,°(r><F) (3.40)



This shows that the moment M,; of F about the axis OL is the scalar
obtained by forming the mixed triple product of A, r, and F. We can also
express My, in the form of a determinant,

A Ay A
Mo, = |x y z (3.41)
F, F, F,

where 4,, 4,, 1, = direction cosines of axis OL
X, y, z = coordinates of point of application of F
F,, F,, F, = components of force F

The physical significance of the moment M,,; of a force F about a
fixed axis OL becomes more apparent if we resolve F into two rectangular
components F; and F,, with F, parallel to OL and F, lying in a plane P
perpendicular to OL (Fig. 3.23). Resolving r similarly into two compo-
nents r; and r, and substituting for F and r into Eq. (3.40), we get

Mo, = A - [(r; + 1) X (F; + Fy)]
=A@ XF)+A- @, XF)+A-(@ XF)+A-@XF,)

Note that all of the mixed triple products except the last one are equal to
zero because they involve vectors that are coplanar when drawn from a
common origin (Sec. 3.2B). Therefore, this expression reduces to

MOL =A - (1‘2 X F2) (3.42)

The vector product r, X F, is perpendicular to the plane P and represents
the moment of the component F, of F about the point Q where OL inter-
sects P. Therefore, the scalar M,;, which is positive if r, X F, and OL
have the same sense and is negative otherwise, measures the tendency of
F, to make the rigid body rotate about the fixed axis OL. The other com-
ponent F, of F does not tend to make the body rotate about OL, because
F, and OL are parallel. Therefore, we conclude that

The moment My of F about OL measures the tendency of the force F
to impart to the rigid body a rotation about the fixed axis OL.

From the definition of the moment of a force about an axis, it follows
that the moment of F about a coordinate axis is equal to the component
of M, along that axis. If we substitute each of the unit vectors i, j, and k
for A in Eq. (3.40), we obtain expressions for the moments of ¥ about the
coordinate axes. These expressions are respectively equal to those obtained
earlier for the components of the moment M, of F about O:

Mx = yFZ B ZF}’
M, = zF, — xF, 3.18)
M, = xF, — yF,

Just as the components F,, F), and F of a force F acting on a rigid body
measure, respectively, the tendency of F to move the rigid body in the
x, y, and z directions, the moments M,, M,, and M, of F about the coor-
dinate axes measure the tendency of F to impart to the rigid body a rota-
tion about the x, y, and z axes, respectively.
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g 2 /
Iy r,
- T

0

Fig. 3.23 By resolving the force F into
components parallel to the axis OL and in
a plane perpendicular to the axis, we can
show that the moment M, of F about OL
measures the tendency of F to rotate the
rigid body about the axis.
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Z

Fig. 3.24 The moment of a force about an axis or line L
can be found by evaluating the mixed triple product at a
point B on the line. The choice of B is arbitrary, since using
any other point on the line, such as C, yields the same result.

More generally, we can obtain the moment of a force F applied at
A about an axis that does not pass through the origin by choosing an
arbitrary point B on the axis (Fig. 3.24) and determining the projection
on the axis BL of the moment My of F about B. The equation for this
projection is given here.

Moment about an arbitrary axis

Mg, =k Mp=A- (ryp X F) (3.43)

where r 3 = ry — rprepresents the vector drawn from B to A. Expressing
My, in the form of a determinant, we have

Ay /ly A,
Mg, = | Xam  Yam  Zam 3.449)
F, 17 I

where 4,, A,, 4, = direction cosines of axis BL

XAB = XA — XB Yas = Ya — VB ZAIB = 24 — ZB
F,, F,, F. = components of force F

Note that this result is independent of the choice of the point B on the
given axis. Indeed, denoting by M; the moment obtained with a different
point C, we have

Mc, = A - [(ry — re) X F]
=L [(ry —1p) XF] + A [ —rc) XF]

However, since the vectors A and rp — rc lie along the same line, the
volume of the parallelepiped having the vectors A, rz — r¢, and F for
sides is zero, as is the mixed triple product of these three vectors
(Sec. 3.2B). The expression obtained for M, thus reduces to its first term,
which is the expression used earlier to define Mp;. In addition, it follows
from Sec. 3.1E that, when computing the moment of F about the given
axis, A can be any point on the line of action of F.
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N
Sample Problem 3.5

A cube of side a is acted upon by a force P along the diagonal of a face,
as shown. Determine the moment of P (a) about A, (b) about the edge
AB, (c) about the diagonal AG of the cube. (d) Using the result of part c,
determine the perpendicular distance between AG and FC.

D

< T
il

P

1 F

STRATEGY: Use the equations presented in this section to compute the
moments asked for. You can find the distance between AG and FC from
the expression for the moment M.

MODELING and ANALYSIS:

a. Moment about A. Choosing x, y, and z axes as shown (Fig.ﬁi
resolve into rectangular components the force P and the vector rp,, = AF
drawn from A to the point of application F of P.

Tpy = ai —aj = a@i — j)
P = (P/\/2)j — (PI\/2)k = (PI\/2)(j — k)

y

Fig. 1 Position vector rg, and force vector P
relative to chosen coordinate system.

The moment of P about A is the vector product of these two vectors:
M, =ty X P =a(i — ) X (PIV2)(§ — k)
M, = (aP/\/2)(i + j + k)
b. Moment about AB. You want the projection of M, on AB:
My =i-My =i-(aP/\/2){d +j + k)
MAB = aPl \/E

(continued)
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-

You can verify that since AB is parallel to the x axis, M, is also the x
component of the moment M.

¢. Moment about diagonal AG. You obtain the moment of P
. about AG by projecting M,y on AG. If you denote the unit vector along
AG by A (Fig. 2), the calculation looks like this:

D C A 8 8=
AG ai — aj — ak
A="—F=—"—=(1/\3){i-j—Kk)

) o e 5 V3 -

) :\ P My =AMy = (1/4/3)( — j — K)+(aP/\/2)(i + j + k)

™ G
Of——14= < My = (@PI\/6)(1 — 1 = 1) My; = —aP/\/6
Ve

Ve

E

Alternative Method. You can also calculate the moment of P about
AG from the determinant form:

N\

Z

Fig. 2 Unit vector A used to determine A A A l/\/§ 71/\/5 *1/\/5
moment of P about AG. .

= —aP/\/é

Mg = |Xpa Yra Zea| =

—a 0
F, 0 P2 -PI\2

d. Perpendicular Distance between AG and FC. First note that
P is perpendicular to the diagonal AG. You can check this by forming the
scalar product P-A and verifying that it is zero:

F, F

y

Pod=(PIV2)( =K (/V3)GE—j— k)= PVe)0—1+1)=0

You can then express the moment M,; as —Pd, where d is the perpen-
dicular distance from AG to FC (Fig. 3). (The negative sign is needed
because the rotation imparted to the cube by P appears as clockwise to
an observer at G.) Using the value found for M, in part c,

My = —Pd = —aP/\/6 d=al\/6

Fig. 3 Perpendicular distance d from AG
to FC.

REFLECT and THINK: In a problem like this, it is important to visual-
ize the forces and moments in three dimensions so you can choose the
appropriate equations for finding them and also recognize the geometric
relationships between them.
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Fig. 3.25 A couple consists of two forces
with equal magnitude, parallel lines of
action, and opposite sense.

2

Fig. 3.26 The moment M of the couple
about O is the sum of the moments of F and
of —F about O.

Photo 3.1 The parallel upward and
downward forces of equal magnitude exerted
on the arms of the lug nut wrench are an
example of a couple.

© McGraw-Hill Education/Lucinda Dowell,
photographer

3.3 COUPLES AND FORCE-
COUPLE SYSTEMS

Now that we have studied the effects of forces and moments on a rigid
body, we can ask if it is possible to simplify a system of forces and
moments without changing these effects. It turns out that we can replace
a system of forces and moments with a simpler and equivalent system.
One of the key ideas used in such a transformation is called a couple.

3.3A Moment of a Couple

Two forces F and —F, having the same magnitude, parallel lines of action,
and opposite sense, are said to form a couple (Fig. 3.25). Clearly, the
sum of the components of the two forces in any direction is zero. The
sum of the moments of the two forces about a given point, however, is
not zero. The two forces do not cause the body on which they act to move
along a line (translation), but they do tend to make it rotate.

Let us denote the position vectors of the points of application of F
and —F by r, and rp, respectively (Fig. 3.26). The sum of the moments
of the two forces about O is

ry, XF+rg X (-F)=(@y —13) XF

Setting r, — rz = r, where r is the vector joining the points of application
of the two forces, we conclude that the sum of the moments of F and —F
about O is represented by the vector

M=rXF (3.45)

The vector M is called the moment of the couple. It is perpendicular to
the plane containing the two forces, and its magnitude is

M = rF sin 0 = Fd (3.46)

where d is the perpendicular distance between the lines of action of F and
—F and 6 is the angle between F (or —F) and r. The sense of M is defined
by the right-hand rule.

Note that the vector r in Eq. (3.45) is independent of the choice of
the origin O of the coordinate axes. Therefore, we would obtain the same
result if the moments of F and —F had been computed about a different
point O’. Thus, the moment M of a couple is a free vector (Sec. 2.1B),
which can be applied at any point (Fig. 3.27).

Fig. 3.27 The moment M of a couple equals
the product of F and d, is perpendicular to
the plane of the couple, and may be applied
at any point of that plane.



From the definition of the moment of a couple, it also follows that
two couples—one consisting of the forces F; and —F,, the other of the
forces F, and —F, (Fig. 3.28)—have equal moments if

F,d, = Fyd, 3.47)

provided that the two couples lie in parallel planes (or in the same plane)
and have the same sense (i.e., clockwise or counterclockwise).

3.3B Equivalent Couples

Imagine that three couples act successively on the same rectangular box
(Fig. 3.29). As we have just seen, the only motion a couple can impart to
a rigid body is a rotation. Since each of the three couples shown has the
same moment M (same direction and same magnitude M = 120 lb-in.),
we can expect each couple to have the same effect on the box.

(a) )

3.3 Couples and Force-Couple Systems
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_Fl

-

d

/
Fl

Fig. 3.28 Two couples have the same
moment if they lie in parallel planes, have
the same sense, and if Fid; = F,d,.

(c)

Fig. 3.29 Three equivalent couples. (a) A couple acting on the bottom of the box, acting counterclockwise viewed from
above; (b) a couple in the same plane and with the same sense but larger forces than in (a); (c) a couple acting in a different

plane but same sense.

As reasonable as this conclusion appears, we should not accept it
hastily. Although intuition is of great help in the study of mechanics, it
should not be accepted as a substitute for logical reasoning. Before stating
that two systems (or groups) of forces have the same effect on a rigid
body, we should prove that fact on the basis of the experimental evidence
introduced so far. This evidence consists of the parallelogram law for the
addition of two forces (Sec. 2.1A) and the principle of transmissibility
(Sec. 3.1B). Therefore, we state that two systems of forces are equivalent
(i.e., they have the same effect on a rigid body) if we can transform one
of them into the other by means of one or several of the following
operations: (1) replacing two forces acting on the same particle by their
resultant; (2) resolving a force into two components; (3) canceling two
equal and opposite forces acting on the same particle; (4) attaching to the
same particle two equal and opposite forces; and (5) moving a force along
its line of action. Each of these operations is easily justified on the basis
of the parallelogram law or the principle of transmissibility.

Let us now prove that two couples having the same moment M are
equivalent. First consider two couples contained in the same plane, and
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Py (@)

(b) (© ()

F, Fig. 3.30 Four steps in transforming one couple to another couple in the same plane by
using simple operations. (a) Starting couple; (b) label points of intersection of lines of action
of the two couples; (c) resolve forces from first couple into components; (d) final couple.

(@]

Fig. 3.31 Four steps in transforming one
couple to another couple in a parallel plane
by using simple operations. (a) Initial
couple; (b) add a force pair along the line
of intersection of two diagonal planes;

(c) replace two couples with equivalent
couples in the same planes; (d) final couple.

assume that this plane coincides with the plane of the figure (Fig. 3.30).
The first couple consists of the forces F; and —F; of magnitude F, located
at a distance d; from each other (Fig. 3.30a). The second couple consists
of the forces F, and —F, of magnitude F,, located at a distance d, from
each other (Fig. 3.30d). Since the two couples have the same moment M,
which is perpendicular to the plane of the figure, they must have the same
sense (assumed here to be counterclockwise), and the relation

F\d, = Fyd, (3.47)
must be satisfied. To prove that they are equivalent, we shall show that
the first couple can be transformed into the second by means of the opera-
tions listed previously.

Let us denote by A, B, C, and D the points of intersection of the lines
of action of the two couples. We first slide the forces F; and —F; until they
are attached, respectively, at A and B, as shown in Fig. 3.30b. We then resolve
force F, into a component P along line AB and a component Q along AC
(Fig. 3.30c). Similarly, we resolve force —F, into —P along AB and —Q along
BD. The forces P and —P have the same magnitude, the same line of action,
and opposite sense; we can move them along their common line of action
until they are applied at the same point and may then be canceled. Thus, the
couple formed by F; and —F; reduces to a couple consisting of Q and —Q.

We now show that the forces Q and —Q are respectively equal to the
forces —F, and F,. We obtain the moment of the couple formed by Q and
—Q by computing the moment of Q about B. Similarly, the moment of the
couple formed by F; and —F; is the moment of F; about B. However, by
Varignon’s theorem, the moment of F, is equal to the sum of the moments
of its components P and Q. Since the moment of P about B is zero, the
moment of the couple formed by Q and —Q must be equal to the moment
of the couple formed by F; and —F,. Recalling Eq. (3.47), we have

Qd2 = F]d] = F2d2 and Q = F2

Thus, the forces Q and —Q are respectively equal to the forces —F, and
F,, and the couple of Fig. 3.30a is equivalent to the couple of Fig. 3.30d.

Now consider two couples contained in parallel planes P; and P-,.
We prove that they are equivalent if they have the same moment. In view
of the preceding discussion, we can assume that the couples consist of
forces of the same magnitude F acting along parallel lines (Fig. 3.31a and d).
We propose to show that the couple contained in plane P, can be trans-
formed into the couple contained in plane P, by means of the standard
operations listed previously.



Let us consider the two diagonal planes defined respectively by the
lines of action of F; and —F, and by those of —F, and F, (Fig. 3.31b). At
a point on their line of intersection, we attach two forces F5 and —F5, which
are respectively equal to F, and —F,. The couple formed by F, and —F;
can be replaced by a couple consisting of F3 and —F, (Fig. 3.31¢), because
both couples clearly have the same moment and are contained in the same
diagonal plane. Similarly, the couple formed by —F; and F; can be replaced
by a couple consisting of —F; and F,. Canceling the two equal and opposite
forces F3 and —F3, we obtain the desired couple in plane P, (Fig. 3.31d).
Thus, we conclude that two couples having the same moment M are equiva-
lent, whether they are contained in the same plane or in parallel planes.

The property we have just established is very important for the correct
understanding of the mechanics of rigid bodies. It indicates that when a
couple acts on a rigid body, it does not matter where the two forces forming
the couple act or what magnitude and direction they have. The only thing
that counts is the moment of the couple (magnitude and direction). Couples
with the same moment have the same effect on the rigid body.

3.3C Addition of Couples

Consider two intersecting planes P, and P, and two couples acting respec-
tively in P, and P,. Recall that each couple is a free vector in its respective
plane and can be represented within this plane by any combination of equal,
opposite, and parallel forces and of perpendicular distance of separation
that provides the same sense and magnitude for this couple. Thus, we can
assume, without any loss of generality, that the couple in P; consists of two
forces F; and —F; perpendicular to the line of intersection of the two planes
and acting respectively at A and B (Fig. 3.32a). Similarly, we can assume
that the couple in P, consists of two forces F, and —F, perpendicular to
AB and acting respectively at A and B. It is clear that the resultant R of F,
and F, and the resultant —R of —F; and —F, form a couple. Denoting the
vector joining B to A by r and recalling the definition of the moment of a
couple (Sec. 3.3A), we express the moment M of the resulting couple as

M=rXR=rX F +F)
By Varignon’s theorem, we can expand this expression as
M=rXF +rXF,

The first term in this expression represents the moment M, of the couple
in P}, and the second term represents the moment M, of the couple in P,.
Therefore, we have

M=M, +M, (3.48)

We conclude that the sum of two couples of moments M; and M, is a
couple of moment M equal to the vector sum of M; and M, (Fig. 3.32b).
We can extend this conclusion to state that any number of couples can be
added to produce one resultant couple, as

M = 3M = 3 X F)

3.3D Couple Vectors

We have seen that couples with the same moment, whether they act in the
same plane or in parallel planes, are equivalent. Therefore, we have no need
to draw the actual forces forming a given couple in order to define its effect

3.3 Couples and Force-Couple Systems 4 13

(b)

Fig. 3.32 (a) We can add two couples, each
acting in one of two intersecting planes, to
form a new couple. (b) The moment of the
resultant couple is the vector sum of the
moments of the component couples.
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~

(@) (®) (©) (d)

Fig. 3.33 (a) A couple formed by two forces can be represented by (b) a couple vector, oriented
perpendicular to the plane of the couple. (c) The couple vector is a free vector and can be moved
to other points of application, such as the origin. (d) A couple vector can be resolved into
components along the coordinate axes.

on a rigid body (Fig. 3.33a). It is sufficient to draw an arrow equal in
magnitude and direction to the moment M of the couple (Fig. 3.33b). We
have also seen that the sum of two couples is itself a couple and that we
can obtain the moment M of the resultant couple by forming the vector sum
of the moments M; and M, of the given couples. Thus, couples obey the
law of addition of vectors, so the arrow used in Fig. 3.33b to represent the
couple defined in Fig. 3.33a truly can be considered a vector.

The vector representing a couple is called a couple vector. Note
that, in Fig. 3.33, we use a red arrow to distinguish the couple vector,
which represents the couple itself, from the moment of the couple, which
was represented by a green arrow in earlier figures. Also note that we
added the symbol § to this red arrow to avoid any confusion with vectors
representing forces. A couple vector, like the moment of a couple, is a
free vector. Therefore, we can choose its point of application at the origin
of the system of coordinates, if so desired (Fig. 3.33¢). Furthermore, we
can resolve the couple vector M into component vectors M,, M,, and M,
that are directed along the coordinate axes (Fig. 3.33d). These component
vectors represent couples acting, respectively, in the yz, zx, and xy planes.

3.3E Resolution of a Given Force into
a Force at O and a Couple

Consider a force F acting on a rigid body at a point A defined by the
position vector r (Fig. 3.34a). Suppose that for some reason it would
simplify the analysis to have the force act at point O instead. Although
we can move F along its line of action (principle of transmissibility), we
cannot move it to a point O that does not lie on the original line of action
without modifying the action of F on the rigid body.

F F
F/ Mo F A
| % Y g
0o T _ og— _
—F

0

(a) (®) (©)

Fig. 3.34 Replacing a force with a force and a couple. (a) Initial
force F acting at point A; (b) attaching equal and opposite forces
at O; (c) force F acting at point O and a couple.



We can, however, attach two forces at point O, one equal to F and
the other equal to —F, without modifying the action of the original force
on the rigid body (Fig. 3.34b). As a result of this transformation, we now
have a force F applied at O; the other two forces form a couple of moment
M, = r X F. Thus,

Any force F acting on a rigid body can be moved to an arbitrary
point O provided that we add a couple whose moment is equal to
the moment of F about O.

The couple tends to impart to the rigid body the same rotational motion
about O that force F tended to produce before it was transferred to O. We
represent the couple by a couple vector M,, that is perpendicular to the
plane containing r and F. Since My, is a free vector, it may be applied
anywhere; for convenience, however, the couple vector is usually attached
at O together with F. This combination is referred to as a force-couple
system (Fig. 3.34c¢).

MO'

(a) (b) ()

Fig. 3.35 Moving a force to different points. (a) Initial force F acting
at A; (b) force F acting at O and a couple; (c) force F acting at O’ and
a different couple.

If we move force F from A to a different point O' (Fig. 3.354 and c¢),
we have to compute the moment My = r’ X F of F about O’ and add a
new force-couple system consisting of F and the couple vector My at O'.
We can obtain the relation between the moments of F about O and O’ as

My =r"XF=r+s8) XF=rXF+sXF
My =My +s XF 3.49)

where s is the vector joining O’ to O. Thus, we obtain the moment M, of
F about O’ by adding to the moment M, of F about O the vector product
s X F, representing the moment about O’ of the force F applied at O.

We also could have established this result by observing that, in order
to transfer to O’ the force-couple system attached at O (Fig. 3.35b and c¢),
we could freely move the couple vector M, to O'. However, to move
force F from O to O’, we need to add to F a couple vector whose moment
is equal to the moment about O’ of force F applied at O. Thus, the couple
vector M, must be the sum of M, and the vector s X F.

As noted here, the force-couple system obtained by transferring a
force F from a point A to a point O consists of F and a couple vector M,
perpendicular to F. Conversely, any force-couple system consisting of a
force F and a couple vector M, that are mutually perpendicular can be
replaced by a single equivalent force. This is done by moving force F in
the plane perpendicular to M, until its moment about O is equal to the
moment of the couple being replaced.

3.3 Couples and Force-Couple Systems 4 15

Photo 3.2 The force exerted by each

hand on the wrench could be replaced with
an equivalent force-couple system acting on
the nut.

© Steve Hix
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P
Sample Problem 3.6

Determine the components of the single couple equivalent to the two
couples shown.

STRATEGY: Look for ways to add equal and opposite forces to the

+ diagram that, along with already known perpendicular distances, will pro-
duce new couples with moments along the coordinate axes. These can be
combined into a single equivalent couple.

MODELING: You can simplify the computations by attaching two
equal and opposite 20-1b forces at A (Fig. 1). This enables you to replace
the original 20-1b-force couple by two new 20-lb-force couples: one lying
in the zx plane and the other in a plane parallel to the xy plane.

ANALYSIS: You can represent these three couples by three couple vec-

Yy tors M,, M,, and M, directed along the coordinate axes (Fig. 2). The
corresponding moments are
7 in. M, = —(30 Ib)(18 in.) = —540 Ib-in.

