


bee98160_fm_i-xvi.indd i 12/24/15  03:20 PM

Second Edition

Statics and Mechanics  
of Materials

Ferdinand P. Beer
Late of Lehigh University

E. Russell Johnston, Jr.
Late of University of Connecticut

John T. DeWolf
University of Connecticut

David F. Mazurek
U.S. Coast Guard Academy

Final PDF to printer



bee98160_fm_i-xvi.indd ii 12/24/15  03:20 PM

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Names: Beer, Ferdinand P. (Ferdinand Pierre), 1915–2003.
Title: Statics and mechanics of materials / Ferdinand P. Beer, late of Lehigh
 University [and three others].
Description: Second edition. | New York, NY : McGraw-Hill Education, [2017]
Identifiers: LCCN 2015047086 | ISBN 9780073398167 (alk. paper)
Subjects: LCSH: Statics. | Materials. | Mechanics, Applied.
Classification: LCC TA351 .S68 2017 | DDC 620.1—dc23
LC record available at http://lccn.loc.gov/2015047086

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does 
not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not 
guarantee the accuracy of the information presented at these sites.

mheducation.com/highered

Senior Vice President, Products & Markets: Kurt  
L. Strand
Vice President, General Manager, Products & Markets: 
Marty Lange
Vice President, Content Design & Delivery: Kimberly 
Meriwether David
Managing Director: Thomas Timp 
Brand Manager: Thomas M. Scaife, Ph.D.
Director, Product Development: Rose Koos
Product Developer: Robin Reed /Jolynn Kilburg
Marketing Manager: Nick McFadden 

Digital Product Developer: Joan Weber
Director, Content Design & Delivery: Linda Avenarius
Program Manager: Faye M. Herrig 
Content Project Managers: Melissa M. Leick, Tammy 
Juran, Sandra Schnee
Buyer: Jennifer Pickel
Design: Studio Montage, Inc.
Content Licensing Specialists: Beth Thole
Cover Image: Steve Speller
Compositor: SPi Global
Printer: R. R. Donnelley

STATICS AND MECHANICS OF MATERIALS, SECOND EDITION 

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2017 by McGraw-Hill 
Education. All rights reserved. Printed in the United States of America. Previous edition © 2011. No part of this 
publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval 
system, without the prior written consent of McGraw-Hill Education, including, but not limited to, in any network 
or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United 
States.

This book is printed on acid-free paper. 

1 2 3 4 5 6 7 8 9 0 DOW/DOW 1 0 9 8 7 6

ISBN 978-0-07-339816-7
MHID 0-07-339816-0

Final PDF to printer



iii

bee98160_fm_i-xvi.indd iii 12/24/15  03:20 PM

About the Authors
John T. DeWolf, Emeritus Professor of Civil Engineering at the Univer-
sity of Connecticut, joined the Beer and Johnston team as an author on 
the second edition of Mechanics of Materials. John holds a B.S. degree 
in civil engineering from the University of Hawaii and M.E. and Ph.D. 
degrees in structural engineering from Cornell University. He is a Fellow 
of the American Society of Civil Engineers and a member of the Con-
necticut Academy of Science and Engineering. He is a registered Profes-
sional Engineer and a member of the Connecticut Board of Professional 
Engineers. He was selected as a University of Connecticut Teaching Fel-
low in 2006. Professional interests include elastic stability, bridge monitor-
ing, and structural analysis and design.

David F. Mazurek, Professor of Civil Engineering at the United States 
Coast Guard Academy, joined the Beer and Johnston team on the eighth 
edition of Statics and the fifth edition of Mechanics of Materials. David 
holds a B.S. degree in ocean engineering and an M.S. degree in civil 
engineering from the Florida Institute of Technology and a Ph.D. degree 
in civil engineering from the University of Connecticut. He is a Fellow 
of the American Society of Civil Engineers and a member of the Con-
necticut Academy of Science and Engineering. He is a registered Profes-
sional Engineer and has served on the American Railway Engineering & 
Maintenance-of-Way Association’s Committee 15—Steel Structures since 
1991. Among his numerous awards, he was recognized by the National 
Society of Professional Engineers as the Coast Guard Engineer of the Year 
for 2015. Professional interests include bridge engineering, structural 
forensics, and blast-resistant design.

Final PDF to printer



iv

bee98160_fm_i-xvi.indd iv 12/24/15  03:20 PM

Brief Contents
 1 Introduction 1
 2 Statics of Particles 15
 3 Rigid Bodies: Equivalent Systems of Forces 76
 4 Equilibrium of Rigid Bodies 149
 5 Distributed Forces: Centroids and Centers  

of Gravity 214
 6 Analysis of Structures 261
 7 Distributed Forces: Moments of Inertia 313
 8 Concept of Stress 337
 9 Stress and Strain—Axial Loading 383
 10 Torsion 451
 11 Pure Bending 491
 12 Analysis and Design of Beams for Bending 551
 13 Shearing Stresses in Beams and Thin-Walled 

Members 591
 14 Transformations of Stress 625
 15 Deflection of Beams 663
 16 Columns 705

Appendices A1

Index I1

Answers to Problems AN1

Final PDF to printer



v

bee98160_fm_i-xvi.indd v 12/24/15  03:20 PM

Contents
Preface x

List of Symbols xvi

 1 Introduction 1

 1.1 What is Mechanics? 2
 1.2  Fundamental Concepts and Principles 3
 1.3 Systems of Units 6
 1.4  Converting Between Two Systems of Units 10
 1.5 Method of Solving Problems 12
 1.6 Numerical Accuracy 14

 2 Statics of Particles 15

  Introduction 16
 2.1  Addition of Planar Forces 16
 2.2  Adding Forces by Components 28
 2.3  Forces and Equilibrium in a Plane 37
 2.4 Adding Forces in Space 48
 2.5  Forces and Equilibrium in Space 60

Review and Summary 69

Review Problems 73

 3 Rigid Bodies: Equivalent Systems  
of Forces 76

  Introduction 77
 3.1 Forces and Moments 78
 3.2  Moment of a Force about an Axis 97
 3.3  Couples and Force-Couple Systems 110
 3.4  Simplifying Systems of Forces 124

Review and Summary 141

Review Problems 146

Final PDF to printer



bee98160_fm_i-xvi.indd vi 12/24/15  03:20 PM

vi Contents

 4 Equilibrium of Rigid Bodies 149

  Introduction 150
 4.1  Equilibrium in Two Dimensions 152
 4.2 Two Special Cases 169
 4.3  Equilibrium in Three Dimensions 176
 4.4  Friction Forces 191

Review and Summary 206

Review Problems 210

 5 Distributed Forces: Centroids and 
Centers of Gravity 214

  Introduction 215
 5.1  Planar Centers of Gravity and Centroids 216
 5.2  Further Considerations of Centroids 231
 5.3  Distributed Loads on Beams 242
 5.4  Centers of Gravity and Centroids of Volumes 245

Review and Summary 256

Review Problems 259

 6 Analysis of Structures 261

  Introduction 262
 6.1 Analysis of Trusses 263
 6.2 Other Truss Analyses 275
 6.3 Frames 286
 6.4 Machines 298

Review and Summary 307

Review Problems 310

 7 Distributed Forces: Moments 
of Inertia 313

  Introduction 314
 7.1  Moments of Inertia of Areas 314
 7.2 Parallel-Axis Theorem and Composite Areas 323

Review and Summary 333

Review Problems 335

Final PDF to printer



vii

bee98160_fm_i-xvi.indd vii 12/24/15  03:20 PM

Contents

 8 Concept of Stress 337

  Introduction 338
 8.1  Stresses in the Members of a Structure 338
 8.2 Stress on an Oblique Plane Under Axial Loading 359
 8.3  Stress Under General Loading Conditions; 

Components of Stress 360
 8.4 Design Considerations 363

Review and Summary 376

Review Problems 379

 9 Stress and Strain—Axial 
Loading 383

  Introduction 384
 9.1  Basic Principles of Stress and Strain 385
 9.2  Statically Indeterminate Problems 406
 9.3  Problems Involving Temperature Changes 410
 9.4  Poisson’s Ratio 422
 9.5  Multiaxial Loading: Generalized Hooke’s Law 423
 9.6  Shearing Strain 425
 *9.7  Deformations Under Axial Loading—Relation 

Between E, ν, and G 428
 9.8  Stress and Strain Distribution Under Axial Loading: 

Saint-Venant’s Principle 436
 9.9  Stress Concentrations 438

Review and Summary 442

Review Problems 448

 10 Torsion 451

  Introduction 452
 10.1 Circular Shafts in Torsion 454
 10.2  Angle of Twist in the Elastic Range 469
 10.3  Statically Indeterminate Shafts 472

Review and Summary 485

Review Problems 488

Final PDF to printer



bee98160_fm_i-xvi.indd viii 12/24/15  03:20 PM

 11 Pure Bending 491

  Introduction 492
 11.1 Symmetric Members in Pure Bending 494
 11.2  Stresses and Deformations in the Elastic Range 498
 11.3  Members Made of Composite Materials 511
 11.4  Eccentric Axial Loading in a Plane of Symmetry 522
 11.5  Unsymmetric Bending Analysis 532
 11.6  General Case of Eccentric Axial Loading Analysis 537

Review and Summary 545

Review Problems 548

 12 Analysis and Design of Beams 
for Bending 551

  Introduction 552
 12.1 Shear and Bending-Moment Diagrams 554
 12.2  Relationships between Load, Shear, and 

Bending Moment 566
 12.3  Design of Prismatic Beams for Bending 577

Review and Summary 587

Review Problems 589

 13 Shearing Stresses in Beams and 
Thin-Walled Members 591

  Introduction 592
 13.1 Horizontal Shearing Stress in Beams 554
 13.2  Longitudinal Shear on a Beam Element  

of Arbitrary Shape 608
 13.3  Shearing Stresses in Thin-Walled Members 610

Review and Summary 620

Review Problems 623

 14 Transformations of Stress 625

  Introduction 626
 14.1 Transformation of Plane Stress 628
 14.2  Mohr’s Circle for Plane Stress 640

viii Contents

Final PDF to printer



ix

bee98160_fm_i-xvi.indd ix 12/24/15  03:20 PM

*Advanced or specialty topics

 14.3  Stresses in Thin-Walled Pressure Vessels 650

Review and Summary 658

Review Problems 661

 15 Deflection of Beams 663

  Introduction 664
 15.1 Deformation Under Transverse Loading 666
 15.2  Statically Indeterminate Beams 675
 15.3  Method of Superposition 687

Review and Summary 699

Review Problems 702

 16 Columns 705

  Introduction 706
 16.1 Stability of Structures 706
 16.2  Centric Load Design 722

Review and Summary 738

Review Problems 740

  Appendices A1

 A Typical Properties of Selected Materials Used  
in Engineering A2

 B Properties of Rolled-Steel Shapes A6
 C Beam Deflections and Slopes A18

Index I1

Answers to Problems AN1

Contents

Final PDF to printer



x

bee98160_fm_i-xvi.indd x 12/24/15  03:20 PM

 Preface

Objectives
The main objective of a basic mechanics course should be to develop in 
the engineering student the ability to analyze a given problem in a simple 
and logical manner and to apply to its solution a few fundamental and 
well-understood principles. This text is designed for a course that com-
bines statics and mechanics of materials—or strength of materials—
offered to engineering students in the sophomore year.

General Approach
In this text the study of statics and mechanics of materials is based on the 
understanding of a few basic concepts and on the use of simplified models. 
This approach makes it possible to develop all the necessary formulas in 
a rational and logical manner, and to clearly indicate the conditions under 
which they can be safely applied to the analysis and design of actual 
engineering structures and machine components.

Practical Applications Are Introduced Early. One of the character-
istics of the approach used in this text is that mechanics of particles is clearly 
separated from the mechanics of rigid bodies. This approach makes it pos-
sible to consider simple practical applications at an early stage and to post-
pone the introduction of the more difficult concepts. As an example, statics 
of particles is treated first (Chap. 2); after the rules of addition and subtrac-
tion of vectors are introduced, the principle of equilibrium of a particle is 
immediately applied to practical situations involving only concurrent forces. 
The statics of rigid bodies is considered in Chaps. 3 and 4. In Chap. 3, the 
vector and scalar products of two vectors are introduced and used to define 
the moment of a force about a point and about an axis. The presentation of 
these new concepts is followed by a thorough and rigorous discussion of 
equivalent systems of forces, leading, in Chap. 4, to many practical applica-
tions involving the equilibrium of rigid bodies under general force systems.

New Concepts Are Introduced in Simple Terms. Because 
this text is designed for the first course in mechanics, new concepts are 
presented in simple terms and every step is explained in detail. On the 
other hand, by discussing the broader aspects of the problems considered 
and by stressing methods of general applicability, a definite maturity of 
approach is achieved. For example, the concepts of partial constraints and 
statical indeterminacy are introduced early and are used throughout.

Fundamental Principles Are Placed in the Context of Simple  
Applications. The fact that mechanics is essentially a deductive sci-
ence based on a few fundamental principles is stressed. Derivations have 
been presented in their logical sequence and with all the rigor warranted 
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at this level. However, the learning process being largely inductive, simple 
applications are considered first.

As an example, the statics of particles precedes the statics of rigid 
bodies, and problems involving internal forces are postponed until Chap. 6. 
In Chap. 4, equilibrium problems involving only coplanar forces are con-
sidered first and solved by ordinary algebra, while problems involving three-
dimensional forces and requiring the full use of vector algebra are discussed 
in the second part of the chapter.

The first four chapters treating mechanics of materials (Chaps. 8, 9, 
10, and 11) are devoted to the analysis of the stresses and of the corre-
sponding deformations in various structural members, considering succes-
sively axial loading, torsion, and pure bending. Each analysis is based on 
a few basic concepts, namely, the conditions of equilibrium of the forces 
exerted on the member, the relations existing between stress and strain in 
the material, and the conditions imposed by the supports and loading of 
the member. The study of each type of loading is complemented by a large 
number of examples, sample problems, and problems to be assigned, all 
designed to strengthen the students’ understanding of the subject.

Free-body Diagrams Are Used Extensively. Throughout the 
text, free-body diagrams are used to determine external or internal forces. 
The use of “picture equations” will also help the students understand the 
superposition of loadings and the resulting stresses and deformations.

Design Concepts Are Discussed Throughout the Text 
Whenever Appropriate. A discussion of the application of the 
factor of safety to design can be found in Chap. 8, where the concept of 
allowable stress design is presented.

The SMART Problem-Solving Methodology Is Employed.  
New to this edition of the text, students are introduced to the SMART 
approach for solving engineering problems, whose acronym reflects the 
solution steps of Strategy, Modeling, Analysis, and Reflect & Think. This 
methodology is used in all Sample Problems, and it is intended that 
 students will apply this in the solution of all assigned problems.

A Careful Balance Between SI and U.S. Customary Units Is 
Consistently Maintained. Because it is essential that students be 
able to handle effectively both SI metric units and U.S. customary units, 
half the examples, sample problems, and problems to be assigned have been 
stated in SI units and half in U.S. customary units. Since a large number of 
problems are available, instructors can assign problems using each system 
of units in whatever proportion they find most desirable for their class.

It also should be recognized that using both SI and U.S. customary 
units entails more than the use of conversion factors. Because the SI system 
of units is an absolute system based on the units of time, length, and mass, 
whereas the U.S. customary system is a gravitational system based on the 
units of time, length, and force,  different approaches are required for the 
solution of many problems. For example, when SI units are used, a body is 
generally specified by its mass expressed in kilograms; in most problems 
of statics it will be necessary to determine the weight of the body in new-
tons, and an additional calculation will be required for this purpose. On the 
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xii Preface

other hand, when U.S. customary units are used, a body is specified by its 
weight in pounds and, in dynamics problems (such as would be encountered 
in a follow-on course in dynamics), an additional calculation will be required 
to determine its mass in slugs (or lb·s2/ft). The authors, therefore, believe 
that problem assignments should include both systems of units.

Optional Sections Offer Advanced or Specialty Topics. A 
number of optional sections have been included. These sections are indi-
cated by asterisks and thus are easily distinguished from those that form 
the core of the basic first mechanics course. They may be omitted with-
out prejudice to the understanding of the rest of the text.

The material presented in the text and most of the problems require 
no previous mathematical knowledge beyond algebra, trigonometry, and 
elementary calculus; all the elements of vector algebra necessary to the 
understanding of mechanics are carefully presented in Chaps. 2 and 3. In 
general, a greater emphasis is placed on the correct understanding of the 
basic mathematical concepts involved than on the nimble manipulation of 
mathematical formulas. In this connection, it should be mentioned that the 
determination of the centroids of composite areas precedes the calculation 
of centroids by integration, thus making it possible to establish the concept 
of the moment of an area firmly before introducing the use of integration.

Chapter Organization and 
Pedagogical Features
Each chapter begins with an introductory section setting the purpose and 
goals of the chapter and describing in simple terms the material to be 
covered and its application to the solution of engineering problems.

Chapter Lessons. The body of the text has been divided into units, 
each consisting of one or several theory sections followed by sample prob-
lems and a large number of problems to be assigned. Each unit corresponds 
to a well-defined topic and generally can be covered in one lesson.

Concept Applications and Sample Problems. Many theory 
sections include concept applications designed to illustrate the material 
being presented and facilitate its understanding. The sample problems pro-
vided after all lessons are intended to show some of the applications of 
the theory to the solution of engineering problems. Because they have 
been set up in much the same form that students will use in solving the 
assigned problems, the sample problems serve the double purpose of 
amplifying the text and demonstrating the type of neat and orderly work 
that students should cultivate in their own solutions.

Homework Problem Sets. Most of the problems are of a  practical 
nature and should appeal to engineering students. They are primarily 
designed, however, to illustrate the material presented in the text and help 
the students understand the basic principles used in  engineering mechan-
ics. The problems have been grouped according to the portions of material 
they illustrate and have been arranged in order of increasing difficulty. 
Answers to problems are given at the end of the book, except for those 
with a number set in red italics.
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Chapter Review and Summary. Each chapter ends with a review 
and summary of the material covered in the chapter. Notes in the margin 
have been included to help the students organize their review work, and 
cross references are provided to help them find the portions of material 
requiring their special attention.

Review Problems. A set of review problems is included at the end 
of each chapter. These problems provide students further opportunity to 
apply the most important concepts introduced in the chapter.

New to the Second Edition
We’ve made some significant changes from the first edition of this text. 
The updates include:

∙ Complete Rewrite. The text has undergone a complete edit of the 
language to make the book easier to read and more student-friendly.

∙ New Photographs Throughout. We have updated many of the pho-
tos appearing in the second edition.

∙ The SMART Problem-Solving Methodology is Employed. Stu-
dents are introduced to the SMART approach for solving engineering 
problems, which is used in all Sample Problems and is intended for 
use in the solution of all assigned problems.

∙ Revised or New Problems. Over 55% of the problems are revised or 
new to this edition.

∙ Connect with SmartBook. The second edition is now equipped with 
Connect, our one-of-a-kind teaching and learning platform that boosts 
student learning through our adaptive SmartBook and includes access 
to ALL of the more than 1200 homework problems in the text. In-
structors will appreciate having access through Connect to a complete 
instructor’s solutions manual, lecture PowerPoint slides to facilitate 
classroom discussion of the concepts in the text, and textbook images 
for repurposing in personalized classroom materials.
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 a Constant; radius; distance
 A, B, C, . . . Forces; reactions at supports and 

connections
 A, B, C,  . . . Points
 A Area
 b Width; distance
 c Constant; distance; radius
 C Centroid
 C1, C2,  . . . Constants of integration
 CP Column stability factor
 d Distance; diameter; depth
 e Distance; eccentricity
 E Modulus of elasticity
 F Force; friction force
 F.S. Factor of safety
 g Acceleration of gravity
 G Modulus of rigidity; shear modulus
 h Distance; height
 H, J, K Points
 i, j, k Unit vectors along coordinate axes
 I, Ix, . . . Moments of inertia
 I Centroidal moment of inertia
 J Polar moment of inertia
 k Spring constant
 K Stress concentration factor; torsional 

spring constant
 l Length
 L Length; span
 Le Effective length
 m Mass
 M Couple
 M, Mx,  . . . Bending moment
 n Number; ratio of moduli of elasticity; 

normal direction
 N Normal component of reaction
 O Origin of coordinates
 p Pressure
 P Force; vector
 PD Dead load (LRFD)
 PL Live load (LRFD)

 PU Ultimate load (LRFD)
 q Shearing force per unit length; shear flow
 Q Force; vector
 Q First moment of area
 r Centroidal radius of gyration
 r Position vector
 rx, ry, rO Radii of gyration
 r Radius; distance; polar coordinate
 R Resultant force; resultant vector; reaction
 R Radius of earth
 s Length
 S Force; vector
 S Elastic section modulus
 t Thickness
 T Force; torque
 T Tension; temperature
 u, v Rectangular coordinates
 V Vector product; shearing force
 V Volume; shear
 w Width; distance; load per unit length
 W, W Weight; load
 x, y, z Rectangular coordinates; distances; 

displacements; deflections
 x, y, z Coordinates of centroid
 α, β, γ Angles
 α Coefficient of thermal expansion; 

influence coefficient
 γ Shearing strain; specific weight
 γD load factor, dead load (LRFD)
 γL load factor, live load (LRFD)
 δ Deformation; displacement; elongation
 ε Normal strain
 θ Angle; slope
 λ Unit vector along a line
 μ Coefficient of friction
 ν Poisson’s ratio
 ρ Radius of cuvature; distance; density
 σ Normal stress
 τ Shearing stress
 ϕ Angle; angle of twist; resistance factor

List of Symbols
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The tallest skyscraper in the Western Hemisphere, One World 

Trade Center is a prominent feature of the New York City skyline. 

From its foundation to its structural components and mechanical 

systems, the design and operation of the tower is based on the 

fundamentals of engineering mechanics.

Introduction

1
© Renato Bordoni/Alamy
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Introduction

 1.1 WHAT IS MECHANICS?

 1.2 FUNDAMENTAL CONCEPTS 
AND PRINCIPLES

 1.2A Mechanics of Rigid Bodies
 1.2B Mechanics of Deformable 

Bodies

 1.3 SYSTEMS OF UNITS

 1.4 CONVERTING BETWEEN 
TWO SYSTEMS OF UNITS

 1.5 METHOD OF SOLVING 
PROBLEMS

 1.6 NUMERICAL ACCURACY

Objectives
•	Define the science of mechanics and examine its 

fundamental principles.

•	Discuss and compare the International System of 
Units and U.S. Customary Units.

•	Discuss how to approach the solution of mechanics 
problems, and introduce the SMART problem-solving 
methodology.

•	Examine factors that govern numerical accuracy in the 
solution of a mechanics problem.

1.1 WHAT IS MECHANICS?
Mechanics is defined as the science that describes and predicts the condi-
tions of rest or motion of bodies under the action of forces. It consists of 
the mechanics of rigid bodies, mechanics of deformable bodies, and 
mechanics of fluids.

The mechanics of rigid bodies is subdivided into statics and dynamics. 
Statics deals with bodies at rest; dynamics deals with bodies in motion. In 
this text, we assume bodies are perfectly rigid. In fact, actual structures and 
machines are never absolutely rigid; they deform under the loads to which 
they are subjected. However, because these deformations are usually small, 
they do not appreciably affect the conditions of equilibrium or the motion 
of the structure under consideration. They are important, though, as far as 
the resistance of the structure to failure is concerned. Deformations are 
studied in a course in mechanics of materials, which is part of the mechanics 
of deformable bodies. The third division of mechanics, the mechanics of 
fluids, is subdivided into the study of incompressible fluids and of com-
pressible fluids. An important subdivision of the study of incompressible 
fluids is hydraulics, which deals with applications involving water.

Mechanics is a physical science, since it deals with the study of 
physical phenomena. However, some teachers associate mechanics with 
mathematics, whereas many others consider it as an engineering subject. 
Both these views are justified in part. Mechanics is the foundation of most 
engineering sciences and is an indispensable prerequisite to their study. 
However, it does not have the empiricism found in some engineering sci-
ences, i.e., it does not rely on experience or observation alone. The rigor 
of mechanics and the emphasis it places on deductive reasoning makes it 
resemble mathematics. However, mechanics is not an abstract or even a 
pure science; it is an applied science. 

The purpose of mechanics is to explain and predict physical phenom-
ena and thus to lay the foundations for engineering applications. You need 
to know statics to determine how much force will be exerted on a point in 
a bridge design and whether the structure can withstand that force. Deter-
mining the force a dam needs to withstand from the water in a river requires 
statics. You need statics to calculate how much weight a crane can lift, how 
much force a locomotive needs to pull a freight train, or how much force a 
circuit board in a computer can withstand. The concepts of dynamics enable 
you to analyze the flight characteristics of a jet, design a building to resist 
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earthquakes, and mitigate shock and vibration to passengers inside a vehicle. 
The concepts of dynamics enable you to calculate how much force you need 
to send a satellite into orbit, accelerate a 200,000-ton cruise ship, or design 
a toy truck that doesn’t break. You will not learn how to do these things in 
this course, but the ideas and methods you learn here will be the underlying 
basis for the engineering applications you will learn in your work.

1.2  FUNDAMENTAL CONCEPTS 
AND PRINCIPLES

1.2A Mechanics of Rigid Bodies
Although the study of mechanics goes back to the time of Aristotle (384– 
322 B.C.) and Archimedes (287–212 B.C.), not until Newton (1642–1727) did 
anyone develop a satisfactory formulation of its fundamental principles. 
These principles were later modified by d’Alembert, Lagrange, and Hamilton. 
Their validity remained unchallenged until Einstein formulated his theory of 
relativity (1905). Although its limitations have now been recognized, new-
tonian mechanics still remains the basis of today’s engineering sciences.

The basic concepts used in mechanics are space, time, mass, and 
force. These concepts cannot be truly defined; they should be accepted on 
the basis of our intuition and experience and used as a mental frame of 
reference for our study of mechanics.

The concept of space is associated with the position of a point P. 
We can define the position of P by providing three lengths measured from 
a certain reference point, or origin, in three given directions. These lengths 
are known as the coordinates of P.

To define an event, it is not sufficient to indicate its position in 
space. We also need to specify the time of the event.

We use the concept of mass to characterize and compare bodies  
on the basis of certain fundamental mechanical experiments. Two bodies 
of the same mass, for example, are attracted by the earth in the same man-
ner; they also offer the same resistance to a change in translational motion.

A force represents the action of one body on another. A force can 
be exerted by actual contact, like a push or a pull, or at a distance, as in 
the case of gravitational or magnetic forces. A force is characterized by 
its point of application, its magnitude, and its direction; a force is repre-
sented by a vector (Sec. 2.1B).

In newtonian mechanics, space, time, and mass are absolute con-
cepts that are independent of each other. (This is not true in relativistic 
mechanics, where the duration of an event depends upon its position and 
the mass of a body varies with its velocity.) On the other hand, the concept 
of force is not independent of the other three. Indeed, one of the funda-
mental principles of newtonian mechanics listed below is that the resultant 
force acting on a body is related to the mass of the body and to the manner 
in which its velocity varies with time.

In this text, you will study the conditions of rest or motion of par-
ticles and rigid bodies in terms of the four basic concepts we have intro-
duced. By particle, we mean a very small amount of matter, which we 
assume occupies a single point in space. A rigid body consists of a large 
number of particles occupying fixed positions with respect to one another. 
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The study of the mechanics of particles is clearly a prerequisite to that of 
rigid bodies. Besides, we can use the results obtained for a particle directly 
in a large number of problems dealing with the conditions of rest or 
motion of actual bodies.

The study of elementary mechanics rests on six fundamental prin-
ciples, based on experimental evidence.

∙ The Parallelogram Law for the Addition of Forces. Two forces 
acting on a particle may be replaced by a single force, called their 
resultant, obtained by drawing the diagonal of the parallelogram 
with sides equal to the given forces (Sec. 2.1A).

∙ The Principle of Transmissibility. The conditions of equilibrium 
or of motion of a rigid body remain unchanged if a force acting at 
a given point of the rigid body is replaced by a force of the same 
magnitude and same direction, but acting at a different point, pro-
vided that the two forces have the same line of action (Sec. 3.1B).

∙ Newton’s Three Laws of Motion. Formulated by Sir Isaac Newton 
in the late seventeenth century, these laws can be stated as follows:

 FIRST LAW. If the resultant force acting on a particle is zero, 
the particle remains at rest (if originally at rest) or moves with con-
stant speed in a straight line (if originally in motion) (Sec. 2.3B).

 SECOND LAW. If the resultant force acting on a particle is not 
zero, the particle has an acceleration proportional to the magnitude 
of the resultant and in the direction of this resultant force.

This law can be stated as

 F 5 ma (1.1)

 where F, m, and a represent, respectively, the resultant force acting 
on the particle, the mass of the particle, and the acceleration of the 
particle expressed in a consistent system of units.

 THIRD LAW. The forces of action and reaction between bodies 
in contact have the same magnitude, same line of action, and oppo-
site sense (Chap. 6, Introduction).

∙ Newton’s Law of Gravitation. Two particles of mass M and m 
are mutually attracted with equal and opposite forces F and 2F of 
magnitude F (Fig. 1.1), given by the formula

 F 5 G 

Mm

r2  (1.2)

 where r 5 the distance between the two particles and G 5 a uni-
versal constant called the constant of gravitation. Newton’s law of 
gravitation introduces the idea of an action exerted at a distance and 
extends the range of application of Newton’s third law: the action F 
and the reaction 2F in Fig.  1.1 are equal and opposite, and they 
have the same line of action.

A particular case of great importance is that of the attraction of the 
earth on a particle located on its surface. The force F exerted by the earth 
on the particle is defined as the weight W of the particle. Suppose we set 
M equal to the mass of the earth, m equal to the mass of the particle, and 
r equal to the earth’s radius R. Then introducing the constant

M

–F

F

m

r

Fig. 1.1 From Newton‘s law of gravitation, 
two particles of masses M and m exert 
forces upon each other of equal magnitude, 
opposite direction, and the same line of 
action. This also illustrates Newton‘s third 
law of motion.
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 g 5
GM

R2  (1.3)

we can express the magnitude W of the weight of a particle of mass m as†

 W 5 mg (1.4)

The value of R in formula (1.3) depends upon the elevation of the point 
considered; it also depends upon its latitude, since the earth is not truly 
spherical. The value of g therefore varies with the position of the point 
considered. However, as long as the point actually remains on the earth’s 
surface, it is sufficiently accurate in most engineering computations to 
assume that g equals 9.81 m/s2 or 32.2 ft/s2.

The principles we have just listed will be introduced in the course 
of our study of mechanics as they are needed. The statics of particles 
carried out in Chap. 2 will be based on the parallelogram law of addition 
and on Newton’s first law alone. We introduce the principle of transmis-
sibility in Chap. 3 as we begin the study of the statics of rigid bodies, and 
we bring in Newton’s third law in Chap. 6 as we analyze the forces exerted 
on each other by the various members forming a structure.

As noted earlier, the six fundamental principles listed previously are 
based on experimental evidence. Except for Newton’s first law and the prin-
ciple of transmissibility, they are independent principles that cannot be derived 
mathematically from each other or from any other elementary physical prin-
ciple. On these principles rests most of the intricate structure of newtonian 
mechanics. For more than two centuries, engineers have solved a tremendous 
number of problems dealing with the conditions of rest and motion of rigid 
bodies, deformable bodies, and fluids by applying these fundamental prin-
ciples. Many of the solutions obtained could be checked experimentally, thus 
providing a further verification of the principles from which they were 
derived. Only in the twentieth century has Newton’s mechanics found to be 
at fault, in the study of the motion of atoms and the motion of the planets, 
where it must be supplemented by the theory of relativity. On the human or 
engineering scale, however, where velocities are small compared with the 
speed of light, Newton’s mechanics have yet to be disproved.

1.2B Mechanics of Deformable Bodies
The concepts needed for mechanics of deformable bodies, also referred to 
as mechanics of materials, are necessary for analyzing and designing vari-
ous machines and load-bearing structures. These concepts involve the 
determination of stresses and deformations.

In Chaps. 8 through 16, the analysis of stresses and the corresponding 
deformations will be developed for structural members subject to axial load-
ing, torsion, and bending. This requires the use of basic concepts involving 
the conditions of equilibrium of forces exerted on the member, the relations 
existing between stress and deformation in the material, and the conditions 
imposed by the supports and loading of the member. Later chapters expand 
on these subjects, providing a basis for designing both structures that are 
statically determinant and those that are indeterminant, i.e., structures in 
which the internal forces cannot be determined from statics alone.

†A more accurate definition of the weight W should take into account the earth’s rotation.

Photo 1.1 When in orbit of the earth, 
people and objects are said to be weightless 
even though the gravitational force acting 
is approximately 90% of that experienced 
on the surface of the earth. This apparent 
contradiction can be resolved in a course on 
dynamics when Newton’s second law is 
applied to the motion of particles.

© NASA

Final PDF to printer



6 Introduction

bee98160_ch01_001-014.indd 6 11/26/15  07:29 PM

1.3 SYSTEMS OF UNITS
Associated with the four fundamental concepts just discussed are the 
so-called kinetic units, i.e., the units of length, time, mass, and force. 
These units cannot be chosen independently if Eq. (1.1) is to be satisfied. 
Three of the units may be defined arbitrarily; we refer to them as basic 
units. The fourth unit, however, must be chosen in accordance with 
Eq. (1.1) and is referred to as a derived unit. Kinetic units selected in 
this way are said to form a consistent system of units.

International	System	of	Units	(SI	Units).† In this system, which 
will be in universal use after the United States has completed its conversion 
to SI units, the base units are the units of length, mass, and time, and they 
are called, respectively, the meter (m), the kilogram (kg), and the second 
(s). All three are arbitrarily defined. The second was originally chosen to 
represent 1/86 400 of the mean solar day, but it is now defined as the dura-
tion of 9 192 631 770 cycles of the radiation corresponding to the transition 
between two levels of the fundamental state of the cesium-133 atom. The 
meter, originally defined as one ten-millionth of the distance from the equa-
tor to either pole, is now defined as 1 650 763.73 wavelengths of the orange-
red light corresponding to a certain transition in an atom of krypton-86. (The 
newer definitions are much more precise and with today’s modern instru-
mentation, are easier to verify as a standard.) The kilogram, which is approxi-
mately equal to the mass of 0.001 m3 of water, is defined as the mass of a 
platinum-iridium standard kept at the International Bureau of Weights and 
Measures at Sèvres, near Paris, France. The unit of force is a derived unit. 
It is called the newton (N) and is defined as the force that gives an accelera-
tion of 1 m/s2 to a body of mass 1 kg (Fig. 1.2). From Eq. (1.1), we have
 1 N 5 (1 kg)(1 m/s2) 5 1 kg?m/s2 (1.5)
The SI units are said to form an absolute system of units. This means that 
the three base units chosen are independent of the location where measure-
ments are made. The meter, the kilogram, and the second may be used 
anywhere on the earth; they may even be used on another planet and still 
have the same significance.

The weight of a body, or the force of gravity exerted on that body, 
like any other force, should be expressed in newtons. From Eq. (1.4), it 
follows that the weight of a body of mass 1 kg (Fig. 1.3) is

W 5 mg

   5 (1 kg)(9.81 m/s2)
   5 9.81 N

Multiples and submultiples of the fundamental SI units are denoted 
through the use of the prefixes defined in Table 1.1. The multiples and sub-
multiples of the units of length, mass, and force most frequently used in 
engineering are, respectively, the kilometer (km) and the millimeter (mm); the 
megagram‡ (Mg) and the gram (g); and the kilonewton (kN). According to 
Table 1.1, we have

1 km 5 1000 m  1 mm 5 0.001 m
1 Mg 5 1000 kg   1 g 5 0.001 kg
1 kN 5 1000 N

†SI stands for Système International d’Unités (French).
‡Also known as a metric ton.

a = 1 m/s2

m = 1 kg F = 1 N

Fig. 1.2 A force of 1 newton applied to 
a body of mass 1 kg provides an acceleration 
of 1 m/s2.

a = 9.81 m/s2

m = 1 kg

W = 9.81 N

Fig. 1.3 A body of mass 1 kg experiencing 
an acceleration due to gravity of 9.81 m/s2 
has a weight of 9.81 N.
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The conversion of these units into meters, kilograms, and  newtons, respec-
tively, can be effected by simply moving the decimal point three places 
to the right or to the left. For example, to convert 3.82 km into meters, 
move the decimal point three places to the right:

3.82 km 5 3820 m

Similarly, to convert 47.2 mm into meters, move the decimal point three 
places to the left:

47.2 mm 5 0.0472 m

Using engineering notation, you can also write

 3.82 km 5 3.82 3 103 m
47.2 mm 5 47.2 3 1023 m

The multiples of the unit of time are the minute (min) and the hour (h). 
Since 1 min 5 60 s and 1 h 5 60 min 5 3600 s, these multiples cannot 
be converted as readily as the others.

By using the appropriate multiple or submultiple of a given unit, 
you can avoid writing very large or very small numbers. For example, it 
is usually simpler to write 427.2 km rather than 427 200 m and 2.16 mm 
rather than 0.002 16 m.†

Units	of	Area	and	Volume.	 The unit of area is the square meter (m2), 
which represents the area of a square of side 1 m; the unit of volume is 
the cubic meter (m3), which is equal to the volume of a cube of side 1 m. 
In order to avoid exceedingly small or large numerical values when com-
puting areas and volumes, we use systems of subunits obtained by respec-
tively squaring and cubing not only the millimeter, but also two intermediate 
†Note that when more than four digits appear on either side of the decimal point to express 
a quantity in SI units––as in 427 000 m or 0.002 16 m––use spaces, never commas, to sepa-
rate the digits into groups of three. This practice avoids confusion with the comma used in 
place of a decimal point, which is the convention in many countries.

Table	1.1 Sl	Prefixes

Multiplication	Factor	 	 Prefix†	 Symbol

 1 000 000 000 000 5 1012 tera T
 1 000 000 000 5 109 giga G
 1 000 000 5 106 mega M
 1 000 5 103 kilo k
 100 5 102 hecto‡ h
 10 5 101 deka‡ da
 0.1 5 1021 deci‡ d
 0.01 5 1022 centi‡ c
 0.001 5 1023 milli m
 0.000 001 5 1026 micro µ
 0.000 000 001 5 1029 nano n
 0.000 000 000 001 5 10212 pico p
 0.000 000 000 000 001 5 10215 femto f
 0.000 000 000 000 000 001 5 10218 atto a
†The first syllable of every prefix is accented, so that the prefix retains its identity. Thus, the 
preferred pronunciation of kilometer places the accent on the first syllable, not the second.
‡The use of these prefixes should be avoided, except for the measurement of areas and volumes 
and for the nontechnical use of centimeter, as for body and clothing measurements.
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submultiples of the meter: the  decimeter (dm) and the centimeter (cm). 
By definition,

 1 dm 5 0.1 m 5 1021 m
  1 cm 5 0.01 m 5 1022 m
1 mm 5 0.001 m 5 1023 m

Therefore, the submultiples of the unit of area are

 1 dm2 5 (1 dm)2 5 (1021 m)2 5 1022 m2

  1 cm2 5 (1 cm)2 5 (1022 m)2 5 1024 m2

1 mm2 5 (1 mm)2 5 (1023 m)2 5 1026 m2

Similarly, the submultiples of the unit of volume are

 1 dm3 5 (1 dm)3 5 (1021 m)3 5 1023 m3

 1 cm3 5 (1 cm)3 5 (1022 m)3 5 1026 m3

1 mm3 5 (1 mm)3 5 (1023 m)3 5 1029 m3
 

Note that when measuring the volume of a liquid, the cubic decimeter (dm3) 
is usually referred to as a liter (L).

Table 1.2 shows other derived SI units used to measure the moment 
of a force, the work of a force, etc. Although we will introduce these units 
in later chapters as they are needed, we should note an important rule at 

Table	1.2 Principal	SI	Units	Used	 in	Mechanics

Quantity	 Unit	 Symbol	 Formula

Acceleration Meter per second squared . . . m/s2

Angle Radian rad †
Angular acceleration Radian per second squared . . . rad/s2

Angular velocity Radian per second . . . rad/s
Area Square meter . . . m2

Density Kilogram per cubic meter . . . kg/m3

Energy Joule J N?m
Force Newton N kg?m/s2

Frequency Hertz Hz s–1

Impulse Newton-second . . . kg?m/s
Length Meter m ‡
Mass Kilogram kg ‡
Moment of a force Newton-meter . . . N?m
Power Watt W J/s
Pressure Pascal Pa N/m2

Stress Pascal Pa N/m2

Time Second s ‡
Velocity Meter per second . . . m/s
Volume
 Solids Cubic meter . . . m3

 Liquids Liter L 10–3 m3

Work Joule J N?m
†Supplementary unit (1 revolution 5 2π rad 5 360°).
‡Base unit.
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this time: When a derived unit is obtained by dividing a base unit by 
another base unit, you may use a prefix in the numerator of the derived 
unit, but not in its denominator. For example, the constant k of a spring 
that stretches 20 mm under a load of 100 N is expressed as

k 5
100 N
20 mm

5
100 N

0.020 m
5 5000 N/m or k 5 5 kN/m

but never as k 5 5 N/mm.

U.S.	 Customary	 Units.	 Most practicing American engineers still 
commonly use a system in which the base units are those of length, force, 
and time. These units are, respectively, the foot (ft), the pound (lb), and 
the second (s). The second is the same as the corresponding SI unit. The 
foot is defined as 0.3048 m. The pound is defined as the weight of a 
platinum standard, called the standard pound, which is kept at the National 
Institute of Standards and Technology outside Washington D.C., the mass 
of which is 0.453 592 43 kg. Since the weight of a body depends upon 
the earth’s gravitational attraction, which varies with location, the standard 
pound should be placed at sea level and at a latitude of 45° to properly 
define a force of 1 lb. Clearly the U.S. customary units do not form an 
absolute system of units. Because they depend upon the gravitational 
attraction of the earth, they form a gravitational system of units.

Although the standard pound also serves as the unit of mass in com-
mercial transactions in the United States, it cannot be used that way in 
engineering computations, because such a unit would not be consistent 
with the base units defined in the preceding paragraph. Indeed, when acted 
upon by a force of 1 lb––that is, when subjected to the force of gravity––
the standard pound has the acceleration due to gravity, g 5 32.2 ft/s2 
(Fig. 1.4), not the unit acceleration required by Eq. (1.1). The unit of mass 
consistent with the foot, the pound, and the second is the mass that 
receives an acceleration of 1 ft/s2 when a force of 1 lb is applied to it 
(Fig.  1.5). This unit, sometimes called a slug, can be derived from the 
equation F 5 ma after substituting 1 lb for F and 1 ft/s2 for a. We have

F 5 ma  1 lb 5 (1 slug)(1 ft/s2)

This gives us

 1 slug 5
1 lb

1 ft/s2 5 1 lb?s2/ft (1.6)

Comparing Figs. 1.4 and 1.5, we conclude that the slug is a mass 32.2 
times larger than the mass of the standard pound.

The fact that, in the U.S. customary system of units, bodies are 
characterized by their weight in pounds rather than by their mass in slugs 
is convenient in the study of statics, where we constantly deal with weights 
and other forces and only seldom deal directly with masses. However, in 
the study of dynamics, where forces, masses, and accelerations are 
involved, the mass m of a body is expressed in slugs when its weight W 
is given in pounds. Recalling Eq. (1.4), we write

 m 5
W

g
 (1.7)

where g is the acceleration due to gravity (g 5 32.2 ft/s2).

a = 32.2 ft /s2

m = 1 lb mass

F = 1 lb

Fig. 1.4 A body of 1 pound mass acted 
upon by a force of 1 pound has an 
acceleration of 32.2 ft/s2.

a = 1 ft /s2

m = 1 slug
(= 1 lb • s2/ft) 

F = 1 lb

Fig. 1.5 A force of 1 pound applied to a 
body of mass 1 slug produces an acceleration 
of 1 ft/s2.
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Other U.S. customary units frequently encountered in engineering 
problems are the mile (mi), equal to 5280 ft; the inch (in.), equal to 
(1/12) ft; and the kilopound (kip), equal to 1000 lb. The ton is often used 
to represent a mass of 2000 lb but, like the pound, must be converted into 
slugs in engineering computations.

The conversion into feet, pounds, and seconds of quantities expressed 
in other U.S. customary units is generally more involved and requires 
greater attention than the corresponding operation in SI units. For exam-
ple, suppose we are given the magnitude of a velocity v 5 30 mi/h and 
want to convert it to ft/s. First we write

v 5 30 

mi
h

Since we want to get rid of the unit miles and introduce instead the unit feet, 
we should multiply the right-hand member of the equation by an expression 
containing miles in the denominator and feet in the numerator. However, 
since we do not want to change the value of the right-hand side of the equa-
tion, the expression used should have a value equal to unity. The quotient 
(5280 ft)/(1 mi) is such an expression. Operating in a similar way to trans-
form the unit hour into seconds, we have

v 5 (30
mi
h ) (5280 ft

1 mi ) ( 1 h
3600 s)

Carrying out the numerical computations and canceling out units that 
appear in both the numerator and the denominator, we obtain

v 5 44 

ft
s

5 44 ft/s

1.4  CONVERTING BETWEEN 
TWO SYSTEMS OF UNITS 

In many situations, an engineer might need to convert into SI units a 
numerical result obtained in U.S. customary units or vice versa. Because 
the unit of time is the same in both systems, only two kinetic base units 
need be converted. Thus, since all other kinetic units can be derived from 
these base units, only two conversion factors need be remembered.

Units	of	Length.	 By definition, the U.S. customary unit of length is

 1 ft 5 0.3048 m (1.8)

It follows that

1 mi 5 5280 ft 5 5280(0.3048 m) 5 1609 m

or

 1 mi 5 1.609 km (1.9)

Also,

1 in. 5
1
12

  ft 5
1
12

(0.3048 m) 5 0.0254 m
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or

 1 in. 5 25.4 mm (1.10)

Units	of	Force.	 Recall that the U.S. customary unit of force (pound) 
is defined as the weight of the standard pound (of mass 0.4536 kg) at sea 
level and at a latitude of 45° (where g 5 9.807 m/s2). Then, using Eq. (1.4), 
we write

   W 5 mg

1 lb 5 (0.4536 kg)(9.807 m/s2) 5 4.448 kg?m/s2

From Eq. (1.5), this reduces to

 1 lb 5 4.448 N (1.11)

Units	of	Mass.	 The U.S. customary unit of mass (slug) is a derived 
unit. Thus, using Eqs. (1.6), (1.8), and (1.11), we have

1 slug 5 1 lb?s2/ft 5
1 lb

1 ft/s2 5
4.448 N

0.3048 m/s2 5 14.59 N?s2/m

Again, from Eq. (1.5),

 1 slug 5 1 lb?s2/ft 5 14.59 kg (1.12)

Although it cannot be used as a consistent unit of mass, recall that the 
mass of the standard pound is, by definition,

 1 pound mass 5 0.4536 kg (1.13)

We can use this constant to determine the mass in SI units (kilograms) of 
a body that has been characterized by its weight in U.S. customary units 
(pounds).

To convert a derived U.S. customary unit into SI units, simply 
multiply or divide by the appropriate conversion factors. For example, to 
convert the moment of a force that is measured as M 5 47 lb?in. into 
SI units, use formulas (1.10) and (1.11) and write

M 5 47 lb?in. 5 47(4.448 N)(25.4 mm)
   5 5310 N?mm 5 5.31 N?m

You can also use conversion factors to convert a numerical result 
obtained in SI units into U.S. customary units. For example, if the moment 
of a force is measured as M 5 40 N?m, follow the procedure at the end 
of Sec. 1.3 to write

M 5 40 N?m 5 (40 N?m)( 1� lb
4.448 N) ( 1 ft

0.3048 m)
Carrying out the numerical computations and canceling out units that 
appear in both the numerator and the denominator, you obtain

M 5 29.5 lb?ft

The U.S. customary units most frequently used in mechanics are 
listed in Table 1.3 with their SI equivalents.

Photo 1.2 In 1999, The Mars Climate Orbiter 
entered orbit around Mars at too low an 
altitude and disintegrated. Investigation 
showed that the software on board the probe 
interpreted force instructions in newtons, but 
the software at mission control on the earth 
was generating those instructions in terms of 
pounds.

© NASA/JPL-Caltech
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1.5  METHOD OF SOLVING 
PROBLEMS

You should approach a problem in mechanics as you would approach an 
actual engineering situation. By drawing on your own experience and intu-
ition about physical behavior, you will find it easier to understand and for-
mulate the problem. Once you have clearly stated and understood the problem, 
however, there is no place in its solution for arbitrary methodologies. 

The solution must be based on the six fundamental principles stated 
in Sec. 1.2A or on theorems derived from them. 

Every step you take in the solution must be justified on this basis. Strict 
rules must be followed, which lead to the solution in an almost automatic 
fashion, leaving no room for your intuition or “feeling.” After you have 

Table	1.3	 U.S.	Customary	Units	and	Their	SI	Equivalents

Quantity	 U.S.	Customary	Unit	 SI	Equivalent

Acceleration ft/s2 0.3048 m/s2

 in./s2 0.0254 m/s2

Area ft2 0.0929 m2

 in2 645.2 mm2

Energy ft?lb 1.356 J
Force kip 4.448 kN
 lb 4.448 N
 oz 0.2780 N
Impulse lb?s 4.448 N?s
Length ft 0.3048 m
 in. 25.40 mm
 mi 1.609 km
Mass oz mass 28.35 g
 lb mass 0.4536 kg
 slug 14.59 kg
 ton 907.2 kg
Moment of a force lb?ft 1.356 N?m
 lb?in. 0.1130 N?m
Moment of inertia
 Of an area in4 0.4162 3 106 mm4

 Of a mass lb?ft?s2 1.356 kg?m2

Momentum lb?s 4.448 kg?m/s
Power ft?lb/s 1.356 W
 hp 745.7 W
Pressure or stress lb/ft2 47.88 Pa
 lb/in2 (psi) 6.895 kPa
Velocity ft/s 0.3048 m/s
 in./s 0.0254 m/s
 mi/h (mph) 0.4470 m/s
 mi/h (mph) 1.609 km/h
Volume ft3 0.02832 m3

 in3 16.39 cm3

Liquids gal 3.785 L
 qt 0.9464 L
Work ft?lb 1.356 J
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obtained an answer, you should check it. Here again, you may call upon 
your common sense and personal experience. If you are not completely 
satisfied with the result, you should carefully check your formulation of 
the problem, the validity of the methods used for its solution, and the 
accuracy of your computations.

In general, you can usually solve problems in several different ways; 
there is no one approach that works best for everybody. However, we have 
found that students often find it helpful to have a general set of guidelines 
to use for framing problems and planning solutions. In the Sample  
Problems throughout this text, we use a four-step method for approaching 
problems, which we refer to as the SMART methodology: Strategy, 
Modeling, Analysis, and Reflect and Think.

 1. Strategy. The statement of a problem should be clear and precise, and 
it should contain the given data and indicate what information is 
required. The first step in solving the problem is to decide what concepts 
you have learned that apply to the given situation and to connect the 
data to the required information. It is often useful to work backward 
from the information you are trying to find: Ask yourself what quantities 
you need to know to obtain the answer, and if some of these quantities 
are unknown, how can you find them from the given data.

 2. Modeling. The first step in modeling is to define the system; that is, 
clearly define what you are setting aside for analysis. After you have 
selected a system, draw a neat sketch showing all quantities involved 
with a separate diagram for each body in the problem. For equilibrium 
problems, indicate clearly the forces acting on each body along with 
any relevant geometrical data, such as lengths and angles. (These 
diagrams are known as free-body diagrams and are described in detail 
in Sec. 2.3C and the beginning of Chap. 4.) 

 3. Analysis. After you have drawn the appropriate diagrams, use the 
fundamental principles of mechanics listed in Sec. 1.2 to write equa-
tions expressing the conditions of rest or motion of the bodies considered. 
Each equation should be clearly related to one of the free-body diagrams 
and should be numbered. If you do not have enough equations to solve 
for the unknowns, try selecting another system, or reexamine your strat-
egy to see if you can apply other principles to the problem. Once you 
have obtained enough equations, you can find a numerical solution by 
following the usual rules of algebra, neatly recording each step and the 
intermediate results. Alternatively, you can solve the resulting equations 
with your calculator or a computer. (For multipart problems, it is some-
times convenient to present the Modeling and Analysis steps together, 
but they are both essential parts of the overall process.)

 4. Reflect and Think. After you have obtained the answer, check it 
carefully. Does it make sense in the context of the original problem? 
For instance, the problem may ask for the force at a given point of a 
structure. If your answer is negative, what does that mean for the force 
at the point? 

You can often detect mistakes in reasoning by checking the units. 
For example, to determine the moment of a force of 50 N about a point 
0.60 m from its line of action, we write (Sec. 3.3A)

M 5 Fd 5 (30 N)(0.60 m) 5 30 N?m
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The unit N?m obtained by multiplying newtons by meters is the correct 
unit for the moment of a force; if you had obtained another unit, you 
would know that some mistake had been made.

You can often detect errors in computation by substituting the 
numerical answer into an equation that was not used in the solution and 
verifying that the equation is satisfied. The importance of correct compu-
tations in engineering cannot be overemphasized.

1.6 NUMERICAL ACCURACY
The accuracy of the solution to a problem depends upon two items: (1) the 
accuracy of the given data and (2) the accuracy of the computations per-
formed. The solution cannot be more accurate than the less accurate of 
these two items. 

For example, suppose the loading of a bridge is known to be 75 000 lb 
with a possible error of 100 lb either way. The relative error that measures 
the degree of accuracy of the data is

100 lb
75 000 lb

5 0.0013 5 0.13%

In computing the reaction at one of the bridge supports, it would be mean-
ingless to record it as 14 322 lb. The accuracy of the solution cannot be 
greater than 0.13%, no matter how precise the computations are, and the 
possible error in the answer may be as large as (0.13/100)(14 322 lb) ≈ 20 lb. 
The answer should be properly recorded as 14 320 6 20 lb.

In engineering problems, the data are seldom known with an accu-
racy greater than 0.2%. It is therefore seldom justified to write answers 
with an accuracy greater than 0.2%. A practical rule is to use four figures 
to record numbers beginning with a “1” and three figures in all other 
cases. Unless otherwise indicated, you should assume the data given in a 
problem are known with a comparable degree of accuracy. A force of 
40 lb, for example, should be read as 40.0 lb, and a force of 15 lb should 
be read as 15.00 lb.

Electronic calculators are widely used by practicing engineers and 
engineering students. The speed and accuracy of these calculators facili-
tate the numerical computations in the solution of many problems. How-
ever, you should not record more significant figures than can be justified 
merely because you can obtain them easily. As noted previously, an accu-
racy greater than 0.2% is seldom necessary or meaningful in the solution 
of practical engineering problems.
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Many engineering problems can be solved by considering the 

equilibrium of a “particle.” In the case of this beam that is being 

hoisted into position, a relation between the tensions in the various 

cables involved can be obtained by considering the equilibrium of 

the hook to which the cables are attached.

Statics of Particles

2
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Introduction
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FORCES
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of Two Forces

 2.1B Vectors
 2.1C Addition of Vectors
 2.1D Resultant of Several 

Concurrent Forces
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COMPONENTS

 2.2A Rectangular Components of a 
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 2.2B Addition of Forces by 
Summing X and Y 
Components

 2.3 FORCES AND 
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 2.3A Equilibrium of a Particle
 2.3B Newton’s First Law of Motion
 2.3C Free-Body Diagrams and 

Problem Solving

 2.4 ADDING FORCES IN SPACE
 2.4A Rectangular Components of a 

Force in Space
 2.4B Force Defined by Its 

Magnitude and Two Points on 
Its Line of Action

 2.4C Addition of Concurrent Forces 
in Space

 2.5 FORCES AND 
EQUILIBRIUM IN SPACE

Objectives
•	Describe force as a vector quantity.

•	Examine vector operations useful for the analysis of 
forces.

•	Determine the resultant of multiple forces acting on 
a particle.

•	Resolve forces into components.

•	Add forces that have been resolved into rectangular  
components.

•	Introduce the concept of the free-body diagram.

•	Use free-body diagrams to assist in the analysis of  
planar and spatial particle equilibrium problems.

Introduction
In this chapter, you will study the effect of forces acting on particles. By 
the word “particle” we do not mean only tiny bits of matter, like an atom 
or an electron. Instead, we mean that the sizes and shapes of the bodies 
under consideration do not significantly affect the solutions of the problems. 
Another way of saying this is that we assume all forces acting on a given 
body act at the same point. This does not mean the object must be tiny—if 
you were modeling the mechanics of the Milky Way galaxy, for example, 
you could treat the Sun and the entire Solar System as just a particle.

Our first step is to explain how to replace two or more forces acting 
on a given particle by a single force having the same effect as the original 
forces. This single equivalent force is called the resultant of the original 
forces. After this step, we will derive the relations among the various forces 
acting on a particle in a state of equilibrium. We will use these relations 
to determine some of the forces acting on the particle.

The first part of this chapter deals with forces contained in a single 
plane. Because two lines determine a plane, this situation arises any time 
we can reduce the problem to one of a particle subjected to two forces 
that support a third force, such as a crate suspended from two chains or 
a traffic light held in place by two cables. In the second part of this  
chapter, we examine the more general case of forces in three-dimensional 
space.

2.1  ADDITION OF PLANAR 
FORCES

Many important practical situations in engineering involve forces in the 
same plane. These include forces acting on a pulley, projectile motion, 
and an object in equilibrium on a flat surface. We will examine this situ-
ation first before looking at the added complications of forces acting in 
three-dimensional space.
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2.1A  Force on a Particle: Resultant  
of Two Forces

A force represents the action of one body on another. It is generally char-
acterized by its point of application, its magnitude, and its direction. 
Forces acting on a given particle, however, have the same point of applica-
tion. Thus, each force considered in this chapter is completely defined by 
its magnitude and direction.

The magnitude of a force is characterized by a certain number of units. 
As indicated in Chap. 1, the SI units used by engineers to measure the mag-
nitude of a force are the newton (N) and its multiple the kilonewton (kN), 
which is equal to 1000 N. The U.S. customary units used for the same pur-
pose are the pound (lb) and its multiple the kilopound (kip), which is equal 
to 1000 lb. We saw in Chapter 1 that a force of 445 N is equivalent to a 
force of 100 lb or that a force of 100 N equals a force of about 22.5 lb.

We define the direction of a force by its line of action and the sense 
of the force. The line of action is the infinite straight line along which the 
force acts; it is characterized by the angle it forms with some fixed axis 
(Fig. 2.1). The force itself is represented by a segment of that line; through 
the use of an appropriate scale, we can choose the length of this segment 
to represent the magnitude of the force. We indicate the sense of the force 
by an arrowhead. It is important in defining a force to indicate its sense. 
Two forces having the same magnitude and the same line of action but a 
different sense, such as the forces shown in Fig. 2.1a and b, have directly 
opposite effects on a particle.

(a)

A 30°

Fixed axis Fixed axis

10 lb

(b)

A 30°
10 lb

Fig. 2.1 The line of action of a force makes an angle with a given fixed axis. 
(a) The sense of the 10-lb force is away from particle A; (b) the sense of the 
10-lb force is toward particle A.

Experimental evidence shows that two forces P and Q acting on a 
particle A (Fig. 2.2a) can be replaced by a single force R that has the 
same effect on the particle (Fig. 2.2c). This force is called the resultant 
of the forces P and Q. We can obtain R, as shown in Fig. 2.2b, by con-
structing a parallelogram, using P and Q as two adjacent sides. The diago-
nal that passes through A represents the resultant. This method for 
finding the resultant is known as the parallelogram law for the addition 
of two forces. This law is based on experimental evidence; it cannot be 
proved or derived mathematically.

2.1B Vectors
We have just seen that forces do not obey the rules of addition defined in 
ordinary arithmetic or algebra. For example, two forces  acting at a right 
angle to each other, one of 4 lb and the other of 3 lb, add up to a force of 

Fig. 2.2 (a) Two forces P and Q 
act on particle A. (b) Draw a 
parallelogram with P and Q as the 
adjacent sides and label the diagonal 
that passes through A as R. (c) R is 
the resultant of the two forces P and 
Q and is equivalent to their sum.

A

P

Q

(a)

A

P
R

Resultant

Parallelogram

Q

(b)

A

R

(c)
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5 lb acting at an angle between them, not to a force of 7 lb. Forces are not 
the only quantities that follow the parallelogram law of addition. As you 
will see later, displacements, velocities, accelerations, and momenta are 
other physical quantities possessing magnitude and direction that add 
according to the parallelogram law. All of these quantities can be repre-
sented mathematically by vectors. Those physical quantities that have mag-
nitude but not direction, such as volume, mass, or energy, are represented 
by plain numbers often called scalars to distinguish them from vectors.

Vectors are defined as mathematical expressions possessing 
 magnitude and direction, which add according to the parallelogram 
law. Vectors are represented by arrows in diagrams and are distinguished 
from scalar quantities in this text through the use of boldface type (P). In 
longhand writing, a vector may be denoted by drawing a short arrow above 
the letter used to represent it ( P

→
). The magnitude of a vector defines the 

length of the arrow used to represent it. In this text, we use italic type to 
denote the magnitude of a vector. Thus, the magnitude of the vector P is 
denoted by P.

A vector used to represent a force acting on a given particle has a 
well-defined point of application––namely, the particle itself. Such a vec-
tor is said to be a fixed, or bound, vector and cannot be moved without 
modifying the conditions of the problem. Other physical quantities, how-
ever, such as couples (see Chap. 3), are represented by vectors that may 
be freely moved in space; these vectors are called free vectors. Still other 
physical quantities, such as forces acting on a rigid body (see Chap. 3), 
are represented by vectors that can be moved along their lines of action; 
they are known as sliding vectors.

Two vectors that have the same magnitude and the same direction 
are said to be equal, whether or not they also have the same point of 
application (Fig. 2.3); equal vectors may be denoted by the same letter.

The negative vector of a given vector P is defined as a vector  having 
the same magnitude as P and a direction opposite to that of P (Fig. 2.4); 
the negative of the vector P is denoted by 2P. The vectors P and 2P are 
commonly referred to as equal and opposite vectors. Clearly, we have

P 1 (2P) 5 0

2.1C Addition of Vectors
By definition, vectors add according to the parallelogram law. Thus, we 
obtain the sum of two vectors P and Q by attaching the two vectors to 
the same point A and constructing a parallelogram, using P and Q as two 
adjacent sides (Fig. 2.5). The diagonal that passes through A represents 
the sum of the vectors P and Q, denoted by P 1 Q. The fact that the 
sign 1 is used for both vector and scalar addition should not cause any 
confusion if vector and scalar quantities are always carefully distinguished. 
Note that the magnitude of the vector P 1 Q is not, in general, equal to 
the sum P 1 Q of the magnitudes of the vectors P and Q.

Since the parallelogram constructed on the vectors P and Q does 
not depend upon the order in which P and Q are selected, we conclude 
that the addition of two vectors is commutative, and we write

 P 1 Q 5 Q 1 P (2.1)

Fig. 2.3 Equal vectors have the same 
magnitude and the same direction, even if 
they have different points of application.

P

P

Fig. 2.4 The negative vector of a given 
vector has the same magnitude but the 
opposite direction of the given vector.

P

–P

Fig. 2.5 Using the parallelogram law to add 
two vectors.

A

P
P + Q

Q

Photo 2.1 In its purest form, a tug-of-war 
pits two opposite and almost-equal forces 
against each other. Whichever team can 
generate the larger force, wins. As you can 
see, a competitive tug-of-war can be quite 
intense.

© DGB/Alamy
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From the parallelogram law, we can derive an alternative method 
for determining the sum of two vectors, known as the triangle rule. 
Consider Fig. 2.5, where the sum of the vectors P and Q has been deter-
mined by the parallelogram law. Since the side of the parallelogram oppo-
site Q is equal to Q in magnitude and direction, we could draw only half 
of the parallelogram (Fig. 2.6a). The sum of the two vectors thus can be 
found by arranging P and Q in tip-to-tail fashion and then connecting 
the tail of P with the tip of Q. If we draw the other half of the parallelo-
gram, as in Fig. 2.6b, we obtain the same result, confirming that vector 
addition is commutative.

We define subtraction of a vector as the addition of the correspond-
ing negative vector. Thus, we determine the vector P 2 Q, representing 
the difference between the vectors P and Q, by adding to P the negative 
vector 2Q (Fig. 2.7). We write

 P 2 Q 5 P 1 (2Q) (2.2)

Fig. 2.6 The triangle rule of 
vector addition. (a) Adding vector 
Q to vector P equals (b) adding 
vector P to vector Q.

A

A

P

P

Q

Q

P + Q

P + Q

(a)

(b)
Fig. 2.7 Vector subtraction: 
Subtracting vector Q from vector P 
is the same as adding vector –Q to 
vector P.

P 
– Q

P
P

Q

– Q

(a) (b)

A

P

Q S

P +
 Q

P + Q + S

P

Q S

P + Q + S

A

A

P

Q S

Q + S

P + Q + S

P

P

Q

Q S

S

P + Q + S

= S + Q + P

A

(a)

(b)

(c)

(d)
Fig. 2.8 Graphical addition of vectors.  
(a) Applying the triangle rule twice to add 
three vectors; (b) the vectors can be added  
in one step by the polygon rule; (c) vector 
addition is associative; (d) the order of 
addition is immaterial.

Here again we should observe that, although we use the same sign to 
denote both vector and scalar subtraction, we avoid confusion by taking 
care to distinguish between vector and scalar quantities.

We now consider the sum of three or more vectors. The sum of three 
vectors P, Q, and S is, by definition, obtained by first adding the vectors 
P and Q and then adding the vector S to the vector P 1 Q. We write

 P 1 Q 1 S 5 (P 1 Q) 1 S (2.3)

Similarly, we obtain the sum of four vectors by adding the fourth vector 
to the sum of the first three. It follows that we can obtain the sum of any 
number of vectors by applying the parallelogram law repeatedly to suc-
cessive pairs of vectors until all of the given vectors are replaced by a 
single vector.

If the given vectors are coplanar, i.e., if they are contained in the 
same plane, we can obtain their sum graphically. For this case, repeated 
application of the triangle rule is simpler than applying the parallelogram 
law. In Fig. 2.8a, we find the sum of three vectors P, Q, and S in this 
manner. The triangle rule is first applied to obtain the sum P 1 Q of the 
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vectors P and Q; we apply it again to obtain the sum of the vectors P 1 Q 
and S. However, we could have omitted determining the vector P 1 Q 
and obtain the sum of the three vectors directly, as shown in Fig. 2.8b, 
by arranging the given vectors in tip-to-tail fashion and connecting 
the tail of the first vector with the tip of the last one. This is known 
as the polygon rule for the addition of vectors.

The result would be unchanged if, as shown in Fig. 2.8c, we had 
replaced the vectors Q and S by their sum Q 1 S. We may thus write

 P 1 Q 1 S 5 (P 1 Q) 1 S 5 P 1 (Q 1 S) (2.4)

which expresses the fact that vector addition is associative. Recalling that 
vector addition also has been shown to be commutative in the case of two 
vectors, we can write

 P 1 Q 1 S 5 (P 1 Q) 1 S 5 S 1 (P 1 Q) (2.5)

 5 S 1 (Q 1 P) 5 S 1 Q 1 P

This expression, as well as others we can obtain in the same way, shows 
that the order in which several vectors are added together is immaterial 
(Fig. 2.8d ).

Product	of	a	Scalar	and	a	Vector.	 It is convenient to denote the 
sum P 1 P by 2P, the sum P 1 P 1 P by 3P, and, in  general, the sum 
of n equal vectors P by the product nP. Therefore, we define the product nP 
of a positive integer n and a vector P as a vector having the same direction 
as P and the magnitude nP. Extending this definition to include all scalars 
and recalling the definition of a negative vector given earlier, we define 
the product kP of a scalar k and a vector P as a vector having the same 
direction as P (if k is positive) or a direction opposite to that of P (if k is 
negative) and a magnitude equal to the product of P and the absolute value 
of k (Fig. 2.9).

2.1D  Resultant of Several Concurrent 
Forces

Consider a particle A acted upon by several coplanar forces, i.e., by several 
forces contained in the same plane (Fig. 2.10a). Since the forces all pass 
through A, they are also said to be concurrent. We can add the vectors 
representing the forces acting on A by the polygon rule (Fig. 2.10b). Since 
the use of the polygon rule is equivalent to the repeated application of the 
parallelogram law, the vector R obtained in this way represents the resul-
tant of the given concurrent forces. That is, the single force R has the 
same effect on the particle A as the given forces. As before, the order in 
which we add the vectors P, Q, and S representing the given forces is 
immaterial.

2.1E  Resolution of a Force into 
Components

We have seen that two or more forces acting on a particle may be replaced 
by a single force that has the same effect on the particle. Conversely, a single 

P 1.5 P

–2 P

Fig. 2.9 Multiplying a vector by a scalar 
changes the vector’s magnitude, but not its 
direction (unless the scalar is negative, in 
which case the direction is reversed).

A

A

P

P

Q

Q

S

S

(a)

R

(b)
Fig. 2.10 Concurrent forces can be added 
by the polygon rule.
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force F acting on a particle may be replaced by two or more forces that, 
together, have the same effect on the particle. These forces are called 
components of the original force F, and the process of substituting them 
for F is called resolving the force F into components.

Clearly, each force F can be resolved into an infinite number of 
possible sets of components. Sets of two components P and Q are the 
most important as far as practical applications are concerned. However, 
even then, the number of ways in which a given force F may be resolved 
into two components is unlimited (Fig. 2.11). 

A

A
A

P

P P

Q

Q

Q

F

F
F

(a) (b)

(c)
Fig. 2.11 Three possible sets of 
components for a given force vector F.

A

P

Q

F

Fig. 2.12 When component P is known, use 
the triangle rule to find component Q.

Fig. 2.13 When the lines of action are 
known, use the parallelogram rule to 
determine components P and Q.

A

P

Q
F

In many practical problems, we start with a given vector F and want 
to determine a useful set of components. Two cases are of particular 
interest:

 1. One of the Two Components, P, Is Known. We obtain the second 
component, Q, by applying the triangle rule and joining the tip of P to 
the tip of F (Fig. 2.12). We can determine the magnitude and direction 
of Q graphically or by trigonometry. Once we have determined Q, both 
components P and Q should be applied at A.

 2. The Line of Action of Each Component Is Known. We obtain the 
magnitude and sense of the components by applying the parallelogram 
law and drawing lines through the tip of F that are parallel to the given 
lines of action (Fig. 2.13). This process leads to two well-defined com-
ponents, P and Q, which can be determined graphically or computed 
trigonometrically by applying the law of sines.

You will encounter many similar cases; for example, you might know the 
direction of one component while the magnitude of the other component 
is to be as small as possible (see Sample Prob. 2.2). In all cases, you need 
to draw the appropriate triangle or parallelogram that satisfies the given 
conditions.
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Sample	Problem	2.1

Two forces P and Q act on a bolt A. Determine their resultant.

STRATEGY:	 Two lines determine a plane, so this is a problem of  
two coplanar forces. You can solve the problem graphically or by 
trigonometry.

MODELING:	 For a graphical solution, you can use the parallelogram 
rule or the triangle rule for addition of vectors. For a trigonometric solu-
tion, you can use the law of cosines and law of sines or use a right-triangle 
approach.

ANALYSIS:	

Graphical	Solution. Draw to scale a parallelogram with sides equal 
to P and Q (Fig. 1). Measure the magnitude and direction of the resultant. 
They are

 R 5 98 N   α 5 35° R 5 98 N  35° b

You can also use the triangle rule. Draw forces P and Q in tip-to-tail 
fashion (Fig. 2). Again measure the magnitude and direction of the resul-
tant. The answers should be the same.

 R 5 98 N   α 5 35° R 5 98 N  35° b

Trigonometric	 Solution. Using the triangle rule again, you know 
two sides and the included angle (Fig. 3). Apply the law of cosines.

 R2 5 P2 1 Q2 2 2PQ cos B
 R2 5 (40 N)2 1 (60 N)2 2 2(40 N)(60 N) cos 155°
 R 5 97.73 N

Now apply the law of sines: 

 
 sin A

Q
5

 sin B

R
     sin A

60 N
5

 sin 1558

97.73 N
 (1)

Solving Eq. (1) for sin A, you obtain

 sin A 5
(60 N) sin1558

97.73 N

Using a calculator, compute this quotient, and then obtain its arc sine:

A 5 15.04°   α 5 20° 1 A 5 35.04°

Use three significant figures to record the answer (cf. Sec. 1.6):

 R 5 97.7 N  35.0° b

Alternative	Trigonometric	Solution.	 Construct the right triangle 
BCD (Fig. 4) and compute

 CD 5 (60 N) sin 25° 5 25.36 N
 BD 5 (60 N) cos 25° 5 54.38 N

(continued)

25°

20°
A

Q = 60 N

P = 40 N

A
P

Q

R

α

Fig. 1 Parallelogram law 
applied to add forces P and Q.

A
P

Q

R

α

Fig. 2 Triangle rule applied to 
add forces P and Q.

155° 25°

20°

R

B

C

P = 40 N

Q = 60 N

α
A

Fig. 3 Geometry of triangle rule 
applied to add forces P and Q.

25°

20°

= 60 NQ

R

B

C

D

40

25.36

54.38

94.38

α
A

Fig. 4 Alternative geometry of 
triangle rule applied to add forces P 
and Q.
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Sample	Problem	2.2

Two tugboats are pulling a barge. If the resultant of the forces exerted by 
the tugboats is a 5000-lb force directed along the axis of the barge, deter-
mine (a) the tension in each of the ropes, given that α 5 45°, (b) the 
value of α for which the tension in rope 2 is minimum.

STRATEGY:	 This is a problem of two coplanar forces. You can solve 
the first part either graphically or analytically. In the second part, a graphi-
cal approach readily shows the necessary direction for rope 2, and you 
can use an analytical approach to complete the solution.

MODELING:	 You can use the parallelogram law or the triangle rule to 
solve part (a). For part (b), use a variation of the triangle rule.

ANALYSIS: a.	 Tension	for	α 5 45°. 

Graphical	 Solution. Use the parallelogram law. The resultant (the 
diagonal of the parallelogram) is equal to 5000 lb and is directed to the 
right. Draw the sides parallel to the ropes (Fig. 1). If the drawing is done 
to scale, you should measure

 T1 5 3700 lb T2 5 2600 lb b

Then, using triangle ACD, you have

 tan A 5
25.36 N
94.38 N

    A 5 15.048

      R 5
25.36
 sin A

    R 5 97.73 N

Again,

 α 5 20° 1 A 5 35.04° R 5 97.7 N  35.0° b

REFLECT	and	THINK: An analytical solution using trigonometry pro-
vides for greater accuracy. However, it is helpful to use a graphical solu-
tion as a check.

30° 45°

30°45°

5000 lb

T1

T2

B

Fig. 1 Parallelogram law 
applied to add forces T1 
and T2.

30°
1

2

α

A

C

B
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Trigonometric	Solution. Use the triangle rule. Note that the triangle 
in Fig. 2 represents half of the parallelogram shown in Fig. 1. Using the 
law of sines, 

T1

 sin 458
5

T2

 sin 308
5

5000 lb
 sin 1058

 

With a calculator, compute and store the value of the last quotient. Mul-
tiply this value successively by sin 45° and sin 30°, obtaining

 T1 5 3660 lb   T2 5 2590 lb b

	 b.	 Value	of	α	for	Minimum	T2. To determine the value of α for 
which the tension in rope 2 is minimum, use the triangle rule again. In 
Fig. 3, line 1-19 is the known direction of T1. Several possible directions 
of T2 are shown by the lines 2-29. The minimum value of T2 occurs when 
T1 and T2 are perpendicular (Fig. 4). Thus, the minimum value of T2 is

T2 5 (5000 lb) sin 30° 5 2500 lb

Corresponding values of T1 and α are

 T1 5 (5000 lb) cos 30° 5 4330 lb
 α 5 90° 2 30° α 5 60° b

REFLECT	 and	 THINK: Part (a) is a straightforward application of 
resolving a vector into components. The key to part (b) is recognizing that 
the minimum value of T2 occurs when T1 and T2 are perpendicular.

45° 30°

5000 lb

105°
T1

T2

B

Fig. 2 Triangle rule applied 
to add forces T1 and T2.

1

2
2

2

5000 lb
1'

2'
2'

2'

Fig. 3 Determination of direction of 
minimum T2.

30°

5000 lb

T1
T2 90°

α
B

Fig. 4 Triangle rule applied 
for minimum T2.
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Problems
	2.1	and	2.2	 Determine graphically the magnitude and direction of the 

resultant of the two forces shown using (a) the parallelogram law, 
(b) the triangle rule.

 2.3 Two structural members B and C are bolted to bracket A. Knowing 
that both members are in tension and that P 5 10 kN and  
Q 5 15 kN, determine graphically the magnitude and direction of 
the resultant force exerted on the bracket using (a) the parallelogram 
law, (b) the triangle rule.

 2.4 Two structural members B and C are bolted to bracket A. Knowing 
that both members are in tension and that P 5 6 kips and Q 5 4 
kips, determine graphically the magnitude and direction of the resul-
tant force exerted on the bracket using (a) the parallelogram law,  
(b) the triangle rule.

 2.5 The 300-lb force is to be resolved into components along lines a–a′ 
and b–b′. (a) Determine the angle a by trigonometry, knowing that 
the component along line a–a′ is to be 240 lb. (b) What is the cor-
responding value of the component along b–b′?

 2.6 The 300-lb force is to be resolved into components along lines a–a′ 
and b–b′. (a) Determine the angle a by trigonometry knowing that 
the component along line b–b′ is to be 120 lb. (b) What is the cor-
responding value of the component along a–a′?

45°

30°

900 N

600 N

Fig. P2.1

60°

800 lb

500 lb

35°

Fig. P2.2

C

A

B

25°

50°

P

Q

Fig.	P2.3	and	P2.4

300 lb

a a'

b'

b

   

608α

Fig.	P2.5	and	P2.6
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 2.7 A trolley that moves along a horizontal beam is acted upon by two 
forces as shown. (a) Knowing that a 5 25°, determine by trigonom-
etry the magnitude of the force P so that the resultant force exerted 
on the trolley is vertical. (b) What is the corresponding magnitude 
of the resultant?

30°

B

C

A
α

Fig. P2.8	and	P2.10

 2.8 A disabled automobile is pulled by means of two ropes as shown. The 
tension in rope AB is 2.2 kN and the angle α is 25°. Knowing that 
the resultant of the two forces applied at A is directed along the axis 
of the automobile, determine by trigonometry (a) the tension in rope 
AC, (b) the magnitude of the resultant of the two forces applied at A.

 2.9 Two forces are applied as shown to a hook support. Knowing that 
the magnitude of P is 35 N, determine by trigonometry (a) the 
required angle α if the resultant R of the two forces applied to the 
support is to be horizontal, (b) the corresponding magnitude of R.

 2.10 A disabled automobile is pulled by means of two ropes as shown. 
Knowing that the tension in rope AB is 3 kN, determine by trigo-
nometry the tension in rope AC and the value of α so that the resul-
tant force exerted at A is a 4.8-kN force directed along the axis of 
the automobile.

 2.11 A trolley that moves along a horizontal beam is acted upon by two 
forces as shown. Determine by trigonometry the magnitude and 
direction of the force P so that the resultant is a vertical force of 
2500 N.

50 N

25°

P

α

Fig. P2.9

Fig.	P2.7	and	P2.11

1600 N

P

158

α

A
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 2.12 For the hook support shown, determine by trigonometry the magni-
tude and direction of the resultant of the two forces applied to the 
hook.

Fig. P2.13

A

B C D

10 ft

8 ft 6 ft

 2.13 The cable stays AB and AD help support pole AC. Knowing that the 
tension is 120 lb in AB and 40 lb in AD, determine by trigonometry 
the magnitude and direction of the resultant of the forces exerted by 
the stays at A.

25° 45°

200 lb

300 lb

Fig. P2.12

 2.14 Solve Prob. 2.4 by trigonometry.

 2.15 For the hook support of Prob. 2.9, determine by trigonometry  
(a) the magnitude and direction of the smallest force P for which the 
resultant R of the two forces applied to the support is horizontal,  
(b) the corresponding magnitude of R.
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2.2  ADDING FORCES BY 
COMPONENTS

In Sec. 2.1E, we described how to resolve a force into components. Here we 
discuss how to add forces by using their components, especially rectangular 
components. This method is often the most convenient way to add forces 
and, in practice, is the most common approach. (Note that we can readily 
extend the properties of vectors established in this section to the rectangular 
components of any vector quantity, such as velocity or momentum.)

2.2A  Rectangular Components of a 
Force: Unit Vectors

In many problems, it is useful to resolve a force into two components that 
are perpendicular to each other. Figure 2.14 shows a force F resolved into 
a component Fx along the x axis and a component Fy along the y axis. 
The parallelogram drawn to obtain the two components is a rectangle, and 
Fx and Fy are called rectangular components.

The x and y axes are usually chosen to be horizontal and vertical, 
respectively, as in Fig. 2.14; they may, however, be chosen in any two 
perpendicular directions, as shown in Fig. 2.15. In determining the 

O

F
Fy

Fx
x

y

θ

Fig. 2.14 Rectangular components of a 
force F.

Fy
Fx

F
x

y

O

θ

Fig. 2.15 Rectangular components of a force F 
for axes rotated away from horizontal and vertical.

x

y

Magnitude = 1j

i

Fig. 2.16 Unit vectors along the x and y axes.

rectangular components of a force, you should think of the construction 
lines shown in Figs. 2.14 and 2.15 as being parallel to the x and y axes, 
rather than perpendicular to these axes. This practice will help avoid mis-
takes in determining oblique components, as in Sec. 2.1E.

Force	 in	Terms	of	Unit	Vectors.	 To simplify working with rect-
angular components, we introduce two vectors of unit magnitude, directed 
respectively along the positive x and y axes. These vectors are called unit 
vectors and are denoted by i and j, respectively (Fig. 2.16). Recalling the 
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definition of the product of a scalar and a vector given in Sec. 2.1C, note 
that we can obtain the rectangular components Fx and Fy of a force F by 
multiplying respectively the unit vectors i and j by appropriate scalars 
(Fig. 2.17). We have

 Fx 5 Fxi   Fy 5 Fyj (2.6)
and
 F 5 Fx i 1 F y j (2.7)

The scalars Fx and Fy may be positive or negative, depending upon the 
sense of Fx and of Fy, but their absolute values are equal to the magnitudes 
of the component forces Fx and Fy, respectively. The scalars Fx and Fy are 
called the scalar components of the force F, whereas the actual component 
forces Fx and Fy should be referred to as the vector components of F. 
However, when there exists no possibility of  confusion, we may refer to 
the vector as well as the scalar components of F as simply the components 
of F. Note that the scalar component Fx is positive when the vector com-
ponent Fx has the same sense as the unit vector i (i.e., the same sense as 
the positive x axis) and is negative when Fx has the opposite sense. A 
similar conclusion holds for the sign of the scalar component Fy.

Scalar	 Components.	 Denoting by F the magnitude of the force F 
and by θ the angle between F and the x axis, which is measured counter-
clockwise from the positive x axis (Fig. 2.17), we may express the scalar 
components of F as 

 Fx 5 F cos θ   Fy 5 F sin θ (2.8)

These relations hold for any value of the angle θ from 0° to 360°, and 
they define the signs as well as the absolute values of the scalar compo-
nents Fx and Fy.

Concept	Application	2.1

A force of 800 N is exerted on a bolt A as shown in Fig. 2.18a. Determine 
the horizontal and vertical components of the force.

Solution

In order to obtain the correct sign for the scalar components Fx and Fy, 
we could substitute the value 180° 2 35° 5 145° for θ in Eqs. (2.8). 
However, it is often more practical to determine by inspection the signs 
of Fx and Fy (Fig. 2.18b) and then use the trigonometric functions of the 
angle α 5 35°. Therefore,
 Fx 5 2F cos α 5 2(800 N) cos 35° 5 2655 N
 Fy 5 1F sin α 5 1(800 N) sin 35° 5 1459 N

The vector components of F are thus

Fx 5 2(655 N)i   Fy 5 1(459 N)j
and we may write F in the form
 F 5 2(655 N)i 1 (459 N)j b

Fig. 2.18 (a) Force F exerted on a bolt; 
(b) rectangular components of F.

F = 800 N

F = 800 N

35°

A

A

(a)

(b)

x

y

Fy

Fx

α = 35°

θ = 145°

F

x

y

Fy = Fy j = F sin θ j

Fx = Fx i = F cos θ i

j

i

θ

Fig. 2.17 Expressing the components of F in 
terms of unit vectors with scalar multipliers.
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Concept	Application	2.2

A man pulls with a force of 300 N on a rope attached to the top of a 
building, as shown in Fig. 2.19a. What are the horizontal and vertical 
components of the force exerted by the rope at point A?

Solution

You can see from Fig. 2.19b that

Fx 5 1(300 N) cos α   Fy 5 2(300 N) sin α

Observing that AB 5 10 m, we find from Fig. 2.19a

 cos  α 5
8 m
AB

5
8 m
10 m

5
4
5
       sin  α 5

6 m
AB

5
6 m
10 m

5
3
5

We thus obtain

Fx 5 1(300 N)
4
5

5 1240 N      Fy 5 2(300 N)
3
5

5 2180 N

This gives us a total force of

F 5 (240 N)i 2 (180 N)j b

Fig. 2.19 (a) A man pulls on a rope attached to a building; (b) components 
of the rope’s force F.

(a)

(b)

F = 300 N

6 m

8 m

A

A

B

Fy

Fx

x

y

α

α
θ

(a)

(b)

F = 300 N

6 m

8 m

A

A

B

Fy

Fx

x

y

α

α
θ

Direction	of	a	Force.	 When a force F is defined by its rectangular 
components Fx and Fy (see Fig. 2.17), we can find the angle θ defining 
its direction from

  tan θ 5
Fy

Fx

 (2.9)

We can obtain the magnitude F of the force by applying the Pythagorean 
theorem, 

 F 5 √F  x
2 1 F  y

2 (2.10)

or by solving for F from one of the Eqs. (2.8).
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Concept	Application	2.3

A force F 5 (700 lb)i 1 (1500 lb)j is applied to a bolt A. Determine the 
magnitude of the force and the angle θ it forms with the horizontal.

Solution

First draw a diagram showing the two rectangular components of the force 
and the angle θ (Fig. 2.20). From Eq. (2.9), you obtain

 tan θ 5
Fy

Fx

5
1500 lb
700 lb

 Using a calculator, enter 1500 lb and divide by 700 lb; computing the 
arc tangent of the quotient gives you θ 5 65.0°. Solve the second of 
Eqs. (2.8) for F to get

F 5
Fy

 sin θ
5

1500 lb
 sin 65.08

5 1655 lb

The last calculation is easier if you store the value of Fy when originally 
entered; you may then recall it and divide it by sin θ.

Fig. 2.20 Components of a force F 
exerted on a bolt.

A x

y

F

Fx = (700 lb) i

F y
 =

 (1
50

0 
lb

)j

θ

2.2B  Addition of Forces by Summing  
X and Y Components

We described in Sec. 2.1A how to add forces according to the parallelo-
gram law. From this law, we derived two other methods that are more 
readily applicable to the graphical solution of problems: the triangle rule 
for the addition of two forces and the polygon rule for the addition of 
three or more forces. We also explained that the force triangle used to 
define the resultant of two forces could be used to obtain a trigonometric 
solution.

However, when we need to add three or more forces, we cannot 
obtain any practical trigonometric solution from the force polygon that 
defines the resultant of the forces. In this case, the best approach is to 
obtain an analytic solution of the problem by resolving each force into 
two rectangular components. 

Consider, for instance, three forces P, Q, and S acting on a particle A 
(Fig. 2.21a). Their resultant R is defined by the relation

 R 5 P 1 Q 1 S (2.11)

Resolving each force into its rectangular components, we have

 Rx i 1 R y j 5 Px i 1 Py j 1 Qx i 1 Qy j 1 Sx i 1 Sy j
 5 (Px 1 Qx 1 Sx )i 1 (Py 1 Qy 1 Sy)j

(b)

(c)

S

P

Q

A

A

A

(a)

(d )

A

R

θ

Py j

Sy j

Sx i

Qy j

Qxi

Ry j

R x i

Px i

Fig. 2.21 (a) Three forces 
acting on a particle.
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From this equation, we can see that

 Rx 5 Px 1 Qx 1 Sx    Ry 5 Py 1 Qy 1 Sy (2.12)

or for short,

 Rx 5 oFx    Ry 5 oFy (2.13)

We thus conclude that when several forces are acting on a particle, we 
obtain the scalar components Rx and Ry of the resultant R by adding 
algebraically the corresponding scalar components of the given forces. 
(Clearly, this result also applies to the addition of other vector quantities, 
such as velocities, accelerations, or momenta.)

In practice, determining the resultant R is carried out in three steps, 
as illustrated in Fig. 2.21. 

 1. Resolve the given forces (Fig. 2.21a) into their x and y components  
(Fig. 2.21b). 

(b)

(c)

S

P

Q

A

A

A

(a)

(d )

A

R

θ

Py j

Sy j

Sx i

Qy j

Qxi

Ry j

R x i

Px i

Fig. 2.21 (d) Determining the 
resultant from its components.

(b)

(c)

S

P

Q

A

A

A

(a)

(d )

A

R

θ

Py j

Sy j

Sx i

Qy j

Qxi

Ry j

R x i

Px i

Fig. 2.21 (b) Rectangular 
components of each force.

 2. Add these components to obtain the x and y components of R 
(Fig. 2.21c). 

(b)

(c)

S

P

Q

A

A

A

(a)

(d )

A

R

θ

Py j

Sy j

Sx i

Qy j

Qxi

Ry j

R x i

Px i

Fig. 2.21 (c) Summation of 
the components.

 3. Apply the parallelogram law to determine the resultant R 5 Rx i 1 Ry j 
(Fig. 2.21d ). 

The procedure just described is most efficiently carried out if you 
arrange the computations in a table (see Sample Problem 2.3). Although 
this is the only practical analytic method for adding three or more forces, 
it is also often preferred to the trigonometric solution in the case of adding 
two forces.
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Sample	Problem	2.3

Four forces act on bolt A as shown. Determine the resultant of the forces 
on the bolt.

STRATEGY:	 The simplest way to approach a problem of adding four 
forces is to resolve the forces into components.

MODELING:	 As we mentioned, solving this kind of problem is usually 
easier if you arrange the components of each force in a table. In the table 
below, we entered the x and y components of each force as determined by 
trigonometry (Fig. 1). According to the convention adopted in this section, 
the scalar number representing a force component is positive if the force 
component has the same sense as the corresponding coordinate axis. Thus, 
x components acting to the right and y components acting upward are 
represented by positive numbers.

ANALYSIS:	

Force Magnitude, N x Component, N y Component, N

F1 150 1129.9 175.0
F2 80 227.4 175.2
F3 110 0 2110.0
F4 100 196.6 225.9
  Rx 5 1199.1 Ry 5 114.3

Thus, the resultant R of the four forces is

 R 5 Rx i 1 R y j   R 5 (199.1 N)i 1 (14.3 N)j b

You can now determine the magnitude and direction of the resultant. 
From the triangle shown in Fig. 2, you have

 tan α 5
Ry

Rx

5
14.3 N
199.1 N

    α 5 4.18

      R 5
14.3 N

 sin α
5 199.6 N    R 5 199.6 N  4.1° b

F2 = 80 N F1 = 150 N

F3 = 110 N

F4 = 100 N

20°

30°
15° x

y

A

(F2 cos 20°) j

(F1 sin 30°) j

(F1 cos 30°) i

–(F2 sin 20°) i
(F4 cos 15°) i

–(F4 sin 15°) j

–F3 j
Fig. 1 Rectangular components of 
each force.

R

Ry = (14.3 N) j Rx = (199.1 N) i

α

Fig. 2 Resultant of the given force 
system.

REFLECT	 and	 THINK: Arranging data in a table not only helps you 
keep track of the calculations, but also makes things simpler for using a 
calculator on similar computations.
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Problems
	2.16	and	2.17	 Determine the x and y components of each of the forces 

shown.

A

B

C D

35°

Q

Fig. P2.20

O

Dimensions
in mm

424 N 408 N

800 N

x

y

900

800

600

560 480

Fig. P2.16

29 lb

51 lbO x

y

90 in.

96 in.

28 in.
84 in.

80 in.

48 in.

50 lb

Fig. P2.17

80 N

120 N

150 N 30°

35° 40°

y

x

Fig. P2.19

60 lb

50 lb
40 lb

25°

y

x

60°

50°

Fig. P2.18

	2.18	and	2.19	 Determine the x and y components of each of the forces 
shown.

 2.20 Member BD exerts on member ABC a force P directed along line 
BD. Knowing that P must have a 300-lb horizontal component, deter-
mine (a) the magnitude of the force P, (b) its vertical component.
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 2.21 Member BC exerts on member AC a force P directed along line BC. 
Knowing that P must have a 325-N horizontal component, determine 
(a) the magnitude of the force P, (b) its vertical component.

A

C

B

720 mm

650 mm

Fig. P2.21

A

B

C

55°

Fig. P2.22

608

508

B

C

D

A

Fig. P2.23

 2.22 Cable AC exerts on beam AB a force P directed along line AC. 
Knowing that P must have a 350-lb vertical component, determine 
(a) the magnitude of the force P, (b) its horizontal component.

 2.23 The hydraulic cylinder BD exerts on member ABC a force P directed 
along line BD. Knowing that P must have a 750-N component per-
pendicular to member ABC, determine (a) the magnitude of the force 
P, (b) its component parallel to ABC.
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 2.24 Determine the resultant of the three forces of Prob. 2.16.

 2.25 Determine the resultant of the three forces of Prob. 2.17.

 2.26 Determine the resultant of the three forces of Prob. 2.18.

 2.27 Determine the resultant of the three forces of Prob. 2.19.

 2.28 For the collar loaded as shown, determine (a) the required value of 
α if the resultant of the three forces shown is to be vertical, (b) the 
corresponding magnitude of the resultant.

500 N

200 N

7
25

24

53
4

A B

C

L = 1460 mm

1100 mm

960 mm

Fig. P2.31

α
α

400 lb

P

200 lb

Fig.	P2.29	and	P2.30

 2.29 A hoist trolley is subjected to the three forces shown. Knowing that 
α 5 40°, determine (a) the required magnitude of the force P if the 
resultant of the three forces is to be vertical, (b) the corresponding 
magnitude of the resultant.

 2.30 A hoist trolley is subjected to the three forces shown. Knowing that 
P 5 250 lb, determine (a) the required value of a if the resultant of 
the three forces is to be vertical, (b) the corresponding magnitude of 
the resultant.

 2.31 For the post loaded as shown, determine (a) the required tension in 
rope AC if the resultant of the three forces exerted at point C is to 
be horizontal, (b) the corresponding magnitude of the resultant.

200 N

150 N

100 N
30°

αα

Fig. P2.28
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2.3  FORCES AND EQUILIBRIUM 
IN A PLANE

Now that we have seen how to add forces, we can proceed to one of the 
key concepts in this course: the equilibrium of a particle. The connection 
between equilibrium and the sum of forces is very direct: a particle can 
be in equilibrium only when the sum of the forces acting on it is zero.

2.3A Equilibrium of a Particle
In the preceding sections, we discussed methods for determining the resul-
tant of several forces acting on a particle. Although it has not occurred in 
any of the problems considered so far, it is quite possible for the resultant 
to be zero. In such a case, the net effect of the given forces is zero, and 
the particle is said to be in equilibrium. We thus have the definition: 

When the resultant of all the forces acting on a particle is zero, the 
particle is in equilibrium.

A particle acted upon by two forces is in equilibrium if the two 
forces have the same magnitude and the same line of action but opposite 
sense. The resultant of the two forces is then zero, as shown in Fig. 2.22.

Another case of equilibrium of a particle is represented in Fig. 2.23a, 
where four forces are shown acting on particle A. In Fig. 2.23b, we use 
the polygon rule to determine the resultant of the given forces. Starting 
from point O with F1 and arranging the forces in tip-to-tail fashion, we 
find that the tip of F4 coincides with the starting point O. Thus, the 
resultant R of the given system of forces is zero, and the particle is in 
equilibrium.

A

100 lb

100 lb

Fig. 2.22 When a 
particle is in equilibrium, 
the resultant of all forces 
acting on the particle  
is zero.

Fig. 2.23 (a) Four forces acting on particle A; (b) using the polygon law to 
find the resultant of the forces in (a), which is zero because the particle is 
in equilibrium.

A

F1 = 300 lb

F2 = 173.2 lb

F4 = 400 lb

F3 = 200 lb

30°

30°

(a)

F4 = 400 lb

F1 = 300 lb

F3 = 200 lb

F2 = 173.2 lb

O

(b)

Photo 2.2 Forces acting on the carabiner 
include the weight of the girl and her 
harness, and the force exerted by the pulley 
attachment. Treating the carabiner as a 
particle, it is in equilibrium because the 
resultant of all forces acting on it is zero.

© Michael Doolittle/Alamy

The closed polygon drawn in Fig. 2.23b provides a graphical expres-
sion of the equilibrium of A. To express algebraically the conditions for 
the equilibrium of a particle, we write

Equilibrium of a particle R 5 oF 5 0 (2.14)

Final PDF to printer



38 Statics of Particles

bee98160_ch02_015-075.indd 38 12/22/15  03:23 PM

Resolving each force F into rectangular components, we have

o (F x i 1 Fy j) 5 0 or (o F x )i 1 (o F y ) j 5 0

We conclude that the necessary and sufficient conditions for the equilib-
rium of a particle are

Equilibrium of a particle  
(scalar equations)

 o Fx 5 0 o Fy 5 0 (2.15)

Returning to the particle shown in Fig. 2.23, we can check that the equi-
librium conditions are satisfied. We have

 o Fx 5 300 lb 2 (200 lb) sin 30° 2 (400 lb) sin 30°
 5 300 lb 2 100 lb 2 200 lb 5 0
 o Fy 5 2173.2 lb 2 (200 lb) cos 30° 1 (400 lb) cos 30°
 5 2173.2 lb 2 173.2 lb 1 346.4 lb 5 0

2.3B Newton’s First Law of Motion
As we discussed in Section 1.2, Sir Isaac Newton formulated three fun-
damental laws upon which the science of mechanics is based. The first of 
these laws can be stated as:

If the resultant force acting on a particle is zero, the particle will 
remain at rest (if originally at rest) or will move with constant speed 
in a straight line (if originally in motion).

From this law and from the definition of equilibrium just presented, 
we can see that a particle in equilibrium is either at rest or moving in a 
straight line with constant speed. If a particle does not behave in either 
of these ways, it is not in equilibrium, and the resultant force on it is not 
zero. In the following section, we consider various problems concerning 
the equilibrium of a particle. 

Note that most of statics involves using Newton’s first law to analyze 
an equilibrium situation. In practice, this means designing a bridge or a 
building that remains stable and does not fall over. It also means under-
standing the forces that might act to disturb equilibrium, such as a strong 
wind or a flood of water. The basic idea is pretty simple, but the applica-
tions can be quite complicated.

2.3C  Free-Body Diagrams and Problem 
Solving

In practice, a problem in engineering mechanics is derived from an actual 
physical situation. A sketch showing the physical conditions of the problem 
is known as a space diagram.

The methods of analysis discussed in the preceding sections apply 
to a system of forces acting on a particle. A large number of problems 
involving actual structures, however, can be reduced to problems concern-
ing the equilibrium of a particle. The method is to choose a significant 
particle and draw a separate diagram showing this particle and all the 

Fig. 2.23(a) (repeated)

A

F1 = 300 lb

F2 = 173.2 lb

F4 = 400 lb

F3 = 200 lb

30°

30°

(a)
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forces acting on it. Such a diagram is called a free-body diagram. (The 
name derives from the fact that when drawing the chosen body, or particle, 
it is “free” from all other bodies in the actual situation.)

As an example, consider the 75-kg crate shown in the space diagram 
of Fig. 2.24a. This crate was lying between two buildings, and is now 
being lifted onto a truck, which will remove it. The crate is supported by 
a vertical cable that is joined at A to two ropes, which pass over pulleys 
attached to the buildings at B and C. We want to determine the tension 
in each of the ropes AB and AC.

In order to solve this problem, we first draw a free-body diagram 
showing a particle in equilibrium. Since we are interested in the rope ten-
sions, the free-body diagram should include at least one of these tensions or, 
if possible, both tensions. You can see that point A is a good free body for 
this problem. The free-body diagram of point A is shown in Fig. 2.24b. It 
shows point A and the forces exerted on A by the vertical cable and the two 
ropes. The force exerted by the cable is directed downward, and its magni-
tude is equal to the weight W of the crate. Recalling Eq. (1.4), we write

W 5 mg 5 (75 kg)(9.81 m/s2) 5 736 N

and indicate this value in the free-body diagram. The forces exerted by 
the two ropes are not known. Since they are respectively equal in magni-
tude to the tensions in rope AB and rope AC, we denote them by TAB and 
TAC and draw them away from A in the directions shown in the space 
diagram. No other detail is included in the free-body diagram.

Since point A is in equilibrium, the three forces acting on it must 
form a closed triangle when drawn in tip-to-tail fashion. We have drawn 
this force triangle in Fig. 2.24c. The values TAB and TAC of the tensions 
in the ropes may be found graphically if the triangle is drawn to scale, or 
they may be found by trigonometry. If we choose trigonometry, we use 
the law of sines: 

TAB

 sin 608
5

TAC

 sin 408
5

736 N
 sin 808

TAB 5 647 N TAC 5 480 N

When a particle is in equilibrium under three forces, you can solve 
the problem by drawing a force triangle. When a particle is in equilibrium 
under more than three forces, you can solve the problem graphically by 
drawing a force polygon. If you need an analytic solution, you should 
solve the equations of equilibrium given in Sec. 2.3A:

 oFx 5 0 oFy 5 0  (2.15)

These equations can be solved for no more than two unknowns. Similarly, 
the force triangle used in the case of equilibrium under three forces can 
be solved for only two unknowns.

The most common types of problems are those in which the two 
unknowns represent (1) the two components (or the magnitude and direc-
tion) of a single force or (2) the magnitudes of two forces, each of known 
direction. Problems involving the determination of the maximum or mini-
mum value of the magnitude of a force are also encountered (see Probs. 2.43  
through 2.47).

TAB
TAC

A

A

B

C

50° 30°

50° 30°

(a) Space diagram

(b) Free-body diagram (c) Force triangle

736 N

TAB

TAC

736 N

40°

60°
80°

Fig. 2.24 (a) The space diagram shows the 
physical situation of the problem; (b) the 
free-body diagram shows one central particle 
and the forces acting on it; (c) the force 
triangle can be solved with the law of sines. 
Note that the forces form a closed triangle 
because the particle is in equilibrium and the 
resultant force is zero.

Photo 2.3 As illustrated in Fig. 2.24, it is 
possible to determine the tensions in the cables 
supporting the shaft shown by treating the hook 
as a particle and then applying the equations of 
equilibrium to the forces acting on the hook.

© Flirt/SuperStock
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Sample	Problem	2.4

In a ship-unloading operation, a 3500-lb automobile is supported by a 
cable. A worker ties a rope to the cable at A and pulls on it in order to 
center the automobile over its intended position on the dock. At the 
moment illustrated, the automobile is stationary, the angle between the 
cable and the vertical is 2°, and the angle between the rope and the hori-
zontal is 30°. What are the tensions in the rope and cable?

STRATEGY: This is a problem of equilibrium under three coplanar 
forces. You can treat point A as a particle and solve the problem using a 
force triangle.

MODELING	and	ANALYSIS:

Free-Body	 Diagram. Choose point A as the particle and draw the 
complete free-body diagram (Fig. 1). TAB is the tension in the cable AB, 
and TAC is the tension in the rope.

Equilibrium	Condition.	 Since only three forces act on point A, draw 
a force triangle to express that it is in equilibrium (Fig. 2). Using the law 
of sines, 

TAB

 sin 1208
5

TAC

 sin 28
5

3500 lb
 sin 588

 With a calculator, compute and store the value of the last quotient. 
Multiplying this value successively by sin 120° and sin 2°, you obtain

TAB 5 3570 lb   TAC 5 144 lb b

REFLECT	 and	 THINK: This is a common problem of knowing one 
force in a three-force equilibrium problem and calculating the other forces 
from the given geometry. This basic type of problem will occur often as 
part of more complicated situations in this text.

2°

30°
A

C

B

TAB

TAC

2°

30°
A

3500 lb
Fig. 1 Free-body 
diagram of particle A.

TAB

TAC

2°

3500 lb

120°

58°

Fig. 2 Force triangle of the 
forces acting on particle A.
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Sample Problem 2.5

Determine the magnitude and direction of the smallest force F that main-
tains the 30-kg package shown in equilibrium. Note that the force exerted 
by the rollers on the package is perpendicular to the incline.

STRATEGY: This is an equilibrium problem with three coplanar forces 
that you can solve with a force triangle. The new wrinkle is to determine 
a minimum force. You can approach this part of the solution in a way 
similar to Sample Problem 2.2.

MODELING and ANALYSIS:

Free-Body Diagram. Choose the package as a free body, assuming 
that it can be treated as a particle. Then draw the corresponding free-body 
diagram (Fig. 1).

Equilibrium Condition. Since only three forces act on the free body, 
draw a force triangle to express that it is in equilibrium (Fig. 2). Line 1-19 
represents the known direction of P. In order to obtain the minimum value 
of the force F, choose the direction of F to be perpendicular to that of P. 
From the geometry of this triangle, 

F 5 (294 N) sin 15° 5 76.1 N   α 5 15°

F 5 76.1 N  15° b

REFLECT and THINK: Determining maximum and minimum forces 
to maintain equilibrium is a common practical problem. Here the force 
needed is about 25% of the weight of the package, which seems reasonable 
for an incline of 15°.

Sample Problem 2.6

For a new sailboat, a designer wants to determine the drag force that may 
be expected at a given speed. To do so, she places a model of the proposed 
hull in a test channel and uses three cables to keep its bow on the center-
line of the channel. Dynamometer readings indicate that for a given speed, 
the tension is 40 lb in cable AB and 60 lb in cable AE. Determine the 
drag force exerted on the hull and the tension in cable AC.

STRATEGY: The cables all connect at point A, so you can treat that as 
a particle in equilibrium. Because four forces act at A (tensions in three 
cables and the drag force), you should use the equilibrium conditions and 
sum forces by components to solve for the unknown forces.

15°

30 kg F
α

15°

FP

W = (30 kg)(9.81 m/s2)
     = 294 N

α

Fig. 1 Free-body diagram 
of package, treated as a 
particle.

F

P

15°

1

1'

294 N

α

Fig. 2 Force triangle of the 
forces acting on package.

Flow A

B C

E

4 ft

4 ft

7 ft 1.5 ft

α β

(continued)
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MODELING	and	ANALYSIS: 

Determining	the	Angles.	 First, determine the angles α and β defin-
ing the direction of cables AB and AC:

 tan α 5
7 ft
4 ft

5 1.75         tan β 5
1.5 ft
4 ft

5 0.375

       α 5 60.268         β 5 20.568

Free-Body	Diagram.	 Choosing point A as a free body, draw the free-
body diagram (Fig. 1). It includes the forces exerted by the three cables 
on the hull, as well as the drag force FD exerted by the flow.

Equilibrium	Condition.	 Because point A is in equilibrium, the resul-
tant of all forces is zero:

 R 5 TAB 1 TAC 1 TAE 1 FD 5 0 (1)

Because more than three forces are involved, resolve the forces into x and 
y components (Fig. 2):

 TAB 5 2(40 lb) sin 60.26°i 1 (40 lb) cos 60.26°j
 5 2(34.73 lb)i 1 (19.84 lb)j
 TAC 5 TAC sin 20.56°i 1 TAC cos 20.56°j
 5 0.3512TAC i 1 0.9363TAC j
 TAE 5 2(60 lb)j
 FD 5 FDi

Substituting these expressions into Eq. (1) and factoring the unit vectors i 
and j, you have

(234.73 lb 1 0.3512TAC 1 FD)i 1 (19.84 lb 1 0.9363TAC 2 60 lb)j 5 0

This equation is satisfied if, and only if, the coefficients of i and j are 
each equal to zero. You obtain the following two equilibrium equations, 
which express, respectively, that the sum of the x components and the sum 
of the y components of the given forces must be zero.

 (oFx 5 0:)  234.73 lb 1 0.3512TAC 1 FD 5 0 (2)

 (oFy 5 0:)  19.84 lb 1 0.9363TAC 2 60 lb 5 0 (3)

From Eq. (3), you find  
TAC 5 142.9 lb b

Substituting this value into Eq. (2) yields  
FD 5 119.66 lb b

REFLECT	and	THINK: In drawing the free-body diagram, you assumed 
a sense for each unknown force. A positive sign in the answer indicates 
that the assumed sense is correct. You can draw the complete force poly-
gon (Fig. 3) to check the results.

TAC

FD

TAB = 40 lb

TAE = 60 lb

α= 60.26°

β= 20.56°

A

Fig. 1 Free-body diagram of 
particle A.

FDi

TAC sin 20.56°i

TAC cos 20.56°j

20.56°
60.26°

(40 lb) cos 60.26°j

–(40 lb) sin 60.26°i

–(60 lb)j

y

xA

Fig. 2 Rectangular components of 
forces acting on particle A.

TAC = 42.9 lb

TAE = 60 lb

TAB = 40 lb

FD = 19.66 lb

β = 20.56

α = 60.26

Fig. 3 Force polygon of forces 
acting on particle A.
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Problems
 2.32 Two cables are tied together at C and are loaded as shown. Knowing that 

α 5 30°, determine the tension (a) in cable AC, (b) in cable BC.

A

B

C

6 kN55°

α

Fig. P2.32

75°

75°

200 kg

C

A

B

Fig. P2.34

	2.33	and	2.34	 Two cables are tied together at C and are loaded as shown. 
Determine the tension (a) in cable AC, (b) in cable BC.

Fig. P2.33

A B

C

400 lb

50° 30°

 2.35 Two cables are tied together at C and loaded as shown. Determine 
the tension (a) in cable AC, (b) in cable BC.

Fig. P2.35

8.5 ft
5 ft

12 ft 7.5 ft

396 lb

A B

C 9 ft
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 2.36 Two cables are tied together at C and are loaded as shown. Knowing 
that P 5 500 N and α 5 60°, determine the tension in (a) in cable 
AC, (b) in cable BC.

45°

A B

C

P

25°

α

Fig. P2.36

Fig. P2.37 and	P2.38

TB

TD

TC

TA 40°

Fig. P2.39

A B

C 45°

30°30°

200 N

P

 2.37 Two forces of magnitude TA 5 8 kips and TB 5 15 kips are applied 
as shown to a welded connection. Knowing that the connection is in 
equilibrium, determine the magnitudes of the forces TC and TD.

 2.38 Two forces of magnitude TA 5 6 kips and TC 5 9 kips are applied 
as shown to a welded connection. Knowing that the connection is in 
equilibrium, determine the magnitudes of the forces TB and TD.

 2.39 Two cables are tied together at C and are loaded as shown. Knowing 
that P 5 300 N, determine the tension in cables AC and BC.

 2.40 Two forces P and Q are applied as shown to an aircraft connection. 
Knowing that the connection is in equilibrium and that P 5 500 lb 
and Q 5 650 lb, determine the magnitudes of the forces exerted on 
the rods A and B.

Fig. P2.40

50°

40°

A

B

P
Q

FA

FB
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 2.41 A sailor is being rescued using a boatswain’s chair that is suspended 
from a pulley that can roll freely on the support cable ACB and is 
pulled at a constant speed by cable CD. Knowing that α 5 30° and 
β 5 10° and that the combined weight of the boatswain’s chair and 
the sailor is 200 lb, determine the tension (a) in the support cable 
ACB, (b) in the traction cable CD.

 2.42 A sailor is being rescued using a boatswain’s chair that is suspended 
from a pulley that can roll freely on the support cable ACB and is 
pulled at a constant speed by cable CD. Knowing that α 5 25° and 
β 5 15° and that the tension in cable CD is 20 lb, determine (a) the 
combined weight of the boatswain’s chair and the sailor, (b) the ten-
sion in the support cable ACB.

 2.43 For the cables of Prob. 2.32, find the value of α for which the ten-
sion is as small as possible (a) in cable BC, (b) in both cables simul-
taneously. In each case determine the tension in each cable.

 2.44 For the cables of Prob. 2.36, it is known that the maximum allowable 
tension is 600 N in cable AC and 750 N in cable BC. Determine  
(a) the maximum force P that can be applied at C, (b) the corre-
sponding value of α.

 2.45 Two cables tied together at C are loaded as shown. Knowing that 
the maximum allowable tension in each cable is 800 N, determine 
(a) the magnitude of the largest force P that can be applied at C,  
(b) the corresponding value of α.

 2.46 Two cables tied together at C are loaded as shown. Knowing that 
the maximum allowable tension is 1200 N in cable AC and 600 N 
in cable BC, determine (a) the magnitude of the largest force P that 
can be applied at C, (b) the corresponding value of a.

 2.47 Two cables tied together at C are loaded as shown. Determine the 
range of values of Q for which the tension will not exceed 60 lb in 
either cable.

A
B

C
α

β

D

Fig.	P2.41	and	P2.42

35°
A B

C

P

50°

α

Fig.	P2.45	and	P2.46

A

B

C

P = 75 lb

30°

30°

60°

Q

Fig. P2.47
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 2.48 Collar A is connected as shown to a 50-lb load and can slide on a 
frictionless horizontal rod. Determine the magnitude of the force P 
required to maintain the equilibrium of the collar when (a) x 5 4.5 in., 
(b) x 5 15 in.

50 lb

x

C

B

A

P

20 in.

Fig.	P2.48	and	P2.49

 2.49 Collar A is connected as shown to a 50-lb load and can slide on a 
frictionless horizontal rod. Determine the distance x for which the 
collar is in equilibrium when P 5 48 lb.

 2.50 A movable bin and its contents have a combined weight of 2.8 kN. 
Determine the shortest chain sling ACB that can be used to lift the 
loaded bin if the tension in the chain is not to exceed 5 kN.

 2.51 A 600-lb crate is supported by several rope-and-pulley arrangements 
as shown. Determine for each arrangement the tension in the rope. 
(Hint: The tension in the rope is the same on each side of a simple 
pulley. This can be proved by the methods of Chap. 4.) 

A

C

0.7 m

B

1.2 m

Fig. P2.50

T

T
T T T

(a) (b) (c) (d) (e)

Fig. P2.51

 2.52 Solve parts b and d of Prob. 2.51, assuming that the free end of the 
rope is attached to the crate.
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 2.53 A 200-kg crate is to be supported by the rope-and-pulley arrangement 
shown. Determine the magnitude and direction of the force P that 
must be exerted on the free end of the rope to maintain equilibrium. 
(See the hint for Prob. 2.51.)

 2.54 A load Q is applied to pulley C, which can roll on cable ACB. The 
pulley is held in the position shown by a second cable CAD, which 
passes over pulley A and supports a load P. Knowing that P 5 750 N,  
determine (a) the tension in cable ACB, (b) the magnitude of  
load Q.

2.4 m

P

A

α

200 kg

0.75 m

B

Fig. P2.53

A

D

B

C

P

25°

55°

Q

Fig.	P2.54	and	P2.55

 2.55 An 1800-N load Q is applied to pulley C, which can roll on cable 
ACB. The pulley is held in the position shown by a second cable 
CAD, which passes over pulley A and supports a load P. Determine 
(a) the tension in cable ACB, (b) the magnitude of load P.
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2.4 ADDING FORCES IN SPACE
The problems considered in the first part of this chapter involved only two 
dimensions; they were formulated and solved in a single plane. In the last 
part of this chapter, we discuss problems involving the three dimensions 
of space.

2.4A  Rectangular Components of a 
Force in Space

Consider a force F acting at the origin O of the system of rectangular 
coordinates x, y, and z. To define the direction of F, we draw the vertical 
plane OBAC containing F (Fig. 2.25a). This plane passes through the 
vertical y axis; its orientation is defined by the angle ϕ it forms with the 
xy plane. The direction of F within the plane is defined by the angle θy 
that F forms with the y axis. We can resolve the force F into a vertical 
component Fy and a horizontal component Fh; this operation, shown in 
Fig. 2.25b, is carried out in plane OBAC according to the rules developed 
earlier. The corresponding scalar components are

 Fy 5 F cos θy   Fh 5 F sin θy (2.16)

However, we can also resolve Fh into two rectangular components Fx and 
Fz along the x and z axes, respectively. This operation, shown in Fig. 2.25c, 
is carried out in the xz plane. We obtain the following expressions for the 
corresponding scalar components:

Fx 5 Fh cos ϕ 5 F sin θy cos ϕ
  Fz 5 Fh sin ϕ 5 F sin θy sin ϕ (2.17)

The given force F thus has been resolved into three rectangular vector 
components Fx , Fy , Fz , which are directed along the three coordinate axes.

We can now apply the Pythagorean theorem to the triangles OAB 
and OCD of Fig. 2.25:

F 
2 5 (OA)2 5 (OB)2 1 (BA)2 5 F  

2
y 1 F  

2
h

F 
2
h 5 (OC)2 5 (OD)2 1 (DC)2 5 F 

2
x 1 F 

2
z

Eliminating F 
2
h from these two equations and solving for F, we obtain the 

following relation between the magnitude of F and its rectangular scalar 
components:

Magnitude of a
force in space F 5 √F 

2
x 1 F 

2
y 1 F 

2
z (2.18)

The relationship between the force F and its three components Fx , 
Fy , and Fz is more easily visualized if we draw a “box” having Fx , Fy , 
and Fz for edges, as shown in Fig. 2.26. The force F is then represented 
by the main diagonal OA of this box. Figure 2.26b shows the right triangle 

(a)

A

B

C

z

y

x
O

F

ϕ

θy

(b)

Fh

Fy A

B

C

z

y

x
O

Fθy

(c)

Fh

Fy

Fx

Fz

E

D

B

C

z

y

x
O

ϕ

Fig. 2.25 (a) A force F in an xyz coordinate 
system; (b) components of F along the y axis 
and in the xz plane; (c) components of F 
along the three rectangular axes.
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OAB used to derive the first of the formulas (2.16): Fy 5 F cos θy . In 
Fig. 2.26a and c, two other right triangles have also been drawn: OAD 
and OAE. These triangles occupy positions in the box comparable with 
that of triangle OAB. Denoting by θx and θz , respectively, the angles that 
F forms with the x and z axes, we can derive two formulas similar to 
Fy 5 F cos θy . We thus write

Scalar components 
of a force F

 Fx 5 F cos θx  Fy 5 F cos θy  Fz 5 F cos θz (2.19)

The three angles θx , θy, and θz define the direction of the force F; they 
are more commonly used for this purpose than the angles θy and ϕ intro-
duced at the beginning of this section. The cosines of θx, θy, and θz are 
known as the direction cosines of the force F.

Introducing the unit vectors i, j, and k, which are directed respec-
tively along the x, y, and z axes (Fig. 2.27), we can express F in the form

Vector expression 
of a force F F 5 F x i 1 F y j 1 F z k (2.20)

where the scalar components Fx, Fy, and Fz are defined by the relations 
in Eq. (2.19).

Fig. 2.26 (a) Force F in a three-dimensional box, showing its angle with the x axis; (b) force F and its angle with 
the y axis; (c) force F and its angle with the z axis.

Fx

Fy

Fz

F θx

x

y

A

D

E

O

B

C

z
(a)

Fx

Fy

Fz

F
x

y

A

D

E

O

B

C

z
(b)

θy

Fx

Fy

Fz

F

θz

x

y

A

D

E

O

B

C

z
(c)

Fig. 2.27 The three unit vectors i, j, k lie 
along the three coordinate axes x, y, z, 
respectively.

y

x

z

ik

j
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Concept	Application	2.4

A force of 500 N forms angles of 60°, 45°, and 120°, respectively, with 
the x, y, and z axes. Find the components Fx, Fy, and Fz of the force and 
express the force in terms of unit vectors.

Solution

Substitute F 5 500 N, θx 5 60°, θy 5 45°, and θz 5 120° into formulas 
(2.19). The scalar components of F are then

Fx 5 (500 N) cos 60° 5 1250 N
Fy 5 (500 N) cos 45° 5 1354 N
Fz 5 (500 N) cos 120° 5 2250 N

Carrying these values into Eq. (2.20), you have

F 5 (250 N)i 1 (354 N)j 2 (250 N)k

As in the case of two-dimensional problems, a plus sign indicates that the 
component has the same sense as the corresponding axis, and a minus 
sign indicates that it has the opposite sense.

The angle a force F forms with an axis should be measured from 
the positive side of the axis and is always between 0 and 180°. An angle θx 
smaller than 90° (acute) indicates that F (assumed attached to O) is on 
the same side of the yz plane as the positive x axis; cos θx and Fx are then 
positive. An angle θx larger than 90° (obtuse) indicates that F is on the 
other side of the yz plane; cos θx and Fx are then negative. In Concept 
Application 2.4, the angles θx and θy are acute and θz is obtuse; conse-
quently, Fx and Fy are positive and Fz is negative.

Substituting into Eq. (2.20) the expressions obtained for Fx, Fy, and 
Fz in Eq. (2.19), we have

 F 5 F (cos θx i 1 cos θy j 1 cos θz k) (2.21)

This equation shows that the force F can be expressed as the product of 
the scalar F and the vector

 λ 5 cos θx i 1 cos θy j 1 cos θz k (2.22)

Clearly, the vector λ is a vector whose magnitude is equal to 1 and whose 
direction is the same as that of F (Fig. 2.28). The vector λ is referred to 
as the unit vector along the line of action of F. It follows from Eq. (2.22) 
that the components of the unit vector λ are respectively equal to the 
direction cosines of the line of action of F:

 λx 5 cos θx   λy 5 cos θy   λz 5 cos θz (2.23)

Fig. 2.28 Force F can be expressed as the 
product of its magnitude F and a unit vector 
λ in the direction of F. Also shown are the 
components of F and its unit vector.

x

y

z

λ (Magnitude = 1)

F = F λ

Fy j

Fxi

Fzk

cos θy j

cos θzk

cos θxi
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Note that the values of the three angles θx, θy, and θz are not inde-
pendent. Recalling that the sum of the squares of the components of a 
vector is equal to the square of its magnitude, we can write

λ2
x 1 λ2

y 1 λ2
z 5 1

Substituting for λx, λy, and λz from Eq. (2.23), we obtain

Relationship among 
direction cosines  cos 

2θx 1  cos 
2θy 1  cos 

2θz 5 1 (2.24)

In Concept Application 2.4, for instance, once the values θx 5 60° and 
θy 5 45° have been selected, the value of θz must be equal to 60° or 120° 
in order to satisfy the identity in Eq. (2.24).

When the components Fx, Fy, and Fz of a force F are given, we can 
obtain the magnitude F of the force from Eq. (2.18). We can then solve 
relations in Eq. (2.19) for the direction cosines as

  cos θx 5
Fx

F
     cos θy 5

Fy

F
     cos θz 5

Fz

F
 (2.25)

From the direction cosines, we can find the angles θx, θy, and θz character-
izing the direction of F.

Concept	Application	2.5	

A force F has the components Fx 5 20 lb, Fy 5 230 lb, and Fz 5 60 lb. 
Determine its magnitude F and the angles θx, θy, and θz it forms with the 
coordinate axes.

Solution

You can obtain the magnitude of F from formula (2.18):

F 5 √F 
2
x 1 F 

2
y 1 F 

2
z

5 √(20 lb)2 1 (230 lb)2 1 (60 lb)2

5 √4900 lb 5 70 lb

Substituting the values of the components and magnitude of F into 
Eqs. (2.25), the direction cosines are

 cos θx 5
Fx

F
5

20 lb
70 lb

        cos θy 5
Fy

F
5

230 lb
70 lb

        cos θz 5
Fz

F
5

60 lb
70 lb

Calculating each quotient and its arc cosine gives you

θx 5 73.4°   θy 5 115.4°   θz 5 31.0°

These computations can be carried out easily with a calculator.
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2.4B  Force Defined by Its Magnitude 
and Two Points on Its Line  
of Action

In many applications, the direction of a force F is defined by the coordi-
nates of two points, M(x1, y1, z1) and N(x2, y2, z2), located on its line of 
action (Fig. 2.29). Consider the vector MN

⟶
 joining M and N and of the same 

Fig. 2.29 A case where the line of action of force F is 
determined by the two points M and N. We can 
calculate the components of F and its direction cosines 
from the vector MN

⟶
 .

y

x

z

O

M(x1, y1, z1)

N(x2, y2, z2)

dy = y2 –  y1

dz = z2 –  z1 < 0

d x = x2 –  x1

F

λ

sense as a force F. Denoting its scalar components by dx, dy, and dz, 
respectively, we write

 MN
⟶

5 dxi 1 dy 
j 1 dzk (2.26)

We can obtain a unit vector λ along the line of action of F (i.e., along the 
line MN) by dividing the vector MN

⟶
 by its magnitude MN. Substituting 

for MN
⟶

 from Eq. (2.26) and observing that MN is equal to the distance d 
from M to N, we have

 λ 5
MN

⟶

MN
5

1
d

(dxi 1 dy 
j 1 dzk) (2.27)

Recalling that F is equal to the product of F and λ, we have

 F 5 Fλ 5
F

d
 (d x 

i 1 d y 
j 1 d z 

k) (2.28)

It follows that the scalar components of F are, respectively,

Scalar components  
of force F

 Fx 5
Fdx

d
       Fy 5

Fdy

d
       Fz 5

Fdz

d
 (2.29)

The relations in Eq. (2.29) considerably simplify the determination 
of the components of a force F of given magnitude F when the line of 
action of F is defined by two points M and N. The calculation consists of 
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first subtracting the coordinates of M from those of N, then determining 
the components of the vector MN

⟶
 and the distance d from M to N. Thus,

dx 5 x 2 2 x1   dy 5 y2 2 y1   dz 5 z 2 2 z1

d 5 √d 
2
x 1 d 

2
y 1 d 

2
z

Substituting for F and for dx, dy, dz, and d into the relations in Eq. (2.29), 
we obtain the components Fx, Fy, and Fz of the force.

We can then obtain the angles θx, θy, and θz that F forms with the 
coordinate axes from Eqs. (2.25). Comparing Eqs. (2.22) and (2.27), we 
can write

Direction cosines 
of force F

  cos θx 5
dx

d
         cos θy 5

dy

d
         cos θz 5

dz

d
 (2.30)

In other words, we can determine the angles θx, θy, and θz directly from the 
components and the magnitude of the vector MN

⟶
.

2.4C  Addition of Concurrent Forces  
in Space

We can determine the resultant R of two or more forces in space by sum-
ming their rectangular components. Graphical or trigonometric methods 
are generally not practical in the case of forces in space.

The method followed here is similar to that used in Sec. 2.2B with 
coplanar forces. Setting

R 5 oF

we resolve each force into its rectangular components:

Rxi 1 Ry j 1 Rzk 5 o (Fxi 1 Fy j 1 Fzk)
5 (oFx)i 1 (oFy)j 1 (oFz)k

From this equation, it follows that

Rectangular components 
of the resultant

 Rx 5 oFx   R y 5 oFy   Rz 5 oFz (2.31)

The magnitude of the resultant and the angles θx, θy, and θz that the resul-
tant forms with the coordinate axes are obtained using the method dis-
cussed earlier in this section. We end up with

Resultant of concurrent 
forces in space 

R 5 √R 
2
x 1 R 

2
y 1 R 

2
z

 

(2.32)

  cos θx 5
Rx

R
   cos θy 5

Ry

R
   cos θz 5

Rz

R
 (2.33)
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Sample	Problem	2.7

A tower guy wire is anchored by means of a bolt at A. The tension in the 
wire is 2500 N. Determine (a) the components Fx, Fy, and Fz of the force 
acting on the bolt and (b) the angles θx, θy, and θz defining the direction 
of the force.

STRATEGY: From the given distances, we can determine the length of 
the wire and the direction of a unit vector along it. From that, we can find 
the components of the tension and the angles defining its direction.

MODELING	and	ANALYSIS: 

	 a.	 Components	of	the	Force. The line of action of the force 
acting on the bolt passes through points A and B, and the force is directed 
from A to B. The components of the vector AB

⟶
, which has the same 

direction as the force, are

dx 5 240 m   dy 5 180 m   dz 5 130 m

The total distance from A to B is

AB 5 d 5 √d 
2
x 1 d 

2
y 1 d 

2
z 5 94.3 m

 Denoting the unit vectors along the coordinate axes by i, j, and k, 
you have

AB
⟶

5 2(40 m)i 1 (80 m)j 1 (30 m)k

Introducing the unit vector λ 5 AB
⟶

/AB (Fig. 1), you can express F in 
terms of AB

→
 as

F 5 Fλ 5 F  

AB
⟶

AB
5

2500 N
94.3 m

 AB
⟶

Substituting the expression for AB
⟶

 gives you

F 5
2500 N
94.3 m

 32(40 m)i 1 (80 m)j 1 (30 m)k4

    5 2(1060 N)i 1 (2120 N)j 1 (795 N)k

The components of F, therefore, are

 Fx 5 21060 N   Fy 5 12120 N   Fz 5 1795 N b

 b.	 Direction	of	the	Force. Using Eqs. (2.25), you can write the 
direction cosines directly (Fig. 2):

 cos θx 5
Fx

F
5

21060 N
2500 N

        cos θy 5
Fy

F
5

12120 N
2500 N

 cos θz 5
Fz

F
5

1795 N
2500 N

A

B

80 m 40 m

30 m

A

B

F

y

z

x

k

j

i

80 m 40 m

30 m

λ

Fig. 1 Cable force acting on bolt at A, 
and its unit vector.

A

B

y

z

x

θy

θx

θz

Fig. 2 Direction angles for cable AB.
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Calculating each quotient and its arc cosine, you obtain

 θx 5 115.1°   θy 5 32.0°   θz 5 71.5° b

(Note. You could have obtained this same result by using the components 
and magnitude of the vector AB

⟶
 rather than those of the force F.)

REFLECT	and	THINK: It makes sense that, for a given geometry, only 
a certain set of components and angles characterize a given resultant force. 
The methods in this section allow you to translate back and forth between 
forces and geometry.

Sample	Problem	2.8

A wall section of precast concrete is temporarily held in place by the 
cables shown. If the tension is 840 lb in cable AB and 1200 lb in cable 
AC, determine the magnitude and direction of the resultant of the forces 
exerted by cables AB and AC on stake A.

STRATEGY:	 This is a problem in adding concurrent forces in space. 
The simplest approach is to first resolve the forces into components and 
to then sum the components and find the resultant.

MODELING	and	ANALYSIS: 

Components	of	the	Forces.	 First resolve the force exerted by each 
cable on stake A into x, y, and z components. To do this, determine the 
components and magnitude of the vectors AB

⟶
 and AC

⟶
, measuring them 

from A toward the wall section (Fig. 1). Denoting the unit vectors along 
the coordinate axes by i, j, k, these vectors are

AB
⟶

5 2(16 ft)i 1 (8 ft)j 1 (11 ft)k        AB 5 21 ft
AC
⟶

5 2(16 ft)i 1 (8 ft)j 2 (16 ft)k        AC 5 24 ft

27 ft
C

D

A

B

8 ft

16 ft

11 ft

Fig. 1 Cable forces acting on stake at A, and 
their unit vectors.

C

B

A

16 ft

16 ft
8 ft

11 ft

y

z

x

ik

j
TAB = (840 lb) λAB

TAC = (1200 lb) λAC

λAB

λAC
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Denoting by λAB the unit vector along AB, the tension in AB is

TAB 5 TABλAB 5 TAB 

AB
⟶

AB
5

840 lb
21 ft

 AB
⟶

Substituting the expression found for AB
⟶

, the tension becomes

TAB 5
840 lb
21 ft

 32(16 ft)i 1 (8 ft)j 1 (11 ft)k4

TAB 5 2(640 lb)i 1 (320 lb)j 1 (440 lb)k

Similarly, denoting by λAC the unit vector along AC, the tension in AC is

TAC 5 TACλAC 5 TAC 
AC
⟶

AC
5

1200 lb
24 ft

 AC
⟶

 

TAC 5 2(800 lb)i 1 (400 lb)j 2 (800 lb)k

Resultant	 of	 the	 Forces. The resultant R of the forces exerted by 
the two cables is

R 5 TAB 1 TAC 5 2(1440 lb)i 1 (720 lb)j 2 (360 lb)k

You can now determine the magnitude and direction of the resultant as

 R 5 √R2
x 1 R2

y 1 R2
z 5 √(21440)2 1 (720)2 1 (2300)2

R 5 1650 lb b

The direction cosines come from Eqs. (2.33):

 cos θx 5
Rx

R
5

21440 lb
1650 lb

         cos θy 5
Ry

R
5

1720 lb
1650 lb

 cos θz 5
Rz

R
5

2360 lb
1650 lb

Calculating each quotient and its arc cosine, the angles are

θx 5 150.8°   θy 5 64.1°   θz 5 102.6° b

REFLECT	 and	 THINK: Based on visual examination of the cable 
forces, you might have anticipated that θx for the resultant should be 
obtuse and θy should be acute. The outcome of θz was not as apparent.
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Problems
 2.56 Determine (a) the x, y, and z components of the 900-N force, (b) the 

angles θx, θy, and θz that the force forms with the coordinate axes.

 2.57 Determine (a) the x, y, and z components of the 750-N force, (b) the 
angles θx, θy, and θz that the force forms with the coordinate axes.

 2.58 The end of the coaxial cable AE is attached to the pole AB, which 
is strengthened by the guy wires AC and AD. Knowing that the ten-
sion in wire AC is 120 lb, determine (a) the components of the force 
exerted by this wire on the pole, (b) the angles θx, θy, and θz that the 
force forms with the coordinate axes. 

y

x

z

900 N

750 N

35º

25º

20º

65º

O

Fig.	P2.56	and	P2.57

 2.59 The end of the coaxial cable AE is attached to the pole AB, which 
is strengthened by the guy wires AC and AD. Knowing that the ten-
sion in wire AD is 85 lb, determine (a) the components of the force 
exerted by this wire on the pole, (b) the angles θx, θy, and θz that the 
force forms with the coordinate axes.

 2.60 A gun is aimed at a point A located 35° east of north. Knowing that 
the barrel of the gun forms an angle of 40° with the horizontal and 
that the maximum recoil force is 400 N, determine (a) the x, y, and 
z components of that force, (b) the values of the angles θx, θy, and 
θz defining the direction of the recoil force. (Assume that the x, y, 
and z axes are directed, respectively, east, up, and south.)

 2.61 Solve Prob. 2.60, assuming that point A is located 15° north of west 
and that the barrel of the gun forms an angle of 25° with the 
horizontal.

 2.62 Determine the magnitude and direction of the force F 5 (690 lb)i 
1 (300 lb)j – (580 lb)k.

36°
60°

48°

20°
x

y

z

A

B
C

E

D

Fig.	P2.58	and	P2.59
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 2.63 Determine the magnitude and direction of the force F 5 (650 N)i 
– (320 N)j 1 (760 N)k.

 2.64 A force acts at the origin of a coordinate system in a direction 
defined by the angles θx 5 69.3° and θz 5 57.9°. Knowing that the 
y component of the force is –174.0 lb, determine (a) the angle θy, 
(b) the other components and the magnitude of the force.

 2.65 A force acts at the origin of a coordinate system in a direction 
defined by the angles θx 5 70.9° and θy 5 144.9°. Knowing that the 
z component of the force is –52.0 lb, determine (a) the angle θz,  
(b) the other components and the magnitude of the force.

 2.66 A force acts at the origin of a coordinate system in a direction 
defined by the angles θy 5 55° and θz 5 45°. Knowing that the x 
component of the force is –500 lb, determine (a) the angle θx,  
(b) the other components and the magnitude of the force.

 2.67 A force F of magnitude 1200 N acts at the origin of a coordinate 
system. Knowing that θx 5 65°, θy 5 40°, and Fz > 0, determine  
(a) the components of the force, (b) the angle θz.

 2.68 A rectangular plate is supported by three cables as shown. Knowing 
that the tension in cable AB is 408 N, determine the components of 
the force exerted on the plate at B.

 2.69 A rectangular plate is supported by three cables as shown. Knowing 
that the tension in cable AD is 429 N, determine the components of 
the force exerted on the plate at D.

 2.70 In order to move a wrecked truck, two cables are attached at A and 
pulled by winches B and C as shown. Knowing that the tension in 
cable AB is 2 kips, determine the components of the force exerted 
at A by the cable.

 2.71 In order to move a wrecked truck, two cables are attached at A and 
pulled by winches B and C as shown. Knowing that the tension in 
cable AC is 1.5 kips, determine the components of the force exerted 
at A by the cable.

 2.72 Find the magnitude and direction of the resultant of the two forces 
shown knowing that P 5 300 N and Q 5 400 N.

x

y

z

A

B

C

DO

250

130
360

360

320
450

480

Dimensions in mm

Fig. P2.68	and	P2.69

36 ft

28.8 ft

18 ft

45 ft

54 ft

30°
A

B

C

Fig. P2.70	and	P2.71

z

x

y

30°

20°

15°

50°P

Q

Fig.	P2.72	and	P2.73

 2.73 Find the magnitude and direction of the resultant of the two forces 
shown knowing that P 5 400 N and Q 5 300 N.
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 2.74 Knowing that the tension is 425 lb in cable AB and 510 lb in cable 
AC, determine the magnitude and direction of the resultant of the 
forces exerted at A by the two cables.

 2.75 Knowing that the tension is 510 lb in cable AB and 425 lb in cable 
AC, determine the magnitude and direction of the resultant of the 
forces exerted at A by the two cables.

 2.76 A frame ABC is supported in part by cable DBE that passes through a 
frictionless ring at B. Knowing that the tension in the cable is 385 N,  
determine the magnitude and direction of the resultant of the forces 
exerted by the cable at B.

 2.77 For the plate of Prob. 2.68, determine the tensions in cables AB and 
AD knowing that the tension in cable AC is 54 N and that the resul-
tant of the forces exerted by the three cables at A must be vertical.

 2.78 The boom OA carries a load P and is supported by two cables as 
shown. Knowing that the tension in cable AB is 183 lb and that the 
resultant of the load P and of the forces exerted at A by the  
two cables must be directed along OA, determine the tension in  
cable AC.

 2.79 For the boom and loading of Prob. 2.78, determine the magnitude 
of the load P.

y

xz

A

B

C

D

O

40 in.

60 in.

60 in.
45 in.

Fig. P2.74 and	P2.75

y

x
z

A

B

E
D

C

O

600 mm

400 mm

480 mm

510 mm

280 mm
210 mm

Fig. P2.76

z

24 in.

29 in.

25 in.

48 in.
A

C

B

O

y

36 in.

x

P

Fig. P2.78
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2.5  FORCES AND EQUILIBRIUM 
IN SPACE

According to the definition given in Sec. 2.3, a particle A is in equilibrium 
if the resultant of all the forces acting on A is zero. The components Rx, 
Ry, and Rz of the resultant of forces in space are given by equations (2.31); 
when the components of the resultant are zero, we have

 oFx 5 0   oFy 5 0   oFz 5 0 (2.34)

Equations (2.34) represent the necessary and sufficient conditions for the 
equilibrium of a particle in space. We can use them to solve problems 
dealing with the equilibrium of a particle involving no more than three 
unknowns.

The first step in solving three-dimensional equilibrium problems is 
to draw a free-body diagram showing the particle in equilibrium and all 
of the forces acting on it. You can then write the equations of equilibrium 
(2.34) and solve them for three unknowns. In the more common types of 
problems, these unknowns will represent (1) the three components of 
a  single force or (2) the magnitude of three forces, each of known 
direction.

Photo 2.4 Although we cannot determine 
the tension in the four cables supporting the 
car by using the three equations (2.34), we 
can obtain a relation among the tensions by 
analyzing the equilibrium of the hook.

© WIN-Initiative/Neleman/Getty Images
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Sample	Problem	2.9

A 200-kg cylinder is hung by means of two cables AB and AC that are 
attached to the top of a vertical wall. A horizontal force P perpendicular 
to the wall holds the cylinder in the position shown. Determine the mag-
nitude of P and the tension in each cable.

STRATEGY: Connection point A is acted upon by four forces, including 
the weight of the cylinder. You can use the given geometry to express the 
force components of the cables and then apply equilibrium conditions to 
calculate the tensions.

MODELING	and	ANALYSIS:	

Free-Body	 Diagram. Choose point A as a free body; this point is 
subjected to four forces, three of which are of unknown magnitude. 
Introducing the unit vectors i, j, and k, resolve each force into rectangular 
components (Fig. 1): 

 P 5 Pi
 W 5 2mgj 5 2(200 kg)(9.81 m/s2)j 5 2(1962 N)j (1)

A

B

C

P

8 m

10 m

1.2 m

2 m200kg
12 m

W

12 m

C

B

z

y

x

A
O

P

8 m

10 m

1.2 m

2 m

TAB

j
TAC

k

i

λAB

λAC

Fig. 1 Free-body diagram of particle A.
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For TAB and TAC, it is first necessary to determine the components and 
magnitudes of the vectors AB

⟶
 and AC

⟶
. Denoting the unit vector along AB 

by λAB, you can write TAB as

 

 AB
⟶

  5 2(1.2 m)i 1 (10 m)j 1 (8 m)k    AB 5 12.862 m

λAB 5
AB
⟶

12.862 m
5 20.09330i 1 0.7775j 1 0.6220k

TAB 5 TABλAB 5 20.09330TABi 1 0.7775TAB 
j 1 0.6220TAB

 

(2)

Similarly, denoting the unit vector along AC by λAC, you have for TAC

  

 AC
⟶

5 2(1.2 m)i 1 (10 m)j 2 (10 m)k    AC 5 14.193 m

 λAC 5
      AC

⟶

14.193 m
5 20.08455i 1 0.7046j 2 0.7046k

  TAC 5 TACλAC 5 20.08455TACi 1 0.7046TAC 
j 2 0.7046TACk   (3)

Equilibrium	Condition. Since A is in equilibrium, you must have

oF 5 0: TAB 1 TAC 1 P 1 W 5 0

or substituting from Eqs. (1), (2), and (3) for the forces and factoring i, j, 
and k, you have

(20.09330TAB 2 0.08455TAC 1 P)i
1 (0.7775TAB 1 0.7046TAC 2 1962 N)j

1 (0.6220TAB 2 0.7046TAC)k 5 0

Setting the coefficients of i, j, and k equal to zero, you can write three 
scalar equations, which express that the sums of the x, y, and z components 
of the forces are respectively equal to zero.

(o Fx 5 0:)   20.09330TAB 2 0.08455TAC 1 P 5 0
(o Fy 5 0:)   10.7775TAB 1 0.7046TAC 2 1962 N 5 0
(o Fz 5 0:)   10.6220TAB 2 0.7046TAC 5 0

Solving these equations, you obtain

P 5 235 N   TAB 5 1402 N   TAC 5 1238 N b

REFLECT	 and	 THINK:	 The solution of the three unknown forces 
yielded positive results, which is completely consistent with the physical 
situation of this problem. Conversely, if one of the cable force results had 
been negative, thereby reflecting compression instead of tension, you 
should recognize that the solution is in error.
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Problems
 2.80 A container is supported by three cables that are attached to a ceiling 

as shown. Determine the weight W of the container, knowing that 
the tension in cable AB is 6 kN.

 2.81 A container is supported by three cables that are attached to a ceiling 
as shown. Determine the weight W of the container, knowing that 
the tension in cable AD is 4.3 kN.

 2.82 Three cables are used to tether a balloon as shown. Knowing that 
the balloon exerts an 800-N vertical force at A, determine the tension 
in each cable.

Fig.	P2.80	and	P2.81

y

x

z

450 mm 500 mm

360 mm
320 mm

600 mm

A

C

D

B

W

Fig. P2.82

A

B

C

D

O
4.20 m

4.20 m

3.30 m

5.60 m

2.40 m
x

y

z

Fig. P2.83, P2.84 and	P2.85

x

y

z

A

B

C

D
O

36 in.

27 in.

60 in.

32 in.

40 in.

 2.83 A crate is supported by three cables as shown. Determine the weight 
of the crate knowing that the tension in cable AD is 616 lb.

 2.84 A crate is supported by three cables as shown. Determine the weight 
of the crate knowing that the tension in cable AC is 544 lb.

 2.85 A 1600-lb crate is supported by three cables as shown. Determine 
the tension in each cable.
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 2.88 A rectangular plate is supported by three cables as shown. Knowing 
that the tension in cable AC is 60 N, determine the weight of the 
plate.

 2.86 Three wires are connected at point D, which is located 18 in. below 
the T-shaped pipe support ABC. Determine the tension in each wire 
when a 180-lb cylinder is suspended from point D as shown.

Fig. P2.86

180 lb

D

A

B

C

18 in.

16 in.

22 in.

24 in.

24 in.

Fig. P2.87

y

16 in.
8 in.

a
a

24 in.

A
C

D

B

x

z

x

y

z

A

B

C

DO

250

130
360

360

320
450

480

Dimensions in mm

Fig. P2.88 and	P2.89

 2.87 A 36-lb triangular plate is supported by three wires as shown. Deter-
mine the tension in each wire, knowing that a 5 6 in.

 2.89 A rectangular plate is supported by three cables as shown. Knowing 
that the tension in cable AD is 520 N, determine the weight of the 
plate.
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Fig. P2.90

z
16 ft

8 ft

B

A

C
O

x

y

4 ft

30 ft

32 ft

12 ft

 2.90 In trying to move across a slippery icy surface, a 175-lb man uses 
two ropes AB and AC. Knowing that the force exerted on the man 
by the icy surface is perpendicular to that surface, determine the 
tension in each rope.

Fig.	P2.92	and	P2.93

y

x

z

220 mm

240 mm

960 mm

Q

P

A
B

C

D

O

380 mm

320 mm

960 mm

 2.91 Solve Prob. 2.90, assuming that a friend is helping the man at A by 
pulling on him with a force P 5 –(45 lb)k.

 2.92 Three cables are connected at A, where the forces P and Q are 
applied as shown. Knowing that Q 5 0, find the value of P for which 
the tension in cable AD is 305 N.

 2.93 Three cables are connected at A, where the forces P and Q are 
applied as shown. Knowing that P 5 1200 N, determine the values 
of Q for which cable AD is taut.
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 2.94 A container of weight W is suspended from ring A. Cable BAC passes 
through the ring and is attached to fixed supports at B and C. Two 
forces P 5 Pi and Q 5 Qk are applied to the ring to maintain the 
container in the position shown. Knowing that W 5 376 N, determine 
P and Q. (Hint: The tension is the same in both portions of cable BAC.)

D

x

E
OB

25 in.

17.5 in. 45 in.

60 in.

80 in.

y

C

A

z

P

Fig. P2.96

 2.95 For the system of Prob. 2.94, determine W and Q knowing that  
P 5 164 N.

 2.96 Cable BAC passes through a frictionless ring A and is attached to fixed 
supports at B and C, while cables AD and AE are both tied to the 
ring and are attached, respectively, to supports at D and E. Knowing 
that a 200-lb vertical load P is applied to ring A, determine the ten-
sion in each of the three cables.

Q
P

O

A

C

B

y

x
z

W

160 mm

400 mm

130 mm

150 mm

240 mm

Fig. P2.94

 2.97 Knowing that the tension in cable AE of Prob. 2.96 is 75 lb, deter-
mine (a) the magnitude of the load P, (b) the tension in cables BAC 
and AD.
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 2.98 A container of weight W is suspended from ring A, to which cables 
AC and AE are attached. A force P is applied to the end F of a third 
cable that passes over a pulley at B and through ring A and that is 
attached to a support at D. Knowing that W 5 1000 N, determine 
the magnitude of P. (Hint: The tension is the same in all portions 
of cable FBAD.)

 2.99 Using two ropes and a roller chute, two workers are unloading a 
200-lb cast-iron counterweight from a truck. Knowing that at the 
instant shown the counterweight is kept from moving and that the 
positions of points A, B, and C are, respectively, A(0, –20 in., 40 in.),  
B(–40 in., 50 in., 0), and C(45 in., 40 in., 0), and assuming that no 
friction exists between the counterweight and the chute, determine 
the tension in each rope. (Hint: Because there is no friction, the force 
exerted by the chute on the counterweight must be perpendicular to 
the chute.)

Fig. P2.98

y

xz

0.78 m

0.40 m

0.40 m
P

O

B

F

E

C

W

A

D

1.60 m
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1.20 m

1.30 m

Fig. P2.99
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A
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y
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 2.101 Collars A and B are connected by a 25-in.-long wire and can slide 
freely on frictionless rods. Determine the distances x and z for which 
the equilibrium of the system is maintained when P 5 120 lb and 
Q 5 60 lb.

 2.102 Collars A and B are connected by a 525-mm-long wire and can slide 
freely on frictionless rods. If a force P 5 (341 N)j is applied to collar 
A, determine (a) the tension in the wire when y 5 155 mm, (b) the 
magnitude of the force Q required to maintain the equilibrium of the 
system.

 2.100 Collars A and B are connected by a 25-in.-long wire and can slide 
freely on frictionless rods. If a 60-lb force Q is applied to collar B 
as shown, determine (a) the tension in the wire when x 5 9 in.,  
(b) the corresponding magnitude of the force P required to maintain 
the equilibrium of the system.

Fig.	P2.100	and	P2.101 

20 in.

x

x

y

z

z

B
Q

P

A

O

Fig. P2.102

200 mm

x

y

y

z zB

Q

P

A

O

 2.103 Solve Prob. 2.102 assuming that y 5 275 mm.
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In this chapter, we have studied the effect of forces on particles, i.e., on bodies 
of such shape and size that we may assume all forces acting on them apply 
at the same point.

Resultant	of	Two	Forces
Forces are vector quantities; they are characterized by a point of application, 
a magnitude, and a direction, and they add according to the parallelogram law 
(Fig. 2.30). We can determine the magnitude and direction of the resultant R 
of two forces P and Q either graphically or by trigonometry using the law of 
cosines and the law of sines [Sample Prob. 2.1].

Components	of	a	Force
Any given force acting on a particle can be resolved into two or more com-
ponents, i.e., it can be replaced by two or more forces that have the same 
effect on the particle. A force F can be resolved into two components P and Q 
by drawing a parallelogram with F for its diagonal; the components P and Q 
are then represented by the two adjacent sides of the parallelogram (Fig. 2.31). 
Again, we can determine the components either graphically or by trigonom-
etry [Sec. 2.1E].

Review and Summary

Q

R

P

A

Fig. 2.30

Q
F

P

A

Fig. 2.31

F

x

y

Fy = Fy j

Fx = Fx i

j

i

θ

Fig. 2.32

Rectangular	Components;	Unit	Vectors
A force F is resolved into two rectangular components if its components Fx 
and Fy are perpendicular to each other and are directed along the coordinate 
axes (Fig. 2.32). Introducing the unit vectors i and j along the x and y axes, 
respectively, we can write the components and the vector as [Sec. 2.2A]

 Fx 5 Fxi   Fy 5 Fy j (2.6)

and

 F 5 Fxi 1 Fyj (2.7)

where Fx and Fy are the scalar components of F. These components, which 
can be positive or negative, are defined by the relations

 Fx 5 F cos θ   Fy 5 F sin θ (2.8)
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 When the rectangular components Fx and Fy of a force F are given, we 
can obtain the angle θ defining the direction of the force from

  tan θ 5
Fy

Fx

 (2.9)

We can obtain the magnitude F of the force by solving one of the equations 
(2.8) for F or by applying the Pythagorean theorem:

 F 5 √F x
2 1 F y

2 (2.10)

Resultant	of	Several	Coplanar	Forces
When three or more coplanar forces act on a particle, we can obtain the rect-
angular components of their resultant R by adding the corresponding compo-
nents of the given forces algebraically [Sec. 2.2B]:

 Rx 5 oFx   Ry 5 oFy (2.13)

The magnitude and direction of R then can be determined from relations 
similar to Eqs. (2.9) and (2.10) [Sample Prob. 2.3].

Forces	 in	Space
A force F in three-dimensional space can be resolved into  rectangular com-
ponents Fx, Fy, and Fz [Sec. 2.4A]. Denoting by θx, θy, and θz, respectively, 
the angles that F forms with the x, y, and z axes (Fig. 2.33), we have

 Fx 5 F cos θx   Fy 5 F cos θy   Fz 5 F cos θz (2.19)

Direction	Cosines
The cosines of θx, θy, and θz are known as the direction cosines of the force F. 
Introducing the unit vectors i, j, and k along the coordinate axes, we can write 
F as

 F 5 Fxi 1 Fy j 1 Fzk (2.20)

or

 F 5 F(cos θxi 1 cos θy j 1 cos θzk) (2.21)

Fig. 2.33
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This last equation shows (Fig. 2.34) that F is the product of its magnitude F 
and the unit vector expressed by

λ 5 cos θxi 1 cos θy j 1 cos θzk

Since the magnitude of λ is equal to unity, we must have

 cos2 θx 1 cos2 θy 1 cos2 θz 5 1 (2.24)

 When we are given the rectangular components Fx, Fy, and Fz of a force 
F, we can find the magnitude F of the force by 

 F 5 √F 
2
x 1 F 

2
y 1 F 

2
z (2.18)

and the direction cosines of F are obtained from Eqs. (2.19). We have

  cos θx 5
Fx

F
         cos θy 5

Fy

F
         cos θz 5

Fz

F
 (2.25)

 When a force F is defined in three-dimensional space by its magnitude F 
and two points M and N on its line of action [Sec. 2.4B], we can obtain its 
rectangular components by first expressing the vector MN

⟶
 joining points M 

and N in terms of its components dx, dy, and dz (Fig. 2.35): 

 MN
⟶

5 dxi 1 dyj 1 dzk  (2.26)

We next determine the unit vector λ along the line of action of F by dividing 
MN
⟶

 by its magnitude MN 5 d:

 λ 5
MN
⟶

MN
5

1
d

 (dxi 1 dy 
j 1 dzk) (2.27)

Recalling that F is equal to the product of F and λ, we have

 F 5 Fλ 5
F

d
 (dxi 1 dy 

j 1 dzk) (2.28)

x

y

z

λ (Magnitude = 1)

F = Fλ

Fy j

Fxi

Fzk

cos θy j

cos θzk

cos θxi

Fig. 2.34

x

y

z

F

O

M(x1, y1, z1)  

N(x2, y2, z2)  

dy = y2 – y1  

dx = x2 – x1  

dz = z2 – z1 < 0λ

Fig. 2.35
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From this equation it follows [Sample Probs. 2.7 and 2.8] that the scalar 
components of F are, respectively,

 Fx 5
Fdx

d
        Fy 5

Fdy

d
        Fz 5

Fdz

d
  (2.29)

Resultant	of	Forces	 in	Space
When two or more forces act on a particle in three-dimensional space, we can 
obtain the rectangular components of their resultant R by adding the corre-
sponding components of the given forces algebraically [Sec. 2.4C]. We have

 Rx 5 oFx   Ry 5 oFy   Rz 5 oFz (2.31)

We can then determine the magnitude and direction of R from relations simi-
lar to Eqs. (2.18) and (2.25) [Sample Prob. 2.8].

Equilibrium	of	a	Particle
A particle is said to be in equilibrium when the resultant of all the forces 
acting on it is zero [Sec. 2.3A]. The particle remains at rest (if originally at 
rest) or moves with constant speed in a straight line (if originally in motion) 
[Sec. 2.3B].

Free-Body	Diagram
To solve a problem involving a particle in equilibrium, first draw a free-body 
diagram of the particle showing all of the forces acting on it [Sec. 2.3C]. If 
only three coplanar forces act on the particle, you can draw a force triangle 
to express that the particle is in equilibrium. Using graphical methods of 
trigonometry, you can solve this triangle for no more than two unknowns 
[Sample Prob. 2.4]. If more than three coplanar forces are involved, you 
should use the equations of equilibrium:

 oFx 5 0   oFy 5 0 (2.15)

These equations can be solved for no more than two unknowns [Sample  
Prob. 2.6].

Equilibrium	 in	Space
When a particle is in equilibrium in three-dimensional space [Sec. 2.5], use 
the three equations of equilibrium:

 oFx 5 0   oFy 5 0   oFz 5 0 (2.34)

These equations can be solved for no more than three unknowns [Sample 
Prob. 2.9].
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 2.104 Two structural members A and B are bolted to a bracket as shown. 
Knowing that both members are in compression and that the force 
is 15 kN in member A and 10 kN in member B, determine by trigo-
nometry the magnitude and direction of the resultant of the forces 
applied to the bracket by members A and B.

 2.105 Determine the x and y components of each of the forces shown.

Review Problems

A B

40° 20°

Fig. P2.104

106 lb102 lb

200 lb x

y

24 in. 28 in.

45 in.

40 in.

30 in.
O

Fig. P2.105

45°
30°

B

A

M

C

Fig. P2.106

120 lb

80 lb

60 lb

a

a'

20°

α
α

Fig. P2.107

 2.106 The hydraulic cylinder BC exerts on member AB a force P directed 
along line BC. This force develops due to the moment M applied  
at A as shown; the concept of moments will be introduced in  
Chapter 3. Knowing that P must have a 600-N component perpen-
dicular to member AB, determine (a) the magnitude of the force P, 
(b) its component along line AB.

 2.107 Knowing that α 5 40°, determine the resultant of the three forces 
shown.
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 2.108 Knowing that α 5 20°, determine the tension (a) in cable AC,  
(b) in rope BC.

5°

A

C

B1200 lb

α

Fig. P2.108

P W

d

h

d

Fig. P2.109

500 N

150 N

150 N

508

308
A

α

Fig. P2.110

x

D

A

y

56 ft

O

508

208

B

Cz

α

Fig. P2.111

 2.109 For W 5 800 N, P 5 200 N, and d 5 600 mm, determine the value 
of h consistent with equilibrium. 

 2.110 Three forces are applied to a bracket as shown. The directions of the 
two 150-N forces may vary, but the angle between these forces is 
always 50°. Determine the range of values of α for which the magni-
tude of the resultant of the forces acting at A is less than 600 N. 

 2.111 Cable AB is 65 ft long, and the tension in that cable is 3900 lb. 
Determine (a) the x, y, and z components of the force exerted by the 
cable on the anchor B, (b) the angles θx, θy, and θz defining the direc-
tion of that force.
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 2.112 Three cables are used to tether a balloon as shown. Determine the 
vertical force P exerted by the balloon at A knowing that the tension 
in cable AB is 259 N.

A

B

C

D

O
4.20 m

4.20 m

3.30 m

5.60 m

2.40 m
x

y

z

Fig.	P2.112	and	P2.113

 2.113 Three cables are used to tether a balloon as shown. Determine the 
vertical force P exerted by the balloon at A knowing that the tension 
in cable AC is 444 N.

 2.114 A transmission tower is held by three guy wires attached to a pin at 
A and anchored by bolts at B, C, and D. If the tension in wire AB 
is 630 lb, determine the vertical force P exerted by the tower on the 
pin at A.

 2.115 A transmission tower is held by three guy wires attached to a pin at 
A and anchored by bolts at B, C, and D. If the tension in wire AC 
is 920 lb, determine the vertical force P exerted by the tower on the 
pin at A.

y

A

90 ft

30 ft

O
B

30 ft

20 ft

45 ft

z

D

C

60 ft

65 ft
x

Fig. P2.114 and	P2.115
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Four tugboats work together to free the oil tanker Coastal Eagle 

Point that ran aground while attempting to navigate a channel 

in Tampa Bay. It will be shown in this chapter that the forces 

exerted on the ship by the tugboats could be replaced by an 

equivalent force exerted by a single, more powerful, tugboat.

Rigid Bodies: Equivalent 
Systems of Forces

3
© St Petersburg Times/Zumapress/Newscom
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Introduction 77

Introduction
In Chapter 2, we assumed that each of the bodies considered could be 
treated as a single particle. Such a view, however, is not always possible. 
In general, a body should be treated as a combination of a large number 
of particles. In this case, we need to consider the size of the body as well 
as the fact that forces act on different parts of the body and thus have 
different points of application.

Most of the bodies considered in elementary mechanics are assumed 
to be rigid. We define a rigid body as one that does not deform. Actual 
structures and machines are never absolutely rigid and deform under the 
loads to which they are subjected. However, these deformations are usually 
small and do not appreciably affect the conditions of equilibrium or the 
motion of the structure under consideration. They are important, though, 
as far as the resistance of the structure to failure is concerned and are 
considered in the study of mechanics of materials.

In this chapter, you will study the effect of forces exerted on a rigid 
body, and you will learn how to replace a given system of forces by a 
simpler equivalent system. This analysis rests on the fundamental assump-
tion that the effect of a given force on a rigid body remains unchanged if 
that force is moved along its line of action (principle of transmissibility). 
It follows that forces acting on a rigid body can be represented by sliding 
vectors, as indicated earlier in Sec. 2.1B.

Introduction

 3.1 FORCES AND MOMENTS
 3.1A External and Internal Forces
 3.1B Principle of Transmissibility: 

Equivalent Forces
 3.1C Vector Products 
 3.1D Rectangular Components of 

Vector Products 
 3.1E Moment of a Force about a 

Point
 3.1F Rectangular Components of 

the Moment of a Force

 3.2 MOMENT OF A FORCE 
ABOUT AN AXIS

 3.2A Scalar Products 
 3.2B Mixed Triple Products 
 3.2C Moment of a Force about a 

Given Axis

 3.3 COUPLES AND FORCE-
COUPLE SYSTEMS

 3.3A Moment of a Couple
 3.3B Equivalent Couples
 3.3C Addition of Couples
 3.3D Couple Vectors
 3.3E Resolution of a Given Force 

into a Force at O and a Couple

 3.4 SIMPLIFYING SYSTEMS OF 
FORCES

 3.4A Reducing a System of Forces 
to a Force-Couple System

 3.4B Equivalent and Equipollent 
Systems of Forces

 3.4C Further Reduction of a System 
of Forces

 Review and Summary

Objectives
• Discuss the principle of transmissibility that enables a 

force to be treated as a sliding vector.

• Define the moment of a force about a point.

• Examine vector and scalar products, useful in analysis 
involving moments.

• Apply Varignon’s Theorem to simplify certain moment 
analyses.

• Define the mixed triple product and use it to 
determine the moment of a force about an axis.

• Define the moment of a couple, and consider the 
particular properties of couples.

• Resolve a given force into an equivalent force-couple 
system at another point.

• Reduce a system of forces into an equivalent force-
couple system.

• Examine circumstances where a system of forces can 
be reduced to a single force.
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Two important concepts associated with the effect of a force on a 
rigid body are the moment of a force about a point (Sec. 3.1E) and the 
moment of a force about an axis (Sec. 3.2C). The determination of these 
quantities involves computing vector products and scalar products of two 
vectors, so in this chapter, we introduce the fundamentals of vector algebra 
and apply them to the solution of problems involving forces acting on 
rigid bodies.

Another concept introduced in this chapter is that of a couple, i.e., 
the combination of two forces that have the same magnitude, parallel lines 
of action, and opposite sense (Sec. 3.3A). As you will see, we can replace 
any system of forces acting on a rigid body by an equivalent system con-
sisting of one force acting at a given point and one couple. This basic 
combination is called a force-couple system. In the case of concurrent, 
coplanar, or parallel forces, we can further reduce the equivalent force-
couple system to a single force, called the resultant of the system, or to 
a single couple, called the resultant couple of the system.

3.1 FORCES AND MOMENTS
The basic definition of a force does not change if the force acts on a point 
or on a rigid body. However, the effects of the force can be very different, 
depending on factors such as the point of application or line of action of 
that force. As a result, calculations involving forces acting on a rigid body 
are generally more complicated than situations involving forces acting on 
a point. We begin by examining some general classifications of forces 
acting on rigid bodies.

3.1A External and Internal Forces
Forces acting on rigid bodies can be separated into two groups:  
(1) external forces and (2) internal forces.

 1. External forces are exerted by other bodies on the rigid body under 
consideration. They are entirely responsible for the external behavior of 
the rigid body, either causing it to move or ensuring that it remains at 
rest. We shall be concerned only with external forces in this chapter and 
in Chaps. 4 and 5.

 2. Internal forces hold together the particles forming the rigid body. If 
the rigid body is structurally composed of several parts, the forces hold-
ing the component parts together are also defined as internal forces. We 
will consider internal forces in Chaps. 6 and 7.

As an example of external forces, consider the forces acting on a 
disabled truck that three people are pulling forward by means of a rope 
attached to the front bumper (Fig. 3.1a). The external forces acting on the 
truck are shown in a free-body diagram (Fig.  3.1b). Note that this free-
body diagram shows the entire object, not just a particle representing the 
object. Let us first consider the weight of the truck. Although it embodies 
the effect of the earth’s pull on each of the particles forming the truck, the 
weight can be represented by the single force W. The point of application 
of this force—that is, the point at which the force acts—is defined as the 

W

F

R1 R2

(a)

(b)

Fig. 3.1 (a) Three people pulling on a truck 
with a rope; (b) free-body diagram of the 
truck, shown as a rigid body instead of a 
particle.
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center of gravity of the truck. (In Chap. 5, we will show how to determine 
the location of centers of gravity.) The weight W tends to make the truck 
move vertically downward. In fact, it would actually cause the truck to 
move downward, i.e., to fall, if it were not for the presence of the ground. 
The ground opposes the downward motion of the truck by means of 
the reactions R1 and R2. These forces are exerted by the ground on the 
truck and must therefore be included among the external forces acting 
on the truck.

The people pulling on the rope exert the force F. The point of appli-
cation of F is on the front bumper. The force F tends to make the truck 
move forward in a straight line and does actually make it move, since no 
external force opposes this motion. (We are ignoring rolling resistance 
here for simplicity.) This forward motion of the truck, during which each 
straight line keeps its original orientation (the floor of the truck remains 
horizontal, and the walls remain vertical), is known as a translation. 
Other forces might cause the truck to move differently. For example, the 
force exerted by a jack placed under the front axle would cause the truck 
to pivot about its rear axle. Such a motion is a rotation. We conclude, 
therefore, that each external force acting on a rigid body can, if unop-
posed, impart to the rigid body a motion of translation or rotation, or both.

3.1B  Principle of Transmissibility:  
Equivalent Forces

The principle of transmissibility states that the conditions of equilibrium 
or motion of a rigid body remain unchanged if a force F acting at a given 
point of the rigid body is replaced by a force F9 of the same magnitude 
and same direction, but acting at a different point, provided that the two 
forces have the same line of action (Fig.  3.2). The two forces F and F9 
have the same effect on the rigid body and are said to be equivalent 
forces. This principle, which states that the action of a force may be 
transmitted along its line of action, is based on experimental evidence. It 
cannot be derived from the properties established so far in this text and 
therefore must be accepted as an experimental law. Therefore, our study 
of the statics of rigid bodies is based on the three principles introduced 
so far: the parallelogram law of vector addition, Newton’s first law, and 
the principle of transmissibility.

We indicated in Chap. 2 that we could represent the forces acting on 
a particle by vectors. These vectors had a well-defined point of application—
namely, the particle itself—and were therefore fixed, or bound, vectors. In 
the case of forces acting on a rigid body, however, the point of application 
of the force does not matter, as long as the line of action remains unchanged. 
Thus, forces acting on a rigid body must be represented by a different kind 
of vector, known as a sliding vector, since forces are allowed to slide along 
their lines of action. Note that all of the properties we derive in the fol-
lowing sections for the forces acting on a rigid body are valid more gener-
ally for any system of sliding vectors. In order to keep our presentation 
more intuitive, however, we will carry it out in terms of physical forces 
rather than in terms of mathematical sliding vectors.

Returning to the example of the truck, we first observe that the line 
of action of the force F is a horizontal line passing through both the front 

5

F

F9

Fig. 3.2 Two forces F and F9 are equivalent 
if they have the same magnitude and 
direction and the same line of action, 
even if they act at different points.
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and rear bumpers of the truck (Fig. 3.3). Using the principle of transmis-
sibility, we can therefore replace F by an equivalent force F9 acting on 
the rear bumper. In other words, the conditions of motion are unaffected, 
and all of the other external forces acting on the truck (W, R1, R2) remain 
unchanged if the people push on the rear bumper instead of pulling on 
the front bumper.

The principle of transmissibility and the concept of equivalent forces 
have limitations. Consider, for example, a short bar AB acted upon by 
equal and opposite axial forces P1 and P2, as shown in Fig. 3.4a. According 

W

F F9

Equivalent
forces

R1 R2

W
R1 R2

5

Fig. 3.3 Force F9 is equivalent to force F, so the motion of the truck is 
the same whether you pull it or push it.

5P1 P2

A B

(a)

5P1
P'2

A B

(b)

A B

(c)

5P1P2

A B

(d)

5P1
P'2

A B

(e)

A B

( f )

Fig. 3.4 (a–c) A set of equivalent forces acting on bar AB; (d–f ) another 
set of equivalent forces acting on bar AB. Both sets produce the same 
external effect (equilibrium in this case) but different internal forces and 
deformations.

to the principle of transmissibility, we can replace force P2 by a force P92 
having the same magnitude, the same direction, and the same line of 
action but acting at A instead of B (Fig. 3.4b). The forces P1 and P92 acting 
on the same particle can be added according to the rules of Chap. 2, and 
since these forces are equal and opposite, their sum is equal to zero. Thus, 
in terms of the external behavior of the bar, the original system of forces 
shown in Fig. 3.4a is equivalent to no force at all (Fig. 3.4c).

Consider now the two equal and opposite forces P1 and P2 acting on 
the bar AB as shown in Fig. 3.4d. We can replace the force P2 by a force 
P92 having the same magnitude, the same direction, and the same line of 
action but acting at B instead of at A (Fig. 3.4e). We can add forces P1 and 
P92, and their sum is again zero (Fig. 3.4f ). From the point of view of the 
mechanics of rigid bodies, the systems shown in Fig. 3.4a and d are thus 
equivalent. However, the internal forces and deformations produced by the 
two systems are clearly different. The bar of Fig. 3.4a is in tension and, if 
not absolutely rigid, increases in length slightly; the bar of Fig. 3.4d is in 
compression and, if not absolutely rigid, decreases in length slightly. Thus, 
although we can use the principle of transmissibility to determine the 
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conditions of motion or equilibrium of rigid bodies and to compute the 
external forces acting on these bodies, it should be avoided, or at least used 
with care, in determining internal forces and deformations.

3.1C Vector Products 
In order to gain a better understanding of the effect of a force on a rigid 
body, we need to introduce a new concept, the moment of a force about 
a point. However, this concept is more clearly understood and is applied 
more effectively if we first add to the mathematical tools at our disposal 
the vector product of two vectors.

The vector product of two vectors P and Q is defined as the vector V 
that satisfies the following conditions.

 1. The line of action of V is perpendicular to the plane containing P and 
Q (Fig. 3.5a).

 2. The magnitude of V is the product of the magnitudes of P and Q and 
of the sine of the angle θ formed by P and Q (the measure of which is 
always 180° or less). We thus have

  Magnitude of a 
vector product

 V 5 PQ sin θ (3.1)

 3. The direction of V is obtained from the right-hand rule. Close your 
right hand and hold it so that your fingers are curled in the same sense 
as the rotation through θ that brings the vector P in line with the 
vector Q. Your thumb then indicates the direction of the vector V 
(Fig. 3.5b). Note that if P and Q do not have a common point of appli-
cation, you should first redraw them from the same point. The three 
vectors P, Q, and V—taken in that order—are said to form a right-
handed triad.†

As stated previously, the vector V satisfying these three conditions 
(which define it uniquely) is referred to as the vector product of P and Q. 
It is represented by the mathematical expression

Vector product

 V 5 P 3 Q (3.2)

Because of this notation, the vector product of two vectors P and Q is 
also referred to as the cross product of P and Q.

It follows from Eq. (3.1) that if the vectors P and Q have either the 
same direction or opposite directions, their vector product is zero. In the 
general case when the angle θ formed by the two vectors is neither 0° nor 
180°, Eq. (3.1) has a simple geometric interpretation: The magnitude V 
of the vector product of P and Q is equal to the area of the parallelogram 
that has P and Q for sides (Fig.  3.6). The vector product P 3 Q is 

†Note that the x, y, and z axes used in Chap. 2 form a right-handed system of orthogonal axes 
and that the unit vectors i, j, and k defined in Sec. 2.4A form a right-handed orthogonal triad. 

Q

P

V 5 P 3 Q

θ

(a)

V
V points in the
direction of the
thumb

Fingers curl
in the direction
from P to Q

(b)

Fig. 3.5 (a) The vector product V has the 
magnitude PQ sin θ and is perpendicular 
to the plane of P and Q; (b) you can 
determine the direction of V by using the 
right-hand rule.

Q
Q9

P

V

Fig. 3.6 The magnitude of the vector 
product V equals the area of the 
parallelogram formed by P and Q. If you 
change Q to Q9 in such a way that the 
parallelogram changes shape but P and the 
area are still the same, then the magnitude 
of V remains the same.
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therefore unchanged if we replace Q by a vector Q9 that is coplanar with 
P and Q such that the line joining the tips of Q and Q9 is parallel to P: 

 V 5 P 3 Q 5 P 3 Q9 (3.3)

From the third condition used to define the vector product V of P 
and Q—namely, that P, Q, and V must form a right-handed triad—it fol-
lows that vector products are not commutative; i.e., Q 3 P is not equal 
to P 3 Q. Indeed, we can easily check that Q 3 P is represented by the 
vector 2V, which is equal and opposite to V:

 Q 3 P 5 2(P 3 Q) (3.4)

Concept Application 3.1

Let us compute the vector product V 5 P 3 Q, where the vector P 
is of magnitude 6 and lies in the zx plane at an angle of 30° with the 
x axis, and where the vector Q is of magnitude 4 and lies along the 
x axis (Fig. 3.7).

Solution

It follows immediately from the definition of the vector product that 
the vector V must lie along the y axis, directed upward, with the 
magnitude

V 5 PQ sin θ 5 (6)(4) sin 30° 5 12 ■

y

x

z

Q

P
608

308

Fig. 3.7 Two vectors P and Q with angle 
between them.

We saw that the commutative property does not apply to vector 
products. However, it can be demonstrated that the distributive property

 P 3 (Q1 1 Q2) 5 P 3 Q1 1 P 3 Q2 (3.5)

does hold.
A third property, the associative property, does not apply to vector 

products; we have in general

 (P 3 Q) 3 S Þ P 3 (Q 3 S) (3.6)

3.1D  Rectangular Components 
of Vector Products 

Before we turn back to forces acting on rigid bodes, let’s look at a more 
convenient way to express vector products using rectangular components. 
To do this, we use the unit vectors i, j, and k that were defined in Chap. 2.

Consider first the vector product i 3 j (Fig. 3.8a). Since both vectors 
have a magnitude equal to 1 and since they are at a right angle to each 
other, their vector product is also a unit vector. This unit vector must be 
k, since the vectors i, j, and k are mutually perpendicular and form a 

y

x

z

i

j

i 3 j 5 k

(a)
y

x

z

i

j

(b)

j 3 i 5 2k

Fig. 3.8 (a) The vector product of the i and 
j unit vectors is the k unit vector; (b) the 
vector product of the j and i unit vectors is 
the 2k unit vector.
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right-handed triad. Similarly, it follows from the right-hand rule given in 
Sec. 3.1C that the product j 3 i is equal to 2k (Fig. 3.8b). Finally, note 
that the vector product of a unit vector with itself, such as i 3 i, is equal 
to zero, since both vectors have the same direction. Thus, we can list the 
vector products of all the various possible pairs of unit vectors:

 i 3 i 5 0 j 3 i 5 2k k 3 i 5 j
 i 3 j 5 k j 3 j 5 0 k 3 j 5 2i (3.7)
 i 3 k 5 2j j 3 k 5 i k 3 k 5 0

We can determine the sign of the vector product of two unit vectors simply 
by arranging them in a circle and reading them in the order of the multi-
plication (Fig.  3.9). The product is positive if they follow each other in 
counterclockwise order and is negative if they follow each other in clock-
wise order.

j 
Unit vector

products read
in this direction

are positive

Unit vector
products read
in this direction
are negative

ik

Fig. 3.9 Arrange the three letters i, j, k in a 
counterclockwise circle. You can use the order of 
letters for the three unit vectors in a vector 
product to determine its sign.

We can now easily express the vector product V of two given vectors P 
and Q in terms of the rectangular components of these vectors. Resolving 
P and Q into components, we first write

V 5 P 3 Q 5 (Pxi 1 Py j 1 Pz k) 3 (Qxi 1 Qy j 1 Qz k)

Making use of the distributive property, we express V as the sum of vector 
products, such as Px i 3 Q y j. We find that each of the expressions obtained 
is equal to the vector product of two unit vectors, such as i 3 j, multiplied 
by the product of two scalars, such as Px Qy. Recalling the identities of 
Eq. (3.7) and factoring out i, j, and k, we obtain

 V 5 (PyQz 2 PzQy)i 1 (PzQx 2 PxQz)j 1 (PxQy 2 PyQx)k (3.8)

Thus, the rectangular components of the vector product V are 

Rectangular components 
of a vector product

Vx 5 PyQz 2 PzQy

 Vy 5 PzQx 2 PxQz (3.9)
 Vz 5 PxQy 2 PyQx
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Returning to Eq. (3.8), notice that the right-hand side represents the 
expansion of a determinant. Thus, we can express the vector product V in 
the following form, which is more easily memorized:†

Rectangular components 
of a vector product (determinant form)

 V 5 ∣ i j k
Px Py Pz

Qx Qy Qz
∣  (3.10)

3.1E Moment of a Force about a Point
We are now ready to consider a force F acting on a rigid body (Fig. 3.10a). 
As we know, the force F is represented by a vector that defines its mag-
nitude and direction. However, the effect of the force on the rigid body 
depends also upon its point of application A. The position of A can be 
conveniently defined by the vector r that joins the fixed reference point O  
with A; this vector is known as the position vector of A. The position 
vector r and the force F define the plane shown in Fig. 3.10a.

We define the moment of F about O as the vector product of r and F:

Moment of a force 
about a point O

 MO 5 r 3 F (3.11)

According to the definition of the vector product given in Sec. 3.1C, 
the moment MO must be perpendicular to the plane containing O and force F. 
The sense of MO is defined by the sense of the rotation that will bring vector r 
in line with vector F; this rotation is observed as counterclockwise by an 
observer located at the tip of MO. Another way of defining the sense of MO 
is furnished by a variation of the right-hand rule: Close your right hand and 
hold it so that your fingers curl in the sense of the rotation that F would 
impart to the rigid body about a fixed axis directed along the line of action 
of MO. Then your thumb indicates the sense of the moment MO (Fig. 3.10b).

Finally, denoting by θ the angle between the lines of action of the 
position vector r and the force F, we find that the magnitude of the 
moment of F about O is

Magnitude of the 
moment of a force

 MO 5 rF sin θ 5 Fd (3.12)

†Any determinant consisting of three rows and three columns can be evaluated by repeating 
the first and second columns and forming products along each diagonal line. The sum of 
the products obtained along the red lines is then subtracted from the sum of the products 
obtained along the black lines.

i j k i j

Px Py Pz Px Py

Qx Qy Qz Qx Qy

MO

d A

F
r

θ
O

(a)

MO

Vector MO
points in the
direction of
the thumb

Fingers curl
in the direction
from r to F

(b)

Fig. 3.10 Moment of a force about a point. 
(a) The moment MO is the vector product of 
the position vector r and the force F; (b) a 
right-hand rule indicates the sense of MO.

Final PDF to printer



3.1 Forces and Moments 85

bee98160_ch03_076-148.indd 85 11/27/15  06:20 PM

where d represents the perpendicular distance from O to the line of action 
of F (see Fig. 3.10). Experimentally, the tendency of a force F to make a 
rigid body rotate about a fixed axis perpendicular to the force depends upon 
the distance of F from that axis, as well as upon the magnitude of F. For 
example, a child’s breath can exert enough force to make a toy propeller 
spin (Fig. 3.11a), but a wind turbine requires the force of a substantial wind 
to rotate the blades and generate electrical power (Fig.  3.11b). However, 
the perpendicular distance between the rotation point and the line of action 
of the force (often called the moment arm) is just as important. If you want 
to apply a small moment to turn a nut on a pipe without breaking it, you 
might use a small pipe wrench that gives you a small moment arm 

Fig. 3.11 (a, b) The moment of a force depends on the magnitude of the force; (c, d) it 
also depends on the length of the moment arm.

(c) Small moment arm (d) Large moment arm

(b) Large force(a) Small force
© Gavela Montes Productions/Getty Images RF © Image Source/Getty Images RF

© Valery Voennyy/Alamy RF © Monty Rakusen/Getty Images RF
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(Fig. 3.11c). But if you need a larger moment, you could use a large wrench 
with a long moment arm (Fig. 3.11d). Therefore, 

The magnitude of MO measures the tendency of the force F to make 
the rigid body rotate about a fixed axis directed along MO.

In the SI system of units, where a force is expressed in newtons (N) 
and a distance in meters (m), the moment of a force is expressed in new-
ton-meters (N?m). In the U.S. customary system of units, where a force 
is expressed in pounds and a distance in feet or inches, the moment of a 
force is expressed in lb?ft or lb?in.

Note that although the moment MO of a force about a point depends 
upon the magnitude, the line of action, and the sense of the force, it does 
not depend upon the actual position of the point of application of the force 
along its line of action. Conversely, the moment MO of a force F does not 
characterize the position of the point of application of F.

However, as we will see shortly, the moment MO of a force F of a 
given magnitude and direction completely defines the line of action of F. 
Indeed, the line of action of F must lie in a plane through O perpendicular 
to the moment MO; its distance d from O must be equal to the quotient 
MO /F of the magnitudes of MO and F; and the sense of MO determines 
whether the line of action of F occurs on one side or the other of the point O.

Recall from Sec. 3.1B that the principle of transmissibility states 
that two forces F and F9 are equivalent (i.e., have the same effect on a 
rigid body) if they have the same magnitude, same direction, and same 
line of action. We can now restate this principle: 

Two forces F and F9 are equivalent if, and only if, they are equal (i.e., 
have the same magnitude and same direction) and have equal 
moments about a given point O. 

The necessary and sufficient conditions for two forces F and F9 to be 
equivalent are thus

 F 5 F9   and   MO 5 M9O (3.13)

We should observe that if the relations of Eqs. (3.13) hold for a given 
point O, they hold for any other point.

Two-Dimensional Problems. Many applications in statics deal 
with two-dimensional structures. Such structures have length and breadth 
but only negligible depth. Often, they are subjected to forces contained in 
the plane of the structure. We can easily represent two-dimensional struc-
tures and the forces acting on them on a sheet of paper or on a blackboard. 
Their analysis is therefore considerably simpler than that of three-dimensional 
structures and forces.

Consider, for example, a rigid slab acted upon by a force F in the 
plane of the slab (Fig. 3.12). The moment of F about a point O, which is 
chosen in the plane of the figure, is represented by a vector MO perpen-
dicular to that plane and of magnitude Fd. In the case of Fig. 3.12a, the 
vector MO points out of the page, whereas in the case of Fig.  3.12b, it 
points into the page. As we look at the figure, we observe in the first case 

MO

F

d

O

(a) MO 5 1 Fd

F

(b) MO 5 2 Fd

MO

d

O

Fig. 3.12 (a) A moment that tends to 
produce a counterclockwise rotation is 
positive; (b) a moment that tends to produce 
a clockwise rotation is negative.
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that F tends to rotate the slab counterclockwise and in the second case 
that it tends to rotate the slab clockwise. Therefore, it is natural to refer 
to the sense of the moment of F about O in Fig. 3.12a as counterclockwise , 
and in Fig. 3.12b as clockwise .

Since the moment of a force F acting in the plane of the figure must 
be perpendicular to that plane, we need only specify the magnitude and 
the sense of the moment of F about O. We do this by assigning to the 
magnitude MO of the moment a positive or negative sign according to 
whether the vector MO points out of or into the page.

3.1F  Rectangular Components of the 
Moment of a Force

We can use the distributive property of vector products to determine the 
moment of the resultant of several concurrent forces. If several forces F1, 
F2, . . . are applied at the same point A (Fig. 3.13) and if we denote by r 
the position vector of A, it follows immediately from Eq. (3.5) that

 r 3 (F1 1 F2 1 . . .) 5 r 3 F1 1 r 3 F2 1 . . . (3.14)

In words, 

The moment about a given point O of the resultant of several 
concurrent forces is equal to the sum of the moments of the various 
forces about the same point O.

This property, which was originally established by the French mathemati-
cian Pierre Varignon (1654–1722) long before the introduction of vector 
algebra, is known as Varignon’s theorem.

The relation in Eq. (3.14) makes it possible to replace the direct 
deter mination of the moment of a force F by determining the moments of 
two or more component forces. As you will see shortly, F is generally 
resolved into components parallel to the coordinate axes. However, it may 
be more expeditious in some instances to resolve F into components that 
are not parallel to the coordinate axes (see Sample Prob. 3.3).

In general, determining the moment of a force in space is consider-
ably simplified if the force and the position vector of its point of application 
are resolved into rectangular x, y, and z components. Consider, for example, 
the moment MO about O of a force F whose components are Fx, Fy, and 
Fz and that is applied at a point A with coordinates x, y, and z (Fig. 3.14). 
Since the components of the position vector r are respectively equal to the 
coordinates x, y, and z of the point A, we can write r and F as
  r 5 xi 1 yj 1 zk (3.15)
  F 5 Fxi 1 Fyj 1 Fzk (3.16)

Substituting for r and F from Eqs. (3.15) and (3.16) into

 MO 5 r 3 F (3.11)

and recalling Eqs. (3.8) and (3.9), we can write the moment MO of F 
about O in the form

 MO 5 Mxi 1 My j 1 Mzk (3.17)

where the components Mx, My, and Mz are defined by the relations

y

x

z

O

A

r
F1

F2

F3
F4

Fig. 3.13 Varignon’s theorem says that the 
moment about point O of the resultant of 
these four forces equals the sum of the 
moments about point O of the individual 
forces.

Fzk
x

y

z

O

zk

y j

x i
r

A (x, y, z)

Fy j

Fx i

Fig. 3.14 The moment MO about point O 
of a force F applied at point A is the vector 
product of the position vector r and the 
force F, which can both be expressed in 
rectangular components.
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Rectangular components 
of a moment

 
Mx 5 yFz 2 zFy

My 5 zFx 2 xFz

Mz 5 xFy 2 yFx

 (3.18)

As you will see in Sec. 3.2C, the scalar components Mx, My, and Mz of 
the moment MO measure the tendency of the force F to impart to a rigid 
body a rotation about the x, y, and z axes, respectively. Substituting from 
Eq. (3.18) into Eq. (3.17), we can also write MO in the form of the deter-
minant, as

 MO 5 ∣ i j k
x y z

Fx Fy Fz
∣  (3.19)

To compute the moment MB about an arbitrary point B of a force 
F applied at A (Fig.  3.15), we must replace the position vector r in 
Eq. (3.11) by a vector drawn from B to A. This vector is the position vec-
tor of A relative to B, denoted by rA/B. Observing that rA/B can be obtained 
by subtracting rB from rA, we write

 MB 5 rA/B 3 F 5 (rA 2 rB) 3 F (3.20)

or using the determinant form,

 MB 5 ∣ i j k
xA/B yA/B zA/B

Fx Fy Fz
∣  (3.21)

where xA/B, yA/B, and zA/B denote the components of the vector rA/B:

xA/B 5 xA 2 xB    yA/B 5 yA 2 yB    zA/B 5 zA 2 zB

In the case of two-dimensional problems, we can assume without 
loss of generality that the force F lies in the xy plane (Fig. 3.16). Setting 
z 5 0 and Fz 5 0 in Eq. (3.19), we obtain

MO 5 (xFy 2 yFx)k

We can verify that the moment of F about O is perpendicular to the plane 
of the figure and that it is completely defined by the scalar

 MO 5 Mz 5 xFy 2 yFx (3.22)

As noted earlier, a positive value for MO indicates that the vector MO points 
out of the paper (the force F tends to rotate the body counter clockwise 
about O), and a negative value indicates that the vector MO points into the 
paper (the force F tends to rotate the body clockwise about O).

To compute the moment about B(xB, yB) of a force lying in the 
xy plane and applied at A(xA, yA) (Fig. 3.17), we set zA/B 5 0 and Fz 5 0 
in Eq. (3.21) and note that the vector MB is perpendicular to the xy plane 
and is defined in magnitude and sense by the scalar

 MB 5 (xA 2 xB)Fy 2 (yA 2 yB)Fx (3.23)

Fzk

x

y

z

B

O

ArA/B

(xA 2 xB)i

(zA 2 zB)k

(yA 2 yB)j
Fy j

Fx i

Fig. 3.15 The moment MB about the 
point B of a force F applied at point A is 
the vector product of the position vector rA/B 
and force F.

y

x

z

O

Fyj

Fx i

F

xi

y j
r

MO 5 Mzk

A (x, y,0)

Fig. 3.16 In a two-dimensional problem, 
the moment MO of a force F applied at A 
in the xy plane reduces to the z component 
of the vector product of r with F.

y

x

z

O
B

Fyj

Fx i

F

A

(yA 2 yB)j

(xA 2 xB)i

rA/B

MB 5 MB k

Fig. 3.17 In a two-dimensional problem, 
the moment MB about a point B of a force F 
applied at A in the xy plane reduces to the 
z component of the vector product of rA/B 
with F.
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Sample Problem 3.1

A 100-lb vertical force is applied to the end of a lever, which is attached 
to a shaft at O. Determine (a) the moment of the 100-lb force about O; 
(b) the horizontal force applied at A that creates the same moment 
about O; (c) the smallest force applied at A that creates the same moment 
about O; (d) how far from the shaft a 240-lb vertical force must act to 
create the same moment about O; (e) whether any one of the forces 
obtained in parts b, c, or d is equivalent to the original force.

100 lb

608

A

O

24 in.

STRATEGY: The calculations asked for all involve variations on the 
basic defining equation of a moment, MO 5 Fd.

MODELING and ANALYSIS:

 a. Moment about O. The perpendicular distance from O to the 
line of action of the 100-lb force (Fig. 1) is

d 5 (24 in.) cos 60° 5 12 in.

The magnitude of the moment about O of the 100-lb force is

MO 5 Fd 5 (100 lb)(12 in.) 5 1200 lb?in.

Since the force tends to rotate the lever clockwise about O, represent the 
moment by a vector MO perpendicular to the plane of the figure and 
pointing into the paper. You can express this fact with the notation

 MO 5 1200 lb?in.  b

 b. Horizontal Force. In this case, you have (Fig. 2)

d 5 (24 in.) sin 60° 5 20.8 in.