M, = +(20 1b)(12 in.) = +240 Ib-in.
M, = +(20 1b)(9 in.) = +180 Ib-in.

x These three moments represent the components of the single couple M
equivalent to the two given couples. You can write M as
1///'201 ) M = —(540 Ib-in.)i + (240 Ib-in.)j + (180 Ib-in.)k

REFLECT and THINK: You can also obtain the components of the equiva-
lent single couple M by computing the sum of the moments of the four given
forces about an arbitrary point. Selecting point D, the moment is (Fig. 3)

M = M, = (18 in.)j X (=30 Ib)k + [(9 in.)j — (12 in.)k] X (—20 Ib)i
Fig. 1 Placing two equal and opposite

20-1b forces at A to simplify calculations.  After computing the various cross products, you get the same result, as

y M = —(540 Ib-in.)i + (240 Ib-in.)j + (180 Ib-in.)k

M, = +(240 lb'in.)jf

M, = —(540 Ib-in.)i
»
/ M, = +(180 Ib-in.)k
z
Fig. 2 The three couples represented
as couple vectors.

%

Fig. 3 Using the given force system, the
equivalent single couple can also be
determined from the sum of moments of the
forces about any point, such as point D.




3.3 Couples and Force-Couple Systems 117

400 N

200 N

60 mm
200N
150 mm
(07
— (400 N) j
— (84 N'm)k 60°
o )

— (400 N)j

Fig. 2 Resultant couple eliminated
by moving force F.

—(24 N'm)k
B B
—(24 N'm)k
( i) —(400 N)j —(400 N)j
o 0
150 mm
. —(24 N-m)k
—(400 N)j
—(400 N)j
o o

Fig. 3 Couple can be moved to B with
no change in effect. This couple can
then be eliminated by moving force F.

N

~
Sample Problem 3.7

Replace the couple and force shown by an equivalent single force applied
to the lever. Determine the distance from the shaft to the point of applica-
tion of this equivalent force.

STRATEGY: First replace the given force and couple by an equivalent
force-couple system at O. By moving the force of this force-couple system
a distance that creates the same moment as the couple, you can then
replace the system with one equivalent force.

MODELING and ANALYSIS: To replace the given force and couple,
move the force F = —(400 N)j to O, and at the same time, add a couple
of moment My, that is equal to the moment about O of the force in its
original position (Fig. 1). Thus,

M, = OB X F = [(0.150 m)i + (0.260 m)j] X (—400 N)j
= —(60 N-m)k

F = — (400N)j

— (60 N'm) k
— (400 N)j

Fig. 1 Replacing given force and couple
with an equivalent force-couple at O.

When you add this new couple to the couple of moment —(24 N-m)k
formed by the two 200-N forces, you obtain a couple of moment
—(84 N'-m)k (Fig. 2). You can replace this last couple by applying F at
a point C chosen in such a way that

—(84N-m)k = OC X F

[(OC) cos 60°i + (OC) sin 60°j] X (—400 N)j
—(0C)cos 60°(400 N)k

The result is
(OC) cos 60° = 0.210 m = 210 mm OC = 420 mm

REFLECT and THINK: Since the effect of a couple does not depend
on its location, you can move the couple of moment —(24 N-m)k to B,
obtaining a force-couple system at B (Fig. 3). Now you can eliminate this
couple by applying F at a point C chosen in such a way that

—(24N-m)k = BC X F
= —(BC) cos 60°(400 N)k

The conclusion is

(BC) cos 60° = 0.060 m = 60 mm BC = 120 mm
OC = OB + BC = 300 mm + 120 mm OC = 420 mm
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Rigid Bodies: Equivalent Systems of Forces

3.4 SIMPLIFYING SYSTEMS
OF FORCES

We saw in the preceding section that we can replace a force acting on a rigid
body with a force-couple system that may be easier to analyze. However, the
true value of a force-couple system is that we can use it to replace not just
one force but a system of forces to simplify analysis and calculations.

3.4A Reducing a System of Forces
to a Force-Couple System

Consider a system of forces Fy, F,, F, . . ., acting on a rigid body at the
points A, Ay, As, . . ., defined by the position vectors ry, r,, rs, etc.
(Fig. 3.36a). As seen in the preceding section, we can move F;| from A,
to a given point O if we add a couple of moment M, equal to the moment
r; X F; of F, about O. Repeating this procedure with F,, F5, . . . , we
obtain the system shown in Fig. 3.36b, which consists of the original
forces, now acting at O, and the added couple vectors. Since the forces
are now concurrent, they can be added vectorially and replaced by their
resultant R. Similarly, the couple vectors M, M,, M3, . . ., can be added
vectorially and replaced by a single couple vector M%. Thus,

We can reduce any system of forces, however complex, to an
equivalent force-couple system acting at a given point O.

Note that, although each of the couple vectors M;, M,, M3, . . . in
Fig. 3.36b is perpendicular to its corresponding force, the resultant force R
and the resultant couple vector M¥, shown in Fig. 3.36¢ are not, in general,
perpendicular to each other.

(@) b (©

Fig. 3.36 Reducing a system of forces to a force-couple system. (a) Initial
system of forces; (b) all the forces moved to act at point O, with couple
vectors added; (c) all the forces reduced to a resultant force vector and all the
couple vectors reduced to a resultant couple vector.

The equivalent force-couple system is defined by

Force-couple system

R = 5F M = SM, = 3(r X F) (3.50)

These equations state that we obtain force R by adding all of the forces
of the system, whereas we obtain the moment of the resultant couple
vector M%), called the moment resultant of the system, by adding the
moments about O of all the forces of the system.



Once we have reduced a given system of forces to a force and a
couple at a point O, we can replace it with a force and a couple at another
point O'. The resultant force R will remain unchanged, whereas the new
moment resultant M5, will be equal to the sum of M%, and the moment
about O’ of force R attached at O (Fig. 3.37). We have

M =ME +s X R (3.51)

In practice, the reduction of a given system of forces to a single
force R at O and a couple vector M%) is carried out in terms of compo-
nents. Resolving each position vector r and each force F of the system
into rectangular components, we have

r=uxi +yj+zk
F=Fi+Fj+ Fk

(3.52)
(3.53)

Substituting for r and F in Eq. (3.50) and factoring out the unit vectors i,
j, and k, we obtain R and M5% in the form
M% = M + Ml + MPk

R =Ri+ Rj + Rk (3.54)

The components R,, R, and R, represent, respectively, the sums of the x,
v, and z components of the given forces and measure the tendency of the
system to impart to the rigid body a translation in the x, y, or z direction.
Similarly, the components M~ MI;, and M® represent, respectively, the sum
of the moments of the given forces about the x, y, and z axes and measure
the tendency of the system to impart to the rigid body a rotation about
the x, y, or z axis.

If we need to know the magnitude and direction of force R, we can
obtain them from the components R,, R,, and R, by means of the relations
in Egs. (2.18) and (2.19) of Sec. 2.4A. Similar computations yield the
magnitude and direction of the couple vector M.

3.4B Equivalent and Equipollent
Systems of Forces

We have just seen that any system of forces acting on a rigid body can
be reduced to a force-couple system at a given point O. This equivalent
force-couple system characterizes completely the effect of the given force
system on the rigid body.

Two systems of forces are equivalent if they can be reduced to the
same force-couple system at a given point O.

Recall that the force-couple system at O is defined by the relations in
Eq. (3.50). Therefore, we can state that

Two systems of forces, F';, F», F3,..., and F|, F;, F3,. .., that act
on the same rigid body are equivalent if, and only if, the sums of
the forces and the sums of the moments about a given point O of
the forces of the two systems are, respectively, equal.

Mathematically, the necessary and sufficient conditions for the two sys-
tems of forces to be equivalent are

Conditions for equivalent systems of forces

SF = SF' and SM, = SM,, 3.55)

3.4 Simplifying Systems of Forces
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R

M§ o)
K

0 \s

o

Fig. 3.37 Once a system of forces has been
reduced to a force-couple system at one
point, we can replace it with an equivalent
force-couple system at another point. The
force resultant stays the same, but we have to
add the moment of the resultant force about
the new point to the resultant couple vector.
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Photo 3.3 The forces exerted by the
children upon the wagon can be replaced
with an equivalent force-couple system when
analyzing the motion of the wagon.

© Jose Luis Pelaez/Getty Images

Note that to prove that two systems of forces are equivalent, we must establish
the second of the relations in Eq. (3.55) with respect to only one point O. Tt will
hold, however, with respect to any point if the two systems are equivalent.
Resolving the forces and moments in Eqgs. (3.55) into their rectan-
gular components, we can express the necessary and sufficient conditions
for the equivalence of two systems of forces acting on a rigid body as

SF, = SF! SF, = SF, SF, = SF! (3.56)
SM, = SM. M, = SM, SM, = SM! )

These equations have a simple physical significance. They express that
Two systems of forces are equivalent if they tend to impart to the rigid

body (1) the same translation in the x, y, and z directions, respectively,
and (2) the same rotation about the x, y, and z axes, respectively.

In general, when two systems of vectors satisfy Egs. (3.55) or (3.56),
i.e., when their resultants and their moment resultants about an arbitrary
point O are respectively equal, the two systems are said to be equipollent.
The result just established can thus be restated as

If two systems of forces acting on a rigid body are equipollent, they
are also equivalent.

It is important to note that this statement does not apply to any system of
vectors. Consider, for example, a system of forces acting on a set of inde-
pendent particles that do not form a rigid body. A different system of
forces acting on the same particles may happen to be equipollent to the
first one; i.e., it may have the same resultant and the same moment resul-
tant. Yet, since different forces now act on the various particles, their
effects on these particles are different; the two systems of forces, while
equipollent, are not equivalent.

3.4C Further Reduction of a System
of Forces

We have now seen that any given system of forces acting on a rigid body
can be reduced to an equivalent force-couple system at O, consisting of a
force R equal to the sum of the forces of the system, and a couple vector
M?%, of moment equal to the moment resultant of the system.

When R = 0, the force-couple system reduces to the couple vector
M?%. The given system of forces then can be reduced to a single couple
called the resultant couple of the system.

What are the conditions under which a given system of forces can be
reduced to a single force? It follows from the preceding section that we can
replace the force-couple system at O by a single force R acting along a new
line of action if R and M% are mutually perpendicular. The systems of forces
that can be reduced to a single force, or resultant, are therefore the systems
for which force R and the couple vector M%, are mutually perpendicular.
This condition is generally not satisfied by systems of forces in space, but
it is satisfied by systems consisting of (1) concurrent forces, (2) coplanar
forces, or (3) parallel forces. Let’s look at each case separately.

1. Concurrent forces act at the same point; therefore, we can add them
directly to obtain their resultant R. Thus, they always reduce to a single
force. Concurrent forces were discussed in detail in Chap. 2.



2. Coplanar forces act in the same plane, which we assume to be the
plane of the figure (Fig. 3.38a). The sum R of the forces of the system
also lies in the plane of the figure, whereas the moment of each force
about O and thus the moment resultant M5, are perpendicular to that
plane. The force-couple system at O consists, therefore, of a force R
and a couple vector M%, that are mutually perpendicular (Fig. 3.38b).
We can reduce them to a single force R by moving R in the plane of
the figure until its moment about O becomes equal to M. The distance

from O to the line of action of R is d = M%/R (Fig. 3.38¢).

3.4 Simplifying Systems of Forces
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F,
y y y
R
R
f— > f—
Mg
. 0 : o : oy :
A
F;
d=ME/R
(a) ) ©

Fig. 3.38 Reducing a system of coplanar forces. (a) Initial system of forces;
(b) equivalent force-couple system at O; (c) moving the resultant force to a
point A such that the moment of R about O equals the couple vector.

As noted earlier, the reduction of a system of forces is consider-
ably simplified if we resolve the forces into rectangular components.
The force-couple system at O is then characterized by the components
(Fig. 3.39q)

(@)

ME =M,

x=ME/R,

3.57)

()

Fig. 3.39 Reducing a system of coplanar forces by using rectangular
components. (a) From Fig. 3.38(b), resolve the resultant into components

along the x and y axes; (b) determining the x intercept of the final line of
action of the resultant; (c) determining the y intercept of the final line of

action of the resultant.

"Because the couple vector M%, is perpendicular to the plane of the figure, we represent it
by the symbol . A counterclockwise couple 1y represents a vector pointing out of the page
and a clockwise couple ) represents a vector pointing into the page.
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To reduce the system to a single force R, the moment of R about O
must be equal to M’B. If we denote the coordinates of the point of
application of the resultant by x and y and apply equation (3.22) of
Sec. 3.1F, we have

xR, — YR, = M{

This represents the equation of the line of action of R. We can also
determine the x and y intercepts of the line of action of the resultant
directly by noting that M5, must be equal to the moment about O of the
y component of R when R is attached at B (Fig. 3.39b) and to the
moment of its x component when R is attached at C (Fig. 3.39¢).

3. Parallel forces have parallel lines of action and may or may not have
the same sense. Assuming here that the forces are parallel to the y axis
(Fig. 3.40a), we note that their sum R is also parallel to the y axis.

d
R
P T e S
M:Rkﬁéi///
F, / Mg

Z
(@) ) (©)

Fig. 3.40 Reducing a system of parallel forces. (a) Initial system of forces;
(b) equivalent force-couple system at O, resolved into components;

(c) moving R to point A, chosen so that the moment of R about O

equals the resultant moment about O.

On the other hand, since the moment of a given force must be perpen-
dicular to that force, the moment about O of each force of the system and
thus the moment resultant M5 lie in the zx plane. The force-couple system
at O consists, therefore, of a force R and a couple vector MIZ, that are
mutually perpendicular (Fig. 3.40b). We can reduce them to a single force
R (Fig. 3.40c) or, if R = 0, to a single couple of moment M5,

In practice, the force-couple system at O is characterized by the
components

R, = 3F, MR =3SMm, M2 =3M. (3.58)

The reduction of the system to a single force can be carried out by moving

: R to a new point of application A(x, 0, z), which is chosen so that the
= - ' * moment of R about O is equal to M%,.
B B r x R=M}
- i + k) X R,j = MFi + Mk

By computing the vector products and equating the coefficients of the

Photo 3.4 The parallel wind forces acting corresponding unit vectors in both sides of the equation, we obtain two

on the highway signs can be reduced to a

single equivalent force. Determining this scalar equations that define the coordinates of A:

force can _simplify the calculation of the —zR, = M¥ and xR, = MI§

forces acting on the supports of the frame to Y ?

which the signs are attached. These equations express the fact that the moments of R about the x and

© Images-USA/Alamy RF 7 axes must be equal, respectively, to M% and M~.
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—(600 N) j

( A B
—(1880 N-m) k

Fig. 1 Force-couple system at A

that is equivalent to given system
of forces.

—(600N) j

—(1880 N-m) k JL
(A[ B)

[ 4.8 m

—(600 N) j

| #)

(1000 N-m) k

Fig. 2 Finding force-couple system
at B equivalent to that determined
in part a.

—(600N) j

|
B

A

[
e
Fig. 3 Single force that is equivalent

to given system of forces.

N

Sample Problem 3.8

(2880 N-m) k

A 4.80-m-long beam is subjected to the forces shown. Reduce the given
system of forces to (a) an equivalent force-couple system at A, (b) an
equivalent force-couple system at B, (¢) a single force or resultant. Note:
Since the reactions at the supports are not included in the given system
of forces, the given system will not maintain the beam in equilibrium.

STRATEGY: The force part of an equivalent force-couple system is sim-
ply the sum of the forces involved. The couple part is the sum of the
moments caused by each force relative to the point of interest. Once you
find the equivalent force-couple at one point, you can transfer it to any
other point by a moment calculation.

MODELING and ANALYSIS:

a. Force-Couple System at A. The force-couple system at A equiv-
alent to the given system of forces consists of a force R and a couple M~
defined as (Fig. 1):

R = 3F
= (150 N)j — (600 N)j + (100 N)j — (250 N)j = —(600 N)j
MR = 3 X F)
= (1.6i) X (—600j) + (2.8i) X (100j) + (4.8i) X (—250j)
= —(1880 N-m)k

The equivalent force-couple system at A is thus

R =600 N | M% = 1880 N'm }
b. Force-Couple System at B. You want to find a force-couple
system at B equivalent to the force-couple system at A determined in
part a. The force R is unchanged, but you must determine a new couple
M’f;, the moment of which is equal to the moment about B of the force-
couple system determined in part a (Fig. 2). You have
ME =M + BA X R

= —(1880 N'-m)k + (—4.8 m)i X (—600 N)j

= — (1880 N-m)k + (2880 N-m)k = + (1000 N-m)k

The equivalent force-couple system at B is thus

R =600N | M% = 1000 N-m

c. Single Force or Resultant. The resultant of the given system of
forces is equal to R, and its point of application must be such that the
moment of R about A is equal to M% (Fig. 3). This equality of moments
leads to

r x R=M"
xi X (=600 N)j = —(1880 N-m)k
—x(600 N)k = —(1880 N-m)k

(continued)

~
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Solving for x, you get x = 3.13 m. Thus, the single force equivalent to
the given system is defined as

R =600 N | x =313 m

REFLECT and THINK: This reduction of a given system of forces to
a single equivalent force uses the same principles that you will use later
for finding centers of gravity and centers of mass, which are important
parameters in engineering mechanics.

Sample Problem 3.9

Four tugboats are bringing an ocean liner to its pier. Each tugboat exerts
a 5000-Ib force in the direction shown. Determine (a) the equivalent force-
couple system at the foremast O, (b) the point on the hull where a single,
more powerful tugboat should push to produce the same effect as the
original four tugboats.

STRATEGY: The equivalent force-couple system is defined by the sum
of the given forces and the sum of the moments of those forces at a par-
ticular point. A single tugboat could produce this system by exerting the
resultant force at a point of application that produces an equivalent moment.

P 433 F, —4j F*5J' MODELING and ANALYSIS:
1 - 3
2.5i JL Bk ‘ a. Force-Couple System at O. Resolve each of the given forces
50ft 901t 100 Z | 100] 100, 701 ingo components, as in Fig. 1 (kip units are used). The force-couple system

00 fi
Tno/f : o] & | wfn T ao equivalent to the given system of forces consists of a force R and a
3.54i couple M% defined as

¥y 3.54j R = SF
Fig. 1 Given forces resolved into = (2.50i — 4.33j) + (3.00i — 4.00j) + (—5.00j) + (3.54i + 3.54j)
components. = 9.04i — 9.79j
M§ = =(r X F)
= (—90i + 50j) X (2.50i — 4.33j)
M5 = —1035k + (100i + 70j) X (3.00i — 4.00j)

+ (400i + 70j) X (—5.00§)
+ (300i — 70j) X (3.54i + 3.54j)

o = (390 — 125 — 400 — 210 — 2000 + 1062 + 248)k
= —1035k
The equivalent force-couple system at O is thus (Fig. 2)
—9.79j
K R = (9.04 kips)i — (9.79 kips)j M, = —(1035 kip-fok
Fig. 2 Equivalent force-couple or
t t O.
system @ R = 13.33 kips 547.3° MY = 1035 kip-ft )

\ (continued) )




3.4 Simplifying Systems of Forces 131

( )

R —979j Remark: Since all the forces are contained in the plane of the figure,
you would expect the sum of their moments to be perpendicular to that

A
Y e plane. Note that you could obtain the moment of each force component
06 directly from the diagram by first forming the product of its magnitude
and perpendicular distance to O and then assigning to this product a posi-
2 tive or a negative sign, depending upon the sense of the moment.
Fig. 3 Point of application of b. Single Tugboat. The force exerted by a single tugboat must be equal

single tugboat to create same

. to R, and its point of application A must be such that the moment of R
effect as given force system.

about O is equal to M5, (Fig. 3). Observing that the position vector of A is
r = xi + 70j
you have
r Xx R =M}
(xi + 70§) X (9.04i — 9.79j) = —1035k
—x(9.79k — 633k = —1035k x = 41.1 ft

REFLECT and THINK: Reducing the given situation to that of a single
force makes it easier to visualize the overall effect of the tugboats in
maneuvering the ocean liner. But in practical terms, having four boats
applying force allows for greater control in slowing and turning a large
ship in a crowded harbor.

y Sample Problem 3.10

exerted by the cables with an equivalent force-couple system at A.

STRATEGY: First determine the relative position vectors drawn from
point A to the points of application of the various forces and resolve the
forces into rectangular components. Then sum the forces and moments.

MODELING and ANALYSIS: Note that Fz = (700 N)Azz where
BE _ 75i — 150 + 50k

e = pp 175

Using meters and newtons, the position and force vectors are

rpa = AB = 0.075i + 0.050k  Fj = 300i — 600j + 200k
ros = AC = 0.075i — 0050k F¢ = 707i — 707k
E(150 mm, —50 mm, 100 mm) Cpp = AD = 0.100i — 0.100j F, = 600i + 1039

The force-couple system at A equivalent to the given forces con-
sists of a force R = ZF and a couple M® = S(r X F). Obtain the
force R by adding respectively the x, y, and z components of the forces:

R = 2F = (1607 N)i + (439 N)j — (507 N)k

\ (continued) )
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Sample Problem 3.11

A square foundation mat supports the four columns shown. Determine the
magnitude and point of application of the resultant of the four loads.

y

40 kips

8 kips

6 ft \/B\{

STRATEGY: Start by reducing the given system of forces to a force-
couple system at the origin O of the coordinate system. Then reduce the
system further to a single force applied at a point with coordinates x, z.

(continued)

4 )
y The computation of MX is facilitated by expressing the moments of the
| forces in the form of determinants (Sec. 3.1F). Thus,
(17.68 N-m)j Qt) i j k
o 300 —600 200
(118.9 N-m)k C—» i J k
(1607 N)i .
o (30 N-m)i res X Fo = 10.075 0 —0.050| = 17.68j
707 0 =707
i j k
0 o rp/a X Fp = 10.100 -0.100 0| = 163.9k
* 600 1039 0
/ Adding these expressions, you have
“ Mf = S(r X F) = (30 N-m)i + (17.68 N-m)j + (118.9 N-m)k
Fig. 1 Rectangular components of Figure 1 shows the rectangular components of the force R and the couple M5,
equivalent force-couple system at 4. REFLECT and THINK: The determinant approach to calculating moments
shows its advantages in a general three-dimensional problem such as this.
. J
4 )
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—(80 kips)j

o) (240 kip-fo)i

—(280 kip-ft)k

Fig. 1

Force-couple system at O that
is equivalent to given force system.

y

—(80 kips)j

Fig. 2 Single force that is equivalent
to given force system.

MODELING: The force-couple system consists of a force R and a
couple vector M%, defined as
R = 5F M =3 X F)

ANALYSIS: After determining the position vectors of the points of

application of the various forces, you may find it convenient to arrange
the computations in tabular form. The results are shown in Fig. 1.

1, ft F, kips r X F, Kip-ft
0 —40j 0
—_  loi —12j — 120k
x 10i + 5k —8j 40i — 80k
4i + 10k —20j 200i — 80k
R = —80j M% = 240i — 280k

The force R and the couple vector M% are mutually perpendicular,
so you can reduce the force-couple system further to a single force R.
Select the new point of application of R in the plane of the mat and in
such a way that the moment of R about O is equal to M%. Denote the
position vector of the desired point of application by r and its coordinates
by x and z (Fig. 2). Then

\ .
X r X R = Mjp

(i + zk) X (—80j) = 240i — 280k
—80xk + 80zi = 240i — 280k

It follows that

—80x =

X

—280
3.50 ft

80z = 240
z = 3.00 ft

The resultant of the given system of forces is

R = 80 kips | at x = 3.50 ft, z = 3.00 ft
REFLECT and THINK: The fact that the given forces are all parallel
simplifies the calculations, so the final step becomes just a two-dimensional
analysis.

N
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In this chapter, we presented the effects of forces exerted on a rigid body. We
began by distinguishing between external and internal forces [Sec. 3.1A].
We then explained that, according to the principle of transmissibility, the
effect of an external force on a rigid body remains unchanged if we move that
force along its line of action [Sec. 3.1B]. In other words, two forces F and F’
acting on a rigid body at two different points have the same effect on that
body if they have the same magnitude, same direction, and same line of action
(Fig. 3.41). Two such forces are said to be equivalent.

Before proceeding with the discussion of equivalent systems of forces, we
introduced the concept of the vector product of two vectors [Sec. 3.1C]. We
defined the vector product

V=PXxQ

of the vectors P and Q as a vector perpendicular to the plane containing P and
Q (Fig. 3.42) with a magnitude of

V = PQ sin 6 3.1

and directed in such a way that a person located at the tip of V will observe
the rotation to be counterclockwise through 6, bringing the vector P in line
with the vector Q. The three vectors P, Q, and V—taken in that order—are
said to form a right-handed triad. 1t follows that the vector products Q X P
and P X Q are represented by equal and opposite vectors:

QXP=—-PXxQ (3.4)

It also follows from the definition of the vector product of two vectors that
the vector products of the unit vectors i, j, and k are

ixi=0 ixj=k jxi=—-k

and so on. You can determine the sign of the vector product of two unit vec-
tors by arranging in a circle and in counterclockwise order the three letters
representing the unit vectors (Fig. 3.43): The vector product of two unit vec-
tors is positive if they follow each other in counterclockwise order and nega-
tive if they follow each other in clockwise order.

The rectangular components of the vector product V of two vectors P and
Q are expressed [Sec. 3.1D] as

Vi=PQ. — PO,
Vy = PO, — PO, 3.9
V.= PO, — PO,

Fig. 3.41

Fig. 3.42

Fig. 3.43

(@)

/6

(b)



Fig. 3.44
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Fig. 3.45

Fig. 3.46

We can also express the components of a vector product as a determinant:

i j k
v=|p, P, P. (3.10)
Qx Qy Qz

We defined the moment of a force F about a point O [Sec. 3.1E] as the
vector product

My,=rXF @3.11)

where r is the position vector drawn from O to the point of application A of
the force F (Fig. 3.44). Denoting the angle between the lines of action of r
and F as 0, we found that the magnitude of the moment of F about O is

M, = rF sin § = Fd 3.12)

where d represents the perpendicular distance from O to the line of action of F.

The rectangular components of the moment M, of a force F [Sec. 3.1F] are

M, = yF. — ZFy
M, = zF, — xF, 3.18)
M, = xF, — yF,
where x, y, and z are the components of the position vector r (Fig. 3.45).

Using a determinant form, we also wrote

i j k
Mo=|x y z (3.19)
F, F, F,

In the more general case of the moment about an arbitrary point B of a force
F applied at A, we had

i J k
Mg = (Xu5  Yas Zam (3.21)
F, 17 I

where x4,5, Y43, and z43 denote the components of the vector r,:

Xap = XA — XB Yas = YA — VB ZA/B = %A — ZB

In the case of problems involving only two dimensions, we can assume the force F
lies in the xy plane. Its moment M about a point B in the same plane is
perpendicular to that plane (Fig. 3.46) and is completely defined by the scalar

Mp = (x4 — xB)Fy — (va — yp)F: (3.23)

Various methods for computing the moment of a force about a point were
illustrated in Sample Probs. 3.1 through 3.4.

The scalar product of two vectors P and Q [Sec. 3.2A], denoted by P - Q,
is defined as the scalar quantity

P-Q = PQcosd 3.24)



where 6 is the angle between P and Q (Fig. 3.47). By expressing the scalar
product of P and Q in terms of the rectangular components of the two vectors,
we determined that

P-Q=PrP0O + PO + PO (3.28)

We obtain the projection of a vector P on an axis OL (Fig. 3.48) by forming
the scalar product of P and the unit vector A along OL. We have

Pop =P - 3.34)
Using rectangular components, this becomes
Py, = P, cos 0, + P, cos 6, + P, cos 0, 3.35)

where 0,, 0, and 0, denote the angles that the axis OL forms with the coor-
dinate axes.

We defined the mixed triple product of the three vectors S, P, and Q as the
scalar expression

S- P X Q) (3.36)

obtained by forming the scalar product of S with the vector product of P and
Q [Sec. 3.2B]. We showed that

S, S, 8.
S-(PxQ)=|P, P, P, (3.39)
Q. © @

where the elements of the determinant are the rectangular components of the
three vectors.

We defined the moment of a force F about an axis OL [Sec. 3.2C] as the
projection OC on OL of the moment My, of the force F (Fig. 3.49), i.e., as
the mixed triple product of the unit vector A, the position vector r, and the
force F:

Mo, =% My, =4 XF) (3.40)

Fig. 3.49




The determinant form for the mixed triple product is

Ar Ay A
M oL — | X y Z (3.41)
F, F, F.

where

As» 4y, A, = direction cosines of axis OL
X, y, z = components of r

F., F,, F, = components of F

An example of determining the moment of a force about a skew axis appears
in Sample Prob. 3.5.

Two forces ¥ and —F having the same magnitude, parallel lines of action,
and opposite sense are said to form a couple [Sec. 3.3A]. The moment of a
couple is independent of the point about which it is computed; it is a vector M
perpendicular to the plane of the couple and equal in magnitude to the product
of the common magnitude F of the forces and the perpendicular distance d
between their lines of action (Fig. 3.50).

B

Fig. 3.50

Two couples having the same moment M are equivalent, i.e., they have the
same effect on a given rigid body [Sec. 3.3B]. The sum of two couples is
itself a couple [Sec. 3.3C], and we can obtain the moment M of the resultant
couple by adding vectorially the moments M; and M, of the original couples
[Sample Prob. 3.6]. It follows that we can represent a couple by a vector,
called a couple vector, equal in magnitude and direction to the moment M
of the couple [Sec. 3.3D]. A couple vector is a free vector that can be attached
to the origin O if so desired and resolved into components (Fig. 3.51).

y y y
(0 /O‘— L
X X X
~
% % %
@ ®) © @

Fig. 3.51

Any force F acting at a point A of a rigid body can be replaced by a force-
couple system at an arbitrary point O consisting of the force F applied at O



and a couple of moment M, which is equal to the moment about O of the
force F in its original position [Sec. 3.3E]. Note that the force F and the couple
vector M, are always perpendicular to each other (Fig. 3.52).

Fig. 3.52

It follows [Sec. 3.4A] that any system of forces can be reduced to a force-
couple system at a given point O by first replacing each of the forces of the
system by an equivalent force-couple system at O (Fig. 3.53) and then adding
all of the forces and all of the couples to obtain a resultant force R and a
resultant couple vector M5 [Sample Probs. 3.8 through 3.11]. In general, the
resultant R and the couple vector M%, will not be perpendicular to each other.

(@) (b) (©)
Fig. 3.53

We concluded [Sec. 3.4B] that, as far as rigid bodies are concerned, two
systems of forces, Fy, Fy, Fs, . . . and ¥}, F5, F5, . . ., are equivalent if, and

only if,

SF = SF/ and SM, = M), 3.55)

If the resultant force R and the resultant couple vector MY, are perpendicular
to each other, we can further reduce the force-couple system at O to a single
resultant force [Sec. 3.4C]. This is the case for systems consisting of
(a) concurrent forces (cf. Chap. 2), (b) coplanar forces [Sample Probs. 3.8
and 3.9], or (c) parallel forces [Sample Prob. 3.11]. If the resultant R and the
couple vector MY are not perpendicular to each other, the system cannot be
reduced to a single force.
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Equilibrium of Rigid
Bodies

The Tianjin Eye is a Ferris wheel that straddles a bridge over the
Hai River in China. The structure is designed so that the support
reactions at the wheel bearings as well as those at the base of
the frame maintain equilibrium under the effects of vertical
gravity and horizontal wind forces.
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4.2 TWO SPECIAL CASES

4.2A Equilibrium of a Two-Force
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Body

4.3 EQUILIBRIUM IN THREE
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4.3A Rigid-Body Equilibrium
in Three Dimensions
4.3B Reactions for a Three-
Dimensional Structure
4.4 FRICTION FORCES
4.4A The Laws of Dry Friction
4.4B Coefficients of Friction
4.4C Angles of Friction
4.4D Problems Involving Dry
Friction

4 Objectives )

* Analyze the static equilibrium of rigid bodies in two
and three dimensions.

® Consider the attributes of a properly drawn free-body
diagram, an essential tool for the equilibrium analysis
of rigid bodies.

* Examine rigid bodies supported by statically indeter-
minate reactions and partial constraints.

* Study two cases of particular interest: the equilibrium
of two-force and three-force bodies.

* Examine the laws of dry friction and use these to
consider the equilibrium of rigid bodies where friction
k exists at contact surfaces. /

Introduction

We saw in Chapter 3 how to reduce the external forces acting on a rigid
body to a force-couple system at some arbitrary point O. When the force
and the couple are both equal to zero, the external forces form a system
equivalent to zero, and the rigid body is said to be in equilibrium.

We can obtain the necessary and sufficient conditions for the equi-
librium of a rigid body by setting R and M§ equal to zero in the relations
of Eq. (3.50) of Sec. 3.4A:

3F =0 SMp=2@ XF)=0 @.1)
Resolving each force and each moment into its rectangular components,
we can replace these vector equations for the equilibrium of a rigid body
with the following six scalar equations:

SF, =0
SM, =0

SF, =0
SM, =0

SF, =0 @.2)
SM, =0 @.3)

We can use these equations to determine unknown forces applied to the
rigid body or unknown reactions exerted on it by its supports. Note that
Egs. (4.2) express the fact that the components of the external forces in
the x, y, and z directions are balanced; Eqs. (4.3) express the fact that the
moments of the external forces about the x, y, and z axes are balanced.
Therefore, for a rigid body in equilibrium, the system of external forces
imparts no translational or rotational motion to the body.

In order to write the equations of equilibrium for a rigid body, we
must first identify all of the forces acting on that body and then draw the
corresponding free-body diagram. In this chapter, we first consider the
equilibrium of two-dimensional structures subjected to forces contained in
their planes and study how to draw their free-body diagrams. In addition to
the forces applied to a structure, we must also consider the reactions exerted
on the structure by its supports. A specific reaction is associated with each
type of support. You will see how to determine whether the structure is



properly supported, so that you can know in advance whether you can solve
the equations of equilibrium for the unknown forces and reactions.

Later in this chapter, we consider the equilibrium of three-dimensional
structures, and we provide the same kind of analysis to these structures and
their supports. This will be followed by a discussion of equilibrium of rigid
bodies supported on surfaces in which friction acts to restrain motion of one
surface with respect to the other.

Free-Body Diagrams

In solving a problem concerning a rigid body in equilibrium, it is essential
to consider all of the forces acting on the body. It is equally important to
exclude any force that is not directly applied to the body. Omitting a force
or adding an extraneous one would destroy the conditions of equilibrium.
Therefore, the first step in solving the problem is to draw a free-body
diagram of the rigid body under consideration.

We have already used free-body diagrams on many occasions in
Chap. 2. However, in view of their importance to the solution of equilib-
rium problems, we summarize here the steps you must follow in drawing
a correct free-body diagram.

1. Start with a clear decision regarding the choice of the free body to be
analyzed. Mentally, you need to detach this body from the ground and
separate it from all other bodies. Then you can sketch the contour of
this isolated body.

Body weight
|
y Tractor weight
Boom weight

Body

Rear wheel reaction, horizontal <
g\

Bucket load —
T x

Rear wheel reaction, vertical Front wheel reaction

Reactions

Photo 4.1 A tractor supporting a bucket load. As shown, its
free-body diagram should include all external forces acting on
the tractor.

McGraw-Hill Education/Lucinda Dowell, photographer
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Boom reaction, vertical

Boom reaction, horizontal

Reactions

Piston reaction

Boom weight  Bucket load

| Body weight | | Load |

Photo 4.2 Tractor bucket and boom. In
Chap. 6, we will see how to determine the
internal forces associated with interconnected
members such as these using free-body
diagrams like the one shown.

© McGraw-Hill Education/Lucinda Dowell, photographer
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2. Indicate all external forces on the free-body diagram. These forces rep-
resent the actions exerted on the free body by the ground and by the
bodies that have been detached. In the diagram, apply these forces at
the various points where the free body was supported by the ground or
was connected to the other bodies. Generally, you should include the
weight of the free body among the external forces, since it represents
the attraction exerted by the earth on the various particles forming the
free body. You will see in Chapter 5 that you should draw the weight
so it acts at the center of gravity of the body. If the free body is made
of several parts, do not include the forces the various parts exert on
each other among the external forces. These forces are internal forces
as far as the free body is concerned.

3. Clearly mark the magnitudes and directions of the known external forces
on the free-body diagram. Recall that when indicating the directions
of these forces, the forces are those exerted on, and not by, the free
body. Known external forces generally include the weight of the free
body and forces applied for a given purpose.

4. Unknown external forces usually consist of the reactions through which
the ground and other bodies oppose a possible motion of the free body.
The reactions constrain the free body to remain in the same position;
for that reason, they are sometimes called constraining forces. Reactions
are exerted at the points where the free body is supported by or con-
nected to other bodies; you should clearly indicate these points. Reac-
tions are discussed in detail in Secs. 4.1 and 4.3.

5. The free-body diagram should also include dimensions, since these may
be needed for computing moments of forces. Any other detail, however,
should be omitted.

4.1 EQUILIBRIUM IN TWO
DIMENSIONS

In the first part of this chapter, we consider the equilibrium of two-dimensional
structures; i.e., we assume that the structure being analyzed and the forces
applied to it are contained in the same plane. Clearly, the reactions needed
to maintain the structure in the same position are also contained in this plane.

4.1A Reactions for a Two-Dimensional
Structure

The reactions exerted on a two-dimensional structure fall into three cat-
egories that correspond to three types of supports or connections.

1. Reactions Equivalent to a Force with a Known Line of Action. Sup-
ports and connections causing reactions of this type include rollers,
rockers, frictionless surfaces, short links and cables, collars on friction-
less rods, and frictionless pins in slots. Each of these supports and
connections can prevent motion in one direction only. Figure 4.1 shows
these supports and connections together with the reactions they produce.
Each reaction involves one unknown—specifically, the magnitude of the
reaction. In problem solving, you should denote this magnitude by an
appropriate letter. The line of action of the reaction is known and should
be indicated clearly in the free-body diagram.



. . Number of
Support or Connection Reaction Unar 0
Frictionless Force with known
Rollers Rocker surface line of action
perpendicular
to surface

™ = |

Short cable Short link Force with known
line of action
along cable or link

90° /
O W
/ 1
7
/
/
Collar on Force with known

frictionless rod Frictionless pin in slot line of action

perpendicular
to rod or slot

or
O 2
|
o

Frictionless pin Rough surface Force of unknown
or hinge direction

i

Force and couple

Fixed support

Fig. 4.1 Reactions of supports and connections in two dimensions.

The sense of the reaction must be as shown in Fig. 4.1 for cases of

a frictionless surface (toward the free body) or a cable (away from the

free body). The reaction can be directed either way in the cases of

double-track rollers, links, collars on rods, or pins in slots. Generally, we

assume that single-track rollers and rockers are reversible, so the cor-
responding reactions can be directed either way.

2. Reactions Equivalent to a Force of Unknown Direction and Magni-

tude. Supports and connections causing reactions of this type include

4.1 Equilibrium in Two Dimensions 153

This rocker bearing
supports the weight
of a bridge. The
convex surface of
the rocker allows the
bridge to move
slightly horizontally.

Links are often used
to support suspended
spans of highway
bridges.

Force applied to the
slider exerts a
normal force on the
rod, causing the
window to open.

Pin supports are
* common on bridges
and overpasses.

This cantilever
support is fixed at one
. end and extends out
into space at the

other end.

Courtesy of Godden Collection. National
Information Service for Earthquake Engineer-
ing, University of California, Berkeley
Courtesy of Michigan Department of
Transportation

© McGraw-Hill Education/Lucinda Dowell,
photographer

Courtesy of Michigan Department of
Transportation

© Richard Ellis/Alamy
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Fig. 4.2 (a) A truss supported by a pin and
a roller; (b) free-body diagram of the truss.

frictionless pins in fitted holes, hinges, and rough surfaces. They can
prevent translation of the free body in all directions, but they cannot
prevent the body from rotating about the connection. Reactions of this
group involve two unknowns and are usually represented by their x and
y components. In the case of a rough surface, the component normal to
the surface must be directed away from the surface.

3. Reactions Equivalent to a Force and a Couple. These reactions are
caused by fixed supports that oppose any motion of the free body and
thus constrain it completely. Fixed supports actually produce forces over
the entire surface of contact; these forces, however, form a system that
can be reduced to a force and a couple. Reactions of this group involve
three unknowns usually consisting of the two components of the force
and the moment of the couple.

When the sense of an unknown force or couple is not readily appar-
ent, do not attempt to determine it. Instead, arbitrarily assume the sense
of the force or couple; the sign of the answer will indicate whether the
assumption is correct or not. (A positive answer means the assumption is
correct, while a negative answer means the assumption is incorrect.)

4.1B Rigid-Body Equilibrium
in Two Dimensions

The conditions stated in Sec. 4.1A for the equilibrium of a rigid body
become considerably simpler for the case of a two-dimensional structure.
Choosing the x and y axes to be in the plane of the structure, we have

F.=0 M, =M, =0 M, = M,

for each of the forces applied to the structure. Thus, the six equations of
equilibrium stated in Sec. 4.1 reduce to three equations:

SF, =0 SF, =0 SM, = 0 @.4)

Since 2M, = 0 must be satisfied regardless of the choice of the origin O,
we can write the equations of equilibrium for a two-dimensional structure
in the more general form

Equations of equilibrium in two dimensions

SF, =0 SF, =0

g SM, = 0 @.5)

where A is any point in the plane of the structure. These three equations
can be solved for no more than three unknowns.

You have just seen that unknown forces include reactions and that
the number of unknowns corresponding to a given reaction depends upon
the type of support or connection causing that reaction. Referring to
Fig. 4.1, note that you can use the equilibrium equations (4.5) to determine
the reactions associated with two rollers and one cable, or one fixed
support, or one roller and one pin in a fitted hole, etc.

For example, consider Fig. 4.2a, in which the truss shown is in equi-
librium and is subjected to the given forces P, Q, and S. The truss is held
in place by a pin at A and a roller at B. The pin prevents point A from moving
by exerting a force on the truss that can be resolved into the components A,
and A,. The roller keeps the truss from rotating about A by exerting the
vertical force B. The free-body diagram of the truss is shown in Fig. 4.2b;
it includes the reactions A,, A,, and B as well as the applied forces P, Q,
and S (in x and y component form) and the weight W of the truss.



Since the truss is in equilibrium, the sum of the moments about A of all
of the forces shown in Fig. 4.2b is zero, or 2M, = 0. We can use this equation
to determine the magnitude B because the equation does not contain A, or A,
Then, since the sum of the x components and the sum of the y components
of the forces are zero, we write the equations 2F, = 0 and 2F, = 0. From
these equations, we can obtain the components A, and A,, respectively.

We could obtain an additional equation by noting that the sum of
the moments of the external forces about a point other than A is zero. We
could write, for instance, My = 0. This equation, however, does not
contain any new information, because we have already established that the
system of forces shown in Fig. 4.2b is equivalent to zero. The additional
equation is not independent and cannot be used to determine a fourth
unknown. It can be useful, however, for checking the solution obtained
from the original three equations of equilibrium.

Although the three equations of equilibrium cannot be augmented
by additional equations, any of them can be replaced by another equation.
Properly chosen, the new system of equations still describes the equilib-
rium conditions but may be easier to work with. For example, an alterna-
tive system of equations for equilibrium is

EFX =0 EMA =0 EMB =0 (4.6)

Here the second point about which the moments are summed (in this case,
point B) cannot lie on the line parallel to the y axis that passes through
point A (Fig. 4.2b). These equations are sufficient conditions for the equi-
librium of the truss. The first two equations indicate that the external forces
must reduce to a single vertical force at A. Since the third equation requires
that the moment of this force be zero about a point B that is not on its line
of action, the force must be zero, and the rigid body is in equilibrium.
A third possible set of equilibrium equations is

SM, =0 SMy =0 SMe =0 @.7)

where the points A, B, and C do not lie in a straight line (Fig. 4.2b). The first
equation requires that the external forces reduce to a single force at A; the
second equation requires that this force pass through B; and the third equation
requires that it pass through C. Since the points A, B, C do not lie in a straight
line, the force must be zero, and the rigid body is in equilibrium.