Since the moment about O must be 1200 lb?in., you obtain

MO 5 Fd

1200 lb?in. 5 F(20.8 in.)
 F 5 57.7 lb F 5 57.7 lb  b

 c. Smallest Force. Since MO 5 Fd, the smallest value of F occurs 
when d is maximum. Choose the force perpendicular to OA and note that 
d 5 24 in. (Fig. 3); thus

MO 5 Fd

1200 lb?in. 5 F(24 in.)
 F 5 50 lb F 5 50 lb  30° b

(continued)

Fig. 2 Determination of 
horizontal force at A that creates 
same moment about O.

F

608

MO

A

O

24 in.
d

Fig. 3 Determination of smallest 
force at A that creates same 
moment about O.

F

MO

608

A

O

24 in.

608

MO

100 lb

A

O

24 in.

d

Fig. 1 Determination of the 
moment of the 100-lb force about 
O using perpendicular distance d.
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 d. 240-lb Vertical Force. In this case (Fig. 4), MO 5 Fd yields

1200 lb?in. 5 (240 lb)d   d 5 5 in.

but
OB cos 60° 5 d 

so OB 5 10 in. b

 e. None of the forces considered in parts b, c, or d is equivalent to the 
original 100-lb force. Although they have the same moment about O, they 
have different x and y components. In other words, although each force 
tends to rotate the shaft in the same direction, each causes the lever to 
pull on the shaft in a different way.

REFLECT and THINK: Various combinations of force and lever arm can 
produce equivalent moments, but the system of force and moment pro-
duces a different overall effect in each case. 

Sample Problem 3.2

A force of 800 N acts on a bracket as shown. Determine the moment of 
the force about B.

STRATEGY: You can resolve both the force and the position vector 
from B to A into rectangular components and then use a vector approach 
to complete the solution.

MODELING and ANALYSIS: Obtain the moment MB of the force F 
about B by forming the vector product

MB 5 rA/B 3 F

where rA/B is the vector drawn from B to A (Fig. 1). Resolving rA/B and F 
into rectangular components, you have

 rA/B 5 2(0.2 m)i 1 (0.16 m)j
F 5 (800 N) cos 60°i 1 (800 N) sin 60°j

 5 (400 N)i 1 (693 N)j

Recalling the relations in Eq. (3.7) for the cross products of unit vectors 
(Sec. 3.5), you obtain

MB 5 rA/B 3 F 5 [2(0.2 m)i 1 (0.16 m)j] 3 [(400 N)i 1 (693 N)j]
 5 2(138.6 N?m)k 2 (64.0 N?m)k
 5 2(202.6 N?m)k MB 5 203 N?m  b

The moment MB is a vector perpendicular to the plane of the figure and 
pointing into the page.

(continued)

Fig. 4 Position of vertical 240-lb 
force that creates same moment 
about O.

240 lb

MO

608

A

B

O
d

800 N

608

B

A

160 mm

200 mm

608

Fy 5 (693 N) j

Fx 5 (400 N) i

rA/B

MB

F 5 800 N

1 (0.16 m) j

2(0.2 m) i

A

B

Fig. 1 The moment MB is 
determined from the vector product 
of position vector rA/B and force 
vector F.
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REFLECT and THINK: We can also use a scalar approach to solve this 
problem using the components for the force F and the position vector rA/B. 
Following the right-hand rule for assigning signs, we have

1  MB 5 oMB 5 oFd 5 2(400 N)(0.16 m) 2 (693 N)(0.2 m) 5 2202.6 N?m

MB 5 203 N?m  b

Sample Problem 3.3

A 30-lb force acts on the end of the 3-ft lever as shown. Determine the 
moment of the force about O.

STRATEGY: Resolving the force into components that are perpendicu-
lar and parallel to the axis of the lever greatly simplifies the moment 
calculation.

MODELING and ANALYSIS: Replace the force by two components: 
one component P in the direction of OA and one component Q perpendicu-
lar to OA (Fig. 1). Since O is on the line of action of P, the moment of P 
about O is zero. Thus, the moment of the 30-lb force reduces to the moment 
of Q, which is clockwise and can be represented by a negative scalar.

Q 5 (30 lb) sin 20° 5 10.26 lb
MO 5 2Q(3 ft) 5 2(10.26 lb)(3 ft) 5 230.8 lb?ft

Since the value obtained for the scalar MO is negative, the moment MO 
points into the page. You can write it as

 MO 5 30.8 lb?ft  b

REFLECT and THINK: Always be alert for simplifications that can 
reduce the amount of computation.

A

O

208

508

30 lb

3 ft

Fig. 1 30-lb force at A resolved into 
components P and Q to simplify the 
determination of the moment MO.

MO

P

Q

A

O

208 30 lb

3 ft

Sample Problem 3.4

A rectangular plate is supported by brackets at A and B and by a wire CD. 
If the tension in the wire is 200 N, determine the moment about A of the 
force exerted by the wire on point C.

STRATEGY: The solution requires resolving the tension in the wire and 
the position vector from A to C into rectangular components. You will 
need a unit vector approach to determine the force components.

MODELING and ANALYSIS: Obtain the moment MA about A of the 
force F exerted by the wire on point C by forming the vector product

 MA 5 rC/A 3 F (1)

(continued)

80 mm

80 mm

A

B

C

D

240 mm

240 mm

300 mm
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where rC/A is the vector from A to C
 rC/A 5 AC

⟶
5 (0.3 m)i 1 (0.08 m)k (2)

and F is the 200-N force directed along CD (Fig. 1). Introducing the unit 
vector 

λ 5 CD
⟶

/CD,

you can express F as

 F 5 Fλ 5 (200 N) 
CD
⟶

CD
 (3)

Resolving the vector CD
⟶

 into rectangular components, you have

CD
⟶

5 2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k    CD 5 0 .50 m

Substituting into (3) gives you 

 F 5
200

 
N

0.50
 
m

 [2(0.3 m)i 1 (0.24 m)j 2 (0.32 m)k]

  5 2(120 N)i 1 (96 N)j 2 (128 N)k  (4)

Substituting for rC/A and F from (2) and (4) into (1) and recalling the 
relations in Eq. (3.7) of Sec. 3.1D, you obtain (Fig. 2)

 MA 5 rC/A 3 F 5 (0.3i 1 0.08k) 3 (2120i 1 96j 2 128k)
 5 (0.3)(96)k 1 (0.3)(2128)(2j) 1 (0.08)(2120)j 1 (0.08)(96)(2i)

MA 5 2(7.68 N?m)i 1 (28.8 N?m)j 1 (28.8 N?m)k b

Fig. 2 Components of moment MA 
applied at A.

A

C

D

(28.8 N∙m) j

(28.8 N∙m) k

2 (7.68 N∙m) i

F 5 (200 N) λ

Alternative Solution. As indicated in Sec. 3.1F, you can also express 
the moment MA in the form of a determinant:

MA 5 ∣ i j k
xC 2 xA yC 2 yA zC 2 zA

Fx Fy Fz
∣ 5 ∣ i j k

0.3 0 0.08
2120 96 2128 ∣

MA 5 2(7.68 N?m)i 1 (28.8 N?m)j 1 (28.8 N?m)k b

REFLECT and THINK: Two-dimensional problems often are solved eas-
ily using a scalar approach, but the versatility of a vector analysis is quite 
apparent in a three-dimensional problem such as this.

Fig. 1 The moment MA is determined 
from position vector rC/A and force 
vector F.

rC/A

A

B

C

D

x

y

z

O0.08 m

0.08 m 0.3 m

200 N
0.24 m

0.24 m
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 3.1 A 20-lb force is applied to the control rod AB as shown. Knowing 
that the length of the rod is 9 in. and that α 5 25°, determine the 
moment of the force about point B by resolving the force into hori-
zontal and vertical components.

 3.2 A 20-lb force is applied to the control rod AB as shown. Knowing 
that the length of the rod is 9 in. and that the moment of the force 
about B is 120 lb?in. clockwise, determine the value of α.

 3.3 A 300-N force P is applied at point A of the bell crank shown.  
(a) Compute the moment of the force P about O by resolving it into 
horizontal and vertical components. (b) Using the result of part a, 
determine the perpendicular distance from O to the line of action of P.

 3.4 A 400-N force P is applied at point A of the bell crank shown.  
(a) Compute the moment of the force P about O by resolving it into 
components along line OA and in a direction perpendicular to that 
line. (b) Determine the magnitude and direction of the smallest force 
Q applied at B that has the same moment as P about O.

 3.5 A 300-N force is applied at A as shown. Determine (a) the moment 
of the 300-N force about D, (b) the smallest force applied at B that 
creates the same moment about D.

Problems

Fig. P3.1 and P3.2

A

B

20 lb

658

α

300 N
A

B

D

C

258

100 mm 200 mm

200 mm

125 mm

Fig. P3.5 and P3.6

A

P
308

B

O

408

120 mm
488

200 mm

Fig. P3.3 and P3.4

 3.6 A 300-N force is applied at A as shown. Determine (a) the moment 
of the 300-N force about D, (b) the magnitude and sense of the 
horizontal force applied at C that creates the same moment about D, 
(c) the smallest force applied at C that creates the same moment 
about D.
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    3.9 and 3.10 It is known that the connecting rod AB exerts on the crank 
BC a 500-lb force directed down and to the left along the centerline 
of AB. Determine the moment of the force about C.

    3.7 and 3.8 The tailgate of a car is supported by the hydraulic lift BC. 
If the lift exerts a 125-lb force directed along its centerline on the 
ball and socket at B, determine the moment of the force about A.

Fig. P3.8

17.2 in.

4.38 in.

7.62 in.

20.5 in.

A

B
C

A

B
C

15.3 in.

12.0 in.

12.0 in.

2.33 in.

Fig. P3.7

A

B

C

3.52 in.

2.24 in.

1.68 in.

Fig. P3.10

B

C

A

1.68 in.

5.76 in.

2.24 in.

Fig. P3.9
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  3.11 Rod AB is held in place by the cord AC. Knowing that the tension 
in the cord is 1350 N and that c 5 360 mm, determine the moment 
about B of the force exerted by the cord at point A by resolving that 
force into horizontal and vertical components applied (a) at point A, 
(b) at point C.

 3.12 Rod AB is held in place by the cord AC. Knowing that c 5 840 mm 
and that the moment about B of the force exerted by the cord at point 
A is 756 N?m, determine the tension in the cord.

 3.13 Determine the moment about the origin O of the force F 5 4i – 3j 1 
5k that acts at a point A. Assume that the position vector of A is (a) r 
5 2i 1 3j 2 4k, (b) r 5 28i 1 6j 2 10k, (c) r 5 8i 2 6j 1 5k.

 3.14 Determine the moment about the origin O of the force F 5 2i 1 3j 
2 4k that acts at a point A. Assume that the position vector of A is 
(a) r 5 3i 2 6j 1 5k, (b) r 5 i 2 4j 2 2k, (c) r 5 4i 1 6j 2 8k.

 3.15 A 6-ft-long fishing rod AB is securely anchored in the sand of a beach. 
After a fish takes the bait, the resulting force in the line is 6 lb. Deter-
mine the moment about A of the force exerted by the line at B.

x

y

z

A

B

D

C

458
308

88

Fig. P3.15
y

z
x

B

D

O

E

C

A

160 mm

90 mm
120 mm

120 mm

Fig. P3.16

B

C

A

x

y

z

4.8 ft

12 ft

8 ft

Fig. P3.17

A

B

C

240 mm

c

450 mm

Fig. P3.11 and P3.12

 3.16 The wire AE is stretched between the corners A and E of a bent plate. 
Knowing that the tension in the wire is 435 N, determine the moment 
about O of the force exerted by the wire (a) on corner A, (b) on 
corner E.

 3.17 The 12-ft boom AB has a fixed end A. A steel cable is stretched from 
the free end B of the boom to a point C located on the vertical wall. 
If the tension in the cable is 380 lb, determine the moment about A 
of the force exerted by the cable at B.
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 3.18 A wooden board AB, which is used as a temporary prop to support 
a small roof, exerts at point A of the roof a 57-lb force directed along 
BA. Determine the moment about C of that force.

 3.19 A 200-N force is applied as shown to the bracket ABC. Determine 
the moment of the force about A.

y

B

C

D

36 in. 48 in.

90 in.

66 in.

5 in.

6 in.

A
z x

Fig. P3.18

B

A

x

y

z
50 mm

60 mm

25 mm

200 N
308

608

C

Fig. P3.19

3 ft

x

y

z

A

C

D
7.75 ft

6 ft

B

Fig. P3.20

 3.20 A small boat hangs from two davits, one of which is shown in the 
figure. The tension in line ABAD is 82 lb. Determine the moment 
about C of the resultant force RA exerted on the davit at A.

 3.21 In Prob. 3.15, determine the perpendicular distance from point A to 
a line drawn through points B and C.

 3.22 In Prob. 3.16, determine the perpendicular distance from point O to 
wire AE.

 3.23 In Prob. 3.16, determine the perpendicular distance from point B to 
wire AE.

 3.24 In Prob. 3.20, determine the perpendicular distance from point C to 
portion AD of the line ABAD.
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3.2  MOMENT OF A FORCE 
ABOUT AN AXIS

We want to extend the idea of the moment about a point to the often use-
ful concept of the moment about an axis. However, first we need to intro-
duce another tool of vector mathematics. We have seen that the vector 
product multiplies two vectors together and produces a new vector. Here 
we examine the scalar product, which multiplies two vectors together and 
produces a scalar quantity.

3.2A Scalar Products
The scalar product of two vectors P and Q is defined as the product of 
the magnitudes of P and Q and of the cosine of the angle θ formed between 
them (Fig. 3.18). The scalar product of P and Q is denoted by P ? Q. 

Scalar product P ? Q 5 PQ cos θ (3.24)

Note that this expression is not a vector but a  scalar, which explains the 
name scalar product. Because of the notation used, P ? Q is also referred 
to as the dot product of the vectors P and Q.

It follows from its very definition that the scalar product of two 
vectors is commutative, i.e., that

 P ? Q 5 Q ? P (3.25)

It can also be proven that the scalar product is distributive, as shown by 

 P ? (Q1 1 Q2) 5 P ? Q1 1 P ? Q2 (3.26)

As far as the associative property is concerned, this property cannot apply 
to scalar products. Indeed, (P ? Q) ? S has no meaning, because P ? Q is 
not a vector but a scalar.

We can also express the scalar product of two vectors P and Q in 
terms of their rectangular components. Resolving P and Q into compo-
nents, we first write

P ? Q 5 (Pxi 1 Pyj 1 Pzk) ? (Qxi 1 Qyj 1 Qzk)

Making use of the distributive property, we express P ? Q as the sum of 
scalar products, such as Pxi ? Qxi and Pxi ? Qyj. However, from the defini-
tion of the scalar product, it follows that the scalar products of the unit 
vectors are either zero or one.

 
i ? i 5 1   j ? j

  5 1   k ? k 5 1
i ? j 5 0    j ? k 5 0     k ? i  5 0 (3.27)

Thus, the expression for P ? Q reduces to

Scalar product

 P ? Q 5 PxQx 1 PyQy 1 PzQz (3.28)

Q

P

θ

Fig. 3.18 Two vectors P and Q and the 
angle θ between them.
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In the particular case when P and Q are equal, we note that

 P ? P 5 P2
x 1 P2

y 1 P2
z 5 P2 (3.29)

Applications of the Scalar Product

 1. Angle formed by two given vectors. Let two vectors be given in terms 
of their components:

 P 5 Pxi 1 Py j 1 Pzk
 Q 5 Qxi 1 Qy j 1 Qzk

  To determine the angle formed by the two vectors, we equate the expres-
sions obtained in Eqs. (3.24) and (3.28) for their scalar product, 

PQ cos θ 5 PxQx 1 PyQy 1 PzQz

  Solving for cos θ, we have

 cos θ 5
PxQx 1 PyQy 1 PzQz

PQ
 (3.30)

 2. Projection of a vector on a given axis. Consider a vector P forming 
an angle θ with an axis, or directed line, OL (Fig.  3.19a). We define 
the projection of P on the axis OL as the scalar

 POL 5 P cos θ (3.31)

  The projection POL is equal in absolute value to the length of the seg-
ment OA. It is positive if OA has the same sense as the axis OL—that 
is, if θ is acute—and negative otherwise. If P and OL are at a right 
angle, the projection of P on OL is zero.

   Now consider a vector Q directed along OL and of the same sense 
as OL (Fig. 3.19b). We can express the scalar product of P and Q as

 P ? Q 5 PQ cos θ 5 POLQ (3.32)

  from which it follows that

 POL 5
P ? Q

Q
5

PxQx 1 PyQy 1 PzQz

Q
 (3.33)

  In the particular case when the vector selected along OL is the unit 
vector λ (Fig. 3.19c), we have

 POL 5 P ? λ (3.34)

  Recall from Sec. 2.4A that the components of λ along the coordinate 
axes are respectively equal to the direction cosines of OL. Resolving P 
and λ into rectangular components, we can express the projection of P 
on OL as

 POL 5 Px cos θx 1 Py cos θy 1 Pz cos θz (3.35)

  where θx, θy, and θz denote the angles that the axis OL forms with the 
coordinate axes.

y

x

z

O

A

P

L

θ

y

x

z

A

P

L

θ

Q

O

y

x

z

O

A

P

L

λ θx

θy

θz

(a)

(b)

(c)

Fig. 3.19 (a) The projection of vector P at 
an angle θ to a line OL; (b) the projection of 
P and a vector Q along OL; (c) the projection 
of P, a unit vector λ along OL, and the angles 
of OL with the coordinate axes.
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3.2B Mixed Triple Products
We have now seen both forms of multiplying two vectors together: the 
vector product and the scalar product. Here we define the mixed triple 
product of the three vectors S, P, and Q as the scalar expression

Mixed triple product

 S ? (P 3 Q) (3.36)

This is obtained by forming the scalar product of S with the vector product 
of P and Q. [In Chapter 15, we will introduce another kind of triple 
product, called the vector triple product, S 3 (P 3 Q).]

The mixed triple product of S, P, and Q has a simple geometrical 
interpretation (Fig. 3.20a). Recall from Sec. 3.4 that the vector P 3 Q is 
perpendicular to the plane containing P and Q and that its magnitude is 
equal to the area of the parallelogram that has P and Q for sides. Also, 
Eq. (3.32) indicates that we can obtain the scalar product of S and P 3 Q 
by multiplying the magnitude of P 3 Q (i.e., the area of the parallelogram 
defined by P and Q) by the projection of S on the vector P 3 Q (i.e., by 
the projection of S on the normal to the plane containing the parallelo-
gram). The mixed triple product is thus equal, in absolute value, to the 
volume of the parallelepiped having the vectors S, P, and Q for sides 
(Fig. 3.20b). The sign of the mixed triple product is positive if S, P, and 
Q form a right-handed triad and negative if they form a left-handed triad. 
[That is, S ? (P 3 Q) is negative if the rotation that brings P into line with 
Q is observed as clockwise from the tip of S.] The mixed triple product 
is zero if S, P, and Q are coplanar.

Since the parallelepiped defined in this way is independent of the 
order in which the three vectors are taken, the six mixed triple products 
that can be formed with S, P, and Q all have the same absolute value, 
although not the same sign. It is easily shown that

S ? (P 3 Q) 5 P ? (Q 3 S) 5 Q ? (S 3 P)
 5 2S ? (Q 3 P) 5 2P ? (S 3 Q) 5 2Q ? (P 3 S) (3.37)

Arranging the letters representing the three vectors counterclockwise in a 
circle (Fig.  3.21), we observe that the sign of the mixed triple product 
remains unchanged if the vectors are permuted in such a way that they 
still read in counterclockwise order. Such a permutation is said to be a 
circular permutation. It also follows from Eq. (3.37) and from the com-
mutative property of scalar products that the mixed triple product of S, P, 
and Q can be defined equally well as S ? (P 3 Q) or (S 3 P) ? Q.

We can also express the mixed triple product of the vectors S, P, 
and Q in terms of the rectangular components of these vectors. Denoting 
P 3 Q by V and using formula (3.28) to express the scalar product of S 
and V, we have

S ? (P 3 Q) 5 S ? V 5 SxVx 1 SyVy 1 SzVz 

Substituting from the relations in Eq. (3.9) for the components of V, we obtain

S ? (P 3 Q) 5 Sx(PyQz 2 PzQy) 1 Sy(PzQx 2 PxQz)
 1 Sz(PxQy 2 PyQx) (3.38)

S

P

Q

P 3 Q

S

P

Q

(a)

(b)

Fig. 3.20 (a) The mixed triple product is 
equal to the magnitude of the cross product 
of two vectors multiplied by the projection 
of the third vector onto that cross product; 
(b) the result equals the volume of the 
parallelepiped formed by the three vectors. 

S

P

Q

Fig. 3.21 Counterclockwise arrangement for 
determining the sign of the mixed triple 
product of three vectors P, Q, and S.
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We can write this expression in a more compact form if we observe that 
it represents the expansion of a determinant:

Mixed triple product, determinant form

 S ? (P 3 Q) 5 ∣ Sx Sy Sz

Px Py Pz

Qx Qy Qz
∣  (3.39)

By applying the rules governing the permutation of rows in a determinant, 
we could easily verify the relations in Eq. (3.37), which we derived earlier 
from geometrical considerations.

3.2C  Moment of a Force about 
a Given Axis

Now that we have the necessary mathematical tools, we can introduce the 
concept of moment of a force about an axis. Consider again a force F 
acting on a rigid body and the moment MO of that force about O (Fig. 3.22). 
Let OL be an axis through O. 

We define the moment MOL of F about OL as the projection OC of 
the moment MO onto the axis OL. 

y

x

z

r

L

A

C

O

MO

F

λ

Fig. 3.22 The moment MOL of a force F 
about the axis OL is the projection on OL 
of the moment MO. The calculation involves 
the unit vector λ along OL and the position 
vector r from O to A, the point upon which 
the force F acts.

Suppose we denote the unit vector along OL by λ and recall the expres-
sions (3.34) and (3.11) for the projection of a vector on a given axis and 
for the moment MO of a force F. Then we can express MOL as

Moment about an axis through the origin

 MOL 5 λ ? MO 5 λ ? (r 3 F) (3.40)
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This shows that the moment MOL of F about the axis OL is the scalar 
obtained by forming the mixed triple product of λ, r, and F. We can also 
express MOL in the form of a determinant, 

 MOL 5 ∣ λx λy λz

x y z

Fx Fy Fz
∣  (3.41)

where λx, λy, λz 5 direction cosines of axis OL

x, y, z 5 coordinates of point of application of F
Fx, Fy, Fz 5 components of force F

The physical significance of the moment MOL of a force F about a 
fixed axis OL becomes more apparent if we resolve F into two rectangular 
components F1 and F2, with F1 parallel to OL and F2 lying in a plane P 
perpendicular to OL (Fig.  3.23). Resolving r similarly into two compo-
nents r1 and r2 and substituting for F and r into Eq. (3.40), we get

MOL 5 λ ? [(r1 1 r2) 3 (F1 1 F2)]
5 λ ? (r1 3 F1) 1 λ ? (r1 3 F2) 1 λ ? (r2 3 F1) 1 λ ? (r2 3 F2)

Note that all of the mixed triple products except the last one are equal to 
zero because they involve vectors that are coplanar when drawn from a 
common origin (Sec. 3.2B). Therefore, this expression reduces to

 MOL 5 λ ? (r2 3 F2) (3.42)

The vector product r2 3 F2 is perpendicular to the plane P and represents 
the moment of the component F2 of F about the point Q where OL inter-
sects P. Therefore, the scalar MOL, which is positive if r2 3 F2 and OL 
have the same sense and is negative otherwise, measures the tendency of 
F2 to make the rigid body rotate about the fixed axis OL. The other com-
ponent F1 of F does not tend to make the body rotate about OL, because 
F1 and OL are parallel. Therefore, we conclude that 

The moment MOL of F about OL measures the tendency of the force F 
to impart to the rigid body a rotation about the fixed axis OL.

From the definition of the moment of a force about an axis, it follows 
that the moment of F about a coordinate axis is equal to the component 
of MO along that axis. If we substitute each of the unit vectors i, j, and k 
for λ in Eq. (3.40), we obtain expressions for the moments of F about the 
coordinate axes. These expressions are respectively equal to those obtained 
earlier for the components of the moment MO of F about O:

 
Mx 5 yFz 2 zFy

My 5 zFx 2 xFz

Mz 5 xFy 2 yFx

 (3.18)

Just as the components Fx, Fy, and Fz of a force F acting on a rigid body 
measure, respectively, the tendency of F to move the rigid body in the 
x, y, and z directions, the moments Mx, My, and Mz of F about the coor-
dinate axes measure the tendency of F to impart to the rigid body a rota-
tion about the x, y, and z axes, respectively.

r

r1 r2

F1

F2

P
Q

L

A

O

F

λ

Fig. 3.23 By resolving the force F into 
components parallel to the axis OL and in 
a plane perpendicular to the axis, we can 
show that the moment MOL of F about OL 
measures the tendency of F to rotate the 
rigid body about the axis.
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y

x

z

L

A
B

O

F

C

rA/B 5 rA 2 rB

λ

Fig. 3.24 The moment of a force about an axis or line L 
can be found by evaluating the mixed triple product at a 
point B on the line. The choice of B is arbitrary, since using 
any other point on the line, such as C, yields the same result.

More generally, we can obtain the moment of a force F applied at 
A about an axis that does not pass through the origin by choosing an 
arbitrary point B on the axis (Fig.  3.24) and determining the projection 
on the axis BL of the moment MB of F about B. The equation for this 
projection is given here.

Moment about an arbitrary axis

 MBL 5 λ  ? MB 5 λ  ? (rA/B 3 F) (3.43)

where rA/B 5 rA 2 rB represents the vector drawn from B to A. Expressing 
MBL in the form of a determinant, we have

 MBL 5 ∣ λx λy λz

xA/B yA/B zA/B

Fx Fy Fz
∣  (3.44)

where λx, λy, λz 5 direction cosines of axis BL

xA/B 5 xA 2 xB  yA/B 5 yA 2 yB  zA/B 5 zA 2 zB

Fx, Fy, Fz 5 components of force F

Note that this result is independent of the choice of the point B on the 
given axis. Indeed, denoting by MCL the moment obtained with a different 
point C, we have

MCL 5 λ ? [(rA 2 rC) 3 F]
5 λ ? [(rA 2 rB) 3 F] 1 λ ? [(rB 2 rC) 3 F]

However, since the vectors λ and rB 2 rC lie along the same line, the 
volume of the parallelepiped having the vectors λ, rB 2 rC, and F for 
sides is zero, as is the mixed triple product of these three vectors 
(Sec. 3.2B). The expression obtained for MCL thus reduces to its first term, 
which is the expression used earlier to define MBL. In addition, it follows 
from Sec. 3.1E that, when computing the moment of F about the given 
axis, A can be any point on the line of action of F.
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Sample Problem 3.5

A cube of side a is acted upon by a force P along the diagonal of a face, 
as shown. Determine the moment of P (a) about A, (b) about the edge 
AB, (c) about the diagonal AG of the cube. (d) Using the result of part c, 
determine the perpendicular distance between AG and FC.

A
B

CD

E F

G

a
P

STRATEGY: Use the equations presented in this section to compute the 
moments asked for. You can find the distance between AG and FC from 
the expression for the moment MAG.

MODELING and ANALYSIS:

a. Moment about A. Choosing x, y, and z axes as shown (Fig. 1), 
resolve into rectangular components the force P and the vector rF/A 5 AF

⟶
 

drawn from A to the point of application F of P.

 rF/A 5 ai 2 aj 5 a(i 2 j)
 P 5 (P/ √2)j 2 (P/ √2)k 5 (P/ √2)( j 2 k)

Fig. 1 Position vector rF/A and force vector P 
relative to chosen coordinate system.

i
k

j
A

B

CD

E
F

G
x

y

z

a

a

a

P

rF/A

O

The moment of P about A is the vector product of these two vectors:
MA 5 rF/A 3 P 5 a(i 2 j) 3 (P/ √2)(j 2 k)

MA 5 (aP/ √2)(i 1 j 1 k) b

b. Moment about AB. You want the projection of MA on AB: 
MAB 5 i ? MA 5 i ? (aP/ √2)(i 1 j 1 k)

MAB 5 aP/ √2 b

(continued)
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You can verify that since AB is parallel to the x axis, MAB is also the x 
component of the moment MA.

c. Moment about diagonal AG. You obtain the moment of P 
about AG by projecting MA on AG. If you denote the unit vector along 
AG by λ (Fig. 2), the calculation looks like this:

λ 5
AG
⟶

AG
5

ai 2 aj 2 ak
a√3

5 (1/ √3)(i 2 j 2 k)

MAG 5 λ ? MA 5 (1/ √3)(i 2 j 2 k)?(aP/ √2)(i 1 j 1 k)

MAG 5 (aP/ √6)(1 2 1 2 1)  MAG 5 2aP/ √6 b

Alternative Method. You can also calculate the moment of P about 
AG from the determinant form:

MAG 5 ∣ λx λy λz

xF/A yF/A zF/A

Fx Fy Fz
∣ 5 ∣ 1/ √3 21/ √3 21/ √3

a 2a 0
0 P/ √2 2P/ √2 ∣ 5 2aP/ √6

d. Perpendicular Distance between AG and FC. First note that 
P is perpendicular to the diagonal AG. You can check this by forming the 
scalar product P ? λ and verifying that it is zero:

P ? λ 5 (P/ √2)( j 2 k) ? (1/ √3)(i 2 j 2 k) 5 (P√6)(0 2 1 1 1) 5 0

You can then express the moment MAG as 2Pd, where d is the perpen-
dicular distance from AG to FC (Fig.  3). (The negative sign is needed 
because the rotation imparted to the cube by P appears as clockwise to 
an observer at G.) Using the value found for MAG in part c,

 MAG 5 2Pd 5 2aP/ √6 d 5 a/ √6 b

Fig. 3 Perpendicular distance d from AG 
to FC.

O

A
B

CD

E F

G

d P

REFLECT and THINK: In a problem like this, it is important to visual-
ize the forces and moments in three dimensions so you can choose the 
appropriate equations for finding them and also recognize the geometric 
relationships between them.

Fig. 2 Unit vector λ used to determine 
moment of P about AG.

A B

CD

E
F

G
x

y

z

O

λ P
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Problems
 3.25 Given the vectors P 5 3i 2 j 1 2k, Q 5 4i 1 5j 2 3k, and S 5 

22i 1 3j 2 k, compute the scalar products P · Q, P · S, and Q · S.

 3.26 Form the scalar product B · C and use the result obtained to prove 
the identity

cos (α 2 β) 5 cos α cos β 1 sin α sin β 

B

C

y

x

α
β

Fig. P3.26

 3.27 Knowing that the tension in cable AC is 1260 N, determine (a) the 
angle between cable AC and the boom AB, (b) the projection on AB 
of the force exerted by cable AC at point A.

1.2 m

2.4 m

3 m

A

P 1.8 m

2.4 m

B

C

D

y

x
z

2.6 m

Fig. P3.27 and P3.28

 3.28 Knowing that the tension in cable AD is 405 N, determine (a) the 
angle between cable AD and the boom AB, (b) the projection on AB 
of the force exerted by cable AD at point A.

 3.29 Three cables are used to support a container as shown. Determine 
the angle formed by cables AB and AD.

 3.30 Three cables are used to support a container as shown. Determine 
the angle formed by cables AC and AD.

x

y

z

A

B

D

C

O

600 mm

320 mm

360 mm

500 mm

450 mm

Fig. P3.29 and P3.30
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 3.31 The 20-in. tube AB can slide along a horizontal rod. The ends A and 
B of the tube are connected by elastic cords to the fixed point C. 
For the position corresponding to x 5 11 in., determine the angle 
formed by the two cords, (a) using Eq. (3.30), (b) applying the law 
of cosines to triangle ABC.

y

z
x

x

C

O
A

B

12 in.
24 in.

20 in.

Fig. P3.31

 3.32 Solve Prob. 3.31 for the position corresponding to x 5 4 in.

 3.33 Determine the volume of the parallelepiped of Fig. 3.20b when  
(a) P 5 4i 2 3j 1 2k, Q 5 22i 2 5j 1 k, and S 5 7i 1 j 2 k, 
(b) P 5 5i 2 j 1 6k, Q 5 2i 1 3j 1 k, and S 5 23i 2 2j 1 4k.

 3.34 Given the vectors P 5 3i 2 j 1 k, Q 5 4i 1 Qy j 2 2k, and S 5 
2i 2 2j 1 2k, determine the value of Qy for which the three vectors 
are coplanar.

 3.35 Knowing that the tension in cable AB is 570 N, determine the 
moment about each of the coordinate axes of the force exerted on 
the plate at B.

A

O

B

C

D

y

600 mm

920 mm

360 mm

900 mmz

x

Fig. P3.35 and P3.36

 3.36 Knowing that the tension in cable AC is 1065 N, determine the 
moment about each of the coordinate axes of the force exerted on 
the plate at C.
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 3.37 A farmer uses cables and winch pullers B and E to plumb one side 
of a small barn. If it is known that the sum of the moments about 
the x axis of the forces exerted by the cables on the barn at points 
A and D is equal to 4728 lb·ft, determine the magnitude of TDE when 
TAB 5 255 lb.

E

B

z

y

x

C
D

A

F

12 ft

12 ft
1.5 ft

1 ft

14 ft

Fig. P3.37

 3.38 Solve Prob. 3.37 when the tension in cable AB is 306 lb.

 3.39 To lift a heavy crate, a man uses a block and tackle attached to the 
bottom of an I-beam at hook B. Knowing that the moments about 
the y and the z axes of the force exerted at B by portion AB of the 
rope are, respectively, 120 N·m and –460 N·m, determine the dis-
tance a.

x

y

z

A

B

C

D

O

a

1.6 m
2.2 m

4.8 m

Fig. P3.39 and P3.40

 3.40 To lift a heavy crate, a man uses a block and tackle attached to the 
bottom of an I-beam at hook B. Knowing that the man applies a 
195-N force to end A of the rope and that the moment of that force 
about the y axis is 132 N·m, determine the distance a.
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 3.41 A small boat hangs from two davits, one of which is shown in the 
figure. It is known that the moment about the z axis of the resultant 
force RA exerted on the davit at A must not exceed 279 lb·ft in 
absolute value. Determine the largest allowable tension in line ABAD 
when x 5 6 ft.

 3.42 For the davit of Prob. 3.41, determine the largest allowable distance 
x when the tension in line ABAD is 60 lb.

 3.43 A sign erected on uneven ground is guyed by cables EF and EG. If 
the force exerted by cable EF at E is 46 lb, determine the moment 
of that force about the line joining points A and D.

Fig. P3.43 and P3.44

x

y

z

A

B

C

D

E

F

G

45 in.

47 in.

8 in.
17 in.

36 in.

12 in.
14 in.

48 in.

21 in.

57 in.

96 in.

 3.44 A sign erected on uneven ground is guyed by cables EF and EG. If 
the force exerted by cable EG at E is 54 lb, determine the moment 
of that force about the line joining points A and D.

3 ft

x

y

z

A

C

D
7.75 ft

x

B

Fig. P3.41
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 3.45 The frame ACD is hinged at A and D and is supported by a cable that 
passes through a ring at B and is attached to hooks at G and H. 
Knowing that the tension in the cable is 450 N, determine the 
moment about the diagonal AD of the force exerted on the frame by 
portion BH of the cable.

x

y

z

A

C

D

G

O

P

H

0.35 m

0.875 m

0.75 m

0.75 m

0.925 m

0.5 m
0.5 m

B

Fig. P3.45

 3.46 In Prob. 3.45, determine the moment about the diagonal AD of the 
force exerted on the frame by portion BG of the cable.

 3.47 The 23-in. vertical rod CD is welded to the midpoint C of the 50-in. 
rod AB. Determine the moment about AB of the 235-lb force P.

G

O

H

D

A

C

B

y

x
z

32 in.24 in.

30 in.
17 in.

16 in.

21 in. 18 in.

12 in.

P

Q

Fig. P3.47 and P3.48

 3.48 The 23-in. vertical rod CD is welded to the midpoint C of the 50-in. 
rod AB.  Determine the moment about AB of the 174-lb force Q.
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3.3  COUPLES AND FORCE-
COUPLE SYSTEMS

Now that we have studied the effects of forces and moments on a rigid 
body, we can ask if it is possible to simplify a system of forces and 
moments without changing these effects. It turns out that we can replace 
a system of forces and moments with a simpler and equivalent system. 
One of the key ideas used in such a transformation is called a couple. 

3.3A Moment of a Couple
Two forces F and 2F, having the same magnitude, parallel lines of action, 
and opposite sense, are said to form a couple (Fig.  3.25). Clearly, the 
sum of the components of the two forces in any direction is zero. The 
sum of the moments of the two forces about a given point, however, is 
not zero. The two forces do not cause the body on which they act to move 
along a line (translation), but they do tend to make it rotate.

Let us denote the position vectors of the points of application of F 
and 2F by rA and rB, respectively (Fig. 3.26). The sum of the moments 
of the two forces about O is

rA 3 F 1 rB 3 (2F) 5 (rA 2 rB) 3 F

Setting rA 2 rB 5 r, where r is the vector joining the points of application 
of the two forces, we conclude that the sum of the moments of F and 2F 
about O is represented by the vector

 M 5 r 3 F (3.45)

The vector M is called the moment of the couple. It is perpendicular to 
the plane containing the two forces, and its magnitude is

 M 5 rF sin θ 5 Fd (3.46)

where d is the perpendicular distance between the lines of action of F and 
2F and θ is the angle between F (or 2F) and r. The sense of M is defined 
by the right-hand rule.

Note that the vector r in Eq. (3.45) is independent of the choice of 
the origin O of the coordinate axes. Therefore, we would obtain the same 
result if the moments of F and 2F had been computed about a different 
point O9. Thus, the moment M of a couple is a free vector (Sec. 2.1B), 
which can be applied at any point (Fig. 3.27).

2F

F

Fig. 3.25 A couple consists of two forces 
with equal magnitude, parallel lines of 
action, and opposite sense.

–F

F

y

x

z

A

O

d

M
r

rB

rA

B

θ

Fig. 3.26 The moment M of the couple 
about O is the sum of the moments of F and 
of 2F about O.

2F

F
d

M

Fig. 3.27 The moment M of a couple equals 
the product of F and d, is perpendicular to 
the plane of the couple, and may be applied 
at any point of that plane.

–F

F

Photo 3.1 The parallel upward and 
downward forces of equal magnitude exerted 
on the arms of the lug nut wrench are an 
example of a couple.

© McGraw-Hill Education/Lucinda Dowell, 
photographer
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From the definition of the moment of a couple, it also follows that 
two couples—one consisting of the forces F1 and 2F1, the other of the 
forces F2 and 2F2 (Fig. 3.28)—have equal moments if

 F1d1 5 F2d2 (3.47)

provided that the two couples lie in parallel planes (or in the same plane) 
and have the same sense (i.e., clockwise or counterclockwise).

3.3B Equivalent Couples
Imagine that three couples act successively on the same rectangular box 
(Fig. 3.29). As we have just seen, the only motion a couple can impart to 
a rigid body is a rotation. Since each of the three couples shown has the 
same moment M (same direction and same magnitude M 5 120 lb?in.), 
we can expect each couple to have the same effect on the box.

2F1

F1

d1

2F2

F2
d2

Fig. 3.28 Two couples have the same 
moment if they lie in parallel planes, have 
the same sense, and if F1d1 5 F2d2.

y

x

z

20 lb
20 lb

(a) (b) (c)

6 in.

4 in.

4 in.

M

y

x

z

30 lb

30 lb

4 in.

M

y

x

z

30 lb

30 lb

4 in.

M

Fig. 3.29 Three equivalent couples. (a) A couple acting on the bottom of the box, acting counterclockwise viewed from 
above; (b) a couple in the same plane and with the same sense but larger forces than in (a); (c) a couple acting in a different 
plane but same sense.

As reasonable as this conclusion appears, we should not accept it 
hastily. Although intuition is of great help in the study of mechanics, it 
should not be accepted as a substitute for logical reasoning. Before stating 
that two systems (or groups) of forces have the same effect on a rigid 
body, we should prove that fact on the basis of the experimental evidence 
introduced so far. This evidence consists of the parallelogram law for the 
addition of two forces (Sec. 2.1A) and the principle of transmissibility 
(Sec. 3.1B). Therefore, we state that two systems of forces are equivalent 
(i.e., they have the same effect on a rigid body) if we can transform one 
of them into the other by means of one or several of the following 
operations: (1) replacing two forces acting on the same particle by their 
resultant; (2) resolving a force into two components; (3) canceling two 
equal and opposite forces acting on the same particle; (4) attaching to the 
same particle two equal and opposite forces; and (5) moving a force along 
its line of action. Each of these operations is easily justified on the basis 
of the parallelogram law or the principle of transmissibility.

Let us now prove that two couples having the same moment M are 
equivalent. First consider two couples contained in the same plane, and 
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assume that this plane coincides with the plane of the figure (Fig.  3.30). 
The first couple consists of the forces F1 and 2F1 of magnitude F1, located 
at a distance d1 from each other (Fig.  3.30a). The second couple consists 
of the forces F2 and 2F2 of magnitude F2, located at a distance d2 from 
each other (Fig. 3.30d). Since the two couples have the same moment M, 
which is perpendicular to the plane of the figure, they must have the same 
sense (assumed here to be counterclockwise), and the relation
 F1d1 5 F2d2 (3.47)
must be satisfied. To prove that they are equivalent, we shall show that 
the first couple can be transformed into the second by means of the opera-
tions listed previously.

Let us denote by A, B, C, and D the points of intersection of the lines 
of action of the two couples. We first slide the forces F1 and 2F1 until they 
are attached, respectively, at A and B, as shown in Fig. 3.30b. We then resolve 
force F1 into a component P along line AB and a component Q along AC 
(Fig. 3.30c). Similarly, we resolve force 2F1 into 2P along AB and 2Q along 
BD. The forces P and 2P have the same magnitude, the same line of action, 
and opposite sense; we can move them along their common line of action 
until they are applied at the same point and may then be canceled. Thus, the 
couple formed by F1 and 2F1 reduces to a couple consisting of Q and 2Q.

We now show that the forces Q and 2Q are respectively equal to the 
forces 2F2 and F2. We obtain the moment of the couple formed by Q and 
2Q by computing the moment of Q about B. Similarly, the moment of the 
couple formed by F1 and 2F1 is the moment of F1 about B. However, by 
Varignon’s theorem, the moment of F1 is equal to the sum of the moments 
of its components P and Q. Since the moment of P about B is zero, the 
moment of the couple formed by Q and 2Q must be equal to the moment 
of the couple formed by F1 and 2F1. Recalling Eq. (3.47), we have

Qd2 5 F1d1 5 F2d2   and   Q 5 F2

Thus, the forces Q and 2Q are respectively equal to the forces 2F2 and 
F2, and the couple of Fig. 3.30a is equivalent to the couple of Fig. 3.30d.

Now consider two couples contained in parallel planes P1 and P2. 
We prove that they are equivalent if they have the same moment. In view 
of the preceding discussion, we can assume that the couples consist of 
forces of the same magnitude F acting along parallel lines (Fig. 3.31a and d). 
We propose to show that the couple contained in plane P1 can be trans-
formed into the couple contained in plane P2 by means of the standard 
operations listed previously.

2F1

F1

d1
2F1

F1

2F1

F1

2F2

F2

d2

(a) (b) (c) (d )

A

B

C

D
Q 2Q

P

A
B

C

D

2P

5 5 5

Fig. 3.30 Four steps in transforming one couple to another couple in the same plane by 
using simple operations. (a) Starting couple; (b) label points of intersection of lines of action 
of the two couples; (c) resolve forces from first couple into components; (d) final couple.

2F1

F1

P1

P2

(a)

2F2

F2

P2

P1

(d)

(b)

(c)

2F3
F3

2F1

F1

2F2

F2

2F3
F3

Fig. 3.31 Four steps in transforming one 
couple to another couple in a parallel plane 
by using simple operations. (a) Initial 
couple; (b) add a force pair along the line 
of intersection of two diagonal planes; 
(c) replace two couples with equivalent 
couples in the same planes; (d) final couple.
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Let us consider the two diagonal planes defined respectively by the 
lines of action of F1 and 2F2 and by those of 2F1 and F2 (Fig. 3.31b). At 
a point on their line of intersection, we attach two forces F3 and 2F3, which 
are respectively equal to F1 and 2F1. The couple formed by F1 and 2F3 
can be replaced by a couple consisting of F3 and 2F2 (Fig. 3.31c), because 
both couples clearly have the same moment and are contained in the same 
diagonal plane. Similarly, the couple formed by 2F1 and F3 can be replaced 
by a couple consisting of 2F3 and F2. Canceling the two equal and opposite 
forces F3 and 2F3, we obtain the desired couple in plane P2 (Fig. 3.31d). 
Thus, we conclude that two couples having the same moment M are equiva-
lent, whether they are contained in the same plane or in parallel planes.

The property we have just established is very important for the correct 
understanding of the mechanics of rigid bodies. It indicates that when a 
couple acts on a rigid body, it does not matter where the two forces forming 
the couple act or what magnitude and direction they have. The only thing 
that counts is the moment of the couple (magnitude and direction). Couples 
with the same moment have the same effect on the rigid body.

3.3C Addition of Couples
Consider two intersecting planes P1 and P2 and two couples acting respec-
tively in P1 and P2. Recall that each couple is a free vector in its respective 
plane and can be represented within this plane by any combination of equal, 
opposite, and parallel forces and of perpendicular distance of separation 
that provides the same sense and magnitude for this couple. Thus, we can 
assume, without any loss of generality, that the couple in P1 consists of two 
forces F1 and 2F1 perpendicular to the line of intersection of the two planes 
and acting respectively at A and B (Fig. 3.32a). Similarly, we can assume 
that the couple in P2 consists of two forces F2 and 2F2 perpendicular to 
AB and acting respectively at A and B. It is clear that the resultant R of F1 
and F2 and the resultant 2R of 2F1 and 2F2 form a couple. Denoting the 
vector joining B to A by r and recalling the definition of the moment of a 
couple (Sec. 3.3A), we express the moment M of the resulting couple as 

M 5 r 3 R 5 r 3 (F1 1 F2)

By Varignon’s theorem, we can expand this expression as

M 5 r 3 F1 1 r 3 F2

The first term in this expression represents the moment M1 of the couple 
in P1, and the second term represents the moment M2 of the couple in P2. 
Therefore, we have

 M 5 M1 1 M2 (3.48)

We conclude that the sum of two couples of moments M1 and M2 is a 
couple of moment M equal to the vector sum of M1 and M2 (Fig. 3.32b). 
We can extend this conclusion to state that any number of couples can be 
added to produce one resultant couple, as

M 5 oM 5 o(r 3 F)

3.3D Couple Vectors
We have seen that couples with the same moment, whether they act in the 
same plane or in parallel planes, are equivalent. Therefore, we have no need 
to draw the actual forces forming a given couple in order to define its effect 

2F1

2F2
2R

F1

F2

M1

M2

P1

P2

(a)

(b)

r
A

B

O

R

M

Fig. 3.32 (a) We can add two couples, each 
acting in one of two intersecting planes, to 
form a new couple. (b) The moment of the 
resultant couple is the vector sum of the 
moments of the component couples.
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y

x

z

2F
F

(a) (b) (c) (d)

d

O

y

x

z

O

y

x

z

O
x

O

M

M

My

MxMz

(M 5 Fd)
y

z

5 5 5

Fig. 3.33 (a) A couple formed by two forces can be represented by (b) a couple vector, oriented 
perpendicular to the plane of the couple. (c) The couple vector is a free vector and can be moved 
to other points of application, such as the origin. (d) A couple vector can be resolved into 
components along the coordinate axes.

on a rigid body (Fig.  3.33a). It is sufficient to draw an arrow equal in 
magnitude and direction to the moment M of the couple (Fig. 3.33b). We 
have also seen that the sum of two couples is itself a couple and that we 
can obtain the moment M of the resultant couple by forming the vector sum 
of the moments M1 and M2 of the given couples. Thus, couples obey the 
law of addition of vectors, so the arrow used in Fig. 3.33b to represent the 
couple defined in Fig. 3.33a truly can be considered a vector.

The vector representing a couple is called a couple vector. Note 
that, in Fig.  3.33, we use a red arrow to distinguish the couple vector, 
which represents the couple itself, from the moment of the couple, which 
was represented by a green arrow in earlier figures. Also note that we 
added the symbol  to this red arrow to avoid any confusion with vectors 
representing forces. A couple vector, like the moment of a couple, is a 
free vector. Therefore, we can choose its point of application at the origin 
of the system of coordinates, if so desired (Fig. 3.33c). Furthermore, we 
can resolve the couple vector M into component vectors Mx, My, and Mz 
that are directed along the coordinate axes (Fig. 3.33d). These component 
vectors represent couples acting, respectively, in the yz, zx, and xy planes.

3.3E  Resolution of a Given Force into 
a Force at O and a Couple

Consider a force F acting on a rigid body at a point A defined by the 
position vector r (Fig.  3.34a). Suppose that for some reason it would 
simplify the analysis to have the force act at point O instead. Although 
we can move F along its line of action (principle of transmissibility), we 
cannot move it to a point O that does not lie on the original line of action 
without modifying the action of F on the rigid body.

2F

F

(a) (b) (c)

55O

MO

r

F
F

O r

A
A

F

O

A

Fig. 3.34 Replacing a force with a force and a couple. (a) Initial 
force F acting at point A; (b) attaching equal and opposite forces 
at O; (c) force F acting at point O and a couple.
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We can, however, attach two forces at point O, one equal to F and 
the other equal to 2F, without modifying the action of the original force 
on the rigid body (Fig. 3.34b). As a result of this transforma tion, we now 
have a force F applied at O; the other two forces form a couple of moment 
MO 5 r 3 F. Thus, 

Any force F acting on a rigid body can be moved to an arbitrary 
point O provided that we add a couple whose moment is equal to 
the moment of F about O. 

The couple tends to impart to the rigid body the same rotational motion 
about O that force F tended to produce before it was transferred to O. We 
represent the couple by a couple vector MO  that is perpendicular to the 
plane containing r and F. Since MO is a free vector, it may be applied 
anywhere; for convenience, however, the couple vector is usually attached 
at O together with F. This combination is referred to as a force-couple 
system (Fig. 3.34c).

OO

r A

O'

s
r'

F

(a)

MO

r
A F

(b) (c)

MO'

O'

s
r' 5 5 O

r
A

O'

s
r'

F

Fig. 3.35 Moving a force to different points. (a) Initial force F acting 
at A; (b) force F acting at O and a couple; (c) force F acting at O9 and 
a different couple.

If we move force F from A to a different point O9 (Fig. 3.35a and c), 
we have to compute the moment MO9 5 r9 3 F of F about O9 and add a 
new force-couple system consisting of F and the couple vector MO9 at O9. 
We can obtain the relation between the moments of F about O and O9 as

MO9 5 r9 3 F 5 (r 1 s) 3 F 5 r 3 F 1 s 3 F

 MO9 5 MO 1 s 3 F (3.49)

where s is the vector joining O9 to O. Thus, we obtain the moment MO9 of 
F about O9 by adding to the moment MO of F about O the vector product 
s 3 F, representing the moment about O9 of the force F applied at O.

We also could have established this result by observing that, in order 
to transfer to O9 the force-couple system attached at O (Fig. 3.35b and c), 
we could freely move the couple vector MO to O9. However, to move 
force F from O to O9, we need to add to F a couple vector whose moment 
is equal to the moment about O9 of force F applied at O. Thus, the couple 
vector MO9 must be the sum of MO and the vector s 3 F.

As noted here, the force-couple system obtained by transferring a 
force F from a point A to a point O consists of F and a couple vector MO 
perpendicular to F. Conversely, any force-couple system consisting of a 
force F and a couple vector MO that are mutually perpendicular can be 
replaced by a single equivalent force. This is done by moving force F in 
the plane perpendicular to MO until its moment about O is equal to the 
moment of the couple being replaced.

Photo 3.2 The force exerted by each 
hand on the wrench could be replaced with 
an equivalent force-couple system acting on 
the nut.

© Steve Hix
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Sample Problem 3.6

Determine the components of the single couple equivalent to the two 
 couples shown.

STRATEGY: Look for ways to add equal and opposite forces to the 
diagram that, along with already known perpendicular distances, will pro-
duce new couples with moments along the coordinate axes. These can be 
combined into a single equivalent couple.

MODELING: You can simplify the computations by attaching two 
equal and opposite 20-lb forces at A (Fig. 1). This enables you to replace 
the original 20-lb-force couple by two new 20-lb-force couples: one lying 
in the zx plane and the other in a plane parallel to the xy plane. 

ANALYSIS: You can represent these three couples by three couple vec-
tors Mx, My, and Mz directed along the coordinate axes (Fig. 2). The 
corresponding moments are

Mx 5 2(30 lb)(18 in.) 5 2540 lb?in.
My 5 1(20 lb)(12 in.) 5 1240 lb?in.
Mz 5 1(20 lb)(9 in.) 5 1180 lb?in.

These three moments represent the components of the single couple M 
equivalent to the two given couples. You can write M as

M 5 2(540 lb?in.)i 1 (240 lb?in.)j 1 (180 lb?in.)k b

REFLECT and THINK: You can also obtain the components of the equiva-
lent single couple M by computing the sum of the moments of the four given 
forces about an arbitrary point. Selecting point D, the moment is (Fig. 3)

M 5 MD 5 (18 in.)j 3 (230 lb)k 1 [(9 in.)j 2 (12 in.)k] 3 (220 lb)i

After computing the various cross products, you get the same result, as

M 5 2(540 lb?in.)i 1 (240 lb?in.)j 1 (180 lb?in.)k b

y

x

A

B

C

D

E

30 lb

30 lb

12 in.

7 in.

20 lb
z

9 in.

9 in.

20 lb

Fig. 1 Placing two equal and opposite 
20-lb forces at A to simplify calculations.

y

x

A

B

C

D

E

30 lb

30 lb

12 in.

7 in.

20 lb

20 lb

20 lb
20 lb

z

9 in.

9 in.

Fig. 2 The three couples represented 
as couple vectors.

y

x

z

My 5 1(240 lb∙in.)j

Mx 5 2(540 lb∙in.)i

Mz 5 1(180 lb∙in.)k

Fig. 3 Using the given force system, the 
equivalent single couple can also be 
determined from the sum of moments of the 
forces about any point, such as point D.

z

y

x

A

B

C

D

E

30 lb

30 lb

12 in.

7 in.

20 lb

20 lb

9 in.

9 in.
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Sample Problem 3.7

Replace the couple and force shown by an equivalent single force applied 
to the lever. Determine the distance from the shaft to the point of applica-
tion of this equivalent force.

STRATEGY: First replace the given force and couple by an equivalent 
force-couple system at O. By moving the force of this force-couple system 
a distance that creates the same moment as the couple, you can then 
replace the system with one equivalent force.

MODELING and ANALYSIS: To replace the given force and couple, 
move the force F 5 2(400 N)j to O, and at the same time, add a couple 
of moment MO that is equal to the moment about O of the force in its 
original position (Fig. 1). Thus, 

 MO 5 OB
⟶

3 F 5 [(0.150  m)i 1 (0.260  m)j] 3 (2400  N)j
 5 2(60 N?m)k

Fig. 1 Replacing given force and couple 
with an equivalent force-couple at O.

5

B

150 mm

O

F 5 2 (400 N) j

2 (400 N) j

2 (24 N∙m) k
2 (24 N∙m) k 2 (60 N∙m) k

O

260 mm

When you add this new couple to the couple of moment 2(24 N?m)k 
formed by the two 200-N forces, you obtain a couple of moment 
2(84 N?m)k (Fig. 2). You can replace this last couple by applying F at 
a point C chosen in such a way that

 2(84  N ? m)k 5 OC
⟶

3 F
 5 [(OC) cos 608 i 1 (OC) sin 608 j] 3 (2400  N)j
 5 2(OC)cos 608(400  N)k

The result is

 (OC) cos 60° 5 0.210 m 5 210 mm OC 5 420 mm b

REFLECT and THINK: Since the effect of a couple does not depend 
on its location, you can move the couple of moment 2(24 N?m)k to B, 
obtaining a force-couple system at B (Fig. 3). Now you can eliminate this 
couple by applying F at a point C chosen in such a way that

 2(24 N?m)k 5 BC
⟶

3 F
 5 2(BC) cos 608(400  N)k

The conclusion is

(BC) cos 60° 5 0.060 m 5 60 mm   BC 5 120 mm
 OC 5 OB 1 BC 5 300 mm 1 120 mm OC 5 420 mm b

B

400 N

200 N

200 N

150 mm

60 mm
O

608

300 mm

Fig. 2 Resultant couple eliminated 
by moving force F.

5

C

2 (400 N) j

2 (400 N) j

2 (84 N∙m) k
O O

608

Fig. 3 Couple can be moved to B with 
no change in effect. This couple can 
then be eliminated by moving force F.

5
2(400 N)j 2(400 N)j

–(24 N∙m)k

2(24 N∙m)k

B

150 mm

O

B

O

5

C

–(400 N)j
–(400 N)j

–(24 N?m)k
B

O O

B

608
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Problems
 3.49 Two parallel 60-N forces are applied to a lever as shown. Determine 

the moment of the couple formed by the two forces (a) by resolving 
each force into horizontal and vertical components and adding the 
moments of the two resulting couples, (b) by using the perpendicular 
distance between the two forces, (c) by summing the moments of the 
two forces about point A.

A

B

C

60 N

60 N

208

558

360 mm

520 mm

Fig. P3.49

 3.50 A plate in the shape of a parallelogram is acted upon by two couples. 
Determine (a) the moment of the couple formed by the two 21-lb 
forces, (b) the perpendicular distance between the 12-lb forces if the 
resultant of the two couples is zero, (c) the value of a if the resultant 
couple is 72 lb·in. clockwise and d is 42 in.

 3.51 Two 80-N forces are applied as shown to the corners B and D of a 
rectangular plate. (a) Determine the moment of the couple formed 
by the two forces by resolving each force into horizontal and vertical 
components and adding the moments of the two resulting couples. 
(b) Use the result obtained to determine the perpendicular distance 
between lines BE and DF.

D

A F

E
C

B

80 N

80 N

500 mm

300 mm

508

508

Fig. P3.51

A

D

B

C

16 in.

d

21 lb

12 lb
12 lb

21 lb

α

Fig. P3.50
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 3.52 A piece of plywood in which several holes are being drilled succes-
sively has been secured to a workbench by means of two nails. Know-
ing that the drill exerts a 12-N ? m couple on the piece of plywood, 
determine the magnitude of the resulting forces applied to the nails 
if they are located (a) at A and B, (b) at B and C, (c) at A and C.

A

B

C

450 mm
240 mm

Fig. P3.52

 3.53 Four 11
2-in.-diameter pegs are attached to a board as shown. Two 

strings are passed around the pegs and pulled with the forces indi-
cated. (a) Determine the resultant couple acting on the board. (b) If 
only one string is used, around which pegs should it pass and in what 
directions should it be pulled to create the same couple with the 
minimum tension in the string? (c) What is the value of that mini-
mum tension?

A B

C D
60 lb

60 lb

40 lb

40 lb

9 in.

12 in.

Fig. P3.53 and P3.54

 3.54 Four pegs of the same diameter are attached to a board as shown. 
Two strings are passed around the pegs and pulled with the forces 
indicated. Determine the diameter of the pegs knowing that the resul-
tant couple applied to the board is 1132.5 lb·in. counterclockwise.

 3.55 In a manufacturing operation, three holes are drilled simultaneously 
in a workpiece. If the holes are perpendicular to the surfaces of the 
workpiece, replace the couples applied to the drills with a single 
equivalent couple, specifying its magnitude and the direction of  
its axis. Fig. P3.55

x

y

z

208

258
1.75 N∙m

1.5 N∙m

1.5 N∙m
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 3.56 The two shafts of a speed-reducer unit are subjected to couples of 
magnitude M1 5 15 lb ? ft and M2 5 3 lb ? ft, respectively. Replace 
the two couples with a single equivalent couple, specifying its mag-
nitude and the direction of its axis.

M2M1

y

z

x

Fig. P3.56

 3.57 Replace the two couples shown with a single equivalent couple, 
specifying its magnitude and the direction of its axis.

 3.58 Solve Prob. 3.57, assuming that two 10-N vertical forces have been 
added, one acting upward at C and the other downward at B.

 3.59 Shafts A and B connect the gear box to the wheel assemblies of a 
tractor, and shaft C connects it to the engine. Shafts A and B lie in 
the vertical yz plane, while shaft C is directed along the x axis. 
Replace the couples applied to the shafts by a single equivalent 
couple, specifying its magnitude and the direction of its axis.

 3.60 If P 5 20 lb, replace the three couples with a single equivalent 
couple, specifying its magnitude and the direction of its axis.

x

y

z

B

C
D

A

E

2P
P

16 lb

16 lb
40 lb

40 lb

15 in.

15 in.

10 in.

10 in.
10 in.

Fig. P3.60

144 mm

160 mm

192 mm

120 mm

y

x
z

120 mm

50 N

50 N
12.5 N

12.5 N

A

B

E

C

F

D

Fig. P3.57

y

B

A

C

x
z

900 lb∙ft

840 lb∙ft

1200 lb∙ft

208

208

Fig. P3.59
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 3.61 A 30-lb vertical force P is applied at A to the bracket shown, which 
is held by screws at B and C. (a) Replace P with an equivalent force-
couple system at B. (b) Find the two horizontal forces at B and C 
that are equivalent to the couple obtained in part a.

P 5 in.

2 in.A

B

C

3 in.

Fig. P3.61

 3.62 The force P has a magnitude of 250 N and is applied at the end C 
of a 500-mm rod AC attached to a bracket at A and B. Assuming  
α 5 30° and β 5 60°, replace P with (a) an equivalent force-couple 
system at B, (b) an equivalent system formed by two parallel forces 
applied at A and B.

A

B

C

200 mm

300 mm
P

α

β

Fig. P3.62

 3.63 Solve Prob. 3.62, assuming α 5 β 5 25°.

 3.64 A 260-lb force is applied at A to the rolled-steel section shown. 
Replace that force with an equivalent force-couple system at the 
center C of the section.

A

B

C

260 lb

2 in.

2.5 in.

4 in.

4 in.

Fig. P3.64

 3.65 A dirigible is tethered by a cable attached to its cabin at B. If the 
tension in the cable is 1040 N, replace the force exerted by the cable 
at B with an equivalent system formed by two parallel forces applied 
at A and C.

A B C

D
608

6.7 m 4 m

Fig. P3.65
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 3.66 A force and couple act as shown on a square plate of side a 5 25 
in. Knowing that P 5 60 lb, Q 5 40 lb, and α 5 50°, replace the 
given force and couple by a single force applied at a point located 
(a) on line AB, (b) on line AC. In each case determine the distance 
from A to the point of application of the force.

 3.67 Replace the 250-kN force P by an equivalent force-couple system at G.

30 mm

y

G
A

x

z

P

60 mm

Fig. P3.67

 3.68 An antenna is guyed by three cables as shown. Knowing that the 
tension in cable AB is 288 lb, replace the force exerted at A by cable 
AB with an equivalent force-couple system at the center O of the 
base of the antenna.

16 ft

x

y

z

O

A

B

C

D
128 ft

96 ft

128 ft

64 ft

Fig. P3.68 and P3.69

 3.69 An antenna is guyed by three cables as shown. Knowing that the 
tension in cable AD is 270 lb, replace the force exerted at A by cable 
AD with an equivalent force-couple system at the center O of the 
base of the antenna.

A B

DC

a

aa

–Q

Q

P

Fig. P3.66
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 3.70 Replace the 150-N force by an equivalent force-couple system at A.

 3.71 A 2.6-kip force is applied at point D of the cast-iron post shown. 
Replace that force with an equivalent force-couple system at the 
center A of the base section.

6 in. 5 in.

12 in.

x

z

y

B

A

D

E

2.6 kips

Fig. P3.71

 3.72 A 110-N force acting in a vertical plane parallel to the yz plane is 
applied to the 220-mm-long horizontal handle AB of a socket wrench. 
Replace the force with an equivalent force-couple system at the ori-
gin O of the coordinate system.

150 mm

110 N

A

B

x

y

z

O

358

158

Fig. P3.72

x

y

z

A

C

120 mm

40 mm
60 mm20 mm

358

150 N D

B

200 mm

Fig. P3.70
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3.4  SIMPLIFYING SYSTEMS 
OF FORCES

We saw in the preceding section that we can replace a force acting on a rigid 
body with a force-couple system that may be easier to analyze. However, the 
true value of a force-couple system is that we can use it to replace not just 
one force but a system of forces to simplify analysis and calculations.

3.4A  Reducing a System of Forces 
to a Force-Couple System

Consider a system of forces F1, F2, F3, . . . , acting on a rigid body at the 
points A1, A2, A3, . . . , defined by the position vectors r1, r2, r3, etc. 
(Fig.  3.36a). As seen in the preceding section, we can move F1 from A1 
to a given point O if we add a couple of moment M1 equal to the moment 
r1 3 F1 of F1 about O. Repeating this procedure with F2, F3, . . . , we 
obtain the system shown in Fig.  3.36b, which consists of the original 
forces, now acting at O, and the added couple vectors. Since the forces 
are now concurrent, they can be added vectorially and replaced by their 
resultant R. Similarly, the couple vectors M1, M2, M3, . . . , can be added 
vectorially and replaced by a single couple vector MR

O. Thus, 

We can reduce any system of forces, however complex, to an 
equivalent force-couple system acting at a given point O. 

Note that, although each of the couple vectors M1, M2, M3, . . . in 
Fig. 3.36b is perpendicular to its corresponding force, the resultant force R 
and the resultant couple vector MR

O shown in Fig. 3.36c are not, in general, 
perpendicular to each other.

(a)

F1

F2

F3r2
r3

A2

A3

5
O

r1

A1

(b)

F1

F2

M1

M2

M3

5O

F3

(c)

R

MO
R

O

Fig. 3.36 Reducing a system of forces to a force-couple system. (a) Initial 
system of forces; (b) all the forces moved to act at point O, with couple 
vectors added; (c) all the forces reduced to a resultant force vector and all the 
couple vectors reduced to a resultant couple vector.

The equivalent force-couple system is defined by 

Force-couple system

 R 5 oF   MR
O 5 oMO 5 o(r 3 F) (3.50)

These equations state that we obtain force R by adding all of the forces 
of the system, whereas we obtain the moment of the resultant couple 
vector MR

O, called the moment resultant of the system, by adding the 
moments about O of all the forces of the system.
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Once we have reduced a given system of forces to a force and a 
couple at a point O, we can replace it with a force and a couple at another 
point O9. The resultant force R will remain unchanged, whereas the new 
moment resultant MR

O9 will be equal to the sum of MR
O and the moment 

about O9 of force R attached at O (Fig. 3.37). We have

 MR
O9 5 MR

O 1 s 3 R (3.51)

In practice, the reduction of a given system of forces to a single 
force R at O and a couple vector MR

O is carried out in terms of compo-
nents. Resolving each position vector r and each force F of the system 
into rectangular components, we have
 r 5 xi 1 yj 1 zk (3.52)
 F 5 Fxi 1 Fy j 1 Fzk (3.53)
Substituting for r and F in Eq. (3.50) and factoring out the unit vectors i, 
j, and k, we obtain R and MR

O in the form

 R 5 Rxi 1 Ryj 1 Rzk  MR
O 5 Mx

Ri 1 My
Rj 1 Mz

Rk (3.54)
The components Rx, Ry, and Rz represent, respectively, the sums of the x, 
y, and z components of the given forces and measure the tendency of the 
system to impart to the rigid body a translation in the x, y, or z direction. 
Similarly, the components MR

x, MR
y, and MR

z represent, respectively, the sum 
of the moments of the given forces about the x, y, and z axes and measure 
the tendency of the system to impart to the rigid body a rotation about 
the x, y, or z axis.

If we need to know the magnitude and direction of force R, we can 
obtain them from the components Rx, Ry, and Rz by means of the relations 
in Eqs. (2.18) and (2.19) of Sec. 2.4A. Similar computations yield the 
magnitude and direction of the couple vector MR

O.

3.4B  Equivalent and Equipollent 
Systems of Forces

We have just seen that any system of forces acting on a rigid body can 
be reduced to a force-couple system at a given point O. This equivalent 
force-couple system characterizes completely the effect of the given force 
system on the rigid body. 

Two systems of forces are equivalent if they can be reduced to the 
same force-couple system at a given point O. 

Recall that the force-couple system at O is defined by the relations in 
Eq. (3.50). Therefore, we can state that 

Two systems of forces, F1, F2, F3, . . . , and F91, F92, F93, . . . , that act 
on the same rigid body are equivalent if, and only if, the sums of 
the forces and the sums of the moments about a given point O of 
the forces of the two systems are, respectively, equal. 

Mathematically, the necessary and sufficient conditions for the two sys-
tems of forces to be equivalent are

Conditions for equivalent systems of forces

 oF 5 oF9   and   oMO 5 oM9O (3.55)

O

O'

s

O

O'

s

R

R

MO
R

MO'
R

5

Fig. 3.37 Once a system of forces has been 
reduced to a force-couple system at one 
point, we can replace it with an equivalent 
force-couple system at another point. The 
force resultant stays the same, but we have to 
add the moment of the resultant force about 
the new point to the resultant couple vector.
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Note that to prove that two systems of forces are equivalent, we must establish 
the second of the relations in Eq. (3.55) with respect to only one point O. It will 
hold, however, with respect to any point if the two systems are equivalent.

Resolving the forces and moments in Eqs. (3.55) into their rectan-
gular components, we can express the necessary and sufficient conditions 
for the equivalence of two systems of forces acting on a rigid body as 

oFx 5 oF9x     oFy 5 oF9y    oFz 5 oF9z

 oMx 5 oM9x   oMy 5 oM9y   oMz 5 oM9z 

(3.56)

These equations have a simple physical significance. They express that 
Two systems of forces are equivalent if they tend to impart to the rigid 
body (1) the same translation in the x, y, and z directions, respectively, 
and (2) the same rotation about the x, y, and z axes, respectively.

In general, when two systems of vectors satisfy Eqs. (3.55) or (3.56), 
i.e., when their resultants and their moment resultants about an arbitrary 
point O are respectively equal, the two systems are said to be equipollent. 
The result just established can thus be restated as 

If two systems of forces acting on a rigid body are equipollent, they 
are also equivalent.

It is important to note that this statement does not apply to any system of 
vectors. Consider, for example, a system of forces acting on a set of inde-
pendent particles that do not form a rigid body. A different system of 
forces acting on the same particles may happen to be equipollent to the 
first one; i.e., it may have the same resultant and the same moment resul-
tant. Yet, since different forces now act on the various particles, their 
effects on these particles are  different; the two systems of forces, while 
equipollent, are not equivalent.

3.4C  Further Reduction of a System 
of Forces

We have now seen that any given system of forces acting on a rigid body 
can be reduced to an equivalent force-couple system at O, consisting of a 
force R equal to the sum of the forces of the system, and a couple vector 
MR

O of moment equal to the moment resultant of the system.
When R 5 0, the force-couple system reduces to the couple vector 

MR
O. The given system of forces then can be reduced to a single couple 

called the resultant couple of the system.
What are the conditions under which a given system of forces can be 

reduced to a single force? It follows from the preceding section that we can 
replace the force-couple system at O by a single force R acting along a new 
line of action if R and MR

O are mutually perpendicular. The systems of forces 
that can be reduced to a single force, or resultant, are therefore the systems 
for which force R and the couple vector MR

O are mutually perpendicular. 
This condition is generally not satisfied by systems of forces in space, but 
it is satisfied by systems consisting of (1) concurrent forces, (2) coplanar 
forces, or (3) parallel forces. Let’s look at each case separately.

 1. Concurrent forces act at the same point; therefore, we can add them 
directly to obtain their resultant R. Thus, they always reduce to a single 
force. Concurrent forces were discussed in detail in Chap. 2.

Fpush

Force-couple

Fpull

Photo 3.3 The forces exerted by the 
children upon the wagon can be replaced 
with an equivalent force-couple system when 
analyzing the motion of the wagon.

© Jose Luis Pelaez/Getty Images
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 2. Coplanar forces act in the same plane, which we assume to be the 
plane of the figure (Fig. 3.38a). The sum R of the forces of the system 
also lies in the plane of the figure, whereas the moment of each force 
about O and thus the moment resultant MR

O are perpendicular to that 
plane. The force-couple system at O consists, therefore, of a force R 
and a couple vector MR

O that are mutually perpendicular (Fig. 3.38b).† 
We can reduce them to a single force R by moving R in the plane of 
the figure until its moment about O becomes equal to MR

O. The distance 
from O to the line of action of R is d 5 MR

O/R (Fig. 3.38c).

F1

F2

F3

x

y

O

(a)

5
x

y

O

(b)

MO
R

R

5
x

y

O

(c)

R

A

d 5 MO/RR

Fig. 3.38 Reducing a system of coplanar forces. (a) Initial system of forces; 
(b) equivalent force-couple system at O; (c) moving the resultant force to a 
point A such that the moment of R about O equals the couple vector.

†Because the couple vector MR
O is perpendicular to the plane of the figure, we represent it 

by the symbol  . A counterclockwise couple  represents a vector pointing out of the page 
and a clockwise couple  represents a vector pointing into the page.

x

y

O

(a)

MO
R

Rx

Ry

R

5
x

y

O

(b)

Rx

Ry

R
5

B

x 5 MO /Ry
R

x

y

O

(c)

Rx

Ry R

y 5 2MO /Rx
R

C

Fig. 3.39 Reducing a system of coplanar forces by using rectangular 
components. (a) From Fig. 3.38(b), resolve the resultant into components 
along the x and y axes; (b) determining the x intercept of the final line of 
action of the resultant; (c) determining the y intercept of the final line of 
action of the resultant.

   As noted earlier, the reduction of a system of forces is consider-
ably simplified if we resolve the forces into rectangular components. 
The force-couple system at O is then characterized by the components 
(Fig. 3.39a)

 Rx 5 oFx   Ry 5 oFy   Mz
R 5 MO

R 5 oMO (3.57)
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  To reduce the system to a single force R, the moment of R about O 
must be equal to MR

O. If we denote the coordinates of the point of 
application of the resultant by x and y and apply equation (3.22) of 
Sec. 3.1F, we have

xRy 2 yRx 5 MR
O

  This represents the equation of the line of action of R. We can also 
determine the x and y intercepts of the line of action of the resultant 
directly by noting that MR

O must be equal to the moment about O of the 
y component of R when R is attached at B (Fig.  3.39b) and to the 
moment of its x component when R is attached at C (Fig. 3.39c).

 3. Parallel forces have parallel lines of action and may or may not have 
the same sense. Assuming here that the forces are parallel to the y axis 
(Fig.  3.40a), we note that their sum R is also parallel to the y axis. 

y

x

z

F1

F2

F3

O

(a)

5

y

x

z

O

(b)

MO
R

Mz
R k

Mx
R i

R

5

y

x

z

O

(c)

r
A

x

z

R

Fig. 3.40 Reducing a system of parallel forces. (a) Initial system of forces; 
(b) equivalent force-couple system at O, resolved into components; 
(c) moving R to point A, chosen so that the moment of R about O 
equals the resultant moment about O.

On the other hand, since the moment of a given force must be perpen-
dicular to that force, the moment about O of each force of the system and 
thus the moment resultant MR

O lie in the zx plane. The force-couple system 
at O consists,  therefore, of a force R and a couple vector MR

O that are 
mutually perpendicular (Fig. 3.40b). We can reduce them to a single force 
R (Fig. 3.40c) or, if R 5 0, to a single couple of moment MR

O.

In practice, the force-couple system at O is characterized by the 
components
 Ry 5 oFy   MR

x 5 oMx   MR
z 5 oMz (3.58)

The reduction of the system to a single force can be carried out by moving 
R to a new point of application A(x, 0, z), which is chosen so that the 
moment of R about O is equal to MR

O.

r 3 R 5 MR
O

(xi 1 zk) 3 Ry j 5 Mx
Ri 1 Mz

Rk

By computing the vector products and equating the coefficients of the 
corresponding unit vectors in both sides of the equation, we obtain two 
scalar equations that define the coordinates of A:

2zRy 5 MR
x and xRy 5 MR

z

These equations express the fact that the moments of R about the x and 
z axes must be equal, respectively, to MR

x and MR
z.

Photo 3.4 The parallel wind forces acting 
on the highway signs can be reduced to a 
single equivalent force. Determining this 
force can simplify the calculation of the 
forces acting on the supports of the frame to 
which the signs are attached.

© Images-USA/Alamy RF
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Sample Problem 3.8

A 4.80-m-long beam is subjected to the forces shown. Reduce the given 
system of forces to (a) an equivalent force-couple system at A, (b) an 
equivalent force-couple system at B, (c) a single force or resultant. Note: 
Since the reactions at the supports are not included in the given system 
of forces, the given system will not maintain the beam in equilibrium.

STRATEGY: The force part of an equivalent force-couple system is sim-
ply the sum of the forces involved. The couple part is the sum of the 
moments caused by each force relative to the point of interest. Once you 
find the equivalent force-couple at one point, you can transfer it to any 
other point by a moment calculation.

MODELING and ANALYSIS: 

a. Force-Couple System at A. The force-couple system at A equiv-
alent to the given system of forces consists of a force R and a couple MR

A 
defined as (Fig. 1):

R 5 oF
5 (150 N)j 2 (600 N)j 1 (100 N)j 2 (250 N)j 5 2(600 N)j

MR
A 5 o(r 3 F)

5 (1.6i) 3 (2600j) 1 (2.8i) 3 (100j) 1 (4.8i) 3 (2250j)
5 2(1880 N?m)k

The equivalent force-couple system at A is thus

R 5 600 N    MR
A 5 1880 N?m  b

b. Force-Couple System at B. You want to find a force-couple 
system at B equivalent to the force-couple system at A determined in 
part a. The force R is unchanged, but you must determine a new couple 
MR

B, the moment of which is equal to the moment about B of the force-
couple system determined in part a (Fig. 2). You have 

 MR
B 5 MR

A 1 BA
⟶

3 R
 5 2(1880  N?m)k 1 (24.8  m)i 3 (2600  N)j
 5 2(1880  N?m)k 1 (2880  N?m)k 5 1(1000  N?m)k

The equivalent force-couple system at B is thus

R 5 600 N    MR
B 5 1000 N?m  b

c. Single Force or Resultant. The resultant of the given system of 
forces is equal to R, and its point of application must be such that the 
moment of R about A is equal to MR

A (Fig. 3). This equality of moments 
leads to

r 3 R 5 MR
A

xi 3 (2600 N)j 5 2(1880 N?m)k
2x(600 N)k 5 2(1880 N?m)k

150 N 600 N 100 N 250 N

A B

1.6 m 1.2 m 2 m

Fig. 1 Force-couple system at A 
that is equivalent to given system 
of forces.

A B

150 j 2600 j 100 j 2250 j

1.6 i
2.8 i

4.8 i

A B

2(600 N) j

2(1880 N∙m) k

Fig. 2 Finding force-couple system 
at B equivalent to that determined 
in part a.

A B

2(600 N) j
2(1880 N∙m) k

(2880 N∙m) k4.8 m

A

2(600 N) j

(1000 N∙m) k
B

Fig. 3 Single force that is equivalent 
to given system of forces.

A
B

–(600 N) j

x

(continued)
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Solving for x, you get x 5 3.13 m. Thus, the single force equivalent to 
the given system is defined as

R 5 600 N    x 5 3.13 m b

REFLECT and THINK: This reduction of a given system of forces to 
a single equivalent force uses the same principles that you will use later 
for finding centers of gravity and centers of mass, which are important 
parameters in engineering mechanics.

Sample Problem 3.9

Four tugboats are bringing an ocean liner to its pier. Each tugboat exerts 
a 5000-lb force in the direction shown. Determine (a) the equivalent force-
couple system at the foremast O, (b) the point on the hull where a single, 
more powerful tugboat should push to produce the same effect as the 
original four tugboats.

STRATEGY: The equivalent force-couple system is defined by the sum 
of the given forces and the sum of the moments of those forces at a par-
ticular point. A single tugboat could produce this system by exerting the 
resultant force at a point of application that produces an equivalent moment.

MODELING and ANALYSIS:

a. Force-Couple System at O. Resolve each of the given forces 
into components, as in Fig. 1 (kip units are used). The force-couple system 
at O equivalent to the given system of forces consists of a force R and a 
couple MR

O defined as 

 R 5 oF
 5 (2.50i 2 4.33j) 1 (3.00i 2 4.00j) 1 (25.00j) 1 (3.54i 1 3.54j)
 5 9.04i 2 9.79j

 MR
O 5 o(r 3 F)

 5 (290i 1 50j) 3 (2.50i 2 4.33j)
  1 (100i 1 70j) 3 (3.00i 2 4.00j)
  1 (400i 1 70j) 3 (25.00j)
  1 (300i 2 70j) 3 (3.54i 1 3.54j)
 5 (390 2 125 2 400 2 210 2 2000 1 1062 1 248)k
 5 21035k

The equivalent force-couple system at O is thus (Fig. 2)

R 5 (9.04 kips)i 2 (9.79 kips)j   MR
O 5 2(1035 kip?ft)k

or
 R 5 13.33 kips  47.3°   MR

O 5 1035 kip?ft  b

3
2 3

4

1

4

608

50 ft 90 ft

110 ft

200 ft
O

70 ft

458

100

ft

100

ft

100

ft

Fig. 1 Given forces resolved into 
components.

24.33 j 24 j 25 j
F1

F2 F3

F4

3 i

3.54 j

3.54 i

2.5i
50 ft

110 ft

200 ft
O

70 ft90 ft 100

ft

100

ft

100

ft

Fig. 2 Equivalent force-couple 
system at O.

MO 5 21035 kR

9.04 i

29.79 j

47.3

R

O

(continued)
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 Remark: Since all the forces are contained in the plane of the figure, 
you would expect the sum of their moments to be perpendicular to that 
plane. Note that you could obtain the moment of each force component 
directly from the diagram by first forming the product of its magnitude 
and perpendicular distance to O and then assigning to this product a posi-
tive or a negative sign, depending upon the sense of the moment.

b. Single Tugboat. The force exerted by a single tugboat must be equal 
to R, and its point of application A must be such that the moment of R 
about O is equal to MR

O (Fig. 3). Observing that the position vector of A is

r 5 xi 1 70j

you have

r 3 R 5 MR
O

(xi 1 70j) 3 (9.04i 2 9.79j) 5 21035k
2x(9.79)k 2 633k 5 21035k  x 5 41.1 ft b

REFLECT and THINK: Reducing the given situation to that of a single 
force makes it easier to visualize the overall effect of the tugboats in 
maneuvering the ocean liner. But in practical terms, having four boats 
applying force allows for greater control in slowing and turning a large 
ship in a crowded harbor.

Fig. 3 Point of application of 
single tugboat to create same 
effect as given force system.

70 ft

x

9.04 i

29.79 jR

A

O

Sample Problem 3.10

Three cables are attached to a bracket as shown. Replace the forces 
exerted by the cables with an equivalent force-couple system at A.

STRATEGY: First determine the relative position vectors drawn from 
point A to the points of application of the various forces and resolve the 
forces into rectangular components. Then sum the forces and moments.

MODELING and ANALYSIS: Note that FB 5 (700 N)λBE where

λBE 5
BE
⟶

BE
5

75i 2 150j 1 50k
175

Using meters and newtons, the position and force vectors are

 rB/A 5 AB
⟶

5 0.075i 1 0.050k     FB 5 300i 2 600j 1 200k
 rC/A 5 AC

⟶
5 0.075i 2 0.050k     FC 5 707i  2 707k

 rD/A 5 AD
⟶

5 0.100i 2 0.100j     FD 5 600i 1 1039j

 The force-couple system at A equivalent to the given forces con-
sists of a force R 5 oF and a couple MR

A 5 o(r 3 F). Obtain the 
force R by adding respectively the x, y, and z components of the forces:

 R 5 oF 5 (1607 N)i 1 (439 N)j 2 (507 N)k b

(continued)

50 mm

50 mm

100 mm

100 mm

75 mm 1000 N

1200 N
700 N

x

y

z

O

A
B

C

D

458

458

308

608

E(150 mm, 250 mm, 100 mm)
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The computation of MR
A is facilitated by expressing the moments of the 

forces in the form of determinants (Sec. 3.1F). Thus, 

 rByA 3 FB 5
 ∣ i j k

0.075 0 0.050
300 2600 200 ∣  

5 30i  245k

 rCyA 3 FC 5
 ∣ i   j k

0.075   0 20.050
707   0 2707 ∣  

5 17.68j

 rDyA 3 FD 5
 ∣ i   j k

0.100   20.100 0
600   1039 0 ∣  

5 163.9k

Adding these expressions, you have

 MA
R 5 o(r 3 F) 5 (30 N?m)i 1 (17.68 N?m)j 1 (118.9 N?m)k b

Figure 1 shows the rectangular components of the force R and the couple MR
A.

REFLECT and THINK: The determinant approach to calculating moments 
shows its advantages in a general three-dimensional problem such as this.

x

y

z

O

(17.68 N∙m)j

(439 N)j 2(507 N)k

(1607 N)i
(118.9 N∙m)k

(30 N∙m)i

Fig. 1 Rectangular components of 
equivalent force-couple system at A.

Sample Problem 3.11

A square foundation mat supports the four columns shown. Determine the 
magnitude and point of application of the resultant of the four loads.

A

B

C

4 ft
5 ft

5 ft

6 ft

40 kips

20 kips

12 kips

x

z

O
8 kips

y

STRATEGY: Start by reducing the given system of forces to a force-
couple system at the origin O of the coordinate system. Then reduce the 
system further to a single force applied at a point with coordinates x, z.

(continued)
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MODELING: The force-couple system consists of a force R and a 
couple vector MR

O defined as 

R 5 oF   MR
O 5 o(r 3 F)

ANALYSIS: After determining the position vectors of the points of 
application of the various forces, you may find it convenient to arrange 
the computations in tabular form. The results are shown in Fig. 1.

r, ft F, kips r 3 F, kip?ft

0 240j 0
10i 212j 2 120k
10i 1 5k  28j 40i 2 80k
 4i 1 10k 220j 200i 2 80k
 R 5 280j MR

O 5 240i 2 280k

The force R and the couple vector MR
O are mutually perpendicular, 

so you can reduce the force-couple system further to a single force R. 
Select the new point of application of R in the plane of the mat and in 
such a way that the moment of R about O is equal to MR

O. Denote the 
position vector of the desired point of application by r and its coordinates 
by x and z (Fig. 2). Then

r 3 R 5 MR
O

(xi 1 zk) 3 (280j) 5 240i 2 280k
280xk 1 80zi 5 240i 2 280k

It follows that

280x 5 2280    80z 5 240
x 5 3.50 ft       z 5 3.00 ft

The resultant of the given system of forces is

R 5 80 kips    at x 5 3.50 ft, z 5 3.00 ft b

REFLECT and THINK: The fact that the given forces are all parallel 
simplifies the calculations, so the final step becomes just a two-dimensional 
analysis.

Fig. 1 Force-couple system at O that 
is equivalent to given force system.

x

z

O
2(280 kip∙ft)k

2(80 kips)j

(240 kip∙ft)i

y

Fig. 2 Single force that is equivalent 
to given force system.

x

y

z

O

2(80 kips)j

xi

zk
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 3.73 A 4-m-long beam is subjected to a variety of loadings. (a) Replace 
each loading with an equivalent force-couple system at end A of the 
beam. (b) Which of the loadings are equivalent?

 3.74 A 4-m-long beam is loaded as shown. Determine the loading of 
Prob. 3.73 that is equivalent to this loading.

Fig. P3.74

A B

4 m
200 N 400 N

2800 N∙m400 N∙m

 3.75 Determine the single equivalent force and the distance from point A 
to its line of action for the beam and loading of (a) Prob. 3.73b,  
(b) Prob. 3.73d, (c) Prob. 3.73e.

 3.76 The weights of two children sitting at ends A and B of a seesaw are 
84 lb and 64 lb, respectively. Where should a third child sit so that 
the resultant of the weights of the three children will pass through 
C if she weighs (a) 60 lb, (b) 52 lb?

Problems

A B

4 m

(a)

400 N

400 N

200 N

800 N

(b)

600 N

(c)

900 N

300 N

(d) (e)

400 N 200 N

( f )

800 N

200 N

(h)

300 N 300 N 

(g)

800 N200 N

4000 N∙m 300 N∙m200 N∙m

1800 N∙m

2300 N∙m

2400 N∙m

900 N∙m

4500 N∙m

300 N∙m300 N∙m

400 N∙m200 N∙m

Fig. P3.73

A

B

C

6 ft

6 ft

Fig. P3.76
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 3.77 Three stage lights are mounted on a pipe as shown. The lights at A 
and B each weigh 4.1 lb, while the one at C weighs 3.5 lb. (a) If  
d 5 25 in., determine the distance from D to the line of action of 
the resultant of the weights of the three lights. (b) Determine the 
value of d so that the resultant of the weights passes through the 
midpoint of the pipe.

Fig. P3.77

D

B

C

E

d

34 in.

10 in.

84 in.

A

 3.78 Five separate force-couple systems act at the corners of a piece of 
sheet metal, which has been bent into the shape shown. Determine 
which of these systems is equivalent to a force F 5 (10 lb)i and a 
couple of moment M 5 (15 lb·ft)j 1 (15 lb·ft)k located at the 
origin.

Fig. P3.78

5 lb∙ft

5 lb∙ft
15 lb∙ft

5 lb∙ft

15 lb∙ft

15 lb∙ft

15 lb∙ft

15 lb∙ft

80 lb∙ft
25 lb∙ft

10 lb

10 lb

10 lb

10 lb

10 lb

y

z

O

H

A

C

J

I

B
D

G

x

F

E

2 ft

2 ft
2 ft

1 ft

2.5 ft

 3.79 Four forces act on a 700 3 375-mm plate as shown. (a) Find the 
resultant of these forces. (b) Locate the two points where the line of 
action of the resultant intersects the edge of the plate.

A B

D E
C

500 N

600 N

760 N

340 N

500 mm
200 mm

375 mm

Fig. P3.79
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 3.80 A 32-lb motor is mounted on the floor. Find the resultant of the 
weight and the forces exerted on the belt, and determine where the 
line of action of the resultant intersects the floor.

Fig. P3.80

140 lb

308

60 lb

O

W

2 in.

2 in.

 3.81 A couple of magnitude M 5 54 lb·in. and the three forces shown 
are applied to an angle bracket. (a) Find the resultant of this system 
of forces. (b) Locate the points where the line of action of the resul-
tant intersects line AB and line BC.

Fig. P3.81

A B

C

10 lb 30 lb

608
12 in.

45 lb

M 8 in.

 3.82 A truss supports the loading shown. Determine the equivalent force 
acting on the truss and the point of intersection of its line of action 
with a line drawn through points A and G.

Fig. P3.82

C

A

B D F

E

G

240 lb 160 lb 300 lb

408

180 lb

708

x

y
4 ft

8 ft 8 ft

8 ft 8 ft 8 ft

6 ft

 3.83 A machine component is subjected to the forces and couples shown. 
The component is to be held in place by a single rivet that can resist 
a force but not a couple. For P 5 0, determine the location of the 
rivet hole if it is to be located (a) on line FG, (b) on line GH.

 3.84 Solve Prob. 3.83, assuming that P 5 60 N.Fig. P3.83

C

A B

D
F

E

G H

P

200 N
240 mm

120 N

708
158

50 mm

50 mm

50 mm

80 N
42 N∙m

40 N∙m 180 mm

640 mm

520 mm
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 3.85 As an adjustable brace BC is used to bring a wall into plumb, the 
force-couple system shown is exerted on the wall. Replace this force-
couple system with an equivalent force-couple system at A if R 5 
21.2 lb and M 5 13.25 lb·ft.

Fig. P3.85

A

B

R

M

C

x

y

z

64 in.

96 in.

42 in.

48 in.

 3.86 As plastic bushings are inserted into a 60-mm-diameter cylindrical 
sheet metal enclosure, the insertion tools exert the forces shown on the 
enclosure. Each of the forces is parallel to one of the coordinate axes. 
Replace these forces with an equivalent force-couple system at C.

Fig. P3.86

x

y

z

A
B

C

D

20 mm

30 mm

17 N 12 N

21 N
16 N

80 mm

60 mm
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 3.87 A machine component is subjected to the forces shown, each of 
which is parallel to one of the coordinate axes. Replace these forces 
with an equivalent force-couple system at A.

 3.88 A mechanic uses a crowfoot wrench to loosen a bolt at C. The 
mechanic holds the socket wrench handle at points A and B and 
applies forces at these points. Knowing that these forces are equiva-
lent to a force-couple system at C consisting of the force C 5  
2(8 lb)i 1 (4 lb)k and the couple MC 5 (360 lb·in.)i, determine the 
forces applied at A and at B when Az 5 2 lb.

 3.89 In order to unscrew the tapped faucet A, a plumber uses two pipe 
wrenches as shown. By exerting a 40-lb force on each wrench, at a 
distance of 10 in. from the axis of the pipe and in a direction per-
pendicular to the pipe and to the wrench, he prevents the pipe from 
rotating, and thus avoids loosening or further tightening the joint 
between the pipe and the tapped elbow C. Determine (a) the angle 
θ that the wrench at A should form with the vertical if elbow C is 
not to rotate about the vertical, (b) the force-couple system at C 
equivalent to the two 40-lb forces when this condition is satisfied.

Fig. P3.89

40 lb

40 lb

y

x
z

25 in.

18 in.

7.5 in.

10 in.

θ

10 in.

A

B

C

D

E

F

7.5 in.

 3.90 Assuming θ = 60° in Prob. 3.89, replace the two 40-lb forces with 
an equivalent force-couple system at D and determine whether the 
plumber’s action tends to tighten or loosen the joint between (a) pipe 
CD and elbow D, (b) elbow D and pipe DE. Assume all threads to 
be right-handed.

Fig. P3.88

2 in.

8 in.

10 in.

Ax

Ay

Az

Bx

By

Bz

A

Bx

y

C

z

Fig. P3.87

240 N

150 N

300 N

125 N

y

x

z

50 mm

60 mm
75 mm

90 mm

30 mm A

O

B

C

D
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 3.91 A blade held in a brace is used to tighten a screw at A. (a) Determine 
the forces exerted at B and C, knowing that these forces are equiva-
lent to a force-couple system at A consisting of R = 2(30 N)i + Ryj 
+ Rzk and M = –(12 N · m)i. (b) Find the corresponding values of 
Ry and Rz. (c) What is the orientation of the slot in the head of the 
screw for which the blade is least likely to slip when the brace is in 
the position shown?

Fig. P3.91

x

B

Czk

Cx i
Cy j

2B k

200 mm

200 mm

150 mm

y

z

A

C

 3.92 Four signs are mounted on a frame spanning a highway, and the 
magnitudes of the horizontal wind forces acting on the signs are as 
shown. Determine the magnitude and the point of application of the 
resultant of the four wind forces when a = 1 ft and b = 12 ft.

Fig. P3.92 and P3.93

D

A

B

C x

y

z

E

F

G

H

a

2.5 ft

90 lb

160 lb

50 lb

105 lb

9 ft

5.5 ft

b

5 ft

8 ft

3 ft

 3.93 Four signs are mounted on a frame spanning a highway, and the 
magnitudes of the horizontal wind forces acting on the signs are as 
shown. Determine a and b so that the point of application of the 
resultant of the four forces is at G.
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 3.94 A concrete foundation mat of 5-m radius supports four equally 
spaced columns, each of which is located 4 m from the center of the 
mat. Determine the magnitude and the point of application of the 
resultant of the four loads.

Fig. P3.94

z

x

y

125 kN

25 kN

75 kN
100 kN

5 m
O

 3.95 Three children are standing on a 5 3 5-m raft. If the weights of the 
children at points A, B, and C are 375 N, 260 N, and 400 N, respec-
tively, determine the magnitude and the point of application of the 
resultant of the three weights.

Fig. P3.95 and P3.96

A
B

C
x

y

z

E

F

G

O
0.5 m

0.25 m 0.25 m

1.5 m

1 m

2 m

 3.96 Three children are standing on a 5 3 5-m raft. The weights of the 
children at points A, B, and C are 375 N, 260 N, and 400 N, respec-
tively. If a fourth child of weight 425 N climbs onto the raft, deter-
mine where she should stand if the other children remain in the 
positions shown and the line of action of the resultant of the four 
weights is to pass through the center of the raft.
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Review and Summary
Principle of Transmissibility
In this chapter, we presented the effects of forces exerted on a rigid body. We 
began by distinguishing between external and internal forces [Sec. 3.1A]. 
We then explained that, according to the principle of transmissibility, the 
effect of an external force on a rigid body remains unchanged if we move that 
force along its line of action [Sec. 3.1B]. In other words, two forces F and F9 
acting on a rigid body at two different points have the same effect on that 
body if they have the same magnitude, same direction, and same line of action 
(Fig. 3.41). Two such forces are said to be equivalent.

Vector Product
Before proceeding with the discussion of equivalent systems of forces, we 
introduced the concept of the vector product of two vectors [Sec. 3.1C]. We 
defined the vector product

V 5 P 3 Q

of the vectors P and Q as a vector perpendicular to the plane containing P and 
Q (Fig. 3.42) with a magnitude of 

 V 5 PQ sin θ (3.1)

and directed in such a way that a person located at the tip of V will observe 
the rotation to be counterclockwise through θ, bringing the vector P in line 
with the vector Q. The three vectors P, Q, and V—taken in that order—are 
said to form a right-handed triad. It follows that the vector products Q 3 P 
and P 3 Q are represented by equal and opposite vectors: 

 Q 3 P 5 2(P 3 Q) (3.4)

It also follows from the definition of the vector product of two vectors that 
the vector products of the unit vectors i, j, and k are

i 3 i 5 0   i 3 j 5 k   j 3 i 5 2k

and so on. You can determine the sign of the vector product of two unit vec-
tors by arranging in a circle and in counterclockwise order the three letters 
representing the unit vectors (Fig. 3.43): The vector product of two unit vec-
tors is positive if they follow each other in counterclockwise order and nega-
tive if they follow each other in clockwise order.

Rectangular Components of Vector Product
The rectangular components of the vector product V of two vectors P and 
Q are expressed [Sec. 3.1D] as

Vx 5 PyQz 2 PzQy

 Vy 5 PzQx 2 PxQz (3.9)
Vz 5 PxQy 2 PyQx

F

F9

5

Fig. 3.41

Q

P

V 5 P 3 Q

θ

(a)

V

(b)

Fig. 3.42

i

j

k

Fig. 3.43
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We can also express the components of a vector product as a determinant:

 V 5 ∣ i j k
Px Py Pz

Qx Qy Qz
∣  (3.10)

Moment of a Force about a Point
We defined the moment of a force F about a point O [Sec. 3.1E] as the 
vector product

 MO 5 r 3 F (3.11)

where r is the position vector drawn from O to the point of application A of 
the force F (Fig.  3.44). Denoting the angle between the lines of action of r 
and F as θ, we found that the magnitude of the moment of F about O is

 MO 5 rF sin θ 5 Fd (3.12)

where d represents the perpendicular distance from O to the line of action of F.

Rectangular Components of Moment
The rectangular components of the moment MO of a force F [Sec. 3.1F] are

Mx 5 yFz 2 zFy

 My 5 zFx 2 xFz (3.18)
Mz 5 xFy 2 yFx

where x, y, and z are the components of the position vector r (Fig.  3.45). 
Using a determinant form, we also wrote

 MO 5 ∣ i j k
x y z

Fx Fy Fz
∣  (3.19)

In the more general case of the moment about an arbitrary point B of a force 
F applied at A, we had

 MB 5 ∣ i j k
xA/B yA/B zA/B
Fx Fy Fz

∣  (3.21)

where xA/B, yA/B, and zA/B denote the components of the vector rA/B:

xA/B 5 xA 2 xB   yA/B 5 yA 2 yB   zA/B 5 zA 2 zB

In the case of problems involving only two dimensions, we can assume the force F 
lies in the xy plane. Its moment MB about a point B in the same plane is 
perpendicular to that plane (Fig. 3.46) and is completely defined by the scalar

 MB 5 (xA 2 xB)Fy 2 (yA 2 yB)Fx (3.23)

Various methods for computing the moment of a force about a point were 
illustrated in Sample Probs. 3.1 through 3.4.

Scalar Product of Two Vectors
The scalar product of two vectors P and Q [Sec. 3.2A], denoted by P ? Q, 
is defined as the scalar quantity

 P ? Q 5 PQ cos θ (3.24)

MO

d A

F
r

θ
O

Fig. 3.44

Fy j

Fx i

Fz k
x

y

z

O

zk

y j

x i
r

A (x, y, z)

Fig. 3.45

y

x

z

O
B

Fy j

Fx i

F

A

(yA 2 yB)j

(xA 2 xB)i

rA/B

MB 5 MB k

Fig. 3.46
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where θ is the angle between P and Q (Fig.  3.47). By expressing the scalar 
product of P and Q in terms of the rectangular components of the two vectors, 
we determined that

 P ? Q 5 PxQx 1 PyQy 1 PzQz (3.28)

Projection of a Vector on an Axis
We obtain the projection of a vector P on an axis OL (Fig. 3.48) by forming 
the scalar product of P and the unit vector λ along OL. We have

 POL 5 P ? λ (3.34)

Using rectangular components, this becomes

 POL 5 Px cos θx 1 Py cos θy 1 Pz cos θz (3.35)

where θx, θy, and θz denote the angles that the axis OL forms with the coor-
dinate axes.

Mixed Triple Product of Three Vectors
We defined the mixed triple product of the three vectors S, P, and Q as the 
scalar expression

 S ? (P 3 Q) (3.36)

obtained by forming the scalar product of S with the vector product of P and 
Q [Sec. 3.2B]. We showed that

 S ? (P 3 Q) 5 ∣ Sx Sy Sz

Px Py Pz

Qx Qy Qz
∣  (3.39)

where the elements of the determinant are the rectangular components of the 
three vectors.

Moment of a Force about an Axis
We defined the moment of a force F about an axis OL [Sec. 3.2C] as the 
projection OC on OL of the moment MO of the force F (Fig.  3.49), i.e., as 
the mixed triple product of the unit vector λ, the position vector r, and the 
force F:

 MOL 5 λ ? MO 5 λ ? (r 3 F) (3.40)

y

x

z

r

L

A

C

O

MO

F

λ

Fig. 3.49

Q

P

θ

Fig. 3.47

y

x

z

O

A

P

L

λ θx

θy

θz

Fig. 3.48
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Force-Couple System
Any force F acting at a point A of a rigid body can be replaced by a force-
couple system at an arbitrary point O consisting of the force F applied at O 

The determinant form for the mixed triple product is

 MOL 5 ∣ λx
λy λz

x y z

Fx Fy Fz
∣  (3.41)

where
 λx, λy, λz 5 direction cosines of axis OL
 x, y, z 5 components of r
 Fx, Fy, Fz 5 components of F

An example of determining the moment of a force about a skew axis appears 
in Sample Prob. 3.5.

Couples
Two forces F and 2F having the same magnitude, parallel lines of action, 
and opposite sense are said to form a couple [Sec. 3.3A]. The moment of a 
couple is independent of the point about which it is computed; it is a vector M 
perpendicular to the plane of the couple and equal in magnitude to the product 
of the common magnitude F of the forces and the perpendicular distance d 
between their lines of action (Fig. 3.50).

2F

F
d

M

Fig. 3.50

Two couples having the same moment M are equivalent, i.e., they have the 
same effect on a given rigid body [Sec. 3.3B]. The sum of two couples is 
itself a couple [Sec. 3.3C], and we can obtain the moment M of the resultant 
couple by adding vectorially the moments M1 and M2 of the original couples 
[Sample Prob. 3.6]. It follows that we can represent a couple by a vector, 
called a couple vector, equal in magnitude and direction to the moment M 
of the couple [Sec. 3.3D]. A couple vector is a free vector that can be attached 
to the origin O if so desired and resolved into components (Fig. 3.51).

y

x

z

–F
F

(a)

d

O
5

(b)

y

x

z

O

M
(M 5 Fd)

5

(c)

y

x

z

O

M

5

(d)

x

O

My

MxMz

y

z

Fig. 3.51
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and a couple of moment MO, which is equal to the moment about O of the 
force F in its original position [Sec. 3.3E]. Note that the force F and the couple 
vector MO are always perpendicular to each other (Fig. 3.52).

O

MO

r

A A

FF

O5
Fig. 3.52

Reduction of a System of Forces to a  
Force-Couple System
It follows [Sec. 3.4A] that any system of forces can be reduced to a force-
couple system at a given point O by first replacing each of the forces of the 
system by an equivalent force-couple system at O (Fig. 3.53) and then adding 
all of the forces and all of the couples to obtain a resultant force R and a 
resultant couple vector MR

O [Sample Probs. 3.8 through 3.11]. In general, the 
resultant R and the couple vector MR

O will not be perpendicular to each other.

(a)

F1

F2

F3r2
r3

A2

A3

O
r1

A1

5

(b)

F1

F2

M1

M2

M3

O

F3

5

(c)

R

MO
R

O

Fig. 3.53

Equivalent Systems of Forces
We concluded [Sec. 3.4B] that, as far as rigid  bodies are concerned, two 
systems of forces, F1, F2, F3, . . . and F91, F92, F93, . . . , are equivalent if, and 
only if,

 oF 5 oF9   and   oMO 5 oM9O (3.55)

Further Reduction of a System of Forces
If the resultant force R and the resultant couple vector MR

O are perpendicular 
to each other, we can further reduce the force-couple system at O to a single 
resultant force [Sec. 3.4C]. This is the case for systems consisting of 
(a) concurrent forces (cf. Chap. 2), (b) coplanar forces [Sample Probs. 3.8 
and 3.9], or (c) parallel forces [Sample Prob. 3.11]. If the resultant R and the 
couple vector MR

O are not perpendicular to each other, the system cannot be 
reduced to a single force.
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Review Problems
 3.97 For the shift lever shown, determine the magnitude and the direction of 

the smallest force P that has a 210-lb·in. clockwise moment about B.

 3.98 Consider the volleyball net shown. Determine the angle formed by 
guy wires AB and AC.

Fig. P3.98

x

y

z

A

B

C

D

2 ft

1 ft

8 ft

6.5 ft

4 ft

6 ft

 3.99 A crane is oriented so that the end of the 25-m boom AO lies in 
the yz plane. At the instant shown, the tension in cable AB is 4 kN. 
Determine the moment about each of the coordinate axes of the force 
exerted on A by cable AB.

Fig. P3.99 and P3.100

A

C B

y

2.5 m

15 m

O
x

z

 3.100 The 25-m crane boom AO lies in the yz plane. Determine the 
maximum permissible tension in cable AB if the absolute value of 
moments about the coordinate axes of the force exerted on A by 
cable AB must be as follows: 

  |Mx| ≤ 60 kN ? m, |My| ≤ 12 kN ? m, |Mz| ≤ 8 kN ? m.

Fig. P3.97

A

B

P
α

8 in.

22 in.
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 3.101 A single force P acts at C in a direction perpendicular to the handle BC 
of the crank shown. Determine the moment Mx of P about the x axis 
when θ 5 65°, knowing that My 5 215 N·m and Mz 5 236 N·m.

Fig. P3.101

y

O

B

A

C
ϕ

θ

100 mm

200 mm

150 mm

P

x
z

 3.102 While tapping a hole, a machinist applies the horizontal forces 
shown to the handle of the tap wrench. Show that these forces are 
equivalent to a single force, and specify, if possible, the point of 
application of the single force on the handle.

Fig. P3.102

A

B

C

3.2 in.

2.8 in.

2.9 lb

2.65 lb 258

258

x

y

z

D

 3.103 A 500-N force is applied to a bent plate as shown. Determine (a) an 
equivalent force-couple system at B, (b) an equivalent system formed 
by a vertical force at A and a force at B.

Fig. P3.103

A

B

300 mm

175 mm

75 mm

125 mm

500 N

308
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 3.104 A force and a couple are applied as shown to the end of a cantilever 
beam. (a) Replace this system with a single force F applied at point 
C, and determine the distance d from C to a line drawn through 
points D and E. (b) Solve part a if the directions of the two 360-N 
forces are reversed.

 3.105 Slider P can move along rod OA. An elastic cord PC is attached to 
the slider and to the vertical member BC. Knowing that the distance 
from O to P is 6 in. and that the tension in the cord is 3 lb, deter-
mine (a) the angle between the elastic cord and the rod OA, (b) the 
projection on OA of the force exerted by cord PC at point P.

x

y

z

A

B

C
P

O

12 in.

6 in.

9 in.

15 in.

12 in.

12 in.

Fig. P3.105 and P3.106

 3.106 Slider P can move along rod OA. An elastic cord PC is attached to 
the slider and to the vertical member BC. Determine the distance 
from O to P for which cord PC and rod OA are perpendicular.

 3.107 A 160-lb force P is applied at point A of a structural member. 
Replace P with (a) an equivalent force-couple system at C, (b) an 
equivalent system consisting of a vertical force at B and a second 
force at D.

 3.108 A regular tetrahedron has six edges of length a. A force P is 
directed as shown along edge BC. Determine the moment of P about  
edge OA.

x

y

z

O

A

B

C

P

Fig. P3.108

A

B C

D

P

608

1.25 ft

1.5 ft

2 ft 4 ft

Fig. P3.107

Fig. P3.104

450 mm

150 mm

360 N

360 N

B

d

D

600 N

E

C

A

y

xz
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The Tianjin Eye is a Ferris wheel that straddles a bridge over the 

Hai River in China. The structure is designed so that the support 

reactions at the wheel bearings as well as those at the base of 

the frame maintain equilibrium under the effects of vertical 

gravity and horizontal wind forces.

Equilibrium of Rigid 
Bodies

4
© View Stock/Getty Images RF
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Introduction
We saw in Chapter 3 how to reduce the external forces acting on a rigid 
body to a force-couple system at some arbitrary point O. When the force 
and the couple are both equal to zero, the external forces form a system 
equivalent to zero, and the rigid body is said to be in equilibrium. 

We can obtain the necessary and sufficient conditions for the equi-
librium of a rigid body by setting R and MR

O equal to zero in the relations 
of Eq. (3.50) of Sec. 3.4A:

 oF 5 0   oMO 5 o (r 3 F) 5 0 (4.1)

Resolving each force and each moment into its rectangular components, 
we can replace these vector equations for the equilibrium of a rigid body 
with the following six scalar equations:

 oFx 5 0 oFy 5 0 oFz 5 0 (4.2)
 oMx 5 0   oMy 5 0   oMz 5 0 (4.3)

We can use these equations to determine unknown forces applied to the 
rigid body or unknown reactions exerted on it by its supports. Note that 
Eqs. (4.2) express the fact that the components of the external forces in 
the x, y, and z directions are balanced; Eqs. (4.3) express the fact that the 
moments of the external forces about the x, y, and z axes are balanced. 
Therefore, for a rigid body in equilibrium, the system of external forces 
imparts no translational or rotational motion to the body.

In order to write the equations of equilibrium for a rigid body, we 
must first identify all of the forces acting on that body and then draw the 
corresponding free-body diagram. In this chapter, we first consider the 
equilibrium of two-dimensional structures subjected to forces contained in 
their planes and study how to draw their free-body diagrams. In addition to 
the forces applied to a structure, we must also consider the reactions exerted 
on the structure by its supports. A specific reaction is associated with each 
type of support. You will see how to determine whether the structure is 

Introduction

Free-Body Diagrams

 4.1 EQUILIBRIUM IN TWO 
DIMENSIONS

 4.1A Reactions for a Two-
Dimensional Structure

 4.1B Rigid-Body Equilibrium 
in Two Dimensions

 4.1C Statically Indeterminate 
Reactions and Partial 
Constraints

 4.2 TWO SPECIAL CASES
 4.2A Equilibrium of a Two-Force 

Body
 4.2B Equilibrium of a Three-Force 

Body

 4.3 EQUILIBRIUM IN THREE 
DIMENSIONS

 4.3A Rigid-Body Equilibrium 
in Three Dimensions

 4.3B Reactions for a Three-
Dimensional Structure

 4.4 FRICTION FORCES
 4.4A The Laws of Dry Friction
 4.4B Coefficients of Friction
 4.4C Angles of Friction
 4.4D Problems Involving Dry  

Friction

Objectives
• Analyze the static equilibrium of rigid bodies in two 

and three dimensions.

• Consider the attributes of a properly drawn free-body 
diagram, an essential tool for the equilibrium analysis 
of rigid bodies.

• Examine rigid bodies supported by statically indeter-
minate reactions and partial constraints.

• Study two cases of particular interest: the equilibrium 
of two-force and three-force bodies.

• Examine the laws of dry friction and use these to 
consider the equilibrium of rigid bodies where friction 
exists at contact surfaces.
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properly supported, so that you can know in advance whether you can solve 
the equations of equilibrium for the unknown forces and reactions.

Later in this chapter, we consider the equilibrium of three-dimensional 
structures, and we provide the same kind of analysis to these structures and 
their supports. This will be followed by a discussion of equilibrium of rigid 
bodies supported on surfaces in which friction acts to restrain motion of one 
surface with respect to the other.

Free-Body Diagrams
In solving a problem concerning a rigid body in equilibrium, it is essential 
to consider all of the forces acting on the body. It is equally important to 
exclude any force that is not directly applied to the body. Omitting a force 
or adding an extraneous one would destroy the conditions of equilibrium. 
Therefore, the first step in solving the problem is to draw a free-body 
diagram of the rigid body under consideration. 

We have already used free-body diagrams on many occasions in 
Chap. 2. However, in view of their importance to the solution of equilib-
rium problems, we summarize here the steps you must follow in drawing 
a correct free-body diagram.

 1. Start with a clear decision regarding the choice of the free body to be 
analyzed. Mentally, you need to detach this body from the ground and 
separate it from all other bodies. Then you can sketch the contour of 
this isolated body.

Photo 4.1 A tractor supporting a bucket load. As shown, its 
free-body diagram should include all external forces acting on 
the tractor.

 McGraw-Hill Education/Lucinda Dowell, photographer

LoadBoom weightAxes

Body

y

Body weight

Reactions

Front wheel reactionRear wheel reaction, vertical

Rear wheel reaction, horizontal

x
Bucket load

Tractor weight

Photo 4.2 Tractor bucket and boom. In 
Chap. 6, we will see how to determine the 
internal forces associated with interconnected 
members such as these using free-body 
diagrams like the one shown.

© McGraw-Hill Education/Lucinda Dowell, photographer

Load

Boom weight

Piston reaction

Body

Body weight

Reactions

Bucket load

Boom reaction, vertical
Boom reaction, horizontal
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 2. Indicate all external forces on the free-body diagram. These forces rep-
resent the actions exerted on the free body by the ground and by the 
bodies that have been detached. In the diagram, apply these forces at 
the various points where the free body was supported by the ground or 
was connected to the other bodies. Generally, you should include the 
weight of the free body among the external forces, since it represents 
the attraction exerted by the earth on the various particles forming the 
free body. You will see in Chapter 5 that you should draw the weight 
so it acts at the center of gravity of the body. If the free body is made 
of several parts, do not include the forces the various parts exert on 
each other among the external forces. These forces are internal forces 
as far as the free body is concerned.

 3. Clearly mark the magnitudes and directions of the known external forces 
on the free-body diagram. Recall that when indicating the directions 
of these forces, the forces are those exerted on, and not by, the free 
body. Known external forces generally include the weight of the free 
body and forces applied for a given purpose.

 4. Unknown external forces usually consist of the reactions through which 
the ground and other bodies oppose a possible motion of the free body. 
The reactions constrain the free body to remain in the same position; 
for that reason, they are sometimes called constraining forces. Reactions 
are exerted at the points where the free body is supported by or con-
nected to other bodies; you should clearly indicate these points. Reac-
tions are discussed in detail in Secs. 4.1 and 4.3.

 5. The free-body diagram should also include dimensions, since these may 
be needed for computing moments of forces. Any other detail, however, 
should be omitted.

4.1  EQUILIBRIUM IN TWO 
DIMENSIONS

In the first part of this chapter, we consider the equilibrium of two-dimensional 
structures; i.e., we assume that the structure being analyzed and the forces 
applied to it are contained in the same plane. Clearly, the reactions needed 
to maintain the structure in the same position are also contained in this plane.

4.1A  Reactions for a Two-Dimensional 
Structure

The reactions exerted on a two-dimensional structure fall into three cat-
egories that correspond to three types of supports or connections.

 1. Reactions Equivalent to a Force with a Known Line of Action. Sup-
ports and connections causing reactions of this type include rollers, 
rockers, frictionless surfaces, short links and cables, collars on friction-
less rods, and frictionless pins in slots. Each of these supports and 
connections can prevent motion in one direction only. Figure 4.1 shows 
these supports and connections together with the reactions they produce. 
Each reaction involves one unknown––specifically, the magnitude of the 
reaction. In problem solving, you should denote this magnitude by an 
appropriate letter. The line of action of the reaction is known and should 
be indicated clearly in the free-body diagram. 
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   The sense of the reaction must be as shown in Fig. 4.1 for cases of 
a frictionless surface (toward the free body) or a cable (away from the 
free body). The reaction can be directed either way in the cases of 
double-track rollers, links, collars on rods, or pins in slots. Generally, we 
assume that single-track rollers and rockers are reversible, so the cor-
responding reactions can be directed either way.

 2. Reactions Equivalent to a Force of Unknown Direction and Magni-
tude. Supports and connections causing reactions of this type include 

Fig. 4.1 Reactions of supports and connections in two dimensions.

Support or Connection Reaction Number of
Unknowns

Rollers Rocker Frictionless
surface

Force with known
line of action
perpendicular

to surface

Force with known
line of action

along cable or link

Force with known
line of action
perpendicular
to rod or slot

1

1

1

Short cable Short link

Collar on
frictionless rod Frictionless pin in slot

908

Frictionless pin
or hinge

Rough surface Force of unknown
direction

or

or

2

Fixed support Force and couple

This rocker bearing
supports the weight
of a bridge. The
convex surface of
the rocker allows the
bridge to move
slightly horizontally.

Links are often used
to support suspended
spans of highway
bridges.

Force applied to the
slider exerts a
normal force on the
rod, causing the
window to open.

Pin supports are
common on bridges
and overpasses.

This cantilever 
support is fixed at one
end and extends out
into space at the
other end.

3

α

α

Courtesy of Godden Collection. National 
Information Service for Earthquake Engineer-
ing, University of California, Berkeley

Courtesy of Michigan Department of 
Transportation

© McGraw-Hill Education/Lucinda Dowell, 
photographer

Courtesy of Michigan Department of 
Transportation

© Richard Ellis/Alamy
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frictionless pins in fitted holes, hinges, and rough surfaces. They can 
prevent translation of the free body in all directions, but they cannot 
prevent the body from rotating about the connection. Reactions of this 
group involve two unknowns and are usually represented by their x and 
y components. In the case of a rough surface, the component normal to 
the surface must be directed away from the surface.

 3. Reactions Equivalent to a Force and a Couple. These reactions are 
caused by fixed supports that oppose any motion of the free body and 
thus constrain it completely. Fixed supports actually produce forces over 
the entire surface of contact; these forces, however, form a system that 
can be reduced to a force and a couple. Reactions of this group involve 
three unknowns usually consisting of the two components of the force 
and the moment of the couple.
When the sense of an unknown force or couple is not readily appar-

ent, do not attempt to determine it. Instead, arbitrarily assume the sense 
of the force or couple; the sign of the answer will indicate whether the 
assumption is correct or not. (A positive answer means the assumption is 
correct, while a negative answer means the assumption is incorrect.)

4.1B  Rigid-Body Equilibrium  
in Two Dimensions

The conditions stated in Sec. 4.1A for the equilibrium of a rigid body 
become considerably simpler for the case of a two-dimensional structure. 
Choosing the x and y axes to be in the plane of the structure, we have

Fz 5 0   Mx 5 My 5 0   Mz 5 MO

for each of the forces applied to the structure. Thus, the six equations of 
equilibrium stated in Sec. 4.1 reduce to three equations:
 oFx 5 0   oFy 5 0   oMO 5 0 (4.4)

Since oMO 5 0 must be satisfied regardless of the choice of the origin O, 
we can write the equations of equilibrium for a two-dimensional structure 
in the more general form

Equations of equilibrium in two dimensions

 oFx 5 0   oFy 5 0   oMA 5 0 (4.5)

where A is any point in the plane of the structure. These three equations 
can be solved for no more than three unknowns.

You have just seen that unknown forces include reactions and that 
the number of unknowns corresponding to a given reaction depends upon 
the type of support or connection causing that reaction. Referring to 
Fig. 4.1, note that you can use the equilibrium equations (4.5) to determine 
the reactions associated with two rollers and one cable, or one fixed 
support, or one roller and one pin in a fitted hole, etc.

For example, consider Fig. 4.2a, in which the truss shown is in equi-
librium and is subjected to the given forces P, Q, and S. The truss is held 
in place by a pin at A and a roller at B. The pin prevents point A from moving 
by exerting a force on the truss that can be resolved into the components Ax 
and Ay. The roller keeps the truss from rotating about A by exerting the 
vertical force B. The free-body diagram of the truss is shown in Fig. 4.2b; 
it includes the reactions Ax, Ay, and B as well as the applied forces P, Q, 
and S (in x and y component form) and the weight W of the truss. 

C

A B

D

P Q S

(a)

C

A B

D

(b)

Py Qy Qx

Sy
Sx

W

Px

B

Ax

Ay

Fig. 4.2 (a) A truss supported by a pin and 
a roller; (b) free-body diagram of the truss.
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Since the truss is in equilibrium, the sum of the moments about A of all 
of the forces shown in Fig. 4.2b is zero, or oMA 5 0. We can use this equation 
to determine the magnitude B because the equation does not contain Ax or Ay. 
Then, since the sum of the x components and the sum of the y components 
of the forces are zero, we write the equations oFx 5 0 and oFy 5 0. From 
these equations, we can obtain the components Ax and Ay, respectively.

We could obtain an additional equation by noting that the sum of 
the moments of the external forces about a point other than A is zero. We 
could write, for instance, oMB 5 0. This equation, however, does not 
contain any new information, because we have already established that the 
system of forces shown in Fig. 4.2b is equivalent to zero. The additional 
equation is not independent and cannot be used to determine a fourth 
unknown. It can be useful, however, for checking the solution obtained 
from the original three equations of equilibrium.

Although the three equations of equilibrium cannot be augmented 
by additional equations, any of them can be replaced by another equation. 
Properly chosen, the new system of equations still describes the equilib-
rium conditions but may be easier to work with. For example, an alterna-
tive system of equations for equilibrium is

 oFx 5 0   oMA 5 0   oMB 5 0 (4.6)

Here the second point about which the moments are summed (in this case, 
point B) cannot lie on the line parallel to the y axis that passes through 
point A (Fig. 4.2b). These equations are sufficient conditions for the equi-
librium of the truss. The first two equations indicate that the external forces 
must reduce to a single vertical force at A. Since the third equation requires 
that the moment of this force be zero about a point B that is not on its line 
of action, the force must be zero, and the rigid body is in equilibrium.

A third possible set of equilibrium equations is

 oMA 5 0   oMB 5 0   oMC 5 0 (4.7)

where the points A, B, and C do not lie in a straight line (Fig. 4.2b). The first 
equation requires that the external forces reduce to a single force at A; the 
second equation requires that this force pass through B; and the third equation 
requires that it pass through C. Since the points A, B, C do not lie in a straight 
line, the force must be zero, and the rigid body is in equilibrium.

Notice that the equation oMA 5 0, stating that the sum of the moments 
of the forces about pin A is zero, possesses a more definite physical meaning 
than either of the other two equations (4.7). These two equations express a 
similar idea of balance but with respect to points about which the rigid body 
is not actually hinged. They are, however, as useful as the first equation. The 
choice of equilibrium equations should not be unduly influenced by their 
physical meaning. Indeed, in practice, it is desirable to choose equations of 
equilibrium containing only one unknown, since this eliminates the necessity 
of solving simulta neous equations. You can obtain equations containing only 
one unknown by summing moments about the point of intersection of the lines 
of action of two unknown forces or, if these forces are parallel, by summing 
force components in a direction perpendicular to their common direction. 

For example, in Fig. 4.3, in which the truss shown is held by rollers 
at A and B and a short link at D, we can eliminate the reactions at A and B 
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D

D

P Q S
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C

A B

D

(b)

Py Qy
Qx

Sy
Sx

A

W

Px

B

Fig. 4.3 (a) A truss supported by two rollers 
and a short link; (b) free-body diagram of 
the truss.
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by summing x components. We can eliminate the reactions at A and D by 
summing moments about C and the reactions at B and D by summing 
moments about D. The resulting equations are

oFx 5 0   oMC 5 0   oMD 5 0

Each of these equations contains only one unknown.

4.1C  Statically Indeterminate 
Reactions and Partial Constraints

In the two examples considered in Figs. 4.2 and 4.3, the types of supports 
used were such that the rigid body could not possibly move under the 
given loads or under any other loading conditions. In such cases, the rigid 
body is said to be completely constrained. Recall that the reactions cor-
responding to these supports involved three unknowns and could be deter-
mined by solving the three equations of equilibrium. When such a situation 
exists, the reactions are said to be statically determinate.

Consider Fig.  4.4a, in which the truss shown is held by pins at A 
and B. These supports provide more constraints than are necessary to keep 
the truss from moving under the given loads or under any other loading 
conditions. Note from the free-body diagram of Fig.  4.4b that the corre-
sponding reactions involve four unknowns. We pointed out in Sec. 4.1D 
that only three independent equilibrium equations are available; therefore, 
in this case, we have more unknowns than equations. As a result, we cannot 
determine all of the unknowns. The equations oMA 5 0 and oMB 5 0 
yield the vertical components By and Ay, respectively, but the equation 
oFx 5 0 gives only the sum Ax 1 Bx of the horizontal components of the 
reactions at A and B. The components Ax and Bx are statically indeterminate. 
We could determine their magnitudes by considering the deformations pro-
duced in the truss by the given loading, but this method is beyond the 
scope of statics and belongs to the study of mechanics of materials.

Let’s consider the opposite situation. The supports holding the truss 
shown in Fig. 4.5a consist of rollers at A and B. Clearly, the constraints pro-
vided by these supports are not sufficient to keep the truss from moving. 
Although they prevent any vertical motion, the truss is free to move horizon-
tally. The truss is said to be partially constrained.† From the free-body dia-
gram in Fig.  4.5b, note that the reactions at A and B involve only two 
unknowns. Since three equations of equilibrium must still be satisfied, we have 
fewer unknowns than equations. In such a case, one of the equilibrium equa-
tions will not be satisfied in general. The equations oMA 5 0 and oMB 5 0 
can be satisfied by a proper choice of reactions at A and B, but the equation 
oFx 5 0 is not satisfied unless the sum of the horizontal components of the 
applied forces happens to be zero. We thus observe that the equilibrium of 
the truss of Fig. 4.5 cannot be maintained under general loading conditions.

From these examples, it would appear that, if a rigid body is to be 
completely constrained and if the reactions at its supports are to be statically 
determinate, there must be as many unknowns as there are equations of 
equilibrium. When this condition is not satisfied, we can be certain that either 
the rigid body is not completely constrained or that the reactions at its supports 

†Partially constrained bodies are often referred to as unstable. However, to avoid confusion 
between this type of instability, due to insufficient constraints, and the type of instability 
considered in Chap. 16, which relates to the behavior of columns, we shall restrict the use 
of the words stable and unstable to the latter case.
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Fig. 4.4 (a) Truss with statically 
indeterminate reactions; (b) free-body 
diagram.
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Fig. 4.5 (a) Truss with partial constraints; 
(b) free-body diagram.
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are not statically determinate. It is also possible that the rigid body is not 
completely constrained and that the reactions are statically indeterminate.

You should note, however, that, although this condition is necessary, it 
is not sufficient. In other words, the fact that the number of unknowns is equal 
to the number of equations is no guarantee that a body is completely con-
strained or that the reactions at its supports are statically determinate. Consider 
Fig. 4.6a, which shows a truss held by rollers at A, B, and E. We have three 
unknown reactions of A, B, and E (Fig. 4.6b), but the equation oFx 5 0 is 
not satisfied unless the sum of the horizontal components of the applied forces 
happens to be zero. Although there are a sufficient number of constraints, these 
constraints are not properly arranged, so the truss is free to move horizontally. 
We say that the truss is improperly constrained. Since only two equilibrium 
equations are left for determining three unknowns, the reactions are statically 
indeterminate. Thus, improper constraints also produce static indeterminacy.

The truss shown in Fig. 4.7 is another example of improper constraints—
and of static indeterminacy. This truss is held by a pin at A and by rollers 
at B and C, which altogether involve four unknowns. Since only three inde-
pendent equilibrium equations are available, the reactions at the supports are 
statically indeterminate. On the other hand, we note that the equation 
oMA 5 0 cannot be satisfied under general loading conditions, since the lines 
of action of the reactions B and C pass through A. We conclude that the 
truss can rotate about A and that it is improperly constrained.†

The examples of Figs. 4.6 and 4.7 lead us to conclude that 
A rigid body is improperly constrained whenever the supports (even 
though they may provide a sufficient number of reactions) are arranged 
in such a way that the reactions must be either concurrent or parallel.‡

In summary, to be sure that a two-dimensional rigid body is com-
pletely constrained and that the reactions at its supports are statically 
determinate, you should verify that the reactions involve three—and only 
three—unknowns and that the supports are arranged in such a way that 
they do not require the reactions to be either concurrent or parallel.

Supports involving statically indeterminate reactions should be used 
with care in the design of structures and only with a full knowledge of 
the problems they may cause. On the other hand, the analysis of structures 
possessing statically indeterminate reactions often can be partially carried 
out by the methods of statics. In the case of the truss of Fig.  4.4, for 
example, we can determine the vertical components of the reactions at A 
and B from the equilibrium equations.

For obvious reasons, supports producing partial or improper constraints 
should be avoided in the design of stationary structures. However, a partially 
or improperly constrained structure will not necessarily collapse; under par-
ticular loading conditions, equilibrium can be maintained. For example, the 
trusses of Figs. 4.5 and 4.6 will be in equilibrium if the applied forces P, Q, 
and S are vertical. Besides, structures designed to move should be only 
partially constrained. A railroad car, for instance, would be of little use if it 
were completely constrained by having its brakes applied permanently.
†Rotation of the truss about A requires some “play” in the supports at B and C. In practice 
such play will always exist. In addition, we note that if the play is kept small, the displacements 
of the rollers B and C and, thus, the distances from A to the lines of action of the reactions B 
and C will also be small. The equation oMA 5 0 then requires that B and C be very large, a 
situation which can result in the failure of the supports at B and C.
‡Because this situation arises from an inadequate arrangement or geometry of the supports, 
it is often referred to as geometric instability.
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Fig. 4.6 (a) Truss with improper constraints; 
(b) free-body diagram.
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Sample Problem 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400-kg crate. 
It is held in place by a pin at A and a rocker at B. The center of gravity 
of the crane is located at G. Determine the components of the reactions 
at A and B.

STRATEGY: Draw a free-body diagram to show all of the forces acting 
on the crane, then use the equilibrium equations to calculate the values of 
the unknown forces.

MODELING:

Free-Body Diagram. By multiplying the masses of the crane and of 
the crate by g 5 9.81 m/s2, you obtain the corresponding weights––that is, 
9810 N or 9.81 kN, and 23 500 N or 23.5 kN (Fig. 1). The reaction at pin 
A is a force of unknown direction; you can represent it by components Ax 
and Ay. The reaction at the rocker B is perpendicular to the rocker surface; 
thus, it is horizontal. Assume that Ax, Ay, and B act in the directions shown.

ANALYSIS:

Determination of B. The sum of the moments of all external forces 
about point A is zero. The equation for this sum contains neither Ax nor 
Ay, since the moments of Ax and Ay about A are zero. Multiplying the 
magnitude of each force by its perpendicular distance from A, you have

1  oMA 5 0:   1B(1.5 m) 2 (9.81 kN)(2 m) 2 (23.5 kN)(6 m) 5 0
 B 5 1107.1 kN B 5 107.1 kN  b

Since the result is positive, the reaction is directed as assumed.

Determination of Ax. Determine the magnitude of Ax by setting the 
sum of the horizontal components of all external forces to zero.

oFx 5 0:    Ax 1 B 5 0
 Ax 1 107.1 kN 5 0
 Ax 5 2107.1 kN Ax 5 107.1 kN  b

Since the result is negative, the sense of Ax is opposite to that assumed 
originally.

Determination of Ay. The sum of the vertical components must also 
equal zero. Therefore, 

1  oFy 5 0:    Ay 2 9.81 kN 2 23.5 kN 5 0
 Ay 5 133.3 kN Ay 5 33.3 kN    b

 Adding the components Ax and Ay vectorially, you can find that the 
reaction at A is 112.2 kN 17.3°.

REFLECT and THINK: You can check the values obtained for the 
reactions by recalling that the sum of the moments of all the external 
forces about any point must be zero. For example, considering point B 
(Fig. 2), you can show

1  oMB 5 2(9.81 kN)(2 m) 2 (23.5 kN)(6 m) 1 (107.1 kN)(1.5 m) 5 0

2400 kg
A

B

G

4 m2 m

1.5 m

Fig. 1 Free-body diagram of crane.
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23.5 kN
Ay

Ax

9.81 kN
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Fig. 2 Free-body diagram of crane 
with solved reactions.
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Sample Problem 4.2

Three loads are applied to a beam as shown. The beam is supported by a 
roller at A and by a pin at B. Neglecting the weight of the beam, determine 
the reactions at A and B when P 5 15 kips.

STRATEGY: Draw a free-body diagram of the beam, then write the 
equilibrium equations, first summing forces in the x direction and then 
summing moments at A and at B.

MODELING: 

Free-Body Diagram. The reaction at A is vertical and is denoted by 
A (Fig. 1). Represent the reaction at B by components Bx and By. Assume 
that each component acts in the direction shown.

ANALYSIS:

Equilibrium Equations. Write the three equilibrium equations and 
solve for the reactions indicated:

oFx 5 0: Bx 5 0 Bx 5 0 b

1  oMA 5 0: 
 2(15 kips)(3 ft) 1 By(9 ft) 2 (6 kips)(11 ft) 2 (6 kips)(13 ft) 5 0 
    By 5 121.0 kips By 5 21.0 kips      b

1  oMB 5 0: 
 2A(9 ft) 1 (15 kips)(6 ft) 2 (6 kips)(2 ft) 2 (6 kips)(4 ft) 5 0 
    A 5 16.00 kips A 5 6.00 kips      b

REFLECT and THINK: Check the results by adding the vertical com-
ponents of all of the external forces:

1  oFy 5 16.00 kips 2 15 kips 1 21.0 kips 2 6 kips 2 6 kips 5 0

Remark. In this problem, the reactions at both A and B are vertical; 
however, these reactions are vertical for different reasons. At A, the beam 
is supported by a roller; hence, the reaction cannot have any horizontal 
component. At B, the horizontal component of the reaction is zero because 
it must satisfy the equilibrium equation oFx 5 0 and none of the other 
forces acting on the beam has a horizontal component.

You might have noticed at first glance that the reaction at B was 
vertical and dispensed with the horizontal component Bx. This, however, 
is bad practice. In following it, you run the risk of forgetting the compo-
nent Bx when the loading conditions require such a component (i.e., when 
a horizontal load is included). Also, you found the component Bx to be 
zero by using and solving an equilibrium equation, oFx 5 0. By setting 
Bx equal to zero immediately, you might not realize that you actually made 
use of this equation. Thus, you might lose track of the number of equa-
tions available for solving the problem.

3 ft 2 ft 2 ft

6 kips 6 kipsP

6 ft

A B

Fig.1 Free-body diagram of beam.

3 ft 2 ft 2 ft

6 kips15 kips 6 kips

6 ft

By

BxA
A

B
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Sample Problem 4.3

A loading car is at rest on a track forming an angle of 25° with the verti-
cal. The gross weight of the car and its load is 5500 lb, and it acts at a 
point 30 in. from the track, halfway between the two axles. The car is held 
by a cable attached 24 in. from the track. Determine the tension in the 
cable and the reaction at each pair of wheels.

STRATEGY: Draw a free-body diagram of the car to determine the 
unknown forces, and write equilibrium equations to find their values, sum-
ming moments at A and B and then summing forces.

MODELING: 

Free-Body Diagram. The reaction at each wheel is perpendicular to 
the track, and the tension force T is parallel to the track. Therefore, for 
convenience, choose the x axis parallel to the track and the y axis perpen-
dicular to the track (Fig.  1). Then resolve the 5500-lb weight into x and 
y components.

Wx 5 1(5500 lb) cos 25° 5 14980 lb
Wy 5 2(5500 lb) sin 25° 5 22320 lb

ANALYSIS: 

Equilibrium Equations. Take moments about A to eliminate T and R1 
from the computation.

1  oMA 5 0: 2(2320 lb)(25 in.) 2 (4980 lb)(6 in.) 1 R2(50 in.) 5 0
 R2 5 11758 lb R2 5 1758 lb  b

Then take moments about B to eliminate T and R2 from the computation. 

1  oMB 5 0: (2320 lb)(25 in.) 2 (4980 lb)(6 in.) 2 R1(50 in.) 5 0
 R1 5 1562 lb R1 5 562 lb  b

Determine the value of T by summing forces in the x direction.

1oFx 5 0:   14980 lb 2 T 5 0
 T 5 14980 lb T 5 4980 lb  b

Figure 2 shows the computed values of the reactions.

REFLECT and THINK: You can verify the computations by summing 
forces in the y direction.

1oFy 5 1562 lb 1 1758 lb 2 2320 lb 5 0

You could also check the solution by computing moments about any point 
other than A or B.

24 in.
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G
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25 in.
30 in.
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x
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2320 lb 6 in.
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4980 lb

Fig. 1 Free-body diagram of car.
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Fig. 2 Free-body diagram 
of car with solved reactions.
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Sample Problem 4.4

The frame shown supports part of the roof of a small building. Knowing 
that the tension in the cable is 150 kN, determine the reaction at the 
fixed end E.

STRATEGY: Draw a free-body diagram of the frame and of the cable 
BDF. The support at E is fixed, so the reactions here include a moment; 
to determine its value, sum moments about point E.

MODELING: 

Free-Body Diagram. Represent the reaction at the fixed end E by 
the force components Ex and Ey and the couple ME (Fig. 1). The other 
forces acting on the free body are the four 20-kN loads and the 150-kN 
force exerted at end F of the cable.

Fig. 1 Free-body diagram of frame.

6 m

150 kNEy

Ex

ME

20 kN 20 kN 20 kN 20 kN

A B
C

D

E F

4.5 m

1.8 m 1.8 m 1.8 m 1.8 m

ANALYSIS: 

Equilibrium Equations. First note that

DF 5 √(4.5 m)2 1 (6 m)2 5 7.5 m

Then you can write the three equilibrium equations and solve for the 
reactions at E.

oFx 5 0: Ex 1
4.5
7.5

(150 kN) 5 0

 Ex 5 290.0 kN Ex 5 90.0 kN  b

1  oFy 5 0:  Ey 2 4(20 kN) 2
6

7.5
(150 kN) 5 0

 Ey 5 1200 kN Ey 5 200 kN   b

1  oME 5 0: (20 kN)(7.2 m) 1 (20 kN)(5.4 m) 1 (20 kN)(3.6 m)

 1(20 kN)(1.8 m) 2 
6

7.5
 (150 kN)(4.5 m) 1 ME 5 0

 ME 5 1180.0 kN?m ME 5 180.0 kN?m  b

REFLECT and THINK: The cable provides a fourth constraint, making 
this situation statically indeterminate. This problem therefore gave us the 
value of the cable tension, which would have been determined by means 
other than statics. We could then use the three available independent static 
equilibrium equations to solve for the remaining three reactions.

20 kN 20 kN 20 kN 20 kN

A B

C

D

E F1.8 m 1.8 m 1.8 m 1.8 m

2.25 m

3.75 m

4.5 m
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Sample Problem 4.5

A 400-lb weight is attached at A to the lever shown. The constant of the 
spring BC is k 5 250 lb/in., and the spring is unstretched when θ 5 0. 
Determine the position of equilibrium.

A

B C

O

k 5 250 lb/in.

r 5 3 in.

l 5 8 in.

W 5 400 lb

θ

STRATEGY: Draw a free-body diagram of the lever and cylinder to 
show all forces acting on the body (Fig. 1), then sum moments about O. 
Your final answer should be the angle θ.

MODELING: 

Free-Body Diagram.  Denote by s the deflection of the spring from 
its unstretched position and note that s 5 rθ. Then F 5 ks 5 krθ.

ANALYSIS: 

Equilibrium Equation. Sum the moments of W and F about O to 
eliminate the reactions supporting the cylinder. The result is

1  oMO 5 0:   Wl sin θ 2 r(krθ) 5 0   sin θ 5 
kr

 
2

Wl
 θ 

Substituting the given data yields

sin θ 5
(250 lb/in.)(3 in.)2

(400 lb)(8 in.)
 θ  sin θ 5 0.703 θ

Solving by trial and error, the angle is  θ 5 0   θ 5 80.3˚ b

REFLECT and THINK: The weight could represent any vertical force 
acting on the lever. The key to the problem is to express the spring force 
as a function of the angle θ. 

Fig. 1 Free-body diagram of the lever 
and cylinder.

A
s

O
W

F 5 ks

Ry

R x

Unstretched
position

θ

r

l sin θ
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 4.1 For the beam and loading shown, determine (a) the reaction at A, 
(b) the tension in cable BC.

A

C

B

15 lb 20 lb 35 lb 15 lb20 lb

6 in. 8 in. 8 in. 6 in.

Fig. P4.1

 4.2 A 3200-lb forklift truck is used to lift a 1700-lb crate. Determine the 
reaction at each of the two (a) front wheels A, (b) rear wheels B.

Fig. P4.2

BA

12 in.

G9

G

16 in. 24 in.

 4.3 A gardener uses a 60-N wheelbarrow to transport a 250-N bag of 
fertilizer. What force must she exert on each handle?

0.15 m 0.15 m

60 N

250 N

A

0.7 m

Fig. P4.3

Problems

Final PDF to printer



164

bee98160_ch04_149-213.indd 164 12/22/15  04:34 PM

 4.4 A load of lumber of weight W 5 25 kN is being raised by a mobile 
crane. Knowing that the tension is 25 kN in all portions of cable 
AEF and that the weight of boom ABC is 3 kN, determine (a) the 
tension in rod CD, (b) the reaction at pin B.

Fig. P4.4

D

2.0 m

H K

B EA

C

2.0 m

3 kN

0.5 m

0.6 m 0.4 m

0.3 m

50 kN
H

F

K

W

 4.5 Three loads are applied as shown to a light beam supported by cables 
attached at B and D. Neglecting the weight of the beam, determine 
the range of values of Q for which neither cable becomes slack when 
P 5 0.

Fig. P4.5 and P4.6

0.5 m
0.75 m 0.75 m

1.5 m

7.5 kN
P Q

A

B D

C
E

 4.6 Three loads are applied as shown to a light beam supported by cables 
attached at B and D. Knowing that the maximum allowable tension 
in each cable is 12 kN and neglecting the weight of the beam,  
determine the range of values of Q for which the loading is safe 
when P 5 0.

 4.7 For the beam and loading shown, determine the range of the distance 
a for which the reaction at B does not exceed 100 lb downward or 
200 lb upward.

a

A
D C

B

6 in.
300 lb 300 lb

50 lb

8 in. 4 in. 12 in.

Fig. P4.7
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 4.8 For the beam of Sample Prob. 4.2, determine the range of values of 
P for which the beam will be safe, knowing that the maximum allow-
able value of each of the reactions is 25 kips and that the reaction 
at A must be directed upward.

 4.9 The 40-ft boom AB weighs 2 kips; the distance from axle A to the 
center of gravity G of the boom is 20 ft. For the position shown, 
determine (a) the tension T in the cable, (b) the reaction at A.

 4.10 The lever BCD is hinged at C and attached to a control rod at B. If  
P 5 100 lb, determine (a) the tension in rod AB, (b) the reaction at C.

P

A

B

C

D

7.5 in.

3 in.

4 in.

908

Fig. P4.10 and P4.11

 4.11 The lever BCD is hinged at C and attached to a control rod at B. 
Determine the maximum force P that can be safely applied at D if 
the maximum allowable value of the reaction at C is 250 lb.

 4.12 A lever AB is hinged at C and attached to a control cable at A. If 
the lever is subjected to a 500-N horizontal force at B, determine  
(a) the tension in the cable, (b) the reaction at C.

Fig. P4.12

250 mm

250 mm

200 mm

C

B

D

A

500 N

308

 4.13 Determine the reactions at A and B when (a) α 5 0, (b) α 5 90°, 
(c) α 5 30°.

10 in. 10 in.

12 in.

α

A

B

75 lb 

Fig. P4.13

Fig. P4.9

T

5 kips

2 kips

108

308

G

B

C

A
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 4.14 The bracket BCD is hinged at C and attached to a control cable at B.  
For the loading shown, determine (a) the tension in the cable, (b) the 
reaction at C.

Fig. P4.14

240 N 240 N

0.24 m
0.4 m 0.4 m

A

B

C
D

a 5 0.18 m

 4.15 Solve Prob. 4.14, assuming that a 5 0.32 m.

 4.16 Determine the reactions at A and B when (a) h 5 0, (b) h 5 200 mm.

Fig. P4.16

608

300 mm

250 mm 250 mm

150 N

G
B

A
h

 4.17 A light bar AD is suspended from a cable BE and supports a 50-lb 
block at C. The ends A and D of the bar are in contact with friction-
less vertical walls. Determine the tension in cable BE and the reac-
tions at A and D.

Fig. P4.17

A 50 lb

B

C

D

E

5 in.

8 in.

7 in.
3 in.

 4.18 Bar AD is attached at A and C to collars that can move freely on the 
rods shown. If the cord BE is vertical (α 5 0), determine the tension 
in the cord and the reactions at A and C.

 4.19 Solve Prob. 4.18 if the cord BE is parallel to the rods (α 5 30°).Fig. P4.18

A B

E

C
D

308

80 Nα

0.2 m 0.2 m

308

0.2 m
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 4.20 Two slots have been cut in plate DEF, and the plate has been placed 
so that the slots fit two fixed, frictionless pins A and B. Knowing 
that P 5 15 lb, determine (a) the force each pin exerts on the plate, 
(b) the reaction at F.

P A

B

D E

F

4 in. 4 in. 7 in. 2 in.

308

30 lb

3 in.

Fig. P4.20

 4.21 A 6-m telephone pole weighing 1600 N is used to support the ends 
of two wires. The wires form the angles shown with the horizontal, 
and the tensions in the wires are, respectively, T1 5 600 N and  
T2 5 375 N. Determine the reaction at the fixed end A.

 4.22 The rig shown consists of a 1200-lb horizontal member ABC and a 
vertical member DBE welded together at B. The rig is being used to 
raise a 3600-lb crate at a distance x 5 12 ft from the vertical member 
DBE. If the tension in the cable is 4 kips, determine the reaction at 
E, assuming that the cable is (a) anchored at F as shown in the figure, 
(b) attached to the vertical member at a point located 1 ft above E.

A

C
B

FE

x

D

5 ft

10 ft

17.5 ft

6.5 ft

3.75 ft

W 5 1200 lb

3600 lb

Fig. P4.22

 4.23 For the rig and crate of Prob. 4.22 and assuming that the cable is 
anchored at F as shown, determine (a) the required tension in cable 
ADCF if the maximum value of the couple at E as x varies from  
1.5 to 17.5 ft is to be as small as possible, (b) the corresponding 
maximum value of the couple.

A

B

6 m

208

T1
T2

108

Fig. P4.21
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 4.24 A tension of 20 N is maintained in a tape as it passes through the 
support system shown. Knowing that the radius of each pulley is  
10 mm, determine the reaction at C.

Fig. P4.24

C

20 N

20 N

75 mm

45 mm

A B

75 mm

 4.25 The bracket ABC can be supported in the eight different ways shown. 
All connections consist of smooth pins, rollers, or short links. In 
each case, determine whether (a) the plate is completely, partially, 
or improperly constrained, (b) the reactions are statically determinate 
or indeterminate, (c) the equilibrium of the plate is maintained in 
the position shown. Also, wherever possible, compute the reactions 
assuming that the magnitude of the force P is 100 lb. 

Fig. P4.25

B

A

C
13 ft

2 ft 2 ft

2 3 4

5 6 7 8

PPP

P P P P

P

 4.26 Eight identical 500 3 750-mm rectangular plates, each of mass  
m 5 40 kg, are held in a vertical plane as shown. All connections 
consist of frictionless pins, rollers, or short links. In each case, deter-
mine whether (a) the plate is completely, partially, or improperly 
constrained, (b) the reactions are statically determinate or indetermi-
nate, (c) the equilibrium of the plate is maintained in the position 
shown. Also, wherever possible, compute the reactions.

Fig. P4.26

A B

CD

1 2 3 4

5 6 7 8
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4.2 TWO SPECIAL CASES
In practice, some simple cases of equilibrium occur quite often, either as 
part of a more complicated analysis or as the complete models of a situ-
ation. By understanding the characteristics of these cases, you can often 
simplify the overall analysis.

4.2A Equilibrium of a Two-Force Body
A particular case of equilibrium of considerable interest in practical appli-
cations is that of a rigid body subjected to two forces. Such a body is 
commonly called a two-force body. We show here that, if a two-force 
body is in equilibrium, the two forces must have the same magnitude, 
the same line of action, and opposite sense.

Consider a corner plate subjected to two forces F1 and F2 acting at 
A and B, respectively (Fig.  4.8a). If the plate is in equilibrium, the sum 
of the moments of F1 and F2 about any axis must be zero. First, we sum 
moments about A. Since the moment of F1 is obviously zero, the moment 
of F2 also must be zero and the line of action of F2 must pass through A 
(Fig. 4.8b). Similarly, summing moments about B, we can show that the 
line of action of F1 must pass through B (Fig. 4.8c). Therefore, both forces 
have the same line of action (line AB). You can see from either of the 
equations oFx 5 0 and oFy 5 0 that they must also have the same mag-
nitude but opposite sense.

(c)

A

B

F1

F2

(b)

A

B

F2

(a)

A

B

F1

F2

F1

Fig. 4.8 A two-force body in equilibrium. (a) Forces act at two points of 
the body; (b) summing moments about point A shows that the line of action 
of F2 must pass through A; (c) summing moments about point B shows that 
the line of action of F1 must pass through B.

If several forces act at two points A and B, the forces acting at A 
can be replaced by their resultant F1, and those acting at B can be replaced 
by their resultant F2. Thus, a two-force body can be more generally defined 
as a rigid body subjected to forces acting at only two points. The 
resultants F1 and F2 then must have the same line of action, the same 
magnitude, and opposite sense (Fig. 4.8).

Later, in the study of structures, frames, and machines, you will see 
how the recognition of two-force bodies simplifies the solution of certain 
problems.
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4.2B  Equilibrium of a Three-Force 
Body

Another case of equilibrium that is of great practical interest is that of a 
three-force body, i.e., a rigid body subjected to three forces or, more 
generally, a rigid body subjected to forces acting at only three points. 
Consider a rigid body subjected to a system of forces that can be reduced 
to three forces F1, F2, and F3 acting at A, B, and C, respectively (Fig. 4.9a). 
We show that if the body is in equilibrium, the lines of action of the 
three forces must be either concurrent or parallel.

F2

F3

F1

B C

D
A

(a) (b) (c)

F2

F3

F1

B C

D
A

F2

F3

F1

B C

A

Fig. 4.9 A three-force body in equilibrium. (a–c) Demonstration that the lines of 
action of the three forces must be either concurrent or parallel.

Since the rigid body is in equilibrium, the sum of the moments of 
F1, F2, and F3 about any axis must be zero. Assuming that the lines of 
action of F1 and F2 intersect and denoting their point of intersection by 
D, we sum moments about D (Fig. 4.9b). Because the moments of F1 and 
F2 about D are zero, the moment of F3 about D also must be zero, and 
the line of action of F3 must pass through D (Fig.  4.9c). Therefore, the 
three lines of action are concurrent. The only exception occurs when none 
of the lines intersect; in this case, the lines of action are parallel.

Although problems concerning three-force bodies can be solved by 
the general methods of Sec. 4.1, we can use the property just established 
to solve these problems either graphically or mathematically using simple 
trigonometric or geometric relations (see Sample Problem 4.6).
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Sample Problem 4.6

A man raises a 10-kg joist with a length of 4 m by pulling on a rope. 
Find the tension T in the rope and the reaction at A.

STRATEGY: The joist is acted upon by three forces: its weight W, the 
force T exerted by the rope, and the reaction R of the ground at A. 
Therefore, it is a three-force body, and you can compute the forces by 
using a force triangle.

MODELING: First note that
W 5 mg 5 (10 kg)(9.81 m/s2) 5 98.1 N

Since the joist is a three-force body, the forces acting on it must be con-
current. The reaction R therefore must pass through the point of intersec-
tion C of the lines of action of the weight W and the tension force T, as 
shown in the free-body diagram (Fig.  1). You can use this fact to deter-
mine the angle α that R forms with the horizontal.

ANALYSIS: Draw the vertical line BF through B and the horizontal line 
CD through C (Fig. 2). Then

AF 5 BF 5 (AB) cos 458 5 (4 m) cos 458 5 2.828 m
CD 5 EF 5 AE 5 1

2(AF) 5 1.414 m
BD 5 (CD) cot (458 1 258) 5 (1.414 m) tan 208 5 0.515 m
CE 5 DF 5 BF 2 BD 5 2.828 m 2 0.515 m 5 2.313 m

Fig. 2 Geometry analysis of the lines of action for 
the three forces acting on joist, concurrent at point C.

458

458
4 m

A

B

C

G

D

E F

258

α

From these calculations, you can determine the angle α as

tan α 5
CE

AE
5

2.313 m
1.414 m

5 1.636

 α 5 58.68 b

You now know the directions of all the forces acting on the joist.

Force Triangle. Draw a force triangle as shown (Fig. 3) with its inte-
rior angles computed from the known directions of the forces. You can 
then use the law of sines to find the unknown forces.

T

sin 31.48
5

R

sin 1108
5

98.1 N
sin 38.68

T 5 81.9 N b

R 5 147.8 N  58.68 b

REFLECT and THINK: In practice, three-force members occur often, 
so learning this method of analysis is useful in many situations.

Fig. 1 Free-body diagram of joist.

458

258

4 m

B

A

A

B

C

G

T

R

W 5 98.1 Nα

Fig. 3 Force triangle.

T

R98.1 N

1108

38.68

208

31.48

α 5 58.68
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Problems
 4.27 Determine the reactions at B and C when a 5 30 mm.

Fig. P4.27

100 mm40 mm60 mm

60 mm

250 N

A

C

B

D

a

 4.28 The spanner shown is used to rotate a shaft. A pin fits in a hole at 
A, while a flat, frictionless surface rests against the shaft at B. If a 
60-lb force P is exerted on the spanner at D, find the reactions at A 
and B.

Fig. P4.28

15 in.
3 in.

P
A

B

C
D

508

 4.29 A 12-ft wooden beam weighing 80 lb is supported by a pin and 
bracket at A and by cable BC. Find the reaction at A and the tension 
in the cable.

C

A B

80 lb

8 ft

6 ft 6 ft

6 ft

Fig. P4.29

 4.30 A T-shaped bracket supports a 300-N load as shown. Determine the 
reactions at A and C when α 5 45°.Fig. P4.30

A

C

300 N

B

300 mm

250 mm
150 mm

α
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 4.31 One end of rod AB rests in the corner A and the other is attached to 
cord BD. If the rod supports a 150-N load at its midpoint C, find 
the reaction at A and the tension in the cord.

150 NA

B

C

D

240 mm 240 mm

360 mm

200 mm

Fig. P4.31

 4.32 Using the method of Sec. 4.2B, solve Prob. 4.12.

 4.33 Using the method of Sec. 4.2B, solve Prob. 4.16.

 4.34 A 40-lb roller of 8-in. diameter, which is to be used on a tile floor, 
is resting directly on the subflooring as shown. Knowing that the 
thickness of each tile is 0.3 in., determine the force P required to 
move the roller onto the tiles if the roller is (a) pushed to the left, 
(b) pulled to the right.

 4.35 Member ABC is supported by a pin and bracket at B and by an 
inextensible cord attached at A and C and passing over a friction-
less pulley at D. The tension may be assumed to be the same in 
portions AD and CD of the cord. For the loading shown and 
neglecting the size of the pulley, determine the tension in the cord 
and the reaction at B.  

 4.36 Determine the reactions at A and B when a 5 150 mm.

Fig. P4.36 and P4.37

A

B

240 mm

80 mm

320 N

a

 4.37 Determine the value of a for which the magnitude of the reaction at 
B is equal to 800 N.

308

P

Fig. P4.34

Fig. P4.35

A B

D

C

72 lb a 5 12 in.

7 in.

24 in.
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 4.38 For the frame and loading shown, determine the reactions at C and D.

 4.39 For the boom and loading shown, determine (a) the tension in cord 
BD, (b) the reaction at C.

Fig. P4.39

D

C

B
A

3 kips

32 in.16 in.

12 in.

32 in.

 4.40 A slender rod BC of length L and weight W is held by two cables as 
shown. Knowing that cable AB is horizontal and that the rod forms 
an angle of 40° with the horizontal, determine (a) the angle θ that 
cable CD forms with the horizontal, (b) the tension in each cable.

Fig. P4.40

408

C

B

D

L

θ

A

 4.41 Knowing that θ 5 30°, determine the reaction (a) at B, (b) at C.

Fig. P4.41

A

BC

R

P

θ

 4.42 A slender rod of length L is attached to collars that can slide freely 
along the guides shown. Knowing that the rod is in equilibrium, 
derive an expression for the angle θ in terms of the angle β.

 4.43 An 8-kg slender rod of length L is attached to collars that can slide 
freely along the guides shown. Knowing that the rod is in equilib-
rium and that β 5 30°, determine (a) the angle θ that the rod forms 
with the vertical, (b) the reactions at A and B.

Fig. P4.38

150 lb

3 ft 3 ft

1.5 ft

1.5 ft
D

BA

C

Fig. P4.42 and P4.43

A

B

θ

β

L
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 4.44 Rod AB is supported by a pin and bracket at A and rests against a 
frictionless peg at C. Determine the reactions at A and C when a 
170-N vertical force is applied at B.

 4.45 Solve Prob. 4.44, assuming that the 170-N force applied at B is 
horizontal and directed to the left.

 4.46 Determine the reactions at A and B when β 5 50°.

Fig. P4.46 and P4.47

A

B

C

100 N

250 mm

150 mm

258

β

 4.47 Determine the reactions at A and B when β 5 80°.

 4.48 A slender rod of length L and weight W is attached to a collar at A 
and is fitted with a small wheel at B. Knowing that the wheel rolls 
freely along a cylindrical surface of radius R, and neglecting friction, 
derive an equation in θ, L, and R that must be satisfied when the rod 
is in equilibrium.

Fig. P4.48

R

L

A

B

C

θ

 4.49 Knowing that for the rod of Prob. 4.48, L 5 15 in., R 5 20 in., and 
W 5 10 lb, determine (a) the angle θ corresponding to equilibrium, 
(b) the reactions at A and B.

 4.50 A uniform rod AB of length 2R rests inside a hemispherical bowl of 
radius R as shown. Neglecting friction, determine the angle θ cor-
responding to equilibrium.

Fig. P4.44

A

B

C

170 N

150 mm

150 mm

160 mm

Fig. P4.50

A

B

θ

2R
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4.3  EQUILIBRIUM IN THREE 
DIMENSIONS

The most general situation of rigid-body equilibrium occurs in three 
dimensions. The approach to modeling and analyzing these situations is 
the same as in two dimensions: Draw a free-body diagram and then write 
and solve the equilibrium equations. However, you now have more equa-
tions and more variables to deal with. In addition, reactions at supports 
and connections can be more varied, having as many as three force com-
ponents and three couples acting at one support. As you will see in the 
Sample Problems, you need to visualize clearly in three dimensions and 
recall the vector analysis from Chapters 2 and 3.

4.3A  Rigid-Body Equilibrium in Three 
Dimensions

We saw in Sec. 4.1 that six scalar equations are required to express the condi-
tions for the equilibrium of a rigid body in the general three-dimensional case:

 oFx 5 0 oFy 5 0 oFz 5 0 (4.2)
 oMx 5 0 oMy 5 0 oMz 5 0 (4.3)

We can solve these equations for no more than six unknowns, which gener-
ally represent reactions at supports or connections.

In most problems, we can obtain the scalar equations (4.2) and (4.3) 
more conveniently if we first write the conditions for the equilibrium of 
the rigid body considered in vector form: 

 oF 5 0   oMO 5 o(r 3 F) 5 0 (4.1)

Then we can express the forces F and position vectors r in terms of scalar 
components and unit vectors. This enables us to compute all vector prod-
ucts either by direct calculation or by means of determinants (see Sec. 3.1F). 
Note that we can eliminate as many as three unknown reaction components 
from these computations through a judicious choice of the point O. By 
equating to zero the coefficients of the unit vectors in each of the two 
relations in Eq. (4.1), we obtain the desired scalar equations.†

Some equilibrium problems and their associated free-body diagrams 
might involve individual couples Mi either as applied loads or as support 
reactions. In such situations, you can accommodate these couples by 
expressing the second part of Eq. (4.1) as

 oMO 5 o(r 3 F) 1 oMi 5 0 (4.19)

4.3B  Reactions for a Three-
Dimensional Structure

The reactions on a three-dimensional structure range from a single force of 
known direction exerted by a frictionless surface to a force-couple system 
†In some problems, it may be convenient to eliminate from the solution the reactions at two 
points A and B by writing the equilibrium equation oMAB 5 0. This involves determining 
the moments of the forces about the axis AB joining points A and B (see Sample Prob. 4.10). 
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exerted by a fixed support. Consequently, in problems involving the equi-
librium of a three-dimensional structure, between one and six unknowns 
may be associated with the reaction at each support or connection. 

Figure 4.10 shows various types of supports and connections with 
their corresponding reactions. A simple way of determining the type of 
reaction corresponding to a given support or connection and the number 
of unknowns involved is to find which of the six fundamental motions 
(translation in the x, y, and z directions and rotation about the x, y, and 
z axes) are allowed and which motions are prevented. The number of 
motions prevented equals the number of reactions.

Ball supports, frictionless surfaces, and cables, for example, prevent 
translation in one direction only and thus exert a single force whose line of 
action is known. Therefore, each of these supports involves one unknown––
namely, the magnitude of the reaction. Rollers on rough surfaces and wheels 
on rails prevent translation in two directions; the corresponding reactions 
consist of two unknown force components. Rough surfaces in direct contact 
and ball-and-socket supports prevent translation in three directions while still 
allowing rotation; these supports involve three unknown force components.

Some supports and connections can prevent rotation as well as trans-
lation; the corresponding reactions include couples as well as forces. For 
example, the reaction at a fixed support, which prevents any motion (rota-
tion as well as translation) consists of three unknown forces and three 
unknown couples. A universal joint, which is designed to allow rotation 
about two axes, exerts a reaction consisting of three unknown force com-
ponents and one unknown couple.

Other supports and connections are primarily intended to prevent trans-
lation; their design, however, is such that they also prevent some rotations. 
The corresponding reactions consist essentially of force components but may 
also include couples. One group of supports of this type includes hinges and 
bearings designed to support radial loads only (for example, journal bearings 
or roller bearings). The corresponding reactions consist of two force com-
ponents but may also include two couples. Another group includes pin-and-
bracket supports, hinges, and bearings designed to support an axial thrust 
as well as a radial load (for example, ball bearings). The corresponding 
reactions consist of three force components but may include two couples. 
However, these supports do not exert any appreciable couples under normal 
conditions of use. Therefore, only force components should be included in 
their analysis unless it is clear that couples are necessary to maintain the 
equilibrium of the rigid body or unless the support is known to have been 
specifically designed to exert a couple (see Probs. 4.119 through 4.122).

If the reactions involve more than six unknowns, you have more 
unknowns than equations, and some of the reactions are statically 
indeterminate. If the reactions involve fewer than six unknowns, you have 
more equations than unknowns, and some of the equations of equilibrium 
cannot be satisfied under general loading conditions. In this case, the rigid 
body is only partially constrained. Under the particular loading conditions 
corresponding to a given problem, however, the extra equations often 
reduce to trivial identities, such as 0 5 0, and can be disregarded; although 
only partially constrained, the rigid body remains in equilibrium (see 
Sample Probs. 4.7 and 4.8). Even with six or more unknowns, it is possible 
that some equations of equilibrium are not satisfied. This can occur when 
the reactions associated with the given supports either are parallel or inter-
sect the same line; the rigid body is then improperly constrained.

Photo 4.3 Universal joints, seen on the 
drive shafts of rear-wheel-drive cars and 
trucks, allow rotational motion to be 
transferred between two noncollinear shafts.

© McGraw-Hill Education/Lucinda Dowell, 
photographer

Photo 4.4 This pillow block bearing 
supports the shaft of a fan used in an 
industrial facility.

Courtesy of SKF Group
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Ball Frictionless surface

Force with known
line of action,

perpendicular to
surface

(one unknown)

Force with known
line of action,
along cable

(one unknown)
Cable

F

F

Roller on
rough surface

Rough surface

Universal
joint

Hinge and bearing supporting radial load only

Wheel on rail

Two force components,
one perpendicular to

surface and one parallel
to axis of wheel

Three force components,
mutually perpendicular

at point of contact

Three force components,
one couple

Three force components,
three couples (no translation,

no rotation)

Three force components
and up to two couples

Two force components
and up to two couples

Fx

Fx

Mx

Fy

Fz

Fx

Fy

Fz

Fy

Fz

Fy

Fz

My

(Mz)

(My)

(Mz)

(My)

Mz

Ball and socket

Fixed support

Hinge and bearing supporting
axial thrust and radial loadPin and bracket

Fy

Fz

Fx

Mx

Fy

Fz

Fig. 4.10 Reactions at supports and connections in three dimensions.
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Sample Problem 4.7

A 20-kg ladder used to reach high shelves in a storeroom is supported by 
two flanged wheels A and B mounted on a rail and by a flangeless wheel C 
resting against a rail fixed to the wall. An 80-kg man stands on the ladder 
and leans to the right. The line of action of the combined weight W of 
the man and ladder intersects the floor at point D. Determine the reactions 
at A, B, and C.

STRATEGY: Draw a free-body diagram of the ladder, then write and 
solve the equilibrium equations in three dimensions.

MODELING:

Free-Body Diagram. The combined weight of the man and ladder is

W 5 2mgj 5 2(80 kg 1 20 kg)(9.81 m/s2)j 5 2(981 N)j

You have five unknown reaction components: two at each flanged wheel 
and one at the flangeless wheel (Fig. 1). The ladder is thus only partially 
constrained; it is free to roll along the rails. It is, however, in equilibrium 
under the given load because the equation oFx 5 0 is satisfied.

ANALYSIS:

Equilibrium Equations. The forces acting on the ladder form a sys-
tem equivalent to zero:

 oF 5 0:  Ayj 1 Azk 1 Byj 1 Bzk 2 (981 N)j 1 Ck 5 0
 (Ay 1 By 2 981 N)j 1 (Az 1 Bz 1 C)k 5 0 (1)

oMA 5 o(r 3 F) 5 0:   1.2i 3 (Byj 1 Bzk) 1 (0.9i 2 0.6k) 3 (2981j)
1 (0.6i 1 3j 2 1.2k) 3 Ck 5 0

Computing the vector products gives you†

 1.2Byk 2 1.2Bz j 2 882.9k 2 588.6i 2 0.6Cj 1 3Ci 5 0
 (3C 2 588.6)i 2 (1.2Bz 1 0.6C)j 1 (1.2By 2 882.9)k 5 0 (2)

Setting the coefficients of i, j, and k equal to zero in Eq. (2) produces 
the following three scalar equations, which state that the sum of the 
moments about each coordinate axis must be zero:

 3C 2 588.6 5 0 C 5 1196.2 N
 1.2Bz 1 0.6C 5 0 Bz 5 298.1 N
 1.2By 2 882.9 5 0 By 5 1736 N

The reactions at B and C are therefore

 B 5 1(736 N)j 2 (98.1 N)k  C 5 1(196.2 N)k b

†The moments in this sample problem, as well as in Sample Probs. 4.8 and 4.9, also can be 
expressed as determinants (see Sample Prob. 3.10).

A

B

C

D 0.6 m
0.6 m

0.9 m 0.3 m

W

3 m

Fig. 1 Free-body diagram of ladder.

A 0.6 m
0.6 m

0.9 m 0.3 m

x

y

z

Ck

2(981 N)j

Ayj

Azk

Bzk Byj

3 m
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Setting the coefficients of j and k equal to zero in Eq. (1), you obtain two 
scalar equations stating that the sums of the components in the y and z 
directions are zero. Substitute the values above for By, Bz, and C to get

 Ay 1 By 2 981 5 0 Ay 1 736 2 981 5 0 Ay 5 1245 N
 Az 1 Bz 1 C 5 0 Az 2 98.1 1 196.2 5 0 Az 5 298.1 N

Therefore, the reaction at A is

 A 5 1(245 N)j 2 (98.1 N)k b

REFLECT and THINK: You summed moments about A as part of the 
analysis. As a check, you could now use these results and demonstrate 
that the sum of moments about any other point, such as point B, is also 
zero.

Sample Problem 4.8

A 5 3 8-ft sign of uniform density weighs 270 lb and is supported by a 
ball-and-socket joint at A and by two cables. Determine the tension in each 
cable and the reaction at A.

STRATEGY: Draw a free-body diagram of the sign, and express the 
unknown cable tensions as Cartesian vectors. Then determine the cable 
tensions and the reaction at A by writing and solving the equilibrium 
equations.

MODELING:

Free-Body Diagram. The forces acting on the sign are its weight W 5 
2(270 lb)j and the reactions at A, B, and E (Fig. 1). The reaction at A is 
a force of unknown direction represented by three unknown components. 
Since the directions of the forces exerted by the cables are known, these 
forces involve only one unknown each: specifically, the magnitudes TBD 
and TEC. The total of five unknowns means that the sign is partially con-
strained. It can rotate freely about the x axis; it is, however, in equilibrium 
under the given loading, since the equation oMx 5 0 is satisfied.

ANALYSIS: You can express the components of the forces TBD and TEC 
in terms of the unknown magnitudes TBD and TEC as follows:

 BD
⟶

5 2(8 ft)i 1 (4 ft)j 2 (8 ft)k    BD 5 12 ft
 EC
⟶

5 2(6 ft)i 1 (3 ft)j 1 (2 ft)k    EC 5 7 ft

 TBD 5 TBD(BD
⟶

BD ) 5 TBD(22
3i 1 1

3j 2 2
3k)

 TEC 5 TEC (EC
⟶

EC ) 5 TEC(26
7i 1 3

7j 2 2
7k)

A

B

C

D

E

x

y

z 6 ft

2 ft

2 ft

5 ft

4 ft
8 ft

3 ft

Fig. 1 Free-body diagram of sign.

W 5 2 (270 lb) j

A x i

Azk

A y j

TEC TBD
A

B

C

D

E

x

y

z
6 ft

2 ft

2 ft
4 ft

4 ft
4 ft

8 ft

3 ft
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Equilibrium Equations. The forces acting on the sign form a system 
equivalent to zero:

oF 5 0:  Axi 1 Ayj 1 Azk 1 TBD 1 TEC 2 (270 lb)j 5 0
(Ax 2 2

3 TBD 2 6
7 TEC)i 1 (Ay 1 1

3 TBD 1 3
7 TEC 2 270 lb)j

1 (Az 2 2
3 TBD 1 2

7 TEC)k 5 0 (1)
oMA 5 o(r 3 F) 5 0:
(8  ft)i 3 TBD(22

3 
i 1 1

3 
j 2 2

3 
k) 1 (6  ft)i 3 TEC(26

7 
i 1 3

7 
j 1 2

7 
k)

1 (4  ft)i 3 (2270  lb)j 5 0
(2.667TBD 1 2.571TEC 2 1080 lb)k 1 (5.333TBD 2 1.714TEC)j 5 0 (2)

Setting the coefficients of j and k equal to zero in Eq. (2) yields two scalar 
equations that can be solved for TBD and TEC:

 TBD 5 101.3 lb   TEC 5 315 lb b

Setting the coefficients of i, j, and k equal to zero in Eq. (1) produces 
three more equations, which yield the components of A. 

 A 5 1(338 lb)i 1 (101.2 lb)j 2 (22.5 lb)k b

REFLECT and THINK: Cables can only act in tension, and the free-
body diagram and Cartesian vector expressions for the cables were con-
sistent with this. The solution yielded positive results for the cable forces, 
which confirms that they are in tension and validates the analysis.

Sample Problem 4.9

A uniform pipe cover of radius r 5 240 mm and mass 30 kg is held in a 
horizontal position by the cable CD. Assuming that the bearing at B does 
not exert any axial thrust, determine the tension in the cable and the reac-
tions at A and B.

r 5 240 mm
A

B

C

D

160 mm

240 mm
240 mm

240 mm
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STRATEGY: Draw a free-body diagram with the coordinate axes shown 
(Fig. 1) and express the unknown cable tension as a Cartesian vector. Then 
apply the equilibrium equations to determine this tension and the support 
reactions.

MODELING:

Free-Body Diagram. The forces acting on the free body include its 
weight, which is

W 5 2mgj 5 2(30 kg)(9.81 m/s2)j 5 2(294 N)j
The reactions involve six unknowns: the magnitude of the force T exerted 
by the cable, three force components at hinge A, and two at hinge B. 
Express the components of T in terms of the unknown magnitude T by 
resolving the vector DC

⟶
 into rectangular components: 

DC
⟶

 5 2(480 mm)i 1 (240 mm)j 2 (160 mm)k  DC 5 560 mm

T 5 T  
DC
⟶

DC
5 26

7 T i 1 3
7 T j 2 2

7 T  k

ANALYSIS: 

Equilibrium Equations. The forces acting on the pipe cover form a 
system equivalent to zero. Thus, 

oF 5 0: Axi 1 Ayj 1 Azk 1 Bxi 1 Byj 1 T 2 (294 N)j 5 0
 (Ax 1 Bx 2 6

7T )i 1 (Ay 1 By 1 3
7T 2 294 N)j 1 (Az 2 2

7T )k 5 0 (1)

oMB 5 o(r 3 F) 5 0:
2rk 3 (Axi 1 Ay j 1 Azk)
 1 (2r i 1 rk) 3 (2 6

7T i 1 3
7T j 2 2

7T k)
  1 (r i 1 rk) 3 (2294 N)j 5 0
 (22Ay 2 3

7T 1 294 N)r i 1 (2Ax 2 2
7T )r j 1 ( 67 T 2 294 N)rk 5 0 (2)

Setting the coefficients of the unit vectors equal to zero in Eq. (2) gives 
three scalar equations, which yield

 Ax 5 149.0 N  Ay 5 173.5 N  T 5 343 N b

Setting the coefficients of the unit vectors equal to zero in Eq. (1) pro-
duces three more scalar equations. After substituting the values of T, Ax, 
and Ay into these equations, you obtain

Az 5 198.0 N   Bx 5 1245 N   By 5 173.5 N

The reactions at A and B are therefore

 A 5 1(49.0 N)i 1 (73.5 N)j 1 (98.0 N)k b

 B 5 1(245 N)i 1 (73.5 N)j b

REFLECT and THINK: As a check, you can determine the tension in 
the cable using a scalar analysis. Assigning signs by the right-hand rule 
(rhr), we have

(1rhr) oMz 5 0: 3
7T(0.48 m) 2 (294 N)(0.24 m) 5 0 T 5 343 N b

r 5 240 mm

A

B

C

D

W 5 2 (294 N) j

Bx i
By j

A x i
Ayj

Azk

160 mm

80 mm

Tr 5 240 mm

r 5 240 mm

x

y

z

240 mm

Fig. 1 Free-body diagram of pipe cover.
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Sample Problem 4.10

A 450-lb load hangs from the corner C of a rigid piece of pipe ABCD 
that has been bent as shown. The pipe is supported by ball-and-socket 
joints A and D, which are fastened, respectively, to the floor and to a 
vertical wall, and by a cable attached at the midpoint E of the portion BC 
of the pipe and at a point G on the wall. Determine (a) where G should 
be located if the tension in the cable is to be minimum, (b) the correspond-
ing minimum value of the tension.

12 ft

12 ft

450 lb

A

B
C DE

G

6 ft6 ft

6 ft

STRATEGY: Draw the free-body diagram of the pipe showing the reac-
tions at A and D. Isolate the unknown tension T and the known weight W 
by summing moments about the diagonal line AD, and compute values 
from the equilibrium equations.

MODELING and ANALYSIS: 

Free-Body Diagram. The free-body diagram of the pipe includes the 
load W 5 (2450 lb)j, the reactions at A and D, and the force T exerted by 
the cable (Fig. 1). To eliminate the reactions at A and D from the computations, 
take the sum of the moments of the forces about the line AD and set it equal 
to zero. Denote the unit vector along AD by λ, which enables you to write

 oMAD 5 0:    λ ? (AE
⟶

3 T) 1 λ ? (AC
⟶

3 W) 5 0 (1)

Fig. 1 Free-body diagram of pipe.

A

B C DE

x

y

z

T

λ

Dxi

Dy j
Dzk

A x i

Ay j

Azk

W 5 2450 j

6 ft

6 ft

12 ft

12 ft

12 ft
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You can compute the second term in Eq. (1) as follows:
 AC
⟶

3 W 5 (12i 1 12j) 3 (2450j) 5 25400k

 λ 5
AD
⟶

AD
5

12i 1 12j 2 6k
18

5 2
3 i 1 2

3 j 2 1
3 k

 λ ? (AC
⟶

3 W) 5 (2
3 
i 1 2

3 
j 2 1

3 
k) ? (25400k) 5 11800

Substituting this value into Eq. (1) gives 
 λ ? (AE

⟶
3 T) 5 21800 lb?ft (2)

Minimum Value of Tension. Recalling the commutative property 
for mixed triple products, you can rewrite Eq. (2) in the form

 T ? (λ 3 AE
⟶

) 5 21800 lb?ft (3)
This shows that the projection of T on the vector λ 3 AE

⟶
 is a constant. 

It follows that T is minimum when it is parallel to the vector
λ 3 AE

⟶
5 (2

3 
 
i 1 2

3 
 j 2 1

3 
 k) 3 (6i 1 12j) 5 4i 2 2j 1 4k

The corresponding unit vector is 2
3 i 2 1

3 j 1 2
3 

 
k, which gives

 Tmin 5 T(2
3 i 2 1

3 j 1 2
3 k) (4)

Substituting for T and λ 3 AE
⟶

 in Eq. (3) and computing the dot products 
yields 6T 5 21800 and, thus, T 5 2300. Carrying this value into Eq. (4) 
gives you
 Tmin 5 2200i 1 100j 2 200k   Tmin 5 300 lb b

Location of G. Since the vector EG
⟶

 and the force Tmin have the same 
direction, their components must be proportional. Denoting the coordi-
nates of G by x, y, and 0 (Fig. 2), you get

x 2 6
2200

5
y 2 12
1100

5
0 2 6
2200

    x 5 0    y 5 15 ft b

Fig. 2 Location of point G for minimum 
tension in cable.

A

B
C

D

G(x, y, 0)

E(6, 12, 6)

x

y

z

W

Tmin

REFLECT and THINK: Sometimes you have to rely on the vector 
analysis presented in Chapters 2 and 3 as much as on the conditions for 
equilibrium described in this chapter.
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 4.51 Two transmission belts pass over a double-sheaved pulley that is 
attached to an axle supported by bearings at A and D. The radius of 
the inner sheave is 125 mm and the radius of the outer sheave is  
250 mm. Knowing that when the system is at rest, the tension is  
90 N in both portions of belt B and 150 N in both portions of belt C,  
determine the reactions at A and D. Assume that the bearing at D 
does not exert any axial thrust.

Fig. P4.51

TC

TC9

TB9

TB

y

150 mm 100 mm

200 mm

A

B

D

x

z

C

 4.52 Solve Prob. 4.51, assuming that the pulley rotates at a constant rate 
and that TB 5 104 N, T ′B 5 84 N, TC 5 175 N.

 4.53 A 4 × 8-ft sheet of plywood weighing 40 lb has been temporarily 
propped against column CD. It rests at A and B on small wooden 
blocks and against protruding nails. Neglecting friction at all sur-
faces of contact, determine the reactions at A, B, and C.

Fig. P4.53

y

D

B

A

C

O

z

x

5 ft
2 ft

1 ft

2 ft

4 ft

608

Problems
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 4.54 A small winch is used to raise a 120-lb load. Find (a) the magnitude 
of the vertical force P that should be applied at C to maintain equi-
librium in the position shown, (b) the reactions at A and B, assuming 
that the bearing at B does not exert any axial thrust.

Fig. P4.54

x

z

y

8 in. 10 in.

10 in.
10 in.

9 in.

3 in.

P

120 lb

A

B

C

308

 4.55 A 200-mm lever and a 240-mm-diameter pulley are welded to axle 
BE, which is supported by bearings at C and D. If a 720-N vertical 
load is applied at A when the lever is horizontal, determine (a) the 
tension in the cord, (b) the reactions at C and D. Assume that the 
bearing at D does not exert any axial thrust.

Fig. P4.55

T

720 N

y

80 mm 120 mm

120 mm

200 mm

A
E

B

C

D

x

z

40 mm

 4.56 Solve Prob. 4.55, assuming that the axle has been rotated clockwise 
in its bearings by 30° and that the 720-N load remains vertical.

 4.57 The rectangular plate shown weighs 80 lb and is supported by three 
vertical wires. Determine the tension in each wire.

 4.58 The rectangular plate shown weighs 80 lb and is supported by three 
vertical wires. Determine the weight and location of the lightest 
block that should be placed on the plate if the tensions in the three 
wires are to be equal.Fig. P4.57 and P4.58

x
C

A

60 in.

60 in.
60 in. 30 in.

15 in.

15 in.

B

z

y
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 4.59 An opening in a floor is covered by a 1 × 1.2-m sheet of plywood 
of mass 18 kg. The sheet is hinged at A and B and is maintained in 
a position slightly above the floor by a small block C. Determine the 
vertical component of the reaction (a) at A, (b) at B, (c) at C.

Fig. P4.59

y

z
x

A

B

E C

0.15 m

0.2 m

0.2 m
0.6 m

1.2 m

D

 4.60 Solve Prob. 4.59, assuming that the small block C is moved and 
placed under edge DE at a point 0.15 m from corner E. 

 4.61 A 48-in. boom is held by a ball-and-socket joint at C and by two 
cables BF and DAE; cable DAE passes around a frictionless pulley 
at A. For the loading shown, determine the tension in each cable and 
the reaction at C.

Fig. P4.61

A

B
C

F

x

y

z

D

E

20 in.

16 in.

320 lb

30 in.

20 in.

48 in.

 4.62 Solve Prob. 4.61, assuming that the 320-lb load is applied at A.

 4.63 The 6-m pole ABC is acted upon by a 455-N force as shown. The 
pole is held by a ball-and-socket joint at A and by two cables BD 
and BE. For a 5 3 m, determine the tension in each cable and the 
reaction at A. Fig. P4.63

A

B

C

F

x

y

z

D

E

455 N

1.5 m

1.5 m

a

2 m

3 m

3 m

3 m

3 m
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690 mm

960 mm

x

y

z

E

D

A

B

C

675 mm
90 mm

450 mm

270 mm

90 mm

Fig. P4.66

 4.64 A 600-lb crate hangs from a cable that passes over a pulley B and 
is attached to a support at H. The 200-lb boom AB is supported by 
a ball-and-socket joint at A and by two cables DE and DF. The center 
of gravity of the boom is located at G. Determine (a) the tension in 
cables DE and DF, (b) the reaction at A.

x

y

E

G

A

B

C D22.5 ft

16.5 ft

5 ft

6.6 ft5 ft

13 ft

6 ft

2.8 ft
3.2 ft

F

H

z

6.6 ft

Fig. P4.64

 4.65 The horizontal platform ABCD weighs 60 lb and supports a 240-lb 
load at its center. The platform is normally held in position by hinges 
at A and B and by braces CE and DE. If brace DE is removed, 
determine the reactions at the hinges and the force exerted by the 
remaining brace CE. The hinge at A does not exert any axial thrust.

D

B

E

A

4 ft

3 ft
2 ft

2 ft

z

y

x

C

300 lb

Fig. P4.65

 4.66 A 100-kg uniform rectangular plate is supported in the position 
shown by hinges A and B and by cable DCE that passes over a 
frictionless hook at C. Assuming that the tension is the same in both 
parts of the cable, determine (a) the tension in the cable, (b) the 
reactions at A and B. Assume that the hinge at B does not exert any 
axial thrust.
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250 mm50 mm 300 mm

400 N

C

D

E

F x
z

50 mm

250 mm

A B

H

y

308

Fig. P4.70

 4.67 The rectangular plate shown weighs 75 lb and is held in the position 
shown by hinges at A and B and by cable EF. Assuming that the 
hinge at B does not exert any axial thrust, determine (a) the tension 
in the cable, (b) the reactions at A and B.

 4.68 The lid of a roof scuttle weighs 75 lb. It is hinged at corners A and 
B and maintained in the desired position by a rod CD pivoted at C; 
a pin at end D of the rod fits into one of several holes drilled in the 
edge of the lid. For α 5 50°, determine (a) the magnitude of the 
force exerted by rod CD, (b) the reactions at the hinges. Assume that 
the hinge at B does not exert any axial thrust.

Fig. P4.68
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 4.69 A 10-kg storm window measuring 900 × 1500 mm is held by hinges 
at A and B. In the position shown, it is held away from the side of 
the house by a 600-mm stick CD. Assuming that the hinge at A does 
not exert any axial thrust, determine the magnitude of the force 
exerted by the stick and the components of the reactions at A and B.

Fig. P4.69

y
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z
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B
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1500 mm

1500 mm

900 mm

 4.70 The bent rod ABEF is supported by bearings at C and D and by wire 
AH. Knowing that portion AB of the rod is 250 mm long, determine 
(a) the tension in wire AH, (b) the reactions at C and D. Assume 
that the bearing at D does not exert any axial thrust.
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D

H

F
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B
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4 in.

12 in.

8 in.

4 in.

30 in.

Fig. P4.67
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 4.71 Solve Prob. 4.65, assuming that the hinge at B has been removed 
and that the hinge at A can exert an axial thrust, as well as couples 
about axes parallel to the x and y axes.

 4.72 Solve Prob. 4.69, assuming that the hinge at A has been removed 
and that the hinge at B can exert couples about axes parallel to the 
x and y axes. 

 4.73 The assembly shown is welded to collar A that fits on the vertical 
pin shown. The pin can exert couples about the x and z axes but does 
not prevent motion about or along the y axis. For the loading shown, 
determine the tension in each cable and the reaction at A.

480 N

A

C

D

E

F

x

y

z

60 mm

45 mm

90 mm

120 mm

80 mm

Fig. P4.73

 4.74 Three rods are welded together to form a “corner” that is supported 
by three eyebolts. Neglecting friction, determine the reactions at A, 
B, and C when P 5 240 lb, a 5 12 in., b 5 8 in., and c 5 10 in.

x

y

z

b

cA

B

C

P

a

Fig. P4.74
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4.4  FRICTION FORCES
In the previous sections, we assumed that surfaces in contact are either 
frictionless or rough. If they are frictionless, the force each surface exerts 
on the other is normal to the surfaces, and the two surfaces can move 
freely with respect to each other. If they are rough, tangential forces can 
develop that prevent the motion of one surface with respect to the other.

This view is a simplified one. Actually, no perfectly frictionless sur-
face exists. When two surfaces are in contact, tangential forces, called 
friction forces, always develop if you attempt to move one surface with 
respect to the other. However, these friction forces are limited in magnitude 
and do not prevent motion if you apply sufficiently large forces. Thus, the 
distinction between frictionless and rough surfaces is a matter of degree. 
You will see this more clearly in this chapter, which is devoted to the study 
of friction and its applications to common engineering situations.

There are two types of friction: dry friction, sometimes called 
 Coulomb friction, and fluid friction or viscosity. Fluid friction develops 
between layers of fluid moving at different velocities. This is of great 
importance in analyzing problems involving the flow of fluids through 
pipes and orifices or dealing with bodies immersed in moving  fluids. It 
is also basic for the analysis of the motion of lubricated mechanisms. Such 
problems are considered in texts on fluid mechanics. The present study is 
limited to dry friction, i.e., to situations involving rigid bodies that are in 
contact along unlubricated surfaces.

4.4A  The Laws of Dry Friction 
We can illustrate the laws of dry friction by the following experiment. Place 
a block of weight W on a horizontal plane surface (Fig. 4.11a). The forces 
acting on the block are its weight W and the reaction of the surface. Since 

Photo 4.5 Examples of friction in an automobile. Depending upon the 
application, the degree of friction is controlled by design engineers.

Low friction—
pistons in
engine cylinders

Low friction—
journal bearings
on front axle

High friction—
disk brakes

Moderate friction—
shock absorbers

High friction—
tire treads

Low friction—
air bag release

High friction—
drive belt
from engine
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the weight has no horizontal component, the reaction of the surface also 
has no horizontal component; the reaction is therefore normal to the surface 
and is represented by N in Fig. 4.11a. Now suppose that you apply a hori-
zontal force P to the block (Fig. 4.11b). If P is small, the block does not 
move; some other horizontal force must therefore exist, which balances P. 
This other force is the static-friction force F, which is actually the resultant 
of a great number of forces acting over the entire surface of contact between 
the block and the plane. The nature of these forces is not known exactly, 
but we generally assume that these forces are due to the irregularities of 
the surfaces in contact and, to a certain extent, to molecular attraction.

W

N

P

(a)

F

P

Fm

Fk

Equilibrium Motion

Impending
motion

A B

W

N

(b) (c)

A B

F

Fig. 4.11 (a) Block on a horizontal plane, friction force is zero; (b) a horizontally applied 
force P produces an opposing friction force F; (c) graph of F with increasing P.

If you increase the force P, the friction force F also increases, continu-
ing to oppose P, until its magnitude reaches a certain maximum value Fm 
(Fig. 4.11c). If P is further increased, the friction force cannot balance it 
anymore, and the block starts sliding. As soon as the block has started in 
motion, the magnitude of F drops from Fm to a lower value Fk. This happens 
because less interpenetration occurs between the irregularities of the surfaces 
in contact when these surfaces move with respect to each other. From then 
on, the block keeps sliding with increasing velocity while the friction force, 
denoted by Fk and called the kinetic-friction force , remains approximately 
constant.