Notice that the equation XM, = 0, stating that the sum of the moments
of the forces about pin A is zero, possesses a more definite physical meaning
than either of the other two equations (4.7). These two equations express a
similar idea of balance but with respect to points about which the rigid body
is not actually hinged. They are, however, as useful as the first equation. The
choice of equilibrium equations should not be unduly influenced by their
physical meaning. Indeed, in practice, it is desirable to choose equations of
equilibrium containing only one unknown, since this eliminates the necessity
of solving simultaneous equations. You can obtain equations containing only
one unknown by summing moments about the point of intersection of the lines
of action of two unknown forces or, if these forces are parallel, by summing
force components in a direction perpendicular to their common direction.

For example, in Fig. 4.3, in which the truss shown is held by rollers
at A and B and a short link at D, we can eliminate the reactions at A and B
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Fig. 4.3 (a) A truss supported by two rollers
and a short link; (b) free-body diagram of
the truss.
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Fig. 4.4 (a) Truss with statically
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Fig. 4.5 (a) Truss with partial constraints;

(b) free-body diagram.

by summing x components. We can eliminate the reactions at A and D by
summing moments about C and the reactions at B and D by summing
moments about D. The resulting equations are

EFXZO EMCZO EMDZO

Each of these equations contains only one unknown.

4.1C Statically Indeterminate
Reactions and Partial Constraints

In the two examples considered in Figs. 4.2 and 4.3, the types of supports
used were such that the rigid body could not possibly move under the
given loads or under any other loading conditions. In such cases, the rigid
body is said to be completely constrained. Recall that the reactions cor-
responding to these supports involved three unknowns and could be deter-
mined by solving the three equations of equilibrium. When such a situation
exists, the reactions are said to be statically determinate.

Consider Fig. 4.4a, in which the truss shown is held by pins at A
and B. These supports provide more constraints than are necessary to keep
the truss from moving under the given loads or under any other loading
conditions. Note from the free-body diagram of Fig. 4.4b that the corre-
sponding reactions involve four unknowns. We pointed out in Sec. 4.1D
that only three independent equilibrium equations are available; therefore,
in this case, we have more unknowns than equations. As a result, we cannot
determine all of the unknowns. The equations XM, = 0 and =My = 0
yield the vertical components B, and A,, respectively, but the equation
2F, = 0 gives only the sum A, + B, of the horizontal components of the
reactions at A and B. The components A, and B, are statically indeterminate.
We could determine their magnitudes by considering the deformations pro-
duced in the truss by the given loading, but this method is beyond the
scope of statics and belongs to the study of mechanics of materials.

Let’s consider the opposite situation. The supports holding the truss
shown in Fig. 4.5a consist of rollers at A and B. Clearly, the constraints pro-
vided by these supports are not sufficient to keep the truss from moving.
Although they prevent any vertical motion, the truss is free to move horizon-
tally. The truss is said to be partially constrained.” From the free-body dia-
gram in Fig. 4.5b, note that the reactions at A and B involve only two
unknowns. Since three equations of equilibrium must still be satisfied, we have
Jfewer unknowns than equations. In such a case, one of the equilibrium equa-
tions will not be satisfied in general. The equations ZM, = 0 and ZMz = 0
can be satisfied by a proper choice of reactions at A and B, but the equation
2F, = 0 is not satisfied unless the sum of the horizontal components of the
applied forces happens to be zero. We thus observe that the equilibrium of
the truss of Fig. 4.5 cannot be maintained under general loading conditions.

From these examples, it would appear that, if a rigid body is to be
completely constrained and if the reactions at its supports are to be statically
determinate, there must be as many unknowns as there are equations of
equilibrium. When this condition is not satisfied, we can be certain that either
the rigid body is not completely constrained or that the reactions at its supports

fPartially constrained bodies are often referred to as unstable. However, to avoid confusion
between this type of instability, due to insufficient constraints, and the type of instability
considered in Chap. 16, which relates to the behavior of columns, we shall restrict the use
of the words stable and unstable to the latter case.



are not statically determinate. It is also possible that the rigid body is not
completely constrained and that the reactions are statically indeterminate.

You should note, however, that, although this condition is necessary, it
is not sufficient. In other words, the fact that the number of unknowns is equal
to the number of equations is no guarantee that a body is completely con-
strained or that the reactions at its supports are statically determinate. Consider
Fig. 4.6a, which shows a truss held by rollers at A, B, and E. We have three
unknown reactions of A, B, and E (Fig. 4.6b), but the equation 2F, = 0 is
not satisfied unless the sum of the horizontal components of the applied forces
happens to be zero. Although there are a sufficient number of constraints, these
constraints are not properly arranged, so the truss is free to move horizontally.
We say that the truss is improperly constrained. Since only two equilibrium
equations are left for determining three unknowns, the reactions are statically
indeterminate. Thus, improper constraints also produce static indeterminacy.

The truss shown in Fig. 4.7 is another example of improper constraints—
and of static indeterminacy. This truss is held by a pin at A and by rollers
at B and C, which altogether involve four unknowns. Since only three inde-
pendent equilibrium equations are available, the reactions at the supports are
statically indeterminate. On the other hand, we note that the equation
M, = 0 cannot be satisfied under general loading conditions, since the lines
of action of the reactions B and C pass through A. We conclude that the
truss can rotate about A and that it is improperly constrained."

The examples of Figs. 4.6 and 4.7 lead us to conclude that

A rigid body is improperly constrained whenever the supports (even
though they may provide a sufficient number of reactions) are arranged
in such a way that the reactions must be either concurrent or parallel.*

In summary, to be sure that a two-dimensional rigid body is com-
pletely constrained and that the reactions at its supports are statically
determinate, you should verify that the reactions involve three—and only
three—unknowns and that the supports are arranged in such a way that
they do not require the reactions to be either concurrent or parallel.

Supports involving statically indeterminate reactions should be used
with care in the design of structures and only with a full knowledge of
the problems they may cause. On the other hand, the analysis of structures
possessing statically indeterminate reactions often can be partially carried
out by the methods of statics. In the case of the truss of Fig. 4.4, for
example, we can determine the vertical components of the reactions at A
and B from the equilibrium equations.

For obvious reasons, supports producing partial or improper constraints
should be avoided in the design of stationary structures. However, a partially
or improperly constrained structure will not necessarily collapse; under par-
ticular loading conditions, equilibrium can be maintained. For example, the
trusses of Figs. 4.5 and 4.6 will be in equilibrium if the applied forces P, Q,
and S are vertical. Besides, structures designed to move should be only
partially constrained. A railroad car, for instance, would be of little use if it
were completely constrained by having its brakes applied permanently.

"Rotation of the truss about A requires some “play” in the supports at B and C. In practice
such play will always exist. In addition, we note that if the play is kept small, the displacements
of the rollers B and C and, thus, the distances from A to the lines of action of the reactions B
and C will also be small. The equation M, = 0 then requires that B and C be very large, a
situation which can result in the failure of the supports at B and C.

“Because this situation arises from an inadequate arrangement or geometry of the supports,
it is often referred to as geometric instability.
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Fig. 4.6 (a) Truss with improper constraints;
(b) free-body diagram.
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Fig. 4.7 (a) Truss with improper constraints;
(b) free-body diagram.



158 Equilibrium of Rigid Bodies

-

B B 9.81kN
2m+l<—4m

Fig. 1 Free-body diagram of crane.

5 9.81 k
107.1 kN EE
2m*l<—4m

Fig. 2 Free-body diagram of crane
with solved reactions.

Sample Problem 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate.
It is held in place by a pin at A and a rocker at B. The center of gravity
of the crane is located at G. Determine the components of the reactions
at A and B.

STRATEGY: Draw a free-body diagram to show all of the forces acting
on the crane, then use the equilibrium equations to calculate the values of
the unknown forces.

MODELING:

Free-Body Diagram. By multiplying the masses of the crane and of
the crate by g = 9.81 m/s”, you obtain the corresponding weights—that is,
9810 N or 9.81 kN, and 23 500 N or 23.5 kN (Fig. 1). The reaction at pin
A is a force of unknown direction; you can represent it by components A,
and A,. The reaction at the rocker B is perpendicular to the rocker surface;
thus, it is horizontal. Assume that A,, A,, and B act in the directions shown.

ANALYSIS:

Determination of B. The sum of the moments of all external forces
about point A is zero. The equation for this sum contains neither A, nor

A,, since the moments of A, and A, about A are zero. Multiplying the

magnitude of each force by its perpendicular distance from A, you have
+\EM, = 0: +B(1.5 m) — (9.81 kN)(2 m) — (23.5 kN)(6 m) = 0
B = +107.1 kN B = 107.1 kN —

Since the result is positive, the reaction is directed as assumed.

Determination of A,. Determine the magnitude of A, by setting the
sum of the horizontal components of all external forces to zero.
L5F, = 0: A, +B=0

A, + 107.1 kN = 0

A, = —107.1 kN A, = 107.1 kN «

Since the result is negative, the sense of A, is opposite to that assumed
originally.

Determination of A,. The sum of the vertical components must also
equal zero. Therefore,
HSF, = 0: A, — 981 kN — 235 kN = 0

A, = +333 kN A, =333kN"T

Adding the components A, and A, vectorially, you can find that the
reaction at A is 112.2 kN =.17.3°.

REFLECT and THINK: You can check the values obtained for the
reactions by recalling that the sum of the moments of all the external
forces about any point must be zero. For example, considering point B
(Fig. 2), you can show

+\2Mp = —(9.81 kN)(2 m) — (23.5 kN)(6 m) + (107.1 kN)(1.5 m) = 0

J
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Free-body diagram of beam.

Sample Problem 4.2

Three loads are applied to a beam as shown. The beam is supported by a
roller at A and by a pin at B. Neglecting the weight of the beam, determine
the reactions at A and B when P = 15 kips.

STRATEGY: Draw a free-body diagram of the beam, then write the
equilibrium equations, first summing forces in the x direction and then
summing moments at A and at B.

MODELING:

Free-Body Diagram. The reaction at A is vertical and is denoted by
A (Fig. 1). Represent the reaction at B by components B, and B,. Assume
that each component acts in the direction shown.

ANALYSIS:

Equilibrium Equations. Write the three equilibrium equations and
solve for the reactions indicated:

+’SZMA =0:
—(15 kips)(3 ft) + B,(9 ft) — (6 kips)(11 ft) — (6 kips)(13 ft) = 0
B, = +21.0 kips B, = 21.0 kips 1

+’ﬁEMB = 0:
—A(9 ft) + (15 kips)(6 ft) — (6 kips)(2 ft) — (6 kips)(4 ft) = 0
A = +6.00 kips A = 6.00 kips 1

REFLECT and THINK: Check the results by adding the vertical com-
ponents of all of the external forces:

+12F, = +6.00 kips — 15 kips + 21.0 kips — 6 kips — 6 kips = 0

Remark. In this problem, the reactions at both A and B are vertical,
however, these reactions are vertical for different reasons. At A, the beam
is supported by a roller; hence, the reaction cannot have any horizontal
component. At B, the horizontal component of the reaction is zero because
it must satisfy the equilibrium equation 2F, = 0 and none of the other
forces acting on the beam has a horizontal component.

You might have noticed at first glance that the reaction at B was
vertical and dispensed with the horizontal component B,. This, however,
is bad practice. In following it, you run the risk of forgetting the compo-
nent B, when the loading conditions require such a component (i.e., when
a horizontal load is included). Also, you found the component B, to be
zero by using and solving an equilibrium equation, 2F, = 0. By setting
B, equal to zero immediately, you might not realize that you actually made
use of this equation. Thus, you might lose track of the number of equa-
tions available for solving the problem.

~
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4980 1b

1758 Ib

Fig. 2 Free-body diagram
of car with solved reactions.

Fig. 1 Free-body diagram of car.

Sample Problem 4.3

A loading car is at rest on a track forming an angle of 25° with the verti-
cal. The gross weight of the car and its load is 5500 Ib, and it acts at a
point 30 in. from the track, halfway between the two axles. The car is held
by a cable attached 24 in. from the track. Determine the tension in the
cable and the reaction at each pair of wheels.

STRATEGY: Draw a free-body diagram of the car to determine the
unknown forces, and write equilibrium equations to find their values, sum-
ming moments at A and B and then summing forces.

MODELING:

Free-Body Diagram. The reaction at each wheel is perpendicular to
the track, and the tension force T is parallel to the track. Therefore, for
convenience, choose the x axis parallel to the track and the y axis perpen-
dicular to the track (Fig. 1). Then resolve the 5500-1b weight into x and
y components.

W, = +(5500 1b) cos 25° = +4980 1b
W, = —(5500 Ib) sin 25° = —2320 b

ANALYSIS:

Equilibrium Equations. Take moments about A to eliminate T and R,
from the computation.

+YSM, = 0: —(2320 1b)(25 in.) — (4980 1b)(6 in.) + Ry(50 in.) = O
R, = +1758 Ib R, = 1758 Ib

Then take moments about B to eliminate T and R, from the computation.

+\SMy = 0: (2320 1b)(25 in.) — (4980 1b)(6 in.) — R,(50 in.) = 0
R, = +562 1b R, = 562 1b/

Determine the value of 7' by summing forces in the x direction.

N+H2EF, = 0 +49801b — T =0
T = +4980 Ib T = 4980 Ib™

Figure 2 shows the computed values of the reactions.

REFLECT and THINK: You can verify the computations by summing
forces in the y direction.

A+3F, = 4562 1b + 1758 1b — 2320 1b = 0

You could also check the solution by computing moments about any point
other than A or B.
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Sample Problem 4.4

The frame shown supports part of the roof of a small building. Knowing
that the tension in the cable is 150 kN, determine the reaction at the
fixed end E.

STRATEGY: Draw a free-body diagram of the frame and of the cable
BDF. The support at E is fixed, so the reactions here include a moment;
to determine its value, sum moments about point E.

MODELING:

Free-Body Diagram. Represent the reaction at the fixed end E by
the force components E, and E, and the couple M (Fig. 1). The other
forces acting on the free body are the four 20-kN loads and the 150-kN
force exerted at end F of the cable.

D

@

A B |
l

20kN 20 kN 20 kN 20 kN
| | |

18m18m 18m 18m g

E =\ L

" ML\“J— 45m 4—‘

Fig. 1 Free-body diagram of frame.
ANALYSIS:
Equilibrium Equations. First note that
DF = y/(45m)> + (6m)’= 7.5 m

Then you can write the three equilibrium equations and solve for the
reactions at E.

4.
55F, = 0: E + %(150 kN) =0
E, = —90.0 kN E, = 90.0 kN «—
6
+3F, = 0: E, = 4Q20kN) = —=(150kN) = 0
E, = +200 kN E, = 200 kN 1

NEMp = 0: (20 kKN)(7.2 m) + (20 kN)(5.4 m) + (20 kN)(3.6 m)
6
+(20 kN)(L.8 m) — — (150 kN)(4.5 m) + M = 0
My = +180.0 kN'm M, = 180.0 kN-m
REFLECT and THINK: The cable provides a fourth constraint, making
this situation statically indeterminate. This problem therefore gave us the
value of the cable tension, which would have been determined by means

other than statics. We could then use the three available independent static
equilibrium equations to solve for the remaining three reactions.




162

Equilibrium of Rigid Bodies

/

Sample Problem 4.5

A 400-1b weight is attached at A to the lever shown. The constant of the
spring BC is k = 250 1b/in., and the spring is unstretched when 6 = 0.
Determine the position of equilibrium.

k = 250 Ib/in.

W =400 1b

STRATEGY: Draw a free-body diagram of the lever and cylinder to
show all forces acting on the body (Fig. 1), then sum moments about O.
Your final answer should be the angle 6.

MODELING:

Free-Body Diagram. Denote by s the deflection of the spring from
its unstretched position and note that s = rf. Then F = ks = krf.

ANALYSIS:

Equilibrium Equation. Sum the moments of W and F about O to
eliminate the reactions supporting the cylinder. The result is

+\ZM, = 0: Wi sin 0 — r(krf) = 0 sin 6 = %9
Substituting the given data yields
sing = OGN, o703
(400 1b)(8 in.)
Solving by trial and error, the angle is 0=0 6 = 80.3°

REFLECT and THINK: The weight could represent any vertical force
acting on the lever. The key to the problem is to express the spring force
as a function of the angle 6.

Unstretched
position

WA ]

Fig. 1 Free-body diagram of the lever
and cylinder.




Problems

4.1 For the beam and loading shown, determine (a) the reaction at A,
(b) the tension in cable BC.

I5Ib 201b 351b 201b  151b

R

@ B

6 in~~ 8 in.—{<— 8 in.—{<6 in.»l
Fig. P4.1

4.2 A 3200-1b forklift truck is used to lift a 1700-1b crate. Determine the
reaction at each of the two (a) front wheels A, (b) rear wheels B.

Ge .
Io
o |
k ’
AW
S
<16 in.—> 24 in. T 2in. 1
Fig. P4.2

4.3 A gardener uses a 60-N wheelbarrow to transport a 250-N bag of
fertilizer. What force must she exert on each handle?




4.4 A load of lumber of weight W = 25 kN is being raised by a mobile
crane. Knowing that the tension is 25 kN in all portions of cable
AEF and that the weight of boom ABC is 3 kN, determine (a) the
tension in rod CD, (b) the reaction at pin B.

0.6m 0.4 m

o/l

H VK
|<—2.0m—>| |<—0,5m

Fig. P4.4

4.5 Three loads are applied as shown to a light beam supported by cables
attached at B and D. Neglecting the weight of the beam, determine
the range of values of Q for which neither cable becomes slack when

P=0.
7.5 kN

P Q

\ 4 Ve Y
A E

'B D
0.5m —| 1.5m
0.75 m 0.75m

Fig. P4.5 and P4.6

4.6 Three loads are applied as shown to a light beam supported by cables
attached at B and D. Knowing that the maximum allowable tension
in each cable is 12 kN and neglecting the weight of the beam,
determine the range of values of Q for which the loading is safe
when P = 0.

4.7 For the beam and loading shown, determine the range of the distance
a for which the reaction at B does not exceed 100 Ib downward or
200 Ib upward.

a 6 in
 / b
AC o o OB
DL ¢ ,_/ \_|
| lSOlb |
8 in. T 4in ! 12 in 1




4.8 For the beam of Sample Prob. 4.2, determine the range of values of
P for which the beam will be safe, knowing that the maximum allow-
able value of each of the reactions is 25 kips and that the reaction
at A must be directed upward.

4.9 The 40-ft boom AB weighs 2 kips; the distance from axle A to the
center of gravity G of the boom is 20 ft. For the position shown,
determine (a) the tension T in the cable, (b) the reaction at A.

4.10 The lever BCD is hinged at C and attached to a control rod at B. If  Fig. p4.9
P = 100 Ib, determine (@) the tension in rod AB, (b) the reaction at C.

4 in.

Fig. P4.10 and P4.11

4.11 The lever BCD is hinged at C and attached to a control rod at B.
Determine the maximum force P that can be safely applied at D if
the maximum allowable value of the reaction at C is 250 1b.

4.12 A lever AB is hinged at C and attached to a control cable at A. If
the lever is subjected to a 500-N horizontal force at B, determine
(a) the tension in the cable, (b) the reaction at C.

75 1b

|<— 10 in.—{<— 10 in.
B
—’— D) o

12 in.

Fig. P4.12

4.13 Determine the reactions at A and B when (a) a = 0, (b) a = 90°,
(¢) a = 30°. Fig. P4.13
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Fig. P4.18

4.14 The bracket BCD is hinged at C and attached to a control cable at B.
For the loading shown, determine (@) the tension in the cable, (b) the
reaction at C.

240N 240N
71 B
A g 9D

0.24 m
Fig. P4.14

4.15 Solve Prob. 4.14, assuming that ¢ = 0.32 m.

4.16 Determine the reactions at A and B when (a) h = 0, (b) h = 200 mm.

|+250 mm +|+250 mm +|

}150 N
300 mm
-— o4 G
h[ B
Q
j60°
Fig. P4.16

4.17 A light bar AD is suspended from a cable BE and supports a 50-1b
block at C. The ends A and D of the bar are in contact with friction-
less vertical walls. Determine the tension in cable BE and the reac-
tions at A and D.

3in,
< 5in: n 7in.

A

50 1b

Fig. P4.17
4.18 Bar AD is attached at A and C to collars that can move freely on the
rods shown. If the cord BE is vertical (o« = 0), determine the tension

in the cord and the reactions at A and C.

4.19 Solve Prob. 4.18 if the cord BE is parallel to the rods (o« = 30°).



4.20

4.21

4.22

Two slots have been cut in plate DEF, and the plate has been placed
so that the slots fit two fixed, frictionless pins A and B. Knowing
that P = 15 1b, determine (a) the force each pin exerts on the plate,
(b) the reaction at F.

4 in. 4 m.T7 in.—‘l in.|<—
e
A E

. { ) 30° 3 in.
T
‘30 Ib

(@
=

Fig. P4.20

A 6-m telephone pole weighing 1600 N is used to support the ends
of two wires. The wires form the angles shown with the horizontal,
and the tensions in the wires are, respectively, 77 = 600 N and
T, = 375 N. Determine the reaction at the fixed end A.

The rig shown consists of a 1200-1b horizontal member ABC and a
vertical member DBE welded together at B. The rig is being used to
raise a 3600-1b crate at a distance x = 12 ft from the vertical member
DBE. If the tension in the cable is 4 kips, determine the reaction at
E, assuming that the cable is (a) anchored at F as shown in the figure,
(b) attached to the vertical member at a point located 1 ft above E.

| 3.75 ft
17.5 ft |
15
5 ft
B
I [ ©) Cf*
A
~ 6.5 ft —|
 /
W = 1200 Ib 10 ft
x I
E FX
3600 Ib ‘
Fig. P4.22

4.23 For the rig and crate of Prob. 4.22 and assuming that the cable is

anchored at F' as shown, determine (@) the required tension in cable
ADCEF if the maximum value of the couple at E as x varies from
1.5 to 17.5 ft is to be as small as possible, (b) the corresponding
maximum value of the couple.

Fig. P4.21




4.24 A tension of 20 N is maintained in a tape as it passes through the
support system shown. Knowing that the radius of each pulley is
10 mm, determine the reaction at C.

[ 75 mm | 75 mm i

Fig. P4.24

4.25 The bracket ABC can be supported in the eight different ways shown.
All connections consist of smooth pins, rollers, or short links. In
each case, determine whether (a) the plate is completely, partially,
or improperly constrained, () the reactions are statically determinate
or indeterminate, (c¢) the equilibrium of the plate is maintained in
the position shown. Also, wherever possible, compute the reactions
assuming that the magnitude of the force P is 100 1b.

B
h .
lt 1 c 2 3 N
;A - D—‘% %: = D—‘%
| Ye Ye Ye Yo
2628
~3 6 7 8
E = R — 1
Yp Yp Yp Ye
Fig. P4.25

4.26 Eight identical 500 X 750-mm rectangular plates, each of mass
m = 40 kg, are held in a vertical plane as shown. All connections
consist of frictionless pins, rollers, or short links. In each case, deter-
mine whether (a) the plate is completely, partially, or improperly
constrained, (b) the reactions are statically determinate or indetermi-
nate, (¢) the equilibrium of the plate is maintained in the position
shown. Also, wherever possible, compute the reactions.

D Tc LT j>“ A %
o 2 % 3 4

T | J

| I

5 6 H 7 8 =he



4.2 TWO SPECIAL CASES

In practice, some simple cases of equilibrium occur quite often, either as
part of a more complicated analysis or as the complete models of a situ-
ation. By understanding the characteristics of these cases, you can often
simplify the overall analysis.

4.2A Equilibrium of a Two-Force Body

A particular case of equilibrium of considerable interest in practical appli-
cations is that of a rigid body subjected to two forces. Such a body is
commonly called a two-force body. We show here that, if a two-force
body is in equilibrium, the two forces must have the same magnitude,
the same line of action, and opposite sense.

Consider a corner plate subjected to two forces F; and F, acting at
A and B, respectively (Fig. 4.8a). If the plate is in equilibrium, the sum
of the moments of F; and F, about any axis must be zero. First, we sum
moments about A. Since the moment of F; is obviously zero, the moment
of F, also must be zero and the line of action of F, must pass through A
(Fig. 4.8b). Similarly, summing moments about B, we can show that the
line of action of F| must pass through B (Fig. 4.8¢). Therefore, both forces
have the same line of action (line AB). You can see from either of the
equations 2F, = 0 and 2F, = O that they must also have the same mag-
nitude but opposite sense.

Fig. 4.8 A two-force body in equilibrium. (a) Forces act at two points of
the body; (b) summing moments about point A shows that the line of action
of F, must pass through A; (c) summing moments about point B shows that
the line of action of F; must pass through B.

If several forces act at two points A and B, the forces acting at A
can be replaced by their resultant F, and those acting at B can be replaced
by their resultant F,. Thus, a two-force body can be more generally defined
as a rigid body subjected to forces acting at only two points. The
resultants F; and F, then must have the same line of action, the same
magnitude, and opposite sense (Fig. 4.8).

Later, in the study of structures, frames, and machines, you will see
how the recognition of two-force bodies simplifies the solution of certain
problems.

4.2 Two Special Cases
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4.2B Equilibrium of a Three-Force
Body

Another case of equilibrium that is of great practical interest is that of a
three-force body, i.e., a rigid body subjected to three forces or, more
generally, a rigid body subjected to forces acting at only three points.
Consider a rigid body subjected to a system of forces that can be reduced
to three forces Fy, F,, and F; acting at A, B, and C, respectively (Fig. 4.9a).
We show that if the body is in equilibrium, the lines of action of the
three forces must be either concurrent or parallel.

F, F, ¥,
\ / " \: / b \ ¥s
°B C 5 © *B C

4 T T

F, F, F,

(@) () (©

Fig. 4.9 A three-force body in equilibrium. (a—c) Demonstration that the lines of
action of the three forces must be either concurrent or parallel.

Since the rigid body is in equilibrium, the sum of the moments of
F,, F,, and F; about any axis must be zero. Assuming that the lines of
action of F; and F, intersect and denoting their point of intersection by
D, we sum moments about D (Fig. 4.9b). Because the moments of F; and
F, about D are zero, the moment of F; about D also must be zero, and
the line of action of F3 must pass through D (Fig. 4.9¢). Therefore, the
three lines of action are concurrent. The only exception occurs when none
of the lines intersect; in this case, the lines of action are parallel.

Although problems concerning three-force bodies can be solved by
the general methods of Sec. 4.1, we can use the property just established
to solve these problems either graphically or mathematically using simple
trigonometric or geometric relations (see Sample Problem 4.6).
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Fig. 1 Free-body diagram of joist.

98.1 N

Fig. 3 Force triangle.

Sample Problem 4.6

A man raises a 10-kg joist with a length of 4 m by pulling on a rope.
Find the tension 7 in the rope and the reaction at A.

STRATEGY: The joist is acted upon by three forces: its weight W, the
force T exerted by the rope, and the reaction R of the ground at A.
Therefore, it is a three-force body, and you can compute the forces by
using a force triangle.

MODELING: First note that
W = mg = (10 kg)9.81 m/s>) = 98.1 N

Since the joist is a three-force body, the forces acting on it must be con-
current. The reaction R therefore must pass through the point of intersec-
tion C of the lines of action of the weight W and the tension force T, as
shown in the free-body diagram (Fig. 1). You can use this fact to deter-
mine the angle « that R forms with the horizontal.

ANALYSIS: Draw the vertical line BF through B and the horizontal line
CD through C (Fig. 2). Then
AF = BF = (AB) cos 45° = (4 m) cos 45° = 2.828 m
CD = EF = AE = X(AF) = 1414 m
BD = (CD) cot (45° + 25°) = (1.414 m) tan 20° = 0.515 m
CE = DF = BF — BD = 2.828 m — 0.515 m = 2.313 m

Fig. 2 Geometry analysis of the lines of action for
the three forces acting on joist, concurrent at point C.

From these calculations, you can determine the angle v as
CE 2313m

e = T 1414m

= 1.636
a = 58.6°
You now know the directions of all the forces acting on the joist.

Force Triangle. Draw a force triangle as shown (Fig. 3) with its inte-
rior angles computed from the known directions of the forces. You can
then use the law of sines to find the unknown forces.

T R 98.1 N

sin31.4°  sin 110°  sin 38.6°

T=8l9N
R = 147.8 N 58.6°

REFLECT and THINK: In practice, three-force members occur often,
so learning this method of analysis is useful in many situations.

~




Problems

4.27 Determine the reactions at B and C when a = 30 mm.

60 mm 40 mmi 100 mm ‘

‘ C e

I S — °/ B ;I[lm
¢ la f gl
D
V250N
Fig. P4.27

4.28 The spanner shown is used to rotate a shaft. A pin fits in a hole at
A, while a flat, frictionless surface rests against the shaft at B. If a
60-1b force P is exerted on the spanner at D, find the reactions at A

and B.
/)\A
50° /N
\  /
! @ ’
A"
3in. |
I

15 in.

Fig. P4.28

4.29 A 12-ft wooden beam weighing 80 Ib is supported by a pin and
bracket at A and by cable BC. Find the reaction at A and the tension
in the cable.

C ) B 6 ft
A \
B
o X 300N }

6 ft

o) >

6 ft |

p 80 1b

C
Fig. P4.29
<—>Lf 250 mm —|

150 mm 4.30 A T-shaped bracket supports a 300-N load as shown. Determine the
Fig. P4.30 reactions at A and C when o = 45°.




4.31 One end of rod AB rests in the corner A and the other is attached to
cord BD. If the rod supports a 150-N load at its midpoint C, find
the reaction at A and the tension in the cord.

mm

|+24O mm +|+ 240 mm +|

Fig. P4.31

4.32 Using the method of Sec. 4.2B, solve Prob. 4.12. /
P

4.33 Using the method of Sec. 4.2B, solve Prob. 4.16. 30°
4.34 A 40-1b roller of 8-in. diameter, which is to be used on a tile floor,
is resting directly on the subflooring as shown. Knowing that the
thickness of each tile is 0.3 in., determine the force P required to  pe—— p—
move the roller onto the tiles if the roller is (a) pushed to the left,
(b) pulled to the right.

4.35 Member ABC is supported by a pin and bracket at B and by an
inextensible cord attached at A and C and passing over a friction- _ D
less pulley at D. The tension may be assumed to be the same in T
portions AD and CD of the cord. For the loading shown and 71
neglecting the size of the pulley, determine the tension in the cord L c
A

and the reaction at B. B o -
4.36 Determine the reactions at A and B when ¢ = 150 mm. Y721 L—a = 12in.
24 in. |
Fig. P4.35
320N
T
v 80 mm
A i

240 mm
Fig. P4.36 and P4.37

4.37 Determine the value of a for which the magnitude of the reaction at
B is equal to 800 N.



150 Ib 4.38 For the frame and loading shown, determine the reactions at C and D.

Hma‘em

© ﬁ
A B )/ 1.5 ft
P —
1.5 ft
Cc t

4.39 For the boom and loading shown, determine (@) the tension in cord
BD, (b) the reaction at C.

32 in.

Fig. P4.38 i
g 12 in. 3 kips C
1 C
L16 in. 32 in. !
Fig. P4.39

4.40 A slender rod BC of length L and weight W is held by two cables as
shown. Knowing that cable AB is horizontal and that the rod forms
an angle of 40° with the horizontal, determine (a) the angle 6 that
cable CD forms with the horizontal, (b) the tension in each cable.

Fig. P4.40

4.41 Knowing that # = 30°, determine the reaction (a) at B, (b) at C.

Fig. P4.41

4.42 A slender rod of length L is attached to collars that can slide freely
along the guides shown. Knowing that the rod is in equilibrium,
derive an expression for the angle @ in terms of the angle .

4.43 An 8-kg slender rod of length L is attached to collars that can slide
freely along the guides shown. Knowing that the rod is in equilib-
rium and that 3 = 30°, determine (a) the angle 6 that the rod forms

Fig. P4.42 and P4.43 with the vertical, (b) the reactions at A and B.




4.44 Rod AB is supported by a pin and bracket at A and rests against a
frictionless peg at C. Determine the reactions at A and C when a

A

170-N vertical force is applied at B.
4.45 Solve Prob. 4.44, assuming that the 170-N force applied at B is 150 mm
horizontal and directed to the left.
4.46 Determine the reactions at A and B when 3 = 50°.
150 mm
i
170 N

Fig. P4.44

e
\}50 mnf

Fig. P4.46 and P4.47

4.47 Determine the reactions at A and B when § = 80°.

4.48 A slender rod of length L and weight W is attached to a collar at A
and is fitted with a small wheel at B. Knowing that the wheel rolls
freely along a cylindrical surface of radius R, and neglecting friction,
derive an equation in ¢, L, and R that must be satisfied when the rod
is in equilibrium.

Fig. P4.48

4.49 Knowing that for the rod of Prob. 4.48, L = 15 in., R = 20 in., and
W = 10 1b, determine (@) the angle ¢ corresponding to equilibrium,
(b) the reactions at A and B.

4.50 A uniform rod AB of length 2R rests inside a hemispherical bowl of
radius R as shown. Neglecting friction, determine the angle 6 cor-
responding to equilibrium.
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4.3 EQUILIBRIUM IN THREE
DIMENSIONS

The most general situation of rigid-body equilibrium occurs in three
dimensions. The approach to modeling and analyzing these situations is
the same as in two dimensions: Draw a free-body diagram and then write
and solve the equilibrium equations. However, you now have more equa-
tions and more variables to deal with. In addition, reactions at supports
and connections can be more varied, having as many as three force com-
ponents and three couples acting at one support. As you will see in the
Sample Problems, you need to visualize clearly in three dimensions and
recall the vector analysis from Chapters 2 and 3.

4.3A Rigid-Body Equilibrium in Three
Dimensions

We saw in Sec. 4.1 that six scalar equations are required to express the condi-
tions for the equilibrium of a rigid body in the general three-dimensional case:

2F, =0 2F, =0 2F, =0 4.2)
2M, =0 M, =0 2M, =0 4.3)

We can solve these equations for no more than six unknowns, which gener-
ally represent reactions at supports or connections.

In most problems, we can obtain the scalar equations (4.2) and (4.3)
more conveniently if we first write the conditions for the equilibrium of
the rigid body considered in vector form:

SF =0 SM,=Sr XF) =0 @.1)

Then we can express the forces F and position vectors r in terms of scalar
components and unit vectors. This enables us to compute all vector prod-
ucts either by direct calculation or by means of determinants (see Sec. 3.1F).
Note that we can eliminate as many as three unknown reaction components
from these computations through a judicious choice of the point O. By
equating to zero the coefficients of the unit vectors in each of the two
relations in Eq. (4.1), we obtain the desired scalar equations.T

Some equilibrium problems and their associated free-body diagrams
might involve individual couples M; either as applied loads or as support
reactions. In such situations, you can accommodate these couples by
expressing the second part of Eq. (4.1) as

My, =2(r X F)+ ZM; = 0 “.1)

4.3B Reactions for a Three-
Dimensional Structure

The reactions on a three-dimensional structure range from a single force of
known direction exerted by a frictionless surface to a force-couple system

"In some problems, it may be convenient to eliminate from the solution the reactions at two
points A and B by writing the equilibrium equation ZM, = 0. This involves determining
the moments of the forces about the axis AB joining points A and B (see Sample Prob. 4.10).



exerted by a fixed support. Consequently, in problems involving the equi-
librium of a three-dimensional structure, between one and six unknowns
may be associated with the reaction at each support or connection.

Figure 4.10 shows various types of supports and connections with
their corresponding reactions. A simple way of determining the type of
reaction corresponding to a given support or connection and the number
of unknowns involved is to find which of the six fundamental motions
(translation in the x, y, and z directions and rotation about the x, y, and
z axes) are allowed and which motions are prevented. The number of
motions prevented equals the number of reactions.

Ball supports, frictionless surfaces, and cables, for example, prevent
translation in one direction only and thus exert a single force whose line of
action is known. Therefore, each of these supports involves one unknown—
namely, the magnitude of the reaction. Rollers on rough surfaces and wheels
on rails prevent translation in two directions; the corresponding reactions
consist of two unknown force components. Rough surfaces in direct contact
and ball-and-socket supports prevent translation in three directions while still
allowing rotation; these supports involve three unknown force components.

Some supports and connections can prevent rotation as well as trans-
lation; the corresponding reactions include couples as well as forces. For
example, the reaction at a fixed support, which prevents any motion (rota-
tion as well as translation) consists of three unknown forces and three
unknown couples. A universal joint, which is designed to allow rotation
about two axes, exerts a reaction consisting of three unknown force com-
ponents and one unknown couple.

Other supports and connections are primarily intended to prevent trans-
lation; their design, however, is such that they also prevent some rotations.
The corresponding reactions consist essentially of force components but may
also include couples. One group of supports of this type includes hinges and
bearings designed to support radial loads only (for example, journal bearings
or roller bearings). The corresponding reactions consist of two force com-
ponents but may also include two couples. Another group includes pin-and-
bracket supports, hinges, and bearings designed to support an axial thrust
as well as a radial load (for example, ball bearings). The corresponding
reactions consist of three force components but may include two couples.
However, these supports do not exert any appreciable couples under normal
conditions of use. Therefore, only force components should be included in
their analysis unless it is clear that couples are necessary to maintain the
equilibrium of the rigid body or unless the support is known to have been
specifically designed to exert a couple (see Probs. 4.119 through 4.122).

If the reactions involve more than six unknowns, you have more
unknowns than equations, and some of the reactions are statically
indeterminate. If the reactions involve fewer than six unknowns, you have
more equations than unknowns, and some of the equations of equilibrium
cannot be satisfied under general loading conditions. In this case, the rigid
body is only partially constrained. Under the particular loading conditions
corresponding to a given problem, however, the extra equations often
reduce to trivial identities, such as 0 = 0, and can be disregarded; although
only partially constrained, the rigid body remains in equilibrium (see
Sample Probs. 4.7 and 4.8). Even with six or more unknowns, it is possible
that some equations of equilibrium are not satisfied. This can occur when
the reactions associated with the given supports either are parallel or inter-
sect the same line; the rigid body is then improperly constrained.
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Photo 4.3 Universal joints, seen on the
drive shafts of rear-wheel-drive cars and
trucks, allow rotational motion to be
transferred between two noncollinear shafts.

© McGraw-Hill Education/Lucinda Dowell,
photographer

Photo 4.4 This pillow block bearing
supports the shaft of a fan used in an
industrial facility.

Courtesy of SKF Group
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Force with known
line of action,
perpendicular to
surface
(one unknown)

r
Force with known
line of action,

Cable along cable
(one unknown)

Roller on Wheel on rail
rough surface

Two force components,
one perpendicular to
surface and one parallel
to axis of wheel

L4

2 > -
L //

Ball and socket

Three force components,
mutually perpendicular
at point of contact

Universal Three force components, )
joint one couple Fixed support

ok b
Three force components,

three couples (no translation,
no rotation)

O
o
™, _

nﬁz o

Two force components

and up to two couples

Hinge and bearing supporting
axial thrust and radial load

Pin and bracket

M,)
¥, i

M) % F

Three force components
and up to two couples

Fig. 410 Reactions at supports and connections in three dimensions.
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F A
Sample Problem 4.7

A 20-kg ladder used to reach high shelves in a storeroom is supported by
two flanged wheels A and B mounted on a rail and by a flangeless wheel C
resting against a rail fixed to the wall. An 80-kg man stands on the ladder
and leans to the right. The line of action of the combined weight W of
the man and ladder intersects the floor at point D. Determine the reactions
at A, B, and C.

STRATEGY: Draw a free-body diagram of the ladder, then write and
solve the equilibrium equations in three dimensions.

MODELING:

Free-Body Diagram. The combined weight of the man and ladder is

W = —mgj = —(80 kg + 20 kg)(9.81 m/s%)j = —(981 N)j

You have five unknown reaction components: two at each flanged wheel
and one at the flangeless wheel (Fig. 1). The ladder is thus only partially
constrained; it is free to roll along the rails. It is, however, in equilibrium
under the given load because the equation XF, = 0 is satisfied.

ANALYSIS:

Equilibrium Equations. The forces acting on the ladder form a sys-
tem equivalent to zero:

SF =0 Aj+Ak+Bj+Bk— (981 N)j+ Ck =0
(A, + B, — 981 N)j + (A, + B. + Ok = 0 )

. ) M, =2 X F) = 0: 1.2i X (B,j + Bk) + (0.9i — 0.6k) X (—981})
Fig. 1 Free-body diagram of ladder. + (0.6i + 3j — 1.2k) X Ck = 0

Computing the vector products gives you'

1.2B)k — 1.2B,j — 8829k — 588.6i — 0.6Cj + 3Ci = 0
(3C — 588.6)i — (1.2B, + 0.6C)j + (1.2B, — 882.9k = 0 (#))

Setting the coefficients of i, j, and k equal to zero in Eq. (2) produces
the following three scalar equations, which state that the sum of the
moments about each coordinate axis must be zero:

3 —5886=0 C=+1962N
12B,+ 06C=0 B, = —98.1N

1.2B, — 8829 = 0 B, = +736 N

The reactions at B and C are therefore

B = +(736 N)j — (98.1 N)k C = +(196.2 N)k

"The moments in this sample problem, as well as in Sample Probs. 4.8 and 4.9, also can be
expressed as determinants (see Sample Prob. 3.10).
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Setting the coefficients of j and k equal to zero in Eq. (1), you obtain two
scalar equations stating that the sums of the components in the y and z
directions are zero. Substitute the values above for By, B;, and C to get

A, + B, — 981 =0 A, + 736 — 981 = 0 A, = +245N
A,+B.,+C=0 A, —981+ 1962 =0 A, = —98.1 N

Therefore, the reaction at A is
A = +(245N)j — (98.1 Nk

REFLECT and THINK: You summed moments about A as part of the
analysis. As a check, you could now use these results and demonstrate
that the sum of moments about any other point, such as point B, is also
Zero.

Sample Problem 4.8

A 5 X 8-ft sign of uniform density weighs 270 lb and is supported by a
ball-and-socket joint at A and by two cables. Determine the tension in each
cable and the reaction at A.

STRATEGY: Draw a free-body diagram of the sign, and express the
unknown cable tensions as Cartesian vectors. Then determine the cable
tensions and the reaction at A by writing and solving the equilibrium
equations.

MODELING:

Free-Body Diagram. The forces acting on the sign are its weight W =
—(270 1b)j and the reactions at A, B, and E (Fig. 1). The reaction at A is
a force of unknown direction represented by three unknown components.
Since the directions of the forces exerted by the cables are known, these
forces involve only one unknown each: specifically, the magnitudes Tpp
and Tgc. The total of five unknowns means that the sign is partially con-
strained. It can rotate freely about the x axis; it is, however, in equilibrium
under the given loading, since the equation XM, = 0 is satisfied.

ANALYSIS:  You can express the components of the forces Ty, and T
in terms of the unknown magnitudes 7, and Txc as follows:

BD = —(8f)i + (4ft)j — (8f)k  BD = 12 ft
EC = —(6f)i+ 3f)j + Qfok  EC=Tft
o = 16 BD. = Tpp(—3i + 3j — 3k)
W = — (270 Ib)j Y 2
~4 1 EC
\L\4 ft | Tee = Tge (EC) = TEC(*gi + %J - %k)

Fig. 1 Free-body diagram of sign.

-
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Equilibrium Equations. The forces acting on the sign form a system
equivalent to zero:

SF=0: Ai+Aj+Ak+ Ty + Tge — (270 1b)j = 0
(Ay = 3Tap — §Tpe)i + (A, + 3Tpp + 5Tic — 270 1b)j
+ (A, = 3Te + 3Tk =0 (D
SM, = 3(r X F) = 0:
(8 ft)i X Tpp(—3i + 1j — 2k) + (6 ft)i X Tpe(—5i + 2j + 2k)
+ (4 ft)i X (=270 1b)j = 0
(2.667Tgp + 2.571Tpc — 1080 Ib)k + (5.333Tpp — 1.714Tx0)j = 0 (2)

Setting the coefficients of j and k equal to zero in Eq. (2) yields two scalar
equations that can be solved for Tp and Tg¢:

Ty = 101.3 1b Tye = 315 1b

Setting the coefficients of i, j, and k equal to zero in Eq. (1) produces
three more equations, which yield the components of A.

A = +(338 Ib)i + (101.2 Ib)j — (22.5 Ib)k

REFLECT and THINK: Cables can only act in tension, and the free-
body diagram and Cartesian vector expressions for the cables were con-
sistent with this. The solution yielded positive results for the cable forces,
which confirms that they are in tension and validates the analysis.