Note that, as the magnitude F of the friction force increases from  
0 to Fm, the point of application A of the resultant N of the normal forces 
of contact moves to the right. In this way, the couples formed by P and F  
and by W and N, respectively, remain balanced. If N reaches B before F 
reaches its maximum value Fm, the block starts to tip about B before it 
can start sliding (see Sample Prob. 4.14).

4.4B Coefficients of Friction
Experimental evidence shows that the maximum value Fm of the static-
friction force is proportional to the normal component N of the reaction 
of the surface. We have
Static friction

 Fm 5 µsN (4.8)
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where µs is a constant called the coefficient of static friction. Similarly, 
we can express the magnitude Fk of the kinetic-friction force in the form
Kinetic friction

 Fk 5 µkN (4.9)

where µk is a constant called the coefficient of kinetic friction. The coef-
ficients of friction µs and µk do not depend upon the area of the surfaces 
in contact. Both coefficients, however, depend strongly on the nature of 
the surfaces in contact. Since they also depend upon the exact condition 
of the surfaces, their value is seldom known with an accuracy greater than 
5%. Approximate values of coefficients of static friction for various com-
binations of dry surfaces are given in Table 4.1. The corresponding values 
of the coefficient of kinetic friction are about 25% smaller. Since coeffi-
cients of friction are dimensionless quantities, the values given in Table 4.1 
can be used with both SI units and U.S. customary units.

Table 4.1 Approximate 
Values of Coefficient of  
Static Friction for Dry 
Surfaces

Metal on metal 0.15–0.60
Metal on wood 0.20–0.60
Metal on stone 0.30–0.70
Metal on leather 0.30–0.60
Wood on wood 0.25–0.50
Wood on leather 0.25–0.50
Stone on stone 0.40–0.70
Earth on earth 0.20–1.00
Rubber on concrete 0.60–0.90

From this discussion, it appears that four different situations can 
occur when a rigid body is in contact with a horizontal surface:

 1. The forces applied to the body do not tend to move it along the surface 
of contact; there is no friction force (Fig. 4.12a).

 2. The applied forces tend to move the body along the surface of contact 
but are not large enough to set it in motion. We can find the  static-friction 
force F that has developed by solving the equations of equilibrium for 
the body. Since there is no evidence that F has reached its maximum 
value, the equation Fm 5 µsN cannot be used to determine the friction 
force (Fig. 4.12b).

 3. The applied forces are such that the body is just about to slide. We say 
that motion is impending. The friction force F has reached its maximum 
value Fm and, together with the normal force N, balances the applied 
forces. Both the equations of equilibrium and the equation Fm 5 µsN 
can be used. Note that the friction force has a sense opposite to the 
sense of impending motion (Fig. 4.12c).

 4. The body is sliding under the action of the applied forces, and the equa-
tions of equilibrium no longer apply.  However, F is now equal to Fk, 
and we can use the equation Fk 5 µkN. The sense of Fk is opposite to 
the sense of motion (Fig. 4.12d).

W
P

N

F 5 0

Py

Px

F 5 Px

N 5 Py 1 W
F , µsN

N 5 P 1 W

(a) No friction (Px 5 0)

WP

N

F

(b) No motion (Px , Fm)

Py

Px

Fm 5 Px

N 5 Py 1 W
Fm 5 µsN

WP

N

Fm

(c) Motion impending              (Px 5 Fm)

Py

Px

Fk , Px

N 5 Py 1 W
Fk 5 µkN

WP

N

Fk

(d) Motion             (Px . Fk)

Fig. 4.12 (a) Applied force is vertical, 
friction force is zero; (b) horizontal 
component of applied force is less than Fm, 
no motion occurs; (c) horizontal component 
of applied force equals Fm, motion is 
impending; (d) horizontal component of 
applied force is greater than Fk, forces are 
unbalanced and motion continues.
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4.4C Angles of Friction
It is sometimes convenient to replace the normal force N and the friction 
force F by their resultant R. Let’s see what happens when we do that.

Consider again a block of weight W resting on a horizontal plane 
surface. If no horizontal force is applied to the block, the resultant R 
reduces to the normal force N (Fig. 4.13a). However, if the applied force 
P has a horizontal component Px that tends to move the block, force R 
has a horizontal component F and, thus, forms an angle ϕ with the normal 
to the surface (Fig. 4.13b). If you increase Px until motion becomes 
impending, the angle between R and the vertical grows and reaches a 
maximum value (Fig. 4.13c). This value is called the angle of static fric-
tion and is denoted by ϕs. From the geometry of Fig. 4.13c, we note that
Angle of static friction

tan ϕs 5
Fm

N
5

μs 
N

N

 tan ϕs 5 µs (4.10)

If motion actually takes place, the magnitude of the friction force 
drops to Fk; similarly, the angle between R and N drops to a lower value ϕk, 
which is called the angle of kinetic friction (Fig. 4.13d). From the geo-
metry of Fig. 4.13d, we have
Angle of kinetic friction

tan ϕk 5
Fk

N
5

μk 
N

N

 tan ϕk 5 µk (4.11)

Another example shows how the angle of friction can be used to advan-
tage in the analysis of certain types of problems. Consider a block resting on 
a board and subjected to no other force than its weight W and the reaction R of 
the board. The board can be given any desired inclination. If the board is 
horizontal, the force R exerted by the board on the block is perpendicular to 
the board and balances the weight W (Fig. 4.14a). If the board is given a 
small angle of inclination θ, force R deviates from the perpendicular to the 
board by angle θ and continues to balance W (Fig. 4.14b). The reaction R 
now has a normal component N with a  magnitude of N 5 W cos θ and a 
tangential component F with a magnitude of F 5 W sin θ.

If we keep increasing the angle of inclination, motion soon becomes 
impending. At that time, the angle between R and the normal reaches its 
maximum value θ 5 ϕs (Fig. 4.14c). The value of the angle of inclination 
corresponding to impending motion is called the angle of repose. Clearly, 
the angle of repose is equal to the angle of static friction ϕs. If we further 
increase the angle of inclination θ, motion starts and the angle between R 
and the normal drops to the lower value ϕk (Fig. 4.14d). The reaction R is 
not vertical anymore, and the forces acting on the block are unbalanced.

4.4D Problems Involving Dry Friction
Many engineering applications involve dry friction. Some are simple situ-
ations, such as variations on the block sliding on a plane just described. 

R 5 N

P

P

(a) No friction

(b) No motion

(c) Motion impending

(d ) Motion

ϕ , ϕs

P

R
N

Fk , Px

R
N

Fm 5 Px

RN

F 5 Px

Px

Py

Px

Py

Py

Px

P W

W

W

W

ϕ 5 ϕs

ϕ 5 ϕk

Fig. 4.13 (a) Applied force is vertical, 
friction force is zero; (b) applied force is at 
an angle, its horizontal component balanced 
by the horizontal component of the surface 
resultant; (c) impending motion, the 
horizontal component of the applied force 
equals the maximum horizontal component 
of the resultant; (d) motion, the horizontal 
component of the resultant is less than the 
horizontal component of the applied force.

Final PDF to printer



4.4 Friction Forces 195

bee98160_ch04_149-213.indd 195 12/22/15  04:34 PM

Others involve more complicated situations, as in Sample Prob. 4.13. 
Many problems deal with the stability of rigid bodies in accelerated 
motion and will be studied in dynamics. Also, several common machines 
and mechanisms can be analyzed by applying the laws of dry friction, 
including wedges, screws, journal and thrust bearings, and belt transmis-
sions. We will study these applications in the following sections.

The methods used to solve problems involving dry friction are the same 
that we used in the preceding chapters. If a problem involves only a motion 
of translation with no possible rotation, we can usually treat the body under 
consideration as a particle and use the methods of Chap. 2. If the problem 
involves a possible rotation, we must treat the body as a rigid body and use 
the methods presented in this chapter.

If the body being considered is acted upon by more than three forces 
(including the reactions at the surfaces of contact), the reaction at each 
surface is represented by its components N and F, and we solve the prob-
lem using the equations of equilibrium. If only three forces act on the body 
under consideration, it may be more convenient to represent each reaction 
by the single force R and solve the problem by using a force triangle.

Most problems involving friction fall into one of the following three 
groups.
 1. All applied forces are given, and we know the coefficients of friction; 

we are to determine whether the body being considered remains at rest 
or slides. The friction force F required to maintain equilibrium is 

W

R

W
W

(a) No friction (b) No motion

θ 5 0
θ , ϕs R

R R

W

θ

θ

(c) Motion impending (d ) Motion

θ 5 ϕs 5 angle of repose

W sin θ

W cos θ

F 5 W sin θ

N 5 W cos θ
N 5 W cos θ

θ

Fm 5 W sin θ Fk , W sin θθ . ϕs

N 5 W cos θ

θ

θ 5 ϕs

ϕk

Fig. 4.14 (a) Block on horizontal board, friction force is zero; (b) board's angle of inclination is less than angle of static 
friction, no motion; (c) board's angle of inclination equals angle of friction, motion is impending; (d) angle of inclination is 
greater than angle of friction, forces are unbalanced and motion occurs.

Photo 4.6 The coefficient of static friction between a crate 
and the inclined conveyer belt must be sufficiently large to 
enable the crate to be transported without slipping.

© Tomohiro Ohsumi/Bloomberg/Getty Images
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unknown (its magnitude is not equal to µsN) and needs to be deter-
mined, together with the normal force N, by drawing a free-body dia-
gram and solving the equations of equilibrium (Fig. 4.15a). We then 
compare the value found for the magnitude F of the friction force with 
the maximum value Fm 5 µsN. If F is smaller than or equal to Fm, the 
body remains at rest. If the value found for F is larger than Fm, equi-
librium cannot be maintained and motion takes place; the actual mag-
nitude of the friction force is then Fk 5 µkN.

 2. All applied forces are given, and we know the motion is impending; we 
are to determine the value of the coefficient of static friction. Here again, 
we determine the friction force and the normal force by drawing a free-
body diagram and solving the equations of equilibrium (Fig. 4.15b). 
Since we know that the value found for F is the maximum value Fm, we 
determine the coefficient of friction by solving the equation Fm 5 µsN.

 3. The coefficient of static friction is given, and we know that the motion 
is impending in a given direction; we are to determine the magnitude 
or the direction of one of the applied forces. The friction force should 
be shown in the free-body diagram with a sense opposite to that of the 
impending motion and with a magnitude Fm 5 µsN (Fig. 4.15c). We can 
then write the equations of equilibrium and determine the desired force.

As noted previously, when only three forces are involved, it may be 
more convenient to represent the reaction of the surface by a single force 
R and to solve the problem by drawing a force triangle. Such a solution 
is used in Sample Prob. 4.12.

When two bodies A and B are in contact (Fig. 4.16a), the forces of 
friction exerted, respectively, by A on B and by B on A are equal and 
opposite (Newton’s third law). In drawing the free-body diagram of one 
of these bodies, it is important to include the appropriate friction force 
with its correct sense. Observe the following rule: The sense of the friction 
force acting on A is opposite to that of the motion (or impending motion) 
of A as observed from B (Fig. 4.16b). (It is therefore the same as the 
motion of B as observed from A.) The sense of the friction force acting 
on B is determined in a similar way (Fig. 4.16c). Note that the motion of 
A as observed from B is a relative motion. For example, if body A is fixed 
and body B moves, body A has a relative motion with respect to B. Also, 
if both B and A are moving down but B is moving faster than A, then 
body A is observed, from B, to be moving up.

F
m  = µ

s N

W
P

N

Frequired

(a)

W
P

N
(b)

F
m  = µ

s N

WP

N
(c)

Sense ofimpending motion

Fig. 4.15 Three types of friction problems: 
(a) given the forces and coefficient of 
friction, will the block slide or stay? (b) given 
the forces and that motion is pending, 
determine the coefficient of friction; (c) given 
the coefficient of friction and that motion is 
impending, determine the applied force.
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Fig. 4.16 (a) Two blocks held in contact by forces; (b) free-body diagram for block A, 
including direction of friction force; (c) free-body diagram for block B, including 
direction of friction force.
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Sample Problem 4.11

A 100-lb force acts as shown on a 300-lb crate placed on an inclined 
plane. The coefficients of friction between the crate and the plane are 
µs 5 0.25 and µk 5 0.20. Determine whether the crate is in equilibrium, 
and find the value of the friction force.

STRATEGY: This is a friction problem of the first type: You know the 
forces and the friction coefficients and want to determine if the crate 
moves. You also want to find the friction force.

MODELING and ANALYSIS

Force Required for Equilibrium. First determine the value of the 
friction force required to maintain equilibrium. Assuming that F is directed 
down and to the left, draw the free-body diagram of the crate (Fig. 1) and 
solve the equilibrium equations:

 1   oFx 5 0:  100 lb 2 3
5(300 lb) 2 F 5 0

  F 5 280 lb  F 5 80 lb

 1      oFy 5 0:   N 2 45(300 lb) 5 0
  N 5 1240 lb  N 5 240 lb

The force F required to maintain equilibrium is an 80-lb force directed up 
and to the right; the tendency of the crate is thus to move down the plane.

Maximum Friction Force. The magnitude of the maximum friction 
force that may be developed between the crate and the plane is

Fm 5 µsN    Fm 5 0.25(240 lb) 5 60 lb

Since the value of the force required to maintain equilibrium (80 lb) is 
larger than the maximum value that may be obtained (60 lb), equilibrium 
is not maintained and the crate will slide down the plane.

Actual Value of Friction Force. The magnitude of the actual 
 friction force is 

Factual 5 Fk 5 µkN 5 0.20(240 lb) 5 48 lb

The sense of this force is opposite to the sense of motion; the force is 
thus directed up and to the right (Fig. 2):

Factual 5 48 lb    b

Note that the forces acting on the crate are not balanced. Their resultant is

3
5(300 lb) 2 100 lb 2 48 lb 5 32 lb 

REFLECT and THINK: This is a typical friction problem of the first 
type. Note that you used the coefficient of static friction to determine if 
the crate moves, but once you found that it does move, you needed the 
coefficient of kinetic friction to determine the friction force.

 

 

 

 

   

   

100 lb

3
4

5

300 lb

100 lb

F

N

x

300 lb
3

4
5y

Fig. 1 Free-body diagram of 
crate showing assumed 
direction of friction force.

Motion

F = 48 lb
N = 240 lb

100 lb

300 lb

Fig. 2 Free-body diagram of 
crate showing actual friction 
force.
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Sample Problem 4.12

A support block is acted upon by two forces as shown. Knowing 
that the coefficients of friction between the block and the 
incline are µs 5 0.35 and µk 5 0.25, determine the force P 
required to (a) start the block  moving up the incline; (b) keep 
it moving up; (c) prevent it from sliding down.

STRATEGY: This problem involves practical variations of 
the third type of friction problem. You can approach the solu-
tions through the concept of the angles of friction.

MODELING:

Free-Body Diagram. For each part of the problem, draw 
a free-body diagram of the block and a force triangle including 
the 800-N vertical force, the horizontal force P, and the force 
R exerted on the block by the incline. You must determine the 
direction of R in each separate case. Note that, since P is per-
pendicular to the 800-N force, the force triangle is a right tri-
angle, which easily can be solved for P. In most other problems, 
however, the force triangle will be an oblique triangle and 
should be solved by applying the law of sines.

ANALYSIS: 

a. Force P to Start Block Moving Up. In this case, 
motion is impending up the incline, so the resultant is directed 
at the angle of static friction (Fig. 1). Note that the resultant is 
oriented to the left of the normal such that its friction compo-
nent (not shown) is directed opposite the direction of impending 
motion.

 P 5 (800 N) tan 44.29° P 5 780 N  b

b. Force P to Keep Block Moving Up. Motion is 
 continuing, so the resultant is directed at the angle of kinetic 
friction (Fig. 2). Again, the resultant is oriented to the left of 
the normal such that its friction component is directed opposite 
the direction of motion.

 P 5 (800 N) tan 39.04° P 5 649 N  b

c. Force P to Prevent Block from Sliding Down. Here, 
motion is impending down the incline, so the resultant is 
directed at the angle of static friction (Fig. 3). Note that the 
resultant is oriented to the right of the normal such that its 
friction component is directed opposite the direction of impend-
ing motion.

 P 5 (800 N) tan 5.71° P 5 80.0 N  b

REFLECT and THINK: As expected, considerably more 
force is required to begin moving the block up the slope than 
is necessary to restrain it from sliding down the slope.

800 N

258
P

ϕs

tan ϕs = µs

258 + 19.298 = 44.298

ϕs = 19.298

= 0.35

800 N

800 N

258

P

R

P

R

Fig. 1 Free-body diagram of block and its force 
triangle—motion impending up incline.

tan ϕk = µk

 ϕk 258 + 14.048 = 39.048

ϕk = 14.048

= 0.25

P

R

800 N

800 N

258

P

R

Fig. 2 Free-body diagram of block and its force 
triangle—motion continuing up incline.

258 2 19.298 = 5.718

ϕs = 19.298
P

R
ϕs

800 N

800 N

258

P

R
Fig. 3 Free-body diagram of block and its force 
triangle—motion prevented down the slope.
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Sample Problem 4.13

The movable bracket shown may be placed at any height on the 3-in.- 
diameter pipe. If the coefficient of static friction between the pipe and 
bracket is 0.25, determine the minimum distance x at which the load W 
can be supported. Neglect the weight of the bracket.

STRATEGY: In this variation of the third type of friction problem, you 
know the coefficient of static friction and that motion is impending. Since 
the problem involves consideration of resistance to rotation, you should 
apply both moment equilibrium and force equilibrium.

MODELING:

Free-Body Diagram. Draw the free-body diagram of the bracket 
(Fig. 1). When W is placed at the minimum distance x from the axis of 
the pipe, the bracket is just about to slip, and the forces of friction at A 
and B have reached their maximum values:

FA 5 µsNA 5 0.25 NA

FB 5 µsNB 5 0.25 NB

ANALYSIS:

Equilibrium Equations.

oFx 5 0: NB 2 NA 5 0
 NB 5 NA

 1   oFy 5 0: FA 1 FB 2 W 5 0
 0.25NA 1 0.25NB 5 W

Since NB is equal to NA,

0.50NA 5 W
 NA 5 2W

1  oMB 5 0: NA(6 in.) 2 FA(3 in.) 2 W(x 2 1.5 in.) 5 0
  6NA 2 3(0.25NA) 2 Wx 1 1.5W 5 0
  6(2W) 2 0.75(2W) 2 Wx 1 1.5W 5 0

Dividing through by W and solving for x, you have

x 5 12 in. b

REFLECT and THINK: In a problem like this, you may not figure out 
how to approach the solution until you draw the free-body diagram and 
examine what information you are given and what you need to find. In 
this case, since you are asked to find a distance, the need to evaluate 
moment equilibrium should be clear.

W

6 in.

3 in.

x

NA

NB

FA

FB

W

A

B
3 in.

x – 1.5 in.

x

6 in.

Fig. 1 Free-body diagram of 
bracket.

Final PDF to printer



200 Equilibrium of Rigid Bodies

bee98160_ch04_149-213.indd 200 12/22/15  04:34 PM

Sample Problem 4.14

An 8400-kg truck is traveling on a level horizontal curve, resulting in an 
effective lateral force H (applied at the center of gravity G of the truck). 
Treating the truck as a rigid system with the center of gravity shown, and 
knowing that the distance between the outer edges of the tires is 1.8 m, 
determine (a) the maximum force H before tipping of the truck occurs, 
(b) the minimum coefficient of static friction between the tires and road-
way such that slipping does not occur before tipping.

STRATEGY: For the direction of H shown, the truck would tip about the 
outer edge of the right tire. At the verge of tip, the normal force and friction 
force are zero at the left tire, and the normal force at the right tire is at the 
outer edge. You can apply equilibrium to determine the value of H neces-
sary for tip and the required friction force such that slipping does not occur.

MODELING: Draw the free-body diagram of the truck (Fig. 1), which 
reflects impending tip about point B. Obtain the weight of the truck by 
multiplying its mass of 8400 kg by g 5 9.81 m/s2; that is, W 5 82 400 N 
or 82.4 kN.

ANALYSIS: 

Free Body: Truck (Fig. 1).

1  oMB 5 0: (82.4 kN)(0.8 m) 2 H(1.4 m) 5 0
 H 5 147.1 kN H 5 47.1 kN  b

oFx 5 0: 47.1 kN 2 FB 5 0
 FB 5 147.1 kN

1   oFy 5 0: NB 2 82.4 kN 5 0
  NB 5 182.4 kN

Minimum Coefficient of Static Friction. The magnitude of the 
maximum friction force that can be developed is

Fm 5 µsNB 5 µs (82.4 kN)

Setting this equal to the friction force required, FB 5 47.1 kN, gives 

 µs (82.4 kN) 5 47.1 kN µs 5 0.572 b

REFLECT and THINK: Recall from physics that H represents the force 
due to the centripetal acceleration of the truck (of mass m), and its mag-
nitude is

H 5 m(v2/ρ)

where
 v 5 velocity of the truck
 ρ 5 radius of curvature

In this problem, if the truck was traveling around a curve of 100-m radius 
(measured to G), the velocity at which it would begin to tip would be 
23.7 m/s (or 85.2 km/h). You will learn more about this aspect in the 
study of dynamics.

0.8 m

G
H

FB

NB

1.4 m

B
A

82.4 kN

1.8 m

GH

1.0 m

1.4 m

Fig. 1 Free-body 
diagram of truck.
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Problems
 4.75 Determine whether the block shown is in equilibrium and find the 

magnitude and direction of the friction force when θ 5 25° and  
P 5 750 N.

Fig. P4.75

P

�s 5 0.35
�k 5 0.25

1.2 kN

θ

 4.76 Solve Prob. 4.75 when θ 5 30° and P 5 150 N.

 4.77 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when P 5 120 lb.

Fig. P4.77, P4.78, and P4.79

50 lb

308

408

P

µs 5 0.40
µk 5 0.30

 4.78 Determine whether the block shown is in equilibrium and find the 
magnitude and direction of the friction force when P 5 80 lb.

 4.79 Determine the smallest value of P required to (a) start the block up the 
incline, (b) keep it moving up.

 4.80 The 80-lb block is attached to link AB and rests on a moving belt. 
Knowing that μs 5 0.25 and μk 5 0.20, determine the magnitude of 
the horizontal force P that should be applied to the belt to maintain 
its motion (a) to the right, (b) to the left.

Fig. P4.80

308
80 lb

A

B
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 4.81 The 50-lb block A and the 25-lb block B are supported by an incline 
that is held in the position shown. Knowing that the coefficient of 
static friction is 0.15 between the two blocks and zero between block 
B and the incline, determine the value of θ for which motion is 
impending.

B

θ

A

Fig. P4.81 and P4.82

 4.82 The 50-lb block A and the 25-lb block B are supported by an incline 
that is held in the position shown. Knowing that the coefficient of 
static friction is 0.15 between all surfaces of contact, determine the 
value of θ for which motion is impending.

 4.83 The coefficients of friction between the block and the rail are μs 5 
0.30 and μk 5 0.25. Knowing that θ 5 65°, determine the smallest 
value of P required (a) to start the block moving up the rail, (b) to 
keep it from moving down.

Fig. P4.83

P

500 N
358

θ

 4.84 Knowing that P 5 100 N, determine the range of values of θ for which 
equilibrium of the 7.5-kg block is maintained.

Fig. P4.84

µk 5 0.35
µs 5 0.45

P

7.5 kg

θ
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 4.85 A 120-lb cabinet is mounted on casters that can be locked to prevent 
their rotation. The coefficient of static friction between the floor and 
each caster is 0.30. If h 5 32 in., determine the magnitude of the 
force P required to move the cabinet to the right (a) if all casters are 
locked, (b) if the casters at B are locked and the casters at A are free 
to rotate, (c) if the casters at A are locked and the casters at B are 
free to rotate. 

C

A B

P

h

24 in.

Fig. P4.85 and P4.86

 4.86 A 120-lb cabinet is mounted on casters that can be locked to prevent 
their rotation. The coefficient of static friction between the floor and 
each caster is 0.30. Assuming that the casters at both A and B are 
locked, determine (a) the force P required to move the cabinet to the 
right, (b) the largest allowable value of h if the cabinet is not to tip 
over.

 4.87 A 40-kg packing crate must be moved to the left along the floor 
without tipping. Knowing that the coefficient of static friction between 
the crate and the floor is 0.35, determine (a) the largest allowable 
value of α, (b) the corresponding magnitude of the force P. 

0.5 m

0.8 m

B
A

DC

P

α

Fig. P4.87 and P4.88

 4.88 A 40-kg packing crate is pulled by a rope as shown. The coefficient 
of static friction between the crate and the floor is 0.35. If α 5 40°, 
determine (a) the magnitude of the force P required to move the 
crate, (b) whether the crate will slide or tip. 

 4.89 and 4.90 The coefficients of friction are μs 5 0.40 and μk 5 0.30 
between all surfaces of contact. Determine the smallest force P 
required to start the 30-kg block moving if cable AB (a) is attached as 
shown, (b) is removed.

Fig. P4.89

P

A

B

20 kg

30 kg

Fig. P4.90

P

A B20 kg

30 kg

Final PDF to printer



204

bee98160_ch04_149-213.indd 204 12/22/15  04:34 PM

 4.91 A 6.5-m ladder AB leans against a wall as shown. Assuming that the 
coefficient of static friction μs is zero at B, determine the smallest 
value of μs at A for which equilibrium is maintained.

Fig. P4.91 and P4.92

A

B

6 m

2.5 m

 4.92 A 6.5-m ladder AB leans against a wall as shown. Assuming that the 
coefficient of static friction μs is the same at A and B, determine the 
smallest value of μs for which equilibrium is maintained.

 4.93 and 4.94 End A of a slender, uniform rod of length L and weight W 
bears on a surface as shown, while end B is supported by a cord BC. 
Knowing that the coefficients of friction are μs 5 0.40 and μk 5 
0.30, determine (a) the largest value of θ for which motion is impend-
ing, (b) the corresponding value of the tension in the cord.

A

C

B

L

L
θ

Fig. P4.93

L

L

B

C

A
θ

Fig. P4.94
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 4.95 Two slender rods of negligible weight are pin-connected at C and 
attached to blocks A and B, each of weight W. Knowing that θ 5 
80° and that the coefficient of static friction between the blocks and 
the horizontal surface is 0.30, determine the largest value of P for 
which equilibrium is maintained.

Fig. P4.95 and P4.96

A

C

B

WW
308

P

608

θ

 4.96 Two slender rods of negligible weight are pin-connected at C and 
attached to blocks A and B, each of weight W. Knowing that P 5 
1.260W and that the coefficient of static friction between the blocks 
and the horizontal surface is 0.30, determine the range of values of θ, 
between 0 and 180°, for which equilibrium is maintained.

 4.97 The cylinder shown is of weight W and radius r, and the coefficient 
of static friction μs is the same at A and B. Determine the magnitude 
of the largest couple M that can be applied to the cylinder if it is 
not to rotate.

Fig. P4.97 and P4.98

A

B

M

 4.98 The cylinder shown is of weight W and radius r. Express in terms W 
and r the magnitude of the largest couple M that can be applied to 
the cylinder if it is not to rotate, assuming the coefficient of static 
friction to be (a) zero at A and 0.30 at B, (b) 0.25 at A and 0.30 at B.
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Review and Summary
Equilibrium Equations
This chapter was devoted to the study of the equilibrium of rigid bodies, 
i.e., to the situation when the external forces acting on a rigid body form a 
system equivalent to zero [Introduction]. We then have

 oF 5 0   oMO 5 o(r 3 F) 5 0 (4.1)
Resolving each force and each moment into its rectangular components, we 
can express the necessary and sufficient conditions for the equilibrium of a 
rigid body with the following six scalar equations:

 oFx 5 0 oFy 5 0 oFz 5 0 (4.2)
 oMx 5 0 oMy 5 0 oMz 5 0 (4.3)
We can use these equations to determine unknown forces applied to the rigid 
body or unknown reactions exerted by its supports.

Free-Body Diagram
When solving a problem involving the equilibrium of a rigid body, it is essential 
to consider all of the forces acting on the body. Therefore, the first step in the 
solution of the problem should be to draw a free-body diagram showing the body 
under consideration and all of the unknown as well as known forces acting on it.

Equilibrium of a Two-Dimensional Structure
In the first part of this chapter, we considered the equilibrium of a two-
dimensional structure; i.e., we assumed that the structure considered and the 
forces applied to it were contained in the same plane. We saw that each of 
the reactions exerted on the structure by its supports could involve one, two, 
or three unknowns, depending upon the type of support [Sec. 4.1A].
 In the case of a two-dimensional structure, the equations given previ-
ously reduce to three equilibrium equations: 

 oFx 5 0   oFy 5 0   oMA 5 0 (4.5)
where A is an arbitrary point in the plane of the structure [Sec. 4.1B]. We can 
use these equations to solve for three unknowns. Although the three equilib-
rium equations (4.5) cannot be augmented with additional equations, any of 
them can be replaced by another equation. Therefore, we can write alternative 
sets of equilibrium equations, such as

 oFx 5 0   oMA 5 0   oMB 5 0 (4.6)
where point B is chosen in such a way that the line AB is not parallel to the 
y axis, or

 oMA 5 0   oMB 5 0   oMC 5 0 (4.7)
where the points A, B, and C do not lie in a straight line.

Static Indeterminacy, Partial Constraints, 
Improper Constraints
Since any set of equilibrium equations can be solved for only three unknowns, 
the reactions at the supports of a rigid two-dimensional structure cannot be 
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completely determined if they involve more than three unknowns; they are 
said to be statically indeterminate [Sec. 4.1C]. On the other hand, if the reac-
tions involve fewer than three unknowns, equilibrium is not maintained under 
general loading conditions; the structure is said to be partially constrained. 
The fact that the reactions involve exactly three unknowns is no guarantee that 
you can solve the equilibrium equations for all three unknowns. If the supports 
are arranged in such a way that the reactions are either concurrent or parallel, 
the reactions are statically indeterminate, and the structure is said to be 
improperly constrained.

Two-Force Body, Three-Force Body
We gave special attention in Sec. 4.2 to two particular cases of equilibrium 
of a rigid body. We defined a two-force body as a rigid body subjected to 
forces at only two points, and we showed that the resultants F1 and F2 of these 
forces must have the same magnitude, the same line of action, and opposite 
sense (Fig.  4.17), which is a property that simplifies the solution of certain 
problems in later chapters. We defined a three-force body as a rigid body 
subjected to forces at only three points, and we demonstrated that the resul-
tants F1, F2, and F3 of these forces must be either concurrent (Fig. 4.18) or 
parallel. This property provides us with an alternative approach to the solution 
of problems involving a three-force body [Sample Prob. 4.6].

Equilibrium of a Three-Dimensional Body
In the second part of this chapter, we considered the equilibrium of a three-
dimensional body. We saw that each of the reactions exerted on the body by 
its supports could involve between one and six unknowns, depending upon 
the type of support [Sec. 4.3A].
 In the general case of the equilibrium of a three-dimensional body, all 
six of the scalar equilibrium equations (4.2) and (4.3) should be used and 
solved for six unknowns [Sec. 4.3B]. In most problems, however, we can 
obtain these equations more conveniently if we start from

 oF 5 0   oMO 5 o (r 3 F) 5 0 (4.1)
and then express the forces F and position vectors r in terms of scalar com-
ponents and unit vectors. We can compute the vector products either directly 
or by means of determinants, and obtain the desired scalar equations by equat-
ing to zero the coefficients of the unit vectors [Sample Probs. 4.7 through 4.9].
 We noted that we may eliminate as many as three unknown reaction 
components from the computation of oMO in the second of the relations (4.1) 
through a judicious choice of point O. Also, we can eliminate the reactions 
at two points A and B from the solution of some problems by writing the 
equation oMAB 5 0, which involves the computation of the moments of the 
forces about an axis AB joining points A and B [Sample Prob. 4.10].
 We observed that when a body is subjected to individual couples Mi, 
either as applied loads or as support reactions, we can include these couples 
by expressing the second part of Eq. (4.1) as

 oMO 5 o(r 3 F) 1 oMi 5 0 (4.19)

 If the reactions involve more than six unknowns, some of the reactions 
are statically indeterminate; if they involve fewer than six unknowns, the rigid 
body is only partially constrained. Even with six or more unknowns, the rigid 
body is improperly constrained if the reactions associated with the given sup-
ports are either parallel or intersect the same line.

Fig. 4.17

A

B

F1

F2

Fig. 4.18

F2

F3

F1

B C

D
A
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Static and Kinetic Friction
The final part of this chapter was devoted to the study of dry friction, i.e., 
to problems involving rigid bodies in contact along unlubricated surfaces. If 
we apply a horizontal force P to a block resting on a horizontal surface  
[Sec. 4.4A], we note that at first the block does not move. This shows that a 
friction force F must have developed to balance P (Fig. 4.19). As the 
 magnitude of P increases, the magnitude of F also increases until it reaches 
a maximum value Fm. If P is further increased, the block starts sliding, and 
the magnitude of F drops from Fm to a lower value Fk. Experimental evidence 
shows that Fm and Fk are proportional to the normal component N of the 
reaction of the surface. We have

Fig. 4.19 

N

F

W

P

P

F Equilibrium Motion

Fm

Fk

 Fm 5 µsN   Fk 5 µkN (4.8, 4.9)

where µs and µk are called, respectively, the coefficient of static  friction and 
the coefficient of kinetic friction. These coefficients depend on the nature 
and the condition of the surfaces in contact. Approximate values of the coef-
ficients of static friction are given in Table 4.1.

Angles of Friction
It is sometimes convenient to replace the normal force N and the friction force F 
by their resultant R (Fig. 4.20). As the friction force increases and reaches its 
maximum value Fm 5 µsN, the angle ϕ that R forms with the normal to the 
surface increases and reaches a maximum value ϕs, which is called the angle 
of static friction. If motion actually takes place, the magnitude of F drops to 
Fk; similarly, the angle ϕ drops to a lower value ϕk, which is called the angle 
of kinetic friction. As shown in Sec. 4.4C, we have

 tan ϕs 5 µs   tan ϕk 5 µk (4.10, 4.11)

Problems Involving Friction
When solving equilibrium problems involving friction, you should keep in 
mind that the magnitude F of the friction force is equal to Fm 5 µsN only if 
the body is about to slide [Sec. 4.4D]. If motion is not impending, you should 
treat F and N as independent unknowns to be determined from the equilibrium 
equations (Fig. 4.21a). You should also check that the value of F required to 
maintain equilibrium is not larger than Fm; if it were, the body would move, 
and the magnitude of the friction force would be Fk 5 µkN [Sample Prob. 4.11]. 
On the other hand, if motion is known to be impending, F has reached its 
maximum value Fm 5 µsN (Fig. 4.21b), and you should substitute this expres-
sion for F in the equilibrium equations [Sample Prob. 4.13]. When only three 

Fig. 4.20 

R

W

P

N

F

ϕ
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forces are involved in a free-body diagram, including the reaction R of the 
surface in contact with the body, it is usually more convenient to solve the 
problem by drawing a force triangle [Sample Prob. 4.12]. In some problems, 
impending motion can be due to tipping instead of slipping; the assessment 
of this condition requires a moment equilibrium analysis of the body [Sample 
Prob. 4.14].

Fig. 4.21 

W P

N

W P

N

Frequired
F

m  = µ
s N

(a) (b)

 When a problem involves the analysis of the forces exerted on each 
other by two bodies A and B, it is important to show the friction forces with 
their correct sense. The correct sense for the friction force exerted by B on 
A, for instance, is opposite to that of the relative motion (or impending motion) 
of A with respect to B [Fig. 4.16].
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 4.99 A T-shaped bracket supports the four loads shown. Determine the 
reactions at A and B (a) if a 5 10 in., (b) if a 5 7 in.

6 in. 6 in. 8 in.

10 lb30 lb50 lb40 lb

A

B

a

Fig. P4.99

 4.100 Neglecting friction and the radius of the pulley, determine (a) the 
tension in cable ADB, (b) the reaction at C.

Fig. P4.100

A B C

150 mm

200 mm
80 mm 80 mm

120 N

D

 4.101 Member ABC is supported by a pin and bracket at B and by an 
inextensible cord attached at A and C and passing over a friction-
less pulley at D. The tension may be assumed to be the same 
in portions AD and CD of the cord. For the loading shown and 
neglecting the size of the pulley, determine the tension in the cord 
and the reaction at B.  

A

B

CD

75 N

250 mm

a 5 120 mm

160 mm

Fig. P4.101

Review Problems
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 4.102 A movable bracket is held at rest by a cable attached at C and by 
frictionless rollers at A and B. For the loading shown, determine  
(a) the tension in the cable, (b) the reactions at A and B.

A

B

C

600 N
475 mm

75 mm
50 mm

90 mm

Fig. P4.102

 4.103 Rod AB is bent into the shape of an arc of circle and is lodged 
between two pegs D and E. It supports a load P at end B. Neglect-
ing friction and the weight of the rod, determine the distance c 
corresponding to equilibrium when a 5 20 mm and R 5 100 mm.

P

A
R

C

D

E

a

a

c

B

Fig. P4.103

 4.104 A thin ring of mass 2 kg and radius r 5 140 mm is held against a 
frictionless wall by a 125-mm string AB. Determine (a) the distance 
d, (b) the tension in the string, (c) the reaction at C.

140 mm

125 mm

d

A

B

C

Fig. P4.104
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 4.105 The table shown weighs 30 lb and has a diameter of 4 ft. It is sup-
ported by three legs equally spaced around the edge. A vertical 
load P of magnitude 100 lb is applied to the top of the table at D. 
Determine the maximum value of a if the table is not to tip over. 
Show, on a sketch, the area of the table over which P can act without 
tipping the table.

A
B

C

D

aP

Fig. P4.105

 4.106 A vertical load P is applied at end B of rod BC. The constant of the 
spring is k, and the spring is unstretched when θ 5 60°. (a) Neglect-
ing the weight of the rod, express the angle θ corresponding to the 
equilibrium position in terms of P, k, and l. (b) Determine the value 
of θ corresponding to equilibrium if P 5 1

4 kl.

 4.107 A force P is applied to a bent rod ABC, which can be supported in 
four different ways as shown. In each case, if possible, determine 
the reactions at the supports.

A
A

B B

C C

P

A

B

C

P

P

A

B

C

P

458

458

(a) (b)

(c) (d)

α5 308

308

aa

a

aa

a

aa

a

aa

a

Fig. P4.107

θ

A

B

C

P

l

l

Fig. P4.106
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 4.108 The rigid L-shaped member ABF is supported by a ball-and-socket 
joint at A and by three cables. For the loading shown, determine the 
tension in each cable and the reaction at A.

x

y

z

A

B

C D

E F

G

J

H

24 lb

24 lb

9 in.

16 in.

16 in.

8 in.

12 in.

16 in.

8 in.

8 in.

8 in.

O

Fig. P4.108

 4.109 A 1.2-m plank of mass 3 kg rests on two joists. Knowing that the 
coefficient of static friction between the plank and the joists is 0.30, 
determine the magnitude of the horizontal force required to move 
the plank when (a) a 5 750 mm, (b) a 5 900 mm.

P
C

a
b

B

A

L 5 1.2 m

Fig. P4.109

 4.110 Two 10-lb blocks A and B are connected by a slender rod of negligible 
weight. The coefficient of static friction is 0.30 between all surfaces 
of contact, and the rod forms an angle θ 5 30° with the vertical. (a) 
Show that the system is in equilibrium when P 5 0. (b) Determine 
the largest value of P for which equilibrium is maintained.

A

B

W 5 10 lb

W 5 10 lb

P θ

Fig. P4.110
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A precast section of roadway for a new interchange on Interstate 

93 is shown being lowered from a gantry crane. In this chapter 

we will introduce the concept of the centroid of an area; later 

chapters will establish the relation between the location of the 

centroid and the behavior of the roadway under loading.

Distributed Forces: Centroids 
and Centers of Gravity

5
Photo courtesy of Massachussets Turnpike Authority
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Introduction
We have assumed so far that we could represent the attraction exerted by 
the earth on a rigid body by a single force W. This force, called the force 
due to gravity or the weight of the body, is applied at the center of gravity 
of the body (Sec. 3.1A). Actually, the earth exerts a force on each of the 
particles forming the body, so we should represent the attraction of the 
earth on a rigid body by a large number of small forces distributed over 
the entire body. You will see in this chapter, however, that all of these 
small forces can be replaced by a single equivalent force W. You will also 
see how to determine the center of gravity—i.e., the point of application 
of the resultant W—for bodies of various shapes.

In the first part of this chapter, we study two-dimensional bodies, 
such as flat plates and wires contained in a given plane. We introduce two 
concepts closely associated with determining the center of gravity of a 
plate or a wire: the centroid of an area or a line and the first moment 
of an area or a line with respect to a given axis. Computing the area of a 
surface of revolution or the volume of a body of revolution is directly 
related to determining the centroid of the line or area used to generate 
that surface or body of revolution (theorems of Pappus-Guldinus). Also, as 
we show in Sec. 5.3, the determination of the centroid of an area simpli-
fies the analysis of beams subjected to distributed loads.

In the last part of this chapter, you will see how to determine the 
center of gravity of a three-dimensional body as well as how to calculate 
the centroid of a volume and the first moments of that volume with respect 
to the coordinate planes.

Introduction

 5.1 PLANAR CENTERS 
OF GRAVITY AND 
CENTROIDS

 5.1A Center of Gravity of a 
Two-Dimensional Body

 5.1B Centroids of Areas and Lines
 5.1C First Moments of Areas 

and Lines
 5.1D Composite Plates and Wires

 5.2 FURTHER 
CONSIDERATIONS 
OF CENTROIDS

 5.2A Determination of Centroids 
by Integration

 5.2B Theorems of Pappus-Guldinus

 5.3 DISTRIBUTED LOADS ON 
BEAMS

 5.4 CENTERS OF GRAVITY 
AND CENTROIDS 
OF VOLUMES

 5.4A Three-Dimensional Centers 
of Gravity and Centroids 

 5.4B Composite Bodies

Objectives
• Describe the centers of gravity of two and three-

dimensional bodies.

• Define the centroids of lines, areas, and volumes.

• Consider the first moments of lines and areas, and 
examine their properties.

• Determine centroids of composite lines, areas, and 
volumes by summation methods.

• Determine centroids of composite areas by integration.

• Apply the theorems of Pappus-Guldinus to analyze 
surfaces and bodies of revolution.

• Analyze distributed loads on beams.

Introduction 215

Photo 5.1 The precise balancing of the 
components of a mobile requires an 
understanding of centers of gravity and 
centroids, the main topics of this chapter.

© Christie’s Images Ltd./SuperStock
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5.1  PLANAR CENTERS OF 
GRAVITY AND CENTROIDS

In Chapter 4, we showed how the locations of the lines of action of forces 
affect the replacement of a system of forces with an equivalent system of 
forces and couples. In this section, we extend this idea to show how a 
distributed system of forces (in particular, the elements of an object’s 
weight) can be replaced by a single resultant force acting at a specific point 
on an object. The specific point is called the object’s center of gravity.

5.1A  Center of Gravity of a 
Two-Dimensional Body

Let us first consider a flat horizontal plate (Fig. 5.1). We can divide the 
plate into n small elements. We denote the coordinates of the first element 
by x1 and y1, those of the second element by x2 and y2, etc. The forces 
exerted by the earth on the elements of the plate are denoted, respectively, 
by DW1, DW2, . . . , DWn. These forces or weights are directed toward the 
center of the earth; however, for all practical purposes, we can assume 
them to be parallel. Their resultant is therefore a single force in the same 
direction. The magnitude W of this force is obtained by adding the mag-
nitudes of the elemental weights.

oFz:   W 5 DW1 1 DW2 1 ? ? ? 1 DWn

Fig. 5.1 The center of gravity of a plate is the point where the resultant weight of the plate acts. It is 
the weighted average of all the elements of weight that make up the plate.

O

∆W1

x

y

z

y1

x1

O

∆W1

x

y

z

(x2, y2)

(x1, y1)
(xm, yn)

∆W2 ∆Wn

x

y

z

O

x

y

W

-

-
G

 (a) Single element of the plate (b) Multiple elements of the plate (c) Center of gravity

x 5
#x dW

W
   y 5

#y dW

W

To obtain the coordinates x and y of point G where the resultant W should 
be applied, we note that the moments of W about the y and x axes are 
equal to the sum of the corresponding moments of the elemental weights:

oMy:  xW 5 x1DW1 1 x2DW2 1 ? ? ? 1 xnDWn

 oMx:  yW 5 y1DW1 1 y2DW2 1 ? ? ? 1 ynDWn 
(5.1)

Solving these equations for x and y gives us

x 5
x1DW1 1 x2DW2 1 ? ? ? 1 xnDWn

W

y 5
y1DW1 1 y2DW2 1 ? ? ? 1 ynDWn

W
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We could use these equations in this form to find the center of gravity of 
a collection of n objects, each with a weight of Wi.

If we now increase the number of elements into which we divide the 
plate and simultaneously decrease the size of each element, in the limit of 
infinitely many elements of infinitesimal size, we obtain the expressions

Weight, center of 
gravity of a flat plate

 W 5 #dW   x W 5 #x dW   y W 5 #y dW  (5.2)

Or, solving for x and y, we have

 W 5 #dW     x 5
#x dW

W
     y 5

#y dW

W
 (5.29) 

These equations define the weight W and the coordinates x and y of the 
center of gravity G of a flat plate. The same equations can be derived 
for a wire lying in the xy plane (Fig. 5.2). Note that the center of gravity G 
of a wire is usually not located on the wire.

 (a) Single element of the wire (b) Multiple elements of the wire (c) Center of gravity

x 5
#x dW

W
   y 5

#y dW

W

∆W1

x

y

z

O

∆Wn

∆W1

x

y

y1

z

O

x1

x

y

z

O
  y

W

x
G

∆W2

(x2, y2)

(x1, y1)
(xm, yn) -

-

Fig. 5.2 The center of gravity of a wire is the point where the resultant weight of the wire acts. 
The center of gravity may not actually be located on the wire.

5.1B Centroids of Areas and Lines
In the case of a flat homogeneous plate of uniform thickness, we can 
express the magnitude DW of the weight of an element of the plate as

DW 5 γ t DA

where γ 5 specific weight (weight per unit volume) of the material
 t 5 thickness of the plate
 DA 5 area of the element

Similarly, we can express the magnitude W of the weight of the entire 
plate as

W 5 γ tA

where A is the total area of the plate.

G

Photo 5.2 The center of gravity of a 
boomerang is not located on the object itself.

© C Squared Studios/Getty Images RF
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If U.S. customary units are used, the specific weight γ should be 
expressed in lb/ft3, the thickness t in feet, and the areas DA and A in square 
feet. Then DW and W are expressed in pounds. If SI units are used, γ 
should be expressed in N/m3, t in meters, and the areas DA and A in square 
meters; the weights DW and W are then expressed in newtons.†

Substituting for DW and W in the moment equations (5.1) and divid-
ing throughout by γ t, we obtain

oMy:  xA 5 x1 DA1 1 x2 DA2 1 ? ? ? 1 xn DAn

oMx:  yA 5 y1 DA1 1 y2 DA2 1 ? ? ? 1 yn DAn

If we increase the number of elements into which the area A is divided 
and simultaneously decrease the size of each element, in the limit we obtain

Centroid of an area A

 xA 5#x dA    y A 5 #y dA (5.3)

Or, solving for x and y, we obtain

 x 5
#x dA

A
     y 5

#y dA

A
 (5.39)

These equations define the coordinates x and y of the center of  gravity of 
a homogeneous plate. The point whose coordinates are x and y is also 
known as the centroid C of the area A of the plate (Fig. 5.3). If the plate 
is not homogeneous, you cannot use these equations to determine the center 
of gravity of the plate; they still define, however, the centroid of the area.

O x

x

y

y

O x

y

A∆ A

C

y

x

O x

y

-

-

 (a) Divide area into elements (b) Element DA at point x, y (c) Centroid located at

x 5
#x dA

A
   y 5

#y dA

A
Fig. 5.3 The centroid of an area is the point where a homogeneous plate of uniform thickness 
would balance.

†We should note that in the SI system of units, a given material is generally characterized 
by its density ρ (mass per unit volume) rather than by its specific weight γ. You can obtain 
the specific weight of the material from the relation

 γ 5 ρg

where g 5 9.81 m/s2. Note that since ρ is expressed in kg/m3, the units of γ are (kg/m3)(m/s2), 
or N/m3.
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Fig. 5.4 The centroid of a line is the point where a homogeneous wire of uniform cross section 
would balance.

 (a) Divide line into elements (b) Element DL at point x, y (c) Centroid located at

x 5
#x dL

L
   y 5

#y dL

L

x

x

y

y

O
x

y

O

y

x

L

C

x

y

O

∆ L

-

-

In the case of a homogeneous wire of uniform cross section, we can 
express the magnitude DW of the weight of an element of wire as

DW 5 γa DL

where γ 5 specific weight of the material
 a 5 cross-sectional area of the wire
 DL 5 length of the element

The center of gravity of the wire then coincides with the centroid C of 
the line L defining the shape of the wire (Fig.  5.4). We can obtain the 
coordinates x and y of the centroid of line L from the equations

Centroid of a line L

 xL 5#x dL     yL 5#y dL (5.4)

Solving for x and y gives us

 x 5
#x dL

L
      y 5

#y dL

L
 (5.49)

5.1C First Moments of Areas and Lines
The integral ∫ x dA in Eqs. (5.3) is known as the first moment of the 
area A with respect to the y axis and is denoted by Qy. Similarly, the 
integral ∫ y dA defines the first moment of A with respect to the x axis 
and is denoted by Qx. That is,

First moments of area A

 Qy 5 #x dA     Qx 5 #y dA (5.5)
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Comparing Eqs. (5.3) with Eqs. (5.5), we note that we can express the 
first moments of the area A as the products of the area and the coordinates 
of its centroid:

 Qy 5 xA   Qx 5 yA (5.6)

It follows from Eqs. (5.6) that we can obtain the coordinates of the 
centroid of an area by dividing the first moments of that area by the area 
itself. The first moments of the area are also useful in mechanics of materi-
als for determining the shearing stresses in beams under transverse load-
ings. Finally, we observe from Eqs. (5.6) that, if the centroid of an area is 
located on a coordinate axis, the first moment of the area with respect to 
that axis is zero. Conversely, if the first moment of an area with respect 
to a coordinate axis is zero, the centroid of the area is located on that axis.

We can use equations similar to Eqs. (5.5) and (5.6) to define the 
first moments of a line with respect to the coordinate axes and to express 
these moments as the products of the length L of the line and the coordi-
nates x and y of its centroid.

An area A is said to be symmetric with respect to an axis BB9 if 
for every point P of the area there exists a point P9 of the same area such 
that the line PP9 is perpendicular to BB9 and is divided into two equal 
parts by that axis (Fig. 5.5a). The axis BB9 is called an axis of symmetry. 
A line L is said to be symmetric with respect to an axis BB9 if it satisfies 
similar conditions. When an area A or a line L possesses an axis of sym-
metry BB9, its first moment with respect to BB9 is zero, and its centroid 
is located on that axis. For example, note that, for the area A of Fig. 5.5b, 
which is symmetric with respect to the y axis, every element of area dA 

x

x

y

O

C

A

2x

dAdA9

P

P9

B9

(a)

(b)

B

Fig. 5.5 Symmetry about an axis. (a) The 
area is symmetric about the axis BB9. (b) The 
centroid of the area is located on the axis of 
symmetry.
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with abscissa x corresponds to an element dA9 of equal area and with 
abscissa 2x. It follows that the integral in the first of Eqs. (5.5) is zero 
and, thus, that Qy 5 0. It also follows from the first of the relations in 
Eq. (5.3) that x 5 0. Thus, if an area A or a line L possesses an axis of 
symmetry, its centroid C is located on that axis.

We further note that if an area or line possesses two axes of sym-
metry, its centroid C must be located at the intersection of the two axes 
(Fig. 5.6). This property enables us to determine immediately the centroids 
of areas such as circles, ellipses, squares, rectangles, equilateral triangles, 
or other symmetric figures, as well as the centroids of lines in the shape 
of the circumference of a circle, the perimeter of a square, etc.

C
C

B

B9

B

B9
D

D9

D9D

(a) (b)

Fig. 5.6 If an area has two axes of symmetry, the centroid 
is located at their intersection. (a) An area with two axes 
of symmetry but no center of symmetry; (b) an area with 
two axes of symmetry and a center of symmetry.

We say that an area A is symmetric with respect to a center O if, 
for every element of area dA of coordinates x and y, there exists an ele-
ment dA9 of equal area with coordinates 2x and 2y (Fig.  5.7). It then 
follows that the integrals in Eqs. (5.5) are both zero and that Qx 5 Qy 5 0. 
It also follows from Eqs. (5.3) that x 5 y 5 0; that is, that the centroid 
of the area coincides with its center of symmetry O. Similarly, if a line 
possesses a center of symmetry O, the centroid of the line coincides with 
the center O.

Note that a figure possessing a center of symmetry does not neces-
sarily possess an axis of symmetry (Fig. 5.7), whereas a figure possessing 
two axes of symmetry does not necessarily possess a center of symmetry 
(Fig. 5.6a). However, if a figure possesses two axes of symmetry at right 
angles to each other, the point of intersection of these axes is a center of 
symmetry (Fig. 5.6b).

Determining the centroids of unsymmetrical areas and lines and of 
areas and lines possessing only one axis of symmetry will be discussed 
in the next section. Centroids of common shapes of areas and lines are 
shown in Fig. 5.8A and B.

5.1D Composite Plates and Wires
In many instances, we can divide a flat plate into rectangles, triangles, or 
the other common shapes shown in Fig.  5.8A. We can determine the 
abscissa X of the plate’s center of gravity G from the abscissas x1, x2, . . . , xn 
of the centers of gravity of the various parts. To do this, we equate the 
moment of the weight of the whole plate about the y axis to the sum of 

x

y

O

A dA

dA9

x

y

2y

2x

Fig. 5.7 An area may have a center of 
symmetry but no axis of symmetry.
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Fig. 5.8A Centroids of common shapes of areas.
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the moments of the weights of the various parts about the same axis 
(Fig.  5.9). We can obtain the ordinate Y of the center of gravity of the 
plate in a similar way by equating moments about the x axis. Mathemati-
cally, we have

 oMy:  X(W1 1 W2 1 . . . 1 Wn) 5 x1W1 1 x2W2 1 . . . 1 xnWn

 oMx:  Y(W1 1 W2 1 . . . 1 Wn) 5 y1W1 1 y2W2 1 . . . 1 ynWn

r sin α

2r 2r

2r

2

Shape

Quarter-circular
arc

Semicircular arc

Arc of circle

Length

0

2αr0

O
O

O

C

C

r

rC

π

ππ

πr

πr

α
α
α

x-

x-

x-

y-

y-

Fig. 5.8B Centroids of common shapes of lines.

x
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O

X
-

X
-

Y
-

x-

ΣMx :        Σ W     Σ     WY
- y-

5

5

 5

Fig. 5.9 We can determine the location of the center of gravity G of a 
composite plate from the centers of gravity G1, G2, . . . of the component plates.

In more condensed notation, this is

Center of gravity
of a composite plate

 X 5
o xW

W
   Y 5

o yW

W
 (5.7)

Final PDF to printer



224 Distributed Forces: Centroids and Centers of Gravity

bee98160_ch05_214-260.indd 224 12/10/15  04:15 PM

We can use these equations to find the coordinates X and Y of the center 
of gravity of the plate from the centers of gravity of its component parts.

If the plate is homogeneous and of uniform thickness, the center of 
gravity coincides with the centroid C of its area. We can determine 
the abscissa X of the centroid of the area by noting that we can express the 
first moment Qy of the composite area with respect to the y axis as (1) the 
product of X and the total area and (2) as the sum of the first moments of 
the elementary areas with respect to the y axis (Fig.  5.10). We obtain the 

x

y

O

CX

Y

A1

A3

A2

C1 C2

C3
ΣA

Qy  5  X Σ A 5 Σ x A

Qx  5  Y Σ A 5 Σ y A

x

y

O

- -

-

-

-

-

5

Fig. 5.10 We can find the location of the centroid of a composite 
area from the centroids of the component areas.

x
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z

x

y

W1
W2
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A1

A1 Semicircle

A2 Full rectangle
A3 Circular hole

A2 A3

1

2

A

1

1

2

1 1

2

2

x-

x3
-

x2
-x1

-

x1
-

x2
-

x3
-

xA-

Fig. 5.11 When calculating the centroid of 
a composite area, note that if the centroid of 
a component area has a negative coordinate 
distance relative to the origin, or if the area 
represents a hole, then the first moment is 
negative.

ordinate Y of the centroid in a similar way by considering the first moment 
Qx of the composite area. We have

 Qy 5 X(A1 1 A2 1 . . . 1 An) 5 x1A1 1 x2 A2 1 . . . 1 xn An

 Qx 5 Y(A1 1 A2 1 . . . 1 An) 5 y1A1 1 y2 A2 1 . . . 1 yn An

Again, in shorter form,

Centroid of a
composite area

 Qy 5 X oA 5 oxA    Qx 5 Y oA 5 oyA (5.8)

These equations yield the first moments of the composite area, or we can 
use them to obtain the coordinates X and Y of its centroid.

First moments of areas, like moments of forces, can be positive or 
negative. Thus, you need to take care to assign the appropriate sign to the 
moment of each area. For example, an area whose centroid is located to 
the left of the y axis has a negative first moment with respect to that axis. 
Also, the area of a hole should be assigned a negative sign (Fig. 5.11).

Similarly, it is possible in many cases to determine the center of 
gravity of a composite wire or the centroid of a composite line by dividing 
the wire or line into simpler elements (see Sample Prob. 5.2).
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Sample Problem 5.1

For the plane area shown, determine (a) the first moments with respect 
to the x and y axes; (b) the location of the centroid.

STRATEGY: Break up the given area into simple components, find the 
centroid of each component, and then find the overall first moments and 
centroid.

MODELING: As shown in Fig. 1, you obtain the given area by adding 
a rectangle, a triangle, and a semicircle and then subtracting a circle. Using 
the coordinate axes shown, find the area and the coordinates of the centroid 
of each of the component areas. To keep track of the data, enter them in 
a table. The area of the circle is indicated as negative because it is sub-
tracted from the other areas. The coordinate y of the centroid of the triangle 
is negative for the axes shown. Compute the first moments of the compo-
nent areas with respect to the coordinate axes and enter them in your table.

y

x

80 mm

60 mm

60 mm
40 mm

120 mm

Fig. 1 Given area modeled as the combination of simple geometric shapes.

y y

x

80 mm

60 mm

r1 5 60 mm

r2 5 40 mm

120 mm

x x x x

y y y

40 mm

40 mm

–20 mm

5 25.46 mm
4r1
3 r1 5 60 mm

r2 5 40 mm

60 mm60 mm

60 mm

80 mm 105.46 mm 80 mm

115 2
π

Component A, mm2 x, mm y, mm x A, mm3 y A, mm3

Rectangle (120)(80) 5 9.6 3 103 60 40 1576 3 103 1384 3 103

Triangle 1
2(120)(60) 5 3.6 3 103 40 220 1144 3 103 272 3 103

Semicircle 1
2π(60)2 5 5.655 3 103 60 105.46 1339.3 3 103 1596.4 3 103

Circle 2π(40)2 5 25.027 3 103 60 80 2301.6 3 103 2402.2 3 103

 oA 5 13.828 3 103   oxA 5 1757.7 3 103 oyA 5 1506.2 3 103

ANALYSIS:

 a. First Moments of the Area. Using Eqs. (5.8), you obtain

 Qx 5 oyA 5 506.2 3 103 mm3  Qx 5 506 3 103 mm3 b

 Qy 5 oxA 5 757.7 3 103 mm3  Qy 5 758 3 103 mm3 b

 b. Location of Centroid. Substituting the values given in the table 
into the equations defining the centroid of a composite area yields (Fig. 2)

X oA 5 oxA:  X(13.828 3 103 mm2) 5 757.7 3 103 mm3

X 5 54.8 mm b

Y oA 5 oyA:  Y(13.828 3 103 mm2) 5 506.2 3 103 mm3

Y  5 36.6 mm b

y

x

C

X 5 54.8 mm

Y 5 36.6 mm

Fig. 2 Centroid of composite area.
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REFLECT and THINK: Given that the lower portion of the shape has 
more area to the left and that the upper portion has a hole, the location 
of the centroid seems reasonable upon visual inspection.

Sample Problem 5.2

The figure shown is made from a piece of thin, homogeneous wire. Deter-
mine the location of its center of gravity.

STRATEGY: Since the figure is formed of homogeneous wire, its center 
of gravity coincides with the centroid of the corresponding line. Therefore, 
you can simply determine that centroid.

MODELING: Choosing the coordinate axes shown in Fig.  1 with the 
origin at A, determine the coordinates of the centroid of each line segment 
and compute the first moments with respect to the coordinate axes. You 
may find it convenient to list the data in a table.

10 in.

12 in.

5 in.

24 in.

C

y

xBA

26 in.

Fig. 1 Location of each line segment’s centroid.

Segment L, in. x, in. y, in. x L, in2 y L, in2

AB 24 12 0 288   0
BC 26 12 5 312 130
CA 10  0 5   0  50

 oL 5 60   ox L 5 600 oy L 5 180

ANALYSIS: Substituting the values obtained from the table into the 
equations defining the centroid of a composite line gives 

X oL 5 ox L:  X(60 in.) 5 600 in2 X 5 10 in. b

Y oL 5 oy L:  Y(60 in.) 5 180 in2 Y  5  3 in. b

REFLECT and THINK: The centroid is not on the wire itself, but it is 
within the area enclosed by the wire.

26 in.
10 in.

24 in.

C

BA
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Sample Problem 5.3

A uniform semicircular rod of weight W and radius r is attached to a pin 
at A and rests against a frictionless surface at B. Determine the reactions 
at A and B.

STRATEGY: The key to solving the problem is finding where the 
weight W of the rod acts. Since the rod is a simple geometrical shape, you 
can look in Fig. 5.8 for the location of the wire’s centroid.

MODELING: Draw a free-body diagram of the rod (Fig. 1). The forces 
acting on the rod are its weight W, which is applied at the center of grav-
ity G (whose position is obtained from Fig. 5.8B); a reaction at A, repre-
sented by its components Ax and Ay; and a horizontal reaction at B.

G

B

Ax

A

Ay

WB

2r

2r
π

Fig. 1 Free-body diagram of rod.

ANALYSIS:

1  oMA 5 0: B(2r) 2 W (2r

π ) 5 0

 B 5 1
W

π  B 5
W

π   b

 oFx 5 0: Ax 1 B 5 0

 Ax 5 2B 5 2
W

π     Ax 5
W

π   

1  oFy 5 0: Ay 2 W 5 0 Ay 5 W  

Adding the two components of the reaction at A (Fig. 2), we have

 A 5 [W 
2 1 (W

π )2 ] 1/2

 A 5 W (1 1
1
π 

2)1/2

 b

tan α 5
W

W/π
5 π  α 5 tan21π b

The answers can also be expressed as

 A 5 1.049W 72.3°   B 5 0.318W  b

REFLECT and THINK: Once you know the location of the rod’s center 
of gravity, the problem is a straightforward application of the concepts in 
Chapter 4.

A

B

O

r

Ay 5 W

Ax 5
W
π

A

α

Fig. 2 Reaction at A.
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Problems
 5.1 through 5.8 Locate the centroid of the plane area shown.

Fig. P5.1

x

y

45 mm

45 mm27 mm

Fig. P5.4

300 mm

240 mm
30 mm

30 mm

x

y

Fig. P5.7

x

y

r1 5 72 mm

r2 5 120 mm

Fig. P5.2

3 in.

6 in.

4 in.

x

y

Fig. P5.5

a 5 5 in.

a 5 5 in.

r 5 10 in.

y

x

B 

Fig. P5.8

x

y

30 in.

30 in.

r = 15 in.
20 in.

Fig. P5.3

1 in.

1 in.
2 in.

5 in.

4 in.

x

y

Fig. P5.6

75 mm x

y

75 mm
75 mm

 5.9 through 5.12 Locate the centroid of the plane area shown.

Fig. P5.9

x

y

a 5 8 in.

x 5 ky2

b 5 4 in.

Fig. P5.10

Parabola

Vertex
10 in.

3 in.

16 in.

y

x

Fig. P5.11

3 m

4.5 m4.5 m

r 5 1.8 m

Vertex
Parabola

x

y

Fig. P5.12

200 mm

Parabola

x

240 mm

y

240 mm
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 5.15 The first moment of the shaded area with respect to the x axis is 
denoted by Qx. (a) Express Qx in terms of b, c, and the distance y 
from the base of the shaded area to the x axis. (b) For what value 
of y is Qx maximum, and what is that maximum value?

 5.16 A composite beam is constructed by bolting four plates to four 60 3 
60 3 12-mm angles as shown. The bolts are equally spaced along 
the beam, and the beam supports a vertical load. As proved in 
mechanics of materials, the shearing forces exerted on the bolts at 
A and B are proportional to the first moments with respect to the 
centroidal x axis of the red shaded areas shown, respectively, in parts 
a and b of the figure. Knowing that the force exerted on the bolt at 
A is 280 N, determine the force exerted on the bolt at B.

 5.13 and 5.14 The horizontal x axis is drawn through the centroid C of 
the area shown and divides it into two component areas A1 and A2. 
Determine the first moment of each component area with respect to 
the x axis, and explain the results obtained.

65

20

40

20
Dimensions in mm

x

y

15

40

A2

A1

C

Fig. P5.13
Fig. P5.14

0.60 in.

0.84 in.

0.24 in. 0.24 in.

0.72 in.

x

y

0.72 in.

A2

A1

C

300 mm

12 mm 12 mm

12 mm

12 mm

60 mm

60 mm

A

C C

x x

B

(a) (b)

450 mm

Fig. P5.16

Fig. P5.15

x

y

b

c
y

c

C
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 5.17 through 5.20 A thin homogeneous wire is bent to form the perimeter 
of the figure indicated. Locate the center of gravity of the wire figure 
thus formed.

 5.17 Fig. P5.1.

 5.18 Fig. P5.2.

 5.19 Fig. P5.4.

 5.20 Fig. P5.5.

 5.21 The homogeneous wire ABCD is bent as shown and is attached to a 
hinge at C. Determine the length L for which portion BCD of the wire 
is horizontal.

 5.22 The homogeneous wire ABCD is bent as shown and is attached to a 
hinge at C. Determine the length L for which portion AB of the wire 
is horizontal.

 5.23 A uniform circular rod of weight 8 lb and radius 10 in. is attached to 
a pin at C and to the cable AB. Determine (a) the tension in the cable, 
(b) the reaction at C.

Fig. P5.21 and P5.22

80 mm

B

L

C

A

D

60 mm

 5.24 The homogeneous wire ABC is bent into a semicircular arc and a 
straight section as shown and is attached to a hinge at A. Determine 
the value of θ for which the wire is in equilibrium for the indicated 
position.

B

r

C

A

Fig. P5.23

A

B

C

r

θ

r

Fig. P5.24
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5.2  FURTHER CONSIDERATIONS 
OF CENTROIDS

The objects we analyzed in Sec. 5.1 were composites of basic geometric 
shapes like rectangles, triangles, and circles. The same idea of locating a 
center of gravity or centroid applies for an object with a more complicated 
shape, but the mathematical techniques for finding the location are a little 
more difficult.

5.2A  Determination of Centroids 
by Integration

For an area bounded by analytical curves (i.e., curves defined by algebraic 
equations), we usually determine the centroid by evaluating the integrals 
in Eqs. (5.39):

 x 5
#x dA

A
   y 5

#y dA

A
 (5.39)

If the element of area dA is a small rectangle of sides dx and dy, evaluat-
ing each of these integrals requires a double integration with respect to x 
and y. A double integration is also necessary if we use polar coordinates 
for which dA is a small element with sides dr and r dθ.

In most cases, however, it is possible to determine the coordinates 
of the centroid of an area by performing a single integration. We can 
achieve this by choosing dA to be a thin rectangle or strip, or it can be a 
thin sector or pie-shaped element (Fig.  5.12). The centroid of the thin 
rectangle is located at its center, and the centroid of the thin sector is 
located at a distance (2/3)r from its vertex (as it is for a triangle). Then 
we obtain the coordinates of the centroid of the area under consideration 

   xel 5 x

   yel 5 y/2

dA 5 ydx

(c)

yel 5 y

dA 5 (a 2 x) dy

(b)

xel 5
a 1 x

2

(a)

xel 5
2r
3

yel 5
2r
3

dA 5
1
2

cosθ

sinθ

r2 dθ

xel

 yel

xel xel

yel

yel

x

a

y

x

y

x

x x

y yy

O O Odx

dy

P(x, y)

P(x, y)

r 2r
3

P(θ, r)

- -

-

-
-

-

-

-

-

---

θ

Fig. 5.12 Centroids and areas of differential elements. (a) Vertical rectangular strip; 
(b) horizontal rectangular strip; (c) triangular sector.
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by setting the first moment of the entire area with respect to each of the 
coordinate axes equal to the sum (or integral) of the corresponding 
moments of the elements of the area. Denoting the coordinates of the 
centroid of the element dA by xel and yel, we have

First moments of area

  Qy 5 xA 5#xel dA 

  Qx 5 yA 5#yel  dA 
(5.9)

If we do not already know the area A, we can also compute it from these 
elements.

In order to carry out the integration, we need to express the coordi-
nates xel and yel of the centroid of the element of area dA in terms of the 
coordinates of a point located on the curve bounding the area under con-
sideration. Also, we should express the area of the element dA in terms of 
the coordinates of that point and the appropriate differentials. This has been 
done in Fig. 5.12 for three common types of elements; the pie-shaped ele-
ment of part (c) should be used when the equation of the curve bounding 
the area is given in polar coordinates. You can substitute the appropriate 
expressions into formulas (5.9), and then use the equation of the bounding 
curve to express one of the coordinates in terms of the other. This process 
reduces the double integration to a single integration. Once you have deter-
mined the area and evaluated the integrals in Eqs. (5.9), you can solve these 
equations for the coordinates x and y of the centroid of the area.

When a line is defined by an algebraic equation, you can determine 
its centroid by evaluating the integrals in Eqs. (5.49):

 x 5
#x dL

L
   y 5

#y dL

L
 (5.49)

You can replace the differential length dL with one of the following 
expressions, depending upon which coordinate, x, y, or θ, is chosen as the 
independent variable in the equation used to define the line (these expres-
sions can be derived using the Pythagorean theorem):

dL 5 √1 1 (dy

dx)
2

dx   dL 5 √1 1 (dx

dy)
2

dy

dL 5 √r2 1 (dr

dθ)
2

dθ

After you have used the equation of the line to express one of the coor-
dinates in terms of the other, you can perform the integration and solve 
Eqs. (5.4) for the coordinates x and y of the centroid of the line.

5.2B Theorems of Pappus-Guldinus
These two theorems, which were first formulated by the Greek geometer 
Pappus during the third century C.E. and later restated by the Swiss math-
ematician Guldinus or Guldin (1577–1643), deal with surfaces and bodies 
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of revolution. A surface of revolution is a surface that can be generated 
by rotating a plane curve about a fixed axis. For example, we can obtain 
the surface of a sphere by rotating a semicircular arc ABC about the 
diameter AC (Fig.  5.13). Similarly, rotating a straight line AB about an 
axis AC produces the surface of a cone, and rotating the circumference of 
a circle about a nonintersecting axis generates the surface of a torus or 
ring. A body of revolution is a body that can be generated by rotating a 
plane area about a fixed axis. As shown in Fig.  5.14, we can generate a 
sphere, a cone, and a torus by rotating the appropriate shape about the 
indicated axis.

Sphere Cone Torus

Fig. 5.14 Rotating plane areas about an axis generates 
volumes of revolution.

Theorem I. The area of a surface of revolution is equal to the length 
of the generating curve times the distance traveled by the centroid of 
the curve while the surface is being generated.

Proof. Consider an element dL of the line L (Fig. 5.15) that is revolved 
about the x axis. The circular strip generated by the element dL has an area 

A

B

CA C

B

Sphere Cone
A C

Torus

Fig. 5.13 Rotating plane curves about an axis generates 
surfaces of revolution.

Photo 5.3 The storage tanks 
shown are bodies of revolution. 
Thus, their surface areas and 
volumes can be determined using 
the theorems of Pappus-Guldinus.

© Michel de Leeuw/Getty Images RF

x x

dL

dA

C

L

yy

2πy-

-

Fig. 5.15 An element of length dL 
rotated about the x axis generates a 
circular strip of area dA. The area of the 
entire surface of revolution equals 
the length of the line L multiplied by 
the distance traveled by the centroid C 
of the line during one revolution.
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dA equal to 2πy dL. Thus, the entire area generated by L is A 5 ∫ 2πy dL. 
Recall our earlier result that the integral ∫ y dL is equal to yL. Therefore, 
we have

 A 5 2πyL (5.10)

Here 2πy is the distance traveled by the centroid C of L (Fig. 5.15). ▫

Note that the generating curve must not cross the axis about which 
it is rotated; if it did, the two sections on either side of the axis would 
generate areas having opposite signs, and the theorem would not apply.

Theorem II. The volume of a body of revolution is equal to the 
generating area times the distance traveled by the centroid of the area 
while the body is being generated.

Proof. Consider an element dA of the area A that is revolved about the 
x axis (Fig.  5.16). The circular ring generated by the element dA has a 
volume dV equal to 2πy dA. Thus, the entire volume generated by A is 
V 5 ∫ 2πy dA, and since we showed earlier that the integral ∫ y dA is 
equal to yA, we have

 V 5 2πyA (5.11)

Here 2πy is the distance traveled by the centroid of A. ▫

y

x

dV

dA

y

x

A
C

2πy-

-

Fig. 5.16 An element of area dA rotated 
about the x axis generates a circular ring of 
volume dV. The volume of the entire body of 
revolution equals the area of the region A 
multiplied by the distance traveled by the 
centroid C of the region during one revolution.

Again, note that the theorem does not apply if the axis of rotation 
intersects the generating area. 

The theorems of Pappus-Guldinus offer a simple way to compute 
the areas of surfaces of revolution and the volumes of bodies of revolution. 
Conversely, they also can be used to determine the centroid of a plane 
curve if you know the area of the surface generated by the curve or to 
determine the centroid of a plane area if you know the volume of the body 
generated by the area (see Sample Prob. 5.8).
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Sample Problem 5.4

Determine the location of the centroid of a parabolic spandrel by direct 
integration.

STRATEGY: First express the parabolic curve using the parameters a 
and b. Then choose a differential element of area and express its area in 
terms of a, b, x, and y. We illustrate the solution first with a vertical ele-
ment and then a horizontal element.

MODELING: 

Determination of the Constant k. Determine the value of k by 
substituting x 5 a and y 5 b into the given equation. We have b 5 ka2 
or k 5 b/a2. The equation of the curve is thus

y 5
b

a2 x2    or    x 5
a

b1/2  y1/2

ANALYSIS: 

Vertical Differential Element. Choosing the differential element 
shown in Fig. 1, the total area of the region is

A 5#�dA 5#�y dx 5#
a

0

�
b

a2 x2 dx 5 [ b

a2 
x3

3 ]a

0
5

ab

3

a

x

y

y

dA 5 y dx

y

2

xel 5 x

yel 52

2

Fig. 1 Vertical differential element 
used to determine centroid.

The first moment of the differential element with respect to the y axis is 
xel dA; hence, the first moment of the entire area with respect to this axis is

Qy 5 #�xel dA 5 #�xy dx 5 #
a

0

�x ( b

a2 x2) dx 5 [ b

a2 
x4

4 ]a

0
5

a2b

4

Since Qy 5 xA, you have

xA 5#xel dA      x  

ab

3
5

a2b

4
      x 5 3

4 a b

Likewise, the first moment of the differential element with respect to the 
x axis is yel dA, so the first moment of the entire area about the x axis is

Qx 5#�yel dA 5#�
y

2
  y dx 5#

a

0

�
1
2

 ( b

a2  x2)2

dx 5 [ b2

2a4 
x5

5 ]a

0
5

ab2

10

Since Qx 5 yA, you get

yA 5#  yel dA      y  

ab

3
5

ab2

10
      y 5 3

10 b b

a
x

y 5 kx2

y

b

Final PDF to printer



236 Distributed Forces: Centroids and Centers of Gravity

bee98160_ch05_214-260.indd 236 12/24/15  06:34 PM

Horizontal Differential Element. You obtain the same results by 
considering a horizontal element (Fig. 2). The first moments of the area are

 Qy 5#�xel  dA 5#�
a 1 x

2
 (a 2 x) dy 5#

b

0

�
a2 2 x2

2
  dy

 5
1
2

�#
b

0
�(a2 2

a2

b
  y) dy 5

a2b

4

 Qx 5#�yel  dA 5#�y(a 2 x) dy 5#�y (a 2
a

b1/2 y1/2) 

dy

 5#
b

0
�(ay 2

a

b1/2  y3/2) 

dy 5
ab2

10

To determine x and y, again substitute these expressions into the equations 
defining the centroid of the area.

REFLECT and THINK: You obtain the same results whether you 
choose a vertical or a horizontal element of area, as you should. You can 
use both methods as a check against making a mistake in your 
calculations.

x

b

  yel 5 y
a 1 x

2

dA 5 (a 2 x) dy

a

y

x

xel 5
2

2

Fig. 2 Horizontal differential 
element used to determine centroid.

Sample Problem 5.5

Determine the location of the centroid of the circular arc shown.

STRATEGY: For a simple figure with circular geometry, you should use 
polar coordinates.

MODELING: The arc is symmetrical with respect to the x axis, so 
y 5 0. Choose a differential element, as shown in Fig. 1. 

ANALYSIS: Determine the length of the arc by integration.

L 5#�dL 5#
α

2α
�r dθ 5 r�#

α

2α
�dθ 5 2rα

The first moment of the arc with respect to the y axis is

 Qy 5#
�
x dL 5#

α

2α
�(r cos θ)(r dθ) 5 r2�#

α

2α
�cos θ dθ

 5 r2 [sin θ ]α
2α 5 2r2 sin α

Since Qy 5 xL, you obtain

x(2rα) 5 2r2 sin α      x 5
r sin α

α  b

REFLECT and THINK: Observe that this result matches that given for 
this case in Fig. 5.8B.

O

r

α

α

Fig. 1 Differential element used 
to determine centroid.

x

y

O

r

 5

d
dL 5 r d

x 5 r cos

 5 2

α

α

θ

θ

θ

θ

θ

θ
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Sample Problem 5.6

Determine the area of the surface of revolution shown that is obtained by 
rotating a quarter-circular arc about a vertical axis.

STRATEGY: According to the first Pappus-Guldinus theorem, the area 
of the surface of revolution is equal to the product of the length of the 
arc and the distance traveled by its centroid. 

MODELING and ANALYSIS: Referring to Fig. 5.8B and Fig. 1, you 
have

 x 5 2r 2
2r

π 5 2r
 (1 2

1
π)

 A 5 2πxL 5 2π [2r(1 2
1
π)](πr

2 )
A 5 2πr2(π 2 1) b

r

2r

Fig. 1 Centroid location of arc.

y

x

x

2r

C

2r
π

20 mm

20 mm 20 mm
60 mm

30 mm
400 mm

100 mm Sample Problem 5.7

The outside diameter of a pulley is 0.8 m, and the cross section of its rim 
is as shown. Knowing that the pulley is made of steel and that the density 
of steel is ρ 5 7.85 3 103 kg/m3, determine the mass and weight of 
the rim.

STRATEGY: You can determine the volume of the rim by applying the 
second Pappus-Guldinus theorem, which states that the volume equals the 
product of the given cross-sectional area and the distance traveled by its 
centroid in one complete revolution. However, you can find the volume 
more easily by observing that the cross section can be formed from rect-
angle I with a positive area and from rectangle II with a negative area 
(Fig. 1).

MODELING: Use a table to keep track of the data, as you did in Sec. 5.1.

  Distance Traveled
 Area, mm2 y, mm by C, mm Volume, mm3

 I 15000 375 2π(375) 5 2356  (5000)(2356) 5 11.78 3 106

II 21800 365 2π(365) 5 2293 (21800)(2293) 5 24.13 3 106

     Volume of rim 5 7.65 3 106

ANALYSIS: Since 1 mm 5 1023 m, you have 1 mm23 5 (1023 m)3 5 
1029 m3. Thus you obtain V 5 7.65 3 106 mm3 5 (7.65 3 106)(1029 m3) 5 
7.65 3 1023 m3.

m 5 ρV 5 (7.85 3 103 kg/m3)(7.65 3 1023 m3)  m 5 60.0 kg b

 W 5 mg 5 (60.0 kg)(9.81 m/s2) 5 589 kg?m/s2 W 5 589 N b

100 mm 60 mm

50 mm 30 mm

CII

CI II
I

375 mm 365 mm
2

Fig. 1 Modeling the given area by 
subtracting area II from area I.
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Sample Problem 5.8

Using the theorems of Pappus-Guldinus, determine (a) the centroid of a 
semicircular area and (b) the centroid of a semicircular arc. Recall that 
the volume and the surface area of a sphere are 4

3πr3 and 4πr2, 
respectively.

STRATEGY: The volume of a sphere is equal to the product of the area 
of a semicircle and the distance traveled by the centroid of the semicircle 
in one revolution about the x axis. Given the volume, you can determine the 
distance traveled by the centroid and thus the distance of the centroid from 
the axis. Similarly, the area of a sphere is equal to the product of the length 
of the generating semicircle and the distance traveled by its centroid in one 
revolution. You can use this to find the location of the centroid of the arc.

MODELING: Draw diagrams of the semicircular area and the semicir-
cular arc (Fig. 1) and label the important geometries.

x

x

r

A 5 2

L 5

 y

 yr

2

2

πr

πr2

Fig. 1 Semicircular area 
and semicircular arc.

ANALYSIS: Set up the equalities described in the theorems of Pappus-
Guldinus and solve for the location of the centroid.

V 5 2π yA    4
3

 π r3 5 2π y (1
2

 πr2)    y 5
4r

3π
 b

 A 5 2πyL      4πr2 5 2πy(πr) y 5
2r

π  b

REFLECT and THINK: Observe that this result matches those given 
for these cases in Fig. 5.8.

REFLECT and THINK: When a cross section can be broken down into 
multiple common shapes, you can apply Theorem II of Pappus–Guldinus 
in a manner that involves finding the products of the centroid (y) and area 
(A), or the first moments of area (yA), for each shape. Thus, it was not 
necessary to find the centroid or the area of the overall cross section.
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 5.25 through 5.28 Determine by direct integration the centroid of the 
area shown. 

Problems

x

y

y 5 mx

y 5 kx2

h

a

Fig. 5.27

 5.29 through 5.31 Determine by direct integration the centroid of the 
area shown.

 5.32 through 5.34 Determine by direct integration the centroid of the area 
shown.

Fig. P5.25

x

y

h

a

Fig. P5.26

x

y

y 5 h(1 2 kx3)

h

a

Fig. P5.28

x

y

y 5 kx3

h

a

Fig. P5.29

x

y

a

a
2

a
2

α

α

Fig. P5.30

x

y

r1

r2

Fig. P5.32

x 5 ky2

x

y 5 kx2

y

a

a

Fig. P5.33

x

y

b
2

b
2

a
2

a
2

x 5 ky2

x

y

y 5 kx2

a a

b

b

Fig. P5.34

x

y

b

a

x2

a2

y2

b2
1 5 1

Fig. P5.31
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 5.35 Determine the centroid of the area shown when a 5 4 in.

 5.36 Determine the centroid of the area shown in terms of a.

 5.37 Determine the volume and the surface area of the solid obtained by rotat-
ing the area of Prob. 5.1 about (a) the x axis, (b) the line x 5 72 mm.

 5.38 Determine the volume of the solid obtained by rotating the area of 
Prob. 5.4 about (a) the x axis, (b) the y axis.

 5.39 Determine the volume and the surface area of the solid obtained by 
rotating the area of Prob. 5.8 about (a) the x axis, (b) the y axis.

 5.40 Determine the volume of the solid generated by rotating the  parabolic 
area shown about (a) the x axis, (b) the axis AA'.

 5.41 Determine the capacity, in liters, of the punch bowl shown if R 5  
250 mm.

Fig. P5.35 and P5.36

x

y 5 x

y

a

a

1

x

y

h

a a a A

A9

Fig. P5.40

 5.42 The aluminum shade for the small high-intensity lamp shown has a 
uniform thickness of 1 mm. Knowing that the density of aluminum 
is 2800 kg/m3, determine the mass of the shade.

R

R

Fig. P5.41

32 mm

26 mm32 mm56 mm

28 mm

66 mm

8 mm

Fig. P5.42
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 5.43 Knowing that two equal caps have been removed from a 10-in.-
diameter wooden sphere, determine the total surface area of the 
remaining portion.

 5.44 Three different drive belt profiles are to be studied. If at any given 
time each belt makes contact with one-half of the circumference of 
its pulley, determine the contact area between the belt and the pulley 
for each design.

 5.45 Determine the volume and weight of the solid brass knob shown, 
knowing that the specific weight of brass is 0.306 lb/in3.

1.25 in.
r 5 0.75 in.

r 5 0.75 in.
 5.46 Determine the total surface area of the solid brass knob shown.

 5.47 Determine the volume and total surface area of the body shown.

 5.48 The escutcheon (a decorative plate placed on a pipe where the pipe 
exits from a wall) shown is cast from brass. Knowing that the density 
of brass is 8470 kg/m3, determine the mass of the escutcheon.

4 in.

4 in.

10 in.

Fig. P5.43

0.625 in.

(a) (b) (c)

0.08 in.
r 5 0.25 in.

408

408

0.375 in.
0.125 in.

3 in.3 in. 3 in.

Fig. P5.44

Fig. P5.45 and P5.46

52 mm 42 mm

20 mm

60 mm

Fig. P5.47

75 mm

25 mm

75 mm

268

268

Fig. P5.48
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5.3  DISTRIBUTED LOADS ON 
BEAMS

We can use the concept of the center of gravity or the centroid of an area 
to solve other problems besides those dealing with the weights of flat 
plates. For example, consider a beam supporting a distributed load; this 
load may consist of the weight of materials supported directly or indirectly 
by the beam, or it may be caused by wind or hydrostatic pressure. We can 
represent the distributed load by plotting the load w supported per unit 
length (Fig. 5.17); this load is expressed in N/m or in lb/ft. The magnitude 
of the force exerted on an element of the beam with length dx is  
dW 5 w dx, and the total load supported by the beam is

W 5 #
L

0

w dx

Note that the product w dx is equal in magnitude to the element of area dA 
shown in Fig. 5.17a. The load W is thus equal in magnitude to the total 
area A under the load curve, as

W 5 #dA 5 A

We now want to determine where a single concentrated load W, of 
the same magnitude W as the total distributed load, should be applied on 
the beam if it is to produce the same reactions at the supports (Fig. 5.17b). 
However, this concentrated load W, which represents the resultant of the 
given distributed loading, is equivalent to the loading only when consider-
ing the free-body diagram of the entire beam. We obtain the point of 
application P of the equivalent concentrated load W by setting the moment 
of W about point O equal to the sum of the moments of the elemental 
loads dW about O. Thus,

(OP)W 5 #x dW

Then, since dW 5 w dx 5 dA and W 5 A, we have

 (OP)A 5 #
L

0

x dA (5.12)

Since this integral represents the first moment with respect to the w axis 
of the area under the load curve, we can replace it with the product xA. 
We therefore have OP 5 x, where x is the distance from the w axis to the 
centroid C of the area A (this is not the centroid of the beam).

We can summarize this result:

We can replace a distributed load on a beam by a concentrated 
load; the magnitude of this single load is equal to the area under 
the load curve, and its line of action passes through the centroid of 
that area. 

Note, however, that the concentrated load is equivalent to the given loading 
only so far as external forces are concerned. It can be used to determine reac-
tions, but should not be used to compute internal forces and deflections.

(a)

(b)

w

O

w

dx
x

L

B

dW 5 dA

x

d W

w

O B x

L

P

W 5 A
W

Cx5 -

Fig. 5.17 (a) A load curve representing 
the distribution of load forces along a 
horizontal beam, with an element of 
length dx; (b) the resultant load W has 
magnitude equal to the area A under the 
load curve and acts through the centroid 
of the area.

Photo 5.4 The roof of the building shown 
must be able to support not only the 
total weight of the snow but also the 
nonsymmetric distributed loads resulting 
from drifting of the snow.

© Maurice Joseph/Alamy
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5.3 Distributed Loads on Beams 243

Sample Problem 5.9

A beam supports a distributed load as shown. (a) Determine the equivalent 
concentrated load. (b) Determine the reactions at the supports.

STRATEGY: The magnitude of the resultant of the load is equal to the 
area under the load curve, and the line of action of the resultant passes 
through the centroid of the same area. Break down the area into pieces 
for easier calculation, and determine the resultant load. Then, use the 
calculated forces or their resultant to determine the reactions.

MODELING and ANALYSIS:

a. Equivalent Concentrated Load. Divide the area under the load 
curve into two triangles (Fig.  1), and construct the table below. To sim-
plify the computations and tabulation, the given loads per unit length have 
been converted into kN/m.

Component A, kN x, m x A, kN?m

Triangle I 4.5 2 9
Triangle II 13.5 4 54

 oA 5 18.0  oxA 5 63

Thus, X oA 5 ox A:  X(18 kN) 5 63 kN?m  X 5 3.5 m

The equivalent concentrated load (Fig. 2) is

W 5 18 kN   b

Its line of action is located at a distance

X 5 3.5 m to the right of A b

b. Reactions. The reaction at A is vertical and is denoted by A. Rep-
resent the reaction at B by its components Bx and By. Consider the given 
load to be the sum of two triangular loads (see the free-body diagram, 
Fig.  3). The resultant of each triangular load is equal to the area of the 
triangle and acts at its centroid. 

 Write the following equilibrium equations from the free-body diagram:

   oFx 5 0: Bx 5 0 b

1  oMA 5 0:  2(4.5 kN)(2 m) 2 (13.5 kN)(4 m) 1 By(6 m) 5 0

By 5 10.5 kN  b 

1  oMB 5 0:  1(4.5 kN)(4 m) 1 (13.5 kN)(2 m) 2 A(6 m) 5 0

A 5 7.5 kN  b 

REFLECT and THINK: You can replace the given distributed load by 
its resultant, which you found in part a. Then you can determine the reac-
tions from the equilibrium equations oFx 5 0, oMA 5 0, and oMB 5 0. 
Again the results are

Bx 5 0   By 5 10.5 kN    A 5 7.5 kN  b

A B

wA 5 1500 N/m

wB 5 4500 N/m

L 5 6 m

I

II 4.5 kN/m
1.5 kN/m

6 m
  x 5 2 m

  x 5 4 m

x

2

2

Fig. 1 The load modeled as two 
triangular areas.

A B

18 kN
 X 5 3.5 m
2

Fig. 2 Equivalent concentrated load.

A

Bx

By

4.5 kN
13.5 kN

2 m

4 m
6 m

Fig. 3 Free-body diagram of beam.
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 5.49 and 5.50  For the beam and loading shown, determine (a) the mag-
nitude and location of the resultant of the distributed load, (b) the 
reactions at the beam supports.

Problems

 5.51 through 5.56  Determine the reactions at the beam supports for the 
given loading.

Fig. P5.49

900 N/m

2000 N/m

A B

6 m

Parabola
Vertex

Fig. P5.50

120 lb/ft150 lb/ft

A B

9 ft

Fig. P5.51

A B

4 ft 3 ft

150 lb/ft

200 lb/ft

Fig. P5.52

A B

6 m

900 N/m

300 N/m

Parabola

Vertex

Fig. P5.53

A B

4 m6 m

6 kN/m

2 kN/m

Fig. P5.54

600 lb/ft

480 lb/ft

A D
B C

2 ft
6 ft3 ft

Fig. P5.55

9 ft

A
B

200 lb/ft

6 ft6 ft

Fig. P5.56

400 N/m

900 N/m

A B

0.6 m0.4 m
1.5 m
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5.4  CENTERS OF GRAVITY AND 
CENTROIDS OF VOLUMES

So far in this chapter, we have dealt with finding centers of gravity and 
centroids of two-dimensional areas and objects such as flat plates and 
plane surfaces. However, the same ideas apply to three-dimensional objects 
as well. The most general situations require the use of multiple integration 
for analysis, but we can often use symmetry considerations to simplify the 
calculations. In this section, we show how to do this.

5.4A  Three-Dimensional Centers 
of Gravity and Centroids 

For a three-dimensional body, we obtain the center of gravity G by divid-
ing the body into small elements. The weight W of the body acting at G 
is equivalent to the system of distributed forces DW representing the 
weights of the small elements. Choosing the y axis to be vertical with 
positive sense upward (Fig.  5.18) and denoting the position vector of G 
to be r, we set W equal to the sum of the elemental weights DW and set 
its moment about O equal to the sum of the moments about O of the 
elemental weights. Thus, 

oF: 2Wj 5 o(2DWj) 
(5.13)

oMO: r 3 (2Wj) 5 o [r 3 (2DWj) ]  

G

y

O

∆W

y

xx

z z

O

rr

W 5 –W j

∆W 5 2∆W j

5

Fig. 5.18 For a three-dimensional body, the weight W acting through 
the center of gravity G and its moment about O is equivalent to the 
system of distributed weights acting on all the elements of the body  
and the sum of their moments about O.

We can rewrite the last equation in the form

 rW 3 (2j) 5 (or DW) 3 (2j) (5.14)

From these equations, we can see that the weight W of the body is equiva-
lent to the system of the elemental weights DW if the following conditions 
are satisfied:

W 5 o DW  rW 5 or DW

Photo 5.5 To predict the flight characteristics 
of the modified Boeing 747 when used to 
transport a space shuttle, engineers had to 
determine the center of gravity of each craft.

Carla Thomas/NASA
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Increasing the number of elements and simultaneously decreasing the size 
of each element, we obtain in the limit as

Weight, center of gravity
of a three-dimensional body

 W 5#�dW    r W 5#�r dW  (5.15)

Note that these relations are independent of the orientation of the body. 
For example, if the body and the coordinate axes were rotated so that the 
z axis pointed upward, the unit vector 2j would be replaced by 2k in 
Eqs. (5.13) and (5.14), but the relations in Eqs. (5.15) would remain unchanged. 

Resolving the vectors r and r into rectangular components, we note 
that the second of the relations in Eqs. (5.15) is equivalent to the three 
scalar equations

 x W 5#�x dW   y W 5#�y dW   z W 5#�z dW  (5.16)

 or

 x 5
#x dW

W
   y 5

#y dW

W
   z 5

#z dW

W
 (5.169)

If the body is made of a homogeneous material of specific weight γ, 
we can express the magnitude dW of the weight of an infinitesimal ele-
ment in terms of the volume dV of the element and express the magnitude 
W of the total weight in terms of the total volume V. We obtain

dW 5 γ dV   W 5 γV

Substituting for dW and W in the second of the relations in Eqs. (5.15), 
we have

 r V 5#�r dV  (5.17)

In scalar form, this becomes

Centroid of a
volume V

 x V 5#�x dV   y V 5#�y dV   z V 5#�z dV  (5.18)

or

 x 5
#x dV

V
   y 5

#y dV

V
   z 5

#z dV

V
 (5.189)

The center of gravity of a homogeneous body whose coordinates are x, y, z 
is also known as the centroid C of the volume V of the body. If the body 
is not homogeneous, we cannot use Eqs. (5.18) to determine the center of 
gravity of the body; however, Eqs. (5.18) still define the centroid of  
the volume.

The integral ∫ x dV is known as the first moment of the volume 
with respect to the yz plane. Similarly, the integrals ∫ y dV and ∫ z dV 
define the first moments of the volume with respect to the zx plane and 
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the xy plane, respectively. You can see from Eqs. (5.18) that if the centroid 
of a volume is located in a coordinate plane, the first moment of the 
volume with respect to that plane is zero.

A volume is said to be symmetrical with respect to a given plane if, 
for every point P of the volume, there exists a point P9 of the same volume 
such that the line PP9 is perpendicular to the given plane and is bisected 
by that plane. We say the plane is a plane of symmetry for the given 
volume. When a volume V possesses a plane of symmetry, the first moment 
of V with respect to that plane is zero, and the centroid of the volume is 
located in the plane of symmetry. If a volume possesses two planes of sym-
metry, the centroid of the volume is located on the line of intersection of 
the two planes. Finally, if a volume possesses three planes of symmetry that 
intersect at a well-defined point (i.e., not along a common line), the point 
of intersection of the three planes coincides with the centroid of the volume. 
This property enables us to determine immediately the locations of the 
centroids of spheres, ellipsoids, cubes, rectangular parallelepipeds, etc.

For unsymmetrical volumes or volumes possessing only one or two 
planes of symmetry, we can determine the location of the centroid by 
integration.† The centroids of several common volumes are shown in 
Fig.  5.19. Note that, in general, the centroid of a volume of revolution 
does not coincide with the centroid of its cross section. Thus, the centroid 
of a hemisphere is different from that of a semicircular area, and the 
centroid of a cone is different from that of a triangle.

5.4B Composite Bodies
If a body can be divided into several of the common shapes shown in 
Fig. 5.19, we can determine its center of gravity G by setting the moment 
about O of its total weight equal to the sum of the moments about O of 
the weights of the various component parts. Proceeding in this way, we 
obtain the following equations defining the coordinates X, Y, Z of the cen-
ter of gravity G as
Center of gravity of a
body with weight W

 X oW 5 ox W   Y oW 5 oy W   Z oW 5 oz W  (5.19)

or
 X 5

o xW

o W
   Y 5

o yW

o W
   Z 5

o zW

o W
 (5.199)

If the body is made of a homogeneous material, its center of gravity 
coincides with the centroid of its volume, and we obtain

Centroid of a volume V

 X oV 5 ox V   Y oV 5 oy V   Z oV 5 oz V  (5.20)

or

 X 5
o xV

o V
   Y 5

o yV

o V
   Z 5

o zV

o V
 (5.209)

†For the determination of centroids of volumes by integration, see Ferdinand P. Beer,  
E. Russell Johnston, Jr., and David F. Mazurek, Vector Mechanics for Engineers: Statics, 
11th ed., McGraw-Hill, New York, 2016, Sec. 5.4C.
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Fig. 5.19 Centroids and volumes of common shapes.

Shape

Semiellipsoid
of revolution

Paraboloid 
of revolution

Cone

Pyramid

Hemisphere
C

Volume

3a
8

3h
8

h
3

h
4

h
4

1
3

abh

a

a

a

a

a

b

C

C

C

C

h

h

h

h

x

2
3

2
3

1
2

1
3

-

x-

x-

x-

x-

x-

πa3

πa2h

πa2h

πa2h
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Sample Problem 5.10

Determine the location of the center of gravity of the homogeneous body 
of revolution shown that was obtained by joining a hemisphere and a 
cylinder and carving out a cone.

STRATEGY: The body is homogeneous, so the center of gravity coin-
cides with the centroid. Since the body was formed from a composite of 
three simple shapes, you can find the centroid of each shape and combine 
them using Eq. (5.20).

MODELING: Because of symmetry, the center of gravity lies on the 
x axis. As shown in Fig.  1, the body is formed by adding a hemisphere 
to a cylinder and then subtracting a cone. Find the volume and the abscissa 
of the centroid of each of these components from Fig. 5.19 and enter them 
in a table (below). Then you can determine the total volume of the body 
and the first moment of its volume with respect to the yz plane.

Component Volume, mm3 x, mm x V, mm4

Hemisphere
 

 
1
2

 
4π
3

 (60)3 5 0.4524 3 106
 
106

 
222.5 210.18 3 106

Cylinder π(60)2(100) 5   1.1310 3 106 150 156.55 3 106

Cone
 

 2
π
3

 (60)2(100) 5 20.3770 3 106
 

175 228.28 3 106

 oV 5     1.206 3 106  oxV 5 118.09 3 106

Thus,

X oV 5 oxV:  X(1.206 3 106 mm3) 5 18.09 3 106 mm4

X 5 15 mm b

100 mm

x

z

60 mm

60 mm

y

O

Fig. 1 The given body modeled as the combination of simple geometric 
shapes.

50 mm

xxx

yyy

O O O

60 mm

3
8

(60 mm) 5 22.5 mm 3
4

(100 mm) 5 75 mm

1 2

ANALYSIS: Note that the location of the centroid of the hemisphere is 
negative because it lies to the left of the origin.
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REFLECT and THINK: Adding the hemisphere and subtracting the cone 
have the effect of shifting the centroid of the composite shape to the left of 
that for the cylinder (50 mm). However, because the first moment of volume 
for the cylinder is larger than for the hemisphere and cone combined, you 
should expect the centroid for the composite to still be in the positive x 
domain. Thus, as a rough visual check, the result of 115 mm is reasonable.

Sample Problem 5.11

Locate the center of gravity of the steel machine part shown. The diame ter 
of each hole is 1 in.

0.5 in.

0.5 in.

1 in.

1 in.

1 in.
x

z

y

4.5 in.
2.5 in.

2 in.

2 in.

STRATEGY: This part can be broken down into the sum of two volumes 
minus two smaller volumes (holes). Find the volume and centroid of each 
volume and combine them using Eq. (5.20) to find the overall centroid.

MODELING: As shown in Fig. 1, the machine part can be obtained by 
adding a rectangular parallelepiped (I) to a quarter cylinder (II) and then 
subtracting two 1-in.-diameter cylinders (III and IV). Determine the volume 
and the coordinates of the centroid of each component and enter them in 
a table (below). Using the data in the table, determine the total volume and 
the moments of the volume with respect to each of the coordinate planes.

4.5 in. 2 in.
I

II

III IV

2 in.

1 in. diam.1

2 2
Fig. 1 The given body modeled as the 
combination of simple geometric shapes.
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0.5 in.

0.5 in.

CII CII

CICIII CIV

CI, CIII, CIV 

1 in. 1 in.

2 in. 1.5 in.

2.25 in.
0.25 in.

0.25 in.

4r
35 5 0.8488 in.4 (2)

x z

y y

8  in.

3

3

π π

π

Fig. 2 Centroids of components.

Thus,

XoV 5 oxV:  X(5.286 in3) 5 3.048 in4 X 5  0.577 in. b

YoV 5 oyV:  Y(5.286 in3) 5 25.047 in4 Y 5  20.955 in. b

ZoV 5 ozV:  Z(5.286 in3) 5 8.555 in4 Z 5  1.618 in. b

  V, in3 x, in. y, in. z, in. x V, in4 y V, in4 z V, in4

 I   (4.5)(2)(0.5) 5 4.5 0.25 21 2.25   1.125 24.5  10.125
 II    1

4π(2)2(0.5) 5 1.571 1.3488 20.8488 0.25   2.119 21.333   0.393
 III 2π(0.5)2(0.5) 5 20.3927 0.25 21 3.5 20.098   0.393 21.374
 IV 2π(0.5)2(0.5) 5 20.3927 0.25 21 1.5 20.098   0.393 20.589

 oV 5 5.286    oxV 5 3.048 oyV 5 25.047 ozV 5 8.555

REFLECT and THINK: By inspection, you should expect X and Z to 
be considerably less than (1/2)(2.5 in.) and (1/2)(4.5 in.), respectively, 
and Y to be slightly less in magnitude than (1/2)(2 in.). Thus, as a rough 
visual check, the results obtained are as expected.

ANALYSIS: You can treat each component volume as a planar shape using 
Fig.  5.8A to find the volumes and centroids, but the right-angle joining of 
components I and II requires calculations in three dimensions. You may find 
it helpful to draw more detailed sketches of components with the centroids 
carefully labeled (Fig. 2).
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 5.57 Consider the composite body shown. Determine (a) the value of x– 
when h 5 L/2, (b) the ratio h/L for which x– 5 L.

  

y

a

z

x

b

2

L h

b

Fig. P5.57

 5.58 Determine the location of the centroid of the composite body shown 
when (a) h 5 2b, (b) h 5 2.5b.

  

a

CB
A

h

b

Fig. P5.58

 5.59 The composite body shown is formed by removing a semiellipsoid 
of revolution of semimajor axis h and semiminor axis a/2 from a 
hemisphere of radius a. Determine (a) the y coordinate of the cen-
troid when h 5 a/2, (b) the ratio h/a for which y– 5 20.4a.

  

y

x

z

h

a a
2

Fig. P5.59

Problems
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 5.60 Locate the centroid of the frustum of a right circular cone when  
r1 5 40 mm, r2 5 50 mm, and h 5 60 mm.

 5.61 For the machine element shown, locate the y coordinate of the center 
of gravity.

1.5 in.

1.5 in.
1.5 in.

2.25 in.

0.75 in.

0.5 in.
x

y

z

r 5 0.95 in.
r 5 0.95 in.

1.5 in.

1.5 in.

Fig. P5.61 and P5.62

 5.62 For the machine element shown, locate the z coordinate of the center 
of gravity.

 5.63 For the machine element shown, locate the x coordinate of the center 
of gravity.

 5.64 For the machine element shown, locate the y coordinate of the center 
of gravity.

h

r1

r2

Fig. P5.60

z

y
x

O

10 mm

10 mm
10 mm

60 mm

60 mm

50 mm

50 mm

60 mm
r 5 40 mm

r 5 30 mm

Fig. P5.63 and P5.64
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 5.65 A wastebasket, designed to fit in the corner of a room, is 16 in. high 
and has a base in the shape of a quarter circle with a radius of  
10 in. Locate the center of gravity of the wastebasket, knowing that 
it is made of sheet metal with a uniform thickness.

 5.66 and 5.67 Locate the center of gravity of the sheet-metal form shown.

 5.68 A corner reflector for tracking by radar has two sides in the shape of 
a quarter circle with a radius of 15 in. and one side in the shape  
of a triangle. Locate the center of gravity of the reflector, knowing 
that it is made of sheet metal with a uniform thickness.

x

y

z

16 in.

10 in.10 in.

Fig. P5.65

y

x

z

80 mm

125 mm

150 mm

250 mm

Fig. P5.66

x

y

z
1.5 m

r 5 1.8 m
1.2 m

0.8 m

Fig. P5.67

y

z x

15 in.
15 in.

Fig. P5.68
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 5.69 and 5.70 Locate the center of gravity of the figure shown, knowing 
that it is made of thin brass rods with a uniform diameter.

x

y

z

A

B

D

O

1.5 m

0.6 m1 m

Fig. P5.69

x

y

z

A

B

E
D

O

30 in.

r 5 16 in.

Fig. P5.70

 5.71 Three brass plates are brazed to a steel pipe to form the flagpole base 
shown. Knowing that the pipe has a wall thickness of 8 mm and that 
each plate is 6 mm thick, determine the location of the center of grav-
ity of the base. (Densities: brass 5 8470 kg/m3, steel 5 7860 kg/m3.)

192 mm

64 mm
96 mm

1208

1208

 5.72 A brass collar with a length of 2.5 in. is mounted on an aluminum rod 
with a length of 4 in. Locate the center of gravity of the composite body. 
(Specific weights: brass 5 0.306 lb/in3, aluminum 5 0.101 lb/in3.)

Fig. P5.71

4 in.

1.6 in.

2.5 in.

3 in.

Fig. P5.72
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This chapter was devoted chiefly to determining the center of gravity of a rigid 
body, i.e., to determining the point G where we can apply a single force W—the 
weight of the body—to represent the effect of Earth’s attraction on the body.

Center of Gravity of a Two-Dimensional Body
In the first part of this chapter, we considered two-dimensional  bodies, such 
as flat plates and wires contained in the xy plane. By adding force components 
in the vertical z direction and moments about the horizontal y and x axes 
[Sec. 5.1A], we derived the relations

 W 5#�dW   xW 5#�x dW   yW 5#�y dW (5.2)

These equations define the weight of the body and the coordinates x and y of 
its center of gravity.

Centroid of an Area or Line
In the case of a homogeneous flat plate of uniform thickness [Sec. 5.1B], the 
center of gravity G of the plate coincides with the centroid C of the area A 
of the plate. The coordinates are defined by the relations

 xA 5#�x dA   yA 5#�y dA (5.3)

Similarly, determining the center of gravity of a homogeneous wire of uniform 
cross section contained in a plane reduces to determining the centroid C of 
the line L representing the wire; we have

 xL 5#x dL    yL 5#y dL (5.4)

First Moments
The integrals in Eqs. (5.3) are referred to as the first moments of the area A 
with respect to the y and x axes and are denoted by Qy and Qx, respectively 
[Sec. 5.1C]. We have

 Qy 5 xA   Qx 5 yA  (5.6)

The first moments of a line can be defined in a similar way.

Properties of Symmetry
Determining the centroid C of an area or line is simplified when the area or 
line possesses certain properties of symmetry. If the area or line is symmetric 
with respect to an axis, its centroid C lies on that axis; if it is symmetric with 
respect to two axes, C is located at the intersection of the two axes; if it is 
symmetric with respect to a center O, C coincides with O.

Review and Summary
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Center of Gravity of a Composite Body
The areas and the centroids of various common shapes are tabulated in 
Fig.  5.8. When a flat plate can be divided into several of these shapes, the 
coordinates X and Y  of its center of gravity G can be determined from the 
coordinates x1, x2, . . . and y1, y2, . . . of the centers of gravity G1, G2, . . . of 
the various parts [Sec. 5.1D]. Equating moments about the y and x axes, 
respectively (Fig. 5.20), we have

 XoW 5 oxW  YoW 5 oyW (5.7)

x

y

z

x

y

z

OO
G

X

Y

ΣW

G1
G2

G3

W1 W2

W3

-

-

5

Fig. 5.20

If the plate is homogeneous and of uniform thickness, its center of gravity 
coincides with the centroid C of the area of the plate, and Eqs. (5.7) reduce to

 Qy 5 XoA 5 oxA  Qx 5 YoA 5 oyA (5.8)
These equations yield the first moments of the composite area, or they can 
be solved for the coordinates X and Y  of its centroid [Sample Prob. 5.1]. 
Determining the center of gravity of a composite wire is carried out in a 
similar fashion [Sample Prob. 5.2].

Determining a Centroid by Integration
When an area is bounded by analytical curves, you can determine the coordi-
nates of its centroid by integration [Sec. 5.2A]. This can be done by evaluating 
either the double integrals in Eqs. (5.3) or a single integral that uses one of 
the thin rectangular or pie-shaped elements of area shown in Fig. 5.12. Denot-
ing by xel and yel the coordinates of the centroid of the element dA, we have

 Qy 5 xA 5#�xel dA   Qx 5 yA 5#�yel dA (5.9)

It is advantageous to use the same element of area to compute both of the 
first moments Qy and Qx; we can also use the same element to determine the 
area A [Sample Prob. 5.4].

Theorems of Pappus–Guldinus
The theorems of Pappus-Guldinus relate the area of a surface of revolution 
or the volume of a body of revolution to the centroid of the generating curve 
or area [Sec. 5.2B]. The area A of the surface generated by rotating a curve of 
length L about a fixed axis (Fig. 5.21a) is

 A 5 2πyL (5.10)
where y represents the distance from the centroid C of the curve to the fixed 
axis. Similarly, the volume V of the body generated by rotating an area A 
about a fixed axis (Fig. 5.21b) is

 V 5 2πyA (5.11)
where y represents the distance from the centroid C of the area to the fixed axis.

(a) (b)

x

C

L

y
y

x

A
C

-
-

2πy-2πy-

Fig. 5.21
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Distributed Loads
The concept of centroid of an area also can be used to solve problems other 
than those dealing with the weight of flat plates. For example, to determine the 
reactions at the supports of a beam [Sec. 5.3], we can replace a distributed 
load w by a concentrated load W equal in magnitude to the area A under the 
load curve and passing through the centroid C of that area (Fig. 5.22).

w w

O O

w

dx
x

L

B B

dW 5 dA

x x

L

P

x

W 5 A
Wd W

C5 -

Fig. 5.22

Center of Gravity of a Three-Dimensional Body
The last part of this chapter was devoted to determining the center of gravity G of 
a three-dimensional body. We defined the coordinates x, y, z of G by the relations

 xW 5#�x dW    yW 5#�y dW    z W 5#�z dW (5.16)

Centroid of a Volume
In the case of a homogeneous body, the center of gravity G coincides with 
the centroid C of the volume V of the body. The coordinates of C are defined 
by the relations

 xV 5#�x dV    yV 5#�y dV    zV 5#�z dV  (5.18)

If the volume possesses a plane of symmetry, its centroid C lies in that plane; 
if it possesses two planes of symmetry, C is located on the line of intersection 
of the two planes; if it possesses three planes of symmetry that intersect at 
only one point, C coincides with that point [Sec. 5.4A].

Center of Gravity of a Composite Body
The volumes and centroids of various common three-dimensional shapes are 
tabulated in Fig.  5.19. When a body can be divided into several of these 
shapes, we can determine the coordinates X, Y, Z of its center of gravity G 
from the corresponding coordinates of the centers of gravity of its various 
parts [Sec. 5.4B]. We have

 XoW 5 oxW  YoW 5 oyW  ZoW 5 ozW (5.19)

If the body is made of a homogeneous material, its center of gravity coincides 
with the centroid C of its volume, and we have [Sample Probs. 5.10 and 5.11]

 XoV 5 oxV  YoV 5 oyV  ZoV 5 ozV 
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 5.73 and 5.74 Locate the centroid of the plane area shown.

Review Problems

 5.75 A thin homogeneous wire is bent to form the perimeter of the plane 
area of Prob. 5.73. Locate the center of gravity of the wire figure 
thus formed.

 5.76 Member ABCDE is a component of a mobile and is formed from a 
single piece of aluminum tubing. Knowing that the member is sup-
ported at C and that d is 0.50 m, determine the length l of arm DE 
so that this portion of the member is horizontal.

x

y

54 mm 72 mm

30 mm

54 mm

48 mm

Fig. P5.73

5 in.
8 in.

8 in.
x

y

8 in.

Fig. P5.74

A

B C D

E

1.50 m

d

0.75 m

l

558558

Fig. P5.76

 5.77 Determine by direct integration the centroid of the area shown.

 5.78 Determine by direct integration the centroid of the area shown.

x

y

y 5 kx2

h

a a

Fig. P5.77

 5.79 A 3
4-in.-diameter hole is drilled in a piece of 1-in.-thick steel; the 

hole is then countersunk as shown. Determine the volume of steel 
removed during the countersinking process.

x

y

a

b
y1 5 k1x2

y2 5 k2x3

Fig. P5.78

908

3
4  in.

1
4 in.1

1 in.

Fig. P5.79
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 5.80 A manufacturer is planning to produce 20,000 wooden pegs having 
the shape shown. Determine how many gallons of paint should be 
ordered, knowing that each peg will be given two coats of paint and 
that one gallon of paint covers 100 ft2.

r 5 0.1875 in.

r 5 0.875 in.

3.00 in.

1.00 in.

0.50 in.

0.50 in.

0.625 in.

Fig. P5.80

 5.81 Determine the reactions at the beam supports for the given loading 
when w0 5 400 lb/ft.

300 lb/ft

w0

A
B

C

5 ft 7 ft

Fig. P5.81 and P5.82

 5.82 Determine (a) the distributed load w0 at the end A of the beam ABC 
for which the reaction at C is zero, (b) the corresponding reaction at B.

 5.83 For the machine element shown, locate the z coordinate of the  center 
of gravity.

Dimensions in mm

y

x

19

40

24
10

19
10

90

20

z

O
r 5 12

Fig. P5.83

 5.84 A scratch awl has a plastic handle and a steel blade and shank. 
Knowing that the density of plastic is 1030 kg/m3 and of steel is 
7860 kg/m3, locate the center of gravity of the awl.

10 mm

3.5 mm

r

90 mm

25 mm

80 mm

50 mm

Fig. P5.84
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Trusses, such as this cantilever arch bridge over Deception Pass in 

Washington State, provide both a practical and an economical 

solution to many engineering problems.

Analysis of  
Structures

6
© Lee Rentz/Photoshot
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Introduction
In the preceding chapters, we studied the equilibrium of a single rigid 
body, where all forces involved were external to the rigid body. We now 
consider the equilibrium of structures made of several connected parts. 
This situation calls for determining not only the external forces acting on 
the structure, but also the forces that hold together the various parts of 
the structure. From the point of view of the structure as a whole, these 
forces are internal forces.

Consider, for example, the crane shown in Fig. 6.1a that supports 
a load W. The crane consists of three beams AD, CF, and BE connected 
by frictionless pins; it is supported by a pin at A and by a cable DG. 
The free-body diagram of the crane is drawn in Fig. 6.1b. The external 
forces shown in the diagram include the weight W, the two components 
Ax and Ay of the reaction at A, and the force T exerted by the cable 
at D. The internal forces holding the various parts of the crane together 
do not appear in the free-body diagram. If, however, we dismember the 
crane and draw a free-body diagram for each of its component parts, 
we  can see the forces holding the three beams together, since these 
forces are external forces from the point of view of each component 
part  (Fig. 6.1c).

Introduction

 6.1 ANALYSIS OF TRUSSES
 6.1A Simple Trusses
 6.1B The Method of Joints
 6.1C Joints Under Special Loading 

Conditions

 6.2 OTHER TRUSS ANALYSES
 6.2A The Method of Sections
 6.2B Trusses Made of Several 

Simple Trusses

 6.3 FRAMES
 6.3A Analysis of a Frame
 6.3B Frames That Collapse Without 

Supports

 6.4 MACHINES

Objectives
• Define an ideal truss, and consider the attributes of 

simple trusses.

• Analyze plane trusses by the method of joints.

• Simplify certain truss analyses by recognizing special 
loading and geometry conditions.

• Analyze trusses by the method of sections.

• Consider the characteristics of compound trusses.

• Analyze structures containing multiforce members, 
such as frames and machines.

Fig. 6.1 A structure in equilibrium. (a) Diagram of a crane supporting a load; (b) free-body 
diagram of the crane; (c) free-body diagrams of the components of the crane.
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B
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D

E
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D
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F
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D
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Note that we represent the force exerted at B by member BE on 
member AD as equal and opposite to the force exerted at the same point 
by member AD on member BE. Similarly, the force exerted at E by BE 
on CF is shown equal and opposite to the force exerted by CF on BE, and 
the components of the force exerted at C by CF on AD are shown equal 
and opposite to the components of the force exerted by AD on CF. These 
representations agree with  Newton’s third law, which states that

The forces of action and reaction between two bodies in contact 
have the same magnitude, same line of action, and opposite sense.

We pointed out in Chap. 1 that this law, which is based on experimental 
evidence, is one of the six fundamental principles of elementary mechanics. 
Its application is essential for solving problems involving connected bodies.

In this chapter, we consider three broad categories of engineering 
structures:

 1. Trusses, which are designed to support loads and are usually stationary, 
fully constrained structures. Trusses consist exclusively of straight mem-
bers connected at joints located at the ends of each member.  Members 
of a truss, therefore, are two-force members, i.e., members acted upon 
by two equal and opposite forces directed along the member.

 2. Frames, which are also designed to support loads and are also usually 
stationary, fully constrained structures. However, like the crane of 
Fig. 6.1, frames always contain at least one multi-force member, i.e., 
a member acted upon by three or more forces that, in general, are not 
directed along the member.

 3. Machines, which are designed to transmit and modify forces and are 
structures containing moving parts. Machines, like frames, always con-
tain at least one multi-force member.

6.1 ANALYSIS OF TRUSSES
The truss is one of the major types of engineering structures. It provides 
a practical and economical solution to many engineering situations, espe-
cially in the design of bridges and buildings. In this section, we describe 
the basic elements of a truss and study a common method for analyzing 
the forces acting in a truss.

Photo 6.1 The structures you see around you to support loads or transmit forces are generally 
trusses, frames, or machines.

Two-force member Multi-force member Multi-force member

(a) A truss bridge (b) A bicycle frame (c) A hydraulic machine arm
© Datacraft Co Ltd/Getty Images RF © Fuse/Getty Images RF © Design Pics/Ken Welsh RF
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6.1A Simple Trusses
A truss consists of straight members connected at joints, as shown in 
Fig. 6.2a. Truss members are connected at their extremities only; no mem-
ber is continuous through a joint. In Fig. 6.2a, for example, there is no 
member AB; instead we have two distinct members AD and DB. Most 
actual structures are made of several trusses joined together to form a 
space framework. Each truss is designed to carry those loads that act in 
its plane and thus may be treated as a two-dimensional structure.

In general, the members of a truss are slender and can support little 
lateral load; all loads, therefore, must be applied at the various joints and not 
to the members themselves. When a concentrated load is to be applied between 
two joints or when the truss must support a distributed load, as in the case 
of a bridge truss, a floor system must be provided. The floor transmits the 
load to the joints through the use of stringers and floor beams (Fig. 6.3).

Photo 6.2 Shown is a pin-jointed 
connection on the former approach span to 
the San Francisco–Oakland Bay Bridge.

Courtesy of Godden Collection. National Information 
Service for Earthquake Engineering, University of 
 California, Berkeley

Fig. 6.2 (a) A typical truss consists of 
straight members connected at joints; (b) we 
can model a truss as two-force members 
connected by pins.

A B

C

D

(a)

(b)

P

A B

C

D

P

Fig. 6.4 A two-force member of a truss can 
be in tension or compression.

(a) Tension (b) Compression

We assume that the weights of the truss members can be applied to 
the joints, with half of the weight of each member applied to each of the 
two joints the member connects. Although the members are actually joined 
together by means of welded, bolted, or riveted connections, it is custom-
ary to assume that the members are pinned together; therefore, the forces 
acting at each end of a member reduce to a single force and no couple. 
This enables us to model the forces applied to a truss member as a single 
force at each end of the member. We can then treat each member as a 
two-force member, and we can consider the entire truss as a group of pins 
and two-force members (Fig. 6.2b). An individual member can be acted 
upon as shown in either of the two sketches of Fig. 6.4. In Fig. 6.4a, the 
forces tend to pull the member apart, and the member is in tension; in 
Fig. 6.4b, the forces tend to push the member together, and the member 
is in compression. Some typical trusses are shown in Fig. 6.5.

Consider the truss of Fig. 6.6a, which is made of four members 
 connected by pins at A, B, C, and D. If we apply a load at B, the truss will 
greatly deform, completely losing its original shape. In contrast, the truss 
of Fig. 6.6b, which is made of three members connected by pins at A, B, 
and C, will deform only slightly under a load applied at B. The only  possible 

Floor beam

Stringer
Joints

Fig. 6.3 A floor system of a truss uses stringers and floor beams to 
transmit an applied load to the joints of the truss.
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deformation for this truss is one involving small changes in the length of 
its members. The truss of Fig. 6.6b is said to be a rigid truss, the term 
‘rigid’ being used here to indicate that the truss will not collapse.

As shown in Fig. 6.6c, we can obtain a larger rigid truss by adding two 
members BD and CD to the basic triangular truss of Fig. 6.6b. We can repeat 
this procedure as many times as we like, and the resulting truss will be rigid 
if each time we add two new members they are attached to two existing joints 
and connected at a new joint. (The three joints must not be in a straight line.) 
A truss that can be constructed in this manner is called a simple truss.

Note that a simple truss is not necessarily made only of triangles. 
The truss of Fig. 6.6d, for example, is a simple truss that we constructed 
from triangle ABC by adding successively the joints D, E, F, and G. 

Fig. 6.5 You can often see trusses in the design of a building roof, a bridge, or other 
other larger structures.

Pratt

Pratt

Howe

Howe

Fink
Typical Roof Trusses

Typical Bridge Trusses
Baltimore

Warren

K truss

Stadium

Cantilever portion
of a truss Bascule

Other Types of Trusses

Fig. 6.6 (a) A poorly designed truss that cannot support a load; (b) the most elementary rigid truss consists of a 
simple triangle; (c) a larger rigid truss built up from the triangle in (b); (d) a rigid truss not made up of triangles alone.
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D
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DE F
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(a) (b) (c) (d )
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On the other hand, rigid trusses are not always simple trusses, even when 
they appear to be made of triangles. The Fink and Baltimore trusses shown 
in Fig. 6.5, for instance, are not simple trusses, because they cannot be 
constructed from a single triangle in the manner just described. All of the 
other trusses shown in Fig. 6.5 are simple trusses, as you may easily check. 
(For the K truss, start with one of the central triangles.)

Also note that the basic triangular truss of Fig. 6.6b has three mem-
bers and three joints. The truss of Fig. 6.6c has two more members and 
one more joint; i.e., five members and four joints altogether. Observing 
that every time we add two new members, we increase the number of 
joints by one, we find that in a simple truss the total number of members 
is m 5 2n 2 3, where n is the total number of joints.

6.1B  The Method of Joints
We have just seen that a truss can be considered as a group of pins and 
two-force members. Therefore, we can dismember the truss of Fig. 6.2, 
whose free-body  diagram is shown in Fig. 6.7a, and draw a free-body 
diagram for each pin and each member (Fig. 6.7b). Each member is acted 
upon by two forces, one at each end; these forces have the same magnitude, 
same line of action, and opposite sense (Sec. 4.2A). Furthermore, Newton’s 
third law states that the forces of action and reaction between a member 
and a pin are equal and opposite. Therefore, the forces exerted by a member 
on the two pins it connects must be directed along that member and be 
equal and opposite. The common magnitude of the forces exerted by a 
member on the two pins it connects is commonly referred to as the force 
in the member, even though this quantity is actually a scalar. Since we 
know the lines of action of all the internal forces in a truss, the analysis 
of a truss reduces to computing the forces in its various members and 
determining whether each of its members is in tension or compression.

Since the entire truss is in equilibrium, each pin must be in equilib-
rium. We can use the fact that a pin is in equilibrium to draw its free-body 
diagram and write two equilibrium equations (Sec. 2.3A). Thus, if the 
truss contains n pins, we have 2n equations available, which can be solved 
for 2n unknowns. In the case of a simple truss, we have m 5 2n 2 3; 
that is, 2n 5 m 1 3, and the number of unknowns that we can determine 
from the free-body diagrams of the pins is m 1 3. This means that we 
can find the forces in all the members, the two components of the reaction 
RA, and the reaction RB by considering the free-body diagrams of the pins.

We can also use the fact that the entire truss is a rigid body in equi-
librium to write three more equations involving the forces shown in the 
free-body diagram of Fig. 6.7a. Since these equations do not contain any 
new information, they are not independent of the equations associated with 
the free-body diagrams of the pins. Nevertheless, we can use them to deter-
mine the components of the reactions at the supports. The arrangement of 
pins and members in a simple truss is such that it is always possible to 
find a joint involving only two unknown forces. We can determine these 
forces by using the methods of Sec. 2.3C and then transferring their values 
to the adjacent joints, treating them as known quantities at these joints. We 
repeat this procedure until we have determined all unknown forces.

As an example, let’s analyze the truss of Fig. 6.7 by considering the 
equilibrium of each pin successively, starting with a joint at which only 

Photo 6.3 Two K trusses were used as the 
main components of the movable bridge 
shown, which moved above a large stockpile 
of ore. The bucket below the trusses picked 
up ore and redeposited it until the ore was 
thoroughly mixed. The ore was then sent to 
the mill for processing into steel.

Courtesy of Ferdinand Beer

Fig. 6.7 (a) Free-body diagram of the truss 
as a rigid body; (b) free-body diagrams of the 
five members and four pins that make up the 
truss.
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two forces are unknown. In this truss, all pins are subjected to at least 
three unknown forces. Therefore, we must first determine the reactions at 
the supports by considering the entire truss as a free body and using the 
equations of equilibrium of a rigid body. In this way we find that RA is 
vertical, and we determine the magnitudes of RA and RB.

This reduces the number of unknown forces at joint A to two, and 
we can determine these forces by considering the equilibrium of pin A. 
The reaction RA and the forces FAC and FAD exerted on pin A by members 
AC and AD, respectively, must form a force triangle. First we draw RA 
(Fig. 6.8); noting that FAC and FAD are directed along AC and AD, respec-
tively, we complete the triangle and determine the magnitude and sense 
of FAC and FAD. The magnitudes FAC and FAD represent the forces in mem-
bers AC and AD. Since FAC is directed down and to the left—that is, 
toward joint A—member AC pushes on pin A and is in compression. 
(From Newton’s third law, pin A pushes on member AC.) Since FAD is 
directed away from joint A, member AD pulls on pin A and is in tension. 
(From Newton’s third law, pin A pulls away from member AD.)

Photo 6.4 Because roof trusses, such as 
those shown, require support only at their 
ends, it is possible to construct buildings with 
large, unobstructed interiors.

© McGraw-Hill Education/Sabina Dowell, 
photographer

Fig. 6.8 Free-body diagrams and force polygons used to determine the 
forces on the pins and in the members of the truss in Fig. 6.7.
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We can now proceed to joint D, where only two forces, FDC and FDB, 
are still unknown. The other forces are the load P, which is given, and the 
force FDA exerted on the pin by member AD. As indicated  previously, this 
force is equal and opposite to the force FAD exerted by the same member 
on pin A. We can draw the force polygon corresponding to joint D, as 
shown in Fig. 6.8, and determine the forces FDC and FDB from that polygon. 
However, when more than three forces are involved, it is usually more 
convenient to solve the equations of equilibrium oFx 5 0 and oFy 5 0 
for the two unknown forces. Since both of these forces are directed away 
from joint D, members DC and DB pull on the pin and are in tension.

Next, we consider joint C; its free-body diagram is shown in Fig. 6.8. 
Both FCD and FCA are known from the analysis of the preceding joints, so 
only FCB is unknown. Since the equilibrium of each pin provides sufficient 
information to determine two unknowns, we can check our analysis at this 
joint. We draw the force triangle and determine the magnitude and sense 
of FCB. Since FCB is directed toward joint C, member CB pushes on pin C 
and is in compression. The check is obtained by verifying that the force FCB 
and member CB are parallel.

Finally, at joint B, we know all of the forces. Since the correspond-
ing pin is in equilibrium, the force triangle must close, giving us an addi-
tional check of the analysis. 

Note that the force polygons shown in Fig. 6.8 are not unique; we 
could replace each of them by an alternative configuration. For example, 
the force triangle corresponding to joint A could be drawn as shown in 
Fig. 6.9. We obtained the triangle actually shown in Fig. 6.8 by drawing 
the three forces RA, FAC, and FAD in tip-to-tail fashion in the order in which 
we cross their lines of action when moving clockwise around joint A.

6.1C  Joints Under Special Loading 
Conditions

Some geometric arrangements of members in a truss are particularly  simple 
to analyze by observation. For example, Fig. 6.10a shows a joint connecting 
four members lying along two intersecting straight lines. The free-body dia-
gram of Fig. 6.10b shows that pin A is subjected to two pairs of directly 
opposite forces. The corresponding force polygon, therefore, must be a paral-
lelogram (Fig. 6.10c), and the forces in opposite members must be equal.

Fig. 6.9 Alternative force polygon for joint A 
in Fig. 6.8.

RA

FAD

FAC

Fig. 6.10 (a) A joint A connecting four members of a truss in two straight 
lines; (b) free-body diagram of pin A; (c) force polygon (parallelogram) for 
pin A. Forces in opposite members are equal.
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FAB

FAE

FAC
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Consider next Fig. 6.11a, in which a joint connects three members 
and supports a load P. Two members lie along the same line, and load 
P acts along the third member. The free-body diagram of pin A and the 
corresponding force polygon are the same as in Fig. 6.10b and c, with 
FAE replaced by load P. Thus, the forces in the two opposite members 
must be equal, and the force in the other member must equal P. 
Figure 6.11b shows a particular case of special interest. Since, in this 
case, no external load is applied to the joint, we have P 5 0, and the 
force in member AC is zero. Member AC is said to be a zero-force 
member.

Now consider a joint connecting two members only. From Sec. 2.3A, 
we know that a particle acted upon by two forces is in equilibrium if the 
two forces have the same magnitude, same line of action, and opposite 
sense. In the case of the joint of Fig. 6.12a, which connects two members 
AB and AD lying along the same line, the forces in the two members must 
be equal for pin A to be in equilibrium. In the case of the joint of Fig. 6.12b, 
pin A cannot be in equilibrium unless the forces in both members are zero. 
Members connected as shown in Fig. 6.12b, therefore, must be zero-force 
members.

Spotting joints that are under the special loading conditions just 
described will expedite the analysis of a truss. Consider, for example, a 
Howe truss loaded as shown in Fig. 6.13. We can recognize all of the 
members represented by green lines as zero-force members. Joint C con-
nects three members, two of which lie in the same line, and is not sub-
jected to any external load; member BC is thus a zero-force member. 
Applying the same reasoning to joint K, we find that member JK is also 
a zero-force member. But joint J is now in the same situation as joints C 
and K, so member IJ also must be a zero-force member. Examining joints 
C, J, and K also shows that the forces in members AC and CE are equal, 
that the forces in members HJ and JL are equal, and that the forces in 
members IK and KL are equal. Turning our attention to joint I, where the 
20-kN load and member HI are collinear, we note that the force in member 
HI is 20 kN (tension) and that the forces in members GI and IK are equal. 
Hence, the forces in members GI, IK, and KL are equal.

Note that the conditions described here do not apply to joints B and 
D in Fig. 6.13, so it is wrong to assume that the force in member DE is 
25 kN or that the forces in members AB and BD are equal. To determine 
the forces in these members and in all remaining members, you need to 
carry out the analysis of joints A, B, D, E, F, G, H, and L in the usual 
manner. Thus, until you have become thoroughly familiar with the condi-
tions under which you can apply the rules described in this section, you 
should draw the free-body diagrams of all pins and write the correspond-
ing equilibrium equations (or draw the corresponding force polygons) 
whether or not the joints being considered are under one of these special 
loading conditions.

A final remark concerning zero-force members: These members are 
not useless. For example, although the zero-force members of Fig. 6.13 
do not carry any loads under the loading conditions shown, the same 
members would probably carry loads if the loading conditions were 
changed. Besides, even in the case considered, these members are  
needed to support the weight of the truss and to maintain the truss in the 
desired shape.

Fig. 6.11 (a) Joint A in a truss connects 
three members, two in a straight line and the 
third along the line of a load. Force in the 
third member equals the load. (b) If the load 
is zero, the third member is a zero-force 
member.

(a)

A

D

C

B

(b)

A

P

D

C

B

Fig. 6.13 An example of loading on a Howe 
truss; identifying special loading conditions.

A

B

C

D

E

F

G

H

25 kN
25 kN

50 kN

20 kN

I

J

K
L

Fig. 6.12 (a) A joint in a truss connecting 
two members in a straight line. Forces in the 
members are equal. (b) If the two members 
are not in a straight line, they must be 
zero-force members.

(a)

A

D

B

(b)

A

D

B
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Sample Problem 6.1

Using the method of joints, determine the force in each member of the 
truss shown.

STRATEGY: To use the method of joints, you start with an analysis of 
the free-body diagram of the entire truss. Then look for a joint connecting 
only two members as a starting point for the calculations. In this example, 
we start at joint A and proceed through joints D, B, E, and C, but you 
could also start at joint C and proceed through joints E, B, D, and A.

MODELING and ANALYSIS: You can combine these steps for each 
joint of the truss in turn. Draw a free-body diagram; draw a force polygon 
or write the equilibrium equations; and solve for the unknown forces.

Entire Truss. Draw a free-body diagram of the entire truss (Fig. 1); 
external forces acting on this free body are the applied loads and the  reactions 
at C and E. Write the equilibrium equations, taking moments about C.

1  oMC 5 0: (2000 lb)(24 ft) 1 (1000 lb)(12 ft) 2 E(6 ft) 5 0
 E 5 110,000 lb E 5 10,000 lb 

  oFx 5 0: Cx 5 0
1  oFy 5 0: 22000 lb 2 1000 lb 1 10,000 lb 1 Cy 5 0
 Cy 5 27000 lb Cy 5 7000 lb 

Joint A. This joint is subject to only two unknown forces: the forces 
exerted by AB and those by AD. Use a force triangle to determine FAB and 
FAD (Fig. 2). Note that member AB pulls on the joint so AB is in  tension, 
and member AD pushes on the joint so AD is in compression. Obtain the 
magnitudes of the two forces from the proportion

2000 lb
4

5
FAB

3
5

FAD

5
FAB 5 1500 lb T b
FAD 5 2500 lb C b

Joint D. Since you have already determined the force exerted by mem-
ber AD, only two unknown forces are now involved at this joint. Again, 
use a force triangle to determine the unknown forces in members DB and 
DE (Fig. 3).

12 ft

12 ft

12 ft

6 ft6 ft

8 ft

A B C

D E

2000 lb 1000 lb

Fig. 1 Free-body diagram of 
entire truss.

12 ft

12 ft

12 ft

6 ft6 ft

8 ft

A B C

D E

E

2000 lb 1000 lb Cy

C x

FAD
FAD

FAB

FAB

A

2000 lb

2000 lb

3

3

4
45 5

Fig. 2 Free-body diagram of 
joint A.

FDA = 2500 lb

D

FDB
FDB

FDE

FDE FDA

3 3
4 45 5

Fig. 3 Free-body diagram of joint D.
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 FDB 5 FDA FDB 5 2500 lb T b

 FDE 5 2(3
5)FDA FDE 5 3000 lb C b

Joint B. Since more than three forces act at this joint (Fig. 4), 
 determine the two unknown forces FBC and FBE by solving the equilib-
rium equations oFx 5 0 and oFy 5 0. Suppose you arbitrarily assume 
that both unknown forces act away from the joint, i.e., that the members 
are in tension. The positive value obtained for FBC indicates that this 
assumption is correct; member BC is in tension. The negative value of 
FBE indicates that the second assumption is wrong; member BE is in 
compression.

FBA 5 1500 lb

FBD 5 2500 lb FBE

B
FBC

1000 lb

33
44

Fig. 4 Free-body diagram of 
joint B.

1  oFy 5 0: 21000 2 4
5(2500) 2 4

5FBE 5 0
  FBE 5 23750 lb FBE 5 3750 lb C b

  oFx 5 0: FBC 2 1500 2 3
5(2500) 2 3

5(3750) 5 0
  FBC 5 15250 lb FBC 5 5250 lb T b

Joint E. Assume the unknown force FEC acts away from the joint 
(Fig. 5). Summing x components, you obtain

 oFx 5 0:  3
5FEC 1 3000 1 3

5(3750) 5 0
 FEC 5 28750 lb FEC 5 8750 lb C b

Summing y components, you obtain a check of your computations:

1  oFy 5 10,000 2 4
5(3750) 2 4

5(8750)
 5 10,000 2 3000 2 7000 5 0 (checks)

REFLECT and THINK: Using the computed values of FCB and FCE, 
you can determine the reactions Cx and Cy by considering the equilibrium 
of Joint C (Fig. 6). Since these reactions have already been determined 
from the equilibrium of the entire truss, this provides two checks of your 
com putations. You can also simply use the computed values of all forces 
acting on the joint (forces in members and reactions) and check that the 
joint is in equilibrium:

   oFx 5 25250 1 3
5(8750) 5 25250 1 5250 5 0 (checks)

1  oFy 5 27000 1 4
5(8750) 5 27000 1 7000 5 0 (checks)

FEB 5 3750 lb FEC

FED 5 3000 lb
E 5 10,000 lb

E
33

44

Fig. 5 Free-body diagram 
of joint E.

FCB 5 5250 lb

FCE 5 8750 lb

Cy 5 7000 lb

Cx 5 0
C

3
4

Fig. 6 Free-body diagram 
of joint C.

Final PDF to printer



272

bee98160_ch06_261-312.indd 272 12/11/15  03:20 PM

 6.1 through 6.14 Using the method of joints, determine the force in each 
member of the truss shown. State whether each member is in tension 
or compression.

Problems

Fig. P6.1

A

B
C

1.92 kN

3 m 4.5 m

4 m

Fig. P6.2

A

B

C

84 kN

3 m

1.25 m

4 m

Fig. P6.3

300 lb

15 in.
48 in.

20 in.

A

C

B

Fig. P6.4

B

C

A

240 lb

20 in.

16 in.

15 in.

A B C

D

10.8 kips 10.8 kips

22.5 ft 35 ft

12 ft

Fig. P6.5

A

B C

D

8.4 kN

8.4 kN

2.8 m

4.5 m

4.5 m

Fig. P6.6
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A B C

D
E F

24 kN

8 kN

7 kN7 kN

0.8 m

1.5 m 1.5 m

Fig. P6.8

A

C D

EB

4 ft 4 ft8 ft 8 ft

600 lb

300 lb 300 lb
6 ft

Fig. P6.9

B C

D

A

E

24 kN
4.5 m

3.2 m

6 m 6 m

Fig. P6.7

3 kN

6 kN

A B

D
E

C

1.2 m 1.2 m

0.9 m

Fig. P6.10

A B

C

D E

12 ft

693 lb

5 ft 5 ft11 ft

Fig. P6.11

5 ft

10 ft 10 ft

10 kips 10 kips

A

B C

D

Fig. P6.12

24 in.

10 in. 10 in.

24 in.

150 lb

A
B

D

E

C

Fig. P6.13

a

a a

A B

D E

H

G
F

C

5 kN

Fig. P6.14
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 6.15 Determine the force in each member of the Howe roof truss shown. 
State whether each member is in tension or compression.

 6.16 Determine the force in each member of the Gambrel roof truss 
shown. State whether each member is in tension or compression.

C

D

E

F

G H
A

B

6 ft

8 ft 8 ft 8 ft 8 ft

300 lb
300 lb

600 lb
600 lb

600 lb

2 ft 4 in.

Fig. P6.16

 6.17 Determine the force in each member of the truss shown.

 6.18 Determine the force in each member of the Pratt bridge truss shown. 
State whether each member is in tension or compression.

 6.19 Determine whether the trusses of Probs. 6.21 and 6.24 are simple 
trusses.

 6.20 Determine whether the trusses of Probs. 6.22 and 6.23 are simple 
trusses.

 6.21 through 6.24 For the given loading, determine the zero-force mem-
bers in the truss shown.

A

B

C

D

E

F

G

H

I

J

K

L

M

P
Q

N

O

Fig. P6.22

A B C D E

F G

H

I J

K

L M

P

Q

N
O

a

a

a

a a a

Fig. P6.23

A

B

C

D

E

F

G

H

I

J

K

L

M

P
Q

N

O

Fig. P6.21

A B C D E

F G H

I J K

P

Fig. P6.24

C

D

E

F

G
HA

B

4 kips 4 kips 4 kips

12 ft

9 ft 9 ft 9 ft 9 ft

Fig. P6.18

A

B

C

D

E

F

G

H

600 lb

600 lb

300 lb

600 lb

300 lb

8 ft8 ft8 ft8 ft

6 ft

6 ft

Fig. P6.15

A B C

D

E

F

G

12.5 kN 12.5 kN 12.5 kN 12.5 kN

2 m 2 m 2 m

2.5 m

Fig. P6.17
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6.2 OTHER TRUSS ANALYSES
The method of joints is most effective when we want to determine the 
forces in all the members of a truss. If, however, we need to determine 
the force in only one member or in a very few members, the method of 
sections is more efficient.

6.2A The Method of Sections
Assume, for example, that we want to determine the force in member BD 
of the truss shown in Fig. 6.14a. To do this, we must determine the force 
with which member BD acts on either joint B or joint D. If we were to 
use the method of joints, we would choose either joint B or joint D as a 
free body. However, we can also choose a larger portion of the truss that 
is composed of several joints and members, provided that the force we 
want to find is one of the external forces acting on that portion. If, in 
addition, we choose the portion of the truss as a free body where a total 
of only three unknown forces act upon it, we can obtain the desired force 
by solving the equations of equilibrium for this portion of the truss. In 
practice, we isolate a portion of the truss by passing a section through 
three members of the truss, one of which is the desired member. That is, 
we draw a line that divides the truss into two completely separate parts 
but does not intersect more than three members. We can then use as a 
free body either of the two portions of the truss obtained after the inter-
sected members have been removed.†

In Fig. 6.14a, we have passed the section nn through members BD, 
BE, and CE, and we have chosen the portion ABC of the truss as the free 
body (Fig. 6.14b). The forces acting on this free body are the loads P1 
and P2 at points A and B and the three unknown forces FBD, FBE, and FCE. 
Since we do not know whether the members removed are in tension or 
compression, we have arbitrarily drawn the three forces away from the 
free body as if the members are in tension.

We use the fact that the rigid body ABC is in equilibrium to write 
three equations that we can solve for the three unknown forces. If we want 
to determine only force FBD, say, we need write only one equation, pro-
vided that the equation does not contain the other unknowns. Thus, the 
equation oME 5 0 yields the value of the magnitude FBD (Fig. 6.14b). A 
positive sign in the answer will indicate that our original assumption 
regarding the sense of FBD was correct and that member BD is in tension; 
a negative sign will indicate that our assumption was incorrect and that 
BD is in compression.

On the other hand, if we want to determine only force FCE, we need 
to write an equation that does not involve FBD or FBE; the appropriate 
equation is oMB 5 0. Again, a positive sign for the magnitude FCE of the 
desired force indicates a correct assumption, that is, tension; and a nega-
tive sign indicates an incorrect assumption, that is, compression.

If we want to determine only force FBE, the appropriate equation is 
oFy 5 0. Whether the member is in tension or compression is again 
determined from the sign of the answer.

Fig. 6.14 (a) We can pass a section nn 
through the truss, dividing the three 
members BD, BE, and CE. (b) Free-body 
diagram of portion ABC of the truss. We 
assume that members BD, BE, and CE are in 
tension.

A B

C

A B

C

D

E

E

G

(a)

(b)

n

n
P1 P2

P1 P2

P3

FCE

FBD

FBE

†In the analysis of some trusses, we can pass sections through more than three members, provided 
we can write equilibrium equations involving only one unknown that we can use to determine 
the forces in one, or possibly two, of the intersected members. See Probs. 6.41 through 6.43. 
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If we determine the force in only one member, no independent check 
of the computation is available. However, if we calculate all of the 
unknown forces acting on the free body, we can check the computations 
by writing an additional equation. For instance, if we determine FBD, FBE, 
and FCE as indicated previously, we can check the work by verifying that 
oFx 5 0.

6.2B  Trusses Made of Several Simple 
Trusses

Consider two simple trusses ABC and DEF. If we connect them by three 
bars BD, BE, and CE as shown in Fig. 6.15a, together they form a rigid 
truss ABDF. We can also combine trusses ABC and DEF into a single 
rigid truss by joining joints B and D at a single joint B and connecting 
joints C and E by a bar CE (Fig. 6.15b). This is known as a Fink truss. 
The trusses of Fig. 6.15a and b are not simple trusses; you cannot con-
struct them from a triangular truss by adding successive pairs of members 
as described in Sec. 6.1A. They are rigid trusses, however, as you can 
check by comparing the systems of connections used to hold the simple 
trusses ABC and DEF together (three bars in Fig. 6.15a, one pin and one 
bar in Fig. 6.15b) with the systems of supports discussed in Sec. 4.1. 
Trusses made of several simple trusses rigidly connected are known as 
compound trusses.

Fig. 6.15 Compound trusses. (a) Two simple trusses ABC and DEF connected by three 
bars. (b) Two simple trusses ABC and DEF connected by one joint and one bar  
(a Fink truss).

A

B

C

D

E
F

(a)

A

B

C E
F

(b)

In a compound truss, the number of members m and the number of 
joints n are still related by the formula m 5 2n 2 3. You can verify this 
by observing that if a compound truss is supported by a frictionless pin 
and a roller (involving three unknown reactions), the total number of 
unknowns is m 1 3, and this number must be equal to the number 2n of 
equations obtained by expressing that the n pins are in equilibrium. It 
follows that m 5 2n 2 3. 

Compound trusses supported by a pin and a roller or by an equiva-
lent system of supports are statically determinate, rigid, and completely 
constrained. This means that we can determine all of the unknown reac-
tions and the forces in all of the members by using the methods of statics, 
and the truss will neither collapse nor move. However, the only way to 
determine all of the forces in the members using the method of joints 
requires solving a large number of simultaneous equations. In the case of 
the compound truss of Fig. 6.15a, for example, it is more efficient to pass 
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a section through members BD, BE, and CE to determine the forces in 
these members.

Suppose, now, that the simple trusses ABC and DEF are connected 
by four bars; BD, BE, CD, and CE (Fig. 6.16). The number of members 
m is now larger than 2n 2 3. This truss is said to be overrigid, and one 
of the four members BD, BE, CD, or CE is redundant. If the truss is 
supported by a pin at A and a roller at F, the total number of unknowns 
is m 1 3. Since m . 2n 2 3, the number m 1 3 of unknowns is now 
larger than the number 2n of available independent equations; the truss is 
statically indeterminate.

Fig. 6.16 A statically indeterminate, 
overrigid compound truss, due to a 
redundant member.

A

B

C

D

E
F

Finally, let us assume that the two simple trusses ABC and DEF are 
joined by a single pin, as shown in Fig. 6.17a. The number of mem bers, 
m, is now smaller than 2n 2 3. If the truss is supported by a pin at A and 
a roller at F, the total number of unknowns is m 1 3. Since m , 2n 2 3, 
the number m 1 3 of unknowns is now smaller than the number 2n of 
equilibrium equations that need to be satisfied. This truss is nonrigid and 
will collapse under its own weight. However, if two pins are used to 
 support it, the truss becomes rigid and will not collapse (Fig. 6.17b). Note 
that the total number of unknowns is now m 1 4 and is equal to the 
number 2n of equations. 

More generally, if the reactions at the supports involve r unknowns, 
the condition for a compound truss to be statically determinate, rigid, and 
completely constrained is m 1 r 5 2n. However, although this condition 
is necessary, it is not sufficient for the equilibrium of a structure that 
ceases to be rigid when detached from its supports (see Sec. 6.3B).

Fig. 6.17 Two simple trusses joined by a pin. (a) Supported by a pin and a roller, 
the truss will collapse under its own weight. (b) Supported by two pins, the truss 
becomes rigid and does not collapse.

A

B

C E
F

(a) (b)

A

B

C E
F
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Sample Problem 6.2

Determine the forces in members EF and GI of the truss shown.

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

10 ft

8 ft 8 ft 8 ft 8 ft 8 ft

STRATEGY: You are asked to determine the forces in only two of the 
members in this truss, so the method of sections is more appropriate than 
the method of joints. You can use a free-body diagram of the entire truss 
to help determine the reactions, and then pass sections through the truss 
to isolate parts of it for calculating the desired forces.

MODELING and ANALYSIS: You can go through the steps that 
 follow for the determination of the support reactions, and then for the 
analysis of portions of the truss.

Free-Body: Entire Truss. Draw a free-body diagram of the entire 
truss. External forces acting on this free body consist of the applied loads 
and the reactions at B and J (Fig. 1). Write and solve the following equi-
librium equations.

1  oMB 5 0:
 2(28 kips)(8 ft) 2 (28 kips)(24 ft) 2 (16 kips)(10 ft) 1 J(32 ft) 5 0

J 5 133 kips  J 5 33 kips  
 oFx 5 0:  Bx 1 16 kips 5 0

Bx 5 216 kips  Bx 5 16 kips 

 1  oMJ 5 0:
 (28 kips)(24 ft) 1 (28 kips)(8 ft) 2 (16 kips)(10 ft) 2 By(32 ft) 5 0

By 5 123 kips   By 5 23 kips  

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

10 ft

8 ft 8 ft 8 ft 8 ft 8 ft
J

By

Bx

Fig. 1 Free-body diagram of entire truss.

Force in Member EF. Pass section nn through the truss diagonally 
so that it intersects member EF and only two additional members (Fig. 2). 
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Remove the intersected members and choose the left-hand portion of the 
truss as a free body (Fig. 3). Three unknowns are involved; to eliminate 
the two horizontal forces, we write

1   oFy 5 0:  123 kips 2 28 kips 2 FEF 5 0
 FEF 5 25 kips

A

B

C

D

E

F

G

H

I

J

K

28 kips 28 kips

16 kips

16 kips

n

n

m

m

23 kips 33 kips

Fig. 2 Sections nn and mm that will be used to 
analyze members EF and GI.

FEG

FEF

FDF
D

28 kips

16 kips

23 kips

A

B

C E

Fig. 3 Free-body diagram to 
analyze member EF.

The sense of FEF was chosen assuming member EF to be in tension; the 
negative sign indicates that the member is in compression.

FEF 5 5 kips C b

Force in Member GI. Pass section mm through the truss vertically 
so that it intersects member GI and only two additional members (Fig. 2). 
Remove the intersected members and choose the right-hand portion of the 
truss as a free body (Fig. 4). Again, three unknown forces are involved; 
to eliminate the two forces passing through point H, sum the moments 
about that point.

 1  oMH 5 0:  (33 kips)(8 ft) 2 (16 kips)(10 ft) 1 FGI(10 ft) 5 0
FGI 5 210.4 kips  FGI 5 10.4 kips C b

REFLECT and THINK: Note that a section passed through a truss does 
not have to be vertical or horizontal; it can be diagonal as well. Choose 
the orientation that cuts through no more than three members of unknown 
force and also gives you the simplest part of the truss for which you can 
write equilibrium equations and determine the unknowns.

FGI

FHI

FHJ

10 ft

8 ft

H

I

J

K

16 kips

33 kips

Fig. 4 Free-body diagram to 
analyze member GI.
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Sample Problem 6.3

Determine the forces in members FH, GH, and GI of the roof truss 
shown.
STRATEGY: You are asked to determine the forces in only three 
members of the truss, so use the method of sections. Determine the 
reactions by treating the entire truss as a free body and then isolate 
part of it for analysis. In this case, you can use the same smaller part 
of the truss to determine all three desired forces.

MODELING and ANALYSIS: Your reasoning and computation 
should go something like the sequence given here.

Free Body: Entire Truss. From the free-body diagram of the 
entire truss (Fig. 1), find the reactions at A and L:

A 5 12.50 kN    L 5 7.50 kN   

Note that

tan α 5
FG

GL
5

8 m
15 m

5 0.5333    α 5 28.078

Force in Member GI. Pass section nn vertically through the truss 
(Fig. 1). Using the portion HLI of the truss as a free body (Fig. 2), 
obtain the value of FGI :

1  oMH 5 0:  (7.50 kN)(10 m) 2 (1 kN)(5 m) 2 FGI(5.33 m) 5 0
FGI 5 113.13 kN  FGI 5 13.13 kN T b

Force in Member FH. Determine the value of FFH from the  equation 
oMG 5 0. To do this, move FFH along its line of action until it acts at 
point F, where you can resolve it into its x and y components (Fig. 3). 
The moment of FFH with respect to point G is now (FFH cos α)(8 m).

1  oMG 5 0:
(7.50 kN)(15 m) 2 (1 kN)(10 m) 2 (1 kN)(5 m) 1 (FFH cos α)(8 m) 5 0

FFH 5 213.81 kN  FFH 5 13.81 kN C b

Force in Member GH. First note that

 tan β 5
GI

HI
5

5 m
2
3(8 m)

5 0.9375    β 5 43.158

Then determine the value of FGH by resolving the force FGH into x and 
y components at point G (Fig. 4) and solving the equation oML 5 0.

1  oML 5 0:  (1 kN)(10 m) 1 (1 kN)(5 m) 1 (FGH cos β)(15 m) 5 0
FGH 5 21.371 kN  FGH 5 1.371 kN C b

REFLECT and THINK: Sometimes you should resolve a force into 
components to include it in the equilibrium equations. By first sliding 
this force along its line of action to a more strategic point, you might 
eliminate one of its components from a moment equilibrium equation.

h 5 8 m
A

B

C

D

F

G

H

I

J

K
L

E

1 kN

1 kN
1 kN

1 kN
1 kN

5 kN5 kN5 kN
6 panels @ 5 m 5 30 m

A

B

C

D

F

G

H

I

J

K
L

E

1 kN
1 kN

1 kN
1 kN

1 kN

5 kN5 kN5 kN
n

n

12.50 kN
7.50 kN

α 5 28.078

Fig. 1 Free-body diagram of entire truss.

Fig. 2 Free-body diagram to analyze 
member GI.

H

I

J

K
L

FGI

FFH

FGH

1 kN

1 kN

7.50 kN

(8 m) 5 5.33 m2
3

5 m 5 m

Fig. 3 Simplifying the analysis of member 
FH by first sliding its force to point F.

F

G

H

I

J

K
L

FGI

FGH

FFH sin α
FFH cos α

1 kN

1 kN

7.50 kN

α 5 28.078

5 m5 m

8 m

5 m

Fig. 4 Simplifying the analysis of member 
GH by first sliding its force to point G.

G

H

I

J

K
L

FGI

FFH

FGH sin β

β 5 43.158

FGH cos β

1 kN

1 kN

7.50 kN
5 m5 m 5 m
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Problems
 6.25 Determine the force in members BD and CD of the truss shown.

A B D F H

C E G

36 kips 36 kips

4 panels at 10 ft 5 40 ft

7.5 ft

Fig. P6.25 and P6.26

 6.26 Determine the force in members DF and DG of the truss shown.

 6.27 Determine the force in members BD and DE of the truss shown.

A

B C

D E

F G

135 kN

135 kN

135 kN

2.4 m

2.4 m

4.5 m

2.4 m

Fig. P6.27 and P6.28

 6.28 Determine the force in members DG and EG of the truss shown.

 6.29 Determine the force in members DE and DF of the truss shown when 
P 5 20 kips.

A
B

C

D

E

F

G

H

I

J7.5 ft

6 panels @ 6 ft 5 36 ft

K

L

PP P P P

Fig. P6.29 and P6.30

 6.30 Determine the force in members EG and EF of the truss shown when 
P 5 20 kips.
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 6.31 Determine the force in members DF and DE of the truss shown.

A B

C

D

E

F

G

30 kN 20 kN

2 m

1.5 m 2 m

2 m 2 m

Fig. P6.31 and P6.32

 6.32 Determine the force in members CD and CE of the truss shown.

 6.33 A monosloped roof truss is loaded as shown. Determine the force in 
members CE, DE, and DF.

1 kN

1 kN

2 kN
2 kN

2 kN

0.46 m

2.4 m2.4 m2.4 m2.4 m

A

B

C

D

E

F

G

H

I

J

2.62 m

Fig. P6.33 and P6.34

 6.34 A monosloped roof truss is loaded as shown. Determine the force in 
members EG, GH, and HJ.

 6.35 A stadium roof truss is loaded as shown. Determine the force in 
members AB, AG, and FG.

A
B

C
D

E F G H

I J

K L

0.9 kips

0.9 kips

1.8 kips
1.8 kips

8 ft 8 ft

31.5 ft

9 ft

12 ft 14 ft 14 ft

Fig. P6.35 and P6.36

 6.36 A stadium roof truss is loaded as shown. Determine the force in 
members AE, EF, and FJ.
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 6.37 Determine the force in members DF, EF, and EG of the truss shown.

16 kN 16 kNA
C

J

L

N

E

G

3 m

3 m

3 m

3 m

6 panels @ 4 m 5 24 m

B

D

F

H

M

I

K

Fig. P6.37 and P6.38

 6.38 Determine the force in members GI, GJ, and HI of the truss shown.

 6.39 Determine the force in members AD, CD, and CE of the truss shown.

A

B C

D

E

F

G

H

I K

9 kips

5 kips 5 kips
15 ft 15 ft 15 ft

8 ft

J

Fig. P6.39 and P6.40

 6.40 Determine the force in members DG, FG, and FH of the truss 
shown.

 6.41 Determine the force in members DG and FI of the truss shown. 
(Hint: Use section aa.)

5 kN

5 kN

5 kN

2 m 2 m

3 m

3 m

3 m

A

D

G

J

F

I

K

B

E

H

C

a a

b b

Fig. P6.41 and P6.42

 6.42 Determine the force in members GJ and IK of the truss shown. 
(Hint: Use section bb.)
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 6.43 Determine the force in members AF and EJ of the truss shown when 
P 5 Q 5 1.2 kN. (Hint: Use section aa.)

aa

3 m3 m3 m3 m

4 m

4 m

P Q

A B C D E

F
G

H

I
J

K L M N O

Fig. P6.43

 6.44 The diagonal members in the center panels of the truss shown are 
very slender and can act only in tension; such members are known 
as counters. Determine the force in member DE and in the counters 
that are acting under the given loading.

Counters

6 kips 9 kips 12 kips

A

B

C E G

H

D F

8 ft 8 ft 8 ft 8 ft

6 ft

Fig. P6.44

 6.45 Solve Prob. 6.44 assuming that the 9-kip load has been removed.

 6.46 The diagonal members in the center panels of the truss shown are 
very slender and can act only in tension; such members are known 
as counters. Determine the forces in the counters that are acting 
under the given loading.

A
B C D E

F G H

4.8 kips4.8 kips4.8 kips 2.4 kips2.4 kips

11 ft 11 ft11 ft11 ft

9.6 ft

Fig. P6.46
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 6.47 and 6.48 Classify each of the structures shown as completely, par-
tially, or improperly constrained; if completely constrained, further 
classify as determinate or indeterminate. (All members can act both 
in tension and in compression.)

PPP

(a) (b) (c)

PPP PPP

Fig. P6.47

PP

(a) (b) (c)

PP PP

Fig. P6.48
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6.3 FRAMES 
When we study trusses, we are looking at structures consisting entirely of 
pins and straight two-force members. The forces acting on the two-force 
members are directed along the members themselves. We now consider 
structures in which at least one of the members is a multi-force member, i.e., 
a member acted upon by three or more forces. These forces are generally not 
directed along the members on which they act; their directions are unknown; 
therefore, we need to represent them by two unknown components.

Frames and machines are structures containing multi-force  members. 
Frames are designed to support loads and are usually stationary, fully 
constrained structures. Machines are designed to transmit and modify 
forces; they may or may not be stationary and always contain moving parts.

Photo 6.5 Frames and machines contain multi-force 
members. Frames are fully constrained structures, 
whereas machines like this prosthetic hand are movable 
and designed to transmit or modify forces.

© Mark Thiessen/National Geographic Society/Corbis

6.3A Analysis of a Frame
As the first example of analysis of a frame, we consider again the crane 
described in Sec. 6.1 that carries a given load W (Fig. 6.18a). The free-
body diagram of the entire frame is shown in Fig. 6.18b. We can use this 
diagram to determine the external forces acting on the frame. Summing 
moments about A, we first determine the force T exerted by the cable; 

Fig. 6.18 A frame in equilibrium. (a) Diagram of a crane supporting a load; (b) free-body 
diagram of the crane; (c) free-body diagrams of the components of the crane.

A

B

C

D

E
F

W

G

(a)

F

W

T

B

C

D

E

(b)

Ay

Ax

A

(c)

A B

B

C

C

D E

E

F

W

FBE

FBE

2FBE2 FBE

T

Ay

A x

Cy

C x

2Cy

2C x
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summing x and y components, we then determine the components Ax and 
Ay of the reaction at the pin A.

In order to determine the internal forces holding the various parts 
of a frame together, we must dismember it and draw a free-body diagram 
for each of its component parts (Fig. 6.18c). First, we examine the two-
force members. In this frame, member BE is the only two-force member. 
The forces acting at each end of this member must have the same mag-
nitude, same line of action, and opposite sense (Sec. 4.2A). They are 
therefore directed along BE and are denoted, respectively, by FBE and 
2FBE. We arbitrarily assume their sense as shown in Fig. 6.18c; the sign 
obtained for the common magnitude FBE of the two forces will confirm 
or deny this assumption.

Next, we consider the multi-force members, i.e., the members that 
are acted upon by three or more forces. According to  Newton’s third law, 
the force exerted at B by member BE on member AD must be equal and 
opposite to the force FBE exerted by AD on BE. Similarly, the force exerted 
at E by member BE on member CF must be equal and opposite to the 
force 2FBE exerted by CF on BE. Thus, the forces that the two-force 
member BE exerts on AD and CF are, respectively, equal to 2FBE and 
FBE; they have the same magnitude FBE, opposite sense, and should be 
directed as shown in Fig. 6.18c.

Joint C connects two multi-force members. Since neither the direction 
nor the magnitude of the forces acting at C are known, we represent these 
forces by their x and y components. The components Cx and Cy of the force 
acting on member AD are arbitrarily directed to the right and upward. 
Since, according to Newton’s third law, the forces exerted by member CF 
on AD and by member AD on CF are equal and opposite, the components 
of the force acting on member CF must be directed to the left and down-
ward; we denote them, respectively, by 2Cx and 2Cy. Whether the force 
Cx is actually directed to the right and the force 2Cx is actually directed 
to the left will be determined later from the sign of their common magni-
tude Cx with a plus sign indicating that the assumption was correct and a 
minus sign that it was wrong. We complete the free-body diagrams of the 
multi-force members by showing the external forces acting at A, D, and F.†

We can now determine the internal forces by considering the free-
body diagram of either of the two multi-force members. Choosing the 
free-body diagram of CF, for example, we write the equations oMC 5 0, 
oME 5 0, and oFx 5 0, which yield the values of the magnitudes FBE, 
Cy, and Cx, respectively. We can check these values by verifying that 
member AD is also in equilibrium.

Note that we assume the pins in Fig. 6.18 form an integral part of 
one of the two members they connected, so it is not necessary to show 
their free-body diagrams. We can always use this assumption to simplify 

†It is not strictly necessary to use a minus sign to distinguish the force exerted by one 
member on another from the equal and opposite force exerted by the second member on the 
first, since the two forces belong to different free-body diagrams and thus are not easily 
confused. In the Sample Problems, we use the same symbol to represent equal and opposite 
forces that are applied to different free bodies. Note that, under these conditions, the sign 
obtained for a given force component does not directly relate the sense of that component 
to the sense of the corresponding coordinate axis. Rather, a positive sign indicates that the 
sense assumed for that component in the free-body diagram is correct, and a negative sign 
indicates that it is wrong. 
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the analysis of frames and machines. However, when a pin connects three 
or more members, connects a support and two or more members, or when 
a load is applied to a pin, we must make a clear decision in choosing the 
member to which we assume the pin belongs. (If multi-force members are 
involved, the pin should be attached to one of these members.) We then 
need to identify clearly the various forces exerted on the pin. This is 
illustrated in Sample Prob. 6.6.

6.3B  Frames That Collapse Without 
Supports

The crane we just analyzed was constructed so that it could keep the 
same shape without the help of its supports; we therefore considered it 
to be a rigid body. Many frames, however, will collapse if detached from 
their supports; such frames cannot be considered rigid bodies. Consider, 
for example, the frame shown in Fig. 6.19a that consists of two members 
AC and CB carrying loads P and Q at their midpoints. The members are 
supported by pins at A and B and are connected by a pin at C. If we 
detach this frame from its supports, it will not maintain its shape. There-
fore, we should consider it to be made of two distinct rigid parts AC 
and CB.

The equations oFx 5 0, oFy 5 0, and oM 5 0 (about any given 
point) express the conditions for the equilibrium of a rigid body (Chap. 4); 
we should use them, therefore, in connection with the free-body diagrams 
of members AC and CB (Fig. 6.19b). Since these members are multi- force 
members and since pins are used at the supports and at the connection, 
we represent each of the reactions at A and B and the forces at C by two 
components. In accordance with Newton’s third law, we represent the 
components of the force exerted by CB on AC and the components of 
the force exerted by AC on CB by vectors of the same magnitude and 
opposite sense. Thus, if the first pair of components consists of Cx and 
Cy, the second pair is represented by 2Cx and 2Cy.

Note that four unknown force components act on free body AC, 
whereas we need only three independent equations to express that the 
body is in equilibrium. Similarly, four unknowns, but only three  equations, 
are associated with CB. However, only six different unknowns are 
involved in the analysis of the two members, and altogether, six  equations 

Fig. 6.19 (a) A frame of two members supported by two pins and joined together by a third pin. Without the 
supports, the frame would collapse and is therefore not a rigid body. (b) Free-body diagrams of the two members. 
(c) Free-body diagram of the whole frame.

A B

C

(a)

QP

A B

C C

(b)
Ay

A x

By

Bx
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C x

2Cy

2Cx
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A B

C

(c)
Ay

A x

By

Bx

QP
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are  available to express that the members are in equilibrium. Setting 
oMA 5 0 for free body AC and oMB 5 0 for CB, we obtain two simul-
taneous equations that we can solve for the common magnitude Cx of 
the components Cx and 2Cx and for the common magnitude Cy of the 
components Cy and 2Cy. We then have oFx 5 0 and oFy 5 0 for each 
of the two free bodies, successively obtaining the magnitudes Ax , Ay, Bx, 
and By.

Observe that, since the equations of equilibrium oFx 5 0, oFy 5 0, 
and oM 5 0 (about any given point) are satisfied by the forces acting on 
free body AC and since they are also satisfied by the forces acting on free 
body CB, they must be satisfied when the forces acting on the two free 
bodies are considered simultaneously. Since the internal forces at C cancel 
each other, we find that the equations of equilibrium must be satisfied by 
the external forces shown on the free-body diagram of the frame ACB 
itself (Fig. 6.19c), even though the frame is not a rigid body. We can use 
these equations to determine some of the components of the reactions at 
A and B. We will find, however, that the reactions cannot be completely 
determined from the free-body diagram of the whole frame. It is 
thus necessary to dismember the frame and consider the free-body 
 diagrams of its component parts (Fig. 6.19b), even when we are 
 interested in  determining external reactions only. The reason is that the 
 equilibrium equations obtained for free body ACB are necessary  conditions 
for the equilibrium of a nonrigid structure, but these are not sufficient 
conditions.

The method of solution outlined here involved simultaneous 
 equations. We now present a more efficient method that utilizes the free 
body ACB as well as the free bodies AC and CB. Writing oMA 5 0 and 
oMB 5 0 for free body ACB, we obtain By and Ay. From oMC 5 0, 
oFx 5 0, and oFy 5 0 for free body AC, we successively obtain Ax, Cx, 
and Cy. Finally, setting oFx 5 0 for ACB gives us Bx.

We noted previously that the analysis of the frame in Fig. 6.19 
involves six unknown force components and six independent equilibrium 
equations. (The equilibrium equations for the whole frame were obtained 
from the original six equations and, therefore, are not independent.) More-
over, we checked that all unknowns could be actually determined and that 
all equations could be satisfied. This frame is statically determinate and 
rigid. (We use the word “rigid” here to indicate that the frame maintains 
its shape as long as it remains attached to its supports.) In general, to 
determine whether a structure is statically determinate and rigid, you 
should draw a free-body diagram for each of its component parts and 
count the reactions and internal forces involved. You should then deter-
mine the number of independent equilibrium equations (excluding equa-
tions expressing the equilibrium of the whole structure or of groups of 
component parts already analyzed). If you have more unknowns than 
equations, the structure is statically indeterminate. If you have fewer 
unknowns than equations, the structure is nonrigid. If you have as many 
unknowns as equations and if all unknowns can be determined and all 
equations satisfied under general loading conditions, the structure is stati-
cally determinate and rigid. If, however, due to an improper arrangement 
of members and supports, all unknowns cannot be determined and all 
equations cannot be satisfied, the structure is statically indeterminate 
and nonrigid.
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Sample Problem 6.4

In the frame shown, members ACE and BCD are connected by a pin at C 
and by the link DE. For the loading shown, determine the force in link 
DE and the components of the force exerted at C on member BCD.
STRATEGY: Follow the general procedure discussed in this section. First 
treat the entire frame as a free body, which will enable you to find the reac-
tions at A and B. Then dismember the frame and treat each member as a 
free body, which will give you the equations needed to find the force at C.
MODELING and ANALYSIS: Since the external reactions involve only 
three unknowns, compute the reactions by considering the free-body dia-
gram of the entire frame (Fig. 1).
 1   oFy 5 0: Ay 2 480 N 5 0  Ay 5 1480 N Ay 5 480 N  
 1  oMA 5 0:  2(480 N)(100 mm) 1 B(160 mm) 5 0
  B 5 1300 N B 5 300 N
  oFx 5 0: B 1 Ax 5 0
 300 N 1 Ax 5 0 Ax 5 2300 N Ax 5 300 N 
Now dismember the frame (Figs. 2 and 3). Since only two members are 
connected at C, the components of the unknown forces  acting on ACE and 
BCD are, respectively, equal and opposite. Assume that link DE is in 
tension (Fig. 3) and exerts equal and opposite forces at D and E, directed 
as shown.

Fig. 2 Free-body diagram of member BCD.

B

C

D

60 mm

60 mm
480 N

100 mm
150 mm

α

Cy

Cx

FDE

300 N

Free Body: Member BCD. Using the free body BCD (Fig. 2), you can 
write and solve three equilibrium equations:
1  oMC 5 0:

(FDE sin α)(250 mm) 1 (300 N)(80 mm) 1 (480 N)(100 mm) 5 0
 FDE 5 2561 N FDE 5 561 N C b

oFx 5 0: Cx 2 FDE cos α 1 300 N 5 0
 Cx 2 (2561 N) cos 28.07° 1 300 N 5 0 Cx 5 2795 N
  oFy 5 0: Cy 2 FDE sin α 2 480 N 5 0
 Cy 2 (2561 N) sin 28.07° 2 480 N 5 0 Cy 5 1216 N
From the signs obtained for Cx and Cy, the force components Cx and Cy exerted 
on member BCD are directed to the left and up, respectively. Thus, you have

Cx 5 795 N , Cy 5 216 N    b

REFLECT and THINK: Check the computations by considering the 
free body ACE (Fig. 3). For example,

1  oMA 5 (FDE cos α)(300 mm) 1 (FDE sin α)(100 mm) 2 Cx(220 mm)
 5 (2561 cos α)(300) 1 (2561 sin α)(100) 2 (2795)(220) 5 0

A

B

C D

E

60 mm

60 mm

80 mm

480 N

100 mm
150 mm

160 mm

Fig. 1 Free-body diagram of entire frame.

A

B

C D

E

160 mm

80 mm

480 N

100 mm
150 mm

Ay

B

Ax

α

α 5 tan21 5 28.07880
150

Fig. 3 Free-body diagrams of member 
ACE and DE.

C

A

E

D

E

80 mm

480 N

100 mm

αCy

Cx
FDE

FDE

FDE

300 N

220 mm
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Sample Problem 6.5

Determine the components of the forces acting on each member of the 
frame shown.

STRATEGY: The approach to this analysis is to consider the entire 
frame as a free body to determine the reactions, and then consider separate 
members. However, in this case, you will not be able to determine forces 
on one member without analyzing a second member at the same time.

MODELING and ANALYSIS: The external reactions involve only 
three unknowns, so compute the reactions by considering the free-body 
diagram of the entire frame (Fig. 1).

1  oME 5 0: 2(2400 N)(3.6 m) 1 F(4.8 m) 5 0
 F 5 11800 N F 5 1800 N   b
     oFy 5 0: 22400 N 1 1800 N 1 Ey 5 0
 Ey 5 1600 N Ey 5 600 N   b

  oFx 5 0:   Ex 5 0 b

Now dismember the frame. Since only two members are connected at each 
joint, force components are equal and opposite on each member at each 
joint (Fig. 2).

Free Body: Member BCD.

1  oMB 5 0: 2(2400 N)(3.6 m) 1 Cy(2.4 m) 5 0 Cy 5 13600 N b
  1  oMC 5 0: 2(2400 N)(1.2 m) 1 By(2.4 m) 5 0 By 5 11200 N b

  oFx 5 0: 2Bx 1 Cx 5 0

Neither Bx nor Cx can be obtained by considering only member BCD; you 
need to look at member ABE. The positive values obtained for By and Cy 
indicate that the force components By and Cy are directed as assumed.

Free Body: Member ABE.

1  oMA 5 0: Bx(2.7 m) 5 0 Bx 5 0 b

  oFx 5 0: 1Bx 2 Ax 5 0 Ax 5 0 b

     oFy 5 0: 2Ay 1 By 1 600 N 5 0
 2Ay 1 1200 N 1 600 N 5 0 Ay 5 11800 N b

Free Body: Member BCD. Returning now to member BCD, you have

oFx 5 0: 2Bx 1 Cx 5 0  0 1 Cx 5 0 Cx 5 0 b

REFLECT and THINK: All unknown components have now been found. 
To check the results, you can verify that member ACF is in equilibrium.

1  oMC 5 (1800 N)(2.4 m) 2 Ay(2.4 m) 2 Ax(2.7 m)
 5 (1800 N)(2.4 m) 2 (1800 N)(2.4 m) 2 0 5 0  (checks)

2400 N

A

B

C
D

E F

2.7 m

3.6 m

4.8 m

2.7 m

2400 N

A

C
D

E F

3.6 m

4.8 m
Ey F

Ex

B

Fig. 1 Free-body diagram of 
entire frame.

600 N 1800 N

2.7 m

2.7 m

By Cy

Bx

By

Ay

Ay

Ax

Ax

Bx

Cx

Cy

Cx

A
A

B

B

C

E F

2400 N

C
D

2.4 m

2.4 m

1.2 m

Fig. 2 Free-body diagrams of 
individual members.
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Sample Problem 6.6

A 600-lb horizontal force is applied to pin A of the frame shown.  Determine 
the forces acting on the two vertical members of the frame.

STRATEGY: Begin as usual with a free-body diagram of the entire 
frame, but this time you will not be able to determine all of the reactions. 
You will have to analyze a separate member and then return to the entire 
frame analysis in order to determine the remaining reaction forces.

MODELING and ANALYSIS: Choosing the entire frame as a free 
body (Fig. 1), you can write equilibrium equations to determine the two 
force components Ey and Fy. However, these equations are not sufficient 
to determine Ex and Fx.

1  oME 5 0:  2(600 lb)(10 ft) 1 Fy(6 ft) 5 0
 Fy 5 11000 lb Fy 5 1000 lb   b

    oFy 5 0:  Ey 1 Fy 5 0
 Ey 5 21000 lb Ey 5 1000 lb   b

To proceed with the solution, now consider the free-body diagrams of 
the various members (Fig. 2). In dismembering the frame, assume that 
pin A is attached to the multi-force member ACE so that the 600-lb force 
is applied to that member. Note that AB and CD are two-force 
members.

Free Body: Member ACE

   oFy 5 0:  2 5
13FAB 1 5

13FCD 2 1000 lb 5 0
 1  oME 5 0:  2(600 lb)(10 ft) 2 (12

13FAB)(10 ft) 2 (12
13FCD)(2.5 ft) 5 0

Solving these equations simultaneously gives you

FAB 5 21040 lb  FCD 5 11560 lb b

The signs indicate that the sense assumed for FCD was correct and the 
sense for FAB was incorrect. Now summing x components, you have

oFx 5 0:  600 lb 1 12
13(21040 lb) 1 12

13(11560 lb) 1 Ex 5 0
 Ex 5 21080 lb Ex 5 1080 lb  b

Free Body: Entire Frame. Now that Ex is determined, you can return 
to the free-body diagram of the entire frame.

oFx 5 0:  600 lb 2 1080 lb 1 Fx 5 0
 Fx 5 1480 lb Fx 5 480 lb   b

REFLECT and THINK: Check your computations by verifying that the 
equation oMB 5 0 is satisfied by the forces acting on member BDF.

 1  oMB 5 2(12
13FCD)(2.5 ft) 1 (Fx)(7.5 ft)

 5 212
13(1560 lb)(2.5 ft) 1 (480 lb)(7.5 ft)

 5 23600 lb?ft 1 3600 lb?ft 5 0  (checks)

600 lb A

B

C

D

E F

Ey

Ex

Fy

Fx

6 ft

10 ft

Fig. 1 Free-body diagram of 
entire frame.

600 lb A

B

C

D

E F

2.5 ft

2.5 ft

2.5 ft

2.5 ft

6 ft

A

B

C

D

FAB

FAB

FCD

FCD

Fig. 2 Free-body diagrams of 
individual members.

600 lb A

B

C

D

E F

FAB

FAB

FCD

FCD

Ey 5 1000 lb Fy 5 1000 lb
Ex Fx

12

12

13

13

5

5

2.5 ft

5 ft

7.5 ft

2.5 ft
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Problems
 6.49 through 6.51 Determine the force in member BD and the compo-

nents of the reaction at C.

A

B

C
D

510 mm

240 mm
135 mm

120 mm

400 N

450 mm

Fig. P6.49

160 lb

24 in.

14 in. 8 in.

10 in.

8 in.

A B C

D

J

Fig. P6.50

1.92 m

0.56 m

B

C

D

A310 N

r 5 1.4 m

308

Fig. P6.51

 6.52 Determine the components of all forces acting on member ABCD of 
the assembly shown.

D

C

E

B

JA

120 lb

4 in.
2 in.

2 in. 2 in.
4 in. 4 in.

Fig. P6.52

 6.53 Determine the components of all forces acting on member ABCD 
when θ 5 0.

Fig. P6.53 and P6.54

A

B

C D

E

F

8 in.

12 in. 4 in.4 in.
2 in.

θ60 lb

 6.54 Determine the components of all forces acting on member ABCD 
when θ 5 90°.
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 6.55 and 6.56 Determine the components of the reactions at A and E if a 
750-N force directed vertically downward is applied (a) at B, (b) at D.

Fig. P6.56

A B

C

D

E

240 mm240 mm

240 mm

160 mm

Fig. P6.55

A B

CD

E

80 mm
170 mm

75 mm

125 mm

 6.57 Knowing that P 5 90 lb and Q 5 60 lb, determine the components 
of all forces acting on member BCDE of the assembly shown.

Fig. P6.57

A
B

C

D

E

Q

P
6 in. 6 in. 4 in. 8 in.

4 in.

 6.58 Determine the components of the reactions at A and E, (a) if the 
800-N load is applied as shown, (b) if the 800-N load is moved along 
its line of action and is applied at point D.

Fig. P6.58

800 N

CB

D E
200 mm

A

300 mm600 mm300 mm

 6.59 Determine the components of the reactions at D and E if the frame 
is loaded by a clockwise couple of magnitude 150 N·m applied (a) 
at A, (b) at B.

Fig. P6.59

0.6 m0.6 m0.6 m

ED

C

A

B

0.4 m

0.4 m
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 6.60 The 48-lb load can be moved along the line of action shown and 
applied at A, D, or E. Determine the components of the reactions at 
B and F if the 48-lb load is applied (a) at A, (b) at D, (c) at E.

Fig. P6.60 and P6.61

A

D

B

C

E F

5 in.

7 in.

48 lb

8 in. 8 in.

 6.61 The 48-lb load is removed and a 288-lb·in. clockwise couple is 
applied successively at A, D, and E. Determine the components of 
the reactions at B and F if the couple is applied (a) at A, (b) at D, 
(c) at E.

 6.62 Determine all the forces exerted on member AI if the frame is loaded 
by a clockwise couple of magnitude 1200 lb·in. applied (a) at point 
D, (b) at point E.

C

D E

F

H I

G

B

A

20 in.

10 in.

20 in.

10 in.

10 in.

20 in.

10 in.

48 in.

Fig. P6.62

 6.63 The hydraulic cylinder CF, which partially controls the position of rod 
DE, has been locked in the position shown. Knowing that θ 5 60°, 
determine (a) the force P for which the tension in link AB is 410 N, 
(b) the corresponding force exerted on member BCD at point C.

 6.64 The hydraulic cylinder CF, which partially controls the position of 
rod DE, has been locked in the position shown. Knowing that P 5 
400 N and θ5 75°, determine (a) the force in link AB, (b) the cor-
responding force exerted on member BCD at point C.

P200 mm

45 mm

100 mm

175 mm

208CB

A
F

E

D

θ

Fig. P6.63 and P6.64
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 6.65 Two 9-in.-diameter pipes (pipe 1 and pipe 2) are supported every 
7.5 ft by a small frame like that shown. Knowing that the combined 
weight of each pipe and its contents is 30 lb/ft and assuming friction-
less surfaces, determine the components of the reactions at A and G.

15 in.

8 in.

24 in.
r 5 4.5 in.

1

2

A

B

C

D
E

F

G
r 5 4.5 in.

Fig. P6.65

 6.66 Solve Prob. 6.65 assuming that pipe 1 is removed and that only pipe 
2 is supported by the frames.

 6.67 Knowing that each pulley has a radius of 250 mm, determine the 
components of the reactions at D and E.

2 m

1.5 m

2 m

4.8 kN

C

B D

A E

Fig. P6.67

 6.68 Knowing that the pulley has a radius of 75 mm, determine the com-
ponents of the reactions at A and B.

A B

C

D
E

240 N

125 mm

75 mm

300 mm 300 mm

Fig. P6.68
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DE

F

Bar spring

Chain under
tension T

1.7 ft

Fig. P6.72

 6.69 The cab and motor units of the front-end loader shown are connected 
by a vertical pin located 2 m behind the cab wheels. The distance 
from C to D is 1 m. The center of gravity of the 300-kN motor unit 
is located at Gm, while the centers of gravity of the 100-kN cab and 
75-kN load are located, respectively, at Gc and Gl. Knowing that the 
front-end loader is at rest with its brakes released, determine  
(a) the reactions at each of the four wheels, (b) the forces exerted 
on the motor unit at C and D.

A

C

D

B

Gc
Gm

3.2 m

0.8 m

1.2 m

2.8 m2 m

75 kN

100 kN
300 kN

Gl

Fig. P6.69

 6.70 Solve Prob. 6.69 assuming that the 75-kN load has been removed.

 6.71 A trailer weighing 2400 lb is attached to a 2900-lb pickup truck by a 
ball-and-socket truck hitch at D. Determine (a) the reactions at each 
of the six wheels when the truck and trailer are at rest, (b) the addi-
tional load on each of the truck wheels due to the trailer.

A B C

D

2400 lb

2900 lb

2 ft
9 ft 3 ft 5 ft 4 ft

Fig. P6.71

 6.72 In order to obtain a better weight distribution over the four wheels 
of the pickup truck of Prob. 6.71, a compensating hitch of the type 
shown is used to attach the trailer to the truck. The hitch consists of 
two bar springs (only one is shown in the figure) that fit into bear-
ings inside a support rigidly attached to the truck. The springs are 
also connected by chains to the trailer frame, and specially designed 
hooks make it possible to place both chains in tension. (a) Determine 
the tension T required in each of the two chains if the additional load 
due to the trailer is to be evenly distributed over the four wheels of 
the truck. (b) What are the resulting reactions at each of the six 
wheels of the trailer-truck combination?
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6.4 MACHINES
Machines are structures designed to transmit and modify forces. Whether 
they are simple tools or include complicated mechanisms, their main pur-
pose is to transform input forces into output forces. Consider, for exam-
ple, a pair of cutting pliers used to cut a wire (Fig. 6.20a). If we apply 
two equal and opposite forces P and 2P on the handles, the pliers will 
exert two equal and opposite forces Q and 2Q on the wire (Fig. 6.20b).

Fig. 6.20 (a) Input forces on the handles of a 
pair of cutting pliers; (b) output forces cut a wire.

A

(a) (b)

P

2P

Q

2Q
ba

Fig. 6.22 Free-body diagrams of 
the members of the pliers, showing 
components of the internal forces at 
joint A.

2A x

A

A

(a)

(b)

A y

2A y

A x

P
Q

2P
2Q

a b

To determine the magnitude Q of the output forces when we know 
the magnitude P of the input forces (or, conversely, to determine P when 
Q is known), we draw a free-body diagram of the pliers alone (i.e., without 
the wire), showing the input forces P and 2P and the reactions 2Q and 
Q that the wire exerts on the pliers (Fig. 6.21). However, since a pair of 
pliers forms a nonrigid structure, we must treat one of the component parts 
as a free body in order to determine the unknown forces. Consider 
Fig. 6.22a, for example. Taking moments about A, we obtain the relation 
Pa 5 Qb, which defines the magnitude Q in terms of P (or P in terms of Q). 
We can use the same free-body diagram to determine the components of 
the internal force at A; we find Ax 5 0 and Ay 5 P 1 Q.

Fig. 6.21 To show a free-body diagram of 
the pliers in equilibrium, we include the input 
forces and the reactions to the output forces.

Q

2Q

A

P

2P

In the case of more complicated machines, it is generally necessary 
to use several free-body diagrams and, possibly, to solve simultaneous equa-
tions involving various internal forces. You should choose the free  bodies 
to include the input forces and the reactions to the output forces, and the 
total number of unknown force components involved should not exceed the 
number of available independent equations. It is advisable, before attempting 
to solve a problem, to determine whether the structure considered is deter-
minate. There is no point, however, in discussing the rigidity of a machine, 
since a machine includes moving parts and thus must be nonrigid.

Photo 6.6 This lamp can be placed in many 
different positions. To determine the forces 
in the springs and the internal forces at the 
joints, we need to consider the components 
of the lamp as free bodies.

© Getty Images RF
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Sample Problem 6.7

A hydraulic-lift table is used to raise a 1000-kg crate. The table 
consists of a platform and two identical linkages on which 
hydraulic  cylinders exert equal forces. (Only one  linkage and one 
cylinder are shown.) Members EDB and CG are each of length 
2a, and member AD is pinned to the midpoint of EDB. If the 
crate is placed on the table so that half of its weight is supported 
by the system shown, determine the force exerted by each cylin-
der in raising the crate for θ 5 60°, a 5 0.70 m, and L 5 3.20 m. 
Show that the result is independent of the distance d.

STRATEGY: The free-body diagram of the platform and 
linkage system will involve more than three unknowns, so it 
alone can not be used to solve this problem. Instead, draw 
free-body  diagrams of each component of the machine and 
work from them.

MODELING: The machine consists of the platform and the 
linkage. Its free-body diagram (Fig. 1) includes an input force 
FDH exerted by the cylinder; the weight W/2, which is equal 
and opposite to the output force; and reactions at E and G, 
which are assumed to be directed as shown. Dismember the 
mechanism and draw a free-body diagram for each of its com-
ponent parts (Fig. 2). Note that AD, BC, and CG are two-force 
members. Member CG has already been assumed to be in 
 compression; now assume that AD and BC are in tension and 
direct the forces exerted on them as shown. Use equal and 
opposite vectors to represent the forces exerted by the two-force 
members on the platform, on member BDE, and on roller C.

(continued)

A B C

D

E G

H

2a

W1
2

θ

L

2
L

2

d

FDH

FCGEy

Ex
E G

A B C

D

W1
2

Fig. 1 Free-body diagram of machine.

FAD

A B

B

C

C

W1
2

θ

d

A

D

FAD

FAD

FAD

FDH

FBC

Ey

Ex

a

a

ϕ

B

B

D

E

θ

B C
FBC FBC

FCG

FCG

G

C

FCG

FBC
C

C

θ

Fig. 2 Free-body diagram of each component part.
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ANALYSIS:

Free Body: Platform ABC (Fig. 3).

  oFx 5 0: FAD cos θ 5 0 FAD 5 0
1   oFy 5 0: B 1 C 2 1

2W 5 0 B 1 C 5 1
2W (1)

Free-Body Roller C (Fig. 4). Draw a force triangle and obtain 
FBC 5 C cot θ.