~

Sample Problem 4.9

A uniform pipe cover of radius » = 240 mm and mass 30 kg is held in a
horizontal position by the cable CD. Assuming that the bearing at B does
not exert any axial thrust, determine the tension in the cable and the reac-
tions at A and B.
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y STRATEGY: Draw a free-body diagram with the coordinate axes shown
(Fig. 1) and express the unknown cable tension as a Cartesian vector. Then
apply the equilibrium equations to determine this tension and the support
reactions.

MODELING:
Free-Body Diagram. The forces acting on the free body include its
weight, which is
W = —mgj = —(30 kg)(9.81 m/s>)j = —(294 N)j
The reactions involve six unknowns: the magnitude of the force T exerted

xby the cable, three force components at hinge A, and two at hinge B.
Express the components of T in terms of the unknown magnitude 7' by

W= — (294N)j resolving the vector DC into rectangular components:
Fig. 1 Free-body diagram of pipe cover. DC = —(480 mmji + (240 mm)j — (160 mm)k DC = 560 mm
T=72¢ —$Ti + 37§ — 2Tk
DC

ANALYSIS:

Equilibrium Equations. The forces acting on the pipe cover form a
system equivalent to zero. Thus,

SF = 0: Ad+Aj+Ak+Bi+Bj+T— (294 N)j=0
A+ B, —ST)i+ (A, + B, +3T — 294 N)j + (A, — 3Dk =0 (1)
SM; = 3(r X F) = 0:
2rk X (Ad + Ajj + AK)
+ (2ri + rk) X (= §Ti + 3Tj — 3Tk)
+ (ri + k) X (=294 N)j = 0
(=24, — 3T + 294 N)ri + (2A, — 3T)rj + (8T — 294 Nyrk = 0 (2)

Setting the coefficients of the unit vectors equal to zero in Eq. (2) gives
three scalar equations, which yield

A, = +49.0 N A, = +735 N T = 343 N

Setting the coefficients of the unit vectors equal to zero in Eq. (1) pro-
duces three more scalar equations. After substituting the values of 7, A,,
and A, into these equations, you obtain

A, = +98.0N B, = +245 N B, = +735 N
The reactions at A and B are therefore

A
B

+(49.0 N)i + (73.5 N)j + (98.0 N)k

+(245 N)i + (73.5 N)j

REFLECT and THINK: As a check, you can determine the tension in
the cable using a scalar analysis. Assigning signs by the right-hand rule
(rhr), we have

(+thr)  SM, = 0: 37(0.48 m) — (294 N)(0.24 m) =0 7 = 343 N
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Sample Problem 4.10

A 450-1b load hangs from the corner C of a rigid piece of pipe ABCD
that has been bent as shown. The pipe is supported by ball-and-socket
joints A and D, which are fastened, respectively, to the floor and to a
vertical wall, and by a cable attached at the midpoint E of the portion BC
of the pipe and at a point G on the wall. Determine (@) where G should
be located if the tension in the cable is to be minimum, (b) the correspond-
ing minimum value of the tension.

STRATEGY: Draw the free-body diagram of the pipe showing the reac-
tions at A and D. Isolate the unknown tension T and the known weight W
by summing moments about the diagonal line AD, and compute values
from the equilibrium equations.

MODELING and ANALYSIS:

Free-Body Diagram. The free-body diagram of the pipe includes the
load W = (—450 Ib)j, the reactions at A and D, and the force T exerted by
the cable (Fig. 1). To eliminate the reactions at A and D from the computations,
take the sum of the moments of the forces about the line AD and set it equal
to zero. Denote the unit vector along AD by A, which enables you to write

SMup=0: A-(AE XT)+1-(AC X W) =0 a)

\
66t}

C

l 12 ft

12 ft ' W=-450]

|

|

|

|

S

12 ft

Fig. 1 Free-body diagram of pipe.

~
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-

You can compute the second term in Eq. (1) as follows:
AC X W = (12i + 12j) X (—450j) = —5400k
AD  12i+12j—6k . .
“ap T g ATk
A+ (AC X W) = Gi + %j — tk) - (—5400k) = +1800
Substituting this value into Eq. (1) gives
A+ (AE X T) = —1800 Ib-ft Q)
Minimum Value of Tension. Recalling the commutative property
for mixed triple products, you can rewrite Eq. (2) in the form
T (A X AE ) = —1800 Ib-ft 3
This shows that the projection of T on the vector A X AE is a constant.
It follows that T is minimum when it is parallel to the vector
AXAE = Gi+2j— 1k) x (6 + 12) = 4i — 2j + 4k
The corresponding unit vector is 3i — §j + 3k, which gives
Toin = TG1 = 3j + 3k) @
Substituting for T and A X AE in Eq. (3) and computing the dot products
yields 67 = —1800 and, thus, 7 = —300. Carrying this value into Eq. (4)
gives you
Tpin = —200i + 100j — 200k Trin = 300 Ib
Location of G. Since the vector EG and the force T,.in have the same
direction, their components must be proportional. Denoting the coordi-
nates of G by x, y, and 0 (Fig. 2), you get
x—6 _y—12 _0-6
—200 +100 —200

x=0 y=15ft

y
G(x,y,0)

\T min
%)
B ()

E6, 12, 6) 10
w

A8

/

%

Fig. 2 Location of point G for minimum
tension in cable.

REFLECT and THINK: Sometimes you have to rely on the vector
analysis presented in Chapters 2 and 3 as much as on the conditions for
equilibrium described in this chapter.

J




Problems

4.51 Two transmission belts pass over a double-sheaved pulley that is
attached to an axle supported by bearings at A and D. The radius of
the inner sheave is 125 mm and the radius of the outer sheave is
250 mm. Knowing that when the system is at rest, the tension is
90 N in both portions of belt B and 150 N in both portions of belt C,
determine the reactions at A and D. Assume that the bearing at D
does not exert any axial thrust.

y

Fig. P4.51

4.52 Solve Prob. 4.51, assuming that the pulley rotates at a constant rate
and that T3 = 104 N, T3 = 84 N, T = 175 N.

4.53 A 4 x 8-ft sheet of plywood weighing 40 1b has been temporarily
propped against column CD. It rests at A and B on small wooden
blocks and against protruding nails. Neglecting friction at all sur-
faces of contact, determine the reactions at A, B, and C.

y
D
2 ft
/ c
4 ft
1
1
0 i
T 1
= 1
A 1
2 ft N
z 5 ft B - 60°
=

Fig. P4.53



15 in.

60 in.
N

Fig. P4.57 and P4.58

60 in.

30 in.

4.54

4.55

4.56

4.57

4.58

A small winch is used to raise a 120-Ib load. Find (a) the magnitude
of the vertical force P that should be applied at C to maintain equi-
librium in the position shown, (b) the reactions at A and B, assuming
that the bearing at B does not exert any axial thrust.

Fig. P4.54

A 200-mm lever and a 240-mm-diameter pulley are welded to axle
BE, which is supported by bearings at C and D. If a 720-N vertical
load is applied at A when the lever is horizontal, determine (a) the
tension in the cord, (b) the reactions at C and D. Assume that the
bearing at D does not exert any axial thrust.

40 mm

Z
Fig. P4.55

Solve Prob. 4.55, assuming that the axle has been rotated clockwise
in its bearings by 30° and that the 720-N load remains vertical.

The rectangular plate shown weighs 80 1b and is supported by three
vertical wires. Determine the tension in each wire.

The rectangular plate shown weighs 80 1b and is supported by three
vertical wires. Determine the weight and location of the lightest
block that should be placed on the plate if the tensions in the three
wires are to be equal.



4.59 An opening in a floor is covered by a 1 X 1.2-m sheet of plywood
of mass 18 kg. The sheet is hinged at A and B and is maintained in
a position slightly above the floor by a small block C. Determine the
vertical component of the reaction (a) at A, (b) at B, (c) at C.

Fig. P4.59

4.60 Solve Prob. 4.59, assuming that the small block C is moved and
placed under edge DE at a point 0.15 m from corner E.

4.61 A 48-in. boom is held by a ball-and-socket joint at C and by two
cables BF and DAE; cable DAE passes around a frictionless pulley
at A. For the loading shown, determine the tension in each cable and
the reaction at C.

Fig. P4.61

4.62 Solve Prob. 4.61, assuming that the 320-Ib load is applied at A.

4.63 The 6-m pole ABC is acted upon by a 455-N force as shown. The
pole is held by a ball-and-socket joint at A and by two cables BD
and BE. For a = 3 m, determine the tension in each cable and the
reaction at A. Fig. P4.63




Fig. P4.66

4.64

4.65

4.66

A 600-1b crate hangs from a cable that passes over a pulley B and
is attached to a support at H. The 200-1b boom AB is supported by
a ball-and-socket joint at A and by two cables DE and DF. The center
of gravity of the boom is located at G. Determine (a) the tension in
cables DE and DF, (b) the reaction at A.

2.8 ft y

225 ft

¢ 5 ft

Fig. P4.64

The horizontal platform ABCD weighs 60 1b and supports a 240-1b
load at its center. The platform is normally held in position by hinges
at A and B and by braces CE and DE. If brace DE is removed,
determine the reactions at the hinges and the force exerted by the
remaining brace CE. The hinge at A does not exert any axial thrust.

Fig. P4.65

A 100-kg uniform rectangular plate is supported in the position
shown by hinges A and B and by cable DCE that passes over a
frictionless hook at C. Assuming that the tension is the same in both
parts of the cable, determine (a) the tension in the cable, (b) the
reactions at A and B. Assume that the hinge at B does not exert any
axial thrust.



4.67

4.68

4.69

4.70

The rectangular plate shown weighs 75 1b and is held in the position
shown by hinges at A and B and by cable EF. Assuming that the
hinge at B does not exert any axial thrust, determine (a) the tension
in the cable, (b) the reactions at A and B.

The lid of a roof scuttle weighs 75 1b. It is hinged at corners A and
B and maintained in the desired position by a rod CD pivoted at C;
a pin at end D of the rod fits into one of several holes drilled in the
edge of the lid. For a« = 50°, determine (a) the magnitude of the
force exerted by rod CD, () the reactions at the hinges. Assume that
the hinge at B does not exert any axial thrust.

: 26 in. \F/

Fig. P4.68

A 10-kg storm window measuring 900 X 1500 mm is held by hinges
at A and B. In the position shown, it is held away from the side of
the house by a 600-mm stick CD. Assuming that the hinge at A does
not exert any axial thrust, determine the magnitude of the force
exerted by the stick and the components of the reactions at A and B.

1500 mm

1500 mm

900 mm
| \}/
C

Fig. P4.69

The bent rod ABEF is supported by bearings at C and D and by wire
AH. Knowing that portion AB of the rod is 250 mm long, determine
(a) the tension in wire AH, (b) the reactions at C and D. Assume
that the bearing at D does not exert any axial thrust.

Fig. P4.67

Fig. P4.70

50 mm




4.71 Solve Prob. 4.65, assuming that the hinge at B has been removed
and that the hinge at A can exert an axial thrust, as well as couples
about axes parallel to the x and y axes.

4.72 Solve Prob. 4.69, assuming that the hinge at A has been removed
and that the hinge at B can exert couples about axes parallel to the
x and y axes.

4.73 The assembly shown is welded to collar A that fits on the vertical
pin shown. The pin can exert couples about the x and z axes but does
not prevent motion about or along the y axis. For the loading shown,
determine the tension in each cable and the reaction at A.

mm

480 N

Fig. P4.73
4.74 Three rods are welded together to form a “corner” that is supported
by three eyebolts. Neglecting friction, determine the reactions at A,

B, and C when P = 240 1b, a = 12 in., b = 8 in., and ¢ = 10 in.

Y

‘:( :'B 1

Fig. P4.74



4.4 FRICTION FORCES

In the previous sections, we assumed that surfaces in contact are either
[rictionless or rough. If they are frictionless, the force each surface exerts
on the other is normal to the surfaces, and the two surfaces can move
freely with respect to each other. If they are rough, tangential forces can
develop that prevent the motion of one surface with respect to the other.

This view is a simplified one. Actually, no perfectly frictionless sur-
face exists. When two surfaces are in contact, tangential forces, called
friction forces, always develop if you attempt to move one surface with
respect to the other. However, these friction forces are limited in magnitude
and do not prevent motion if you apply sufficiently large forces. Thus, the
distinction between frictionless and rough surfaces is a matter of degree.
You will see this more clearly in this chapter, which is devoted to the study
of friction and its applications to common engineering situations.

There are two types of friction: dry friction, sometimes called
Coulomb friction, and fluid friction or viscosity. Fluid friction develops
between layers of fluid moving at different velocities. This is of great
importance in analyzing problems involving the flow of fluids through
pipes and orifices or dealing with bodies immersed in moving fluids. It
is also basic for the analysis of the motion of lubricated mechanisms. Such
problems are considered in texts on fluid mechanics. The present study is
limited to dry friction, i.e., to situations involving rigid bodies that are in
contact along unlubricated surfaces.

4.4A The Laws of Dry Friction

We can illustrate the laws of dry friction by the following experiment. Place
a block of weight W on a horizontal plane surface (Fig. 4.11a). The forces
acting on the block are its weight W and the reaction of the surface. Since

High friction—

Photo 4.5 Examples of friction in an automobile. Depending upon the
application, the degree of friction is controlled by design engineers.

4.4 Friction Forces
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the weight has no horizontal component, the reaction of the surface also
has no horizontal component; the reaction is therefore normal to the surface
and is represented by N in Fig. 4.11a. Now suppose that you apply a hori-
zontal force P to the block (Fig. 4.11b). If P is small, the block does not
move; some other horizontal force must therefore exist, which balances P.
This other force is the static-friction force F, which is actually the resultant
of a great number of forces acting over the entire surface of contact between
the block and the plane. The nature of these forces is not known exactly,
but we generally assume that these forces are due to the irregularities of
the surfaces in contact and, to a certain extent, to molecular attraction.

Impending
motion
W W
F| Equilibrium  Motion
|
\ 4 P Fy
—
N A . -
A | '
|
|
N N ' 5

(a) ) (©

Fig. 4.11 (a) Block on a horizontal plane, friction force is zero; (b) a horizontally applied
force P produces an opposing friction force F; (c) graph of F with increasing P.

If you increase the force P, the friction force F also increases, continu-
ing to oppose P, until its magnitude reaches a certain maximum value F,
(Fig. 4.11¢). If P is further increased, the friction force cannot balance it
anymore, and the block starts sliding. As soon as the block has started in
motion, the magnitude of F drops from F), to a lower value F,. This happens
because less interpenetration occurs between the irregularities of the surfaces
in contact when these surfaces move with respect to each other. From then
on, the block keeps sliding with increasing velocity while the friction force,
denoted by F; and called the Kinetic-friction force, remains approximately
constant.

Note that, as the magnitude F of the friction force increases from
0 to F,, the point of application A of the resultant N of the normal forces
of contact moves to the right. In this way, the couples formed by P and F
and by W and N, respectively, remain balanced. If N reaches B before F
reaches its maximum value F,,, the block starts to tip about B before it
can start sliding (see Sample Prob. 4.14).

4.4B Coefficients of Friction

Experimental evidence shows that the maximum value F,, of the static-
friction force is proportional to the normal component N of the reaction
of the surface. We have

Static friction

E"H
Il

uN @.8)



where i, is a constant called the coefficient of static friction. Similarly,
we can express the magnitude F; of the kinetic-friction force in the form

Kinetic friction

Fr = N “.9)

where 1y is a constant called the coefficient of kinetic friction. The coef-
ficients of friction u, and p;, do not depend upon the area of the surfaces
in contact. Both coefficients, however, depend strongly on the nature of
the surfaces in contact. Since they also depend upon the exact condition
of the surfaces, their value is seldom known with an accuracy greater than
5%. Approximate values of coefficients of static friction for various com-
binations of dry surfaces are given in Table 4.1. The corresponding values
of the coefficient of kinetic friction are about 25% smaller. Since coeffi-
cients of friction are dimensionless quantities, the values given in Table 4.1
can be used with both SI units and U.S. customary units.

Table 4.1 Approximate
Values of Coefficient of
Static Friction for Dry

Surfaces

Metal on metal 0.15-0.60
Metal on wood 0.20-0.60
Metal on stone 0.30-0.70
Metal on leather 0.30-0.60
Wood on wood 0.25-0.50
Wood on leather 0.25-0.50
Stone on stone 0.40-0.70
Earth on earth 0.20-1.00
Rubber on concrete 0.60-0.90

From this discussion, it appears that four different situations can
occur when a rigid body is in contact with a horizontal surface:

1. The forces applied to the body do not tend to move it along the surface
of contact; there is no friction force (Fig. 4.12a).

2. The applied forces tend to move the body along the surface of contact
but are not large enough to set it in motion. We can find the static-friction
force F that has developed by solving the equations of equilibrium for
the body. Since there is no evidence that F has reached its maximum
value, the equation F,, = p,N cannot be used to determine the friction
force (Fig. 4.12D).

3. The applied forces are such that the body is just about to slide. We say
that motion is impending. The friction force F has reached its maximum
value F,, and, together with the normal force N, balances the applied
forces. Both the equations of equilibrium and the equation F,, = uN
can be used. Note that the friction force has a sense opposite to the
sense of impending motion (Fig. 4.12¢).

4. The body is sliding under the action of the applied forces, and the equa-
tions of equilibrium no longer apply. However, F is now equal to Fj,
and we can use the equation F;, = i N. The sense of Fy is opposite to
the sense of motion (Fig. 4.12d).
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(a) No friction (P, = 0)

"N

x

=
F=P,
F <pugN
N N=P,+W

=

(b) No motion (P, < F,)

PA
™F
F, =P,
F)ﬂ = I'LYN
NI N=P+w

(c) Motion impending —— (P, = F,,)

>

X F,

F,. <P,
Fre = N
NI v=pP+w

(d) Motion ——(P, > F})

Fig. 4.12 (a) Applied force is vertical,
friction force is zero; (b) horizontal
component of applied force is less than F,
no motion occurs; (c) horizontal component
of applied force equals F,,, motion is
impending; (d) horizontal component of
applied force is greater than F,, forces are
unbalanced and motion continues.
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F=P,

(b) No motion

F, =P,

(c) Motion impending —>

\R
PN o=

N

F, <P,
(d) Motion ———

Fig. 4.13 (a) Applied force is vertical,
friction force is zero; (b) applied force is at
an angle, its horizontal component balanced
by the horizontal component of the surface
resultant; (c¢) impending motion, the
horizontal component of the applied force
equals the maximum horizontal component
of the resultant; (d) motion, the horizontal
component of the resultant is less than the
horizontal component of the applied force.

4.4C Angles of Friction

It is sometimes convenient to replace the normal force N and the friction
force F by their resultant R. Let’s see what happens when we do that.
Consider again a block of weight W resting on a horizontal plane
surface. If no horizontal force is applied to the block, the resultant R
reduces to the normal force N (Fig. 4.13a). However, if the applied force
P has a horizontal component P, that tends to move the block, force R
has a horizontal component F and, thus, forms an angle ¢ with the normal
to the surface (Fig. 4.13b). If you increase P, until motion becomes
impending, the angle between R and the vertical grows and reaches a
maximum value (Fig. 4.13¢). This value is called the angle of static fric-
tion and is denoted by ¢,. From the geometry of Fig. 4.13c, we note that

Angle of static friction
_ N
N

tan ¢ Fo
ang, = ——
N

tan ¢g = fu @.10)

If motion actually takes place, the magnitude of the friction force
drops to Fy; similarly, the angle between R and N drops to a lower value ¢,
which is called the angle of kinetic friction (Fig. 4.13d). From the geo-
metry of Fig. 4.13d, we have

Angle of Kkinetic friction

F N
tan ¢y = Ji @.11

Another example shows how the angle of friction can be used to advan-
tage in the analysis of certain types of problems. Consider a block resting on
a board and subjected to no other force than its weight W and the reaction R of
the board. The board can be given any desired inclination. If the board is
horizontal, the force R exerted by the board on the block is perpendicular to
the board and balances the weight W (Fig. 4.14a). If the board is given a
small angle of inclination 6, force R deviates from the perpendicular to the
board by angle 6 and continues to balance W (Fig. 4.14b). The reaction R
now has a normal component N with a magnitude of N = W cos # and a
tangential component F with a magnitude of F = W sin 6.

If we keep increasing the angle of inclination, motion soon becomes
impending. At that time, the angle between R and the normal reaches its
maximum value 6 = ¢, (Fig. 4.14¢). The value of the angle of inclination
corresponding to impending motion is called the angle of repose. Clearly,
the angle of repose is equal to the angle of static friction ¢,. If we further
increase the angle of inclination #, motion starts and the angle between R
and the normal drops to the lower value ¢, (Fig. 4.14d). The reaction R is
not vertical anymore, and the forces acting on the block are unbalanced.

4.4D Problems Involving Dry Friction

Many engineering applications involve dry friction. Some are simple situ-
ations, such as variations on the block sliding on a plane just described.
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W51n9\>‘/9 W
w Wcos 6 /\/\?
A\

A \\N = Wcos 6
6=0 "9'\\\ 0= ¢, R /Fk<Wsin0
0 < ¢s RL-7 _ : ’
R F = Wsin 6 0 = ¢, = angle of repose /
(a) No friction (b) No motion (c) Motion impending (d) Motion

Fig. 4.14 (a) Block on horizontal board, friction force is zero; (b) board's angle of inclination is less than angle of static
friction, no motion; (c) board's angle of inclination equals angle of friction, motion is impending; (d) angle of inclination is
greater than angle of friction, forces are unbalanced and motion occurs.

Others involve more complicated situations, as in Sample Prob. 4.13.
Many problems deal with the stability of rigid bodies in accelerated
motion and will be studied in dynamics. Also, several common machines
and mechanisms can be analyzed by applying the laws of dry friction,
including wedges, screws, journal and thrust bearings, and belt transmis-
sions. We will study these applications in the following sections.

The methods used to solve problems involving dry friction are the same
that we used in the preceding chapters. If a problem involves only a motion
of translation with no possible rotation, we can usually treat the body under
consideration as a particle and use the methods of Chap. 2. If the problem
involves a possible rotation, we must treat the body as a rigid body and use
the methods presented in this chapter.