Free Body: Member BDE (Fig. 5). Recalling that FAD 5 0, you 
have

1  oME 5 0:  FDH cos (ϕ 2 90°)a 2 B(2a cos θ) 2 FBC(2a sin θ) 5 0
 FDHa sin ϕ 2 B(2a cos θ) 2 (C cot θ)(2a sin θ) 5 0
 FDH sin ϕ 2 2(B 1 C) cos θ 5 0

From Eq. (1), you obtain

 FDH 5 W  

 cos θ
 sin ϕ

 (2)

Note that the result obtained is independent of d. b

 Applying first the law of sines to triangle EDH (Fig. 6), you have

 
 sin ϕ
EH

5
 sin θ
DH

   sin ϕ 5
EH

DH
 sin θ (3)

Now using the law of cosines, you get

 (DH)2 5 a2 1 L2 2 2aL cos θ
 5 (0.70)2 1 (3.20)2 2 2(0.70)(3.20) cos 60°
 (DH)2 5 8.49  DH 5 2.91 m

Also note that

W 5 mg 5 (1000 kg)(9.81 m/s2) 5 9810 N 5 9.81 kN

Substituting for sin ϕ from Eq. (3) into Eq. (2) and using the numerical 
data, your result is

FDH 5 W  

DH

EH
 cot θ 5 (9.81 kN) 

2.91 m
3.20 m

 cot 608

FDH 5 5.15 kN b

REFLECT and THINK: Note that link AD ends up having zero force 
in this situation. However, this member still serves an important func-
tion, as it is necessary to enable the machine to support any horizontal 
load that might be exerted on the platform.

FAD

A B

B

C

C

W1
2

θ

d

Fig. 3 Free-body diagram of platform ABC.

FAD

FDH

FBC

Ey

Ex

a

a

ϕ

B

B

D

E

θ

Fig. 5 Free-body diagram 
of member BDE.

Fig. 4 Free-body 
diagram of roller C 
and its force triangle.

FCG

FBC
C

C

θ

FCG

FBC

C

θ

a
ϕ

D

H
E

θ

L

Fig. 6 Geometry of triangle EDH.
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 6.73 A 100-lb force directed vertically downward is applied to the toggle 
vise at C. Knowing that link BD is 6 in. long and that a 5 4 in., 
determine the horizontal force exerted on block E.

Fig. P6.73 and P6.74

DA

B
a

C

E

100 lb

6 in.

158

 6.74 A 100-lb force directed vertically downward is applied to the toggle 
vise at C. Knowing that link BD is 6 in. long and that a 5 8 in., 
determine the horizontal force exerted on block E.

 6.75 The shear shown is used to cut and trim electronic-circuit-board 
laminates. For the position shown, determine (a) the vertical com-
ponent of the force exerted on the shearing blade at D, (b) the reac-
tion at C.

Fig. P6.75

400 N

300 mm

60 mm
45 mm

308

308

A

C

E

B

25 mm 30 mm

D

 6.76 Water pressure in the supply system exerts a downward force of  
135 N on the vertical plug at A. Determine the tension in the fusible 
link DE and the force exerted on member BCE at B.

Problems

Fig. P6.76

24 mm
A

D

B

E
C

24 mm
6 mm

16 mm
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 6.77 A 39-ft length of railroad rail of weight 44 lb/ft is lifted by the tongs 
shown. Determine the forces exerted at D and F on tong BDF.

Fig. P6.77

D

A

CB

9.6 in. 9.6 in.

FE

6 in.

8 in.

12 in.

0.8 in.
0.8 in.

 6.78 The tongs shown are used to apply a total upward force of 45 kN 
on a pipe cap. Determine the forces exerted at D and F on tong ADF.

Fig. P6.78

A B

C D

E F

25 mm

60 mm

75 mm

85 mm

90 mm

 6.79 If the toggle shown is added to the tongs of Prob. 6.78 and a single 
vertical force is applied at G, determine the forces exerted at D and 
F on tong ADF. 

Fig. P6.79

55 mm55 mm

45 kN

22 mm
G

A B
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BA

C

1.2 in. 60 lb

60 lb

308

9.5 in.

Fig. P6.85

 6.80 A small barrel weighing 60 lb is lifted by a pair of tongs as shown. 
Knowing that a 5 5 in., determine the forces exerted at B and D on 
tong ABD.

 6.81 A force P of magnitude 2.4 kN is applied to the piston of the engine 
system shown. For each of the two positions shown, determine the 
couple M required to hold the system in equilibrium.

M
A

B

P

(a) (b)

C

75 mm

100 mm 100 mm

150 mm
250 mm

A

B
M

P

C

75 mm

Fig. P6.81 and P6.82

 6.82 A couple M of magnitude 315 N·m is applied to the crank of the 
engine system shown. For each of the two positions shown, deter-
mine the force P required to hold the system in equilibrium.

 6.83 and 6.84 Two rods are connected by a frictionless collar B. Knowing 
that the magnitude of the couple MA is 500 lb·in., determine (a) the 
couple MC required for equilibrium, (b) the corresponding compo-
nents of the reaction at C.

A

B

C

MA

MC

8 in.

6 in.

14 in.

Fig. P6.84

A

B

C

MA

MC

8 in.

6 in.

14 in.

Fig. P6.83

 6.85 The pliers shown are used to grip a 0.3-in.-diameter rod. Knowing 
that two 60-lb forces are applied to the handles, determine (a) the 
magnitude of the forces exerted on the rod, (b) the force exerted by 
the pin at A on portion AB of the pliers.

Fig. P6.80

A

B

C D

P

a

a

6 in.9 in.

18 in.

Final PDF to printer



304

bee98160_ch06_261-312.indd 304 12/11/15  03:20 PM

 6.86 In using the bolt cutter shown, a worker applies two 300-N forces 
to the handles. Determine the magnitude of the forces exerted by the 
cutter on the bolt.

12 mm

24 mm

24 mm

24 mm

300 N

300 N

460 mm
96 mm

A
B

C
D

E

Fig. P6.86

 6.87 The garden shears shown consist of two blades and two handles. The 
two handles are connected by pin C and the two blades are connected 
by pin D. The left blade and the right handle are connected by pin 
A; the right blade and the left handle are connected by pin B. Deter-
mine the magnitude of the forces exerted on the small branch at E 
when two 80-N forces are applied to the handles as shown.

A B

C

D

A

D

E

120 mm

300 mm

80 N 80 N

30 mm

30 mm

A B

C

D

12 mm 12 mm

Fig. P6.87

 6.88 A hand-operated hydraulic cylinder has been designed for use where 
space is severely limited. Determine the magnitude of the force exerted 
on the piston at D when two 90-lb forces are applied as shown.

E

A

D

C

B

90 lb

90 lb

0.9 in.

0.9 in.

2 in.

2.4 in.

2.4 in.

4 in. 9.2 in.

Fig. P6.88
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Fig. P6.93

AB

C

D

5 m

2.4 m

0.9 m

0.5 m

θ

 6.89 A 45-lb shelf is held horizontally by a self-locking brace that consists 
of two parts EDC and CDB hinged at C and bearing against each 
other at D. Determine the force P required to release the brace.

2.5 in.
10 in.

7.5 in

1 in.

5 in.

7.5 in.

A
B

C

D

E

P

Fig. P6.89

 6.90 Because the brace shown must remain in position even when the mag-
nitude of P is very small, a single safety spring is attached at D and 
E. The spring DE has a constant of 50 lb/in. and an unstretched 
length of 7 in. Knowing that l 5 10 in. and that the magnitude of 
P is 800 lb, determine the force Q required to release the brace.

 6.91 and 6.92 Determine the force P that must be applied to the toggle 
CDE to maintain bracket ABC in the position shown.

Fig. P6.91

150 mm 150 mm

150 mm

30 mm
910 N

P

A

B

C

D

E

150 mm

150 mm

Fig. P6.92

30 mm

910 N

P

A

B C

D

E

150 mm

150 mm

150 mm

150 mm 150 mm

 6.93 The telescoping arm ABC is used to provide an elevated platform for 
construction workers. The workers and the platform together have a 
mass of 200 kg and have a combined center of gravity located 
directly above C. For the position when θ 5 20°, determine (a) the 
force exerted at B by the single hydraulic cylinder BD, (b) the force 
exerted on the supporting carriage at A.

 6.94 The telescoping arm ABC of Prob. 6.93 can be lowered until end C 
is close to the ground, so that workers can easily board the platform. 
For the position when θ 5 220°, determine (a) the force exerted at 
B by the single hydraulic cylinder BD, (b) the force exerted on the 
supporting carriage at A.

l

A

D

B

E

C

Q

P

15 in.

20 in.

2 in. 1 in.

Fig. P6.90
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 6.95 The bucket of the front-end loader shown carries a 3200-lb load. The 
motion of the bucket is controlled by two identical mechanisms, only 
one of which is shown. Knowing that the mechanism shown supports 
one-half of the 3200-lb load, determine the force exerted (a) by 
cylinder CD, (b) by cylinder FH.

Fig. P6.95

A B

CD

E

F

3200 lb

Dimensions in inches

G

H

8

15

15

16

12
6

24

15 20 16 24 6

 6.96 The motion of the bucket of the front-end loader shown is controlled 
by two arms and a linkage that are pin-connected at D. The arms 
are located symmetrically with respect to the central vertical and 
longitudinal plane of the loader; one arm AFJ and its control cylinder 
EF are shown. The single linkage GHDB and its control cylinder BC 
are located in the plane of symmetry. For the position and loading 
shown, determine the force exerted (a) by cylinder BC, (b) by cyl-
inder EF.

Fig. P6.96

A

B C

D

E

F

G

H

12 in.
12 in.

12 in.

20 in.

20 in.

24 in.

22 in.

28 in.
75 in.

4500 lb

10 in.

18 in.

J
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Review and Summary
In this chapter, you studied ways to determine the internal forces holding 
together the various parts of a structure.

Analysis of Trusses
The first half of the chapter presented the analysis of trusses, i.e., structures 
consisting of straight members connected at their extremities only. Because 
the members are slender and unable to support lateral loads, all of the loads 
must be applied at the joints; thus, we can assume that a truss consists of pins 
and two-force members [Sec. 6.1A].

Simple Trusses
A truss is rigid if it is designed in such a way that it does not greatly deform 
or collapse under a small load. A triangular truss consisting of three members 
connected at three joints is clearly a rigid truss (Fig. 6.23a). The truss obtained 
by adding two new members to the first one and connecting them at a new 
joint (Fig. 6.23b) is also rigid. Trusses obtained by repeating this procedure 
are called simple trusses. We may check that, in a simple truss, the total 
number of members is m 5 2n 2 3, where n is the total number of joints 
[Sec. 6.1A].

(a) (b)

A

B

C A

B

C

D

Fig. 6.23

Method of Joints
We can determine the forces in the various members of a simple truss by 
using the method of joints [Sec. 6.1B]. First, we obtain the reactions at the 
supports by considering the entire truss as a free body. Then we draw the 
free-body diagram of each pin, showing the forces exerted on the pin by 
the members or supports it connects. Since the members are straight two-
force members, the force exerted by a member on the pin is directed along 
that member, and only the magnitude of the force is unknown. In the case 
of a simple truss, it is always possible to draw the free-body diagrams of 
the pins in such an order that only two unknown forces are included in each 
diagram. We obtain these forces from the corresponding two equilibrium 
equations or—if only three forces are involved—from the  corresponding 
force triangle. If the force exerted by a member on a pin is directed toward 
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that pin, the member is in  compression; if it is directed away from the pin, 
the member is in tension [Sample Prob. 6.1]. The analysis of a truss is 
sometimes  expedited by first recognizing joints under special loading 
 conditions [Sec. 6.1C].

Method of Sections
The method of sections is usually preferable to the method of joints when 
we want to determine the force in only one member—or very few members—
of a truss [Sec. 6.2A]. To determine the force in member BD of the truss of 
Fig. 6.24a, for example, we pass a section through members BD, BE, and CE; 
remove these members; and use the portion ABC of the truss as a free body 
(Fig. 6.24b). Setting oME 5 0, we determine the magnitude of force FBD that 
represents the force in member BD. A positive sign indicates that the member 
is in tension; a negative sign indicates that it is in compression  [Sample Probs. 
6.2 and 6.3].

A B

C

A B

C

D

E

E

G

(a)

(b)

n

n
P1 P2

P1 P2

P3

FCE

FBD

FBE

Fig. 6.24

Compound Trusses
The method of sections is particularly useful in the analysis of compound 
trusses, i.e., trusses that cannot be constructed from the basic triangular truss 
of Fig. 6.23a but are built by rigidly connecting several simple trusses 
[Sec. 6.2B]. If the component trusses are properly connected (e.g., one pin 
and one link, or three non-concurrent and unparallel links) and if the  resulting 
structure is properly supported (e.g., one pin and one roller), the  compound 
truss is statically determinate, rigid, and completely  constrained. The 
 following necessary—but not sufficient—condition is then satisfied: 
m 1 r 5 2n, where m is the number of members, r is the number of unknowns 
representing the reactions at the supports, and n is the number of joints.
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Frames and Machines
In the second part of the chapter, we analyzed frames and machines. These 
structures contain multi-force members, i.e., members acted upon by three or 
more forces. Frames are designed to support loads and are usually stationary, 
fully constrained structures. Machines are designed to transmit or modify 
forces and always contain moving parts [Sec. 6.3].

Analysis of a Frame
To analyze a frame, we first consider the entire frame to be a free body and 
write three equilibrium equations [Sec. 6.3A]. If the frame remains rigid when 
detached from its supports, the reactions involve only three unknowns and 
may be determined from these equations [Sample Probs. 6.4 and 6.5]. On the 
other hand, if the frame ceases to be rigid when detached from its supports, 
the reactions involve more than three unknowns, and we cannot determine 
them completely from the equilibrium equations of the frame [Sec. 6.3B; 
Sample Prob. 6.6].

Multi-force Members
We then dismember the frame and identify the various members as either 
two-force members or multi-force members; we assume pins form an integral 
part of one of the members they connect. We draw the free-body diagram of 
each of the multi-force members, noting that, when two multi-force members 
are connected to the same two-force member, they are acted upon by that 
member with equal and opposite forces of unknown magnitude but known 
direction. When two multi-force members are connected by a pin, they exert 
on each other equal and opposite forces of unknown direction that should be 
represented by two unknown components. We can then solve the equilibrium 
equations obtained from the free-body diagrams of the multi-force members 
for the various internal forces [Sample Probs. 6.4 and 6.5]. We also can use 
the equilibrium equations to complete the determination of the reactions at 
the supports [Sample Prob. 6.6]. Actually, if the frame is statically determinate 
and rigid, the free-body diagrams of the multi-force members could provide 
as many equations as there are unknown forces (including the reactions) 
[Sec. 6.3B]. However, as suggested previously, it is advisable to first consider 
the free-body diagram of the entire frame to minimize the number of equations 
that must be solved simultaneously.

Analysis of a Machine
To analyze a machine, we dismember it and, following the same procedure as 
for a frame, draw the free-body diagram of each multi-force member. The 
corresponding equilibrium equations yield the output forces exerted by the 
machine in terms of the input forces applied to it as well as the internal 
forces at the various connections [Sec. 6.4; Sample Prob. 6.7].
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 6.97 Determine the force in each member of the truss shown.

 6.98 Determine the force in member DE and in each of the members 
located to the left of DE for the inverted Howe roof truss shown. 
State whether each member is in tension or compression.

C
D

E

F

G

H

A
B

400 lb

400 lb

5.76 ft 5.76 ft 5.76 ft 5.76 ft

800 lb

800 lb
800 lb

10.54 ft 12.5 ft

6.72 ft

Fig. P6.98

 6.99 Determine the force in members EH and GI of the truss shown. 
(Hint: Use section aa.)

B

D

a

G I

b

L O

N
P

M

K

H

F

a b

JE

A

15 ft 15 ft 15 ft 15 ft 15 ft 15 ft

C

12 kips 12 kips 12 kips

8 ft

8 ft

Fig. P6.99 and P6.100

 6.100 Determine the force in members HJ and IL of the truss shown. 
(Hint: Use section bb.)

 6.101 The low-bed trailer shown is designed so that the rear end of the bed 
can be lowered to ground level in order to facilitate the loading of 
equipment or wrecked vehicles. A 1400-kg vehicle has been hauled 
to the position shown by a winch; the trailer is then returned to a 
traveling position where α 5 0 and both AB and BE are horizontal. 
Considering only the weight of the disabled automobile, determine 
the force that must be exerted by the hydraulic cylinder to maintain 
a position with α 5 0.

Review Problems
A B

C

D
E

12 kN

308308

Fig. P6.97

3.5 m
1 m

3.5 m 1.5 m

2.5 m

B

G

EA

D

C α

Fig. P6.101
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 6.102 The axis of the three-hinge arch ABC is a parabola with vertex at B. 
Knowing that P 5 112 kN and Q 5 140 kN, determine (a) the 
components of the reaction at A, (b) the components of the force 
exerted at B on segment AB.

A

B
C

P Q

1.8 m

1.4 m

3 m 3 m

8 m 6 m

Fig. P6.102

 6.103 A 48-mm-diameter pipe is gripped by the Stillson wrench shown. 
Portions AB and DE of the wrench are rigidly attached to each 
other and portion CF is connected by a pin at D. Assuming that 
no slipping occurs between the pipe and the wrench, determine the 
components of the forces exerted on the pipe at A and C.

 6.104 The compound-lever pruning shears shown can be adjusted by plac-
ing pin A at various ratchet positions on blade ACE. Knowing that 
300-lb vertical forces are required to complete the pruning of a 
small branch, determine the magnitude P of the forces that must be 
applied to the handles when the shears are adjusted as shown.

A

B

C

D

E

3.5 in. 1.6 in.

0.5 in.
0.55 in.
0.25 in.

0.65 in. 0.75 in.

P

2P

Fig. P6.104

 6.105 A log weighing 800 lb is lifted by a pair of tongs as shown. Determine 
the forces exerted at E and F on tong DEF.

48 mm

38 mm

360 mm

F

B

A

D
E

C

400 N

20 mm

Fig. P6.103

A B

C D

E

F G

3 in.3 in.

1.5 in.

800 lb

1.5 in.

12 in.

2.5 in.

3.5 in.

12 in.

Fig. P6.105
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 6.106 A 3-ft-diameter pipe is supported every 16 ft by a small frame like 
that shown. Knowing that the combined weight of the pipe and its 
contents is 500 lb/ft and assuming frictionless surfaces, determine 
the components (a) of the reaction at E, (b) of the force exerted at 
C on member CDE.

8 ft

6 ft

h 5 9 ft

r 5 1.5 ft

A

B

C

D

E

Fig. P6.106

 6.107 For the bevel-gear system shown, determine the required value of α 
if the ratio of MB to MA is to be 3.

MA

MB

O
α
α

Fig. P6.107

 6.108 A 400-kg block may be supported by a small frame in each of the 
four ways shown. The diameter of the pulley is 250 mm. For each 
case, determine (a) the force components and the couple representing 
the reaction at A, (b) the force exerted at D on the vertical 
member.

1 m

1.6 m

A

(1) (2) (3) (4)

D

E
C

B

A

D

E
CB

A

D

E
CB

A

D

E
CB

458

1 m 1 m

Fig. P6.108
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The strength of structural members used in the construction of 

buildings depends to a large extent on the properties of their 

cross sections. This includes the second moments of area, or 

moments of inertia, of these cross sections.

Distributed Forces: 
Moments of Inertia

7
© ConstructionPhotography.com/Photoshot

Final PDF to printer



bee98160_ch07_313-336.indd 314 12/23/15  01:56 PM

314 Distributed Forces: Moments of Inertia

Introduction

 7.1 MOMENTS OF INERTIA 
OF AREAS

 7.1A Second Moment, or Moment 
of Inertia, of an Area

 7.1B Determining the Moment of 
Inertia of an Area by 
Integration

 7.1C Polar Moment of Inertia
 7.1D Radius of Gyration of an Area

 7.2 PARALLEL-AXIS THEOREM 
AND COMPOSITE AREAS

 7.2A The Parallel-Axis Theorem
 7.2B Moments of Inertia of 

Composite Areas

Objectives
•	Describe the second moment, or moment of inertia, 

of an area.

•	Determine the rectangular and polar moments of 
inertia of areas and their corresponding radii of 
 gyration by integration.

•	Develop the parallel-axis theorem and apply it to 
determine the moments of  inertia of composite areas.

Introduction
In Chap. 5 we analyzed various systems of forces distributed over an area 
or volume. The three main types of forces considered were (1) weights of 
homogeneous plates of uniform thickness (Secs. 5.1 and 5.2); (2) distrib-
uted loads on beams (Sec. 5.3); and (3) weights of homogeneous three-
dimensional bodies (Sec. 5.4). In all of these cases, the distributed forces 
were proportional to the elemental areas or volumes associated with them. 
Therefore, we could obtain the resultant of these forces by summing the 
corresponding areas or volumes, and we determined the moment of the 
resultant about any given axis by computing the first moments of the areas 
or volumes about that axis.

In this chapter, we consider distributed forces DF where the magni-
tudes depend not only upon the elements of area DA on which these forces 
act but also upon the distance from DA to some given axis. More precisely, 
we assume the magnitude of the force per unit area DF/DA varies linearly 
with the distance to the axis. Forces of this type arise in the study of the 
bending of beams.

Starting with the assumption that the elemental forces involved are 
distributed over an area A and vary linearly with the distance y to the 
x axis, we will show that the magnitude of their resultant R depends upon 
the first moment Qx of the area A. However, the location of the point 
where R is applied depends upon the second moment, or moment of iner-
tia, Ix of the same area with respect to the x axis. You will see how to 
compute the moments of inertia of various areas with respect to given x 
and y axes. We also introduce the polar moment of inertia JO of an area. 
To facilitate these computations, we establish a relation between the moment 
of inertia Ix of an area A with respect to a given x axis and the moment 
of inertia Ix9 of the same area with respect to the parallel centroidal x9 axis 
(a  relation known as the parallel-axis theorem).

7.1  MOMENTS OF INERTIA  
OF AREAS

In this chapter, we consider distributed forces DF whose magnitudes DF 
are proportional to the elements of area DA on which the forces act and, 
at the same time, vary linearly with the distance from DA to a given axis.
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7.1 Moments of Inertia of Areas 315

7.1A  Second Moment, or Moment  
of Inertia, of an Area

Consider a beam with a uniform cross section that is subjected to two 
equal and opposite couples: one applied at each end of the beam. Such a 
beam is said to be in pure bending. The internal forces in any section of 
the beam are distributed forces whose magnitudes DF 5 ky DA vary lin-
early with the distance y between the element of area DA and an axis 
passing through the centroid of the section. (This statement can be derived 
in a course on mechanics of materials.) This axis, represented by the x axis 
in Fig. 7.1, is known as the neutral axis of the section. The forces on  
one side of the neutral axis are forces of compression, whereas those  
on the other side are forces of tension. On the neutral axis itself, the forces 
are zero.

The magnitude of the resultant R of the elemental forces DF that 
act over the entire section is

R 5 #ky dA 5 k#y dA

You might recognize this last integral as the first moment Qx of the 
 section about the x axis; it is equal to yA and is thus equal to zero, since 
the centroid of the section is located on the x axis. The system of forces 
DF thus reduces to a couple. The magnitude M of this couple (bending 
moment) must be equal to the sum of the moments DMx 5 y DF 5 ky2 DA 
of the elemental forces. Integrating over the entire section, we obtain

M 5 #ky2
 dA 5 k#y2

 dA

This last integral is known as the second moment, or moment of  inertia,† 
of the beam section with respect to the x axis and is denoted by Ix. We 
obtain it by multiplying each element of area dA by the square of its 
distance from the x axis and integrating over the beam section. Since each 
product y2 dA is positive, regardless of the sign of y, or zero (if y is zero), 
the integral Ix is always positive.

7.1B  Determining the Moment of 
Inertia of an Area by Integration

We just defined the second moment, or moment of inertia, Ix of an area 
A with respect to the x axis. In a similar way, we can also define the 
moment of inertia Iy of the area A with respect to the y axis (Fig. 7.2a):
Moments of inertia of an area

 Ix 5 #y2
 dA   Iy 5 #x2

 dA (7.1)

Fig. 7.1 Representative forces on a cross 
section of a beam subjected to equal and 
opposite couples at each end.

y

x

y

∆F 5 ky∆ A

∆ A

†The term second moment is more proper than the term moment of inertia, which logically 
should be used only to denote integrals of mass. In engineering practice, however, moment 
of inertia is used in connection with areas as well as masses. 
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We can evaluate these integrals, which are known as the rectangular 
moments of inertia of the area A, more easily if we choose dA to be a 
thin strip parallel to one of the coordinate axes. To compute Ix, we choose 
the strip parallel to the x axis, so that all points of the strip are at the same 
distance y from the x axis (Fig. 7.2b). We obtain the moment of inertia 
dIx of the strip by multiplying the area dA of the strip by y2. To compute 
Iy, we choose the strip parallel to the y axis, so that all points of the strip 
are at the same distance x from the y axis (Fig. 7.2c). Then the moment 
of inertia dIy of the strip is x2 dA.

Moment	 of	 Inertia	 of	 a	 Rectangular	 Area.	 As an example, 
let us determine the moment of inertia of a rectangle with respect to  
its base (Fig. 7.3). Dividing the rectangle into strips parallel to the x axis, 
we have

dA 5 b dy   dIx 5 y2b dy

 Ix 5 #
h

0

by2
 dy 5

1
3

 bh3 (7.2)

Computing	lx	and	ly	Using	the	Same	Elemental	Strips. We 
can use Eq. (7.2) to determine the moment of inertia dIx with respect to 
the x axis of a rectangular strip that is parallel to the y axis, such as the 
strip shown in Fig. 7.2c. Setting b 5 dx and h 5 y in formula (7.2),  
we obtain

dIx 5
1
3

 y3
 dx

We also have

dIy 5 x2 dA 5 x2y dx

Thus, we can use the same element to compute the moments of inertia Ix 
and Iy of a given area (Fig. 7.4).

Fig. 7.2 (a) Rectangular moments of inertia dIx and dIy of an area dA; (b) calculating Ix 
with a horizontal strip; (c) calculating Iy with a vertical strip.

x

y

y

x

(a)

dA 5 dx dy

dx
dy

dIx 5 y2 dA dIy 5 x2 dA

x

y

y

x

(b)

a

dA 5 ( a 2 x ) dy

dy

dIx 5 y2 dA

y

x

y

x

(c)

dA 5 y dx

dx

dIy 5 x2 dA

Fig. 7.3 Calculating the moment of inertia 
of a rectangular area with respect to its base.

h

y

y

b

dy

x

dA 5 b dy

Fig. 7.4 Using the same strip element of a 
given area to calculate Ix and Iy.

y

x

y

xdx

dIx 5     y3 dx1
3

dIy 5 x2 y  dx
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7.1C Polar Moment of Inertia
An integral of great importance in problems concerning the torsion of 
cylindrical shafts and in problems dealing with the rotation of slabs is
Polar moment of inertia

 JO 5 #ρ2
 dA (7.3)

where ρ is the distance from O to the element of area dA (Fig. 7.5). This 
integral is called the polar moment of inertia of the area A with respect 
to the “pole” O.

We can compute the polar moment of inertia of a given area from 
the rectangular moments of inertia Ix and Iy of the area if these quantities 
are already known. Indeed, noting that ρ2 5 x2 1 y2, we have

JO 5 #ρ2d A 5 # (x2 1 y2)d A 5 #y2d A 1 #x 
2d A

that is,

 JO 5 Ix 1 Iy (7.4)

7.1D Radius of Gyration of an Area
Consider an area A that has a moment of inertia Ix with respect to the x 
axis (Fig. 7.6a). Imagine that we concentrate this area into a thin strip 
parallel to the x axis (Fig. 7.6b). If the concentrated area A is to have the 
same moment of inertia with respect to the x axis, the strip should be 
placed at a distance rx from the x axis, where rx is defined by the 
relation

Ix 5 rx
2 A

Solving for rx, we have
Radius of gyration

 rx 5 √Ix

A
 (7.5)

The distance rx is referred to as the radius of gyration of the area with 
respect to the x axis. In a similar way, we can define the radii of gyration 
ry and rO (Fig. 7.6c and d); we have

 Iy 5 ry
2 A   ry 5 √Iy

A
 (7.6)

  JO 5 r2
O 

A    rO 5 √JO

A
 (7.7)

If we rewrite Eq. (7.4) in terms of the radii of gyration, we find that

 rO
2 5 rx

2 1 ry
2 (7.8)

Fig. 7.6 (a) Area A with given moment of 
inertia Ix; (b) compressing the area to a 
horizontal strip with radius of gyration rx; 
(c) compressing the area to a vertical strip with 
radius of gyration ry; (d) compressing the area to 
a circular ring with polar radius of gyration rO.

rx

y

x

A

O

(a)

y

x

A

O

(b)

ry

y

x

A

O

(c)

rO

y

x

A

O

(d)

Fig. 7.5 Distance ρ used to evaluate the 
polar moment of inertia of area A.

y

y

x

dA

A

x
ρ

O
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Sample	Problem	7.1

Determine the moment of inertia of a triangle with respect to its base.

STRATEGY:	 To find the moment of inertia with respect to the base, it 
is expedient to use a differential strip of area parallel to the base. Use the 
geometry of the situation to carry out the integration.

MODELING:	 Draw a triangle with a base b and height h, choosing the 
x axis to coincide with the base (Fig. 1). Choose a differential strip parallel 
to the x axis to be dA. Since all portions of the strip are at the same dis-
tance from the x axis, you have

dIx 5 y2 dA   dA 5 l dy

ANALYSIS:	 Using similar triangles, you have

l

b
5

h 2 y

h
    l 5 b 

h 2 y

h
    d A 5 b 

h 2 y

h
 d y

Integrating dIx from y 5 0 to y 5 h, you obtain

 Ix 5#  y2
 dA 5#

h

0
 y2b 

h 2 y

h
 dy 5

b

h #
h

0

(hy2 2 y3) dy

 5
b

h
 [h 

y3

3
2

y4

4 ] h

0
 Ix 5

bh3

12
 b

REFLECT	 and	 THINK: This problem also could have been solved 
using a differential strip perpendicular to the base by applying Eq. (7.2) 
to express the moment of inertia of this strip. However, because of the 
geometry of this triangle, you would need two integrals to complete the 
solution.

x

y

y

dy

b

h

h 2 y

l

Fig. 1 Triangle with differential 
strip element parallel to its base.

Concept	Application	7.1

For the rectangle shown in Fig. 7.7, compute the radius of gyration rx with 
respect to its base. Using formulas (7.5) and (7.2), you have

r2
x 5

Ix

A
5

1
3 bh3

bh
5

h2

3
    rx 5

h

√3

The radius of gyration rx of the rectangle is shown in Fig. 7.7. Do not 
confuse it with the ordinate y 5 h/2 of the centroid of the area. The radius 
of gyration rx depends upon the second moment of the area, whereas the 
ordinate y is related to the first moment of the area.

Fig. 7.7 Radius of gyration of a 
rectangle with respect to its base.

h

b

rx   y

C
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Sample	Problem	7.2

(a) Determine the centroidal polar moment of inertia of a circular area by 
direct integration. (b) Using the result of part (a), determine the moment 
of inertia of a circular area with respect to a diameter.

STRATEGY:	 Since the area is circular, you can evaluate part (a) by 
using an annular differential area. For part (b), you can use symmetry and 
Eq. (7.4) to solve for the moment of inertia with respect to a diameter.

MODELING	and	ANALYSIS:

a.	 Polar	Moment	of	 	Inertia. Choose an annular differential element 
of area to be dA (Fig. 1). Since all portions of the differential area are at the 
same distance from the origin, you have

dJO 5 ρ2
 dA  dA 5 2πρ dρ

JO 5# dJO 5#
r

0
 ρ2(2πρ dρ) 5 2π#

r

0
 
ρ3

 dρ

JO 5
π
2

 r4 b

b.	 Moment	of	 Inertia	with	Respect	 to	a	Diameter.	 Because 
of the symmetry of the circular area, Ix 5 Iy. Then from Eq. (7.4), you 
have

JO 5 Ix 1 Iy 5 2Ix   π
2

 r4 5 2Ix    Idiameter 5 Ix 5
π
4

 r4 b

REFLECT	 and	 THINK: Always look for ways to simplify a problem 
by the use of symmetry. This is especially true for situations involving 
circles or spheres.

x

y

r
dρ

ρ
O

Fig. 1 Circular area with an 
annular differential element.

Sample	Problem	7.3

(a) Determine the moment of inertia of the shaded region shown with 
respect to each of the coordinate axes. (Properties of this region were 
considered in Sample Prob. 5.4.) (b) Using the results of part (a),  determine 
the radius of gyration of the shaded area with respect to each of the 
 coordinate axes.

STRATEGY:	 You can determine the moments of inertia by using a 
single differential strip of area; a vertical strip will be more convenient. 
You can calculate the radii of gyration from the moments of inertia and 
the area of the region.

x

y

b
y 5 kx2

a
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MODELING:	 Referring to Sample Prob. 5.4, you can find the equation 
of the curve and the total area using

y 5
b

a2  x2   A 5 1
3ab

ANALYSIS:

a.	 Moments	of	 Inertia.

Moment	of	Inertia	Ix. Choose a vertical differential element of area 
for dA (Fig. 1). Since all portions of this element are not at the same 
distance from the x axis, you must treat the element as a thin rectangle. 
The moment of inertia of the element with respect to the x axis is then

 dIx 5 1
3 y3 dx 5

1
3

 ( b

a2  x2)3

 dx 5
1
3

  
b3

a6  x6 dx

  Ix 5#  dIx 5#
a

0

 1
3

  
b3

a6  x6 dx 5  [ 1
3

  
b3

a6  
x7

7 ] a

0

Ix 5
ab3

21
 b

Moment	of	 Inertia	 Iy. Use the same vertical differential element of 
area. Since all portions of the element are at the same distance from the 
y axis, you have

dIy 5 x2 dA 5 x2(y dx) 5 x2 ( b

a2  x2) 

dx 5
b

a2  x4 dx

Iy 5#  dIy 5#
a

0

 b

a2  x4 dx 5 [ b

a2  
x5

5 ] a

0

Iy 5
a3b

5
 b

b.	 Radii	 of	 Gyration	 rx	 and	 ry. From the definition of radius of 
gyration, you have

 r2
x 5

Ix

A
5

ab3/21
ab/3

5
b2

7
 rx 5 √1

7 b b

and

 r2
y 5

Iy

A
5

a3b/5
ab/3

5 3
5a2 ry 5 √3

5a b

REFLECT	 and	 THINK: This problem demonstrates how you can 
 calculate Ix and Iy using the same strip element. However, the general 
mathematical approach in each case is distinctly different.

dxx
x

y

a

y

Fig. 1 Subject area with vertical 
differential strip element.
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Problems
 7.1 through 7.4  Determine by direct integration the moment of inertia of 

the shaded area with respect to the y axis.

 7.5 through 7.8  Determine by direct integration the moment of inertia of 
the shaded area with respect to the x axis.

 7.9 through 7.12  Determine the moment of inertia and radius of gyration 
of the shaded area shown with respect to the x axis.

 7.13 through 7.16  Determine the moment of inertia and radius of gyra-
tion of the shaded area shown with respect to the y axis.

x

y

h1
h2

a

Fig.	P7.1	and	P7.5

x

y

b

y 5 kx1/2

a

Fig.	P7.2	and	P7.6

h

y

x
a

y 5 4h(          )x
a

x2

a22

Fig.	P7.3	and	P7.7

x

y

y 5 mx

y 5 kx2

b

a

Fig.	P7.4	and	P7.8

Fig.	P7.9	and	P7.13

x

b

y

a

5 1
y2

b2
x2

a2 1

h

h

y

x
a a

y 5 mx 1 b

y 5 c sin kx

Fig.	P7.10	and	P7.14

2b

b

a

y

x

y 5 kx2

y 5 2b 2 cx2

Fig.	P7.11	and	P7.15

Fig.	P7.12	and	P7.16

b

y

x
a

y2 5 k2x1/2

y1 5 k1x2
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 7.17 Determine the polar moment of inertia and the polar radius of gyra-
tion of the rectangle shown with respect to the midpoint of one of 
its (a) longer sides, (b) shorter sides.

a

2a

Fig.	P7.17	and	P7.18

 7.18 Determine the polar moment of inertia and the polar radius of gyra-
tion of the rectangle shown with respect to one of its corners.

 7.19	and	7.20	 Determine the polar moment of inertia and the polar radius 
of gyration of the shaded area shown with respect to point P.

b

b 3b

aa

P

Fig.	P7.20

a

a a

P
a
2

a
2

a
2

a
2

Fig. P7.19

 7.21 (a) Determine by direct integration the polar moment of inertia of 
the annular area shown with respect to point O. (b) Using the result 
of part a, determine the moment of inertia of the given area with 
respect to the x axis.

R1

R2

y

xO

Fig.	P7.21	and	P7.22

 7.22 (a) Show that the polar radius of gyration rO of the annular area shown 
is approximately equal to the mean radius Rm = (R1 + R2)/2 for small 
values of the thickness t = R2 – R1. (b) Determine the percentage 
error introduced by using Rm in place of rO for the following values 
of t/Rm: 1, 1

2, and 1
10.

 7.23 Determine the moment of inertia of the shaded area with respect to 
the x axis. 

 7.24 Determine the moment of inertia of the shaded area with respect to 
the y axis.

a

p
2

p
2

y

x

y 5 a cos x

Fig.	P7.23	and	P7.24
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7.2  PARALLEL-AXIS THEOREM 
AND COMPOSITE AREAS

In practice, we often need to determine the moment of inertia of a com-
plicated area that can be broken down into a sum of simple areas. However, 
in doing these calculations, we have to determine the moment of inertia of 
each simple area with respect to the same axis. In this section, we first 
derive a formula for computing the moment of inertia of an area with 
respect to a centroidal axis parallel to a given axis. Then we show how you 
can use this formula for finding the moment of inertia of a composite area.

7.2A The Parallel-Axis Theorem
Consider the moment of inertia I of an area A with respect to an axis AA9 
(Fig. 7.8). We denote the distance from an element of area dA to AA9 by y. 
This gives us

I 5 #y2
 dA

Let us now draw through the centroid C of the area an axis BB9 parallel 
to AA9; this axis is called a centroidal axis. Denoting the distance from 
the element dA to BB9 by y9, we have y 5 y9 1 d, where d is the distance 
between the axes AA9 and BB9. Substituting for y in the previous integral, 
we obtain

 I 5#  y2 dA 5#  (y9 1 d)2 dA

 5#  y92 dA 1 2d # y9 dA 1 d2 # dA

The first integral represents the moment of inertia I  of the area with 
respect to the centroidal axis BB9. The second integral represents the first 
moment of the area with respect to BB9, but since the centroid C of the 
area is located on this axis, the second integral must be zero. The last 
integral is equal to the total area A. Therefore, we have
Parallel-axis theorem 

 I 5 I 1 Ad2 (7.9)

This formula states that the moment of inertia I of an area with 
respect to any given axis AA9 is equal to the moment of inertia I  of the 
area with respect to a centroidal axis BB9 parallel to AA9 plus the product 
of the area A and the square of the distance d between the two axes. This 
theorem is known as the parallel-axis theorem. Substituting r 2A for I and  
r 2A for I , we can also express this theorem as

 r 
2 5 r 2 1 d 

2 (7.10)

A similar theorem relates the polar moment of inertia JO of an area 
about a point O to the polar moment of inertia JC of the same area about 
its centroid C. Denoting the distance between O and C by d, we have

 JO 5 JC 1 Ad2  or  r2
O 5 r 2

C 1 d2 (7.11)

Fig. 7.8 The moment of inertia of an  
area A with respect to an axis AA9 can be 
determined from its moment of inertia  
with respect to the centroidal axis BB9 by a 
calculation involving the distance d between 
the axes.

A9A

B9B
C

y

y9

d

dA
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7.2B  Moments of Inertia of  
Composite Areas

Consider a composite area A made of several component areas A1, A2, A3,  .  .  .  . 
The integral representing the moment of inertia of A can be subdivided 
into integrals evaluated over A1, A2, A3, . . . . Therefore, we can obtain the 
moment of inertia of A with respect to a given axis by adding the moments 
of inertia of the areas A1, A2, A3, . . . with respect to the same axis. 

Concept	Application	7.2

As an application of the parallel-axis theorem, let us determine the 
moment of inertia IT of a circular area with respect to a line tangent 
to the circle (Fig. 7.9). We found in Sample Prob. 7.2 that the 
moment of inertia of a circular area about a centroidal axis is 
I 5 1

4πr4. Therefore, we have

 IT 5 II  1 Ad2 5 1
4πr4 1 (πr2)r2 5 5

4πr4

r

T

C

d 5 r

Fig. 7.9 Finding the moment of inertia 
of a circle with respect to a line tangent 
to it.

Concept	Application	7.3

We can also use the parallel-axis theorem to determine the centroidal 
moment of inertia of an area when we know the moment of inertia 
of the area with respect to a parallel axis. Consider, for instance, a 
triangular area (Fig. 7.10). We found in Sample Prob. 7.1 that the 
moment of inertia of a triangle with respect to its base AA9 is equal 
to 1

12 bh3. Using the parallel-axis theorem, we have

 IAA9 5 I BB9 1 Ad2

 I BB9 5 IAA9 2 Ad2 5 1
12bh3 2 1

2bh(1
3h)2 5 1

36bh3

Note that we subtracted the product Ad2 from the given moment of 
inertia in order to obtain the centroidal moment of inertia of the 
triangle. That is, this product is added when transferring from a 
centroidal axis to a parallel axis, but it is subtracted when transfer-
ring to a centroidal axis. In other words, the moment of inertia of 
an area is always smaller with respect to a centroidal axis than with 
respect to any parallel axis.
 Returning to Fig. 7.10, we can obtain the moment of inertia of 
the triangle with respect to the line DD9 (which is drawn through a 
vertex) by writing

IDD9 5 I BB9 1 Ad92 5 1
36bh3 1 1

2bh(2
3h)2 5 1

4bh3

Note that we could not have obtained IDD9 directly from IAA9. We can 
apply the parallel -axis theorem only if one of the two parallel axes 
passes through the centroid of the area.

Fig. 7.10 Finding the centroidal moment 
of inertia of a triangle from the moment 
of inertia about a parallel axis.

b
A9A

C
B9B

D9D

h

d9 =    h2
3

d =    h1
3
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Fig. 7.11 Moments of inertia of common geometric shapes.

Quarter circle

C
Rectangle

Triangle

Circle

Semicircle

Ellipse

b

y y9

x9

x

1
12Ix9 5     bh3

1
12Iy9 5     b3h

1
8Ix 5 Iy 5   πr 4

1
4J

O
 5    πr 4

1
4

Ix 5  Iy 5  πr 4

1
2

J
O

 5    πr 4

1
36Ix9 5     bh3

1
12Ix 5     bh3

1
3Iy 5    b3h

1
12J

C
 5    bh(b2 1 h2)

1
3Ix 5     bh3

h

b

x9

x

x

r

O

y

h C

h

3

xO

C

y

r

xO

C

y

r

x

b

y

a

1
16Ix 5 Iy 5    πr 4

1
8J

O
 5    πr 4

1
4Ix 5    πab3

1
4Iy 5    πa3b

1
4J

O
 5    πab(a2 1 b2)

O

Figure 7.11 shows several common geometric shapes along with 
formulas for the moments of inertia of each one. Before adding the 
moments of inertia of the component areas, however, you may have to use 
the parallel-axis theorem to transfer each moment of inertia to the desired 
axis. Sample Probs. 7.4 and 7.5 illustrate the technique.
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Properties of the cross sections of various structural shapes are 
given in App. B. As we noted in Sec. 7.1A, the moment of inertia of a 
beam section about its neutral axis is closely related to the computation 
of the bending moment in that section of the beam. Thus, determining 
moments of inertia is a prerequisite to the analysis and design of struc-
tural members.

Note that the radius of gyration of a composite area is not equal to 
the sum of the radii of gyration of the component areas. In order to deter-
mine the radius of gyration of a composite area, you must first compute 
the moment of inertia of the area.

Photo	7.1	 Appendix B tabulates data for a 
small sample of the rolled-steel shapes that 
are readily available. Shown above are 
examples of wide-flange shapes that are 
commonly used in the construction of 
buildings.

© Barry Willis/Getty Images
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Sample	Problem	7.4

The strength of a W14 3 38 rolled-steel beam is increased by attaching 
a 9 3 3/4-in. plate to its upper flange as shown. Determine the moment 
of inertia and the radius of gyration of the composite section with respect 
to an axis that is parallel to the plate and passes through the centroid C 
of the section.

STRATEGY:	 This problem involves finding the moment of inertia of a 
composite area with respect to its centroid. You should first determine the 
location of this centroid. Then, using the parallel-axis theorem, you can 
determine the moment of inertia relative to this centroid for the overall 
section from the centroidal moment of inertia for each component part.

MODELING	 and	 ANALYSIS: Place the origin O of coordinates at 
the centroid of the wide-flange shape, and compute the distance Y  to the 
centroid of the composite section by using the methods of Chap. 5 (Fig. 1). 
Refer to App. B for the area of the wide-flange shape. The area and the 
y coordinate of the centroid of the plate are

 A 5 (9 in.)(0.75 in.) 5 6.75 in2

y 5 1
2(14.1 in.) 1 1

2(0.75 in.) 5 7.425 in.

Section Area, in2 y , in. yA, in3

Plate 6.75 7.425 50.12
Wide-flange shape 11.2  0 0
 oA 5 17.95 oyA 5 50.12

YoA 5 oyA    Y(17.95) 5 50.12     Y 5 2.792 in.

Moment	of	 Inertia. Use the parallel-axis theorem to determine the 
moments of inertia of the wide-flange shape and the plate with respect to 
the x9 axis. This axis is a centroidal axis for the composite section but not 
for either of the elements considered separately. You can obtain the value 
of I x for the wide-flange shape from App. B.
 For the wide-flange shape,

Ix9 5 I x 1 AY 2 5 385 1 (11.2)(2.792)2 5 472.3 in4

 For the plate,

 Ix9 5 I x 1 Ad2 5 ( 1
12)(9)(3

4)3 1 (6.75)(7.425 2 2.792)2 5 145.2 in4

 For the composite area,

 Ix9 5 472.3 1 145.2 5 617.5 in4 Ix9 5 618 in4 b

Radius	 of	 Gyration. From the moment of inertia and area just 
 calculated, you obtain

 r2
x9 5

Ix9

A
5

617.5 in4

17.95 in2 rx9 5 5.87 in. b

REFLECT	and	THINK: This is a common type of calculation for many 
different situations. It is often helpful to list data in a table to keep track 
of the numbers and identify which data you need.

9 in.

14.1 in.

6.77 in.

C

3
4 in.

x

y

d

C

O

7.425 in.
x9

Y
]

Fig. 1 Origin of coordinates 
placed at centroid of wide-
flange shape.
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Sample	Problem	7.5

Determine the moment of inertia of the shaded area with respect to the x 
axis.

STRATEGY: You can obtain the given area by subtracting a half circle 
from a rectangle (Fig. 1). Then compute the moments of inertia of the 
rectangle and the half circle separately.

240 mm

120 mm

y

x

r 5 90 mm

A

C
a

240 mm

120 mm

y y y

x
x

x

A9

x9

b 52

Fig. 1 Modeling given area by 
subtracting a half circle from a 
rectangle.

A9A

C
a 5 38.2 mm

x9
120 mm

y

x

b 5 81.8 mm

Fig. 2 Centroid location of the half 
circle.

MODELING	and	ANALYSIS:

Moment	of	Inertia	of	Rectangle.	 Referring to Fig. 7.11, you have

Ix 5 1
3 bh3 5 1

3 (240 mm)(120 mm)3 5 138.2 3 106 mm4

Moment	of	Inertia	of	Half	Circle.	 Refer to Fig. 5.8 and determine 
the location of the centroid C of the half circle with respect to diameter 
AA9. As shown in Fig. 2, you have

a 5
4r

3π
5

(4)(90 mm)
3π

5 38.2 mm

The distance b from the centroid C to the x axis is

b 5 120 mm 2 a 5 120 mm 2 38.2 mm 5 81.8 mm

Referring now to Fig. 7.11, compute the moment of inertia of the half  circle 
with respect to diameter AA9 and then compute the area of the half circle.

 IAA9 5 1
8 πr4 5 1

8 π(90 mm)4 5 25.76 3 106 mm4

 A 5 1
2 πr2 5 1

2 π (90 mm)2 5 12.72 3 103 mm2

Next, using the parallel-axis theorem, obtain the value of Ix9 as

 IAA9 5 I x9 1 Aa2

 25.76 3 106 mm4 5 I x9 1 (12.72 3 103 mm2)(38.2 mm)2

 I x9 5 7.20 3 106 mm4

Again using the parallel-axis theorem, obtain the value of Ix as

 Ix 5 I x9 1 Ab2 5 7.20 3 106 mm4 1 (12.72 3 103 mm2)(81.8 mm)2

 5 92.3 3 106 mm4

Moment	 of	 Inertia	 of	 Given	 Area.	 Subtracting the moment of 
inertia of the half circle from that of the rectangle, you obtain

Ix 5 138.2 3 106 mm4 2 92.3 3 106 mm4

Ix 5 45.9 3 106 mm4 b

REFLECT	and	THINK: Figures 5.8 and 7.11 are useful references for 
locating  centroids and moments of inertia of common areas; don’t forget 
to use them.
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Problems
 7.25 through 7.28  Determine the moment of inertia and the radius of 

gyration of the shaded area with respect to the x axis. 

 7.29 through 7.32  Determine the moment of inertia and the radius of 
gyration of the shaded area with respect to the y axis.

y

xO

2 in.

in.

2 in.

2 in.

1 in.

1 in.

1 in.

1 in.

1
2

in.1
2 in.1

2

in.1
2

Fig.	P7.26	and	P7.30

y

xO

12 mm12 mm

8 mm

24 mm 24 mm

24 mm

6 mm

24 mm

6 mm

Fig.	P7.25	and	P7.29

y

x

125 mm

250 mm

125 mm

75 mm

Fig.	P7.27	and	P7.31

6 in.

4 in.

6 in.

y

x

Fig. P7.28	and	P7.32

 7.33 Determine the shaded area and its moment of inertia with respect to 
the centroidal axis parallel to AA′, knowing that its moments of 
inertia with respect to AA′ and BB′ are respectively 2.2 × 106 mm4 
and 4 × 106 mm4, and that d1 = 25 mm and d2 = 10 mm.

 7.34 Knowing that the shaded area is equal to 6000 mm2 and that its 
moment of inertia with respect to AA′ is 18 × 106 mm4, determine 
its moment of inertia with respect to BB′ for d1 = 50 mm and d2 = 
10 mm.

C

A9

d1

d2
A

B9B

Fig.	P7.33	and	P7.34
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 7.35 through 7.37  Determine the moments of inertia Ix and Iy of the area 
shown with respect to centroidal axes that are respectively parallel 
and perpendicular to side AB.

1.2 in.
A B

1.8 in.

5.0 in.

0.9 in.
2.0 in. 2.1 in.

Fig.	P7.35

42 mm

28 mm

36 mm
A B

Fig.	P7.36

A B

1.3 in.

1.0 in.

0.5 in.

3.8 in.
0.5 in.

3.6 in.

Fig. P7.37

 7.38 through 7.40  Determine the polar moment of inertia of the area 
shown with respect to (a) point O, (b) the centroid of the area.

Fig.	P7.38

O

6 in. 6 in.

4.5 in.

Semicircle

Fig.	P7.39

O

40
Dimensions in mm

4040 40

60
80

Fig.	P7.40

3 in.
4.5 in.

O

 7.41 Two channels are welded to a rolled W section as shown. Determine 
the moments of inertia and the radii of gyration of the combined 
section with respect to the centroidal x and y axes.

Fig.	P7.41

W8 3 31

C8 3 11.5 C

y

x

 7.42 Two L6 × 4 × 1
2-in. angles are welded together to form the section 

shown. Determine the moments of inertia and the radii of gyration 
of the combined section with respect to the centroidal x and y axes.Fig. P7.42

C

y

x
6 in.

4 in.in.1
2
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 7.43 Two channels and two plates are used to form the column section 
shown. For b = 200 mm, determine the moments of inertia and the 
radii of gyration of the combined section with respect to the centroi-
dal x and y axes.

Fig.	P7.43

10 mm

C250 3 22.8

C

b

y

x

375 mm

 7.44 Two 20-mm steel plates are welded to a rolled S section as shown. 
Determine the moments of inertia and the radii of gyration of the 
combined section with respect to the centroidal x and y axes.

S310 3 47.3

C
x

80 mm80 mm

20 mm

y

Fig.	P7.44

 7.45 Two L4 × 4 × 1
2-in. angles are welded to a steel plate as shown. 

Determine the moments of inertia of the combined section with 
respect to the centroidal axes that are respectively parallel and per-
pendicular to the plate.

L4 3 4 3 1
2

in.1
2

10 in.

Fig.	P7.45
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 7.46 A channel and a plate are welded together as shown to form a section 
that is symmetrical with respect to the y axis. Determine the moments 
of inertia of the combined section with respect to its centroidal x and 
y axes.

12 in.
0.5 in.

y

x

C8 3 11.5

C

Fig.	P7.46

 7.47 Two L76 × 76 × 6.4-mm angles are welded to a C250 × 22.8 chan-
nel. Determine the moments of inertia of the combined section with 
respect to centroidal axes that are respectively parallel and perpen-
dicular to the web of the channel.

C250 3 22.8

L76 3 76 3 6.4

Fig.	P7.47

 7.48 The strength of the rolled W section shown is increased by welding 
a channel to its upper flange. Determine the moments of inertia of 
the combined section with respect to its centroidal x and y axes.

C

W460 3 113

C250 3 22.8

y

x

Fig. P7.48

Final PDF to printer



333

bee98160_ch07_313-336.indd 333 12/23/15  01:56 PM

In this chapter, we discussed how to determine the resultant R of forces DF 
distributed over a plane area A when the magnitudes of these forces are 
 proportional to both the areas DA of the elements on which they act and the 
distances y from these elements to a given x axis; we thus had DF 5 ky DA. 
We found that the magnitude of the resultant R is proportional to the first 
moment Qx 5 ey dA of area A, whereas the moment of R about the x axis is 
proportional to the second moment, or moment of inertia, Ix 5 ey2 dA of 
A with respect to the same axis [Sec. 7.1A].

Rectangular	Moments	of	 Inertia
The rectangular moments of inertia Ix and Iy of an area [Sec. 7.1B] are 
obtained by evaluating the integrals

 Ix 5 #y 
2

 d A   Iy 5 #x 
2

 dA (7.1)

We can reduce these computations to single integrations by choosing dA 
to be a thin strip parallel to one of the coordinate axes. We also recall 
that it is possible to compute Ix and Iy from the same elemental strip 
(Fig. 7.12) using the formula for the moment of inertia of a rectangular 
area [Sample Prob. 7.3].

y

x

y

xdx

dIx 5   y3 dx3
1

dIy 5 x2 y dx

Fig. 7.12

Polar	Moment	of	 Inertia
We defined the polar moment of inertia of an area A with respect to the 
pole O [Sec. 7.1C] as

 JO 5 #ρ2
 dA (7.3)

where ρ is the distance from O to the element of area dA (Fig. 7.13). Observ-
ing that ρ 2 5 x 2 1 y 2, we established the relation

 JO 5 Ix 1 Iy (7.4)

Review and Summary

y

y

x

dA

A

x

ρ

O

Fig. 7.13
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Radius	of	Gyration
We defined the radius of gyration of an area A with respect to the x axis 
[Sec. 7.1D] as the distance rx, where Ix 5 r 

2
x  
A. With similar definitions for 

the radii of gyration of A with respect to the y axis and with respect to O, we 
have

 rx 5 √Ix

A
    ry 5 √Iy

A
   rO 5 √JO

A
 (7.5–7.7)

Parallel-Axis	Theorem
The parallel-axis theorem, presented in Sec. 7.2A, states that the moment of 
inertia I of an area with respect to any given axis AA9 (Fig. 7.14) is equal to 
the moment of inertia I  of the area with respect to the centroidal axis BB9 
that is parallel to AA9 plus the product of the area A and the square of the 
distance d between the two axes:

 I 5 I 1 Ad2 (7.9)

You can use this formula to determine the moment of inertia I  of an area 
with respect to a centroidal axis BB9 if you know its moment of inertia I with 
respect to a parallel axis AA9. In this case, however, the product Ad2 should 
be subtracted from the known moment of inertia I.
 A similar relation holds between the polar moment of inertia JO of an 
area about a point O and the polar moment of inertia JC of the same area 
about its centroid C. Letting d be the distance between O and C, we have

 JO 5 JC 1 Ad2  (7.11)

Composite	Areas
The parallel-axis theorem can be used very effectively to compute the moment 
of inertia of a composite area with respect to a given axis [Sec. 7.2B]. 
Considering each component area separately, we first compute the moment of 
inertia of each area with respect to its centroidal axis, using the data provided 
in Fig. 7.11 and App. B whenever possible. Then apply the parallel-axis theo-
rem to determine the moment of inertia of each component area with respect 
to the desired axis, and add the values [Sample Probs. 7.4 and 7.5].

A9

B9B

A

C

d

Fig. 7.14
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 7.49 Determine by direct integration the moment of inertia of the shaded 
area with respect to the y axis.

h

b

y

x

Fig.	P7.49	and	P7.50

 7.50 Determine by direct integration the moment of inertia of the 
shaded area with respect to the x axis.

 7.51 Determine the moment of inertia and radius of gyration of the 
shaded area shown with respect to the x axis.

x

y

y 5 kx2

h

a a

Fig.	P7.51	and	P7.52

 7.52 Determine the moment of inertia and radius of gyration of the 
shaded area shown with respect to the y axis.

 7.53 Determine the polar moment of inertia and the polar radius of 
gyration of the isosceles triangle shown with respect to point O.

y

xO

b
2

b
2

h

Fig.	P7.53

 7.54 Determine the moments of inertia of the shaded area shown with 
respect to the x and y axes when a = 20 mm.

Review Problems

y

x
a

a

C

a

a

Fig.	P7.54
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	7.55	and	7.56 Determine the moments of inertia I x and I y of the area 
shown with respect to centroidal axes that are respectively parallel 
and perpendicular to side AB.

 7.57 The shaded area is equal to 50 in2. Determine its centroidal 
moments of inertia I x and I y, knowing that I y = 2I x and that the 
polar moment of inertia of the area about point A is JA = 2250 in4.

y

x
C D

BA

d

6 in.

Fig. P7.57

	7.58	and 7.59 Determine the polar moment of inertia of the area shown 
with respect to (a) point O, (b) the centroid of the area.

O

84 mm
54 mm

27 mm

42 mm

Semiellipses

Fig.	P7.58

O

E

A

B

D

4 in.

4 in.

4 in. 4 in.

x

y

Fig. P7.59

 7.60 Four L3 × 3 × 1
4-in. angles are welded to a rolled W section as 

shown. Determine the moments of inertia and the radii of gyra-
tion of the combined section with respect to the centroidal x and y 
axes.

C

y

x

5 in. 5 in.

1
4

W8 3 31

L3 3 3 3

Fig.	P7.60

12 mm

18 mm

18 mm

12 mm

22 mm 72 mm 14 mm

A B

Fig.	P7.55

18 mm

22 mm

12 mm

12 mm

12 mm

A B

6 mm6 mm

Fig.	P7.56
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Stresses occur in all structures subject to loads. This chapter will 

examine simple states of stress in elements, such as in the two-

force members, bolts and pins used in the structure shown.

Concept of  
Stress

8
© Pete Ryan/Getty Images RF
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Introduction
The remainder of this book focuses on mechanics of materials, the study of 
which provides future engineers with the means of analyzing and designing 
various machines and load-bearing structures involving the determination 
of stresses and deformations. 

Section 8.1 introduces the concept of stress in a member of a struc-
ture and how that stress can be determined from the force in the member. 
You will consider the normal stresses in a member under axial loading, the 
shearing stresses caused by the application of equal and opposite transverse 
forces, and the bearing stresses created by bolts and pins in the members 
they connect. Section 8.1 ends with an example showing how the stresses 
can be determined in a simple two-dimensional structure.

A two-force member under axial loading is observed in Sec. 8.2 where 
the stresses on an oblique plane include both normal and shearing stresses, 
while Sec. 8.3 discusses that six components are required to describe the 
state of stress at a point in a body under the most general loading conditions.

Finally, Sec. 8.4 is devoted to the determination of the ultimate 
strength from test specimens and the use of a factor of safety to compute the 
allowable load for a structural component made of that material.

8.1  STRESSES IN THE MEMBERS 
OF A STRUCTURE

Let us look at the uniformly distributed force using Fig. 8.1. The force per 
unit area, or intensity of the forces distributed over a given section, is called 
the stress and is denoted by the Greek letter σ (sigma). The stress in a mem-
ber of cross-sectional area A subjected to an axial load P is obtained by 
dividing the magnitude P of the load by the area A:

 σ 5
P

A
 (8.1)

A positive sign indicates a tensile stress (member in tension), and a 
negative sign indicates a compressive stress (member in compression).
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 8.1B Shearing Stress
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Objectives
• Introduce concept of stress.

• Define different stress types: axial normal stress, shear-
ing stress and bearing stress.

• Discuss engineer’s two principal tasks, namely, the 
analysis and design of structures and machines.

• Discuss the components of stress on different planes 
and under different loading conditions.

• Discuss the many design considerations that an engi-
neer should review before preparing a design.

Fig. 8.1 (a) Member with an axial load.  
(b) Idealized uniform stress distribution at an 
arbitrary section.

(a) (b)

A

P
A

P9 P9

P

σ 5
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When SI metric units are used, P is expressed in newtons (N) and 
A in square meters (m2), so the stress σ will be expressed in N/m2. This 
unit is called a pascal (Pa). How ever, the pascal is an exceedingly small 
quantity and often multiples of this unit must be used: the kilopascal (kPa), 
the megapascal (MPa), and the gigapascal (GPa):

 1 kPa 5 103 Pa 5 103 N/m2

 1 MPa 5 106 Pa 5 106 N/m2

 1 GPa 5 109 Pa 5 109 N/m2

When U.S. customary units are used, force P is usually expressed in 
pounds (lb) or kilopounds (kip), and the cross-sectional area A is given in 
square inches (in2). The stress σ then is expressed in pounds per square inch 
(psi) or kilopounds per square inch (ksi).†

8.1A Axial Stress
The member shown in Fig. 8.1 in the preceding section is subject to forces 
P and P9 applied at the ends. The forces are directed along the axis of the 
member, and we say that the member is under axial loading. An actual 
example of structural members under axial loading is provided by the mem-
bers of the bridge truss shown in Photo 8.1.

†The principal SI and U.S. Customary units used in mechanics are listed in Table 1.3  
on p. 12. From the table on the right-hand side, 1 psi is approximately equal to 7 kPa and 1 ksi 
is approximately equal to 7 MPa.

Photo 8.1 This bridge truss consists of two-force members that may be in 
tension or in compression.

© Vince Streano/Corbis

As shown in Fig. 8.1, the section through the rod to determine the 
internal force in the rod and the corresponding stress is perpendicular to the 
axis of the rod. The corresponding stress is described as a normal stress. 
Thus, Eq. (8.1) gives the normal stress in a member under axial loading.
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Note that in Eq. (8.1), σ represents the average value of the stress over 
the cross section, rather than the stress at a specific point of the cross section. To 
define the stress at a given point Q of the cross section, consider a small area DA 
(Fig. 8.2). Dividing the magnitude of DF by DA, you obtain the average value of 
the stress over DA. Letting DA approach zero, the stress at point Q is

 
σ 5 lim

DA→0
 
DF

DA (8.2)

In general, the value for the stress σ at a given point Q of the sec-
tion is different from that for the average stress given by Eq. (8.1), and σ 
is found to vary across the section. In a slender rod subjected to equal and 
opposite concentrated loads P and P9 (Fig. 8.3a), this variation is small 
in a section away from the points of application of the concentrated loads  
(Fig. 8.3c), but it is quite noticeable in the neighborhood of these points 
(Fig. 8.3b and d).

It follows from Eq. (8.2) that the magnitude of the resultant of the 
distributed internal forces is

#dF 5 #
A

σ dA

But the conditions of equilibrium of each of the portions of rod shown 
in Fig. 8.3 require that this magnitude be equal to the magnitude P of the 
concentrated loads. Therefore,

 P 5 #dF 5 #
A

σ dA (8.3)

which means that the volume under each of the stress surfaces in Fig. 8.3 
must be equal to the magnitude P of the loads. However, this is the only 
information derived from statics regarding the distribution of normal 
stresses in the various sections of the rod. The actual distribution of stresses 
in any given section is statically indeterminate. To learn more about this 
distribution, it is necessary to consider the deformations resulting from the 
particular mode of application of the loads at the ends of the rod. This will 
be discussed further in Chap. 9.

In practice, it is assumed that the distribution of normal stresses in 
an axially loaded member is uniform, except in the immediate vicinity of 
the points of application of the loads. The value σ of the stress is then equal 
to σave and can be obtained from Eq. (8.1). However, realize that when we 
assume a uniform distribution of stresses in the section, it follows from ele-
mentary statics† that the resultant P of the internal forces must be applied 
at the centroid C of the section (Fig. 8.4). This means that a uniform dis-
tribution of stress is possible only if the line of action of the concentrated 
loads P and P9 passes through the centroid of the section considered (Fig. 
8.5). This type of loading is called centric loading and will take place in all 
straight two-force members found in trusses and pin-connected structures. 

Fig. 8.2 Small area DA, at an arbitrary point 
of the cross section, carries DF in this axial 
member.

P9

Q

∆A

∆F

†See Ferdinand P. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 5th ed., 
McGraw-Hill, New York, 2008, or Vector Mechanics for Engineers, 11th ed., McGraw-Hill, 
New York, 2016, Secs. 5.2 and 5.3.

(a) (b) (c) (d)

P9 P9 P9 P9

P

σ

σ

σ

Fig. 8.3 Stress distributions at different 
sections along axially loaded member.

Fig. 8.4 Idealized uniform stress distribution 
implies the resultant force passes through the 
cross section’s center.

C

σ P
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Fig. 8.6 An example of eccentric loading.

MC
d

d

(a) (b)

P9P9

P

P

However, if a two-force member is loaded axially, but eccentrically, as 
shown in Fig. 8.6a, the conditions of equilibrium of the portion of member 
in Fig. 8.6b show that the internal forces in a given section must be equiva-
lent to a force P applied at the centroid of the section and a couple M of 
moment M 5 Pd. This distribution of forces—the corresponding distribu-
tion of stresses—cannot be uniform. Nor can the distribution of stresses be 
symmetric. This point will be discussed in detail in Chap. 11.

8.1B Shearing Stress
The internal forces and the corresponding stresses discussed in Sec. 8.1A 
were normal to the section considered. A very different type of stress is 
obtained when transverse forces P and P9 are applied to a member AB  
(Fig. 8.7). Passing a section at C between the points of application of the 
two forces (Fig. 8.8a), you obtain the diagram of portion AC shown in 
Fig. 8.8b. Internal forces must exist in the plane of the section, and their 
resultant is equal to P. These elementary internal forces are called shearing 
forces, and the magnitude P of their resultant is the shear in the section. 
Dividing the shear P by the area A of the cross section, you obtain the 
average shearing stress in the section. Denoting the shearing stress by the 
Greek letter τ (tau), write

 τave 5
P

A
 (8.4)

The value obtained is an average value of the shearing stress over the 
entire section. Contrary to what was said earlier for normal stresses, the 
distribution of shearing stresses across the section cannot be assumed to 
be uniform. As you will see in Chap. 13, the actual value τ of the shearing 
stress varies from zero at the surface of the member to a maximum value 
τmax that may be much larger than the average value τave.

Fig. 8.5 Centric loading having resultant 
forces passing through the centroid of the 
section.

C

P

P9

Fig. 8.7 Opposing 
transverse loads creating 
shear on member AB.

A B

P9

P

Fig. 8.8 This shows the resulting internal 
shear force on a section between transverse 
forces.

A C

A C

B

(a)

(b)

P

P

P9

P9
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Shearing stresses are commonly found in bolts, pins, and rivets used to 
connect various structural members and machine components (Photo 8.2). 
Consider the two plates A and B, which are connected by a bolt CD  
(Fig. 8.9). If the plates are subjected to tension forces of magnitude F, 
stresses will develop in the section of bolt corresponding to the plane EE9. 
Drawing the diagrams of the bolt and of the portion located above the plane 
EE9 (Fig. 8.10), the shear P in the section is equal to F. The average shear-
ing stress in the section is obtained using Eq. (8.4) by dividing the shear  
P 5 F by the area A of the cross section:

 τave 5
P

A
5

F

A
 (8.5)

The previous bolt is said to be in single shear. Different loading situ-
ations may arise, however. For example, if splice plates C and D are used 
to connect plates A and B (Fig. 8.11), shear will take place in bolt HJ in 
each of the two planes KK9 and LL9 (and similarly in bolt EG). The bolts 
are said to be in double shear. To determine the average shearing stress in 
each plane, draw free-body diagrams of bolt HJ and of the portion of the 
bolt located between the two planes (Fig. 8.12). Observing that the shear P 
in each of the sections is P 5 Fy2, the average shearing stress is

 τave 5
P

A
5

Fy2
A

5
F

2A
 (8.6)

Photo 8.2 Cutaway view of a connection with a bolt in shear.

© John DeWolf

Fig. 8.9 Bolt subject to single shear.

C

D

A
F

E9B

E

F9

Fig. 8.10 (a) Diagram of bolt in single shear;  
(b) section E-E’ of the bolt.

C C

D

F

PE9E

(a) (b)

F

F9

Fig. 8.12 (a) Diagram of bolt in double shear;  
(b) section K-K’ and L-L’ of the bolt.

K

L

H

J

K9

L9
F

FC

FD

F
P

P

(a) (b)

Fig. 8.11 Bolts subject to double shear.

K

AB

L

E H

G J

C

D

K9

L9

FF9
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8.1C Bearing Stress in Connections
Bolts, pins, and rivets create stresses in the members they connect along the 
bearing surface or surface of contact. For example, consider again the two 
plates A and B connected by a bolt CD that were discussed in the preceding 
section (Fig. 8.9). The bolt exerts on plate A a force P equal and opposite 
to the force F exerted by the plate on the bolt (Fig. 8.13). The force P rep-
resents the resultant of elementary forces distributed on the inside surface 
of a half- cylinder of diameter d and of length t equal to the thickness of 
the plate. Since the distribution of these forces—and of the correspond-
ing stresses—is quite complicated, in practice one uses an average nominal 
value σb of the stress, called the bearing stress, which is obtained by divid-
ing the load P by the area of the rectangle representing the projection of the 
bolt on the plate section (Fig. 8.14). Since this area is equal to td, where t is 
the plate thickness and d the diameter of the bolt, we have

 σb 5
P

A
5

P

td
 (8.7)

Fig. 8.13 Equal and opposite forces between 
plate and bolt, exerted over bearing surfaces.

A

C

D

d

t

F
P

F9

Fig. 8.14 Dimensions for calculating bearing 
stress area.

A d

t

Photo 8.3 Crane booms used to load and unload ships.

© David R. Frazier/Science Source

8.1D  Application to the Analysis and 
Design of Simple Structures

We are now in a position to determine the stresses in the members and con-
nections of various simple two-dimensional structures and to design such 
structures. This is illustrated through the following Concept Application.
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Concept Application 8.1

The structure shown in Fig. 8.15 was designed to support a 30-kN load. It 
consists of a boom AB with a 30 3 50-mm rectangular cross section and 
a rod BC with a 20-mm-diameter circular cross section. The boom and the 
rod are connected by a pin at B and are supported by pins and brackets at A 
and C, respectively. 

800 mm

50 mm

30 kN

600 mm

d 5 20 mm

C

A

B

Fig. 8.15 Boom used to support a 30-kN load.

30 kN

0.8 m

0.6 m

B

Cx

Cy

Ay

C

AAx

Fig. 8.16 Free-body diagram of 
boom showing applied load and 
reaction forces.

We first use the basic methods of statics to find the reactions and 
then the internal forces in the members. We start by drawing a free-body 
diagram of the structure by detaching it from its supports at A and C, and 
showing the reactions that these supports exert on the structure (Fig. 8.16). 
The reactions are represented by two components Ax and Ay at A, and Cx 
and Cy at C. We write the following three equilibrium equations: 

1   o MC 5 0: Ax(0.6 m) 2 (30 kN)(0.8 m) 5 0
 Ax 5 140 kN (1)

  o Fx 5 0: Ax 1 Cx 5 0
 Cx 5 2Ax  Cx 5 240 kN (2)
1   o Fy 5 0: Ay 1 Cy 2 30 kN 5 0
 Ay 1 Cy 5 130 kN (3)

We have found two of the four unknowns. We must now dismem-
ber the structure. Considering the free-body diagram of the boom AB (Fig. 
8.17), we write the following equilibrium equation:

1   o MB 5 0: 2Ay(0.8 m) 5 0  Ay 5 0 (4)

30 kN

0.8 m

Ay By

A BAx Bx

Fig. 8.17 Free-body diagram of 
member AB freed from structure.
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Substituting for Ay from (4) into (3), we obtain Cy 5 130 kN. 
 Expressing the results obtained for the reactions at A and C in vector form, 
we have

A 5 40 kN⟶, Cx 5 40 kN ← , Cy 5 30 kN↑

We note that the reaction at A is directed along the axis of the boom 
AB  and causes compression in that member. Observing that the compo-
nents Cx and Cy of the reaction at C are, respectively, proportional to the 
horizontal and vertical components of the distance from B to C, we con-
clude that the reaction at C is equal to 50 kN, is directed along the axis of 
the rod BC, and causes tension in that member.

These results could have been anticipated by recognizing that AB 
and BC are two-force members, i.e., members that are subjected to forces 
at only two points, these points being A and B for member AB, and B 
and C for member BC. Indeed, for a two-force member the lines of action 
of the resultants of the forces acting at each of the two points are equal 
and opposite and pass through both points. Using this property, we could 
have obtained a simpler solution by considering the free-body diagram 
of pin B. The forces on pin B are the forces FAB and FBC exerted, respec-
tively, by members AB and BC, and the 30-kN load (Fig. 8.18a). We can 
express that pin B is in equilibrium by drawing the corresponding force 
triangle (Fig. 8.18b).

Since the force FBC is directed along member BC, its slope is the 
same as that of BC, namely, 3/4. We can, therefore, write the  proportion 

FAB

4
5

FBC

5
5

30 kN
3

from which we obtain

FAB 5 40 kN    FBC 5 50 kN

The forces F9AB and F9BC exerted by pin B, respectively, on boom AB 
and rod BC are equal and opposite to FAB and FBC (Fig. 8.19).

(a) (b)

FBC
FBC

FAB FAB

30 kN

30 kN

3
5

4
B

Fig. 8.18 Free-body diagram of 
boom’s joint B and associated force 
triangle.

FAB F9AB

FBC

F9BCB

A B

C

Fig. 8.19 Free-body diagrams of  
two-force members AB and BC.
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Knowing the forces at the ends of each of the members, we can now 
determine the internal forces in these members. Passing a section at some 
arbitrary point D of rod BC, we obtain two portions BD and CD (Fig. 8.20). 
Since 50-kN forces must be applied at D to both portions of the rod to 
keep them in equilibrium, we conclude that an internal force of 50 kN is 
produced in rod BC when a 30-kN load is applied at B. We further check 
from the directions of the forces FBC and F9BC in Fig. 8.20 that the rod is in 
tension. A similar procedure would enable us to determine that the internal 
force in boom AB is 40 kN and that the boom is in compression.

We now determine the stresses in the members and connections. 
As shown in Fig. 8.21, the 20-mm-diameter rod BC has flat ends of 20 3 
40-mm-rectangular cross section, while boom AB has a 30 3 50-mm rect-
angular cross section and is fitted with a clevis at end B. Both members are 
connected at B by a pin from which the 30-kN load is suspended by means 
of a U-shaped bracket. Boom AB is supported at A by a pin fitted into a  
double bracket, while rod BC is connected at C to a single bracket. All pins are  
25 mm in  diameter.

C

D

B

D

FBC

FBC F9BC

F9BC

Fig. 8.20 Free-body diagrams of 
sections of rod BC.

800 mm

50 mm

Q 5 30 kN Q 5 30 kN

20 mm

20 mm

25 mm
30 mm
25 mm

d 5 25 mm

d 5 25 mm
d 5 20 mm

d 5 20 mm

d 5 25 mm

40 mm

20 mm

A

A
B

B

B

C

C

B

FRONT VIEW

TOP  VIEW OF BOOM AB

END  VIEW

TOP VIEW OF ROD BCFlat end

Flat end

600 mm

Fig. 8.21 Components of boom used to support 30 kN load.
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a. Determination of the Normal Stress in Boom AB and 
Rod BC. The force in rod BC is FBC 5 50 kN (tension). Recalling that 
the diameter of the rod is 20 mm, we use Eq. (8.1) to determine the stress 
created in the rod by the given loading. We have

 P 5 FBC 5 150 kN 5 150 3 103 N

 A 5 πr2 5 π(20 mm
2 )2

5 π(10 3 1023 m)2 5 314 3 1026 m2

 σBC 5
P

A
5

150 3 103 N
314 3 1026 m2 5 1159 3 106 Pa 5 1159 MPa

However, the flat parts of the rod are also under tension and at the 
narrowest section, where a hole is located, we have

A 5 (20 mm)(40 mm 2 25 mm) 5 300 3 1026 m2

The corresponding average value of the stress, therefore, is

(σBC)end 5
P

A
5

50 3 103 N
300 3 1026 m2 5 167 MPa

Note that this is an average value; close to the hole, the stress will actu-
ally reach a much larger value, as you will see in Sec. 9.9. It is clear that, under 
an increasing load, the rod will fail near one of the holes rather than in its cylin-
drical portion; its design, therefore, could be improved by increasing the width 
or the thickness of the flat ends of the rod.

 Turning now our attention to boom AB, we recall that the force in the 
boom is FAB 5 40 kN (compression). Since the area of the boom’s rectangular 
cross section is A 5 30 mm 3 50 mm 5 1.5 3 1023 m2, the average value of 
the normal stress in the main part of the rod, between pins A and B, is

σAB 5 2
40 3 103 N

1.5 3 1023 m2 5 226.7 3 106 Pa 5 226.7 MPa

Note that the sections of minimum area at A and B are not under 
stress, since the boom is in compression, and, therefore, pushes on the pins 
(instead of pulling on the pins as rod BC does).

b. Determination of the Shearing Stress in Various Connec tions.  
To determine the shearing stress in a connection such as a bolt, pin, or rivet, 
we first clearly show the forces exerted by the various members it connects. 
Thus, in the case of pin C of our example (Fig. 8.22a), we draw Fig. 8.22b, 
showing the 50-kN force exerted by member BC on the pin, and the equal 
and opposite force exerted by the bracket. Drawing now the diagram of the 
portion of the pin located  below the plane DD9 where shearing stresses 
occur (Fig. 8.22c), we conclude that the shear in that plane is P 5 50 kN. 
Since the cross- sectional area of the pin is

A 5 πr 2 5 π(25 mm
2 )2

5 π(12.5 3 1023 m)2 5 491 3 1026 m2

50 kN

50 kN

50 kN

(a)

C

(b)

(c)

Fb

P

D9

D

d 5 25 mm

Fig. 8.22 Diagrams of the 
single shear pin at C.
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(a) (b) (c)

40 kN
40 kN

40 kN

Fb

Fb

P

P

A

D9

E9

D

E

d 5 25 mm

Fig. 8.23 Free-body diagrams of the double shear pin at A.

we find that the average value of the shearing stress in the pin at C is

τave 5
P

A
5

50 3 103 N
491 3 1026 m2 5 102 MPa

Considering now the pin at A (Fig. 8.23), we note that it is in double 
shear. Drawing the free-body diagrams of the pin and of the portion of pin 
located between the planes DD9 and EE9 where shearing stresses occur, we 
conclude that P 5 20 kN and that

τave 5
P

A
5

20 kN
491 3 1026 m2 5 40.7 MPa

Considering the pin at B (Fig. 8.24a), we note that the pin may be 
divided into five portions which are acted upon by forces exerted by the 
boom, rod, and bracket. Considering successively the portions DE (Fig. 
8.24b) and DG (Fig. 8.24c), we conclude that the shear in section E is PE 5 
15 kN, while the shear in section G is PG 5 25 kN. Since the loading of the 
pin is symmetric, we conclude that the maximum value of the shear in pin 
B is PG 5 25 kN, and that the largest shearing stresses occur in sections G 
and H, where

τave 5
PG

A
5

25 kN
491 3 1026 m2 5 50.9 MPa

c. Determination of the Bearing Stresses. To determine the 
nominal bearing stress at A in member AB, we use Eq. (8.7) of Sec. 8.1c. 
From Fig. 8.21, we have t 5 30 mm and d 5 25 mm. Recalling that P 5 FAB 
5 40 kN, we have

σb 5
P

td
5

40 kN
(30 mm)(25 mm)

5 53.3 MPa

To obtain the bearing stress in the bracket at A, we use t 5 2(25 mm) 
5 50 mm and d 5 25 mm:

σb 5
P

td
5

40 kN
(50 mm)(25 mm)

5 32.0 MPa

The bearing stresses at B in member AB, at B and C in member BC, 
and in the bracket at C are found in a similar way.

(a)

(b)

(c)

1
2 FAB 5 20 kN

FBC 5 50 kN

1
2 FAB 5 20 kN

1
2 FAB 5 20 kN

1
2 Q 5 15 kN

1
2 Q 5 15 kN

1
2 Q 5 15 kN

1
2 Q 5 15 kN

Pin B
D

D

D

E

E

G

G

PE

PG

H

J

Fig. 8.24 Free-body diagrams for 
various sections at pin B.
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Concept Application 8.2

As an example of design, let us return to the structure of Fig. 8.15 and 
assume that aluminum with an allowable stress σall 5 100 MPa is to be 
used. Since the force in rod BC is still P 5 FBC 5 50 kN under the given 
loading, from Eq. (8.1), we have

σall 5
P

A
    A 5

P

σall
5

50 3 103 N
100 3 106 Pa

5 500 3 1026 m2

and since A 5 πr2,

r 5 √A

π 5 √500 3 1026 m2

π 5 12.62 3 1023 m 5 12.62 mm

d 5 2r 5 25.2 mm

Therefore, an aluminum rod 26 mm or more in diameter will be adequate.

The engineer’s role is not limited to the analysis of existing structures 
and machines subjected to given loading conditions. Of even greater impor-
tance to the engineer is the design of new structures and machines, that is, 
the selection of appropriate components to perform a given task. 

Considering again the structure of Fig. 8.15, let us assume that rod 
BC is made of a steel with a maximum allowable stress σall 5 165 MPa. 
Can rod BC safely support the load to which it will be subjected? The  
magnitude of the force FBC in the rod was found earlier to be 50 kN and the 
stress σBC was found to be 159 MPa. Since the value obtained is smaller 
than the value σall of the allowable stress in the steel used, we conclude that 
rod BC can safely support the load to which it will be subjected. We should 
also determine whether the deformations produced by the given loading are 
acceptable. The study of deformations under axial loads will be the subject 
of Chap. 9. An additional consideration required for members in compres-
sion involves the stability of the member, i.e., its ability to support a given 
load without experiencing a sudden change in configuration. This will be 
discussed in Chap. 16.
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Sample Problem 8.1

In the hanger shown, the upper portion of link ABC is 3
8 in. thick and the 

lower portions are each 1
4 in. thick. Epoxy resin is used to bond the upper 

and lower portions together at B. The pin at A has a 38-in. diameter, while a 
1
4-in.-diameter pin is used at C. Determine (a) the shearing stress in pin A, 
(b) the shearing stress in pin C, (c) the largest normal stress in link ABC, 
(d) the average shearing stress on the bonded surfaces at B, and (e) the 
bearing stress in the link at C.

STRATEGY: Consider the free body of the hanger to determine the 
internal force for member AB and then proceed to determine the shearing 
and bearing forces applicable to the pins. These forces can then be used to 
determine the stresses.

MODELING:  Draw the free-body diagram of the hanger to determine 
the support reactions (Fig. 1). Then draw the diagrams of the various com-
ponents of interest showing the forces needed to determine the desired 
stresses (Figs. 2-6).

ANALYSIS: 

Free Body: Entire Hanger. Since the link ABC is a two-force mem-
ber (Fig. 1), the reaction at A is vertical; the reaction at D is represented by 
its components Dx and Dy. Thus,

1  oMD 5 0: (500 lb)(15 in.) 2 FAC(10 in.) 5 0
 FAC 5 1750 lb    FAC 5 750 lb    tension

 a. Shearing Stress in Pin A. Since this 3
8-in.-diameter pin is in 

single shear (Fig. 2), write

 τA 5
FAC

A
5

750 lb
1
4π(0.375 in.)2 τA 5 6790 psi b

 b. Shearing Stress in Pin C. Since this 1
4-in.-diameter pin is in 

double shear (Fig. 3), write

 τC 5
1
2 FAC

A
5

375 lb
1
4 π (0.25 in.)2 τC 5 7640 psi b

6 in.

7 in.

1.75 in.

5 in.

1.25 in.

10 in.

500 lb

A

B

C

D

E

5 in.

500 lb

10 in.

A D
Dx

FAC
Dy

E
C

Fig. 1 Free-body diagram 
of hanger.

750 lb
FAC 5 750 lb

-in. diameter3
8

A

Fig. 2 Pin A.

-in. diameter

FAC 5 750 lb

1
4

FAC 5 375 lb1
2

FAC 5 375 lb1
2

C

Fig. 3 Pin C.
(continued)
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 c. Largest Normal Stress in Link ABC. The largest stress is 
found where the area is smallest; this occurs at the cross section at A (Fig. 4)  
where the 38-in. hole is located. We have

σA 5
FAC

Anet
5

750 lb
( 

3
8 in.)(1.25 in. 2 0.375 in.)

5
750 lb

0.328 in2 σA 5 2290 psi b

 d. Average Shearing Stress at B. We note that bonding exists on 
both sides of the upper portion of the link (Fig. 5) and that the shear force 
on each side is F1 5 (750 lb)/2 5 375 lb. The average shearing stress on 
each surface is

 τB 5
F1

A
5

375 lb
(1.25 in.)(1.75 in.)

 τB 5 171.4 psi b

 e. Bearing Stress in Link at C. For each portion of the link 
(Fig. 6), F1 5 375 lb, and the nominal bearing area is (0.25 in.)(0.25 in.) 5 
0.0625 in2.

 σb 5
F1

A
5

375 lb
0.0625 in2 σb 5 6000 psi b

REFLECT and THINK: This sample problem demonstrates the need to 
draw free-body diagrams of the separate components, carefully consider-
ing the behavior in each one. As an example, based on visual inspection 
of the hanger it is apparent that member AC should be in tension for the 
given load, and the analysis confirms this. Had a compression result been 
obtained instead, a thorough reexamination of the analysis would have been 
required.

375 lb F1 5 375 lb 

-in. diameter1
4

1
4 in.

Fig. 6 Link ABC section at C.

-in. diameter3
8

in.
1.25 in.

3
8

FAC

Fig. 4 Link ABC section at A.

FAC 5 750 lb 

1.25 in.

1.75 in.

F2 F1

A

B

F1 5 F2 5   FAC 5 375 lb 1
2

Fig. 5 Element AB.
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REFLECT and THINK: We sized d based on bolt shear, and then 
checked bearing on the tie bar. Had the maximum allowable bearing stress 
been exceeded, we would have had to recalculate d based on the bearing 
criterion.

Sample Problem 8.2

The steel tie bar shown is to be designed to carry a tension force of magni-
tude P 5 120 kN when bolted between double brackets at A and B. The bar 
will be fabricated from 20-mm-thick plate stock. For the grade of steel to 
be used, the maximum allowable stresses are σ 5 175  MPa, τ 5 100 MPa, 
and σb 5 350 MPa. Design the tie bar by determining the required values of  
(a) the diameter d of the bolt, (b) the dimension b at each end of the bar, and 
(c) the dimension h of the bar.

STRATEGY: Use free-body diagrams to determine the forces needed 
to obtain the stresses in terms of the design tension force. Setting these 
stresses equal to the allowable stresses provides for the determination of the 
required dimensions.

MODELING and ANALYSIS:

 a. Diameter of the Bolt. Since the bolt is in double shear (Fig. 1), 
F1 5 1

2 P 5 60 kN.

τ 5
F1

A
5

60 kN
1
4 π d2     100 MPa 5

60 kN
1
4 π d2     d 5 27.6 mm

Use  d 5 28 mm b

At this point, check the bearing stress between the 20-mm-thick plate (Fig. 2)  
and the 28-mm-diameter bolt.

 σb 5
P

td
5

120 kN
(0.020 m)(0.028 m)

5 214 MPa , 350 MPa    OK

 b. Dimension b at Each End of the Bar. We consider one of 
the end portions of the bar in Fig. 3. Recalling that the thickness of the 
steel plate is t 5 20 mm and that the average tensile stress must not exceed  
175 MPa, write

σ 5
1
2 P

ta
    175 MPa 5

60 kN
(0.02 m)a

    a 5 17.14 mm

b 5 d 1 2a 5 28 mm 1 2(17.14 mm)  b 5 62.3 mm b

 c. Dimension h of the Bar. We consider a section in the central 
portion of the bar (Fig. 4). Recalling that the thickness of the steel plate is  
t 5 20 mm, we have

σ 5
P

th
    175 MPa 5

120 kN
(0.020 m)h

    h 5 34.3 mm

Use  h 5 35 mm b

A B

d

F1 5  P

P

F1

F1

1
2

b

h

t 5 20 mm

d

P

P9 5 120 kN
a

t

a

db

1
2

P1
2

P 5 120 kN

t 5 20 mm

h

Fig. 1 Sectioned bolt.

Fig. 2 Tie bar geometry.

Fig. 3 End section of tie bar.

Fig. 4 Mid-body section of tie bar.

Final PDF to printer



353

bee98160_ch08_337-382.indd 353 12/11/15  05:00 PM

Problems
 8.1 Two solid cylindrical rods AB and BC are welded together at B and 

loaded as shown. Knowing that d1 5 50 mm and d2 5 30 mm, find the 
average normal stress at the midsection of (a) rod AB, (b) rod BC.

d2

d1

40 kN

30 kN

B

C

250 mm

300 mm

A

Fig. P8.1 and P8.2

 8.2 Two solid cylindrical rods AB and BC are welded together at B and 
loaded as shown. Knowing that the average normal stress must not 
exceed 175 MPa in rod AB and 150 MPa in rod BC, determine the 
smallest allowable values of d1 and d2.

 8.3 Two solid cylindrical rods AB and BC are welded together at B and 
loaded as shown. Knowing that P 5 40 kips, determine the average 
normal stress at the midsection of (a) rod AB, (b) rod BC.

Fig. P8.3 and P8.4

2 in.
3 in.

30 kips

30 kips

C
A

B

30 in. 40 in.

P

 8.4 Two solid cylindrical rods AB and BC are welded together at B and 
loaded as shown. Determine the magnitude of the force P for which 
the tensile stress in rod AB is twice the magnitude as the compressive 
stress in rod BC.
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 8.5 Link BD consists of a single bar 36 mm wide and 18 mm thick.  
Knowing that each pin has a 12-mm diameter, determine the maxi-
mum value of the average normal stress in link BD if (a) θ 5 0,  
(b) θ 5 90°.

Fig. P8.5

24 kN

308

150 mm

300 mm

D

C

B

A

θ

 8.6 Each of the four vertical links has an 8 3 36-mm uniform rectangular 
cross section and each of the four pins has a 16-mm diameter. Deter-
mine the maximum value of the average normal stress in the links 
connecting (a) points B and D, (b) points C and E.

Fig. P8.6

0.2 m
0.25 m

0.4 m

20 kN

C

B

A

D

E

 8.7 Link AC has a uniform rectangular cross section 1
8 in. thick and 1 in. 

wide. Determine the normal stress in the central portion of the link.

Fig. P8.7

10 in.
308

4 in.

12 in.

8 in.

2 in.

120 lb

120 lb

B

C

A
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 8.8 Two horizontal 5-kip forces are applied to pin B of the assembly shown. 
Knowing that a pin of 0.8-in. diameter is used at each connection, 
determine the maximum value of the average normal stress (a) in link 
AB, (b) in link BC.

 8.9 For the Pratt bridge truss and loading shown, determine the average 
normal stress in member BE, knowing that the cross-sectional area of 
that member is 5.87 in2.

9 ft

80 kips 80 kips 80 kips

9 ft 9 ft 9 ft

12 ft

B D F

H

GEC
A

Fig. P8.9 and P8.10

 8.10 Knowing that the average normal stress in member CE of the Pratt 
bridge truss shown must not exceed 21 ksi for the given loading, 
determine the cross-sectional area of that member that will yield the 
most economical and safe design. Assume that both ends of the mem-
ber will be adequately reinforced.

 8.11 A couple M of magnitude 1500 N·m is applied to the crank of an 
engine. For the position shown, determine (a) the force P required to 
hold the engine system in equilibrium, (b) the average normal stress in 
the connecting rod BC, which has a 450-mm2 uniform cross section.

 8.12 Two hydraulic cylinders are used to control the position of the robotic 
arm ABC. Knowing that the control rods attached at A and D each have a 
20-mm diameter and happen to be parallel in the position shown, deter-
mine the average normal stress in (a) member AE, (b) member DG.

A
B

E F G

D

C

400 mm

150 mm 200 mm

300 mm 600 mm
800 N

150 mm

Fig. P8.12

 8.13 The wooden members A and B are to be joined by plywood splice plates 
that will be fully glued on the surfaces in contact. As part of the design 
of the joint, and knowing that the clearance between the ends of the 
members is to be 8 mm, determine the smallest allowable length L if 
the average shearing stress in the glue is not to exceed 800 kPa.

B

A

C

0.5 in.

0.5 in.

1.8 in.

1.8 in.

458

608

5 kips
5 kips

Fig. P8.8

200 mm

80 mmM

60 mm

B

A

C

P

Fig. P8.11

24 kN

A

L

B
100 mm

24 kN

8 mm

Fig. P8.13
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 8.14 Determine the diameter of the largest circular hole that can be punched 
into a sheet of polystyrene 6 mm thick, knowing that the force exerted 
by the punch is 45 kN and that a 55-MPa average shearing stress is 
required to cause the material to fail.

 8.15 Two wooden planks, each 1
2 in. thick and 9 in. wide, are joined by the 

dry mortise joint shown. Knowing that the wood used shears off along 
its grain when the average shearing stress reaches 1.20 ksi, determine 
the magnitude P of the axial load that will cause the joint to fail.

2 in.
1 in.P9

2 in.
1 in. 9 in.

P

in.5
8

in.5
8

Fig. P8.15

  8.16 A load P is applied to a steel rod supported as shown by an aluminum 
plate into which a 0.6-in.-diameter hole has been drilled. Knowing 
that the shearing stress must not exceed 18 ksi in the steel rod and  
10 ksi in the aluminum plate, determine the largest load P that may be 
applied to the rod.

1.6 in.

0.25 in.

0.6 in.

P

0.4 in.

Fig. P8.16

 8.17 An axial load P is supported by a short W8 3 40 column of cross-
sectional area A 5 11.7 in2 and is distributed to a concrete foundation 
by a square plate as shown. Knowing that the average normal stress in 
the column must not exceed 30 ksi and that the bearing stress on the 
concrete foundation must not exceed 3.0 ksi, determine the side a of 
the plate that will provide the most economical and safe design.

a aP

Fig. P8.17
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 8.18 The axial force in the column supporting the timber beam shown is P 
5 20 kips. Determine the smallest allowable length L of the bearing 
plate if the bearing stress in the timber is not to exceed 400 psi.

6 in.

L

P

Fig. P8.18

 8.19 Three wooden planks are fastened together by a series of bolts to form 
a column. The diameter of each bolt is 12 mm and the inner diameter 
of each washer is 16 mm, which is slightly larger than the diameter of 
the holes in the planks. Determine the smallest allowable outer diam-
eter d of the washers, knowing that the average normal stress in the 
bolts is 36 MPa and that the bearing stress between the washers and 
the planks must not exceed 8.5 MPa.

d 12 mm

Fig. P8.19

 8.20 Link AB, of width b 5 50 mm and thickness t 5 6 mm, is used to sup-
port the end of a horizontal beam. Knowing that the average normal 
stress in the link is –140 MPa, and that the average shearing stress in 
each of the two pins is 80 MPa, determine (a) the diameter d of the 
pins, (b) the average bearing stress in the link.

b
d

t

B

A

d

Fig. P8.20
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 8.21 For the assembly and loading of Prob. 8.8, determine (a) the average 
shearing stress in the pin at C, (b) the average bearing stress at C in 
member BC, (c) the average bearing stress at B in member BC.

 8.22 The hydraulic cylinder CF, which partially controls the position of 
rod DE, has been locked in the position shown. Member BD is 5

8 in. 
thick and is connected to the vertical rod by a 3

8-in.-diameter bolt. 
Determine (a) the average shearing stress in the bolt, (b) the bearing 
stress at C in member BD.

1.8 in.

8 in.

4 in. 7 in.

D

F

E

A

C
B

400 lb

208
758

Fig. P8.22

 8.23 Knowing that θ 5 40° and P 5 9 kN, determine (a) the smallest allow-
able diameter of the pin at B if the average shearing stress in the pin is 
to not exceed 120 MPa, (b) the corresponding average bearing stress 
in member AB at B, (c) the corresponding average bearing stress in 
each of the support brackets at B.

16 mm
750 mm

750 mm

12 mm

50 mm B

A

C

P

θ

Fig. P8.23 and P8.24

 8.24 Determine the largest load P that may be applied at A when θ 5 60°, 
knowing that the average shearing stress in the 10-mm-diameter pin 
at B must not exceed 120 MPa and that the average bearing stress in 
member AB and in the bracket at B must not exceed 90 MPa.
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8.2  STRESS ON AN OBLIQUE PLANE 
UNDER AXIAL LOADING

Previously, axial forces exerted on a two-force member (Fig. 8.25a) caused 
normal stresses in that member (Fig. 8.25b), while transverse forces exerted 
on bolts and pins (Fig. 8.26a) caused shearing stresses in those connections 
(Fig. 8.26b). Such a relation was observed between axial forces and normal 
stresses and transverse forces and shearing stresses, because stresses were 
being determined only on planes perpendicular to the axis of the member 
or connection. In this section, axial forces cause both normal and shearing 
stresses on planes that are not perpendicular to the axis of the member. 
Similarly, transverse forces exerted on a bolt or a pin cause both normal 
and shearing stresses on planes that are not perpendicular to the axis of the 
bolt or pin.

(a)

(b)

P

P

P9

P9

P9

σ

Fig. 8.25 Axial forces on a two-force 
member. (a) Section plane perpendicular  
to member away from load application.  
(b) Equivalent force diagram models of 
resultant force acting at centroid and uniform 
normal stress.

Fig. 8.26 (a) Diagram of a bolt from a single-shear joint with a section plane 
normal to the bolt. (b) Equivalent force diagram models of the resultant force 
acting at the section centroid and the uniform average shear stress.

P9

PP

P9 P9

(a) (b)

τ

Consider the two-force member of Fig. 8.25 that is subjected to axial 
forces P and P9. If we pass a section forming an angle θ with a normal plane 
(Fig. 8.27a) and draw the free-body diagram of the portion of member 
located to the left of that section (Fig. 8.27b), the equilibrium conditions of 
the free body show that the distributed forces acting on the section must be 
equivalent to the force P.

Resolving P into components F and V, respectively normal and  
tangential to the section (Fig. 8.27c),
 F 5 P cos θ    V 5 P sin θ (8.8)
Force F represents the resultant of normal forces distributed over the sec-
tion, and force V is the resultant of shearing forces (Fig. 8.27d). The aver-
age values of the corresponding normal and shearing stresses are obtained 
by dividing F and V by the area Aθ of the section:

 σ 5
F

Aθ
    τ 5

V

Aθ
 (8.9)

Substituting for F and V from Eq. (8.8) into Eq. (8.9), and observing from 
Fig. 8.27c that A0 5 Aθ cos θ or Aθ 5 A0ycos θ, where A0 is the area of a 
section perpendicular to the axis of the member, we obtain

 σ 5
P cos θ
A0ycos θ

    τ 5
P sin θ

A0ycos θ

or
  σ 5

P

A0
 cos2 θ    τ 5

P

A0
 sin θ cos θ (8.10)

P9

P9

P9

P

A
A0

P

V

P9

(a)

(c)

(b)

(d)

P
θ

θ

θ

σ

τ

Fig. 8.27 Oblique section through a two-force 
member. (a) Section plane made at an angle θ 
to the member normal plane, (b) Free-body 
diagram of left section with internal resultant 
force P. (c) Free-body diagram of resultant 
force resolved into components F and V along 
the section plane’s normal and tangential 
directions, respectively. (d ) Free-body diagram 
with section forces F and V represented as 
normal stress, σ, and shearing stress, τ.
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Note from the first of Eqs. (8.10) that the normal stress σ is maximum 
when θ 5 0 (i.e., the plane of the section is perpendicular to the axis of the 
member). It approaches zero as θ approaches 908. We check that the value 
of σ when θ 5 0 is

 σm 5
P

A0
 (8.11)

The second of Eqs. (8.10) shows that the shearing stress τ is zero for 
θ 5 0 and θ 5 908. For θ 5 458, it reaches its maximum value

 τm 5
P

A0
 sin 458 cos 458 5

P

2A0
 (8.12)

The first of Eqs. (8.10) indicates that, when θ 5 458, the normal 
stress σ9 is also equal to Py2A0:

 σ9 5
P

A0
 cos2 458 5

P

2A0
 (8.13)

The results obtained in Eqs. (8.11), (8.12), and (8.13) are shown 
graphically in Fig. 8.28. The same loading may produce either a normal 
stress σm 5 PyA0 and no shearing stress (Fig. 8.28b) or a normal and a 
shearing stress of the same magnitude σ9 5 τm 5 Py2A0 (Fig. 8.28c and d), 
depending upon the orientation of the section.

8.3  STRESS UNDER GENERAL 
LOADING CONDITIONS; 
COMPONENTS OF STRESS

The examples of the previous sections were limited to members under axial 
loading and connections under transverse loading. Most structural members 
and machine components are under more involved loading conditions.

Consider a body subjected to several loads P1, P2, etc. (Fig. 8.29). 
To understand the stress condition created by these loads at some point Q 
within the body, we shall first pass a section through Q, using a plane par-
allel to the yz plane. The portion of the body to the left of the section is 
subjected to some of the original loads, and to normal and shearing forces 
distributed over the section. We shall denote by DFx and DVx, respectively, 
the normal and the shearing forces acting on a small area DA surrounding 
point Q (Fig. 8.30a). Note that the superscript x is used to indicate that the 
forces DFx and DVx act on a surface perpendicular to the x axis. While the 
normal force DFx has a well-defined direction, the shearing force DVx may 
have any direction in the plane of the section. We therefore resolve DVx into 
two component forces, DVx

y and DVx
z, in directions parallel to the y and z 

axes, respectively (Fig. 8.30b). Dividing the magnitude of each force by the 
area DA and letting DA approach zero, we define the three stress compo-
nents shown in Fig. 8.31:

σx 5 lim
DA→0

 
DFx

DA

 τxy 5 lim
DA→0

 
DVy

x

DA
    τxz 5 lim

DA→0
 
DVz

x

DA
 

(8.14)

P9

(a) Axial loading

(b) Stresses for θ 5 0

m 5 P/A0

(c) Stresses for θ 5 458

(d) Stresses for θ 5 2458

9 5 P/2A0

95 P/2A0

m 5 P/2A0

m 5 P/2A0

P

σ

σ

τ

τ

σ

Fig. 8.28 Selected stress results for 
axial loading.

P1 P4

P3

P2y

z

x

Fig. 8.29 Multiple loads 
on a general body.
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Note that the first subscript in σx, τxy, and τxz is used to indicate 
that the stresses are exerted on a surface perpendicular to the x axis. The 
second subscript in τxy and τxz identifies the direction of the component. 
The normal stress σx is positive if the corresponding arrow points in the 
positive x direction (i.e., if the body is in tension) and negative other-
wise. Similarly, the shearing stress components τxy and τxz are positive 
if the corresponding arrows point, respectively, in the positive y and z 
directions.

This analysis also may be carried out by considering the portion of 
body located to the right of the vertical plane through Q (Fig. 8.32). The 
same magnitudes, but opposite directions, are obtained for the normal 
and shearing forces DFx, DVy

x, and DV z
x. Therefore, the same values are 

obtained for the corresponding stress components. However as the section 
in Fig. 8.32 now faces the negative x axis, a positive sign for σx indicates 
that the corresponding arrow points in the negative x direction. Similarly, 
positive signs for τxy and τxz indicate that the corresponding arrows point in 
the negative y and z directions, as shown in Fig. 8.32.

Passing a section through Q parallel to the zx plane, we define the 
stress components, σy, τyz, and τyx. Then, a section through Q parallel to the 
xy plane yields the components σz, τzx, and τzy.

To visualize the stress condition at point Q, consider a small cube 
of side a centered at Q and the stresses exerted on each of the six faces 
of the cube (Fig. 8.33). The stress components shown are σx, σy, and σz, 
which represent the normal stress on faces respectively perpendicular to 
the x, y, and z axes, and the six shearing stress components τxy, τxz, etc. 
Recall that τxy represents the y component of the shearing stress exerted 
on the face perpendicular to the x axis, while τyx represents the x compo-
nent of the shearing stress exerted on the face perpendicular to the y axis. 
Note that only three faces of the cube are actually visible in Fig. 8.33 
and that equal and opposite stress components act on the hidden faces. 
While the stresses acting on the faces of the cube differ slightly from the 
stresses at Q, the error involved is small and vanishes as side a of the 
cube approaches zero.

Fx

P2 P2

P1

y

z

x

y

z

x

P1

A

Fx∆

∆

∆Vx∆
Vx∆

(a) (b)

Q Q

z

Vx∆ y

Fig. 8.30 (a) Resultant shear and normal forces, DV x and DF x, 
acting on small area DA at point Q. (b) Forces on DA resolved into 
forces in coordinate directions.

y

z

x

x

xy

Qxz
σ

τ

τ

Fig. 8.31 Stress components at point Q on 
the body to the left of the plane.

y

z

x

x

xy

xz

Q

σ

τ

τ

Fig. 8.32 Stress components at point Q on 
the body to the right of the plane.
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xzzx

zy

y

z

x

a
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y
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σ
σ

τ
τ

τ
τ

τ τ

Fig. 8.33 Positive stress components at 
point Q.
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Shearing stress components. Consider the free-body diagram of 
the small cube centered at point Q (Fig. 8.34). The normal and shearing 
forces acting on the various faces of the cube are obtained by multiplying 
the corresponding stress components by the area DA of each face. First 
write the following three equilibrium equations

 oFx 5 0    oFy 5 0    oFz 5 0 (8.15)

x∆A
z∆A

y∆A

Q

z

y

x

zy∆A

yx∆A

yz∆A
xy∆A

zx∆A  xz∆A

τ

τ

τ
τ

τ

τ

σ

σσ

Fig. 8.34 Positive resultant forces on a small element at point 
Q resulting from a state of general stress.

yx∆A

yx∆A

xy∆A

xy∆A x∆A

x∆A

y∆A

y∆A

x9

a

z9

y9

τ

τ

τ

τ

σ

σ

σ

σ

Fig. 8.35 Free-body diagram of small element  
at Q viewed on projected plane perpendicular to z’-axis. 
Resultant forces on positive and negative z’ faces (not shown) 
act through the z’-axis, thus do not contribute to the moment 
about that axis.

Since forces equal and opposite to the forces actually shown in Fig. 
8.34 are acting on the hidden faces of the cube, Eqs. (8.15) are satisfied. 
Considering the moments of the forces about axes x9, y9, and z9 drawn from 
Q in directions respectively parallel to the x, y, and z axes, the three addi-
tional equations are

 oMx9 5 0    oMy9 5 0    oMz9 5 0 (8.16)

Using a projection on the x9y9 plane (Fig. 8.35), note that the only 
forces with moments about the z axis different from zero are the shear-
ing forces. These forces form two couples: a counterclockwise (positive) 
moment (τxy DA)a and a clockwise (negative) moment 2(τyx DA)a. The 
last of the three Eqs. (8.16) yields

 1  oMz 5 0:   (τxy DA)a 2 (τyx DA)a 5 0
from which

 τxy 5 τyx (8.17)
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This relationship shows that the y component of the shearing stress 
exerted on a face perpendicular to the x axis is equal to the x component of 
the shearing stress exerted on a face perpendicular to the y axis. From the 
remaining parts of Eqs. (8.16), we derive.

 τyz 5 τzy    τzx 5 τxz (8.18)

We conclude from Eqs. (8.17) and (8.18), only six stress compo-
nents are required to define the condition of stress at a given point Q, 
instead of nine as originally assumed. These components are σx , σy , σz , 
τxy , τyz , and τzx . Also note that, at a given point, shear cannot take place 
in one plane only; an equal shearing stress must be exerted on another 
plane perpendicular to the first one. For example, considering the bolt of 
Fig. 8.26 and a small cube at the center Q (Fig. 8.36a), we see that shear-
ing stresses of equal magnitude must be exerted on the two horizontal 
faces of the cube and on the two faces perpendicular to the forces P and 
P9 (Fig. 8.36b).

Axial loading. Let us consider again a member under axial loading. 
If we consider a small cube with faces respectively parallel to the faces of 
the member and recall the results obtained in Sec. 8.2, the conditions of 
stress in the member may be described as shown in Fig. 8.37a; the only 
stresses are normal stresses σx exerted on the faces of the cube that are per-
pendicular to the x axis. However, if the small cube is rotated by 458 about 
the z axis so that its new orientation matches the orientation of the sec-
tions considered in Fig. 8.28c and d, normal and shearing stresses of equal 
magnitude are exerted on four faces of the cube (Fig. 8.37b). Thus, the 
same loading condition may lead to different interpretations of the stress 
situation at a given point, depending upon the orientation of the element 
considered. More will be said about this in Chap. 14: Transformation of 
Stress and Strain.

8.4 DESIGN CONSIDERATIONS
In engineering applications, the determination of stresses is seldom an end 
in itself. Rather, the knowledge of stresses is used by engineers to assist in 
their most important task: the design of structures and machines that will 
safely and economically perform a specified function.

8.4A  Determination of the Ultimate 
Strength of a Material

An important element to be considered by a designer is how the material 
will behave under a load. This is determined by performing specific tests 
on prepared samples of the material. For example, a test specimen of steel 
may be prepared and placed in a laboratory testing machine to be subjected 
to a known centric axial tensile force, as described in Sec. 9.1B. As the 
magnitude of the force is increased, various dimensional changes such as 
length and diameter are measured. Eventually, the largest force that may be 
applied to the specimen is reached, and it either breaks or begins to carry 

(a) (b)

P

P9

Q
τ

τ

τ

τ

Fig. 8.36 Single-shear bolt with point Q 
chosen at the center. (b) Pure shear stress 
element at point Q.

(b)

(a)

m m
P

P9

P9

P

P

2A

z

x

y

9
458

x

x P
A

P
2A

9

9

95

5

5
σ

σ

σσ

σ

σ

ττ

Fig. 8.37 Changing the orientation of the 
stress element produces different stress 
components for the same state of stress. This is 
studied in detail in Chapter 14.
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less load. This largest force is called the ultimate load and is denoted by PU. 
Since the applied load is centric, the ultimate load is divided by the original 
cross-sectional area of the rod to obtain the ultimate normal stress of the 
material. This stress, also known as the ultimate strength in tension, is

 σU 5
PU

A
 (8.19)

Several test procedures are available to determine the ultimate 
shearing stress or ultimate strength in shear. The one most commonly 
used involves the twisting of a circular tube (Sec. 10.2). A more direct, if 
less accurate, procedure clamps a rectangular or round bar in a shear tool 
(Fig. 8.38) and applies an increasing load P until the ultimate load PU for 
single shear is obtained. If the free end of the specimen rests on both of the 
hardened dies (Fig. 8.39), the ultimate load for double shear is obtained. In 
either case, the ultimate shearing stress τU is

 τU 5
PU

A
 (8.20)

In single shear, this area is the cross- sectional area A of the specimen, 
while in double shear it is equal to twice the cross-sectional area.

8.4B  Allowable Load and Allowable 
Stress: Factor of Safety

The maximum load that a structural member or a machine component will 
be allowed to carry under normal conditions is considerably smaller than 
the ultimate load. This smaller load is the allowable load (sometimes called 
the working or design load). Thus, only a fraction of the ultimate-load 
capacity of the member is used when the allowable load is applied. The 
remaining portion of the load-carrying capacity of the member is kept in 
reserve to assure its safe performance. The ratio of the ultimate load to the 
allowable load is used to define the factor of safety:†

 Factor of safety 5 F.S. 5
ultimate load

allowable load
 (8.21)

An alternative definition of the factor of safety is based on the use of 
stresses:

 Factor of safety 5 F.S. 5
ultimate stress

allowable stress
 (8.22)

These two expressions are identical when a linear relationship exists 
between the load and the stress. In most engineering applications, however, 

†In some fields of engineering, notably aeronautical engineering, the margin of safety is used 
in place of the factor of safety. The margin of safety is defined as the factor of safety minus 
one; that is, margin of safety 5 F.S. 2 1.00.

P

Fig. 8.38 Single shear test.

P

Fig. 8.39 Double shear test.
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this relationship ceases to be linear as the load approaches its ultimate 
value, and the factor of safety obtained from Eq. (8.22) does not provide a 
true assessment of the safety of a given design. Nevertheless, the allowable-
stress method of design, based on the use of Eq. (8.22), is widely used.

8.4C Factor of Safety Selection
The selection of the factor of safety to be used is one of the most important 
engineering tasks. If a factor of safety is too small, the possibility of fail-
ure becomes unacceptably large. On the other hand, if a factor of safety is 
unnecessarily large, the result is an uneconomical or nonfunctional design. 
The choice of the factor of safety for a given design application requires 
engineering judgment based on many considerations.

 1. Variations that may occur in the properties of the member. The compo-
sition, strength, and dimensions of the member are all subject to small 
variations during manufacture. In addition, material properties may 
be altered and residual stresses introduced through heating or defor-
mation that may occur during manufacture, storage, transportation, or 
construction.

 2. The number of loadings expected during the life of the structure or 
machine. For most materials, the ultimate stress decreases as the number 
of load cycles is increased. This phenomenon is known as fatigue and can 
result in sudden failure if ignored (see Sec. 9.1E).

 3. The type of loadings planned for in the design or that may occur in the 
future. Very few loadings are known with complete accuracy—most 
design loadings are engineering estimates. In addition, future alterations 
or changes in usage may introduce changes in the actual loading. Larger 
factors of safety are also required for dynamic, cyclic, or impulsive 
loadings.

 4. Type of failure. Brittle materials fail suddenly, usually with no prior 
indication that collapse is imminent. However, ductile materials, such 
as structural steel, normally undergo a substantial deformation called 
yielding before failing, providing a warning that overloading exists. 
Most buckling or stability failures are sudden, whether the material is 
brittle or not. When the possibility of sudden failure exists, a larger fac-
tor of safety should be used than when failure is preceded by obvious 
warning signs.

 5. Uncertainty due to methods of analysis. All design methods are based on 
certain simplifying assumptions that result in calculated stresses being 
approximations of actual stresses.

 6. Deterioration that may occur in the future because of poor maintenance 
or unpreventable natural causes. A larger factor of safety is necessary in 
locations where conditions such as corrosion and decay are difficult to 
control or even to discover.

 7. The importance of a given member to the integrity of the whole structure. 
Bracing and secondary members in many cases can be designed with a 
factor of safety lower than that used for primary members.

In addition to these considerations, there is concern of the risk to life 
and property that a failure would produce. Where a failure would produce 
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no risk to life and only minimal risk to property, the use of a smaller factor 
of safety can be acceptable. Finally, unless a careful design with a nonex-
cessive factor of safety is used, a structure or machine might not perform its 
design function. For example, high factors of safety may have an unaccept-
able effect on the weight of an aircraft.

For the majority of structural and machine applications, factors of 
safety are specified by design specifications or building codes written by 
committees of experienced engineers working with professional societies, 
industries, or federal, state, or city agencies. Examples of such design speci-
fications and building codes are

 1. Steel: American Institute of Steel Construction, Specification for Struc-
tural Steel Buildings

 2. Concrete: American Concrete Institute, Building Code Requirement for 
Structural Concrete

 3. Timber: American Forest and Paper Association, National Design Speci-
fication for Wood Construction

 4. Highway bridges: American Association of State Highway Officials, 
Standard Specifications for Highway Bridges

8.4D  Load and Resistance  
Factor Design

The allowable-stress method requires that all the uncertainties associated 
with the design of a structure or machine element be grouped into a sin-
gle factor of safety. An alternative method of design makes it possible to 
distinguish between the uncertainties associated with the structure itself 
and those associated with the load it is designed to support. Called Load 
and Resistance Factor Design (LRFD), this method allows the designer 
to distinguish between uncertainties associated with the live load, PL  
(i.e., the active or time-varying load to be supported by the structure) and 
the dead load, PD (i.e., the self weight of the structure contributing to the 
total load).

Using the LRFD method the ultimate load, PU, of the structure 
(i.e., the load at which the structure ceases to be useful) should be deter-
mined. The proposed design is acceptable if the following inequality is 
satisfied:

 γDPD 1 γLPL # ϕPU (8.23)

The coefficient ϕ is the resistance factor, which accounts for the 
uncertainties associated with the structure itself and will normally be less 
than 1. The coefficients γD and γL are the load factors; they account for the 
uncertainties associated with the dead and live load and normally will be 
greater than 1, with γL generally larger than γD. The allowable-stress method 
of design will be used in this text.
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Sample Problem 8.3

Two loads are applied to the bracket BCD as shown. (a) Knowing that the 
control rod AB is to be made of a steel having an ultimate normal stress of 
600 MPa, determine the diameter of the rod for which the factor of safety 
with respect to failure will be 3.3. (b) The pin at C is to be made of a steel 
having an ultimate shearing stress of 350 MPa. Determine the diameter of 
the pin C for which the factor of safety with respect to shear will also be 3.3. 
(c) Determine the required thickness of the bracket supports at C, knowing 
that the allowable bearing stress of the steel used is 300 MPa.

STRATEGY: Consider the free body of the bracket to determine the force 
P and the reaction at C. The resulting forces are then used with the allow-
able stresses, determined from the factor of safety, to obtain the required 
dimensions.

MODELING: Draw the free-body diagram of the hanger (Fig. 1), and the 
pin at C (Fig. 2).

ANALYSIS: 

Free Body: Entire Bracket. Using Fig. 1, the reaction at C is represented 
by its com ponents Cx and Cy.

 1   oMC 5 0:     P(0.6 m) 2 (50 kN)(0.3 m) 2 (15 kN)(0.6 m) 5 0 P 5 40 kN
oFx 5 0: Cx 5 40 kN
oFy 5 0: Cy 5 65 kN C 5 √C 

2
x 1 C 

2
y 5 76.3 kN

 a. Control Rod AB. Since the factor of safety is 3.3, the allowable 
stress is

σall 5
σU

F.S.
5

600 MPa
3.3

5 181.8 MPa

For P 5 40 kN, the cross-sectional area required is

 Areq 5
P

σall
5

40 kN
181.8 MPa

5 220 3 1026 m2

  Areq 5
π
4

 dAB
2 5 220 3 1026 m2 dab 5 16.74 mm b

 b. Shear in Pin C. For a factor of safety of 3.3, we have

τall 5
τU

F.S.
5

350 MPa
3.3

5 106.1 MPa

(continued)

t t

A

D 

B

dAB

C

0.6 m

0.3 m 0.3 m

50 kN 15 kN

P

50 kN 15 kN0.6 m

0.3 m 0.3 m

D

B

C

P

Cx

Cy

C

C

dC

F2

F1
F1 5 F2 5 12

Fig. 1 Free-body diagram of 
bracket. 

Fig. 2 Free-body diagram 
of pin at point C.
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As shown in Fig. 2 the pin is in double shear. We write

 Areq 5
Cy2
τall

5
(76.3 kN)y2
106.1 MPa

5 360 mm2

 Areq 5
π
4

 dC 

2 5 360 mm2   dC 5 21.4 mm Use: dC 5 22 mm b

 c. Bearing at C.  Using d 5 22 mm, the nominal bearing area of 
each bracket is 22t. From Fig. 3 the force carried by each bracket is C/2 and 
the allowable bearing stress is 300 MPa. We write

Areq 5
Cy2
σall

5
(76.3 kN)y2

300 MPa
5 127.2 mm2

Thus, 22t 5 127.2  t 5 5.78 mm Use: t 5 6 mm b

REFLECT and THINK: It was appropriate to design the pin C first 
and then its bracket, as the pin design was geometrically dependent upon 
diameter only, while the bracket design involved both the pin diameter and 
bracket thickness.

Sample Problem 8.4

The rigid beam BCD is attached by bolts to a control rod at B, to a hydraulic 
cylinder at C, and to a fixed support at D. The diameters of the bolts used 
are: dB 5 dD 5 3

8 in., dC 5 1
2 in. Each bolt acts in double shear and is made 

from a steel for which the ultimate shearing stress is τU 5 40 ksi. The con-
trol rod AB has a diameter dA 5 7

16 in. and is made of a steel for which the 
ultimate tensile stress is σU 5 60 ksi. If the minimum factor of safety is to 
be 3.0 for the entire unit, determine the largest upward force that may be 
applied by the hydraulic cylinder at C.

STRATEGY: The factor of safety with respect to failure must be 3.0 or 
more in each of the three bolts and in the control rod. These four indepen-
dent criteria need to be considered separately.

MODELING: Draw the free-body diagram of the bar (Fig. 1) and the 
bolts at B and C (Figs. 2 and 3). Determine the allowable value of the 
force C based on the required design criteria for each part.

ANALYSIS:

Free Body: Beam BCD. Using Fig. 1, first determine the force at C in 
terms of the force at B and in terms of the force at D.

1  oMD 5 0:  B(14 in.) 2 C(8 in.) 5 0  C 5 1.750B (1)

1  oMB 5 0:  2D(14 in.) 1 C(6 in.) 5 0  C 5 2.33D (2)

(continued)

DC

B

A

6 in.

8 in.

D

DB

C

B C

6 in. 8 in.

Fig. 1 Free-body diagram of beam BCD. 

Fig. 3 Bearing loads at bracket 
support at point C.

d 5 22 mm

t C1
2

C1
2
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Control Rod. For a factor of safety of 3.0

σall 5
σU

F.S.
5

60 ksi
3.0

5 20 ksi

The allowable force in the control rod is

B 5 σall(A) 5 (20 ksi) 
1
4π ( 7

16 in.)2 5 3.01 kips

Using Eq. (1), the largest permitted value of C is

 C 5 1.750B 5 1.750(3.01 kips) C 5 5.27 kips b

Bolt at B. τall 5 τUyF.S. 5 (40 ksi)y3 5 13.33 ksi. Since the bolt is in 
double shear (Fig. 2), the allowable magnitude of the force B exerted on the 
bolt is

B 5 2F1 5 2(τall A) 5 2(13.33 ksi)(1
4 π)(3

8 in.)2 5 2.94 kips

From Eq. (1), C 5 1.750B 5 1.750(2.94 kips) C 5 5.15 kips b

Bolt at D. Since this bolt is the same as bolt B, the allowable force is 
D 5 B 5 2.94 kips. From Eq. (2)

 C 5 2.33D 5 2.33(2.94 kips) C 5 6.85 kips b

Bolt at C. We again have τall 5 13.33 ksi. Using Fig. 3, we write

 C 5 2F2 5 2(τall A) 5 2(13.33 ksi)(1
4 π)(1

2 in.)2  C 5 5.23 kips b

C

F2

F2

1
2 in.

C 5 2F2

Fig. 3 Free-body 
diagram of pin at point C.

F1

F1

B

3
8 in.

B 5 2F1

Fig. 2 Free-body 
diagram of pin at 
point B.

Summary.  We have found separately four maximum allowable values 
of the force C. In order to satisfy all these criteria, choose the smallest 
value. C 5 5.15 kips b

REFLECT and THINK:  This example illustrates that all parts must sat-
isfy the appropriate design criteria, and as a result, some parts have more 
capacity than needed.
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Problems
 8.25 Two wooden members of uniform rectangular cross section are joined 

by the simple glued scarf splice shown. Knowing that P 5 11 kN, 
determine the normal and shearing stresses in the glued splice.

Fig. P8.25 and P8.26

75 mm

150 mm

458

P9

P

 8.26 Two wooden members of uniform rectangular cross section are joined 
by the simple glued scarf splice shown. Knowing that the maximum 
allowable shearing stress in the glued splice is 620 kPa, determine  
(a) the largest load P that can be safely applied, (b) the corresponding 
tensile stress in the splice.

 8.27 The 1.4-kip load P is supported by two wooden members of uniform 
cross section that are joined by the simple glued scarf splice shown. 
Determine the normal and shearing stresses in the glued splice.

Fig. P8.27 and P8.28

608

5.0 in.
3.0 in.

P9

P

 8.28 Two wooden members of uniform cross section are joined by the  
simple scarf splice shown. Knowing that the maximum allowable ten-
sile stress in the glued splice is 75 psi, determine (a) the largest load 
P that can be safely supported, (b) the corresponding shearing stress 
in the splice.
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 8.29 A 240-kip load P is applied to the granite block shown. Determine the 
resulting maximum value of (a) the normal stress, (b) the shearing 
stress. Specify the orientation of the plane on which each of these 
maximum values occurs.

Fig. P8.29 and P8.30

6 in.

6 in.

P

 8.30 A centric load P is applied to the granite block shown. Knowing that 
the resulting maximum value of the shearing stress in the block is 
2.5 ksi, determine (a) the magnitude of P, (b) the orientation of the 
surface on which the maximum shearing stress occurs, (c) the normal 
stress exerted on the surface, (d) the maximum value of the normal 
stress in the block.

 8.31 A steel pipe of 400-mm outer diameter is fabricated from 10-mm-
thick plate by welding along a helix that forms an angle of 20° with 
a plane perpendicular to the axis of the pipe. Knowing that a 300-kN 
axial force P is applied to the pipe, determine the normal and shearing 
stresses in directions respectively normal and tangential to the weld. 

Fig. P8.31 and P8.32

208

P

Weld

10 mm

 8.32 A steel pipe of 400-mm outer diameter is fabricated from 10- 
mm-thick plate by welding along a helix that forms an angle of 20° 
with a plane perpendicular to the axis of the pipe. Knowing that the 
maximum allowable normal and shearing stresses in the directions 
respectively normal and tangential to the weld are σ 5 60 MPa and  
τ 5 36 MPa, determine the magnitude P of the largest axial force that 
can be applied to the pipe.
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 8.33 Link AB is to be made of a steel for which the ultimate normal stress 
is 450 MPa. Determine the cross-sectional area for AB for which the 
factor of safety will be 3.50. Assume that the link will be adequately 
reinforced around the pins at A and B.

Fig. P8.33

0.4 m

358

B

A

C D
E

0.4 m 0.4 m

8 kN/m

20 kN

 8.34 A 34-in.-diameter rod made of the same material as rods AC and AD in 
the truss shown was tested to failure and an ultimate load of 29 kips 
was recorded. Using a factor of safety of 3.0, determine the required 
diameter (a) of rod AC, (b) of rod AD.

Fig. P8.34 and P8.35

10 kips 10 kips

10 ft 10 ft

5 ft

A

B C

D

 8.35 In the truss shown, members AC and AD consist of rods made of the 
same metal alloy. Knowing that AC is of 1-in. diameter and that the 
ultimate load for that rod is 75 kips, determine (a) the factor of safety 
for AC, (b) the required diameter of AD if it is desired that both rods 
have the same factor of safety.

 8.36 Members AB and AC of the truss shown consist of bars of square cross 
section made of the same alloy. It is known that a 20-mm-square bar 
of the same alloy was tested to failure and that an ultimate load of 
120 kN was recorded. If a factor of safety of 3.2 is to be achieved for 
both bars, determine the required dimensions of the cross section of 
(a) bar AB, (b) bar AC.

Fig. P8.36

28 kN

0.75 m

0.4 m

A

C

B

1.4 m
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 8.37 Three 3
4-in.-diameter steel bolts are to be used to attach the steel plate 

shown to a wooden beam. Knowing that the plate will support a load 
P 5 24 kips and that the ultimate shearing stress for the steel used is 
52 ksi, determine the factor of safety for this design.

Fig. P8.37

P

 8.38 Two plates, each 18 in. thick, are used to splice a plastic strip as shown.  
Knowing that the ultimate shearing stress of the bonding between the 
surfaces is 130 psi, determine the factor of safety with respect to shear 
when P 5 325 lb.

 8.39 A load P is supported as shown by a steel pin that has been inserted 
in a short wooden member hanging from the ceiling. The ultimate 
strength of the wood used is 60 MPa in tension and 7.5 MPa in shear, 
while the ultimate strength of the steel is 145 MPa in shear. Knowing 
that b 5 40 mm, c  5 55 mm, and d 5 12 mm, determine the load P 
if an overall factor of safety of 3.2 is desired.

Fig. P8.39

1
2

40 mm

d

c

b

P

1
2 P

 8.40 For the support of Prob. 8.39, knowing that the diameter of the pin is  
d 5 16 mm and that the magnitude of the load is P 5 20 kN, deter-
mine (a) the factor of safety for the pin, (b) the required values of b 
and c if the factor of safety for the wooden member is the same as that 
found in part a for the pin.

Fig. P8.38

P'

P

in.5
8 in.3

4

in.1
4

in.2 1
4
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 8.41 A steel plate 5
16 in. thick is embedded in a horizontal concrete slab 

and is used to anchor a high-strength vertical cable as shown. The 
diameter of the hole in the plate is 3

4 in., the ultimate strength of the 
steel used is 36 ksi, and the ultimate bonding stress between plate and 
concrete is 300 psi. Knowing that a factor of safety of 3.60 is desired 
when P 5 2.5 kips, determine (a) the required width a of the plate, 
(b) the minimum depth b to which a plate of that width should be 
embedded in the concrete slab. (Neglect the normal stresses between 
the concrete and the lower end of the plate.)

 8.42 Determine the factor of safety for the cable anchor in Prob. 8.41 when 
P 5 3 kips, knowing that a 5 2 in. and b 5 7.5 in.

 8.43 In the structure shown, an 8-mm-diameter pin is used at A and 12-mm-
diameter pins are used at B and D. Knowing that the ultimate shearing 
stress is 100 MPa at all connections and the ultimate normal stress 
is 250 MPa in each of the two links joining B and D, determine the 
allowable load P if an overall factor of safety of 3.0 is desired.

Fig. P8.43 and P8.44

180 mm200 mm

Top view

Side view
Front view

8 mm

20 mm 8 mm8 mm

12 mm

12 mm

B
C

B

D D

A

B CA

P

 8.44 In an alternative design for the structure of Prob. 8.43, a pin of 
10-mm-diameter is to be used at A. Assuming that all other specifica-
tions remain unchanged, determine the allowable load P if an overall 
factor of safety of 3.0 is desired.

 8.45 Link AC is made of a steel with a 65-ksi ultimate normal stress and 
has a 1

4 3 1
2-in. uniform rectangular cross section. It is connected to a 

support at A and to member BCD at C by 3
8-in.-diameter pins, while 

member BCD is connected to its support at B by a 5
16-in.-diameter pin. 

All of the pins are made of a steel with a 25-ksi ultimate shearing 
stress and are in single shear. Knowing that a factor of safety of 3.25 
is desired, determine the largest load P that can be applied at D. Note 
that link AC is not reinforced around the pin holes.

 8.46 Solve Prob. 8.45, assuming that the structure has been redesigned to 
use 5

16-in.-diameter pins at A and C as well as at B and that no other 
change has been made.

Fig. P8.41

a

b

P

3
4 in.

5
16 in.

1
2

A

B C D

8 in.

P
6 in. 4 in.

 in.

Fig. P8.45

Final PDF to printer



375

bee98160_ch08_337-382.indd 375 12/11/15  05:00 PM

 8.47 Each of the two vertical links CF connecting the two horizontal mem-
bers AD and EG has a 10 3 40-mm uniform rectangular cross section 
and is made of a steel with an ultimate strength in tension of 400 MPa, 
while each of the pins at C and F has a 20-mm diameter and is made 
of a steel with an ultimate strength in shear of 150 MPa. Determine 
the overall factor of safety for the links CF and the pins connecting 
them to the horizontal members.

24 kN

250 mm

250 mm

400 mm

C

A
B

E

D

F G

Fig. P8.47

 8.48 Solve Prob. 8.47, assuming that the pins at C and F have been replaced 
by pins with a 30-mm diameter.
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Review and Summary
This chapter was devoted to the concept of stress and to an introduction to the 
methods used for the analysis and design of machines and load-bearing struc-
tures. Emphasis was placed on the use of a free-body diagram to find the inter-
nal forces in the various members of a structure.

Axial Loading: Normal Stress
The concept of stress was first introduced by considering a two-force mem-
ber under an axial loading. The normal stress in that member (Fig. 8.40) was 
obtained by

 σ 5
P

A
 (8.1)

 The value of σ obtained from Eq. (8.1) represents the average stress over 
the section rather than the stress at a specific point Q of the section. Consider-
ing a small area DA surrounding Q and the magnitude DF of the force exerted 
on DA, the stress at point Q is

 σ 5 lim
DA→0

 
DF

DA
 (8.2)

 In general, the stress σ at point Q in Eq. (8.2) is different from the value 
of the average stress given by Eq. (8.1) and is found to vary across the section. 
However, this variation is small in any section away from the points of applica-
tion of the loads. Therefore, the distribution of the normal stresses in an axially 
loaded member is assumed to be uniform, except in the immediate vicinity of 
the points of application of the loads.
 For the distribution of stresses to be uniform in a given section, the line 
of action of the loads P and P9 must pass through the centroid C. Such a loading 
is called a centric axial loading. In the case of an eccentric axial loading, the 
distribution of stresses is not uniform.

Transverse Forces and Shearing Stress
When equal and opposite transverse forces P and P9 of magnitude P are applied 
to a member AB (Fig. 8.41), shearing stresses τ are created over any section 
located between the points of application of the two forces. These stresses 

A

P9

P

Fig. 8.40

A C B

P

P9

Fig. 8.41
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vary greatly across the section and their distribution cannot be assumed to be 
uniform.  However, dividing the magnitude P—referred to as the shear in the  
section—by the cross-sectional area A, the average shearing stress is:

 τave 5
P

A
 (8.4)

Single and Double Shear
Shearing stresses are found in bolts, pins, or rivets connecting two structural 
members or machine components. For example, the shearing stress of bolt CD 
(Fig. 8.42), which is in single shear, is written as

 τave 5
P

A
5

F

A
 (8.5)

C

D

A
F

E9B

E

F9

Fig. 8.42

K

AB

L

E H

G J

C

D

K9

L9

FF9

Fig. 8.43

The shearing stresses on bolts EG and HJ (Fig. 8.43), which are both in double 
shear, are written as

 τave 5
P

A
5

Fy2
A

 5
F

2A
 (8.6)

Bearing Stress
Bolts, pins, and rivets also create stresses in the members they connect along 
the bearing surface or surface of contact. Bolt CD of Fig. 8.42 creates stresses 
on the semicylindrical surface of plate A with which it is in contact (Fig. 8.44). 
Since the distribution of these stresses is quite complicated, one uses an average 
nominal value σb of the stress, called bearing stress.

 σb 5
P

A
5

P

td
 (8.7)

A

C

D

d

t

F
P

F9

Fig. 8.44
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P9 Pθ

Fig. 8.45
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Fig. 8.46

Stresses on an Oblique Section
When stresses are created on an oblique section in a two-force member 
under axial loading, both normal and shearing stresses occur. Denoting by 
θ the angle formed by the section with a normal plane (Fig. 8.45) and by A0 
the area of a section perpendicular to the axis of the member, the normal 
stress σ and the shearing stress τ on the oblique section are

 σ 5
P

A0
 cos2 θ   τ 5

P

A0
 sin θ cos θ (8.10)

We observed from these equations that the normal stress is maximum and equal 
to σm 5 P/A0 for θ 5 0, while the shearing stress is maximum and equal to τm 
5 P/2A0 for θ 5 458. We also noted that τ 5 0 when θ 5 0, while σ 5 P/2A0 
when θ 5 458.

Stress Under General Loading
Considering a small cube centered at Q (Fig. 8.46), σx is the normal stress 
exerted on a face of the cube perpendicular to the x axis, and τxy and τxz are the 
y and z components of the shearing stress exerted on the same face of the cube. 
Repeating this procedure for the other two faces of the cube and observing that 
τxy 5 τyx, τyz 5 τzy, and τzx 5 τxz, it was determined that six stress components 
are required to define the state of stress at a given point Q, being σx, σy, σz, τxy, 
τyz, and τzx.

Factor of Safety
The ultimate load of a given structural member or machine component is the 
load at which the member or component is expected to fail. This is computed 
from the ultimate stress or ultimate strength of the material used. The ultimate 
load should be considerably larger than the allowable load (i.e., the load that the 
member or component will be allowed to carry under normal conditions). The 
ratio of the ultimate load to the allowable load is the factor of safety:

 Factor of safety 5 F.S. 5
ultimate load

allowable load
 (8.21)

Load and Resistance Factor Design
Load and Resistance Factor Design (LRFD) allows the engineer to distinguish 
between the uncertainties associated with the structure and those associated 
with the load.
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Review Problems
 8.49 A 40-kN axial load is applied to a short wooden post that is supported 

by a concrete footing resting on undisturbed soil. Determine (a) the 
maximum bearing stress on the concrete footing, (b) the size of the 
footing for which the average bearing stress in the soil is 145 kPa.

P 5 40 kN

b b

120 mm 100 mm

Fig. P8.49

 8.50 The frame shown consists of four wooden members, ABC, DEF, BE, 
and CF. Knowing that each member has a 2 3 4-in. rectangular cross 
section and that each pin has a 12-in. diameter, determine the maximum 
value of the average normal stress (a) in member BE, (b) in member CF.

40 in.

45 in.

15 in.

4 in.

A
B C

D
E F

4 in.

30 in.

30 in.

480 lb

Fig. P8.50

 8.51 Two steel plates are to be held together by means of 16-mm-diameter 
high-strength steel bolts fitting snugly inside cylindrical brass spac-
ers. Knowing that the average normal stress must not exceed 200 MPa 
in the bolts and 130 MPa in the spacers, determine the outer diameter 
of the spacers that yields the most economical and safe design.

Fig. P8.51
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 8.52 When the force P reached 8 kN, the wooden specimen shown failed 
in shear along the surface indicated by the dashed line. Determine the 
average shearing stress along that surface at the time of failure.

15 mm

90 mm WoodSteel

PP9

Fig. P8.52

 8.53 Knowing that link DE is 1
8 in. thick and 1 in. wide, determine the nor-

mal stress in the central portion of that link when (a) θ 5 0, (b) θ 5 90°.

60 lb

F

D

E

C D

B

A

8 in.

2 in.

4 in. 12 in. 4 in.

θ
Fig. P8.53

 8.54 A steel loop ABCD of length 5 ft and of 3
8-in. diameter is placed as 

shown around a 1-in.-diameter aluminum rod AC. Cables BE and DF, 
each of 12-in. diameter, are used to apply the load Q. Knowing that the 
ultimate strength of the steel used for the loop and the cables is 70 
ksi and that the ultimate strength of the aluminum used for the rod is  
38 ksi, determine the largest load Q that can be applied if an overall 
factor of safety of 3 is desired.

12 in.

9 in. 1 in.

C

D

Q

A

9 in.

12 in.

F

Q9

B
E

in.1
2

in.3
8

Fig. P8.54
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 8.55 Two identical linkage-and-hydraulic-cylinder systems control the 
position of the forks of a fork-lift truck. The load supported by the 
one system shown is 1500 lb. Knowing that the thickness of mem-
ber BD is 5

8 in., determine (a) the average shearing stress in the  
1
2-in.-diameter pin at B, (b) the bearing stress at B in member BD.

 8.56 A 5
8-in.-diameter steel rod AB is fitted to a round hole near end C of 

the wooden member CD. For the loading shown, determine (a) the 
maximum average normal stress in the wood, (b) the distance b for 
which the average shearing stress is 100 psi on the surfaces indicated 
by the dashed lines, (c) the average bearing stress on the wood.

D
A

C

B

b

1500 lb

750 lb

750 lb

4 in.

1 in.

Fig. P8.56

 8.57 Member ABC, which is supported by a pin and bracket at C and a 
cable BD, was designed to support the 16-kN load P as shown. Know-
ing that the ultimate load for cable BD is 100 kN, determine the factor 
of safety with respect to cable failure.

 8.58 Two wooden members of uniform rectangular cross section of sides 
a 5 100 mm and b 5 60 mm are joined by a simple glued joint as 
shown. Knowing that the ultimate stresses for the joint are σU 5  
1.26 MPa in tension and τU 5 1.50 MPa in shear and that P 5 6 
kN, determine the factor of safety for the joint when (a) α 5 20°,  
(b) α 5 35°, (c) α 5 45°. For each of these values of α, also determine 
whether the joint will fail in tension or in shear if P is increased until 
rupture occurs.

P9

P

a

b

α

Fig. P8.58

A B

12 in.

12 in.

15 in.

16 in. 16 in. 20 in.

1500 lb

G

D E

C

Fig. P8.55

A

D 

B

C

0.4 m

308

408

0.8 m

0.6 m

P

Fig. P8.57
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 8.59 The 2000-lb load may be moved along the beam BD to any position 
between stops at E and F. Knowing that σall 5 6 ksi for the steel used 
in rods AB and CD, determine where the stops should be placed if the 
permitted motion of the load is to be as large as possible.

diameterdiameter

x

B
E F

D

CA

xE

xF

60 in.

-in.5
8-in.1

2

2000 lb

Fig. P8.59

 8.60 In the steel structure shown, a 6-mm-diameter pin is used at C and 
10-mm-diameter pins are used at B and D. The ultimate shearing 
stress is 150 MPa at all connections, and the ultimate normal stress is 
400 MPa in link BD. Knowing that a factor of safety of 3.0 is desired, 
determine the largest load P that can be applied at A. Note that link 
BD is not reinforced around the pin holes.

18 mm

Top view

Side view

Front view

160 mm 120 mm

6 mm

A

A

B
C 

B

D

C

B

D

P

Fig. P8.60
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This chapter considers deformations occurring in structural 

components subjected to axial loading. The change in length of 

the diagonal stays was carefully accounted for in the design of this 

cable-stayed bridge.

Stress and Strain—
Axial Loading

9
© Sylvain Grandadam/agefotostock
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Introduction
An important aspect of the analysis and design of structures relates to the 
deformations caused by the loads applied to a structure. It is important to 
avoid deformations so large that they may prevent the structure from ful-
filling the purpose for which it was intended. But the analysis of deforma-
tions also helps us to determine stresses. Indeed, it is not always possible 
to determine the forces in the members of a structure by applying only the 
principles of statics. This is because statics is based on the assumption of 
undeformable, rigid structures. By considering engineering structures as 
deformable and analyzing the deformations in their various members, it 
will be possible for us to compute forces that are statically indeterminate. 
The distribution of stresses in a given member is statically indeterminate, 
even when the force in that member is known.

In this chapter, you will consider the deformations of a structural  
member such as a rod, bar, or plate under axial loading. First, the normal 
strain ϵ in a member is defined as the deformation of the member per unit 
length. Plotting the stress σ versus the strain ϵ as the load applied to the 
member is increased produces a stress-strain diagram for the material used. 
From this diagram, some important properties of the material, such as its 
modulus of elasticity, and whether the material is ductile or brittle can be 
determined.

From the stress-strain diagram, you also can determine whether the 
strains in the specimen will disappear after the load has been removed—
when the material is said to behave elastically—or whether a permanent 
set or plastic deformation will result. 

Introduction

 9.1 BASIC PRINCIPLES OF 
STRESS AND STRAIN

 9.1A Normal Strain Under Axial 
Loading

 9.1B Stress-Strain Diagram
 9.1C Hooke’s Law; Modulus of 

Elasticity
 *9.1D Elastic Versus Plastic Behavior 

of a Material
 *9.1E Repeated Loadings and Fatigue
 9.1F Deformations of Members 

Under Axial Loading

 9.2 STATICALLY 
INDETERMINATE 
PROBLEMS

 9.3  PROBLEMS INVOLVING 
TEMPERATURE CHANGES

 9.4 POISSON’S RATIO

 9.5 MULTIAXIAL LOADING: 
GENERALIZED HOOKE’S 
LAW

 9.6 SHEARING STRAIN

 *9.7 DEFORMATIONS UNDER 
AXIAL LOADING—
RELATION BETWEEN 
E, ν, AND G

 9.8 STRESS AND STRAIN 
DISTRIBUTION UNDER 
AXIAL LOADING: SAINT-
VENANT’S PRINCIPLE

 9.9 STRESS CONCENTRATIONS

384 Stress and Strain—Axial Loading

Objectives
In this chapter, we will:

•	Introduce students to the concept of strain.

•	Discuss the relationship between stress and strain in 
different materials.

•	Determine the deformation of structural components 
under axial loading.

•	Introduce Hooke’s Law and the modulus of elasticity.

•	Discuss the concept of lateral strain and Poisson's ratio.

•	Use axial deformations to solve indeterminate 
problems.

•	Define Saint-Venant’s principle and the distribution of 
stresses.

•	Review stress concentrations and how they are 
included in design.

•	Define the difference between elastic and plastic 
behavior.

•	Look at specific topics related to fiber-reinforced 
 composite materials, fatigue, multiaxial loading.
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You will examine the phenomenon of fatigue, which causes struc-
tural or machine components to fail after a very large number of repeated 
loadings, even though the stresses remain in the elastic range.

Sections 9.2 and 9.3 discuss statically indeterminate problems in 
which the reactions and the internal forces cannot be determined from 
statics alone. Here the equilibrium equations derived from the free-body 
diagram of the member must be complemented by relationships involving 
deformations that are obtained from the geometry of the problem.

Additional constants associated with  isotropic materials—i.e.,  
materials with mechanical characteristics independent of direction—are 
introduced in Secs. 9.4 through 9.7. They include Poisson’s ratio, relating 
lateral and axial strain, and the modulus of rigidity, concerning the compo-
nents of the shearing stress and shearing strain. Stress-strain relationships 
for an isotropic material under a multiaxial loading also are determined.

In Chap. 8, stresses were assumed uniformly distributed in any given 
cross section; they were also assumed to remain within the elastic range. The 
first assumption is discussed in Sec. 9.8, while stress concentrations near 
circular holes and fillets in flat bars are considered in Sec. 9.9. 

9.1  BASIC PRINCIPLES OF 
STRESS AND STRAIN

9.1A  Normal Strain Under Axial 
Loading

Consider a rod BC of length L and uniform cross-sectional area A, which 
is suspended from B (Fig. 9.1a). If you apply a load P to end C, the rod 
elongates (Fig. 9.1b). Plotting the magnitude P of the load against the 
deformation δ (Greek letter delta), you obtain a load-deformation diagram  
(Fig. 9.2). While this diagram contains information useful to the analysis of 
the rod under consideration, it cannot be used to predict the deformation of 
a rod of the same material but with different dimensions. Indeed, if a defor-
mation δ is produced in rod BC by a load P, a load 2P is required to cause 
the same deformation in rod B9C9 of the same length L but cross-sectional 
area 2A (Fig. 9.3). Note that in both cases the value of the stress is the same: 
σ 5 PyA. On the other hand, when load P is applied to a rod B0C0 of the 
same cross-sectional area A but of length 2L, a deformation 2δ occurs in 

Fig. 9.1 Undeformed and deformed axially-
loaded rod.

B B

C
C

L

A

P

δ

(a) (b)

Fig. 9.2 Load-deformation diagram.

P

δ
Fig. 9.3 Twice the load is required to obtain 
the same deformation δ when the cross-
sectional area is doubled.

2P

B9B9

C9
C9

L

2A

δ
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that rod (Fig. 9.4). This is a deformation twice as large as the deformation 
δ produced in rod BC. In both cases, the ratio of the deformation over the 
length of the rod is the same at δyL. This introduces the concept of strain. 
We define the normal strain in a rod under axial loading as the deformation 
per unit length of that rod. The normal strain, ϵ (Greek letter epsilon), is

 ϵ 5
δ
L

 (9.1)

Plotting the stress σ 5 PyA against the strain ϵ 5 δyL results in a 
curve that is characteristic of the properties of the material but does not 
depend upon the dimensions of the specimen used. This curve is called a 
stress-strain diagram.

Since rod BC in Fig. 9.1 has a uniform cross section of area A, 
the normal stress σ is assumed to have a constant value PyA through-
out the rod. The strain ϵ is the ratio of the total deformation δ over the 
total length L of the rod. It too is consistent throughout the rod. However, 
for a member of variable cross-sectional area A, the normal stress σ 5 
PyA varies along the member, and it is necessary to define the strain at a 
given point Q by considering a small element of undeformed length Dx  
(Fig. 9.5). Denoting the deformation of the element under the given load-
ing by Dδ, the normal strain at point Q is defined as

 ϵ 5 lim
Dx⟶0

Dδ
Dx

5
dδ
dx

 (9.2)

Since deformation and length are expressed in the same units, the 
normal strain ϵ obtained by dividing δ by L (or dδ by dx) is a dimensionless 
quantity. Thus, the same value is obtained for the normal strain, whether SI 
metric units or U.S. customary units are used. For instance, consider a bar 
of length L 5 0.600 m and uniform cross section that undergoes a deforma-
tion δ 5 150 3 1026 m. The corresponding strain is

ϵ 5
δ
L

5
150 3 1026 m

0.600 m
5 250 3 1026 m/m 5 250 3 1026

Note that the deformation also can be expressed in micrometers: δ 5 150 µm 
and the answer written in micros (µ):

ϵ 5
δ
L

5
150 μm
0.600 m

5 250 μm/m 5 250 μ

When U.S. customary units are used, the length and deformation of the same 
bar are L 5 23.6 in. and δ 5 5.91 3 1023 in. The corresponding strain is

ϵ 5
δ
L

5
5.91 3 1023  in.

23.6 in.
5 250 3 1026 in./in.

which is the same value found using SI units. However, when lengths and 
deformations are expressed in inches or microinches (µin.), keep the original 
units obtained for the strain. Thus, in the previous example, the strain would 
be recorded as either ϵ 5 250 3 1026 in./in. or ϵ 5 250 µin./in.

Fig. 9.5 Deformation of axially-loaded 
member of variable cross-sectional area.
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Fig. 9.4 The deformation is doubled when 
the rod length is doubled while keeping the 
load P and cross-sectional area A the same.
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9.1B Stress-Strain Diagram
Tensile Test. To obtain the stress-strain diagram of a material, a ten-
sile test is conducted on a specimen of the material. One type of specimen 
is shown in Photo 9.1. The cross-sectional area of the cylindrical central 
portion of the specimen is accurately determined and two gage marks are 
inscribed on that portion at a distance L0 from each other. The distance L0 is 
known as the gage length of the specimen.

The test specimen is then placed in a testing machine (Photo 9.2), 
which is used to apply a centric load P. As load P increases, the distance L 
between the two gage marks also increases (Photo 9.3). The distance L 
is measured with a dial gage, and the elongation δ 5 L 2 L0 is recorded for 
each value of P. A second dial gage is often used simultaneously to measure 
and record the change in diameter of the specimen. From each pair of read-
ings P and δ, the engineering stress σ is 

 σ 5
P

A0
 (9.3)

and the engineering strain ϵ is

 ϵ 5
δ
L0

 (9.4) Photo 9.1 Typical tensile-test specimen. 
Undeformed gage length is L0.

© John DeWolf

Photo 9.2 Universal test machine used to test tensile specimens.

Courtesy of Tinius Olsen Testing Machine Co., Inc.

Photo 9.3 Elongated tensile test specimen 
having load P and deformed length L . L0.

© John DeWolf
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The stress-strain diagram can be obtained by plotting ϵ as an abscissa 
and σ as an ordinate.

Stress-strain diagrams of materials vary widely, and different  
tensile tests conducted on the same material may yield different results, 
depending upon the temperature of the specimen and the speed of loading. 
However, some common characteristics can be distinguished from stress-
strain diagrams to divide materials into two broad categories: ductile and 
brittle materials.

Ductile materials, including structural steel and many alloys of 
other materials are characterized by their ability to yield at normal tem-
peratures. As the specimen is subjected to an increasing load, its length 
first increases linearly with the load and at a very slow rate. Thus, the ini-
tial portion of the stress-strain diagram is a straight line with a steep slope  
(Fig. 9.6). However, after a critical value σY of the stress has been reached, 
the specimen undergoes a large deformation with a relatively small increase 
in the applied load. This deformation is caused by slippage along oblique 
surfaces and is due primarily to shearing stresses. After a maximum value 
of the load has been reached, the diameter of a portion of the specimen 
begins to decrease, due to local instability (Photo 9.4a). This phenomenon 
is known as necking. After necking has begun, lower loads are sufficient for 
specimen to elongate further, until it finally ruptures (Photo 9.4b). Note that 
rupture occurs along a cone-shaped surface that forms an angle of approxi-
mately 458 with the original surface of the specimen. This indicates that 
shear is primarily responsible for the failure of ductile materials, confirm-
ing the fact that shearing stresses under an axial load are largest on surfaces 
forming an angle of 458 with the load (see Sec. 8.2). Note from Fig. 9.6 that 
the elongation of a ductile specimen after it has ruptured can be 200 times 
as large as its deformation at yield. The stress σY at which yield is initiated 
is called the yield strength of the material. The stress σU corresponding to 
the maximum load applied is known as the ultimate strength. The stress σB 
corresponding to rupture is called the breaking strength.

Brittle materials, comprising of cast iron, glass, and stone rupture 
without any noticeable prior change in the rate of elongation (Fig. 9.7). 

Fig. 9.6 Stress-strain diagrams of two typical ductile materials.
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Photo 9.4 Ductile material tested specimens: 
(a) with cross-section necking, (b) ruptured.

© John DeWolf

Fig. 9.7 Stress-strain diagram for a 
typical brittle material.
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Thus, for brittle materials, there is no difference between the ultimate 
strength and the breaking strength. Also, the strain at the time of rupture 
is much smaller for brittle than for ductile materials. Note the absence of 
any necking of the specimen in the brittle material of Photo 9.5 and observe 
that rupture occurs along a surface perpendicular to the load. Thus, normal 
stresses are primarily responsible for the failure of brittle materials.†

The stress-strain diagrams of Fig. 9.6 show that while structural  
steel and aluminum are both ductile, they have different yield character-
istics. For structural steel (Fig. 9.6a), the stress remains constant over a 
large range of the strain after the onset of yield. Later, the stress must be 
increased to keep elongating the specimen until the maximum value σU has 
been reached. This is due to a property of the material known as strain-
hardening. The yield strength of structural steel is determined during 
the tensile test by watching the load shown on the display of the testing 
machine. After increasing steadily, the load will suddenly drop to a slightly 
lower value, which is maintained for a certain period as the specimen keeps 
elongating. In a very carefully conducted test, one may be able to distin-
guish between the upper yield point, which corresponds to the load reached 
just before yield starts, and the lower yield point, which corresponds to the 
load required to maintain yield. Since the upper yield point is transient, the 
lower yield point is used to determine the yield strength of the material.

For aluminum (Fig. 9.6b) and of many other ductile materials, the 
stress keeps increasing—although not linearly—until the ultimate strength 
is reached. Necking then begins and eventually ruptures. For such materi-
als, the yield strength σY can be determined using the offset method. For 
example the yield strength at 0.2% offset is obtained by drawing through 
the point of the horizontal axis of abscissa ϵ 5 0.2% (or ϵ 5 0.002), which 
is a line parallel to the initial straight-line portion of the stress-strain dia-
gram (Fig. 9.8). The stress σY corresponding to the point Y is defined as the 
yield strength at 0.2% offset.

A standard measure of the ductility of a material is its percent 
elongation:

Percent elongation 5 100 
LB 2 L0

L0

where L0 and LB are the initial length of the tensile test specimen and its 
final length at rupture, respectively. The specified minimum elongation for 
a 2-in. gage length for commonly used steels with yield strengths up to  
50 ksi is 21 percent. This means that the average strain at rupture should be 
at least 0.21 in./in.

Another measure of ductility that is sometimes used is the percent 
reduction in area:

Percent reduction in area 5 100 
A0 2 AB

A0

Photo 9.5 Ruptured brittle material specimen.

© John DeWolf

Fig. 9.8 Determination of yield 
strength by 0.2% offset method.

Rupture

0.2% offset
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Y
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†The tensile tests described in this section were assumed to be conducted at normal tempera-
tures. However, a material that is ductile at normal temperatures may display the characteris-
tics of a brittle material at very low temperatures, while a normally brittle material may behave 
in a ductile fashion at very high temperatures. At temperatures other than normal, therefore, 
one should refer to a material in a ductile state or to a material in a brittle state, rather than to 
a ductile or brittle material.

Final PDF to printer



390 Stress and Strain—Axial Loading

bee98160_ch09_383-450.indd 390 12/11/15  07:47 PM

where A0 and AB are the initial cross-sectional area of the specimen and its 
minimum cross-sectional area at rupture, respectively. For structural steel, 
percent reductions in area of 60 to 70 percent are common.

Compression	Test.	 If a specimen made of a ductile material is loaded 
in compression instead of tension, the stress-strain curve is essentially the 
same through its initial straight-line portion and through the beginning  
of the portion corresponding to yield and strain-hardening. Particu-
larly noteworthy is the fact that for a given steel, the yield strength is the 
same in both tension and compression. For larger values of the strain, the  
tension and compression stress-strain curves diverge, and necking does not 
occur in compression. For most brittle materials, the ultimate strength in 
compression is much larger than in tension. This is due to the presence  
of flaws, such as microscopic cracks or cavities that tend to weaken the 
material in tension, while not appreciably affecting its resistance to com-
pressive failure.

An example of brittle material with different properties in tension  
and compression is provided by concrete, whose stress-strain diagram is 
shown in Fig. 9.9. On the tension side of the diagram, we first observe a 
linear elastic range in which the strain is proportional to the stress. After 
the yield point has been reached, the strain increases faster than the stress 
until rupture occurs. The behavior of the material in compression is dif-
ferent. First, the linear elastic range is significantly larger. Second, rup-
ture does not occur as the stress reaches its maximum value. Instead, the 
stress decreases in magnitude while the strain keeps increasing until rup-
ture occurs. Note that the modulus of elasticity, which is represented by the 
slope of the stress-strain curve in its linear portion, is the same in tension 
and compression. This is true of most brittle materials.

9.1C  Hooke’s Law; Modulus of Elasticity
Modulus	 of	 Elasticity.	 Most engineering structures are designed 
to undergo relatively small deformations, involving only the straight-line 

Fig. 9.9 Stress-strain diagram for concrete shows difference in 
tensile and compression response.

Linear elastic range

Rupture, compression
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portion of the corresponding stress-strain diagram. For that initial portion of 
the diagram (Fig. 9.6), the stress σ is directly proportional to the strain ϵ:

 σ 5 Eϵ (9.5)

This is known as Hooke’s law, after Robert Hooke (1635–1703), an English 
scientist and one of the early founders of applied mechanics. The coefficient E 
of the material is the modulus of elasticity or Young’s modulus, after the Eng-
lish scientist Thomas Young (1773–1829). Since the strain ϵ is a dimension-
less quantity, E is expressed in the same units as stress σ—in pascals or one of 
its multiples for SI units and in psi or ksi for U.S. customary units.

The largest value of stress for which Hooke’s law can be used for a 
given material is the proportional limit of that material. For ductile materi-
als possessing a well-defined yield point, as in Fig. 9.6a, the proportional 
limit almost coincides with the yield point. For other materials, the propor-
tional limit cannot be determined as easily, since it is difficult to accurately 
determine the stress σ for which the relation between σ and ϵ ceases to be 
linear. For such materials, however, using Hooke’s law for values of the 
stress slightly larger than the actual proportional limit will not result in any 
significant error.

Some physical properties of structural metals, such as strength, ductility, 
and corrosion resistance, can be greatly affected by alloying, heat treatment, 
and the manufacturing process used. For example, the stress-strain diagrams 
of pure iron and three different grades of steel (Fig. 9.10) show that large 
variations in the yield strength, ultimate strength, and final strain (ductility) 
exist. All of these metals possess the same modulus of elasticity—their “stiff-
ness,” or ability to resist a deformation within the linear range is the same. 
Therefore, if a high-strength steel is substituted for a lower-strength steel and 
if all dimensions are kept the same, the structure will have an increased load-
carrying capacity, but its stiffness will remain unchanged.

For the materials considered so far, the relationship between normal 
stress and normal strain, σ 5 Eϵ, is independent of the direction of loading. 
This is because the mechanical properties of each material, including its 
modulus of elasticity E, are independent of the direction considered. Such 
materials are said to be isotropic. Materials whose properties depend upon 
the direction considered are said to be anisotropic. 

Fiber-Reinforced	 Composite	 Materials.	 An important class 
of anisotropic materials consists of fiber- reinforced composite materials. 
These are obtained by embedding fibers of a strong, stiff material into a 
weaker, softer material, called a matrix. Typical materials used as fibers are 
graphite, glass, and polymers, while various types of resins are used as a 
matrix. Fig. 9.11 shows a layer, or lamina, of a composite material consist-
ing of a large number of parallel fibers embedded in a matrix. An axial load 
applied to the lamina along the x axis, (in a direction parallel to the fibers) 
will create a normal stress σx in the lamina and a corresponding normal 
strain ϵx , satisfying Hooke’s law as the load is increased and as long as the 
elastic limit of the lamina is not exceeded. Similarly, an axial load applied 
along the y axis, (in a direction perpendicular to the lamina) will create a 
normal stress σy and a normal strain ϵy , and an axial load applied along the z 
axis will create a normal stress σz and a normal strain ϵz , all satisfy Hooke’s 
law. However, the moduli of elasticity Ex , Ey , and Ez corresponding, to each 
of these loadings will be different. Because the fibers are parallel to the 

Fig. 9.10 Stress-strain diagrams for iron and 
different grades of steel.
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Fig. 9.11 Layer of fiber-reinforced composite 
material.
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x axis, the lamina will offer a much stronger resistance to a load directed 
along the x axis than to one directed along the y or z axis, and Ex will be 
much larger than either Ey or Ez .

A flat laminate is obtained by superposing a number of layers or  
laminas. If the laminate is subjected only to an axial load causing tension, 
the fibers in all layers should have the same orientation as the load in order 
to obtain the greatest possible strength. But if the laminate is in compres-
sion, the matrix material may not be strong enough to prevent the fibers from 
kinking or buckling. The lateral stability of the laminate can be increased 
by  positioning some of the layers so that their fibers are perpendicular to 
the load. Positioning some layers so that their fibers are oriented at 308, 458, 
or 608 to the load also can be used to increase the resistance of the laminate 
to in-plane shear.

*9.1D  Elastic Versus Plastic Behavior 
of a Material

Material behaves elastically if the strains in a test specimen from a given 
load disappear when the load is removed. The largest value of stress caus-
ing this elastic behavior is called the elastic limit of the material.

If the material has a well-defined yield point as in Fig. 9.6a, the  
elastic limit, the proportional limit, and the yield point are essentially equal. 
In other words, the material behaves elastically and linearly as long as the 
stress is kept below the yield point. However, if the yield point is reached, 
yield takes place as described in Sec. 9.1B. When the load is removed, the 
stress and strain decrease in a linear fashion along a line CD parallel to the 
straight-line portion AB of the loading curve (Fig. 9.12). The fact that ϵ does 
not return to zero after the load has been removed indicates that a permanent 
set or plastic deformation of the material has taken place. For most materi-
als, the plastic deformation depends upon both the maximum value reached  
by the stress and the time elapsed before the load is removed. The stress-
dependent part of the plastic deformation is called slip, and the time- 
dependent part—also influenced by the temperature—is creep.

When a material does not possess a well-defined yield point, the 
elastic limit cannot be determined with precision. However, assuming 
the elastic limit to be equal to the yield strength using the offset method 
(Sec. 9.1B) results in only a small error. Referring to Fig. 9.8, note that 
the straight line used to determine point Y also represents the unloading 

Fig. 9.12  Stress-strain response of ductile material 
loaded beyond yield and unloaded.
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curve after a maximum stress σY has been reached. While the material does 
not behave truly elastically, the resulting plastic strain is as small as the 
selected offset.

If, after being loaded and unloaded (Fig. 9.13), the test specimen is 
loaded again, the new loading curve will follow the earlier unloading curve 
until it almost reaches point C. Then it will bend to the right and connect with 
the curved portion of the original stress-strain diagram. This straight-line por-
tion of the new loading curve is longer than the corresponding portion of the 
initial one. Thus, the proportional limit and the elastic limit have increased 
as a result of the strain-hardening that occurred during the earlier loading. 
However, since the point of rupture R remains unchanged, the ductility of the 
specimen, which should now be measured from point D, has decreased.

In previous discussions the specimen was loaded twice in the same 
direction (i.e., both loads were tensile loads). Now consider that the second 
load is applied in a direction opposite to that of the first one. Assume the 
material is mild steel where the yield strength is the same in tension and 
in compression. The initial load is tensile and is applied until point C is 
reached on the stress-strain diagram (Fig. 9.14). After unloading (point D), 
a compressive load is applied, causing the material to reach point H, where 
the stress is equal to 2σY. Note that portion DH of the stress-strain diagram 
is curved and does not show any clearly defined yield point. This is referred 
to as the Bauschinger effect. As the compressive load is maintained, the 
material yields along line HJ.

If the load is removed after point J has been reached, the stress returns 
to zero along line JK, and the slope of JK is equal to the modulus of elastic-
ity E. The resulting permanent set AK may be positive, negative, or zero, 
depending upon the lengths of the segments BC and HJ. If a tensile load is 
applied again to the test specimen, the portion of the stress-strain diagram 
beginning at K (dashed line) will curve up and to the right until the yield 
stress σY has been reached.

If the initial loading is large enough to cause strain-hardening of the 
material (point C9), unloading takes place along line C9D9. As the reverse 
load is applied, the stress becomes compressive, reaching its maximum 
value at H9 and maintaining it as the material yields along line H9J9. While 
the maximum value of the compressive stress is less than σY, the total 
change in stress between C9 and H9 is still equal to 2σY.

Fig. 9.13 Stress-strain response of ductile 
material reloaded after prior yielding and 
unloading.
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Fig. 9.14 Stress-strain response for mild steel subjected to 
two cases of reverse loading.
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If point K or K9 coincides with the origin A of the diagram, the per-
manent set is equal to zero, and the specimen may appear to have returned 
to its original condition. However, internal changes will have taken place 
and, the specimen will rupture without any warning after relatively few rep-
etitions of the loading sequence. Thus, the excessive plastic deformations to 
which the specimen was subjected caused a radical change in the character-
istics of the material. Therefore reverse loadings into the plastic range are 
seldom allowed, being permitted only under carefully controlled conditions 
such as in the straightening of damaged material and the final alignment of 
a structure or machine.

*9.1E Repeated Loadings and Fatigue
You might think that a given load may be repeated many times, provided 
that the stresses remain in the elastic range. Such a conclusion is correct for 
loadings repeated a few dozen or even a few hundred times. However, it is 
not correct when loadings are repeated thousands or millions of times. In 
such cases, rupture can occur at a stress much lower than the static break-
ing strength; this phenomenon is known as fatigue. A fatigue failure is of a 
brittle nature, even for materials that are normally ductile.

Fatigue must be considered in the design of all structural and machine 
components subjected to repeated or fluctuating loads. The number of load-
ing cycles expected during the useful life of a component varies greatly. 
For example, a beam supporting an industrial crane can be loaded as many 
as two million times in 25 years (about 300 loadings per working day), an 
automobile crankshaft is loaded about half a billion times if the automobile 
is driven 200,000 miles, and an individual turbine blade can be loaded sev-
eral hundred billion times during its lifetime.

Some loadings are of a fluctuating nature. For example, the passage 
of traffic over a bridge will cause stress levels that will fluctuate about the 
stress level due to the weight of the bridge. A more severe condition occurs 
when a complete reversal of the load occurs during the loading cycle. The 
stresses in the axle of a railroad car, for example, are completely reversed 
after each half-revolution of the wheel.

The number of loading cycles required to cause the failure of a speci-
men through repeated loadings and reverse loadings can be determined 
experimentally for any given maximum stress level. If a series of tests is con-
ducted using different maximum stress levels, the resulting data is plotted as 

Fig. 9.15 Typical σ-n curves.
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a σ-n curve. For each test, the maximum stress σ is plotted as an ordinate 
and the number of cycles n as an abscissa. Because of the large number of 
cycles required for rupture, the cycles n are plotted on a logarithmic scale.

A typical σ-n curve for steel is shown in Fig. 9.15. If the applied 
maximum stress is high, relatively few cycles are required to cause rupture. 
As the magnitude of the maximum stress is reduced, the number of cycles 
required to cause rupture increases, until the endurance limit is reached. 
The endurance limit is the stress for which failure does not occur, even for 
an indefinitely large number of loading cycles. For a low-carbon steel, such 
as structural steel, the endurance limit is about one-half of the ultimate 
strength of the steel.

For nonferrous metals, such as aluminum and copper, a typical σ-n 
curve (Fig. 9.15) shows that the stress at failure continues to decrease as the 
number of loading cycles is increased. For such metals, the fatigue limit is the 
stress corresponding to failure after a specified number of loading cycles.

Examination of test specimens, shafts, springs, and other components 
that have failed in fatigue shows that the failure initiated at a microscopic 
crack or some similar imperfection. At each loading, the crack was very 
slightly enlarged. During successive loading cycles, the crack propagated 
through the material until the amount of undamaged material was insuffi-
cient to carry the maximum load, and an abrupt, brittle failure occurred. For 
example, Photo 9.6 shows a progressive fatigue crack in a highway bridge 
girder that initiated at the irregularity associated with the weld of a cover 
plate and then propagated through the flange and into the web. Because 
fatigue failure can be initiated at any crack or imperfection, the surface 
condition of a specimen has an important effect on the endurance limit 
obtained in testing. The endurance limit for machined and polished speci-
mens is higher than for rolled or forged components or for components that 
are corroded. In applications in or near seawater or in other applications 
where corrosion is expected, a reduction of up to 50 percent in the endur-
ance limit can be expected.

9.1F  Deformations of Members Under 
Axial Loading

Consider a homogeneous rod BC of length L and uniform cross section 
of area A subjected to a centric axial load P (Fig. 9.16). If the resulting 
axial stress σ 5 PyA does not exceed the proportional limit of the material, 
Hooke’s law applies and

 σ 5 Eϵ (9.5)

from which

 ϵ 5
σ
E

5
P

AE
 (9.6)

Recalling that the strain ϵ in Sec. 9.1A is ϵ 5 δyL

 δ 5 ϵL  (9.7)
and substituting for ϵ from Eq. (9.6) into Eq.(9.7):

 δ 5
PL

AE
 (9.8)

Photo 9.6 Fatigue crack in a steel girder of 
the Yellow Mill Pond Bridge, Connecticut, prior 
to repairs.

© John Fisher

Fig. 9.16 Undeformed and deformed axially- 
loaded rod.
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Equation (9.8) can be used only if the rod is homogeneous 
(constant E), has a uniform cross section of area A, and is loaded at its ends. 
If the rod is loaded at other points, or consists of several portions of various 
cross sections and possibly of different materials, it must be divided into 
component parts that satisfy the required conditions for the application of 
Eq. (9.8). Using the internal force Pi , length Li , cross-sectional area Ai , 
and modulus of elasticity Ei , corresponding to part i, the deformation of 
the entire rod is

 δ 5 O
i

PiLi

AiEi

 (9.9)

In the case of a member of variable cross section (Fig. 9.17), the 
strain ϵ depends upon the position of the point Q, where it is computed as 
ϵ 5 dδydx (Sec. 9.1A). Solving for dδ and substituting for ϵ from Eq. (9.6), 
the deformation of an element of length dx is

dδ 5 ϵ dx 5
P dx

AE

The total deformation δ of the member is obtained by integrating this 
expression over the length L of the member:

 δ 5 #
L

0

 
P dx

AE
 (9.10)

Equation (9.10) should be used in place of (9.8) when both the cross-
sectional area A is a function of x, or when the internal force P depends 
upon x, as is the case for a rod hanging under its own weight.

Rod BC of Fig. 9.16, used to derive Eq. (9.8), and rod AD of Fig. 9.18 
have one end attached to a fixed support. In each case, the deformation δ of 
the rod was equal to the displacement of its free end. When both ends of a 

Fig. 9.17 Deformation of axially-loaded 
member of variable cross-sectional area.

∆x1 x 1

Q

Q

∆ x x 

∆

P

δ δ

Final PDF to printer



9.1 Basic Principles of Stress and Strain 397

bee98160_ch09_383-450.indd 397 12/11/15  07:47 PM

Concept	Application	9.1

Determine the deformation of the steel rod shown in Fig. 9.18a under the 
given loads (E 5 29 3 106 psi).
 The rod is divided into three component parts in Fig. 9.18b, so

 L1 5 L2 5 12 in.     L3 5 16 in.
 A1 5 A2 5 0.9 in2     A3 5 0.3 in2

To find the internal forces P1, P2, and P3, pass sections through each of the 
component parts, drawing each time the free-body diagram of the portion 
of rod located to the right of the section (Fig. 9.18c). Each of the free bodies 
is in equilibrium; thus

 P1 5 60 kips 5 60 3 103 lb

 P2 5 215 kips 5 215 3 103 lb

 P3 5 30 kips 5 30 3 103 lb

Using Eq. (9.9)

 δ 5 O
i

PiLi

AiEi

5
1
E

 (P1L1

A1
1

P2L2

A2
1

P3L3

A3
)

 5
1

29 3 106 [ (60 3 103)(12)
0.9

  1
(215 3 103)(12)

0.9
1

(30 3 103)(16)
0.3 ]

 δ 5
2.20 3 106

29 3 106 5 75.9 3 1023 in.

C D

30 kips

12 in. 12 in. 16 in.
75 kips 45 kips

A

A 5 0.9 in2 A 5 0.3 in2

B

(a)

(b)

(c)

C
D

C
D

30 kips

30 kips

30 kips

30 kips

75 kips 45 kips

45 kips

A

P3

P2

P1

B

C
D

B

75 kips 45 kips

321

Fig. 9.18 (a) Axially-loaded rod. (b) Rod 
divided into three sections. (c) Three 
sectioned free-body diagrams with 
internal resultant forces P1, P2 , and P3.

Fig. 9.19 Example of relative end displacement, 
as exhibited by the middle bar. (a) Unloaded. 
(b) Loaded, with deformation.

A

B

A
A

B

B

P

C9 CC

L

C9

(a) (b)

δ

δ

rod move, however, the deformation of the rod is measured by the relative 
displacement of one end of the rod with respect to the other. Consider the 
assembly shown in Fig. 9.19a, which consists of three elastic bars of length 
L connected by a rigid pin at A. If a load P is applied at B (Fig. 9.19b), each 
of the three bars will deform. Since the bars AC and AC9 are attached to 
fixed supports at C and C9, their common deformation is measured by the 
displacement δA of point A. On the other hand, since both ends of bar AB 
move, the deformation of AB is measured by the difference between the dis-
placements δA and δB of points A and B, (i.e., by the relative displacement of 
B with respect to A). Denoting this relative displacement by δB/A, 

 δByA 5 δB 2 δA 5
PL

AE
  (9.11)

where A is the cross-sectional area of AB and E is its modulus of elasticity.
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Sample	Problem	9.1

The rigid bar BDE is supported by two links AB and CD. Link AB is made 
of aluminum (E 5 70 GPa) and has a cross-sectional area of 500 mm2.  
Link CD is made of steel (E 5 200 GPa) and has a cross-sectional area of 
600 mm2. For the 30-kN force shown, determine the deflection (a) of B,  
(b) of D, and (c) of E.

STRATEGY: Consider the free body of the rigid bar to determine the 
internal force of each link. Knowing these forces and the properties of the 
links, their deformations can be evaluated. You can then use simple geom-
etry to determine the deflection of E.

MODELING: Draw the free body diagrams of the rigid bar (Fig. 1) and 
the two links (Fig. 2 and 3)

ANALYSIS: 

Free	Body:	Bar	BDE (Fig. 1) 

 1  o MB 5 0: 2(30 kN)(0.6 m) 1 FCD(0.2 m) 5 0
 FCD 5 190 kN     FCD 5 90 kN  tension

1  o MD 5 0: 2(30 kN)(0.4 m) 2 FAB(0.2 m) 5 0
 FAB 5 260 kN      FAB 5 60 kN  compression

	 a.	 Deflection	of	B. Since the internal force in link AB is compres-
sive (Fig. 2), P 5 260 kN and

δB 5
PL

AE
5

(260 3 103 N)(0.3 m)
(500 3 1026 m2)(70 3 109 Pa)

5 2514 3 1026 m

 The negative sign indicates a contraction of member AB. Thus, the 
deflection of end B is upward:
 δB 5 0.514 mm   b

30 kN0.4 m
0.3 m

0.2 m
0.4 m

C

A

B D E

30 kN

0.2 m
0.4 m

B D

FAB FCD

E

(continued)

Fig. 1 Free-body diagram of rigid 
bar BDE. 

0.3 m

A

B

F'AB 5 60 kN

FAB 5 60 kN

A 5 500 mm2

E 5 70 GPa

Fig. 2 Free-body diagram of 
two-force member AB.

0.4 m

C

D

F'CD 5 90 kN

FCD 5 90 kN

A 5 600 mm2

E 5 200 GPa

Fig. 3 Free-body diagram 
of two-force member CD.
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Sample	Problem	9.2

The rigid castings A and B are connected by two 3
4-in.-diameter steel bolts 

CD and GH and are in contact with the ends of a 1.5-in.-diameter aluminum 
rod EF. Each bolt is single-threaded with a pitch of 0.1 in., and after being 
snugly fitted, the nuts at D and H are both tightened one-quarter of a turn. 
Knowing that E is 29 3 106 psi for steel and 10.6 3 106 psi for aluminum, 
determine the normal stress in the rod.

STRATEGY: The tightening of the nuts causes a displacement of the 
ends of the bolts relative to the rigid casting that is equal to the difference 
in displacements between the bolts and the rod. This will give a relation 
between the internal forces of the bolts and the rod that, when combined 
with a free body analysis of the rigid casting, will enable you to solve for 
these forces and determine the corresponding normal stress in the rod.

MODELING: Draw the free body diagrams of the bolts and rod (Fig. 1) 
and the rigid casting (Fig. 2).

ANALYSIS: 

Deformations.

Bolts CD and GH. Tightening the nuts causes tension in the 
bolts  (Fig. 1). Because of symmetry, both are subjected to the same 
internal force Pb and undergo the same deformation δb. Therefore,

 δb 5 1
PbLb

AbEb

5 1
Pb(18 in.)

1
4 π(0.75 in.)2(29 3 106 psi)

5 11.405 3 1026 Pb (1)

	 b.	 Deflection	of	D. Since in rod CD (Fig. 3), P 5 90 kN, write

 δD 5
PL

AE
5

(90 3 103 N)(0.4 m)
(600 3 1026 m2)(200 3 109 Pa)

  5 300 3 1026 m δD 5 0.300 mm   b

	 c.	 Deflection	of	E. Referring to Fig. 4, we denote by B9 and D9 the 
displaced positions of points B and D. Since the bar BDE is rigid, points B9, 
D9, and E9 lie in a straight line. Therefore,

 
BB9

DD9
5

BH

HD
     

0.514 mm
0.300 mm

5
(200 mm) 2 x

x
    x 5 73.7 mm

 
EE9

DD9
5

HE

HD
     

δE

0.300 mm
5

(400 mm) 1 (73.7 mm)
73.7 mm

δE 5 1.928 mm   b

REFLECT	and	THINK: Comparing the relative magnitude and direction 
of the resulting deflections, you can see that the answers obtained are con-
sistent with the loading and the deflection diagram of Fig. 4.

(continued)

C

G

D

H

18 in.

E
A B

F

12 in.

400 mm

(200 mm 2 x)

 D 5 0.300 mm

200 mm

B'

E'

D'
B

H D E

 E

 B 5 0.514 mm

x

δ
δ

δ

Fig. 4 Deflections at B and D of rigid 
bar are used to find δE.

C

E F

G

D

P9b

P9rPr

P9b

Pb

Pb

H

Fig. 1 Free-body diagrams of bolts 
and aluminum bar. 

Final PDF to printer



400 Stress and Strain—Axial Loading

bee98160_ch09_383-450.indd 400 12/11/15  07:47 PM

Rod EF. The rod is in compression (Fig. 1), where the magnitude of the 
force is Pr and the deformation δr :

 δr 5 2
 
 

PrLr

ArEr

5 2  

Pr(12 in.)
1
4 π(1.5 in.)2(10.6 3 106 psi)

5 20.6406 3 1026 Pr (2)

Displacement of D Relative to B. Tightening the nuts one-quarter 
of a turn causes ends D and H of the bolts to undergo a displacement of  
1
4(0.1 in.) relative to casting B. Considering end D,

 δDyB 5 1
4(0.1 in.) 5 0.025 in. (3)

But δD/B 5 δD 2 δB, where δD and δB represent the displacements of D and 
B. If casting A is held in a fixed position while the nuts at D and H are being 
tightened, these displacements are equal to the deformations of the bolts 
and of the rod, respectively. Therefore,

 δDyB 5 δb 2 δr  (4)

Substituting from Eqs. (1), (2), and (3) into Eq. (4),

 0.025 in. 5 1.405 3 1026 Pb 1 0.6406 3 1026 Pr  (5)

Free	Body:	Casting	B (Fig. 2)

 oF 5 0: Pr 2 2Pb 5 0    Pr 5 2Pb (6)

Forces	 in	 Bolts	 and	 Rod	 Substituting for Pr from Eq. (6) into 
Eq. (5), we have

 0.025 in. 5 1.405 3 1026 Pb 1 0.6406 3 1026(2Pb)

 Pb 5 9.307 3 103 lb 5 9.307 kips

 Pr 5 2Pb 5 2(9.307 kips) 5 18.61 kips

Stress	in	Rod

 σr 5
Pr

Ar

5
18.61 kips

1
4 π(1.5 in.)2 σr 5 10.53 ksi b

REFLECT	and	THINK: This is an example of a statically indeterminate 
problem, where the determination of the member forces could not be found 
by equilibrium alone. By considering the relative displacement characteris-
tics of the members, you can obtain additional equations necessary to solve 
such problems. Situations like this will be examined in more detail in the 
following section.

Pb

Pb

BPr

Fig. 2 Free-body 
diagram of rigid casting.
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Problems
 9.1 A 4.8-ft-long steel wire of 1

4-in. diameter is subjected to a 750-lb ten-
sile load. Knowing that E 5 29 3 106 psi, determine (a) the elonga-
tion of the wire, (b) the corresponding normal stress.

 9.2 Two gage marks are placed exactly 250 mm apart on a 12-mm-
diameter aluminum rod with E 5 73 GPa and an ultimate strength of  
140 MPa. Knowing that the distance between the gage marks is 
250.28 mm after a load is applied, determine (a) the stress in the rod, 
(b) the factor of safety.

 9.3 A nylon thread is subjected to a 8.5-N tension force. Knowing that 
E  5  3.3 GPa and that the length of the thread increases by 1.1%, 
determine (a) the diameter of the thread, (b) the stress in the thread.

 9.4 An 18-m-long steel wire of 5-mm diameter is to be used in the manu-
facture of a prestressed concrete beam. It is observed that the wire 
stretches 45 mm when a tensile force P is applied. Knowing that 
E 5 200 GPa, determine (a) the magnitude of the force P, (b) the cor-
responding normal stress in the wire.

 9.5 A steel control rod is 5.5 ft long and must not stretch more than 0.04 
in. when a 2-kip tensile load is applied to it. Knowing that E 5 29 3 
106 psi, determine (a) the smallest diameter rod that should be used, 
(b) the corresponding normal stress caused by the load.

 9.6 A control rod made of yellow brass must not stretch more than 3 mm 
when the tension in the wire is 4 kN. Knowing that E 5 105 GPa 
and that the maximum allowable normal stress is 180 MPa, determine  
(a) the smallest diameter rod that should be used, (b) the correspond-
ing maximum length of the rod.

 9.7 An aluminum pipe must not stretch more than 0.05 in. when it is sub-
jected to a tensile load. Knowing that E 5 10.1 3 106 psi and that the 
maximum allowable normal stress is 14 ksi, determine (a) the maxi-
mum allowable length of the pipe, (b) the required area of the pipe if 
the tensile load is 127.5 kips.

 9.8 A cast-iron tube is used to support a compressive load. Knowing that 
E 5 10 3 106 psi and that the maximum allowable change in length is 
0.025%, determine (a) the maximum normal stress in the tube, (b) the 
minimum wall thickness for a load of 1600 lb if the outside diameter 
of the tube is 2.0 in.

 9.9 A block of 10-in. length and 1.8 3 1.6-in. cross section is to sup-
port a centric compressive load P. The material to be used is a bronze 
for which E 5 14 3 106 psi. Determine the largest load that can be 
applied, knowing that the normal stress must not exceed 18 ksi and 
that the decrease in length of the block should be at most 0.12% of its 
original length.
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 9.10 A 4-m-long steel rod must not stretch more than 3 mm and the normal 
stress must not exceed 150 MPa when the rod is subjected to a 10-kN 
axial load. Knowing that E 5 200 GPa, determine the required diam-
eter of the rod.

 9.11 The 4-mm-diameter cable BC is made of a steel with E 5 200 GPa. 
Knowing that the maximum stress in the cable must not exceed  
190 MPa and that the elongation of the cable must not exceed 6 mm, 
find the maximum load P that can be applied as shown.

 9.12 Rod BD is made of steel (E 5 29 3 106 psi) and is used to brace 
the axially compressed member ABC. The maximum force that can 
be developed in member BD is 0.02P. If the stress must not exceed  
18 ksi and the maximum change in length of BD must not exceed 
0.001 times the length of ABC, determine the smallest diameter  
rod that can be used for member BD.

Fig. P9.12

72 in.

54 in.

72 in.

B

A

C

D

P 5 130 kips

 9.13 The specimen shown is made from a 1-in.-diameter cylindrical steel 
rod with two 1.5-in.-outer-diameter sleeves bonded to the rod as 
shown. Knowing that E 5 29 3 106 psi, determine (a) the load P so 
that the total deformation is 0.002 in., (b) the corresponding deforma-
tion of the central portion BC.

Fig. P9.13

2 in.

2 in.

3 in.

C

D

A

B

P9

P

1  -in. diameter

1-in. diameter

1
2

1  -in. diameter1
2

Fig. P9.11

3.5 m

4.0 m

2.5 m

B

A C

P
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 9.14 Both portions of the rod ABC are made of an aluminum for which 
E 5 70 GPa. Knowing that the magnitude of P is 4 kN, determine  
(a) the value of Q so that the deflection at A is zero, (b) the corre-
sponding deflection of B.

 9.15 The rod ABC is made of an aluminum for which E 5 70 GPa. Know-
ing that P 5 6 kN and Q 5 42 kN, determine the deflection of  
(a) point A, (b) point B.

 9.16 Two solid cylindrical rods are joined at B and loaded as shown. Rod 
AB is made of steel (E 5 29 3 106 psi), and rod BC of brass (E 5 15 
3 106 psi). Determine (a) the total deformation of the composite rod 
ABC, (b) the deflection of point B.

Fig. P9.16

C

B

A

3 in.

2 in.
30 kips 30 kips

P 5 40 kips

40 in.

30 in.

 9.17 A 4-ft section of aluminum pipe of cross-sectional area 1.75 in2 rests 
on a fixed support at A. The 5

8-in.-diameter steel rod BC hangs from a  
rigid bar that rests on the top of the pipe at B. Knowing that the  
smodulus of elasticity is 29 3 106 psi for steel and 10.4 3 106  psi for 
aluminum, determine the deflection of point C when a 15-kip force is 
applied at C.

P

C

B

A

4 ft

3 ft

Fig. P9.17

Fig.	P9.14	and	P9.15

0.4 m

0.5 m

P

Q

20-mm diameter

60-mm diameter

A

B

C
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 9.18 Two solid cylindrical rods are joined at B and loaded as shown. Rod 
AB is made of steel (E 5 200 GPa) and rod BC of brass (E 5 105 
GPa). Determine (a) the total deformation of the composite rod ABC, 
(b) the deflection of point B.

 9.19 The steel frame (E 5 200 GPa) shown has a diagonal brace BD with 
an area of 1920 mm2. Determine the largest allowable load P if the 
change in length of member BD is not to exceed 1.6 mm.

6 m

5 m

C

DA

B

P

Fig. P9.19

 9.20 For the steel truss (E 5 29 3 106 psi) and loading shown, determine 
the deformations of members BD and DE, knowing that their cross-
sectional areas are 2 in2 and 3 in2, respectively.

15 ft

8 ft

8 ft

8 ft

D

C

F

E

G

A

B

30 kips

30 kips

30 kips

Fig. P9.20

 9.21 Members AB and BC are made of steel (E 5 29 3 106 psi) with cross-
sectional areas of 0.80 in2 and 0.64 in2, respectively. For the loading 
shown, determine the elongation of (a) member AB, (b) member BC.

6 ft 6 ft

5 ft

C

D E
A

B

28 kips 54 kips

Fig. P9.21

300 mm

250 mm

B

C

A

30 mm

50 mm

40 kN

P 5 30 kN

Fig. P9.18
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 9.22 Members ABC and DEF are joined with steel links (E 5 200 GPa). 
Each of the links is made of a pair of 25 3 35-mm plates. Determine 
the change in length of (a) member BE, (b) member CF.

260 mm

18 kN 18 kN240 mm

180 mm
C

D

E

F

A

B

Fig. P9.22

 9.23 Each of the links AB and CD is made of aluminum (E 5 10.9 3 106 psi) 
and has a cross-sectional area of 0.2 in2. Knowing that they support 
the rigid member BC, determine the deflection of point E.

P 5 1 kip

10 in.
22 in.

18 in.

A

E

D

B C

Fig. P9.23

 9.24 Link BD is made of brass (E 5 105 GPa) and has a cross-sectional 
area of 240 mm2. Link CE is made of aluminum (E 5 72 GPa) and has 
a cross-sectional area of 300 mm2. Knowing that they support rigid 
member ABC, determine the maximum force P that can be applied 
vertically at point A if the deflection of A is not to exceed 0.35 mm.

P

125 mm
225 mm

225 mm

150 mm

E

D

A B

C

Fig. P9.24
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9.2  STATICALLY INDETERMINATE 
PROBLEMS

In the problems considered in the preceding section, we could always use 
free-body diagrams and equilibrium equations to determine the internal 
forces produced in the various portions of a member under given loading 
conditions. There are many problems, however, where the internal forces 
cannot be determined from statics alone. In most of these problems, the 
reactions themselves—the external forces— cannot be determined by 
simply drawing a free-body diagram of the member and writing the cor-
responding equilibrium equations. The equilibrium equations must be 
complemented by relationships involving deformations obtained by con-
sidering the geometry of the problem. Because statics is not sufficient to 
determine either the reactions or the internal forces, problems of this type 
are called statically indeterminate. The following concept applications 
show how to handle this type of problem.

Concept	Application	9.2

A rod of length L, cross-sectional area A1, and modulus of elasticity E1, has 
been placed inside a tube of the same length L, but of cross-sectional area 
A2 and modulus of elasticity E2 (Fig. 9.20a). What is the deformation of the 
rod and tube when a force P is exerted on a rigid end plate as shown?
 The axial forces in the rod and in the tube are P1 and P2, respec-
tively. Draw free-body diagrams of all three elements (Fig. 9.20b, c, d). 
Only Fig. 9.20d yields any significant information, as:

 P1 1 P2 5 P (1)

Clearly, one equation is not sufficient to determine the two unknown inter-
nal forces P1 and P2. The problem is statically indeterminate.
 However, the geometry of the problem shows that the deformations 
δ1 and δ2 of the rod and tube must be equal. Recalling Eq. (9.8), write

 δ1 5
P1L

A1E1
     δ2 5

P2L

A2E2
 (2)

Equating the deformations δ1 and δ2,

 
P1

A1E1
5

P2

A2E2
 (3)

Equations (1) and (3) can be solved simultaneously for P1 and P2:

P1 5
A1E1P

A1E1 1 A2E2
    P2 5

A2E2P

A1E1 1 A2E2

Either of Eqs. (2) can be used to determine the common deformation of the 
rod and tube.

P

P1 P91

Tube (A2, E2)

Rod (A1, E1)

End
plate

(a)

(b)

(c)

(d)

L

P92P2

P
P1

P2

Fig. 9.20 (a) Concentric rod 
and tube, loaded by force 
P. (b) Free-body diagram 
of rod. (c) Free-body diagram of tube. 
(d) Free-body diagram of end plate.
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Superposition	 Method. A structure is statically indeterminate 
whenever it is held by more supports than are required to maintain its equi-
librium. This results in more unknown reactions than available equilibrium 
equations. It is often convenient to designate one of the reactions as redun-
dant and to eliminate the corresponding support. Since the stated conditions 
of the problem cannot be changed, the redundant reaction must be main-
tained in the solution. It will be treated as an unknown load that, together 
with the other loads, must produce deformations compatible with the origi-
nal constraints. The actual solution of the problem considers separately the 
deformations caused by the given loads and the redundant reaction, and 
by adding—or superposing—the results obtained. The general conditions 
under which the combined effect of several loads can be obtained in this 
way are discussed in Sec. 9.5.

Concept	Application	9.3

A bar AB of length L and uniform cross section is attached to rigid supports 
at A and B before being loaded. What are the stresses in portions AC and BC 
due to the application of a load P at point C (Fig. 9.21a)?
 Drawing the free-body diagram of the bar (Fig. 9.21b), the equi-
librium equation is

 RA 1 RB 5 P (1)

Since this equation is not sufficient to determine the two unknown reactions 
RA and RB, the problem is statically indeterminate.
 However, the reactions can be determined if observed from the 
geometry that the total elongation δ of the bar must be zero. The elonga-
tions of the portions AC and BC are respectively δ1 and δ2, so

δ 5 δ1 1 δ2 5 0

Using Eq. (9.8), δ1 and δ2 can be expressed in terms of the corresponding 
internal forces P1 and P2,

 δ 5
P1L1

AE
1

P2L2

AE
5 0 (2)

Note from the free-body diagrams shown in parts b and c of Fig. 9.21c that 
P1 5 RA and P2 5 2RB. Carrying these values into Equation (2),

 RAL1 2 RBL2 5 0 (3)

Equations (1) and (3) can be solved simultaneously for RA and RB, as 
RA 5 PL2yL and RB 5 PL1yL. The desired stresses σ1 in AC and σ2 in BC 
are obtained by dividing P1 5 RA and P2 5 2RB by the cross-sectional area 
of the bar:

σ1 5
PL2

AL
    σ2 5 2 

PL1

AL

P

L1

L2

RA

RB

(a) (b)

L

A

B

A

B

C C

P

RA

P

RA

RB RB

(a)

(b)

(c)

A

B

C P1

P2

(c)

Fig. 9.21 (a) Restrained bar 
with axial load. (b) Free-body 
diagram of bar. (c) Free-body 
diagrams of sections above 
and below point C used to 
determine internal forces P1 
and P2.
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Concept	Application	9.4

Determine the reactions at A and B for the steel bar and loading shown 
in Fig. 9.22a, assuming a close fit at both supports before the loads are 
applied.
 We consider the reaction at B as redundant and release the bar 
from that support. The reaction RB is considered to be an unknown load and 
is determined from the condition that the deformation δ of the bar equals 
zero.
 The solution is carried out by considering the deformation δL 
caused by the given loads and the deformation δR due to the redundant reac-
tion RB (Fig. 9.22b).
 The deformation δL is obtained from Eq. (9.9) after the bar has 
been divided into four portions, as shown in Fig. 9.22c. Follow the same 
procedure as in Concept Application 9.1:

 P1 5 0    P2 5 P3 5 600 3 103 N    P4 5 900 3 103 N

 A1 5 A2 5 400 3 1026 m2    A3 5 A4 5 250 3 1026 m2

L1 5 L2 5 L3 5 L4 5 0.150 m

Substituting these values into Eq. (9.9),

  δL 5 O4

i51

PiLi

AiE
5 (0 1

600 3 103 N
400 3 1026 m2 

  1
600 3 103 N

250 3 1026 m2 1
900 3 103 N

250 3 1026 m2) 
0.150 m

E
 

  δL 5
1.125 3 109

E
 (1)

 Considering now the deformation δR due to the redundant reaction 
RB, the bar is divided into two portions, as shown in Fig. 9.22d

P1 5 P2 5 2RB

A1 5 400 3 1026 m2  A2 5 250 3 1026 m2

L1 5 L2 5 0.300 m

Substituting these values into Eq. (9.9), 

 δR 5
P1L1

A1E
1

P2L2

A2E
5 2 

(1.95 3 103)RB

E
 (2)

Express the total deformation δ of the bar as zero:

 δ 5 δL 1 δR 5 0 (3)

and, substituting for δL and δR from Eqs. (1) and (2) into Eqs. (3),

δ 5
1.125 3 109

E
2

(1.95 3 103)RB

E
5 0

C

A

D

K

B

A 5 250 mm2 

A 5 400 mm2 

300 kN 

600 kN 150 mm

150 mm

150 mm

150 mm

(a)

A

300 kN 

600 kN 

A

300 kN 

600 kN 

A

L R  5 0
RB RB 

(b)

δ δ δ

C

K

D

3

4

2

1

A

B

300 kN 

600 kN 

(c)

150 mm

150 mm

150 mm

150 mm

C

1

2

A

B

RB

300 mm

300 mm

(d)
Fig. 9.22 (a) Restrained axially-
loaded bar. (b) Reactions will be found 
by releasing constraint at point B and 
adding compressive force at point B to 
enforce zero deformation at point B. 
(c) Diagram of released structure. 
(d) Diagram of added reaction force at 
point B to enforce zero deformation 
at point B.

(continued)
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Solving for RB,

RB 5 577 3 103 N 5 577 kN

 The reaction RA at the upper support is obtained from the free-
body diagram of the bar (Fig. 9.22e),

 1 ↑ o Fy 5 0:    RA 2 300 kN 2 600 kN 1 RB 5 0

 RA 5 900 kN 2 RB 5 900 kN 2 577 kN 5 323 kN

 Once the reactions have been determined, the stresses and strains 
in the bar can easily be obtained. Note that, while the total deformation of 
the bar is zero, each of its component parts does deform under the given 
loading and restraining conditions.

C

A

300 kN 

600 kN 

B

RB

RA

(e)

Concept	Application	9.5

Determine the reactions at A and B for the steel bar and loading of Con-
cept Application 9.4, assuming now that a 4.5-mm clearance exists between 
the bar and the ground before the loads are applied (Fig. 9.23). Assume  
E 5 200 GPa.
 Considering the reaction at B to be redundant, compute the defor-
mations δL and δR caused by the given loads and the redundant reaction RB. 
However, in this case, the total deformation is δ 5 4.5 mm. Therefore,

 δ 5 δL 1 δR 5 4.5 3 1023 m (1)

Substituting for δL and δR into Eq. (1), and recalling that E 5 200 GPa 5 
200 3 109 Pa, 

δ 5
1.125 3 109

200 3 109 2
(1.95 3 103)RB

200 3 109 5 4.5 3 1023 m

Solving for RB,

RB 5 115.4 3 103 N 5 115.4 kN

The reaction at A is obtained from the free-body diagram of the bar  
(Fig. 9.22e):

 1 ↑ o Fy 5 0:    RA 2 300 kN 2 600 kN 1 RB 5 0
 RA 5 900 kN 2 RB 5 900 kN 2 115.4 kN 5 785 kN

CC

AA

B B

300 kN

600 kN

300 mm

4.5 mm

300 mm

A 5 250 mm2 

A 5 400 mm2 

δ

Fig. 9.23 Multi-section bar of 
Concept Application 9.4 with initial 
4.5-mm gap at point B. Loading brings 
bar into contact with constraint.

Fig. 9.22 (cont.) (e) Complete 
free-body diagram of ACB.
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9.3  PROBLEMS INVOLVING 
TEMPERATURE CHANGES

Consider a homogeneous rod AB of uniform cross section that rests freely 
on a smooth horizontal surface (Fig. 9.24a). If the temperature of the rod is 
raised by DT, the rod elongates by an amount δT that is proportional to both 
the temperature change DT and the length L of the rod (Fig. 9.24b). Here 

 δT 5 α(DT)L (9.12)

where α is a constant characteristic of the material called the coefficient of 
thermal expansion. Since δT and L are both expressed in units of length, α 
represents a quantity per degree C or per degree F, depending whether the 
temperature change is expressed in degrees Celsius or Fahrenheit.

Fig. 9.24 Elongation of an 
unconstrained rod due to 
temperature increase.

A

L

L

B

B

(b)

A

(a)

Tδ

Fig. 9.25 Force P develops when the 
temperature of the rod increases while ends 
A and B are restrained.

L

(b)
A B

A B

P9 P

(a)

Associated with deformation δT must be a strain ϵT 5 δTyL. Recalling 
Eq. (9.12),

 ϵT 5 αDT (9.13)

The strain ϵT is called a thermal strain, as it is caused by the change 
in  temperature of the rod. However, there is no stress associated with 
the strain ϵT.

Assume the same rod AB of length L is placed between two fixed 
supports at a distance L from each other (Fig. 9.25a). Again, there is nei-
ther stress nor strain in this initial condition. If we raise the temperature by 
DT, the rod cannot elongate because of the restraints imposed on its ends; 
the elongation δT of the rod is zero. Since the rod is homogeneous and of 
uniform cross section, the strain ϵT at any point is ϵT 5 δTyL and thus is also 
zero. However, the supports will exert equal and opposite forces P and P9 
on the rod after the temperature has been raised, to keep it from elongating 
(Fig. 9.25b). It follows that a state of stress (with no corresponding strain) 
is created in the rod.

The problem created by the temperature change DT is statically inde-
terminate. Therefore, the magnitude P of the reactions at the supports is 
determined from the condition that the elongation of the rod is zero. Using 
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the superposition method described in Sec. 9.2, the rod is detached from its 
support B (Fig. 9.26a) and elongates freely as it undergoes the temperature 
change DT (Fig. 9.26b). According to Eq. (9.12), the corresponding elonga-
tion is

δT 5 α(DT)L

Applying now to end B the force P representing the redundant reaction, and 
recalling Eq. (9.8), a second deformation (Fig. 9.26c) is

δP 5
PL

AE

Expressing that the total deformation δ must be zero,

δ 5 δT 1 δP 5 α(DT)L 1
PL

AE
5 0

from which

P 5 2AEα(DT)

The stress in the rod due to the temperature change DT is

 σ 5
P

A
5 2Eα(DT) (9.14)

The absence of any strain in the rod applies only in the case of a 
homogeneous rod of uniform cross section. Any other problem involving a 
restrained structure undergoing a change in temperature must be analyzed 
on its own merits. However, the same general approach can be used by 
considering the deformation due to the temperature change and the defor-
mation due to the redundant reaction separately and superposing the two 
solutions obtained.

Fig. 9.26 Superposition method to find force at 
point B of restrained rod AB undergoing thermal 
expansion. (a) Initial rod length; (b) thermally 
expanded rod length; (c) force P pushes point B 
back to zero deformation.

L

(b)

(c)
L

A

A B

B

P

(a)
T

A B

P

δ

δ
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Concept	Application	9.6

Determine the values of the stress in portions AC and CB of the steel bar 
shown (Fig. 9.27a) when the temperature of the bar is 2508F, knowing that 
a close fit exists at both of the rigid supports when the temperature is 1758F. 
Use the values E 5 29 3 106 psi and α 5 6.5 3 10–6/8F for steel.
 Determine the reactions at the supports. Since the problem is stati-
cally indeterminate, detach the bar from its support at B and let it undergo 
the temperature change

DT 5 (2508F) 2 (758F) 5 21258F

The corresponding deformation (Fig. 9.27c) is

 δT 5 α(DT)L 5 (6.5 3 1026/8F)(21258F)(24 in.)

 5 219.50 3 1023 in.

Applying the unknown force RB at end B (Fig. 9.27d), use Eq. (9.9) to 
express the corresponding deformation δR. Substituting

L1 5 L2 5 12 in.

A1 5 0.6 in2    A2 5 1.2 in2

P1 5 P2 5 RB    E 5 29 3 106 psi

into Eq. (9.9), write

 δR 5
P1L1

A1E
1

P2L2

A2E

 5
RB

29 3 106 psi
 ( 12 in.

0.6 in2 1
12 in.
1.2 in2)

 5 (1.0345 3 1026 in./lb)RB

Expressing that the total deformation of the bar must be zero as a result of 
the imposed constraints, write

 δ 5 δT 1 δR 5 0

 5 219.50 3 1023 in. 1 (1.0345 3 1026 in./lb)RB 5 0

from which

RB 5 18.85 3 103 lb 5 18.85 kips

The reaction at A is equal and opposite.
 Noting that the forces in the two portions of the bar are P1 5 P2 5 
18.85 kips, obtain the following values of the stress in portions AC and CB 
of the bar:

Fig. 9.27 (a) Restrained bar. (b) Bar 
at 1758F temperature. (c) Bar at lower 
temperature. (d) Force RB needed to 
enforce zero deformation at point B.

C
A

A 5 0.6 in2 A 5 1.2 in2

12 in.12 in.

B

(a)

(c)

(d)

RB

(b)
T

R

C
A

B

C

L1 L2

A
B

C

1 2

1 2
A

B

δ

δ

(continued)
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 σ1 5
P1

A1
5

18.85 kips
0.6 in2 5 131.42 ksi

σ2 5
P2

A2
5

18.85 kips
1.2 in2 5 115.71 ksi

 It cannot emphasized too strongly that, while the total deforma-
tion of the bar must be zero, the deformations of the portions AC and CB 
are not zero. A solution of the problem based on the assumption that these 
deformations are zero would therefore be wrong. Neither can the values 
of the strain in AC or CB be assumed equal to zero. To amplify this point, 
determine the strain ϵAC in portion AC of the bar. The strain ϵAC can be 
divided into two component parts; one is the thermal strain ϵT produced 
in the unrestrained bar by the temperature change DT (Fig. 9.27c). From  
Eq. (9.13),

 ϵT 5 α DT 5 (6.5 3 1026/8F)(21258F)

 5 2812.5 3 1026 in./in.

The other component of ϵAC is associated with the stress σ1 due to the force 
RB applied to the bar (Fig. 9.27d). From Hooke’s law, express this compo-
nent of the strain as

σ1

E
5

131.42 3 103 psi
29 3 106 psi

5 11083.4 3 1026 in./in.

Add the two components of the strain in AC to obtain

 ϵAC 5 ϵT 1
σ1

E
5 2812.5 3 1026 1 1083.4 3 1026

 5 1271 3 1026 in./in.

A similar computation yields the strain in portion CB of the bar:

 ϵCB 5 ϵT 1
σ2

E
5 2812.5 3 1026 1 541.7 3 1026

 5 2271 3 1026 in./in.

The deformations δAC and δCB of the two portions of the bar are

 δAC 5 ϵAC(AC) 5 (1271 3 1026)(12 in.)

 5 13.25 3 1023 in.

 δCB 5 ϵCB(CB) 5 (2271 3 1026)(12 in.)

 5 23.25 3 1023 in.

Thus, while the sum δ 5 δAC 1 δCB of the two deformations is zero, neither 
of the deformations is zero.
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Sample	Problem	9.3

The 12-in.-diameter rod CE and the 34-in.-diameter rod DF are attached to the 
rigid bar ABCD as shown. Knowing that the rods are made of aluminum 
and using E 5 10.6 3 106 psi, determine (a) the force in each rod caused by 
the loading shown and (b) the corresponding deflection of point A.

STRATEGY: To solve this statically indeterminate problem, you must 
supplement static equilibrium with a relative deflection analysis of the two 
rods.

MODELING: Draw the free body diagram of the bar (Fig. 1)

ANALYSIS: 

Statics. Considering the free body of bar ABCD in Fig. 1, note that the 
reaction at B and the forces exerted by the rods are indeterminate. However, 
using statics, 

 1  o MB 5 0:  (10 kips)(18 in.) 2 FCE 
(12 in.) 2 FDF (20 in.) 5 0

 12FCE 1 20FDF 5 180 (1)

Geometry. After application of the 10-kip load, the position of the bar 
is A9BC9D9 (Fig. 2). From the similar triangles BAA9, BCC9, and BDD9,

 
δC

12 in.
5

δD

20 in.
    δC 5 0.6δD (2)

 
δA

18 in.
5

δD

20 in.
    δA 5 0.9δD (3)

Deformations. Using Eq. (9.8), and the data shown in Fig. 3, write

δC 5
FCELCE

ACEE
    δD 5

FDFLDF

ADFE

Substituting for δC and δD into Eq. (2), write

δC 5 0.6δD    FCELCE

ACEE
5 0.6 

FDFLDF

ADFE

FCE 5 0.6 
LDF

LCE

 
ACE

ADF

 FDF 5 0.6 (30 in.
24 in.)[

1
4π(1

2 in.)2

1
4π(3

4 in.)2 ]  FDF  FCE 5 0.333FDF

Force	in	Each	Rod. Substituting for FCE into Eq. (1) and recalling that 
all forces have been expressed in kips,

 12(0.333FDF) 1 20FDF 5 180 FDF 5 7.50 kips b

 FCE 5 0.333FDF 5 0.333(7.50 kips) FCE 5 2.50 kips b

(continued)

Fig. 1 Free-body diagram of 
rigid bar ABCD. 

18 in. 12 in.

30 in.
24 in.

8 in.

10 kips

B

E

F

C DA

18 in. 12 in. 8 in.

FCE

By

Bx

FDF10 kips

B
C DA

18 in. 12 in. 8 in.

B
C' D'

C D

A

A' A C

D

δ δ
δ

30 in.
24 in.

C
D

C D

E

F

in.1
2

in.3
4

FCE FDF

δ δ

Fig. 2 Linearly proportional 
displacements along rigid bar 
ABCD. 

Fig. 3 Forces and 
deformations in CE and DF.
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Deflections. The deflection of point D is

δD 5
FDFLDF

ADFE
5

(7.50 3 103 lb)�(30 in.)
1
4π(3

4 in.)2(10.6 3 106 psi)
    δD 5 48.0 3 1023 in.

Using Eq. (3),

 δA 5 0.9δD 5 0.9(48.0 3 1023 in.) δA 5 43.2 3 1023 in. b

REFLECT	and	THINK: You should note that as the rigid bar rotates 
about B, the deflections at C and D are proportional to their distance from 
the pivot point B, but the forces exerted by the rods at these points are not. 
Being statically indeterminate, these forces depend upon the deflection 
attributes of the rods as well as the equilibrium of the rigid bar.

(continued)(continued)

Sample	Problem	9.4

The rigid bar CDE is attached to a pin support at E and rests on the 30-mm-
diameter brass cylinder BD. A 22-mm-diameter steel rod AC passes through 
a hole in the bar and is secured by a nut that is snugly fitted when the tem-
perature of the entire assembly is 208C. The temperature of the brass cyl-
inder is then raised to 508C, while the steel rod remains at 208C. Assuming 
that no stresses were present before the temperature change, determine the 
stress in the cylinder.

 Rod AC: Steel Cylinder BD: Brass
 E 5 200 GPa E 5 105 GPa
 α 5 11.7 3 1026/8C α 5 20.9 3 1026/8C

STRATEGY: You can use the method of superposition, considering RB 
as redundant. With the support at B removed, the temperature rise of the  
cylinder causes point B to move down through δT. The reaction RB must 
cause a deflection δ1, equal to δT so that the final deflection of B will be 
zero (Fig. 2)

MODELING: Draw the free-body diagram of the entire assembly (Fig. 1).

ANALYSIS: 

Statics. Considering the free body of the entire assembly, write

 1  o ME 5 0:  RA(0.75 m) 2 RB(0.3 m) 5 0   RA 5 0.4RB (1)

(continued)

C

A

B0.9 m

0.3 m

0.45 m 0.3 m

D

E

C

A

B

0.3 m0.45 m

D E

RA

RB

Ey

Ex

Fig. 1 Free-body diagram of bolt, 
cylinder and bar.
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	 Deflection δT. Because of a temperature rise of 508 2 208 5 308C, 
the length of the brass cylinder increases by δT (Fig. 2a).

 δT 5 L(DT)α 5 (0.3 m)�(308C)�(20.9 3 1026/8C) 5 188.1 3 1026 m ↓

Deflection	δ1.  From Fig. 2b, note that δD 5 0.4δC and δ1 5 δD 1 δB/D.

 δC 5
RAL

AE
5

RA(0.9 m)
1
4π(0.022 m)2(200 GPa)

5 11.84 3 1029RA ↑

 δD 5 0.40δC 5 0.4(11.84 3 1029RA) 5 4.74 3 1029RA↑

 δByD 5
RBL

AE
5

RB(0.3 m)
1
4π(0.03 m)2(105 GPa)

5 4.04 3 1029RB ↑

Recall from Eq. (1) that RA 5 0.4RB , so

δ1 5 δD 1 δByD 5 [4.74(0.4RB) 1 4.04RB ]1029 5 5.94 3 1029RB ↑

But δT 5 δ1: 188.1 3 1026 m 5 5.94 3 1029 RB RB 5 31.7 kN

Stress	in	Cylinder:	 σB 5
RB

A
5

31.7 kN
1
4 π(0.03 m)2  σB 5 44.8 MPa b

REFLECT	and	THINK: This example illustrates the large stresses that 
can develop in statically indeterminate systems due to even modest tem-
perature changes. Note that if this assembly was statically determinate (i.e., 
the steel rod was removed), no stress at all would develop in the cylinder 
due to the temperature change.

(a) (b)

5 5
0.3 0.4δC0.75

(c)

C

C C

D
DD

E E

A AA

B
B B

RB

RA  

Dδ δC

δCδC

δT δ1 51

Fig. 2 Superposition of thermal and restraint force deformations (a) Support at B 
removed. (b) Reaction at B applied. (c) Final position.
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Problems
 9.25 An axial force of 200 kN is applied to the assembly shown by means 

of rigid end plates. Determine (a) the normal stress in the aluminum 
shell, (b) the corresponding deformation of the assembly.

Fig.	P9.25	and	P9.26

300 mm

60 mm

Aluminum shell
E 5 70 GPa

Brass core
E 5 105 GPa

25 mm

 9.26 The length of the assembly shown decreases by 0.40 mm when an axial 
force is applied by means of rigid end plates. Determine (a) the magni-
tude of the applied force, (b) the corresponding stress in the brass core.

 9.27 The 4.5-ft concrete post is reinforced with six steel bars, each with a  
11

8-in. diameter. Knowing that Es 5 29 3 106 psi and Ec 5 4.2 3 106 psi,  
determine the normal stresses in the steel and in the concrete when a 
350-kip axial centric force P is applied to the post.

Fig. P9.27

4    ft

18 in.

1
2

P

 9.28 For the post of Prob. 9.27, determine the maximum centric force that 
can be applied if the allowable normal stress is 20 ksi in the steel and 
2.4 ksi in the concrete.

Final PDF to printer



418

bee98160_ch09_383-450.indd 418 12/11/15  07:47 PM

 9.29 Three steel rods (E 5 29 3 106 psi) support an 8.5-kip load P. Each 
of the rods AB and CD has a 0.32-in2 cross-sectional area and rod 
EF has a 1-in2 cross-sectional area. Neglecting the deformation of bar 
BED, determine (a) the change in length of rod EF, (b) the stress in 
each rod.

Fig. P9.29

CA

DB

20 in.

16 in.
E

F

P

 9.30 Two cylindrical rods, one of steel and the other of brass, are joined at 
C and restrained by rigid supports at A and E. For the loading shown 
and knowing that Es 5 200 GPa and Eb 5 105 GPa, determine (a) the 
reactions at A and E, (b) the deflection of point C.

 9.31 Solve Prob. 9.30, assuming that rod AC is made of brass and rod CE is 
made of steel.

 9.32 A polystyrene rod consisting of two cylindrical portions AB and BC is 
restrained at both ends and supports two 6-kip loads as shown. Know-
ing that E 5 0.45 3 106 psi, determine (a) the reactions at A and C, 
(b) the normal stress in each portion of the rod.

Fig. P9.32

B

C

15 in.

25 in.
1.25 in.

A

6 kips6 kips

2 in.

 9.33 Three wires are used to suspend the plate shown. Aluminum wires of  
1
8-in. diameter are used at A and B while a steel wire of 1

12-in. diameter 
is used at C. Knowing that the allowable stress for aluminum (Ea 5 
10.4 3 106 psi) is 14 ksi and that the allowable stress for steel (Es 5 
29 3 106 psi) is 18 ksi, determine the maximum load P that can be 
applied.Fig. P9.33

A

B

P

C
L

L

Fig. P9.30

180

40-mm diam. 30-mm diam.

120 100

Dimensions in mm

100

A C
D E

60 kN 40 kN

BrassSteel B
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 9.34 The rigid bar AD is supported by two steel wires of 1
16-in. diameter (E 5 

29 3 106 psi) and a pin and bracket at A. Knowing that the wires were 
initially taut, determine (a) the additional tension in each wire when 
a 220-lb load P is applied at D, (b) the corresponding deflection of 
point D.

Fig. P9.34

D

PB C

E

8 in.

10 in.

12 in. 12 in. 12 in.

F

A

 9.35 The rigid bar ABC is suspended from three wires of the same material. 
The cross-sectional area of the wire at B is equal to half of the cross-
sectional area of the wires at A and C. Determine the tension in each 
wire caused by the load P.

Fig. P9.35

P

A

L

L L

B

C
D

3
4

 9.36 The rigid bar ABCD is suspended from four identical wires. Deter-
mine the tension in each wire caused by the load P.

 9.37 The brass shell (αb 5 11.6 3 10–6/°F) is fully bonded to the steel core 
(αs 5 6.5 3 10–6/°F). Determine the largest allowable increase in tem-
perature if the stress in the steel core is not to exceed 8 ksi.

12 in.

1 in.1 in.

Steel core
E 5 29 3 106 psi

Brass shell
E 5 15 3 106 psi

in.1
4

in.1
4

in.1
4

in.1
4

Fig. P9.37

Fig. P9.36

P

A

L L

B C D

L
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 9.38 The aluminum shell is fully bonded to the brass core and the assembly 
is unstressed at a temperature of 15°C. Considering only axial defor-
mations, determine the stress in the aluminum when the temperature 
reaches 195°C.

 9.39 The concrete post (Ec 5 3.6 3 106 psi and αc 5 5.5 3 10–6/°F) is 
reinforced with six steel bars, each of 7

8-in. diameter (Es 5 29 3 106 
psi and αs 5 6.5 3 10–6/°F). Determine the normal stresses induced in 
the steel and in the concrete by a temperature rise of 65°F.

6 ft

10 in.10 in.

Fig. P9.39

 9.40 The steel rails of a railroad track (Es 5 200 GPa, αs 5 11.7 3 10–6/°C) 
were laid at a temperature of 6°C. Determine the normal stress in 
the rails when the temperature reaches 48°C, assuming that the rails  
(a) are welded to form a continuous track, (b) are 10 m long with 
3-mm gaps between them.

 9.41 A rod consisting of two cylindrical portions AB and BC is restrained 
at both ends. Portion AB is made of steel (Es 5 200 GPa, αs 5 11.7 3 
10–6/°C) and portion BC is made of brass (Eb 5 105 GPa, αb 5 20.9 
3 10–6/°C). Knowing that the rod is initially unstressed, determine the 
compressive force induced in ABC when there is a temperature rise of 
50°C.

 9.42 A rod consisting of two cylindrical portions AB and BC is restrained 
at both ends. Portion AB is made of steel (Es 5 29 3 106 psi, αs 5 6.5 
3 10–6/°F) and portion BC is made of aluminum (Ea 5 10.4 3 106 
psi, αa 5 13.3 3 10–6/°F). Knowing that the rod is initially unstressed, 
determine (a) the normal stresses induced in portions AB and BC by a 
temperature rise of 70°F, (b) the corresponding deflection of point B.

A B C

1   -in. diameter1
2

24 in. 32 in.

2   -in. diameter1
4

Fig. P9.42

 9.43 Solve Prob. 9.42, assuming that portion AB of the composite rod is 
made of aluminum and portion BC is made of steel.

Brass core
     E 5 105 GPa
         5 20.9  3 1026/8C   

Aluminum shell
     E 5 70 GPa
         5 23.6  3 1026/8C   

25 mm

60 mm

α

α

Fig. P9.38

B

C

250 mm

300 mm

A

50-mm diameter

30-mm diameter

Fig. P9.41
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 9.44 Determine (a) the compressive force in the bars shown after a tem-
perature rise of 180°F, (b) the corresponding change in length of the 
bronze bar.

Bronze
 A 5 2.4 in2

 E 5 15 3 106 psi
     5 12 3 1026/8F

0.02 in.
14 in. 18 in.

Aluminum
 A 5 2.8 in2

 E 5 10.6 3 106 psi
     5 12.9 3 1026/8Fα α

Fig.	P9.44	and	P9.45

 9.45 Knowing that a 0.02-in. gap exists when the temperature is 75°F, 
determine (a) the temperature at which the normal stress in the alumi-
num bar will be equal to –11 ksi, (b) the corresponding exact length of 
the aluminum bar.

 9.46 At room temperature (20°C) a 0.5-mm gap exists between the ends 
of the rods shown. At a later time when the temperature has reached 
140°C, determine (a) the normal stress in the aluminum rod, (b) the 
change in length of the aluminum rod.

 9.47 A brass link (Eb 5 105 GPa, αb 5 20.9 3 10–6/°C) and a steel rod (Es  
5 200 GPa, αs 5 11.7 3 10–6/°C) have the dimensions shown at a 
temperature of 20°C. The steel rod is cooled until it fits freely into the 
link. The temperature of the whole assembly is then raised to 45°C. 
Determine (a) the final normal stress in the steel rod, (b) the final 
length of the steel rod.

 9.48 Two steel bars (Es 5 200 GPa and αs 5 11.7 3 10–6/°C) are used to 
reinforce a brass bar (Eb 5 105 GPa, αb 5 20.9 3 10–6/°C) that is 
subjected to a load P 5 25 kN. When the steel bars were fabricated, 
the distance between the centers of the holes that were to fit on the 
pins was made 0.5 mm smaller than the 2 m needed. The steel bars 
were then placed in an oven to increase their length so that they would 
just fit on the pins. Following fabrication, the temperature in the steel 
bars dropped back to room temperature. Determine (a) the increase in 
temperature that was required to fit the steel bars on the pins, (b) the 
stress in the brass bar after the load is applied to it.

15 mm

40 mm

2 m

5 mmSteel

Brass
Steel

P9

P

Fig. P9.48

Aluminum
 A 5 2000 mm2

 E 5 75 GPa
     5 23 3 1026/8C

A B

300 mm 250 mm

0.5 mm

Stainless steel
 A 5 800 mm2

 E 5 190 GPa 
     5 17.3 3 1026/8Cα α

Fig. P9.46

30-mm diameter

50 mm

250 mm0.12 mm

Steel
Section A-A

Brass
37.5 mm

37.5 mm

A

A

Fig. P9.47
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9.4 POISSON’S RATIO
When a homogeneous slender bar is axially loaded, the resulting stress and 
strain satisfy Hooke’s law, as long as the elastic limit of the material is  
not exceeded. Assuming that the load P is directed along the x axis 
(Fig. 9.28a), σx 5 PyA, where A is the cross-sectional area of the bar, and 
from Hooke’s law,

 ϵx 5 σxyE (9.15)

where E is the modulus of elasticity of the material.
Also, the normal stresses on faces perpendicular to the y and z  

axes are zero: σy 5 σz 5 0 (Fig. 9.28b). It would be tempting to con-
clude that the corresponding strains ϵy and ϵz are also zero. This is not the 
case. In all engineering materials, the elongation produced by an axial 
tensile force P in the direction of the force is accompanied by a contrac-
tion in any transverse direction (Fig. 9.29). In this section and the fol-
lowing sections, all materials are assumed to be both homogeneous and 
isotropic (i.e., their mechanical properties are independent of both posi-
tion and direction). It follows that the strain must have the same value 
for any transverse direction. Therefore, the loading shown in Fig. 9.28 
must have ϵy 5 ϵz. This common value is the lateral strain. An important 
constant for a given material is its Poisson’s ratio, named after the French 
mathematician Siméon Denis Poisson (1781–1840) and denoted by the 
Greek letter ν (nu).

  ν 5 2 
lateral strain
axial strain

 (9.16)

or

  ν 5 2 
ϵy

ϵx
5 2 

ϵz

ϵx
 (9.17)

for the loading condition represented in Fig. 9.28. Note the use of a minus 
sign in these equations to obtain a positive value for ν, as the axial and 
lateral strains have opposite signs for all engineering materials.‡ Solving 
Eq. (9.17) for ϵy and ϵz  , and recalling Eq. (9.15), write the following rela-
tionships, which fully describe the condition of strain under an axial load 
applied in a direction parallel to the x axis:

 ϵx 5
σx

E
      ϵy 5 ϵz 5 2 

νσx

E
 (9.18)

Fig. 9.28 A bar in uniaxial tension and a 
representative stress element.

z

y

x

x

(a)

(b)

P
A5

y 05

z 05

P

A

σ

σ
σ

Fig. 9.29 Materials undergo transverse 
contraction when elongated under axial load.

P

P9

‡However, some experimental materials, such as polymer foams, expand laterally when 
stretched. Since the axial and lateral strains have then the same sign, Poisson’s ratio of these 
materials is negative. (See Roderic Lakes, “Foam Structures with a Negative Poisson’s Ratio,” 
Science, 27 February 1987, Volume 235, pp. 1038–1040.)
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9.5  MULTIAXIAL LOADING: 
GENERALIZED HOOKE’S LAW

All the examples considered so far in this chapter have dealt with slender 
members subjected to axial loads, i.e., to forces directed along a single axis. 
Consider now structural elements subjected to loads acting in the directions 
of the three coordinate axes and producing normal stresses σx  , σy  , and σz 
that are all different from zero (Fig. 9.31). This condition is a multiaxial  

Concept	Application	9.7

A 500-mm-long, 16-mm-diameter rod made of a homogenous, isotropic 
material is observed to increase in length by 300 µm, and to decrease in 
diameter by 2.4 µm when subjected to an axial 12-kN load. Determine the 
modulus of elasticity and Poisson’s ratio of the material.
 The cross-sectional area of the rod is

A 5 πr2 5 π(8 3 1023 m)2 5 201 3 1026 m2

Choosing the x axis along the axis of the rod (Fig. 9.30), write

 σx 5
P

A
5

12 3 103 N
201 3 1026  m2 5 59.7 MPa

 ϵx 5
δx

L
5

300 μm
500 mm

5 600 3 1026

 ϵy 5
δy

d
5

22.4 μm
16 mm

5 2150 3 1026

From Hooke’s law, σx 5 Eϵx  ,

E 5
σx

ϵx
5

59.7 MPa
600 3 1026 5 99.5 GPa

and from Eq. (9.17),

ν 5 2 
ϵy

ϵx
5 2 

2150 3 1026

600 3 1026 5 0.25

12 kN

L 5 500 mm

d 5 16 mm
y 5 22.4    

x 5 300    

z

y

x

m

m

δ µ

µδ

Fig. 9.30 Axially loaded rod.

Fig. 9.31 State of stress 
for multiaxial loading.
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loading. Note that this is not the general stress condition described in  
Sec. 8.2, since no shearing stresses are included among the stresses shown 
in Fig. 9.31.

Consider an element of an isotropic material in the shape of a cube  
(Fig. 9.32a). Assume the side of the cube to be equal to unity, since it is always 
possible to select the side of the cube as a unit of length. Under the given mul-
tiaxial loading, the element will deform into a rectangular parallelepiped of 
sides equal to 1 1 ϵx , 1 1 ϵy , and 1 1 ϵz , where ϵx , ϵy , and ϵz denote the values 
of the normal strain in the directions of the three coordinate axes (Fig. 9.32b). 
Note that, as a result of the deformations of the other elements of the material, 
the element under consideration could also undergo a translation, but the con-
cern here is with the actual deformation of the element, not with any possible 
superimposed rigid-body displacement.

In order to express the strain components ϵx , ϵy , ϵz in terms of the 
stress components σx , σy , σz , consider the effect of each stress component 
and combine the results. This approach will be used repeatedly in this text, 
and is based on the principle of superposition. This principle states that 
the effect of a given combined loading on a structure can be obtained by 
determining the effects of the various loads separately and combining the 
results, provided that the following conditions are satisfied:

 1. Each effect is linearly related to the load that produces it.
 2. The deformation resulting from any given load is small and does not 

affect the conditions of application of the other loads.

For multiaxial loading, the first condition is satisfied if the stresses do 
not exceed the proportional limit of the material, and the second condition 
is also satisfied if the stress on any given face does not cause deformations 
of the other faces that are large enough to affect the computation of the 
stresses on those faces.

Considering the effect of the stress component σx , recall from  
Sec. 9.4 that σx causes a strain equal to σxyE in the x direction and strains 
equal to 2νσxyE in each of the y and z directions. Similarly, the stress com-
ponent σy , if applied separately, will cause a strain σyyE in the y direction 
and strains 2νσyyE in the other two directions. Finally, the stress compo-
nent σz causes a strain σzyE in the z direction and strains 2νσzyE in the x 
and y directions. Combining the results, the components of strain corre-
sponding to the given multiaxial loading are

 ϵx 5 1
σx

E
2

νσy

E
2

νσz

E

  ϵy 5 2 
νσx

E
1

σy

E
2

νσz

E
 (9.19)

 ϵz 5 2 
νσx

E
2

νσy

E
1

σz

E

Equations (9.19) are the generalized Hooke’s law for the multiaxial 
loading of a homogeneous isotropic material. As indicated earlier, these 
results are valid only as long as the stresses do not exceed the proportional 
limit and the deformations involved remain small. Also, a positive value 
for a stress component signifies tension and a negative value compression. 
Similarly, a positive value for a strain component indicates expansion in the 
corresponding direction and a negative value contraction.

Fig. 9.32 Deformation of unit cube  
under multiaxial loading: (a) unloaded;  
(b) deformed.
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Concept	Application	9.8

The steel block shown (Fig. 9.33) is subjected to a uniform pressure on all 
its faces. Knowing that the change in length of edge AB is 21.2 3 1023 in., 
determine (a) the change in length of the other two edges and (b) the  
pressure p applied to the faces of the block. Assume E 5 29 3 106 psi and 
ν 5 0.29.

	 a.	 Change	in	Length	of	Other	Edges. Substituting σx 5 σy 5 
σz 5 2p into Eqs. (9.19), the three strain components have the common 
value

 ϵx 5 ϵy 5 ϵz 5 2 
p

E
 (1 2 2ν)  (1)

Since

 ϵx 5 δxyAB 5 (21.2 3 1023 in.)y(4 in.)

 5 2300 3 1026 in./in.

obtain

ϵy 5 ϵz 5 ϵx 5 2300 3 1026 in./in.

from which

 δy 5 ϵy(BC) 5 (2300 3 1026)(2 in.) 5 2600 3 1026 in.

 δz 5 ϵz(BD) 5 (2300 3 1026)(3 in.) 5 2900 3 1026 in.

 b. Pressure. Solving Eq. (1) for p,

p 5 2 
Eϵx

1 2 2ν
5 2 

(29 3 106 psi)(2300 3 1026)
1 2 0.58

p 5 20.7 ksi

2 in.

3 in.4  in.
z

y

A

B

D

C

x

Fig. 9.33 Steel block under uniform 
pressure p.

9.6 SHEARING STRAIN
When we derived in Sec. 9.5 the relations (9.19) between normal stresses 
and normal strains in a homogeneous isotropic material, we assumed that 
no shearing stresses were involved. In the more general stress situation rep-
resented in Fig. 9.34, shearing stresses τxy , τyz , and τzx are present (as well 
as the corresponding shearing stresses τyx , τzy , and τxz). These stresses have 
no direct effect on the normal strains and, as long as all the deformations 
involved remain small, they will not affect the derivation nor the validity of 
Eqs. (9.19). The shearing stresses, however, tend to deform a cubic element 
of material into an oblique parallelepiped.

Fig. 9.34 Positive stress components at 
point Q for a general state of stress.
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Consider a cubic element (Fig. 9.35) subjected to only the shearing  
stresses τxy and τyx applied to faces of the element respectively perpendi cular 
to the x and y axes. (Recall from Sec. 8.3 that τxy 5 τyx .) The cube is observed 
to deform into a rhomboid of sides equal to one (Fig. 9.36). Two of the angles 
formed by the four faces under stress are reduced from π2 to π2 2 γxy , while the 
other two are increased from π2 to π2 1 γxy . The small angle γxy (expressed in 
radians) defines the shearing strain corresponding to the x and y directions. 
When the deformation involves a reduction of the angle formed by the two 
faces oriented toward the positive x and y axes (as shown in Fig. 9.36), the 
shearing strain γxy is positive; otherwise, it is negative.

As a result of the deformations of the other elements of the mate 
rial, the element under consideration also undergoes an overall rotation. 
The concern here is with the actual deformation of the element, not with 
any possible superimposed rigid-body displacement.†

Plotting successive values of τxy against the corresponding values of 
γxy , the shearing stress-strain diagram is obtained for the material. (This can 
be accomplished by carrying out a torsion test, as you will see in Chap. 10.) 
This diagram is similar to the normal stress-strain diagram from the tensile 
test described earlier; however, the values for the yield strength, ultimate 
strength, etc., are about half as large in shear as they are in tension. As 
for normal stresses and strains, the initial portion of the shearing stress-
strain diagram is a straight line. For values of the shearing stress that do 
not exceed the proportional limit in shear, it can be written for any homoge-
neous isotropic material that

 τxy 5 Gγxy (9.20)

This relationship is Hooke’s law for shearing stress and strain, and the con-
stant G is called the modulus of rigidity or shear modulus of the material. 

Fig. 9.35 Unit cubic element subjected to 
shearing stress.
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Fig. 9.36 Deformation of unit cubic 
element due to shearing stress.

y

x

xy2 2

xyγ

π γ

Fig. 9.37 Cubic element as viewed in xy-plane 
after rigid rotation.

y

x

xy2 2

xy2
1

xy2
1

γ

π γ

γ

Fig. 9.38 Cubic element as viewed in 
xy-plane with equal rotation of x and y faces.

† In defining the strain γxy , some authors arbitrarily assume that the actual deformation of the 
element is accompanied by a rigid-body rotation where the horizontal faces of the element do 
not rotate. The strain γxy is then represented by the angle through which the other two faces have 
rotated (Fig. 9.37). Others assume a rigid-body rotates where the horizontal faces rotate through 
1
2 γxy counterclockwise and the vertical faces through 1

2 γxy clockwise (Fig. 9.38). Since both 
assumptions are unnecessary and may lead to confusion, in this text you will associate the shear-
ing strain γxy with the change in the angle formed by the two faces, rather than with the rotation of 
a given face under restrictive conditions.
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Since the strain γxy is defined as an angle in radians, it is dimensionless, and 
the modulus G is expressed in the same units as τxy in pascals or in psi. The 
modulus of rigidity G of any given material is less than one-half, but more 
than one-third of the modulus of elasticity E of that material.

Now consider a small element of material subjected to shearing 
stresses τyz and τzy (Fig. 9.39a), where the shearing strain γyz is the change 
in the angle formed by the faces under stress. The shearing strain γzx is 
found in a similar way by considering an element subjected to shearing 
stresses τzx and τxz (Fig. 9.39b). For values of the stress that do not exceed 
the proportional limit, you can write two additional relationships:

 τyz 5 Gγyz      τzx 5 Gγzx (9.21)

where the constant G is the same as in Eq. (9.20).
For the general stress condition represented in Fig. 9.34, and as long 

as none of the stresses involved exceeds the corresponding proportional 
limit, you can apply the principle of superposition and combine the results. 
The generalized Hooke’s law for a homogeneous isotropic material under 
the most general stress condition is

  ϵx 5 1
σx

E
2

νσy

E
2

νσz

E

  ϵy 5 2 
νσx

E
1

σy

E
2

νσz

E

  ϵz 5 2 
νσx

E
2

νσy

E
1

σz

E
 (9.22)

  γxy 5
τxy

G
    γyz 5

τyz

G
    γzx 5

τzx

G
 

An examination of Eqs. (9.22) leads us to three distinct constants, 
E, ν, and G, which are used to predict the deformations caused in a 
given material by an arbitrary combination of stresses. Only two of these  
constants need be determined experimentally for any given material. The 
next section explains that the third constant can be obtained through a very 
simple computation.

Fig. 9.39 States of pure shear in: (a) yz-plane; (b) xz-plane.
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*9.7  DEFORMATIONS UNDER 
AXIAL LOADING—RELATION 
BETWEEN E, ν, AND G

Section 9.4 showed that a slender bar subjected to an axial tensile load P 
directed along the x axis will elongate in the x direction and contract in both 
of the transverse y and z directions. If ϵx denotes the axial strain, the lateral 
strain is expressed as ϵy 5 ϵz 5 2νϵx, where ν is Poisson’s ratio. Thus, an 
element in the shape of a cube of side equal to one and oriented as shown 
in Fig. 9.41a will deform into a rectangular parallelepiped of sides 1 1 ϵx,  
1 2 νϵx, and 1 2 νϵx. (Note that only one face of the element is shown in 
the figure.) On the other hand, if the element is oriented at 458 to the axis of 
the load (Fig. 9.41b), the face shown deforms into a rhombus. Therefore, the 
axial load P causes a shearing strain γ9 equal to the amount by which each of 
the angles shown in Fig. 9.41b increases or decreases.

The fact that shearing strains, as well as normal strains, result  
from an axial loading is not a surprise, since it was observed at the end of 
Sec. 8.3 that an axial load P causes normal and shearing stresses of equal 
magnitude on four of the faces of an element oriented at 458 to the axis of 
the member. This was illustrated in Fig. 8.37, which has been repeated here. 
It was also shown in Sec. 8.2 that the shearing stress is maximum on a plane 

Concept Application 9.9

A rectangular block of a material with a modulus of rigidity G 5 90 ksi 
is bonded to two rigid horizontal plates. The lower plate is fixed, while 
the upper plate is subjected to a horizontal force P (Fig. 9.40a). Knowing 
that the upper plate moves through 0.04 in. under the action of the force, 
determine (a) the average shearing strain in the material and (b) the force P 
exerted on the upper plate.

 a. Shearing Strain. The coordinate axes are centered at the mid-
point C of edge AB and directed as shown (Fig. 9.40b). The shearing strain 
γxy is equal to the angle formed by the vertical and the line CF joining the 
midpoints of edges AB and DE. Noting that this is a very small angle and 
recalling that it should be expressed in radians, write

γxy < tan γxy 5
0.04 in.

2 in.
    γxy 5 0.020 rad

 b. Force Exerted on Upper Plate. Determine the shearing stress 
τxy in the material. Using Hooke’s law for shearing stress and strain,

τxy 5 Gγxy 5 (90 3 103 psi)(0.020 rad) 5 1800 psi

The force exerted on the upper plate is

P 5 τxy A 5 (1800 psi)(8 in.)(2.5 in.) 5 36.0 3 103 lb

P 5 36.0 kips

P

2.5 in.

2 in.

8 in.

(a)

P2 in.

0.04 in.

A

F
E

C
B

D

z

y

x
xy

(b)

γ

Fig. 9.40 (a) Rectangular block 
loaded in shear. (b) Deformed block 
showing the shearing strain.

Fig. 9.41 Representations of strain in an 
axially-loaded bar: (a) cubic strain element 
faces aligned with coordinate axes; (b) cubic 
strain element faces rotated 45° about z-axis.
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9.7 Deformations Under Axial Loading—Relation Between E, ν, and G 429

forming an angle of 458 with the axis of the load. It follows from Hooke’s 
law for shearing stress and strain that the shearing strain γ9 associated with 
the element of Fig. 9.41b is also maximum: γ9 5 γm .

We will now derive a  relationship between the maximum shear-
ing strain γ9 5 γm associated with the element of Fig. 9.41b and the nor-
mal strain ϵx in the direction of the load. Consider the prismatic element 
obtained by intersecting the cubic element of Fig. 9.41a by a diagonal plane 
(Fig. 9.42a and b). Referring to Fig. 9.41a, this new element will deform 
into that shown in Fig. 9.42c, which has horizontal and vertical sides equal 
to 1 1 ϵx and 1 2 νϵx . But the angle formed by the oblique and horizontal 
faces of Fig. 9.42b is precisely half of one of the right angles of the cubic 
element in Fig. 9.41b. The angle β into which this angle deforms must be 
equal to half of πy2 2 γm . Therefore,

β 5
π
4

2
γm

2

Applying the formula for the tangent of the difference of two angles, 

tan β 5

tan 
π
4

2 tan 
γm

2

1 1 tan 
π
4

 tan 
γm

2

5

1 2 tan 
γm

2

1 1 tan 
γm

2

or since γmy2 is a very small angle,

 tan β 5

1 2
γm

2

1 1
γm

2

 (9.23)

Fig. 9.42 (a) Cubic strain unit element, to be sectioned on a diagonal plane. 
(b) Undeformed section of unit element. (c) Deformed section of unit element.
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From Fig. 9.42c, observe that

 tan β 5
1 2 νϵx

1 1 ϵx

 (9.24)

Equating the right-hand members of Eqs. (9.23) and (9.24) and solving 
for γm, results in

γm 5
(1 1 ν)ϵx

1 1
1 2 ν

2
 ϵx

Since ϵx ≪1, the denominator in the expression obtained can be assumed 
equal to one. Therefore,

 γm 5 (1 1 ν)ϵx (9.25)

which is the desired relation between the maximum shearing strain γm and 
the axial strain ϵx.
 To obtain a relation among the constants E, ν, and G, we recall 
that, by Hooke’s law, γm 5 τmyG, and for an axial loading, ϵx 5 σxyE. 
Equation (9.25) can be written as

τm

G
5 (1 1 ν)

σx

E

or

 
E

G
5 (1 1 ν)

σx

τm
 (9.26)

Recall from Fig. 8.37 that σx 5 PyA and τm 5 Py2A, where A is the cross-
sectional area of the member. Thus, σxyτm 5 2. Substituting this value into 
Eq. (9.26) and dividing both members by 2, the relationship is

 
E

2G
5 1 1 ν (9.27)

which can be used to determine one of the constants E, ν, or G from the 
other two. For example, solving Eq. (9.27) for G,

 G 5
E

2(1 1 ν)
 (9.28)
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Sample Problem 9.5

A circle of diameter d 5 9 in. is scribed on an unstressed aluminum plate of 
thickness t 5 3

4 in. Forces acting in the plane of the plate later cause normal 
stresses σx 5 12 ksi and σz 5 20 ksi. For E 5 10 3 106 psi and ν 5 1

3, deter-
mine the change in (a) the length of diameter AB, (b) the length of diameter 
CD, (c) the thickness of the plate.

STRATEGY: You can use the generalized Hooke’s Law to determine the 
components of strain. These strains can then be used to evaluate the various 
dimensional changes to the plate.

ANALYSIS: 

Hooke’s Law.  Note that σy 5 0. Using Eqs. (9.19), find the strain in 
each of the coordinate directions.

 ϵx 5 1
σx

E
2

νσy

E
2

νσz

E

 5
1

10 3 106 psi
�[ (12 ksi) 2 0 2

1
3

�(20 ksi) ] 5 10.533 3 1023 in./in.

 ϵy 5 2 

νσx

E
1

σy

E
2

νσz

E

 5
1

10 3 106 psi
�[2

1
3

�(12 ksi) 1 0 2
1
3

�(20 ksi) ] 5 21.067 3 1023 in./in.

 ϵz 5 2 

νσx

E
2

νσy

E
1

σz

E

 5
1

10 3 106 psi
�[2

1
3

� (12 ksi) 2 0 1 (20 ksi) ] 5 11.600 3 1023 in./in.

 a. Diameter AB. The change in length is δB/A 5 ϵx d.

δByA 5 ϵxd 5 (10.533 3 1023 in./in.)(9 in.)    
δB/A 5 14.8 3 1023 in. b

 b. Diameter CD.

δCyD 5 ϵzd 5 (11.600 3 1023 in./in.)(9 in.)

δC/D 5 114.4 3 1023 in. b

 c. Thickness. Recalling that t 5 3
4 in.,

δt 5 ϵyt 5 (21.067 3 1023 in./in.)(3
4  in.)

δt 5 20.800 3 1023 in. b

x
z

15 in.
15 in.

z

y

x

A

B

C

D

σ
σ
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 9.49 In a standard tensile test, a steel rod of 22-mm diameter is subjected 
to a tension force of 75 kN. Knowing that ν 5 0.30 and E 5 200 GPa, 
determine (a) the elongation of the rod in a 200-mm gage length,  
(b) the change in diameter of the rod.

200 mm

22-mm diameter
75 kN 75 kN

Fig. P9.49

 9.50 A standard tension test is used to determine the properties of an experi-
mental plastic. The test specimen is a 5

8-in.-diameter rod and it is 
subjected to an 800-lb tensile force. Knowing that an elongation of  
0.45 in. and a decrease in diameter of 0.025 in. are observed in a 
5-in. gage length, determine the modulus of elasticity, the modulus of 
rigidity, and Poisson’s ratio for the material.

 9.51 A 2-m length of an aluminum pipe of 240-mm outer diameter and 
10-mm wall thickness is used as a short column to carry a 640-kN 
centric axial load. Knowing that E 5 73 GPa and ν 5 0.33, determine 
(a) the change in length of the pipe, (b) the change in its outer diam-
eter, (c) the change in its wall thickness.

640 kN

2 m

BEER · JOHNSTON: Mechanics of Materials
Fig. P2-65     100% of size   

FineLine Illustrations  (516) 501-0400

Fig. P9.51

 9.52 The change in diameter of a large steel bolt is carefully measured as 
the nut is tightened. Knowing that E 5 29 3 106 psi and ν 5 0.30, 
determine the internal force in the bolt if the diameter is observed to 
decrease by 0.5 3 1023 in.

2.5 in.

Fig. P9.52

Problems

 in. diameter
5.0 in.

P9

P

5
8

Fig. P9.50
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 9.53 An aluminum plate (E 5 74 GPa, ν 5 0.33) is subjected to a centric 
axial load that causes a normal stress σ. Knowing that, before loading, 
a line of slope 2:1 is scribed on the plate, determine the slope of the 
line when σ 5 125 MPa.

1

2σ σ

Fig. P9.53

 9.54 A 2.75-kN tensile load is applied to a test coupon made from 1.6-
mm flat steel plate (E 5 200 GPa, ν 5 0.30). Determine the resulting 
change (a) in the 50-mm gage length, (b) in the width of portion AB 
of the test coupon, (c) in the thickness of portion AB, (d) in the cross-
sectional area of portion AB.

2.75 kN2.75 kN

50 mm

A B

12 mm

Fig. P9.54

 9.55 The aluminum rod AD is fitted with a jacket that is used to apply a 
hydrostatic pressure of 6000 psi to the 12-in. portion BC of the rod. 
Knowing that E 5 10.1 3 106 psi and ν 5 0.36, determine (a) the 
change in the total length AD, (b) the change in diameter at the middle 
of the rod.

12 in. 20 in.

C

D

A

B

1.5 in.

Fig. P9.55

 9.56 For the rod of Prob. 9.55, determine the forces that should be applied 
to the ends A and D of the rod (a) if the axial strain in portion BC of 
the rod is to remain zero as the hydrostatic pressure is applied, (b) if 
the total length AD of the rod is to remain unchanged.

 9.57 A 30-mm square has been scribed on the side of a large steel pressure 
vessel. After pressurization, the biaxial stress condition at the square 
is as shown. Knowing that E 5 200 GPa and ν 5 0.30, determine the 
change in length of (a) side AB, (b) side BC, (c) diagonal AC.

y 5 40 MPa

x 5 80 MPa30 mm

A B

CD

30 mm

σ

σ

Fig. P9.57
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 9.58 A fabric used in air-inflated structures is subjected to a biaxial load-
ing that results in normal stresses σx 5 120 MPa and σz 5 160 MPa. 
Knowing that the properties of the fabric can be approximated as E 5 
87 GPa and ν 5 0.34, determine the change in length of (a) side AB, 
(b) side BC, (c) diagonal AC.

 9.59 In many situations it is known that the normal stress in a given direc-
tion is zero. For example, σz 5 0 in the case of the thin plate shown. 
For this case, which is known as plane stress, show that if the strains 
ϵx and ϵy have been determined experimentally, we can express σx, σy 
and ϵz as follows:

 σx 5 E 

ϵx 1 νϵy

1 2 ν2

 σy 5 E 

ϵy 1 νϵx

1 2 ν2

 ϵz 5 2 
ν

1 2 ν
 (ϵx 1 ϵy)

σy

σx

Fig. P9.59

 9.60 In many situations physical constraints prevent strain from occurring 
in a given direction. For example, ϵz 5 0 in the case shown, where 
longitudinal movement of the long prism is prevented at every point. 
Plane sections perpendicular to the longitudinal axis remain plane and 
the same distance apart. Show that for this situation, which is known 
as plane strain, we can express σz, ϵx, and ϵy as follows:

 σz 5 ν(σx 1 σy)

 ϵx 5
1
E

 [ (1 2 ν2)σx 2 ν(1 1 ν)σy ]

 ϵy 5
1
E

 [ (1 2 ν2)σy 2 ν(1 1 ν)σx ]

y

x

z (a) (b)

σy

σx

σz

Fig. P9.60

75 mm
100 mm

z

y

x

A

B

C

D

σxσz

Fig. P9.58
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 9.61 The plastic block shown is bonded to a rigid support and to a vertical 
plate to which a 55-kip load P is applied. Knowing that for the plastic 
used G 5 150 ksi, determine the deflection of the plate.

 9.62 A vibration isolation unit consists of two blocks of hard rubber bonded 
to a plate AB and to rigid supports as shown. Knowing that a force of 
magnitude P 5 25 kN causes a deflection δ 5 1.5 mm of plate AB, 
determine the modulus of rigidity of the rubber used.

150 mm
100 mm

30 mm

B

A

30 mm

P

Fig.	P9.62	and	P9.63

 9.63 A vibration isolation unit consists of two blocks of hard rubber with 
a modulus of rigidity G 5 19 MPa bonded to a plate AB and to rigid 
supports as shown. Denoting by P the magnitude of the force applied 
to the plate and by δ the corresponding deflection, determine the 
effective spring constant, k 5 P/δ, of the system.

 9.64 An elastomeric bearing (G 5 130 psi) is used to support a bridge 
girder as shown to provide flexibility during earthquakes. The beam 
must not displace more than 3

8 in. when a 5-kip lateral load is applied 
as shown. Knowing that the maximum allowable shearing stress is  
60 psi, determine (a) the smallest allowable dimension b, (b) the 
smallest required thickness a.

8 in.
b

a

P

Fig. P9.64

4.8 in.

3.2 in.

2 in. P

Fig. P9.61
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9.8  STRESS AND STRAIN 
DISTRIBUTION UNDER 
AXIAL LOADING: SAINT-
VENANT’S PRINCIPLE

We have assumed so far that, in an axially loaded member, the normal 
stresses are uniformly distributed in any section perpendicular to the axis 
of the member. As we saw in Sec. 8.1A, such an assumption may be quite 
in error in the immediate vicinity of the points of application of the loads. 
However, the determination of the actual stresses in a given section of the 
member requires the solution of a statically indeterminate problem.

In Sec. 9.2, you saw that statically indeterminate problems involving 
the determination of forces can be solved by considering the deformations 
caused by these forces. It is thus reasonable to conclude that the determi-
nation of the stresses in a member requires the analysis of the strains pro-
duced by the stresses in the member. This is essentially the approach found 
in advanced textbooks, where the mathematical theory of elasticity is used 
to determine the distribution of stresses corresponding to various modes of 
application of the loads at the ends of the member. Given the more limited 
mathematical means at our disposal, our analysis of stresses will be restricted 
to the particular case when two rigid plates are used to transmit the loads to a 
member made of a homogeneous isotropic material (Fig. 9.43).

If the loads are applied at the center of each plate,† the plates will move 
toward each other without rotating, causing the member to get shorter, while 
increasing in width and thickness. It is assumed that the member will remain 
straight, plane sections will remain plane, and all elements of the member 
will deform in the same way, since this assumption is compatible with the 
given end conditions. Fig. 9.44 shows a rubber model before and after load-
ing.‡ Now, if all elements deform in the same way, the distribution of strains 

Fig. 9.43 Axial load applied by rigid 
plates.

P

P9

Fig. 9.44 Axial load applied by rigid plates to rubber model.

(a) (b)

P

P9

†More precisely, the common line of action of the loads should pass through the centroid of the 
cross section (cf. Sec. 8.1A).
‡Note that for long, slender members, another configuration is possible and will prevail if 
the load is sufficiently large; the member buckles and assumes a curved shape. This will be 
discussed in Chap. 16.
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throughout the member must be uniform. In other words, the axial strain ϵy 
and the lateral strain ϵx 5 2νϵy are constant. But, if the stresses do not exceed 
the proportional limit, Hooke’s law applies, and σy 5 Eϵy , so the normal stress 
σy is also constant. Thus, the distribution of stresses is uniform throughout the 
member, and at any point,

σy 5 (σy)ave 5
P

A

If the loads are concentrated, as in Fig. 9.45, the elements in the imme-
diate vicinity of the points of application of the loads are subjected to very 
large stresses, while other elements near the ends of the member are unaf-
fected by the loading. This results in large deformations, strains, and stresses 
near the points of application of the loads, while no deformation takes place 
at the corners. Considering elements farther and farther from the ends, 
a progressive equalization of the deformations and a more uniform distri-
bution of the strains and stresses are seen across a section of the member. 
Using the mathematical theory of elasticity found in advanced textbooks,  
Fig. 9.46 shows the resulting distribution of stresses across various sections 
of a thin rectangular plate subjected to concentrated loads. Note that at a 

Fig. 9.45 Concentrated axial load 
applied to rubber model.

P

P9

Fig. 9.46 Stress distributions in a plate under concentrated axial loads.

b b
b

1
2

b
1
4

min

ave

max

P
A

5

min ave5 0.973

max ave5 1.027
min ave5 0.668

max ave5 1.387
min ave5 0.198

max ave5 2.575

PPPP

P9

σ

σ

σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

σ
σ

distance b from either end, where b is the width of the plate, the stress dis-
tribution is nearly uniform across the section, and the value of the stress σy 
at any point of that section can be assumed to be equal to the average value 
PyA. Thus, at a distance equal to or greater than the width of the member, 
the distribution of stresses across a section is the same, whether the member 
is loaded as shown in Fig. 9.43 or Fig. 9.45. In other words, except in the 
immediate vicinity of the points of application of the loads, the stress distri-
bution is assumed independent of the actual mode of application of the loads. 
This statement, which applies to axial loadings and to practically any type of 
load, is known as Saint-Venant’s principle, after the French mathematician 
and engineer Adhémar Barré de Saint-Venant (1797–1886).

While Saint-Venant’s principle makes it possible to replace a given 
loading by a simpler one to compute the stresses in a structural member, 
keep in mind two important points when applying this principle:

 1. The actual loading and the loading used to compute the stresses must be 
statically equivalent.
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 2. Stresses cannot be computed in this manner in the immediate vicinity of 
the points of application of the loads. Advanced theoretical or experi-
mental methods must be used to determine the distribution of stresses in 
these areas.

You should also observe that the plates used to obtain a uniform stress 
distribution in the member of Fig. 9.44 must allow the member to freely 
expand laterally. Thus, the plates cannot be rigidly attached to the member; 
assume them to be just in contact with the member and smooth enough not 
to impede lateral expansion. While such end conditions can be achieved for 
a member in compression, they cannot be physically realized in the case of a 
member in tension. It does not matter, whether or not an actual fixture can be 
realized and used to load a member so that the distribution of stresses in the 
member is uniform. The important thing is to imagine a model that will allow 
such a distribution of stresses and to keep this model in mind so that it can be 
compared with the actual loading conditions.

9.9 STRESS CONCENTRATIONS
As you saw in the preceding section, the stresses near the points of application 
of concentrated loads can reach values much larger than the average value of 
the stress in the member. When a structural member contains a discontinuity, 
such as a hole or a sudden change in cross section, high localized stresses can 
occur. Figs. 9.47 and 9.48 show the distribution of stresses in critical sections 
corresponding to two situations. Fig. 9.47 shows a flat bar with a circular hole 
and shows the stress distribution in a section passing through the center of the 
hole. Fig. 9.48 shows a flat bar consisting of two portions of different widths 
connected by fillets; here the stress distribution is in the narrowest part of the 
connection, where the highest stresses occur.

These results were obtained experimentally through the use of a photo-
elastic method. Fortunately for the engineer, these results are independent of 
the size of the member and of the material used; they depend only upon the 
ratios of the geometric parameters involved (i.e., the ratio 2ryD for a circu-
lar hole, and the ratios ryd and Dyd for fillets). Furthermore, the designer is 
more interested in the maximum value of the stress in a given section than the 
actual distribution of stresses. The main concern is to determine whether the 
allowable stress will be exceeded under a given loading, not where this value 
will be exceeded. Thus, the ratio

 K 5
σmax

σave
 (9.29)

is computed in the  critical (narrowest) section of the discontinuity. This ratio is 
the stress-concentration factor of the discontinuity. Stress- concentration factors 
can be computed in terms of the ratios of the geometric parameters involved, 
and the results can be expressed in tables or graphs, as shown  in Fig. 9.49. 
To determine the maximum stress occurring near a discontinuity in a given  
member subjected to a given axial load P, the designer needs to compute the 
average stress σave 5 PyA in the critical section and multiply the result obtained 
by the appropriate value of the stress-concentration factor K. Note that this pro-
cedure is valid only as long as σmax does not exceed the proportional limit of the 
material, since the values of K plotted in Fig. 9.49 were obtained by assuming a 
linear relation between stress and strain.

Fig. 9.47 Stress distribution near circular hole 
in flat bar under axial loading.

PP9

P9

r
D

d1
2

d1
2

max

ave

σ

σ

Fig. 9.48 Stress distribution near fillets in flat 
bar under axial loading.

PP9

P9

max

ave

dD

r

σ

σ

Final PDF to printer



9.9 Stress Concentrations 439

bee98160_ch09_383-450.indd 439 12/11/15  07:47 PM

Fig. 9.49 Stress concentration factors for flat bars under axial loading. Note that the average stress must be computed across 
the narrowest section: σave 5 P/td, where t is the thickness of the bar. (Source: W. D. Pilkey and D.F. Pilkey, Peterson’s Stress 
Concentration Factors, 3rd ed., John Wiley & Sons, New York, 2008.)
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(a) Flat bars with holes
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D/d 5 2
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1.3
1.2

1.1

r/d
(b) Flat bars with fillets

Concept	Application	9.10

Determine the largest axial load P that can be safely supported by a flat 
steel bar consisting of two portions, both 10 mm thick and, respectively, 
40 and 60 mm wide, connected by fillets of radius r 5 8 mm. Assume an 
allowable normal stress of 165 MPa.
 First compute the ratios

D

d
5

60 mm
40 mm

5 1.50    r

d
5

8 mm
40 mm

5 0.20

Using the curve in Fig. 9.49b corresponding to Dyd 5 1.50, the value of the 
stress-concentration factor corresponding to ryd 5 0.20 is

K 5 1.82
Then carrying this value into Eq. (9.29) and solving for σave,

σave 5
σmax

1.82
But σmax cannot exceed the allowable stress σall 5 165 MPa. Substituting 
this value for σmax, the average stress in the narrower portion (d 5 40 mm) 
of the bar should not exceed the value

σave 5
165 MPa

1.82
5 90.7 MPa

Recalling that σave 5 PyA,

P 5 Aσave 5 (40 mm)(10 mm)(90.7 MPa) 5 36.3 3 103 N

P 5 36.3 kN
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 9.65 Two holes have been drilled through a long steel bar that is subjected 
to a centric axial load as shown. For P 5 6.5 kips, determine the max-
imum value of the stress (a) at A, (b) at B.

1
2 in.

1
2 in.

1
21    in.B

A
3 in.

P

Fig.	P9.65	and	P9.66

 9.66 Knowing that σall  5 16 ksi, determine the maximum allowable value of 
the centric axial load P.

 9.67 Knowing that, for the plate shown, the allowable stress is 125 MPa, 
determine the maximum allowable value of P when (a) r 5 12 mm, 
(b) r 5 18 mm.

120 mm

15 mm

60 mm r

P

Fig.	P9.67	and	P9.68

 9.68 Knowing that P 5 38 kN, determine the maximum stress when 
(a) r 5 10 mm, (b) r 5 16 mm, (c) r 5 18 mm.

 9.69 (a) Knowing that the allowable stress is 20 ksi, determine the maxi-
mum allowable magnitude of the centric load P. (b) Determine the 
percent change in the maximum allowable magnitude of P if the 
raised portions are removed at the ends of the specimen.

Problems

P

P

t 5

2 in.

3 in.

5
8 in.

r 5 1
4 in.

Fig. P9.69
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 9.70 A centric axial force is applied to the steel bar shown. Knowing that 
σall 5 20 ksi, determine the maximum allowable load P.

 9.71 Knowing that the hole has a diameter of 9 mm, determine (a) the radius 
rf of the fillets for which the same maximum stress occurs at the hole 
A and at the fillets, (b) the corresponding maximum allowable load P 
if the allowable stress is 100 MPa.

P

9 mm

9 mm

9 mm

96 mm 60 mm
A

rf

Fig. P9.71

 9.72 For P 5 100 kN, determine the minimum plate thickness t required if 
the allowable stress is 125 MPa.

rA 5 20 mm

rB 5 15 mm

B

A

64 mm

88 mm

P

t

Fig. P9.72

3
4 in.

1
2 in.

1
2 in.

5 in.

1 in.

6

rf 5

P

Fig. P9.70
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Review and Summary
Normal	Strain
Consider a rod of length L and uniform cross section, and its deformation δ 
under an axial load P (Fig. 9.50). The normal strain ϵ in the rod is defined as 
the deformation per unit length:

 ϵ 5
δ
L

  (9.1)

B B

C
C

L

A

P

δ

(a) (b)
Fig. 9.50

In the case of a rod of variable cross section, the normal strain at any given 
point Q is found by considering a small element of rod at Q:

 ϵ 5 lim
Dx⟶0

 
Dδ
Dx

5
dδ
dx

 (9.2)

Stress-Strain	Diagram
A stress-strain diagram is obtained by plotting the stress σ versus the strain ϵ as 
the load increases. These diagrams can be used to distinguish between brittle and 
ductile materials. A brittle material ruptures without any noticeable prior change 
in the rate of elongation (Fig. 9.51), while a ductile material yields after a critical 

Fig. 9.51

Rupture
BU 5

σ

σ σ

�
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stress σY (the yield strength) has been reached (Fig. 9.52). The specimen under-
goes a large deformation before rupturing, with a relatively small increase in 
the applied load. An example of brittle material with different properties in 
tension and compression is concrete.

Hooke’s	Law	and	Modulus	of	Elasticity
The initial portion of the stress-strain diagram is a straight line. Thus, for small 
deformations, the stress is directly proportional to the strain:
 σ 5 Eϵ (9.5)
This relationship is Hooke’s law, and the coefficient E is the modulus of elas-
ticity of the material. The proportional limit is the largest stress for which Eq. 
(9.5) applies.

Properties of isotropic materials are independent of direction, while proper-
ties of anisotropic materials depend upon direction. Fiber-reinforced composite 
materials are made of fibers of a strong, stiff material embedded in layers of a 
weaker, softer material (Fig. 9.53).

Elastic	Limit	and	Plastic	Deformation
If the strains caused in a test specimen by the application of a given load disap-
pear when the load is removed, the material is said to behave elastically. The 
largest stress for which this occurs is called the elastic limit of the material. If the 
elastic limit is exceeded, the stress and strain decrease in a linear fashion when 
the load is removed, and the strain does not return to zero (Fig. 9.54), indicating 
that a permanent set or plastic deformation of the material has taken place.

Fig. 9.52
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Fatigue	and	Endurance	Limit
Fatigue causes the failure of structural or machine components after a very 
large number of repeated loadings, even though the stresses remain in the 
elastic range. A standard fatigue test determines the number n of successive 
loading-and-unloading cycles required to cause the failure of a specimen for 
any given maximum stress level σ and plots the resulting σ-n curve. The 
value of σ for which failure does not occur, even for an indefinitely large 
number of cycles, is known as the endurance limit.

Elastic	Deformation	Under	Axial	Loading
If a rod of length L and uniform cross section of area A is subjected at its end to 
a centric axial load P (Fig. 9.55), the corresponding deformation is

 δ 5
PL

AE
 (9.8)

Fig. 9.55

L

C

C
A

B B

P

δ

If the rod is loaded at several points or consists of several parts of various cross 
sections and possibly of different materials, the deformation δ of the rod must 
be expressed as the sum of the deformations of its component parts:

 δ 5 O
i

PiLi

AiEi

 (9.9)

Statically	 Indeterminate	Problems
Statically indeterminate problems are those in which the reactions and 
the internal forces cannot be determined from statics alone. The equi-
librium equations derived from the free-body diagram of the mem-
ber under consideration were complemented by relations involving 
deformations and obtained from the geometry of the problem. The forces in 
the rod and in the tube of Fig. 9.56, for instance, were determined by observ-
ing that their sum is equal to P, and that they cause equal deformations in 
the rod and in the tube. Similarly, the reactions at the supports of the bar of  

Fig. 9.56

P

Tube (A2, E2)

Rod (A1, E1)

End plate 
L
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Fig. 9.57 could not be obtained from the free-body diagram of the bar alone, 
but they could be determined by expressing that the total elongation of the bar 
must be equal to zero.

Problems	with	Temperature	Changes
When the temperature of an unrestrained rod AB of length L is increased by DT, 
its elongation is

 δT 5 α(DT) L  (9.12)

where α is the coefficient of thermal expansion of the material. The corre-
sponding strain, called thermal strain, is

 ϵT 5 αDT   (9.13)

and no stress is associated with this strain. However, if rod AB is restrained 
by fixed supports (Fig. 9.58), stresses develop in the rod as the temperature 
increases, because of the reactions at the supports. To determine the magnitude 
P of the reactions, the rod is first detached from its support at B (Fig. 9.59a). 
The deformation δT of the rod occurs as it expands due to of the temperature 
change (Fig. 9.59b). The deformation δP caused by the force P is required to 
bring it back to its original length, so that it may be reattached to the support 
at B (Fig. 9.59c).

Fig. 9.57
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Lateral	Strain	and	Poisson’s	Ratio
When an axial load P is applied to a homogeneous, slender bar  
(Fig. 9.60), it causes a strain, not only along the axis of the bar but in any trans-
verse direction. This strain is the lateral strain, and the ratio of the lateral strain 
over the axial strain is called Poisson’s ratio:

 ν 5 2  

lateral strain
axial strain

 (9.16)

Multiaxial	Loading
The condition of strain under an axial loading in the x direction is

 ϵx 5
σx

E
       ϵy 5 ϵz 5 2 

νσx

E
 (9.18)

A multiaxial loading causes the state of stress shown in Fig. 9.61. The resulting 
strain condition was described by the generalized Hooke’s law for a multiaxial 
loading.

 ϵx 5 1
σx

E
2

νσy

E
2

νσz

E

  ϵy 5 2 

νσx

E
1

σy

E
2

νσz

E
 (9.19)

 ϵz 5 2 

νσx

E
2

νσy

E
1

σz

E

Shearing	Strain:	Modulus	of	Rigidity
The state of stress in a material under the most general loading condition involves 
shearing stresses, as well as normal stresses (Fig. 9.62). The shearing stresses 
tend to deform a cubic element of material into an oblique parallelepiped. The 
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Fig. 9.63
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stresses τxy and τyx shown in Fig. 9.63 cause the angles formed by the faces on 
which they act to either increase or decrease by a small angle γxy. This angle 
defines the shearing strain corresponding to the x and y directions. Defining 
in a similar way the shearing strains γyz and γzx , the following relations were 
written:

 τxy 5 Gγxy  τyz 5 Gγyz  τzx 5 Gγzx (9.20, 21)

which are valid for any homogeneous isotropic material within its proportional 
limit in shear. The constant G is the modulus of rigidity of the material, and 
the relationships obtained express Hooke’s law for shearing stress and strain. 
Together with Eqs. (9.19), they form a group of equations representing the gen-
eralized Hooke’s law for a homogeneous isotropic material under the most gen-
eral stress condition.

While an axial load exerted on a slender bar produces only normal strains—
both axial and  transverse—on an element of material oriented along the axis of 
the bar, it will produce both normal and shearing strains on an element rotated 
through 458 (Fig. 9.64). The three constants E, ν, and G are not independent. 
They satisfy the relation

 
E

2G
5 1 1 ν (9.27)

This equation can be used to determine any of the three constants in terms of the 
other two.

Saint-Venant’s	Principle
Saint-Venant’s principle states that except in the immediate vicinity of the points 
of application of the loads, the distribution of stresses in a given member is inde-
pendent of the actual mode of application of the loads. This principle makes it 
possible to assume a uniform distribution of stresses in a member subjected to 
concentrated axial loads, except close to the points of application of the loads, 
where stress concentrations will occur.

Stress	Concentrations
Stress concentrations will also occur in structural members near a discontinuity, 
such as a hole or a sudden change in cross section. The ratio of the maximum 
value of the stress occurring near the discontinuity over the average stress com-
puted in the critical section is referred to as the stress-concentration factor of 
the discontinuity:

 K 5
σmax

σave
  (9.29)

Fig. 9.64
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Review Problems
 9.73 The aluminum rod ABC (E 5 10.1 3 106 psi), which consists of two 

cylindrical portions AB and BC, is to be replaced with a cylindrical 
steel rod DE (E 5 29 3 106 psi) of the same overall length. Deter-
mine the minimum required diameter d of the steel rod if its vertical 
deformation is not to exceed the deformation of the aluminum rod 
under the same load and if the allowable stress in the steel rod is not 
to exceed 24 ksi.

 9.74 The brass tube AB (E 5 105 GPa) has a cross-sectional area of  
140 mm2 and is fitted with a plug at A. The tube is attached at B to 
a rigid plate that is itself attached at C to the bottom of an alumi-
num cylinder (E 5 72 GPa) with a cross-sectional area of 250 mm2. 
The cylinder is then hung from a support at D. In order to close the  
cylinder, the plug must move down through 1 mm. Determine the 
force P that must be applied to the cylinder.

375 mm

1 mm

C

D A

B

P

Fig. P9.74

 9.75 The length of the 3
32-in.-diameter steel wire CD has been adjusted so 

that with no load applied, a gap of 1
16 in. exists between the end B of 

the rigid beam ACB and a contact point E. Knowing that E 5 29 3 
106 psi, determine where a 50-lb block should be placed on the beam 
in order to cause contact between B and E.

12.5 in.

D

C

A

x

B50 lb 

16 in.
4 in.

E
1
16 in.

Fig. P9.75

Fig. P9.73

B

d

C

A

12 in.

18 in.

1.5 in.

2.25 in.

28 kips

E

D

28 kips
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 9.76 Each of the four vertical links connecting the two rigid horizontal 
members is made of aluminum (E 5 70 GPa) and has a uniform rect-
angular cross section of 10 3 40 mm. For the loading shown, deter-
mine the deflection of (a) point E, (b) point F, (c) point G.

24 kN

F

E

A
B

C

D

300 mm

250 mm

400 mm

250 mm

40 mm

G

Fig. P9.76

 9.77 Each of the rods BD and CE is made of brass (E 5 105 GPa) and has 
a cross-sectional area of 200 mm2. Determine the deflection of end A 
of the rigid member ABC caused by the 2-kN load.

A
B

D E

F

C

550 mm

75 mm 100 mm

225 mm2 kN

Fig. P9.77

 9.78 The brass strip AB has been attached to a fixed support at A and rests 
on a rough support at B. Knowing that the coefficient of friction is 
0.60 between the strip and the support at B, determine the decrease in 
temperature for which slipping will impend.

3 mm

A

B

40 mm
100 kg

20 mm

Brass strip:
    E 5 105 GPa
    α 5 20 3 1026/8C

Fig. P9.78
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 9.79 An axial centric force P is applied to the composite block shown by 
means of a rigid end plate. Determine (a) the value of h if the portion 
of the load carried by the aluminum plates is half the portion of the 
load carried by the brass core, (b) the total load if the stress in the 
brass is 80 MPa.

 9.80 The assembly shown consists of an aluminum shell (Ea 5 10.6 3 106 
psi, αa 5 12.9 3 10–6/°F) fully bonded to a steel core (Es 5 29 3 106 
psi, αs 5 6.5 3 10–6/°F) and is unstressed. Determine (a) the largest 
allowable change in temperature if the stress in the aluminum shell 
is not to exceed 6 ksi, (b) the corresponding change in length of the 
assembly.

8 in.

Aluminum shell

1.25 in.
Steel
core

0.75 in.

Fig. P9.80

 9.81 The block shown is made of a magnesium alloy for which E 5 45 
GPa and ν 5 0.35. Knowing that σx 5 –180 MPa, determine (a) the 
magnitude of σy for which the change in the height of the block will 
be zero, (b) the corresponding change in the area of the face ABCD, 
(c) the corresponding change in the volume of the block.

 9.82 A vibration isolation unit consists of two blocks of hard rubber 
bonded to plate AB and to rigid supports as shown. For the type and 
grade of rubber used, τall 5 220 psi and G 5 1800 psi. Knowing that 
a centric vertical force of magnitude P 5 3.2 kips must cause a 0.1-in. 
vertical deflection of the plate AB, determine the smallest allowable 
dimensions a and b of the block.

 9.83 A hole is to be drilled in the plate at A. The diameters of the bits 
available to drill the hole range from 12 to 11

2 in. in 14-in. increments. If 
the allowable stress in the plate is 21 ksi, determine (a) the diameter d 
of the largest bit that can be used if the allowable load P at the hole is 
to exceed that at the fillets, (b) the corresponding allowable load P.

A

d rf 5

P

1
2 in.

1
83    in.

3
8 in.11

164    in.

Fig.	P9.83	and	P9.84

 9.84 (a) For P 5 13 kips and d 5 1
2 in., determine the maximum stress in 

the plate shown. (b) Solve part a, assuming that the hole at A is not 
drilled.

40 mm

100 mm xz

y

x

y

C

BD

G

F

A

E

25 mm
σ

σ

Fig. P9.81

B

b

A 3.0 in.

P

a
a

Fig. P9.82

40 mm

60 mm

h

h

300 mm

Aluminum plates
(E 5 70 GPa)

Rigid
 end plate

Brass core
(E 5 105 GPa)

P

Fig. P9.79
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In the part of the jet engine shown here, the central shaft links the 

components of the engine to develop the thrust that propels the 

aircraft.

Torsion

10
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Introduction
In this chapter, structural members and machine parts that are in torsion 
will be analyzed, where the stresses and strains in members of circular cross 
section are subjected to twisting couples, or torques, T and T9 (Fig. 10.1). 
These couples have a common magnitude T, and opposite senses. They 
are vector quantities and can be represented either by curved arrows  
(Fig. 10.1a) or by couple vectors (Fig. 10.1b).

Members in torsion are encountered in many engineering applica-
tions. The most common application is provided by transmission shafts, 
which are used to transmit power from one point to another (Photo 10.1). 
These shafts can be either solid, as shown in Fig. 10.1, or hollow.

Photo 10.1 In this automotive power train, the shaft transmits power from 
the engine to the rear wheels.

© 2008 Ford Motor Company

Fig. 10.1 Two equivalent ways to represent a 
torque in a free-body diagram.

(a)

(b)

T

B

A

T9

T9

B

A

T

Introduction

 10.1 CIRCULAR SHAFTS IN 
TORSION

 10.1A The Stresses in a Shaft
 10.1B Deformations in a Circular 

Shaft
 10.1C Stresses in the Elastic Range

 10.2 ANGLE OF TWIST IN THE 
ELASTIC RANGE

 10.3  STATICALLY 
INDETERMINATE SHAFTS

Objectives
In this chapter, you will:

•	Consider the concept of torsion in structural members 
and machine parts

•	Define shearing stresses and strains in a circular shaft 
subject to torsion

•	Define	angle of twist in terms of the applied torque, 
geometry of the shaft, and material

•	Use torsional deformations to solve indeterminate 
problems

The system shown in Fig. 10.2a consists of a turbine A and an 
electric generator B connected by a transmission shaft AB. Breaking the 
system into its three component parts (Fig. 10.2b), the turbine exerts a 

Final PDF to printer



bee98160_ch10_451-490.indd 453 12/12/15  05:06 PM

twisting couple or torque T on the shaft, which then exerts an equal torque 
on the generator. The generator reacts by exerting the equal and opposite 
torque T9 on the shaft, and the shaft reacts by exerting the torque T9 on 
the turbine.

First the stresses and deformations that take place in circular shafts 
will be analyzed. Then an important property of circular shafts is demon-
strated: When a circular shaft is subjected to torsion, every cross section 
remains plane and undistorted. Therefore, while the various cross sections 
along the shaft rotate through different angles, each cross section rotates 
as a solid rigid slab. This property helps to determine the distribution of 
shearing strains in a circular shaft and to conclude that the shearing strain 
varies linearly with the distance from the axis of the shaft.

Deformations in the elastic range and Hooke’s law for shearing stress 
and strain are used to determine the distribution of shearing stresses in a 
circular shaft and derive the elastic torsion formulas.

In Sec. 10.2, the angle of twist of a circular shaft is found when 
subjected to a given torque, assuming elastic deformations. The solu-
tion of problems involving statically indeterminate shafts is discussed  
in Sec. 10.3.

Fig. 10.2 (a) A generator receives power at a constant number of revolutions 
per minute from a turbine through shaft AB. (b) Free-body diagram of shaft 
AB along with the driving and reacting torques on the generator and turbine, 
respectively.

B Rotation

Generator

A
Turbine

B

A T9

T9

T

(a)

(b)

T
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10.1  CIRCULAR SHAFTS IN 
TORSION

10.1A The Stresses in a Shaft
Consider a shaft AB subjected at A and B to equal and opposite torques T 
and T9. We pass a section perpendicular to the axis of the shaft through 
some arbitrary point C (Fig. 10.3). The free-body diagram of portion BC  
of the shaft must include the elementary shearing forces dF, which are per-
pendicular to the radius of the shaft. These arise from the torque that por-
tion AC exerts on BC as the shaft is twisted (Fig. 10.4a). The conditions 
of equilibrium for BC require that the system of these forces be equivalent 
to an internal torque T, as well as equal and opposite to T9 (Fig. 10.4b). 
Denoting the perpendicular distance ρ from the force dF to the axis of the 
shaft and expressing that the sum of the moments of the shearing forces dF 
about the axis of the shaft is equal in magnitude to the torque T, write

eρdF 5 T

Since dF 5 τdA, where τ is the shearing stress on the element of area dA, 
you also can write

 eρ(τdA) 5 T (10.1)

While these equations express an important condition that must be 
satisfied by the shearing stresses in any given cross section of the shaft, they 
do not tell us how these stresses are distributed in the cross section. Thus, 
the actual distribution of stresses under a given load is statically indetermi-
nate (i.e., this distribution cannot be determined by the methods of statics). 
However, it was assumed in Sec. 8.1A that the normal stresses produced by 
an axial centric load were uniformly distributed, and this assumption was 
justified in Sec. 9.8, except in the neighborhood of concentrated loads. A 
similar assumption with respect to the distribution of shearing stresses in 
an elastic shaft would be wrong. Withhold any judgment until the deforma-
tions that are produced in the shaft have been analyzed. This will be done 
in the next section.

As indicated in Sec. 8.3, shear cannot take place in one plane only. 
Consider the very small element of shaft shown in Fig. 10.5. The torque 
applied to the shaft produces shearing stresses τ on the faces perpen-
dicular to the axis of the shaft. However, the conditions of equilibrium 
(Sec. 8.3) require the existence of equal stresses on the faces formed 
by the two planes containing the axis of the shaft. That such shearing 
stresses actually occur in torsion can be demonstrated by considering a 

Fig. 10.3 Shaft subject to torques, with a 
section plane at C.

B

A

C

TT9

Fig. 10.4 (a) Free body diagram of section 
BC with torque at C represented by the 
contributions of small elements of area 
carrying forces dF at a radius ρ from the 
section center. (b) Free-body diagram of 
section BC having all the small area elements 
summed, resulting in torque T.

B

C

B

C

(a)

(b)

dF

T

T9

T9

ρ

Fig. 10.5 Small element in shaft showing how 
shearing stress components act.

Axis of shaft

τ
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“shaft” made of separate slats pinned at both ends to disks, as shown in  
Fig. 10.6a. If markings have been painted on two adjoining slats, it is 
observed that the slats will slide with respect to each other when equal 
and opposite torques are applied to the ends of the “shaft” (Fig. 10.6b). 
While sliding will not actually take place in a shaft made of a homoge-
neous and cohesive material, the tendency for sliding will exist, showing 
that stresses occur on longitudinal planes as well as on planes perpendicu-
lar to the axis of the shaft.†

10.1B Deformations in a Circular Shaft
Deformation	Characteristics.	 Consider a circular shaft attached to 
a fixed support at one end (Fig. 10.7a). If a torque T is applied to the other 
end, the shaft will twist, with its free end rotating through an angle ϕ called 
the angle of twist (Fig. 10.7b). Within a certain range of values of T, the 
angle of twist ϕ is proportional to T. Also, ϕ is proportional to the length L 
of the shaft. In other words, the angle of twist for a shaft of the same mate-
rial and same cross section, but twice as long, will be twice as large under 
the same torque T.

When a circular shaft is subjected to torsion, every cross section 
remains plane and undistorted. In other words, while the various cross sec-
tions along the shaft rotate through different amounts, each cross section 
rotates as a solid rigid slab. This is illustrated in Fig. 10.8a, which shows 
the deformations in a rubber model subjected to torsion. This property is 
characteristic of circular shafts, whether solid or hollow—but not of mem-
bers with noncircular cross section. For example, when a bar of square 
cross section is subjected to torsion, its various cross sections warp and do 
not remain plane (Fig. 10.8b).

The cross sections of a circular shaft remain plane and undistorted 
because a circular shaft is axisymmetric (i.e., its appearance remains the 
same when it is viewed from a fixed position and rotated about its axis 
through an arbitrary angle). Square bars, on the other hand, retain the same 
appearance only if they are rotated through 908 or 1808. Theoretically the 
axisymmetry of circular shafts can be used to prove that their cross sections 
remain plane and undistorted.

†The twisting of a cardboard tube that has been slit lengthwise provides another demonstration 
of the existence of shearing stresses on longitudinal planes.

Fig. 10.6 Demonstration of shear in a shaft  
(a) undeformed; (b) loaded and deformed.

(b)

(a)

TT9

(b)

(a)

TT9

Fig. 10.7 Shaft with fixed support and line 
AB drawn showing deformation under torsion 
loading: (a) unloaded; (b) loaded.

L

(a)
A

B

B

(b)

A9

A

B

T

ϕ

Fig. 10.8 Comparison of 
deformations in (a) circular and  
(b) square shafts.

(a)

(b)

T

T9

T9

T
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Consider points C and D located on the circumference of a given 
cross section, and let C9 and D9 be the positions after the shaft has been 
twisted (Fig. 10.9a). The axisymmetry requires that the rotation that would 
have brought D into D9 will bring C into C9. Thus, C9 and D9 must lie on 
the circumference of a circle, and the arc C9D9 must be equal to the arc CD 
(Fig. 10.9b). 

Assume that C9 and D9 lie on a different circle, and the new circle 
is located to the left of the original circle, as shown in Fig. 10.9b. The 
same situation will prevail for any other cross section, since all cross sec-
tions of the shaft are subjected to the same internal torque T, and look-
ing at the shaft from its end A shows that the loading causes any given 
circle drawn on the shaft to move away. But viewed from B, the given 
load looks the same (a clockwise couple in the foreground and a counter-
clockwise couple in the background), where the circle moves toward you. 
This contradiction proves that C9 and D9 lie on the same circle as C and 
D. Thus, as the shaft is twisted, the original circle just rotates in its own 
plane. Since the same reasoning can be applied to any smaller, concentric 
circle located in the cross section, the entire cross section remains plane 
(Fig. 10.10).

This argument does not preclude the possibility for the various con-
centric circles of Fig. 10.10 to rotate by different amounts when the shaft 
is twisted. But if that were so, a given diameter of the cross section would 
be distorted into a curve, as shown in Fig. 10.11a. Looking at this curve 
from A, the outer layers of the shaft get more twisted than the inner ones, 
while looking from B reveals the opposite (Fig. 10.11b). This inconsis-
tency indicates that any diameter of a given cross section remains straight 
(Fig. 10.11c); therefore, any given cross section of a circular shaft remains 
plane and undistorted.

Now consider the mode of application of the twisting couples T 
and T9. If all sections of the shaft, from one end to the other, are to 
remain plane and undistorted, the couples are applied so the ends of the 
shaft remain plane and undistorted. This can be accomplished by apply-
ing the couples T and T9 to rigid plates that are solidly attached to the 
ends of the shaft (Fig. 10.12a). All sections will remain plane and undis-
torted when the loading is applied, and the resulting deformations will 
be uniform throughout the entire length of the shaft. All of the equally 
spaced circles shown in Fig. 10.12a will rotate by the same amount rela-
tive to their neighbors, and each of the straight lines will be transformed 
into a curve (helix) intersecting the various circles at the same angle 
(Fig. 10.12b).

Fig. 10.9 Shaft subject to twisting.
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(a)
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B
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Fig. 10.10 Concentric circles at a cross 
section.

A

B

T
T9

Fig. 10.11 Potential deformations of diameter lines if section’s concentric circles 
rotate different amounts (a, b) or the same amount (c).
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Shearing	Strains.	 The examples given in this and the following sec-
tions are based on the assumption of rigid end plates. However, load-
ing conditions may differ from those corresponding to the model of 
Fig. 10.12. This model helps to define a torsion problem for which we can 
obtain an exact solution. By use of Saint-Venant’s principle, the results 
obtained for this idealized model may be extended to most engineering 
applications.

Now we will determine the distribution of shearing strains in a 
circular shaft of length L and radius c that has been twisted through an 
angle ϕ (Fig. 10.13a). Detaching from the shaft a cylinder of radius ρ, 
consider the small square element formed by two adjacent circles and 
two adjacent straight lines traced on the surface before any load is 
applied (Fig. 10.13b). As the shaft is  subjected to a torsional load, the 
element deforms into a rhombus (Fig. 10.13c). Here the shearing strain 
γ in a given element is measured by the change in the angles formed by 
the sides of that element (Sec. 9.6). Since the circles defining two of the 
sides remain unchanged, the shearing strain γ must be equal to the angle 
between lines AB and A9B.

Fig. 10.13c shows that, for small values of γ, the arc length AA9 is 
expressed as AA9 5 Lγ. But since AA9 5 ρϕ, it follows that Lγ 5 ρϕ, or

 γ 5
ρϕ

L
 (10.2)

where γ and ϕ are in radians. This equation shows that the shearing strain γ 
at a given point of a shaft in torsion is proportional to the angle of twist ϕ. It 
also shows that γ is proportional to the distance ρ from the axis of the shaft 
to that point. Thus, the shearing strain in a circular shaft varies linearly 
with the distance from the axis of the shaft.

From Eq. (10.2), the shearing strain is maximum on the surface of the 
shaft, where ρ 5 c.

 γmax 5
cϕ

L
 (10.3)

Eliminating ϕ from Eqs. (10.2) and (10.3), the shearing strain γ at a dis-
tance ρ from the axis of the shaft is

 γ 5
ρ
c

 γmax (10.4)

10.1C Stresses in the Elastic Range
When the torque T is such that all shearing stresses in the shaft remain 
below the yield strength τY, the stresses in the shaft will remain below both 
the proportional limit and the elastic limit. Thus, Hooke’s law will apply, 
and there will be no permanent deformation.

Recalling Hooke’s law for shearing stress and strain from Sec. 9.6, 
write

 τ 5 Gγ (10.5)

Fig. 10.12 Visualization of deformation 
resulting from twisting couples:  
(a) undeformed, (b) deformed.

(b)

(a)

T9

T

Fig. 10.13 Shearing strain deformation.  
(a) The angle of twist ϕ. (b) Undeformed 
portion of shaft of radius ρ. (c) Deformed 
portion of shaft; angle of twist ϕ and shearing 
strain γ share the same arc length AA’.
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where G is the modulus of rigidity or shear modulus of the material. Multi-
plying both members of Eq. (10.4) by G, write

Gγ 5
ρ
c

 Gγmax

or, making use of Eq. (10.5),

 τ 5
ρ
c

 τmax (10.6)

This equation shows that, as long as the yield strength (or proportional 
limit) is not exceeded in any part of a circular shaft, the shearing stress 
in the shaft varies linearly with the distance ρ from the axis of the shaft. 
Fig. 10.14a shows the stress distribution in a solid circular shaft of radius c. 
A hollow circular shaft of inner radius c1 and outer radius c2 is shown in 
Fig. 10.14b. From Eq. (10.6),

 τmin 5
c1

c2
 τmax (10.7)

Fig. 10.14 Distribution of shearing stresses in a torqued 
shaft: (a) solid shaft, (b) hollow shaft.

maxmax
min

(a) (b)

c
O

c1 c2
O

τ τ
τ

τ
τ

ρ ρ

Recall from Sec. 10.1A that the sum of the moments of the elemen-
tary forces exerted on any cross section of the shaft must be equal to the 
magnitude T of the torque exerted on the shaft:

 eρ(τ dA) 5 T (10.1)

Substituting for τ from Eq. (10.6) into Eq. (10.1),

T 5 eρτ dA 5
τmax

c
eρ2 dA

The integral in the last part represents the polar moment of inertia J of the 
cross section with respect to its center O. Therefore,

 T 5
τmax  J

c
 (10.8)

or solving for τmax,

 τmax 5
Tc

J
 (10.9)
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Substituting for τmax from Eq. (10.9) into Eq. (10.6), the shearing stress at 
any distance ρ from the axis of the shaft is

 τ 5
Tρ
J

 (10.10)

Eqs. (10.9) and (10.10) are known as the elastic torsion formulas. Recall 
from statics that the polar moment of inertia of a circle of radius c is 
J 5 1

2 πc4. For a hollow circular shaft of inner radius c1 and outer radius c2, 
the polar moment of inertia is

 J 5 1
2 πc2

4 2 1
2 πc1

4 5 1
2 π (c2

4 2 c4
1) (10.11)

When SI metric units are used in Eq. (10.9) or (10.10), T is given  
in N?m, c or ρ in meters, and J in m4. The resulting shearing stress is given 
in N/m2, that is, pascals (Pa). When U.S. customary units are used, T is 
given in lb?in., c or ρ in inches, and J in in4. The resulting shearing stress  
is given in psi.

Concept	Application	10.1

A hollow cylindrical steel shaft is 1.5 m long and has inner and outer diam-
eters respectively equal to 40 and 60 mm (Fig. 10.15). (a) What is the larg-
est torque that can be applied to the shaft if the shearing stress is not to 
exceed 120 MPa? (b) What is the corresponding minimum value of the 
shearing stress in the shaft?

The largest torque T that can be applied to the shaft is the torque for 
which τmax 5 120 MPa. Since this is less than the yield strength for any 
steel, use Eq. (10.9). Solving this equation for T, 

 T 5
Jτmax

c
 (1)

Recalling that the polar moment of inertia J of the cross section is  
given by Eq. (10.11), where c1 5 1

2 (40 mm) 5 0.02 m and 
c2 5 1

2 (60 mm) 5 0.03 m, write

J 5 1
2 π (c4

2 2 c4
1) 5 1

2 π (0.034 2 0.024) 5 1.021 3 1026 m4

Substituting for J and τmax into Eq. (1) and letting c 5 c2 5 0.03 m,

T 5
Jτmax

c
5

(1.021 3 1026 m4)(120 3 106 Pa)
0.03 m

5 4.08 kN?m

The minimum shearing stress occurs on the inner surface of the 
shaft. Eq. (10.7) expresses that τmin and τmax are respectively proportional  
to c1 and c2:

τmin 5
c1

c2
 τmax 5

0.02 m
0.03 m

 (120 MPa) 5 80 MPa

1.5 m

40 mm

60 mmT

Fig. 10.15 Hollow, fixed-end shaft 
having torque T applied at end.
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The torsion formulas of Eqs. (10.9) and (10.10) were derived for 
a shaft of uniform circular cross section subjected to torques at its ends. 
However, they also can be used for a shaft of variable cross section or for 
a shaft subjected to torques at locations other than its ends (Fig. 10.16a). 
The distribution of shearing stresses in a given cross section S of the shaft 
is obtained from Eq. (10.9), where J is the polar moment of inertia of that 
section and T represents the internal torque in that section. T is obtained by 
drawing the free-body diagram of the portion of shaft located on one side 
of the section (Fig. 10.16b) and writing that the sum of the torques applied 
(including the internal torque T) is zero (see Sample Prob. 10.1).

Our analysis of stresses in a shaft has been limited to shearing stresses 
due to the fact that the element selected was oriented so that its faces were 
either parallel or perpendicular to the axis of the shaft (Fig. 10.5). Now 
consider two elements a and b located on the surface of a circular shaft sub-
jected to torsion (Fig. 10.17). Since the faces of element a are respectively 
parallel and perpendicular to the axis of the shaft, the only stresses on the 
element are the shearing stresses

 τmax 5
Tc

J
 (10.9)

On the other hand, the faces of element b, which form arbitrary angles 
with the axis of the shaft, are subjected to a combination of normal and 
shearing stresses. Consider the stresses and resulting forces on faces that  

Fig. 10.16 Shaft with variable cross section.  
(a) With applied torques and section S.  
(b) Free-body diagram of sectioned shaft.

B

(a)

(b)

TC

TE

TB

TA

E

B

S

C

A

S
E

TTB

TE

Fig. 10.17 Circular shaft with stress elements 
at different orientations.

a

max

T

T9
b

τ
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are at 458 to the axis of the shaft. The free-body diagrams of the two tri-
angular elements are shown in Fig. 10.18. From Fig. 10.18a, the stresses 
exerted on the faces BC and BD are the shearing stresses τmax 5 TcyJ. The 
magnitude of the corresponding shear forces is τmax A0, where A0 is the 
area of the face. Observing that the components along DC of the two shear 
forces are equal and opposite, the force F exerted on DC must be perpen-
dicular to that face and is a tensile force. Its magnitude is

 F 5 2(τmaxA0)cos 458 5 τmaxA0√2 (10.12)

The corresponding stress is obtained by dividing the force F by the area A 
of face DC. Observing that A 5 A0√2,

 σ 5
F

A
5

τmax A0√2

A0√2
5 τmax (10.13)

A similar analysis of the element of Fig. 10.18b shows that the stress on the 
face BE is σ 5 2τmax. Therefore, the stresses exerted on the faces of an ele-
ment c at 458 to the axis of the shaft (Fig. 10.19) are normal stresses equal 
to 6τmax. Thus, while element a in Fig. 10.19 is in pure shear, element c in 
the same figure is subjected to a tensile stress on two of its faces and a com-
pressive stress on the other two. Also note that all of the stresses involved 
have the same magnitude, TcyJ.†

Because ductile materials generally fail in shear, a specimen  
subjected to torsion breaks along a plane perpendicular to its longitudi-
nal axis (Photo 10.2a). On the other hand, brittle materials are weaker in 
tension than in shear. Thus, when subjected to torsion, a brittle material 
tends to break along surfaces perpendicular to the direction in which ten-
sion is maximum, forming a 458 angle with the longitudinal axis of the  
specimen (Photo 10.2b).

Fig. 10.18 Forces on faces at 458 to shaft 
axis.

(a) (b)

C CB B

D E

maxA0maxA0

maxA0 maxA0
458 458

F F9

τ τ

τ τ

Fig. 10.19 Shaft elements with only shearing 
stresses or normal stresses.

5
Tc
J

max 56
Tc
J

458

a

T

T9

c

τ σ

†Stresses on elements of arbitrary orientation, such as in Fig. 10.18b, will be discussed in  
Chap. 14.

(a) Ductile failure (b) Brittle failure
T9 T9 

T T

Photo 10.2 Shear failure of shaft subject to torque.

© John DeWolf

(a) Ductile failure (b) Brittle failure
T9 T9 

T T
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Sample Problem 10.1

Shaft BC is hollow with inner and outer diameters of 90 mm and 120 mm, 
respectively. Shafts AB and CD are solid and of diameter d. For the loading 
shown, determine (a) the maximum and minimum shearing stress in shaft 
BC, (b) the required diameter d of shafts AB and CD if the allowable shear-
ing stress in these shafts is 65 MPa.

0.9 m

d

A

B

TC

TD

0.7 m

0.5 m

120 mm

d

C
D

TA 5 6 kN·m 

 5 14 kN·m 

 5 26 kN·m 

 5 6 kN·m 

TB

Fig. 3 Shearing stress 
distribution on cross section.

c1 5 45 mm

c2 5 60 mm

2

1

τ
τ

(continued)

A TAB

x

TA 5 6 kN·m 

Fig. 1 Free-body diagram 
for section to left of cut 
between A and B.

TB

A

B TBC

xx

TA 5 6 kN·m 

 5 14 kN·m 

Fig. 2 Free-body diagram for 
section to left of cut between 
B and C.

STRATEGY: Use free-body diagrams to determine the torque in each 
shaft. The torques can then be used to find the stresses for shaft BC and the 
required diameters for shafts AB and CD.

MODELING: Denoting by TAB the torque in shaft AB (Fig. 1), we pass a 
section through shaft AB and, for the free body shown, we write

oMx 5 0:    (6 kN?m) 2 TAB 5 0    TAB 5 6 kN?m

We now pass a section through shaft BC (Fig. 2) and, for the free body 
shown, we have

oMx 5 0:  (6 kN?m) 1 (14 kN?m) 2 TBC 5 0    TBC 5 20 kN?m

ANALYSIS: 

 a. Shaft BC. For this hollow shaft we have

J 5
π
2

(c4
2 2 c4

1) 5
π
2

[ (0.060)4 2 (0.045)4] 5 13.92 3 1026 m4

Maximum Shearing Stress.  On the outer surface, we have

τmax 5 τ2 5
TBCc2

J
5

(20 kN?m)�(0.060 m)
13.92 3 1026 m4   τmax 5 86.2 MPa b
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Minimum Shearing Stress.  As shown in Fig. 3 the stresses are proportional 
to the distance from the axis of the shaft.

τmin

τmax
5

c1

c2
        τmin

86.2 MPa
5

45 mm
60 mm

  τmin 5 64.7 MPa b

	 b.	 Shafts	 AB	 and	 CD.  We note that both shafts have the same 
torque T 5 6 kN?m (Fig. 4). Denoting the radius of the shafts by c and 
knowing that τall 5 65 MPa, we write

τ 5
Tc

J
        65 MPa 5

(6 kN?m)c

π
2

 c4

c3 5 58.8 3 1026 m3    c 5 38.9 3 1023 m

 d 5 2c 5 2(38.9 mm)    d 5 77.8 mm b

Sample	Problem	10.2

The preliminary design of a motor-to-generator connection calls for the 
use of a large hollow shaft with inner and outer diameters of 4 in. and 
6 in., respectively. Knowing that the allowable shearing stress is 12 ksi, 
determine the maximum torque that can be transmitted by (a) the shaft 
as designed, (b) a solid shaft of the same weight, and (c) a hollow shaft 
of the same weight and an 8-in. outer diameter.

STRATEGY: Use Eq. (10.9) to determine the maximum torque using the 
allowable stress.

MODELING	and ANALYSIS: 

 a.	 Hollow	 Shaft	 as	 Designed. Using Fig. 1 and setting 
τall 5 12 ksi, we write

J 5
π
2

(c4
2 2 c4

1) 5
π
2

[ (3 in.)4 2 (2 in.)4 ] 5 102.1 in4

Using Eq. (10.9), we write

 τmax 5
Tc2

J
        12 ksi 5

T (3 in.)
102.1 in4    T 5 408 kip?in. b

Fig. 4 Free-body diagram of 
shaft portion AB.

A

B

6 kN·m

6 kN·m

(continued)

8 ft

T9

T

6 in.4 in.

c2 5 3 in.

c1 5 2 in.

T

Fig. 1 Shaft as designed.
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	 b.	 Solid	Shaft	of	Equal	Weight. For the shaft as designed and 
this solid shaft to have the same weight and length, their cross-sectional 
areas must be equal, i.e. A(a) 5 A(b).

 π [ (3 in.)2 2 (2 in.)2 ] 5 πc2
3         c3 5 2.24 in.

Using Fig. 2 and setting τall 5 12 ksi, we write

 τmax 5
Tc3

J
      12 ksi 5

T (2.24 in.)
π
2

(2.24 in.)4
    T 5 211 kip?in. b

Fig. 3 Hollow shaft with an 8-in. 
outer diameter, having equal weight.

c4 5 4 in.

c5

T

c3

T

Fig. 2 Solid shaft having equal weight.

	 c.	 Hollow	Shaft	of	8-in.	Diameter. For equal weight, the cross- 
sectional areas again must be equal, i.e., A(a) 5 A(c) (Fig. 3). We determine 
the inside diameter of the shaft by writing

 π [ (3 in.)2 2 (2 in.)2 ] 5 π [ (4 in.)2 2 c2
5 ]      c5 5 3.317 in.

For c5 5 3.317 in. and c4 5 4 in.,

J 5
π
2

[ (4 in.)4 2 (3.317 in.)4 ] 5 212 in4

With τall 5 12 ksi and c4 5 4 in.,

 τmax 5
Tc4

J
     12 ksi 5

T(4 in.)
212 in4        T 5 636 kip?in. b

REFLECT	and	THINK: This example illustrates the advantage obtained 
when the shaft material is further from the centroidal axis.
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Problems
 10.1 Determine the torque T that causes a maximum shearing stress of  

70 MPa in the steel cylindrical shaft shown.

Fig.	P10.1	and	P10.2

18 mm

T

 10.2 Determine the maximum shearing stress caused by a torque of magni-
tude T 5 800 N·m.

 10.3 (a) Determine the maximum shearing stress caused by a 40-kip·in. 
torque T in the 3-in.-diameter solid aluminum shaft shown. (b) Solve 
part a, assuming that the solid shaft has been replaced by a hollow 
shaft of the same outer diameter and of 1-in. inner diameter.

 10.4 (a) Determine the torque that can be applied to a solid shaft of 20-mm 
diameter without exceeding an allowable shearing stress of 80 MPa. 
(b) Solve part a, assuming that the solid shaft has been replaced by a 
hollow shaft of the same cross-sectional area and with an inner diam-
eter equal to half of its outer diameter.

 10.5 A torque T 5 3 kN·m is applied to the solid bronze cylinder shown. 
Determine (a) the maximum shearing stress, (b) the shearing stress 
at point D that lies on a 15-mm radius circle drawn on the end of  
the cylinder, (c) the percent of the torque carried by the portion of the 
cylinder within the 15 mm radius.

Fig. P10.5

60 mm
30 mm

D
200 mmT 5 3 kN·m

 10.6 (a) For the 3-in.-diameter solid cylinder and loading shown, deter-
mine the maximum shearing stress. (b) Determine the inner diameter 
of the 4-in.-diameter hollow cylinder shown, for which the maximum 
stress is the same as in part a. Fig. P10.6

T 5 40 kip·in.

T9

3 in.
T9

T 5 40 kip·in.

T

4 in.

(b)

(a)

Fig. P10.3

3 in.

4 ft

T
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 10.7 The torques shown are exerted on pulleys A, B, and C. Knowing that 
both shafts are solid, determine the maximum shearing stress in  
(a) shaft AB, (b) shaft BC.

Fig. P10.7	and	P10.8

6.8 kip·in.

72 in.

C
10.4 kip·in.

3.6 kip·in.

B

48 in.

1.3 in.

A

1.8 in.

 10.8 The shafts of the pulley assembly shown are to be redesigned. Know-
ing that the allowable shearing stress in each shaft is 8.5 ksi, deter-
mine the smallest allowable diameter of (a) shaft AB, (b) shaft BC.

 10.9 Under normal operating conditions, the electric motor exerts a 
12-kip·in. torque at E. Knowing that each shaft is solid, determine the 
maximum shearing stress in (a) shaft BC, (b) shaft CD, (c) shaft DE.

Fig. P10.9

2.25 in.

2 in.

1.75 in.

1.50 in.

E

A

B

C

D

5 kip·in.

4 kip·in.

3 kip·in.

 10.10 Solve Prob. 10.9, assuming that a 1-in.-diameter hole has been drilled 
into each shaft.
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 10.11 Under normal operating conditions, the electric motor exerts a torque of 
2.4 kN·m on shaft AB. Knowing that each shaft is solid, determine the 
maximum shearing stress (a) in shaft AB, (b) in shaft BC, (c) in shaft CD.

Fig. P10.11

A

54 mm TB 5 1.2 kN·m

B

46 mm

46 mm

40 mm

C
D

TC 5 0.8 kN·m

TD 5 0.4 kN·m

E

 10.12 In order to reduce the total mass of the assembly of Prob. 10.11, a new 
design is being considered in which the diameter of shaft BC will be 
smaller. Determine the smallest diameter of shaft BC for which the max-
imum value of the shearing stress in the assembly will not be increased.

 10.13 The allowable shearing stress is 15 ksi in the 1.5-in.-diameter steel rod AB 
and 8 ksi in the 1.8-in.-diameter rod BC. Neglecting the effect of stress 
concentrations, determine the largest torque that can be applied at A.

 10.14 The allowable shearing stress is 15 ksi in the steel rod AB and 8 ksi in 
the brass rod BC. Knowing that a torque of magnitude T 5 10 kip·in. 
is applied at A and neglecting the effect of stress concentrations, 
determine the required diameter of (a) rod AB, (b) rod BC.

 10.15 The solid rod AB has a diameter dAB 5 60 mm and is made of a steel 
for which the allowable shearing stress is 85 MPa. The pipe CD, 
which has an outer diameter of 90 mm and a wall thickness of 6 mm, 
is made of an aluminum for which the allowable shearing stress is  
54 MPa. Determine the largest torque T that can be applied at A.

D

A

B

90 mm

dAB
C

T

Fig. P10.15

 10.16 The allowable shearing stress is 50 MPa in the brass rod AB and  
25 MPa in the aluminum rod BC. Knowing that a torque of magnitude 
T 5 1250 N·m is applied at A, determine the required diameter of  
(a) rod AB, (b) rod BC.

B

C

Brass

T
A

Steel

Fig.	P10.13	and	P10.14 

Brass

Aluminum

B

C

A

T

Fig. P10.16
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C

B

F

D

A

30 mm

25 mm
60 mm

75 mm

E

T

Fig.	P10.21	and	P10.22

B4 in.

2.5 in.

E

G

H

A

D

F

C TC

TF

Fig.	P10.23	and	P10.24

 10.17 The solid shaft shown is formed of a brass for which the allowable 
shearing stress is 55 MPa. Neglecting the effect of stress concentra-
tions, determine the smallest diameters dAB and dBC for which the 
allowable shearing stress is not exceeded.

 10.18 Solve Prob. 10.17 assuming that the direction of TC is reversed.

 10.19 Under normal operating conditions a motor exerts a torque of magni-
tude TF 5 1200 lb·in. at F. Knowing that rD 5 8 in., rG 5 3 in., and 
the allowable shearing stress is 10.5 ksi in each shaft, determine the 
required diameter of (a) shaft CDE, (b) shaft FGH.

F

TE
H

E

A

B
D

C

G
rG

rDTF

Fig. P10.19	and	P10.20

 10.20 Under normal operating conditions a motor exerts a torque of mag-
nitude TF at F. The shafts are made of a steel for which the allow-
able shearing stress is 12 ksi and have diameters dCDE 5 0.900 in. and  
dFGH 5 0.800 in. Knowing that rD 5 6.5 in. and rG 5 4.5 in., deter-
mine the largest allowable value of TF.

 10.21 A torque of magnitude T 5 100 N·m is applied to shaft AB of the 
gear train shown. Knowing that the diameters of the three solid shafts 
are, respectively, dAB 5 21 mm, dCD 5 30 mm, and dEF 5 40 mm, 
determine the maximum shearing stress in (a) shaft AB, (b) shaft CD,  
(c) shaft EF.

 10.22 A torque of magnitude T 5 120 N·m is applied to shaft AB of the gear 
train shown. Knowing that the allowable shearing stress is 75 MPa 
in each of the three solid shafts, determine the required diameter of  
(a) shaft AB, (b) shaft CD, (c) shaft EF.

 10.23 Two solid shafts are connected by gears as shown and are made of 
a steel for which the allowable shearing stress is 8500 psi. Knowing 
that a torque of magnitude TC 5 5 kip·in. is applied at C and that 
the assembly is in equilibrium, determine the required diameter of  
(a) shaft BC, (b) shaft EF.

 10.24 Two solid shafts are connected by gears as shown and are made of 
a steel for which the allowable shearing stress is 7000 psi. Knowing 
that the diameters of the two shafts are, respectively dBC 5 1.6 in. and  
dEF 5 1.25 in., determine the largest torque TC that can be applied at C.

A

600 mm

750 mm

dAB

dBC C

B

TB 5 1200 N·m

TC 5 400 N·m

Fig. P10.17
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10.2  ANGLE OF TWIST IN THE 
ELASTIC RANGE

In this section, a relationship will be determined between the angle of twist 
ϕ of a circular shaft and the torque T exerted on the shaft. The entire shaft 
is assumed to remain elastic. Considering first the case of a shaft of length 
L with a uniform cross section of radius c subjected to a torque T at its free 
end (Fig. 10.20), recall that the angle of twist ϕ and the maximum shearing 
strain γmax are related as

 γmax 5
cϕ

L
 (10.3)

But in the elastic range, the yield stress is not exceeded anywhere in the 
shaft. Hooke’s law applies, and γmax 5 τmaxyG. Recalling Eq. (10.9),

 γmax 5
τmax

G
5

Tc

JG
 (10.14)

Equating the right-hand members of Eqs. (10.3) and (10.14) and solving 
for ϕ, write

 ϕ 5
TL

JG
 (10.15)

where ϕ is in radians. The relationship obtained shows that, within the elas-
tic range, the angle of twist ϕ is proportional to the torque T applied to the 
shaft. This agrees with the discussion at the beginning of Sec. 10.1B.

Eq. (10.15) provides a convenient method to determine the modulus 
of rigidity. A cylindrical rod of a material is placed in a torsion testing 
machine (Photo 10.3). Torques of increasing magnitude T are applied to the 
specimen, and the  corresponding values of the angle of twist ϕ in a length 
L of the specimen are recorded. As long as the yield stress of the material is 
not exceeded, the points obtained by plotting ϕ against T fall on a straight 
line. The slope of this line represents the quantity JGyL, from which the 
modulus of rigidity G can be computed.

Fig. 10.20 Torque applied to free end of 
shaft resulting in angle of twist ϕ.

L

T
c

maxγ

ϕ

Photo 10.3 Tabletop torsion testing machine.

Courtesy of Tinius Olsen Testing Machine Co., Inc.
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Concept	Application	10.2

What torque should be applied to the end of the shaft of Concept Application 
10.1 to produce a twist of 28? Use the value G 5 77 GPa for the modulus of 
rigidity of steel.

Solving Eq. (10.15) for T, write

T 5
JG

L
ϕ

Substituting the given values

 G 5 77 3 109 Pa        L 5 1.5 m

 ϕ 5 28(2π rad
3608 ) 5 34.9 3 1023 rad

and recalling that, for the given cross section,

J 5 1.021 3 1026 m4

we have

 T 5
JG

L
 ϕ 5

(1.021 3 1026 m4)�(77 3 109 Pa)
1.5 m

 (34.9 3 1023 rad)

 T 5 1.829 3 103 N?m 5 1.829 kN?m

1.5 m

40 mm

60 mmT

Fig. 10.15 (repeated) Hollow, fixed-
end shaft having torque T applied 
at end.

Concept	Application	10.3

What angle of twist will create a shearing stress of 70 MPa on the inner 
surface of the hollow steel shaft of Concept Applications 10.1 and 10.2?

One method for solving this problem is to use Eq. (10.10) to find the 
torque T corresponding to the given value of τ and Eq. (10.15) to determine 
the angle of twist ϕ corresponding to the value of T just found.

A more direct solution is to use Hooke’s law to compute the shearing 
strain on the inner surface of the shaft:

γmin 5
τmin

G
5

70 3 106 Pa
77 3 109 Pa

5 909 3 1026

Recalling Eq. (10.2), which was obtained by expressing the length of arc 
AA9 in Fig. 10.13c in terms of both γ and ϕ, we have

ϕ 5
Lγmin

c1
5

1500 mm
20 mm

 (909 3 1026) 5 68.2 3 1023 rad

To obtain the angle of twist in degrees, write

ϕ 5 (68.2 3 1023 rad)( 3608

2π rad) 5 3.918
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Eq. (10.15) can be used for the angle of twist only if the shaft is 
homogeneous (constant G), has a uniform cross section, and is loaded only 
at its ends. If the shaft is subjected to torques at locations other than its 
ends or if it has several portions with various cross sections and possibly 
of different materials, it must be divided into parts that satisfy the required 
conditions for Eq. (10.15). For shaft AB shown in Fig. 10.21, four different 
parts should be considered: AC, CD, DE, and EB. The total angle of twist of 
the shaft (i.e., the angle through which end A rotates with respect to end B) 
is obtained by algebraically adding the angles of twist of each component 
part. Using the internal torque Ti , length Li , cross-sectional polar moment 
of inertia Ji , and modulus of rigidity Gi , corresponding to part i, the total 
angle of twist of the shaft is

 ϕ 5 O
i

 
Ti Li

Ji Gi

 (10.16)

The internal torque Ti in any given part of the shaft is obtained by passing 
a section through that part and drawing the free-body diagram of the por-
tion of shaft located on one side of the section. This procedure is applied in 
Sample Prob. 10.3.

For a shaft with a variable circular cross section, as shown in 
Fig. 10.22, Eq. (10.15) is applied to a disk of thickness dx. The angle by 
which one face of the disk rotates with respect to the other is

dϕ 5
T dx

JG

where J is a function of x. Integrating in x from 0 to L, the total angle of 
twist of the shaft is

 ϕ 5 #
L

0

 
T dx

JG
 (10.17)

The shafts shown in Figs. 10.15 and 10.20 both had one end attached 
to a fixed support. In each case, the angle of twist ϕ was equal to the angle 
of rotation of its free end. When both ends of a shaft rotate, however, the 
angle of twist of the shaft is equal to the angle through which one end of the 
shaft rotates with respect to the other. For example, consider the assembly 
shown in Fig. 10.23a, consisting of two elastic shafts AD and BE, each of 
length L, radius c, modulus of rigidity G, and attached to gears meshed at 
C. If a torque T is applied at E (Fig. 10.23b), both shafts will be twisted. 
Since the end D of shaft AD is fixed, the angle of twist of AD is measured 
by the angle of rotation ϕA of end A. On the other hand, since both ends of 
shaft BE rotate, the angle of twist of BE is equal to the difference between 
the angles of rotation ϕB and ϕE (i.e., the angle of twist is equal to the angle 
through which end E rotates with respect to end B). This relative angle of 
rotation, ϕE/B , is

ϕEyB 5 ϕE 2 ϕB 5
TL

JG

Fig. 10.21 Shaft with multiple cross-
section dimensions and multiple loads.

TC

TD

TA

TB

A

C

B

E

D

Fig. 10.22 Torqued shaft with variable  
cross section.

x

A

dx
B

L

T9

T

Fig. 10.23 (a) Gear assembly for transmitting 
torque from point E to point D. (b) Angles of 
twist at disk E, gear B, and gear A.

(a)

(b)

C99

C

B

L

T

rB

E

B

A rA

C

Fixed end

B

L

A

D

A

C9

E

E

Fixed support

D

ϕ

ϕ

ϕ
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10.3  STATICALLY 
INDETERMINATE SHAFTS

There are situations where the internal torques cannot be determined from 
statics alone. In such cases, the external torques (i.e., those exerted on the 
shaft by the supports and connections) cannot be determined from the free-
body diagram of the entire shaft. The equilibrium equations must be com-
plemented by relations involving the deformations of the shaft and obtained 
by the geometry of the problem. Because statics is not sufficient to deter-
mine external and internal torques, the shafts are statically indeterminate. 
The following Concept Application as well as Sample Prob. 10.5 show how 
to analyze statically indeterminate shafts.

Concept	Application	10.4

For the assembly of Fig. 10.23, knowing that rA 5 2rB, determine the angle of 
rotation of end E of shaft BE when the torque T is applied at E.

First determine the torque TAD exerted on shaft AD. Observing that 
equal and opposite forces F and F9 are applied on the two gears at C  
(Fig. 10.24) and recalling that rA 5 2rB, the torque exerted on shaft AD is 
twice as large as the torque exerted on shaft BE. Thus, TAD 5 2T.

Since the end D of shaft AD is fixed, the angle of rotation ϕA of gear A 
is equal to the angle of twist of the shaft and is

ϕA 5
TAD 

L

JG
5

2TL

JG

Since the arcs CC9 and CC 0 in Fig. 10.23b must be equal, rAϕA 5 rBϕB. So,

ϕB 5 (rAyrB)ϕA 5  2ϕA

Therefore,

ϕB 5 2ϕA 5
4TL

JG

Next, consider shaft BE. The angle of twist of the shaft is equal to the angle 
ϕEyB through which end E rotates with respect to end B. Thus,

ϕEyB 5
TBEL

JG
5

TL

JG

The angle of rotation of end E is obtained by

 ϕE 5 ϕB 1 ϕEyB

 5
4TL

JG
1

TL

JG
5

5TL

JG

Fig. 10.24 Gear teeth forces for 
gears A and B.

A
B

C

F

F9

rA rB
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Concept	Application	10.5

A circular shaft AB consists of a 10-in.-long, 7
8-in.-diameter steel cylinder, 

in which a 5-in.-long, 5
8-in.-diameter cavity has been drilled from end B. 

The shaft is attached to fixed supports at both ends, and a 90 lb?ft torque is 
applied at its midsection (Fig. 10.25a). Determine the torque exerted on the 
shaft by each of the supports.

Drawing the free-body diagram of the shaft and denoting by TA and  
TB the torques exerted by the supports (Fig. 10.25b), the equilibrium equa-
tion is

TA 1 TB 5 90 lb?ft

Since this equation is not sufficient to determine the two unknown torques 
TA and TB, the shaft is statically indeterminate.

However, TA and TB can be determined if we observe that the total 
angle of twist of shaft AB must be zero, since both of its ends are restrained. 
Denoting by ϕ1 and ϕ2, respectively, the angles of twist of portions AC and 
CB, we write

ϕ 5 ϕ1 1 ϕ2 5 0

From the free-body diagram of a small portion of shaft including end 
A (Fig. 10.25c), we note that the internal torque T1 in AC is equal to TA; 
from the free-body diagram of a small portion of shaft including end B  
(Fig. 10.25d), we note that the internal torque T2 in CB is equal to TB. 
Recalling Eq. (10.15) and observing that portions AC and CB of the shaft 
are twisted in opposite senses, write

ϕ 5 ϕ1 1 ϕ2 5
TAL1

J1G
2

TBL�2

J2G
5 0

Solving for TB,

TB 5
L1 

J2

L2 
J1

 TA

Substituting the numerical data gives

 L1 5 L2 5 5 in.

  J1 5 1
2 π ( 7

16 in.)4 5 57.6 3 1023 in4

  J2 5 1
2 π [ ( 7

16 in.)4 2 ( 5
16 in.)4 ] 5 42.6 3 1023 in4

Therefore,

TB 5 0.740 TA

Substitute this expression into the original equilibrium equation:

1.740 TA 5 90 lb?ft

TA 5 51.7 lb?ft  TB 5 38.3 lb?ft

Fig. 10.25 (a) Shaft with central 
applied torque and fixed ends. 
(b) Free-body diagram of shaft AB.  
(c) Free-body diagrams for solid and 
hollow segments.

5 in.

5 in.

90 lb · ft
B

A

(a)

(b)

(c)

(d)

TBT1
T2

TA

TB

TA

A

A

C

B

B

90 lb · ft
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Sample	Problem	10.3

The horizontal shaft AD is attached to a fixed base at D and is subjected to 
the torques shown. A 44-mm-diameter hole has been drilled into portion 
CD of the shaft. Knowing that the entire shaft is made of steel for which  
G 5 77 GPa, determine the angle of twist at end A.

B

D

C

A
0.2 m

0.4 m

0.6 m

60 mm

30 mm

250 N·m

2000 N·m44 mm

Fig. 1 Free-body diagram 
for finding internal torque in 
segment AB.

A x

TAB

250 N·m

(continued)

B

A

TBC

2000 N·m

250 N·m

x

Fig. 2 Free-body diagram for finding 
internal torque in segment BC.

STRATEGY: Use free-body diagrams to determine the torque in each 
shaft segment AB, BC, and CD. Then use Eq. (10.16) to determine the 
angle of twist at end A.

MODELING: 
 Passing a section through the shaft between A and B (Fig. 1), we find

oMx 5 0: (250 N?m) 2 TAB 5 0    TAB 5 250 N?m

Passing now a section between B and C (Fig. 2) we have

oMx 5 0: (250 N?m) 1 (2000 N?m) 2 TBC 5 0   TBC 5 2250 N?m

Since no torque is applied at C,

TCD 5 TBC 5 2250 N?m
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ANALYSIS: 

Polar	of	Moments	of	Inertia.
Using Fig. 3

 JAB 5
π
2

 c4 5
π
2

 (0.015 m)4 5 0.0795 3 1026 m4

 JBC 5
π
2

 c4 5
π
2

 (0.030 m)4 5 1.272 3 1026 m4

  JCD 5
π
2

 (c2
4 2 c1

4) 5
π
2

[ (0.030 m)4 2 (0.022 m)4] 5 0.904 3 1026 m4

	 Angle	of	Twist.	 	 From Fig. 4, using Eq. (10.16) and recalling that 
G 5 77 GPa for the entire shaft, we have

ϕA 5 O
i

 
TiLi

JiG
5

1
G(TABLAB

JAB

1
TBCLBC

JBC

1
TCDLCD

JCD
)

ϕA 5
1

77 GPa [ (250 N?m)�(0.4 m)
0.0795 3 1026 m4 1

(2250)�(0.2)
1.272 3 1026 1

(2250)�(0.6)
0.904 3 1026 ]

5 0.01634 1 0.00459 1 0.01939 5 0.0403 rad

 ϕA 5 (0.0403 rad) 
3608

2π rad
 ϕA 5 2.318  b

Sample	Problem	10.4

Two solid steel shafts are connected by the gears shown. Knowing that 
for each shaft G 5 11.2 3 106 psi and the allowable shearing stress is  
8 ksi, determine (a) the largest torque T0 that may be applied to end A of 
shaft AB and (b) the corresponding angle through which end A of shaft 
AB rotates.

STRATEGY: Use the free-body diagrams and kinematics to determine 
the relation between the torques and twist in each shaft segment, AB and 
CD. Then use the allowable stress to determine the torque that can be 
applied and Eq. (10.15) to determine the angle of twist at end A.

24 in.
0.75 in.

36 in.

0.875 in.
2.45 in.

A T0

D

C

B

1 in.

(continued)

Fig. 4 Representation of angle of 
twist at end A.

C

B
A

A

D

ϕ

22 mm

15 mm
30 mm

30 mm

AB BC CD

Fig. 3 Dimensions for three 
cross sections of shaft.
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MODELING: Denoting by F the magnitude of the tangential force 
between gear teeth (Fig. 1), we have

Gear B. oMB 5 0:  F(0.875 in.) 2 T0 5 0  TCD 5 2.8T0 (1)

Gear C. oMC 5 0:  F(2.45 in.) 2 TCD 5 0 

Using kinematics with Fig. 2, we see that the peripheral motions of the 
gears are equal and write

 rBϕB 5 rC ϕC        ϕB 5 ϕC 
rC

rB
5 ϕC 

2.45 in.
0.875 in.

5 2.8ϕC (2)

ANALYSIS: 

 a. Torque T0.  For shaft AB, TAB 5 T0 and c 5 0.375 in. (Fig. 3); con-
sidering maximum permissible shearing stress, we write

 τ 5
TAB c

J
        8000 psi 5

T0(0.375 in.)
1
2 π(0.375 in.)4  T0 5 663 lb?in.  b

For shaft CD using Eq. (1) we have TCD 5 2.8T0 (Fig. 4). With 
c 5 0.5 in. and τall 5 8000 psi, we write

 τ 5
TCD c

J
         8000 psi 5

2.8T0(0.5 in.)
1
2 π(0.5 in.)4   T0 5 561 lb?in. b

The maximum permissible torque is the smaller value obtained for T0.

 T0 5 561 lb?in. b

 b. Angle of Rotation at End A.  We first compute the angle of 
twist for each shaft.

Shaft AB.  For TAB 5 T0 5 561 lb?in., we have

ϕAyB 5
TABL

JG
5

(561 lb?in.)�(24 in.)
1
2 π (0.375 in.)4(11.2 3 106 psi)

5 0.0387 rad 5 2.228

Shaft CD.  TCD 5 2.8T0 5 2.8(561 lb?in.)

ϕCyD 5
TCDL

JG
5

2.8(561 lb?in.)�(36 in.)
1
2 π(0.5 in.)4(11.2 3 106 psi)

5 0.0514 rad 5 2.958

Since end D of shaft CD is fixed, we have ϕC 5 ϕC/D 5 2.958. Using 
Eq. (2) with Fig. 5, we find the angle of rotation of gear B is

ϕB 5 2.8ϕC 5 2.8(2.958) 5 8.268

For end A of shaft AB, we have

 ϕA 5 ϕB 1 ϕAyB 5 8.268 1 2.228 ϕA 5 10.488 b

C

TCD

F

F

rB 5 0.875 in.
rC 5 2.45 in.

B

TAB 5 T0

Fig. 1 Free-body diagrams of gears 
B and C.

36 in.

TCD

TCD

c 5 0.5 in.

D

C

Fig. 4 Free-body diagram of shaft CD.

C

C B

B

rB 5 0.875 in.
rC 5 2.45 in.

ϕ

ϕ

Fig. 2 Angle of twist for gears B and C. 

Fig. 3 Free-body diagram of shaft AB.

24 in.
B

c 5 0.375 in. A

TAB 5 T0

TAB 5 T0

Fig. 5 Angle of twist results.

C

B

D

A

A 5 10.488

B 5 8.268

C 5 2.958ϕ

ϕ

ϕ
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Sample	Problem	10.5

A steel shaft and an aluminum tube are connected to a fixed support and 
to a rigid disk as shown in the cross section. Knowing that the initial 
stresses are zero, determine the maximum torque T0 that can be applied 
to the disk if the allowable stresses are 120 MPa in the steel shaft and  
70 MPa in the aluminum tube. Use G 5 77 GPa for steel and G 5 27 GPa 
for aluminum.

50 mm76 mm

8 mm

500 mm

Fig. 1 Free-body diagram of end cap. 

T1

T2

T0

(continued)

STRATEGY: We know that the applied load is resisted by both the shaft 
and the tube, but we do not know the portion carried by each part. Thus we 
need to look at the deformations. We know that both the shaft and tube are 
connected to the rigid disk and that the angle of twist is therefore the same 
for each. Once we know the portion of the torque carried by each part, we 
can use the allowable stress for each to determine which one governs and 
use this to determine the maximum torque.

MODELING: 
We first draw a free-body diagram of the disk (Fig. 1) and find

 T0 5 T1 1 T2  (1)

Knowing that the angle of twist is the same for the shaft and tube, we 
write

ϕ1 5 ϕ2:    T1L1

J1G1
5

T2L2

J2G2

T1 (0.5 m)
(2.003 3 1026 m4)(27 GPa)

5
T2 (0.5 m)

(0.614 3 1026 m4)(77 GPa)

 T2 5 0.874T1 (2)
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ANALYSIS: We need to determine which part reaches its allowable 
stress first, and so we arbitrarily assume that the requirement τalum #  
70 MPa is critical. For the aluminum tube in Fig. 2, we have

T1 5
τalum 

J1

c1
5

(70 MPa)(2.003 3 1026 m4)
0.038 m

5 3690 N?m

Using Eq. (2), compute the corresponding value T2 and then find the maxi-
mum shearing stress in the steel shaft of Fig. 3.

T2 5 0.874T1 5 0.874 (3690) 5 3225 N?m

τsteel 5
T2c2

J2
5

(3225 N?m)(0.025 m)
0.614 3 1026 m4 5 131.3 MPa

Fig. 2 Torque and angle of twist for 
hollow shaft.

30 mm

0.5 m

T1

1

J1 5      (38 mm)4 2 (30 mm)4
2

G1 5 27 GPa
Aluminum

5 2.003 3 1026m4

38 mm

π

ϕ

Fig. 3 Torque and angle of twist for 
solid shaft.

25 mm

T2

2

G1 5 77 GPa
Steel

5 0.614 3 1026m4

0.5 m

J1 5      (25 mm)4
2

ϕ

π

Note that the allowable steel stress of 120 MPa is exceeded; the assump-
tion was wrong. Thus, the maximum torque T0 will be obtained by making  
τsteel 5 120 MPa. Determine the torque T2:

T2 5
τsteelJ2

c2
5

(120 MPa) (0.614 3 1026
  m4)

0.025 m
5 2950 N?m

From Eq. (2), we have

2950 N?m 5 0.874T1     T1 5 3375 N?m 

Using Eq. (1), we obtain the maximum permissible torque:

T0 5 T1 1 T2 5 3375 N?m 1 2950 N?m

 T0 5 6.325 kN?m b

REFLECT	 and	 THINK: This example illustrates that each part must 
not exceed its maximum allowable stress. Since the steel shaft reaches its 
allowable stress level first, the maximum stress in the aluminum shaft is 
below its maximum.
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 10.25 For the aluminum shaft shown (G 5 3.9 × 106 psi), determine  
(a) the torque T that causes an angle of twist of 5°, (b) the angle of 
twist caused by the same torque T in a solid cylindrical shaft of the 
same length and cross-sectional area.

T

4 ft

0.5 in.
0.75 in.

Fig. P10.25

 10.26 (a) For the solid steel shaft shown, determine the angle of twist at A. 
Use G 5 11.2 × 106 psi. (b) Solve part a, assuming that the steel shaft 
is hollow with a 1.5-in. outer radius and a 0.75-in. inner radius.

 10.27 Determine the largest allowable diameter of a 10-ft-long steel rod 
(G 5 11.2 × 106 psi) if the rod is to be twisted through 30° without 
exceeding a shearing stress of 12 ksi.

 10.28 The ship at A has just started to drill for oil on the ocean floor at 
a depth of 5000 ft. Knowing that the top of the 8-in.-diameter steel 
drill pipe (G 5 11.2 × 106 psi) rotates through two complete revolu-
tions before the drill bit at B starts to operate, determine the maximum 
shearing stress caused in the pipe by torsion.

5000 ft

A

B

Fig. P10.28

 10.29 The torques shown are exerted on pulleys A and B. Knowing that the 
shafts are solid and made of steel (G 5 77 GPa), determine the angle 
of twist between (a) A and B, (b) A and C.

Problems

30 mm

A

B

C

0.9 m

0.75 m

TA 5 300 N·m

TB 5 400 N·m

46 mm

Fig. P10.29

A

3 ft

1.5 in.

T = 60 kip·in. 

B

Fig. P10.26
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 10.30 The torques shown are exerted on pulleys B, C, and D. Knowing that 
the entire shaft is made of aluminum (G 5 27 GPa), determine the 
angle of twist between (a) C and B, (b) D and B.

30 mm

B

30 mm
400 N·m

900 N·m

500 N·m

0.6 m

0.8 m

1 m

0.5 m

36 mm

C

D
E

A

36 mm

Fig. P10.30

 10.31 The aluminum rod BC (G 5 26 GPa) is bonded to the brass rod AB  
(G 5 39 GPa). Knowing that each rod is solid and has a diameter of 
12 mm, determine the angle of twist (a) at B, (b) at C.

Brass

200 mm

300 mm

A

B

C

Aluminum

100 N·m

Fig. P10.31

 10.32 The aluminum rod AB (G 5 27 GPa) is bonded to the brass rod BD  
(G 5 39 GPa). Knowing that portion CD of the brass rod is hollow 
and has an inner diameter of 40 mm, determine the angle of twist at A.

400 mm

375 mm

250 mm

D

60 mm

36 mm

TA 5 800 N·m

TB 5 1600 N·m

C

B

A

Fig. P10.32
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 10.33 Two solid shafts are connected by the gears shown. Knowing that  
G 5 77 GPa for each shaft, determine the angle through which end  
A rotates when TA 5 1200 N·m.

1.2 m

80 mm

1.6 m

42 mm

D
C

B

A

TA

240 mm 60 mm

Fig. P10.33

 10.34 Two solid steel shafts, each of 30-mm diameter, are connected by 
the gears shown. Knowing that G 5 77.2 GPa, determine the angle 
through which end A rotates when a torque of magnitude T 5  
200 N·m is applied at A.

 10.35 Two shafts, each of 78-in.-diameter, are connected by the gears shown. 
Knowing that G 5 11.2 ×106 psi and that the shaft at F is fixed, deter-
mine the angle through which end A rotates when a 1.2 kip·in.-torque 
is applied at A.

T
E

F
B

A

4.5 in.

6 in.

12 in.

8 in.

6 in.

D

C

Fig. P10.35

30 mm

E

60 mm

30 mm

90 mm

0.5 m

0.1 m

0.2 m

0.4 m

0.2 m

B

D

C

A

T

Fig. P10.34
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 10.36 A coder F, used to record in digital form the rotation of shaft A, is 
connected to the shaft by means of the gear train shown, which con-
sists of four gears and three solid steel shafts each of diameter d. Two 
of the gears have a radius r and the other two a radius nr. If the rota-
tion of the coder F is prevented, determine in terms of T, l, G, J, and n 
the angle through which end A rotates.

F

ED
nr r

C

l

TA

B

A

nr

l

l

r

Fig. P10.36

 10.37 The design specifications of a 1.2-m-long solid transmission shaft 
require that the angle of twist of the shaft not exceed 4° when a torque 
of 750 N·m is applied. Determine the required diameter of the shaft, 
knowing that the shaft is made of a steel with an allowable shearing 
stress of 90 MPa and a modulus of rigidity of 77.2 GPa.

 10.38 The design specifications of a 2-m-long solid circular transmission 
shaft require that the angle of twist of the shaft not exceed 3° when a 
torque of 9 kN·m is applied. Determine the required diameter of the 
shaft, knowing that the shaft is made of (a) a steel with an allowable 
shearing stress of 90 MPa and a modulus of rigidity of 77 GPa, (b) a 
bronze with an allowable shearing stress of 35 MPa and a modulus of 
rigidity of 42 GPa.

	10.39	and	10.40	 The solid cylindrical rod BC of length L 5 24 in. is 
attached to the rigid lever AB of length a 515 in. and to the support at 
C. Design specifications require that the displacement of A not exceed 
1 in. when a 100-lb force P is applied at A. For the material indicated, 
determine the required diameter of the rod.

  10.39 Steel: τall 5 15 ksi, G 5 11.2 × 106 psi.
  10.40 Aluminum: τall 5 10 ksi, G 5 3.9 × 106 psi.

A

L
a

P

B

C

Fig.	P10.39	and	P10.40
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 10.41 A torque of magnitude T 5 4 kN·m is applied at end A of the compos-
ite shaft shown. Knowing that the modulus of rigidity is 77 GPa for 
the steel and 27 GPa for the aluminum, determine (a) the maximum 
shearing stress in the steel core, (b) the maximum shearing stress in 
the aluminum jacket, (c) the angle of twist at A.

Steel core

Aluminum jacket

72 mm

54 mm
A

B

25 m
T

Fig.	P10.41	and	P10.42

 10.42 The composite shaft shown is to be twisted by applying a torque T at 
end A. Knowing that the modulus of rigidity is 77 GPa for the steel 
and 27 GPa for the aluminum, determine the largest angle through 
which end A can be rotated if the following allowable stresses are not 
be exceeded: τsteel 5 60 MPa and τaluminum 5 45 MPa.

 10.43 The composite shaft shown consists of a 0.2-in.-thick brass jacket 
(Gbrass 5 5.6 × 106 psi) bonded to a 1.2-in.-diameter steel core (Gsteel 5  
11.2 × 106 psi). Knowing that the shaft is subjected to a 5-kip·in. 
torque, determine (a) the maximum shearing stress in the steel core, 
(b) the angle of twist of B relative to end A.

0.2 in.
Steel core

Brass jacket

6 ft

1.2 in.

T

T

A

B

Fig.	P10.43	and	P10.44																																				

 10.44 The composite shaft shown consists of a 0.2-in.-thick brass jacket 
(Gbrass 5 5.6 × 106 psi) bonded to a 1.2-in.-diameter steel core (Gsteel 5  
11.2 × 106 psi). Knowing that the shaft is being subjected to the torques 
shown, determine the largest angle through which it can be twisted 
if the following allowable stresses are not to be exceeded: τsteel 5  
15 ksi and τbrass 5 8 ksi.
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 10.45 Two solid steel shafts (G 5 77.2 GPa) are connected to a coupling 
disk B and to fixed supports at A and C. For the loading shown, deter-
mine (a) the reaction at each support, (b) the maximum shearing 
stress in shaft AB, (c) the maximum shearing stress in shaft BC.

250 mm

38 mm

1.4 kN·m
50 mm

C 
200 mm

B

A

Fig. P10.45

 10.46 Solve Prob. 10.45, assuming that shaft AB is replaced by a hollow 
shaft of the same outer diameter and of 25-mm inner diameter.

 10.47 The design specifications for the gear-and-shaft system shown 
require that the same diameter be used for both shafts and that the 
angle through which pulley A will rotate when subjected to a 2-kip·in. 
torque TA while pulley D is held fixed will not exceed 7.5°. Determine 
the required diameter of the shafts if both shafts are made of a steel 
with G 5 11.2 × 106 psi and τall 5 12 ksi.

A

8 in.

6 in.

5 in.

16 in.

2 in.

C

B

D

TA

TD

Fig. P10.47

 10.48 Solve Prob. 10.47, assuming that both shafts are made of a brass with 
G 5 5.6 × 106 psi and τall 5 8 ksi.
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Review and Summary
This chapter was devoted to the analysis and design of shafts subjected to 
twisting couples, or torques. Except for the last two sections of the chapter, 
our discussion was limited to circular shafts.

Deformations	 in	Circular	Shafts
The distribution of stresses in the cross section of a circular shaft is statically 
indeterminate. The determination of these stresses requires a prior analysis 
of the deformations occurring in the shaft [Sec. 10.1B]. In a circular shaft 
subjected to torsion, every cross section remains plane and undistorted. The 
shearing strain in a small element with sides parallel and perpendicular to the 
axis of the shaft and at a distance ρ from that axis is

 γ 5
ρϕ

L
 (10.2)

where ϕ is the angle of twist for a length L of the shaft (Fig. 10.26). Eq. (10.2) 
shows that the shearing strain in a circular shaft varies linearly with the dis-
tance from the axis of the shaft. It follows that the strain is maximum at the 
surface of the shaft, where ρ is equal to the radius c of the shaft:

 γmax 5
cϕ

L
   γ 5

ρ
c

� γmax (10.3, 4)

Shearing	Stresses	 in	Elastic	Range
The relationship between shearing stresses in a circular shaft within the elastic 
range [Sec. 10.1C] and Hooke’s law for shearing stress and strain, τ 5 Gγ, is

 τ 5
ρ
c

� τmax (10.6)

which shows that within the elastic range, the shearing stress τ in a circular 
shaft also varies linearly with the distance from the axis of the shaft. Equating 
the sum of the moments of the elementary forces exerted on any section of the 
shaft to the magnitude T of the torque applied to the shaft, the elastic torsion 
formulas are

 τmax 5
Tc

J
  τ 5

Tρ
J

 (10.9, 10)

where c is the radius of the cross section and J its centroidal polar moment of 
inertia. J 5 1

2 πc4 for a solid shaft, and J 5 1
2 π(c4

2 2 c4
1) for a hollow shaft of 

inner radius c1 and outer radius c2. Fig. 10.26

L

L

(a)

(b)

(c)

L

B

O
c

B

B

A O

O

A'

A

ϕ

ρ

ρ

γ

ϕ
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We noted that while the element a in Fig. 10.27 is in pure shear, the element 
c in the same figure is subjected to normal stresses of the same magnitude, 
TcyJ, with two of the normal stresses being tensile and two compressive. This 
explains why in a torsion test ductile materials, which generally fail in shear, 
will break along a plane perpendicular to the axis of the specimen, while brittle 
materials, which are weaker in tension than in shear, will break along surfaces 
forming a 458 angle with that axis.

Fig. 10.27

5
Tc
J

max 56
Tc
J

458

a

T

T9

c

τ σ

Angle	of	Twist
Within the elastic range, the angle of twist ϕ of a circular shaft is proportional 
to the torque T applied to it (Fig. 10.28).

 ϕ 5
TL

JG
 (units of radians) (10.15)

where L 5 length of shaft
 J 5 polar moment of inertia of cross section
 G 5 modulus of rigidity of material

If the shaft is subjected to torques at locations other than its ends or consists of 
several parts of various cross sections and possibly of different materials, the 
angle of twist of the shaft must be expressed as the algebraic sum of the angles 
of twist of its component parts:

 ϕ 5 O
i

TiLi

JiGi

 (10.16)

Fig. 10.28

L

T
c

maxγ

ϕ
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When both ends of a shaft BE rotate (Fig. 10.29), the angle of twist is 
equal to the difference between the angles of rotation ϕB and ϕE of its ends. 
When two shafts AD and BE are connected by gears A and B, the torques 
applied by gear A on shaft AD and gear B on shaft BE are directly proportional 
to the radii rA and rB of the two gears—since the forces applied on each other 
by the gear teeth at C are equal and opposite. On the other hand, the angles ϕA 
and ϕB are inversely proportional to rA and rB—since the arcs CC9 and CC0 
described by the gear teeth are equal.

Statically	 Indeterminate	Shafts
If the reactions at the supports of a shaft or the internal torques cannot be 
determined from statics alone, the shaft is said to be statically indeterminate. 
The equilibrium equations obtained from free-body diagrams must be comple-
mented by relationships involving deformations of the shaft and obtained from 
the geometry of the problem.

Fig. 10.29

C99

T

E

B

C

Fixed end

B

L

A

D

A

C9

E

ϕ

ϕ

ϕ
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 10.49 Knowing that the internal diameter of the hollow shaft shown is d = 
0.9 in., determine the maximum shearing stress caused by a torque of 
magnitude T = 9 kip·in.

 10.50 Knowing that d = 1.2 in., determine the torque T that causes a maxi-
mum shearing stress of 7.5 ksi in the hollow shaft shown. 

 10.51 The solid spindle AB has a diameter ds = 1.5 in. and is made of a steel 
with an allowable shearing stress of 12 ksi, while sleeve CD is made 
of a brass with an allowable shearing stress of 7 ksi. Determine the 
largest torque T that can be applied at A.

4 in.

8 in.

ds

t 5 in.1
4

3 in.

D

C

A

B

T

Fig.	P10.51	and	P10.52

 10.52 The solid spindle AB is made of a steel with an allowable shearing 
stress of 12 ksi, while sleeve CD is made of a brass with an allowable 
shearing stress of 7 ksi. Determine (a) the largest torque T that can be 
applied at A if the allowable shearing stress is not to be exceeded in 
sleeve CD, (b) the corresponding required value of the diameter ds of 
spindle AB.

 10.53 A steel pipe of 12-in. outer diameter is fabricated from 1
4-in.-thick 

plate by welding along a helix that forms an angle of 45° with a plane 
parallel to the axis of the pipe. Knowing that the maximum allowable 
tensile stress in the weld is 12 ksi, determine the largest torque that 
can be applied to the pipe.

12 in.

 in.1
4

458

T

T9

Fig. P10.53

Review Problems

d

1.6 in.

T

Fig.	P10.49	and	P10.50
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 10.54 Two solid brass rods AB and CD are brazed to a brass sleeve EF. 
Determine the ratio d2/d1 for which the same maximum shearing 
stress occurs in the rods and in the sleeve.

C

B

F

E

D

A

d2

d1

T

T9

Fig. P10.54

 10.55 The design of the gear-and-shaft system shown requires that steel 
shafts of the same diameter be used for both AB and CD. It is further 
required that τmax ≤ 60 MPa and that the angle ϕD through which end 
D of shaft CD rotates not exceed 1.5°. Knowing that G = 77.2 GPa, 
determine the required diameter of the shafts.

A

100 mm

40 mmC

B
D

T 5 1000 N·m

400 mm

600 mm

Fig. P10.55

 10.56 In the bevel-gear system shown, α = 18.43°. Knowing that the allow-
able shearing stress is 8 ksi in each shaft and that the system is in 
equilibrium, determine the largest torque TA that can be applied at A.

B

C
A

TB

TA

0.625 in.

0.5 in.

α
α

Fig. P10.56
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 10.57 Ends A and D of the two solid steel shafts AB and CD are fixed, 
while ends B and C are connected to gears as shown. Knowing that 
the allowable shearing stress is 50 MPa in each shaft, determine the 
largest torque T that can be applied to gear B.

100 mm

60 mm

500 mm

300 mm

A

B
45 mm

40 mmC

D

T

Fig. P10.57

	10.58	and	10.59  Two solid steel shafts are fitted with flanges that are then 
connected by bolts as shown. The bolts are slightly undersized and 
permit a 1.5° rotation of one flange with respect to the other before the 
flanges begin to rotate as a single unit. Knowing that G = 77.2 GPa,  
determine the maximum shearing stress in each shaft when a torque   
T of magnitude 500 N·m is applied to the flange indicated.

   10.58 The torque T is applied to flange B.
   10.59 The torque T is applied to flange C.

36 mm

30 mm

900 mm

600 mm

C

B

D

A

T 5 500 N·m

Fig.	P10.58	and	P10.59

 10.60 The steel jacket CD has been attached to the 40-mm-diameter steel 
shaft AE by means of rigid flanges welded to the jacket and to the 
rod. The outer diameter of the jacket is 80 mm and its wall thickness 
is 4 mm. If 500 N·m torques are applied as shown, determine the 
maximum shearing stress in the jacket.

B

C

D
E

A

T

T'

Fig. P10.60
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The normal stresses and the curvature resulting from pure bending, 

such as those developed in the center portion of the barbell shown, 

will be studied in this chapter.

Pure Bending

11
© Mel Curtis/Getty Images RF
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Introduction

 11.1 SYMMETRIC MEMBERS IN 
PURE BENDING

 11.1A Internal Moment and Stress 
Relations

 11.1B Deformations

 11.2  STRESSES AND 
DEFORMATIONS IN THE 
ELASTIC RANGE

 11.3 MEMBERS MADE OF 
COMPOSITE MATERIALS

 11.4 ECCENTRIC AXIAL 
LOADING IN A PLANE OF 
SYMMETRY

 11.5 UNSYMMETRIC BENDING 
ANALYSIS

 11.6 GENERAL CASE OF 
ECCENTRIC AXIAL 
LOADING ANALYSIS

Fig. 11.1 Member in pure bending.

A

B

M

M9

Introduction
This chapter and the following two analyze the stresses and strains in  
prismatic members subjected to bending. Bending is a major concept used 
in the design of many machine and structural components, such as beams 
and girders.

This chapter is devoted to the analysis of prismatic members sub-
jected to equal and opposite couples M and M9 acting in the same longitu-
dinal plane. Such members are said to be in pure bending. The members are 
assumed to possess a plane of symmetry with the couples M and M9 acting 
in that plane (Fig. 11.1).

Fig. 11.2 (a) Free-body diagram of the 
barbell pictured in the chapter opening 
photo and (b) free-body diagram of the 
center portion of the bar, which is in pure 
bending.

12 in. 26 in. 12 in.

A B

M9 5 960 lb·in.M 5 960 lb·in.

C D

C D

RC 5 80 lb

80 lb80 lb

RD 5 80 lb
(a)

(b)

Objectives
In this chapter, you will:

•	Consider the general principles of bending behavior

•	Define the deformations, strains, and normal stresses in 
beams subject to pure bending

•	Describe the behavior of composite beams made of 
more than one material

•	Analyze members subject to eccentric axial loading, 
involving both axial stresses and bending stresses

•	Review beams subject to unsymmetric bending, i.e., 
where bending does not occur in a plane of symmetry

An example of pure bending is provided by the bar of a typical barbell 
as it is held overhead by a weight lifter as shown in the opening photo for 
this chapter. The bar carries equal weights at equal distances from the hands 
of the weight lifter. Because of the symmetry of the free-body diagram of 
the bar (Fig. 11.2a), the reactions at the hands must be equal and opposite 
to the weights. Therefore, as far as the middle portion CD of the bar is 
concerned, the weights and the reactions can be replaced by two equal and 
opposite 960-lb?in. couples (Fig. 11.2b), showing that the middle portion 
of the bar is in pure bending. A similar analysis of a small sport buggy 
(Photo 11.1) shows that the axle is in pure bending between the two points 
where it is attached to the frame.

The results obtained from the direct applications of pure bending will 
be used in the analysis of other types of loadings, such as eccentric axial 
loadings and transverse loadings.
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Photo 11.1 The center portion of 
the rear axle of the sport buggy is in 
pure bending.

Courtesy of Flexifoil
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Photo 11.2 shows a 12-in. steel bar clamp used to exert 150-lb forces 
on two pieces of lumber as they are being glued together. Fig. 11.3a shows 
the equal and opposite forces exerted by the lumber on the clamp. These 
forces result in an eccentric loading of the straight portion of the clamp. 
In Fig. 11.3b, a section CC9 has been passed through the clamp and a free-
body diagram has been drawn of the upper half of the clamp. The internal 
forces in the section are equivalent to a 150-lb axial tensile force P and a 
750-lb?in. couple M. By combining our knowledge of the stresses under 
a centric load and the results of an analysis of stresses in pure bending, 
the distribution of stresses under an eccentric load is obtained. This is dis-
cussed in Sec. 11.4.

Photo 11.2 Clamp used to glue lumber pieces 
together.

© Tony Freeman/PhotoEdit

Fig. 11.3 (a) Free-body diagram of a clamp, (b) free-body diagram 
of the upper portion of the clamp.

5 in.

C C9 C C9
P9 5 150 lb

P 5 150 lb

P9 5 150 lb

M 5 750 lb·in.
P 5 150 lb

5 in.

(a) (b)

Fig. 11.4 (a) Cantilevered beam with end 
loading. (b) As portion AC shows, beam is not 
in pure bending.

L 

x 

P

P

B 

C 

C 

A 

A 

P9

M

(a)

(b)

The study of pure bending plays an essential role in the study of 
beams (i.e., prismatic members) subjected to various types of transverse 
loads. Consider a cantilever beam AB supporting a concentrated load P at 
its free end (Fig. 11.4a). If a section is passed through C at a distance x from 
A, the free-body diagram of AC (Fig. 11.4b) shows that the internal forces 
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in the section consist of a force P9 equal and opposite to P and a couple M 
of magnitude M 5 Px. The distribution of normal stresses in the section can 
be obtained from the couple M as if the beam were in pure bending. The 
shearing stresses in the section depend on the force P9, and their distribu-
tion over a given section is discussed in Chap. 13.

The first part of this chapter covers the analysis of stresses and defor-
mations caused by pure bending in a homogeneous member possessing 
a plane of symmetry and made of a material following Hooke’s law. The 
methods of statics are used in Sec. 11.1A to derive three fundamental equa-
tions which must be satisfied by the normal stresses in any given cross sec-
tion of the member. In Sec. 11.1B, it will be proved that transverse sections 
remain plane in a member subjected to pure bending, while in Sec. 11.2, 
formulas are developed to determine the normal stresses and radius of cur-
vature for that member within the elastic range.

Sec. 11.3 covers the stresses and deformations in composite members 
made of more than one material, such as reinforced-concrete beams, which 
utilize the best features of steel and concrete and are extensively used in the 
construction of buildings and bridges. You will learn to draw a transformed 
section representing a member made of a homogeneous material that under-
goes the same deformations as the composite member under the same load-
ing. The transformed section is used to find the stresses and deformations in 
the original composite member.

In Sec. 11.4, you will analyze an eccentric axial loading in a plane of 
symmetry (Fig. 11.3) by superposing the stresses due to pure bending and 
a centric axial loading.

The study of the bending of prismatic members concludes with the 
analysis of unsymmetric bending (Sec. 11.5), and the study of the general 
case of eccentric axial loading (Sec. 11.6).

11.1  SYMMETRIC MEMBERS IN 
PURE BENDING

11.1A  Internal Moment and Stress 
Relations

Consider a prismatic member AB possessing a plane of symmetry and  
subjected to equal and opposite couples M and M9 acting in that plane  
(Fig. 11.5a). If a section is passed through the member AB at some arbitrary 
point C, the conditions of equilibrium of the portion AC of the member 

Fig. 11.5 (a) A member in a state of pure bending. (b) Any 
intermediate portion of AB will also be in pure bending.

A

B

C

M

M9

A

C

M

M9

(a) (b)
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require the internal forces in the section to be equivalent to the couple M 
(Fig. 11.5b). The moment M of that couple is the bending moment in the 
section. Following the usual convention, a positive sign is assigned to M 
when the member is bent as shown in Fig. 11.5a (i.e., when the concavity of 
the beam faces upward) and a negative sign otherwise.

Denoting by σx the normal stress at a given point of the cross section 
and by τxy and τxz the components of the shearing stress, we express that the 
system of the elementary internal forces exerted on the section is equivalent 
to the couple M (Fig. 11.6).

Fig. 11.6 Stresses resulting from pure bending moment M.

x

z

y 

M

x
z

z
y

y 

xydA

xzdA

xdA

5
τ

τ

σ

Recall from statics that a couple M actually consists of two equal and 
opposite forces. The sum of the components of these forces in any direction 
is therefore equal to zero. Moreover, the moment of the couple is the same 
about any axis perpendicular to its plane and is zero about any axis con-
tained in that plane. Selecting arbitrarily the z axis shown in Fig. 11.6, the 
equivalence of the elementary internal forces and the couple M is expressed 
by writing that the sums of the components and moments of the forces are 
equal to the corresponding components and moments of the couple M:

 x components: σx dA 5 0 (11.1)

 Moments about y axis: zσx dA 5 0 (11.2)

 Moments about z axis: (2yσx dA) 5 M (11.3)

Three additional equations could be obtained by setting equal to zero the 
sums of the y components, z components, and moments about the x axis, 
but these equations would involve only the components of the shearing 
stress and, as you will see in the next section, the components of the shear-
ing stress are both equal to zero.

Two remarks should be made at this point:

 1. The minus sign in Eq. (11.3) is due to the fact that a tensile stress (σx . 0) 
leads to a negative moment (clockwise) of the normal force σx dA about 
the z axis.

 2. Eq. (11.2) could have been anticipated, since the application of couples 
in the plane of symmetry of member AB result in a distribution of normal 
stresses symmetric about the y axis.

Once more, note that the actual distribution of stresses in a given cross 
section cannot be determined from statics alone. It is statically indetermi-
nate and may be obtained only by analyzing the deformations produced in 
the member.
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11.1B Deformations
We will now analyze the deformations of a prismatic member possessing a 
plane of symmetry. Its ends are subjected to equal and opposite couples M 
and M9 acting in the plane of symmetry. The member will bend under the 
action of the couples, but will remain symmetric with respect to that plane 
(Fig. 11.7). Moreover, since the bending moment M is the same in any cross 
section, the member will bend uniformly. Thus, the line AB along the upper 
face of the member intersecting the plane of the couples will have a con-
stant curvature. In other words, the line AB will be transformed into a circle 
of center C, as will the line A9B9 along the lower face of the member. Note 
that the line AB will decrease in length when the member is bent (i.e., when 
M . 0), while A9B9 will become longer.

Fig. 11.8 (a) Two points in a cross section 
at D that is perpendicular to the member‘s 
axis. (b) Considering the possibility that 
these points do not remain in the cross 
section after bending.

D

D

E
A B

A B

M9 M

E9
E E9

C

EE9

(a)

(b)

Fig. 11.9 Member subject to pure bending 
shown in two views. (a) Longitudinal, vertical 
section (plane of symmetry). (b) Longitudinal, 
horizontal section.

y

A

C

B

x

x

z

M9 M

M9

A9 B9

(a)

(b)

M

Fig. 11.7 Initially straight members in pure bending deform into a circular arc.

C

D

A
B

M M

B

9

9

Next we will prove that any cross section perpendicular to the axis of 
the member remains plane, and that the plane of the section passes through 
C. If this were not the case, we could find a point E of the original section 
through D (Fig. 11.8a) which, after the member has been bent, would not 
lie in the plane perpendicular to the plane of symmetry that contains line 
CD (Fig. 11.8b). But, because of the symmetry of the member, there would 
be another point E9 that would be transformed exactly in the same way. Let 
us assume that, after the beam has been bent, both points would be located 
to the left of the plane defined by CD, as shown in Fig. 11.8b. Since the 
bending moment M is the same throughout the member, a similar situation 
would prevail in any other cross section, and the points corresponding to E 
and E9 would also move to the left. Thus, an observer at A would conclude 
that the loading causes the points E and E9 in the various cross sections to 
move forward (toward the observer). But an observer at B, to whom the 
loading looks the same, and who observes the points E and E9 in the same 
positions (except that they are now inverted) would reach the opposite con-
clusion. This inconsistency leads us to conclude that E and E9 will lie in 
the plane defined by CD and, therefore, that the section remains plane and 
passes through C. We should note, however, that this discussion does not 
rule out the possibility of deformations within the plane of the section.

Suppose that the member is divided into a large number of small 
cubic elements with faces respectively parallel to the three coordinate 
planes. The property we have established requires that these elements be 
transformed as shown in Fig. 11.9 when the member is subjected to the 
couples M and M9. Since all the faces represented in the two projections of 
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Fig. 11.9 are at 908 to each other, we conclude that γxy 5 γzx 5 0 and, thus, 
that τxy 5 τxz 5 0. Regarding the three stress components that we have not 
yet discussed, namely, σy , σz , and τyz , we note that they must be zero on the 
surface of the member. Since, on the other hand, the deformations involved 
do not require any interaction between the elements of a given transverse 
cross section, we can assume that these three stress components are equal to 
zero throughout the member. This assumption is verified, both from exper-
imental evidence and from the theory of elasticity, for slender members 
undergoing small deformations. We conclude that the only nonzero stress 
component exerted on any of the small cubic elements considered here is 
the normal component σx. Thus, at any point of a slender member in pure 
bending, we have a state of uniaxial stress. Recalling that, for M . 0, lines 
AB and A9B9 are observed, respectively, to decrease and increase in length, 
we note that the strain ϵx and the stress σx are negative in the upper portion 
of the member (compression) and positive in the lower portion (tension).

It follows from above that a surface parallel to the upper and lower 
faces of the member must exist where ϵx and σx are zero. This surface is 
called the neutral surface. The neutral surface intersects the plane of sym-
metry along an arc of circle DE (Fig. 11.10a), and it intersects a trans-
verse section along a straight line called the neutral axis of the section 
(Fig. 11.10b). The origin of coordinates is now selected on the neutral  
surface—rather than on the lower face of the member—so that the distance 
from any point to the neutral surface is measured by its coordinate y.

Denoting by ρ the radius of arc DE (Fig. 11.10a), by θ the central 
angle corresponding to DE, and observing that the length of DE is equal to 
the length L of the undeformed member, we write

 L 5 ρθ (11.4)

Considering the arc JK located at a distance y above the neutral surface, its 
length L9 is

 L9 5 (ρ 2 y)θ (11.5)

Since the original length of arc JK was equal to L, the deformation of JK is

 δ 5 L9 2 L (11.6)

Fig. 11.10 Establishment of neutral axis. (a) Longitudinal-vertical view. 
(b) Transverse section at origin.

y

y

 2 y

A

J

D
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C

B
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A9 B9

(a) Longitudinal, vertical section
(plane of symmetry)

(b) Transverse section
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axis

ρ ρ

θ
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or, substituting from Eqs. (11.4) and (11.5) into Eq. (11.6),

 δ 5 (ρ 2 y)θ 2 ρθ 5 2 yθ (11.7)

The longitudinal strain ϵx in the elements of JK is obtained by dividing δ by 
the original length L of JK. Write

ϵx 5
δ
L

5
2yθ
ρθ

or

 ϵx 5 2 

y

ρ (11.8)

The minus sign is due to the fact that it is assumed the bending moment is 
positive, and thus the beam is concave upward.

Because of the requirement that transverse sections remain plane, 
identical deformations occur in all planes parallel to the plane of symmetry. 
Thus, the value of the strain given by Eq. (11.8) is valid anywhere, and the 
longitudinal normal strain ϵx varies linearly with the distance y from the 
neutral surface.

The strain ϵx reaches its maximum absolute value when y is largest. 
Denoting the largest distance from the neutral surface as c (corresponding 
to either the upper or the lower surface of the member) and the maximum 
absolute value of the strain as ϵm , we have

 ϵm 5
c

ρ (11.9)

Solving Eq. (11.9) for ρ and substituting into Eq. (11.8),

 ϵx 5 2 
y

c
 ϵm (11.10)

To compute the strain or stress at a given point of the member, we 
must first locate the neutral surface in the member. To do this, we must  
specify the stress-strain relation of the material used, as will be considered 
in the next section.†

11.2  STRESSES AND 
DEFORMATIONS IN THE 
ELASTIC RANGE

We now consider the case when the bending moment M is such that the nor-
mal stresses in the member remain below the yield strength σY. This means 
that the stresses in the member remain below the proportional limit and the 
elastic limit as well. There will be no permanent deformation, and Hooke’s 
law for uniaxial stress applies. Assuming the material to be homogeneous 

†Let us note that, if the member possesses both a vertical and a horizontal plane of symmetry 
(e.g., a member with a rectangular cross section) and the stress-strain curve is the same in ten-
sion and compression, the neutral surface will coincide with the plane of symmetry.
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and denoting its modulus of elasticity by E, the normal stress in the longi-
tudinal x direction is
 σx 5 Eϵx (11.11)

Recalling Eq. (11.10) and multiplying both members by E, we write

Eϵx 5 2 
y

c
(Eϵm)

or using Eq. (11.11),

 σx 5 2 
y

c
 σm (11.12)

where σm denotes the maximum absolute value of the stress. This result 
shows that, in the elastic range, the normal stress varies linearly with the 
distance from the neutral surface (Fig. 11.11).

Note that neither the location of the neutral surface nor the maximum 
value σm of the stress have yet to be determined. Both can be found using Eqs. 
(11.1) and (11.3). Substituting for σx from Eq. (11.12) into Eq. (11.1), write

#σx  dA 5 #(2 

y

c
� σm) dA 5 2 

σm

c
 #y dA 5 0

from which

 #y dA 5 0 (11.13)

This equation shows that the first moment of the cross section about its neu-
tral axis must be zero. Thus, for a member subjected to pure bending and 
as long as the stresses remain in the elastic range, the neutral axis passes 
through the centroid of the section.

Recall Eq. (11.3), which was developed with respect to an arbitrary 
horizontal z axis:

 # (2yσx dA) 5 M (11.3)

Specifying that the z axis coincides with the neutral axis of the cross sec-
tion, substitute σx from Eq. (11.12) into Eq. (11.3):

# (2y) (2
y

c
 σm)

 
 dA 5 M

or

 
σm

c
 #y2

 dA 5 M (11.14)

Recall that for pure bending the neutral axis passes through the centroid of 
the cross section and I is the moment of inertia or second moment of  area 
of the cross section with respect to a centroidal axis perpendicular to the 
plane of the couple M. Solving Eq. (11.14) for σm ,†

 σm 5
Mc

I
 (11.15)

†Recall that the bending moment is assumed to be positive. If the bending moment is negative, 
M should be replaced in Eq. (11.15) by its absolute value |M |.

Fig. 11.11 Bending stresses vary linearly with 
distance from the neutral axis.

y

c

m

x
Neutral surface

σ
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Substituting for σm from Eq. (11.15) into Eq. (11.12), we obtain the 
normal stress σx at any distance y from the neutral axis:

 σx 5 2  
My

I
 (11.16)

Eqs. (11.15) and (11.16) are called the elastic f lexure formulas, and the 
normal stress σx caused by the bending or “flexing” of the member is often 
referred to as the f lexural stress. The stress is compressive (σx , 0) above 
the neutral axis (y . 0) when the bending moment M is positive and tensile 
(σx . 0) when M is negative.

Concept	Application	11.1

A steel bar of 0.8 3 2.5-in. rectangular cross section is subjected to two 
equal and opposite couples acting in the vertical plane of symmetry of 
the bar (Fig. 11.12a). Determine the value of the bending moment M that 
causes the bar to yield. Assume σY 5 36 ksi.

Since the neutral axis must pass through the centroid C of the cross 
section, c 5 1.25 in. (Fig. 11.12b). On the other hand, the centroidal 
moment of inertia of the rectangular cross section is

I 5 1
12 bh3 5 1

12� (0.8 in.)(2.5 in.)3 5 1.042 in4

Solving Eq. (11.15) for M, and substituting the above data,

 M 5
I

c
σm 5

1.042 in4

1.25 in.
(36 ksi)

 M 5 30 kip?in.

Fig. 11.12 (a) Bar of rectangular 
cross-section in pure bending. (b) 
Centroid and dimensions of cross 
section.

M9 M

0.8 in.

2.5 in.

(a)

1.25 in.

0.8 in.

N. A.

C
2.5 in.

(b)

Returning to Eq. (11.15), the ratio Iyc depends only on the geometry 
of the cross section. This ratio is defined as the elastic section modulus S, 
where

 Elastic section modulus 5 S 5
I

c
 (11.17)

Substituting S for Iyc into Eq. (11.15), this equation in alternative form is

 σm 5
M

S
 (11.18)

Since the maximum stress σm is inversely proportional to the elastic sec-
tion modulus S, beams should be designed with as large a value of S as is 
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practical. For example, a wooden beam with a rectangular cross section of 
width b and depth h has

 S 5
I

c
5

1
12 bh3

hy2
5 1

6 bh2 5 1
6 Ah (11.19)

where A is the cross-sectional area of the beam. For two beams with the 
same cross-sectional area A (Fig. 11.13), the beam with the larger depth h 
will have the larger section modulus and will be the more effective in resist-
ing bending.†

In the case of structural steel (Photo 11.3), American standard beams 
(S-beams) and wide-flange beams (W-beams) are preferred to other shapes 
because a large portion of their cross section is located far from the neutral 
axis (Fig. 11.14). Thus, for a given cross-sectional area and a given depth, 
their design provides large values of I and S. Values of the elastic section 
modulus of commonly manufactured beams can be obtained from tables 
listing the various geometric properties of such beams. To determine the 
maximum stress σm in a given section of a standard beam, the engineer 
needs only to read the value of the elastic section modulus S in such a table 
and divide the bending moment M in the section by S.

The deformation of the member caused by the bending moment M is 
measured by the curvature of the neutral surface. The curvature is defined 
as the reciprocal of the radius of curvature ρ and can be obtained by solving 
Eq. (11.9) for 1yρ:

 
1
ρ 5

ϵm

c
 (11.20)

†However, large values of the ratio hyb could result in lateral instability of the beam.

Fig. 11.13 Wood beam cross 
sections.

h 5 6 in. h 5 8 in.

b 5 4 in.
b 5 3 in.

A 5 24 in2

Photo 11.3 Wide-flange steel beams are used in 
the frame of this building.

© Hisham Ibrahim/Getty Images RF

Fig. 11.14 Two types of steel beam cross 
sections: (a) American Standard beam (S)  
(b) wide-flange beam (W).

c

c

(a) (b)

N. A.
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Concept	Application	11.2

An aluminum rod with a semicircular cross section of radius r 5 12 mm 
(Fig. 11.15a) is bent into the shape of a circular arc of mean radius ρ 5 
2.5 m. Knowing that the flat face of the rod is turned toward the center of 
curvature of the arc, determine the maximum tensile and compressive stress 
in the rod. Use E 5 70 GPa.

We can use Eq. (11.21) to determine the bending moment M cor-
responding to the given radius of curvature ρ and then Eq. (11.15) to 
determine σm. However, it is simpler to use Eq. (11.9) to determine ϵm and 
Hooke’s law to obtain σm.
The ordinate y of the centroid C of the semicircular cross section is

y 5
4r

3π
5

4(12 mm)
3π

5 5.093 mm

The neutral axis passes through C (Fig. 11.15b), and the distance c to the 
point of the cross section farthest away from the neutral axis is

c 5 r 2 y 5 12 mm 2 5.093 mm 5 6.907 mm

Using Eq. (11.9), 

ϵm 5
c

ρ 5
6.907 3 1023 m

2.5 m
5 2.763 3 1023

and applying Hooke’s law,

σm 5 Eϵm 5 (70 3 109 Pa)(2.763 3 1023) 5 193.4 MPa

Since this side of the rod faces away from the center of curvature, the stress 
obtained is a tensile stress. The maximum compressive stress occurs on the 
flat side of the rod. Using the fact that the stress is proportional to the dis-
tance from the neutral axis, write

 σcomp 5 2 
y

c
 σm 5 2 

5.093 mm
6.907 mm

(193.4 MPa)

 5 2142.6 MPa

Fig. 11.15 (a) Semi-circular 
section of rod in pure bending. 
(b) Centroid and neutral axis 
of cross section.

r 512 mm

(a)

N. A.
c

y

C

(b)

In the elastic range, ϵm 5 σmyE. Substituting for ϵm into Eq. (11.20) and 
recalling Eq. (11.15), write

1
ρ 5

σm

Ec
5

1
Ec

 
Mc

I

or

 
1
ρ 5

M

EI
 (11.21)
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Sample	Problem	11.1

The rectangular tube shown is extruded from an aluminum alloy for which 
σY 5 40 ksi, σU 5 60 ksi, and E 5 10.6 3 106 psi. Neglecting the effect of 
fillets, determine (a) the bending moment M for which the factor of safety 
will be 3.00 and (b) the corresponding radius of curvature of the tube.

M

x

5 in. C

t

t

t

t 5 0.25 in.
3.25 in.

t

x

Fig. 1 Superposition for calculating 
moment of inertia.

C

3.25 in.

5 in. 4.5 in.
x

2.75 in.

5 2

Fig. 2 Deformed 
shape of beam.

O

M

c

c

ρ

(continued)

STRATEGY: Use the factor of safety to determine the allowable 
stress. Then calculate the bending moment and radius of curvature using  
Eqs. (11.15) and (11.21).

MODELING	and	ANALYSIS:

	 Moment	 of	 Inertia.	 	 Considering the cross-sectional area of 
the tube as the difference between the two rectangles shown in Fig. 1  
and recalling the formula for the centroidal moment of inertia of a  
rectangle, write

I 5 1
12 (3.25)(5)3 2 1

12 (2.75)(4.5)3    I 5 12.97 in4

	 Allowable	Stress.	 For a factor of safety of 3.00 and an ultimate 
stress of 60 ksi, we have

σall 5
σU

F.S.
5

60 ksi
3.00

5 20 ksi

Since σall , σY, the tube remains in the elastic range and we can apply the 
results of Sec. 11.2.

	 a.	 Bending	Moment.	 With c 5 1
2 (5 in.) 5 2.5 in., we write

 σall 5
Mc

I
      M 5

I
c
σall 5

12.97 in4

2.5 in.
 (20 ksi) M 5 103.8 kip?in. b

	 b.	 Radius	 of	 Curvature.	 	 Using Fig. 2 and recalling that 
E 5 10.6 3 106 psi, we substitute this value and the values obtained for I 
and M into Eq. (11.21) and find

1
ρ 5

M

EI
5

103.8 3 103 lb?in.
(10.6 3 106 psi)(12.97 in4)

5 0.755 3 1023 in21

 ρ 5 1325 in. ρ 5 110.4 ft b
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REFLECT	 and	 THINK: Alternatively, we can calculate the radius 
of curvature using Eq. (11.9). Since we know that the maximum stress is  
σall 5 20 ksi, the maximum strain ϵm can be determined, and Eq. (11.9) gives

ϵm 5
σall

E
5

20 ksi
10.6 3 106 psi

5 1.887 3 1023 in./in.

ϵm 5
c
ρ    ρ 5

c

ϵm
5

2.5 in.
1.887 3 1023 in./in.

 ρ 5 1325 in. ρ 5 110.4 ft b

Sample	Problem	11.2

A cast-iron machine part is acted upon by the 3 kN?m couple shown. Know-
ing that E 5 165 GPa and neglecting the effect of fillets, determine (a) the 
maximum tensile and compressive stresses in the casting and (b) the radius 
of curvature of the casting.

STRATEGY: The moment of inertia is determined, recognizing that 
it is first necessary to determine the location of the neutral axis. Then 
Eqs. (11.15) and (11.21) are used to determine the stresses and radius of 
curvature.

MODELING	and	ANALYSIS:

	 Centroid.	 Divide the T-shaped cross section into two rectangles as 
shown in Fig. 1 and write

 Area, mm2 y, mm yA, mm3

1 (20)(90) 5 1800 50         90 3 103 YoA 5 oyA
2 (40)(30) 5 1200 20         24 3 103 Y (3000) 5 114 3 106

      oA 5 3000  oyA 5 114 3 103 Y 5 38 mm

(continued)

M 5 3 kN·m

90 mm

30 mm

20 mm

40 mm

Fig. 1 Composite areas for calculating centroid.

90 mm

y1 5 50 mm

y2 5 20 mm

40 mm
2

1

30 mm

20 mm
x9

x

C

Y
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	 Centroidal	Moment	of	 Inertia.  The parallel-axis theorem is 
used to determine the moment of inertia of each rectangle (Fig. 2) with 
respect to the axis x9 that passes through the centroid of the composite 
section. Adding the moments of inertia of the rectangles, write

 Ix9 5 o (I 1 Ad 
2) 5 o ( 1

12 bh3 1 Ad 
2)

 5 1
12 (90)(20)3 1 (90 3 20)(12)2 1 1

12 (30)(40)3 1 (30 3 40)(18)2

 5 868 3 103 mm4

 I 5 868 3 1029 m4

	 a.	 Maximum	Tensile	Stress.	 	 Since the applied couple bends the 
casting downward, the center of curvature is located below the cross sec-
tion. The maximum tensile stress occurs at point A (Fig. 3), which is far-
thest from the center of curvature.

 σA 5
McA

I
5

(3 kN?m)(0.022 m)
868 3 1029 m4   σA 5 176.0 MPa  b b

	 Maximum	Compressive	Stress.	 	 This occurs at point B (Fig. 3):

 σB 5 2 
McB

I
5 2 

(3 kN?m)(0.038 m)
868 3 1029 m4   σB 5 2131.3 MPa  b b

	 b.	 Radius	of	Curvature.	 	 From Eq. (11.21), using Fig. 3, we have

 
1
ρ 5

M

EI
5

3 kN?m
(165 GPa)(868 3 1029 m4)

  5 20.95 3 1023 m21   ρ 5 47.7 m  b b

REFLECT	 and	 THINK: Note the T-section has a vertical plane of 
symmetry, with the applied moment in that plane. Thus the couple of 
this applied moment lies in the plane of symmetry, resulting in sym-
metrical bending. Had the couple been in another plane, we would have 
unsymmetric bending and thus would need to apply the principles of 
Sec. 11.5.

Fig. 2 Composite areas for 
calculating moment of inertia.

12 mm

18 mm

22 mm

5 38 mm

x9

2

1
C

Y

Fig. 3 Radius of curvature is 
measured to the centroid of the cross 
section.

cA 5 0.022 m
A

B

C

Center of curvature

cB 5 0.038 m
x9

ρ
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Problems
	11.1	and	11.2	 	Knowing that the couple shown acts in a vertical plane, deter-

mine the stress at (a) point A, (b) point B.

Fig. P11.2

2 in.

2 in.
1.5 in.
2 in.

2 in.2 in.

A

B

M 5 25 kip·in.

 11.3 Using an allowable stress of 155 MPa, determine the largest bend-
ing moment Mx that can be applied to the wide-flange beam shown. 
Neglect the effect of the fillets.

Fig. P11.3

12 mm

12 mm

220 mm

200 mm

8 mm

y

x
C

Mx

 11.4 Solve Prob. 11.3, assuming that the wide-flange beam is bent about 
the y axis by a couple of moment My.

 11.5 A nylon spacing bar has the cross section shown. Knowing that the 
allowable stress for the grade of nylon used is 24 MPa, determine the 
largest couple Mz that can be applied to the bar.

Fig. P11.5

Mz

100 mm

80 mmz C

r 5 25 mm

y

 11.6 Using an allowable stress of 16 ksi, determine the largest couple that 
can be applied to each pipe.

Fig. P11.1

M 5 15 kN·m

Dimensions in mm

B

20 40 20

20

20

80

A

Fig. P11.6

M2

M1

0.1 in.

0.2 in.

0.5 in.

0.5 in.

(a)

(b)
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	11.7	and 11.8  Two W4 3 13 rolled sections are welded together as shown. 
Knowing that for the steel alloy used σU 5 58 ksi and using a factor 
of safety of 3.0, determine the largest couple that can be applied when 
the assembly is bent about the z axis.

y

z C

Fig. P11.8Fig. P11.7

y

z
C

 11.9 through 11.11  Two vertical forces are applied to the beam of the cross 
section shown. Determine the maximum tensile and compressive 
stresses in portion BC of the beam.

DCBA

6 in.

2 in.

3 in.3 in.

15 kips 15 kips

3 in.

40 in. 40 in.
60 in.

Fig. P11.9

CBA

300 mm 300 mm

25 mm

25 mm

4 kN4 kN

Fig. P11.10

DCBA

25 kips 25 kips

20 in. 20 in.
60 in.

4 in.

1 in.

1 in.

1 in.

6 in.

8 in.

Fig. P11.11

 11.12 Knowing that for the extruded beam shown the allowable stress is  
120 MPa in tension and 150 MPa in compression, determine the  
largest couple M that can be applied.

54 mm

40 mm

80 mm

M

Fig. P11.12
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 11.13 Knowing that a beam of the cross section shown is bent about a hori-
zontal axis and that the bending moment is 50 kip?in., determine the 
total force acting (a) on the top flange (b) on the shaded portion of the 
web.

 11.14 Knowing that a beam of the cross section shown is bent about a hori-
zontal axis and that the bending moment is 4 kN?m, determine the 
total force acting on the shaded portion of the beam.

24 mm

12 mm 12 mm

20 mm 20 mm

20 mm

20 mm

24 mm

z  

y

C

Fig. P11.14

 11.15 Solve Prob. 11.14, assuming that the beam is bent about a vertical axis 
by a couple of moment 4 kN?m.

 11.16 Knowing that for the casting shown the allowable stress is 5 ksi in  
tension and 18 ksi in compression, determine the largest couple M 
that can be applied.

0.5 in.
0.5 in.
0.5 in.

0.5 in.0.5 in.
1 in.

M

Fig. P11.16

 11.17 Knowing that for the extruded beam shown the allowable stress is  
120 MPa in tension and 150 MPa in compression, determine the  
largest couple M that can be applied.

48 mm

48 mm36 mm

36 mm

48 mm

M

Fig. P11.17

z C

y

1.5 in.

1.5 in.

4 in.

2 in.
6 in.

Fig. P11.13
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 11.18 Knowing that for the extruded beam shown the allowable stress is  
12 ksi in tension and 16 ksi in compression, determine the largest 
couple M that can be applied.

M

1.5 in.

0.5 in.

1.5 in. 1.5 in.

0.5 in. 0.5 in.

0.5 in.

Fig. P11.18

 11.19 The beam shown is made of a nylon for which the allowable stress is 
24 MPa in tension and 30 MPa in compression. Determine the largest 
couple M that can be applied to the beam.

M

15 mm

d 5 30 mm

20 mm

40 mm

Fig. P11.19

 11.20 Solve Prob. 11.19, assuming that d 5 40 mm.

 11.21 Knowing that for the beam shown the allowable stress is 12 ksi in ten-
sion and 16 ksi in compression, determine the largest couple M that 
can be applied.

1.2 in.
0.75 in.

2.4 in.

M

Fig. P11.21
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 11.22 Straight rods of 0.30-in. diameter and 200-ft length are sometimes 
used to clear underground conduits of obstructions or to thread wires 
through a new conduit. The rods are made of high-strength steel and, 
for storage and transportation, are wrapped on spools of 5-ft diameter. 
Assuming that the yield strength is not exceeded, determine (a) the 
maximum stress in a rod, when the rod, which was initially straight, is 
wrapped on the spool, (b) the corresponding bending moment in the 
rod. Use E 5 29 3 106 psi.

5 ft

Fig. P11.22

 11.23 A 60-N?m couple is applied to the steel bar shown. (a) Assuming that 
the couple is applied about the z axis as shown, determine the maxi-
mum stress and the radius of curvature of the bar. (b) Solve part a, 
assuming that the couple is applied about the y axis. Use E 5 200 GPa.