If the body being considered is acted upon by more than three forces
(including the reactions at the surfaces of contact), the reaction at each
surface is represented by its components N and F, and we solve the prob-
lem using the equations of equilibrium. If only three forces act on the body
under consideration, it may be more convenient to represent each reaction
by the single force R and solve the problem by using a force triangle.

Most problems involving friction fall into one of the following three
groups.

1. All applied forces are given, and we know the coefficients of friction;
we are to determine whether the body being considered remains at rest
or slides. The friction force F required to maintain equilibrium is

Photo 4.6 The coefficient of static friction between a crate
and the inclined conveyer belt must be sufficiently large to
enable the crate to be transported without slipping.

© Tomohiro Ohsumi/Bloomberg/Getty Images
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Fig. 4.15 Three types of friction problems:
(a) given the forces and coefficient of
friction, will the block slide or stay? (b) given
the forces and that motion is pending,
determine the coefficient of friction; (c) given
the coefficient of friction and that motion is
impending, determine the applied force.

(a)
Fig. 4.16

unknown (its magnitude is not equal to uN) and needs to be deter-
mined, together with the normal force N, by drawing a free-body dia-
gram and solving the equations of equilibrium (Fig. 4.15a). We then
compare the value found for the magnitude F of the friction force with
the maximum value F,, = pN. If F is smaller than or equal to F,, the
body remains at rest. If the value found for F is larger than F,, equi-
librium cannot be maintained and motion takes place; the actual mag-
nitude of the friction force is then F = pyN.

2. All applied forces are given, and we know the motion is impending; we
are to determine the value of the coefficient of static friction. Here again,
we determine the friction force and the normal force by drawing a free-
body diagram and solving the equations of equilibrium (Fig. 4.15b).
Since we know that the value found for F is the maximum value F,, we
determine the coefficient of friction by solving the equation F,, = pV.

3. The coefficient of static friction is given, and we know that the motion
is impending in a given direction; we are to determine the magnitude
or the direction of one of the applied forces. The friction force should
be shown in the free-body diagram with a sense opposite to that of the
impending motion and with a magnitude F,, = pN (Fig. 4.15¢). We can
then write the equations of equilibrium and determine the desired force.

As noted previously, when only three forces are involved, it may be
more convenient to represent the reaction of the surface by a single force
R and to solve the problem by drawing a force triangle. Such a solution
is used in Sample Prob. 4.12.

When two bodies A and B are in contact (Fig. 4.16a), the forces of
friction exerted, respectively, by A on B and by B on A are equal and
opposite (Newton’s third law). In drawing the free-body diagram of one
of these bodies, it is important to include the appropriate friction force
with its correct sense. Observe the following rule: The sense of the friction
force acting on A is opposite to that of the motion (or impending motion)
of A as observed from B (Fig. 4.16b). (It is therefore the same as the
motion of B as observed from A.) The sense of the friction force acting
on B is determined in a similar way (Fig. 4.16¢). Note that the motion of
A as observed from B is a relative motion. For example, if body A is fixed
and body B moves, body A has a relative motion with respect to B. Also,
if both B and A are moving down but B is moving faster than A, then
body A is observed, from B, to be moving up.

P Q <t
r Ts E
— 4—r|
T
18 8
—Q I el -Q
A e 0 A IE .§|*N | e
B — NS S B
=} o
|5 5! T
|':J =
1 2 5o 1
_p -P
(b) (©)

(@) Two blocks held in contact by forces; (b) free-body diagram for block A,

including direction of friction force; (c) free-body diagram for block B, including
direction of friction force.
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Fig. 1 Free-body diagram of
crate showing assumed
direction of friction force.

300 1b
S
O
&
100 IV /
F=481b
N=2401b

Fig. 2 Free-body diagram of
crate showing actual friction
force.

Sample Problem 4.11

A 100-1b force acts as shown on a 300-1b crate placed on an inclined
plane. The coefficients of friction between the crate and the plane are
s = 0.25 and g = 0.20. Determine whether the crate is in equilibrium,
and find the value of the friction force.

STRATEGY: This is a friction problem of the first type: You know the
forces and the friction coefficients and want to determine if the crate
moves. You also want to find the friction force.

MODELING and ANALYSIS

Force Required for Equilibrium. First determine the value of the
friction force required to maintain equilibrium. Assuming that F is directed
down and to the left, draw the free-body diagram of the crate (Fig. 1) and
solve the equilibrium equations:

+73F,=0: 1001b — ¥3001b) — F =0
F=-80lb F=80lb/
+N3F,=0: N-—33001b)=0

N = +240 1b N =240 b\

The force F required to maintain equilibrium is an 80-1b force directed up
and to the right; the tendency of the crate is thus to move down the plane.

Maximum Friction Force. The magnitude of the maximum friction
force that may be developed between the crate and the plane is

F, = uN F,, = 0.25(240 Ib) = 60 Ib

Since the value of the force required to maintain equilibrium (80 1b) is
larger than the maximum value that may be obtained (60 1b), equilibrium
is not maintained and the crate will slide down the plane.

Actual Value of Friction Force.
friction force is

The magnitude of the actual

Faclual = Fk = MkN = 020(240 lb) = 48 1b

The sense of this force is opposite to the sense of motion; the force is
thus directed up and to the right (Fig. 2):
Faclual = 48 lb/

Note that the forces acting on the crate are not balanced. Their resultant is
(300 1b) — 100 Ib — 48 1b = 32 b/

REFLECT and THINK: This is a typical friction problem of the first
type. Note that you used the coefficient of static friction to determine if
the crate moves, but once you found that it does move, you needed the
coefficient of kinetic friction to determine the friction force.

~
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800 N

800 N

p
tan ¢, = f; 800 N
=0.35
¢, = 19.29° A
25° 4 19.29° = 44.29°

Fig. 1 Free-body diagram of block and its force
triangle—motion impending up incline.

800 N

P
P tan ¢y = 1, 800 N
=0.25
" @, = 14.04° /l»\ ®
25° 4+ 14.04° = 39.04°
R
25°

Fig. 2 Free-body diagram of block and its force
triangle—motion continuing up incline.

800 N

¢, = 19.29°
p 25 -1929°=571° L
800N | R
®s
25 R

Fig. 3 Free-body diagram of block and its force
triangle—motion prevented down the slope.

N

Sample Problem 4.12

A support block is acted upon by two forces as shown. Knowing
that the coefficients of friction between the block and the
incline are p;, = 0.35 and g, = 0.25, determine the force P
required to (a) start the block moving up the incline; (b) keep
it moving up; (c) prevent it from sliding down.

STRATEGY: This problem involves practical variations of
the third type of friction problem. You can approach the solu-
tions through the concept of the angles of friction.

MODELING:

Free-Body Diagram. For each part of the problem, draw
a free-body diagram of the block and a force triangle including
the 800-N vertical force, the horizontal force P, and the force
R exerted on the block by the incline. You must determine the
direction of R in each separate case. Note that, since P is per-
pendicular to the 800-N force, the force triangle is a right tri-
angle, which easily can be solved for P. In most other problems,
however, the force triangle will be an oblique triangle and
should be solved by applying the law of sines.

ANALYSIS:

a. Force P to Start Block Moving Up. In this case,
motion is impending up the incline, so the resultant is directed
at the angle of static friction (Fig. 1). Note that the resultant is
oriented to the left of the normal such that its friction compo-
nent (not shown) is directed opposite the direction of impending
motion.

P = (800 N) tan 44.29° P = 780 N«

b. Force P to Keep Block Moving Up. Motion is
continuing, so the resultant is directed at the angle of kinetic
friction (Fig. 2). Again, the resultant is oriented to the left of
the normal such that its friction component is directed opposite
the direction of motion.

P = (800 N) tan 39.04° P = 649 N«

c. Force Pto Prevent Block from Sliding Down. Here,
motion is impending down the incline, so the resultant is
directed at the angle of static friction (Fig. 3). Note that the
resultant is oriented to the right of the normal such that its
friction component is directed opposite the direction of impend-
ing motion.

P = (800 N) tan 5.71° P = 80.0 N«—

REFLECT and THINK: As expected, considerably more
force is required to begin moving the block up the slope than
is necessary to restrain it from sliding down the slope.
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Fig. 1 Free-body diagram of
bracket.

Sample Problem 4.13

The movable bracket shown may be placed at any height on the 3-in.-
diameter pipe. If the coefficient of static friction between the pipe and
bracket is 0.25, determine the minimum distance x at which the load W
can be supported. Neglect the weight of the bracket.

STRATEGY: In this variation of the third type of friction problem, you
know the coefficient of static friction and that motion is impending. Since
the problem involves consideration of resistance to rotation, you should
apply both moment equilibrium and force equilibrium.

MODELING:

Free-Body Diagram. Draw the free-body diagram of the bracket
(Fig. 1). When W is placed at the minimum distance x from the axis of
the pipe, the bracket is just about to slip, and the forces of friction at A
and B have reached their maximum values:

FA = ,U/SNA = 0.25 NA

FB = ,LL.\‘NB = 0.25 NB
ANALYSIS:
Equilibrium Equations.
LSF, = 0 Ny — N, =0
N = N,
+13F, = 0: Fy+ Fp—W=0

0.25N, + 0.25Nz; = W
Since Np is equal to Ny,

0.50N, = W
NA =2W

FYSMy = 0: Ny(6in) — Fy(3in) — W(x — 1.5in.) = 0
6N, — 3(0.25N,) — Wx + 1L.5W = 0
6(2W) — 0.752W) — Wx + 1.5W = 0

Dividing through by W and solving for x, you have

x = 12 in.

REFLECT and THINK: 1In a problem like this, you may not figure out
how to approach the solution until you draw the free-body diagram and
examine what information you are given and what you need to find. In
this case, since you are asked to find a distance, the need to evaluate
moment equilibrium should be clear.

N
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/

Fig. 1 Free-body
diagram of truck.

Sample Problem 4.14

An 8400-kg truck is traveling on a level horizontal curve, resulting in an
effective lateral force H (applied at the center of gravity G of the truck).
Treating the truck as a rigid system with the center of gravity shown, and
knowing that the distance between the outer edges of the tires is 1.8 m,
determine (a) the maximum force H before tipping of the truck occurs,
(b) the minimum coefficient of static friction between the tires and road-
way such that slipping does not occur before tipping.

STRATEGY: For the direction of H shown, the truck would tip about the
outer edge of the right tire. At the verge of tip, the normal force and friction
force are zero at the left tire, and the normal force at the right tire is at the
outer edge. You can apply equilibrium to determine the value of H neces-
sary for tip and the required friction force such that slipping does not occur.

MODELING: Draw the free-body diagram of the truck (Fig. 1), which
reflects impending tip about point B. Obtain the weight of the truck by
multiplying its mass of 8400 kg by g = 9.81 m/s; that is, W = 82 400 N
or 82.4 kN.

ANALYSIS:
Free Body: Truck (Fig. 1).
+\EMp = 0: (82.4 kN)(0.8 m) — H(1.4 m) = 0
H = +47.1 kN H = 47.1 kN —
HSF =0 471kN — F5 =0
Fp = +47.1 kN
+12F, = 0: Ny — 824 kN = 0
Ny = +82.4 kN

Minimum Coefficient of Static Friction. The magnitude of the
maximum friction force that can be developed is

F, = puNg = p; (82.4 kN)
Setting this equal to the friction force required, Fz = 47.1 kN, gives
s (82.4 kN) = 47.1 kN s = 0.572

REFLECT and THINK: Recall from physics that H represents the force
due to the centripetal acceleration of the truck (of mass m), and its mag-
nitude is

H = m(*/p)
where

v = velocity of the truck
p = radius of curvature

In this problem, if the truck was traveling around a curve of 100-m radius
(measured to G), the velocity at which it would begin to tip would be
23.7 m/s (or 85.2 km/h). You will learn more about this aspect in the
study of dynamics.




Problems

4.75 Determine whether the block shown is in equilibrium and find the
magnitude and direction of the friction force when 6 = 25° and

P=750N
12kN| py=035
=025
p
—
)
Fig. P4.75

4.76 Solve Prob. 4.75 when # = 30° and P = 150 N.

4.77 Determine whether the block shown is in equilibrium and find the
magnitude and direction of the friction force when P = 120 Ib.

50 1b
{1, = 0.40
1 = 0.30
P
-

o
}40°
30°

Fig. P4.77, P4.78, and P4.79

4.78 Determine whether the block shown is in equilibrium and find the
magnitude and direction of the friction force when P = 80 Ib.

4.79 Determine the smallest value of P required to () start the block up the
incline, (b) keep it moving up.

4.80 The 80-Ib block is attached to link AB and rests on a moving belt.
Knowing that p; = 0.25 and y; = 0.20, determine the magnitude of
the horizontal force P that should be applied to the belt to maintain
its motion (a) to the right, (b) to the left.

O O O O O
Fig. P4.80



4.81

4.82

4.83

4.84

The 50-1b block A and the 25-1b block B are supported by an incline
that is held in the position shown. Knowing that the coefficient of
static friction is 0.15 between the two blocks and zero between block
B and the incline, determine the value of 6 for which motion is
impending.

Fig. P4.81 and P4.82

The 50-1b block A and the 25-1b block B are supported by an incline
that is held in the position shown. Knowing that the coefficient of
static friction is 0.15 between all surfaces of contact, determine the
value of # for which motion is impending.

The coefficients of friction between the block and the rail are p, =
0.30 and p; = 0.25. Knowing that # = 65°, determine the smallest
value of P required (a) to start the block moving up the rail, (b) to

keep it from moving down.
P
fo

ZN\35° i

Fig. P4.83

500N

Knowing that P = 100 N, determine the range of values of # for which
equilibrium of the 7.5-kg block is maintained.

[, = 0.45
[ = 0.35
7.5kg
o—
Je
|

™

Fig. P4.84



4.85 A 120-1b cabinet is mounted on casters that can be locked to prevent
their rotation. The coefficient of static friction between the floor and
each caster is 0.30. If h = 32 in., determine the magnitude of the
force P required to move the cabinet to the right (a) if all casters are
locked, (b) if the casters at B are locked and the casters at A are free
to rotate, (c¢) if the casters at A are locked and the casters at B are
free to rotate.

24 in.
Fig. P4.85 and P4.86

A 120-Ib cabinet is mounted on casters that can be locked to prevent
their rotation. The coefficient of static friction between the floor and
each caster is 0.30. Assuming that the casters at both A and B are
locked, determine (a) the force P required to move the cabinet to the
right, (b) the largest allowable value of # if the cabinet is not to tip
over.

A 40-kg packing crate must be moved to the left along the floor
without tipping. Knowing that the coefficient of static friction between
the crate and the floor is 0.35, determine (a) the largest allowable
value of «, (b) the corresponding magnitude of the force P.

|<—0.8 m——=

Fig. P4.87 and P4.88

A 40-kg packing crate is pulled by a rope as shown. The coefficient
of static friction between the crate and the floor is 0.35. If o = 40°,
determine (a) the magnitude of the force P required to move the
crate, (b) whether the crate will slide or tip.

4.89 and 4.90 The coefficients of friction are p; = 0.40 and p;, = 0.30
between all surfaces of contact. Determine the smallest force P
required to start the 30-kg block moving if cable AB (a) is attached as
shown, (b) is removed.




4.91 A 6.5-m ladder AB leans against a wall as shown. Assuming that the
coefficient of static friction i is zero at B, determine the smallest
value of y, at A for which equilibrium is maintained.

A
L—Z.S mﬂ‘

Fig. P4.91 and P4.92

4.92 A 6.5-m ladder AB leans against a wall as shown. Assuming that the
coefficient of static friction i is the same at A and B, determine the
smallest value of 1, for which equilibrium is maintained.

4.93 and 4.94 End A of a slender, uniform rod of length L and weight W
bears on a surface as shown, while end B is supported by a cord BC.
Knowing that the coefficients of friction are g, = 0.40 and py; =
0.30, determine (a) the largest value of 6 for which motion is impend-
ing, (b) the corresponding value of the tension in the cord.

Fig. P4.94



4.95

4.96

4.97

4.98

Two slender rods of negligible weight are pin-connected at C and
attached to blocks A and B, each of weight W. Knowing that § =
80° and that the coefficient of static friction between the blocks and
the horizontal surface is 0.30, determine the largest value of P for
which equilibrium is maintained.

.

Fig. P4.95 and P4.96

Two slender rods of negligible weight are pin-connected at C and
attached to blocks A and B, each of weight W. Knowing that P =
1.260W and that the coefficient of static friction between the blocks
and the horizontal surface is 0.30, determine the range of values of 6,
between 0 and 180°, for which equilibrium is maintained.

The cylinder shown is of weight W and radius r, and the coefficient
of static friction f is the same at A and B. Determine the magnitude
of the largest couple M that can be applied to the cylinder if it is
not to rotate.

B
Fig. P4.97 and P4.98

The cylinder shown is of weight W and radius r. Express in terms W
and r the magnitude of the largest couple M that can be applied to
the cylinder if it is not to rotate, assuming the coefficient of static
friction to be (a) zero at A and 0.30 at B, (b) 0.25 at A and 0.30 at B.



This chapter was devoted to the study of the equilibrium of rigid bodies,
i.e., to the situation when the external forces acting on a rigid body form a
system equivalent to zero [Introduction]. We then have

2F =0 2My = 2@ X F) =0 4.1)

Resolving each force and each moment into its rectangular components, we
can express the necessary and sufficient conditions for the equilibrium of a
rigid body with the following six scalar equations:

SF, =0 SF, =0 SF. =0 @.2)
SM, = 0 SM,=0  SM, =0 @.3)

We can use these equations to determine unknown forces applied to the rigid
body or unknown reactions exerted by its supports.

When solving a problem involving the equilibrium of a rigid body, it is essential
to consider all of the forces acting on the body. Therefore, the first step in the
solution of the problem should be to draw a free-body diagram showing the body
under consideration and all of the unknown as well as known forces acting on it.

In the first part of this chapter, we considered the equilibrium of a two-
dimensional structure; i.e., we assumed that the structure considered and the
forces applied to it were contained in the same plane. We saw that each of
the reactions exerted on the structure by its supports could involve one, two,
or three unknowns, depending upon the type of support [Sec. 4.1A].

In the case of a two-dimensional structure, the equations given previ-
ously reduce to three equilibrium equations:

2F, =0 2F, =0 M, =0 “.5)

where A is an arbitrary point in the plane of the structure [Sec. 4.1B]. We can
use these equations to solve for three unknowns. Although the three equilib-
rium equations (4.5) cannot be augmented with additional equations, any of
them can be replaced by another equation. Therefore, we can write alternative
sets of equilibrium equations, such as

SF, =0 SM, = 0 SMy = 0 4.6)

where point B is chosen in such a way that the line AB is not parallel to the
y axis, or

SM, =0 SMy = 0 SMy =0 @.7)

where the points A, B, and C do not lie in a straight line.

Since any set of equilibrium equations can be solved for only three unknowns,
the reactions at the supports of a rigid two-dimensional structure cannot be



completely determined if they involve more than three unknowns; they are
said to be statically indeterminate [Sec. 4.1C]. On the other hand, if the reac-
tions involve fewer than three unknowns, equilibrium is not maintained under
general loading conditions; the structure is said to be partially constrained.
The fact that the reactions involve exactly three unknowns is no guarantee that
you can solve the equilibrium equations for all three unknowns. If the supports
are arranged in such a way that the reactions are either concurrent or parallel,
the reactions are statically indeterminate, and the structure is said to be
improperly constrained.

We gave special attention in Sec. 4.2 to two particular cases of equilibrium
of a rigid body. We defined a two-force body as a rigid body subjected to
forces at only two points, and we showed that the resultants F; and F, of these
forces must have the same magnitude, the same line of action, and opposite
sense (Fig. 4.17), which is a property that simplifies the solution of certain
problems in later chapters. We defined a three-force body as a rigid body
subjected to forces at only three points, and we demonstrated that the resul-
tants F, F,, and F; of these forces must be either concurrent (Fig. 4.18) or
parallel. This property provides us with an alternative approach to the solution
of problems involving a three-force body [Sample Prob. 4.6].

In the second part of this chapter, we considered the equilibrium of a three-
dimensional body. We saw that each of the reactions exerted on the body by
its supports could involve between one and six unknowns, depending upon
the type of support [Sec. 4.3A].

In the general case of the equilibrium of a three-dimensional body, all
six of the scalar equilibrium equations (4.2) and (4.3) should be used and
solved for six unknowns [Sec. 4.3B]. In most problems, however, we can
obtain these equations more conveniently if we start from

SF =0 SM, =S XF) =0 @.1)

and then express the forces F and position vectors r in terms of scalar com-
ponents and unit vectors. We can compute the vector products either directly
or by means of determinants, and obtain the desired scalar equations by equat-
ing to zero the coefficients of the unit vectors [Sample Probs. 4.7 through 4.9].

We noted that we may eliminate as many as three unknown reaction
components from the computation of XM, in the second of the relations (4.1)
through a judicious choice of point O. Also, we can eliminate the reactions
at two points A and B from the solution of some problems by writing the
equation XM,z = 0, which involves the computation of the moments of the
forces about an axis AB joining points A and B [Sample Prob. 4.10].

We observed that when a body is subjected to individual couples M;,
either as applied loads or as support reactions, we can include these couples
by expressing the second part of Eq. (4.1) as

SM, = S(r X F) + SM, = 0 @.1)

If the reactions involve more than six unknowns, some of the reactions
are statically indeterminate; if they involve fewer than six unknowns, the rigid
body is only partially constrained. Even with six or more unknowns, the rigid
body is improperly constrained if the reactions associated with the given sup-
ports are either parallel or intersect the same line.

Fig. 4.17

=8

Fig. 4.18
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Fig. 4.20

The final part of this chapter was devoted to the study of dry friction, i.e.,
to problems involving rigid bodies in contact along unlubricated surfaces. If
we apply a horizontal force P to a block resting on a horizontal surface
[Sec. 4.4A], we note that at first the block does not move. This shows that a
friction force F must have developed to balance P (Fig. 4.19). As the
magnitude of P increases, the magnitude of F also increases until it reaches
a maximum value F,. If P is further increased, the block starts sliding, and
the magnitude of F drops from F,, to a lower value F;. Experimental evidence
shows that F,, and F; are proportional to the normal component N of the
reaction of the surface. We have

F |Equilibrium |  Motion

Fig. 4.19

Fy = pN Fy = N 4.8, 4.9)

where p, and i are called, respectively, the coefficient of static friction and
the coefficient of kinetic friction. These coefficients depend on the nature
and the condition of the surfaces in contact. Approximate values of the coef-
ficients of static friction are given in Table 4.1.