20 mm

12 mm

60 N·m

z

y

Fig. P11.23

 11.24 A couple of magnitude M is applied to a square bar of side a. For each 
of the orientations shown, determine the maximum stress and the cur-
vature of the bar.

(a) (b)

a
M M

Fig. P11.24
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11.3  MEMBERS MADE OF 
COMPOSITE MATERIALS

The derivations given in Sec. 11.2 are based on the assumption of a homo-
geneous material with a given modulus of elasticity E. If the member is 
made of two or more materials with different moduli of elasticity, the mem-
ber is a composite member.

Consider a bar consisting of two portions of different materials 
bonded together as shown in Fig. 11.16. This composite bar will deform as 
described in Sec. 11.1B, since its cross section remains the same throughout 
its entire length, and since no assumption was made in Sec. 11.1B regarding 
the stress-strain relationship of the material or materials involved. Thus, the 
normal strain ϵx still varies linearly with the distance y from the neutral axis 
of the section (Fig. 11.17a and b), and formula (11.8) holds:

 ϵx 5 2 

y
ρ (11.8)

Fig. 11.16 Cross section made with 
different materials.

M

1

2

Fig. 11.17 Stress and strain distributions in bar made of two materials.  
(a) Neutral axis shifted from centroid. (b) Strain distribution. (c) Corresponding 
stress distribution.

1

2
N. A.

x 52 — 

x x

y

2 52 —– 
E2y

1 52 —– 
E1y

y y

(a) (b) (c)

�

�

ρ ρ

ρ

σ

σ

σ

However, it cannot be assumed that the neutral axis passes through the cen-
troid of the composite section, and one of the goals of this analysis is to 
determine the location of this axis.

Since the moduli of elasticity E1 and E2 of the two materials are dif-
ferent, the equations for the normal stress in each material are

 σ1 5 E1ϵx 5 2 

E1 y
ρ

  σ2 5 E2ϵx 5 2 

E2 y
ρ  (11.22)

A stress-distribution curve is obtained that consists of two segments with 
straight lines as shown in Fig. 11.17c. It follows from Eqs. (11.22) that the 
force dF1 exerted on an element of area dA of the upper portion of the cross 
section is

 dF1 5 σ1 dA 5 2 

E1 y
ρ  dA (11.23)
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while the force dF2 exerted on an element of the same area dA of the lower 
portion is

 dF2 5 σ2 dA 5 2 

E2 y
ρ  dA (11.24)

Denoting the ratio E2yE1 of the two moduli of elasticity by n, we can write

 dF2 5 2 

(nE1)y
ρ  dA 5 2 

E1 y
ρ  (n dA) (11.25)

Comparing Eqs. (11.23) and (11.25), we note that the same force dF2 would 
be exerted on an element of area n dA of the first material. Thus, the resis-
tance to bending of the bar would remain the same if both portions were 
made of the first material, provided that the width of each element of the 
lower portion were multiplied by the factor n. Note that this widening (if  
n . 1) or narrowing (if n , 1) must be in a direction parallel to the neutral 
axis of the section, since it is essential that the distance y of each element 
from the neutral axis remain the same. This new cross section is called the 
transformed section of the member (Fig. 11.18).

Since the transformed section represents the cross section of a mem-
ber made of a homogeneous material with a modulus of elasticity E1, the 
method described in Sec. 11.2 can be used to determine the neutral axis of 
the section and the normal stress at various points. The neutral axis is drawn 
through the centroid of the transformed section (Fig. 11.19), and the stress 
σx at any point of the corresponding homogeneous member obtained from 
Eq. (11.16) is

 σx 5 2 

My

I
 (11.16)

where y is the distance from the neutral surface and I is the moment of iner-
tia of the transformed section with respect to its centroidal axis.

To obtain the stress σ1 at a point located in the upper portion of 
the cross section of the original composite bar, compute the stress σx at the 
corresponding point of the transformed section.  However, to obtain the stress 
σ2 at a point in the lower portion of the cross  section, we must multiply by 
n the stress σx computed at the corresponding point of the transformed sec-
tion. Indeed, the same elementary force dF2 is applied to an element of area 
n dA of the transformed section and to an element of area dA of the original 
section. Thus, the stress σ2 at a point of the original section must be n times 
larger than the stress at the corresponding point of the transformed section.

The deformations of a composite member can also be determined by 
using the transformed section. We recall that the transformed section rep-
resents the cross section of a member, made of a homogeneous material of 
modulus E1, which deforms in the same manner as the composite member. 
Therefore, using Eq. (11.21), we write that the curvature of the composite 
member is

1
ρ 5

M

E1I

where I is the moment of inertia of the transformed section with respect to 
its neutral axis.

Fig. 11.18 Transformed section 
based on replacing lower material 
with that used on top.

b

dA ndA

nbb

b

5

Fig. 11.19 Distribution of stresses in 
transformed section.

C
N. A.

x 52 —– 
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I

yy
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Concept	Application	11.3

A bar obtained by bonding together pieces of steel (Es 5 29 3 106 psi) 
and brass (Eb 5 15 3 106 psi) has the cross section shown (Fig. 11.20a). 
Determine the maximum stress in the steel and in the brass when the bar is 
in pure bending with a bending moment M 5 40 kip?in.

Fig. 11.20 (a) Composite bar. (b) Transformed section.

0.75 in.
0.4 in. 0.4 in.

3 in.

Steel

Brass Brass
(a)

1.45 in.

2.25 in.

0.4 in. 0.4 in.

3 in.

c 5 1.5 in.

All brass

N. A.

(b)

The transformed section corresponding to an equivalent bar made 
entirely of brass is shown in Fig. 11.20b. Since

n 5
Es

Eb

5
29 3 106 psi
15 3 106 psi

5 1.933

the width of the central portion of brass, which replaces the original steel 
portion, is obtained by multiplying the original width by 1.933:

(0.75 in.)(1.933) 5 1.45 in.

Note that this change in dimension occurs in a direction parallel to the neu-
tral axis. The moment of inertia of the transformed section about its cen-
troidal axis is

I 5 1
12 bh3 5 1

12 (2.25 in.)(3 in.)3 5 5.063 in4

and the maximum distance from the neutral axis is c 5 1.5 in. Using 
Eq. (11.15), the maximum stress in the transformed section is

σm 5
Mc

I
5

(40 kip?in.)(1.5 in.)
5.063 in4 5 11.85 ksi

This value also represents the maximum stress in the brass portion of the 
original composite bar. The maximum stress in the steel portion, however, 
will be larger than for the transformed section, since the area of the central 
portion must be reduced by the factor n 5 1.933. Thus,

 (σbrass)max 5 11.85 ksi

 (σsteel)max 5 (1.933)(11.85 ksi) 5 22.9 ksi
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An important example of structural members made of two different 
materials is furnished by reinforced concrete beams (Photo 11.4). These 
beams, when subjected to positive bending moments, are reinforced by 
steel rods placed a short distance above their lower face (Fig. 11.21a). Since 
concrete is very weak in tension, it cracks below the neutral surface, and the 
steel rods carry the entire tensile load, while the upper part of the concrete 
beam carries the compressive load.

Photo 11.4 Reinforced concrete building 
frame.

© Bohemian Nomad Picturemakers/Corbis

Fig. 11.21 Reinforced concrete beam: (a) Cross section showing location 
of reinforcing steel. (b) Transformed section of all concrete. (c) Concrete 
stresses and resulting steel force.

bb

d

1
2 x

x

N. A.

d 2 x

C

nAs Fs

(a) (b) (c)

σ

To obtain the transformed section of a reinforced concrete beam, we 
replace the total cross-sectional area As of the steel bars by an equivalent 
area nAs , where n is the ratio EsyEc of the moduli of elasticity of steel and 
concrete (Fig. 11.21b). Since the concrete in the beam acts effectively only 
in compression, only the portion located above the neutral axis should be 
used in the transformed section.

The position of the neutral axis is obtained by determining the dis-
tance x from the upper face of the beam to the centroid C of the transformed 
section. Using the width of the beam b and the distance d from the upper 
face to the center line of the steel rods, the first moment of the transformed 
section with respect to the neutral axis must be zero. Since the first moment 
of each portion of the transformed section is obtained by multiplying its 
area by the distance of its own centroid from the neutral axis,

(bx) 

x

2
2 nAs (d 2 x) 5 0

or

 
1
2

 bx2 1 nAs x 2 nAsd 5 0 (11.26)

Solving this quadratic equation for x, both the position of the neutral axis in 
the beam and the portion of the cross section of the concrete beam that is 
effectively used are obtained.

The stresses in the transformed section are determined as explained 
earlier in this section (see Sample Prob. 11.4). The distribution of the com-
pressive stresses in the concrete and the resultant Fs of the tensile forces in 
the steel rods are shown in Fig. 11.21c.
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Sample	Problem	11.3

Two steel plates have been welded together to form a beam in the shape of 
a T that has been strengthened by securely bolting to it the two oak timbers 
shown in the figure. The modulus of elasticity is 12.5 GPa for the wood 
and 200 GPa for the steel. Knowing that a bending moment M 5 50 kN?m 
is applied to the composite beam, determine (a) the maximum stress in the 
wood and (b) the stress in the steel along the top edge.

STRATEGY: The beam is first transformed to a beam made of a single 
material (either steel or wood). The moment of inertia is then determined for 
the transformed section, and this is used to determine the required stresses, 
remembering that the actual stresses must be based on the original material.

MODELING:

	 Transformed	Section.	 	 First compute the ratio

n 5
Es

Ew

5
200 GPa
12.5 GPa

5 16

Multiplying the horizontal dimensions of the steel portion of the section by 
n 5 16, a transformed section made entirely of wood is obtained.

	 Neutral	Axis.	 	 Fig. 1 shows the transformed section. The neutral 
axis passes through the centroid of the transformed section. Since the sec-
tion consists of two rectangles,

Y 5
oyA

oA
5

(0.160 m)(3.2 m 3 0.020 m) 1 0
3.2 m 3 0.020 m 1 0.470 m 3 0.300 m

5 0.050 m

200 mm

20 mm

300 mm

20 mm
75 mm75 mm

Fig. 1 Transformed cross section.

16(0.200 m) 5 3.2 m

0.150 m

0.150 m

0.020 m y

Y
C

O

0.160 m

16(0.020 m) 5 0.32 m
0.075 m0.075 m

z

(continued)
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	 Centroidal	Moment	of	Inertia.	 	 Using Fig. 2 and the parallel-
axis theorem,

 I 5 1
12 (0.470)(0.300)3 1 (0.470 3 0.300)(0.050)2

 1 1
12 (3.2)(0.020)3 1 (3.2 3 0.020)(0.160 2 0.050)2

 I 5 2.19 3 1023 m4

ANALYSIS:

	 a.	 Maximum	Stress	in	Wood.	 	 The wood farthest from the neu-
tral axis is located along the bottom edge, where c2 5 0.200 m.

σw 5
Mc2

I
5

(50 3 103 N?m)(0.200 m)
2.19 3 1023 m4

 σw 5 4.57 MPa  b b

	 b.	 Stress	 in	 Steel.	 	 Along the top edge, c1 5 0.120 m. From the 
transformed section we obtain an equivalent stress in wood, which must be 
multiplied by n to obtain the stress in steel.

σs 5 n 

Mc1

I
5 (16) 

(50 3 103 N?m)(0.120 m)
2.19 3 1023 m4

 σs 5 43.8 MPa  b b

REFLECT	and	THINK: Since the transformed section was based on a 
beam made entirely of wood, it was necessary to use n to get the actual 
stress in the steel. Furthermore, at any common distance from the neutral 
axis, the stress in the steel will be substantially greater than that in the 
wood, reflective of the much larger modulus of elasticity for the steel.

Sample	Problem	11.4

A concrete floor slab is reinforced by 58-in.-diameter steel rods placed 1.5 in. 
above the lower face of the slab and spaced 6 in. on centers, as shown in the 
figure. The modulus of elasticity is 3.6 3 106 psi for the concrete used and 
29 3 106 psi for the steel. Knowing that a bending moment of 40 kip?in. is 
applied to each 1-ft width of the slab, determine (a) the maximum stress in 
the concrete and (b) the stress in the steel.

STRATEGY: Transform the section to a single material, concrete, and then 
calculate the moment of inertia for the transformed section. Continue by cal-
culating the required stresses, remembering that the actual stresses must be 
based on the original material.

Fig. 2 Transformed section showing 
neutral axis and distances to extreme 
fibers.

N. A.

0.050 m

y

C

O

c1 5 0.120 m

c2 5 0.200 m
z

(continued)

6 in.
6 in.

6 in.
6 in.

5.5 in.

4 in.
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MODELING:

	 Transformed	Section.	 	 Consider a portion of the slab 12 in. wide, 
in which there are two 58-in.-diameter rods having a total cross-sectional area

As 5 2 [ π
4

 (5
8

 in.)2 ] 5 0.614 in2

Since concrete acts only in compression, all the tensile forces are car-
ried by the steel rods, and the transformed section (Fig. 1) consists of the 
two areas shown. One is the portion of concrete in compression (located 
above the neutral axis), and the other is the transformed steel area nAs. 
We have

 n 5
Es

Ec

5
29 3 106 psi
3.6 3 106 psi

5 8.06

 nAs 5 8.06(0.614 in2) 5 4.95 in2

	 Neutral	Axis.	 	 The neutral axis of the slab passes through the cen-
troid of the transformed section. Summing moments of the transformed 
area about the neutral axis, write

12x(x

2) 2 4.95(4 2 x) 5 0    x 5 1.450 in.

	 Moment	of	Inertia.	 	 Using Fig. 2, the centroidal moment of iner-
tia of the transformed area is

I 5 1
3 (12)(1.450)3 1 4.95(4 2 1.450)2 5 44.4 in4

ANALYSIS:

	 a.	 Maximum	Stress	 in	Concrete.	 	 Fig. 3 shows the stresses on 
the cross section. At the top of the slab, we have c1 5 1.450 in. and

 σc 5
Mc1

I
5

(40 kip?in.)(1.450 in.)
44.4 in4   σc 5 1.306 ksi  b b

	 b.	 Stress	in	Steel.	 	 For the steel, we have c2 5 2.55 in., n 5 8.06 and

 σs 5 n 

Mc2

I
5 8.06 

(40 kip?in.)(2.55 in.)
44.4 in4   σs 5 18.52 ksi  b b

REFLECT	and	THINK: Since the transformed section was based on a 
beam made entirely of concrete, it was necessary to use n to get the actual 
stress in the steel. The difference in the resulting stresses reflects the large 
differences in the moduli of elasticity.

4.95 in2

4 in.

12 in.

c2 5 4 2 x 5 2.55 in.

c1 5 x 5 1.450 in.

Fig. 2 Dimensions of transformed 
section used to calculate moment of 
inertia.

c 5 1.306 ksi

s 5 18.52 ksi

σ

σ

Fig. 3 Stress diagram.

nAs 5 4.95 in2

4 in.

12 in.

N. A.

4 2 x

x
C

Fig. 1 Transformed section.

Final PDF to printer



518

bee98160_ch11_491-550.indd 518 12/22/15  03:44 PM

	11.25	and	11.26	A bar having the cross section shown has been formed by 
securely bonding brass and aluminum stock. Using the data given 
below, determine the largest permissible bending moment when the 
composite bar is bent about a horizontal axis.

	 Aluminum	 Brass

Modulus of elasticity  70 GPa 105 GPa
Allowable stress 100 MPa 160 MPa

Fig. P11.26

32 mm

32 mm
8 mm 8 mm

8 mm

8 mm

AluminumBrass

	11.27	and	11.28 For the composite bar indicated, determine the largest per-
missible bending moment when the bar is bent about a vertical axis.

  11.27 Bar of Prob. 11.25.
  11.28 Bar of Prob. 11.26.

	11.29	and	11.30	Wooden beams and steel plates are securely bolted together 
to form the composite member shown. Using the data given below, 
determine the largest permissible bending moment when the compos-
ite member is bent about a horizontal axis. 

	 Wood	 Steel

Modulus of elasticity 2 3 106 psi 29 3 106 psi
Allowable stress 2000 psi 22 ksi

Fig. P11.29

10 in.

3 in.
 in.

3 in.
1
2

Fig. P11.30

10 in.

6 in.

 in.1
25 3

 in.1
25 3

Problems

Fig. P11.25

30 mm

30 mm

6 mm

6 mm

Aluminum

Brass
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	11.31	and	11.32	A steel bar and an aluminum bar are bonded together to form 
the composite beam shown. The modulus of elasticity for aluminum is 
70 GPa and for steel is 200 GPa. Knowing that the beam is bent about 
a horizontal axis by a couple of moment M 5 1500 N·m, determine 
the maximum stress in (a) the aluminum, (b) the steel.

Fig. P11.32

M

Aluminum

Steel

20 mm

40 mm

30 mm

Fig. P11.31

M

Steel

Aluminum

20 mm

40 mm

30 mm

	11.33	and	11.34 The 6 3 12-in. timber beam has been strengthened by bolt-
ing to it the steel reinforcement shown. The modulus of elasticity 
for wood is 1.8 3 106 psi and for steel 29 3 106 psi. Knowing that  
the beam is bent about a horizontal axis by a couple of moment  
450 kip·in., determine the maximum stress in (a) the wood, (b) the steel.

Fig. P11.34

6 in.

12 in.

C8 3 11.5

M

Fig. P11.33

in.5 3 1
2

6 in.

12 in.M

 11.35 and	11.36	For the composite bar indicated, determine the radius of cur-
vature caused by the couple of moment 1500 N·m.

  11.35 Bar of Prob. 11.31.

  11.36 Bar of Prob. 11.32.

	11.37	and	11.38	For the composite beam indicated, determine the radius of 
curvature caused by the couple of moment 450 kip·in.

  11.37 Bar of Prob. 11.33.

  11.38 Bar of Prob. 11.34.

 11.39 The reinforced concrete beam shown is subjected to a positive bend-
ing moment of 175 kN·m. Knowing that the modulus of elasticity is 
25 GPa for the concrete and 200 GPa for the steel, determine (a) the 
stress in the steel, (b) the maximum stress in the concrete.

 11.40 Solve Prob. 11.39, assuming that the 300-mm depth of the beam is 
increased to 350 mm.

Fig. P11.39

300 mm

540 mm

60 mm

25-mm 
diameter
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 11.41 A concrete slab is reinforced by 5
8-in.-diameter steel rods placed on  

5.5-in. centers as shown. The modulus of elasticity is 3 3 106 psi for 
the concrete and 29 3 106 psi for the steel. Using an allowable stress 
of 1400 psi for the concrete and 20 psi for the steel, determine the 
largest allowable positive bending moment in a portion of the slab 
1 ft wide.

Fig. P11.41

5.5 in.6 in.

5.5 in.

4 in.

5.5 in.

5.5 in.

-in. diameter5
8

 11.42 Solve Prob. 11.41, assuming that the spacing of the 5
8-in.-diameter 

steel rods is increased to 7.5 in.

 11.43 Knowing that the bending moment in the reinforced concrete beam is 
1100 kip?ft and that the modulus of elasticity is 3.625 3 106 psi for 
the concrete and 29 3 106 psi for the steel, determine (a) the stress in 
the steel, (b) the maximum stress in the concrete.

Fig. P11.43

12 in.

2.5 in.

20 in.

4 in.24 in.

1-in. 
diameter

 11.44 A concrete beam is reinforced by three steel rods placed as shown. The 
modulus of elasticity is 3 3 106 psi for the concrete and 30 3 106 psi  
for the steel. Using an allowable stress of 1350 psi for the concrete and 
20 ksi for the steel, determine the largest permissible positive bending 
moment in the beam.Fig. P11.44

8 in.

2 in.

16 in. -in. diameter7
8
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 11.45 and	11.46	Five metal strips, each of 0.5 3 1.5-in. cross section, are 
bonded together to form the composite beam shown. The modulus 
of elasticity is 30 3 106 psi for the steel, 15 3 106 psi for the brass,  
10 3 106 psi for the aluminum. Knowing that the beam is bent about 
a horizontal axis by a couple of moment 12 kip·in., determine (a) the 
maximum stress in each of the three metals, (b) the radius of curvature 
of the composite beam.

Fig. P11.45

Aluminum

Brass

Steel

Brass

Aluminum

1.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

Fig. P11.46

Steel

Aluminum

Aluminum

Brass

Steel

1.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

0.5 in.

 11.47 The composite beam shown is formed by bonding together a brass 
rod and an aluminum rod of semicircular cross sections. The modulus 
of elasticity is 105 GPa for the brass and 70 GPa for the aluminum. 
Knowing that the composite beam is bent about a horizontal axis by 
couples of moment 900 N·m, determine the maximum stress (a) in the 
brass, (b) in the aluminum.

Fig. P11.47

Brass

Aluminum

20 mm

 11.48 A steel pipe and an aluminum pipe are securely bonded together to 
form the composite beam shown. The modulus of elasticity is 200 
GPa for the steel and 70 GPa for the aluminum. Knowing that the 
composite beam is bent by a couple of moment 500 N?m, determine 
the maximum stress (a) in the aluminum, (b) in the steel.

Fig. P11.48

Steel

38 mm

10 mmz

y

3 mm

6 mm

Aluminum
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11.4  ECCENTRIC AXIAL LOADING 
IN A PLANE OF SYMMETRY

We saw in Sec. 8.2A that the distribution of stresses in the cross section of a 
member under axial loading can be assumed uniform only if the line of action 
of the loads P and P9 passes through the centroid of the cross section. Such 
a loading is said to be centric. Let us now analyze the distribution of stresses 
when the line of action of the loads does not pass through the centroid of the 
cross section, i.e., when the loading is eccentric.

Two examples of an eccentric loading are shown in Photos 11.5 and 
11.6. In Photo 11.5, the weight of the lamp causes an eccentric loading on 
the post. Likewise, the vertical forces exerted on the press in Photo. 11.6 
cause an eccentric loading on the back column of the press.

Photo 11.5 Walkway light.

© Tony Freeman/PhotoEdit

Photo 11.6 Bench press.

© John DeWolf

In this section, our analysis will be limited to members that possess a 
plane of symmetry, and it will be assumed that the loads are applied in the 
plane of symmetry of the member (Fig. 11.22a). The internal forces acting 
on a given cross section may then be represented by a force F applied at the 
centroid C of the section and a couple M acting in the plane of symmetry of 
the member (Fig. 11.22b). The conditions of equilibrium of the free body 
AC require that the force F be equal and opposite to P9 and that the moment 
of the couple M be equal and opposite to the moment of P9 about C. Denot-
ing by d the distance from the centroid C to the line of action AB of the 
forces P and P9, we have

 F 5 P  and  M 5 Pd  (11.27)

We now observe that the internal forces in the section would have 
been represented by the same force and couple if the straight portion DE of 
member AB had been detached from AB and subjected simultaneously to the 
centric loads P and P9 and to the bending couples M and M9 (Fig. 11.23). 
Thus, the stress distribution due to the original eccentric loading can be 

Fig. 11.22 (a) Member with 
eccentric loading. (b) Free-body 
diagram of the member with internal 
forces at section C.

d

d

D E
C

PP9

A B(a)

D
C

F
M

P9

A
(b)

Fig. 11.23 (a) Free-body diagram of straight 
portion DE. (b) Free-body diagram of portion CD.

D E

C
P

(a)

P9

M9 M

D

C
F 5 P

(b)

P9

M9 M
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Fig. 11.24 Stress distribution for eccentric loading is obtained by superposing 
the axial and pure bending distributions.

y y y

C C C
x x x

1 5σ σ σ

obtained by superposing the uniform stress distribution corresponding to 
the centric loads P and P9 and the linear distribution corresponding to the 
bending couples M and M9 (Fig. 11.24). Write

σx 5 (σx)centric 1 (σx)bending

or recalling Eqs. (8.5) and (11.16),

 σx 5
P

A
2

My

I
 (11.28)

where A is the area of the cross section and I its centroidal moment of iner-
tia and y is measured from the centroidal axis of the cross section. This 
relationship shows that the distribution of stresses across the section is lin-
ear but not uniform. Depending upon the geometry of the cross section and 
the eccentricity of the load, the combined stresses may all have the same 
sign, as shown in Fig. 11.24, or some may be positive and others negative, 
as shown in Fig. 11.25. In the latter case, there will be a line in the section, 
along which σx 5 0. This line represents the neutral axis of the section. We 
note that the neutral axis does not coincide with the centroidal axis of the 
section, since σx Þ 0 for y 5 0.

Fig. 11.25 Alternative stress distribution for eccentric loading that results 
in zones of tension and compression.

y

C C

y

x x C

N.A.

y

x
1 5σ σ σ

The results obtained are valid only to the extent that the conditions of 
applicability of the superposition principle (Sec. 9.5) and of Saint-Venant’s 
principle (Sec. 9.8) are met. This means that the stresses involved must not 
exceed the proportional limit of the material. The deformations due to bend-
ing must not appreciably affect the distance d in Fig. 11.22a, and the cross 
section where the stresses are computed must not be too close to points D 
or E. The first of these requirements clearly shows that the superposition 
method cannot be applied to plastic deformations.
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Concept	Application	11.4

An open-link chain is obtained by bending low-carbon steel rods of  
0.5-in. diameter into the shape shown (Fig. 11.26a). Knowing that the chain 
carries a load of 160 lb, determine (a) the largest tensile and compressive 
stresses in the straight portion of a link, (b) the distance between the cen-
troidal and the neutral axis of a cross section.

 a.	 Largest	 Tensile	 and	 Compressive	 Stresses. The internal 
forces in the cross section are equivalent to a centric force P and a bending 
couple M (Fig. 11.26b) of magnitudes

P 5 160 lb

M 5 Pd 5 (160 lb)(0.65 in.) 5 104 lb?in.

The corresponding stress distributions are shown in Fig. 11.26c and d. The 
distribution due to the centric force P is uniform and equal to σ0 5 PyA.  
We have

 A 5 πc2 5 π(0.25 in.)2 5 0.1963 in2

 σ0 5
P

A
5

160 lb
0.1963 in2 5 815 psi

The distribution due to the bending couple M is linear with a maximum 
stress σm 5 McyI. We write

 I 5 1
4 πc4 5 1

4 π(0.25 in.)4 5 3.068 3 1023 in4

 σm 5
Mc

I
5

(104 lb?in.)(0.25 in.)
3.068 3 1023 in4 5 8475 psi

Superposing the two distributions, we obtain the stress distribution 
corresponding to the given eccentric loading (Fig. 11.26e). The largest  

Fig. 11.26 (a) Open chain link under loading. (b) Free-body diagram for section at C. 
(c) Axial stress at section C. (d) Bending stress at C. (e) Superposition of stresses.

160 lb

160 lb

0.5 in.

0.65 in.

(a)

160 lb

M

Pd 5 0.65 in.

C

(b)

8475 psi

2 8475 psi
2 7660 psi

N.A.

815 psi

x

C y C y C y

9290 psix x

(c) (d) (e)

1 5

σ σ σ

(continued)
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tensile and compressive stresses in the section are found to be, 
respectively,

 σt 5 σ0 1 σm 5 815 1 8475 5 9290 psi
 σc 5 σ0 2 σm 5 815 2 8475 5 27660 psi

 b.	 Distance	 Between	 Centroidal	 and	 Neutral	 Axes. The 
distance y0 from the centroidal to the neutral axis of the section is obtained 
by setting σx 5 0 in Eq. (11.28) and solving for y0: 

 0 5
P

A
2

My0

I

 y0 5 (P

A)( I

M) 5 (815 psi) �

3.068 3 1023 in4

104 lb?in.

 y0 5 0.0240 in.

Sample	Problem	11.5

Knowing that for the cast iron link shown the allowable stresses are 30 MPa 
in tension and 120 MPa in compression, determine the largest force P which 
can be applied to the link. (Note: The T-shaped cross section of the link has 
previously been considered in Sample Prob. 11.2.)

STRATEGY: The stresses due to the axial load and the couple result-
ing from the eccentricity of the axial load with respect to the neutral axis 
are superposed to obtain the maximum stresses. The cross section is singly 
symmetric, so it is necessary to determine both the maximum compression 
stress and the maximum tension stress and compare each to the correspond-
ing allowable stress to find P.

MODELING	and ANALYSIS:

	 Properties	 of	 Cross	 Section.  The cross section is shown in 
Fig. 1. From Sample Prob. 11.2, we have

A 5 3000 mm2 5 3 3 1023 m2    Y 5 38 mm 5 0.038 m
I 5 868 3 1029 m4

We now write (Fig. 2):  d 5 (0.038 m) 2 (0.010 m) 5 0.028 m

A

B

D

10 mm

a

a

P9P

Fig. 1 Section geometry to find 
centroid location.

90 mm

20 mm

40 mm
10 mm

30 mm
Section a–a

A

B

C

DY

Fig. 2 Dimensions for 
finding d.

cA 5 0.022 m

cB 5 0.038 m

0.010 m

A

d

B

C

D

(continued)
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	 Force	and	Couple	at	C.  Using Fig. 3, we replace P by an equiva-
lent force-couple system at the centroid C.

P 5 P  M 5 P(d) 5 P(0.028 m) 5 0.028P

The force P acting at the centroid causes a uniform stress distribution 
(Fig. 4a). The bending couple M causes a linear stress distribution (Fig. 4b).

 σ0 5
P

A
5

P

3 3 1023 5 333P    (Compression)

 σ1 5
McA

I
5

(0.028P)(0.022)
868 3 1029 5 710P    (Tension)

 σ2 5
McB

I
5

(0.028P)(0.038)
868 3 1029 5 1226P    (Compression)

	 Superposition.  The total stress distribution (Fig. 4c) is found by 
superposing the stress distributions caused by the centric force P and by the 
couple M. Since tension is positive, and compression negative, we have

 σA 5 2 

P

A
1

McA

I
5 2333P 1 710P 5 1377P    (Tension)

 σB 5 2 

P

A
2

McB

I
5 2333P 2 1226P 5 21559P    (Compression)

	 Largest	Allowable	Force.  The magnitude of P for which the ten-
sile stress at point A is equal to the allowable tensile stress of 30 MPa is 
found by writing

 σA 5 377P 5 30 MPa P 5 79.6 kN b

We also determine the magnitude of P for which the stress at B is equal to 
the allowable compressive stress of 120 MPa.

 σB 5 21559P 5 2120 MPa P 5 77.0 kN b

The magnitude of the largest force P that can be applied without exceed-
ing either of the allowable stresses is the smaller of the two values we have 
found.

 P 5 77.0 kN b

Fig. 3 Equivalent force-couple 
system at centroid C.

A

C

D

B
P

d

A

C

B

P

M

Fig. 4 Stress distribution at 
section C is superposition of axial 
and bending distributions.

C

B

A 0 A

5
McA

I

C

B

A

C

B

A

B

1

5
McB

I2

(a) (b) (c)

σ
σ

σ

σ

σ
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 11.49 Two forces P can be applied separately or at the same time to a plate 
that is welded to a solid circular bar of radius r. Determine the largest 
compressive stress in the circular bar (a) when both forces are applied, 
(b) when only one of the forces is applied.

 11.50 As many as three axial loads each of magnitude P 5 10 kips can be 
applied to the end of a W8 3 21 rolled-steel shape. Determine the 
stress at point A, (a) for the loading shown, (b) if loads are applied at 
points 1 and 2 only.

C

3.5 in.

3.5 in.

P

P

P
3

2

1

A

Fig. P11.50

 11.51 A short wooden post supports a 6-kip axial load as shown. Determine 
the stress at point A when (a) b 5 0, (b) b 5 1.5 in., (c) b 5 3 in.

 11.52 Knowing that the magnitude of the horizontal force P is 8 kN, deter-
mine the stress at (a) point A, (b) point B.

45 mm

30 mm

24 mm

15 mm

A

D

B

P

Fig. P11.52

 11.53 The vertical portion of the press shown consists of a rectangular tube 
having a wall thickness t 5 10 mm. Knowing that the press has been 
tightened on wooden planks being glued together until P 5 20 kN, 
determine the stress (a) at point A, (b) point B.

 11.54 Solve Prob. 11.53, assuming that t 5 8 mm.

Problems

r r
P P

Fig. P11.49

y

z x

6 kips
3 in.

A

C

b

Fig. P11.51

P9

P
a a

t

t

80 mm

60 mm

Section a-a

A B

200 mm
80 mm

Fig. P11.53
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 11.55 Determine the stress at points A and B, (a) for the loading shown,  
(b) if the 60-kN loads are applied at points 1 and 2 only.

60 kN

150 mm

A

B

1

3

60 kN
60 kN

2 150 mm

90 mm120 mm
120 mm

Fig. P11.55

 11.56 The two forces shown are applied to a rigid plate supported by a steel 
pipe of 8-in. outer diameter and 7-in. inner diameter. Determine the value 
of P for which the maximum compressive stress in the pipe is 15 ksi.

 11.57 An offset h must be introduced into a solid circular rod of diameter d.  
Knowing that the maximum stress after the offset is introduced must 
not exceed 4 times the stress in the rod when it was straight, determine 
the largest offset that can be used.

P9

P9

P

P

d

d

h

Fig.	P11.57	and		P11.58

 11.58 An offset h must be introduced into a metal tube of 0.75-in. outer 
diameter and 0.08-in. wall thickness. Knowing that the maximum 
stress after the offset is introduced must not exceed 4 times the stress 
in the tube when it was straight, determine the largest offset that can 
be used.

 11.59 A short column is made by nailing two 1 3 4-in. planks to a 2 3 4-in. 
timber. Determine the largest compressive stress created in the col-
umn by a 12-kip load applied as shown at the center of the top section 
of the timber if (a) the column is as described, (b) plank 1 is removed, 
(c) both planks are removed.

12 kips

1
2

Fig. P11.59

P5 in.12 kips

Fig. P11.56
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 11.60 Knowing that the allowable stress in section ABD is 10 ksi, determine 
the largest force P that can be applied to the bracket shown.

 11.61 A milling operation was used to remove a portion of a solid bar of 
square cross section. Knowing that a 5 30 mm, d 5 20 mm, and  
σall 5 60 MPa, determine the magnitude P of the largest forces that 
can be safely applied at the centers of the ends of the bar.

 11.62 A milling operation was used to remove a portion of a solid bar of 
square cross section. Forces of magnitude P 5 18 kN are applied at 
the center of the ends of the bar. Knowing that a 5 30 mm and σall 5 
135 MPa, determine the smallest allowable depth d of the milled por-
tion of the rod.

 11.63 A vertical rod is attached at point A to the cast iron hanger shown. 
Knowing that the allowable stresses in the hanger are σall 5 15 ksi 
and σall 5 – 12 ksi, determine the largest downward force and the larg-
est upward force that can be exerted by the rod.

0.75 in.

3 in.

3 in.

1 in.

1.5 in. 1.5 in.

aa

BA
0.75 in.

Section a–a

Fig. P11.63

 11.64 A steel rod is welded to a steel plate to form the machine element 
shown. Knowing that the allowable stress is 135 MPa, determine (a) 
the largest force P that can be applied to the element, (b) the corre-
sponding location of the neutral axis. Given: The centroid of the cross 
section is at C and Iz 5 4195 mm4.

P9

a

P

3 mm

18 mm

13.12 mm

a

z

x

6-mm diameter

Section a-a

C

Fig. P11.64

 11.65 The shape shown was formed by bending a thin steel plate. Assuming 
that the thickness t is small compared to the length a of a side of the 
shape, determine the stress (a) at A, (b) at B, (c) at C.

A D

0.9 in.
2 in.

0.6 in.
0.6 in.

P

B

Fig. P11.60

a

a
d

P9

P

Fig. P11.61 and	P11.62

P9

P

A

B

C

a a

t

908

Fig. P11.65
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 11.66 Knowing that the clamp shown has been tightened until P 5 400 N, 
determine (a) the stress at point A, (b) the stress at point B, (c) the 
location of the neutral axis of section a-a.

32 mm

P9P

a

a
B

A

4 mm

2 mm radius

20 mm

Section a–a

Fig. P11.66

 11.67 A vertical force P of magnitude 20 kips is applied at a point C located 
on the axis of symmetry of the cross section of a short column. Know-
ing that y 5 5 in., determine (a) the stress at point A, (b) the stress at 
point B, (c) the location of the neutral axis.

(a) (b)

y

y

y x

x

A

A

B
B

C

3 in.3 in.

4 in.

2 in.

2 in. 2 in.

1 in.

P

Fig. P11.67	and	P11.68

 11.68 A vertical force P is applied at a point C located on the axis of sym-
metry of the cross section of a short column. Determine the range of 
values of y for which tensile stresses do not occur in the column.

 11.69 The C-shaped steel bar is used as a dynamometer to determine the 
magnitude P of the forces shown. Knowing that the cross section of 
the bar is a square of side 40 mm and that the strain on the inner edge 
was measured and found to be 450 µ, determine the magnitude P of 
the forces. Use E 5 200 GPa.

40 mm
80 mm

P9

P

Fig. P11.69
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 11.70 A short length of a rolled-steel column supports a rigid plate on which 
two loads P and Q are applied as shown. The strains at two points A 
and B on the center lines of the outer faces of the flanges have been 
measured and found to be 

  ϵA 5 –400 3 1026 in./in.     ϵB 5 –300 3 1026 in./in.

  Knowing that E 5 29 3 106 psi, determine the magnitude of each 
load.

y

z
z

B A

A A 5 10.0 in2

Iz  5 273 in4

x

x

6 in.
6 in. 10 in.

P

Q

Fig. P11.70

 11.71 An eccentric force P is applied as shown to a steel bar of 25 3 90-mm 
cross section. The strains at A and B have been measured and found to be

  ϵA 5 1350 μ        ϵB 5 –70 μ

  Knowing that E 5 200 GPa, determine (a) the distance d, (b) the mag-
nitude of the force P.

30 mm

45 mm

15 mm

90 mm

25 mm

d

A

B P

Fig. P11.71

 11.72 Solve Prob. 11.71, assuming that the measured strains are

  ϵA 5 1600 μ         ϵB 5 1420 μ
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11.5  UNSYMMETRIC BENDING 
ANALYSIS

Our analysis of pure bending has been limited so far to members possessing 
at least one plane of symmetry and subjected to couples acting in that plane. 
Because of the symmetry of such members and of their loadings, the mem-
bers remain symmetric with respect to the plane of the couples and thus bend 
in that plane (Sec. 11.1B). This is illustrated in Fig. 11.27; part a shows the 
cross section of a member possessing two planes of symmetry, one vertical 
and one horizontal, and part b the cross section of a member with a single, 
vertical plane of symmetry. In both cases the couple exerted on the section 
acts in the vertical plane of symmetry of the member and is represented by 
the horizontal couple vector M, and in both cases the neutral axis of the cross 
section is found to coincide with the axis of the couple.

Let us now consider situations where the bending couples do not act 
in a plane of symmetry of the member, either because they act in a different 
plane, or because the member does not possess any plane of symmetry. In 
such situations, we cannot assume that the member will bend in the plane 
of the couples. This is illustrated in Fig. 11.28. In each part of the figure, 
the couple exerted on the section has again been assumed to act in a vertical 
plane and has been represented by a horizontal couple vector M. However, 
since the vertical plane is not a plane of symmetry, we cannot expect the 
member to bend in that plane or the neutral axis of the section to coincide 
with the axis of the couple.

Fig. 11.27 Moment in 
plane of symmetry.

Mz

y

N.A. C

(a)

(b)

Mz

y

N.A.
C

Fig. 11.28 Moment not in plane of symmetry.

(a)

(b)

Mz

y

N.A.
C

(c)

Mz

y

N.A.
C

M
z

y

N.A.
C

(a)

(b)

Mz

y

N.A.
C

(c)

Mz

y

N.A.
C

M
z

y

N.A.
C

(a)

(b)

Mz

y

N.A.
C

(c)

Mz

y

N.A.
C

M
z

y

N.A.
C

The precise conditions under which the neutral axis of a cross sec-
tion of arbitrary shape coincides with the axis of the couple M representing 
the forces acting on that section is shown in Fig. 11.29. Both the couple 

Fig. 11.29 Section of arbitrary shape where the neutral axis coincides with 
the axis of couple M.

z
N.A.

C

dA

x

2y

y

z

x z

C

x

y

M
5

σ
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vector M and the neutral axis are assumed to be directed along the z axis. 
Recall from Sec. 11.1A that the elementary internal forces σx dA form a 
system equivalent to the couple M. Thus,

 x components: σxdA 5 0  (11.1)

 moments about y axis: zσxdA 5 0 (11.2)

 moments about z axis: (2yσxdA) 5 M (11.3)

When all of the stresses are within the proportional limit, the first of these 
equations leads to the requirement that the neutral axis be a centroidal 
axis, and the last to the fundamental relation σx 5 2MyyI. Since we had 
assumed in Sec. 11.1A that the cross section was symmetric with respect to 
the y axis, Eq. (11.2) was dismissed as trivial at that time. Now that we are 
considering a cross section of arbitrary shape, Eq. (11.2) becomes highly 
significant. Assuming the stresses to remain within the proportional limit of 
the material, σx 5 2σm yyc is substituted into Eq. (11.2) for

 #z  (2 

σm y

c )  dA 5 0    or    yz dA 5 0 (11.29)

The integral yzdA represents the product of inertia Iyz of the cross section 
with respect to the y and z axes, and will be zero if these axes are the prin-
cipal centroidal axes of the cross section.† Thus the neutral axis of the cross 
section coincides with the axis of the couple M representing the forces act-
ing on that section if, and only if, the couple vector M is directed along one 
of the principal centroidal axes of the cross section.

Note that the cross sections shown in Fig. 11.27 are symmetric with 
respect to at least one of the coordinate axes. In each case, the y and z axes 
are the principal centroidal axes of the section. Since the couple vector M 
is directed along one of the principal centroidal axes, the neutral axis coin-
cides with the axis of the couple. Also, if the cross sections are rotated 
through 908 (Fig. 11.30), the couple vector M is still directed along a prin-
cipal centroidal axis, and the neutral axis again coincides with the axis of 
the couple, even though in case b the couple does not act in a plane of sym-
metry of the member.

In Fig. 11.28, neither of the coordinate axes is an axis of symmetry 
for the sections shown, and the coordinate axes are not principal axes. Thus, 
the couple vector M is not directed along a principal centroidal axis, and the 
neutral axis does not coincide with the axis of the couple. However, any 
given section possesses principal centroidal axes, even if it is unsymmetric, 
as the section shown in Fig. 11.28c, and these axes may be determined ana-
lytically or by using Mohr’s circle.† If the couple vector M is directed along 
one of the principal centroidal axes of the section, the neutral axis will coin-
cide with the axis of the couple (Fig. 11.31), and the equations derived for 
symmetric members can be used to determine the stresses.

As you will see presently, the principle of superposition can be used 
to determine stresses in the most general case of unsymmetric bending. 
Consider first a member with a vertical plane of symmetry subjected to 

†See Ferdinand P. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 5th ed., 
McGraw-Hill, New York, 2008, or Vector Mechanics for Engineers, 11th ed., McGraw-Hill, 
New York, 2016, Secs. 9.3–9.4.

Fig. 11.30 Moment aligned with principal 
centroidal axis.

(a)

(b)

M

N.A.

N.A.

z

y

C

Mz

y

C

Fig. 11.31 Moment aligned with principal 
centroidal axis of an unsymmetric shape.

(a)

M

y

C

N.A.

(b)
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N.A.
z

y
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bending couples M and M9 acting in a plane forming an angle θ with the 
vertical plane (Fig. 11.32). The couple vector M representing the forces 
acting on a given cross section forms the same angle θ with the horizontal 
z axis (Fig. 11.33). Resolving the vector M into component vectors Mz and 
My along the z and y axes, respectively, gives

 Mz 5 M cos θ      My 5 M sin θ (11.30)

Fig. 11.33 Applied moment is 
resolved into y and z components.

M My

Mz

y

z C

θ

Fig. 11.34 MZ acts in a plane that includes 
a principal centroidal axis, bending the 
member in the vertical plane.

M9z

z

y

Mz

x

y

Fig. 11.35 My acts in a plane that includes a 
principal centroidal axis, bending the member 
in the horizontal plane.

M9y

z

z

My

x

y

Since the y and z axes are the principal centroidal axes of the cross section, 
Eq. (11.16) determines the stresses resulting from the application of either 
of the couples represented by Mz and My. The couple Mz acts in a verti-
cal plane and bends the member in that plane (Fig. 11.34). The resulting 
stresses are

 σx 5 2 

Mz y

Iz

 (11.31)

where Iz is the moment of inertia of the section about the principal centroi-
dal z axis. The negative sign is due to the compression above the xz plane  
(y . 0) and tension below (y , 0). The couple My acts in a horizontal plane 
and bends the member in that plane (Fig. 11.35). The resulting stresses are

 σx 5 1
My z

Iy

 (11.32)

where Iy is the moment of inertia of the section about the principal centroi-
dal y axis, and where the positive sign is due to the fact that we have tension 

Fig. 11.32 Unsymmetric bending, with 
bending moment not in a plane of symmetry.

M

x

z

y

M9
θ
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to the left of the vertical xy plane (z . 0) and compression to its right  
(z , 0). The distribution of the stresses caused by the original couple M is 
obtained by superposing the stress distributions defined by Eqs. (11.31) and 
(11.32), respectively. We have

 σx 5 2 

Mz y

Iz

1
My z

Iy

 (11.33)

Note that the expression obtained can also be used to compute the 
stresses in an unsymmetric section, as shown in Fig. 11.36, once the prin-
cipal centroidal y and z axes have been determined. However, Eq. (11.33) 
is valid only if the conditions of applicability of the principle of superposi-
tion are met. It should not be used if the combined stresses exceed the pro-
portional limit of the material or if the deformations caused by one of the 
couples appreciably affect the distribution of the stresses due to the other.

Eq. (11.33) shows that the distribution of stresses caused by unsym-
metric bending is linear. However, the neutral axis of the cross section will 
not, in general, coincide with the axis of the bending couple. Since the nor-
mal stress is zero at any point of the neutral axis, the equation defining that 
axis is obtained by setting σx 5 0 in Eq. (11.33).

2 

Mz�y

Iz

1
Myz

Iy

5 0

Solving for y and substituting for Mz and My from Eqs. (11.30) gives

 y 5 ( Iz

Iy

 tan θ) z (11.34)

This equation is for a straight line of slope m 5 (IzyIy) tan θ. Thus, the angle 
ϕ that the neutral axis forms with the z axis (Fig. 11.37) is defined by the 
relation

 tan ϕ 5
Iz

Iy

 tan θ (11.35)

where θ is the angle that the couple vector M forms with the same axis. 
Since Iz and Iy are both positive, ϕ and θ have the same sign. Furthermore, 
ϕ . θ when Iz . Iy , and ϕ , θ when Iz , Iy. Thus, the neutral axis is always 
located between the couple vector M and the principal axis corresponding 
to the minimum moment of inertia.

Fig. 11.36 Unsymmetric cross section with 
principal axes.

C

y

z

Fig. 11.37 Neutral axis for 
unsymmetric bending.

M N. A.

C

y

z
θϕ
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Concept	Application	11.5

A 1600-lb?in. couple is applied to a wooden beam, of rectangular cross  
section 1.5 by 3.5 in., in a plane forming an angle of 308 with the vertical 
(Fig. 11.38a). Determine (a) the maximum stress in the beam and (b) the 
angle that the neutral surface forms with the horizontal plane.

C

308

3.5 in.

1.5 in.

1600 lb·in.

(a)

Mz

ED

C

A B

y

z

5 308 1.75 in.

0.75 in.

1600 lb·in.

(b)

θ

Fig. 11.38 (a) Rectangular wood 
beam subject to unsymmetric 
bending. (b) Bending moment 
resolved into components.  
(c) Cross section with neutral axis. 
(d) Stress distribution.

N
. A

.

E

C

D

A B

y

z

(c)

ϕ

D

E

B

21062 psi

1062 psi

N
eutral axis

A

C

(d)

 a.	 Maximum	 Stress. The components Mz and My of the couple 
vector are first determined (Fig. 11.38b):

 Mz 5 (1600 lb?in.) cos 308 5 1386 lb?in.

 My 5 (1600 lb?in.) sin 308 5 800 lb?in.

Compute the moments of inertia of the cross section with respect to the z 
and y axes:

 Iz 5 1
12 (1.5 in.) (3.5 in.)3 5 5.359 in4

 Iy 5 1
12 (3.5 in.) (1.5 in.)3 5 0.9844 in4

The largest tensile stress due to Mz occurs along AB and is

σ1 5
Mzy

Iz

5
(1386 lb?in.) (1.75 in.)

5.359 in4 5 452.6 psi

The largest tensile stress due to My occurs along AD and is

σ2 5
Myz

Iy

5
(800 lb?in.) (0.75 in.)

0.9844 in4 5 609.5 psi

The largest tensile stress due to the combined loading, therefore, occurs at 
A and is

σmax 5 σ1 1 σ2 5 452.6 1 609.5 5 1062 psi

The largest compressive stress has the same magnitude and occurs at E.

(continued)
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 b.	 Angle	 of	 Neutral	 Surface	 with	 Horizontal	 Plane. The 
angle ϕ that the neutral surface forms with the horizontal plane (Fig. 11.38c) 
is obtained from Eq. (11.35):

 tan ϕ 5
Iz

Iy

 tan θ 5
5.359 in4

0.9844 in4 tan 308 5 3.143

 ϕ 5 72.48

The distribution of the stresses across the section is shown in Fig. 11.38d.

11.6  GENERAL CASE OF 
ECCENTRIC AXIAL 
LOADING ANALYSIS

In Sec. 11.4 we analyzed the stresses produced in a member by an eccen-
tric axial load applied in a plane of symmetry of the member. We will now 
study the more general case when the axial load is not applied in a plane of 
symmetry.

Consider a straight member AB subjected to equal and opposite 
eccentric axial forces P and P9 (Fig. 11.39a), and let a and b be the distances 
from the line of action of the forces to the principal centroidal axes of the 
cross section of the member. The eccentric force P is statically equivalent to 
the system consisting of a centric force P and of the two couples My and Mz 
of moments My 5 Pa and Mz 5 Pb in Fig. 11.39b. Similarly, the eccentric 
force P9 is equivalent to the centric force P9 and the couples M9y and M9z.

By virtue of Saint-Venant’s principle (Sec. 9.8), replace the original 
loading of Fig. 11.39a by the statically equivalent loading of Fig. 11.39b to 
determine the distribution of stresses in section S of the member (as long as 
that section is not too close to either end). The stresses due to the loading 
of Fig. 11.39b can be obtained by superposing the stresses corresponding 
to the centric axial load P and to the bending couples My and Mz, as long as 
the conditions of the principle of superposition are satisfied (Sec. 9.5). The 
stresses due to the centric load P are given by Eq. (8.1), and the stresses due 
to the bending couples by Eq. (11.33). Therefore,

 σx 5
P

A
2

Mz y

Iz

1
My z

Iy

 (11.36)

where y and z are measured from the principal centroidal axes of the sec-
tion. This relationship shows that the distribution of stresses across the sec-
tion is linear.

In computing the combined stress σx from Eq. (11.36), be sure to 
correctly determine the sign of each of the three terms in the right-hand 
member, since each can be positive or negative, depending upon the sense 

Fig. 11.39 Eccentric axial loading. 
(a) Axial force applied away from section 
centroid. (b) Equivalent force-couple system 
acting at centroid.

B

A

S

x

C

abz

y

P9

P

P9

(a)

B

A

S

x

y

C

z

M9z Mz

M9y

My

P

(b)
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of the loads P and P9 and the location of their line of action with respect to 
the principal centroidal axes of the cross section. The combined stresses σx 
obtained from Eq. (11.36) at various points of the section may all have the 
same sign, or some may be positive and others negative. In the latter case, 
there will be a line in the section along which the stresses are zero. Setting 
σx 5 0 in Eq. (11.36), the equation of a straight line representing the neutral 
axis of the section is

Mz

Iz

 y 2
My

Iy

 z 5
P

A

Concept	Application	11.6

A vertical 4.80-kN load is applied as shown on a wooden post of rectangular 
cross section, 80 by 120 mm (Fig. 11.40a). (a) Determine the stress at points 
A, B, C, and D. (b) Locate the neutral axis of the cross section.

Fig. 11.40 (a) Eccentric load on a rectangular wood column. (b) Equivalent 
force-couple system for eccentric load. 

4.80 kN

35 mm

120 mm 80 mm
D

C

B

A

y

z x

(a)

P 5 4.80 kN

Mz 5 120 N·m Mx 5 192 N·m

D

C

B

A

y

z
x

(b)

 a.	 Stresses. The given eccentric load is replaced by an equivalent 
system consisting of a centric load P and two couples Mx and Mz repre-
sented by vectors directed along the principal centroidal axes of the section 
(Fig. 11.40b). Thus

 Mx 5 (4.80 kN)(40 mm) 5 192 N?m

 Mz 5 (4.80 kN)(60 mm 2 35 mm) 5 120 N?m

Compute the area and the centroidal moments of inertia of the cross section:

 A 5 (0.080 m)(0.120 m) 5 9.60 3 1023 m2

 Ix 5 1
12(0.120 m)(0.080 m)3 5 5.12 3 1026 m4

 Iz 5 1
12(0.080 m)(0.120 m)3 5 11.52 3 1026 m4

(continued)
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The stress σ0 due to the centric load P is negative and uniform across the 
section:

σ0 5
P

A
5

24.80 kN
9.60 3 1023 m2 5 20.5 MPa

The stresses due to the bending couples Mx and Mz are linearly distributed 
across the section with maximum values equal to

 σ1 5
Mxzmax

Ix

5
(192 N?m)(40 mm)

5.12 3 1026 m4 5 1.5 MPa

 σ2 5
Mzxmax

Iz

5
(120 N?m)(60 mm)

11.52 3 1026 m4 5 0.625 MPa

The stresses at the corners of the section are

σy 5 σ0 6 σ1 6 σ2

where the signs must be determined from Fig. 11.40b. Noting that the 
stresses due to Mx are positive at C and D and negative at A and B, and 
the stresses due to Mz are positive at B and C and negative at A and D, we 
obtain

 σA 5 20.5 2 1.5 2 0.625 5 22.625 MPa

 σB 5 20.5 2 1.5 1 0.625 5 21.375 MPa

 σC 5 20.5 1 1.5 1 0.625 5 11.625 MPa

 σD 5 20.5 1 1.5 2 0.625 5 10.375 MPa

 b.	 Neutral	Axis. The stress will be zero at a point G between B and 
C, and at a point H between D and A (Fig. 11.40c). Since the stress distribu-
tion is linear,

 
BG

80 mm
5

1.375
1.625 1 1.375

      BG 5 36.7 mm

 
HA

80 mm
5

2.625
2.625 1 0.375

      HA 5 70 mm

The neutral axis can be drawn through points G and H (Fig. 11.40d).
The distribution of the stresses across the section is shown in Fig. 11.40e.

Fig. 11.40 (cont.) (c) Stress distributions along edges BC and AD. (d) Neutral axis is line through points G and H.  
(e) Stress distribution for eccentric load.

80 mm

80 mm

0.375 MPa

1.625 MPa

21.375 MPa

22.625 MPa

C A
D

HGB

(c)

C

A

D

H

G

x

z

O

B

Neutral axis

(d)

C

H

B

A

10.375 MPa

22.625 MPa

Neutralaxis

11.625 MPa

21.375 MPa

G

(e)
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Sample	Problem	11.6

A horizontal load P is applied as shown to a short section of an S10 3 25.4 
rolled-steel member. Knowing that the compressive stress in the member is 
not to exceed 12 ksi, determine the largest permissible load P.

STRATEGY: The load is applied eccentrically with respect to both cen-
troidal axes of the cross section. The load is replaced with an equivalent 
force-couple system at the centroid of the cross section. The stresses due 
to the axial load and the two couples are then superposed to determine the 
maximum stresses on the cross section.

MODELING	and ANALYSIS:

	 Properties	 of	 Cross	 Section.	 The cross section is shown in 
Fig. 1, and the following data are taken from Appendix B.

Area: A 5 7.46 in2

Section moduli: Sx 5 24.7 in3   Sy 5 2.91 in3

Fig. 1 Rolled-steel member

C

y

x

4.66 in.

10 in.

Fig. 2 Equivalent force-couple 
system at section centroid.

xA

B

C

P

Mx

My

D

E

y

4.75 in.

1.5 in.

C

S10 3 25.4 P

(continued)

	 Force	and	Couple	at	C. Using Fig. 2, we replace P by an equiva-
lent force-couple system at the centroid C of the cross section.

Mx 5 (4.75 in.)P    My 5 (1.5 in.)P
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Note that the couple vectors Mx and My are directed along the principal 
axes of the cross section.

	 Normal	Stresses.	 The absolute values of the stresses at points A, 
B, D, and E due, respectively, to the centric load P and to the couples Mx 
and My are

 σ1 5
P

A
5

P

7.46 in2 5 0.1340P

 σ2 5
Mx

Sx

5
4.75P

24.7 in3 5 0.1923P

 σ3 5
My

Sy

5
1.5P

2.91 in3 5 0.5155P

	 Superposition.	 The total stress at each point is found by superpos-
ing the stresses due to P, Mx, and My. We determine the sign of each stress by 
carefully examining the sketch of the force-couple system.

 σA 5 2σ1 1 σ2 1 σ3 5 20.1340P 1 0.1923P 1 0.5155P 5 10.574P

 σB 5 2σ1 1 σ2 2 σ3 5 20.1340P 1 0.1923P 2 0.5155P 5 20.457P

 σD 5 2σ1 2 σ2 1 σ3 5 20.1340P 2 0.1923P 1 0.5155P 5 10.189P

 σE 5 2σ1 2 σ2 2 σ3 5 20.1340P 2 0.1923P 2 0.5155P 5 20.842P

	 Largest	 Permissible	 Load.	 The maximum compressive stress 
occurs at point E. Recalling that σall 5 212 ksi, we write

 σall 5 σE    212 ksi 5 20.842P P 5 14.3 kips  b b
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Problems
 11.73 through 11.78  The couple M is applied to a beam of the cross section 

shown in a plane forming an angle β with the vertical. Determine the 
stress at (a) point A, (b) point B, (c) point D.

A

 5 308

B

z

y

C

0.6 in.

0.4 in.

M 5 400 lb·in.

D

0.6 in.

β

Fig. P11.73

A

 5 608

B

z

y

16 mm

16 mm

40 mm 40 mm

M 5 300 N·m

D
C

β

Fig. P11.74

A B

4 in.

1.6 in.2.4 in.

4.8 in.

C

M 5 75 kip·in.

 5 758

D

y

z

β

Fig. P11.76

A B

10 in.

0.3 in.

0.5 in.

0.5 in.

8 in.

C

M 5 250 kip·in.

 5 308

D

y

z

β

Fig. P11.75

A

y

z

B
3 in.

2 in.

2 in. 4 in.

3 in.

C

M 5 10 kip·in.

 5 208

D

β

Fig. P11.77

 5 308

y

z

M 5 100 N·m

A

B

r 5 20 mm

C

D

β

Fig. P11.78
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 11.79 through 11.84  The couple M acts in a vertical plane and is applied 
to a beam oriented as shown. Determine (a) the angle that the neutral 
axis forms with the horizontal plane, (b) the maximum tensile stress 
in the beam.

M 5 35 kip·in.
C

E

D

B

A

1 in.
1 in. 0.4 in.

0.4 in.

1.6 in.

2 in.

158

Fig. P11.79

165 mm

310 mm

158

M 5 16 kN·m

W310 3 38.7

A

B

C

D
E

Fig. P11.80

A

B

14.4 mm

C200 3 17.1

203 mm

57 mm
C

M 5 2.8 kN·m

D

E

108

Fig. P11.81

A

B

C
M 5 400 N·m

308

D

E

5 mm

5 mm

18.57 mm

50 mm

50 mm

5 mm

z9

y9

Iy9 5 281 3 103 mm4

Iz9 5 176.9 3 103 mm4

Fig. P11.82

A

B

 in.

4 in. 4 in.

4 in.

0.859 in.

458

C

M 5 15 kip·in.

D
1
2

y9

z9

Iy95 6.74 in4

Iz95 21.4 in4

Fig. P11.83

A

M 5 120 N·m

208

D

B

E
10 mm

10 mm

10 mm

10 mm

6 mm

y'

z' 6 mm

C

Iy' 5 14.77 3 103 mm4

Iz' 5 53.6 3 103 mm4

Fig. P11.84
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 11.85 For the loading shown, determine (a) the stress at points A and B,  
(b) the point where the neutral axis intersects line ABD.

H

E

A

G

D

250 lb

500 lb

150 lb

4 in.

B

F

1.8 in.

Fig. P11.85

 11.86 Solve Prob. 11.85, assuming that the magnitude of the force applied at 
G is increased from 250 lb to 400 lb.

 11.87 The tube shown has a uniform wall thickness of 12 mm. For the given 
loading, determine (a) the stress at points A and B, (b) the point where 
the neutral axis intersects line ABD.

75 mm

125 mm
28 kN

28 kN

14 kN

A

D

B G

H

E

F

Fig. P11.87

 11.88 Solve Prob. 11.87, assuming that the 28-kN force at point E is 
removed.

 11.89 Knowing that P 5 90 kips, determine the largest distance a for which 
the maximum compressive stress does not exceed 18 ksi.

 11.90 Knowing that a 5 1.25 in., determine the largest value of P that can be 
applied without exceeding either of the following allowable stresses:

  σten 5 10 ksi σcomp 5 18 ksi

 11.91 A horizontal load P is applied to the beam shown. Knowing that a 5 
20 mm and that the tensile stress in the beam is not to exceed 75 MPa, 
determine the largest permissible load P.

 11.92 A horizontal load P of magnitude 100 kN is applied to the beam 
shown. Determine the largest distance a for which the maximum ten-
sile stress in the beam does not exceed 75 MPa.

1 in.

1 in.
1 in.

4 in. 5 in.

2.5 in.

P

a

Fig.	P11.89	and	P11.90

20

20

20
60

20

a

O

y

z
xP

Dimensions in mm

Fig.	P11.91	and	P11.92
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Review and Summary
This chapter was devoted to the analysis of members in pure bending. The 
stresses and deformation in members subjected to equal and opposite couples 
M and M9 acting in the same longitudinal plane (Fig. 11.41) were studied.

Normal Strain in Bending
In members possessing a plane of symmetry and subjected to couples acting in 
that plane, it was proven that transverse sections remain plane as a member is 
deformed. A member in pure bending also has a neutral surface along which 
normal strains and stresses are zero. The longitudinal normal strain ϵx varies 
linearly with the distance y from the neutral surface:

 ϵx 5 2 

y

ρ (11.8)

where ρ is the radius of curvature of the neutral surface (Fig. 11.42). The inter-
section of the neutral surface with a transverse section is known as the neutral 
axis of the section.

Normal Stress in Elastic Range
For members made of a material that follows Hooke’s law, the normal stress σx 
varies linearly with the distance from the neutral axis (Fig. 11.43). Using the 
maximum stress σm , the normal stress is

 σx 5 2
y

c
 σm (11.12)

where c is the largest distance from the neutral axis to a point in the section.

Elastic Flexure Formula
By setting the sum of the elementary forces σx dA equal to zero, we proved that 
the neutral axis passes through the centroid of the cross section of a member in 
pure bending. Then by setting the sum of the moments of the elementary forces 
equal to the bending moment, the elastic flexure formula is

 σm 5
Mc

I
 (11.15)

where I is the moment of inertia of the cross section with respect to the neu-
tral axis. The normal stress at any distance y from the neutral axis is

 σx 5 2 

My

I
 (11.16)

Fig. 11.41

A

B

M

M9

Fig. 11.42

y

y

 2y

A

J

D

O

C

B
K

E
xA9 B9

ρ ρ

θ

Fig. 11.43

y

c

m

xNeutral surface
σ

σ
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Elastic	Section	Modulus
Noting that I and c depend only on the geometry of the cross section we intro-
duced the elastic section modulus

 S 5
I

c
 (11.17)

Use the section modulus to write an alternative expression for the maximum 
normal stress:

 σm 5
M

S
 (11.18)

Curvature	of	Member
The curvature of a member is the reciprocal of its radius of curvature, and may 
be found by

 
1
ρ 5

M

EI
 (11.21)

Members	Made	of	Several	Materials
We considered the bending of members made of several materials with different 
moduli of elasticity. While transverse sections remain plane, the neutral axis 
does not pass through the centroid of the composite cross section (Fig. 11.44). 
Using the ratio of the moduli of elasticity of the materials, we obtained a trans-
formed section corresponding to an equivalent member made entirely of one 
material. The methods previously developed are used to determine the stresses 
in this equivalent homogeneous member (Fig. 11.45), and the ratio of the moduli 
of elasticity is used to determine the stresses in the composite beam.

Fig. 11.44

1

2
N. A.

x 5 2— 

x x

y

2 5 2—– 
E2y

1 5 2—– 
E1y

y y

(a) (b) (c)

� ρ ρ

ρ

σ

σ

σ�

Fig. 11.45

C
N. A.

x 5 2—– 
My

I

yy

xσ

σ

Eccentric	Axial	Loading
When a member is loaded eccentrically in a plane of symmetry, the eccentric 
load is replaced with a force-couple system located at the centroid of the cross 
section (Fig. 11.46). The stresses from the centric load and the bending couple 
are superposed (Fig. 11.47):

 σx 5
P

A
2

My

I
 (11.28)Fig. 11.46

d

D
C

F
M

P9

A
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Unsymmetric	Bending
For bending of members of unsymmetric cross section, the flexure formula may 
be used, provided that the couple vector M is directed along one of the principal 
centroidal axes of the cross section. When necessary, M can be resolved into 
components along the principal axes, and the stresses superposed due to the 
component couples (Figs. 11.48 and 11.49).

 σx 5 2 

Mzy

Iz

1
Myz

Iy

 (11.33)

 For the couple M shown in Fig. 11.50, the orientation of the neutral axis 
is defined by

 tan ϕ 5
Iz

Iy

 tan θ (11.35)

Fig. 11.47

y

C C

y

x x C

N.A.

y

x
1 5σ σ σ

Fig. 11.48

M

x

z

y

M9
θ

Fig. 11.49

M My

Mz

y

z C

θ

Fig. 11.50

M N. A.

C

y

z

ϕ θ

General	Eccentric	Axial	Loading
For the general case of eccentric axial loading, the load is replaced by a force-
couple system located at the centroid. The stresses are superposed due to the 
centric load and the two component couples directed along the principal axes:

 σx 5
P

A
2

Mz y

Iz

1
My z

Iy

 (11.36)
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Review Problems
 11.93 Knowing that the couple shown acts in a vertical plane, determine the 

stress at (a) point A, (b) point B.

120 mm

30 mm

30 mm
M 5 2.8 kN·m

r 5 20 mm
A

B

Fig. P11.93

 11.94 (a) Using an allowable stress of 120 MPa, determine the largest 
couple M that can be applied to a beam of the cross section shown.  
(b) Solve part a, assuming that the cross section of the beam is an 
80-mm square.

80 mm

80 mm

10 mm

10 mm

5 mm5 mm

M
C

Fig. P11.94

 11.95 A steel bar (Es 5 210 GPa) and an aluminum bar (Ea 5 70 GPa) 
are bonded together to form the composite bar shown. Determine the 
maximum stress in (a) the aluminum, (b) the steel, when the bar is 
bent about a horizontal axis, with M 5 60 N·m.

8 mm

8 mm

8 mm

 24 mm

Steel

Aluminum

Fig. P11.95
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 11.96 A single vertical force P is applied to a short steel post as shown. 
Gages located at A, B, and C indicate the following strains:

  ϵA 5 –500 μ  ϵB 5 –1000 μ  ϵC 5 –200 μ

  Knowing that E 5 29 3 106 psi, determine (a) the magnitude of P,  
(b) the line of action of P, (c) the corresponding strain at the hidden 
edge of the post, where x 5 –2.5 in. and z 5 –1.5 in. 

 11.97 Two vertical forces are applied to a beam of the cross section shown. 
Determine the maximum tensile and compressive stresses in portion 
BC of the beam.

10 mm 10 mm

50 mm

10 mm

150 mm 150 mm

A D

B C

10 kN 10 kN

250 mm
50 mm

Fig. P11.97

 11.98 In order to increase corrosion resistance, a 2-mm-thick cladding of 
aluminum has been added to a steel bar as shown. The modulus of 
elasticity is E 5 200 GPa for steel and E 5 70 GPa for aluminum. For 
a bending moment of 300 N·m, determine (a) the maximum stress in 
the steel, (b) the maximum stress in the aluminum, (c) the radius of 
curvature of the bar.

 11.99 A 6 3 10-in. timber beam has been strengthened by bolting to it the 
steel straps shown. The modulus of elasticity is E 5 1.5 3 106 psi for 
the wood and E 5 30 3 106 psi for the steel. Knowing that the beam 
is bent about a horizontal axis by a couple of moment 200 kip·in., 
determine the maximum stress in (a) the wood, (b) the steel.

10 in.

6 in.

 in.3
82 3

 in.3
82 3

Fig. P11.99

 11.100 The four forces shown are applied to a rigid plate supported by a 
solid steel post of radius a. Knowing that P 5 24 kips and a 5 1.6 in., 
determine the maximum stress in the post when (a) the force at D is 
removed, (b) the forces at C and D are removed.

P

C

B

A

y

z x

3 in.
5 in.

Fig. P11.96

46 mm
50 mm

M 5 300 N·m

30 mm
26 mm

Fig. P11.98

x

y

z

PP

P P

A
C

B

D
a

Fig. P11.100
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 11.101 A couple M of moment 8 kN·m acting in a vertical plane is applied to 
a W200 3 19.3 rolled-steel beam as shown. Determine (a) the angle 
that the neutral axis forms with the horizontal plane, (b) the maxi-
mum stress in the beam.

 11.102 Portions of a 1
2 3 1

2 -in. square bar have been bent to form the two 
machine components shown. Knowing that the allowable stress is 15 ksi, 
determine the maximum load that can be applied to each component.

1 in.

(a) (b)

P9P P9P

Fig. P11.102

 11.103 A short column is made by nailing four 1 3 4-in. planks to a 4 3 4-in. 
timber. Using an allowable stress of 600 psi, determine the largest 
compressive load P that can be applied at the center of the top sec-
tion of the timber column as shown if (a) the column is as described,  
(b) plank 1 is removed, (c) planks 1 and 2 are removed, (d) planks 1, 2, 
and 3 are removed, (e) all planks are removed.

11

24

3

16 kips

Fig. P11.103

 11.104 A couple M will be applied to a beam of rectangular cross section 
that is to be sawed from a log of circular cross section. Determine the 
ratio d/b for which (a) the maximum stress σm will be as small as pos-
sible, (b) the radius of curvature of the beam will be maximum.

b

d

M9
M

Fig. P11.104

E
D

M 5 8 kN·m

y9

z9

W200 3 19.3

58

A
B

C

Fig. P11.101
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The beams supporting the overhead crane system are subject to 

transverse loads, causing the beams to bend. The normal stresses 

resulting from such loadings will be determined in this chapter.

Analysis and Design  
of Beams for Bending

12
© Digital Vision/Getty Images RF
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Introduction
This chapter and most of the next one are devoted to the analysis and the 
design of beams, which are structural members supporting loads applied 
at various points along the member. Beams are usually long, straight pris-
matic members. Steel and aluminum beams play an important part in both 
structural and mechanical engineering. Timber beams are widely used in 
home construction (Photo 12.1). In most cases, the loads are perpendicular 
to the axis of the beam. This transverse loading causes only bending and 
shear in the beam. When the loads are not at a right angle to the beam, they 
also produce axial forces in the beam.

CB

P1

(a) Concentrated loads

w

P2

A D

(b) Distributed loads

A
B

C

Fig. 12.1 Transversely loaded beams.

Photo 12.1 Timber beams used in a residential dwelling.

© Huntstock/agefotostock RF

Introduction

 12.1 SHEAR AND BENDING-
MOMENT DIAGRAMS

 12.2 RELATIONSHIPS BETWEEN 
LOAD, SHEAR, AND 
BENDING MOMENT

 12.3 DESIGN OF PRISMATIC 
BEAMS FOR BENDING

Objectives
In this chapter, you will:

•	Draw shear and bending-moment diagrams using static 
equilibrium applied to sections.

•	Describe the relationships between applied loads, 
shear, and bending moments throughout a beam.

•	Use section modulus to design beams.

The transverse loading of a beam may consist of concentrated loads 
P1, P2, . . . expressed in newtons, pounds, or their multiples of kilonewtons 
and kips (Fig. 12.1a); of a distributed load w expressed in N/m, kN/m, lb/ft, 
or kips/ft (Fig. 12.1b); or of a combination of both. When the load w per 
unit length has a constant value over part of the beam (as between A and B 
in Fig. 12.1b), the load is uniformly distributed.

Beams are classified according to the way they are supported, as 
shown in Fig. 12.2. The distance L is called the span. Note that the reac-
tions at the supports of the beams in Fig. 12.2 a, b, and c involve a total of 
only three unknowns and can be determined by the methods of statics. Such 
beams are said to be statically determinate. On the other hand, the reactions 
at the supports of the beams in Fig. 12.2 d, e, and f involve more than three 
unknowns and cannot be determined by the methods of statics alone. The 
properties of the beams with regard to their resistance to deformations must 
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be taken into consideration. Such beams are said to be statically indetermi-
nate, and their analysis will be discussed in Chap. 15.

Sometimes two or more beams are connected by hinges to form a 
single continuous structure. Two examples of beams hinged at a point H 
are shown in Fig. 12.3. Note that the reactions at the supports involve four 
unknowns and cannot be determined from the free-body diagram of the 
two-beam system. They can be determined by recognizing that the internal 
moment at the hinge is zero. Then, after considering the free-body diagram 
of each beam separately, six unknowns are involved (including two force 
components at the hinge), and six equations are available.

When a beam is subjected to transverse loads, the internal forces in 
any section of the beam consist of a shear force V and a bending couple M. 
For example, a simply supported beam AB is carrying two concentrated 
loads and a uniformly distributed load (Fig. 12.4a). To determine the inter-
nal forces in a section through point C, draw the free-body diagram of the 
entire beam to obtain the reactions at the supports (Fig. 12.4b). Passing a 
section through C, then draw the free-body diagram of AC (Fig. 12.4c), 
from which the shear force V and the bending couple M are found.

The bending couple M creates normal stresses in the cross section, 
while the shear force V creates shearing stresses. In most cases, the domi-
nant criterion in the design of a beam for strength is the maximum value of 
the normal stress in the beam. The normal stresses in a beam are the subject 
of this chapter, while shearing stresses are discussed in Chap. 13.

Since the distribution of the normal stresses in a given section 
depends only upon the bending moment M and the geometry of the sec-
tion,† the elastic flexure formulas derived in Sec. 11.2 are used to determine 
the maximum stress, σm, as well as the stress at any given point on the cross 
section, σx:‡

 σm 5
ZM Zc

I
 (12.1)

†It is assumed that the distribution of the normal stresses in a given cross section is not affected 
by the deformations caused by the shearing stresses.
‡Recall from Sec. 11.1 that M can be positive or negative, depending upon whether the concav-
ity of the beam at the point considered faces upward or downward. Thus, in a transverse load-
ing the sign of M can vary along the beam. On the other hand, since σm is a positive quantity, 
the absolute value of M is used in Eq. (12.1).

B
H

(a)

A

C

B

H

(b)

A

Fig. 12.3 Beams connected by hinges.

B

C

A

w

a

P1 P2

(a) Transversely-loaded beam

B

C

C

A

w
P1

RA RB

P2

(b) Free-body diagram to find
support reactions

A

wa

P1

V

M

RA

(c) Free-body diagram to find
internal forces at C

Fig. 12.4 Analysis of a simply supported beam.

L

(a) Simply supported beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L2L1

(d) Continuous beam

L

(b) Overhanging beam

L

Beam fixed at one end
and simply supported

at the other end

(e) 

L

(c) Cantilever beam

L

( f ) Fixed beam

Fig. 12.2 Common beam support configurations.
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and

 σx 5 2 
My

I
 (12.2)

where I is the moment of inertia of the cross section with respect to a cen-
troidal axis perpendicular to the plane of the couple, y is the distance from 
the neutral surface, and c is the maximum value of that distance (Fig. 11.11). 
Also recall from Sec. 11.2 that the maximum value σm of the normal stress 
can be expressed in terms of the section modulus S. Thus

 σm 5
ZM Z
S

 (12.3)

The fact that σm is inversely proportional to S underlines the importance of 
selecting beams with a large section modulus. Section moduli of various 
rolled-steel shapes are given in Appendix B, while the section modulus of 
a rectangular shape is

 S 5 1
6 bh2 (12.4)

where b and h are, respectively, the width and the depth of the cross section.
Eq. (12.3) also shows that for a beam of uniform cross section, σm is 

proportional to |M  |. Thus, the maximum value of the normal stress in the 
beam occurs in the section where |M  | is largest. One of the most important 
parts of the design of a beam for a given loading condition is the determina-
tion of the location and magnitude of the largest bending moment.

This task is made easier if a bending-moment diagram is drawn, 
where the bending moment M is determined at various points of the beam 
and plotted against the distance x measured from one end. It is also easier 
if a shear diagram is drawn by plotting the shear V against x. The sign 
convention used to record the values of the shear and bending moment is 
discussed in Sec. 12.1. 

In Sec. 12.2 relationships between load, shear, and bending moments 
are derived and used to obtain the shear and bending-moment diagrams. 
This approach facilitates the determination of the largest absolute value of 
the bending moment and the maximum normal stress in the beam.

In Sec. 12.3 beams are designed for bending such that the maximum 
normal stress in these beams will not exceed their allowable values.

12.1  SHEAR AND BENDING-
MOMENT DIAGRAMS

The maximum absolute values of the shear and bending moment in a beam 
are easily found if V and M are plotted against the distance x measured from 
one end of the beam. Besides, as you will see in Chap. 15, the knowledge 
of M as a function of x is essential to determine the deflection of a beam.

In this section, the shear and bending-moment diagrams are obtained 
by determining the values of V and M at selected points of the beam. These 
values are found by passing a section through the point to be determined 
(Fig. 12.5a) and considering the equilibrium of the portion of beam located 
on either side of the section (Fig. 12.5b). Since the shear forces V and V9 
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have opposite senses, recording the shear at point C with an up or down 
arrow is meaningless, unless it is indicated at the same time which of the 
free bodies AC and CB is being considered. For this reason, the shear V is 
recorded with a plus sign if the shear forces are directed as in Fig. 12.5b 
and a minus sign otherwise. A similar convention is applied for the bending 
moment M.† Summarizing the sign conventions:

The shear V and the bending moment M at a given point of a beam 
are positive when the internal forces and couples acting on each portion of 
the beam are directed as shown in Fig. 12.6a.

 1. The shear at any given point of a beam is positive when the external 
forces (loads and reactions) acting on the beam tend to shear off the 
beam at that point as indicated in Fig. 12.6b.

 2. The bending moment at any given point of a beam is positive when the 
external forces acting on the beam tend to bend the beam at that point as 
indicated in Fig. 12.6c.

It is helpful to note that the values of the shear and of the bending 
moment are positive in the left half of a simply supported beam carrying 
a single concentrated load at its midpoint, as is discussed in the following 
Concept Application.

†This convention is the same that we used earlier in Sec. 11.1.

V

M

M9

V9

(a) Internal forces
(positive shear and positive bending moment)

(b) Effect of external forces
(positive shear)

(c) Effect of external forces
(positive bending moment)

Fig. 12.6 Sign convention for shear and bending moment.

Fig. 12.5 Determination of shear force, V, and bending moment, M, at a 
given section. (a) Loaded beam with section indicated at arbitrary position x. 
(b) Free-body diagrams drawn to the left and right of the section at C.

(a)

(b)

B

C

A

w

x

P1 P2

CA

wP1

RA

V

M
B

C

P2

RB

M9

V9
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Concept	Application	12.1

Draw the shear and bending-moment diagrams for a simply supported 
beam AB of span L subjected to a single concentrated load P at its midpoint 
C (Fig. 12.7a).

Determine the reactions at the supports from the free-body diagram 
of the entire beam (Fig. 12.7b). The magnitude of each reaction is equal  
to Py2.

Next cut the beam at a point D between A and C and draw the 
free-body diagrams of AD and DB (Fig. 12.7c). Assuming that the 
shear and bending moment are positive, we direct the internal forces V 
and V9 and the internal couples M and M9 as in Fig. 12.6a. Consider 
the free body AD. The sum of the vertical components and the sum of 
the moments about D of the forces acting on the free body are zero, so  
V 5 1Py2 and M 5 1Pxy2. Both the shear and the bending moment are 
positive. This is checked by observing that the reaction at A tends to shear 
off and bend the beam at D as indicated in Figs. 12.6b and c. We plot V 
and M between A and C (Figs. 12.7d and e). The shear has a constant value  
V 5 Py2, while the bending moment increases linearly from M 5 0 at x 5 
0 to M 5 PLy4 at x 5 Ly2.

Cutting the beam at a point E between C and B and considering 
the free body EB (Fig. 12.7d ), the sum of the vertical components and 
the sum of the moments about E of the forces acting on the free body are 
zero. Obtain V 5 2Py2 and M 5 P(L 2 x)y2. Therefore, the shear is 
negative, and the bending moment positive. This is checked by observing 
that the reaction at B bends the beam at E as in Fig. 12.6c but tends to 
shear it off in a manner opposite to that shown in Fig. 12.6b. The shear 
and bending-moment diagrams of Figs. 12.7e and f are completed by 
showing the shear with a constant value V 5 2Py2 between C and B, 
while the bending moment decreases linearly from M 5 PLy4 at x 5 Ly2 
to M 5 0 at x 5 L.

B
C

A

P
L1

2 L1
2

(a)

Fig. 12.7 (a) Simply supported beam 
with midpoint load, P. (b) Free-body 
diagram of entire beam. (c) Free-body 
diagrams with section taken to left of 
load P. (d) Free-body diagrams with 
section taken to right of load P. (e) Shear 
diagram. (f ) Bending-moment diagram.

RA5 P1
2

RA5 P1
2 RB5 P1

2
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1
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RB5 P1
2

B
C ED

A

P
L1

2 L1
2

B
C

D

D

A

x

x

x

P

(b)

(c)

V
M
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RA5 P1
2

L1
2

L L1
2

P2 1
2

P1
2

RB5 P1
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(e)
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Note from the previous Concept Application that when a beam is 
subjected only to concentrated loads, the shear is constant between loads 
and the bending moment varies linearly between loads. In such situations, 
the shear and bending-moment diagrams can be drawn easily once the  
values of V and M have been obtained at sections selected just to the left 
and just to the right of the points where the loads and reactions are applied  
(see Sample Prob. 12.1).

Concept	Application	12.2

Draw the shear and bending-moment diagrams for a cantilever beam AB of 
span L supporting a uniformly distributed load w (Fig. 12.8a).

(b)

(c)

(d)

x1
2

V

M

x

A
C

w

wx

VB5 2 wL

x

V

A

L

B

MB5 2 wL21
2

x

M

A

L

B

Fig. 12.8 (a) Cantilevered beam supporting 
a uniformly distributed load. (b) Free-body 
diagram of section AC. (c) Shear diagram.  
(d) Bending-moment diagram.

L

A B

w

(a)

Cut the beam at a point C, located between A and B, and draw the 
free-body diagram of AC (Fig. 12.8b), directing V and M as in Fig. 12.6a. 
Using the distance x from A to C and replacing the distributed load over AC 
by its resultant wx applied at the midpoint of AC, write

1↑ oFy 5 0:      2wx 2 V 5 0  V 5 2wx

1  oMC 5 0:    wx (x

2) 1 M 5 0    M 5 2 
1
2

 wx2

Note that the shear diagram is represented by an oblique straight line  
(Fig. 12.8c) and the bending-moment diagram by a parabola (Fig. 12.8d). 
The maximum values of V and M both occur at B, where

VB 5 2wL   MB 5 21
2wL2
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Sample	Problem	12.1

For the timber beam and loading shown, draw the shear and bending-
moment diagrams and determine the maximum normal stress due to 
bending.

B

2.5 m 3 m 2 m

250 mm

80 mm

C
DA

20 kN 40 kN

STRATEGY:  After using statics to find the reaction forces, identify sec-
tions to be analyzed. You should section the beam at points to the immedi-
ate left and right of each concentrated force to determine values of V and M 
at these points.

MODELING	and	ANALYSIS: 

Reactions.  Considering the entire beam to be a free body (Fig. 1), 

RB 5 40 kN↑  RD 5 14 kN↑

Shear	and	Bending-Moment	Diagrams.	  Determine the internal 
forces just to the right of the 20-kN load at A. Considering the stub of beam 
to the left of section 1 as a free body and assuming V and M to be positive 
(according to the standard convention), write

 1 ↑ oFy 5 0 :   220 kN 2 V1 5 0 V1 5 220 kN

1  oM1 5 0:  (20 kN)(0 m) 1 M1 5 0 M1 5 0

Next consider the portion to the left of section 2 to be a free body and 
write

 1 ↑ oFy 5 0 :   220 kN 2 V2 5 0 V2 5 220 kN

1  oM2 5 0:  (20 kN)(2.5 m) 1 M2 5 0 M2 5 250 kN?m

The shear and bending moment at sections 3, 4, 5, and 6 are deter-
mined in a similar way from the free-body diagrams shown in Fig. 1: 

  V3 5 126 kN     M3 5 250 kN?m

  V4 5 126 kN     M4 5 128 kN?m

  V5 5 214 kN     M5 5 128 kN?m

  V6 5 214 kN     M6 5 0

B

1 3 52 64

2.5 m 3 m 2 m

C

D
A

20 kN

20 kN

2.5 m 3 m 2 m

40 kN

14 kN
46 kN

M1

V1

20 kN
M2

V2

20 kN

46 kN

M3

V3

20 kN

46 kN

M4

V4

20 kN 40 kN

46 kN

M5

V5

V

M

x

x

20 kN 40 kN

46 kN

14 kN

214 kN120 kN

126 kN

128 kN∙m

250 kN∙m

40 kN

M6

M94

V94

V6

Fig. 1 Free-body diagram of beam, 
free-body diagrams of sections to left 
of cut, shear diagram, bending-moment 
diagram.

(continued)
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For several of the latter sections, the results may be obtained more easily 
by considering the portion to the right of the section to be a free body. For 
example, for the portion of beam to the right of section 4,

 1 ↑ oFy 5 0 :   V4 2 40 kN 1 14 kN 5 0 V4 5 126 kN

1  oM4 5 0:  2M4 1 (14 kN)(2 m) 5 0 M4 5 128 kN?m

Now plot the six points shown on the shear and bending-moment dia-
grams. As indicated earlier, the shear is of constant value between concen-
trated loads, and the bending moment varies linearly. 

Maximum	Normal	Stress.  This occurs at B, where |M  | is largest. Use 
Eq. (12.4) to determine the section modulus of the beam:

S 5 1
6 
bh2 5 1

6 
(0.080 m)(0.250 m)2 5 833.33 3 1026 m3

Substituting this value and |M  | 5 |MB| 5 50 3 103 N?m into Eq. (12.3) 
gives

σm 5
ZMBZ

S
5

(50 3 103 N?m)
833.33 3 1026 5 60.00 3 106 Pa

Maximum normal stress in the beam 5 60.0 MPa b

Sample	Problem	12.2

The structure shown consists of a W10 3 112 rolled-steel beam AB and two 
short members welded together and to the beam. (a) Draw the shear and 
bending-moment diagrams for the beam and the given loading. (b) Deter-
mine the maximum normal stress in sections just to the left and just to the 
right of point D.

STRATEGY:  You should first replace the 10-kip load with an equivalent 
force-couple system at D. You can section the beam within each region of 
continuous load (including regions of no load) and find equations for the 
shear and bending moment.

MODELING	and	ANALYSIS:  

Equivalent	 Loading	 of	 Beam.  The 10-kip load is replaced by an 
equivalent force-couple system at D. The reaction at B is determined by con-
sidering the beam to be free body (Fig. 1).

(continued)

8 ft
3 ft

10 kips

3 kips/ft

A C D

E
B

3 ft2 ft
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	 a.	 Shear	and	Bending-Moment	Diagrams

From A to C.  Determine the internal forces at a distance x from point 
A by considering the portion of beam to the left of section 1. That part of 
the distributed load acting on the free body is replaced by its resultant, and

 1 ↑ oFy 5 0 :    23 x 2 V 5 0   V 5 23 x kips

1  oM1 5 0:  3 x(1
2 x) 1 M 5 0 M 5 21.5 x 

2 kip?ft

Since the free-body diagram shown in Fig. 1 can be used for all values of 
x smaller than 8 ft, the expressions obtained for V and M are valid in the 
region 0 , x , 8 ft.

From C to D.  Considering the portion of beam to the left of section 2 
and again replacing the distributed load by its resultant,

 1 ↑ oFy 5 0 :  224 2 V 5 0   V 5 224 kips

1  oM2 5 0: 24(x 2 4) 1 M 5 0 M 5 96 2 24 x    kip?ft

These expressions are valid in the region 8 ft , x , 11 ft.

From D to B.  Using the position of beam to the left of section 3, the 
region 11 ft , x , 16 ft is

V 5 234 kips    M 5 226 2 34 x    kip?ft

The shear and bending-moment diagrams for the entire beam now can be 
plotted. Note that the couple of moment 20 kip?ft applied at point D intro-
duces a discontinuity into the bending-moment diagram.

	 b.	 Maximum	Normal	Stress	to	the	Left	and	Right	of	Point	D.  
From Appendix B for the W10 3 112 rolled-steel shape, S 5 126 in3 about 
the X-X axis.

To the left of D:  |M  | 5 168 kip?ft 5 2016 kip?in. Substituting for |M  | 
and S into Eq. (12.3), write

σm 5
|M |
S

5
2016 kip?in.

126 in3 5 16.00 ksi σm 5 16.00 ksi b

To the right of D:  |M  | 5 148 kip?ft 5 1776 kip?in. Substituting for 
|M  | and S into Eq. (12.3), write

σm 5
|M |
S

5
1776 kip?in.

126 in3 5 14.10 ksi σm 5 14.10 ksi b

REFLECT	and	THINK:	 It was not necessary to determine the reactions 
at the right end to draw the shear and bending-moment diagrams. How-
ever, having determined these at the start of the solution, they can be used 
as checks of the values at the right end of the shear and bending-moment 
diagrams.

20 kip∙ft3 kips/ft

24 kips

318 kip∙ft

10 kips 34 kips

A 1 2 3C D B

x

x

x

V

M

x

3x

x

x

M

V

M

V

2

x 2 4

24 kips

2 24 kips

2148 kip∙ft

296 kip∙ft

2 168 kip∙ft

2 318 kip∙ft

20 kip∙ft

10
kips

8 ft 11 ft 16 ft

M

V

x 2 4

x 2 11

2 34 kips

Fig. 1 Free-body diagram of beam, 
free-body diagrams of sections to left 
of cut, shear diagram, bending-moment 
diagram.
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 12.1 through 12.4  For the beam and loading shown, (a) draw the shear and 
bending-moment diagrams, (b) determine the equations of the shear 
and bending-moment curves.

Fig. P12.1

B

P

CA

L

ba

Fig. P12.2

B

w

A

L

Fig. P12.3

B

w0

A

L

Fig. P12.4

D

w

A
B

a a

C

L

	12.5	and 12.6  Draw the shear and bending-moment diagrams for the beam 
and loading shown, and determine the maximum absolute value (a) of 
the shear, (b) of the bending moment.

Fig. P12.5

360 lb240 lb

A
C D E

B

300 lb

3 in.4 in. 4 in. 5 in.

Fig. P12.6

BA C D E

200 N 200 N 200 N500 N

300 300225 225
Dimensions in mm

	12.7	and	12.8  Draw the shear and bending-moment diagrams for the beam 
and loading shown, and determine the maximum absolute value (a) of 
the shear, (b) of the bending moment.

Fig. P12.7

BA
C

12 kN/m 40 kN

1 m2 m

Fig. P12.8

B
A

C D

4 ft 4 ft 4 ft

2 kips/ft 15 kips

Problems

Final PDF to printer



562

bee98160_ch12_551-590.indd 562 12/16/15  03:18 PM

	12.9	and	12.10	 Draw the shear and bending-moment diagrams for the beam 
and loading shown, and determine the maximum absolute value (a) of 
the shear, (b) of the bending moment.

Fig. P12.9

BA
C D E

300 200 200 300
Dimensions in mm

3 kN

450 N·m

3 kN

Fig. P12.10

400 lb 1600 lb 400 lb

12 in. 12 in. 12 in. 12 in.

8 in.

8 in.
C

A
D E F

G

B

	12.11	and	12.12	 	Assuming that the upward reaction of the ground is uni-
formly distributed, draw the shear and bending-moment diagrams for 
the beam AB and determine the maximum absolute value (a) of the 
shear, (b) of the bending moment.

Fig. P12.11

B
C D E

2 kips/ft24 kips

A

3 ft 3 ft 3 ft 3 ft

2 kips/ft

Fig. P12.12

BA
C D

1.5 kN1.5 kN

0.9 m
0.3 m0.3 m

	12.13	and	12.14	 	For the beam and loading shown, determine the maximum 
normal stress due to bending on a transverse section at C.

750 lb

BA
C D

150 lb/ft

750 lb

3 in.

12 in.

4 ft4 ft4 ft

Fig. P12.13

B
A

C

3 kN/m

1.5 m 1.5 m 2.2 m

100 mm

200 mm

10 kN

Fig. P12.14
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 12.15 For the beam and loading shown, determine the maximum normal 
stress due to bending on section a-a.

BA
a

a

30 kN 50 kN 50 kN 30 kN

2 m

5 @ 0.8 m 5 4 m

W250 3 67

Fig. P12.15

 12.16 For the beam and loading shown, determine the maximum normal 
stress due to bending on a transverse section at C.

BA
C D E

150 kN 150 kN

2.4 m
0.8 m

0.8 m

0.8 m

W460 3 113

90 kN/m

Fig. P12.16

	12.17	and	12.18  For the beam and loading shown, determine the maximum 
normal stress due to bending on a transverse section at C.

BA

C D E F G

5
kips

5
kips

2
kips

2
kips

2
kips

6 @ 15 in. 5 90 in.

S8 3 18.4

Fig. P12.17

BA
C

8 kN

1.5 m 2.1 m

W310 3 60

3 kN/m

Fig. P12.18

Final PDF to printer



564

bee98160_ch12_551-590.indd 564 12/16/15  03:18 PM

 12.19 and	12.20	 	Draw the shear and bending-moment diagrams for the beam 
and loading shown, and determine the maximum normal stress due to 
bending.

150 kN

A B
C D E

150 kN
90 kN/m

W460 3 113

0.8 m 0.8 m
0.8 m

2.4 m

Fig. P12.20

 12.21	and	12.22  Draw the shear and bending-moment diagrams for the 
beam and loading shown, and determine the maximum normal stress 
due to bending.

BA
C D

5 ft 5 ft8 ft
W14 3 22

10 kips5 kips

Fig. P12.21

24 kN/m
64 kN∙m

BA

C D

2 m 2 m 2 m
S250 3 52

Fig. P12.22

 12.23 Draw the shear and bending-moment diagrams for the beam and load-
ing shown, and determine the maximum normal stress due to bending.

Hinge

8 ft

2 ft

5 ft 5 ft

CB
A E

D

4.8 kips/ft 32 kips

W12 3 40

Fig. P12.23

BA

C D E

25 kips 25 kips 25 kips

2 ft1 ft 2 ft
6 ft

S12 3 35

Fig. P12.19
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 12.24 Knowing that W 5 3 kips, draw the shear and bending-moment  
diagrams for beam AB, and determine the maximum normal stress 
due to bending.

B

C D E  

A

2 kips2 kips

W12 3 16

3 ft 3 ft 3 ft 3 ft

W

Fig. P12.24

 12.25 Knowing that P 5 Q 5 480 N, determine (a) the distance a for which 
the absolute value of the bending moment in the beam is as small 
as possible, (b) the corresponding maximum normal stress due to 
bending. (Hint: Draw the bending-moment diagram and equate the 
absolute values of the largest positive and negative bending moments 
obtained.)

BA

a

C D

P Q 12 mm

18 mm

500 mm500 mm

Fig. P12.25

 12.26 Solve Prob. 12.25, assuming that P 5 480 N and Q 5 320 N.

 12.27 Determine (a) the distance a for which the maximum absolute value 
of the bending moment in the beam is as small as possible, (b) the 
corresponding maximum normal stress due to bending. (See hint for 
Prob. 12.25.)

BA

a 1.5 ft 1.2 ft 0.9 ft

C D E

1.2 kips
1.2 kips0.8 kips

S3 3 5.7

Fig. P12.27

 12.28 A solid steel rod of diameter d is supported as shown. Knowing that 
for steel γ 5 490 lb/ft3, determine the smallest diameter d that can be 
used if the normal stress due to bending is not to exceed 4 ksi.

B

d

A

L 5 10 ft

Fig. P12.28
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12.2  RELATIONSHIPS BETWEEN 
LOAD, SHEAR, AND 
BENDING MOMENT

When a beam carries more than two or three concentrated loads, or when 
it carries distributed loads, the method outlined in Sec. 12.1 for plotting 
shear and bending moment can prove quite cumbersome. The construction 
of the shear diagram and, especially, of the bending-moment diagram will 
be greatly facilitated if certain relations existing between load, shear, and 
bending moment are taken into consideration. 

For example, a simply supported beam AB is carrying a distributed 
load w per unit length (Fig. 12.9a), where C and C9 are two points of the 
beam at a distance Dx from each other. The shear and bending moment at 
C is denoted by V and M, respectively, and is assumed to be positive. The 
shear and bending moment at C9 is denoted by V 1 DV and M 1 DM.

Detach the portion of beam CC9 and draw its free-body diagram  
(Fig. 12.9b). The forces exerted on the free body include a load of mag-
nitude w Dx and internal forces and couples at C and C9. Since shear and 
bending moment are assumed to be positive, the forces and couples are 
directed as shown.

Relationships	between	Load	and	Shear. The sum of the verti-
cal components of the forces acting on the free body CC9 is zero, so

1↑ oFy 5 0: V 2 (V 1 DV) 2 w Dx 5 0
 DV 5 2w Dx

Dividing both members of the equation by Dx and then letting Dx app-
roach zero, 

 
dV

dx
5 2w (12.5)

Eq. (12.5) indicates that, for a beam loaded as shown in Fig. 12.9a, the 
slope dVydx of the shear curve is negative. The magnitude of the slope at 
any point is equal to the load per unit length at that point.

Fig. 12.9 (a) Simply supported beam subjected to a distributed load, with a small element 
between C and C‘, (b) free-body diagram of the element.

BA
C

w

D

Dx

C9

x

(a)

Dx

Dx

w Dx

w

C C9

(b)

1
2

V

M M 1 DM

V 1 DV
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Integrating Eq. (12.5) between points C and D, 

 VD 2 VC 5 2#
xD

xC

w dx (12.6a)

 VD 2 VC 5 2(area under load curve between C and D) (12.6b)

This result is illustrated in Fig. 12.10b. Note that this result could be obtained 
by considering the equilibrium of the portion of beam CD, since the area 
under the load curve represents the total load applied between C and D.

Also, Eq. (12.5) is not valid at a point where a concentrated load is 
applied; the shear curve is discontinuous at such a point, as seen in Sec. 
12.1. Similarly, Eqs. (12.6a) and (12.6b) are not valid when concentrated 
loads are applied between C and D, since they do not take into account the 
sudden change in shear caused by a concentrated load. Eqs. (12.6a) and 
(12.6b), should be applied only between successive concentrated loads.

Relationships	between	Shear	and	Bending	Moment. Return-
ing to the free-body diagram of Fig. 12.9b and writing that the sum of the 
moments about C9 is zero, we have

1  oMC' 5 0: (M 1 DM) 2 M 2 V Dx 1 w Dx 
Dx

2
5 0

 
DM 5 V Dx 2

1
2

 w (Dx)
2

Dividing both members by Dx and then letting Dx approach zero, 

 
dM

dx
5 V  (12.7)

Eq. (12.7) indicates that the slope dMydx of the bending-moment curve is 
equal to the value of the shear. This is true at any point where the shear has 
a well-defined value (i.e., no concentrated load is applied). Eq. (12.7) also 
shows that V 5 0 at points where M is maximum. This property facilitates 
the determination of the points where the beam is likely to fail under bending.

Integrating Eq. (12.7) between points C and D, 

 MD 2 MC 5 #
xD

xC

V dx (12.8a)

 MD 2 MC 5 area under shear curve between C and D (12.8b)

This result is illustrated in Fig. 12.10c. Note that the area under the shear 
curve is positive where the shear is positive and negative where the shear is 
negative. Eqs. (12.8a) and (12.8b) are valid even when concentrated loads 
are applied between C and D, as long as the shear curve has been drawn cor-
rectly. The equations are not valid if a couple is applied at a point between 
C and D, since they do not take into account the sudden change in bending 
moment caused by a couple (see Sample Prob. 12.6).

In most engineering applications, one needs to know the value of 
the bending moment at only a few specific points. Once the shear diagram 
has been drawn and after M has been determined at one of the ends of 
the beam, the value of the bending moment can be obtained at any given 
point by computing the area under the shear curve and using Eq. (12.8b). 

(a)

wC
wD

VC

MC

MD

VD

xDxC

LCD

C D

(b) 

VC

VD 2 VC 5 2(area under w
                    between C and D)

Slope 5 2(load per unit
                 length at that point)

xD

VD

xC

(c) 

MC

MD

xC xD

slope 5 V at that point

MD 2 MC 5 (area under
                      V between
                      C and D)

Fig. 12.10 Relationships between load, shear,  
and bending moment. (a) Section of loaded 
beam. (b) Shear curve for section. (c) Bending-
moment curve for section.
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Concept	Application	12.3

Draw the shear and bending-moment diagrams for the simply sup-
ported beam shown in Fig. 12.11a and determine the maximum 
value of the bending moment.

From the free-body diagram of the entire beam (Fig. 12.11b), 
we determine the magnitude of the reactions at the supports:

RA 5 RB 5 1
2wL

Next, draw the shear diagram. Close to the end A of the beam, the 
shear is equal to RA, (that is, to 1

2wL ) which can be checked by  
considering as a free body a very small portion of the beam. Using  
Eq. (12.6a), the shear V at any distance x from A is

 V 2 VA 5 2#
x

0

w dx 5 2wx

 V 5 VA 2 wx 5 1
2 wL 2 wx 5 w(1

2L 2 x)

Thus the shear curve is an oblique straight line that crosses the x axis 
at x 5 Ly2 (Fig. 12.11c). Considering the bending moment, observe 
that MA 5 0. The value M of the bending moment at any distance x 
from A is obtained from Eq. (12.8a):

M 2 MA 5 #
x

0

V dx

M 5 #
x

0

w(1
2L 2 x)dx 5 1

2w(Lx 2 x2)

The bending-moment curve is a parabola. The maximum value of the 
bending moment occurs when x 5 Ly2, since V (and thus dMydx) 
is zero for this value of x. Substituting x 5 Ly2 in the last equation, 
Mmax 5 wL2y8 (Fig. 12.11d ).

For instance, since MA 5 0 for the beam of Concept Application 12.3, the 
maximum value of the bending moment for that beam is obtained simply 
by measuring the area of the shaded triangle of the positive portion of the 
shear diagram of Fig. 12.11c. So,

Mmax 5
1
2

 
L

2
 
wL

2
5

wL2

8
Note that the load curve is a horizontal straight line, the shear curve 

an oblique straight line, and the bending-moment curve a parabola. If the 
load curve had been an oblique straight line (first degree), the shear curve 
would have been a parabola (second degree), and the bending-moment 
curve a cubic (third degree). The shear and bending-moment curves are 
always one and two degrees higher than the load curve, respectively. With 
this in mind, the shear and bending-moment diagrams can be drawn with-
out actually determining the functions V(x) and M(x). The sketches will be 
more accurate if we make use of the fact that at any point where the curves 
are continuous, the slope of the shear curve is equal to 2w and the slope of 
the bending-moment curve is equal to V.

B

w

A

L

(a)

B

w

A

RB5 wL1
2RA5 wL1

2

(b)

(c)

2 wL1
2

wL1
2

L1
2

x

V

L

Fig. 12.11 (a) Simply supported beam with 
uniformly distributed load. (b) Free-body 
diagram. (c) Shear diagram. (d) Bending-
moment diagram.

(d)

wL21
8

L L1
2

M

x
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Sample	Problem	12.3

Draw the shear and bending-moment diagrams for the beam and loading 
shown.

STRATEGY: The beam supports two concentrated loads and one distrib-
uted load. You can use the equations in this section between these loads and 
under the distributed load, but you should expect changes in the diagrams at 
the concentrated load points.

MODELING	and	ANALYSIS: 

Reactions.	 Consider the entire beam as a free body as shown in 
Fig. 1.

1  oMA 5 0:
D(24 ft) 2 (20 kips)(6 ft) 2 (12 kips)(14 ft) 2 (12 kips)(28 ft) 5 0

 D 5 126 kips  D 5 26 kips ↑

1 ↑  oFy 5 0: Ay 2 20 kips 2 12 kips 1 26 kips 2 12 kips 5 0
 Ay 5 118 kips  A y 5 18 kips ↑

→1  oFx 5 0: Ax 5 0  A x 5 0

Note that at both A and E the bending moment is zero. Thus, two points 
(indicated by dots) are obtained on the bending-moment diagram.

Shear	 Diagram. Since dVydx 5 2w, between  concentrated loads 
and reactions the slope of the shear diagram is zero (i.e., the shear is 
constant). The shear at any point is determined by dividing the beam 
into two parts and considering either part to be a free body. For example, 
using the portion of beam to the left of section 1, the shear between B 
and C is

1 ↑ oFy 5 0:    118 kips 2 20 kips 2 V 5 0 V 5 22 kips

Also, the shear is 112 kips just to the right of D and zero at end E. Since 
the slope dVydx 5 2w is constant between D and E, the shear diagram 
between these two points is a straight line.

Bending-Moment	 Diagram. Recall that the area under the shear 
curve between two points is equal to the change in bending moment between 
the same two points. For convenience, the area of each portion of the shear 
diagram is computed and indicated in parentheses on the diagram in Fig. 1. 
Since the bending moment MA at the left end is known to be zero, 

 MB 2 MA 5 1108 MB 5 1108 kip ? ft
 MC 2 MB 5 216 MC 5 192 kip ? ft
 MD 2 MC 5 2140 MD 5 248 kip ? ft
 ME 2 MD 5 148 ME 5 0

Since ME is known to be zero, a check of the computations is obtained.

(continued)

EA
B C

6 ft

20 kips 12 kips 1.5 kips/ft

8 ft 8 ft10 ft

D

E

E

A

A

Ax

Ay

B C

6 ft

4 ft

20 kips 12 kips

20 kips

20 kips

12 kips

26 kips18 kips

18 kips

V (kips)

M (kip∙ft)

x

x

118
(1108)

1108
192

248

(148)

(2140)

112

(216)

22

214

15 kips/ft

12 kips

8 ft 8 ft10 ft

D

B 1 C D

D

M

V

Fig. 1 Free-body diagrams of beam, 
free-body diagram of section to left of 
cut, shear diagram, bending-moment 
diagram.
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Between the concentrated loads and reactions, the shear is constant. 
Thus, the slope dMydx is constant, and the bending-moment diagram is 
drawn by connecting the known points with straight lines. Between D and 
E where the shear diagram is an oblique straight line, the bending-moment 
diagram is a parabola.

From the V and M diagrams, note that Vmax 5 18 kips and Mmax 5 
108 kip ? ft.

REFLECT	 and	 THINK: As expected, the shear and bending-moment 
diagrams show abrupt changes at the points where the concentrated loads 
act.

Sample	Problem	12.4

The W360 3 79 rolled-steel beam AC is simply supported and carries the 
uniformly distributed load shown. Draw the shear and bending-moment 
diagrams for the beam, and determine the location and magnitude of the 
maximum normal stress due to bending.

STRATEGY: A load is distributed over part of the beam. You can use 
the equations in this section in two parts: for the load and for the no-load 
regions. From the discussion in this section, you can expect the shear dia-
gram will show an oblique line under the load, followed by a horizontal 
line. The bending-moment diagram should show a parabola under the load 
and an oblique line under the rest of the beam.

MODELING	and	ANALYSIS:

Reactions.	 Considering the entire beam as a free body (Fig. 1),

RA 5 80 kN  ↑    RC 5 40 kN  ↑

Shear	 Diagram.	 The shear just to the right of A is VA 5 180 kN. 
Since the change in shear between two points is equal to minus the area 
under the load curve between the same two points, VB is

 VB 2 VA 5 2(20 kN/m)(6 m) 5 2120 kN
 VB 5 2120 1 VA 5 2120 1 80 5 240 kN

(continued)

C
B

A

20 kN/m

6 m 3 m
C

C

B

w

A

V

D B

b

a

A

20 kN/m

80 kN

80 kN

(1160)

(2120)

40 kN

240 kN(240)

6 m

x 5 4m
160 kN∙m

120 kN∙m

x

M

A

x

x

Fig. 1 Free-body diagram, shear 
diagram, bending-moment diagram.
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The slope dVydx 5 2w is constant between A and B, and the shear diagram 
between these two points is represented by a straight line. Between B and C, 
the area under the load curve is zero; therefore,

VC 2 VB 5 0    VC 5 VB 5 240 kN

and the shear is constant between B and C.

Bending-Moment	Diagram. Note that the bending moment at each 
end is zero. In order to determine the maximum bending moment, locate 
the section D of the beam where V 5 0.

VD 2 VA 5 2wx

0 2 80 kN 5 2(20 kN/m) x

Solving for x, x 5 4 m b 

The maximum bending moment occurs at point D, where dMydx 5 V 5 0. 
The areas of various portions of the shear diagram are computed and given 
(in parentheses). The area of the shear diagram between two points is equal 
to the change in bending moment between the same two points, giving

 MD 2 MA 5 1 160 kN?m      MD 5 1160 kN?m

 MB 2 MD 5 2    40 kN?m      MB 5 1120 kN?m

 MC 2 MB 5 2 120 kN?m      MC 5 0

The bending-moment diagram consists of an arc of parabola followed by a 
segment of straight line. The slope of the parabola at A is equal to the value 
of V at that point.

Maximum	Normal	 Stress.	 This occurs at D, where |M  | is largest. 
From Appendix B, for a W360 3 79 rolled-steel shape, S 5 1270 mm3 
about a horizontal axis. Substituting this and |M  | 5 |MD| 5 160 3 103 N?m 
into Eq. (12.3), 

σm 5
|MD |

S
5

160 3 103 N?m
1270 3 1026 m3 5 126.0 3 106 Pa

 Maximum normal stress in the beam 5 126.0 MPa b
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Sample	Problem	12.5

Sketch the shear and bending-moment diagrams for the cantilever beam 
shown in Fig. 1.

STRATEGY: Because there are no support reactions until the right end 
of the beam, you can rely solely on the equations from this section without 
needing to use free-body diagrams and equilibrium equations. Due to the 
non-uniform distributed load, you should expect the results to involve equa-
tions of higher degree, with a parabolic curve in the shear diagram and a 
cubic curve in the bending-moment diagram.

MODELING	and	ANALYSIS:

Shear	Diagram.	 At the free end of the beam, VA 5 0. Between A and 
B, the area under the load curve is 12 w0 

a. Thus,

VB 2 VA 5 21
2 w0 

a    VB 5 21
2 w0 

a

Between B and C, the beam is not loaded, so VC 5 VB. At A, w 5 w0.  
According to Eq. (12.5), the slope of the shear curve is dVydx 5 2w0, 
while at B the slope is dVydx 5 0. Between A and B, the loading decreases 
linearly, and the shear diagram is parabolic. Between B and C, w 5 0, and 
the shear diagram is a horizontal line.

Bending-Moment	 Diagram. The bending moment MA at the free 
end of the beam is zero. Compute the area under the shear curve to obtain.

 MB 2 MA 5 21
3 w0 

a2    MB 5 21
3 w0 

a2

 MC 2 MB 5 21
2 w0 

a(L 2 a)

 MC 5 21
6 w0 

a(3L 2 a)

The sketch of the bending-moment diagram is completed by recalling that 
dMydx 5 V. Between A and B, the diagram is represented by a cubic curve 
with zero slope at A and between B and C by a straight line.

REFLECT	 and	 THINK:	 Although not strictly required for the solu-
tion of this problem, determination of the support reactions would serve 
as an excellent check of the final values of the shear and bending-moment 
diagrams. 

CB

w0

A

V

M

a

L

 2 w0a21
3  2 w0a(L 2 a)1

2

 2 w0a1
2

 2 w0a21
3

 2 w0a(3L 2 a)1
6

 2 w0a

x

x

1
2

Fig. 1 Beam with load, shear diagram, 
bending-moment diagram.

Final PDF to printer



12.2 Relationships Between Load, Shear, and Bending Moment 573

bee98160_ch12_551-590.indd 573 12/16/15  03:18 PM

Sample	Problem	12.6

The simple beam AC in Fig. 1 is loaded by a couple of moment T applied at 
point B. Draw the shear and bending-moment diagrams of the beam.

STRATEGY: The load supported by the beam is a concentrated couple. 
Since the only vertical forces are those associated with the support reac-
tions, you should expect the shear diagram to be of constant value. How-
ever, the bending-moment diagram will have a discontinuity at B due to the 
couple.

MODELING	and	ANALYSIS: 

The entire beam is taken as a free body.

RA 5
T

L
↑    RC 5

T

L
↓

The shear at any section is constant and equal to TyL. Since a couple is 
applied at B, the bending-moment diagram is discontinuous at B. It is rep-
resented by two oblique straight lines and decreases suddenly at B by an 
amount equal to T. This discontinuity can be verified by equilibrium analy-
sis. For example, considering the free body of the portion of the beam from 
A to just beyond the right of B as shown in Fig. 1, M is

1  oMB 5 0:  2�
T

L
 a 1 T 1 M 5 0   M 5 2T (1 2

a

L)
REFLECT	 and	 THINK:	 Notice that the applied couple results in a 
sudden change to the moment diagram at the point of application in the 
same way that a concentrated force results in a sudden change to the shear 
diagram.

Fig. 1 Beam with load, shear diagram, 
bending-moment diagram, free-body 
diagram of section to left of B.

C
B

A

V

M

B

L

x

x

T
a

T
L

2T(1 2 )a
L

T
a
L

T V M

RA5 T/L
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 12.29 Using the method of Sec. 12.2, solve Prob. 12.1a.

 12.30 Using the method of Sec. 12.2, solve Prob. 12.2a.

 12.31 Using the method of Sec. 12.2, solve Prob. 12.3a.

 12.32 Using the method of Sec. 12.2, solve Prob. 12.4a.

 12.33 Using the method of Sec. 12.2, solve Prob. 12.5.

 12.34 Using the method of Sec. 12.2, solve Prob. 12.6.

 12.35 Using the method of Sec. 12.2, solve Prob. 12.7.

 12.36 Using the method of Sec. 12.2, solve Prob. 12.8.

 12.37 through 12.40  Draw the shear and bending-moment diagrams for the 
beam and loading shown, and determine the maximum absolute value 
(a) of the shear, (b) of the bending moment.

Problems

BA

15 ft

200 lb/ft
6 kip∙ft 1.5 kip∙ft

Fig. P12.37

BA

12 ft
2 ft 2 ft

40 lb/ft 800 lb

Fig. P12.38

300 N 300 N

CA D

E
F

B

200 mm

75 mm

200 mm 200 mm

Fig. P12.40

A

1.5 m 0.9 m

3 kN

3.5 kN/m

0.6 m

E
D

C

B

Fig. P12.39

 12.41 Using the method of Sec. 12.2, solve Prob. 12.13.

 12.42 Using the method of Sec. 12.2, solve Prob. 12.14.

 12.43 Using the method of Sec. 12.2, solve Prob. 12.15.

 12.44 Using the method of Sec. 12.2, solve Prob. 12.17.
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	12.45	and 12.46  Determine (a) the equations of the shear and bending-
moment curves for the beam and loading shown, (b) the maximum 
absolute value of the bending moment in the beam.

w

A

L

B

x

w 5 w0 cos x
2L
π

Fig. P12.46

B
x

w w 5 w0 sin

A

L

x
L
π

Fig. P12.45

 12.47 Determine (a) the equations of the shear and bending-moment curves 
for the beam and loading shown, (b) the maximum absolute value of 
the bending moment in the beam.

B
x

w
w 5 w0

A

L

x
L

Fig. P12.47

 12.48 For the beam and loading shown, determine the equations of the shear 
and bending-moment curves and the maximum absolute value of the 
bending moment in the beam, knowing that (a) k 5 1, (b) k 5 0.5.

x

w

w0

2kw0
L

Fig. P12.48

	12.49	and	12.50	 	Draw the shear and bending-moment diagrams for the 
beam and loading shown, and determine the maximum normal stress 
due to bending.

C
A B

0.9 m
3 m

12 kN/m
9 kN

W200 3 19.3

Fig. P12.49

A B

16 kN/m

1 m1.5 m

S150 3 18.6

Fig. P12.50
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	12.51	and	12.52	 	Draw the shear and bending-moment diagrams for the beam 
and loading shown, and determine the maximum normal stress due to 
bending.

A B

80 lb/ft

1600 lb

1.5 ft

9 ft

11.5 in.

1.5 in.

Fig. P12.51

C D
A B

6 ft 6 ft
2 ft

2 kips/ft
6 kips

W8 3 31

Fig. P12.52

 12.53	and	12.54	 	Draw the shear and bending-moment diagrams for the 
beam and loading shown, and determine the maximum normal stress 
due to bending.

B

CA

8 in.
20 in.

3 in.

800 lb/in.

2    in.1
2

1    in.1
4

Fig. P12.54

C
A B

1 m
4 m 160 mm

140 mm
3 kN/m

2 kN

Fig. P12.53

	12.55	and	12.56  Draw the shear and bending-moment diagrams for the 
beam and loading shown, and determine the maximum normal stress 
due to bending.

BDC

250 kN 150 kN

A

2 m 2 m 2 m

W410 3 114

Fig. P12.55

A

B

C

16 in. 24 in.

25 lb/in.

500 lb

S4 3 7.7

Fig. P12.56
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12.3  DESIGN OF PRISMATIC 
BEAMS FOR BENDING

The design of a beam is usually controlled by the maximum absolute value 
|M  |max of the bending moment that occurs in the beam. The largest normal 
stress σm in the beam is found at the surface of the beam in the critical sec-
tion where |M  |max occurs and is obtained by substituting |M  |max for |M  | in 
Eq. (12.1) or Eq. (12.3).†

 σm 5
ZM Zmaxc

I
 (12.1a)

 σm 5
ZM Zmax

S
 (12.3a)

A safe design requires that σm # σall, where σall is the allowable stress for 
the material used. Substituting σall for σm in (12.3a) and solving for S yields 
the minimum allowable value of the section modulus for the beam being 
designed:

 Smin 5
ZM Zmax

σall
 (12.9)

The design of common types of beams, such as timber beams of rect-
angular cross section and rolled-steel members of various cross-sectional 
shapes, is discussed in this section. A proper procedure should lead to the 
most economical design. This means that among beams of the same type 
and same material, and other things being equal, the beam with the small-
est weight per unit length—and, thus, the smallest cross-sectional area—
should be selected, since this beam will be the least expensive.

The design procedure generally includes the following steps:‡

Step 1. First determine the value of σall for the material selected from a table 
of properties of materials or from design specifications. You also can 
compute this value by dividing the ultimate strength σU of the material 
by an appropriate factor of safety (Sec. 8.4C). Assuming that the value of 
σall is the same in tension and in compression, proceed as follows.

Step 2. Draw the shear and bending-moment diagrams corresponding to the 
specified loading conditions, and determine the maximum absolute value 
|M  |max of the bending moment in the beam.

Step 3. Determine from Eq. (12.9) the minimum allowable value Smin of the 
section modulus of the beam.

Step 4. For a timber beam, the depth h of the beam, its width b, or the ratio 
h/b characterizing the shape of its cross section probably will have been 
specified. The unknown dimensions can be selected by using Eq. (11.19), 
so b and h satisfy the relation 16 bh2 5 S $  Smin.

†For beams that are not symmetrical with respect to their neutral surface, the largest of the 
distances from the neutral surface to the surfaces of the beam should be used for c in Eq. 
(12.1) and in the computation of the section modulus S 5 I/c.
‡ It is assumed that all beams considered in this chapter are adequately braced to prevent 
lateral buckling and bearing plates are provided under concentrated loads applied to rolled-
steel beams to prevent local buckling (crippling) of the web.
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Step 5. For a rolled-steel beam, consult the appropriate table in Appendix 
B. Of the available beam sections, consider only those with a section 
modulus S $ Smin and select the section with the smallest weight per unit 
length. This is the most economical of the sections for which S $ Smin. 
Note that this is not necessarily the section with the smallest value of S 
(see Concept Application 12.4). In some cases, the selection of a section 
may be limited by considerations such as the allowable depth of the cross 
section or the allowable deflection of the beam (see Chap. 15).

Concept	Application	12.4

Select a wide-flange beam to support the 15-kip load as shown in Fig. 12.12. 
The allowable normal stress for the steel used is 24 ksi.

 1. The allowable normal stress is given: σall 5 24 ksi.
 2.  The shear is constant and equal to 15 kips. The bending moment is 

maximum at B.

ZM Zmax 5 (15 kips)(8 ft) 5 120 kip?ft 5 1440 kip?in.

 3. The minimum allowable section modulus is

Smin 5
ZM Zmax

σall
5

1440 kip?in.
24 ksi

5 60.0 in3

 4.  Referring to the table of Properties of Rolled-Steel Shapes in Appen-
dix B, note that the shapes are arranged in groups of the same depth 
and are listed in order of decreasing weight. Choose the lightest beam 
in each group having a section modulus S 5 Iyc at least as large as 
Smin and record the results in the following table.

 Shape S, in3

W21 3 44 81.6
W18 3 50 88.9
W16 3 40 64.7
W14 3 43 62.6
W12 3 50 64.2
W10 3 54 60.0

The most economical is the W16 3 40 shape since it weighs only  
40 lb/ft, even though it has a larger section modulus than two of the other 
shapes. The total weight of the beam will be (8 ft) 3 (40 lb) 5 320 lb.  
This weight is small compared to the 15,000-1b load and thus can be 
neglected in our analysis.

15 kips
8 ft

A B

Fig. 12.12 Cantilevered wide-flange 
beam with end load.
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Sample	Problem	12.7

A 12-ft-long overhanging timber beam AC with an 8-ft span AB is to be 
designed to support the distributed and concentrated loads shown. Know-
ing that timber of 4-in. nominal width (3.5-in. actual width) with a 1.75-ksi 
allowable stress is to be used, determine the minimum required depth h of 
the beam.

B
A C h

8 ft 4 ft

3.5 in.400 lb/ft 4.5 kips

STRATEGY: Draw the bending-moment diagram to find the absolute 
maximum bending-moment. Then, using this bending-moment, you can 
determine the required section properties that satisfy the given allowable 
stress.

MODELING	and	ANALYSIS:

Reactions.	 	 Consider the entire beam to be a free body (Fig. 1).

1  oMA 5 0:  B(8 ft) 2 (3.2 kips)(4 ft) 2 (4.5 kips)(12 ft) 5 0

 B 5 8.35 kips  B 5 8.35 kips ↑

→1  oFx 5 0: Ax 5 0

1↑oFy 5 0: Ay 1 8.35 kips 2 3.2 kips 2 4.5 kips 5 0

 Ay 5 20.65 kips    A 5 0.65 kips ↓

(continued)

The previous discussion was limited to materials for which σall is the 
same in tension and compression. If σall is different, make sure to select the 
beam section where σm # σall for both tensile and compressive stresses. If 
the cross section is not symmetric about its neutral axis, the largest tensile 
and the largest compressive stresses will not necessarily occur in the sec-
tion where |M  | is maximum (one may occur where M is maximum and the 
other where M is minimum). Thus, step 2 should include the determination 
of both Mmax and Mmin, and step 3 should take into account both tensile and 
compressive stresses.

Finally, the design procedure described in this section takes into 
account only the normal stresses occurring on the surface of the beam. 
Short beams, especially those made of timber, may fail in shear under a 
transverse loading. The determination of shearing stresses in beams will be 
discussed in Chap. 13.
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B
A

V

A

Ax
Ay

B

C

8 ft 4 ft

3.2 kips
4.5 kips

(218)

(118)

4.50
kips

23.85 kips

20.65
kips

CB
x

Fig. 1 Free-body diagram of beam 
and its shear diagram.

(continued)

Shear	Diagram.	 	 The shear just to the right of A is VA 5 Ay 5 20.65 
kips. Since the change in shear between A and B is equal to minus the area 
under the load curve between these two points, VB is obtained by

 VB 2 VA 5 2(400 lb/ft)(8 ft) 5 23200 lb 5 23.20 kips

 VB 5 VA 2 3.20 kips 5 20.65 kips 2 3.20 kips 5 23.85 kips.

The reaction at B produces a sudden increase of 8.35 kips in V, resulting in 
a shear equal to 4.50 kips to the right of B. Since no load is applied between 
B and C, the shear remains constant between these two points.

Determination	of	|M|max.  Observe that the bending moment is equal 
to zero at both ends of the beam: MA 5 MC 5 0. Between A and B, the bend-
ing moment decreases by an amount equal to the area under the shear curve, 
and between B and C it increases by a corresponding amount. Thus, the 
maximum absolute value of the bending moment is |M  |max 5 18.00 kip?ft.

Minimum	Allowable	Section	Modulus.	 	 Substituting the values of 
σall and |M  |max into Eq. (12.9) gives

Smin 5
|M | max

σall
5

(18 kip?ft)(12 in./ft)
1.75 ksi

5 123.43 in3
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Minimum	Required	Depth	of	Beam.  Recalling the formula deve-
loped in step 4 of the design procedure and substituting the values of b and 
Smin , we have

1
6 bh2 $ Smin    1

6(3.5 in.)h2 $ 123.43 in3    h $ 14.546 in.

The minimum required depth of the beam is h 5 14.55 in. b

REFLECT	 and	 THINK: In practice, standard wood shapes are speci-
fied by nominal dimensions that are slightly larger than actual. In this case, 
specify a 4-in. 3 16-in. member with the actual dimensions of 3.5 in. 3 
15.25 in.

Sample	Problem	12.8

A 5-m-long, simply supported steel beam AD is to carry the distributed and 
concentrated loads shown. Knowing that the allowable normal stress for the 
grade of steel is 160 MPa, select the wide-flange shape to be used.

STRATEGY: Draw the bending-moment diagram to find the absolute 
maximum bending moment. Then, using this moment, you can determine 
the required section modulus that satisfies the given allowable stress.

MODELING	and	ANALYSIS:

Reactions.	 	 Consider the entire beam to be a free body (Fig. 1).

1  oMA 5 0: D(5 m) 2 (60 kN)(1.5 m) 2 (50 kN)(4 m) 5 0
 D 5 58.0 kN    D 5 58.0 kN↑

→1  oFx 5 0: Ax 5 0

1↑oFy 5 0: Ay 1 58.0 kN 2 60 kN 2 50 kN 5 0
 Ay 5 52.0 kN    A 5 52.0 kN ↑

Shear	Diagram.	 	 The shear just to the right of A is VA 5 Ay 5 152.0 kN. 
Since the change in shear between A and B is equal to minus the area under 
the load curve between these two points,

VB 5 52.0 kN 2 60 kN 5 28 kN

(continued)

B

A

C D

3 m
1 m 1 m

20 kN
50 kN

Fig. 1 Free-body diagram of beam 
and its shear diagram.

CB D

1.5 m

52 kN

x 5 2.6 m

258 kN

28 kN

(67.6)

1.5 m 1 m 1 m

50 kN

D

A

V

A
E B C D

x

Ax
Ay

60 kN
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The shear remains constant between B and C, where it drops to 258 kN, 
and keeps this value between C and D. Locate the section E of the beam 
where V 5 0 by

VE 2 VA 5 2wx

0 2 52.0 kN 5 2(20 kN/m) x

So, x 5 2.60 m.

Determination	of	 |M|max.  The bending moment is maximum at E, 
where V 5 0. Since M is zero at the support A, its maximum value at E is 
equal to the area under the shear curve between A and E. Therefore, |M  |max 
5 ME 5 67.6 kN?m.

Minimum	Allowable	Section	Modulus.	 	 Substituting the values of 
σall and |M  |max into Eq. (12.9) gives

Smin 5
|M | max

σall
5

67.6 kN?m
160 MPa

5 422.5 3 1026 m3 5 422.5 3 103 mm3

Selection	of	Wide-Flange	Shape.	 	 From Appendix B, compile a list 
of shapes that have a section modulus larger than Smin and are also the light-
est shape in a given depth group (Fig. 2).

The lightest shape available is W360 3 32.9 b

REFLECT	and	THINK: When a specific allowable normal stress is the 
sole design criterion for beams, the lightest acceptable shapes tend to be 
deeper sections. In practice, there will be other criteria to consider that may 
alter the final shape selection.

 Shape S, mm3

W410 3 38.8 629
W360 3 32.9 475
W310 3 38.7 547
W250 3 44.8 531
W200 3 46.1 451

Fig. 2 Lightest shape in each 
depth group that provide the 
required section modulus.
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Problems
	12.57	and	12.58	 	For the beam and loading shown, design the cross section 

of the beam knowing that the grade of timber used has an allowable 
normal stress of 12 MPa.

Fig. P12.57

1.8 kN 3.6 kN

CB
A D h

0.8 m 0.8 m 0.8 m

40 mm

Fig. P12.58

10 kN/m

A B h

5 m

120 mm

 12.59	and	12.60	 	For the beam and loading shown, design the cross section 
of the beam knowing that the grade of timber used has an allowable 
normal stress of 1750 psi.

Fig. P12.59

CB
A D h

3 ft 6 ft

5 in.
1.5 kips/ft

3 ft

Fig. P12.60

4.8 kips 4.8 kips
2 kips 2 kips

F

b

A

2 ft 2 ft 3 ft 2 ft 2 ft

9.5 in.

B C D E

 12.61 For the beam and loading shown, design the cross section of the beam 
knowing that the grade of timber used has an allowable normal stress 
of 12 MPa.

Fig. P12.61

A
B

150 mm

b3 kN/m

C

2.4 m 1.2 m

 12.62 For the beam and loading shown, design the cross section of the beam 
knowing that the grade of timber used has an allowable normal stress 
of 1750 psi. Fig. P12.62

1.2 kips/ft

6 ft
a

a

B

A
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	12.63	and	12.64	 	Knowing that the allowable normal stress for the steel used 
is 24 ksi, select the most economical wide-flange beam to support the 
loading shown.

2.75 kips/ft

24 kips

B

A C

9 ft 15 ft

Fig. P12.63

5 ft 12 ft 5 ft

62 kips

62 kips

B C 

A D

Fig. P12.64

	12.65	and	12.66	 	Knowing that the allowable normal stress for the steel used 
is 160 MPa, select the most economical wide-flange beam to support 
the loading shown.

6 kN/m

18 kN/m

6 m

A

B

Fig. P12.65

C

DA

B

0.8 m 0.8 m
2.4 m

50 kN/m

Fig. P12.66

	12.67	and	12.68  Knowing that the allowable normal stress for the steel used 
is 160 MPa, select the most economical S-shape beam to support the 
loading shown.

C

DA
B

2.5 m 2.5 m 5 m

60 kN 40 kN

Fig. P12.67

100 kN/m

80 kN

A C

B

0.8 m 1.6 m

Fig. P12.68

	12.69	and	12.70  Knowing that the allowable normal stress for the steel used 
is 24 ksi, select the most economical S-shape beam to support the 
loading shown.

3 kips/ft

18 kips

A

DCB

6 ft 6 ft
3 ft

Fig. P12.69

48 kips 48 kips 48 kips

A

D

E

CB

6 ft
2 ft2 ft2 ft

Fig. P12.70
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 12.71 Two rolled-steel channels are to be welded back to back and used to 
support the loading shown. Knowing that the allowable normal stress 
for the steel used is 30 ksi, determine the most economical channels 
that can be used.

B

2.25 kips/ft

20 kips

A
C

D

12 ft
3 ft

6 ft

Fig. P12.71

 12.72 Two metric rolled-steel channels are to be welded along their edges 
and used to support the loading shown. Knowing that the allowable 
normal stress for the steel used is 150 MPa, determine the most eco-
nomical channels that can be used.

E
B

A
C D

20 kN 20 kN 20 kN

4 @ 0.675 m 5 2.7 m

Fig. P12.72

 12.73 Two L4 3 3 rolled-steel angles are bolted together and used to sup-
port the loading shown. Knowing that the allowable normal stress for 
the steel used is 24 ksi, determine the minimum angle thickness that 
can be used.

B

300 lb/ft
2000 lb

A C

3 ft3 ft

6 in.

4 in.

Fig. P12.73

 12.74 A steel pipe of 100-mm diameter is to support the loading shown. 
Knowing that the stock of pipes available has thicknesses varying 
from 6 mm to 24 mm in 3-mm increments and that the allowable nor-
mal stress for the steel used is 150 MPa, determine the minimum wall 
thickness t that can be used.

A B C D

100 mm

t

1.5 kN 1.5 kN

1 m
0.5 m 0.5 m

1.5 kN

Fig. P12.74
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 12.75 Assuming that the upward reaction of the ground is uniformly distrib-
uted and knowing that the allowable normal stress for the steel used 
is 170 MPa, select the most economical wide-flange beam to support 
the loading shown.

B C

Total load 5 2 MN

A D

0.75 m 0.75 m
1 m

D

Fig. P12.75

 12.76 Assuming that the upward reaction of the ground is uniformly distrib-
uted and knowing that the allowable normal stress for the steel used 
is 24 ksi, select the most economical wide-flange beam to support the 
loading shown.

B C

200 kips 200 kips

A DD

4 ft4 ft 4 ft

Fig. P12.76
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Review and Summary
Design	of	Prismatic	Beams
This chapter was devoted to the analysis and design of beams under transverse 
loadings consisting of concentrated or distributed loads. The beams are classi-
fied according to the way they are supported (Fig. 12.13). Only statically deter-
minate beams were considered, where all support reactions can be determined 
by statics.

L

(a) Simply supported beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L2L1

(d) Continuous beam

L

(b) Overhanging beam

L

Beam fixed at one end
and simply supported

at the other end

(e) 

L

(c) Cantilever beam

L

( f ) Fixed beam

Fig. 12.13

Normal	Stresses	Due	to	Bending
While transverse loadings cause both bending and shear in a beam, the normal 
stresses caused by bending are the dominant criterion in the design of a beam 
for strength [Sec. 12.1]. Therefore, this chapter dealt only with the determi-
nation of the normal stresses in a beam, the effect of shearing stresses being 
examined in the next one.
 The flexure formula for the determination of the maximum value σm of 
the normal stress in a given section of the beam is

 σm 5
|M | c

I
 (12.1)

where I is the moment of inertia of the cross section with respect to a centroidal 
axis perpendicular to the plane of the bending couple M and c is the maximum 
distance from the neutral surface (Fig. 12.14). Introducing the elastic section 
modulus S 5 Iyc of the beam, the maximum value σm of the normal stress in the 
section can be expressed also as

 σm 5
|M |
S

 (12.3)

Shear	and	Bending-Moment	Diagrams
From Eq. (12.1) it is seen that the maximum normal stress occurs in the 
section where |M  | is largest and at the point farthest from the neutral axis.  

y

c

Neutral surface
σx

σm

Fig. 12.14
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The determination of the maximum value of |M  | and of the critical section 
of the beam in which it occurs is simplified if shear diagrams and bending-
moment diagrams are drawn. These diagrams represent the variation of the 
shear and of the bending moment along the beam and are obtained by deter-
mining the values of V and M at selected points of the beam. These values 
are found by passing a section through the point and drawing the free-body 
diagram of either of the portions of beam. To avoid any confusion regarding 
the sense of the shearing force V and of the bending couple M (which act in 
opposite sense on the two portions of the beam), we follow the sign conven-
tion adopted earlier, as illustrated in Fig. 12.15.

Relationships	Between	Load,	Shear,	and	Bending 
Moment
The construction of the shear and bending-moment diagrams is facilitated if the 
following relations are taken into account. Denoting by w the distributed load 
per unit length (assumed positive if directed downward)

 
dV

dx
5 2w (12.5)

 
dM

dx
5 V (12.7)

or in integrated form,

 VD 2 VC 5 2(area under load curve between C and D) (12.6b)

 MD 2 MC 5 area under shear curve between C and D (12.8b)

Eq. (12.6b) makes it possible to draw the shear diagram of a beam from the 
curve representing the distributed load on that beam and V at one end of the 
beam. Similarly, Eq. (2.8b) makes it possible to draw the bending-moment dia-
gram from the shear diagram and M at one end of the beam. However, con-
centrated loads introduce discontinuities in the shear diagram and concentrated 
couples in the bending-moment diagram, none of which is accounted for in 
these equations. The points of the beam where the bending moment is maxi-
mum or minimum are also the points where the shear is zero (Eq. 12.7).

Design	of	Prismatic	Beams
Having determined σall for the material used and assuming that the design of the 
beam is controlled by the maximum normal stress in the beam, the minimum 
allowable value of the section modulus is

 Smin 5
ZM Zmax

σall
 (12.9)

 For a timber beam of rectangular cross section, S 5 1
6 bh2, where b is the 

width of the beam and h its depth. The dimensions of the section, therefore, 
must be selected so that 16 bh2 $ Smin.
 For a rolled-steel beam, consult the appropriate table in Appendix B. Of 
the available beam sections, consider only those with a section modulus S $ Smin.  
From this group we normally select the section with the smallest weight per 
unit length.

V

M

M9

V9

(a)  Internal forces
(positive shear and positive bending moment)

Fig. 12.15
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Review Problems
	12.77	and	12.78	 Draw the shear and bending-moment diagrams for the beam 

and loading shown, and determine the maximum absolute value (a) of 
the shear, (b) of the bending moment.

B

2.5 kips/ft 15 kips

A
C D

6 ft6 ft
3 ft

Fig. P12.77

250 mm 250 mm 250 mm

50 mm 50 mm

75 N

A
C D

B

75 N

Fig. P12.78

 12.79 Determine (a) the equations of the shear and bending-moment curves 
for the beam and loading shown, (b) the maximum absolute value of 
the bending moment in the beam.

B
x

w

w 5 w0 (      )1/2

A

L

x/L

Fig. P12.79

	12.80	and	12.81	 Draw the shear and bending-moment diagrams for the beam 
and loading shown and determine the maximum normal stress due to 
bending.

Hinge

2.4 m

0.6 m

1.5 m 1.5 m

CB
A E

D

80 kN/m 160 kN

W310 3 60

Fig. P12.81

HA

7 @ 200 mm 5 1400 mm

Hinge

30 mm

20 mm

CB D E F G

300 N 300 N 300 N40 N

Fig. P12.80

 12.82 Determine (a) the distance a for which the absolute value of the bend-
ing moment in the beam is as small as possible, (b) the corresponding 
maximum normal stress due to bending. (Hint: Draw the bending-
moment diagram and equate the absolute values of the largest posi-
tive and negative bending moments obtained.)

BA
C D

a 5 ft8 ft
W14 3 22

10 kips5 kips

Fig. P12.82
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BA

1.2 ft 1.2 ft

C

w0 5 50 lb/ft

T

w0

3
4 in.

Fig. P12.84

A B
C h

1.2 m 1.2 m

125 mm
18 kN/m

Fig. P12.86

2 ft
6 ft

2 ft2 ft 2 ft

20 kips20 kips 11 kips/ft

FA
B E

DC

Fig. P12.88

 12.83 Beam AB, of length L and square cross section of side a, is supported 
by a pivot at C and loaded as shown. (a) Check that the beam is in 
equilibrium. (b) Show that the maximum stress due to bending occurs 
at C and is equal to w0L2/(1.5a)3.

B

a

aA

2 L
3

C

w0

L
3

Fig. P12.83

 12.84 Knowing that rod AB is in equilibrium under the loading shown, 
draw the shear and bending-moment diagrams and determine the 
maximum normal stress due to bending.

 12.85 Three steel plates are welded together to form the beam shown. 
Knowing that the allowable normal stress for the steel used is 22 ksi, 
determine the minimum flange width b that can be used.

8 kips 32 kips 32 kips

B D
A

C
E

b

4.5 ft
14 ft 14 ft

9.5 ft

in.

1 in.

1 in.

19 in.3
4

Fig. P12.85

 12.86 For the beam and loading shown, design the cross section of the 
beam, knowing that the grade of timber used has an allowable normal 
stress of 12 MPa.

 12.87 Determine the largest permissible value of P for the beam and load-
ing shown, knowing that the allowable normal stress is 18 ksi in ten-
sion and 218 ksi in compression.

P
10 in. 10 in.

60 in. 60 in.

1 in.

5 in.

1 in.7 in.

E

DCB

A

PP

Fig. P12.87

 12.88 Knowing that the allowable normal stress for the steel used is 24 ksi, 
select the most economical wide-flange beam to support the loading 
shown.
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13
Shearing Stresses in Beams 
and Thin-Walled Members

A reinforced concrete deck will be attached to each of the thin-walled 

steel sections to form a composite box girder bridge. In this chapter, 

shearing stresses will be determined in various types of beams and girders.

© Aurora Photos/Alamy
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Introduction
Shearing stresses are important, particularly in the design of short, stubby 
beams. Their analysis is the subject of this chapter.

Fig. 13.1 graphically expresses the elementary normal and shearing 
forces exerted on a transverse section of a prismatic beam with a verti-
cal plane of symmetry that are equivalent to the bending couple M and 
the shearing force V. Six equations can be written to express this. Three 
of these equations involve only the normal forces σx dA and have been 
discussed in Sec. 11.1. These are Eqs. (11.1), (11.2), and (11.3), which 
express that the sum of the normal forces is zero and that the sums of their 
moments about the y and z axes are equal to zero and M, respectively. 
Three more equations involving the shearing forces τxy dA and τxz dA now 
can be written. One equation expresses that the sum of the moments of 
the shearing forces about the x axis is zero and can be dismissed as trivial 
in view of the symmetry of the beam with respect to the xy plane. The 
other two involve the y and z components of the elementary forces and are

 y components:     eτxy  dA 5 2V  (13.1)

 z components:     eτxz  dA 5 0  (13.2)

xydA

xzdA xdA

x

z

y

x

z

y

M

V5σ

τ

τ

Fig. 13.1 All the stresses on elemental areas (left) sum to give the 
resultant shear V and bending moment M.

Introduction

 13.1 HORIZONTAL SHEARING 
STRESS IN BEAMS

 13.1A Shear on the Horizontal Face of 
a Beam Element

 13.1B Shearing Stresses in a Beam
 13.1C Shearing Stresses τxy in 

Common Beam Types

 13.2 LONGITUDINAL SHEAR 
ON A BEAM ELEMENT OF 
ARBITRARY SHAPE

 13.3 SHEARING STRESSES IN 
THIN-WALLED MEMBERS

Objectives
In this chapter, you will:

•	Demonstrate how transverse loads on a beam gener-
ate shearing stresses.

•	Determine the stresses and shear flow on a horizontal 
section in a beam.

•	Determine the shearing stresses in a thin-walled beam.

Eq. (13.1) shows that vertical shearing stresses must exist in a transverse 
section of a beam under transverse loading. Eq. (13.2) indicates that the 
average lateral shearing stress in any section is zero. However, this does not 
mean that the shearing stress τxz is zero everywhere.
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Now consider a small cubic element located in the vertical plane of 
symmetry of the beam (where τxz must be zero) and examine the stresses 
exerted on its faces (Fig. 13.2). A normal stress σx and a shearing stress τxy  
are exerted on each of the two faces perpendicular to the x axis. But we 
know from Chapter 8 that when shearing stresses τxy are exerted on the 
vertical faces of an element, equal stresses must be exerted on the hori-
zontal faces of the same element. Thus, the longitudinal shearing stresses 
must exist in any member subjected to a transverse loading. This is veri-
fied by considering a cantilever beam made of separate planks clamped 
together at the fixed end (Fig. 13.3a). When a transverse load P is applied 
to the free end of this composite beam, the planks slide with respect to 
each other  (Fig. 13.3b). In contrast, if a couple M is applied to the free 
end of the same composite beam (Fig. 13.3c), the various planks bend 
into circular concentric arcs and do not slide with respect to each other. 
This verifies the fact that shear does not occur in a beam subjected to pure 
 bending (see Sec. 11.3).

While sliding does not actually take place when a transverse load P 
is applied to a beam made of a homogeneous and cohesive material such 
as steel, the tendency to slide exists, showing that stresses occur on hori-
zontal longitudinal planes as well as on vertical transverse planes. In tim-
ber beams, whose resistance to shear is weaker between fibers, failure due 
to shear occurs along a longitudinal plane rather than a transverse plane 
(Photo 13.1).

In Sec. 13.1A, a beam element of length Dx is considered that is 
bounded by one horizontal and two transverse planes. The shearing force 
DH exerted on its horizontal face will be determined, as well as the shear 
per unit length q, which is known as shear flow. An equation for the shear-
ing stress in a beam with a vertical plane of symmetry is obtained in Sec. 
13.1B and used in Sec. 13.1C to determine the shearing stresses in common 
types of beams.

The method in Sec. 13.1 is extended in Sec. 13.2 to cover the case 
of a beam element bounded by two transverse planes and a curved surface. 
This allows us to determine the shearing stresses at any point of a symmet-
ric thin-walled member, such as the flanges of wide-flange beams and box 
beams in Sec. 13.3.
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Fig. 13.2 Stress element 
from section of a 
transversely loaded beam.

(a)

(b)

P

M

(c)

Fig. 13.3 (a) Beam made of planks to 
illustrate the role of shearing stresses. 
(b) Beam planks slide relative to each 
other when transversely loaded. 
(c) Bending moment causes deflection 
without sliding.

Photo 13.1 Longitudinal shear failure in timber 
beam loaded in the laboratory.

© John DeWolf
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13.1  HORIZONTAL SHEARING 
STRESS IN BEAMS

13.1A  Shear on the Horizontal Face  
of a Beam Element

Consider a prismatic beam AB with a vertical plane of symmetry that sup-
ports various concentrated and distributed loads (Fig. 13.4). At a distance 
x from end A, we detach from the beam an element CDD9C9 with length 
of Dx extending across the width of the beam from the upper surface to a 

B

P1 P2 w

A

x

C
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Fig. 13.4 Transversely loaded beam with 
vertical plane of symmetry.
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Fig. 13.5 Short segment of beam with stress element CDD9C9 defined.

horizontal plane located at a distance y1 from the neutral axis (Fig. 13.5). 
The forces exerted on this element consist of vertical shearing forces V9C 
and V9D , a horizontal shearing force DH exerted on the lower face of the ele-
ment, elementary horizontal normal forces σC dA and σD dA, and possibly a 
load w Dx (Fig. 13.6). The equilibrium equation for horizontal forces is

→1  oFx 5 0: DH 1 # (σC 2 σD) dA 5 0

V9C V9D

∆H
x

C D

 dAD dAC

w

σσ

Fig. 13.6 Forces exerted on 
element CCD‘C’.

where the integral extends over the shaded area  of the section located 
above the line y 5 y1. Solving this equation for DH and using Eq. (12.2), 
σ 5 My/I, to express the normal stresses in terms of the bending moments 
at C and D, provides

 DH 5
MD 2 MC

I #y dA (13.3)
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The integral in Eq. (13.3) represents the first moment with respect to 
the neutral axis of the portion  of the cross section of the beam that 
is located above the line y 5 y1 and will be denoted by Q. On the other 
hand, recalling Eq. (12.7), the increment MD 2 MC of the bending 
moment is

MD 2 MC 5 DM 5 (dMydx) Dx 5 V Dx

Substituting into Eq. (13.3), the horizontal shear exerted on the beam 
element is

 DH 5
VQ

I
 Dx (13.4)

The same result is obtained if a free body the lower element 
C9D9D0C 0 is used instead of the upper element CDD9C9 (Fig. 13.7), 
since the shearing forces DH and DH9 exerted by the two elements on 
each other are equal and opposite. This leads us to observe that the first 
moment Q of the portion 9 of the cross section located below the line 
y 5 y1 (Fig. 13.7) is equal in magnitude and opposite in sign to the first 
moment of the portion  located above that line (Fig. 13.5). Indeed, the 
sum of these two moments is equal to the moment of the area of the entire 
cross section with respect to its centroidal axis and, thus must be zero. 
This property is sometimes used to simplify the computation of Q. Also 
note that Q is maximum for y1 5 0, since the elements of the cross sec-
tion located above the neutral axis contribute positively to the integral 
in Eq. (13.3) that defines Q, while the elements located below that axis 
contribute negatively.

y1

∆x

c

x

C9 D9

C99 D99

y

z N.A.

9

y1

Fig. 13.7 Short segment of beam with stress element C9D9D0C0 
defined.

The horizontal shear per unit length, which will be denoted by q, is 
obtained by dividing both members of Eq. (13.4) by Dx :

 q 5
DH

Dx
5

VQ

I
 (13.5)

Recall that Q is the first moment with respect to the neutral axis of the 
 portion of the cross section located either above or below the point at 
which q is being computed and that I is the centroidal moment of inertia 
of the entire cross-sectional area. The horizontal shear per unit length q is 
also called the shear flow and will be discussed in Sec. 13.3.
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13.1B  Shearing Stresses in a Beam
Consider again a beam with a vertical plane of symmetry that is subjected 
to various concentrated or distributed loads applied in that plane. If, through 
two vertical cuts and one horizontal cut, an element of length Dx is detached 
from the beam (Fig. 13.9), the magnitude DH of the shearing force exerted 
on the horizontal face of the element can be obtained from Eq. (13.4). The 
average shearing stress τave on that face of the element is obtained by divid-
ing DH by the area DA of the face. Observing that DA 5 t Dx, where t is the 
width of the element at the cut, we write

τave 5
DH

DA
5

VQ

I
 

Dx

t Dx

Concept	Application	13.1

A beam is made of three planks, 20 by 100 mm in cross section, and nailed 
together (Fig. 13.8a). Knowing that the spacing between nails is 25 mm and 
the vertical shear in the beam is V 5 500 N, determine the shearing force 
in each nail.

Determine the horizontal force per unit length q exerted on the lower 
face of the upper plank. Use Eq. (13.5), where Q represents the first moment 
with respect to the neutral axis of the shaded area A shown in Fig. 13.8b, 
and I is the moment of inertia about the same axis of the entire cross-sec-
tional area (Fig. 13.8c). Recalling that the first moment of an area with 
respect to a given axis is equal to the product of the area and of the distance 
from its centroid to the axis,†

 Q 5 A y 5 (0.020 m 3 0.100 m)(0.060 m)

 5 120 3 1026 m3

 I 5 1
12(0.020 m)(0.100 m)3

 12[ 1
12(0.100 m)(0.020 m)3

 1(0.020 m 3 0.100 m)(0.060 m)2]

 5 1.667 3 1026 1 2(0.0667 1 7.2)1026

 5 16.20 3 1026 m4

Substituting into Eq. (13.5), 

q 5
VQ

I
5

(500 N)(120 3 1026 m3)
16.20 3 1026 m4 5 3704 N/m

Since the spacing between the nails is 25 mm, the shearing force in each 
nail is

F 5 (0.025 m)q 5 (0.025 m)(3704 N/m) 5 92.6 N

†See Sec.  5.1C.

100 mm

20 mm

100 mm
20 mm

20 mm

(a)

0.100 m

0.020 m

N.A.

y 5 0.060 m

C9

0.100 m

N.A.
0.100 m

0.020 m

(b) (c)

A

Fig. 13.8 (a) Beam made of three 
boards nailed together. (b) Cross section 
for computing Q. (c) Cross section for 
computing moment of inertia.

t

∆H9
∆A

∆x

D992
C991

D991

D91
D9

D92

C92

C91

Fig. 13.9 Stress element C9D9D0C0 showing 
the shear force on a horizontal plane.
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or

 τave 5
VQ

It
 (13.6)

Note that since the shearing stresses τxy and τyx exerted on a transverse and 
a horizontal plane through D9 are equal, the expression also represents the 
average value of τxy along the line D91 D92 (Fig. 13.10).

Observe that τyx 5 0 on the upper and lower faces of the beam, since 
no forces are exerted on these faces. It follows that τxy 5 0 along the upper 
and lower edges of the transverse section (Fig. 13.11). Also note that while 
Q is maximum for y 5 0 (see Sec. 13.1A), τave may not be maximum along 
the neutral axis, since τave depends upon the width t of the section as well 
as upon Q.

yx

ave

ave

xy

D9

D9

D992

C991
D991

1

2D9

τ

τ

τ

τ

Fig. 13.10 Stress element C9D9D0C0 showing 
the shearing stress distribution along D91 D92.

yx5 0

yx5 0

xy5 0

xy5 0

τ

τ

τ

τ

Fig. 13.11 Beam cross section 
showing that the shearing stress is 
zero at the top and bottom of the 
beam.

As long as the width of the beam cross section remains small com-
pared to its depth, the shearing stress varies only slightly along the line 
D91 D92 (Fig. 13.10), and Eq. (13.6) can be used to compute τxy at any point 
along D91 D92. Actually, τxy is larger at points D91 and D92 than at D9, but the 
theory of elasticity shows† that, for a beam of rectangular section of width 
b and depth h, and as long as b # hy4, the value of the shearing stress at 
points C1 and C2 (Fig. 13.12) does not exceed by more than 0.8% the aver-
age value of the stress computed along the neutral axis.

On the other hand, for large values of byh, τmax of the stress at C1 and 
C2 may be many times larger then the average value τave computed along the 
neutral axis, as shown in the following table.

 b/h 0.25 0.5 1 2 4 6 10 20 50

τmaxyτave 1.008 1.033 1.126 1.396 1.988 2.582 3.770 6.740 15.65
τminyτave 0.996 0.983 0.940 0.856 0.805 0.800 0.800 0.800 0.800

†See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 3d 
ed., 1970, sec. 124.

h

C1

C2

b

1
2

h1
2 max

N.A.

τ

Fig. 13.12 Shearing stress distribution along 
neutral axis of rectangular beam cross section.
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13.1C  Shearing Stresses τxy 
In Common Beam Types

In the preceding section for a narrow rectangular beam (i.e., a beam of rect-
angular section of width b and depth h with b # 1

4h), the variation of the 
shearing stress τxy across the width of the beam is less than 0.8% of τave. 
Therefore, Eq. (13.6) is used in practical applications to determine the shear-
ing stress at any point of the cross section of a narrow rectangular beam, and

 τxy 5
VQ

It
 (13.7)

where t is equal to the width b of the beam and Q is the first moment with 
respect to the neutral axis of the shaded area A (Fig. 13.13).

Observing that the distance from the neutral axis to the centroid C9 of 
A is y 5 1

2 (c 1 y) and recalling that Q 5 A y, 

 Q 5 A y 5 b(c 2 y) 
1
2 (c 1 y) 5 1

2 b(c2 2 y2) (13.8)

Recalling that I 5 bh3y12 5 2
3 bc3, 

τxy 5
VQ

Ib
5

3
4

 
c2 2 y2

bc3  V

or noting that the cross-sectional area of the beam is A 5 2bc,

 τxy 5
3
2

 
V

A
 (1 2

y2

c2) (13.9)

Eq. (13.9) shows that the distribution of shearing stresses in a trans-
verse section of a rectangular beam is parabolic (Fig. 13.14). As observed 
in the preceding section, the shearing stresses are zero at the top and bottom 
of the cross section (y 5 6c). Making y 5 0 in Eq. (13.9), the value of the 
maximum shearing stress in a given section of a narrow rectangular beam is

 τmax 5
3
2

 

V

A
 (13.10)

This relationship shows that the maximum value of the shearing stress in a 
beam of rectangular cross section is 50% larger than the value V/A obtained 
by wrongly assuming a uniform stress distribution across the entire cross 
section.

In an American standard beam (S-beam) or a wide-flange beam 
(W-beam), Eq. (13.6) can be used to determine the average value of the 
shearing stress τxy over a section aa9 or bb9 of the transverse cross section 
of the beam (Figs. 13.15a and b). So

 τave 5
VQ

It
 (13.6)

where V is the vertical shear, t is the width of the section at the elevation 
considered, Q is the first moment of the shaded area with respect to the neu-
tral axis cc9, and I is the moment of inertia of the entire cross-sectional area 
about cc9. Plotting τave against the vertical distance y provides the curve 
shown in Fig. 13.15c. Note the  discontinuities existing in this curve, which 
reflect the difference between the values of t corresponding respectively to 
the flanges ABGD and A9B9G9D9 and to the web EFF9E9.

hc 5
C9

1
2

h

yy

y

b

z

c 5 1
2

A9

Fig. 13.13 Geometric terms for rectangular 
section used to calculate shearing stress.

max

y

O

1c

2c

τ
τ

Fig. 13.14 Shearing stress distribution on 
transverse section of rectangular beam.
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In the web, the shearing stress τxy varies only very slightly across the 
section bb9 and is assumed to be equal to its average value τave. This is not 
true, however, for the flanges. For example, considering the horizontal line 
DEFG, note that τxy is zero between D and E and between F and G, since 
these two segments are part of the free surface of the beam. However, the 
value of τxy between E and F is non-zero and can be obtained by making 
t 5 EF in Eq. (13.6). In practice, one usually assumes that the entire shear 
load is carried by the web and that a good approximation of the maximum 
value of the shearing stress in the cross section can be obtained by dividing 
V by the cross-sectional area of the web.

 τmax 5
V

Aweb
 (13.11)

However, while the vertical component τxy of the shearing stress in 
the flanges can be neglected, its horizontal component τxz has a significant 
value that will be determined in Sec. 13.3.

D

C

E F G

A
a

t

a9

c c9 c9

b9

B

D9 E9 F9 G9

A9 B9

(a)

b

c

y

y

t

E F

E9 F9

(b) (c)

aveτ

Fig. 13.15 Wide-flange beam. (a) Area for finding first moment of 
area in flange. (b) Area for finding first moment of area in web.  
(c) Shearing stress distribution.

Concept	Application	13.2

Knowing that the allowable shearing stress for the timber beam of 
 Sample Prob. 12.7 is τall 5 0.250 ksi, check that the design is acceptable 
from the point of view of the shearing stresses.

Recall from the shear diagram of Sample Prob. 12.7 that 
Vmax 5 4.50 kips. The actual width of the beam was given as b 5 3.5 in., 
and the value obtained for its depth was h 5 14.55 in. Using Eq. (13.10) 
for the maximum shearing stress in a narrow rectangular beam,

τmax 5
3
2

 
V

A
5

3
2

 
V

bh
5

3(4.50 kips)
2(3.5 in.)(14.55 in.)

5 0.1325 ksi

Since τmax , τall, the design obtained in Sample Prob. 12.7 is acceptable.

B
A

V

A

Ax
Ay

B

C

8 ft 4 ft

3.2 kips
4.5 kips

(218)

(118)

4.50
kips

23.85 kips

20.65
kips

CB
x

Fig. 13.16 Shear diagram for beam of Sample Problem 12.7.
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Concept	Applications	13.3

Knowing that the allowable shearing stress for the steel beam of Sample 
Prob. 12.8 is τall 5 90 MPa, check that the W360 3 32.9 shape obtained is 
acceptable from the point of view of the shearing stresses.

Recall from the shear diagram of Sample Prob. 12.8 that the maxi-
mum absolute value of the shear in the beam is |V |max 5 58 kN. It may 
be assumed that the entire shear load is carried by the web and that the 
maximum value of the shearing stress in the beam can be obtained from 
Eq. (13.11). From Appendix B, for a W360 3 32.9 shape, the depth of 
the beam and the thickness of its web are d 5 348 mm and tw 5 5.84 mm. 
Thus,

Aweb 5 d tw 5 (348 mm)(5.84 mm) 5 2032 mm2

Substituting |V | max and Aweb into Eq. (13.11),

τmax 5
|V | max

Aweb
5

58 kN
2032 mm2 5 28.5 MPa

Since τmax , τall, the design obtained in Sample Prob. 12.8 is acceptable.

CB D

1.5 m

52 kN

x 5 2.6 m

258 kN

28 kN

(67.6)

1.5 m 1 m 1 m

50 kN

D

A

V

A
E B C D

x

Ax
Ay

60 kN

Fig. 13.17 Shear diagram for beam of 
Sample Problem 12.8.

Sample	Problem	13.1

Beam AB is made of three plates glued together and is subjected, in its 
plane of symmetry, to the loading shown. Knowing that the width of  
each glued joint is 20 mm, determine the average shearing stress in each 
joint at section n–n of the beam. The location of the centroid of the  
section  is given in Fig. 1 and the centroidal moment of inertia is known 
to be I 5 8.63 3 1026 m4.

B

0.4 m 0.4 m
0.2 m

1.5 kN1.5 kN

A n

n

100 mm

68.3 mm

Joint a

Joint b

C

60 mm

20 mm

20 mm

20 mm

80 mm

Fig. 1 Cross section dimensions with 
location of centroid.

(continued)
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B

1.5 kN

M

V

A 5 1.5 kN B 5 1.5 kN A 5 1.5 kN

1.5 kN

A
n

n

Fig. 2 Free-body diagram of beam and segment of beam to 
left of section n–n.

STRATEGY: A free-body diagram is first used to determine the shear  
at the required section. Eq. (13.7) is then used to determine the average 
shearing stress in each joint.

MODELING:

Vertical	Shear	at	Section	n–n. As shown in the free-body diagram 
in Fig. 2, the beam and loading are both symmetric with respect to the 
 center of the beam. Thus, we have A 5 B 5 1.5 kN ↑.

Drawing the free-body diagram of the portion of the beam to the left of 
 section n–n (Fig. 2), we write

 1 ↑ o  Fy 5 0:   1.5 kN 2 V 5 0    V 5 1.5 kN

ANALYSIS:

Shearing	 Stress	 in	 Joint	 a. Using Fig. 3, pass the section a–a 
through the glued joint and separate the cross-sectional area into two parts. 
We choose to determine Q by computing the first moment with respect to 
the neutral axis of the area above section a–a.

Q 5 A y1 5 [ (0.100 m)(0.020 m) ] (0.0417 m) 5 83.4 3 1026 m3

Recalling that the width of the glued joint is t 5 0.020 m, we use Eq. (13.7) 
to determine the average shearing stress in the joint.

τave 5
VQ

It
5

(1500 N)(83.4 3 1026 m3)
(8.63 3 1026 m4)(0.020 m)

  τave 5 725 kPa  b

Shearing	Stress	in	Joint	b. Using Fig. 4, now pass section b–b and 
compute Q by using the area below the section.

Q 5 A y2 5 [ (0.060 m)(0.020 m) ] (0.0583 m) 5 70.0 3 1026 m3

τave 5
VQ

It
5

(1500 N)(70.0 3 1026 m3)
(8.63 3 1026 m4)(0.020 m)

 τave 5 608 kPa  b

0.100 m

0.020 m

Neutral axis
y1 5 0.0417 m

x9
a a

Fig. 3 Using area above section a–a to  
find Q.

Neutral axis

0.020 m

0.060 m

y2 5 0.0583 m

x9
C

b b

Fig. 4 Using area below section b–b 
to find Q.
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Sample	Problem	13.2

A timber beam AB of span 10 ft and nominal width 4 in. (actual 
width 5 3.5 in.) is to support the three concentrated loads shown. 
 Knowing that for the grade of timber used σall 5 1800 psi and 
τall 5 120 psi, determine the minimum required depth d of the beam.

STRATEGY: A free-body diagram with the shear and bending-moment 
diagrams is used to determine the maximum shear and bending moment. 
The resulting design must satisfy both allowable stresses. Start by assuming 
that one allowable stress criterion governs, and solve for the required depth 
d. Then use this depth with the other criterion to determine if it is also satis-
fied. If this stress is greater than the allowable, revise the design using the 
second criterion.

MODELING:

Maximum	Shear	and	Bending	Moment. The free-body diagram 
is used to determine the reactions and draw the shear and bending-moment 
diagrams in Fig. 1. We note that

 Mmax 5 7.5 kip?ft 5 90 kip?in.

 Vmax 5 3 kips

2.5 kips 1 kip 2.5 kips

2 ft 2 ft

3.5 in.

3 ft

A B
d

10 ft

3 ft

A BC D E

2.5 kips 1 kip 2.5 kips

3 kips

3 kips

6 kip?ft
6 kip?ft

7.5 kip?ft

3 kips

23 kips

0.5 kip
20.5 kip

2 ft
V

M

x

x

2 ft3 ft

(1.5)

(21.5)

(6)

(26)

3 ft

Fig. 1 Free-body diagram of beam with 
shear and bending-moment diagrams.
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Fig. 2 Section of  
beam having depth d.

b 5 3.5 in.

c 5 
d

d
2

Fig. 3 Design cross 
section.

3.5 in.

11.25 in.

4 in. 3 12 in.
nominal size

ANALYSIS:

Design	 Based	 on	 Allowable	 Normal	 Stress. We first express  
the elastic section modulus S in terms of the depth d (Fig. 2). We have

I 5
1
12

 bd 3    S 5
1
c

5
1
6

 bd 2 5
1
6

 (3.5)d 2 5 0.5833d 2

For Mmax 5 90 kip?in. and σall 5 1800 psi, we write

 S 5
Mmax

σall
     0.5833d 

2 5
90 3 103 lb?in.

1800 psi

 d2 5 85.7   d 5 9.26 in.

We have satisfied the requirement that σm # 1800 psi.

Check Shearing Stress. For Vmax 5 3 kips and d 5 9.26 in., we find

τm 5
3
2

 
Vmax

A
5

3
2

 
3000 lb

(3.5 in.)(9.26 in.)
    τm 5 138.8 psi

Since τall 5 120 psi, the depth d 5 9.26 in. is not acceptable and we must 
redesign the beam on the basis of the requirement that τm # 120 psi.

Design	 Based	 on	 Allowable	 Shearing	 Stress. Since we now  
know that the allowable shearing stress controls the design, we write

τm 5 τall 5
3
2

 
Vmax

A
    120 psi 5

3
2

 
3000 lb

(3.5 in.)d

d 5 10.71 in.  b

The normal stress is, of course, less than σall 5 1800 psi, and the depth of 
10.71 in. is fully acceptable.

REFLECT	and	THINK: Since timber is normally available in nominal 
depth increments of 2 in., a 4 3 12-in. standard size timber should be used. 
The actual cross section would then be 3.5 3 11.25 in. (Fig. 3).
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Problems
 13.1 Three boards, each of 1.5 3 3.5-in. rectangular cross section, are 

nailed together to form a beam that is subjected to a vertical shear of 
250 lb. Knowing that the spacing between each pair of nails is 2.5 in., 
determine the shearing force in each nail.

 13.2 Three boards, each 2 in. thick, are nailed together to form a beam 
that is subjected to a vertical shear. Knowing that the allowable shear-
ing force in each nail is 150 lb, determine the allowable shear if the 
spacing s between the nails is 3 in.

 13.3 Three boards are nailed together to form a beam shown, which is sub-
jected to a vertical shear. Knowing that the spacing between the nails 
is s 5 75 mm and that the allowable shearing force in each nail is 
400 N, determine the allowable shear when w 5 120 mm.

60 mm

200 mm

w

s
s

s

60 mm

60 mm

Fig. P13.3

 13.4 Solve Prob. 13.3, assuming that the width of the top and bottom 
boards is changed to w 5 100 mm.

 13.5 The American Standard rolled-steel beam shown has been reinforced 
by attaching to it two 16 3 200-mm plates, using 18-mm-diameter 
bolts spaced longitudinally every 120 mm. Knowing that the average 
allowable shearing stress in the bolts is 90 MPa, determine the largest 
permissible vertical shearing force.

 13.6 Solve Prob. 13.5, assuming that the reinforcing plates are only 12 mm thick.

 13.7 The beam shown is fabricated by connecting two channel shapes and 
two plates, using bolts of 3

4-in. diameter spaced longitudinally every 
7.5 in. Determine the average shearing stress in the bolts caused by a 
shearing force of 25 kips parallel to the y axis.

2 in.

2 in.

6 in.

s

s

s

2 in.

4 in.

Fig. P13.2

16 3 200 mm

S310 3 52

Fig. P13.5

1.5 in.

2.5 in.
2.5 in.

1.5 in.

1.5 in.

3.5 in.

Fig. P13.1

C12 3 20.7

16 in. 3 in.

C
z

y
1
2

Fig. P13.7
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 13.8 A beam is fabricated by connecting the rolled-steel members shown 
by bolts of 34-in. diameter spaced longitudinally every 5 in. Determine 
the average shearing stress in the bolts caused by a shearing force of 
30 kips parallel to the y axis.

 13.9 through 13.12  For the beam and loading shown, consider section n–n 
and determine (a) the largest shearing stress in that section, (b) the 
shearing stress at point a.

S10 3 25.4

C8 3 13.7

Cz

y

Fig. P13.8

1 ft

2 ft 2 ft 2 ft 2 ft

0.375 in.

1 in.

0.6 in.

a

0.6 in.

10 in.

10 in.

n

15 kips 20 kips 15 kips

n

Fig. P13.9

8 in.

16 in. 12 in. 16 in.

4 in.

4 in.

n

10 kips 10 kips

n

a

in.1
2

in.1
2

Fig. P13.10

1.5 m

100 mm

200 mm

40 mm
12 mm

12 mm
150 mm

0.3 m

10 kN
n

a

n

Fig. P13.11

90

120

1515 151530

20

20

20

40

20

72 kN

n

n

Dimensions in mm

1.5 m

0.5 m

0.8 m

a

Fig. P13.12
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 13.13 For the beam and loading shown, determine the minimum required 
depth h, knowing that for the grade of timber used, σall 5 1750 psi and 
τall 5 130 psi.

16 ft

5 in.

A B
h

750 lb/ft

Fig. P13.13

 13.14 For the beam and loading shown, determine the minimum required 
width b, knowing that for the grade of timber used, σall  5 12 MPa and 
τall  5 825 kPa.

0.6 m 0.6 m
0.6 m

1.8 m

A E
B C D

W360 3 122

PPP

Fig. P13.16

2.4 kN 4.8 kN

1 m 1 m 1 m

150 mmA D

b

B C

Fig. P13.14

 13.15 For the wide-flange beam with the loading shown, determine the 
 largest load P that can be applied, knowing that the maximum normal 
stress is 24 ksi and the largest shearing stress using the approximation 
τm  5 V/Aweb is 14.5 ksi.

6 ft

A C

B

9 ft

W24 3 104

P

Fig. P13.15

 13.16 For the wide-flange beam with the loading shown, determine the largest  
load P that can be applied, knowing that the maximum normal stress 
is 160 MPa and the largest shearing stress using the approximation 
τm 5 V/Aweb is 100 MPa.

Final PDF to printer



607

bee98160_ch13_591-624.indd 607 12/15/15  09:05 PM

	13.19	and	13.20	For the beam and loading shown, determine the largest 
shearing stress in section n–n.

 13.21 through 13.24  A beam having the cross section shown is subjected  
to a vertical shear V. Determine (a) the horizontal line along which 
the shearing stress is maximum, (b) the constant k in the following 
expression for the maximum shearing stress

τmax 5 k 
V

A

  where A is the cross-sectional area of the beam.

	13.17	and	13.18	 For the beam and loading shown, consider section n–n and 
determine the shearing stress at (a) point a, (b) point b.

180 kN

500 mm 500 mm

100 mm

160 mm

30 mm 30 mm

30 mm

20 mm

20 mm

A B
b

a

n

n

Fig.	P13.17	and	P13.19

B b
a

A

10 in.
20 in. 20 in.

25 kips 25 kips

n
7.25 in.

in.

1.5 in.
1.5 in.

3
4

8 in.

in.3
4

in.3
4

n

Fig.	P13.18	and	P13.20

c

Fig. P13.21

rm

tm

Fig. P13.22

h

h

b

Fig. P13.23

b

h

Fig. P13.24
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13.2  LONGITUDINAL SHEAR 
ON A BEAM ELEMENT OF 
ARBITRARY SHAPE

Consider a box beam obtained by nailing together four planks, as shown 
in Fig. 13.18a. Sec. 13.1A showed how to determine the shear per unit 
length q on the horizontal surfaces along which the planks are joined. But 
could q be determined if the planks are joined along vertical surfaces, as 
shown in Fig. 13.18b? Sec. 13.1C showed the distribution of the vertical 
components τxy of the stresses on a transverse section of a W- or S-beam. 
These stresses had a fairly constant value in the web of the beam and were 
negligible in its flanges. But what about the horizontal components τxz of 
the stresses in the flanges? The procedure developed in Sec. 13.1A to deter-
mine the shear per unit length q applies to the cases just described.

Consider the prismatic beam AB of Fig. 13.4, which has a vertical 
plane of symmetry and supports the loads shown. At a distance x from end 
A, detach an element CDD9C9 with a length of Dx. However, this element 
now extends from two sides of the beam to an arbitrary curved surface 
(Fig. 13.19). The forces exerted on the element include vertical shearing 

(a) (b)

Fig. 13.18 Box beam formed by 
nailing planks together.

∆x
C

c

x

D

C9 D9

y

N.A.
z

Fig. 13.19 Short segment of beam with element CDD9C9 of length Dx.

forces V9C and V9D , elementary horizontal normal forces σC dA and σD dA, 
possibly a load w Dx, and a longitudinal shearing force DH, which represent 
the resultant of the elementary longitudinal shearing forces exerted on the 
curved surface (Fig. 13.20). The equilibrium equation is

→1  oFx 5 0: DH 1 #  (σC 2 σD) dA 5 0

where the integral is to be computed over the shaded area  of the section 
in Fig. 13.19. This equation is the same as the one in Sec. 13.1A, but the 
shaded area  now extends to the curved surface.

The longitudinal shear exerted on the beam element is

 DH 5
VQ

I
 Dx (13.4)

where I is the centroidal moment of inertia of the entire section, Q is the 
first moment of the shaded area  with respect to the neutral axis, and V is 
the vertical shear in the section. Dividing both members of Eq. (13.4) by 
Dx, the horizontal shear per unit length or shear flow is

 q 5
DH

Dx
5

VQ

I
 (13.5)

B

P1 P2 w

A

x

C

y

z

Fig. 13.4 (repeated) Beam example.

V9C V9D

∆H
x

C D

 dAD dAC

w

σσ

Fig. 13.20 Forces exerted on 
element CDD9C9.
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Concept Application 13.4

A square box beam is made of two 0.75 3 3-in. planks and two  
0.75 3 4.5-in. planks nailed together, as shown (Fig. 13.21a). Knowing 
that the spacing between nails is 1.75 in. and that the beam is subjected to a 
vertical shear with a magnitude of V 5 600 lb, determine the shearing force 
in each nail.

Isolate the upper plank and consider the total force per unit  
length q exerted on its two edges. Use Eq. (13.5), where Q represents the 
first moment with respect to the neutral axis of the shaded area A9 shown in 
Fig. 13.21b and I is the moment of inertia about the same axis of the entire 
cross-sectional area of the box beam (Fig. 13.21c).

Q 5 A9y 5 (0.75 in.)(3 in.)(1.875 in.) 5 4.22 in3

Recalling that the moment of inertia of a square of side a about a centroidal 
axis is I 5 1

12 a4,

I 5 1
12 (4.5 in.)4 2 1

12 (3 in.)4 5 27.42 in4

Substituting into Eq. (13.5),

q 5
VQ

I
5

(600 lb)(4.22 in3)
27.42 in4 5 92.3 lb/in.

Because both the beam and the upper plank are symmetric with respect 
to the vertical plane of loading, equal forces are exerted on both edges 
of the plank. The force per unit length on each of these edges is thus 
1
2q 5 1

2(92.3) 5 46.15 lb/in. Since the spacing between nails is 1.75 in., the 
shearing force in each nail is

F 5 (1.75 in.)(46.15 lb/in.) 5 80.8 lb

0.75 in. 0.75 in.

0.75 in.

4.5 in.

3 in.

(a)

0.75 in.

y 5 1.875 in.

N.A. 4.5 in.

4.5 in.

3 in.

3 in.

3 in.

(b) (c)

A9

Fig. 13.21 (a) Box beam made from planks nailed 
together. (b) Geometry for finding first moment of area of 
top plank. (c) Geometry for finding the moment of inertia 
of entire cross section.
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13.3  SHEARING STRESSES IN 
THIN-WALLED MEMBERS

We saw in the preceding section that Eq. (13.4) may be used to determine 
the longitudinal shear DH exerted on the walls of a beam element of arbi-
trary shape and Eq. (13.5) to determine the corresponding shear flow q. 
Eqs. (13.4) and (13.5) are used in this section to calculate both the shear 
flow and the average shearing stress in thin-walled members such as the 
flanges of wide-flange beams (Photo 13.2), box beams, or the walls of 
structural tubes (Photo 13.3).

Photo 13.2 Wide-flange beams.

© Jake Wyman/Getty Images

Photo 13.3 Structural tubes.

© Rodho/shutterstock.com

Consider a segment of length Dx of a wide-flange beam (Fig. 13.22a) 
where V is the vertical shear in the transverse section shown. Detach an 
 element ABB9A9 of the upper flange (Fig. 13.22b). The longitudinal shear 
DH exerted on that element can be obtained from Eq. (13.4):

 DH 5
VQ

I
  Dx (13.4)

Dividing DH by the area DA 5 t Dx of the cut, the average shearing stress 
exerted on the element is the same expression obtained in Sec. 13.1B for a 
horizontal cut:

 τave 5
VQ

It
 (13.6)

Note that τave now represents the average value of the shearing stress 
τzx over a vertical cut, but since the thickness t of the flange is small, 
there is very little variation of τzx across the cut. Recalling that τxz 5 τzx  

y

B9 B9
B B

∆H

V

∆x

∆x

A
A

A9 A9t

xz

(a)

(b)

Fig. 13.22 (a) Wide-flange beam section with 
vertical shear V. (b) Segment of flange with 
longitudinal shear DH.
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(Fig. 13.23), the horizontal component τxz of the shearing stress at any point 
of a transverse section of the flange can be obtained from Eq. (13.6), where 
Q is the first moment of the shaded area about the  neutral axis (Fig. 13.24a). 
A similar result was obtained for the vertical component τxy of the shear-
ing stress in the web (Fig. 13.24b). Eq. (13.6) can be used to determine 
shearing stresses in box beams (Fig. 13.25), half pipes (Fig. 13.26), and 
other thin-walled members, as long as the loads are applied in a plane of 
symmetry. In each case, the cut must be perpendicular to the surface of the 
member, and Eq. (13.6) will yield the component of the shearing stress in 
the direction tangent to that surface. (The other component is assumed to be 
equal to zero, because of the proximity of the two free surfaces.)

N.A. N.A.

xy

xz xz

xy

t

t

z z

yy

(a) (b)

τ τ

τ τ

Fig. 13.25 Box beam showing shearing stress 
(a) in flange, (b) in web. Shaded area is that 
used for calculating the first moment of area.

y

zx xz

x

z

τ τ

Fig. 13.23 Stress element within flange 
segment.

N.A.

xz

y
t

z

(a)

N.A.

xy

y

t

z

(b)

τ

τ

Fig. 13.24 Wide-flange beam sections 
showing shearing stress (a) in flange and 
(b) in web. The shaded area is that used for 
calculating the first moment of area.

N.A.
z

y

t

C

τ

Fig. 13.26 Half pipe section showing 
shearing stress, and shaded area for 
calculating first moment of area.

B

N.A.

A

q q

C C9

B9

D E D9

V

Fig. 13.27 Shear flow, q, in a box 
beam section.

Comparing Eqs. (13.5) and (13.6), the product of the shearing stress 
τ at a given point of the section and the thickness t at that point is equal to q. 
Since V and I are constant, q depends only upon the first moment Q and 
easily can be sketched on the section. For a box beam (Fig. 13.27), q grows 
smoothly from zero at A to a maximum value at C and C9 on the neutral axis 
and decreases back to zero as E is reached. There is no sudden variation in 
the magnitude of q as it passes a corner at B, D, B9, or D9, and the sense of 
q in the horizontal portions of the section is easily obtained from its sense 
in the vertical portions (the sense of the shear V). In a wide-flange section 
(Fig. 13.28), the values of q in portions AB and A9B of the upper flange are 
distributed symmetrically. At B in the web, q corresponds to the two halves 
of the flange, which must be combined to obtain the value of q at the top 
of the web. After reaching a maximum value at C on the neutral axis, q 
decreases and splits into two equal parts at D, which corresponds at D to 
the two halves of the lower flange. The shear per unit length q is commonly 
called the shear flow and reflects the similarity between the properties of 
q just described and some of the characteristics of a fluid flow through an 
open channel or pipe.

So far, all of the loads were applied in a plane of symmetry of the 
member. In the case of members possessing two planes of symmetry 
(Fig. 13.24 or 13.27), any load applied through the centroid of a given cross 
section can be resolved into components along the two axes of symmetry. 
Each component will cause the member to bend in a plane of symmetry, 
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and the corresponding shearing stresses can be obtained from Eq. (13.6). 
The principle of superposition can then be used to determine the resulting 
stresses.

However, if the member possesses no plane of symmetry or a single 
plane of symmetry and is subjected to a load that is not contained in that 
plane, that member is observed to bend and twist at the same time—except 
when the load is applied at a specific point called the shear center.† The shear 
center normally does not coincide with the centroid of the cross section.

N.A.

q1

q

q 5 q1 1 q2

q2

q1 q2

A

D

B

C

A9

E9E

V

Fig. 13.28  Shear flow, q, in 
a wide-flange beam section.

†See Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, and David F. Mazurek, 
Mechanics of Materials, 7th ed., McGraw-Hill, New York, 2015, sec. 6.6.

Sample	Problem	13.3

Knowing that the vertical shear is 50 kips in a W10 3 68 rolled-steel 
beam, determine the horizontal shearing stress in the top flange at a point 
a located 4.31 in. from the edge of the beam. The dimensions and other 
 geometric data of the rolled-steel section are given in Appendix B.

STRATEGY: Determine the horizontal shearing stress at the required 
section.

MODELING	and	ANALYSIS:
As shown in Fig. 1, we isolate the shaded portion of the flange by cutting 
along the dashed line that passes through point a.

Q 5 (4.31 in.)(0.770 in.)(4.815 in.) 5 15.98 in3

  τ 5
VQ

It
5

(50 kips)(15.98 in3)
(394 in4)(0.770 in.)

 τ 5 2.63 ksi  b

5 4.815 in.5.2 25.2 in.

tf 5 0.770 in.

Ix 5 394 in4

a

C

0.770

4.31 in.

10.4 in.

2

Fig. 1 Cross section dimensions 
for W10 3 68 steel beam.
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Sample	Problem	13.4

Solve Sample Prob. 13.3, assuming that 0.75 3 12-in. plates have been 
attached to the flanges of the W10 3 68 beam by continuous fillet welds 
as shown.

a

Welds

0.75 in. 3 12 in.

4.31 in.

STRATEGY: Calculate the properties for the composite beam and then 
determine the shearing stress at the required section.

MODELING	and	ANALYSIS:
For the composite beam shown in Fig. 1, the centroidal moment of inertia is

 I 5 394 in4 1 2 3 1
12(12 in.)(0.75 in.)3 1 (12 in.)(0.75 in.)(5.575 in.)24

 I 5 954 in4

C

12 in.

5.2 in.
5.575 in.

0.375 in.

10.4 in.

0.75 in.

0.75 in.

Fig. 1 Cross section dimensions for 
calculating moment of inertia.

(continued)
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Since the top plate and the flange are connected only at the welds, the 
shearing stress is found at a by passing a section through the flange at a, 
between the plate and the flange, and again through the flange at the sym-
metric point a9 (Fig. 2).

For the shaded area,

 t 5 2tf 5 2(0.770 in.) 5 1.540 in.

 Q 5 2[ (4.31 in.)(0.770 in.)(4.815 in.) ] 1 (12 in.)(0.75 in.)(5.575 in.)

 Q 5 82.1 in3

  τ 5
VQ

It
5

(50 kips)(82.1 in3)
(954 in4)(1.540 in.)

 τ 5 2.79 ksi  b

12 in.

5.2 in.

0.75 in.

0.770 in.
4.31 in. 4.31 in.4.815 in.

5.575 in.

a9 a

C

Fig. 2 Dimensions used to find first moment of  
area and shearing stress at flange-web junction.

Sample	Problem	13.5

The thin-walled extruded beam shown is made of aluminum and has a uni-
form 3-mm wall thickness. Knowing that the shear in the beam is 5 kN, deter-
mine (a) the shearing stress at point A, (b) the maximum shearing stress in the 
beam. Note: The dimensions given are to lines midway between the outer and 
inner surfaces of the beam.

5 kN

D B

A

60 mm

25 mm 25 mm

(continued)

STRATEGY: Determine the location of the centroid and then calculate 
the moment of inertia. Calculate the two required stresses.
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MODELING	and	ANALYSIS:

Centroid. Using Fig. 1, we note that AB 5 AD 5 65 mm.

 Y 5
o  y A
o  A

5
2[ (65 mm)(3 mm)(30 mm) ]

2[ (65 mm)(3 mm) ] 1 (50 mm)(3 mm)

 Y 5 21.67 mm

Centroidal	Moment	of	Inertia. Each side of the thin-walled 
beam can be considered as a parallelogram (Fig. 2), and we recall that for 
the case shown Inn 5 bh3y12, where b is measured parallel to the axis nn. 
Using Fig. 3 we write

 b 5 (3 mm)ycos β 5 (3 mm)y(12y13) 5 3.25 mm

 I 5 o (I 1 Ad2) 5 2[ 1
12(3.25 mm)(60 mm)3

 1 (3.25 mm)(60 mm)(8.33 mm)2] 1 [ 1
12(50 mm)(3 mm)3

 1 (50 mm)(3 mm)(21.67 mm)2]

 I 5 214.6 3 103 mm4    I 5 0.2146 3 1026 m4

D B

A

60 mm
65 mm

cos 12
135

13
12

5
y30 mm

25 mm 25 mm

β β

β

Fig. 1 Section dimensions for 
finding centroid.

D

C

B

A

30 mm

21.67 mm3 mm

8.33 mm
30 mm

30 mm

25 mm 25 mm

ββ

Fig. 2 Dimensions 
locating centroid. h h

b b

n n n n

3 mm

3.25 mm

β

β

Fig. 3 Determination of horizontal 
width for side elements.

b 5 3.25 mm

t 5 3 mmC

A

ENeutral axis

38.33 mm

Fig. 5 Section for finding the 
maximum shearing stress.

qA qA qA qA

OR
Fig. 4 Possible directions 
for shear flow at A.

	 a.	 Shearing	Stress	at	A. If a shearing stress τA occurs at A, the 
shear flow will be qA 5 τAt and must be directed in one of the two ways 
shown in Fig 4. But the cross section and the loading are symmetric about 
a vertical line through A, and thus the shear flow must also be symmetric. 
Since neither of the possible shear flows is symmetric, we conclude that

 τA 5 0. b

	 b.	 Maximum	Shearing	Stress. Since the wall thickness is con-
stant, the maximum shearing stress occurs at the neutral axis, where Q 
is maximum. Since we know that the shearing stress at A is zero, we cut 
the section along the dashed line shown and isolate the shaded portion of 
the beam (Fig. 5). In order to obtain the largest shearing stress, the cut at the 
neutral axis is made perpendicular to the sides and is of length t 5 3 mm.

Q 5 [ (3.25 mm)(38.33 mm) ] (38.33 mm
2 ) 5 2387 mm3

Q 5 2.387 3 1026 m3

τE 5
VQ

It
5

(5 kN)(2.387 3 1026 m3)
(0.2146 3 1026 m4)(0.003 m)

 τmax 5 τE 5 18.54 MPa  b
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Problems
 13.25 The built-up beam shown is made by gluing together two 20 3 250-mm  

plywood strips and two 50 3 100-mm planks. Knowing that the 
 allowable average shearing stress in the glued joints is 350 kPa, 
 determine the largest permissible vertical shear in the beam.

 13.26 The built-up timber beam is subjected to a vertical shear of 1200 lb. 
Knowing that the allowable shearing force in the nails is 75 lb, 
 determine the largest permissible spacing s of the nails.

20 mm
100 mm

20 mm

50 mm

50 mm

150 mm

Fig. P13.25
2 in.

2 in.

2 in.

2 in.

10 in.

s
s s

Fig. P13.26

1.5 1.50.8 0.8

0.8

0.8

3.2

4

Dimensions in inches

A B

Fig. P13.27

a

C

105 mm

Fig. P13.28

b

1212

40

80

150
Dimensions in mm

6

6
a

Fig. P13.29

b

1212

40

80

80
Dimensions in mm

6

6
a

Fig. P13.30

 13.27 The built-up beam was made by gluing together several wooden planks. 
Knowing that the beam is subjected to a 1200-lb vertical shear, deter-
mine the average shearing stress in the glued joint (a) at A, (b) at B.

 13.28 Knowing that a W360 3 122 rolled-steel beam is subjected to a 250-kN  
vertical shear, determine the shearing stress (a) at point a, (b) at the 
centroid C of the section.

	13.29	and	13.30  An extruded aluminum beam has the cross section shown. 
Knowing that the vertical shear in the beam is 150 kN, determine the 
corresponding shearing stress at (a) point a, (b) point b.
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	13.31	and	13.32  The extruded aluminum beam shown has a uniform wall 
thickness of 18 in. Knowing that the vertical shear in the beam is 2 kips, 
determine the corresponding shearing stress at each of the five points 
indicated.

1.25 in.

1.25 in.

1.25 in. 1.25 in.

bc

ae

d

Fig. P13.31

1.25 in.

1.25 in.

1.25 in. 1.25 in.

bc

ae

d

Fig. P13.32

 13.33 Knowing that a given vertical shear V causes a maximum shearing 
stress of 75 MPa in the hat-shaped extrusion shown, determine the 
corresponding shearing stress at (a) point a, (b) point b.

 13.34 Knowing that a given vertical shear V causes a maximum shearing 
stress of 50 MPa in a thin-walled member having the cross section 
shown, determine the corresponding shearing stress at (a) point a,  
(b) point b, (c) point c.

 13.35 The vertical shear is 1200 lb in a beam having the cross section shown. 
Knowing that d 5 4 in., determine the shearing stress at (a) point a, 
(b) point b.

60 mm

20 mm 28 mm 20 mm

4 mm

4 mm

14 mm

6 mm 6 mm

b

a

40 mm

Fig. P13.33

40 mm

30 mm

50 mm

30 mm

10 mm

10 mm

12 mm40 mm

b
c

a

Fig. P13.34

 13.36 The vertical shear is 1200 lb in a beam having the cross section shown. 
Determine (a) the distance d for which τa 5 τb, (b) the corresponding 
shearing stress at points a and b.