It is sometimes convenient to replace the normal force N and the friction force F
by their resultant R (Fig. 4.20). As the friction force increases and reaches its
maximum value F,, = u,N, the angle ¢ that R forms with the normal to the
surface increases and reaches a maximum value ¢, which is called the angle
of static friction. If motion actually takes place, the magnitude of F drops to
F;; similarly, the angle ¢ drops to a lower value ¢, which is called the angle
of kinetic friction. As shown in Sec. 4.4C, we have

tan ¢, = pq tan ¢, = 1y 4.10, 4.11)

When solving equilibrium problems involving friction, you should keep in
mind that the magnitude F of the friction force is equal to F,, = uN only if
the body is about to slide [Sec. 4.4D]. If motion is not impending, you should
treat F and N as independent unknowns to be determined from the equilibrium
equations (Fig. 4.21a). You should also check that the value of F required to
maintain equilibrium is not larger than F,; if it were, the body would move,
and the magnitude of the friction force would be F} = 1N [Sample Prob. 4.11].
On the other hand, if motion is known to be impending, F has reached its
maximum value F,, = pN (Fig. 4.21b), and you should substitute this expres-
sion for F in the equilibrium equations [Sample Prob. 4.13]. When only three



forces are involved in a free-body diagram, including the reaction R of the
surface in contact with the body, it is usually more convenient to solve the
problem by drawing a force triangle [Sample Prob. 4.12]. In some problems,
impending motion can be due to tipping instead of slipping; the assessment
of this condition requires a moment equilibrium analysis of the body [Sample
Prob. 4.14].

(@) ®)
Fig. 4.21

When a problem involves the analysis of the forces exerted on each
other by two bodies A and B, it is important to show the friction forces with
their correct sense. The correct sense for the friction force exerted by B on
A, for instance, is opposite to that of the relative motion (or impending motion)
of A with respect to B [Fig. 4.16].
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4.105 The table shown weighs 30 Ib and has a diameter of 4 ft. It is sup-
ported by three legs equally spaced around the edge. A vertical
load P of magnitude 100 1b is applied to the top of the table at D.
Determine the maximum value of a if the table is not to tip over.
Show, on a sketch, the area of the table over which P can act without

tipping the table.
Pla
/‘ c

A
A =)
[ b 9 B
Fig. P4.105
o 7
4.106 A vertical load P is applied at end B of rod BC. The constant of the
spring is k, and the spring is unstretched when 6 = 60°. (@) Neglect-

equilibrium position in terms of P, k, and [. (b) Determine the value
of 6 corresponding to equilibrium if P = } kI

9,
ing the weight of the rod, express the angle 6 corresponding to the i / [

Fig. P4.106

4.107 A force P is applied to a bent rod ABC, which can be supported in
four different ways as shown. In each case, if possible, determine
the reactions at the supports.

P P
a— Hd*»‘ a— Haﬂ
Y C C
Q —_
B 45°
Lﬂ I
[ A a=30° S

(@) (b)

() (d)

Fig. P4.107
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Distributed Forces: Centroids
and Centers of Gravity

A precast section of roadway for a new interchange on Interstate

93 is shown being lowered from a gantry crane. In this chapter

we will introduce the concept of the centroid of an area; later

chapters will establish the relation between the location of the
centroid and the behavior of the roadway under loading.

\— y o 7
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- : : )
Introduction Objectives

* Describe the centers of gravity of two and three-

5.1 PLANAR CENTERS . . .
dimensional bodies.

OF GRAVITY AND

CENTROIDS e Define the centroids of lines, areas, and volumes.
5.1A Center_of Grfa\vityI on ® Consider the first moments of lines and areas, and
e examine their properties.
5.1B Centroids of Areas and Lines . . ) .
5.1C First Moments of Areas * Determine centroids of composite lines, areas, and
and Lines volumes by summation methods.
5.1D Composite Plates and Wires * Determine centroids of composite areas by integration.
5.2 EIOJE;PII)I;I}{ATIONS * Apply the theorems of Pappus-Guldinus to analyze
e ENTROIDS surfaces and bodies of revolution.
5.2A Determination of Centroids * Analyze distributed loads on beams.
by Integration k -/
5.2B Theorems of Pappus-Guldinus
5.3 DISTRIBUTED LOADS ON Introduction
BEAMS
5.4 CENTERS OF GRAVITY We have assumed so far that we could represent the attraction exerted by
AND CENTROIDS the earth on a rigid body by a single force W. This force, called the force
OF VOLUMES due to gravity or the weight of the body, is applied at the center of gravity
5.4A Three-Dimensional Centers of the body (Sec. 3.1A). Actually, the earth exerts a force on each of the
of Gravity and Centroids particles forming the body, so we should represent the attraction of the
5.4B Composite Bodies earth on a rigid body by a large number of small forces distributed over

the entire body. You will see in this chapter, however, that all of these
small forces can be replaced by a single equivalent force W. You will also
see how to determine the center of gravity—i.e., the point of application
of the resultant W—for bodies of various shapes.

In the first part of this chapter, we study two-dimensional bodies,
such as flat plates and wires contained in a given plane. We introduce two
concepts closely associated with determining the center of gravity of a
plate or a wire: the centroid of an area or a line and the first moment
of an area or a line with respect to a given axis. Computing the area of a
surface of revolution or the volume of a body of revolution is directly
related to determining the centroid of the line or area used to generate
that surface or body of revolution (theorems of Pappus-Guldinus). Also, as
we show in Sec. 5.3, the determination of the centroid of an area simpli-
fies the analysis of beams subjected to distributed loads.

In the last part of this chapter, you will see how to determine the
center of gravity of a three-dimensional body as well as how to calculate
the centroid of a volume and the first moments of that volume with respect
to the coordinate planes.

Photo 5.1 The precise balancing of the
components of a mobile requires an
understanding of centers of gravity and
centroids, the main topics of this chapter.

© Christie’s Images Ltd./SuperStock



21 6 Distributed Forces: Centroids and Centers of Gravity

5.1 PLANAR CENTERS OF
GRAVITY AND CENTROIDS

In Chapter 4, we showed how the locations of the lines of action of forces
affect the replacement of a system of forces with an equivalent system of
forces and couples. In this section, we extend this idea to show how a
distributed system of forces (in particular, the elements of an object’s
weight) can be replaced by a single resultant force acting at a specific point
on an object. The specific point is called the object’s center of gravity.

5.1A Center of Gravity of a
Two-Dimensional Body

Let us first consider a flat horizontal plate (Fig. 5.1). We can divide the
plate into n small elements. We denote the coordinates of the first element
by x; and y,;, those of the second element by x, and y,, etc. The forces
exerted by the earth on the elements of the plate are denoted, respectively,
by AW,, AW,, ..., AW, These forces or weights are directed toward the
center of the earth; however, for all practical purposes, we can assume
them to be parallel. Their resultant is therefore a single force in the same
direction. The magnitude W of this force is obtained by adding the mag-
nitudes of the elemental weights.

SF,: W =AW, + AW, + --- + AW,
Z Z Z

AW,

yZ

X1
Y1
0 /
X
(a) Single element of the plate (b) Multiple elements of the plate (c) Center of gravity
Jx aw Jy aw
x=—— y=
wo YT w

Fig. 5.1 The center of gravity of a plate is the point where the resultant weight of the plate acts. It is
the weighted average of all the elements of weight that make up the plate.

To obtain the coordinates x and y of point G where the resultant W should
be applied, we note that the moments of W about the y and x axes are
equal to the sum of the corresponding moments of the elemental weights:
M, W = x AW, + AW, + -+ + x,AW,
EMXZ yW = ylAWI + yZAWZ + -0+ ynAWn
Solving these equations for x and y gives us

S.1)

xlAwl + XZAWZ + -0+ )CnAWn
w

ylAWl + }’2AW2 + -0+ ynAWn
w

=
Il

<
Il



We could use these equations in this form to find the center of gravity of
a collection of n objects, each with a weight of W,

If we now increase the number of elements into which we divide the
plate and simultaneously decrease the size of each element, in the limit of
infinitely many elements of infinitesimal size, we obtain the expressions

Weight, center of
gravity of a flat plate

W= JdW W= dew YW = JydW (.2)

Or, solving for x and y, we have

Jx aw ydw

W= |dw x=— y="—— 5.2
J X W y W (5.2)

—

These equations define the weight W and the coordinates x and y of the
center of gravity G of a flat plate. The same equations can be derived
for a wire lying in the xy plane (Fig. 5.2). Note that the center of gravity G
of a wire is usually not located on the wire.

Z Z

AW,

— —
)
o ('xﬂl’ yn)
o o K (. v) A
X X
(a) Single element of the wire (b) Multiple elements of the wire
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-

e
G

Photo 5.2 The center of gravity of a
boomerang is not located on the object itself.

© C Squared Studios/Getty Images RF

(c) Center of gravity

deW JydW

X = W y = W

Fig. 5.2 The center of gravity of a wire is the point where the resultant weight of the wire acts.

The center of gravity may not actually be located on the wire.

5.1B Centroids of Areas and Lines

In the case of a flat homogeneous plate of uniform thickness, we can

express the magnitude AW of the weight of an element of the plate as
AW = vt AA

where v = specific weight (weight per unit volume) of the material

t = thickness of the plate
AA = area of the element

Similarly, we can express the magnitude W of the weight of the entire
plate as

W = ~tA

where A is the total area of the plate.
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If U.S. customary units are used, the specific weight v should be
expressed in 1b/ft3, the thickness ¢ in feet, and the areas AA and A in square
feet. Then AW and W are expressed in pounds. If SI units are used,
should be expressed in N/m’? , t in meters, and the areas AA and A in square
meters; the weights AW and W are then expressed in newtons.’

Substituting for AW and W in the moment equations (5.1) and divid-
ing throughout by ~¢, we obtain

M,
M, YA

}A :.XIAAI +X2AA2+ +XnAAn
ViAA; + 3, AAy + 0+ y, AA,

If we increase the number of elements into which the area A is divided
and simultaneously decrease the size of each element, in the limit we obtain

Centroid of an area A
XA =Jx dA  yA = Jy dA 5.3)

Or, solving for x and y, we obtain

deA JydA

x=— Y= 5.3)
These equations define the coordinates x and y of the center of gravity of
a homogeneous plate. The point whose coordinates are x and y is also
known as the centroid C of the area A of the plate (Fig. 5.3). If the plate
is not homogeneous, you cannot use these equations to determine the center
of gravity of the plate; they still define, however, the centroid of the area.

G

(0

X

(a) Divide area into elements

Fig. 5.3 The centroid of an
would balance.

Y

(b) Element AA at point x, y (c) Centroid located at
Jx dA Jy dA
A YT

area is the point where a homogeneous plate of uniform thickness

"We should note that in the SI system of units, a given material is generally characterized
by its density p (mass per unit volume) rather than by its specific weight v. You can obtain
the specific weight of the material from the relation

=P8

where g = 9.81 m/s>. Note that since p is expressed in kg/m?, the units of ~y are (kg/m*)(m/s?),
or N/m®.



In the case of a homogeneous wire of uniform cross section, we can
express the magnitude AW of the weight of an element of wire as

AW = ~a AL

where 7 = specific weight of the material
a = cross-sectional area of the wire
AL = length of the element

The center of gravity of the wire then coincides with the centroid C of
the line L defining the shape of the wire (Fig. 5.4). We can obtain the
coordinates x and y of the centroid of line L from the equations

Centroid of a line L

xL = Jx dL yL = Jy dL 5.4)

e 5.4

o o
X X

(a) Divide line into elements (b) Element AL at point x, y

Fig. 5.4 The centroid of a line is the point where a homogeneous wire of uniform cross section

would balance.

5.1C First Moments of Areas and Lines

The integral [ x dA in Egs. (5.3) is known as the first moment of the
area A with respect to the y axis and is denoted by Q,. Similarly, the
integral [y dA defines the first moment of A with respect to the x axis
and is denoted by Q.. That is,

First moments of area A

0, = f xdA @, = J ydA 5.5)

5.1

o

Planar Centers of Gravity and Centroids

(c) Centroid located at

x=—r

deL

L

JydL

y=-——

L
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Comparing Eqgs. (5.3) with Egs. (5.5), we note that we can express the
first moments of the area A as the products of the area and the coordinates
of its centroid:

Oy=xA Q.=)A (5.6)

It follows from Egs. (5.6) that we can obtain the coordinates of the
centroid of an area by dividing the first moments of that area by the area
itself. The first moments of the area are also useful in mechanics of materi-
als for determining the shearing stresses in beams under transverse load-
ings. Finally, we observe from Eqgs. (5.6) that, if the centroid of an area is
located on a coordinate axis, the first moment of the area with respect to
that axis is zero. Conversely, if the first moment of an area with respect
to a coordinate axis is zero, the centroid of the area is located on that axis.

We can use equations similar to Eqgs. (5.5) and (5.6) to define the
first moments of a line with respect to the coordinate axes and to express
these moments as the products of the length L of the line and the coordi-
nates x and y of its centroid.

An area A is said to be symmetric with respect to an axis BB’ if
for every point P of the area there exists a point P’ of the same area such
that the line PP’ is perpendicular to BB’ and is divided into two equal
parts by that axis (Fig. 5.5a). The axis BB’ is called an axis of symmetry.
A line L is said to be symmetric with respect to an axis BB’ if it satisfies
similar conditions. When an area A or a line L possesses an axis of sym-
metry BB’, its first moment with respect to BB’ is zero, and its centroid
is located on that axis. For example, note that, for the area A of Fig. 5.5b,
which is symmetric with respect to the y axis, every element of area dA

rf_x,.4_x,|

[ |

dA’ | dA
C

)
Fig. 5.5 Symmetry about an axis. (a) The
area is symmetric about the axis BB'. (b) The
centroid of the area is located on the axis of
symmetry.



with abscissa x corresponds to an element dA’ of equal area and with
abscissa —x. It follows that the integral in the first of Egs. (5.5) is zero
and, thus, that O, = 0. It also follows from the first of the relations in
Eq. (5.3) that x = 0. Thus, if an area A or a line L possesses an axis of
symmetry, its centroid C is located on that axis.

We further note that if an area or line possesses two axes of sym-
metry, its centroid C must be located at the intersection of the two axes
(Fig. 5.6). This property enables us to determine immediately the centroids
of areas such as circles, ellipses, squares, rectangles, equilateral triangles,
or other symmetric figures, as well as the centroids of lines in the shape
of the circumference of a circle, the perimeter of a square, etc.

(a) (®)

Fig. 5.6 If an area has two axes of symmetry, the centroid
is located at their intersection. (a) An area with two axes
of symmetry but no center of symmetry; (b) an area with
two axes of symmetry and a center of symmetry.

We say that an area A is symmetric with respect to a center O if,
for every element of area dA of coordinates x and y, there exists an ele-
ment dA" of equal area with coordinates —x and —y (Fig. 5.7). It then
follows that the integrals in Eqs. (5.5) are both zero and that O, = O, = 0.
It also follows from Egs. (5.3) that x = y = 0; that is, that the centroid
of the area coincides with its center of symmetry O. Similarly, if a line
possesses a center of symmetry O, the centroid of the line coincides with
the center O.

Note that a figure possessing a center of symmetry does not neces-
sarily possess an axis of symmetry (Fig. 5.7), whereas a figure possessing
two axes of symmetry does not necessarily possess a center of symmetry
(Fig. 5.6a). However, if a figure possesses two axes of symmetry at right
angles to each other, the point of intersection of these axes is a center of
symmetry (Fig. 5.6b).

Determining the centroids of unsymmetrical areas and lines and of
areas and lines possessing only one axis of symmetry will be discussed
in the next section. Centroids of common shapes of areas and lines are
shown in Fig. 5.8A and B.

5.1D Composite Plates and Wires

In many instances, we can divide a flat plate into rectangles, triangles, or
the other common shapes shown in Fig. 5.8A. We can determine the
abscissa X of the plate’s center of gravity G from the abscissas xy, x,, . . ., X,
of the centers of gravity of the various parts. To do this, we equate the
moment of the weight of the whole plate about the y axis to the sum of

5.1 Planar Centers of Gravity and Centroids

y
<—x—>‘
A W dA|—
ol
// y
ol l
T / "
-y //
/
L K dA’
-

Fig. 5.7 An area may have a center of
symmetry but no axis of symmetry.
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Shape X y Area
. h bh
Triangular area 3 2
Quarter-circular 4r 4r Tr?
area 3T 3T 4
Semicircular area 0 4r 7
3T 2
Quarter-elliptical 4a 4b mab
area 3T 3T 4
Semielliptical 0 4b Tab
area 3 2
Semiparabolic 3a 3h 2ah
area 3 3 3
Parabolic area 0 3h 4Aah
5 3
Parabolic spandrel 3a 3h anh
4 10 3
n+1 n+1 ah
h
General spandrel — ¢ Pt P
. 2rsin o )
Circular sector B e— 0 ar
3a

Fig. 5.8A Centroids of common shapes of areas.



5.1 Planar Centers of Gravity and Centroids 223

Shape X y Length
Quarter-circular 2r 2r o
arc s ™ 2
Semicircular arc 0 % s
Arc of circle rs;ina 0 2ar

Fig. 5.8B Centroids of common shapes of lines.

the moments of the weights of the various parts about the same axis
(Fig. 5.9). We can obtain the ordinate Y of the center of gravity of the
plate in a similar way by equating moments about the x axis. Mathemati-
cally, we have

SMy: X(Wy + Wy + o+ W,) =W, + W, + - + X, W,
SMe YWy + Wy + -+ W) =y W, + oW, + - + 3, W,

W j—

IM,: XSW=XIW
SM,: YSW=XFyW

Fig. 5.9 We can determine the location of the center of gravity G of a
composite plate from the centers of gravity G;, G, ... of the component plates.

In more condensed notation, this is

Center of gravity
of a composite plate

™M
oy
=

Y =

|
Il

2w 5.7
14 14 S
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ar.

X1 “72*|

%Y:;H

X|A|XA
A Semicircle —|+| =
A, Full rectangle | +|+| +
Aj Circularhole | +|—| —

Fig. 5.11 When calculating the centroid of
a composite area, note that if the centroid of
a component area has a negative coordinate
distance relative to the origin, or if the area
represents a hole, then the first moment is

negative.

We can use these equations to find the coordinates X and Y of the center
of gravity of the plate from the centers of gravity of its component parts.

If the plate is homogeneous and of uniform thickness, the center of
gravity coincides with the centroid C of its area. We can determine
the abscissa X of the centroid of the area by noting that we can express the
first moment Q, of the composite area with respect to the y axis as (1) the
product of X and the total area and (2) as the sum of the first moments of
the elementary areas with respect to the y axis (Fig. 5.10). We obtain the

X 0] X

0 =XXA=XTA
0. =YSA=X7A

Fig. 5.10 We can find the location of the centroid of a composite
area from the centroids of the component areas.

ordinate Y of the centroid in a similar way by considering the first moment
Q, of the composite area. We have

XA, + A+ +A)=xA + A+ + XA,
YA + A+ +A) = VA + Ay + o+ A,

o8
O,

Again, in shorter form,

Centroid of a
composite area

O, =XSA=3xA Q,=Y3A=3)A (5.8)

These equations yield the first moments of the composite area, or we can
use them to obtain the coordinates X and Y of its centroid.

First moments of areas, like moments of forces, can be positive or
negative. Thus, you need to take care to assign the appropriate sign to the
moment of each area. For example, an area whose centroid is located to
the left of the y axis has a negative first moment with respect to that axis.
Also, the area of a hole should be assigned a negative sign (Fig. 5.11).

Similarly, it is possible in many cases to determine the center of
gravity of a composite wire or the centroid of a composite line by dividing
the wire or line into simpler elements (see Sample Prob. 5.2).
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Sample Problem 5.1

~

N

y For the plane area shown, determine (a) the first moments with respect
120 mm to the x and y axes; (b) the location of the centroid.
60 mm STRATEGY: Break up the given area into simple components, find the
| 40 mm centroid of each component, and then find the overall first moments and
80 mm centroid.
! = MODELING: As shown in Fig. 1, you obtain the given area by adding
i a rectangle, a triangle, and a semicircle and then subtracting a circle. Using
the coordinate axes shown, find the area and the coordinates of the centroid
of each of the component areas. To keep track of the data, enter them in
a table. The area of the circle is indicated as negative because it is sub-
tracted from the other areas. The coordinate y of the centroid of the triangle
is negative for the axes shown. Compute the first moments of the compo-
nent areas with respect to the coordinate axes and enter them in your table.
y y y y y
4r,
120 mm Eri 25.46 mm 7, = 60 mm
ry = 60 mm ~ |60mm r, = 40 mm
ry = 40 mm —|— —|— - -
40 mm )
80 mm — 80 mm ALSIE 80 mm
| _{40mm l ¢
60 ﬁn m X X o T X X X
300 i 60 mm 60 mm
Component A, mm? X, mm y, mm XA, mm® YA, mm®
Rectangle (120)(80) = 9.6 X 10° 60 40 +576 X 10° +384 % 10°
Triangle 5(120)(60) = 3.6 X 10 40 -20 +144 x 10° =72 X 10°
Semicircle 1m(60)* = 5.655 X 10° 60 105.46 +339.3 X 10° +596.4 X 10°
Circle —m(40)* = —5.027 X 10° | 60 80 -301.6 X 10° —402.2 X 10°
SA = 13.828 X 10° SxA = +757.7 X 10° SYA = +506.2 X 10°
Fig. 1 Given area modeled as the combination of simple geometric shapes.
ANALYSIS:
g a. First Moments of the Area. Using Egs. (5.8), you obtain
/\ 0, = 3yA = 5062 X 10’ mm*  Q, = 506 X 10° mm®
Q Q, =S¥ = 7577 X 10°mm’ @, = 758 X 10° mm’
ch |} 7=36.6mm b. Location of Centroid. Substituting the values given in the table
x into the equations defining the centroid of a composite area yields (Fig. 2)
XZA = SxA:  X(13.828<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>