 13.37 A beam consists of three planks connected by steel bolts with a lon-
gitudinal spacing of 225 mm. Knowing that the shear in the beam is 
vertical and equal to 6 kN and that the allowable average shearing 
stress in each bolt is 60 MPa, determine the smallest permissible bolt 
diameter that can be used.

5 in.

8 in.

0.5 in.

0.5 in. d d

4 in.

a

b

Fig.	P13.35	and	P13.36 100 mm

100 mm

50 mm100 mm50 mm

25 mm
25 mm

Fig. P13.37
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 13.38 Four L102 3 102 3 9.5 steel angle shapes and a 12 3 400-mm steel 
plate are bolted together to form a beam with the cross section shown. 
The bolts are of 22-mm diameter and are spaced longitudinally every 
120 mm. Knowing that the beam is subjected to a vertical shear of 
240 kN, determine the average shearing stress in each bolt.

 13.39 Three planks are connected as shown by bolts of 38-in. diameter spaced 
every 6 in. along the longitudinal axis of the beam. For a vertical 
shear of 2.5 kips, determine the average shearing stress in the bolts.

2 in.2 in.

10 in.

10 in.

4 in.

Fig. P13.39

 13.40 A beam consists of five planks of 1.5 3 6-in. cross section connected 
by steel bolts with a longitudinal spacing of 9 in. Knowing that the 
shear in the beam is vertical and equal to 2000 lb and that the allow-
able average shearing stress in each bolt is 7500 psi, determine the 
smallest permissible bolt diameter that can be used.

 13.41 A plate of 4-mm thickness is bent as shown and then used as a beam. 
For a vertical shear of 12 kN, determine (a) the shearing stress at 
point A, (b) the maximum shearing stress in the beam. Also sketch the 
shear flow in the cross section.

400 mm 12 mm

Fig. P13.38

6 in.

1 in.
1 in.

Fig. P13.40

Dimensions in mm

25

A

20 25

48

20
50

Fig. P13.41

da

e

b c

50 mm

10 mm 10 mm

22 mm

Fig. P13.42
1.6 in.

2 in. 2 in.
1.2 in. 1.2 in.

A B

D

E F

Fig. P13.43

 13.42 A plate of 2-mm thickness is bent as shown and then used as a beam. 
For a vertical shear of 5 kN, determine the shearing stress at the five 
points indicated, and sketch the shear flow in the cross section.

 13.43 A plate of 1
4-in. thickness is corrugated as shown and then used as a 

beam. For a vertical shear of 1.2 kips, determine (a) the maximum 
shearing stress in the section, (b) the shearing stress at point B. Also 
sketch the shear flow in the cross section.
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 13.44 A plate of thickness t is bent as shown and then used as a beam. For 
a vertical shear of 600 lb, determine (a) the thickness t for which the 
maximum shearing stress is 300 psi, (b) the corresponding shearing 
stress at point E. Also sketch the shear flow in the cross section.

 13.45 For a beam made of two or more materials, with each material having 
a different modulus of elasticity, show that Eq. (13.6)

τave 5 
VQ

It

  remains valid provided that both Q and I are computed by using the 
transformed section of the beam (see Sec. 11.3) and provided further 
that t is the actual width of the beam where τave is computed.

	13.46	and	13.47  A composite beam is made by attaching the timber and steel 
portions shown with bolts of 12-mm diameter spaced longitudinally 
every 200 mm. The modulus of elasticity is 10 GPa for the wood and 
200 GPa for the steel. For a vertical shear of 4 kN, determine (a) the 
average shearing stress in the bolts, (b) the shearing stress at the center 
of the cross section. (Hint: Use the method indicated in Prob. 13.45.)

4.8 in.

6 in.

3 in. 3 in.
2 in.

B G

ED

FA

Fig. P13.44

150 mm

12 mm

250 mm

12 mm

Fig. P13.46

140 mm 6 mm6 mm

90 mm

90 mm

84 mm

Fig. P13.47

2 in.

1 in.

1.5 in.

Aluminum

Steel

Fig. P13.48

2 in.

1 in.

1.5 in.

Steel

Aluminum

Fig. P13.49

	13.48	and	13.49	A steel bar and an aluminum bar are bonded together as 
shown to form a composite beam. Knowing that the vertical shear in 
the beam is 4 kips and that the modulus of elasticity is 29 3 106 psi for 
the steel and 10.6 3 106 psi for the aluminum, determine (a) the aver-
age shearing stress at the bonded surface, (b) the maximum shearing 
stress in the beam. (Hint: Use the method indicated in Prob. 13.45.)
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Review and Summary
Stresses	on	a	Beam	Element
A small element located in the vertical plane of symmetry of a beam under a 
transverse loading was considered (Fig. 13.29), and it was found that normal 
stresses σx and shearing stresses τxy are exerted on the transverse faces of that 
element, while shearing stresses τyx , equal in magnitude to τxy , are exerted on 
its horizontal faces.

yx

xy

x

τ

τ

σ

Fig. 13.29

B

P1 P2 w

A

x

C

y

z

Fig. 13.30

Horizontal	Shear
For a prismatic beam AB with a vertical plane of symmetry supporting various 
concentrated and distributed loads (Fig. 13.30), at a distance x from end A we 
can detach an element CDD9C9 of length Dx that extends across the width of 

the beam from the upper surface of the beam to a horizontal plane located at a 
distance y1 from the neutral axis (Fig. 13.31). The magnitude of the shearing 
force DH exerted on the lower face of the beam element is

 DH 5
VQ

I
 Dx (13.4)

where V 5 vertical shear in the given transverse section
 Q 5  first moment with respect to the neutral axis of the shaded 

portion  of the section
 I 5  centroidal moment of inertia of the entire cross-sectional area
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y1 y1

∆x
C

c

x

D

C9
N.A.

D9

y

z

Fig. 13.31

Shear	Flow
The horizontal shear per unit length or shear flow, denoted by the  letter q, 
is obtained by dividing both members of Eq. (13.4) by Dx:

 q 5
DH

Dx
5

VQ

I
 (13.5)

Shearing	Stresses	 in	a	Beam
Dividing both members of Eq. (13.4) by the area DA of the horizontal face 
of the element and observing that DA 5 t Dx, where t is the width of the 
element at the cut, the average shearing stress on the horizontal face of the 
element is

 τave 5
VQ

It
 (13.6)

Since the shearing stresses τxy and τyx are exerted on a transverse and a 
horizontal plane through D9 and are equal, Eq. (13.6) also represents the 
average value of τxy along the line D91 D92 (Fig. 13.32).

yx

ave

ave

xy

D9

D9

D992

C991
D991

1

2D9τ

τ

τ

τ

Fig. 13.32

Shearing	Stresses	 in	a	Beam	of	Rectangular	Cross	Section
The distribution of shearing stresses in a beam of rectangular cross section was 
found to be parabolic, and the maximum stress, which occurs at the center of 
the section, is

 τmax 5
3
2

 
V
A

 (13.10)

where A is the area of the rectangular section. For wide-flange beams, a good 
approximation of the maximum shearing stress is obtained by dividing the 
shear V by the cross- sectional area of the web.
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Longitudinal	Shear	on	Curved	Surface
Eqs. (13.4) and (13.5) can be used to determine the longitudinal shearing force 
DH and the shear flow q exerted on a beam element if the element is bounded 
by an arbitrary curved surface instead of a horizontal plane (Fig. 13.33). 

N.A.

xz

y
t

z

(a)

N.A.

xy

y

t

z

(b)

τ

τ

Fig. 13.34

Shearing	Stresses	 in	Thin-Walled	Members
We found that we could extend the use of Eq. (13.6) to determine the average 
shearing stress in both the webs and flanges of thin-walled members, such as 
wide-flange beams and box beams (Fig. 13.34).

∆x
C

c

x

D

C9 D9

y

N.A.
z

Fig. 13.33
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 13.50 A square box beam is made of two 20 3 80-mm planks and two  
20  3 120-mm planks nailed together as shown. Knowing that the 
spacing between the nails is s 5 30 mm and that the vertical shear 
in the beam is V 5 1200 N, determine (a) the shearing force in each 
nail, (b) the maximum shearing stress in the beam.

 13.51 The composite beam shown is fabricated by connecting two W6 3 20 
rolled-steel members, using bolts of 5

8-in. diameter spaced longitudi-
nally every 6 in. Knowing that the average allowable shearing stress 
in the bolts is 10.5 ksi, determine the largest allowable vertical shear 
in the beam.

 13.52 For the beam and loading shown, consider section n–n and determine 
(a) the largest shearing stress in that section, (b) the shearing stress at 
point a.

Review Problems

s
s

s

120 mm

80 mm

20 mm

20 mm

Fig. P13.50

Fig. P13.51

180

12 16

16

a

n

n
80

0.6 m

0.9 m

Dimensions in mm

0.9 m

160 kN

80

100

Fig. P13.52

 13.53 A timber beam AB of length L and rectangular cross section car-
ries a uniformly distributed load w and is supported as shown.  
(a) Show that the ratio τm/σm of the maximum values of the shearing 
and  normal stresses in the beam is equal to 2h/L, where h and L are, 
respectively, the depth and the length of the beam. (b) Determine the 
depth h and the width b of the beam, knowing that L 5 5 m, w 5 8 
kN/m, τm 5 1.08 MPa, and σm 5 12 MPa.

 13.54 For the beam and loading shown, consider section n–n and determine 
the shearing stress at (a) point a, (b) point b.

B

b

hA

C D

w

L/2
L/4L/4

Fig. P13.53

16 in.

12 kips 12 kips

A

n

n

B

a

b

10 in.
16 in.

4 in.

1 in.
1 in.

1 in.

4 in.

2 in.

Fig. P13.54
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 13.55 Two W8 3 31 rolled sections can be welded at A and B in either of the 
two ways shown in order to form a composite beam. Knowing that 
for each weld the allowable horizontal shearing force is 3000 lb per 
inch of weld, determine the maximum allowable vertical shear in the 
composite beam for each of the two arrangements shown.

 13.56 Several wooden planks are glued together to form the box beam shown. 
Knowing that the beam is subjected to a vertical shear of 3 kN, deter-
mine the average shearing stress in the glued joint (a) at A, (b) at B.

 13.57 The built-up wooden beam shown is subjected to a vertical shear of 
8 kN. Knowing that the nails are spaced longitudinally every 60 mm 
at A and every 25 mm at B, determine the shearing force in the nails 
(a) at A, (b) at B. (Given: Ix 5 1.504 3 109 mm4)

A AB B

(a) (b)

Fig. P13.55

A

B

60 mm 20 mm20 mm

20 mm

20 mm

20 mm

30 mm

30 mm

Fig. P13.56

300

100

200

400

50

50

50

50

B

B

A

x

AA

A

C

Dimensions in mm

Fig. P13.57

 13.58 An extruded beam has the cross section shown and a uniform wall 
thickness of 0.20 in. Knowing that a given vertical shear V causes a 
maximum shearing stress τ 5 9 ksi, determine the shearing stress at 
the four points indicated.

 13.59 Solve Prob. 13.58 assuming that the beam is subjected to a horizontal 
shear V.

 13.60 Three 1 3 18-in. steel plates are bolted to four L6 3 6 3 1 angles 
to form a beam with the cross section shown. The bolts have a 7

8-in. 
diameter and are spaced longitudinally every 5 in. Knowing that the 
allowable average shearing stress in the bolts is 12 ksi, determine the 
largest permissible vertical shear in the beam. (Given: Ix 5 6123 in4.) 

 13.61 An extruded beam has the cross section shown and a uniform wall 
thickness of 3 mm. For a vertical shear of 10 kN, determine (a) the 
shearing stress at point A, (b) the maximum shearing stress in the 
beam. Also sketch the shear flow in the cross section.

1.5 in.

d

c a

b

0.6 in.

0.6 in.

0.6 in.

0.6 in.

0.6 in.

1.5 in.

Fig. P13.58

C

1 in.

1 in.

1 in.

18 in.

18 in.x

Fig. P13.60

60 mm
A

30 mm

16 mm16 mm
28 mm

Fig. P13.61

Final PDF to printer



bee98160_ch14_625-662.indd 625 12/16/15  06:38 PM

The aircraft wing shown is being tested to determine how forces 

due to lift are distributed through the wing. This chapter will 

examine methods for determining the maximum stresses at any 

point in a structure.

Transformations 
of Stress

14
NASA
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Introduction
The most general state of stress at a given point Q is represented by six 
components (Sec. 8.3). Three of these components, σx , σy , and σz , are the 
normal stresses exerted on the faces of a small cubic element centered at 
Q with the same orientation as the coordinate axes (Fig. 14.1a). The other 
three, τxy , τyz , and τzx ,† are the components of the shearing stresses on the 
same element. The same state of stress will be represented by a different set 
of components if the coordinate axes are rotated (Fig. 14.1b). The first part 
of this chapter determines how the components of stress are transformed 
under a rotation of the coordinate axes.

†Recall that τyx 5 τxy , τzy 5 τyz , and τxz 5 τzx (Sec. 8.3).

Introduction

 14.1 TRANSFORMATION OF 
PLANE STRESS

 14.1A Transformation Equations
 14.1B Principal Stresses and Maximum 

Shearing Stress

 14.2 MOHR’S CIRCLE FOR 
PLANE STRESS

 14.3 STRESSES IN THIN-
WALLED PRESSURE 
VESSELS

yz
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x9z9
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z9y9

x9y9
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x

Q

O

z

y

x

(a)

O

z
z9

y9
y

x

x9

(b)

z9

Q

τ τ

τ
τ

τ
τ

τ

τ

τ

τ

τ

τ

σ

σ
σ

σ

σ

σ

Fig. 14.1 General state of stress at a point: (a) referred to {xyz}, (b) referred 
to {x9y9z9}.

Our discussion of the transformation of stress will deal mainly with 
plane stress, i.e., with a situation in which two of the faces of the cubic 
element are free of any stress. If the z axis is chosen perpendicular to these 
faces, σz 5 τzx 5 τzy 5 0, and the only remaining stress components are 
σx , σy , and τxy (Fig. 14.2). This situation occurs in a thin plate subjected to 
forces acting in the midplane of the plate (Fig. 14.3). It also occurs on the 
free surface of a structural element or machine component where any point 
of the surface of that element or component is not subjected to an external 
force (Fig. 14.4).

Fig. 14.2 Non-zero stress components  
for state of plane stress.

yx

xy

y

x

σ

σ

τ

τ

Objectives
In this chapter, you will:

•	Apply stress transformation equations to plane stress 
situations to determine any stress component at a point.

•	Apply the alternative Mohr's circle approach to 
 perform plane stress transformations.

•	Use transformation techniques to identify key 
 components of stress, such as principal stresses.

•	Analyze plane stress states in thin-walled pressure 
vessels.
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Introduction 627

In Sec. 14.1A, a state of plane stress at a given point Q is charac-
terized by the stress components σx , σy , and τxy associated with the ele-
ment shown in Fig. 14.5a. Components σx9, σy9, and τx9y9 associated with 
that element after it has been rotated through an angle θ about the z axis 
(Fig. 14.5b) will then be determined. In Sec. 14.1B, the value θp of θ will 
be found, where the stresses σx9 and σy9 are the maximum and minimum 
stresses. These values of the normal stress are the principal stresses at 
point Q, and the faces of the corresponding element define the principal 
planes of stress at that point. The angle of rotation θs for which the shear-
ing stress is maximum also is discussed.

In Sec. 14.2, an alternative method to solve problems involving 
the transformation of plane stress, based on the use of Mohr’s circle, is 
presented.

F1

F2

Fig. 14.4 Example of plane stress: free 
surface of a structural component.

xy
x9y9

y
y9

x

x9Q Q

z

x x

x9

y y9

z95 z

y

(a) (b)

σ

σ

σ

σ

τ
τ

θ

θ

Fig. 14.5 State of plane stress: (a) referred to {xyz}, (b) referred to {x9y9z9}.

F1

F2
F3

F4

F5

F6

Fig. 14.3 Example of plane stress: thin 
plate subjected to only in-plane loads.
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14.1  TRANSFORMATION OF 
PLANE STRESS

14.1A Transformation Equations
Assume that a state of plane stress exists at point Q (with σz 5 τzx 5 τzy 5 0)  
and is defined by the stress components σx , σy , and τxy associated with the 
element shown in Fig. 14.5a. The stress components σx9, σy9, and τx9y9 asso-
ciated with the element are determined after it has been rotated through an 
angle θ about the z axis (Fig. 14.5b). These components are given in terms 
of σx , σy , τxy , and θ.

In order to determine the normal stress σx9 and shearing stress τx9y9 
exerted on the face perpendicular to the x9 axis, consider a prismatic ele-
ment with faces perpendicular to the x, y, and x9 axes (Fig. 14.6a). If the 
area of the oblique face is DA, the areas of the vertical and horizontal faces 
are equal to DA cos θ and DA sin θ, respectively. The forces exerted on 

Photo 14.1 Cylindrical pressure vessels.

© Walter G. Allgöwer Image Broker/Newscom

Photo 14.2 Spherical pressure vessel.

© Fellow/agefotostock

Thin-walled pressure vessels are an important application of the anal-
ysis of plane stress. Stresses in both cylindrical and spherical pressure ves-
sels (Photos 14.1 and 14.2) are discussed in Sec. 14.3.
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the three faces are as shown in Fig. 14.6b. (No forces are exerted on the 
triangular faces of the element, since the corresponding normal and shear-
ing stresses are assumed equal to zero.) Using components along the x9 
and y9 axes, the equilibrium equations are

oFx9 5 0:  σx9 
DA 2 σx 

(DA cos θ) cos θ 2 τxy 
(DA cos θ) sin θ

  2σy (DA sin θ) sin θ 2 τxy 
(DA sin θ) cos θ 5 0

oFy9 5 0:  τx9y9 DA 1 σx 
(DA cos θ) sin θ 2 τxy 

(DA cos θ) cos θ
  2σy 

(DA sin θ) cos θ 1 τxy(DA sin θ) sin θ 5 0

Solving the first equation for σx9 and the second for τx9y9,

  σx9 5 σx cos2 θ 1 σy sin2 θ 1 2τxy sin θ cos θ (14.1)

  τx9y9 5 2(σx 2 σy) sin θ cos θ 1 τxy(cos2 θ 2 sin2 θ) (14.2)

Recalling the trigonometric relations

 sin 2θ 5 2 sin θ cos θ    cos 2θ 5 cos2 θ 2 sin2 θ (14.3)

and

 cos2 θ 5
1 1 cos 2θ

2
    sin2 θ 5

1 2 cos 2θ
2

 (14.4)

Fig. 14.5 (repeated) State of plane stress: (a) referred to {xyz},  
(b) referred to {x9y9z9}.
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σ

σ
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θ

Fig. 14.6 Stress transformation equations are determined by 
considering an arbitrary prismatic wedge element. (a) Geometry of the 
element. (b) Free-body diagram.
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Eq. (14.1) is rewritten as

 σx9 5 σx 
1 1 cos 2θ

2
1 σy 

1 2 cos 2θ
2

1 τxy sin 2θ

or

 σx9 5
σx 1 σy

2  1
σx 2 σy

2
 cos 2θ 1 τxy sin 2θ (14.5)

Using the relationships of Eq. (14.3), Eq. (14.2) is now

 τx9y9 5 2 
σx 2 σy

2
 sin 2θ 1 τxy cos 2θ (14.6)

The normal stress σy9 is obtained by replacing θ in Eq. (14.5) by the angle 
θ 1 908 that the y9 axis forms with the x axis. Since cos (2θ 1 1808) 5 2cos 2θ 
and sin (2θ 1 1808) 5 2sin 2θ,

 σy9 5
σx 1 σy

2
2

σx 2 σy

2
 cos 2θ 2 τxy sin 2θ (14.7)

Adding Eqs. (14.5) and (14.7) member to member,

 σx9 1 σy9 5 σx 1 σy (14.8)

Since σz 5 σz9 5 0, we thus verify for plane stress that the sum of the nor-
mal stresses exerted on a cubic element of material is independent of the 
orientation of that element.

14.1B  Principal Stresses and Maximum 
Shearing Stress

Eqs. (14.5) and (14.6) are the parametric equations of a circle. This means 
that, if a set of rectangular axes is used to plot a point M of abscissa σx9 and 
ordinate τx9y9 for any given parameter θ, all of the points obtained will lie on a 
circle. To establish this property, we eliminate θ from Eqs. (14.5) and (14.6) 
by first transposing (σx 1 σy)/2 in Eq. (14.5) and squaring both members of 
the equation, then squaring both members of Eq. (14.6), and finally adding 
member to member the two equations obtained:

 (σx9 2
σx 1 σy

2 )2

1 τx9y9
2 5 (σx 2 σy

2 )2

1 τxy
2  (14.9)

Setting

σave 5
σx 1 σy

2
 and R 5 √(σx 2 σy

2 )2

1 τxy
2  (14.10)

the identity of Eq. (14.9) is given as

 (σx9 2 σave)2 1 τx9y9
2 5 R2 (14.11)
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which is the equation of a circle of radius R centered at the point C of 
abscissa σave and ordinate 0 (Fig. 14.7). Due to the symmetry of the circle 
about the horizontal axis, the same result is obtained if a point N of abscissa 
σx9 and ordinate 2τx9y9 is plotted instead of M. (Fig. 14.8). This property 
will be used in Sec. 14.2.

x9y9

x9y9

x9

x9

min

max

ave

D

E

C

B AO

M
R τ

σ

σ

σ

σ

σ

τ

Fig. 14.7 Circular relationship of 
transformed stresses.

x9y9

x9y92

x9

x9

ave

C
O

R
N

τ

τ
σ

σ

σ

Fig. 14.8 Equivalent formation of stress 
transformation circle.

The points A and B where the circle of Fig. 14.7 intersects the horizontal 
axis are of special interest: point A corresponds to the maximum value of 
the normal stress σx9 , while point B corresponds to its minimum value. Both 
points also correspond to a zero value of the shearing stress τx9y9. Thus, the 
values θp of the parameter θ which correspond to points A and B can be 
obtained by setting τx9y9 5 0 in Eq. (14.6).†

 tan 2θp 5
2τxy

σx 2 σy
 (14.12)

This equation defines two values 2θp that are 1808 apart and thus two values 
θp that are 908 apart. Either value can be used to determine the orientation 
of the corresponding element (Fig. 14.9). The planes containing the faces of 
the element obtained in this way are the principal planes of stress at point 
Q, and the corresponding values σmax and σmin exerted on these planes are 
the principal stresses at Q. Since both values θp defined by Eq. (14.12) are 
obtained by setting τx9y9 5 0 in Eq. (14.6), it is clear that no shearing stress 
is exerted on the principal planes.

From Fig. 14.7,

 σmax 5 σave 1 R   and   σmin 5 σave 2 R (14.13)

Substituting for σave and R from Eq. (14.10),

 σmax, min 5
σx 1 σy

2
6 √(σx 2 σy

2 )2

1 τxy
2  (14.14)

†This relationship also can be obtained by differentiating σx9 in Eq. (14.5) and setting the deriv-
ative equal to zero: dσx9ydθ 5 0.

min

min

max

max

p

p

y

Q x

y9

x9

σ

σ

σ
θ

σ

θ

Fig. 14.9 Principal stresses.
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Unless it is possible to tell by inspection which of these principal planes is 
subjected to σmax and which is subjected to σmin , it is necessary to substitute 
one of the values θp into Eq. (14.5) in order to determine which corresponds 
to the maximum value of the normal stress.

Referring again to Fig. 14.7, points D and E located on the vertical 
diameter of the circle correspond to the largest value of the shearing stress 
τx9y9. Since the abscissa of points D and E is σave 5 (σx 1 σy)y2, the values 
θs of the parameter θ corresponding to these points are obtained by setting 
σx95 (σx 1 σy)y2 in Eq. (14.5). The sum of the last two terms in that equa-
tion must be zero. Thus, for θ 5 θs ,†

σx 2 σy

2
 cos 2θs 1 τxy sin 2θs 5 0

or

 tan 2θs 5 2 

σx 2 σy

2τxy

 (14.15)

This equation defines two values 2θs that are 1808 apart, and thus two val-
ues θs that are 908 apart. Either of these values can be used to determine 
the orientation of the element corresponding to the maximum shearing 
stress (Fig. 14.10). Fig. 14.7 shows that the maximum value of the shear-
ing stress is equal to the radius R of the circle. Recalling the second of 
Eqs. (14.10), 

 τmax 5 √(σx 2 σy

2 )2

1 τxy
2  (14.16)

As observed earlier, the normal stress corresponding to the condition of 
maximum shearing stress is

 σ9 5 σave 5
σx 1 σy

2
 (14.17)

Comparing Eqs. (14.12) and (14.15), tan 2θs is the negative recipro-
cal of tan 2θp . Thus, angles 2θs and 2θp are 908 apart, and therefore angles 
θs and θp are 458 apart. Thus, the planes of maximum shearing stress are 
at 458 to the principal planes. This confirms the results found in Sec. 8.3 
for a centric axial load (Fig. 8.37) and in Sec. 10.1C for a torsional load  
(Fig. 10.17).

Be aware that the analysis of the transformation of plane stress has 
been limited to rotations in the plane of stress. If the cubic element of  
Fig. 14.5 is rotated about an axis other than the z axis, its faces may be 
subjected to shearing stresses larger than defined by Eq. (14.16). In these 
cases, the value given by Eq. (14.16) is referred to as the maximum in-
plane shearing stress.

†This relationship also can be obtained by differentiating τx9y9 in Eq. (14.6) and setting the 
derivative equal to zero: dτx9y9ydθ 5 0.

Fig. 14.10 Maximum shearing stress.
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Concept	Application	14.1

For the state of plane stress shown in Fig. 14.11a, determine (a) the princi-
pal planes, (b) the principal stresses, (c) the maximum shearing stress and 
the corresponding normal stress.

	 a.	 Principal	Planes. Following the usual sign convention, the stress 
components are

σx 5 150 MPa    σy 5 210 MPa    τxy 5 140 MPa

Substituting into Eq. (14.12),

 tan 2θp 5
2τxy

σx 2 σy
5

2(140)
50 2 (210)

5
80
60

 2θp 5 53.18    and    1808 1 53.18 5 233.18

  θp 5 26.68    and    116.68

 b.	 Principal	Stresses. Eq. (14.14) yields

 σmax, min 5
σx 1 σy

2
6 √(σx 2 σy

2 )2

1 τxy
2  

 5 20 6 √(30)2 1 (40)2

 σmax 5 20 1 50 5 70 MPa

 σmin 5 20 2 50 5 230 MPa

The principal planes and principal stresses are shown in Fig. 14.11b. Mak-
ing 2θ 5 53.18 in Eq. (14.5), it is confirmed that the normal stress exerted 
on face BC of the element is the maximum stress:

 σx9 5
50 2 10

2
1

50 1 10
2

 cos 53.18 1 40 sin 53.18

 5 20 1 30 cos 53.18 1 40 sin 53.18 5 70 MPa 5 σmax

 c.	 Maximum	Shearing	Stress. Eq. (14.16) yields

τmax 5 √(σx 2 σy

2 )2

1 τxy
2

5 √(30)2 1 (40)2 5 50 MPa

Since σmax and σmin have opposite signs, τmax actually represents the maximum 
value of the shearing stress at the point. The orientation of the planes of maxi-
mum shearing stress and the sense of the shearing stresses are determined by 
passing a section along the diagonal plane AC of the element of Fig. 14.11b. 
Since the faces AB and BC of the element are in the principal planes, the diagonal 
plane AC must be one of the planes of maximum shearing stress (Fig. 14.11c). 
Furthermore, the equilibrium conditions for the prismatic element ABC require 
that the shearing stress exerted on AC be directed as shown. The cubic element 
corresponding to the maximum shearing stress is shown in Fig. 14.11d. The 
normal stress on each of the four faces of the element is given by Eq. (14.17):

σ9 5 σave 5
σx 1 σy

2
5

50 2 10
2

5 20 MPa

10 MPa

40 MPa

50 MPa

(a)

min 5 30 MPa

max 5 70 MPa

p
x

5 26.68A

B

C

(b)

σ

θ

σ

min

max

9

max

p 5 26.68

s p5 52 458

458

218.48

A

C

B

(c)

σ
θ

τ

θ θ

σ

σ

9

max

x

s 5 218.48

5 20 MPa

95 20 MPa

5 50 MPa

(d)

σ

τ

θ

σ

Fig. 14.11 (a) Plane stress element. 
(b) Plane stress element oriented in 
principal directions. (c) Plane stress 
element showing principal and 
maximum shear planes. (d) Plane 
stress element showing maximum 
shear orientation.
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Sample	Problem	14.1

A single horizontal force P with a magnitude of 150 lb is applied to end D 
of lever ABD. Knowing that portion AB of the lever has a diameter of 1.2 
in., determine (a) the normal and shearing stresses located at point H and 
having sides parallel to the x and y axes, (b) the principal planes and princi-
pal stresses at point H.

STRATEGY: You can begin by determining the forces and couples acting 
on the section containing the point of interest, and then use them to calcu-
late the normal and shearing stresses acting at that point. These stresses can 
then be transformed to obtain the principal stresses and their orientation.

MODELING and ANALYSIS:

Force-Couple	System.  We replace the force P by an equivalent force-
couple system at the center C of the transverse section containing point H 
(Fig.1):

 P 5 150 lb    T 5 (150 lb)(18 in.) 5 2.7 kip?in.

 Mx 5 (150 lb)(10 in.) 5 1.5 kip?in.

18 in.

1.2 in.
H

A

D

B

y

z

x

10 in.

4 in. P

Mx 5 1.5 kip·in.

T 5 2.7 kip·in.

H

xz

y

C

P 5 150 lb

Fig. 1 Equivalent force-couple 
system acting on transverse section 
containing point H.

(continued)
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	 a.	 Stresses	 σx, σy, τxy	 at	 Point	 H.  Using the sign convention 
shown in Fig. 14.2, the sense and the sign of each stress component are 
found by carefully examining the force-couple system at point C (Fig. 1):

σx 5 0   σy 5 1
Mc

I
5 1

(1.5 kip?in.)(0.6 in.)
1
4π (0.6 in.)4   σy 5 1

 
8.84 ksi  b

 τxy 5 1
Tc

J
5 1

(2.7 kip?in.)(0.6 in.)
1
2π (0.6 in.)4    τxy 5 1

 
7.96 ksi  b

We note that the shearing force P does not cause any shearing stress at point 
H. The general plane stress element (Fig. 2) is completed to reflect these 
stress results (Fig. 3).

 b.	 Principal	 Planes	 and	 Principal	 Stresses. Substituting the 
values of the stress components into Eq. (14.12), the orientation of the prin-
cipal planes is

 tan 2θp 5
2τxy

σx 2 σy
5

2(7.96)
0 2 8.84

5 21.80

 2θp 5 261.08    and    1808 2 61.08 5 11198

θp 5 2
 
30.58    and    1  59.58 b

Substituting into Eq. (14.14), the magnitudes of the principal stresses are

 σmax, min 5
σx 1 σy

2
6 √(σx 2 σy

2 )2

1 τxy
2

 5
0 1 8.84

2
6 √(0 2 8.84

2 )2

1 (7.96)2 5 14.42 6 9.10

σmax 5 1
 
13.52 ksi b

σmin 5 2
 
4.68 ksi b

Considering face ab of the element shown, θp 5 230.58 in Eq. (14.5) and 
σx9 5 24.68 ksi. The principal stresses are as shown in Fig. 4.

y

x

xy

σ

τ

σ

Fig. 2 General 
plane stress element 
(showing positive 
directions).

xy 5 7.96 ksi

y 5 8.84 ksi

x 5 0

σ

τ

σ

Fig. 3 Stress element at 
point H.

p 5 230.58

max 5 13.52 ksi

min 5 4.68 ksi

H
a

b

σ

σ

θ

Fig. 4 Stress element at 
point H oriented in principal 
directions.
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 14.1 through 14.4  For the given state of stress, determine the normal and 
shearing stresses exerted on the oblique face of the shaded triangular 
element shown. Use a method of analysis based on the equilibrium of 
that element, as was done in the derivations of Sec. 14.1A.

80 MPa

40 MPa

558

Fig. P14.1

60 MPa

90 MPa

608

Fig. P14.2

10 ksi

6 ksi758

4 ksi

Fig. P14.4

4 ksi

3 ksi

708

8 ksi

Fig. P14.3

 14.5 through 14.8  For the given state of stress, determine (a) the principal 
planes, (b) the principal stresses.

40 MPa

35 MPa

60 MPa

Fig.	P14.5	and	P14.9

30 MPa

80 MPa

150 MPa

Fig. P14.6 and	P14.10

10 ksi

2 ksi

3 ksi

Fig. P14.8 and	P14.12

12 ksi

8 ksi

18 ksi

Fig.	P14.7	and	P14.11

 14.9 through 14.12  For the given state of stress, determine (a) the orienta-
tion of the planes of maximum in-plane shearing stress, (b) the maxi-
mum in-plane shearing stress, (c) the corresponding normal stress.

Problems
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 14.13 through 14.16  For the given state of stress, determine the normal and 
shearing stresses after the element shown has been rotated through 
(a) 25° clockwise, (b) 10° counterclockwise.

8 ksi

5 ksi

Fig. P14.13

12 ksi

6 ksi

8 ksi

Fig. P14.14

90 MPa

30 MPa

60 MPa

Fig. P14.16

80 MPa

50 MPa

Fig. P14.15

	14.17	and	14.18	 The grain of a wooden member forms an angle of 15° with 
the vertical. For the state of stress shown, determine (a) the in-plane 
shearing stress parallel to the grain, (b) the normal stress perpendicu-
lar to the grain.

1.6 MPa

4 MPa

158

Fig. P14.17

250 psi

158

Fig. P14.18

 14.19 Two steel plates of uniform cross section 10 3 80 mm are welded 
together as shown. Knowing that centric 100-kN forces are applied to 
the welded plates and that β 5 25°, determine (a) the in-plane shear-
ing stress parallel to the weld, (b) the normal stress perpendicular to 
the weld.

100 kN

100 kN

80 mm

β

Fig. P14.19
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 14.20 The centric force P is applied to a short post as shown. Knowing that 
the stresses on plane a–a are σ 5 215 ksi and τ 5 5 ksi, determine  
(a) the angle β that plane a–a forms with the horizontal, (b) the maxi-
mum compressive stress in the post.

P

a

a
β

Fig. P14.20

 14.21 A 400-lb vertical force is applied at D to a gear attached to the solid 
1-in. diameter shaft AB. Determine the principal stresses and the max-
imum shearing stress at point H located as shown on top of the shaft.

6 in.

2 in.
D

A

B
H

C

400 lb

Fig. P14.21

 14.22 A mechanic uses a crowfoot wrench to loosen a bolt at E. Knowing 
that the mechanic applies a vertical 24-lb force at A, determine the 
principal stresses and the maximum shearing stress at point H located 
as shown on top of the 34-in.-diameter shaft.

24 lb

10 in.

6 in.E

B

A

H

Fig. P14.22
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 14.23 The steel pipe AB has a 102-mm outer diameter and a 6-mm wall thick-
ness. Knowing that arm CD is rigidly attached to the pipe, determine 
the principal stresses and the maximum shearing stress at point K.

200 mm

6 mm

150 mm

51 mm

z x

A

y

D

KH

10 kN

A

B

C

Fig. P14.23

 14.24 For the state of plane stress shown, determine the largest value of σy 
for which the maximum in-plane shearing stress is equal to or less 
than 75 MPa.

60 MPa

20 MPa

yσ

Fig. P14.24
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14.2  MOHR’S CIRCLE FOR 
PLANE STRESS

The circle used in the preceding section to derive the equations relating to the 
transformation of plane stress was introduced by the German engineer Otto 
Mohr (1835–1918) and is known as Mohr’s circle for plane stress. This circle 
can be used to obtain an alternative method for the solution of the problems 
considered in Sec. 14.1. This method is based on simple geometric consider-
ations and does not require the use of specialized equations. While originally 
designed for graphical solutions, a calculator may also be used.

Consider a square element of a material subjected to plane stress  
(Fig. 14.12a), and let σx , σy , and τxy be the components of the stress exerted 
on the element. A point X of coordinates σx and 2τxy and a point Y of coor-
dinates σy and 1τxy are plotted (Fig. 14.12b). If τxy is positive, as assumed in  
Fig. 14.12a, point X is located below the σ axis and point Y above, as shown  
in Fig. 14.12b. If τxy is negative, X is located above the σ axis and Y below. 
Joining X and Y by a straight line, the point C is at the intersection of line XY 
with the σ axis, and the circle is drawn with its center at C and having a diam-
eter XY. The abscissa of C and the radius of the circle are respectively equal to 
σave and R in Eqs. (14.10). The circle obtained is Mohr’s circle for plane stress. 
Thus, the abscissas of points A and B where the circle intersects the σ axis 
represent the principal stresses σmax and σmin at the point considered.

Since tan (XCA) 5 2τxyy(σx 2 σy), the angle XCA is equal in mag-
nitude to one of the angles 2θp that satisfy Eq. (14.12). Thus, the angle θp 
in Fig. 14.12a defines the orientation of the principal plane corresponding 
to point A in Fig. 14.12b and can be obtained by dividing the angle XCA 
measured on Mohr’s circle in half. If σx . σy and τxy . 0, as in the case 
considered here, the rotation that brings CX into CA is counterclockwise. 
But, in that case, the angle θp obtained from Eq. (14.12) and defining the 
direction of the normal Oa to the principal plane is positive; thus, the rota-
tion bringing Ox into Oa is also counterclockwise. Therefore, the senses of 
rotation in both parts of Fig. 14.12 are the same. So, if a counterclockwise 
rotation through 2θp is required to bring CX into CA on Mohr’s circle, a 
counterclockwise rotation through θp will bring Ox into Oa in Fig. 14.12a.†

Since Mohr’s circle is uniquely defined, the same circle can be 
obtained from the stress components σx9, σy9, and τx9y9, which correspond to 
the x9 and y9 axes shown in Fig. 14.13a. Point X9 of coordinates σx9 and 2
τx9y9 and point Y9 of coordinates σy9 and 1τx9y9 are located on Mohr’s circle, 
and the angle X9CA in Fig. 14.13b must be equal to twice the angle x9Oa in 
Fig. 14.13a. Since the angle XCA is twice the angle xOa, the angle XCX9 in 
Fig. 14.13b is twice the angle xOx9 in Fig. 14.13a. Thus the diameter X9Y9 
defining the normal and shearing stresses σx9, σy9, and τx9y9 is obtained by 
rotating the diameter XY through an angle equal to twice the angle θ formed 
by the x9and x axes in Fig. 14.13a. The rotation that brings the diameter XY 
into the diameter X9Y9 in Fig. 14.13b has the same sense as the rotation that 
brings the xy axes into the x9y9 axes in Fig. 14.13a.

This property can be used to verify that planes of maximum shear-
ing stress are at 458 to the principal planes. Indeed, points D and E on  

†This is due to the fact that we are using the circle of Fig 14.8 rather than the circle of Fig. 14.7 
as Mohr’s circle.
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τ
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τ

σ

σ
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Fig. 14.12 (a) Plane stress element 
and the orientation of principal planes. 
(b) Corresponding Mohr‘s circle.
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Mohr’s circle correspond to the planes of maximum shearing stress, while 
A and B correspond to the principal planes (Fig. 14.14b). Since the diam-
eters AB and DE of Mohr’s circle are at 908 to each other, the faces of the 
corresponding elements are at 458 to each other (Fig. 14.14a).

y

x

xy

O

y9

x9

y9

x9

max

min

x9y9

x

2

a

b

y

(a) (b)

Y9

X

ABO C

Y

,y9 x9y1( 9)

X9 ,x9 x9y2( 9)

σ
τ

θ

τ

σσ

σ

σ

σ

σ

σ

στ

τ

τ

θ

Fig. 14.13 (a) Stress element referenced to xy axes, transformed to obtain components 
referenced to x9y9 axes. (b) Corresponding Mohr's circle.

Fig. 14.14 (a) Stress elements showing orientation of planes of maximum 
shearing stress relative to principal planes. (b) Corresponding Mohr's circle. 

ave9

9
9

(a) (b)

O

O

B C A

D

E

max

min

max

max

458
908

5

b

d

a

e

σ σ

σ

σ

σ στ

σ

τ

τ

(a) Clockwise Above

(b) Counterclockwise Below

τ

σ

σ

σ

σ

τ

τ

τ

τ

Fig. 14.15 Convention for plotting 
shearing stress on Mohr’s circle.

The construction of Mohr’s circle for plane stress is simplified if 
each face of the element used to define the stress components is consid-
ered separately. From Figs. 14.12 and 14.13, when the shearing stress 
exerted on a given face tends to rotate the element clockwise, the point on 
Mohr’s circle corresponding to that face is located above the σ axis. When 
the shearing stress on a given face tends to rotate the element counter-
clockwise, the point corresponding to that face is located below the σ axis 
(Fig. 14.15).† As far as the normal stresses are concerned, the usual con-
vention holds, so that a tensile stress is positive and is plotted to the right, 
while a compressive stress is considered negative and is plotted to the left.

†To remember this convention, think “In the kitchen, the clock is above, and the counter  
is below.”
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Concept	Application	14.2

For the state of plane stress considered in Concept Application 14.1, 
(a) construct Mohr’s circle, (b) determine the principal stresses, (c) deter-
mine the maximum shearing stress and the corresponding normal stress.

 a.	 Construction	 of	Mohr’s	 Circle. Note from Fig. 14.16a that 
the normal stress exerted on the face oriented toward the x axis is tensile 
(positive) and the shearing stress tends to rotate the element counterclock-
wise. Therefore, point X of Mohr’s circle is plotted to the right of the verti-
cal axis and below the horizontal axis (Fig. 14.16b). A similar inspection of 
the normal and shearing stresses exerted on the upper face of the element 
shows that point Y should be plotted to the left of the vertical axis and above 
the horizontal axis. Drawing the line XY, the center C of Mohr’s circle is 
found. Its abscissa is

σave 5
σx 1 σy

2
5

50 1 (210)
2

5 20 MPa

Since the sides of the shaded triangle are

CF 5 50 2 20 5 30 MPa    and    FX 5 40 MPa

the radius of the circle is

R 5 CX 5 √(30)2 1 (40)2 5 50 MPa

	 b.	 Principal	 Planes	 and	 Principal	 Stresses. The principal 
stresses are

 σmax 5 OA 5 OC 1 CA 5 20 1 50 5 70 MPa

 σmin 5 OB 5 OC 2 BC 5 20 2 50 5 230 MPa

O x

y

B

G

Y

C F A (MPa)

(MPa)

O

R

X

(b)

10 MPa
40 MPa

50 MPa

40

20

10

50

40

(a)

τ

σ

τ

Fig. 14.16 (a) Plane stress element. (b) Corresponding Mohr's circle.

(continued)
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Recalling that the angle ACX represents 2θp (Fig. 14.16b),

tan 2 θp 5
FX

CF
5

40
30

2 θp 5 53.18    θp 5 26.68

Since the rotation that brings CX into CA in Fig. 14.16d is counterclock-
wise, the rotation that brings Ox into the axis Oa corresponding to σmax in 
Fig. 14.16c is also counterclockwise.

 c.	 Maximum	 Shearing	 Stress. Since a further rotation of 908 
counterclockwise brings CA into CD in Fig. 14.16d, a further rotation of 
458 counterclockwise will bring the axis Oa into the axis Od corresponding 
to the maximum shearing stress in Fig. 14.16d. Note from Fig. 14.16d that 
τmax 5 R 5 50 MPa and the corresponding normal stress is σ9 5 σave 5 20 
MPa. Since point D is located above the σ axis in Fig. 14.16c, the shearing 
stresses exerted on the faces perpendicular to Od in Fig. 14.16d must be 
directed so that they will tend to rotate the element clockwise.

O

B

Y

C

D

A

(MPa)

(MPa)

O

X

(d)

max5 50

p 5 53.12

908

R 5 50E

  70max
2 30min 

   ave 5 209

p

458

70 MPamax

  50 MPamax

  30 MPamin

  20 MPa9  20 MPa9

x

y

b

a

(c)

e

d

σ

τ

θ

τ55

σ

σ

σ

σ

σ σ

σ
σ

τ

θ

τ

5

5

5

5
5

5

Fig. 14.16 (cont.) (c) Stress element orientations for principal and maximum shearing 
stresses. (d) Mohr’s circle used to determine principal and maximum shearing stresses.
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In the case of torsion (Fig. 14.18a), σx 5 σy 5 0 and τxy 5 τmax 5 
TcyJ. Therefore, points X and Y are located on the τ axis, and Mohr’s circle 
has a radius of R 5 TcyJ centered at the origin (Fig. 14.18b). Points A and B 
define the principal planes (Fig. 14.18c) and the principal stresses:

 σmax, min 5 6 R 5 6  

Tc

J
 (14.19)

P9

x 5 P/A

D

E

C

Y
x

y e d

X
R

x

(b)(a) (c)

PP9

max

P
σ

σ

τ

σ
σ9

τ

Fig. 14.17 (a) Member under centric axial load. (b) Mohr’s circle. (c) Element showing planes of 
maximum shearing stress.

T9

T

y

x

T9

T

b
a

Y

X

CB A

R
max

max
max

min

Tc
J

(a) (b) (c)

τ

τ τ

σ
σ

5

σ

Fig. 14.18 (a) Member under torsional load. (b) Mohr’s circle. (c) Element showing 
orientation of principal stresses.

Mohr’s circle provides a convenient way of checking the results 
obtained earlier for stresses under a centric axial load (Sec. 8.3) and under 
a torsional load (Sec. 10.1c). In the first case (Fig. 14.17a), σx 5 PyA, σy 5 
0, and τxy 5 0. The corresponding points X and Y define a circle of radius R 
5 Py2A that passes through the origin of coordinates (Fig. 14.17b). Points 
D and E yield the orientation of the planes of maximum shearing stress 
(Fig. 14.17c), as well as τmax and the corresponding normal stresses σ9:

 τmax 5 σ9 5 R 5
P

2 A
 (14.18)
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Sample	Problem	14.2

For the state of plane stress shown determine (a) the principal planes and 
the principal stresses, (b) the stress components exerted on the element 
obtained by rotating the given element counterclockwise through 308.

STRATEGY: Since the given state of stress represents two points on 
Mohr’s circle, you can use these points to generate the circle. The state of 
stress on any other plane, including the principal planes, can then be readily 
determined through the geometry of the circle.

MODELING and ANALYSIS:

Construction	of	Mohr’s	Circle	(Fig	1). On a face perpendicular to 
the x axis, the normal stress is tensile, and the shearing stress tends to rotate 
the element clockwise. Thus, X is plotted at a point 100 units to the right 
of the vertical axis and 48 units above the horizontal axis. By examining 
the stress components on the upper face, point Y(60, 248) is plotted. Join 
points X and Y by a straight line to define the center C of Mohr’s circle. The 
abscissa of C, which represents σave , and the radius R of the circle, can be 
measured directly or calculated as

σave 5 OC 5 1
2(σx 1 σy) 5 1

2(100 1 60) 5 80 MPa

R 5 √(CF)2 1 (FX)2 5 √(20)2 1 (48)2 5 52 MPa

60 MPa

100 MPa

48 MPa

y

x

2
O B

X(100, 48)
R

F

C

Y(60, 248)

A  (MPa)

min 5
28 MPa

m 5
52 MPa

ave 5 80 MPa

p

max 5 132 MPa

(MPa)τ

σ

θ

τ

σ

σ

σ

Fig. 1 Mohr’s circle for given stress state.

	 a.	 Principal	Planes	and	Principal	Stresses.	 We rotate the diam-
eter XY clockwise through 2θp until it coincides with the diameter AB. Thus,

tan 2θp 5
XF

CF
5

48
20

5 2.4  2θp 5 67.48   θp 5 33.78  b

(continued)
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The principal stresses are represented by the abscissas of points A and B:

σmax 5 OA 5 OC 1 CA 5 80 1 52    σmax 5
 
1132 MPa b

 σmin 5 OB 5 OC 2 BC 5 80 2 52      σmin 5 1 28 MPa b

Since the rotation that brings XY into AB is clockwise, the rotation that 
brings Ox into the axis Oa corresponding to σmax is also clockwise; we 
obtain the orientation shown in Fig. 2 for the principal planes.

 b.	 Stress	Components	on	Element	Rotated	308 . Points X9 
and Y9 on Mohr’s circle that correspond to the stress components on the 
rotated element are obtained by rotating X Y counterclockwise through 2θ 5 
608 (Fig. 3). We find

ϕ 5 1808 2 608 2 67.48   ϕ 5 52.68      b

σx9 5 OK 5 OC 2 KC 5 80 2 52 cos 52.68  σx9 5 1 48.4 MPa b

 σy9 5 OL 5 OC 1 CL 5 80 1 52 cos 52.68  σy9 5 1111.6 MPa  b

  τx9y9 5 K�X9 5 52 sin 52.68            τx9y9 5 41.3 MPa b

Since X9 is located above the horizontal axis, the shearing stress on the face 
perpendicular to O x9 tends to rotate the element clockwise. The stresses, 
along with their orientation, are shown in Fig. 4.
 

xO

p 5 33.78

min 5 28 MPa

max 5 132 MPa

a

θ
σ

σ

Fig. 2 Orientation of principal stress element.

2 5 608

O B
K

X

LC A

Y
Y9

 (MPa)

 5 1808 2 608 2 67.48
 5 52.68

2 p 5 67.48

(MPa)

X9x9

y9

x9y9

τ

τ

σ

ϕ

θ

σ

σ

ϕ

ϕ

ϕ

θ

Fig. 3 Mohr’s circle analysis  
for element rotation of 308 
counterclockwise.

xO
 5 308

y9 5 111.6 MPa

x9 5 48.4 MPa

x9y9 5 41.3 MPa

x9σ

τ

θ

σ

Fig. 4 Stress components obtained 
by rotating original element 308 
counterclockwise.
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Sample	Problem	14.3

A state of plane stress consists of a tensile stress σ0 5 8 ksi exerted on 
vertical surfaces and of unknown shearing stresses. Determine (a) the mag-
nitude of the shearing stress τ0 for which the largest normal stress is 10 ksi, 
(b) the corresponding maximum shearing stress.

STRATEGY: You can use the normal stresses on the given element to 
determine the average normal stress, thereby establishing the center of 
Mohr’s circle. Knowing that the given maximum normal stress is also a 
principal stress, you can use this to complete the construction of the circle.

MODELING	and	ANALYSIS:

Construction	 of	Mohr’s	 Circle	 (Fig.1).	 Assume that the shearing 
stresses act in the senses shown. Thus, the shearing stress τ0 on a face per-
pendicular to the x axis tends to rotate the element clockwise, and point X of 
coordinates 8 ksi and τ0 is plotted above the horizontal axis. Considering a 
horizontal face of the element, σy 5 0 and τ0 tends to rotate the element coun-
terclockwise. Thus, Y is plotted at a distance τ0 below O.
 The abscissa of the center C of Mohr’s circle is

σave 5 1
2(σx 1 σy) 5 1

2(8 1 0) 5 4 ksi

The radius R of the circle is found by observing that σmax 5 10 ksi and is 
represented by the abscissa of point A:

 σmax 5 σave 1 R

 10 ksi 5 4 ksi 1 R    R 5 6 ksi

	 a.	 Shearing	Stress	τ0. Considering the right triangle CFX, 

cos 2�θp 5
CF

CX
5

CF

R
5

4 ksi
6 ksi

  2�θp 5 48.28   θp 5 24.18 

 τ0 5 FX 5 R sin 2�θp 5 (6 ksi) sin 48.28   τ0 5 4.47 ksi b

	 b.	 Maximum	 Shearing	 Stress.	 The coordinates of point D of 
Mohr’s circle represent the maximum shearing stress and the corresponding 
normal stress.

 τmax 5 R 5 6 ksi  τmax 5 6 ksi b

2 θs 5 908 2 2 θp 5 908 2 48.28 5 41.88    θx 5 2 0.98 

The maximum shearing stress is exerted on an element that is oriented as 
shown in Fig. 2. (The element upon which the principal stresses are exerted 
is also shown.)

REFLECT	and	THINK. If our original assumption regarding the sense of 
τ0 was reversed, we would obtain the same circle and the same answers, but the 
orientation of the elements would be as shown in Fig. 3.

0 0 5 8 ksi
0

0

y

xO

τ
σ σ

τ

xO
24.18

20.98

0
0

min 5 2 ksi

max 5 10 ksi

max 5 6 ksi

ave 5 4 ksi

σ

τ

τ
σ

σ

σ

Fig. 3 Orientation of principal and 
maximum shearing stress planes for 
opposite sense of τ0.

x

d

a

O

s5 20.98

p5 24.18

0
0

ave 5 4 ksi

max 5 6 ksi

min 5 2 ksi

max 5 10 ksi

σ

τ

σ

σ
τ

θ

σθ

Fig. 2 Orientation of principal and  
maximum shearing stress planes for  
assumed sense of τ0.

2 p

2

2 ksi

s

(ksi)

min 5

4 ksi 4 ksi

8 ksi
ave 5

max 5 10 ksi

D

R

CO

E

Y

F A

X

B

0

0
max

(ksi)τ

σ

τθ
θ

τ

τ
σ

σ σ

Fig. 1 Mohr’s circle for given state  
of stress.
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Problems
 14.25 Solve Probs. 14.5 and 14.9, using Mohr’s circle.

 14.26 Solve Probs. 14.6 and 14.10, using Mohr’s circle.

 14.27 Solve Prob. 14.11, using Mohr’s circle.

 14.28 Solve Prob. 14.12, using Mohr’s circle.

 14.29 Solve Prob. 14.13, using Mohr’s circle.

 14.30 Solve Prob. 14.14, using Mohr’s circle

 14.31 Solve Prob. 14.15, using Mohr’s circle.

 14.32 Solve Prob. 14.16, using Mohr’s circle.

 14.33 Solve Prob. 14.17, using Mohr’s circle.

 14.34 Solve Prob. 14.18, using Mohr’s circle.

 14.35 Solve Prob. 14.19, using Mohr’s circle.

 14.36 Solve Prob. 14.20, using Mohr’s circle.

 14.37 Solve Prob. 14.21, using Mohr’s circle.

 14.38 Solve Prob. 14.22, using Mohr’s circle.

 14.39 Solve Prob. 14.23, using Mohr’s circle.

 14.40 Solve Prob. 14.24, using Mohr’s circle.

 14.41 For the state of plane stress shown, use Mohr’s circle to determine 
(a) the largest value of τxy for which the maximum in-plane shearing 
stress is equal to or less than 12 ksi, (b) the corresponding principal 
stresses.

xy

8 ksi

10 ksi

τ

Fig. P14.41

 14.42 For the element shown, determine the range of values of τxy for which 
the maximum in-plane shearing stress is equal to or less than 150 MPa. 

xy

120 MPa

20 MPa

τ

Fig. P14.42
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 14.43 For the state of plane stress shown, use Mohr’s circle to determine 
(a) the value of τxy for which the in-plane shearing stress parallel to 
the weld is zero, (b) the corresponding principal stresses.

 14.44 Solve Prob. 14.43, assuming that the weld forms an angle of 60° with 
the horizontal.

 14.45 through 14.48  Determine the principal planes and the principal 
stresses for the state of plane stress resulting from the superposition of 
the two states of stress shown.

0

0

308

1

τ
τ

Fig. P14.47

0

0
1

σ
θ

σ

Fig. P14.48

7 ksi

4 ksi

6 ksi

4 ksi

458

1

Fig. P14.45

25 MPa
40 MPa

35 MPa
308

1

Fig. P14.46

xy

12 MPa

2 MPa

758

τ

Fig. P14.43
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14.3  STRESSES IN THIN-WALLED 
PRESSURE VESSELS

Thin-walled pressure vessels provide an important application of the analy-
sis of plane stress. Since their walls offer little resistance to bending, it can be 
assumed that the internal forces exerted on a given portion of wall are tangent 
to the surface of the vessel (Fig. 14.19). The resulting stresses on an element of 
wall will be contained in a plane tangent to the surface of the vessel.

This analysis of stresses in thin-walled pressure vessels is limited to 
two types of vessels: cylindrical and spherical (Photos 14.3 and 14.4).

Fig. 14.19 Assumed stress distribution in 
thin-walled pressure vessels.

z

1

1

2
2

y

x

t

r

σ
σ

σσ

Fig. 14.20 Pressurized cylindrical vessel.

Photo 14.3 Cylindrical pressure vessels for liquid propane.

© Clair Dunn/Alamy

Photo 14.4 Spherical pressure vessels at a chemical plant.

© Spencer C. Grant/PhotoEdit

Cylindrical	 Pressure	 Vessels.	 Consider a cylindrical vessel with an  
inner radius r and a wall thickness t containing a fluid under pressure 
(Fig. 14.20). The stresses exerted on a small element of wall with sides 
respectively parallel and perpendicular to the axis of the cylinder will be 
determined. Because of the axisymmetry of the vessel and its contents, no 
shearing stress is exerted on the element. The normal stresses σ1 and σ2 shown 
in Fig. 14.20 are therefore principal stresses. The stress σ1 is called the hoop 
stress, because it is the type of stress found in hoops used to hold together the 
various slats of a wooden barrel. Stress σ2 is called the longitudinal stress.

To determine the hoop stress σ1, detach a portion of the vessel and its 
contents bounded by the xy plane and by two planes parallel to the yz plane 
at a distance Dx from each other (Fig. 14.21). The forces parallel to the z 
axis acting on the free body consist of the elementary internal forces σ1 dA 
on the wall sections and the elementary pressure forces p dA exerted on the 
portion of fluid included in the free body. Note that the gage pressure of 
the fluid p is the excess of the inside pressure over the outside atmospheric 
pressure. The resultant of the internal forces σ1 dA is equal to the product 
of σ1 and the cross-sectional area 2t Dx of the wall, while the resultant of 
the pressure forces p dA is equal to the product of p and the area 2r Dx. The 
equilibrium equation oFz 5 0 gives

oFz 5 0: σ1(2t Dx) 2 p(2r Dx) 5 0

and solving for the hoop stress σ1 ,

 σ1 5
pr

t
 (14.20)Fig. 14.21 Free-body diagram to determine 

hoop stress in a cylindrical pressure vessel.

r

r
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To determine the longitudinal stress σ2 , pass a section perpendicular 
to the x axis and consider the free body consisting of the portion of the ves-
sel and its contents located to the left of the section (Fig. 14.22). The forces 
acting on this free body are the elementary internal forces σ2 dA on the wall 
section and the elementary pressure forces p dA exerted on the portion of 
fluid included in the free body. Noting that the area of the fluid section is 
πr 2 and that the area of the wall section can be obtained by multiplying the 
circumference 2πr of the cylinder by its wall thickness t, the equilibrium 
equation is:†

oFx 5 0: σ2(2πrt) 2 p(πr 2) 5 0

and solving for the longitudinal stress σ2 ,

 σ2 5
pr

2 t
 (14.21)

Note from Eqs. (14.20) and (14.21) that the hoop stress σ1 is twice as 
large as the longitudinal stress σ2:

 σ1 5 2σ2 (14.22)

Spherical	Pressure	Vessels.	 Now consider a spherical vessel of inner 
radius r and wall thickness t, containing a fluid under a gage pressure p. For 
reasons of symmetry, the stresses exerted on the four faces of a small ele-
ment of wall must be equal (Fig. 14.23).

 σ1 5 σ2 (14.23)

To determine the stress, pass a section through the center C of the ves-
sel and consider the free body consisting of the portion of the vessel and 
its contents located to the left of the section (Fig. 14.24). The equation of 
equilibrium for this free body is the same as for the free body of Fig. 14.22. 
So for a spherical vessel,

 σ1 5 σ2 5
pr

2t
 (14.24)

†Using the mean radius of the wall section, rm 5 r 1 1
2 t , to compute the resultant of the 

forces, a more accurate value of the longitudinal stress is

σ2 5
pr

2t
 

1

1 1
t

2r

However, for a thin-walled pressure vessel, the term ty2r is sufficiently small to allow the use 
of Eq. (14.21) for engineering design and analysis. If a pressure vessel is not thin-walled (i.e., 
if ty2r is not small), the stresses σ1 and σ2 vary across the wall and must be determined by the 
methods of the theory of elasticity.

Fig. 14.22 Free-body diagram to 
determine longitudinal stress.

2

y

z x

dA

r

t

p dA

σ

Fig. 14.23 Pressurized spherical vessel.
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2

1
2 15

σ
σ

σ
σ σ

2

r

x

p dA

dA

t

C

σ

Fig. 14.24 Free-body diagram to  
determine spherical pressure vessel  
stress. 
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Sample	Problem	14.4

A compressed-air tank is supported by two cradles as shown. One of the 
cradles is designed so that it does not exert any longitudinal force on the 
tank. The cylindrical body of the tank has a 30-in. outer diameter and 
is made of a 3

8-in. steel plate by butt welding along a helix that forms an 
angle of 258 with a transverse plane. The end caps are spherical and have 
a uniform wall thickness of 5

16 in. For an internal gage pressure of 180 psi, 
determine (a) the normal stress in the spherical caps, (b) the stresses in 
directions perpendicular and parallel to the helical weld.

STRATEGY: Using the equations for thin-walled pressure vessels, you 
can determine the state of plane stress at any point within the spherical end 
cap and within the cylindrical body. You can then plot the corresponding 
Mohr's circles and use them to determine the stress components of interest.

MODELING	and	ANALYSIS:

	 a.	 Spherical	Cap.  The state of stress within any point in the spheri-
cal cap is shown in Fig. 1. Using Eq. (14.24), we write

p 5 180 psi, t 5 5
16 in. 5 0.3125 in., r 5 15 2 0.3125 5 14.688 in.

 σ1 5 σ2 5
pr

2 t
5

(180 psi)(14.688 in.)
2(0.3125 in.)

   σ 5 4230 psi b

	 b.	 Cylindrical	Body	of	the	Tank.  The state of stress within any 
point in the cylindrical body is as shown in Fig. 2. We determine the hoop 
stress σ1 and the longitudinal stress σ2 using Eqs. (14.20) and (14.22). We 
write

p 5 180 psi, t 5 3
8 in. 5 0.375 in., r 5 15 2 0.375 5 14.625 in.

σ1 5
pr

t
5

(180 psi)(14.625 in.)
0.375 in.

5 7020 psi    σ2 5 1
2σ1 5 3510 psi

σave 5 1
2 (σ1 1 σ2) 5 5265 psi    R 5 1

2 (σ1 2 σ2) 5 1755 psi

Fig. 1 State of stress at any 
point in spherical cap.

1

2
5 0

a

b

σ

σ
σ

8 ft

30 in.

258

(continued)

Fig. 2 State of stress at any 
point in cylindrical body.

b

1

1

2

2 5 3510 psi

5 7020 psi

a

O

σ

σ

σ

σ
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Stresses	at	the	Weld.  Noting that both the hoop stress and the longitu-
dinal stress are principal stresses, we draw Mohr’s circle as shown in Fig. 3.

Fig. 3 Mohr’s circle for stress element in 
cylindrical body.

1 5 7020 psi

ave 5 5265 psi

2

w

5 3510 psi

5 1755 psi
X9

2 5 508

ACBO

R

R w

τ

τ

σ

θ

σ

σ

σ

σ

x9

w 5 4140 psi

w 5 1344 psi

Weld

σ
τ

Fig. 4 Stress components 
on the weld.

An element having a face parallel to the weld is obtained by 
rotating the face perpendicular to the axis Ob (Fig. 2) counterclockwise 
through 258. Therefore, on Mohr’s circle (Fig. 3), point X9 corresponds 
to the stress components on the weld by rotating radius CB counterclock-
wise through 2θ 5 508.

σw 5 σave 2 R cos 508 5 5265 2 1755 cos 508 σw 5 14140 psi b

τw 5 R sin 508 5 1755 sin 508 τw5   1344 psi b

Since X9 is below the horizontal axis, τw tends to rotate the element 
 counterclockwise. The stress components on the weld are shown in Fig. 4. 
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Problems
 14.49 Determine the normal stress in a basketball of 9.5-in. outer diameter 

and 0.125-in. wall thickness that is inflated to a gage pressure of 9 psi.

 14.50 A spherical gas container made of steel has a 20-ft outer diameter and 
a wall thickness of 7

16 in. Knowing that the internal pressure is 75 psi, 
determine the maximum normal stress and the maximum shearing 
stress in the container.

 14.51 The maximum gage pressure is known to be 1150 psi in a spherical 
steel pressure vessel having a 10-in. outer diameter and a 0.25-in. wall 
thickness. Knowing that the ultimate stress in the steel used is σU 5 
60 ksi, determine the factor of safety with respect to tensile failure.

 14.52 A spherical gas container having an outer diameter of 5 m and a wall 
thickness of 22 mm is made of a steel for which E 5 200 GPa and v 
5 0.29. Knowing that the gage pressure in the container is increased 
from zero to 1.7 MPa, determine (a) the maximum normal stress in 
the container, (b) the increase in the diameter of the container.

 14.53 A spherical pressure vessel has an outer diameter of 3 m and a wall 
thickness of 12 mm.  Knowing that for the steel used σall 5 80 MPa, 
E 5 200 GPa, and v 5 0.29, determine (a) the allowable gage pres-
sure, (b) the corresponding increase in the diameter of the vessel.

 14.54 A spherical pressure vessel of 750-mm outer diameter is to be fabri-
cated from a steel having an ultimate stress σU 5 400 MPa. Knowing 
that a factor of safety of 4 is desired and that the gage pressure can 
reach 4.2 MPa, determine the smallest wall thickness that should be 
used.

 14.55 Determine the largest internal pressure that can be applied to a cylin-
drical tank of 5.5-ft outer diameter and 58-in. wall thickness if the ulti-
mate normal stress of the steel used is 65 ksi and a factor of safety of 
5.0 is desired.

 14.56 The unpressurized cylindrical storage tank shown has a 3
16-in. wall 

thickness and is made of steel having a 60-ksi ultimate strength in ten-
sion. Determine the maximum height h to which it can be filled with 
water if a factor of safety of 4.0 is desired. (Specific weight of water 5 
62.4 lb/ft3.)

 14.57 For the storage tank of Prob. 14.56, determine the maximum normal 
stress and the maximum shearing stress in the cylindrical wall when 
the tank is filled to capacity (h 5 48 ft).

 14.58 The propane storage tank shown in Photo 14.3 has an outer diameter 
of 3.3 m and a wall thickness of 18 mm. At a time when the inter-
nal pressure of the tank is 1.5 MPa, determine the maximum normal 
stress in the tank.

25 ft

48 ft
h

Fig. P14.56
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 14.59 A steel penstock has a 750-mm outer diameter, a 12-mm wall thick-
ness, and connects a reservoir at A with a generating station at B. 
Knowing that the density of water is 1000 kg/m3, determine the maxi-
mum normal stress and the maximum shearing stress in the penstock 
under static conditions.

A

B

750 mm

300 m

Fig. P14.59 and	P14.60

 14.60 A steel penstock has a 750-mm outer diameter and connects a reser-
voir at A with a generating station at B. Knowing that the density of 
water is 1000 kg/m3 and that the allowable normal stress in the steel 
is 85 MPa, determine the smallest thickness that can be used for the 
penstock.

 14.61 The cylindrical portion of the compressed air tank shown is fabricated 
of 0.25-in.-thick plate welded along a helix forming an angle β 5 30° 
with the horizontal. Knowing that the allowable stress normal to the 
weld is 10.5 ksi, determine the largest gage pressure that can be used 
in the tank.

20 in.

60 in.

β

Fig. P14.61

 14.62 For the compressed air tank of Prob. 14.61, determine the gage pres-
sure that will cause a shearing stress parallel to the weld of 4 ksi.
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 14.63 The pressure tank shown has an 8-mm wall thickness and butt-welded 
seams forming an angle β 5 20° with a transverse plane. For a gage 
pressure of 600 kPa, determine (a) the normal stress perpendicular to 
the weld, (b) the shearing stress parallel to the weld.

3 m

1.6 m

β

Fig. P14.63

 14.64 For the tank of Prob. 14.63, determine the largest allowable gage pres-
sure, knowing that the allowable normal stress perpendicular to the 
weld is 120 MPa and the allowable shearing stress parallel to the weld 
is 80 MPa.

 14.65 The steel pressure tank shown has a 750-mm inner diameter and a 
9-mm wall thickness. Knowing that the butt-welded seams form an 
angle β 5 50° with the longitudinal axis of the tank and that the gage 
pressure in the tank is 1.5 MPa, determine, (a) the normal stress per-
pendicular to the weld, (b) the shearing stress parallel to the weld.

 14.66 The pressurized tank shown was fabricated by welding strips of plate 
along a helix forming an angle β with a transverse plane. Determine 
the largest value of β that can be used if the normal stress perpen-
dicular to the weld is not to be larger than 85 percent of the maximum 
stress in the tank.

 14.67 The compressed-air tank AB has an inner diameter of 450 mm and 
a uniform wall thickness of 6 mm. Knowing that the gage pressure 
inside the tank is 1.2 MPa, determine the maximum normal stress and 
the maximum in-plane shearing stress at point a on the top of the tank.

D

A

Ba

b
750 mm

500 mm

750 mm

5 kN

Fig. P14.67

 14.68 For the compressed-air tank and loading of Prob. 14.67, determine the 
maximum normal stress and the maximum in-plane shearing stress at 
point b on the top of the tank.

β

Fig. P14.65 and	P14.66
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 14.69 A pressure vessel of 10-in. inner diameter and 0.25-in. wall thickness 
is fabricated from a 4-ft section of spirally welded pipe AB and is 
equipped with two rigid end plates. The gage pressure inside the ves-
sel is 300 psi, and 10-kip centric axial forces P and P′ are applied to 
the end plates. Determine (a) the normal stress perpendicular to the 
weld, (b) the shearing stress parallel to the weld.

4 ft

P

P9

358
B

A

Fig. P14.69

 14.70 Solve Prob. 14.69, assuming that the magnitude of P of the two forces 
is increased to 30 kips.

 14.71 The cylindrical tank AB has an 8-in. inner diameter and a 0.32-in. wall 
thickness. Knowing that the pressure inside the tank is 600 psi, deter-
mine the maximum normal stress and the maximum in-plane shearing 
stress at point K.

15 in.

10 in.

9 kips
D

A

B
K

Fig. P14.71

 14.72 Solve Prob. 14.71, assuming that the 9-kip force applied at point D is 
directed vertically downward.
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Transformation	of	Plane	Stress
A state of plane stress at a given point Q has nonzero values for σx , σy , and τxy. 
The stress components associated with the element are shown in Fig. 14.25a. 
The equations for the components σx9 , σy9 , and τx9y9 associated with that ele-
ment after being rotated through an angle θ about the z axis (Fig. 14.25b) are

  σx9 5
σx 1 σy

2
1

σx 2 σy

2
 cos 2θ 1 τxy sin 2θ (14.5)

  σy9 5
σx 1 σy

2
2

σx 2 σy

2
 cos 2θ 2 τxy sin 2θ (14.7)

  τx9y9 5 2 
σx 2 σy

2
 sin 2θ 1 τxy cos 2θ (14.6)

Review and Summary

Fig. 14.25 

xy
x9y9

y
y9

x

x9Q Q

z

x x

x9

y y9

z9 5 z

y

(a) (b)

σ σ

σ
σ

τ

θ

θ

τ

Fig. 14.26

min

min

max

max

p

p

y

Q x

y9

x9

σ
θ

σ

σ

σ

θ

The values θp of the angle of rotation that correspond to the maxi-
mum and minimum values of the normal stress at point Q are

 tan 2θp 5
2τxy

σx 2 σy
 (14.12)

Principal	Planes	and	Principal	Stresses
The two values obtained for θp are 908 apart (Fig. 14.26) and define the 
principal planes of stress at point Q. The corresponding values of the nor-
mal stress are called the principal stresses at Q:

 σmax, min 5
σx 1 σy

2
6 √(σx 2 σy

2 )2

1 τ2
xy (14.14)

The corresponding shearing stress is zero. 
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Maximum	 In-Plane	Shearing	Stress
The angle θ for the largest value of the shearing stress θs is found using

 tan 2θs 5 2 
σx 2 σy

2τxy

 (14.15)

The two values obtained for θs are 908 apart (Fig. 14.27). However, the planes 
of maximum shearing stress are at 458 to the principal planes. The maximum 
value of the shearing stress in the plane of stress is

 τmax 5 √(σx 2 σy

2 )2

1 τ2
xy (14.16)

and the corresponding value of the normal stresses is

 σ9 5 σave 5
σx 1 σy

2
 (14.17)

Mohr’s	Circle	 for	Stress
Mohr’s circle provides an alternative method for the analysis of the trans-
formation of plane stress based on simple geometric considerations. 
Given the state of stress shown in the left element in Fig. 14.28a, point 

max

max

s

s

y

Q x

x9

y9

9

9

9

9

σ θ
τ

σ

σ

σ

θτ

Fig. 14.27

max

min

x y

(b)

O

B A

Y ,

C

2( )

y xy1( 

2 p

)

X ,x xy

xy

2( )

1
2

p

y max max
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O x

a

b

y

(a)

σ
τ

σ
θ

τ

σ

σ τ

σ

σ
τθ

σ σ

σ τ

σ

σ

σ

σ

Fig. 14.28

X of coordinates σx , 2τxy and point Y of coordinates σy , 1τxy are plotted in 
Fig. 14.28b. Drawing the circle of diameter XY provides Mohr’s circle. The 
abscissas of the points of intersection A and B of the circle with the horizontal 
axis represent the principal stresses, and the angle of rotation bringing the diam-
eter XY into AB is twice the angle θp defining the principal planes, as shown in 
the right element of Fig. 14.28a. The diameter DE defines the maximum shear-
ing stress and the  orientation of the corresponding plane (Fig. 14.29). 

ave9

O B C A

D

E

max
908

5

τ

σ

τ

σ

σ

Fig. 14.29
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z

1

1

2
2

y

x

t

r

σ
σ

σ σ

Fig. 14.30

Cylindrical	Pressure	Vessels
The stresses in thin-walled pressure vessels and equations relating to the 
stresses in the walls and the gage pressure p in the fluid were discussed. For a 
cylindrical vessel of inside radius r and thickness t (Fig. 14.30), the hoop stress 
σ1 and the longitudinal stress σ2 are

 σ1 5
pr

t
  σ2 5

pr

2 t
 (14.20, 14.21)

Spherical	Pressure	Vessels
For a spherical vessel of inside radius r and thickness t (Fig. 14.31), the two 
principal stresses are equal:

 σ1 5 σ2 5
pr

2 t
 (14.24)

1

2

1
2 15

σ
σ

σ
σ σ

Fig. 14.31
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 14.73 Two members of uniform cross section 50 3 80 mm are glued 
together along plane a–a that forms an angle of 25° with the horizon-
tal. Knowing that the allowable stresses for the glued joint are σ 5 
800 kPa and τ 5 600 kPa, determine the largest axial load P that can 
be applied.

 14.74 For the state of stress shown, determine the range of values of θ for 
which the magnitude of the shearing stress τx'y' is equal to or less than 
8 ksi.

Fig. P14.74

y'

x'
x'y'

16 ksi

6 ksi

σ

σ
τ

θ

 14.75 Determine the range of values of σx for which the maximum in-plane 
shearing stress is equal to or less than 10 ksi.

 14.76 For the state of stress shown, it is known that the normal and shearing 
stresses are directed as shown and that σx 5 14 ksi, σy 5 9 ksi, and 
σmin 5 5 ksi. Determine (a) the orientation of the principal planes, 
(b) the principal stress σmax, (c) the maximum in-plane shearing stress.

  14.77 Determine the principal planes and the principal stresses for the state 
of plane stress resulting from the superposition of the two states of 
stress shown.

3 ksi

5 ksi

6 ksi

2 ksi
4 ksi

1
458

Fig. P14.77

 14.78 A standard-weight steel pipe of 12-in. nominal diameter carries water 
under a pressure of 400 psi. (a) Knowing that the outside diameter is 
12.75 in. and the wall thickness is 0.375 in., determine the maximum 
tensile stress in the pipe. (b) Solve part a, assuming that an extra-
strong pipe is used, of 12.75-in. outside diameter and 0.5-in. wall 
thickness.

Review Problems

xy

σy

τ

σx

Fig. P14.76

P

a 258

50 mm

a

Fig. P14.73

15 ksi

8 ksi

xσ

Fig. P14.75
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 14.79 Two wooden members of 80 3 120-mm uniform rectangular cross 
section are joined by the simple glued scarf splice shown. Knowing 
that β 5 22° and that the maximum allowable stresses in the joint 
are, respectively, 400 kPa in tension (perpendicular to the splice) and 
600 kPa in shear (parallel to the splice), determine the largest centric 
load P that can be applied.

 14.80 Two wooden members of 80 3 120-mm uniform rectangular cross 
section are joined by the simple glued scarf splice shown. Knowing 
that β 5 25° and that the centric loads of magnitude P 5 10 kN are 
applied to the member as shown, determine (a) the in-plane shearing 
stress parallel to the splice, (b) the normal stress perpendicular to the 
splice.

 14.81 The axle of an automobile is acted upon by the forces and couple 
shown. Knowing that the diameter of the solid axle is 32 mm, deter-
mine (a) the principal planes and principal stresses at point H located 
on top of the axle, (b) the maximum shearing stress at the same point.

 14.82 Square plates, each of 0.5-in. thickness, can be bent and welded 
together in either of the two ways shown to form the cylindrical por-
tion of the compressed air tank. Knowing that the allowable normal 
stress perpendicular to the weld is 12 ksi, determine the largest allow-
able pressure in each case.

20 ft

12 ft 12 ft

458

(a) (b)

Fig. P14.82

 14.83 A torque of magnitude T 5 12 kN·m is applied to the end of a tank 
containing compressed air under a pressure of 8 MPa. Knowing that 
the tank has a 180-mm inner diameter and a 12-mm wall thickness, 
determine the maximum normal stress and the maximum in-plane 
shearing stress in the tank.

 14.84 The tank shown has a 180-mm inner diameter and a 12-mm wall 
thickness. Knowing that the tank contains compressed air under a 
pressure of 8 MPa, determine the magnitude T of the applied torque 
for which the maximum normal stress is 75 MPa.

T

Fig. P14.83 and	P14.84

3 kN

3 kN

350 N·m

0.15 m
H

0.2 m

Fig. P14.81

P9

P

80 mm

120 mm

β

Fig. P14.79 and	P14.80
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In addition to strength considerations, the design of this bridge is 

also based on deflection evaluations.

Deflection of Beams

15
© Jetta Productions/Getty Images RF
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Introduction
In the preceding chapters we learned to design beams for strength. This 
chapter discusses another aspect in the design of beams: the determination 
of the deflection. The maximum deflection of a beam under a given load is 
of particular interest, since the design specifications of a beam will gener-
ally include a maximum allowable value for its deflection. A knowledge 
of deflections is also required to analyze indeterminate beams, in which 
the number of reactions at the supports exceeds the number of equilibrium 
equations available to determine unknowns.

Recall from Sec. 11.2 that a prismatic beam subjected to pure bend-
ing is bent into a circular arc and, within the elastic range, the curvature of 
the neutral surface is

 
1
ρ 5

M

EI
 (11.21)

where M is the bending moment, E is the modulus of elasticity, and I is the 
moment of inertia of the cross section about its neutral axis.

When a beam is subjected to a transverse loading, Eq. (11.21) 
remains valid for any transverse section, provided that Saint-Venant’s prin-
ciple applies. However, both the bending moment and the curvature of the 
neutral surface vary from section to section. Denoting by x the distance 
from the left end of the beam, we write

 
1
ρ 5

M(x)
EI

 (15.1)

Knowing the curvature at various points of the beam will help us to draw 
some general conclusions about the deformation of the beam under loading 
(Sec. 15.1).

To determine the slope and deflection of the beam at any given 
point, the second-order linear differential equation, which governs the elastic 
curve characterizing the shape of the deformed beam (Sec. 15.1A), is given as

d 2y

dx2 5
M(x)

EI

Introduction

 15.1  DEFORMATION UNDER 
TRANSVERSE LOADING

 15.1A Equation of the Elastic Curve
 15.1B Determination of the 

Elastic Curve from the Load 
Distribution

 15.2 STATICALLY 
INDETERMINATE BEAMS

 15.3 METHOD OF 
SUPERPOSITION

 15.3A Statically Determinate Beams
 15.3B Statically Indeterminate Beams

Objectives
In this chapter, you will:

•	Develop the governing differential equation for the 
elastic curve, the basis for the techniques considered in 
this chapter for determining beam deflections.

•	Use direct integration to obtain slope and deflection 
equations for beams of simple constraints and loadings.

•	Use the method of superposition to determine slope 
and deflection in beams by combining tabulated 
formulae.

•	Apply direct integration and superposition to analyze 
statically indeterminate beams.
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Introduction 665

If the bending moment can be represented for all values of x by a 
single function M (x), as shown in Fig. 15.1, the slope θ 5 dyydx and the 

BA

D

y

[x 5 0, y1 5 0]
[x 5 L, y2 5 0]

x

x 5     L,  15 2
1
4[ [  

x 5     L, y15 y2
1
4[ [

P

θ θ

Fig. 15.2 Situation where two sets of 
equations are required.

deflection y at any point of the beam can be obtained through two successive 
integrations. The two constants of integration introduced in the process are 
determined from the boundary conditions.

However, if different analytical functions are required to  represent 
the bending moment in various portions of the beam, different differential 
equations are also required, leading to different functions defining the 
elastic curve in various portions of the beam. For the beam and loading 
of Fig. 15.2, for example, two differential equations are required: one for 

Fig. 15.1 Situations where bending moment can be expressed by a single 
function M(x). (a) Uniformly-loaded cantilever beam. (b) Uniformly-loaded 
simply supported beam.

B

xA

y

(a)

[yA 5 0]
[  A 5 0]θ

B
A

y

(b)

[ yA 5 0] [ yB 5 0]

x

the portion AD and the other for the portion DB. The first equation yields 
functions θ1 and y1, and the second functions θ2 and y2. Altogether, four 
constants of integration must be determined; two will be obtained with the 
deflection being zero at A and B, and the other two by expressing that the 
portions AD and DB have the same slope and the same deflection at D.

Sec. 15.1B shows that, in a beam supporting a distributed load w(x), 
the elastic curve can be obtained directly from w(x) through four successive 
integrations. The constants introduced in this process are determined from 
the boundary values of V, M, θ, and y.

Sec. 15.2 discusses statically indeterminate beams where the reactions 
at the supports involve four or more unknowns. The three equilibrium equa-
tions must be supplemented with equations obtained from the boundary 
conditions that are imposed by the supports.
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The method of superposition consists of separately determining and 
then adding the slope and deflection caused by the various loads applied to 
a beam (Sec. 15.3). This procedure can be facilitated by the use of the table 
in Appendix C, which gives the slopes and deflections of beams for various 
loadings and types of support.

15.1  DEFORMATION UNDER 
TRANSVERSE LOADING

Recall that Eq. (11.21) relates the curvature of the neutral surface to the bend-
ing moment in a beam in pure bending. This equation is valid for any given 
transverse section of a beam subjected to a transverse loading, provided that 
Saint-Venant’s principle applies. However, both the bending moment and the 
curvature of the neutral surface vary from section to section. Denoting by x 
the distance of the section from the left end of the beam,

 
1
ρ 5

M(x)
EI

 (15.1)

Consider, for example, a cantilever beam AB of length L subjected to 
a concentrated load P at its free end A (Fig. 15.3a). We have M(x) 5 2Px , 
and substituting into Eq. (15.1) gives

1
ρ 5 2 

Px

EI

which shows that the curvature of the neutral surface varies linearly with 
x from zero at A, where ρA itself is infinite, to 2PLyEI at B, where |ρB| 5 
EIyPL (Fig. 15.3b).

Now consider the overhanging beam AD of Fig. 15.4a that sup-
ports two concentrated loads. From the free-body diagram of the beam  
(Fig. 15.4b), the reactions at the supports are RA 5 1 kN and RC 5 5 kN. 
The corresponding bending-moment diagram is shown in Fig. 15.5a. Note 
from the diagram that M and the curvature of the beam are both zero at  
each end and at a point E located at x 5 4 m. Between A and E, the bending 

B
A x

A5

(a)

P

L

A

(b)

P

B

B

ρ

ρ

Fig. 15.3 (a) Cantilever beam with 
concentrated load. (b) Deformed beam 
showing curvature at ends.

D
B C

A

(a)

(b)

4 kN 2 kN

3 m 3 m 3 m

DA
B C    

4 kN 2 kN

 RC 5 5 kN RA 5 1 kN

3 m 3 m 3 m

Fig. 15.4 (a) Overhanging beam with two concentrated loads.  
(b) Free-body diagram showing reaction forces.
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moment is positive, and the beam is concave upward. Between E and 
D, the bending moment is negative and the beam is concave downward 
(Fig. 15.5b). The largest value of the curvature (i.e., the smallest value of 
the radius of curvature) occurs at support C, where |M| is maximum.

The shape of the deformed beam is obtained from the information 
about its curvature. However, the analysis and design of a beam usually 
requires more precise information on the deflection and the slope at various 
points. Of particular importance is the maximum deflection of the beam. 
Eq. (15.1) will be used in the next section to find the relationship between 
the deflection y measured at a given point Q on the axis of the beam and the 
distance x of that point from some fixed origin (Fig. 15.6). This relation-
ship is the equation of the elastic curve, into which the axis of the beam is 
transformed under the given load (Fig. 15.6b).†

15.1A Equation of the Elastic Curve
Recall from elementary calculus that the curvature of a plane curve at a 
point Q(x,y) is

 
1
ρ 5

d 
2y

dx 2

[1 1 (dy

dx)
2 ] 3y2 (15.2)

where dyydx and d 2yydx 2 are the first and second derivatives of the func-
tion y (x) represented by that curve. For the elastic curve of a beam, how-
ever, the slope dyydx is very small, and its square is negligible compared to 
unity. Therefore,

 
1
ρ 5

d 
2 y

dx 
2  (15.3)

Substituting for 1yρ from Eq. (15.3) into Eq. (15.1),

 
d 

2 y

dx 
2 5

M(x)
EI

 (15.4)

This equation is a second-order linear differential equation; it is the 
governing differential equation for the elastic curve.

†In this chapter, y represents a vertical displacement. It was used in previous chapters to repre-
sent the distance of a given point in a transverse section from the neutral axis of that section.

M

A
B

E C D

4 m

3 kN·m

26 kN·m

x

(a)

C

D

4 kN 2 kN

B E

A

(b)

Fig. 15.5 Beam of Fig. 15.4. (a) Bending-moment diagram.  
(b) Deformed shape.

D
CQ

A

(a)

(b)

C
y

x

y

A
D

Q

x

Elastic 
curve

P2P1

Fig. 15.6 Beam of Fig. 15.4. 
(a) Undeformed. (b) Deformed. 
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The product EI is called the flexural rigidity, and if it varies along the 
beam, as in the case of a beam of varying depth, it must be expressed as a 
function of x before integrating Eq. (15.4). However, for a prismatic beam, 
the flexural rigidity is constant. Multiply both members of Eq. (15.4) by EI 
and integrate in x to obtain

 EI  

dy

dx
5 #

x

0

 M(x) dx 1 C1 (15.5a)

where C1 is a constant of integration. Denoting by θ(x) the angle, measured 
in radians, that the tangent to the elastic curve at Q forms with the horizon-
tal (Fig. 15.7), and recalling that this angle is very small,

dy

dx
5 tan θ . θ(x)

Thus, Eq. (15.5a) in the alternative form is

 EI θ(x) 5 #
x

0

 M(x) dx 1 C1 (15.5b)

Integrating Eq. (15.5) in x,

 EI y 5 #
x

0

 [ # x

0

 M(x) dx 1 C1 ]
 

dx 1 C2

  EI y 5 #
x

0

 dx #
x

0

 M(x) dx 1 C1x 1 C2 (15.6)

where C2 is a second constant and where the first term in the right-hand 
member represents the function of x obtained by integrating the bend-
ing moment M(x) twice in x. Although the constants C1 and C2 are as 
yet undetermined, Eq. (15.6) defines the deflection of the beam at any 
given point Q, and Eqs. (15.5a) or (15.5b) similarly define the slope of 
the beam at Q.

The constants C1 and C2 are determined from the boundary conditions  
or, more precisely, from the conditions imposed on the beam by its 
 supports.  Limiting this analysis to statically determinate beams, which 
are supported so that the reactions at the supports can be obtained by the 
methods of statics, only three types of beams need to be considered here 
(Fig. 15.8): (a) the simply supported beam, (b) the overhanging beam, and 
(c) the cantilever beam.

In Fig. 15.8a and b, the supports consist of a pin and bracket at A and 
a roller at B and require that the deflection be zero at each of these points. 
Letting x 5 xA , y 5 yA 5 0 in Eq. (15.6) and then setting x 5 xB , y 5 yB 5 0 
in the same equation, two equations are obtained that can be solved for 
C1 and C2 . For the cantilever beam (Fig. 15.8c), both the deflection and 
the slope at A must be zero. Letting x 5 xA , y 5 yA 5 0 in Eq. (15.6) and  
x 5 xA , θ 5 θA 5 0 in Eq. (15.5b), two equations are again obtained that can 
be solved for C1 and C2.

y

y(x) (x)

x

O

Q

x
θ

Fig. 15.7 Slope θ(x) of tangent to the  
elastic curve.
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(a) Simply supported beam

x

yA 5 0

yA 5 0
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A x

(c) Cantilever beam

(b) Overhanging beam

yB 5 0

yB 5 0

yA 5 0
θA5 0
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(a) Simply supported beam

x

yA 5 0

yA 5 0

B

B
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A x

(c) Cantilever beam

(b) Overhanging beam

yB 5 0

yB 5 0

yA 5 0
θA5 0

P

P

B
A

y

y

y

(a) Simply supported beam

x

yA 5 0

yA 5 0

B

B

xA

A x

(c) Cantilever beam

(b) Overhanging beam

yB 5 0

yB 5 0

yA 5 0
θA5 0

Fig. 15.8 Known boundary conditions for 
statically determinate beams.
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Concept	Application	15.1

The cantilever beam AB is of uniform cross section and carries a load P at 
its free end A (Fig. 15.9a). Determine the equation of the elastic curve and 
the deflection and slope at A.

Using the free-body diagram of the portion AC of the beam 
(Fig. 15.9b), where C is located at a distance x from end A,
 M 5 2Px (1)

Substituting for M into Eq. (15.4) and multiplying both members by the 
constant EI gives

EI   

d 
2y

dx 
2 5 2Px

Integrating in x,

 EI   

dy

dx
5 21

2 Px 
2 1 C1 (2)

Now observe the fixed end B where x 5 L and θ 5 dyydx 5 0 (Fig. 15.9c). 
Substituting these values into Eq. (2) and solving for C1 gives

C1 5 1
2 PL2

which we carry back into Eq. (2):

 EI   

dy

dx
5 21

2 Px 
2 1 1

2 PL2 (3)

Integrating both members of Eq. (3),

 EI y 5 21
6 
Px 

3 1 1
2 
PL2x 1 C2 (4)

But at B, x 5 L, y 5 0. Substituting into Eq. (4),

0 5 21
6 PL3 1 1

2 PL3 1 C2

C2 5 21
3 PL3

Carrying the value of C2 back into Eq. (4), the equation of the elastic  
curve is

EI y 5 21
6 Px 

3 1 1
2 PL2x 2 1

3 PL3

or

 y 5
P

6EI
  (2x 

3 1 3L2x 2 2L3) (5)

The deflection and slope at A are obtained by letting x 5 0 in Eqs. (3)  
and (5).

yA 5 2
PL3

3EI
    and    θA 5 (dy

dx)A

5
PL2

2EI

L

P

BA

(a)

P
V

MA

x

C

(b)

BO

y

yA

A

L

x

[x 5 L,    5 0]
[x 5 L, y 5 0]

(c)

θ

Fig. 15.9 (a) Cantilever beam with end 
load. (b) Free-body diagram of section 
AC. (c) Deformed shape and boundary 
conditions.
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Concept	Application	15.2

The simply supported prismatic beam AB carries a uniformly distributed 
load w per unit length (Fig. 15.10a). Determine the equation of the elastic 
curve and the maximum deflection of the beam.

Draw the free-body diagram of the portion AD of the beam 
(Fig. 15.10b) and take moments about D for

 M 5 1
2 wL x 2 1

2 wx 
2 (1)

Substituting for M into Eq. (15.4) and multiplying both members of 
this equation by the constant EI gives

 EI  

d 2 y

dx 
2 5 2 

1
2

  wx 
2 1

1
2

  wL x (2)

Integrating twice in x,

 EI  

dy

dx
5 2 

1
6

  wx 
3 1

1
4

  wL x 
2 1 C1 (3)

 EI y 5 2 
1
24

  wx 
4 1

1
12

  wL x 
3 1 C1x 1 C2 (4)

Observing that y 5 0 at both ends of the beam (Fig. 15.10c), let 
x 5 0 and y 5 0 in Eq. (4) and obtain C 2 5 0. Then make x 5 L and  
y 5 0 in the same equation, so

0 5 2 1
24  wL4 1 1

12  wL4 1 C1L

C1 5 2 1
24 wL3

Carrying the values of C1 and C2 back into Eq. (15.4), the elastic curve is

EI y 5 2 1
24 wx 

4 1 1
12 wL x 

3 2 1
24 wL3x

or

 y 5
w

24EI
  (2x  

4 1 2Lx 
3 2 L3x) (5)

Substituting the value for C1 into Eq. (3), we check that the slope of 
the beam is zero for x 5 Ly2 and thus that the elastic curve has a minimum 
at the midpoint C (Fig. 15.10d). Letting x 5 Ly2 in Eq. (5),

yC 5
w

24EI
  (2 

L4

16
1 2L 

L3

8
2 L3

�

L

2) 5 2 
5wL4

384EI

The maximum deflection (the maximum absolute value) is

|y| max 5
5wL4

384EI

B

w

A

L
(a)

A

2
x

D
M

V

wx

RA 5 wL

x

2
1

(b)

BA

L

y

x

[x 5 0, y 5 0] [x 5 L, y 5 0] 

(c)

B

C

L/2

A

y

x

(d)

Fig. 15.10 (a) Simply supported 
beam with a uniformly distributed 
load. (b) Free-body diagram 
of segment AD. (c) Boundary 
conditions. (d) Point of maximum 
deflection.
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In both Concept Applications considered so far, only one free-body 
diagram was required to determine the bending moment in the beam. As 
a result, a single function of x was used to represent M throughout the 
beam. However, concentrated loads, reactions at supports, or disconti-
nuities in a distributed load make it necessary to divide the beam into 
several portions and to represent the bending moment by a different func-
tion M (x) in each. As an example, Photo 15.1 shows an elevated roadway 
supported by beams, which in turn will be subjected to concentrated loads 
from vehicles crossing the completed bridge. Each of the functions M (x) 
leads to a different expression for the slope θ (x) and the deflection y (x). 
Since each expression must contain two constants of integration, a large 
number of constants will have to be determined. As shown in the follow-
ing Concept Application, the required additional boundary conditions can 
be obtained by observing that, while the shear and bending moment can 
be discontinuous at several points in a beam, the deflection and the slope 
of the beam cannot be discontinuous at any point.

Photo 15.1 A different function M(x) would 
be required in each portion of the beams when 
a vehicle crosses the completed bridge.

© Royalty-Free/Corbis

Concept	Application	15.3

For the prismatic beam and load shown (Fig. 15.11a), determine the slope 
and deflection at point D.

Divide the beam into two portions, AD and DB, and determine the 
function y (x) that defines the elastic curve for each of these portions.

 1. From A to D (x < Ly4). Draw the free-body diagram of a portion 
of beam AE of length x , Ly4 (Fig. 15.11b). Take moments about E to obtain

 M1 5
3P

4
 x (1)

and recalling Eq. (15.4), we write

 EI  

d 2   y1

dx 
2 5

3
4

 Px (2)

where y1(x) is the function that defines the elastic curve for portion AD of 
the beam. Integrating in x,

 EI  θ1 5 EI  

dy1

dx
5

3
8

 Px 
2 1 C1 (3)

 EI y1 5
1
8

 Px 
3 1 C1x 1 C 2 (4)

 2. From D to B (x > Ly4). Now draw the free-body diagram of a 
portion of beam AE of the length x . Ly4 (Fig. 15.11c) and write

 M2 5
3P

4
 x 2 P  (x 2

L

4) (5)

P

B
D

A

3L/4
L/4

(a)

A
E

M1

V1

x

3
4 P

(b)

x 2     L1
4

V2

M2A
D

x

E

P

3
4 P

(c)

Fig. 15.11 (a) Simply supported 
beam with transverse load P.  
(b) Free-body diagram of portion 
AE to find moment left of load P. 
(c) Free-body diagram of portion 
AE to find moment right of load P.

(continued)

Final PDF to printer



672 Deflection of Beams

bee98160_ch15_663-704.indd 672 12/22/15  04:26 PM

and recalling Eq. (15.4) and rearranging terms, we have

 EI  

d 2 y2

dx 
2 5 2 

1
4

 Px 1
1
4

 PL (6)

where y2 (x) is the function that defines the elastic curve for portion DB of 
the beam. Integrating in x,

 EI θ2 5 EI  

dy2

dx
5 2 

1
8

 Px 
2 1

1
4

 PL x 1 C 3 (7)

 EI y2 5 2 
1
24

 Px 
3 1

1
8

 PL x 
2 1 C 3x 1 C4 (8)

 Determination	 of	 the	 Constants	 of	 Integration. The 
conditions satisfied by the constants of integration are summarized in 
Fig. 15.11d. At the support A, where the deflection is defined by Eq. (4), 
x 5 0 and y1 5 0. At the support B, where the deflection is defined by  
Eq. (8), x 5 L and y2 5 0. Also, the fact that there can be no sudden change 
in deflection or in slope at point D requires that y1 5 y2 and θ1 5 θ2 when 
x 5 Ly4. Therefore,

[x 5 0, y1 5 0], Eq. (4):      0 5 C 2 (9)

[x 5 L, y2 5 0], Eq. (8):      0 5
1
12

 PL3 1 C 3 L 1 C 4 (10)

[x 5 Ly4, θ1 5 θ2 ] , Eqs. (3) and (7):

 
3

128
 PL2 1 C1 5

7
128

 PL2 1 C 3 (11)

[x 5 Ly4, y1 5 y2 ] , Eqs. (4) and (8):

 
PL3

512
1 C1 

L

4
5

11PL3

1536
1 C 3 

L

4
1 C4 (12)

Solving these equations simultaneously,

C 1 5 2 
7PL2

128
,    C 2 5 0,    C 3 5 2 

11PL2

128
,    C 4 5

PL3

384

Substituting for C1 and C 2 into Eqs. (3) and (4), x # Ly4 is

 EI θ1 5
3
8

 Px 
2 2

7PL2

128
 (13)

 EI y1 5
1
8

 Px 
3 2

7PL2

128
 x (14)

Letting x 5 Ly4 in each of these equations, the slope and deflection at 
point D are

θD 5 2 
PL2

32EI
    and    yD 5 2 

3PL3

256EI

Note that since θD Þ 0, the deflection at D is not the maximum deflection 
of the beam.

D

BA

y

x x 5 0, y1 5 0 [ [

x 5     L, 
1
4[

x 5     L, 1
4[

P

(d)

[x 5 L, y2 5 0]

y1 5 y2]
θ1 5 θ2]

Fig. 15.11 (cont.) (d ) Boundary 
conditions.
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15.1B  Determination of the Elastic 
Curve from the Load Distribution

Sec. 15.1A showed that the equation of the elastic curve can be obtained by 
integrating twice the differential equation

 
d2y

dx2 5
M(x)

EI
 (15.4)

where M(x) is the bending moment in the beam. Now recall from Sec. 12.2 
that, when a beam supports a distributed load w(x), we have dMydx 5 V 
and dVydx 5 2w at any point of the beam. Differentiating both members of 
Eq. (15.4) with respect to x and assuming EI to be constant,

 
d 

3y

dx 
3 5

1
EI

  
dM

 dx
5

V (x)
EI

 (15.7)

and differentiating again,

d 4y

dx 
4 5

1
EI

  
dV

 dx
5 2 

 w (x)
EI

Thus, when a prismatic beam supports a distributed load w(x), its elastic 
curve is governed by the fourth-order linear differential equation

 
d 4y

dx 
4 5 2 

 w (x)
EI

 (15.8)

Multiply both members of Eq. (15.8) by the constant EI and integrate 
four times to obtain

 EI  

d 
4y

dx 
4 5 2w(x)

 EI  

d  
3y

dx  
3 5 V(x) 5 2#w(x) dx 1 C 1

 EI  

d 
2y

dx 
2 5 M(x) 5 2#  dx #  w(x) dx 1 C 1x 1 C 2 (15.9)

 EI  

dy

dx
5 EI θ (x) 5 2#dx#dx#w(x) dx 1

1
2

� C 1x 
2

1 C 2x 1 C 3

 EI y(x) 5 2# dx #dx # dx # w(x) dx 1
1
6

 C 1x 
3 1

1
2

 C 2 
x 

2 1 C 3 
x 1 C 4

The four constants of integration are determined from the boundary 
conditions. These conditions include (a) the conditions imposed on the 
deflection or slope of the beam by its supports (see. Sec. 15.1A) and (b) the 
condition that V and M be zero at the free end of a cantilever beam or that M 
be zero at both ends of a simply supported beam (see. Sec. 12.2). This has 
been illustrated in Fig. 15.12.

B

B

xA

A

y

y

[ yA5 0]

x

[ yA5 0]
[  A     0]

[VB 5 0]
[MB 5 0]

[ yB5 0]
[MB5 0][MA5 0]

5
(a)

(b)

θ

Fig. 15.12 Boundary conditions for (a) 
cantilever beam (b) simply supported beam.
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This method can be used effectively with cantilever or simply sup-
ported beams carrying a distributed load. In the case of overhanging beams, 
the reactions at the supports cause discontinuities in the shear (i.e., in the 
third derivative of y), and different functions are required to define the elas-
tic curve over the entire beam.

Concept	Application	15.4

The simply supported prismatic beam AB carries a uniformly distributed 
load w per unit length (Fig. 15.13a). Determine the equation of the elastic 
curve and the maximum deflection of the beam. (This is the same beam and 
load as in Concept Application 15.2.)

Since w 5 constant, the first three of Eqs. (15.9) yield

 EI  

d 4y

dx4 5 2w

 EI  

d 3y

dx 
3 5 V(x) 5 2wx 1 C1

  EI  

d 2y

dx 
2 5 M(x) 5 2

1
2

  wx 
2 1 C 1x 1 C 2 (1)

Noting that the boundary conditions require that M 5 0 at both ends of the 
beam (Fig. 15.13b), let x 5 0 and M 5 0 in Eq. (1) and obtain C 2 5 0. Then 
make x 5 L and M 5 0 in the same equation and obtain C1 5 1

2 wL.
Carry the values of C1 and C 2 back into Eq. (1) and integrate twice to 

obtain

 EI  

d 2 y

dx 
2 5 2 

1
2

  wx 
2 1

1
2

  wL x

 EI  

dy

dx
5 2 

1
6

 wx 
3 1

1
4

 wL x 
2 1 C 3

 EI y 5 2 
1
24

 wx 
4 1

1
12

 wL x 
3 1 C 3  

x 1 C4 (2)

But the boundary conditions also require that y 5 0 at both ends of the 
beam. Letting x 5 0 and y 5 0 in Eq. (2), C4 5 0. Letting x 5 L and y 5 0 
in the same equation gives

0 5 2 1
24 wL4 1 1

12 wL4 1 C 3L

C3 5 2 1
24  wL3

Carrying the values of C 3 and C4 back into Eq. (2) and dividing both mem-
bers by EI, the equation of the elastic curve is

 y 5
w

24EI
 (2x4 1 2L x3 2 L3x) (3)

The maximum deflection is obtained by making x 5 Ly2 in Eq. (3).

|  y | max 5
5wL4

384EI

BA

L

w

(a)

w

L

B
A

y

x 5 0, M 5 0

x

[ ] x 5 L, M 5 0[ ]
x 5 L, y 5 0[ ]x 5 0, y 5 0[ ]

(b)

Fig. 15.13 (a) Simply supported beam 
with a uniformly distributed load.  
(b) Boundary conditions.
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15.2  STATICALLY INDETERMINATE 
BEAMS

In the preceding sections, our analysis was limited to statically determinate 
beams. Now consider the prismatic beam AB (Fig. 15.14a), which has a 
fixed end at A and is supported by a roller at B. Drawing the free-body dia-
gram of the beam (Fig. 15.14b), the reactions involve four unknowns, with 
only three equilibrium equations:
 oFx 5 0   oFy 5 0   oMA 5 0 (15.10)

Since only Ax can be determined from these equations, the beam is statically 
indeterminate.

BA
A

L

(a)

B

wL

Ax

Ay

L

L/2

(b)

MA

B

w

Fig. 15.14 (a) Statically indeterminate beam with a uniformly distributed 
load. (b) Free-body diagram with four unknown reactions.

Recall from Chaps. 9 and 10 that, in a statically indeterminate prob-
lem, the reactions can be obtained by considering the deformations of the 
structure. Therefore, we proceed with the computation of the slope and 
deformation along the beam. Following the method used in Sec. 15.1A, 
the bending moment M(x) at any given point AB is expressed in terms of 
the distance x from A, the given load, and the unknown reactions. Integrat-
ing in x, expressions for θ and y are found. These contain two additional 
unknowns: the constants of integration C1 and C2. Altogether, six equa-
tions are available to determine the reactions and constants C1 and C2; they 
are the three equilibrium equations of Eq. (15.10) and the three equations 
expressing that the boundary conditions are satisfied (i.e., that the slope and 
deflection at A are zero and that the deflection at B is zero (Fig. 15.15)). 
Thus, the reactions at the supports can be determined, and the equation of 
the elastic curve can be obtained.

w

B
x

x 5 0,    5 0[ ]
x 5 L, y 5 0[ ]

x 5 0, y 5 0[ ]

A

y

θ

Fig. 15.15 Boundary conditions for 
beam of Fig. 15.14.

Concept	Application	15.5

Determine the reactions at the supports for the prismatic beam of 
Fig. 15.14a.
 Equilibrium	Equations. From the free-body diagram of Fig. 15.14b,

 1→ oFx 5 0:    Ax 5 0

 1  ↑ oFy 5 0:    �Ay 1 B 2 wL 5 0 (1)

1 oMA 5 0:    MA 1 BL 2 1
2  wL2 5 0

(continued)
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In the previous Concept Application, there was one redundant reac-
tion (i.e., one more than could be determined from the equilibrium equa-
tions alone). The corresponding beam is statically indeterminate to the 
first degree. Another example of a beam indeterminate to the first degree 
is provided in Sample Prob. 15.3. If the beam supports are such that two 
reactions are redundant (Fig. 15.17a), the beam is indeterminate to the 
second degree. While there are now five unknown reactions (Fig. 15.17b), 
four equations can be obtained from the boundary conditions (Fig. 15.17c). 
Thus, seven equations are available to determine the five reactions and the 
two constants of integration.

 Equation	 of	 Elastic	 Curve. Draw the free-body diagram of a 
portion of beam AC (Fig. 15.16) to obtain
 1 oMC 5 0:    M 1 1

2  wx 
2 1 MA 2 Ay  

x 5 0 (2)

Solving Eq. (2) for M and carrying into Eq. (15.4),

EI 
d 

2 y

dx 
2 5 2 

1
2

 wx 
2 1 Ay 

x 2 MA

Integrating in x gives

 EI θ 5 EI 
dy

dx
5 2 

1
6

  wx 
3 1

1
2

 Ay 
x 

2 2 MAx 1 C1 (3)

 EI y 5 2 
1
24

  wx 
4 1

1
6

 Ay  
x 

3 2
1
2

 MA 
x 

2 1 C1x 1 C 2 (4)

Referring to the boundary conditions indicated in Fig. 15.15, x 5 0,  
θ 5 0 in Eq. (3), x 5 0, y 5 0 in Eq. (4), and conclude that C1 5 C2 5 0. 
Thus, Eq. (4) is rewritten as

 EI  y 5 2 1
24  wx4 1 1

6 Ay  x3 2 1
2MA x2 (5)

But the third boundary condition requires that y 5 0 for x 5 L. Carrying 
these values into Eq. (5), 

0 5 2 1
24  wL4 1 1

6 Ay 
L3 2 1

2 MAL2

or
 3MA 2 Ay 

L 1 1
4 wL2 5 0 (6)

Solving this equation simultaneously with the three equilibrium equations 
of Eq. (1), the reactions at the supports are

Ax 5 0    Ay 5 5
8 wL    MA 5 1

8 wL2    B 5 3
8 wL

A

MA

x/2

C
M

V

wx

Ay

Ax

x

Fig. 15.16 Free-body diagram 
of beam portion AC.

w

MB

MA

A
B

Ax

Ay B
(b)

L

w

y

xA
B

(c)

x 5 0,    5 0[ ] x 5 L,    5 0[ ]
x 5 L, y 5 0[ ]x 5 0, y 5 0[ ]L

w

A B

(a)

Fixed end
Frictionless

surface

θ θ

Fig. 15.17 (a) Beam statically indeterminate to the second degree. (b) Free-body diagram. (c) Boundary conditions.

Final PDF to printer



15.2 Statically Indeterminate Beams 677

bee98160_ch15_663-704.indd 677 12/22/15  04:26 PM

Sample	Problem	15.1

The overhanging steel beam ABC carries a concentrated load P at end  
C. For portion AB of the beam, (a) derive the equation of the elastic 
curve, (b) determine the maximum deflection, (c) evaluate ymax for the 
following data:

W14 3 68        I 5 722 in4              

  
 E 5 29 3 106 psi

P 5 50 kips     L 5 15 ft 5 180 in.     a 5 4 ft 5 48 in.

STRATEGY: You should begin by determining the bending-moment 
equation for the portion of interest. Substituting this into the differential 
equation of the elastic curve, integrating twice, and applying the boundary 
conditions, you can then obtain the equation of the elastic curve. Use this 
equation to find the desired deflections.

MODELING: Using the free-body diagram of the entire beam (Fig. 1)  
gives the reactions: RA 5 PayL ↓ RB 5 P(1 1 ayL)↑. The free-body dia-
gram of the portion of beam AD of length x (Fig. 1) gives

M 5 2P 

a

L
  x    (0 , x , L)

ANALYSIS:

Differential	Equation	of	the	Elastic	Curve.  Using Eq. (15.4)  
gives

EI   

d 2y

dx 
2 5 2P 

a

L
  x

Noting that the flexural rigidity EI is constant, integrate twice and find

  EI   

dy

dx
5 2 

1
2

 P 

a

L
  x 

2 1 C1 (1)

  EI y 5 2 
1
6

 P 

a

L
  x 

3 1 C1x 1 C 2 (2)

B

P

C
A

L a

RA 5 P
V

B

D

y

P

M

RA RB

C

x

L a

A

A

L
a

Fig. 1 Free-body diagrams of 
beam and portion AD.

(continued)
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	 Determination	 of	 Constants.	 For the boundary conditions 
shown (Fig. 2),

[x 5 0, y 5 0]:    From Eq. (2),     C2 5 0
[x 5 L, y 5 0]:    Again using Eq. (2),

EI(0) 5 2 
1
6

  P  

a

L
 L3 1 C1L    C1 5 1

1
6

 PaL

	 a.	 Equation	of	the	Elastic	Curve. Substituting for C1 and C2 into 
Eqs. (1) and (2), 

 EI  

dy

dx
5 2 

1
2

 P 

a

L
  x 

2 1
1
6

 PaL   
dy

dx
5

PaL

6EI
 [1 2 3 ( x

L)
2 ]  (3)

 EI y 5 2 
1
6

 P  

a

L
 x 

3 1
1
6

 PaL x    y 5
PaL2

6EI
 [ x

L
2 ( x

L)
3 ]  (4) b

	 b.	 Maximum	Deflection	in	Portion	AB.  The maximum deflec-
tion ymax occurs at point E where the slope of the elastic curve is zero  
(Fig. 3). Setting dyydx 5 0 in Eq. (3), the abscissa xm of point E is

0 5
PaL

6EI [1 2 3 (xm

L )2 ]    xm 5
L

√3
5 0.577L

Substitute xmyL 5 0.577 into Eq. (4):

 ymax 5
PaL2

6EI
 [ (0.577) 2 (0.577)3]  ymax 5 0.0642 

PaL2

EI
  b

	 c.	 Evaluation	of	ymax. For the data given, the value of ymax is

 ymax 5 0.0642 

(50 kips)(48 in.)(180 in.)2

(29 3 106 psi)(722 in4)
 ymax 5 0.238 in.  b

REFLECT	 and	 THINK: Because the maximum deflection is positive, 
it is upward. As a check, we see that this is consistent with the deflected 
shape anticipated for this loading (Fig. 3).

C

x

xm

ymax

A

B
E

y

Fig. 3 Deformed elastic curve with 
location of maximum deflection.

B

C

x

L a

A

y

[x 5 0, y 5 0] [x 5 L, y 5 0]

Fig. 2 Boundary conditions.
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Sample	Problem	15.2

For the beam and loading shown determine (a) the equation of the elastic 
curve, (b) the slope at end A, (c) the maximum deflection.

STRATEGY: Determine the elastic curve directly from the load distribu-
tion using Eq. (15.8), applying the appropriate boundary conditions. Use 
this equation to find the desired slope and deflection.

MODELING	and	ANALYSIS:

	 Differential	Equation	of	the	Elastic	Curve.   From Eq. (15.8),

 EI  

d 
4y

dx 
4 5 2w(x) 5 2w0 sin 

πx

L
 (1)

Integrate Eq. (1) twice:

 EI  

d 3y

dx 
3 5 V 5 1w0 

L

π cos 
πx

L
1 C1 (2)

 EI  

d 
2y

dx 
2 5 M 5 1w0 

L2

π2 sin 
πx

L
1 C1x 1 C 2 (3)

 Boundary Conditions:  Refer to Fig. 1.

[x 5 0, M 5 0]:    From Eq. (3),     C 2 5 0

[x 5 L, M 5 0]:    Again using Eq. (3),

0 5 w0
L2

π2 sin π 1 C1L  C1 5 0

Thus,

 EI  
d 2y

dx 
2 5 1w0

L2

π2 sin 
πx

L
 (4)

Integrate Eq. (4) twice:

  EI   

dy

dx
5 EI θ 5 2w0 

L3

π3  cos 
πx

L
1 C 3 (5)

  EI y 5 2w0 
L4

π4  sin 
πx

L
1 C 3 x 1 C4 (6)

 Boundary Conditions:  Refer to Fig. 1.

[x 5 0, y 5 0]:    Using Eq. (6), C4 5 0

[x 5 L, y 5 0]:    Again using Eq. (6), C3 5 0

B

w 5 w0 sin

A

x
L

x

y

L

π

B
x

L

A

y

[x 5 0, M 5 0]
[x 5 0, y 5 0]

[x 5 L, M 5 0]
[x 5 L, y 5 0]

Fig. 1 Boundary conditions.

(continued)
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	 a.	 Equation	of	Elastic	Curve. EIy 5 2w0 

L4

π4 sin 
πx

L
  b

 b. Slope	at	End	A.  Refer to Fig. 2. For x 5 0,

 EI θA 5 2w0
L3

π3 cos 0 θA 5
w0 L3

π3EI
  b

	 c.	 Maximum	Deflection.  Referring to Fig. 2, for x 5 1
2 L,

 ELymax 5 2w0 

L4

π4 sin 
π
2

 ymax 5
w0 

L4

π4EI
 ↓ b

REFLECT	and	THINK: As a check, we observe that the directions of 
the slope at end A and the maximum deflection are consistent with the 
deflected shape anticipated for this loading (Fig. 1).

Sample	Problem	15.3

For the uniform beam AB (a) determine the reaction at A, (b) derive the 
equation of the elastic curve, (c) determine the slope at A. (Note that the 
beam is statically indeterminate to the first degree.)

STRATEGY: The beam is statically indeterminate to the first degree. 
Treating the reaction at A as the redundant, write the bending-moment equa-
tion as a function of this redundant reaction and the existing load. After 
substituting the bending-moment equation into the differential equation  
of the elastic curve, integrating twice, and applying the boundary conditions, 
the reaction can be determined. Use the equation for the elastic curve to  
find the desired slope.

MODELING: Using the free body shown in Fig. 1, obtain the bending 
moment diagram:

1  oMD 5 0:    RAx 2
1
2

  (w0 
x 

2

L )  

x

3
2 M 5 0    M 5 RAx 2

w0 
x 

3

6L

L/2 L/2

A B

y

x

ymaxAθ

Fig. 2 Deformed elastic curve 
showing slope at A and maximum 
deflection.

A B

L

w0

A

w 5 w0

x
L(w0    ) x1

2
x1

3 x
L

D

x

M

V
RA

Fig. 1 Free-body diagram of portion  
AD of beam. (continued)
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ANALYSIS: 

	 Differential	Equation	of	the	Elastic	Curve.  Use Eq. (15.4) for

EI  
d 

2y

dx 
2 5 RAx 2

w0 
x 

3

6L

Noting that the flexural rigidity EI is constant, integrate twice and find

  EI  
dy

dx
5 EI θ 5

1
2

 RA 
x 

2 2
w0 

x 
4

24L
1 C1 (1)

  EI y 5
1
6

 RAx 
3 2

w0x 
5

120L
1 C1x 1 C 2 (2)

	 Boundary	Conditions.  The three boundary conditions that must 
be satisfied are shown in Fig. 2.

[x 5 0, y 5 0]: C 2 5 0 (3)

[x 5 L, θ 5 0]: 
1
2

  RAL2 2
w0 L3

24
1 C1 5 0 (4)

[x 5 L, y 5 0]: 
1
6

  RAL3 2
w0 L4

120
1 C1L 1 C 2 5 0 (5)

	 a.	 Reaction	 at	 A.  Multiplying Eq. (4) by L, subtracting Eq.  (5) 
member by member from the equation obtained, and noting that C2 5 0, 
give

 1
3 RAL3 2 1

30  w0L
4 5 0 RA 5 1

10  w0L↑  b

The reaction is independent of E and I. Substituting RA 5 1
10 w0L into  

Eq. (4),
1
2 ( 1

10 
 
w0L) L2 2 1

24  w0L
3 1 C1 5 0    C1 5 2 1

120 w0 L3

	 b.	 Equation	of	the	Elastic	Curve.  Substituting for RA, C1, and C 2 
into Eq. (2), 

EI y 5
1
6

  ( 1
10

  w0L) x 
3 2

w0x 
5

120L
2 ( 1

120
  w0L

3) x

y 5
w0

120EIL
 (2x 

5 1 2L2x 
3 2 L4x)  b

	 c.	 Slope	 at	 A (Fig. 3).  Differentiate the equation of the elastic 
curve with respect to x :

θ 5
dy

dx
5

w0

120EIL
 (25x 

4 1 6L2x 
2 2 L4)

Making x 5 0,     θA 5 2 
w0 

L3

120EI
     θA 5

w0L
3

120EI
  b

x

y

[x 5 0, y 5 0]
[x 5 L, y 5 0]
[x 5 L,    5 0]

A B

θ

Fig. 2 Boundary conditions. 

A

L

B
x

Aθ

Fig. 3 Deformed elastic curve 
showing slope at A.
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Problems
In	the	following	problems	assume	that	the	flexural	rigidity	EI	of	
each	beam	is	constant.

 15.1 through 15.4  For the loading shown, determine (a) the equation of the 
elastic curve for the cantilever beam AB, (b) the deflection at the free 
end, (c) the slope at the free end.

B

A

y

L

P

x

Fig. P15.1

BA

y

L

x

M0

Fig. P15.2

B
A

y

w

L

x

Fig. P15.4

w0

x
B

A

y

L

Fig. P15.3

 15.5	and	15.6	 	For the cantilever beam and loading shown, determine (a) the 
equation of the elastic curve for portion AB of the beam, (b) the 
deflection at B, (c) the slope at B.

y

A

w

B

L a

C x

MC 5
wL2

6

Fig. P15.5

C

A B

y

w

w

L/2 L/2

x

Fig. P15.6

 15.7 For the beam and loading shown, determine (a) the equation of the 
elastic curve for portion AB of the beam, (b) the slope at A, (c) the 
slope at B.

B C

w

A

L L/2

x

y

Fig. P15.7
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 15.8 For the beam and loading shown, determine (a) the equation of the 
elastic curve for portion AB of the beam, (b) the deflection at mid-
span, (c) the slope at B.

B C
A

L L/2

x

y w0

Fig. P15.8

 15.9 Knowing that beam AB is an S200 3 34 rolled shape and that P 5 
60 kN, L 5 2 m, and E 5 200 GPa, determine (a) the slope at A, 
(b) the deflection at C.

y

A

L/2L/2

x
BC

P

S

Fig. P15.9

 15.10 Knowing that beam AB is a W10 3 33 rolled shape and that w0 5 
3 kips/ft, L 5 12 ft, and  E 5 29 3 106 psi, determine (a) the slope 
at A, (b) the deflection at C.

A
C

xB

y
w0

W

L/2 L/2

Fig. P15.10

 15.11 (a) Determine the location and magnitude of the maximum deflec-
tion of beam AB. (b) Assuming that beam AB is a W360 3 64 rolled 
shape, L 5 3.5 m, and E 5 200 GPa, calculate the maximum allow-
able value of the applied moment M0 if the maximum deflection is 
not to exceed 1 mm.

x

y

A

L

B

M0

Fig. P15.11
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 15.12 For the beam and loading shown, (a) express the magnitude and loca-
tion of the maximum deflection in terms of w0, L, E, and I. (b) Calcu-
late the value of the maximum deflection, assuming that beam AB is a 
W18 3 50 rolled shape and that w0 5 4.5 kips/ft, L 5 18 ft, and E 5 
29 3 106 psi.

x

y

A

L

B

w0

Fig. P15.12

 15.13 For the beam and loading shown, determine the deflection at point C. 
Use E 5 200 GPa.

x

y

A

L 5 4.8 m

W200 3 35.9

a 5 1.2 m

B

C

M0 5 60 kN·m

Fig. P15.13

 15.14 For the beam and loading shown, determine the deflection at point C. 
Use E 5 29 3 106 psi.

x

y

A

L 5 15 ft

W14 3 30

a 5 5 ft

BC

P 5 35 kips

Fig. P15.14

 15.15 For the beam and loading shown, determine (a) the equation of the 
elastic curve, (b) the slope at end A, (c) the deflection at the midpoint 
of the span.

x

y

A

L

B

w 5 4w0[ ]2
x
L

x2

L2

Fig. P15.15
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 15.16 For the beam and loading shown, determine (a) the equation of the elas-
tic curve, (b) the deflection at the free end.

w 5 w0 [1 2 4(   ) 1 3(   )2]x
L

x
L

y

A
x

L

B

Fig. P15.16

 15.17 through 15.20  For the beam and loading shown, determine the reac-
tion at the roller support.

L

A
B

M0

Fig. P15.18

B
A

w

L

Fig. P15.17

B
A

w0

L

Fig. P15.20

B
A

w0

L

Fig. P15.19

	15.21	and	15.22	 	Determine the reaction at the roller support, and draw the 
bending moment diagram for the beam and loading shown.

P

A C
B

L/2 L/2

Fig. P15.21

B

C

w

A

L/2 L/2

Fig. P15.22
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	15.23	and	15.24  Determine the reaction at the roller support and the deflec-
tion at point D if a is equal to L/3.

B
A

D

a

L

P

Fig. P15.23

B
A

a

L

D

M0

Fig. P15.24

	15.25	and	15.26	 	Determine the reaction at A and draw the bending moment 
diagram for the beam and loading shown.

BA C

P

L/2 L/2

Fig. P15.25

BA C

L/2 L/2

w0

Fig. P15.26
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15.3 METHOD OF SUPERPOSITION

15.3A Statically Determinate Beams
When a beam is subjected to several concentrated or distributed loads, it is 
convenient to compute separately the slope and deflection caused by each 
of the given loads. The slope and deflection due to the combined loads are 
obtained by applying the principle of superposition (Sec. 9.5) and adding the 
values of the slope or deflection corresponding to the various loads.

Concept	Application	15.6

Determine the slope and deflection at D for the beam and loading  
shown (Fig. 15.18a), knowing that the flexural rigidity of the beam is 
EI 5 100 MN?m2.

The slope and deflection at any point of the beam can be obtained  
by superposing the slopes and deflections caused by the concentrated  
load and by the distributed load (Fig. 15.18b).

Since the concentrated load in Fig. 15.18c is applied at quarter span, 
the results for the beam and loading of Concept Application 15.3 can be 
used to write

 (θD)P 5 2 
PL2

32EI
5 2 

(150 3 103)(8)2

32(100 3 106)
5 23 3 1023 rad

 (yD)P 5 2 
3PL3

256EI
5 2 

3(150 3 103)(8)3

256(100 3 106)
5 29 3 1023 m

 5 29 mm

On the other hand, recalling the equation of the elastic curve obtained for 
a uniformly distributed load in Concept Application 15.2, the deflection in 
Fig. 15.18d is

 y 5
w

24EI
(2x 

4 1 2L x 
3 2 L3x) (1)

A
D

B

150 kN

20 kN/m
2 m

8 m
(a)

Fig. 15.18 (a) Simply 
supported beam having 
distributed and concentrated 
loads. 

2 m

D

BA

L 5 8 m

P 5 150 kN

D

20 kN/m
150 kN

BA
D

x 5 2 m
L 5 8 m

BA

w 5 20 kN/m

(c)(b) (d)
Fig. 15.18 (b) The beam’s loading can be obtained by superposing deflections due to (c) the concentrated load 
and (d) the distributed load.

Differentiating with respect to x gives

 θ 5
dy

dx
5

w

24EI
 (24x 

3 1 6L x 
2 2 L3) (2)

(continued)
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Making w 5 20 kN/m, x 5 2 m, and L 5 8 m in Eqs. (1) and (2), we obtain

 (θD)w 5
20 3 103

24(100 3 106)
 (2352) 5 22.93 3 1023 rad

 (yD)w 5
20 3 103

24(100 3 106)
 (2912) 5 27.60 3 1023 m

   5 27.60 mm

Combining the slopes and deflections produced by the concentrated and the 
distributed loads,

 θD 5 (θD)P 1 (θD)w 5 23 3 1023 2 2.93 3 1023

 5 25.93 3 1023 rad
 yD 5 (yD)P 1 (yD)w 5 29 mm 2 7.60 mm 5 216.60 mm

To facilitate the work of practicing engineers, most structural and 
mechanical engineering handbooks include tables giving the deflections 
and slopes of beams for various loadings and types of support. Such a table 
is found in Appendix C. The slope and deflection of the beam of Fig. 15.18a  
could have been determined from that table. Indeed, using the informa-
tion given under cases 5 and 6, we could have expressed the deflection of 
the beam for any value x # Ly4. Taking the derivative of the expression 
obtained in this way would have yielded the slope of the beam over the 
same interval. We also note that the slope at both ends of the beam can 
be obtained by simply adding the corresponding values given in the table. 
However, the maximum deflection of the beam of Fig. 15.18a cannot be 
obtained by adding the maximum deflections of cases 5 and 6, since these 
deflections occur at different points of the beam.†

15.3B Statically Indeterminate Beams
We often find it convenient to use the method of superposition to determine 
the reactions at the supports of a statically indeterminate beam. Considering  
a beam indeterminate to the first degree, such as the beam shown in 
Photo 15.2, we can use the approach described in Sec. 15.2. We designate 
one of the reactions as redundant and eliminate or modify accordingly 
the corresponding support. The redundant reaction is then treated as an 
unknown load that, together with the other loads, must produce deforma-
tions compatible with the original supports. The slope or deflection at the 
point where the support has been modified or eliminated is obtained by 
computing the deformations caused by both the given loads and the redun-
dant reaction and by superposing the results. Once the reactions at the sup-
ports are found, the slope and deflection can be determined.

†An approximate value of the maximum deflection of the beam can be obtained by plotting 
the values of y corresponding to various values of x . The determination of the exact location 
and magnitude of the maximum deflection would require setting equal to zero the expression 
obtained for the slope of the beam and solving this equation for x .

Photo 15.2 The continuous beams 
supporting this highway overpass have three 
supports and are thus statically indeterminate.

© John DeWolf
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B

(yB)R

RB

w w

B

A A
B

yB 5 0

(yB)wRB

A

(c)(b) (d)

Fig. 15.19 (b) Analyze the indeterminate beam by superposing two determinate cantilever beams, subjected 
to (c) a uniformly distributed load, (d) the redundant reaction.

Concept	Application	15.7

Determine the reactions at the supports for the prismatic beam and loading 
shown in Fig. 15.19a. (This is the same beam and loading as in Concept 
Application 15.5.)

We consider the reaction at B as redundant and release the beam 
from the support. The reaction RB is now considered as an unknown load  
 (Fig. 15.19b) and will be determined from the condition that the deflection 
of the beam at B must be zero. The solution is carried out by considering 
separately the deflection ( yB)w caused at B by the uniformly distributed load 
w (Fig. 15.19c) and the deflection ( yB)R produced at the same point by the 
redundant reaction RB (Fig. 15.19d).

From the table of Appendix C (cases 2 and 1),

(yB)w 5 2 
wL4

8EI
    (yB)R 5 1

RB 
L3

3EI

Writing that the deflection at B is the sum of these two quantities and that 
it must be zero, 

 yB 5 (yB)w 1 (yB)R 5 0

 yB 5 2 
wL4

8EI
 1

RBL3

3EI
5 0

and, solving for RB,  RB 5 3
8 wL   RB 5 3

8 wL ↑

Drawing the free-body diagram of the beam (Fig. 15.19e) and writing 
the corresponding equilibrium equations,

1↑ o   Fy 5 0:  RA 1 RB 2 wL 5 0 (1)

 RA 5 wL 2 RB 5 wL 2 3
8 wL 5 5

8 wL

  RA 5 5
8 wL ↑

1 oMA 5 0:  MA 1 RBL 2 (wL)(1
2L) 5 0 (2)

 MA 5 1
2 wL2 2 RBL 5 1

2 wL2 2 3
8 wL2 5 1

8 wL2

 MA 5 1
8 wL2  

(continued)

BA

L

w

(a)

Fig. 15.19 (a) Statically 
indeterminate beam with a 
uniformly distributed load.

B

wL

MA

RA RB

A

L

L /2

(e)

Fig. 15.19 (e) Free-body diagram 
of indeterminate beam.
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BA

wMA

MA

w

BA

(f ) (g) (h)

A 5 0 ( A)w

( A)M

BA

θ θ
θ

Fig. 15.19 (f ) Analyze the indeterminate beam by superposing two determinate simply supported beams, 
subjected to (g) a uniformly distributed load, (h) the redundant reaction.

 Alternative	Solution. We may consider the couple exerted at the 
fixed end A as redundant and replace the fixed end by a pin-and-bracket sup-
port. The couple MA is now considered as an unknown load (Fig. 15.19f ) 
and will be determined from the condition that the slope of the beam at 
A must be zero. The solution is carried out by considering separately the 
slope (θA)w caused at A by the uniformly distributed load w (Fig. 15.19g) 
and the slope (θA)M produced at the same point by the unknown couple MA  
(Fig 15.19h).

Using the table of Appendix C (cases 6 and 7) and noting that  
A and B must be interchanged in case 7,

(θA)w 5 2 
wL3

24 EI
    (θA)M 5

MAL

3EI

Writing that the slope at A is the sum of these two quantities and that it must 
be zero gives

θA 5 (θA)w 1 (θA)M 5 0

θA 5 2 
wL3

25EI
1

MAL

3EI
5 0

where MA is

MA 5 1
8 wL2    MA 5 1

8 wL2 

The values of RA and RB are found by using the equilibrium equations  
(1) and (2).

The beam considered in the preceding Concept Application was 
indeterminate to the first degree. In the case of a beam indeterminate to 
the second degree (see Sec. 15.2), two reactions must be designated as 
redundant, and the corresponding supports must be eliminated or modi-
fied accordingly. The redundant reactions are then treated as unknown 
loads that, simultaneously and together with the other loads, must produce 
deformations that are compatible with the original supports. (See Sample 
Prob. 15.6.)
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Sample	Problem	15.4

For the beam and loading shown, determine the slope and deflection at 
point B.

STRATEGY: Using the method of superposition, you can model the 
given problem using a summation of beam load cases for which deflection 
formulae are readily available.

MODELING: Through the principle of superposition, the given loading 
can be obtained by superposing the loadings shown in the following picture 
equation of Fig. 1. The beam AB is the same in each part of the figure.

B
C

w

A

L /2 L /2

B
C

A

y

L/2 L/2

B

x

yBA

B

w

Loading I Loading II

A

L

B
C

w

A

L/2 L/2

B

y

B

A

B

x
x(yB)I

(  B)I

A

y (  B)II

(yB)II

w

θ θ

θ

Fig. 1 Actual loading is equivalent to the superposition of two 
distributed loads.

ANALYSIS: For each of the loadings I and II (detailed further in  
Fig. 2), determine the slope and deflection at B by using the table of Beam 
Deflections and Slopes in Appendix C.

 Loading I

 (θB)I 5 2 
wL3

6EI
 (yB)I 5 2 

wL4

8EI

 Loading II

(θC)II 5 1
w(Ly2)3

6EI
5 1

wL3

48EI
  (yC)II 5 1

w(Ly2)4

8EI
5 1

wL4

128EI

B

w

Loading I

Loading II

A

L

y

B

x

(yB)I

(  B)I

A

BC

w

A

L/2 L/2

A C

B

x

y (  B)II(  C)II

(yB)II

(yC)II

θ θ

θ

Fig. 2 Deformation details of the 
superposed loadings I and II.

(continued)
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In portion CB, the bending moment for loading II is zero. Thus, the elastic 
curve is a straight line.

 (θB)II 5 (θC)II 5 1
wL3

48EI
 (yB)II 5 (yC)II 1 (θC)II (L

2)
 5

wL4

128EI
1

wL3

48EI
 (L

2) 5 1
7wL4

384EI

	 Slope	at	Point	B

θB 5 (θB)I 1 (θB)II 5 2 
wL3

6EI
1

wL3

48EI
5 2 

7wL3

48EI
 θB 5

7wL3

48EI
   b

	 Deflection	at	B

yB 5 (yB)I 1 (yB)II 5 2  
wL4

8EI
1

7wL4

384EI
5 2 

41wL4

384EI
 yB 5

41wL4

384EI
 ↓  b

REFLECT	and	THINK: Note that the formulae for one beam case can 
sometimes be extended to obtain the desired deflection of another case, as 
you saw here for loading II. 

Sample	Problem	15.5

For the uniform beam and loading shown, determine (a) the reaction at each 
support, (b) the slope at end A.

STRATEGY: The beam is statically indeterminate to the first degree. 
Strategically selecting the reaction at B as the redundant, you can use the 
method of superposition to model the given problem by using a summation 
of load cases for which deflection formulae are readily available.

MODELING: The reaction RB is selected as redundant and considered as 
an unknown load. Applying the principle of superposition, the deflections 
due to the distributed load and to the reaction RB are considered separately as 
shown in Fig. 1.

B

w

A C

2L/3

L

L/3

(continued)
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B

B

w

A

A

y

C

xC

2L/3 L/3
RB RB

B

w

A C

2L/3 L/3

BA C

2L/3 L/3

[yB 5 0]
B

A

y

xC

(yB)w(  A)w

B

A

y

xC

(yB)R(  A)R

5 1

15

θ
θ

Fig. 1 Indeterminate beam modeled as superposition of two determinate simply supported beams with 
reaction at B chosen as redundant.

ANALYSIS: For each loading case, the deflection at point B is found by 
using the table of Beam Deflections and Slopes in Appendix C. 

 Distributed	Loading.  Use case 6, Appendix C:

y 5 2 

w

24EI
 (x 

4 2 2L x 
3 1 L3x)

At point B, x 5 2
3 L:

(yB)w 5 2 
w

24EI
 [(2

3
 L)4

2 2L (2
3

 L)3

1 L3
 (2

3
 L)] 5 20.01132 

wL4

EI

 Redundant	Reaction	Loading.  From case 5, Appendix C, with 
a 5 2

3 L and b 5 1
3 L,

(yB)R 5 2 
Pa2b2

3EIL
5 1

RB

3EIL
 (2

3
 L)2(L

3)
2

5 0.01646 

RB 
L3

EI

	 a.	 Reactions	at	Supports.  Recalling that yB 5 0,

 yB 5 (
 
yB)w 1 (

 
yB)R

 0 5 20.01132 

wL4

EI
1 0.01646 

RBL3

EI
  RB 5 0.688wL ↑ b

Since the reaction RB is now known, use the methods of statics to determine  
the other reactions (Fig. 2):
 RA 5 0.271wL ↑  RC 5 0.0413wL ↑ b

B

w

A C

RA 5 0.271 wL RB 5 0.688 wL

RC 5 0.0413 wL

Fig. 2 Free-body diagram of beam 
with calculated reactions.

(continued)
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Sample	Problem	15.6

For the beam and loading shown, determine the reaction at the fixed   
support C.

STRATEGY: The beam is statically indeterminate to the second degree. 
Strategically selecting the reactions at C as redundants, you can use the 
method of superposition and model the given problem by using a summa-
tion of load cases for which deflection formulae are readily available.

MODELING: Assuming the axial force in the beam to be zero, the beam 
ABC is indeterminate to the second degree, and we choose two reaction 
components as redundants: the vertical force RC and the couple MC. The 
deformations caused by the given load P, the force RC , and the couple MC 
are considered separately, as shown in Fig. 1.

ANALYSIS: For each load, the slope and deflection at point C is found by 
using the table of Beam Deflections and Slopes in Appendix C.

 Load P.  For this load, portion BC of the beam is straight.

 (θC)P 5 (θB)P 5 2 
Pa2

2EI
    (yC)P 5 (yB)P 1 (θB)pb

 5 2 
Pa 

3

3EI
2

Pa 
2

2EI
  b 5 2 

Pa 
2

6EI
  (2a 1 3b)

	 b.	 Slope	at	End	A.  Referring again to Appendix C,

 Distributed Loading.  (θA)w 5 2 

wL3

24EI
5 20.04167 

wL3

EI

 Redundant Reaction Loading.   For P 5 2RB 5 20.688wL 

 and b 5 1
3 L,

  (θA)R 5 0.03398 

wL3

EI

Finally, θA 5 (θA)w 1 (θA)R

θA 5 20.04167 

wL3

EI
1 0.03398 

wL3

EI
5 20.00769 

wL3

EI

 θA 5 0.00769 
wL3

EI
  b

(θA)R 5 2 
Pb(L2 2 b 

2)
6EIL

5 1
0.688wL

6EIL
 (L

3)[L2 2 (L

3)
2 ]

B

P

C

L

a b

A

(continued)
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 Force RC (θC)R 5 1
RC L2

2EI
   (yC)R 5 1

RC L3

3EI

 Couple MC (θC)M 5 1
MC 

L

EI
   (yC)M 5 1

MC L2

2EI

 Boundary Conditions.  At end C, the slope and deflection must  
be zero:

[x 5 L, θC 5 0]:  θC 5 (θC)P 1 (θC)R 1 (θC)M

 0 5 2 
Pa2

2EI
1

RC L2

2EI
1

MC L

EI
 (1)

[x 5 L, yC 5 0]:  yC 5 (yC)P 1 (yC)R 1 (yC)M

 0 5 2 
Pa2

6EI
 (2a 1 3b) 1

RC L3

3EI
1

MC L2

2EI
 (2)

	 Reaction	 Components	 at	 C.  Solve Eqs. (1) and (2) 
simultaneously:

 RC 5 1
Pa2

L3  (a 1 3b) RC 5
Pa2

L3  (a 1 3b) ↑ b

 MC 5 2 
Pa2b

L2  MC 5
Pa2b

L2      b

The methods of statics are used to determine the reaction at A, shown  
in Fig. 2.

REFLECT	and	THINK: Note that an alternate strategy that could have 
been used in this particular problem is to treat the couple reactions at 
the ends as redundant. The application of superposition would then have 
involved a simply-supported beam, for which deflection formulae are also 
readily available.

B

P

C

C

a b

ABA

PMC MC

RC RC
a b

C

C

L

A

C

C

A

A

L

BB
C

C

A

A A
(  C)M

(yC)M

(  C)P

(  C)R

(  B)P

(yC)P

(yC)R

(yB)P

[  B5 0]

[yB5 0]

θ θ θ

θ
θ

Fig. 1 Indeterminate beam modeled as the superposition of three determinate cases, including one for each 
of the two redundant reactions.

L

a bRA RC     

Pa2b

L2MC 5
PPab2

L2MA 5

Pb2

L3RA 5 (3a 1 b) Pa2

L3RC 5 (a 1 3b)

Fig. 2 Free-body diagram showing 
the reaction results.
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Use	the	method	of	superposition	to	solve	the	following	prob-
lems	 and	 assume	 that	 the	 flexural	 rigidity	EI	 of	 each	beam	 is	
constant.

 15.27 through 15.30  For the beam and loading shown, determine (a) the 
deflection at point C, (b) the slope at end A.

D

C

B

P

P

A

L/3 L/3 L/3

Fig. P15.28

B
C

P

A

L/3 2L/3

MB 5 P L
3

Fig. P15.27

B

w

A
C

L

wL2

12MA 5

Fig. P15.29

DCB

P P P

A E

a a aa

Fig. P15.30

	15.31	and	15.32	 	For the cantilever beam and loading shown, determine the 
slope and deflection at the free end.

B
A

C

L/2 L/2

M 5 PL
P

Fig. P15.32

CA B

P 2P

L/2 L/2

Fig. P15.31

 15.33	and	15.34  For the cantilever beam and loading shown, determine the 
slope and deflection at point C.

B
C

w 5

L/2 L/2

A

P

P
L

Fig. P15.33

CBA

w wL2

24M 5

L /2 L /2

Fig. P15.34

Problems

Final PDF to printer



697

bee98160_ch15_663-704.indd 697 12/22/15  04:26 PM

 15.35 For the cantilever beam and loading shown, determine the slope and 
deflection at end A. Use E 5 29 3 106 psi.

C

B

1 kip/ft

2 ft 3 ft

A

1 kip 2.0 in.

4.0 in.

Fig.	P15.35	and	P15.36

 15.36 For the cantilever beam and loading shown, determine the slope and 
deflection at point B. Use E 5 29 3 106 psi.

	15.37	and	15.38  For the beam and loading shown, determine (a) the slope 
at end A, (b) the deflection at point C. Use E 5 200 GPa.

1.3 m 2.6 m

B
C

8 kN/m

35 kN

A

W360 3 39

Fig. P15.38

BC

140 kN
80 kN·m80 kN·m

2.5 m 2.5 m

A

W410 3 46.1

Fig. P15.37

	15.39	and	15.40	 	For the uniform beam shown, determine (a) the reaction at 
A, (b) the reaction at B.

A

B

C D

P P

L/3 L/3 L/3

Fig. P15.40

B
A

C

w

L/2 L/2

Fig. P15.39

 15.41	and	15.42	 	For the uniform beam shown, determine the reaction at 
each of the three supports.

A B
C

2L
3

L
3

M0

Fig. P15.41

A EDCB

L/2 L/2 L/2 L/2

P 2P

Fig. P15.42

	15.43	and	15.44  For the beam shown, determine the reaction at B.

BA

C

L/2 L/2

M0

Fig. P15.44

B

A C

L/2 L/2

w

Fig. P15.43
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20 in.
C

B

80 lb

10 in.

A

Fig. P15.50

 15.45 The two beams shown have the same cross section and are joined by a 
hinge at C. For the loading shown, determine (a) the slope at point A, 
(b) the deflection at point B. Use E 5 29 3 106 psi.

 15.46 A central beam BD is joined by hinges to two cantilever beams AB and 
DE. All beams have the cross section shown. For the loading shown, 
determine the largest w so that the deflection at C does not exceed  
3 mm. Use E 5 200 GPa.

A CB

0.4 m 0.4 m 0.4 m 0.4 m

HingeHinge
D E

24 mm

12 mm

w

Fig. P15.46

 15.47 For the loading shown, and knowing that beams AB and DE have the 
same flexural rigidity, determine the reaction (a) at B, (b) at E.

P 5 6 kips
a 5 4 ft

a 5 4 ft

b 5 5 ft
D

A C

E

B

b 5 5 ft

Fig. P15.47

 15.48 Knowing that the rod ABC and the cable BD are both made of steel, 
determine (a) the deflection at B, (b) the reaction at A. Use E 5 200 GPa.

 15.49 A 16-mm-diameter rod ABC has been bent into the shape shown. 
Determine the deflection of end C after the 200-N force is applied. 
Use E 5 200 GPa and G 5 80 GPa.

L 5 250 mm L 5 250 mm

200 N

B

C

A

Fig. P15.49

 15.50 A 7
8-in.-diameter rod BC is attached to the lever AB and to the fixed 

support at C. Lever AB has a uniform cross section 38 in. thick and 1 in. 
deep. For the loading shown, determine the deflection of point A. Use 
E 5 29 3 106 psi and G 5 11.2 3 106 psi.

A BCB

12 in.12 in.
6 in.

Hinge

D

800 lb

1.25 in.

1.25 in.

Fig. P15.45

C

D

0.18 m 0.18 m

A
B

0.2 m

40-mm
diameter

4-mm diameter
1.6 kN/m

Fig. P15.48
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Review and Summary
This chapter was devoted to the determination of the slopes and deflections 
of beams under transverse loadings and applied moments. A mathematical 
method based on the method of integration of a differential equation was 
used to get the slopes and deflections at any point along the beam. Particu-
lar emphasis was placed on the computation of the maximum deflection of 
a beam under a given loading. This method also was used to determine sup-
port reactions and deflections of indeterminate beams, where the number 
of reactions at the supports exceeds the number of equilibrium equations 
available to determine these unknowns.

Deformation	Under	Transverse	Loading
The relationship of the curvature 1yρ of the neutral surface and the bending 
moment M in a prismatic beam in pure bending can be applied to a beam 
under a transverse loading, but in this case both M and 1yρ vary from section 
to section. Using the distance x from the left end of the beam,

 
1
ρ 5

M(x)
EI

 (15.1)

This equation enables us to determine the radius of curvature of the neutral 
surface for any value of x and to draw some general conclusions regarding the 
shape of the deformed beam.
 A relationship was found between the deflection y of a beam, mea-
sured at a given point Q, and the distance x of that point from some fixed ori-
gin (Fig. 15.20). The resulting equation defines the elastic curve of a beam. 
Expressing the curvature 1yρ in terms of the derivatives of the function y(x) 
and substituting into Eq. (15.1), we obtained the second-order linear differential 
equation

 
d�

2y

dx2 5
M(x)

EI
 (15.4)

Integrating this equation twice, the expressions defining the slope θ(x) 5 dyydx 
and the deflection y(x) were obtained:

  EI 

dy

dx
5 #

x

0

M(x) dx 1 C1  (15.5)

  EI y 5 #
x

0

dx#
x

0

M(x) dx 1 C1x 1 C2 (15.6)

The product EI is known as the flexural rigidity of the beam. Two constants of 
integration C1 and C2 can be determined from the boundary conditions imposed 

C
y

x

y

A
D

Q

x

Elastic 
curve

P2P1

Fig. 15.20
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on the beam by its supports (Fig. 15.21). The maximum deflection can be 
obtained by first determining the value of x for which the slope is zero and then 
computing the corresponding value of y.

P
y

yA5 0

B
A x

(b)

yB50

P

y

B

xA

(c)

yA5 0

A5 0

B
A

y

(a)

yA5 0 yB5 0

x

θ

Fig. 15.21

Elastic	Curve	Defined	by	Different	Functions
When the load requires different analytical functions to represent the bending 
moment in various portions of the beam, multiple differential equations are 
required to represent the slope θ(x) and the deflection y(x). For the beam and 
load considered in Fig. 15.22, two differential equations are required: one for 
the portion of beam AD and the other for the portion DB. The first equation 
yields the functions θ1 and y1, and the second the functions θ2 and y2. Alto-
gether, four constants of integration must be determined: two by writing that 
the deflections at A and B are zero and two by expressing that the portions of 
beam AD and DB have the same slope and the same deflection at D.
 For a beam supporting a distributed load w(x), the elastic curve can be 
determined directly from w(x) through four integrations yielding V, M, θ, and y 
(in that order). For the cantilever beam of Fig. 15.23a and the simply supported 
beam of Fig. 15.23b, four constants of integration can be determined from the 
four boundary conditions.

D

BA

y

x x 50, y1 5 0 

x 5  L, y25  0[
[

[
[

x 5     L,  151
4[ [  

x 5     L, y15  y2

2
1
4[ [

P

θ θ

Fig. 15.22

Statically	 Indeterminate	Beams
Statically indeterminate beams are supported such that the reactions at the  
supports involve four or more unknowns. Since only three equilibrium equa-
tions are available to determine these unknowns, they are supplemented with 
equations obtained from the boundary conditions imposed by the supports.  

B

B

xA

A

y

y

(a)

(b)

[ yA5 0]

x

[ yA5 0]
[  A     0]

[VB 5 0]
[MB 5 0]

[ yB5 0]
[MB5 0][MA5 0]

5θ

B

B

xA

A

y

y

(a)

(b)

[ yA5 0]

x

[ yA5 0]
[  A     0]

[VB 5 0]
[MB 5 0]

[ yB5 0]
[MB5 0][MA5 0]

5θ

Fig. 15.23

Final PDF to printer



701

bee98160_ch15_663-704.indd 701 12/22/15  04:26 PM

BA
A

L

(a)

B

wL

Ax

Ay

L

L/2

(b)

MA

B

w

Fig. 15.24

For the beam of Fig 15.24, the reactions at the supports involve four unknowns: 
MA  , Ax  , A y  , and B. This beam is indeterminate to the first degree. (If five 
unknowns are involved, the beam is indeterminate to the second degree.) 
Expressing the bending moment M(x) in terms of the four unknowns and  
integrating twice, the slope θ(x) and the deflection y(x) are determined in terms 
of the same unknowns and the constants of integration C1 and C2. The six 
unknowns are obtained by solving the three equilibrium equations for the free 
body of Fig. 15.24b and the three equations expressing that θ 5 0, y 5 0 for  
x 5 0, and that y 5 0 for x 5 L (Fig. 15.25) simultaneously.

Method	of	Superposition
The method of superposition separately determines and then adds the slope and 
deflection caused by the various loads applied to a beam. This procedure is 
made easier using the table of Appendix C, which gives the slopes and deflec-
tions of beams for various loadings and types of support.

Statically	 Indeterminate	Beams	by	Superposition
The method of superposition can be effective for analyzing statically indeter-
minate beams. For example, the beam of Fig. 15.26 involves four unknown 
reactions and is indeterminate to the first degree; the reaction at B is chosen 
as redundant, and the beam is released from that support. Treating the reac-
tion RB as an unknown load and considering the deflections caused at B by the 
given distributed load and by RB separately, the sum of these deflections is zero  
(Fig. 15.27). For a beam indeterminate to the second degree (i.e., with reactions 
at the supports involving five unknowns), two reactions are redundant, and the 
corresponding supports must be eliminated or modified accordingly.

w

B
x

x 5 0,    5 0[ ]
x 5 L, y 5 0[ ]

x 5 0, y 5 0[ ]

A

y

θ

Fig. 15.25

BA

L

w

Fig. 15.26

B

(yB)R

RB

w w

B

A A
B

yB 5 0

(yB)wRB

A

(a) (b) (c)

Fig. 15.27 
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 15.51 For the beam and loading shown, determine (a) the equation of the 
elastic curve for portion AB of the beam, (b) the slope at A, (c) the 
slope at B.

y

A
C

B

L L/2

w

x

2w

Fig. P15.51

 15.52 (a) Determine the location and magnitude of the maximum absolute 
deflection in AB between A and the center of the beam. (b) Assuming 
that beam AB is a W460 3 113 rolled shape, M0 = 224 kN·m, and 
E = 200 GPa, determine the maximum allowable length L so that the 
maximum deflection does not exceed 1.2 mm.

y

x

M0
M0

B
A

L

Fig. P15.52

 15.53 Knowing that beam AE is an S200 3 27.4 rolled shape and that P = 
17.5 kN, L = 2.5 m, a = 0.8 m, and E = 200 GPa, determine (a) the 
equation of the elastic curve for portion BD, (b) the deflection at the 
center C of the beam.

y

E
xA

a a

B C D

L/2L/2

P P

Fig. P15.53

 15.54 For the beam and loading shown, determine (a) the equation of the 
elastic curve, (b) the slope at end A, (c) the deflection at the midpoint 
of the span.

Review Problems

x

y

A

L

B

w 5 w0 [ ]21 x2

L2

Fig. P15.54
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 15.55 For the beam shown, determine the reaction at the roller support 
when w0 = 6 kips/ft.

B

L 5 12 ft

w 5 w0 (x/L)2

A

w0

Fig. P15.55

 15.56 Determine the reaction at the roller support and draw the bending-
moment diagram for the beam and loading shown.

B
A

L/2

C

L

M0

Fig. P15.56

 15.57 For the cantilever beam and loading shown, determine the slope and 
deflection at the free end.

C
A

B

P

a

L

MA 5 Pa

Fig. P15.57

 15.58 For the beam and loading shown, determine (a) the deflection at point 
C, (b) the slope at end A.

CB
A D

L/3 L/3 L/3

P P

Fig. P15.58

 15.59 For the cantilever beam and loading shown, determine the slope and 
deflection at point B. Use E = 200 GPa.

3 kN 3 kN

C

B

A

0.75 m 0.5 m
S100 3 11.5

Fig. P15.59
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 15.60 For the uniform beam shown, determine the reaction at each of the 
three supports.

A B

C

L/2L/2

M0

Fig. P15.60

 15.61 The cantilever beam BC is attached to the steel cable AB as shown. 
Knowing that the cable is initially taut, determine the tension in the 
cable caused by the distributed load shown. Use E = 200 GPa.

W410 3 46.1
6 m

A 5 255 mm2

3 m 20 kN/m

C

B

A

Fig. P15.61

 15.62 Before the 2-kip/ft load is applied, a gap, δ0 = 0.8 in., exists between 
the W16 3 40 beam and the support at C. Knowing that E = 29 3 
106 psi, determine the reaction at each support after the uniformly 
distributed load is applied.

2 kips/ft

BA

W16 3 40

12 ft 12 ft

C
0δ

Fig. P15.62
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The curved pedestrian bridge is supported by a series of columns. 

The analysis and design of members supporting axial compressive 

loads will be discussed in this chapter.

Columns

16
© Jose Manuel/Getty Images RF
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Introduction
In the preceding chapters, we had two primary concerns: (1) the strength of 
the structure, i.e., its ability to support a specified load without experienc-
ing excessive stress; (2) the ability of the structure to support a specified 
load without undergoing unacceptable deformations. This chapter is con-
cerned with the stability of the structure (its ability to support a given load 
without experiencing a sudden change in configuration). This discussion is 
focused on columns, that is, the analysis and design of vertical prismatic 
members supporting axial loads.

In Sec. 16.1, the stability of a simplified model is discussed, where 
the column consists of two rigid rods connected by a pin and a spring and 
supports a load P. If its equilibrium is disturbed, this system will return to 
its original equilibrium position as long as P does not exceed a certain value 
Pcr , called the critical load. This is a stable system. However, if P . Pcr , the 
system moves away from its original position and settles in a new position 
of equilibrium. This system is said to be unstable.

In Sec. 16.1A, the stability of elastic columns considers a pin-ended 
column subjected to a centric axial load. Euler’s formula for the critical load 
of the column is derived, and the corresponding critical normal stress in the 
column is determined. Applying a factor of safety to the critical load, we 
obtain the allowable load that can be safely applied to a pin-ended column.

In Sec. 16.1B, the analysis of the stability of columns with differ-
ent end conditions is considered by learning how to determine the effective 
length of a column.

In the first sections of the chapter, each column is assumed to be a 
straight, homogeneous prism. In the last part of the chapter, real columns 
are designed and analyzed using empirical formulas set forth by profes-
sional organizations. In Sec. 16.2A, design equations are presented for the 
allowable stress in columns made of steel, aluminum, or wood that are sub-
jected to a centric load.

16.1 STABILITY OF STRUCTURES
Consider the design of a column AB of length L to support a given load P  
(Fig. 16.1). The column is pin-connected at both ends, and P is a centric  
axial load. If the cross-sectional area A is selected so that the value 
σ  5  PyA of the stress on a transverse section is less than the allowable 
stress σall for the material used and the deformation δ 5 PLyAE falls within 

Introduction

 16.1 STABILITY OF 
STRUCTURES

 16.1A Euler’s Formula for Pin-Ended 
Columns

 16.1B Euler’s Formula for Columns 
with Other End Conditions

 16.2 CENTRIC LOAD DESIGN
 16.2A Allowable Stress Design

Fig. 16.1 Pin-ended 
axially loaded column.

L

B

P

A

Objectives
In this chapter, you will:

•	Describe the behavior of columns in terms of stability.

•	Develop Euler‘s formula for columns, using effective 
lengths to account for different end conditions.

•	Use allowable-stress design for columns made of steel, 
aluminum, and wood.
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B

A

P

Fig. 16.2 Buckled 
pin-ended column.

the given specifications, we might conclude that the column has been prop-
erly designed. However, it may happen that as the load is applied, the col-
umn buckles (Fig. 16.2). Instead of remaining straight, it suddenly becomes 
sharply curved such as shown in Photo 16.1. Clearly, a column that buckles 
under the load it is to support is not properly designed.

Before getting into the actual discussion of the stability of elastic col-
umns, some insight will be gained on the problem by considering a simpli-
fied model consisting of two rigid rods AC and BC connected at C by a pin 
and a torsional spring of constant K (Fig. 16.3).

If the two rods and forces P and P9 are perfectly aligned, the system 
will remain in the position of equilibrium shown in Fig.16.4a as long as it is 
not disturbed. But suppose we move C slightly to the right so that each rod 
forms a small angle Dθ with the vertical (Fig. 16.4b). Will the system return 
to its original equilibrium position, or will it move further away? In the first 
case, the system is stable; in the second, it is unstable.

To determine whether the two-rod system is stable or unstable, con-
sider the forces acting on rod AC (Fig. 16.5). These forces consist of the 
couple formed by P and P9 of moment P(Ly2) sin Dθ, which tends to move 
the rod away from the vertical, and the couple M exerted by the spring, 
which tends to bring the rod back into its original vertical position. Since 
the angle of deflection of the spring is 2 Dθ, the moment of couple M is 

Photo 16.1 Laboratory test showing a buckled column.

Courtesy of Fritz Engineering Laboratory, Lehigh University

L/2

L/2

C

B

A

constant K

P

Fig. 16.3 Model 
column made of two 
rigid rods joined by a 
torsional spring at C.

Fig. 16.4 Free-body diagram of 
model column (a) perfectly aligned 
(b) point C moved slightly out of 
alignment.

C C

BB

A A

2

(a) (b)

∆

∆

P9

∆

P P

P9

θ
θ

θ

Fig. 16.5 Free-body diagram 
of rod AC in unaligned position.

C

L/2

A

M

P9

P

∆θ
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M 5 K(2 Dθ). If the moment of the second couple is larger than the moment 
of the first couple, the system tends to return to its original equilibrium 
position; the system is stable. If the moment of the first couple is larger than 
the moment of the second couple, the system tends to move away from its 
original equilibrium position; the system is unstable. The load when the two 
couples balance each other is called the critical load, Pcr , which is given as

 Pcr 
(Ly2)sinDθ 5 K (2Dθ) (16.1)

or since sin Dθ < Dθ, when the displacement of C is very small (at the 
immediate onset of buckling),

 Pcr 5 4KyL (16.2)

Clearly, the system is stable for P , Pcr  and unstable for P . Pcr .
Assume that a load P . Pcr has been applied to the two rods of 

Fig. 16.3 and the system has been disturbed. Since P . Pcr  , the system 
will move further away from the vertical and, after some oscillations, will 
settle into a new equilibrium position (Fig. 16.6a). Considering the equilib-
rium of the free body AC (Fig. 16.6b), an equation similar to Eq. (16.1) but 
involving the finite angle θ, is

P (Ly2) sin θ 5 K (2θ)

or
 

PL

4K
5

θ
sin θ

 (16.3)

The value of θ corresponding to the equilibrium position in Fig. 16.6 
is obtained by solving Eq. (16.3) by trial and error. But for any positive 
value of θ, sin θ , θ. Thus, Eq. (16.3) yields a value of θ different from 
zero only when the left-hand member of the equation is larger than one. 
Recalling Eq. (16.2), this is true only if P . Pcr . But, if P , Pcr  , the second 
equilibrium position shown in Fig. 16.6 would not exist, and the only pos-
sible equilibrium position would be the one corresponding to θ 5 0. Thus, 
for P , Pcr  , the position where θ 5 0 must be stable.

This observation applies to structures and mechanical systems in gen-
eral and is used in the next section for the stability of elastic columns. 

16.1A  Euler’s Formula for Pin-Ended 
Columns

Returning to the column AB considered in the preceding section (Fig. 16.1), 
we propose to determine the critical value of the load P, i.e., the value Pcr 
of the load for which the position shown in Fig. 16.1 ceases to be stable. If 
P . Pcr , the slightest misalignment or disturbance will cause the column to 
buckle into a curved shape, as shown in Fig. 16.2.

This approach determines the conditions under which the configura-
tion of Fig. 16.2 is possible. Since a column is like a beam placed in a verti-
cal position and subjected to an axial load, we proceed as in Chap. 15 and 
denote by x the distance from end A of the column to a point Q of its elastic 
curve and by y the deflection of that point (Fig. 16.7a). The x axis is vertical 
and directed downward, and the y axis is horizontal and directed to the right. 

Fig. 16.6 (a) Model column in buckled 
position, (b) free-body diagram of rod AC.

C

L /2A

C

B

A

(b)(a)

P
P

M

P9

θ θ

Fig. 16.1 (repeated).

L

B

P

A

Fig. 16.2 (repeated).

B

A

P

Fig. 16.7 Free-body diagrams of (a) buckled 
column and (b) portion AQ.

L

Q Q

B

A
A

x

y

y

x

x

y

P9

P9

M

y
[ x 5 0, y 5 0]  

[ x 5 L, y 5 0]  

(a) (b)

P P
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Considering the equilibrium of the free body AQ (Fig. 16.7b), the bending 
moment at Q is M 5 2Py. Substituting this value for M in Eq. (15.4) gives

 
d 2

 
 y

dx 
2 5

M

EI
5 2 

P

EI
  y (16.4)

or transposing the last term,

 
d 2

  y

dx 2 1
P

EI
  y 5 0 (16.5)

This equation is a linear, homogeneous differential equation of the second 
order with constant coefficients. Setting

 p 2 5
P

EI
 (16.6)

Eq. (16.5) is rewritten as

 
d 

2 y

dx 
2 1 p 

2y 5 0 (16.7)

which is the same as the differential equation for simple harmonic motion, 
except the independent variable is now the distance x instead of the time t. 
The general solution of Eq. (16.7) is

 y 5 A sin px 1 B cos px (16.8)

and is easily checked by calculating d 2 yydx 2 and substituting for y and 
d 2 yydx 2 into Eq. (16.7).

Recalling the boundary conditions that must be satisfied at ends 
A and B of the column (Fig. 16.7a), make x 5 0, y 5 0 in Eq. (16.8), and 
find that B 5 0. Substituting x 5 L, y 5 0, obtain

 A sin pL 5 0 (16.9)

This equation is satisfied if either A 5 0 or sin pL 5 0. If the first of these 
conditions is satisfied, Eq. (16.8) reduces to y 5 0 and the column is straight 
(Fig. 16.1). For the second condition to be satisfied, pL 5 nπ, or substitut-
ing for p from (16.6) and solving for P,

 P 5
n2

 π2EI

L2  (16.10)

The smallest value of P defined by Eq. (16.10) is that corresponding to  
n 5 1. Thus,

 Pcr 5
π2EI

L2  (16.11a)

This expression is known as Euler’s formula, after the Swiss math-
ematician Leonhard Euler (1707–1783). Substituting this expression for P 
into Eq. (16.6), the value for p into Eq. (16.8), and recalling that B 5 0, 

 y 5 A sin 
πx

L
 (16.12)

which is the equation of the elastic curve after the column has buckled 
(Fig.  16.2). Note that the maximum deflection ym 5 A is indeterminate. 
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This is because the differential Eq. (16.5) is a linearized approximation of 
the governing differential equation for the elastic curve.†

If P , Pcr , the condition sin pL 5 0 cannot be satisfied, and the 
solution of Eq. (16.12) does not exist. Then we must have A 5 0, and the 
only possible configuration for the column is a straight one. Thus, for  
P , Pcr the straight configuration of Fig. 16.1 is stable.

In a column with a circular or square cross section, the moment of 
inertia I is the same about any centroidal axis, and the column is as likely to 
buckle in one plane as another (except for the restraints that can be imposed by 
the end connections). For other cross-sectional shapes, the critical load should 
be found by making I 5 Imin in Eq. (16.11a). If it occurs, buckling will take 
place in a plane perpendicular to the corresponding principal axis of inertia.

The stress corresponding to the critical load is the critical stress σcr . 
Recalling Eq. (16.11a) and setting I 5 Ar 2, where A is the cross-sectional 
area and r its radius of gyration gives

σcr 5
Pcr

A
5

π2E Ar 2

AL2

or

 σcr 5
π2E

(Lyr)2 (16.13a)

The quantity Lyr is the slenderness ratio of the column. The minimum 
value of the radius of gyration r should be used to obtain the slenderness 
ratio and the critical stress in a column.

Eq. (16.13) shows that the critical stress is proportional to the modu-
lus of elasticity of the material and inversely proportional to the square of 
the slenderness ratio of the column. The plot of σcr versus Lyr is shown in 
Fig. 16.8 for structural steel, assuming E 5 200 GPa and σY 5 250 MPa. 
Keep in mind that no factor of safety has been used in plotting σcr . Also, if 
σcr obtained from Eq. (16.13a) or from the curve of Fig. 16.8 is larger than 
the yield strength σY, this value is of no interest, since the column will yield 
in compression and cease to be elastic before it has a chance to buckle.

†Recall that d  2 yydx  2 5 M/EI was obtained in Sec. 15.1A by assuming that the slope dyydx of 
the beam could be neglected and that the exact expression in Eq. (15.3) for the curvature of the 
beam could be replaced by 1yρ 5 d  2 yydx  2.

Fig. 16.8 Plot of critical stress.
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Concept	Application	16.1

A 2-m-long pin-ended column with a square cross section is to be made of 
wood (Fig 16.9). Assuming E 5 13 GPa, σall 5 12 MPa, and using a factor 
of safety of 2.5 to calculate Euler’s critical load for buckling, determine the 
size of the cross section if the column is to safely support (a) a 100-kN load, 
(b) a 200-kN load.

 a.	 For	the	100-kN	Load. Use the given factor of safety to obtain

Pcr 5 2.5(100 kN) 5 250 kN    L 5 2 m    E 5 13 GPa

Use Euler’s formula, Eq. (16.11a), and solve for I: 

I 5
Pcr L

2

π2E
5

(250 3 103 N)(2 m)2

π2(13 3 109 Pa)
5 7.794 3 1026 m4

Recalling that, for a square of side a, I 5 a4y12, write

a4

12
5 7.794 3 1026 m4    a 5 98.3 mm < 100 mm

Check the value of the normal stress in the column:

σ 5
P

A
5

100 kN
(0.100 m)2 5 10 MPa

Since σ is smaller than the allowable stress, a 100 3 100-mm cross section 
is acceptable.

	 b.	 For	the	200-kN	Load. Solve Eq. (16.11a) again for I, but make 
Pcr 5 2.5(200) 5 500 kN to obtain

I 5 15.588 3 1026 m4

a4

12
5 15.588 3 1026    a 5 116.95 mm

The value of the normal stress is

σ 5
P

A
5

200 kN
(0.11695 m)2 5 14.62 MPa

Since this is larger than the allowable stress, the dimension obtained is not 
acceptable, and the cross section must be selected on the basis of its resis-
tance to compression. 

 A 5  
P

σall
5

200 kN
12 MPa

5 16.67 3 1023 m2

 a2 5 16.67 3 1023 m2    a 5 129.1 mm

A 130 3 130-mm cross section is acceptable.

C

D

2 m

P

Fig. 16.9 Pin-ended 
wood column of 
square cross section.
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16.1B  Euler’s Formula for Columns 
with Other End Conditions

Euler’s formula (16.11) was derived in the preceding section for a column 
that was pin-connected at both ends. Now the critical load Pcr will be deter-
mined for columns with different end conditions.

A column with one free end A supporting a load P and one fixed 
end B (Fig. 16.10a) behaves as the upper half of a pin-connected column 
(Fig. 16.10b). The critical load for the column of Fig. 16.10a is thus the 
same as for the pin-ended column of Fig. 16.10b and can be obtained 
from Euler’s formula Eq. (16.11a) by using a column length equal to twice 
the actual length L. We say that the effective length Le of the column of 
Fig. 16.10 is equal to 2L, and substitute Le 5 2L in Euler’s formula:

 Pcr 5
π2EI

L2
e

 (16.11b)

The critical stress is

 σcr 5
π2E

(Leyr)2 (16.13b)

The quantity Leyr is called the effective slenderness ratio of the column and 
for Fig. 16.10a is equal to 2Lyr.

Now consider a column with two fixed ends A and B supporting a load 
P (Fig. 16.11). The symmetry of the supports and the load about a horizontal  
axis through the midpoint C requires that the shear at C and the horizontal  
components of the reactions at A and B be zero (Fig. 16.12a). Thus, the 
restraints imposed on the upper half AC of the column by the support at A and 
by the lower half CB are identical (Fig. 16.13). Portion AC must be  symmetric 
about its midpoint D, and this point must be a point of inflection where the 
bending moment is zero. The bending moment at the midpoint E of the 
lower half of the column also must be zero (Fig. 16.14a). Since the bending 
moment at the ends of a pin-ended column is zero, portion DE of the column 
in Fig. 16.13a must behave like a pin-ended column (Fig. 16.14b). Thus, the 
effective length of a column with two fixed ends is Le 5 Ly2.

L

AA

BB
Le 5 2L

P9

(b)(a)

A9

P P

Fig. 16.10 Effective length of a 
fixed-free column of length L is 
equivalent to a pin-ended column of 
length 2L.

Fig. 16.12 Free-body 
diagram of buckled 
fixed-ended column.

M9

P9

B

L

L /2

C

A

M

P

L C

B

A

P

Fig. 16.11 Column with 
fixed ends.

L C

D D

E E

B

A

L1
2 LLe 5

1
2

(a) (b)

P

P

Fig. 16.14 Effective length of a fixed-
ended column of length L is equivalent to a 
pin-ended column of length L/2.

L /4

C

A

D

L /4

M9

P9

M

P

Fig. 16.13 Free-body  
diagram of upper half 
of fixed-ended column.
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In a column with one fixed end B and one pin-connected end A sup-
porting a load P (Fig. 16.15), the differential equation of the elastic curve 
must be solved to determine the effective length. From the free-body dia-
gram of the entire column (Fig. 16.16), a transverse force V is exerted at end 
A, in addition to the axial load P, and V is statically indeterminate. Consid-
ering the free-body diagram of a portion AQ of the column (Fig. 16.17), the 
bending moment at Q is

M 5 2Py 2 Vx

Substituting this value into Eq. (15.4) of Sec. 15.1A, 

d 2 y

dx 
2 5

M

EI
5 2 

P

EI
 y 2

V

EI
 x

Transposing the term containing y and setting

 p2 5
P

EI
 (16.6)

as in Sec. 16.1A gives

 
d2 y

dx 
2 1 p2y 5 2 

V

EI
 x (16.14)

This is a linear, nonhomogeneous differential equation of the second order 
with constant coefficients. Observing that the left-hand members of Eqs. 
(16.7) and (16.14) are identical, the general solution of Eq. (16.14) can be 
obtained by adding a particular solution of Eq. (16.14) to the solution of 
Eq. (16.8) obtained for Eq. (16.7). Such a particular solution is

y 5 2 
V

p2EI
 x

or recalling Eq. (16.6),

 y 5 2 
V

P
 x (16.15)

Adding the solutions of Eq. (16.8) and (16.15), the general solution of 
Eq. (16.14) is

 y 5 A sin px 1 B cos px 2
V

P
 x (16.16)

The constants A and B and the magnitude V of the unknown trans-
verse force V are obtained from the boundary conditions in Fig. (16.16). 
Making x 5 0, y 5 0 in Eq. (16.16), B 5 0. Making x 5 L, y 5 0, gives

 A sin pL 5
V

P
 L (16.17)

Taking the derivative of Eq. (16.16), with B 5 0,

dy

dx
5 Ap cos px 2

V

P

and making x 5 L, dyydx 5 0,

 Ap cos pL 5
V

P
 (16.18)

B

A

L

P

Fig. 16.15 Column 
with fixed-pinned end 
conditions.

B

x

A
y

L

V9

V [ x 5 0, y 5 0]

[ x 5 L, y 5 0]
[ x 5 L, dy/dx 5 0]

P

MB

P9

Fig. 16.16 Free-body diagram of 
buckled fixed-pinned column.

V9

A

Q

y

y

x

x

V

M

P9

P

Fig. 16.17 Free-body diagram of 
portion AQ of buckled fixed-pinned 
column.
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Dividing Eq. (16.17) by Eq. (16.18) member by member, a solution like  
Eq. (16.16) can exist only if

 tan pL 5 pL (16.19)

Solving this equation by trial and error, the smallest value of pL that satis-
fies Eq. (16.19) is

 pL 5 4.4934 (16.20)

Carrying the value of p from Eq. (16.20) into Eq. (16.6) and solving for P, 
the critical load for the column of Fig. 16.15 is

 Pcr 5
20.19EI

L2  (16.21)

The effective length of the column is obtained by equating the right-
hand members of Eqs. (16.11b) and (16.21):

π2EI

L2
e

5
20.19EI

L2

Solving for Le, the effective length of a column with one fixed end and one 
pin-connected end is Le 5 0.699L < 0.7L.

The effective lengths corresponding to the various end conditions are 
shown in Fig. 16.18.

B

A

L

P

Fig. 16.15 (repeated).

Fig. 16.18 Effective length of column for various end conditions.

C

B

A A
A

Le 5 0.7L 

Le 5 0.5L Le 5 2L Le 5 L 

L 

B 

B B 

A 

(c) One fixed end,
      one pinned end

(d) Both ends
      fixed

(b) Both ends
      pinned

(a) One fixed end,
      one free end

P P P
P
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Sample	Problem	16.1

An aluminum column with a length of L and a rectangular cross section has 
a fixed end B and supports a centric load at A. Two smooth and rounded 
fixed plates restrain end A from moving in one of the vertical planes of 
symmetry of the column but allow it to move in the other plane. (a) Deter-
mine the ratio a/b of the two sides of the cross section corresponding to the 
most efficient design against buckling. (b) Design the most efficient cross 
section for the column, knowing that L 5 20 in., E 5 10.1 3 106 psi, P 5 5 
kips, and a factor of safety of 2.5 is required.

STRATEGY: The most efficient design is that for which the critical 
stresses corresponding to the two possible buckling modes are equal. This 
occurs if the two critical stresses obtained from Eq. (16.13b) are the same. 
Thus for this problem, the two effective slenderness ratios in this equation 
must be equal to solve part a. Use Fig. 16.18 to determine the effective 
lengths. The design data can then be used with Eq. (16.13b) to size the 
cross section for part b.

MODELING:

Buckling	in	xy	Plane. Referring to Fig. 16.18c, the effective length of 
the column with respect to buckling in this plane is Le 5 0.7L . The radius of 
gyration rz of the cross section is obtained by

Iz 5 1
12 ba3  A 5 ab

and since Iz 5 Ar 2
z ,  

r 2
z 5

Iz

A
5

1
12 ba3

ab
5

a 
2

12
    rz 5 ay√12

The effective slenderness ratio of the column with respect to buckling in 
the xy plane is

 
Le

rz
5

0.7L

ay√12
 (1)

Buckling	 in	xz	Plane. Referring to Fig. 16.18a, the effective length 
of the column with respect to buckling in this plane is Le 5 2L, and the  
corresponding radius of gyration is ry 5 by√12. Thus,

 
Le

ry

5
2L

by√12
 (2)

(continued)

B

x

L

y

a

A

b

z

P

Final PDF to printer



716 Columns

bee98160_ch16_705-742.indd 716 12/22/15  04:23 PM

ANALYSIS:

	 a.	 Most	Efficient	Design. The most efficient design is when the 
critical stresses corresponding to the two possible modes of buckling are 
equal. Referring to Eq. (16.13b), this is the case if the two values obtained 
above for the effective slenderness ratio are equal. 

0.7L

ay√12
5

2L

by√12

and solving for the ratio ayb,           
a

b
5

0.7
2

         
a

b
5 0.35  b

	 b.	 Design	for	Given	Data. Since F.S. 5 2.5 is required,

Pcr 5 (F.S.)P 5 (2.5)(5 kips) 5 12.5 kips

Using a 5 0.35b, 

A 5 ab 5 0.35b 2 and σcr 5
Pcr

A
5

12,500 lb
0.35b 

2

Making L 5 20 in. in Eq. (2), Le yry 5 138.6/b. Substituting for E, Le yr, and 
σcr into Eq. (16.13b) gives

σcr 5
π2E

(Le yr)2      
12,500 lb

0.35b2 5
π2(10.1 3 106 psi)

(138.6yb)2

b 5 1.620 in.    a 5 0.35b 5 0.567 in.  b

REFLECT	and	THINK: The calculated critical Euler buckling stress can 
never be taken to exceed the yield strength of the material. In this problem, 
you can readily determine that the critical stress σcr 5 13.6 ksi; though the 
specific alloy was not given, this stress is less than the tensile yield strength 
σy values for all aluminum alloys listed in Appendix B.
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Problems
 16.1 Knowing that the spring at A is of constant k and that the bar AB is 

rigid, determine the critical load Pcr.

P

k
A

B

L

Fig. P16.1

 16.2 Knowing that the torsional spring at B is of constant K and that the bar 
AB is rigid, determine the critical load Pcr.

 16.3 Two rigid bars AC and BC are connected as shown to a spring 
of  constant k. Knowing that the spring can act in either tension or 
 compression, determine the critical load Pcr for the system.

 16.4 Two rigid bars AC and BC are connected by a pin at C as shown. 
Knowing that the torsional spring at B is of constant K, determine the 
critical load Pcr for the system.

C

A

B

L1
2

L1
2

K

P

Fig. P16.4

 16.5 The rigid bar AD is attached to two springs of constant k and is in 
equilibrium in the position shown. Knowing that the equal and oppo-
site loads P and P′ remain vertical, determine the magnitude Pcr of the 
critical load for the system. Each spring can act in either tension or 
compression.

K

A

B

L

P

Fig. P16.2

C

A

B

L2
3

L1
3

k

P

Fig. P16.3

B

C
k

k

D

A

P9P9

la

P

Fig. P16.5
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 16.6 The rigid rod AB is attached to a hinge at A and to two springs, each 
of constant k. If h 5 450 mm, d 5 300 mm, and m 5 200 kg, deter-
mine the range of values of k for which the equilibrium of rod AB is 
stable in the position shown. Each spring can act in either tension or 
compression.

 16.7 Determine the critical load of a round wooden dowel that is 48 in. long 
and has a diameter of (a) 0.375 in., (b) 0.5 in. Use E 5 1.6 3 106 psi.

 16.8 Determine the critical load of a pin-ended steel tube that is 5 m long 
and has a 100-mm outer diameter and a 16-mm wall thickness. Use 
E 5 200 GPa.

100 mm

16 mm

Fig. P16.8

 16.9 A compression member of 20-in. effective length consists of a 
solid 1-in.-diameter aluminum rod. In order to reduce the weight 
of the member by 25%, the solid rod is replaced by a hollow rod of 
the cross section shown. Determine (a) the percent reduction in the 
 critical load, (b) the value of the critical load for the hollow rod. Use 
E 5 10.6 3 106 psi.

 16.10 Two brass rods used as compression members, each of 3-m effective 
length, have the cross sections shown. (a) Determine the wall thick-
ness of the hollow square rod for which the rods have the same cross-
sectional area. (b) Using E 5 105 GPa, determine the critical load of 
each rod.

 16.11 Determine the radius of the round strut so that the round and square 
struts have the same cross-sectional area, and compute the critical 
load for each. Use E 5 200 GPa.

25 mm

C

A

B

D

1 m

1 m

P

P

Fig. P16.11

d

h
k

B

A

k

m

Fig. P16.6

1.0 in. 1.0 in.

0.5 in.

Fig. P16.9

60 mm

60 mm40 mm

Fig. P16.10
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 16.12 A column of effective length L can be made by gluing together identi-
cal planks in either of the arrangements shown. Determine the ratio of 
the critical load using the arrangement a to the critical load using the 
arrangement b.

 16.13 A compression member of 7-m effective length is made by welding 
together two L152 3 102 3 12.7 angles as shown. Using E 5 200 
GPa, determine the allowable centric load for the member if a factor 
of safety of 2.2 is required.

102 mm

152 mm

102 mm

Fig. P16.13

 16.14 A single compression member of 27-ft effective length is obtained by 
connecting two C8 3 11.5 steel channels with lacing bars as shown. 
Knowing that the factor of safety is 1.85, determine the allowable cen-
tric load for the member. Use E 5 29 3 106 psi and d 5 4.0 in.

 16.15 A column of 22-ft effective length is to be made by welding two 9 3 0.5-in.  
plates to a W8 3 35 rolled steel shape as shown. Determine the allowable 
centric load if a factor of safety 2.3 is required. Use E 5 29 3 106 psi.

4.5 in.

4.5 in.

y

x

Fig. P16.15

 16.16 A column of 3-m effective length is to be made by welding together 
two C130 3 13 rolled-steel channels. Using E 5 200 GPa, determine 
for each arrangement shown the allowable centric load if a factor of 
safety of 2.4 is required.

(a) (b)

Fig. P16.16

 16.17 Knowing that P 5 5.2 kN, determine the factor of safety for the struc-
ture shown. Use E 5 200 GPa and consider only buckling in the plane 
of the structure.

d

d/3

(a) (b)

Fig. P16.12

d

Fig. P16.14

1.2 m

1.2 m

P

708

22-mm diameter

18-mm
diameter

B

A
C

Fig. P16.17
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 16.18 Members AB and CD are 30-mm-diameter steel rods, and members 
BC and AD are 22-mm-diameter steel rods. When the turnbuckle is 
tightened, the diagonal member AC is put in tension. Knowing that  a 
factor of safety with respect to buckling of 2.75 is required, determine 
the largest allowable tension in AC. Use E 5 200 GPa and consider 
only buckling in the plane of the structure.

 16.19 A 1-in.-square aluminum strut is maintained in the position shown by 
a pin support at A and by sets of rollers at B and C that prevent rotation 
of the strut in the plane of the figure. Knowing that LAB 5 3 ft, LBC 5 
4 ft, and LCD 5 1 ft, determine the allowable load P using a factor of 
safety with respect to buckling of 3.2. Consider only buckling in the 
plane of the figure and use E 5 10.4 3 106 psi.

D

C

B

A

LAB

LBC

LCD

P

Fig. P16.19	and	P16.20

 16.20 A 1-in.-square aluminum strut is maintained in the position shown by 
a pin support at A and by sets of rollers at B and C that prevent rota-
tion of the strut in the plane of the figure. Knowing that LAB 5 3 ft, 
determine (a) the largest values of LBC and LCD that can be used if the 
allowable load P is to be as large as possible, (b) the magnitude of the 
corresponding allowable load. Consider only buckling in the plane of 
the figure and use E 5 10.4 3 106 psi.

 16.21 Column ABC has a uniform rectangular cross section and is braced in 
the xz plane at its midpoint C. (a) Determine the ratio b/d for which 
the factor of safety is the same with respect to buckling in the xz and 
yz planes. (b) Using the ratio found in part a, design the cross section 
of the column so that the factor of safety will be 3.0 when P 5 4.4 kN, 
L 5 1 m, and E 5 200 GPa.

 16.22 Column ABC has a uniform rectangular cross section with b 5 12 mm 
and d 5 22 mm. The column is braced in the xz plane at its midpoint 
C and carries a centric load P of magnitude 3.8 kN. Knowing that 
a factor of safety of 3.2 is required, determine the largest allowable 
length L. Use E 5 200 GPa.

2.25 m

A D

C
B

3.5 m

Fig. P16.18

L

A

B

y

x

L

b
d

C

z

P

Fig. P16.21	and	P16.22
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 16.23 A W8 3 21 rolled-steel shape is used with the support and cable 
arrangement shown. Cables BC and BD are taut and prevent motion 
of  point B in the xz plane. Knowing that L 5 24 ft, determine the 
allowable centric load P if a factor of safety of 2.2 is required. Use 
E 5 29 3 106 psi.

C

A
D

L

B

P

y

z

x

W8 3 21

Fig. P16.23

 16.24 Each of the five struts shown consists of a solid steel rod. (a) Know-
ing that strut (1) is of a 0.8-in. diameter, determine the factor of safety 
with respect to buckling for the loading shown. (b) Determine the 
diameter of each of the other struts for which the factor of safety is the 
same as the factor of safety obtained in part a. Use E 5 29 3 106 psi.

900 mm

(1) (2) (3) (4) (5)

P0 51.6 kips

P0

P0 P0 P0

Fig. P16.24
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16.2 CENTRIC LOAD DESIGN 
The preceding sections determined the critical load of a column by using 
Euler's formula. We assumed that all stresses remained below the propor-
tional limit, and the column was initially a straight, homogeneous prism. 
Real columns fall short of such an idealization, and in practice the design of 
columns is based on empirical formulas that reflect the results of numerous 
laboratory tests.

Over the last century, many steel columns have been tested by 
applying to them a centric axial load and increasing the load until failure 
occurred. The results of such tests are represented in Fig. 16.19 where a 
point has been plotted with its ordinate equal to the normal stress σcr at 
failure and its abscissa is equal to the corresponding effective slenderness 
ratio Le yr. Although there is considerable scatter in the test results, regions 
corresponding to three types of failure can be observed. 

Short
columns

Intermediate columns Long columns

Euler’s critical stress
2E

(Le /r)2

Le/r

cr 5
Y

crσ

σ
σ π

Fig. 16.19 Plot of test data for steel columns.

∙  For long columns, where Le yr is large, failure is closely predicted by 
Euler’s formula, and the value of σcr depends on the modulus of elas-
ticity E of the steel used—but not on its yield strength σY . 

∙  For very short columns and compression blocks, failure essentially 
occurs as a result of yield, and σcr < σY . 

∙  For columns of intermediate length, failure is dependent on both 
σY and E. In this range, column failure is an extremely complex 
phenomenon, and test data is used extensively to guide the develop-
ment of specifications and design formulas.

Empirical formulas for an allowable or critical stress given in terms 
of the effective slenderness ratio were first introduced over a century ago. 
Since then, they have undergone a process of refinement and improve-
ment. Typical empirical formulas used to approximate test data are shown 
in Fig. 16.20. It is not always possible to use a single formula for all val-
ues of Le yr. Most design specifications use different formulas—each 
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with a definite range of applicability. In each case we must check that the 
equation used is applicable for the value of Leyr for the column involved. 
Furthermore, it must determined whether the equation provides the criti-
cal stress for the column, to which the appropriate factor of safety must be 
applied, or if it provides an allowable stress.

Photo 16.2 shows examples of columns that are designed using such 
design specification formulas. The design formulas for three different mate-
rials using Allowable Stress Design are presented next, followed by formu-
las for the design of steel columns based on Load and Resistance Factor 
Design.†

†In specific design formulas, the letter L always refers to the effective length of the column.
‡Manual of Steel Construction, 14th ed., American Institute of Steel Construction, Chicago, 2011.

Fig. 16.20 Plots of empirical formulas for critical stresses.

Gordon-Rankine formula:

11

Parabola:

Straight line:

k2

Le /r

cr

cr 5 2 2 (  )2

k3

k1 r

Le
cr 5

cr 5

1 2

3 

r
Le

(  )2
r

Le

σ

σ σ

σ σ

σ σ

16.2A Allowable Stress Design
Structural	 Steel. The most commonly used formulas for allow-
able stress design of steel columns under a centric load are found in  
the Specification for Structural Steel Buildings of the American Institute 
of Steel Construction.‡ An exponential expression is used to predict σall 
for columns of short and intermediate lengths, and an Euler-based relation 

Photo 16.2 (a) The water tank is supported by steel columns. (b) The house 
under construction is framed with wood columns.

(a)

© Steve Photo/Alamy RF

(b)

© Peter Marlow/Magnum Photos
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is used for long columns. The design relationships are developed in two 
steps.

 1. A curve representing the variation of σcr as a function of Lyr is 
obtained (Fig. 16.21). It is important to note that this curve does not 
incorporate any factor of safety.§ Portion AB of this curve is

 σcr 5  [0.658(σY yσe) ]σY (16.22)

where

 σe 5
π2E

(Lyr)2 (16.23)

Portion BC is

 σcr 5 0.877σe (16.24)

When Lyr 5 0, σcr 5 σY in Eq. (16.22). At point B, Eq. (16.22) intersects 
Eq. (16.24). The slenderness Lyr at the junction between the two equations is

 
L

r
5 4.71 √ E

σY

 (16.25)

If Lyr is smaller than the value from Eq. (16.25), σcr is determined from 
Eq. (16.22). If Lyr is greater, σcr is determined from Eq. (16.24). At  the 
slenderness Lyr specified in Eq. (16.25), the stress σe 5 0.44 σY  . Using 
Eq. (16.24), σcr 5 0.877 (0.44 σY) 5 0.39 σY  .
 2. A factor of safety must be used for the final design. The factor of 

safety given by the specification is 1.67. Thus ,

 σall 5
σcr

1.67
 (16.26)

These equations can be used with SI or U.S. customary units.
By using Eqs. (16.22), (16.24), (16.25), and (16.26), the allowable 

axial stress can be determined for a given grade of steel and any given 
value of Lyr. The procedure is to compute Lyr at the intersection between 
the two equations from Eq. (16.25). For smaller given values of Lyr, use 
Eqs. (16.22) and (16.26) to calculate σall , and if greater, use Eqs. (16.24) 
and (16.26). Figure 16.22 provides an example of how σe varies as a func-
tion of Lyr for different grades of structural steel.

0

A

B

C

0.39

E4.71 L/r

cr

Y

Y

Y

σ

σ

σ

σ

Fig. 16.21 Design curve for columns 
recommended by the American Institute of 
Steel Construction.

Fig. 16.22 Steel column design curves 
for different grades of steel.

0 50 100 150 200
L/r

allσ

§In the Specification for Structural Steel Buildings, the symbol F is used for stresses.
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Concept	Application	16.2

Determine the longest unsupported length L for which the S100 3 11.5 
rolled-steel compression member AB can safely carry the centric load 
shown (Fig. 16.23). Assume σY 5 250 MPa and E 5 200 GPa.
From Appendix C, for an S100 3 11.5 shape,

A 5 1460 mm2   rx 5 41.7 mm   ry 5 14.6 mm

If the 60-kN load is to be safely supported, 

σall 5
P

A
5

60 3 103 N
1460 3 1026 m2 5 41.1 3 106 Pa

To compute the critical stress σcr  , we start by assuming that Lyr is larger 
than the slenderness specified by Eq. (16.25). We then use Eq. (16.24) with 
Eq. (16.23) and write

 σcr 5 0.877 σe 5 0.877 
π 

2E

(Lyr)2

 5 0.877 
π 

2(200 3 109 Pa)
(Lyr)2 5

1.731 3 1012 Pa
(Lyr)2

Using this expression in Eq. (16.26),

σall 5
σcr

1.67
5

1.037 3 1012 Pa
(Lyr)2

Equating this expression to the required value of σall gives

1.037 3 1012 Pa
(Lyr)2 5 41.1 3 106 Pa       Lyr 5 158.8

The slenderness ratio from Eq. (16.25) is

L

r
5 4.71 √200 3 109

250 3 106 5 133.2

Our assumption that Lyr is greater than this slenderness ratio is correct. 
Choosing the smaller of the two radii of gyration:

L

ry
5

L

14.6 3 1023 m
5 158.8   L 5 2.32 m

Fig. 16.23 Centrically 
loaded S100 3 11.5 
rolled-steel member.

B

L

A

P 5 60 kN
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Aluminum. Many aluminum alloys are used in structures and machines. 
The specifications of the Aluminum Association† provides formulas based 
on three slenderness ranges. Short columns are governed by material 
 failure. For long columns, an Euler-type equation is used. Intermediate  
 columns are governed by a quadratic equation. The variation of σall with L/r 
defined by these formulas is shown in Fig. 16.24. Specific formulas for the 
design of building structures are given in both SI and U.S. customary units 
for two commonly used alloys. The equations for alloy 2014-T6 apply to 
extrusions, but they can also be used conservatively to design columns with 
non-extruded cross sections made from this same alloy.

Alloy 6061-T6:

L / r # 17.8:             σall 5 [21.2] ksi (16.27a)

5 [146.3] MPa (16.27b)

17.8 . L / r , 66.0:  σall 5 [25.2 2 0.232(L / r) 1 0.00047(L / r)2] ksi (16.28a)
5 [173.9 2 1.602(L / r) 1 0.00323(L / r)2] MPa (16.28b)

Lyr $ 66.0:         σall 5
51,400 ksi

(Lyr)2 ��σall 5
356 3 103 MPa

(Lyr)2  (16.29a,b)

Alloy 2014-T6:

L / r # 17.0:             σall 5 [32.1] ksi (16.30a)

5 [221.5] MPa (16.30b)

17.0 . L / r , 52.7:  σall 5 [39.7 - 0.465(L / r) + 0.00121(L / r)2] ksi (16.31a)
5 [273.6 2 3.205(L / r) 1 0.00836(L / r)2] MPa (16.31b)

Lyr $ 52.7:     σall 5
51,400 ksi

(Lyr)2 ��σall 5
356 3 103 MPa

(Lyr)2  (16.32a,b)

all

L /r

σ

Fig. 16.24 Design curve for 
aluminum columns recommended 
by the Aluminum Association.

Wood. For the design of wood columns, the specifications of the  
American Forest & Paper Association‡ provide a single equation to obtain 
the allowable stress for short, intermediate, and long columns under centric 

†Specifications for Aluminum Structures, Aluminum Association, Inc., Washington, D.C., 2015.
‡National Design Specification for Wood Construction, American Forest & Paper Association, 
American Wood Council, Washington, D.C., 2015.
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Concept	Application	16.3

Knowing that column AB (Fig. 16.26) has an effective length of 14 ft and 
must safely carry a 32-kip load, design the column using a square glued 
laminated cross section. The adjusted modulus of elasticity for the wood is 
E 5 800 3 103 psi, and the adjusted allowable stress for compression paral-
lel to the grain is σC 5 1060 psi.

Fig. 16.26 Centrically loaded wood column.

A

B

d
d

14 ft

P 5 32 kips

loading. For a column with a rectangular cross section of sides b and d, 
where d , b, the variation of σall with Lyd is shown in Fig. 16.25.

For solid columns made from a single piece of wood or by gluing 
laminations together, the allowable stress σall is

 σall 5 σC CP (16.33)

where σC is the adjusted allowable stress for compression parallel to the 
grain.§ Adjustments for σC are included in the specifications to account for 
different variations (such as in the load duration). The column stability fac-
tor CP accounts for the column length and is defined by

   CP 5
1 1 (σCE yσC)

2c
2 √ [ 1 1 (σCE yσC)

2c ]2

2
σCE yσC

c
 (16.34)

The parameter c accounts for the type of column, and it is equal to 0.8 for 
sawn lumber columns and 0.90 for glued laminated wood columns. The 
value of σCE is defined as

 σCE 5
0.822E

(Lyd)2  (16.35)

where E is an adjusted modulus of elasticity for column buckling. Columns 
in which Lyd exceeds 50 are not permitted by the National Design Specifi-
cation for Wood Construction.

Fig. 16.25 Design curve for columns 
recommended by the American 
Forest & Paper Association.

L/d

500

all

C

σ

σ

§In the National Design Specification for Wood Construction, the symbol F is used for stresses.
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 Note that c 5 0.90 for glued laminated wood columns. Computing the 
value of σCE , using Eq. (10.35), gives

σCE 5
0.822E

(Lyd)2 5
0.822(800 3 103 psi)

(168 in./d)2 5 23.299d 
2 psi

 Eq. (16.34) is used to express the column stability factor in terms of d , 
with (σCE yσC) 5 (23.299d 2y1.060 3 103) 5 21.98 3 1023 d 2,

 CP 5
1 1 (σCE  yσC)

2c
2 √ [ 1 1 (σCE  yσC)

2c ]2

2
σCE  yσC

c

 5
1 1 21.98 3 1023 d 2

2(0.90)
2 √ [ 1 1 21.98 3 1023 d 

2

2(0.90) ]2

2
21.98 3 1023 d 

2

0.90

Since the column must carry 32 kips, Eq. (16.33) gives

σall 5
32 kips

d 
2 5 σC 

CP 5 1.060CP

Solving this equation for CP and substituting the value into the previous 
equation, we obtain

30.19
d 

2 5
1 1 21.98 3 1023 d 

2

2(0.90)
2 √ [ 1 1 21.98 3 1023 d 

2

2(0.90) ] 2

2
21.98 3 1023 d 

2

0.90

Solving for d by trial and error yields d 5 6.45 in.

	 	Note: The design formulas presented throughout Sec. 16.2 are 
examples of different design approaches. These equations do not 
provide all of the requirements needed for many designs, and the 
student should refer to the appropriate design specifications before 
attempting actual designs.
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Sample	Problem	16.2

Column AB consists of a W10 3 39 rolled-steel shape made of a grade of 
steel for which σY 5 36 ksi and E 5 29 3 106 psi. Determine the allowable 
centric load P (a) if the effective length of the column is 24 ft in all direc-
tions, (b) if bracing is provided to prevent the movement of the midpoint C 
in the xz plane. (Assume that the movement of point C in the yz plane is not 
affected by the bracing.)

STRATEGY: The allowable centric load for part a is determined from 
the governing allowable stress design equation for steel, Eq. (16.22) or 
Eq. (16.24), based on buckling associated with the axis with a smaller radius 
of gyration since the effective lengths are the same. In part b, it is neces-
sary to determine the effective slenderness ratios for both axes, including 
the reduced effective length due to the bracing. The larger slenderness ratio 
governs the design.

MODELING: First compute the slenderness ratio from Eq. (16.25) 
 corresponding to the given yield strength σY 5 36 ksi.

L

r
5 4.71 √29 3 106

36 3 103 5 133.7

ANALYSIS:

	 a.	 Effective	 Length	5	 24	 ft. The column is shown in Fig. 1a. 
Knowing that ry , rx , buckling takes place in the xz plane (Fig. 2). For L 5 
24 ft and r 5 ry 5 1.98 in., the slenderness ratio is

L

ry
5

(24 3 12) in.
1.98 in.

5
288 in.
1.98 in.

5 145.5

Since Lyr . 133.7, Eq. (16.23) in Eq. (16.24) is used to determine

σcr 5 0.877σe 5 0.877 
π 

2E

(L yr)2 5 0.877 
π 

2(29 3 103 ksi)
(145.5)2 5 11.86 ksi

The allowable stress is determined using Eq. (16.26)

 σall 5  
σcr

1.67
5

11.86 ksi
1.67

5 7.10 ksi

and

  Pall 5 σall A 5 (7.10 ksi)(11.5 in2) 5 81.7 kips b

(continued)

y

x

W10 3 39
A 5 11.5 in2

rx 5 4.27 in.
ry 5 1.98 in.

y

A

B

24 ft

z

P

x

(a)

y

A

C

B

12 ft

12 ft

z

x

(b)

P

Fig. 1 Centrically loaded column 
(a) unbraced, (b) braced.

y

B

24 ft

z

x

A

Fig. 2 Buckled shape 
for unbraced column.
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	 b.	 Bracing	at	Midpoint	C. The column is shown in Fig. 1b. Since 
bracing prevents movement of point C in the xz plane but not in the yz 
plane, the slenderness ratio corresponding to buckling in each plane (Fig. 3) 
is computed to determine which is larger.

xz Plane:  Effective length 5 12 ft 5 144 in., r 5 ry 5 1.98 in.
Lyr 5 (144 in.)y(1.98 in.) 5 72.7

yz Plane:  Effective length 5 24 ft 5 288 in., r 5 rx 5 4.27 in.
Lyr 5 (288 in.)y(4.27 in.) 5 67.4

Since the larger slenderness ratio corresponds to a smaller allowable load, 
we choose Lyr 5 72.7. Since this is smaller than Lyr 5 133.7, Eqs. (16.23) 
and (16.22) are used to determine σcr  :

 σe 5
π2E

(L yr)2 5
π2(29 3 103 ksi)

(72.7)2 5 54.1 ksi

 σcr 5 [0.658(σYyσe) ]  FY 5 [0.658(36 ksiy54.1 ksi) ]  36 ksi 5 27.3 ksi

The allowable stress using Eq. (16.26) and the allowable load are

 σall 5
σcr

1.67
5

27.3 ksi
1.67

5 16.32 ksi

Pall 5 σallA 5 (16.32 ksi)(11.5 in2) Pall 5 187.7 kips b

REFLECT	and	THINK: This sample problem shows the benefit of using 
bracing to reduce the effective length for buckling about the weak axis 
when a column has significantly different radii of gyration, which is typical 
for steel wide-flange columns.

y

B

24 ft

z

x

A

y

B

12 ft

12 ft

z

x

A

C

Buckling in xz plane Buckling in yz plane

Fig. 3 Buckled shapes for braced column.
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Sample	Problem	16.3

Using the aluminum alloy 2014-T6 for the circular rod shown, determine 
the smallest diameter that can be used to support the centric load P 5  
60 kN if (a) L 5 750 mm, (b) L 5 300 mm.

STRATEGY: Use the aluminum allowable stress equations to design the 
column, i.e., to determine the smallest diameter that can be used. Since 
there are two design equations based on Lyr, it is first necessary to assume 
which governs. Then check the assumption.

MODELING: For the cross section of the solid circular rod shown in 
Fig. 1,

I 5
π
4

 c 
4    A 5 πc 

2    r 5 √ I

A
5 √πc 

4 y 4
πc 

2 5
c

2

ANALYSIS:

 a.	 Length	of	750	mm. Since the diameter of the rod is not known, 
Lyr must be assumed. Assume that Lyr . 52.7 and use Eq. (16.32). For the 
centric load P, σ 5 P/A and write

 
P

A
5 σall 5

356 3 103 MPa
(L yr)2

(continued)

A

d

B

L

P 5 60 kN

d

c

Fig. 1 Cross section of 
aluminum column.
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60 3 103 N

πc 
2 5

356 3 109 Pa

(0.750 m
cy 2 )2

 c4 5 120.7 3 1029 m4    c 5 18.64 mm

For c 5 18.64 mm, the slenderness ratio is

L

r
5

L

cy2
5

750 mm
(18.64 mm)y2

5 80.5 . 52.7

The assumption that L/r is greater than 52.7 is correct. For L 5 750 mm, the 
required diameter is

 d 5 2c 5 2(18.64 mm) d 5 37.3 mm  b

 b.	 Length	of	300	mm. Assume that Lyr . 52.7. Using Eq. (16.32) 
and following the procedure used in part a, c 5 11.79 mm and Lyr 5 50.9. 
Since Lyr is less than 52.7, this assumption is wrong. Now assume that Lyr 
, 52.7 and use Eq. (16.31b) for the design of this rod.

 
P

A
5 σall 5 [273.6 2 3.205 (L

r ) 1 0.00836 (L

r )
2 ]  MPa

 
60 3 103 N

πc2 5 [273.6 2 3.205 (0.3m

cy2 ) 1 0.00836 (0.3m

c/2 )2 ]  106 Pa

 c 5 11.95 mm

For c 5 11.95 mm, the slenderness ratio is

L

r
5

L

cy2
5

300 mm
(11.95 mm)y2

5 50.2

The second assumption that Lyr , 52.7 is correct. For L 5 300 mm, the 
required diameter is

 d 5 2c 5 2(11.95 mm) d 5 23.9 mm  b
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Problems
 16.25 A steel pipe having the cross section shown is used as a column. 

Using allowable stress design, determine the allowable centric load if 
the effective length of the column is (a) 18 ft, (b) 26 ft. Use σY 5 36 
ksi and E 5 29 3 106 psi.

t 5 0.28 in.

6.0 in.

Fig. P16.25

 16.26 A rectangular structural tube having the cross section shown is used 
as a column of 5-m effective length. Knowing that σY 5 250 MPa and 
E 5 200 GPa, use allowable stress design to determine the largest 
centric load that can be applied to the steel column.

178 mm

127 mm

t 5 8 mm

Fig. P16.26

 16.27 Using allowable stress design, determine the allowable centric load 
for a column of 6-m effective length that is made from the following 
rolled-steel shape: (a) W200 3 35.9, (b) W200 3 86. Use σY 5 250 
MPa and E 5 200 GPa.

 16.28 A W8 3 31 rolled-steel shape is used for a column of 21-ft effective 
length. Using allowable stress design, determine the allowable centric 
load if the yield strength of the grade of steel used is (a) σY 5 36 ksi, 
(b) σY 5 50 ksi. Use E 5 29 3 106 psi.

 16.29 A column having a 3.5-m effective length is made of sawn lumber 
with a 114 3 140-mm cross section. Knowing that for the grade of 
wood used the adjusted allowable stress for compression parallel to 
the grain is σC 5 7.6 MPa and the adjusted modulus E 5 2.8 GPa, 
determine the maximum allowable centric load for the column.
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 16.30 A sawn lumber column with a 7.5 3 5.5-in. cross section has an 18-ft 
effective length. Knowing that for the grade of wood used the adjusted 
allowable stress for compression parallel to the grain is σC 5 1200 psi  
and that the adjusted modulus E 5 470 3 103 psi, determine the 
 maximum allowable centric load for the column.

 16.31 Using the aluminum alloy 2014-T6, determine the largest allowable 
length of the aluminum bar AB for a centric load P of magnitude 
(a) 150 kN, (b) 90 kN, (c) 25 kN.

A

B

50 mm

20 mm

L

P

Fig. P16.31

 16.32 A compression member has the cross section shown and an effec-
tive length of 5 ft. Knowing that the aluminum alloy used is 6061-T6, 
determine the allowable centric load.

	16.33	and	16.34	 A compression member of 9-m effective length is obtained 
by welding two 10-mm-thick steel plates to a W250 3 80 rolled-steel 
shape as shown. Knowing that σY 5 345 MPa and E 5 200 GPa and 
using allowable stress design, determine the allowable centric load for 
the compression member.

Fig. P16.33 Fig. P16.34

 16.35 A compression member of 8.2-ft effective length is obtained by 
bolting together two L5 3 3 3 1

2-in. steel angles as shown. Using 
allowable stress design, determine the allowable centric load for the 
column. Use σY 5 36 ksi and E 5 29 3 106 psi.

Fig. P16.35

4 in.

4 in.

0.4 in.

0.6 in.

0.6 in.

Fig. P16.32
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 16.36 A column of 18-ft effective length is obtained by connecting four 
L3 3 3 3 3

8-in. steel angles with lacing bars as shown. Using allow-
able stress design, determine the allowable centric load for the col-
umn. Use σY 5 36 ksi and E 5 29 3 106 psi.

8 in.

8 in.

Fig. P16.36

 16.37 A rectangular column with a 4.4-m effective length is made of 
glued laminated wood. Knowing that for the grade of wood used the 
adjusted allowable stress for compression parallel to the grain is σC 5 
8.3 MPa and the adjusted modulus E 5 4.6 GPa, determine the maxi-
mum allowable centric load for the column.

216 mm

140 mm

Fig. P16.37

 16.38 An aluminum structural tube is reinforced by bolting two plates to 
it as shown for use as a column of 1.7-m effective length. Knowing 
that all material is aluminum alloy 2014-T6, determine the maximum 
allowable centric load.

54 mm

8 mm

6 mm 6 mm

34 mm
8 mm 8 mm

8 mm

Fig. P16.38

 16.39 An 18-kip centric load is applied to a rectangular sawn lumber column 
of 22-ft effective length. Using sawn lumber for which the adjusted 
allowable stress for compression parallel to the grain is σC 5 1050 psi 
and the adjusted modulus is E 5 440 3 103 psi, determine the small-
est cross section that may be used. Use b 5 2d.

b d

P

Fig. P16.39
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 16.40 A glue-laminated column of 3-m effective length is to be made from 
boards of 24 3 100-mm cross section. Knowing that for the grade of 
wood used, E 5 11 GPa and the adjusted allowable stress for com-
pression parallel to the grain is σC 5 9 MPa, determine the number 
of boards that must be used to support the centric load shown when 
(a) P 5 34 kN, (b) P 5 17 kN.

A

B

100 mm

24 mm
24 mm
24 mm

P

Fig. P16.40

 16.41 For a rod made of aluminum alloy 2014-T6, select the smallest square 
cross section that can be used if the rod is to carry a 55-kip centric 
load.

 16.42 An aluminum tube of 90-mm outer diameter is to carry a centric load 
of 120 kN.  Knowing that the stock of tubes available for use are made 
of alloy 2014-T6 and with wall thicknesses in increments of 3 mm 
from 6 mm to 15 mm, determine the lightest tube that can be used.

A

B

2.25 m 90-mm outside
diameter

120 kN

Fig. P16.42

 16.43 A centric load P must be supported by the steel bar AB. Using allow-
able stress design, determine the smallest dimension d of the cross 
section that can be used when (a) P 5 108 kN, (b) P 5 166 kN. Use 
σY 5 250 MPa and E 5 200 GPa.

A

B

20 in.
dd

P5 55 kips

Fig. P16.41

A

B

3d 1.4 md

P

Fig. P16.43
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 16.44 A column of 4.5-m effective length must carry a centric load of 
900 kN. Knowing that σY 5 345 MPa and E 5 200 GPa, use allow-
able stress design to select the wide-flange shape of 250-mm nominal 
depth that should be used.

 16.45 A column of 22.5-ft effective length must carry a centric load of 
288 kips. Using allowable stress design, select the wide-flange shape 
of 14-in. nominal depth that should be used. Use σY 5 50 ksi and 
 E 5 29 3 106 psi.

 16.46 A square steel tube having the cross section shown is used as a column  
of 26-ft effective length to carry a centric load of 65 kips. Knowing 
that the tubes available for use are made with wall thicknesses ranging 
from 1

4 in. to 3
4 in. in increments of 1

16 in., use allowable stress design 
to determine the lightest tube that can be used. Use σY 5 36 ksi and 
E 5 29 3 106 psi.

6 in.

6 in.

Fig. P16.46

 16.47 Solve Prob. 16.46, assuming that the effective length of the column is 
decreased to 20 ft.

 16.48 Two 31
2 3 21

2-in. angles are bolted together as shown for use as a col-
umn of 6-ft effective length to carry a centric load of 54 kips. Know-
ing that the angles available have thicknesses of 1

4, 
3
8, and 1

2 in., use 
allowable stress design to determine the lightest angles that can be 
used. Use σY 5 36 ksi and E 5 29 3 106 psi.

2 in.1
2 2 in.1

2

3 in.1
2

Fig. P16.48
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Critical	Load
The design and analysis of columns (i.e., prismatic members supporting axial 
loads), is based on the determination of the critical load. Two equilibrium posi-
tions of the column model are possible: the original position with zero trans-
verse deflections and a second position involving deflections that could be 
quite large. The first equilibrium position is unstable for P . Pcr and stable for 
P , Pcr , since in the latter case it was the only possible equilibrium position.
 We considered a pin-ended column of length L and constant flexural 
rigidity EI subjected to an axial centric load P. Assuming that the column buck-
led (Fig. 16.27), the bending moment at point Q is equal to 2Py. Thus,

 
d2y

dx2 5
M

EI
5 2

P

EI
 y (16.4)

Euler’s	Formula
Solving this differential equation, subject to the boundary conditions corre-
sponding to a pin-ended column, we determined the smallest load P for which 
buckling can take place. This load, known as the critical load and denoted by 
Pcr, is given by Euler’s formula:

 Pcr 5
π2EI

L2  (16.11a)

where L is the length of the column. For this or any larger load, the equilibrium 
of the column is unstable, and transverse deflections will occur.

Slenderness	Ratio
Denoting the cross-sectional area of the column by A and its radius of gyration 
by r, the critical stress σcr corresponding to the critical load Pcr is

 σcr 5
π2E

(Lyr)2 (16.13a)

The quantity Lyr is the slenderness ratio. The critical stress σcr is plotted as a 
function of Lyr in Fig. 16.28. Since the analysis was based on stresses remain-
ing below the yield strength of the material, the column will fail by yielding 
when σcr . σY.

Review and Summary

L

Q Q

B

A
A

x

y

y

x

x

y

P9

P9

M

y
[ x 5 0, y 5 0]  

[ x 5 L, y 5 0]  

(a) (b)

P P

Fig. 16.27

100

0 10089 200

200

250

300

(MPa)

Y 5 250 MPa

E 5 200 GPa

2E

(L/r)2

L/r

cr 5

σ

σ

σ π

Fig. 16.28
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Effective	Length
The critical load of columns with various end conditions is written as

 Pcr 5
π2EI

L2
e

 (16.11b)

where Le is the effective length of the column, i.e., the length of an equivalent 
pin-ended column. The effective lengths of several columns with various end 
conditions were calculated and shown in Fig. 16.18 on page 714.

Design	of	Real	Columns
Since imperfections exist in all columns, the design of real columns is done 
with empirical formulas based on laboratory tests, set forth in specifications 
and codes issued by professional organizations. For centrically loaded columns 
made of steel, aluminum, or wood, design is based on equations for the allow-
able stress as a function of the slenderness ratio Lyr.
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 16.49 A column with the cross section shown has a 13.5-ft effective length. 
Using a factor of safety equal to 2.8, determine the allowable centric 
load that can be applied to the column. Use E 5 29 3 106 psi.

10 in.

6 in.

in.1
4

in.1
2

in.1
2

Fig. P16.49

 16.50 A rigid bar AD is attached to two springs of constant k and is in equi-
librium in the position shown. Knowing that the equal and opposite 
loads P and P′ remain horizontal, determine the magnitude Pcr of the 
critical load for the system.

 16.51 A rigid block of mass m can be supported in each of the four ways 
shown. Each column consists of an aluminum tube that has a 44-mm 
outer diameter and a 4-mm wall thickness. Using E 5 70 GPa and a 
factor of safety of 2.8, determine the allowable mass for each support 
condition.

4 m

(1) (2) (3) (4)

m
m m

m

Fig. P16.51

 16.52 The steel rod BC is attached to the rigid bar AB and to the fixed sup-
port at C. Knowing that G 5 11.2 × 106 psi, determine the diameter of 
the rod BC for which the critical load Pcr of the system is 80 lb.

Review Problems

15 in.

A

C

B

d

20 in.

P

Fig. P16.52

B

l

A

k k

P C

a

D P9

Fig. P16.50
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 16.53 Supports A and B of the pin-ended column shown are at a fixed dis-
tance L from each other. Knowing that at a temperature T0 the force 
in the column is zero and that buckling occurs when the temperature 
is T1 5 T0 1 ΔT, express ΔT in terms of b, L and the coefficient of 
thermal expansion α.

A

B

L
bb

Fig. P16.53

 16.54 Member AB consists of a single C130 3 10.4 steel channel of length 
2.5 m. Knowing that the pins at A and B pass through the centroid of 
the cross section of the channel, determine the factor of safety for the 
load shown with respect to buckling in the plane of the figure when 
θ 5 30°. Use Euler’s formula with E 5 200 GPa.

C

B

A 6.8 kN

2.5 m

θ

Fig. P16.54

 16.55 (a) Considering only buckling in the plane of the structure shown  
and using Euler’s formula, determine the value of θ between 0 and 
90° for which the allowable magnitude of the load P is maximum.  
(b) Determine the corresponding maximum value of P knowing that a 
factor of safety of 3.2 is required. Use E 5 29 3 106 psi.

P

A

C

B

-in. diameter3
4

-in. diameter5
8

3 ft

2 ft

θ

Fig. P16.55

 16.56 The uniform aluminum bar AB has a 20 3 36-mm rectangular cross 
section and is supported by pins and brackets as shown. Each end 
of the bar may rotate freely about a horizontal axis through the pin, 
but rotation about a vertical axis is prevented by the brackets. Using 
E  5  70 GPa, determine the allowable centric load P if a factor of 
safety of 2.5 is required.

A

2 m

B
P

Fig. P16.56
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 16.57 Determine (a) the critical load for the steel strut, (b) the dimension 
d  for which the aluminum strut will have the same critical load, 
(c) the weight of the aluminum strut as a percent of the weight of the 
steel strut.

in.1
2

C

A

B

D

4 ft

4 ft
 

d d

Steel
   E 5 293106 psi

 5 490 lb/ft3 

Aluminum
   E 5 10.13106 psi

 5 170 lb/ft3 

P

P

γ

γ

Fig. P16.57

 16.58 A compression member has the cross section shown and an effective 
length of 5 ft. Knowing that the aluminum alloy used is 2014-T6, 
determine the allowable centric load.

 16.59 A column is made from half of a W360 3 216 rolled-steel shape, with 
the geometric properties as shown. Using allowable stress design, 
determine the allowable centric load if the effective length of the  
column is (a) 4.0 m, (b) 6.5 m. Use σY 5 345 MPa and E 5 200 GPa.

y

C x

A 5 13.75 3 103 mm2

Ix 5 26.0 3 106 mm4

Iy 5 141.0 3 106 mm4

Fig. P16.59

 16.60 A steel column of 4.6-m effective length must carry a centric load of 
525 kN. Knowing that σY 5 345 MPa and E 5 200 GPa, use allow-
able stress design to select the wide-flange shape of 200-mm nominal 
depth that should be used.

4.0 in.

4.0 in.

t 5 0.375 in.

Fig. P16.58
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A2 Appendix A

Appendix A Typical Properties of Selected Materials Used in Engineering1,5

 (U.S. Customary Units) 
 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
 Specific  Compres-    of of of Thermal Percent
 Weight, Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material lb/in3 ksi ksi ksi ksi ksi 106 psi 106 psi 1026/8F in 2 in.

Steel

  Structural (ASTM-A36) 0.284 58   36 21 29 11.2 6.5 21
  High-strength-low-alloy
    ASTM-A709 Grade 50 0.284 65   50  29 11.2 6.5 21
    ASTM-A913 Grade 65 0.284 80   65  29 11.2 6.5 17
    ASTM-A992 Grade 50 0.284 65   50  29 11.2 6.5 21
  Quenched & tempered
    ASTM-A709 Grade 100 0.284 110   100  29 11.2 6.5 18
  Stainless, AISI 302
    Cold-rolled 0.286 125   75  28 10.8 9.6 12
    Annealed 0.286 95   38 22 28 10.8 9.6 50
  Reinforcing Steel
    Medium strength 0.283 70   40  29 11 6.5
    High strength 0.283 90   60  29 11 6.5
Cast Iron

  Gray Cast Iron
    4.5% C, ASTM A-48 0.260 25 95 35   10 4.1 6.7 0.5
  Malleable Cast Iron
    2% C, 1% Si, 
      ASTM A-47 0.264 50 90 48 33  24 9.3 6.7 10
Aluminum

  Alloy 1100-H14 
      (99% Al) 0.098 16  10 14 8 10.1 3.7 13.1 9
  Alloy 2014-T6 0.101 66  40 58 33 10.9 3.9 12.8 13
  Alloy 2024-T4 0.101 68  41 47  10.6  12.9 19
  Alloy 5456-H116 0.095 46  27 33 19 10.4  13.3 16
  Alloy 6061-T6 0.098 38  24 35 20 10.1 3.7 13.1 17
  Alloy 7075-T6 0.101 83  48 73  10.4 4 13.1 11
Copper

  Oxygen-free copper
      (99.9% Cu)
    Annealed 0.322 32  22 10  17 6.4 9.4 45
    Hard-drawn 0.322 57  29 53  17 6.4 9.4 4
  Yellow Brass
      (65% Cu, 35% Zn)
    Cold-rolled 0.306 74  43 60 36 15 5.6 11.6 8
    Annealed 0.306 46  32 15 9 15 5.6 11.6 65
  Red Brass
      (85% Cu, 15% Zn)
    Cold-rolled 0.316 85  46 63  17 6.4 10.4 3
    Annealed 0.316 39  31 10  17 6.4 10.4 48
  Tin bronze 0.318 45   21  14  10 30
    (88 Cu, 8Sn, 4Zn)
  Manganese bronze 0.302 95   48  15  12 20
    (63 Cu, 25 Zn, 6 Al, 3 Mn, 3 Fe)
  Aluminum bronze 0.301 90 130  40  16 6.1 9 6
    (81 Cu, 4 Ni, 4 Fe, 11 Al)

(Table continued on page A3)
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Appendix A Typical Properties of Selected Materials Used in Engineering1,5

 (SI Units) 
 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
   Compres-    of of of Thermal Percent
 Density Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material kg/m3 MPa MPa MPa MPa MPa GPa GPa 1026/8C in 50 mm

Steel
  Structural (ASTM-A36) 7 860 400   250 145 200 77.2 11.7 21
  High-strength-low-alloy
    ASTM-A709 Grade 345 7 860 450   345  200 77.2 11.7 21
    ASTM-A913 Grade 450 7 860 550   450  200 77.2 11.7 17
    ASTM-A992 Grade 345 7 860 450   345  200 77.2 11.7 21
  Quenched & tempered
    ASTM-A709 Grade 690 7 860 760   690  200 77.2 11.7 18
  Stainless, AISI 302
    Cold-rolled 7 920 860   520  190 75 17.3 12
    Annealed 7 920 655   260 150 190 75 17.3 50
  Reinforcing Steel
    Medium strength 7 860 480   275  200 77 11.7
    High strength 7 860 620   415  200 77 11.7
Cast Iron

  Gray Cast Iron
    4.5% C, ASTM A-48 7 200 170 655 240   69 28 12.1 0.5
  Malleable Cast Iron
    2% C, 1% Si, 
    ASTM A-47 7 300 345 620 330 230  165 65 12.1 10
Aluminum

  Alloy 1100-H14 
     (99% Al) 2 710 110  70 95 55 70 26 23.6 9
  Alloy 2014-T6 2 800 455  275 400 230 75 27 23.0 13
  Alloy-2024-T4 2 800 470  280 325  73  23.2 19
  Alloy-5456-H116 2 630 315  185 230 130 72  23.9 16
  Alloy 6061-T6 2 710 260  165 240 140 70 26 23.6 17
  Alloy 7075-T6 2 800 570  330 500  72 28 23.6 11
Copper

  Oxygen-free copper
      (99.9% Cu)
    Annealed 8 910 220  150 70  120 44 16.9 45
    Hard-drawn 8 910 390  200 265  120 44 16.9 4
  Yellow-Brass
      (65% Cu, 35% Zn)
    Cold-rolled 8 470 510  300 410 250 105 39 20.9 8
    Annealed 8 470 320  220 100 60 105 39 20.9 65
  Red Brass 
      (85% Cu, 15% Zn)
    Cold-rolled 8 740 585  320 435  120 44 18.7 3
    Annealed 8 740 270  210 70  120 44 18.7 48
  Tin bronze 8 800 310   145  95  18.0 30
    (88 Cu, 8Sn, 4Zn)
  Manganese bronze 8 360 655   330  105  21.6 20
    (63 Cu, 25 Zn, 6 Al, 3 Mn, 3 Fe)
  Aluminum bronze 8 330 620 900  275  110 42 16.2 6
    (81 Cu, 4 Ni, 4 Fe, 11 Al)

(Table continued on page A4)
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 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
 Specific  Compres-    of of of Thermal Percent
 Weight, Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material lb/in3 ksi ksi ksi ksi ksi 106 psi 106 psi 1026/8F in 2 in.

Magnesium Alloys
  Alloy AZ80 (Forging) 0.065 50  23 36  6.5 2.4 14 6
  Alloy AZ31 (Extrusion) 0.064 37  19 29  6.5 2.4 14 12
Titanium

  Alloy (6% Al, 4% V) 0.161 130   120  16.5  5.3 10
Monel Alloy 400(Ni-Cu)

  Cold-worked 0.319 98   85 50 26  7.7 22
  Annealed 0.319 80   32 18 26  7.7 46
Cupronickel

    (90% Cu, 10% Ni)
  Annealed 0.323 53   16  20 7.5 9.5 35
  Cold-worked 0.323 85   79  20 7.5 9.5 3
Timber, air dry4

  Douglas fir 0.017 15 7.2 1.1   1.9 .1     Varies
  Spruce, Sitka 0.015 8.6 5.6 1.1   1.5 .07 1.7 to 2.5
  Shortleaf pine 0.018  7.3 1.4   1.7
  Western white pine 0.014  5.0 1.0   1.5
  Ponderosa pine 0.015 8.4 5.3 1.1   1.3
  White oak 0.025  7.4 2.0   1.8
  Red oak 0.024  6.8 1.8   1.8
  Western hemlock 0.016 13 7.2 1.3   1.6
  Shagbark hickory 0.026  9.2 2.4   2.2
  Redwood 0.015 9.4 6.1 0.9   1.3
Concrete

  Medium strength 0.084  4.0    3.6  5.5
  High strength 0.084  6.0    4.5  5.5
Plastics

  Nylon, type 6/6,  0.0412 11 14  6.5  0.4  80 50
    (molding compound)
  Polycarbonate 0.0433 9.5 12.5  9  0.35  68 110
  Polyester, PBT 0.0484 8 11  8  0.35  75 150
    (thermoplastic)
  Polyester elastomer 0.0433 6.5  5.5   0.03   500
  Polystyrene 0.0374 8 13  8  0.45  70 2
  Vinyl, rigid PVC 0.0520 6 10  6.5  0.45  75 40
  Rubber 0.033 2       90 600
  Granite (Avg. values) 0.100 3 35 5   10 4 4
  Marble (Avg. values) 0.100 2 18 4   8 3 6
  Sandstone (Avg. values) 0.083 1 12 2   6 2 5
  Glass, 98% silica 0.079  7    9.6 4.1 44
1Properties of metals vary widely as a result of variations in composition, heat treatment, and mechanical working.
2For ductile metals the compression strength is generally assumed to be equal to the tension strength.
3Offset of 0.2 percent.
4Timber properties are for loading parallel to the grain.
5See also Marks’ Mechanical Engineering Handbook, 11th ed., McGraw-Hill, New York, 2006; Annual Book of ASTM, American Society for Testing Materials, Philadelphia, 
Pa.; Metals Handbook, American Society for Metals, Metals Park, Ohio; and Aluminum Design Manual, The Aluminum Association, Washington, DC.

Appendix A Typical Properties of Selected Materials Used in Engineering1,5

(U.S. Customary Units) 
Continued from page A3
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Appendix A Typical Properties of Selected Materials Used in Engineering1,5

(SI Units) 
Continued from page A4 

 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
   Compres-    of of of Thermal Percent
 Density Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material kg/m3 MPa MPa MPa MPa MPa GPa GPa 1026/8C in 50 mm

Magnesium Alloys
  Alloy AZ80 (Forging) 1 800 345  160 250  45 16 25.2 6
  Alloy AZ31 (Extrusion) 1 770 255  130 200  45 16 25.2 12
Titanium

  Alloy (6% Al, 4% V) 4 730 900   830  115  9.5 10
Monel Alloy 400(Ni-Cu)

  Cold-worked 8 830 675   585 345 180  13.9 22
  Annealed 8 830 550   220 125 180  13.9 46
Cupronickel

    (90% Cu, 10% Ni)
  Annealed 8 940 365   110  140 52 17.1 35
  Cold-worked 8 940 585   545  140 52 17.1 3
Timber, air dry4

  Douglas fir 470 100 50 7.6   13 0.7      Varies
  Spruce, Sitka 415 60 39 7.6   10 0.5 3.0 to 4.5
  Shortleaf pine 500  50 9.7   12
  Western white pine 390  34 7.0   10
  Ponderosa pine 415 55 36 7.6   9
  White oak 690  51 13.8   12
  Red oak 660  47 12.4   12
  Western hemlock 440 90 50 10.0   11
  Shagbark hickory 720  63 16.5   15
  Redwood 415 65 42 6.2   9
Concrete

  Medium strength 2 320  28    25  9.9
  High strength 2 320  40    30  9.9
Plastics

  Nylon, type 6/6,  1 140 75 95  45  2.8  144 50
    (molding compound)
  Polycarbonate 1 200 65 85  35  2.4  122 110
  Polyester, PBT 1 340 55 75  55  2.4  135 150
    (thermoplastic)
  Polyester elastomer 1 200 45  40   0.2   500
  Polystyrene 1 030 55 90  55  3.1  125 2
  Vinyl, rigid PVC 1 440 40 70  45  3.1  135 40
  Rubber 910 15       162 600
  Granite (Avg. values) 2 770 20 240 35   70 4 7.2
  Marble (Avg. values) 2 770 15 125 28   55 3 10.8
  Sandstone (Avg. values) 2 300 7 85 14   40 2 9.0
  Glass, 98% silica 2 190  50    65 4.1 80
1Properties of metals very widely as a result of variations in composition, heat treatment, and mechanical working.
2For ductile metals the compression strength is generally assumed to be equal to the tension strength.
3Offset of 0.2 percent.
4Timber properties are for loading parallel to the grain.
5See also Marks’ Mechanical Engineering Handbook, 11th ed., McGraw-Hill, New York, 2006; Annual Book of ASTM, American Society for Testing Materials, Philadelphia, 
Pa.; Metals Handbook, American Society of Metals, Metals Park, Ohio; and Aluminum Design Manual, The Aluminum Association, Washington, DC.
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A6 Appendix B

Appendix B Properties of Rolled-Steel Shapes 
            (U.S. Customary Units)
W Shapes
(Wide-Flange Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web
 Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in

4 Sx, in
3 rx, in. Iy, in

4 Sy, in
3 ry, in.

 W36 3 302 88.8 37.3 16.7 1.68 0.945 21100 1130 15.4 1300 156 3.82
 135 39.7 35.6 12.0 0.790 0.600 7800 439 14.0 225 37.7 2.38

 W33 3 201 59.2 33.7 15.7 1.15 0.715 11600 686 14.0 749 95.2 3.56
 118 34.7 32.9 11.5 0.740 0.550 5900 359 13.0 187 32.6 2.32

 W30 3 173 51.0 30.4 15.0 1.07 0.655 8230 541 12.7 598 79.8 3.42
 99 29.1 29.7 10.50 0.670 0.520 3990 269 11.7 128 24.5 2.10

 W27 3 146 43.1 27.4 14.0 0.975 0.605 5660 414 11.5 443 63.5 3.20
 84 24.8 26.70 10.0 0.640 0.460 2850 213 10.7 106 21.2 2.07

 W24 3 104 30.6 24.1 12.8 0.750 0.500 3100 258 10.1 259 40.7 2.91
 68 20.1 23.7 8.97 0.585 0.415 1830 154 9.55 70.4 15.7 1.87

 W21 3 101 29.8 21.4 12.3 0.800 0.500 2420 227 9.02 248 40.3 2.89
 62 18.3 21.0 8.24 0.615 0.400 1330 127 8.54 57.5 14.0 1.77
 44 13.0 20.7 6.50 0.450 0.350 843 81.6 8.06 20.7 6.37 1.26

 W18 3 106 31.1 18.7 11.2 0.940 0.590 1910 204 7.84 220 39.4 2.66
 76 22.3 18.2 11.0 0.680 0.425 1330 146 7.73 152 27.6 2.61
 50 14.7 18.0 7.50 0.570 0.355 800 88.9 7.38 40.1 10.7 1.65
 35 10.3 17.7 6.00 0.425 0.300 510 57.6 7.04 15.3 5.12 1.22

 W16   3   77 22.6 16.5 10.3 0.760 0.455 1110 134 7.00 138 26.9 2.47
 57 16.8 16.4 7.12 0.715 0.430 758 92.2 6.72 43.1 12.1 1.60
 40 11.8 16.0 7.00 0.505 0.305 518 64.7 6.63 28.9 8.25 1.57
 31 9.13 15.9 5.53 0.440 0.275 375 47.2 6.41 12.4 4.49 1.17
 26 7.68 15.7 5.50 0.345 0.250 301 38.4 6.26 9.59 3.49 1.12

 W14 3 370 109 17.9 16.5 2.66 1.66 5440 607 7.07 1990 241 4.27
 145 42.7 14.8 15.5 1.09 0.680 1710 232 6.33 677 87.3 3.98
 82 24.0 14.3 10.1 0.855 0.510 881 123 6.05 148 29.3 2.48
 68 20.0 14.0 10.0 0.720 0.415 722 103 6.01 121 24.2 2.46
 53 15.6 13.9 8.06 0.660 0.370 541 77.8 5.89 57.7 14.3 1.92
 43 12.6 13.7 8.00 0.530 0.305 428 62.6 5.82 45.2 11.3 1.89
 38 11.2 14.1 6.77 0.515 0.310 385 54.6 5.87 26.7 7.88 1.55
 30 8.85 13.8 6.73 0.385 0.270 291 42.0 5.73 19.6 5.82 1.49
 26 7.69 13.9 5.03 0.420 0.255 245 35.3 5.65 8.91 3.55 1.08
 22 6.49 13.7 5.00 0.335 0.230 199 29.0 5.54 7.00 2.80 1.04

(Table continued on page A7)

†A wide-flange shape is designated by the letter W followed by the nominal depth in inches and the weight in pounds per foot.
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Appendix B A7

Appendix B Properties of Rolled-Steel Shapes 
            (SI Units)
W Shapes
(Wide-Flange Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web Axis X-X Axis Y-Y
 Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry

Designation† A, mm2 d, mm. bf, mm tf, mm tw mm  106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 W920 3 449  57 300 947 424 42.7 24.0 8 780 18 500 391 541 2 560 97.0
 201 25 600 904 305 20.1 15.2 3 250 7 190 356 93.7 618 60.5

 W840 3 299  38 200 856 399 29.2 18.2 4 830 11 200 356 312 1 560 90.4
 176 22 400 836 292 18.8 14.0 2 460 5 880 330 77.8 534 58.9

 W760 3 257  32 900 772 381 27.2 16.6 3 430 8 870 323 249 1 310 86.9
 147 18 800 754 267 17.0 13.2 1 660 4 410 297 53.3 401 53.3

 W690 3 217  27 800 696 356 24.8 15.4 2 360 6 780 292 184 1 040 81.3
 125 16 000 678 254 16.3 11.7 1 190 3 490 272 44.1 347 52.6

 W610 3 155  19 700 612 325 19.1 12.7 1 290 4 230 257 108 667 73.9
 101 13 000 602 228 14.9 10.5 762 2 520 243 29.3 257 47.5

 W530 3 150  19 200 544 312 20.3 12.7 1 010 3 720 229 103 660 73.4
 92 11 800 533 209 15.6 10.2 554 2 080 217 23.9 229 45.0
 66 8 390 526 165 11.4 8.89 351 1 340 205 8.62 104 32.0

 W460 3 158  20 100 475 284 23.9 15.0 795 3 340 199 91.6 646 67.6
 113 14 400 462 279 17.3 10.8 554 2 390 196 63.3 452 66.3
 74 9 480 457 191 14.5 9.02 333 1 460 187 16.7 175 41.9
 52 6 650 450 152 10.8 7.62 212 944 179 6.37 83.9 31.0

 W410 3 114  14 600 419 262 19.3 11.6 462 2 200 178 57.4 441 62.7
 85 10 800 417 181 18.2 10.9 316 1 510 171 17.9 198 40.6
 60 7 610 406 178 12.8 7.75 216 1 060 168 12.0 135 39.9
 46.1 5 890 404 140 11.2 6.99 156 773 163 5.16 73.6 29.7
 38.8 4 950 399 140 8.76 6.35 125 629 159 3.99 57.2 28.4

 W360 3 551  70 300 455 419 67.6 42.2 2 260 9 950 180 828 3 950 108
 216 27 500 376 394 27.7 17.3 712 3 800 161 282 1 430 101
 122 15 500 363 257 21.7 13.0 367 2 020 154 61.6 480 63.0

 101 12 900 356 254 18.3 10.5 301 1 690 153 50.4 397 62.5
 79 10 100 353 205 16.8 9.40 225 1 270 150 24.0 234 48.8
 64 8 130 348 203 13.5 7.75 178 1 030 148 18.8 185 48.0
 57.8 7 230 358 172 13.1 7.87 160 895 149 11.1 129 39.4

 44 5 710 351 171 9.78 6.86 121 688 146 8.16 95.4 37.8
 39 4 960 353 128 10.7 6.48 102 578 144 3.71 58.2 27.4
 32.9 4 190 348 127 8.51 5.84 82.8 475 141 2.91 45.9 26.4

(Table continued on page A8)

†A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms permeter.
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A8 Appendix B

Appendix B Properties of Rolled-Steel Shapes 
            (U.S. Customary Units) 
           Continued from page A7
W Shapes
(Wide-Flange Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web
 Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in

4 Sx, in
3 rx, in. Iy, in

4 Sy, in
3 ry, in.

 W12 3 96 28.2 12.7 12.2 0.900 0.550 833 131 5.44 270 44.4 3.09
 72 21.1 12.3 12.0 0.670 0.430 597 97.4 5.31 195 32.4 3.04
 50 14.6 12.2 8.08 0.640 0.370 391 64.2 5.18 56.3 13.9 1.96
 40 11.7 11.9 8.01 0.515 0.295 307 51.5 5.13 44.1 11.0 1.94
 35 10.3 12.5 6.56 0.520 0.300 285 45.6 5.25 24.5 7.47 1.54
 30 8.79 12.3 6.52 0.440 0.260 238 38.6 5.21 20.3 6.24 1.52
 26 7.65 12.2 6.49 0.380 0.230 204 33.4 5.17 17.3 5.34 1.51
 22 6.48 12.3 4.03 0.425 0.260 156 25.4 4.91 4.66 2.31 0.848
 16 4.71 12.0 3.99 0.265 0.220 103 17.1 4.67 2.82 1.41 0.773
 W10 3 112 32.9 11.4 10.4 1.25 0.755 716 126 4.66 236 45.3 2.68
 68 20.0 10.4 10.1 0.770 0.470 394 75.7 4.44 134 26.4 2.59
 54 15.8 10.1 10.0 0.615 0.370 303 60.0 4.37 103 20.6 2.56
 45 13.3 10.1 8.02 0.620 0.350 248 49.1 4.32 53.4 13.3 2.01
 39 11.5 9.92 7.99 0.530 0.315 209 42.1 4.27 45.0 11.3 1.98
 33 9.71 9.73 7.96 0.435 0.290 171 35.0 4.19 36.6 9.20 1.94
 30 8.84 10.5 5.81 0.510 0.300 170 32.4 4.38 16.7 5.75 1.37
 22 6.49 10.2 5.75 0.360 0.240 118 23.2 4.27 11.4 3.97 1.33
 19 5.62 10.2 4.02 0.395 0.250 96.3 18.8 4.14 4.29 2.14 0.874
 15 4.41 10.0 4.00 0.270 0.230 68.9 13.8 3.95 2.89 1.45 0.810
 W8 3 58 17.1 8.75 8.22 0.810 0.510 228 52.0 3.65 75.1 18.3 2.10
 48 14.1 8.50 8.11 0.685 0.400 184 43.2 3.61 60.9 15.0 2.08
 40 11.7 8.25 8.07 0.560 0.360 146 35.5 3.53 49.1 12.2 2.04
 35 10.3 8.12 8.02 0.495 0.310 127 31.2 3.51 42.6 10.6 2.03
 31 9.12 8.00 8.00 0.435 0.285 110 27.5 3.47 37.1 9.27 2.02
 28 8.24 8.06 6.54 0.465 0.285 98.0 24.3 3.45 21.7 6.63 1.62
 24 7.08 7.93 6.50 0.400 0.245 82.7 20.9 3.42 18.3 5.63 1.61
 21 6.16 8.28 5.27 0.400 0.250 75.3 18.2 3.49 9.77 3.71 1.26
 18 5.26 8.14 5.25 0.330 0.230 61.9 15.2 3.43 7.97 3.04 1.23
 15 4.44 8.11 4.01 0.315 0.245 48.0 11.8 3.29 3.41 1.70 0.876
 13 3.84 7.99 4.00 0.255 0.230 39.6 9.91 3.21 2.73 1.37 0.843
 W6 3 25 7.34 6.38 6.08 0.455 0.320 53.4 16.7 2.70 17.1 5.61 1.52
 20 5.87 6.20 6.02 0.365 0.260 41.4 13.4 2.66 13.3 4.41 1.50
 16 4.74 6.28 4.03 0.405 0.260 32.1 10.2 2.60 4.43 2.20 0.967
 12 3.55 6.03 4.00 0.280 0.230 22.1 7.31 2.49 2.99 1.50 0.918
 9 2.68 5.90 3.94 0.215 0.170 16.4 5.56 2.47 2.20 1.11 0.905
 W5 3 19 5.56 5.15 5.03 0.430 0.270 26.3 10.2 2.17 9.13 3.63 1.28
 16 4.71 5.01 5.00 0.360 0.240 21.4 8.55 2.13 7.51 3.00 1.26
 W4 3 13 3.83 4.16 4.06 0.345 0.280 11.3 5.46 1.72 3.86 1.90 1.00

†A wide-flange shape is designated by the letter W followed by the nominal depth in inches and the weight in pounds per foot.
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Appendix B A9

Appendix B Properties of Rolled-Steel Shapes 
            (SI Units) 
                Continued from page A8
W Shapes
(Wide-Flange Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web Axis X-X Axis Y-Y
 Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry

Designation† A, mm2 d, mm bf, mm tf, mm tw, mm  106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 W310 3 143 18 200 323 310 22.9 14.0 347 2 150 138 112 728 78.5
 107 13 600 312 305 17.0 10.9 248 1 600 135 81.2 531 77.2
 74 9 420 310 205 16.3 9.40 163 1 050 132 23.4 228 49.8
 60 7 550 302 203 13.1 7.49 128 844 130 18.4 180 49.3
 52 6 650 318 167 13.2 7.62 119 747 133 10.2 122 39.1
 44.5 5 670 312 166 11.2 6.60 99.1 633 132 8.45 102 38.6
 38.7 4 940 310 165 9.65 5.84 84.9 547 131 7.20 87.5 38.4
 32.7 4 180 312 102 10.8 6.60 64.9 416 125 1.94 37.9 21.5
 23.8 3 040 305 101 6.73 5.59 42.9 280 119 1.17 23.1 19.6
 W250 3 167 21 200 290 264 31.8 19.2 298 2 060 118 98.2 742 68.1
 101 12 900 264 257 19.6 11.9 164 1 240 113 55.8 433 65.8
 80 10 200 257 254 15.6 9.4 126 983 111 42.9 338 65.0
 67 8 580 257 204 15.7 8.89 103 805 110 22.2 218 51.1
 58 7 420 252 203 13.5 8.00 87.0 690 108 18.7 185 50.3
 49.1 6 260 247 202 11.0 7.37 71.2 574 106 15.2 151 49.3
 44.8 5 700 267 148 13.0 7.62 70.8 531 111 6.95 94.2 34.8
 32.7 4 190 259 146 9.14 6.10 49.1 380 108 4.75 65.1 33.8
 28.4 3 630 259 102 10.0 6.35 40.1 308 105 1.79 35.1 22.2
 22.3 2 850 254 102 6.86 5.84 28.7 226 100 1.20 23.8 20.6
   W200 3 86 11 000 222 209 20.6 13.0 94.9 852 92.7 31.3 300 53.3
 71 9 100 216 206 17.4 10.2 76.6 708 91.7 25.3 246 52.8
 59 7 550 210 205 14.2 9.14 60.8 582 89.7 20.4 200 51.8
 52 6 650 206 204 12.6 7.87 52.9 511 89.2 17.7 174 51.6
 46.1 5 880 203 203 11.0 7.24 45.8 451 88.1 15.4 152 51.3
 41.7 5 320 205 166 11.8 7.24 40.8 398 87.6 9.03 109 41.1
 35.9 4 570 201 165 10.2 6.22 34.4 342 86.9 7.62 92.3 40.9
 31.3 3 970 210 134 10.2 6.35 31.3 298 88.6 4.07 60.8 32.0
 26.6 3 390 207 133 8.38 5.84 25.8 249 87.1 3.32 49.8 31.2
 22.5 2 860 206 102 8.00 6.22 20.0 193 83.6 1.42 27.9 22.3
 19.3 2 480 203 102 6.48 5.84 16.5 162 81.5 1.14 22.5 21.4
   W150 3 37.1 4 740 162 154 11.6 8.13 22.2 274 68.6 7.12 91.9 38.6
 29.8 3 790 157 153 9.27 6.60 17.2 220 67.6 5.54 72.3 38.1
 24 3 060 160 102 10.3 6.60 13.4 167 66.0 1.84 36.1 24.6
 18 2 290 153 102 7.11 5.84 9.20 120 63.2 1.24 24.6 23.3
 13.5 1 730 150 100 5.46 4.32 6.83 91.1 62.7 0.916 18.2 23.0
    W130 3 28.1 3 590 131 128 10.9 6.86 10.9 167 55.1 3.80 59.5 32.5
 23.8 3 040 127 127 9.14 6.10 8.91 140 54.1 3.13 49.2 32.0
   W100 3 19.3 2 470 106 103 8.76 7.11 4.70 89.5 43.7 1.61 31.1 25.4

†A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms per meter.
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A10 Appendix B

Appendix B Properties of Rolled-Steel Shapes 
            (U.S. Customary Units)
S Shapes
(American Standard Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web
 Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in

4 Sx, in
3 rx, in. Iy, in

4 Sy, in
3 ry, in.

 S24 3 121 35.5 24.5 8.05 1.09 0.800 3160 258 9.43 83.0 20.6 1.53
 106 31.1 24.5 7.87 1.09 0.620 2940 240 9.71 76.8 19.5 1.57
 100 29.3 24.0 7.25 0.870 0.745 2380 199 9.01 47.4 13.1 1.27
 90 26.5 24.0 7.13 0.870 0.625 2250 187 9.21 44.7 12.5 1.30
 80 23.5 24.0 7.00 0.870 0.500 2100 175 9.47 42.0 12.0 1.34
 S20 3 96 28.2 20.3 7.20 0.920 0.800 1670 165 7.71 49.9 13.9 1.33
 86 25.3 20.3 7.06 0.920 0.660 1570 155 7.89 46.6 13.2 1.36
 75 22.0 20.0 6.39 0.795 0.635 1280 128 7.62 29.5 9.25 1.16
 66 19.4 20.0 6.26 0.795 0.505 1190 119 7.83 27.5 8.78 1.19
 S18 3 70 20.5 18.0 6.25 0.691 0.711 923 103 6.70 24.0 7.69 1.08
 54.7 16.0 18.0 6.00 0.691 0.461 801 89.0 7.07 20.7 6.91 1.14
 S15 3 50 14.7 15.0 5.64 0.622 0.550 485 64.7 5.75 15.6 5.53 1.03
 42.9 12.6 15.0 5.50 0.622 0.411 446 59.4 5.95 14.3 5.19 1.06
 S12 3 50 14.6 12.0 5.48 0.659 0.687 303 50.6 4.55 15.6 5.69 1.03
 40.8 11.9 12.0 5.25 0.659 0.462 270 45.1 4.76 13.5 5.13 1.06
 35 10.2 12.0 5.08 0.544 0.428 228 38.1 4.72 9.84 3.88 0.980
 31.8 9.31 12.0 5.00 0.544 0.350 217 36.2 4.83 9.33 3.73 1.00
 S10 3 35 10.3 10.0 4.94 0.491 0.594 147 29.4 3.78 8.30 3.36 0.899
 25.4 7.45 10.0 4.66 0.491 0.311 123 24.6 4.07 6.73 2.89 0.950
 S8 3 23 6.76 8.00 4.17 0.425 0.441 64.7 16.2 3.09 4.27 2.05 0.795
 18.4 5.40 8.00 4.00 0.425 0.271 57.5 14.4 3.26 3.69 1.84 0.827
 S6 3 17.2 5.06 6.00 3.57 0.359 0.465 26.2 8.74 2.28 2.29 1.28 0.673
 12.5 3.66 6.00 3.33 0.359 0.232 22.0 7.34 2.45 1.80 1.08 0.702
 S5 3 10 2.93 5.00 3.00 0.326 0.214 12.3 4.90 2.05 1.19 0.795 0.638
 S4 3 9.5 2.79 4.00 2.80 0.293 0.326 6.76 3.38 1.56 0.887 0.635 0.564
 7.7 2.26 4.00 2.66 0.293 0.193 6.05 3.03 1.64 0.748 0.562 0.576
 S3 3 7.5 2.20 3.00 2.51 0.260 0.349 2.91 1.94 1.15 0.578 0.461 0.513
 5.7 1.66 3.00 2.33 0.260 0.170 2.50 1.67 1.23 0.447 0.383 0.518

†An American Standard Beam is designated by the letter S followed by the nominal depth in inches and the weight in pounds per foot.
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Appendix B A11

Appendix B Properties of Rolled-Steel Shapes 
            (SI Units) 
S Shapes
(American Standard Shapes)

Y

Y

X
tw

tf

bf

d X

 
 Flange
 Web Axis X-X Axis Y-Y
 Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry

Designation† A, mm2 d, mm bf, mm tf, mm tw, mm  106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 S610 3 180 22 900 622 204 27.7 20.3 1 320 4 230 240 34.5 338 38.9
 158 20 100 622 200 27.7 15.7 1 220 3 930 247 32.0 320 39.9
 149 18 900 610 184 22.1 18.9 991 3 260 229 19.7 215 32.3
 134 17 100 610 181 22.1 15.9 937 3 060 234 18.6 205 33.0
 119 15 200 610 178 22.1 12.7 874 2 870 241 17.5 197 34.0
 S510 3 143 18 200 516 183 23.4 20.3 695 2 700 196 20.8 228 33.8
 128 16 300 516 179 23.4 16.8 653 2 540 200 19.4 216 34.5
 112 14 200 508 162 20.2 16.1 533 2 100 194 12.3 152 29.5
 98.2 12 500 508 159 20.2 12.8 495 1 950 199 11.4 144 30.2
 S460 3 104 13 200 457 159 17.6 18.1 384 1 690 170 10.0 126 27.4
 81.4 10 300 457 152 17.6 11.7 333 1 460 180 8.62 113 29.0
 S380 3 74 9 480 381 143 15.8 14.0 202 1 060 146 6.49 90.6 26.2
 64 8 130 381 140 15.8 10.4 186 973 151 5.95 85.0 26.9
 S310 3 74 9 420 305 139 16.7 17.4 126 829 116 6.49 93.2 26.2
 60.7 7 680 305 133 16.7 11.7 112 739 121 5.62 84.1 26.9
 52 6 580 305 129 13.8 10.9 94.9 624 120 4.10 63.6 24.9
 47.3 6 010 305 127 13.8 8.89 90.3 593 123 3.88 61.1 25.4
 S250 3 52 6 650 254 125 12.5 15.1 61.2 482 96.0 3.45 55.1 22.8
 37.8 4 810 254 118 12.5 7.90 51.2 403 103 2.80 47.4 24.1
 S200 3 34 4 360 203 106 10.8 11.2 26.9 265 78.5 1.78 33.6 20.2
 27.4 3 480 203 102 10.8 6.88 23.9 236 82.8 1.54 30.2 21.0
     S150 3 25.7 3 260 152 90.7 9.12 11.8 10.9 143 57.9 0.953 21.0 17.1
 18.6 2 360 152 84.6 9.12 5.89 9.16 120 62.2 0.749 17.7 17.8
 S130 3 15 1 890 127 76.2 8.28 5.44 5.12 80.3 52.1 0.495 13.0 16.2
    S100 3 14.1 1 800 102 71.1 7.44 8.28 2.81 55.4 39.6 0.369 10.4 14.3
 11.5 1 460 102 67.6 7.44 4.90 2.52 49.7 41.7 0.311 9.21 14.6
    S75 3 11.2 1 420 76.2 63.8 6.60 8.86 1.21 31.8 29.2 0.241 7.55 13.0
 8.5 1 070 76.2 59.2 6.60 4.32 1.04 27.4 31.2 0.186 6.28 13.2

†An American Standard Beam is designated by the letter S followed by the nominal depth in millimeters and the mass in kilograms per meter.
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A12 Appendix B

Appendix B Properties of Rolled-Steel Shapes 
            (U.S. Customary Units)
C Shapes
(American Standard Channels)

X X

tw

tf

Y

Y

bf

d

x

 
   Flange
     Web
    Thick- Thick- Axis X-X Axis Y-Y

 Area Depth Width ness ness
Designation† A, in2 d, in bf, in tf, in tw, in Ix, in

4 Sx, in
3 rx, in Iy, in

4 Sy, in
3 ry, in x, in

 C15 3 50 14.7 15.0 3.72 0.650 0.716 404 53.8 5.24 11.0 3.77 0.865 0.799
 40 11.8 15.0 3.52 0.650 0.520 348 46.5 5.45 9.17 3.34 0.883 0.778
 33.9 10.0 15.0 3.40 0.650 0.400 315 42.0 5.62 8.07 3.09 0.901 0.788

 C12 3 30 8.81 12.0 3.17 0.501 0.510 162 27.0 4.29 5.12 2.05 0.762 0.674
 25 7.34 12.0 3.05 0.501 0.387 144 24.0 4.43 4.45 1.87 0.779 0.674
 20.7 6.08 12.0 2.94 0.501 0.282 129 21.5 4.61 3.86 1.72 0.797 0.698

 C10 3 30 8.81 10.0 3.03 0.436 0.673 103 20.7 3.42 3.93 1.65 0.668 0.649
 25 7.34 10.0 2.89 0.436 0.526 91.1 18.2 3.52 3.34 1.47 0.675 0.617
 20 5.87 10.0 2.74 0.436 0.379 78.9 15.8 3.66 2.80 1.31 0.690 0.606
 15.3 4.48 10.0 2.60 0.436 0.240 67.3 13.5 3.87 2.27 1.15 0.711 0.634

 C9 3 20 5.87 9.00 2.65 0.413 0.448 60.9 13.5 3.22 2.41 1.17 0.640 0.583
 15 4.41 9.00 2.49 0.413 0.285 51.0 11.3 3.40 1.91 1.01 0.659 0.586
 13.4 3.94 9.00 2.43 0.413 0.233 47.8 10.6 3.49 1.75 0.954 0.666 0.601

 C8 3 18.7 5.51 8.00 2.53 0.390 0.487 43.9 11.0 2.82 1.97 1.01 0.598 0.565
 13.7 4.04 8.00 2.34 0.390 0.303 36.1 9.02 2.99 1.52 0.848 0.613 0.554
 11.5 3.37 8.00 2.26 0.390 0.220 32.5 8.14 3.11 1.31 0.775 0.623 0.572

 C7 3 12.2 3.60 7.00 2.19 0.366 0.314 24.2 6.92 2.60 1.16 0.696 0.568 0.525
 9.8 2.87 7.00 2.09 0.366 0.210 21.2 6.07 2.72 0.957 0.617 0.578 0.541

 C6 3 13 3.81 6.00 2.16 0.343 0.437 17.3 5.78 2.13 1.05 0.638 0.524 0.514
 10.5 3.08 6.00 2.03 0.343 0.314 15.1 5.04 2.22 0.860 0.561 0.529 0.500
 8.2 2.39 6.00 1.92 0.343 0.200 13.1 4.35 2.34 0.687 0.488 0.536 0.512

 C5 3 9 2.64 5.00 1.89 0.320 0.325 8.89 3.56 1.83 0.624 0.444 0.486 0.478
 6.7 1.97 5.00 1.75 0.320 0.190 7.48 2.99 1.95 0.470 0.372 0.489 0.484

 C4 3 7.2 2.13 4.00 1.72 0.296 0.321 4.58 2.29 1.47 0.425 0.337 0.447 0.459
 5.4 1.58 4.00 1.58 0.296 0.184 3.85 1.92 1.56 0.312 0.277 0.444 0.457

 C3 3 6 1.76 3.00 1.60 0.273 0.356 2.07 1.38 1.08 0.300 0.263 0.413 0.455
 5 1.47 3.00 1.50 0.273 0.258 1.85 1.23 1.12 0.241 0.228 0.405 0.439
 4.1 1.20 3.00 1.41 0.273 0.170 1.65 1.10 1.17 0.191 0.196 0.398 0.437

†An American Standard Channel is designated by the letter C followed by the nominal depth in inches and the weight in pounds per foot.
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Appendix B A13

Appendix B Properties of Rolled-Steel Shapes 
            (SI Units)
C Shapes
(American Standard Channels)

X X

tw

tf

Y

Y

bf

d

x

 
 Flange
 Web
            Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness Ix Sx rx Iy Sy ry x
Designation† A, mm2 d, mm bf, mm tf, mm tw, mm  106 mm4 103 mm3 mm 106 mm4 103 mm3 mm mm

 C380 3 74 9 480 381 94.5 16.5 18.2 168 882 133 4.58 61.8 22.0 20.3
 60 7 610 381 89.4 16.5 13.2 145 762 138 3.82 54.7 22.4 19.8
 50.4 6 450 381 86.4 16.5 10.2 131 688 143 3.36 50.6 22.9 20.0
 C310 3 45 5 680 305 80.5 12.7 13.0 67.4 442 109 2.13 33.6 19.4 17.1
 37 4 740 305 77.5 12.7 9.83 59.9 393 113 1.85 30.6 19.8 17.1
 30.8 3 920 305 74.7 12.7 7.16 53.7 352 117 1.61 28.2 20.2 17.7
 C250 3 45 5 680 254 77.0 11.1 17.1 42.9 339 86.9 1.64 27.0 17.0 16.5
 37 4 740 254 73.4 11.1 13.4 37.9 298 89.4 1.39 24.1 17.1 15.7
 30 3 790 254 69.6 11.1 9.63 32.8 259 93.0 1.17 21.5 17.5 15.4
 22.8 2 890 254 66.0 11.1 6.10 28.0 221 98.3 0.945 18.8 18.1 16.1
 C230 3 30 3 790 229 67.3 10.5 11.4 25.3 221 81.8 1.00 19.2 16.3 14.8
 22 2 850 229 63.2 10.5 7.24 21.2 185 86.4 0.795 16.6 16.7 14.9
 19.9 2 540 229 61.7 10.5 5.92 19.9 174 88.6 0.728 15.6 16.9 15.3
 C200 3 27.9 3 550 203 64.3 9.91 12.4 18.3 180 71.6 0.820 16.6 15.2 14.4
 20.5 2 610 203 59.4 9.91 7.70 15.0 148 75.9 0.633 13.9 15.6 14.1
 17.1 2 170 203 57.4 9.91 5.59 13.5 133 79.0 0.545 12.7 15.8 14.5
 C180 3 18.2 2 320 178 55.6 9.30 7.98 10.1 113 66.0 0.483 11.4 14.4 13.3
 14.6 1 850 178 53.1 9.30 5.33 8.82 100 69.1 0.398 10.1 14.7 13.7
 C150 3 19.3 2 460 152 54.9 8.71 11.1 7.20 94.7 54.1 0.437 10.5 13.3 13.1
 15.6 1 990 152 51.6 8.71 7.98 6.29 82.6 56.4 0.358 9.19 13.4 12.7
 12.2 1 540 152 48.8 8.71 5.08 5.45 71.3 59.4 0.286 8.00 13.6 13.0
 C130 3 13 1 700 127 48.0 8.13 8.26 3.70 58.3 46.5 0.260 7.28 12.3 12.1
 10.4 1 270 127 44.5 8.13 4.83 3.11 49.0 49.5 0.196 6.10 12.4 12.3
 C100 3 10.8 1 370 102 43.7 7.52 8.15 1.91 37.5 37.3 0.177 5.52 11.4 11.7
 8 1 020 102 40.1 7.52 4.67 1.60 31.5 39.6 0.130 4.54 11.3 11.6
     C75 3 8.9 1 140 76.2 40.6 6.93 9.04 0.862 22.6 27.4 0.125 4.31 10.5 11.6
 7.4 948 76.2 38.1 6.93 6.55 0.770 20.2 28.4 0.100 3.74 10.3 11.2
 6.1 774 76.2 35.8 6.93 4.32 0.687 18.0 29.7 0.0795 3.21 10.1 11.1

†An American Standard Channel is designated by the letter C followed by the nominal depth in millimeters and the mass in kilograms per meter.
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A14 Appendix B

Appendix B Properties of Rolled-Steel Shapes 
            (U.S. Customary Units)
Angles
Equal Legs

XX

x

y

Y

Y

Z

Z 
 Axis X-X and Axis Y-Y Axis

 Weight per      Z-Z
Size and Thickness, in. Foot, lb/ft Area, in2 I, in4 S, in3 r, in. x or y, in. rz, in.

 L8 3 8 3 1 51.0 15.0 89.1 15.8 2.43 2.36 1.56
 3⁄4 38.9 11.4 69.9 12.2 2.46 2.26 1.57
 1⁄2 26.4 7.75 48.8 8.36 2.49 2.17 1.59

 L6 3 6 3 1 37.4 11.0 35.4 8.55 1.79 1.86 1.17
 3⁄4 28.7 8.46 28.1 6.64 1.82 1.77 1.17
 5⁄8 24.2 7.13 24.1 5.64 1.84 1.72 1.17
 1⁄2 19.6 5.77 19.9 4.59 1.86 1.67 1.18
 3⁄8 14.9 4.38 15.4 3.51 1.87 1.62 1.19

 L5 3 5 3 3⁄4 23.6 6.94 15.7 4.52 1.50 1.52 0.972
 5⁄8 20.0 5.86 13.6 3.85 1.52 1.47 0.975
 1⁄2 16.2 4.75 11.3 3.15 1.53 1.42 0.980
 3⁄8 12.3 3.61 8.76 2.41 1.55 1.37 0.986

 L4 3 4 3 3⁄4 18.5 5.44 7.62 2.79 1.18 1.27 0.774
 5⁄8 15.7 4.61 6.62 2.38 1.20 1.22 0.774
 1⁄2 12.8 3.75 5.52 1.96 1.21 1.18 0.776
 3⁄8 9.80 2.86 4.32 1.50 1.23 1.13 0.779
 1⁄4 6.60 1.94 3.00 1.03 1.25 1.08 0.783

 L31
2 3 31

2 3 1⁄2 11.1 3.25 3.63 1.48 1.05 1.05 0.679
 3⁄8 8.50 2.48 2.86 1.15 1.07 1.00 0.683
 1⁄4 5.80 1.69 2.00 0.787 1.09 0.954 0.688

 L3 3 3 3 1⁄2 9.40 2.75 2.20 1.06 0.895 0.929 0.580
 3⁄8 7.20 2.11 1.75 0.825 0.910 0.884 0.581
 1⁄4 4.90 1.44 1.23 0.569 0.926 0.836 0.585

 L21
2 3 21

2 3 1⁄2 7.70 2.25 1.22 0.716 0.735 0.803 0.481
 3⁄8 5.90 1.73 0.972 0.558 0.749 0.758 0.481
 1⁄4 4.10 1.19 0.692 0.387 0.764 0.711 0.482
 3⁄16 3.07 0.900 0.535 0.295 0.771 0.687 0.482

 L2 3 2 3 3⁄8 4.70 1.36 0.476 0.348 0.591 0.632 0.386
 1⁄4 3.19 0.938 0.346 0.244 0.605 0.586 0.387
 1⁄8 1.65 0.484 0.189 0.129 0.620 0.534 0.391
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Appendix B A15

Appendix B Properties of Rolled-Steel Shapes 
            (SI Units)
Angles
Equal Legs

XX

x

y

Y

Y

Z

Z 
 Axis X-X Axis
  Z-Z
 Mass per  I S r x or y rz

Size and Thickness, mm Meter, kg/m Area, mm2 106 mm4 103 mm3 mm mm mm

 L203 3 203 3 25.4 75.9 9 680 37.1 259 61.7 59.9 39.6
 19 57.9 7 350 29.1 200 62.5 57.4 39.9
 12.7 39.3 5 000 20.3 137 63.2 55.1 40.4

 L152 3 152 3 25.4 55.7 7 100 14.7 140 45.5 47.2 29.7
 19 42.7 5 460 11.7 109 46.2 45.0 29.7
 15.9 36.0 4 600 10.0 92.4 46.7 43.7 29.7
 12.7 29.2 3 720 8.28 75.2 47.2 42.4 30.0
 9.5 22.2 2 830 6.41 57.5 47.5 41.1 30.2

 L127 3 127 3 19 35.1 4 480 6.53 74.1 38.1 38.6 24.7
 15.9 29.8 3 780 5.66 63.1 38.6 37.3 24.8
 12.7 24.1 3 060 4.70 51.6 38.9 36.1 24.9
 9.5 18.3 2 330 3.65 39.5 39.4 34.8 25.0

 L102 3 102 3 19 27.5 3 510 3.17 45.7 30.0 32.3 19.7
 15.9 23.4 2 970 2.76 39.0 30.5 31.0 19.7
 12.7 19.0 2 420 2.30 32.1 30.7 30.0 19.7
 9.5 14.6 1 850 1.80 24.6 31.2 28.7 19.8
 6.4 9.80 1 250 1.25 16.9 31.8 27.4 19.9

 L89 3 89 3 12.7 16.5 2 100 1.51 24.3 26.7 26.7 17.2
 9.5 12.6 1 600 1.19 18.8 27.2 25.4 17.3
 6.4 8.60 1 090 0.832 12.9 27.7 24.2 17.5

 L76 3 76 3 12.7 14.0 1 770 0.916 17.4 22.7 23.6 14.7
 9.5 10.7 1 360 0.728 13.5 23.1 22.5 14.8
 6.4 7.30  929 0.512 9.32 23.5 21.2 14.9

 L64 3 64 3 12.7 11.4 1 450 0.508 11.7 18.7 20.4 12.2
 9.5 8.70 1 120 0.405 9.14 19.0 19.3 12.2
 6.4 6.10 768 0.288 6.34 19.4 18.1 12.2
 4.8 4.60 581 0.223 4.83 19.6 17.4 12.2

 L51 3 51 3 9.5 7.00 877 0.198 5.70 15.0 16.1 9.80
 6.4 4.70 605 0.144 4.00 15.4 14.9 9.83
 3.2 2.40 312 0.0787 2.11 15.7 13.6 9.93
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A16 Appendix B

Appendix B Properties of Rolled-Steel Shapes 
            (U.S. Customary Units)
Angles
Unequal Legs

XX

x

y

Y

Y

α

Z

Z
 
 Axis X-X Axis Y-Y Axis Z-Z
Size and Weight per
Thickness, in. Foot, lb/ft Area, in2 Ix, in

4 Sx, in
3 rx, in. y, in. Iy, in

4 Sy, in
3 ry, in. x, in. rz, in. tan α

 L8 3 6 3 1 44.2 13.0 80.9 15.1 2.49 2.65 38.8 8.92 1.72 1.65 1.28 0.542
 3⁄4 33.8 9.94 63.5 11.7 2.52 2.55 30.8 6.92 1.75 1.56 1.29 0.550
 1⁄2 23.0 6.75 44.4 8.01 2.55 2.46 21.7 4.79 1.79 1.46 1.30 0.557

 L6 3 4 3 3⁄4 23.6 6.94 24.5 6.23 1.88 2.07 8.63 2.95 1.12 1.07 0.856 0.428
 1⁄2 16.2 4.75 17.3 4.31 1.91 1.98 6.22 2.06 1.14 0.981 0.864 0.440
 3⁄8 12.3 3.61 13.4 3.30 1.93 1.93 4.86 1.58 1.16 0.933 0.870 0.446

 L5 3 3 3 1⁄2 12.8 3.75 9.43 2.89 1.58 1.74 2.55 1.13 0.824 0.746 0.642 0.357
 3⁄8 9.80 2.86 7.35 2.22 1.60 1.69 2.01 0.874 0.838 0.698 0.646 0.364
 1⁄4 6.60 1.94 5.09 1.51 1.62 1.64 1.41 0.600 0.853 0.648 0.652 0.371

 L4 3 3 3 1⁄2 11.1 3.25 5.02 1.87 1.24 1.32 2.40 1.10 0.858 0.822 0.633 0.542
 3⁄8 8.50 2.48 3.94 1.44 1.26 1.27 1.89 0.851 0.873 0.775 0.636 0.551
 1⁄4 5.80 1.69 2.75 0.988 1.27 1.22 1.33 0.585 0.887 0.725 0.639 0.558

 L31
2 3 21

2 3 1⁄2 9.40 2.75 3.24 1.41 1.08 1.20 1.36 0.756 0.701 0.701 0.532 0.485
 3⁄8 7.20 2.11 2.56 1.09 1.10 1.15 1.09 0.589 0.716 0.655 0.535 0.495
 1⁄4 4.90 1.44 1.81 0.753 1.12 1.10 0.775 0.410 0.731 0.607 0.541 0.504

 L3 3 2 3 1⁄2 7.70 2.25 1.92 1.00 0.922 1.08 0.667 0.470 0.543 0.580 0.425 0.413
 3⁄8 5.90 1.73 1.54 0.779 0.937 1.03 0.539 0.368 0.555 0.535 0.426 0.426
 1⁄4 4.10 1.19 1.09 0.541 0.953 0.980 0.390 0.258 0.569 0.487 0.431 0.437

 L21
2 3 2 3 3⁄8 5.30 1.55 0.914 0.546 0.766 0.826 0.513 0.361 0.574 0.578 0.419 0.612

 1⁄4 3.62 1.06 0.656 0.381 0.782 0.779 0.372 0.253 0.589 0.532 0.423 0.624
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Appendix B A17

Appendix B Properties of Rolled-Steel Shapes 
            (SI Units)
Angles
Unequal Legs

XX

x

y

Y

Y

α

Z

Z
 
 Axis X-X Axis Y-Y Axis Z-Z

 Size and Mass per
 Thickness, Meter Area Ix Sx rx y Iy Sy ry x rz

 mm kg/m mm2 106 mm4 103 mm3 mm mm 106 mm4 103 mm3 mm mm mm tan α

 L203 3 152 3 25.4 65.5 8 390 33.7 247 63.2 67.3 16.1 146 43.7 41.9 32.5 0.542
 19 50.1 6 410 26.4 192 64.0 64.8 12.8 113 44.5 39.6 32.8 0.550
 12.7 34.1 4 350 18.5 131 64.8 62.5 9.03 78.5 45.5 37.1 33.0 0.557

 L152 3 102 3 19 35.0 4 480 10.2 102 47.8 52.6 3.59 48.3 28.4 27.2 21.7 0.428
 12.7 24.0 3 060 7.20 70.6 48.5 50.3 2.59 33.8 29.0 24.9 21.9 0.440
 9.5 18.2 2 330 5.58 54.1 49.0 49.0 2.02 25.9 29.5 23.7 22.1 0.446

 L127 3 76 3 12.7 19.0 2 420 3.93 47.4 40.1 44.2 1.06 18.5 20.9 18.9 16.3 0.357
 9.5 14.5 1 850 3.06 36.4 40.6 42.9 0.837 14.3 21.3 17.7 16.4 0.364
 6.4 9.80 1 250 2.12 24.7 41.1 41.7 0.587 9.83 21.7 16.5 16.6 0.371

 L102 3 76 3 12.7 16.4 2 100 2.09 30.6 31.5 33.5 0.999 18.0 21.8 20.9 16.1 0.542
 9.5 12.6 1 600 1.64 23.6 32.0 32.3 0.787 13.9 22.2 19.7 16.2 0.551
 6.4 8.60 1 090 1.14 16.2 32.3 31.0 0.554 9.59 22.5 18.4 16.2 0.558

 L89 3 64 3 12.7 13.9 1 770 1.35 23.1 27.4 30.5 0.566 12.4 17.8 17.8 13.5 0.485
 9.5 10.7 1 360 1.07 17.9 27.9 29.2 0.454 9.65 18.2 16.6 13.6 0.495
 6.4 7.30  929 0.753 12.3 28.4 27.9 0.323 6.72 18.6 15.4 13.7 0.504

 L76 3 51 3 12.7 11.5 1 450 0.799 16.4 23.4 27.4 0.278 7.70 13.8 14.7 10.8 0.413
 9.5 8.80 1 120 0.641 12.8 23.8 26.2 0.224 6.03 14.1 13.6 10.8 0.426
 6.4 6.10  768 0.454 8.87 24.2 24.9 0.162 4.23 14.5 12.4 10.9 0.437

 L64 3 51 3 9.5 7.90 1 000 0.380 8.95 19.5 21.0 0.214 5.92 14.6 14.7 10.6 0.612
 6.4 5.40 684 0.273 6.24 19.9 19.8 0.155 4.15 15.0 13.5 10.7 0.624
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A18 Appendix C

  Maximum 
Beam and Loading Elastic Curve Deflection  Slope at End Equation of Elastic Curve
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Appendix C Beam Deflections and Slopes
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Index
A

absolute system of units, 6–9
abstract science, 2
accelerations, 18
actions on free-bodies, 151–152
actual deformation, 424, 426
addition

of concurrent forces in space, 53–56
of couples, 113
of forces by summing x and y components, 

31–33
parallelogram law of, 79
of vectors, 18–20

algebraic expression, 37
algebraic sum of angle of twist, 486
allowable load, 338, 378
allowable normal stress, 603
allowable shearing stress, 603
allowable stress, 364, 726
allowable stress design, 365, 723
aluminum

Alloy 2014-T6, 726
Alloy 6061-T6, 726
columns, 726–727
stress and strain, 389

American standard beam (S-beam), 598
analysis and design of beams for bending

about generally, 552–554
design of prismatic beams for bending, 

577–582
load, shear and bending moment, 566–573
review problems, 589–590
shear and bending-moment diagrams, 

554–560
summary, 587–588

analysis of structures
about generally, 314
analysis of a frame, 309
analysis of trusses, 266–268
definition of a truss, 263–266
frames, 286–289
joints under special loading conditions, 

268–274
machines, 298–300
method of joints, 266–268
method of sections, 275–276
possessing statically indeterminate 

reactions, 156–157
review problems, 310–312
simple trusses, 264–266
structures containing multiforce 

members, 286

summary, 307–310
trusses made of several simple trusses, 

276–280
analysis of trusses, 307
angle formed by two given vectors, 98
angle of friction, 194–195, 208
angle of kinetic friction, 194, 209
angle of neutral surface with horizontal 

plane, 537
angle of repose, 195
angle of static friction, 195
angle of twist, 455, 469–472, 486
anisotropic materials, 391
applied forces

direction of, 196
magnitude of, 196

applied science, 2
arbitrary horizontal axis, 499
Archimedes, 3
area of surface of revolution, 233
Aristotle, 2
associative property, 82, 97
associative vector addition, 20
average shearing stress, 350, 596, 621
average stress, 376
average value of stress, 339
axial loading, 376, 384–450
axisymmetric shafts, 455
axisymmetric vessels, 650

B

Baltimore trusses, 266
basic concepts, 3
basic units, 6
Baushinger effect, 393
beams

carrying a distributed load, 700
deformations of, under transverse 

loading, 699
elastic flexure formula, 500
minimum required depth of, 581
reverse loading, 552

bearing shear, 377
bearing stresses, 338, 343, 348, 350, 377
bearing surfaces, 343, 377
bending, 545. See also pure bending
bending and twisting, 612
bending-moment, 495

curve, 568
maximum, 582
maximum absolute value of, 580

bending-moment diagrams, 554, 568–573, 
587, 588

bending of members made of composite 
materials, 511–517

body of revolution, 233
boundary conditions, 668, 699
bound vector, 18
box beam, 611
breaking strength, 388
brittle materials, 384, 388, 442–443
brittle state, 389
buckling, 336, 707, 715
building codes, 366

C

cantilever beams, 665, 666, 668, 700
center of gravity

of composite body, 257, 258
defined, 78–79
force of gravity on, 215
of homogeneous wire of uniform cross 

section, 256
of three-dimensional body, 245–247, 258
of two-dimensional body, 216–217, 256

centimeter (cm), 8
centric axial loading, 376
centric load design, 722
centric loads, 493, 522
centroid(s)

of an area, 215, 217, 256
of areas and lines, 217–219
of common shapes and volumes, 248
of common shapes of areas, 221, 222
determination of, by integration, 257
of a line, 219, 256
of three-dimensional shapes, 258
of transformed sections, 512
of a volume, 245–247, 252–255, 258

centroidal axis, 323
centroidal moment of inertia, 615
centroidal polar moment of inertia, 485
centroids and center of gravity

about generally, 215
center of gravity of a three-dimensional 

body, 245–247
center of gravity of a two-dimensional 

body, 215–216
centroid of a volume, 245–247,  

252–255
centroids of areas and lines, 217–219
composite bodies, 247–251
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deformation, 84, 142
about generally, 5
of a beam under transverse loading, 699
in circular shafts, 454–457, 485
determination of the elastic curve from the 

load distribution, 673–674
distributed loads, 700
indeterminate forces and, 436, 495
and internal forces, 80
of members under axial loading, 395–396
statically indeterminate forces, 675
and stresses, 338
in a symmetric member in pure 

bending, 496
deformation per unit length, 384, 385, 442
deformations under axial loading, 428–431
derived units, 6
design, 378
design load, 364
design of prismatic beams, 588
design of prismatic beams for bending, 

577–582
design of steel columns, 739
design specifications, 366
deterioration, 365
determination of centroids by integration, 

231–238
determining the moment of inertia of an  

area by integration, 315–316
diagonal, 17
dimensionless quantity, 386
direction, 17, 69
direction cosines, 49, 70
direction of applied forces, 196
discontinuity, 438
displacements, 18
distance between centroidal and neutral 

axes, 525
distributed forces, 214–260

moments of inertia of areas, 312
distributed loads, 242–243, 258, 552
distribution of shear stresses, 621
distribution of shear stresses in circular 

shafts, 453
distribution of stresses, 455, 485, 537
distributive property, 82, 97
dot products, 97
double integration, 231–232
double shear, 342, 377
dry friction, 191, 208
ductile materials, 384, 388, 442
ductile state, 389
dynamics, 2

E

eccentrically loaded members, 341
eccentric axial loading, 376, 492–494,  

522–526, 537–541, 546
eccentric loading, 522
effective length of columns, 706, 713, 739
effective slenderness length of columns, 712

compound trusses, 276, 308
compressible fluids, 28
compression, 80, 307–308, 497
computation errors, 14
concentrated loads, 454, 552, 567
concrete, 390, 443
concurrent forces, 87, 126, 207
concurrent reactions, 157
connections, 152
connections for a two-dimensional  

structure, 152–154
constant of gravitation, 4
constants of integration, 672, 673
continuity, 671
converting of units, 10–12
coplanar forces, 70, 127
coplanar vectors, 19
Coulomb friction, 191
counterclockwise rotation, 84
couple(s). See also force-couple systems

addition of, 113
defined, 77
equivalent, 111–113, 144
moment of, 110–111
vectors, 113–114

couple vectors, 114, 127, 144
creep, 392
critical load, 706, 738. See also Euler’s 

formula
critically loaded columns, 739
critical stress, 710
cross product, 81
cross-section properties, 525, 540
cubic meter (m3), 7
current line of action, 169
curvature of a member, 546
curvature of neutral surface, 500
curved surface, 622
cylindrical body of a tank, 594
cylindrical pressure vessels, 660

D

d’Alembert, Jean, 3
dead load, 366
decimeter (dm), 8
deflection

maximum, 677
slope and, 687, 688

deflection of beams
about generally, 664–666
deformation of a beam under transverse 

loading, 666–674
determination of the elastic curve from the 

load distribution, 673–674
equation of the elastic curve, 667–672
method of superposition, 687–688
review problems, 702–704
statically indeterminate beams, 675–681, 

688–695
summary, 699–701

deformable structures, 384

centroids and center of gravity—Cont.
composite plates and wires, 221–227
determination of centroids by integration, 

231–232
distributed loads on beams, 242–243
first moments of areas and lines, 219–221
review problems, 259–260
summary, 256–258
theorems of Pappus-Guldinus, 232–238

circular hole, 447
circular permutation, 99
circular shafts

deformation in, 485
distribution of shearing strains, 455
shearing strain in, 485
shearing stresses in, 485
in torsion, 452

clockwise rotation of force, 641
coefficient of kinetic friction, 193, 208
coefficient of static friction, 193, 208

for dry surfaces, 193
value of, 196

coefficient of thermal expansion, 410, 445
coefficients of friction, 193–194
collars on frictionless rods, 152
column failure phenomena, 722
columns

about generally, 706
aluminum, 726
centric load design, 722–732
critically loaded, 739
effective length of, 706, 712
effective slenderness length of, 712
Euler’s formula for pin-ended columns, 

708–711
Euler’s formula with other end conditions, 

712–716
intermediate height, 722
long, 722
most efficient design, 715
rectangular cross section, 728
review problems, 740–742
short, 722
slenderness ratio in, 710
stability of structures, 706–708
structural steel, 723–724
summary, 738–739
wood, 726–728

column stability factor, 728
commutative property, 82

scalar products, 97, 99
commutative vector addition, 18
completely constrained rigid bodies, 156
completely constrained trusses, 276
components, 20–21, 69

of area, 225
of force, 69

composite area moments of inertia, 334
composite bodies, 247–251
composite materials, 511–517
composite members, 494
composite plates and wires, 221–227
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frames
analysis of, 286–288, 309
dismemberment of, 309
as free body, 309
multiforce members, 286
rigid, 309
statically determinate, 309
which cease to be rigid when detached 

from their supports, 298–300
free body, 309
free-body diagrams

about generally, 13
external forces shown in, 79
problems using, 38–42
use of, 72, 150, 151, 206, 343

free vectors, 18, 78, 80, 141, 144
friction forces, 191, 209
frictionless pins, 152
frictionless surfaces, 152, 177
fundamental concepts and principles

of mechanics of deformable bodies, 5
of mechanics of rigid bodies, 3–5

fundamental principles, 13

G

gage length, 387
gage pressure, 650, 660
general eccentric axial loading, 547
generalized Hooke’s law

for homogeneous isotropic material, 427
for multiaxial loading, 423–425

general loading stresses, 378
geometric instability, 157
gram (g), 6
graphical analysis, 268
graphical expression, 37
graphical solution, 31
gravitational system of units, 9
gravity, 215
Guldinus, 232

H

Hamilton, 3
hinges, 154
homogeneous flat plate of uniform  

thickness, 256
homogeneous materials, 411, 512
Hooke, Robert, 390
Hooke’s law

angle of twist, 469
deformation of member under axial 

loading, 395
of modulus of elasticity, 390–392
for shearing and stress, 426, 447, 453
for shearing stress and strain, 457, 485
for uniaxial strain, 498

hoop stress, 650
horizontal component to stresses, 599
horizontal shear in a beam, 620
hour (h), 7
hydraulics, 2

in two dimensions, 154–156
two-force body, 169

equilibrium of three-dimensional bodies, 207
equilibrium of two-dimensional structures, 

150, 206
equipollent systems of vectors, 126
equivalent couples, 111–113
equivalent force-couple system acting at a 

point, 124–125
equivalent forces, 60
equivalent loading of a beam, 555
equivalent systems of forces, 125–126, 141, 

145. See also rigid bodies
Euler, Leonhard, 709
Euler’s formula

to columns with other end conditions, 
712–716

for pin-ended columns, 708–711
external and internal forces, 78–79
external forces, 78–79, 141, 152, 559

F

factor of safety, 364, 365, 378, 724
failure types, 365
fatigue, 385, 394–395, 444
fatigue failure, 394
fatigue limit, 395
fiber-reinforced composite materials, 

391, 443
fillets, 438, 450
Fink trusses, 266
first degree, statically indeterminate to, 676
first moment(s)

of the area, 219, 256
of the area or volume, 315
areas and lines, 219–221
concept, 215
with respect to neutral axis, 595
of the volume, 246

fixed supports, 154
fixed vector, 18
flexural rigidity, 668, 699
flexural stress, 500
fluid friction, 191
foot (ft), 9
force(s), 10, 11, 302, 338

of action and reaction between bodies in 
contact, 262

defined by its magnitude and two points 
on its line of action, 52–53

of gravity, 6
in the member, 266
of opposite members, 268
on particle, 17
in space, 70
on three faces, 628
units of, 6

force and couple, 540
force components, 20–21
force-couple systems, 78, 115, 125
force triangle, 39, 72

Einstein, Albert, 3
elastic behavior, 443
elastic columns, 706
elastic curve

of a beam, 699
defined by different function, 700
differential equation of, 677
equation of, 667
functions defining, 665, 671

elastic deformation under axial loading, 444
elastic flexure formula, 500, 545
elastic limit, 391, 443
elastic range

moment of cross-section, 499
neutral stress in, 545
shearing stresses in, 485

elastic section modeling, 587
elastic section modulus, 500, 546
elastic torsion formulas, 453, 459, 485
elastic vs. plastic behavior of a material, 

392–394
empiricism, 2
endurance limit, 395, 444
energy, 18
equal and opposite vectors, 18
equation of the elastic curve, 667–672
equations of equilibrium, 38
equation writing, 132
equilibrium. See also equilibrium of 

rigid bodies
defined, 150
force required for, 195
under more than three forces, 37
of a particle, 38–42, 72
of a particle, defined, 37–38
a particle in space, 60–62
of a rigid body in three dimensions, 176
of a rigid body in two dimensions, 

154–156
in space, 72
state of, 16
of a three-force body, 170–171
of a two-force body, 169

equilibrium equations, 38, 206, 675
equilibrium of rigid bodies

about generally, 150
angles of friction, 194–195
coefficients of friction, 193–194
conditions for, 298
connections for a two-dimensional 

structure, 152–154
free-body diagram, 151–152
friction forces, 191
laws of dry friction, 192
problems involving dry friction, 195–200
reactions at supports and connections for a 

three-dimensional structure, 176–184
review problems, 210–213
statically indeterminate reactions, 156–162
summary, 206–209
in three dimensions, 176
three-force body, 170–171
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construction of, 642, 645, 647
for plane stress, 640–647
for stress, 659
for torsional load, 644

momenta, 18
moment resultant, 128
moments

of couple, 110–111
of force about an axis, 78–104, 143–144
of force about a point, 78, 81, 84–87, 142
magnitude of sense of, 87
rectangular components of, 87–88

moments of inertia
of an area, 315
of common geometric shapes, 325
of composite area, 324–328, 334
of a given area, 328
of half circles, 328
of rectangles, 328
of rectangular area, 316
with respect to diameter, 319
of transformed sections, 512

moments of inertia of areas
about generally, 314
determining the moment of inertia of an 

area by integration, 315–316
moment of inertia of an area, 315
moments of inertia of composite areas, 

324–328
parallel-axis theorem, 323–324
polar moment of inertia, 317
review problems, 335–336
second moment of an area, 314–315
summary, 333

more unknowns than equations, 156
multiaxial loading, 423–425, 446
multiforce members, 309

N

narrow rectangular beam, 598, 599
National Design Specification for Wood 

Construction (American Forest & Paper 
Association), 726

necessary conditions vs. sufficient 
conditions, 289

necking, 388
negative shearing strain, 425–428
negative vectors, 18
neutral axis

in composite materials, 546
defined, 497, 545
in eccentric axial loading, 537–539
forces on, 315
moment of inertia, 324, 545
normal stress and, 545
through the centroid of the section, 499
transformed sections, 512

neutral strain in bending, 545
neutral stress in elastic range, 545
neutral surface, 497
neutral surface curvature, 500

load, shear and bending moment relationship, 
566–573, 588

long columns, 722
longitudinal normal stress, 497
longitudinal shear

on beam element of arbitrary shape, 
608–609

in curved surface, 622
longitudinal stress, 650, 651, 660
low-carbon steel, 395
lower yield point, 389
lubricated mechanisms, 191

M

machines, 263, 286, 298–300
analysis of, 309

magnitude, 17, 69
of friction forces, 196
of sense of moment, 87

margin of safety, 364
mass, 18
mass units, 6, 11
matrix, 391
maximum absolute value of bending-

moment, 580
maximum absolute value of stress, 499
maximum bending-moment, 582
maximum deflection, 664, 667
maximum in-plane shearing stress, 659
maximum normal stress, 571
maximum shearing stress, 614, 630–635, 

643, 647
maximum stress, 536
maximum value of normal stress, 558, 587
maximum value of strain, 497
maximum value of stress, 438
mechanics, defined, 2
mechanics of deformable bodies, 5
mechanics of materials, 5
mechanics of rigid bodies, 3–5
megagram (Mg), 6
members made of several materials, 546
meter (m), 6
method of joints, 307–308
method of problem solution, 12–14
method of sections, 308
metric ton, 6
mild steel, 393
mile (mi), 10
minimum allowable section modulus, 

580, 582
minimum required depth of beams, 581
minute (min), 7
mixed triple products of three vectors, 

99–100, 143
modulus of elasticity, 384, 390–392, 443, 546
modulus of rigidity, 384, 426, 446
Mohr, Otto, 640
Mohr’s circle

as alternate solution method, 627
for centric axis loading, 644

I

impending motion, 194, 209
improperly constrained bodies, 157, 207
improperly constrained rigid bodies, 177
inch (in), 10
incompressible fluids, 2
indeterminate beams

deflections to analyze, 699
to the first degree, 701
four or more unknowns, 665
to the second degree, 701

in-plane shearing stress, 632
input forces, 298, 309
integration of centroid coordinates, 257
intermediate height columns, 722
internal forces, 262, 309
internal torque, 471
International System of Units (SI Units), 6–7
isotropic materials, 422, 443

J

joints under special loading conditions, 
268–271, 308

K

kilogram (kg), 6
kilometer (km), 6
kilonewton (kN), 6
kilopound (kip), 6, 10
kinetic friction, 208
kinetic-friction force, 192
kinetic units, 6
known external forces, 152

L

Lagrange, Joseph Louis, 3
lamina, 391
laminate, 392
largest allowable force, 526
largest permissible load, 540
largest tensile and compressive stresses, 524
lateral strain, 422, 446
law of cosines, 22
law of sines, 22, 39
laws of dry friction, 192
length units, 6, 10
linear distribution of stresses, 537
linear nonuniform stress, 523
line of action, 17, 86, 170
liter (L), 8
live load, 366
load and resistance factor design (LRFD), 

366, 378
load and shear, 566
load curve, 568
load factors, 366
loading, 365
loading cycles, 394
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Q

quantity per degree, 410

R

radians, 486
radius of curvature, 494, 545
radius of gyration, 334
radius of gyration of an area, 317–320
reactions

concurrent, 157
equivalent to a force and a couple, 152
equivalent to force of unknown direction 

and magnitude, 153
equivalent to force with known line of 

action, 153
of machines, 298
parallel, 157
statically indeterminate, 156
of supports and connections, 152–154
at supports and connections for a three-

dimensional structure, 176–184
reasoning, 13
rectangle, 28
rectangular components

of force, 28–31
of force in space, 48–51
of moment, 142
of moment of force, 87–88
and unit vectors, 28, 69
of vector product, 141

rectangular cross section
columns, 728
shearing stresses in beams with, 621

rectangular moments of inertia, 316, 333
rectangular parallelepiped, 424
reduction

of a system of forces, additional,  
126–133, 145

of a system of forces to a force couple 
system, 145

of system of forces to one force and one 
couple, 124–125

redundant members, 277
redundant reactions, 407
reinforced concrete beams, 514
relative displacement, 396
relative motion, 196, 209
relativistic mechanics, 3
repeated loadings, 394–395
resistance factor, 366
resolution of a force into components, 20–24
resolution of given force into force and 

couple, 114–116
resolving force components, 20
resultant

of forces in space, 72
of several concurrent forces, 20
of several of coplanar forces, 70
of the system, 78
of two forces, 17, 69

planes of maximum shearing stress, 632, 640
plane strain, 434
plane stress

Mohr’s circle for, 640–647
normal stress levels, 434
transformation of, 628–630, 658
transformation of stress and, 626

plastic deformation, 384, 392, 443
point of application, 17, 69, 78
Poisson, Siméon Denis, 422
Poisson’s ratio, 385, 422–423, 446
polar moment of inertia, 314, 317, 333, 

458, 474
polygon rule, 20, 37
position vectors, 84, 124
positive shearing strain, 425
positive value, 88
pound (lb), 9
pound mass, 11
principal centroidal axis of cross-section, 533
principal planes

angle of planes of maximum shearing 
stress to, 632, 641

determination of, 633–635
and principal stresses, 642, 658

principal planes of stress, 627, 631, 658
principal SI units, 8
principal stresses, 630–635, 642, 658
principle of superposition, 424
principle of transmissibility, 4, 77, 79–81, 141
problems

involving dry friction, 195–200
involving temperature changes, 410–416
solution methodology, 12–14

production of a scalar and a vector, 20
properties

of cross-sections, 324, 525, 540
geometric, 500
of materials, 385, 391
of rolled-steel shapes, 578
of symmetry, 256

property variations, 365
proportional limit, 391, 443, 533
pure bending

about generally, 314, 492–494
bending of members made of composite 

materials, 511–517
deformations, 496–498
eccentric axial loading in a plane of 

symmetry, 522–526
general case of eccentric axial loading, 

537–541
review problems, 548–550
stresses and deformations in the elastic 

range, 498–505
summary, 545–547
symmetric members in pure bending, 

494–495
unsymmetric bending analysis,  

532–537
pure science, 2
Pythagorean theorem, 30, 48, 70

Newtonian mechanics, 3
Newton, Isaac, 3
Newton’s laws, 4

first law, 4, 38, 79
of gravitation, 4
second law, 4
third law, 4, 263, 289

nonlubricated surfaces, 191, 208
nonrigid structure, 289
nonrigid trusses, 277
normal force, 192
normal strain, 384–386, 442, 545
normal stresses

about generally, 338–339
axial loading, 339–341, 360–361,  

376, 378
bending couple and, 553
calculation of, 496
determination of, 347
distribution of, 495
due to bending, 587
elastic range, 545
fundamental equations for, 494
maximum value of, 554, 558

numerical accuracy, 14

O

oblique components, 28
oblique parallelepiped, 425
oblique plane, 338
oblique section, 378
offset method, 389
output forces, 298, 309
overhanging beams, 666, 668, 700
overrigid trusses, 277

P

Pappus, 232
Pappus-Guldinus theorems, 232–238
parabolic distribution, 598
parallel-axis theorem, 323–324, 334
parallel forces, 128, 207
parallel line of action, 170
parallelogram law

of addition, 4, 31–32, 69
vs. polygon rule, 20
and principle of transmissibility, 79
vs. triangle rule, 19
vector addition, 17

parallel reactions, 157
partially constrained rigid bodies, 177, 207
particle, defined, 3
passing a section, 275, 308
percent elongation, 389
percent reduction in area, 389
permanent set, 384, 392, 443
pin and roller system, 276
pins, 307
plane of stress, 632
plane of symmetry, 247, 258
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common beams types, 598–603
longitudinal shear on a beam element of 

arbitrary shape, 608–609
review problems, 623–624
shear on the horizontal face of beam 

element, 594–596
summary, 620–622
thin-walled members, 610–615

shear modulus, 426
shear on the horizontal face of a beam 

element, 594–596
shear stress distribution, 621
short columns, 722
short links and cables, 169
SI equivalents, 11, 12
simple trusses, 265, 307
simply supported beams, 665, 668, 700
single concentrated loads, 242
single integral, 257
single shear, 342, 377
six unknowns, 176
skew axis, 144
slenderness ratio, 739
slenderness ratio in columns, 710
sliding vectors, 18, 79
slip, 392
slope

of beams, 667
and deflection, 687–688

slug, 9, 11
space diagram, 38
Specification for Structural Steel Buildings 

of the American Institute of Steel 
Construction (AISC), 723

spherical cap, 652
spherical pressure vessels, 660
square meter (m2), 7
stability

of elastic columns, 706
failures of, 365
of members in compression, 349
of structures, 706

stable bodies, 156
stable system, 706–708
standard pound, 9
statement of a problem, 13
statically determinate beams, 552, 553, 

587, 668
statically determinate frames, 276, 308
statically determinate reactions, 156
statically determinate structures, 5
statically determinate trusses,  

276, 308
statically indeterminate beams

boundary conditions for, 668, 699
deflection of, 675–681
of the first degree, 700–701
loading of, 552–553, 587
by superposition, 701

statically indeterminate condition, 495
statically indeterminate distribution of 

stresses, 340, 454, 485

scalar components, 29, 69
scalar product(s)

associative property, 97
commutative property, 82, 99
distributive property, 97
of two vectors, 97–98, 142–143

scalars, 18
second (s), 6, 9
second degree, 676
second moment, 315
second moment of an area, 314–315
section, 533
section modulus, 580
sense, 17
sense of friction force, 196
shear, 341
shear and bending-moment diagrams, 

554–560
shear and bending-moment  

relationship, 567
shear center, 612
shear curve, 567
shear diagrams, 554, 569, 572, 580, 581, 

587, 588
shear flow, 593, 595, 611, 621
shearing forces, 341
shearing moments, 555
shearing strains

in circular shafts, 457, 485
deformations, 425–428, 447
distribution of, in circular shafts,  

453, 457
negative, 425
positive, 425

shearing stresses. See also Hooke’s law; 
Hooke’s law maximum shearing stress; 
maximum shearing stress

about generally, 338
allowable, 603
average, 350, 621
in beams, 621
calculation of, 477
in circular shafts, 485
concept of, 341–342
determination of, 347
determination of, in a beam, 596–597
in elastic range, 485
examples of, 378
forces creating, 340–342
in-plane, 632
maximum, 462
minimum, 459, 462
in pins, 350
shaft, 458
and shear flow, 615
shear force and bending couple 

effects, 553
in thin-walled members, 610–615, 622
and transverse forces, 376–377

shearing stresses in beams and thin-walled 
members

about generally, 592–593

resultant couple, 78, 126
reverse loading, 552
right-handed triad, 81, 141
right-hand rule, 81, 83
rigid bodies

about generally, 78
addition of couples, 113
completely constrained, 156
couples can be represented by vectors, 

113–114
defined, 3, 77–78
equilibrium of, 289
equipollent systems of vectors, 125–126
equivalent couples, 111–113
equivalent forces, 74
equivalent systems of forces, 125–126
external and internal forces, 78–79
external forces on, 78–79
finite rotation of, 19
forces acting at only three points, 170
forces acting at only two points, 169
further reduction of a system of forces, 

126–133
improperly constrained, 177
mechanics of, 2
mixed triple product of three vectors, 

99–100
moment of a couple, 110–111
moment of a force about a given axis, 

100–104
moment of a force about a point, 84–87
partially constrained, 177
principle of transmissibility, 79–81
rectangular components of the moment of 

a force, 87–92
reduction of a system of forces to one force 

and one couple, 124–125
resolution of a given force into a force at 

O and a couple, 114–117
review problems, 146–148
scalar product of two vectors̀ , 142–143
summary, 141–145
Varignon’s theorem, 87
vector product of two vectors, 81–82
vector products of rectangular 

components, 82–84
rigid frames, 289, 309
rigid structures, 384
rigid trusses, 265, 276, 307, 309
rockers, 169
rolled-steel beams, 577, 578
rolled-steel shape properties, 578
rollers, 168
rotation of the coordinate axis, 626
rotation reactions, 177
rough surfaces, 154, 191

S

Saint-Venant, Adhémar Barré de, 437
Saint-Venant’s principle, 436–438, 447, 457, 

523, 537, 664
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symmetric member in pure bending, 494–495
symmetry

plane of, 247, 258
properties of, 256
with respect to a center, 220
with respect to an axis, 220

systems of units
basic units, 6
consistent system of units, 6
converting between two systems, 10–12
derived units, 6
International System of Units (SI Units), 6
kinetic units, 6, 10

T

temperature change, 445
tensile test, 387
tension, 80, 308, 497
theory of relativity, 3
thermal strain, 445
thin-walled member shearing stress, 593, 622
thin-walled pressure vessels, 628
three coplanar forces, 72
three-dimensional body center of gravity, 258
three-dimensional space, 71, 72
three equations for three unknowns, 154
three-force body, 170, 207
timber beams, 577, 588
time units, 6
tip-to-tail fashion, 19
ton, 10
torque

about generally, 452–453
and angle of twist, 469
largest permissible, 459

torsion
about generally, 452–453
angle of twist, 469
circular shafts in, 452
deformations in a circular shaft, 455–457
review problems, 488–490
statically indeterminate shafts, 472–478
stresses, 457–464
stresses in a shaft, 454–455
summary, 485–487

torsion shafts, 453
torsion testing machine, 469
total deformation, 412
transformation of plane stress, 628–630, 658
transformation of stress

about generally, 626–627
maximum shearing stress, 630–635
Mohr’s circle for plane stress, 640–647
principal stresses, 630–635
review problems, 661–662
under rotation of axes, 658
stresses in thin-walled pressure vessels, 

650–653
summary, 658–660
transformation of plane stress, 628–630
weld stresses, 652

hoop, 650
largest tensile and compressive, 524
linear distribution of, 537
linear nonuniform, 523
longitudinal, 496, 650
maximum absolute value of, 499
neutral, 545
on oblique section, 378
principal planes of, 627, 631, 658
in a shaft, 454–455
statically indeterminate distribution of, 

340, 454, 485
in thin-walled pressure vessels, 650–653
torsion, 453, 457–464
ultimate, 378
ultimate normal, 364
ultimate shearing, 364
uniform distribution of, 340
in welds, 652

stress components, 360
stress concept

about generally, 338
application to the analysis of a simple 

structure, 343–348
axial loading, 339–341
bearing stress in connections, 343
components of stress, 360–363
design, 349–358
design considerations, 363–369
normal stress, 339–341
review problems, 379–382
shearing stress, 341–342
stresses in the members of a structure, 

338–339
stress on an oblique plane under axial 

loading, 359–360
stress under general loading, 360–363
summary, 376–378

stress-strain diagram, 384, 387–390, 443
structural steel, 389

columns, allowable stress design, 723–724
design specifications, 366
endurance limit, 395
percent reduction in area, 389
stress and strain, 389
and wide flange beams, 500

structures containing multiforce 
members, 286

subscript definition, 361
subtraction of vectors, 19
sum of three or more vectors, 19
superposition application to statically 

indeterminate beams, 688–695
superposition method, 407, 666,  

687–688, 701
superposition principle, 424, 523, 526, 533, 

535, 537, 541
supports. See also frames; reactions; simply 

supported beams
frictionless pins, 152
frictionless surfaces, 152, 191

surface of revolution, 233

statically indeterminate reactions, 156–162, 
206, 207

analysis of structures possessing, 157
reactions, 207

statically indeterminate shafts, 453,  
472–478, 487

statically indeterminate structures, 5, 277
statically indeterminate to the first degree, 676
statically indeterminate to the second 

degree, 676
statically indeterminate trusses, 289
static friction, 208
static-friction force, 192
statics, 2
statics of particles

about generally, 17
addition of concurrent forces in space, 

53–56
addition of vectors, 18–20
equilibrium of a particle, 36–37
equilibrium of a particle in space, 60–62
force defined by its magnitude and two points 

on its line of action, 52–53
force on particle, 17
free-body diagrams, 38–42
Newton’s first law of motion, 38
problems involving the equilibrium of a 

particle, 38–42
rectangular components of a force, 48–51
rectangular components of a force in 

space, 48–51
resolution of a force into components, 

20–24
resultant of several concurrent forces, 20
resultant of two forces, 17
review problems, 73–75
summary, 69–72
unit vectors, 48–51
vectors, 17–18

steel. See also structural steel
design of columns, 739
properties of rolled-steel shapes, 578
rolled-steel beams, 577, 578

strain, uniaxial, 498
stress(es). See also bearing stresses; Hooke’s 

law; normal stresses; principal stresses; 
shearing stresses; stress and strain; 
stress concept; transformation of stress

about generally, 5
allowable, 364, 728
allowable normal, 603
allowable shearing, 603
allowable stress design, 365, 723
average, 339, 376
average shearing, 350, 596, 621
on a beam element, 620
and deformations in the elastic range, 

498–505
due to bending couples, 537
due to centric load, 537
flexural, 500
under general loading, 378
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of two vectors, 81–82, 141
for unit vector pairs, 83

vector quantities, 69
vectors

addition of, 18–20
defined, 18
subtraction of, 19
sum of three or more, 19

velocities, 18
volume

of body of revolution, 234
centroids of, 258
of three-dimensional shapes, 258
vector representation of, 18

W

weight, 4, 6, 9, 11, 79, 152, 256
wide-flange beams, 500, 598
wood

columns, 726–728
timber beams, 577, 588, 593
timber design, 366

working load, 364

Y

yield strength, 389, 390, 443
yield/yielding, 389, 443
Young’s modulus, 391
Young, Thomas, 391

Z

zero-force members, 269

ultimate strength, 338, 363, 378, 388
ultimate strength in shear, 364
ultimate strength in tension, 364
ultimate stress, 378
undeformable structures, 384
uniaxial forces, 497
uniaxial strain, 498
uniform distributed loads, 552
uniform distribution of stresses, 340
uniform loading, 376
units

area and volume, 7
conversion of, 10–12
of force, 11
of length, 10–11
U.S. customary, 9–10, 12

unit vectors, 28–31, 48–51, 69, 97
unknown external forces, 152
unknown loads, 407
unrestrained rod, 445
unstable bodies, 156
unstable system, 706–708
unsymmetric bending analysis, 532–537
unsymmetric cross-sections, 547
unsymmetric loading, 494
upper yield point, 389
U.S. customary, 9–10, 12

V

Varignon, Pierre, 87
Varignon’s theorem, 87
vector addition

associative, 20
commutative, 20

vector components, 29
vector product(s)

rectangular components of, 141
in terms of rectangular components, 82–84

transformed sections
about generally, 494
calculation of, 494
centroids of, 512
members made of several materials, 546
moments of inertia of, 512

translation, 79
translation reactions, 177
transmissibility principle, 79–81
transverse forces, 376
transverse loading, 492, 493, 620, 664
transverse sections, 494, 545
triangle rule, 19
trigonometric solution, 31
trusses

analysis of, 286
completely constrained, 276, 308
definition, 262–263
made of several simple trusses, 276–280
method of joints analysis of, 266–268
method of sections analysis of, 275–276
nonrigid, 277
rigid, 277, 308
simple, 265, 307
statically determinate, 277, 308
statically indeterminate, 277

two-dimensional body center of gravity, 256
two dimension problems, 86, 88, 142
two distinct rigid parts, 288
two-force body, 169, 207
two-force members, 263, 307
0.2 percent rule, 13
two vectors, scalar product(s) of, 97–98, 142

U

ultimate load, 364, 366, 377
ultimate normal stress, 364
ultimate shearing stress, 364
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Answers to Problems
CHAPTER 2

 2.1 1391 N  47.88.
 2.2 906 lb  26.68.
 2.3 20.1 kN  21.28.
 2.4 8.03 kips  3.88.
 2.5 (a) 76.18. (b) 336 lb.
 2.7 (a) 3660 N. (b) 3730 N.
 2.9 (a) 37.18. (b) 73.2 N.
 2.10 2.66 kN  34.38.
 2.11 2600 N  53.58.
 2.12 414 lb  72.08.
 2.13 139.1 lb  67.08.
 2.14 8.03 kips  3.88.
 2.16 (800 N) 1640 N, 1480 N; (424 N) 2224 N, 2360 N;  

(408 N) 1192.0 N, 2360 N.
 2.17 (29 lb) 121.0 lb, 120.0 lb; (50 lb) 214.00 lb, 148.0 lb;  

(51 lb) 124.0 lb, 245.0 lb.
 2.18 (40 lb) 120.0 lb, 234.6 lb; (50 lb) 238.3 lb, 232.1 lb;  

(60 lb) 154.4 lb, 125.4 lb.
 2.19 (80 N) 161.3 N, 151.4 N; (120 N) 141.0 N, 1112.8 N;  

(150 N) 2122.9 N, 86.0 N.
 2.20 (a) 523 lb. (b) 428 lb.
 2.23 (a) 2190 N. (b) 2060 N.
 2.24 654 N  21.58.
 2.25 38.6 lb  36.68.
 2.26 54.9 lb  48.98.
 2.27 251 N  85.38.
 2.29 (a) 177.9 lb. (b) 410 lb.
 2.31 (a) 26.5 N. (b) 623 N.
 2.32 (a) 5.22 kN. (b) 3.45 kN.
 2.33 (a) 352 lb. (b) 261 lb.
 2.34 (a) 586 N. (b) 2190 N.
 2.35 (a) 500 lb. (b) 544 lb.
 2.36 (a) 305 N. (b) 514 N.
 2.38 (a) 16.73 kips. (b) 14.00 kips.
 2.40 FA 5 1303 lb; FB 5 420 lb.
 2.41 (a) 269 lb. (b) 37.0 lb.
 2.43 (a) α 5 35.08; TAC 5 4.91 kN; TBC 5 3.44 kN.  

(b) α 5 55.08; TAC 5 TBC 5 3.66 kN.
 2.44 (a) 784 N. (b) 71.08.
 2.45 (a) 1081 N. (b) 82.58.
 2.47 30.0 lb # Q # 69.3 lb.
 2.48 (a) 10.98 lb. (b) 30.0 lb.
 2.49 68.6 in.
 2.50 1.250 m.
 2.51 (a) 300 lb. (b) 300 lb. (c) 200 lb. (d) 200 lb. (e) 150.0 lb.
 2.54 (a) 1293 N. (b) 2220 N.
 2.55 (a) 1048 N. (b) 608 N.
 2.56 (a) 2130.1 N; 1816 N; 1357 N. (b) 98.38; 25.08; 66.68.
 2.57 (a) 1390 N; 1614 N; 1181.8 N. (b) 58.78; 35.08; 76.08.

 2.58 (a) 156.4 lb; 2103.9 lb; 220.5 lb. (b) 62.08; 150.08; 99.88.
 2.59 (a) 137.1 lb; 268.8 lb; 133.4 lb. (b) 64.18; 144.08; 66.88.
 2.60 (a) 2175.8 N; 2257 N; 1251 N. (b) 116.18; 130.08; 51.18.
 2.63 1050 N; 51.88, 107.78, 43.68.
 2.64 (a) 140.38. (b) Fx 5 79.9 lb, Fz 5 120.1 lb; F 5 226 lb.
 2.65 (a) 118.28. (b) Fx 5 36.0 lb, Fy 5 290.0 lb; F 5 110.0 lb.
 2.66 (a) 114.48. (b) Fy 5 294 lb, Fz 5 855 lb; F 5 1209 lb.
 2.67 (a) Fx 5 507 N, Fy 5 919 N, Fz 5 582 N. (b) 61.08.
 2.69 2165.0 N, 317 N, 238 N.
 2.71 20.820 kips, 0.978 kips, 20.789 kips.
 2.72 515 N; θx 5 70.28, θy 5 27.68, θz 5 71.58.
 2.73 515 N; θx 5 79.88, θy 5 33.48, θz 5 58.68.
 2.75 913 lb; θx 5 50.68, θy 5 117.68, θz 5 51.88.
 2.77 TAB 5 490 N; TAD 5 515 N.
 2.78 130.0 lb.
 2.79 137.0 lb.
 2.80 13.98 kN.
 2.81 9.71 kN.
 2.82 TAB 5 201 N; TAC 5 372 N; TAD 5 416 N.
 2.83 1868 lb.
 2.85 TAB 5 571 lb; TAC 5 830 lb; TAD 5 528 lb.
 2.86 TDA 5 119.7 lb; TDB 5 98.4 lb; TDC 5 98.4 lb.
 2.87 TDA 5 14.42 lb; TDB 5 TDC 5 13.00 lb.
 2.89 768 N.
 2.90 TAB 5 30.8 lb; TAC 5 62.5 lb.
 2.91 TAB 5 81.3 lb; TAC 5 22.2 lb.
 2.92 960 N.
 2.93 0 # Q , 300 N.
 2.95 W 5 470 N; Q 5 37.0 N.
 2.96 TBAC 5 76.7 lb; TAD 5 26.9 lb; TAE 5 49.2 lb.
 2.97 (a) 305 lb. (b) TBAC 5 117.0 1b; TAD 5 40.9 lb.
 2.98 378 N.
 2.99 TAB 5 65.6 lb; TAC 5 55.1 lb.
 2.100 (a) 125.0 lb. (b) 45.0 lb.
 2.102 (a) 1155 N. (b) 1012 N.
 2.104 21.8 kN  73.48.
 2.105 (102 lb) 248.0 lb, 90.0 lb; (106 lb) 56.0 lb, 90.0 lb; (200 lb) 

2160.0 lb, 2120.0 lb.
 2.107 203 lb  8.468.
 2.108 (a) 1244 lb. (b) 115.4 lb.
 2.110 27.48 # α # 222.68.
 2.112 1031 N ↑.
 2.113 956 N ↑.
 2.115 3090 lb.

CHAPTER 3

 3.1 115.7 lb?in.
 3.2 23.28.
 3.3 (a) 20.5 N?m . (b) 68.4 mm.
 3.5 (a) 41.7 N?m . (b) 147.4 N  45.08.
 3.6 (a) 41.7 N?m . (b) 334 N. (c) 176.8 N  58.08.
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 3.73 (a) Ra 5 600 N ↓, Ma 5 1000 N?m ; Rb 5 600 N ↓,  
Mb 5 900 N?m ; Rc 5 600 N ↓, Mc 5 900 N?m ;  
Rd 5 400 N ↑, Md 5 900 N?m ; Re 5 600 N ↓,  
Me 5 200 N?m ; Rf 5 600 N ↓, Mf 5 800 N?m ;  
Rg 5 1000 N ↓, Mg 5 1000 N?m ; Rh 5 600 N ↓,  
Mh 5 900 N?m . (b) (c) and (h).

 3.74 Loading f.
 3.75 (a) R 5 600 N ↓; 1.500 m. (b) R 5 400 N ↑; 2.25 m.  

(c) R 5 600 N ↓; 0.333 m.
 3.76 (a) 2.00 ft to the right of C. (b) 2.31 ft to the right of C.
 3.78 Force-couple system at corner D.
 3.80 R 5 185.2 lb  11.848; 23.3 in. to the left of the vertical 

centerline (y-axis) of the motor.
 3.81 (a) 34.0 lb  28.08. (b) AB: 11.64 in. to the left of B; BC: 

6.20 in. below B.
 3.82 773 lb  79.08; 9.54 ft to the right of A.
 3.83 (a) 0.365 m above G. (b) 0.227 m to the right of G.
 3.84 (a) 0.299 m above G. (b) 0.259 m to the right of G.
 3.85 RA 5 (8.40 lb)i 2 (19.20 lb)j 2 (3.20 lb)k;  

MA 5 (71.6 lb?ft)i 1 (56.8 lb?ft)j 2 (65.2 lb?ft)k.
 3.87 R 5 2(300 N)i 2 (240 N)j 1 (25.0 N)k;  

M 5 2(3.00 N?m)i 1 (13.50 N?m)j 1 (9.00 N?m)k.
 3.89 (a) 60.08. (b) (20 lb)i 2 (34.6 lb)j; (520 lb?in.)i.
 3.90 (a) Neither loosen nor tighten. (b) Tighten.
 3.91 (a) B 5 2(80.0 N) k; C 5 2(30.0 N) i 1 (40.0 N) k.  

(b) Ry 5 0; Rz 5 240.0 N. (c) when the slot head of the screw 
is vertical.

 3.92 405 lb; 12.60 ft to the right of AB and 2.94 ft below BC.
 3.94 R 5 325 kN, x 5 20.923 m; z 5 20.615 m.
 3.96 x 5 2.32 m; z 5 1.165 m.
 3.97 8.97 lb  19.988.
 3.99 Mx 5 78.9 N?m, My 5 13.15 kN?m, Mz 5 29.86 kN?m.
 3.100 3.04 kN.
 3.101 23.0 N?m.
 3.102 (0.227 lb)i 1 (0.1057 lb)k; 63.6 in. to the right of B.
 3.103 (a) F 5 500 N  60.08; M 5 86.2 N?m .  

(b) A 5 689 N ↑; B 5 1150 N  77.48.
 3.105 (a) 71.18. (b) 0.973 lb.
 3.106 12.00 in.
 3.108 aP/√2.

CHAPTER 4

 4.1 (a) 245 lb ↑. (b) 140.0 lb.
 4.2 (a) 1761 lb ↑. (b) 689 lb ↑.
 4.3 42.0 N ↑.
 4.5 1.250 kN # Q # 27.5 kN.
 4.6 1.250 kN # Q # 10.25 kN.
 4.7 2.00 in. # a # 10.00 in.
 4.9 (a) 29.9 kips. (b) 33.0 kips  31.58.
 4.10 (a) 150.0 lb. (b) 225 lb  32.38.
 4.12 (a) 400 N. (b) 458 N  49.18.
 4.13 (a) A 5 B 5 37.5 lb ↑. (b) A 5 97.6 lb  50.28;  

B 5 62.5 lb ←. (c) A 5 49.8 lb  71.28; B 5 32.2 lb  60.08.

 3.7 116.2 lb?ft.
 3.9 1.120 kip?in. .
 3.11 (a) 292 N?m . (b) 292 N?m .
 3.12 2340 N.
 3.14 (a) 9i 1 22j 1 21k. (b) 22i 1 11k. (c) 0.
 3.15 2(25.4 lb?ft)i 2 (12.60 lb?ft)j 2 (12.60 lb?ft)k.
 3.16 (a) (28.8 N?m)i 1 (16.20 N?m)j 2 (28.8 N?m)k.  

(b) 2(28.8 N?m)i 2(16.20 N?m)j 1 (28.8 N?m)k.
 3.17 (2400 lb?ft)j 1 (1440 lb?ft)k.
 3.18 2(153.0 lb?ft)i 1 (63.0 lb?ft)j 1 (215 lb?ft)k.
 3.19 (7.50 N?m)i 2 (6.00 N?m)j 2 (10.39 N?m)k.
 3.20 (492 lb?ft)i 1 (144.0 lb?ft)j 2 (372 lb?ft)k.
 3.23 144.8 mm.
 3.24 4.86 ft.
 3.25  P?Q 5 11; P?S 5 211; Q?S 5 110.
 3.27 (a) 59.08. (b) 648 N.
 3.28 (a) 70.58. (b) 135.0 N.
 3.29 77.98.
 3.31 (a) 26.88. (b) 26.88.
 3.33 (a) 67.0. (b) 111.0.
 3.34 2.
 3.35 Mx 5 0; My 5 2162.0 N?m; Mz 5 270 N?m.
 3.37 283 lb.
 3.39 1.252 m.
 3.40 1.256 m.
 3.41 61.5 lb.
 3.42 6.23 ft.
 3.43 1359 lb?in.
 3.44 22350 lb?in.
 3.46 2111.0 N?m.
 3.48 2176.6 lb?ft.
 3.49 (a) 12.39 N?m . (b) 12.39 N?m . (c) 12.39 N?m .
 3.50 (a) 336 lb?in. . (b) 28.0 in. (c) 54.08.
 3.51 (a) 7.33 N?m . (b) 91.6 mm.
 3.52 (a) 26.7 N. (b) 50.0 N. (c) 23.5 N.
 3.53 (a) 1170 lb?in. . (b) A and D, 53.18 , or B and C  53.18. 

(c) 70.9 lb.
 3.54 1.125 in.
 3.56 M 5 15.30 lb?ft; θx 5 78.78; θy 5 90.08; θz 5 11.308.
 3.57 M 5 3.22 N?m; θx 5 90.08; θy 5 53.18; θz 5 36.98.
 3.58 M 5 2.72 N?m; θx 5 134.98; θy 5 58.08; θz 5 61.98.
 3.59 M 5 2150 lb?ft; θx 5 113.08; θy 5 92.78; θz 5 23.28.
 3.61 (a) F 5 30.0 lb ↓; MB 5 150.0 lb?in. .  

(b) FB 5 50.0 lb ←; FC 5 50.0 lb →.
 3.63 (a) FB 5 250 N  25.08; MB 5 57.5 N?m .  

(b) FA 5 375 N  25.08; FB 5 625 N  25.08.
 3.65 FA 5 389 N  60.08; FC 5 651 N  60.08.
 3.66 (a) P 5 60.0 lb  50.08; 3.24 in. from A.  

(b) P 5 60.0 lb  50.08; 3.87 in. below A.
 3.67 F 5 2(250 kN)j; M 5 (15.00 kN?m)i 1 (7.50 kN?m)k.
 3.68 F 5 2(128.0 lb)i 2 (256 lb)j 1 (32.0 lb)k;  

M 5 2(4.10 kip?ft)i 1 (16.38 kip?ft)k.
 3.71 F 5 2(2.40 kips)j 2 (1.000 kips)k; M 5 2(12.00 kip?in.)i  

1 (6.00 kip?in.)j 2 (14.40 kip?in.)k.
 3.72 F 5 2 (28.5 N)j 1 (106.3 N)k; MO 5 (12.35 N?m)i  

2 (19.16 N?m)j 2 (5.13 N?m)k.
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 4.47 A 5 163.1 N  55.98; B 5 258 N  65.08.
 4.48 cos2 θ 5 1/3 [(R/L)2 2 1].
 4.50 32.58.
 4.51 A 5 (120.0 N)j 1 (133.3 N)k; D 5 (60.0 N)j 1 (166.7 N)k.
 4.52 A 5 (125.3 N)j 1 (137.8 N)k; D 5 (62.7 N)j 1 (172.2 N)k.
 4.53 A 5 (24.0 lb)j 2 (2.31 lb)k; B 5 (16.00 lb)j 2 (9.24 lb)k;  

C 5 (11.55 lb)k
 4.54 (a) 96.0 lb. (b) A 5 (2.40 lb)j; B 5 (214 lb)j.
 4.56 (a) 1039 N. (b) C 5 (346 N)i 1 (1200 N)j;  

D 5 2(1386 N)i 2 (480 N)j.
 4.57 TA 5 30.0 lb; TB 5 10.00 lb; TC 5 40.0 lb.
 4.59 (a) 121.9 N. (b) 246.2 N. (c) 100.9 N.
 4.61 TDAE 5 520 lb; TBD 5 680 lb; C 5 (2120.0 lb)i 1 (120.0 lb)j  

1 (1560 lb)k.
 4.62 TDAE 5 832 lb; TBD 5 1088 lb; C 5 2(192.0 lb)i 1 (2496 lb)k.
 4.63 TBD 5 780 N; TBE 5 390 N; A 5 2(195.0 N)i 1 (1170 N)j  

1 (130.0 N) k.
 4.65 A 5 2(56.3 lb)i; B 5 2(56.2 lb)i 1 (150.0 lb)j 2 (75.0 lb)k; 

FCE 5 202 lb.
 4.66 (a) 345 N. (b) A 5 (114.4 N)i 1 (377 N)j 1 (141.5 N)k;  

B 5 (113.2 N)j 1 (185.5 N)k.
 4.67 (a) 49.5 lb. (b) A 5 2(12.00 lb)i 1 (22.5 lb)j 2 (4.00 lb)k;  

B 5 (15.00 lb)j 1 (34.0 lb)k.
 4.70 (a) 462 N. (b) C 5 2(336 N)j 1 (467 N)k; D 5 (505 N)j  

2 (66.7 N)k.
 4.71 FCE 5 202 lb; MA 5 (600 lb?ft)i 1 (225 lb?ft)j;  

A 5 2(112.5 lb)i 1 (150.0 lb)j 2 (75.0 lb)k.
 4.72 FCD 5 19.62 N; B 5 (219.22 N)i 1 (94.2 N)j;  

MB 5 2(40.6 N?m)i 2 (17.30 N?m)j
 4.73 TCF 5 200 N; TDE 5 450 N; A 5 (160.0 N)i 1 (270 N)k;  

MA 5 2(16.20 N?m)i.
 4.74 A 5 (120.0 lb)j 2 (150.0 lb)k; B 5 (180.0 lb)i 1 (150.0 lb)k;  

C 5 2(180.0 lb)i 1 (120.0 lb)j.
 4.75 Equilibrium; F 5 172.6 N  25.08.
 4.76 Block moves down; F 5 279 N  30.08.
 4.77 Block moves up; F 5 36.1 lb  30.08.
 4.78 Block is in equilibrium; F 5 36.3 lb  30.08.
 4.80 (a) 18.09 lb →. (b) 14.34 lb ←.
 4.81 31.08.
 4.82 46.48.
 4.83 (a) 403 N. (b) 229 N.
 4.85 (a) 36.0 lb →. (b) 30.0 lb →. (c) 12.86 lb →.
 4.87 (a) 58.18. (b) 166.4 N
 4.88 (a) 138.6 N. (b) Crate will slide.
 4.90 (a) 275 N ←. (b) 196.2 N ←.
 4.91 0.208.
 4.93 (a) 43.68. (b) 0.371W.
 4.94 (a) 136.48. (b) 0.928W.
 4.95 1.225W.
 4.97 Mmax 5 Wr μs(1 1 μs)/ (1 1 μs

2).
 4.98 (a) 0.300Wr. (b) 0.349Wr.
 4.99 (a) A 5 20.0 lb ↓; B 5 150.0 lb ↑.  

(b) A 5 10.00 lb ↓; B 5 140.0 lb ↑.
 4.101 T 5 300 N; B 5 375 N  36.98.
 4.102 (a) 600 N. (b) A 5 4.00 kN ←; B 5 4.00 kN →.
 4.104 (a) 225 mm. (b) 23.1 N. (c) C 5 12.21 N.
 4.105 1.300 ft.

 4.15 (a) 1.500 kN. (b) 1.906 kN  61.88.
 4.16 (a) A 5 150.0 N  30.08; B 5 150.0 N  30.08.  

(b) A 5 433 N  12.558; B 5 488 N  30.08.
 4.17 TBE 5 50.0 lb; A 5 18.75 lb →; D 5 18.75 lb ←.
 4.18 T 5 80.0 N; A 5 160.0 N  30.08; C 5 160.0 N  30.08.
 4.19 T 5 69.3 N; A 5 140.0 N  30.08; C 5 180.0 N  30.08.
 4.20 (a) 30.0 lb  60.08. (b) A 5 20.2 lb ↑; F 5 16.21 lb ↓.
 4.23 (a) 11.20 kips. (b) |ME|5 28.8 kip?ft.
 4.24 C 5 28.3 kN  45.08; MC 5 4.30 N?m .
 4.25 (1)  Completely constrained; determinate; equilibrium;  

A 5 120.2 lb  56.38; B 5 66.7 lb ←.
  (2) Improperly constrained; indeterminate; no equilibrium;
  (3)  Partially constrained; determinate; equilibrium;  

A 5 50.0 lb ↑; C 5 50.0 lb ↑.
  (4)  Completely constrained; determinate; equilibrium;  

A 5 50.0 lb ↑; B 5 83.3 lb  36.98; C 5 66.7 lb →.
  (5)  Completely constrained; indeterminate; equilibrium;  

Ay 5 50.0 lb ↑.
  (6)  Completely constrained; indeterminate; equilibrium;  

Ax 5 66.7 lb →; Bx 5 66.7 lb ←; (Ay 1 By 5 100.0 lb ↑).
  (7)  Completely constrained; determinate; equilibrium;  

A 5 50.0 lb ↑; C 5 50.0 lb ↑.
  (8) Improperly constrained; indeterminate; no equilibrium.

 4.26 (1)  Completely constrained; determinate; equilibrium;  
A 5 C 5 196.2 N ↑.

  (2)  Completely constrained; determinate; equilibrium;  
B 5 0; C 5 D 5 196.2 N ↑.

  (3)  Completely constrained; indeterminate; equilibrium;  
Ax 5 294 N →; Dx 5 294 N ←.

  (4) Improperly constrained; indeterminate; no equilibrium.
  (5)  Partially constrained; determinate; equilibrium;  

C 5 D 5 196.2 N ↑.
  (6)  Completely constrained; determinate; equilibrium;  

B 5 294 N →; D 5 491 N  53.18.
  (7) Partially constrained; no equilibrium.
  (8)  Completely constrained; indeterminate; equilibrium;  

B 5 Dy 5 196.2 N ↑; (C 1 Dx 5 0).

 4.27  B 5 501 N  56.38; C 5 324 N  31.08.
 4.28  A 5 446 lb  7.738; B 5 442 lb →.
 4.29  A 5 82.5 lb  14.048; T 5 100.0 lb.
 4.31  A 5 139.0 N  62.48; T 5 69.6 N.
 4.32 (a) 400 N. (b) 458 N  49.18.
 4.33 (a) A 5 150.0 N  30.08; B 5 150.0 N  30.08.  

(b) A 5 433 N  12.558; B 5 488 N  30.08.
 4.34 (a) P 5 24.9 lb  30.08. (b) P 5 15.34 lb  30.08.
 4.37 200 mm.
 4.38  C 5 270 lb  56.38; D 5 167.7 lb  26.68.
 4.40 (a) 59.28. (b) TAB 5 0.596W; TCD 5 1.164W.
 4.41 (a) 2P  60.08. (b) 1.239P  36.28.
 4.42 tan θ 5 2 tan β.
 4.43 (a) 49.18. (b) 90.6 N  60.08.
 4.44 A 5 170.0 N  33.98; C 5 160.0 N  28.18.
 4.45 A 5 170.0 N  56.18; C 5 300 N  28.18.
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 5.60 27.8 mm above base of cone.
 5.61 20.0656 in.
 5.63 40.3 mm.
 5.65 X 5 Z 5 4.21 in., Y 5 7.03 in.
 5.66 X 5 125.0 mm, Y 5 167.0 mm, Z 5 33.5 mm.
 5.69 X 5 0.410 m, Y 5 0.510 m, Z 5 0.1500 m.
 5.70 X 5 0, Y 5 10.05 in., Z 5 5.15 in.
 5.71 X 5 Z 5 0, Y 5 83.3 mm above the base.
 5.72 On center axis, 1.380 in. above base.
 5.73 X 5 19.27 mm, Y 5 26.6 mm.
 5.75 X 5 20.6 mm, Y 5 23.4 mm.
 5.76 0.204 m or 0.943 m.
 5.77 x 5 1.607a, y 5 0.332 h.
 5.79 0.0900 in3.
 5.81 B 5 3770 lb ↑; C 5 429 lb ↑.
 5.82 (a) 900 lb/ft. (b) 7200 lb ↑.
 5.84 X 5 61.1 mm from the end of the handle.

CHAPTER 6

 6.1 FAB 5 4.00 kN C; FBC 5 2.40 kN C; FAC 5 2.72 kN T.
 6.2 FAB 5 52.0 kN T; FBC 5 80.0 kN C; FAC 5 64.0 kN T.
 6.3 FAB 5 720 lb T; FBC 5 780 lb C; FAC 5 1200 lb C.
 6.4 FAB 5 900 lb T; FBC 5 720 lb T; FAC 5 780 lb C.
 6.6 FAB 5 15.90 kN C; FAC 5 13.50 kN T; FCD 5 15.90 kN T; 

FBC 5 16.80 kN C; FBD 5 13.50 kN C.
 6.8 FAB 5 FBC 5 0; FAD 5 FCF 5 7.00 kN C; FBD 5 FBF 5  

34.0 kN C; FDE 5 FEF 5 30.0 kN T; FBE 5 8.00 kN T.
 6.9 FAB 5 FAE 5 671 lb T; FBC 5 FDE 5 600 lb C;  

FAC 5 FAD 5 1000 lb C; FCD 5 200 lb T.
 6.10 FAB 5 4.00 kN T; FAD 5 15.00 kN T; FBD 5 9.00 kN C;  

FBE 5 5.00 kN T; FCD 5 16.00 kN C; FDE 5 4.00 kN C.
 6.11 FAD 5 260 lb C; FBE 5 832 lb C; FCE 5 400 lb T;  

FDC 5 125.0 lb T; FAB 5 420 lb C; FAC 5 400 lb T;  
FBC 5 125.0 lb T.

 6.12 FBA 5 0; FCA 5 22.4 kips T; FCB 5 60.0 kips C;  
FDA 5 41.2 kips T; FDC 5 40.0 kips C.

 6.13 FAB 5 FDE 5 8.00 kN C; FAF 5 FFG 5 FGH 5 FEH 5  
6.93 kN T; FBC 5 FCD 5 FBG 5 FDG 5 4.00 kN C; FBF 5 
FDH 5 FCG 5 4.00 kN T.

 6.15 FAB 5 FFH 5 1500 lb C; FAC 5 FCE 5 FEG 5 FGH 5 1200 lb 
T; FBC 5 FFG 5 0; FBD 5 FDF 5 1000 lb C; FBE 5 FEF 5  
500 lb C; FDE 5 600 lb T.

 6.17 FCD 5 30.0 kN T; FDG 5 32.5 kN C; FCG 5 0; FFG 5  
32.5 kN C; FCF 5 19.53 kN C; FBC 5 45.0 kN T; FEF 5  
48.8 kN C; FBF 5 6.25 kN T; FBE 5 24.0 kN C; FAB 5  
60.0 kN T; FAE 5 37.5 kN T.

 6.18 FAB 5 FFH 5 7.50 kips C; FAC 5 FGH 5 4.50 kips T; FBC 5 
FFG 5 4.00 kips T; FBD 5 FDF 5 6.00 kips C; FBE 5 FEF 5 
2.50 kips T; FCE 5 FEG 5 4.50 kips T; FDE 5 0.

 6.19 Truss of Prob. 6.24 is the only simple truss.
 6.20 Neither truss is a simple truss.
 6.21 BC, CD, IJ, IL, LM, MN.
 6.24 BF, BG, DH, EH, GJ, HJ.
 6.25 FBD 5 36.0 kips C; FCD 5 45.0 kips C.
 6.26 FFD 5 60.0 kips C; FGD 5 15.00 kips C.
 6.27 FBD 5 216 kN T; FDE 5 270 kN T.
 6.29 FDE 5 25.0 kips T; FDF 5 13.00 kips C.
 6.31 FDE 5 38.6 kN C; FDF 5 91.4 kN T.
 6.32 FCD 5 64.2 kN T; FCE 5 91.2 kN C.
 6.33 FCE 5 7.20 kN T; FDE 5 1.047 kN C; FDF 5 6.39 kN C.

 4.107 (a) A 5 0.745P  63.48; C 5 0.471P  45.08.  
(b) A 5 0.812P  60.08; C 5 0.503P  36.28. 
(c) A 5 0.448P  60.08; C 5 0.652P  69.98. 
(d) Rod is improperly constrained.

 4.109 (a) 2.94 N. (b) 4.41 N.
 4.110 (b) 2.69 lb.

CHAPTER 5

 5.1 X 5 42.2 mm, Y 5 24.2 mm.
 5.2 X 5 3.27 in., Y 5 2.82 in.
 5.3 X 5 1.045 in., Y 5 3.59 in.
 5.5 X 5 Y 5 5.06 in.
 5.6 X 5 Y 5 16.75 mm.
 5.7 X 5 262.4 mm, Y 5 0.
 5.9 X 5 3.20 in., Y 5 2.00 in.
 5.10 X 5 10.11 in., Y 5 3.88 in.
 5.11 X 5 0, Y 5 1.372 m.
 5.12 X 5 386 mm, Y 5 66.4 mm.
 5.13 42.3 3 103 mm3 for A1, 242.3 3 103 mm3 for A2.
 5.14 0.235 in3 for A1, 20.235 in3 for A2.
 5.17 X 5 40.9 mm, Y 5 25.3 mm.
 5.18 X 5 3.38 in., Y 5 2.93 in.
 5.19 X 5 172.5 mm, Y 5 97.5 mm.
 5.20 X 5 Y 5 4.90 in.
 5.21 120.0 mm.
 5.23 (a) 5.09 lb. (b) 9.48 lb  57.58.
 5.25 x 5 2a/3, y 5 2h/3.
 5.26 x 5 2a/5, y 5 3h/7.
 5.29 x 5 a(3 2 4 sin α)/6(1 2 α), y 5 0.
 5.30 x 5 0, y 5 4(r2

3 2 r1
3)/3π(r2

2 2 r1
2).

 5.31 x 5 2a/3(4 2 π), y 5 2b/3(4 2 π).
 5.32 x 5 y 5 9a/20.
 5.33 x 5 17a/130, y 5 11b/26.
 5.34 x 5 a, y 5 17b/35.
 5.35 x 5 y 5 1.027 in.
 5.36 x 5 y 5 (2a2 2 1)/2a(1 1 2 ln a).
 5.37 (a) V 5 401 3 103 mm3; A 5 34.1 3 103 mm2.  

(b) V 5 492 3 103 mm3; A 5 41.9 3 103 mm2.
 5.39 (a) V 5 169.0 3 103 in3; A 5 28.4 3 103 in2.  

(b) V 5 88.9 3 103 in3; A 5 15.48 3 103 in2.
 5.41 31.9 liters.
 5.42 0.0305 kg.
 5.43 308 in2.
 5.44 (a) 8.10 in2. (b) 6.85 in2. (c) 7.01 in2.
 5.45 V 5 3.96 in2; W 5 1.211 lb.
 5.48 0.1916 kg.
 5.49 (a) R 5 7.60 kN ↓, x 5 2.57 m.  

(b) A 5 4.35 kN ↑; B 5 3.25 kN ↑.
 5.51 A 5 575 lb ↑; MA 5 475 lb?ft .
 5.53 A 5 32.0 kN ↑; MA 5 124.0 kN?m .
 5.54 B 5 1360 lb ↑; C 5 2360 lb ↑.
 5.55 A 5 2860 lb ↑; B 5 740 lb ↑.
 5.56 A 5 105.0 N ↑; B 5 270 N ↑.
 5.57 (a) 0.548L. (b) 2√3.
 5.58 (a) b/10 to the left of base of cone.  

(b) 0.01136b to the right of base of cone.
 5.59 (a) 20.402a. (b) h/a 5 2/5 or 2/3.

Final PDF to printer



Answers to Problems AN5

bee98160_ans_AN1-AN16.indd AN5 12/24/15  03:16 PM

 6.85 (a) 475 lb. (b) 528 lb  63.38.
 6.86 44.8 kN.
 6.88 720 lb.
 6.89 21.3 lb↘.
 6.91 140.0 N.
 6.92 260 N.
 6.94 (a) 10.00 kN  2.588. (b) 10.11 kN  8.608.
 6.95 (a) 2.86 kips C. (b) 9.43 kips C.
 6.96 (a) 4.91 kips C. (b) 10.69 kips C.
 6.97 FAC 5 FBC 5 13.86 kN T; FAD 5 FBE 5 6.93 kN C;  

FCD 5 FCE 5 13.86 kN T; FAB 5 12.00 kN C.
 6.99 FEH 5 22.5 kips C; FGI 5 22.5 kips T.
 6.100 FHJ 5 33.8 kips C; FIL 5 33.8 kips T.
 6.101 7.36 kN C.
 6.102 (a) Ax 5 200 kN →, Ay 5 122.0 kN ↑.  

(b) Bx 5 200 kN ←, By 5 10.00 kN  ↓.
 6.103 Ax 5 3.32 kN ←, Ay 5 14.26 kN  ↓;  

Cx 5 3.72 kN →, Cy 5 14.26 kN ↑.
 6.104 31.3 lb.
 6.106 (a) Ex 5 2.00 kips ←, Ey 5 2.25 kips ↑.  

(b) Cx 5 4.00 kips ←, Cy 5 5.75 kips ↑.
 6.108 Case (1) (a) Ax 5 0, Ay 5 7.85 kN ↑, MA 5 15.70 kN?m .  

(b) D 5 22.2 kN  458.
  Case (2) (a) Ax 5 0, Ay 5 3.92 kN ↑, MA 5 8.34 kN?m .  

(b) D 5 11.10 kN  458.
  Case (3) (a) Ax 5 0, Ay 5 3.92 kN ↑, MA 5 8.34 kN?m .  

(b) D 5 18.95 kN  458.
  Case (4) (a) Ax 5 3.92 kN →, Ay 5 3.92 kN ↑, MA 5 2.35 kN?m . 

(b) D 5 11.10 kN  458.

CHAPTER 7

 7.1 a3(h1 1 3h2)/12.
 7.2 3a3b/10.
 7.3 ha3/5.
 7.4 a3b/20.
 7.5 a(h1

2 1 h2
2)(h1 1 h2)/12.

 7.6 a3b/6.
 7.9 πab3/8; b/2.
 7.10 0.525ah3; 1.202h.
 7.11 1.638ab3; 1.108b.
 7.12 3ab3/35; 0.507b.
 7.13 πa3b/8; a/2.
 7.14 0.613a3h; 1.299a.
 7.17 (a) JO 5 4a4/3; rO 5 0.816a. (b) JO 5 17a4/6; rO 5 1.190a.
 7.18 JO 5 10a4/3; rO 5 1.291a.
 7.20 4ab(a2 1 4b2)/3; √(a2 1 4b2)/3.
 7.21 (π/2)(R2

4 2 R1
4); (π/4)(R2

4 2 R1
4).

 7.23 4a3/9.
 7.24 0.935a.
 7.25 390 3 103 mm4; 21.9 mm.
 7.26 46.0 in4; 1.599 in.
 7.27 501 3 106 mm4; 149.4 mm.
 7.30 46.5 in4; 1.607 in.
 7.31 150.3 3 106 mm4; 81.9 mm.
 7.32 185.4 in4; 2.81 in.
 7.33 3000 mm2; 325 3 103 mm4.
 7.35 Ix 5 191.3 in4; Iy 5 75.2 in4. 
 7.36 Ix 5 479 3 103 mm4; Iy 5 149.7 3 103 mm4.

 6.34 FEG 5 3.46 kN T; FGH 5 3.78 kN C; FHJ 5 3.55 kN C.
 6.35 FAB 5 8.20 kips T; FAG 5 4.50 kips T; FFG 5 11.60 kips C.
 6.37 FDF 5 40.0 kN T; FEF 5 12.00 kN T; FEG 5 60.0 kN C.
 6.39 FAD 5 3.38 kips C; FCD 5 0; FCE 5 14.03 kips T.
 6.40 FDG 5 18.75 kips C; FFG 5 14.03 kips T; FFH 5 17.43 kips T.
 6.41 FDG 5 3.75 kN T; FFI 5 3.75 kN C.
 6.42 FGJ 5 11.25 kN T; FIK 5 11.25 kN C.
 6.44 FBE 5 10.00 kips T; FDE 5 0; FEF 5 5.00 kips T.
 6.45 FBE 5 2.50 kips T; FDE 5 1.500 kips C; FDG 5 2.50 kips T.
 6.47 (a) Completely constrained, determinate.  

(b) Completely constrained, indeterminate. 
(c) Improperly constrained.

 6.48 (a) Completely constrained, determinate.  
(b) Partially constrained.  
(c) Improperly constrained, indeterminate.

 6.49 FBD 5 255 N C; Cx 5 120.0 N →, Cy 5 625 N ↑.
 6.50 FBD 5 780 lb T; Cx 5 720 lb ←, Cy 5 140.0 lb ↓.
 6.51 FBD 5 375 N C; Cx 5 205 N ←, Cy 5 360 N ↓.
 6.52 Ax 5 120.0 lb →; Ay 5 30.0 lb ↑; Bx 5 120.0 lb ←,  

By 5 80.0 lb ↓; C 5 30.0 lb ↓; D 5 80.0 lb ↑.
 6.53 A 5 150.0 lb →; Bx 5 150.0 lb ←, By 5 60.0 lb ↑;  

C 5 20.0 lb ↑; D 5 80.0 lb ↓.
 6.55 (a) Ax 5 300 N ←, Ay 5 660 N ↑; Ex 5 300 N →;  

Ey 5 90.0 N ↑. (b) Ax 5 300 N ←, Ay 5 150.0 N ↑;  
Ex 5 300 N →, Ey 5 600 N ↑.

 6.57 B 5 152.0 lb ↓; Cx 5 60.0 lb ←, Cy 5 200 lb ↑;  
Dx 5 60.0 lb →, Dy 5 42.0 lb ↑.

 6.58 (a) Ax 5 2700 N →, Ay 5 200 N ↑; Ex 5 2700 N ←;  
Ey 5 600 N ↑. (b) Ax 5 300 N  →, Ay 5 200 N ↑;  
Ex 5 300 N ←, Ey 5 600 N ↑.

 6.59 (a)  Dx 5 750 N  →, Dy 5 250 N ↓; Ex 5 750 N ←,  
Ey 5 250 N ↑.

  (b) Dx 5 375 N →, Dy 5 250 N ↓; Ex 5 375 N ←, Ey 5 250 N ↑.
 6.61 (a) and (c) Bx 5 24.0 lb ←, By 5 7.50 lb ↓; Fx 5 24.0 lb →,  

Fy 5 7.50 lb  ↑. (b) Bx 5 24.0 lb ←, By 5 10.50 lb  ↑;  
Fx 5 24.0 lb →, Fy 5 10.50 lb ↓.

 6.62 (a) A 5 65.0 lb  22.68; C 5 120.0 lb →; G 5 60.0 lb ←;  
I 5 25.0 lb ↑. (b) A 5 65.0 lb  22.68; C 5 60.0 lb →;  
G 5 0; I 5 25.0 lb ↑.

 6.64 (a) 828 N T. (b) C 5 1197 N  86.28.
 6.65 Ax 5 176.3 lb  ←, Ay 5 60.0 lb ↓; Gx 5 56.3 lb →, Gy 5 510 lb ↑.
 6.66 Ax 5 56.3 lb ←, Ay 5 157.5 lb ↓; Gx 5 56.3 lb →, Gy 5 383 lb ↑.
 6.67 Dx 5 13.60 kN →, Dy 5 7.50 kN ↑; Ex 5 13.60 kN ←,  

Ey 5 2.70 kN ↓.
 6.68 Ax 5 45.0 N ←, Ay 5 30.0 N ↓; Bx 5 45.0 N →, By 5 270 N ↑.
 6.69 (a) A 5 75.0 kN ↑; B 5 162.5 kN ↑.  

(b) C 5 170.0 kN ←; Dx 5 170.0 kN →, Dy 5 25.0 kN ↓.
 6.70 (a) A 5 12.50 kN ↑; B 5 187.5 kN ↑.  

(b) C 5 30.0 kN ←; Dx 5 30.0 kN →, Dy 5 75.0 kN ↓.
 6.72 (a) 572 lb. (b) A 5 1070 lb ↑; B 5 709 lb ↑; C 5 870 lb ↑.
 6.73 564 lb →.
 6.74 275 lb →.
 6.75 (a) 2860 N ↓. (b) 2700 N  68.58.
 6.76 TDE 5 81.0 N; B 5 216 N ↓.
 6.78 D 5 30.0 kN ←; F 5 37.5 kN  36.98.
 6.80 B 5 94.9 lb  18.438; D 5 94.9 lb  18.438.
 6.81 (a) 252 N?m . (b) 108.0 N?m .
 6.82 (a) 3.00 kN ↓. (b) 7.00 kN ↓.
 6.83 (a) 1261 lb?in.  . (b) Cx 5 54.3 lb ←, Cy 5 21.7 lb ↑.
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 8.51 25.2 mm.
 8.53 (a) 2640 psi. (b) 2320 psi.
 8.54 3.09 kips.
 8.55 (a) 94.1 MPa. (b) 44.3 MPa.
 8.57 3.45.
 8.59 xE 5 24.7 in.; xF 5 55.2 in.
 8.60 1.683 kN.

CHAPTER 9

 9.1 (a) 0.0303 in. (b) 15.28 ksi.
 9.2 (a) 81.8 MPa. (b) 1.712.
 9.3 (a) 0.546 mm. (b) 36.3 MPa.
 9.4 (a) 9.82 kN. (b) 500 MPa.
 9.5 (a) 0.381 in. (b) 17.58 ksi.
 9.8 (a) 2.50 ksi. (b) 0.1077 in.
 9.9 48.4 kips.
 9.11 1.988 kN.
 9.12 0.429 in.
 9.13 (a) 9.53 kips. (b) 1.254 3 1023 in.
 9.14 (a) 32.8 kN. (b) 0.0728 mm.
 9.15 (a) 0.01819 mm. (b) 20.0909 mm.
 9.17 0.1812 in.
 9.18 (a) 20.1549 mm. (b) 0.1019 mm  ↓.
 9.19 50.4 kN.
 9.20 SBD 5 179.4 3 1023 in.; SDE 5 1124.1 3 1023 in.
 9.21 (a) 0.1767 in. (b) 0.1304 in.
 9.24 14.74 kN.
 9.25 (a) 65.1 MPa. (b) 0.279 mm.
 9.26 (a) 287 kN. (b) 140.0 MPa.
 9.27 Steel: 28.34 ksi; concrete: 21.208 ksi.
 9.28 695 kips.
 9.30 (a) 62.8 kN ← at A; 37.2 kN ← at E. (b) 46.3 μm →.
 9.32 (a) RA 5 2.28 kips ↑; RC 5 9.72 kips ↑.  

(b) σAB 5 11.857 ksi; σBC 5 23.09 ksi.
 9.33 177.4 lb.
 9.35 A: 0.525P; B: 0.200P; C: 0.275P.
 9.36 A: 0.1P; B: 0.2P; C: 0.3P; D: 0.4P.
 9.37 137.88F.
 9.39 σS 5 21.448 ksi; σC 5 54.2 psi.
 9.40 (a) 298.3 MPa. (b) 238.3 MPa.
 9.41 142.6 kN.
 9.42 (a) σAB 5 25.25 ksi; σBC 5 211.82 ksi.  

(b) 6.57 3 1023 in. →.
 9.44 (a) 52.3 kips. (b) 9.91 3 1023 in.
 9.45 (a) 201.68F. (b) 18.0107 in.
 9.46 (a) 2116.2 MPa. (b) 0.363 mm.
 9.48 (a) 21.48C. (b) 3.67 MPa.
 9.49 (a) 0.1973 mm. (b) 20.00651 mm.
 9.52 94.9 kips.
 9.53 1.99551 : 1.
 9.54 (a) 0.0358 mm. (b) 20.00258 mm. (c) 20.000344 mm.  

(d) 20.00825 mm2.
 9.55 (a) 5.13 3 1023 in. (b) 20.570 3 1023 in.
 9.56 (a) 7630 lb compression. (b) 4580 lb compression.
 9.58 (a) 0.0754 mm. (b) 0.1028 mm (c) 0.1220 mm.
 9.62 16.67 MPa.
 9.63 19.00 3 103 kN/m.
 9.64 (a) 10.42 in. (b) 0.813 in.
 9.65 (a) 13.31 ksi. (b) 18.72 ksi.
 9.67 (a) 58.3 kN. (b) 64.3 kN.

 7.38 (a) 765 in4. (b) 402 in4.
 7.39 (a) 11.57 3 106 mm4. (b) 7.81 3 106 mm4.
 7.40 (a) 129.2 in4. (b) 25.8 in4.
 7.41 Ix 5 254 in4; rx 5 4.00 in.; Iy 5 102.1 in4; ry 5 2.54 in.
 7.43 Ix 5 186.7 3 106 mm4; rx 5 118.6 mm;
  Iy 5 167.7 3 106 mm4; ry 5 112.4 mm.
 7.44 Ix 5 260 3 106 mm4; rx 5 144.6 mm;
  Iy 5 17.53 3 106 mm4; ry 5 37.6 mm.
 7.45 Ix 5 96.5 in4; Iy 5 26.5 in4.
 7.46 Ix 5 9.54 in4; Iy 5 104.5 in4.
 7.47 Ix 5 3.55 3 106 mm4; Iy 5 49.8 3 106 mm4.
 7.49 b3h/12.
 7.51 0.0945ah3; 0.402h.
 7.53 bh(12h2 1 b2)/48; √(12h2 1 b2)/24.
 7.54 Ix 5 1.268 3 106 mm4; Iy 5 339 3 103 mm4.
 7.55 Ix 5 1.874 3 106 mm4; Iy 5 5.82 3 106 mm4.
 7.56 Ix 5 48.9 3 103 mm4; Iy 5 8.35 3 103 mm4.
 7.58 (a) 12.16 3 106 mm4. (b) 9.73 3 106 mm4.
 7.60 Ix 5 250 in4; rx 5 4.10 in.; Iy 5 141.9 in4; ry 5 3.09 in.

CHAPTER 8

 8.1 (a) 35.7 MPa. (b) 42.4 MPa.
 8.2 d1 5 22.6 mm.; d2 5 15.96 mm.
 8.3 (a) 12.73 ksi. (b) 22.83 ksi.
 8.4 28.2 kips.
 8.6 (a) 101.6 MPa. (b) 221.7 MPa.
 8.7 1.084 ksi.
 8.9 8.52 ksi.
 8.10 4.29 in2.
 8.11 (a) 17.86 kN. (b) 241.4 MPa.
 8.12 (a) 12.73 MPa. (b) 24.77 MPa.
 8.13 308 mm.
 8.14 43.4 mm.
 8.16 12.57 kips.
 8.17 10.82 in.
 8.19 29.4 mm.
 8.20 (a) 25.9 mm. (b) 271 MPa.
 8.21 (a) 8.92 ksi. (b) 22.4 ksi. (c) 11.21 ksi.
 8.22 (a) 10.84 ksi. (b) 5.11 ksi.
 8.24 8.31 kN.
 8.25 σ 5 489 kPa; τ 5 489 kPa.
 8.26 (a) 13.95 kN. (b) 620 kPa.
 8.27 σ 5 70.0 psi, τ 5 40.4 psi.
 8.28 (a) 1.500 kips. (b) 43.3 psi.
 8.30 (a) 180.0 kips. (b) 45.08. (c) 22.50 ksi. (d) 25.00 ksi.
 8.31 σ 5 221.6 MPa, τ 5 7.87 MPa.
 8.33 168.1 mm2.
 8.34 (a) 1.141 in. (b) 1.549 in.
 8.35 (a) 3.35. (b) 1.358 in.
 8.36 (a) 181.3 mm2. (b) 213 mm2.
 8.38 1.800.
 8.39 10.25 kN.
 8.41 (a) 1.550 in. (b) 8.05 in.
 8.42 3.47.
 8.44 3.97 kN.
 8.46 283 lb.
 8.47 2.42.
 8.48 2.05.
 8.49 (a) 3.33 MPa. (b) 525 mm.
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CHAPTER 11

 11.1 (a) 261.6 MPa. (b) 91.7 MPa.
 11.2 (a) 22.38 ksi. (b) 20.650 ksi.
 11.3 80.2 kN?m.
 11.4 24.8 kN?m.
 11.6 (a) 1.405 kip?in. (b) 3.19 kip?in.
 11.7 259 kip?in.
 11.9 top: 214.71 ksi; bottom: 8.82 ksi.
 11.10 top: 281.8 MPa; bottom: 67.8 MPa.
 11.12 3.79 kN?m.
 11.13 (a) 8.24 kips. (b) 1.332 kips.
 11.15 42.6 kN.
 11.16 4.11 kip?in.
 11.17 7.67 kN?m.
 11.18 20.4 kip?in.
 11.19 106.1 N?m.
 11.21 4.63 kip?in.
 11.23 (a) σ 5 75 MPa, ρ 5 26.7 m. (b) σ 5 125.0 MPa, ρ 5 9.60 m.
 11.24 (a) σmax 5 6M/a3, 1/ρ 5 12M/Ea4.
  (b) σmax5 8.49M/a3, 1/ρ 5 12M/Ea4.
 11.25 1.240 kN?m.
 11.26 887 N?m.
 11.27 720 N?m.
 11.29 335 kip?in.
 11.30 689 kip?in
 11.31 (a) 66.2 MPa. (b) 2112.4 MPa.
 11.32 (a) 256.9 MPa. (b) 111.9 MPa.
 11.33 (a) 21.979 ksi. (b) 16.48 ksi.
 11.36 43.7 m.
 11.37 625 ft.
 11.38 625 ft.
 11.39 (a) 212 MPa. (b) 215.59 MPa.
 11.40 (a) 210 MPa. (b) 214.08 MPa.
 11.42 2.88 kip.ft.
 11.43 (a) 24.1 ksi. (b) 21.256 ksi.
 11.44 33.9 kip.ft.
 11.46 (a) steel: 8.96 ksi; aluminum: 1.792 ksi; brass: 0.896 ksi.  

(b) 349 ft.
 11.48 (a) 54.1 MPa. (b) 130.2 MPa.
 11.49 (a) 22P/πr2 (b) 25P/πr2.
 11.50 (a) 4.87 ksi. (b) 5.17 ksi.
 11.51 (a) 2212 psi. (b) 2637 psi. (c) 21061 psi.
 11.52 (a) 2102.8 MPa. (b) 80.6 MPa.
 11.53 (a) 112.7 MPa. (b) 296.0 MPa.
 11.54 (a) 130.2 MPa. (b) 2110.0 MPa.
 11.57 0.375d.
 11.58 0.455 in.
 11.59 (a) 20.750 ksi. (b) 22.00 ksi. (c) 21.500 ksi.
 11.60 623 lb.
 11.62 16.04 mm.
 11.64 (a) 2.54 kN. (b) 17.01 mm to the right of loads.
 11.65 (a) 2P/2at. (b) 2P/at. (c) 2P/2at.
 11.66 (a) 47.6 MPa. (b) 249.4 MPa. (c) 9.80 mm below top of section.
 11.68 2.485 in. , y , 4.561 in.
 11.70 P 5 44.2 kips, Q 5 57.3 kips.
 11.71 (a) 30.0 mm. (b) 94.5 kN.
 11.72 (a) 5.00 mm. (b) 243 kN.
 11.73 (a) 9.86 ksi. (b) 22.64 ksi. (c) 29.86 ksi.
 11.74 (a) 23.37 MPa. (b) 218.60 MPa. (c) 3.37 MPa.
 11.75 (a) 217.16 ksi. (b) 6.27 ksi. (c) 17.16 ksi.
 11.76 (a) 7.20 ksi. (b) 218.39 ksi. (c) 27.20 ksi.

 9.68 (a) 87.0 MPa. (b) 75.2 MPa. (c) 73.9 MPa.
 9.69 (a) 12.02 kips. (b) 108.0%.
 9.70 23.9 kips.
 9.72 36.7 mm.
 9.73 1.219 in.
 9.74 21.5 kN.
 9.76 (a) 80.4 μm ↑. (b) 209 μm  ↓. (c) 390 μm  ↓.
 9.77 0.536 mm  ↓.
 9.80 (a) 145.98F. (b) 0.01053 in.
 9.81 (a) 263.0 MPa. (b) 24.05 mm2. (c) 2162.0 mm3.
 9.82 a 5 0.818 in., b 5 2.42 in.
 9.83 (a) 3/4 in. (b) 15.63 kips.

CHAPTER 10

 10.1 641 N?m.
 10.2 87.3 MPa.
 10.3 (a) 7.55 ksi. (b) 7.64 ksi.
 10.4 (a) 125.7 N?m (b) 181.4 N?m.
 10.6 (a) 7.55 ksi. (b) 3.49 in.
 10.8 (a) 1.292 in. (b) 1.597 in.
 10.9 (a) 2.85 ksi. (b) 4.46 ksi. (c) 5.37 ksi.
 10.10 (a) 3.19 ksi. (b) 4.75 ksi. (c) 5.58 ksi.
 10.12 42.8 mm.
 10.13 9.16 kip?in.
 10.15 3.37 kN?m.
 10.16 (a) 50.3 mm. (b) 63.4 mm.
 10.17 AB: 42.0 mm; BC: 33.3 mm.
 10.18 AB: 52.9 mm; BC: 33.3 mm.
 10.20 1.189 kip?in.
 10.21 (a) 55.0 MPa. (b) 45.3 MPa. (c) 47.7 MPa.
 10.23 (a) 1.442 in. (b) 1.233 in.
 10.24 4.30 kip?in.
 10.25 (a) 2.83 kip?in. (b) 13.008.
 10.26 (a) 1.3908. (b) 1.4828.
 10.28 9.38 ksi.
 10.30 (a) 8.548 (b) 2.118.
 10.31 (a) 14.438. (b) 46.98.
 10.32 6.028.
 10.33 12.228.
 10.34 3.788.
 10.36 (TAl/GJ)(1/n4 1 1/n2 1 1).
 10.37 36.1 mm.
 10.39 0.837 in.
 10.40 1.089 in.
 10.41 (a) 73.6 MPa. (b) 34.4 MPa. (c) 5.078.
 10.43 (a) 4.72 ksi. (b) 7.08 ksi. (c) 4.358.
 10.44 7.378.
 10.45 (a) A: 1105 N?m; C: 295 N?m.  

(b) 45.0 MPa. (c) 27.4 MPa.
 10.46 (a) TA 5 1090 N?m; TC 5 310 N?m.  

(b) 47.4 MPa. (c) 28.8 MPa.
 10.48 1.483 in.
 10.49 12.44 ksi.
 10.51 7.95 kip?in.
 10.52 (a) 19.21 kip?in. (b) 2.01 in.
 10.54 1.221.
 10.56 127.8 lb?in.
 10.58 τAB 5 68.9 MPa; τCD 5 14.70 MPa.
 10.59 τAB 5 10.27 MPa; τCD 5 48.6 MPa.
 10.60 12.24 MPa.
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 12.37 (a) 1.800 kips. (b) 6.00 kip?ft.
 12.38 (a) 880 lb. (b) 2000 lb?ft.
 12.39 (a) 6.75 kN. (b) 6.51 kN?m.
 12.40 (a) 600 N. (b) 180.0 N?m.
 12.41 See Prob. 12.13.
 12.42 10.89 MPa.
 12.43 129.2 MPa.
 12.44 See Prob. 12.17.
 12.45 (a) V 5 (w0L/π) cos (πx/L); M 5 (w0L2/π2) sin (πx/L).  

(b) w0L2/π2.
 12.47 (a) V 5 w0(L2 2 3x2)/6L; M 5 w0(Lx 2 x3/L)/6.  

(b) 0.0642w0L2.
 12.49 |V|max 5 20.7 kN; |M|max 5 9.75 kN?m; σmax 5 60.2 MPa.
 12.50 |V|max 5 16.80 kN; |M|max 5 8.82 kN?m; σmax 5 73.5 MPa.
 12.51 |V|max 5 1670 lb; |M|max 5 2640 lb?ft; σmax 5 959 psi.
 12.52 |V|max 5 8.00 kips; |M|max 5 16.00 kip?ft; σmax 5 6.98 ksi.
 12.54 |V|max 5 9.28 kips; |M|max 5 28.2 kip?in; σmax 5 11.58 ksi.
 12.55 |V|max 5 150 kN; |M|max 5 300 kN?m; σmax 5 136.4 MPa.
 12.57 h 5 173.2 mm.
 12.58 h 5 361 mm.
 12.60 b 5 6.20 in.
 12.62 a 5 6.67 in.
 12.63 W27 3 84.
 12.64 W27 3 84.
 12.65 W530 3 66.
 12.66 W250 3 28.4.
 12.67 S460 3 81.4.
 12.69 S12 3 31.8.
 12.71 C9 3 15.
 12.72 C180 3 14.6.
 12.73 3/8 in.
 12.74 9 mm.
 12.77 (a) 18.00 kips. (b) 72.0 kip?ft.
 12.78 (a) 85.0 N. (b) 21.3 N?m.
 12.80 |V|max 5 342 N; |M|max 5 51.6 N?m; σmax 5 17.19 MPa.
 12.81 |V|max 5 144.0 kN; |M|max 5 84.0 kN?m; σmax 5 99.5 MPa.
 12.84 |V|max 5 30.0 lb; |M|max 5 24.0 lb?ft; σmax 5 6.95 ksi.
 12.85 11.74 in.
 12.87 7.01 kips.

CHAPTER 13

 13.1 92.6 lb.
 13.2 326 lb.
 13.3 738 N.
 13.4 747 N.
 13.5 193.2 kN.
 13.7 12.01 ksi.
 13.9 (a) 7.40 ksi. (b) 6.70 ksi.
 13.10 (a) 3.17 ksi. (b) 2.40 ksi.
 13.11 (a) 920 kPa. (b) 765 kPa.
 13.12 (a) 8.97 MPa. (b) 8.15 MPa.
 13.13 14.05 in.
 13.14 88.9 mm.
 13.17 (a) 31.0 MPa. (b) 23.2 MPa.
 13.18 (a) 1.744 ksi. (b) 2.81 ksi.
 13.19 32.7 MPa.
 13.20 3.21 ksi.
 13.22 2.00.
 13.23 1.125.

 11.77 (a) 0.321 ksi. (b) 20.107 ksi. (c) 0.427 ksi.
 11.78 (a) 57.8 MPa. (b) 256.8 MPa. (c) 25.9 MPa.
 11.79 (a) 11.38 . (b) 15.06 ksi.
 11.80 (a) 57.48. (b) 75.7 MPa.
 11.81 (a) 9.598 . (b) 76.5 MPa.
 11.82 (a) 10.038. (b) 54.2 MPa.
 11.83 (a) 27.58 . (b) 5.07 ksi.
 11.84 (a) 32.98 . (b) 61.4 MPa.
 11.86 (a) σA 5 262.5 psi; σB 5 2271 psi. (b) Does not intersect AB. 

(c) Intersects BD at 0.780 in. from B.
 11.87 (a) σA 5 31.5 MPa; σB 5 210.39 MPa. (b) 94.0 mm above A.
 11.89 0.1638 in.
 11.91 91.3 kN.
 11.93 (a) 239.3 MPa. (b) 26.2 MPa.
 11.94 (a) 9.17 kN?m. (b) 10.24 kN?m.
 11.96 (a) 152.25 kips. (b) x 5 0.595 in., z 5 0.571 in. (c) 300 μm.
 11.97 73.2 MPa; 2102.4 MPa.
 11.99 (a) 21.526 ksi. (b) 17.67 ksi.
 11.101 (a) 46.78. (b) 80.2 MPa.
 11.102 (a) 288 lb. (b) 209 lb.
 11.104 (a) 1.414. (b) 1.732.

CHAPTER 12

 12.1 (a) Vmax 5 Pb/L, Vmin 5 2Pa/L; Mmax 5 Pab/L, Mmin 5 0.  
(b) 0 # x , a: V 5 Pb/L; M 5 Pbx/L; a # x , L: V 5 
2Pa/L; M 5 Pa(L 2 x)/L.

 12.2 (a) Vmax 5 wL/2, Vmin 5 2wL/2; Mmax 5 wL2/8.  
(b) V 5 w(L/2 2 x); M 5 wx(L 2 x)/2.

 12.3 (a) |V|max 5 w0L/2; |M|max 5 w0L2/6.  
(b) V 5 2w0x2/2L; M 5 2w0x3/6L.

 12.4 (a) |V|max 5 w(L 2 2a)/2; |M|max 5 w(L2/8 2 a2/2).  
(b) 0 # x # a: V 5 w(L 2 2a)/2; M 5 w(L 2 2a)x/2;  
a # x # L 2 a: V 5 w(L/2 2 x); M 5 w[x(L 2 x) 2 a2]/2.  
L 2 a # x # L: V 5 2w(L 2 2a)/2; M 5 w(L 2 2a)(L 2 x)/2.

 12.5 (a) 430 lb. (b) 1200 lb?in.
 12.7 (a) 40.0 kN. (b) 40.0 kN?m.
 12.9 (a) 3.45 kN. (b) 1125 N?m.
 12.10 (a) 2000 lb. (b) 19200 lb?in.
 12.11 (a) 12.00 kips. (b) 27.0 kip?ft.
 12.12 (a) 900 N. (b) 112.5 N?m.
 12.13 950 psi.
 12.14 10.89 MPa.
 12.15 129.2 MPa.
 12.16 129.5 MPa.
 12.17 9.90 ksi.
 12.19 |V|max 5 27.5 kips; |M|max 5 45.0 kip?ft; σ 5 14.17 ksi.
 12.20 |V|max 5 279 kN; |M|max 5 326 kN?m; σ 5 136.6 MPa.
 12.23 |V|max 5 28.8 kips; |M|max 5 56.0 kip?ft; σ 5 13.05 ksi.
 12.24 |V|max 5 1.500 kips; |M|max 5 3.00 kip?ft; σ 5 2.11 ksi.
 12.25 (a) 866 mm. (b) 99.2 MPa.
 12.26 (a) 819 mm. (b) 89.5 MPa.
 12.27 (a) 1.260 ft. (b) 7.24 ksi.
 12.29 See Prob. 12.1.
 12.30 See Prob. 12.2.
 12.31 See Prob. 12.3.
 12.32 See Prob. 12.4.
 12.33 See Prob. 12.5.
 12.35 See Prob. 12.7.
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 14.32 See 14.16.
 14.33 See 14.17.
 14.34 See 14.18.
 14.35 See 14.19.
 14.36 See 14.20.
 14.38 See 14.22.
 14.40 205 MPa.
 14.41 (a) 7.94 ksi. (b) 13.00 ksi, 211.00 ksi.
 14.43 (a) 22.89 MPa. (b) 12.77 MPa, 1.226 MPa.
 14.44 (a) 28.66 MPa. (b) 17.00 MPa, 23.00 MPa.
 14.46 24.68, 114.68; 72.9 MPa, 27.1 MPa.
 14.47 608, 2308; 1.732τ0, 21.732τ0.
 14.48 1

2 θ, 12 θ 1 908; σ0(1 1 cos θ), σ0(1 2 cos θ).
 14.49 166.5 psi.
 14.50 σ 5 10.25 ksi; τ 5 5.12 ksi.
 14.51 5.49.
 14.52 (a) 95.7 MPa. (b) 1.699 mm.
 14.53 (a) 1.290 MPa. (b) 0.0852 mm.
 14.54 7.71 mm.
 14.56 43.3 ft.
 14.57 σmax 5 16.62 ksi; τmax 5 8.31 ksi.
 14.59 σmax 5 89.0 MPa; τmax 5 44.5 MPa.
 14.60 12.55 mm.
 14.62 474 psi.
 14.64 2.17 MPa.
 16.65 (a) 44.2 MPa. (b) 15.39 MPa.
 14.66 56.88.
 14.68 σmax 5 45.1 MPa, τmax(in-plane) 5 7.49 MPa.
 14.69 (a) 3.15 ksi. (b) 1.993 ksi.
 14.71 σmax 5 8.48 ksi; τmax 5 2.85 ksi.
 14.72 σmax 5 13.09 ksi; τmax 5 3.44 ksi.
 14.74 2458 # θ # 8.138; 458 # θ # 98.138.
 14.75 3.00 ksi # σx # 27.0 ksi.
 14.77 θp 5 18.408, 108.48; σmax 5 7.00 ksi; σmin 5 23.00 ksi.
 14.78 (a) 6.40 ksi. (b) 4.70 ksi.
 14.80 (a) 399 kPa. (b) 186.0 kPa.
 14.81 (a) θp 5 18.908, 108.98; σmax 5 18.67 MPa;  

σmin 5 2158.5 MPa. (b) 88.6 MPa.
 14.83 σmax 5 68.6 MPa, τmax(in-plane) 5 23.6 MPa.
 14.84 17.06 kN?m.

CHAPTER 15

 15.1 (a) y 5 2Px2(3L 2 x)/6EI. (b) PL3/3EI  ↓. (c) PL2/2EI .
 15.2 (a) y 5 M0(L 2 x)2/2EI. (b) M0L2/2EI ↑. (c) M0L/EI .
 15.3 (a) y 5 2w0(x5 2 5L4x 1 4L5)/120EIL. (b) w0L4/30EI  ↓.  

(c) w0L3/24EI .
 15.4 (a) y 5 2w(x4 2 4L3x 1 3L4)/24EI. (b) wL4/8EI  ↓.  

(c) wL3/6EI .
 15.6 (a) y 5 w(L2x2/8 2 x4/24)/EI. (b) 11wL4/384EI ↑.  

(c) 5wL3/48EI .
 15.7 (a) y 5 w(Lx3/16 2 x4/24 2 L3x/48)/EI.  

(b) wL3/48EI . (c) 0.
 15.9 (a) 2.79 3 1023 rad  . (b) 1.859 mm  ↓.
 15.10 (a) 3.92 3 1023 rad  . (b) 0.1806 in.  ↓.
 15.11 (a) xm 5 0.423L, ym 5 0.06415M0L2/EI ↑. (b) 45.3 kN?m.
 15.12 (a) xm 5 0.519L, ym 5 0.00652w0L4/EI  ↓. (b) 0.229 in.  ↓.
 15.14 0.398 in. ↓.

 13.24 1.500.
 13.25 10.79 kN.
 13.26 1.672 in.
 13.27 (a) 59.9 psi. (b) 79.8 psi.
 13.28 (a) 12.21 MPa. (b) 58.6 MPa.
 13.29 (a) 95.2 MPa. (b) 112.8 MPa.
 13.31 τa 5 3.93 ksi; τb 5 2.67 ksi; τc 5 0.631 ksi; τd 5 1.022 ksi; 

τe 5 0.
 13.33 (a) 41.4 MPa. (b) 41.4 MPa.
 13.34 (a) 18.23 MPa. (b) 14.59 MPa. (c) 46.2 MPa.
 13.35 (a) 40.5 psi. (b) 55.2 psi.
 13.36 (a) 2.67 in. (b) 41.6 psi.
 13.37 9.05 mm.
 13.39 7.19 ksi.
 13.41 (a) 23.2 MPa. (b) 35.2 MPa.
 13.42 10.76 MPa at a, 0 at b, 11.21 MPa at c, 22.0 MPa at d,  

9.35 MPa at e.
 13.43 (a) 2.025 ksi. (b) 1.800 ksi.
 13.46 (a) 23.3 MPa. (b) 109.7 kPa.
 13.48 (a) 1.323 ksi. (b) 1.329 ksi.
 13.49 (a) 0.888 ksi. (b) 1.453 ksi.
 13.50 (a) 155.8 N. (b) 329 kPa.
 13.51 11.54 kips.
 13.53 (b) h 5 225 mm, b 5 61.7 mm.
 13.55 (a) 84.2 kips. (b) 60.2 kips.
 13.56 (a) 379 kPa; (b) 0.
 13.57 (a) 239 N; (b) 549 N.
 13.58 1.167 ksi at a, 0.513 ksi at b, 4.03 ksi at c, 8.40 ksi at d.
 13.60 53.9 kips.

CHAPTER 14

 14.1 σ 5 20.521 MPa, τ 5 56.4 MPa.
 14.2 σ 5 32.9 MPa, τ 5 71.0 MPa.
 14.3 σ 5 9.46 ksi, τ 5 1.013 ksi.
 14.4 σ 5 10.93 ksi, τ 5 0.536 ksi.
 14.5 (a) 237.08, 53.08. (b) 213.60 MPa, 286.4 MPa.
 14.7 (a) 14.08, 104.08. (b) 20.0 ksi, 214.00 ksi.
 14.9 (a) 8.08, 98.08. (b) 36.4 MPa. (c) 250.0 MPa.
 14.10 (a) 18.48; 108.48. (b) 100.0 MPa. (c) 90.0 MPa.
 14.12 (a) 226.68, 63.48. (b) 5.00 ksi. (c) 6.00 ksi.
 14.13 (a) σx9 5 22.40 ksi; τx9y9 5 0.1498 ksi; σy9 5 10.40 ksi.  

(b) σx9 5 1.951 ksi; τx9y9 5 6.07 ksi; σy9 5 6.05 ksi.
 14.14 (a) σx9 5 9.02 ksi; τx9y9 5 3.80 ksi; σy9 5 213.02 ksi.  

(b) σx9 5 5.34 ksi; τx9y9 5 29.06 ksi; σy9 5 29.34 ksi.
 14.16 (a) σx9 5 256.2 MPa; τx9y9 5 238.2 MPa; σy9 5 86.2 MPa.  

(b) σx9 5 245.2 MPa; τx9y9 5 53.8 MPa; σy9 5 75.2 MPa.
 14.17 (a) 20.600 MPa. (b) 23.84 MPa.
 14.18 (a) 217 psi. (b) 2125.0 psi.
 14.19 (a) 47.9 MPa. (b) 102.7 MPa.
 14.20 (a) 18.48. (b) 16.67 ksi.
 14.22 σa 5 5.12 ksi, σb 5 21.640 ksi, τmax 5 3.38 ksi.
 14.24 205 MPa.
 14.25 See 14.5 and 14.9.
 14.26 θP 5 226.68 and 63.48; σmax 5 190.0 MPa; σmin 5  

210.00 MPa, see 14.10.
 14.27 (a) 59.08 and 231.08 (b) 17.00 ksi. (c) 3.00 ksi.
 14.28 See 14.12.
 14.29 See 14.13.
 14.30 See 14.14.
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CHAPTER 16

 16.1 kL.
 16.2 K/L.
 16.3 2kL/9.
 16.4 K/L.
 16.5 ka2(2l).
 16.7 (a) 6.65 lb. (b) 21.0 lb.
 16.9 (a) 6.25%. (b) 12.04 kips.
 16.10 (a) 7.48 mm. (b) 58.8 kN for round, 84.8 kN for square.
 16.12 1.421.
 16.13 168.4 kN.
 16.14 69.6 kips.
 16.16 (a) 93.0 kN. (b) 448 kN.
 16.17 2.27.
 16.18 2.77 kN.
 16.20 (a) LBC 5 4.20 ft; LCD 5 1.050 ft. (b) 4.21 kips.
 16.22 657 mm.
 16.23 29.5 kips
 16.24 (a) 2.78. (b) d1 5 0.800 in., d2 5 1.131 in., d3 5 0.566 in.,  

d4 5 0.669 in., d5 5 0.800 in.
 16.25 (a) 59.6 kips. (b) 31.9 kips.
 16.26 414 kN.
 16.27 (a) 220 kN. (b) 841 kN.
 16.28 (a) 86.6 kips. (b) 88.1 kips.
 16.31 (a) 251 mm. (b) 363 mm. (c) 689 mm.
 16.32 79.3 kips.
 16.33 1596 kN.
 16.34 899 kN.
 16.36 144.1 kips.
 16.37 107.7 kN.
 16.39 6.53 in.
 16.40 (a) 4 boards. (b) 3 boards.
 16.41 1.591 in.
 16.42 9.00 mm.
 16.44 W250 3 67.
 16.46 3/8 in.
 16.47 1/4 in.
 16.48 L3-1/2 3 2-1/2 3 3/8.
 16.49 70.2 kips.
 16.50 ka2/2l.
 16.52 0.384 in.
 16.53 π2b2/12L2α.
 16.56 5.37 kN.
 16.58 124.6 kips.
 16.59 (a) 1529 kN. (b) 638 kN.
 16.60 W200 3 46.1.

 15.15 (a) y 5 w0(x6/90 2 Lx5/30 1 L3x3/18 2 L5x/30)/EIL2.  
(b) w0L3/30EI  . (c) 61w0L4/5760EI  ↓.

 15.17 3wL/8.
 15.18 3M0/2L ↑.
 15.20 11w0L/40 ↑.
 15.21 RA 5 11P/16 ↑, MA 5 3PL/16 , RB 5 5P/16 ↑, MB 5 0;  

M 5 23PL/16 at A, M 5 5PL/32 at C, M 5 0 at B.
 15.22 RA 5 7wL/128 ↑; M 5 0.0273wL2 at C, M 5 20.0703wL2 at 

B, M 5 0.0288wL2 at x 5 0.555L.
 15.23 RA 5 14P/27 ↑; yD 5 20PL3/2187EI  ↓.
 15.25 RA 5 1

2 P ↑, MA 5 PL/8 ; M5 2PL/8 at A,  
M 5 PL/8 at C, M 5 2PL/8 at B.

 15.26 RA 5 w0L/4 ↑, MA 5 5w0L2/96 ; M 5 25w0L2/96 at A,  
M 5 w0L2/32 at C, M 5 25w0L2/96 at B.

 15.27 (a) 8PL3/243EI ↓. (b) 19PL2/162EI .
 15.28 (a) PL3/486EI ↑. (b) PL2/81EI .
 15.29 (a) wL4/128EI  ↓. (b) wL3/72EI .
 15.30 (a) 19Pa3/6EI  ↓. (b) 5Pa2/2EI .
 15.31 3PL2/4EI , 13PL3/24EI  ↓.
 15.32 PL2/EI , 17PL3/24EI  ↓.
 15.35 7.91 3 1023 rad  ; 0.340 in.  ↓.
 15.36 6.98 3 1023 rad  ; 0.1571 in.  ↓.
 15.37 (a) 0.601 3 1023 rad , (b) 3.67 mm  ↓.
 15.39 (a) 41wL/128 ↑. (b) 23wL/128 ↑; 7wL2/128 .
 15.40 (a) 4P/3 ↑; PL/3 . (b) 2P/3 ↑.
 15.42 RA 5 7P/32 ↑; RC 5 33P/16 ↑; RE 5 23P/32 ↑.
 15.43 13wL/32 ↑, 11wL2/192 .
 15.45 (a) 5.06 3 1023 rad . (b) 47.7 3 1023 in.  ↓.
 15.46 121.5 N/m.
 15.48 (a) 0.00937 mm ↓. (b) 229 N ↑.
 15.49 9.31 mm ↓.
 15.50 0.278 in. ↓.
 15.52 (a) 0.211L, 0.1604M0L2/EI ↓. (b) 6.08 m.
 15.54 (a) y 5 w0(x6 2 15L2x4 1 25L3x3 2 11L5x)/360EIL2.  

(b) 11woL3/360EI . (c) 0.00916woL4/EI ↓.
 15.55 4.00 kips.
 15.56 9M0/8L ↑; M0/8 at A, 27M0/16 just to the left of C, 9M0/16 just 

to the right of C, 0 at B.
 15.57 Pa(2L 2 a)/2EI; ; Pa(3L2 2 3aL 1 a2)/6EI ↑.
 15.59 5.58 3 1023 rad , 2.51 mm ↓.
 15.60 RA 5 M0/2L ↑; RB 5 5M0/2L ↑; RC 5 3M0/L ↓.
 15.61 43.9 kN.
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